

# Low Cost, 16-Bit Synchro/ Resolver-to-Digital Converter

**AD2S46** 

**FEATURES** 

1.3 Arc Minute Accuracy 16-Bit Resolution Small 28-Pin Ceramic DIP Low Cost

**APPLICATIONS** 

Gimbal/Gyro Control Systems

Radar System

**Engine Controllers** 

Sonar

Military Servo Control Systems

Fire Control System Avionic Systems

Antenna Monitoring CNC Machine Tooling

GENERAL DESCRIPTION

The AD2S46 series are 16 bit, continuous tracking synchrol resolver-to-digital converiers. They have been designed specifically for applications where space and performance are at a premium. Each 28-pin hybrid device uses a Type 2 servo look tracking converter with a ratiometric conversion technique to provide excellent noise immunity, repeatability and tolerance of long lead lengths.

The core of each conversion is performed by a state of the art monolithic integrated circuit manufactured in Analog Devices' proprietary BiMOS II process which combines the advantage of low power CMOS digital logic with bipolar linear circuits. The use of these ICs keeps the internal component count low providing both packaging which reflects LSI monolithic standards and ensures high reliability.

The device incorporates a high accuracy differential conditioning circuit for signal inputs providing more than 74 dB of common-mode rejection. Options are available for both synchro and resolver format inputs. The converter output is via a tristate transparent latch allowing data to be read without interruption of converter operation.

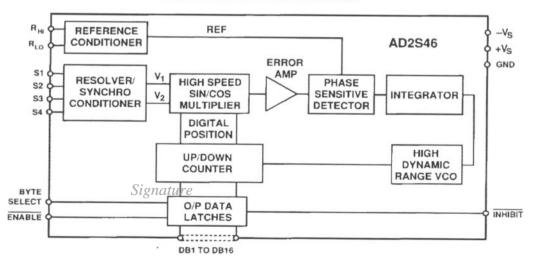
Digital data transfer is accommodated by an ENABLE input which controls the tristate outputs and presents the data to the bus when taking from a HI to a LO state.

An INHIBIT precedes the ENABLE input and freezes the data transfer from the up-down counter to the output latches. This action does not interrupt the operation of the tracking loop. Releasing the INHIBIT automatically generates a data refresh. A BYTE SELECT input provides the facility for interfacing to an 8- or 16-bit bus system.

MODELS AVAILABLE

The AD2646 series is available in 2 accuracy grades:

MD2S 6TD 16 Bits  $\pm 1.3$  arc mins  $-55^{\circ}$ C to  $+125^{\circ}$ C D2S 46SD 16 Bits  $\pm 2.6$  arc mins  $-55^{\circ}$ C to  $+125^{\circ}$ C


AD2946SD 16 Hits  $\pm 2.6$  and thins  $-55^{\circ}$ C to  $+125^{\circ}$ C Each grade has options available which will interface to stan

synchros and resolvers

All components are 100% tested at -55°C, +25°C, and +125°C.

Devices processed to high reliability screening standards (Suffix B) receive further levels of testing and screening to ensure high levels of reliability. Full ordering information is given on the back page of this data sheet.

#### FUNCTIONAL BLOCK DIAGRAM



REV. 0

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 617/329-4700 Fax: 617/326-8703 Twx: 710/394-6577
Telex: 924491 Cable: ANALOG NORWOODMASS

# AD2S46—SPECIFICATIONS (typical at +25°C unless specified otherwise)

| Parameter                           | Min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AD2S46<br>Typ        | Max   | Units                 | Comments                        |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------|-----------------------|---------------------------------|
| PERFORMANCE                         | 4+8484                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - J.F                |       |                       |                                 |
|                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |       |                       |                                 |
| Accuracy <sup>1</sup> AD2S46TD      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | ±1.3  | arc min               |                                 |
|                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | ±2.6  | arc min               |                                 |
| AD2S46SD                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |       |                       |                                 |
| Tracking Rate                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | 12    | rev/s                 | B 11 1 1 1 1 B'                 |
| Resolution                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | 16    | Bits                  | Parallel Natural Binary         |
|                                     | (1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LSB = 20 arc         | sec)  |                       | 1 IN65356                       |
| Repeatability                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | 1     | LSB                   |                                 |
| Signal/Reference                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |       |                       |                                 |
| Frequency                           | 360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      | 2860  | Hz                    |                                 |
| Bandwidth                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | 85    | Hz                    |                                 |
| CICNIAL INDUITE                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |       |                       |                                 |
| SIGNAL INPUTS                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11 0 2/ 00           | 100/  | 3.7                   | C O-di I-fti                    |
| Signal Voltage                      | 2,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $11.8, 26, 90 \pm$   | 10%   | V rms                 | See Ordering Information        |
| Impedance                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 222                  |       |                       |                                 |
| 90 V Signal                         | To the same of the | 200                  |       | kΩ                    | Resistive Tolerance ±2%         |
| 26 V Signal                         | Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 58                   |       | kΩ                    |                                 |
| 11.8 V Signal                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26                   |       | kΩ                    |                                 |
| 2 V Signal                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.4                  |       | kΩ                    |                                 |
| Common-Mode Rejection               | 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |       | dB                    |                                 |
| Common-Mode Range                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |       |                       |                                 |
| 90 V Signal                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | ±250  | V dc                  |                                 |
| 26 V Signal                         | $\vdash \vdash$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | ±120  | V dc                  |                                 |
| 11.8 V Signal                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /                    | ±60/  | V dc                  |                                 |
| 2 V Signal                          | $\vdash \setminus \setminus$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | / / \                | \ / / | V dc                  |                                 |
|                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | ±12   | v ac                  |                                 |
| REFERENCE INPUTS                    | $\vdash$ $\cap$ $\cap$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      | 1 / / | / /                   |                                 |
| Reference Voltage                   | 2,\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.8, 26, 115 ±      | 10%   | V rms                 | See Ordering Information        |
| Impedance                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\setminus \bigcirc$ | /     | 1 4                   |                                 |
| 115 V Reference                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 275                  | 1 L   | kΩ                    | Resistive Tolerance ±3%         |
| 26 V Reference                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 275                  |       | $\Omega_{\mathbf{r}}$ |                                 |
| 11.8 V Reference                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25                   |       | Ta l                  |                                 |
| 2 V Reference                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25                   |       | kΩ                    | $\overline{}$                   |
|                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 43                   |       | KIL                   | $\rightarrow$ $^{\prime\prime}$ |
| Common-Mode Range                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | . 210 | 37.1                  | $\bigcup$                       |
| 115 V Reference                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | ±210  | V dc                  |                                 |
| 26 V Reference                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | ±210  | V dc                  |                                 |
| 11.8 V Reference                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | ±35   | V dc                  | 7                               |
| 2 V Reference                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | ±35   | V dc                  |                                 |
| INHIBIT                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |       |                       | See Figure 3                    |
| Sense                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |       |                       | Logic LO to Inhibit             |
| Time to Stable Data (After          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |       |                       | Logic Lo to inmore              |
| Negative Edge of Inhibit)           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | 600   | ne                    |                                 |
|                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | 000   | ns                    |                                 |
| ENABLE                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |       |                       | See Figure 3                    |
| Logic LO to Data Available          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | 110   | ns                    | Presents Data to Output         |
| Logic HI to High Impedance          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | 110   | ns                    | Outputs in High Impedance State |
|                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |       |                       | See Figure 3                    |
| BYTE SELECT                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | 120   |                       |                                 |
| Logic HI to Data Stable             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | 130   | ns                    | MS Byte DB1-DB8                 |
| Logic LO to Data Stable             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | 140   | ns                    | LS Byte DB1-DB8                 |
| STEP RESPONSE                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |       |                       |                                 |
| Large Step <sup>1</sup>             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 75                   | 95    | ms                    | 179° to 1 LSB of Error          |
| Small Step <sup>1</sup>             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25                   | 30    | ms                    | 2° to 1 LSB of Error            |
|                                     | 40000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | W.J.                 | 30    |                       | 2 to 1 Lob of Ellot             |
| ACCELERATION CONSTANT               | 48000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |       | sec <sup>-2</sup>     |                                 |
| DIGITAL INPUTS                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |       |                       |                                 |
| (ENABLE, INHIBIT, BYTE SELECT)      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |       |                       |                                 |
| V <sub>IL</sub>                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | 0.8   | V dc                  |                                 |
|                                     | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      | 0.0   | V dc                  |                                 |
| V <sub>IH</sub>                     | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      | + 700 |                       | X7 - 0 X7                       |
| I <sub>II.</sub><br>I <sub>IH</sub> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | ±100  | μΑ                    | $V_{IL} = 0 V$                  |
|                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | ±100  | μA                    | $V_{IH} = 5 V$                  |

|                              | AD2S46    |                                         |        |         |                            |
|------------------------------|-----------|-----------------------------------------|--------|---------|----------------------------|
| Parameter                    | Min       | Тур                                     | Max    | Units   | Comments                   |
| DIGITAL OUTPUTS (DB1-DB16)   |           |                                         |        |         |                            |
| V <sub>OL</sub> <sup>1</sup> |           |                                         | 0.4    | V dc    | $I_{OL} = 1.2 \text{ mA}$  |
| $V_{OH}^{-1}$                | 2.4       |                                         |        | V dc    | $I_{OH} = 100 \mu\text{A}$ |
| Tristate Leakage Current     |           |                                         | ±100   | $\mu$ A |                            |
| Drive Capability             |           |                                         | 3      | LSTTL   |                            |
| POWER SUPPLIES               |           | *************************************** |        |         |                            |
| Voltage Levels               |           |                                         |        |         |                            |
| $+V_{s}^{1}$                 | +14.25    | +15                                     | +15.75 | V dc    |                            |
| $-V_s^1$                     | -14.25    | -15                                     | -15.75 | V dc    |                            |
| Current                      |           |                                         |        |         |                            |
| $+I_{S}$                     |           | 30                                      | 35     | mA      |                            |
| $-I_{S}$                     |           | 1.5                                     | 20     | mA      |                            |
| Power Dissipation            |           | 675                                     | 825    | mW      |                            |
| DIMENSIONS                   | 1.4 × 0.6 | × 0.135                                 |        | inch    | See Package Information    |
|                              | 35.6 × 15 | $.2 \times 3.4$                         |        | mm      |                            |
| WEIGHT                       |           |                                         | 0.25   | Oz      |                            |
|                              |           |                                         | 6.3    | Grams   |                            |

Specified over temperature range,  $-55^{\circ}$ C to  $+125^{\circ}$ C, and for: (a)  $\pm 10\%$  signal and reference amplitude variation; (b)  $\pm 10\%$  signal  $\pm$  and reference harmonic distortion; (c)  $\pm 5\%$  power supply variation; (d)  $\pm 10\%$  variation in reference frequency.

Boldface type indicates parameters which are 100% tested at nominal values of power supplies, input signal voltages, and operating frequency. All other

Specifications subject to change without notice.

| specifications subject to change without abuce. |
|-------------------------------------------------|
| ABSOLUTE MAXIMUM RATINGS                        |
| +V <sub>s</sub> to GND                          |
| -V <sub>s</sub> to GND                          |
| Any Logic Input to GND (max)+5.5 V dc           |
| Any Logic Input to GND (min)0.4 V dc            |
| Maximum Junction Temperature                    |
| S1, S2, S3, S4 (Line to Line) <sup>1</sup>      |
| (90 V Option)                                   |
| (26 V Option) ± 160 V dc                        |
| (11.8 V Option) ±80 V dc                        |
| (2 V Option)                                    |
| S1, S2, S3, S4 to GND                           |
| (90 V Option)                                   |
| (26 V Option)                                   |
| (11.8 V Option)                                 |
| (2 V Option)                                    |
| R <sub>HI</sub> to R <sub>LO</sub>              |
| (26 V, 115 V Options)                           |
| (2 V, 11.8 V Options)                           |
| R <sub>HI</sub> and R <sub>LO</sub> to GND      |
| (26 V, 115 V Options) ±210 V dc                 |
| (2 V, 11.8 V Options) ±35 V dc                  |
| Storage Temperature Range65°C to +150°C         |

Operating Temperature Range<sup>2</sup> .......55°C to +125°C

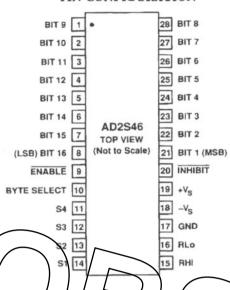
|   | NOTE                                                                                                                                                                 |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| / | <sup>1</sup> On synchro input options, line to the voltage refers to the S2-S1, S1-S3 and S3-S2 differential voltages. On resolven input options line to line levels |
|   | refer to the S1-S3 and S2-S4 voltages.                                                                                                                               |
|   | <sup>2</sup> Thermal Resistance:/To ensure that the junction temperature of the hottest<br>component within the hybrid does not exceed the rated maximum of 150 C,   |
|   | the case temperature must not exceed 13 °C.                                                                                                                          |
|   | RECOMMENDED OPERATING CONDITIONS                                                                                                                                     |

| the case temperature must not exceed 130°C.                    |
|----------------------------------------------------------------|
|                                                                |
| RECOMMENDED OPERATING CONDITIONS                               |
| Power Supply Voltage (+ $V_S$ to GND) +15 V dc ±5%             |
| Power Supply Voltage $(-V_S \text{ to GND})$ 15 V dc $\pm 5\%$ |
| Analog Input Voltage (S1, S2, S3, S4 Line to Line)             |
| (90 V Option)                                                  |
| (26 V Option)                                                  |
| (11.8 V Option)                                                |
| (2 V Option) 2 V rms ±10%                                      |
| Analog Input Voltage (R <sub>HI</sub> to R <sub>LO</sub> )     |
| (26 V Option)                                                  |
| (115 V Option)                                                 |
| (11.8 V Option)                                                |
| (2 V Option) 2 V rms ±10%                                      |
| Signal and Reference Harmonic Distortion ±10%                  |
| Phase Shift Between Signal and Reference ±10 Degrees           |
| Ambient Operating Temperature Range55°C to +125°C              |
|                                                                |

### CAUTION

- Absolute maximum ratings are the limits beyond which damage to the device may occur.
- 2. Correct polarity voltages must be maintained on the  $+V_S$  and  $-V_S$  pins.

#### **ESD SENSITIVITY -**


The AD2S46 features input protection circuitry consisting of large "distributed" diodes and polysilicon series resistors to dissipate both high energy discharges (Human Body Model) and fast, low energy pulses (Charged Device Model).

Proper ESD precautions are strongly recommended to avoid functional damage or performance degradation. For further information on ESD precautions, refer to Analog Devices' ESD Prevention Manual.



## **AD2S46**

#### PIN CONFIGURATION



#### AD2S46 PIN FUNCTION DESCRIPTION

| PIN   | MNEMONIC        | DESCRIPTION                    |
|-------|-----------------|--------------------------------|
| 1-8   | DB9-DB16        | PARALLEL OUTPUT DATA BITS      |
| 21-28 | DB1-DB8         | PARALLEL OUTPUT DATA BITS      |
| 9     | ENABLE          | OUTPUT ENABLE INPUT            |
| 10    | BYTE SELECT     | BYTE SELECT INPUT SIGNAL       |
| 11-14 | S4-S1           | SYNCHRO/RESOLVER SIGNAL INPUTS |
| 15    | R <sub>HI</sub> | INPUT PIN FOR REFERENCE HIGH   |
| 16    | RLO             | INPUT PIN FOR REFERENCE LOW    |
| 17    | GND             | POWER SUPPLY GROUND            |
| 18    | -Vs             | NEGATIVE POWER SUPPLY          |
| 19    | +V <sub>s</sub> | POSITIVE POWER SUPPLY          |
| 20    | INHIBIT         | INPUT PIN TO INHIBIT CONVERTER |

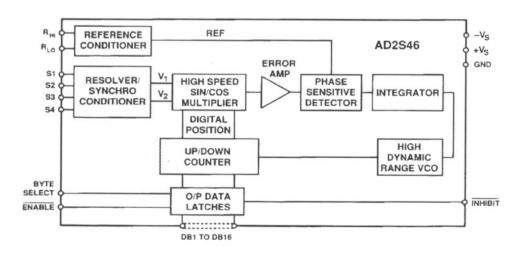
PRINCIPLES OF OPERATION

The AD2546 series operate on a Type 2 tracking closed-loop principle. The output digital word continually tracks the position of the resolver/synchro shall without the need or external convert commands and wait states. As the transducer noves through a position equivalent to the least significant bit weighting, the output digital word is updated by one LSB.

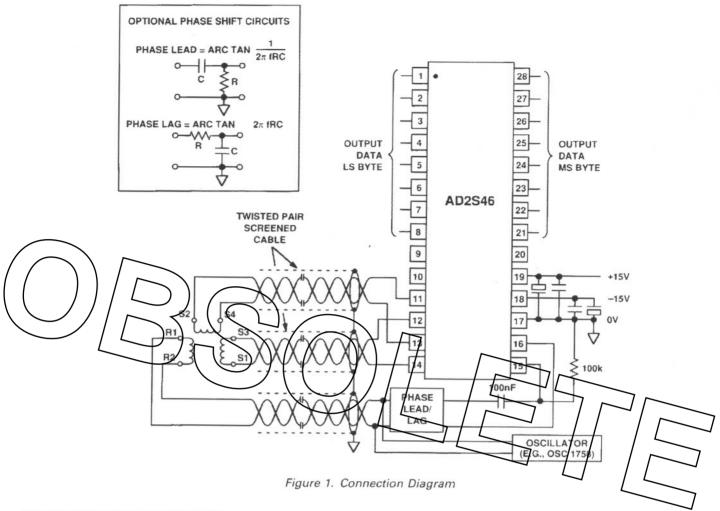
If the device is a synchro-to-digital converter, the 3-wire synchro output will be connected to S1, S2 and S3 on the unit and a solid-state Scott-T input conditioner will convert these signals into resolver format, i.e.,

$$V_1 = K E_0 \sin \omega t \sin \theta \tag{sin}$$

$$V_2 = K E_0 \sin \omega t \cos \theta \tag{cos}$$


Where  $\theta$  is the angle of the synchro shaft,  $E_0 \sin \omega t$  is the reference signal, and K is the transformation ratio of the input signal conditioner. If the unit is a resolver-to digital converter, the 4-wire resolver output will be connected directly to S1, S2, S3 and S4 on the unit.

To understand the conversion process, assume that the current word state of the up-down counter is  $\phi$ .  $V_1$  is multiplied by  $\cos \phi$  and  $V_2$  is multiplied by  $\sin \phi$  to give:


 $K E_0 \sin \phi t \sin \theta \cos \phi$   $K E_0 \sin \phi t \cos \theta \sin \phi$ These signals are subtracted by the error amplifier to give  $K E_0 \sin \phi t (\sin \theta \cos \phi + \cos \theta \sin \phi)$ 

K E<sub>0</sub> sin  $\omega$ t sin  $(\theta - \phi)$ 

A phase sensitive detector, integrator and voltage controlled oscillator (VCO) form a closed-loop system which seeks to null sin  $(\theta-\phi)$ . When this is accomplished, the word state of the updown counter,  $\phi$ , equals, to within the rated accuracy of the converter, the synchro/resolver shaft angle,  $\theta$ .



AD2S46 Functional Block Diagram



### CONNECTING THE CONVERTER

The power supply voltages connected to  $-V_S$  and  $+V_S$  pins should be -15 V and +15 V and must not be reversed.

It is suggested that a parallel combination of a 100 nF (ceramic) and a 6.8  $\mu F$  (tantalum) capacitor be placed from each of the supply pins to GND.

The digital output is taken from Pins 21-28 and Pins 1-8. Pin 21 is the MSB, Pin 8 the LSB.

The reference connections are made to REF HI and REF LO. In the case of a synchro, the signals are connected to \$1, \$2 and \$3 according to the following convention:

 $E_{SI-S3} = E_{RLO-RHI} \sin \omega t \sin \theta$ 

 $E_{S3-S2} = E_{RLO-RHI} \sin \omega t \sin (\theta + 120^\circ)$ 

 $E_{S2-S1} = E_{RLO-RHI} \sin \omega t \sin (\theta + 240^{\circ})$ 

For a resolver, the signals are connected to S1, S2, S3 and S4 according to the following convention:

 $E_{S1-S3} = E_{RLO-RHI} \sin \omega t \sin \theta$ 

 $E_{S2-S4} = E_{RLO-RHI} \sin \omega t \cos \theta$ 

It is recommended that the resolver is connected using individually screened twisted pair cables with the sine, cosine and reference signals twisted separately.

#### DATA TRANSFER

To transfer data the INHIBIT input should be used. The data will be valid 600 ns after the application of a logic "LO" to INHIBIT. By using the ENABLE input the two bytes of data can be transferred after which the INHIBIT should be returned to a logic "HI" state to enable the output latches to be updated.

#### **INHIBIT INPUT**

The INHIBIT logic input only inhibits the data transfer from the up-down counter to the output latches and, therefore, does not interrupt the operation of the tracking loop. Releasing the INHIBIT automatically generates a refresh of the output data.

#### **ENABLE INPUT**

The ENABLE input determines the state of the output data. A logic "HI" maintains the output data pins in the high impedance state, and application of a logic "LO" presents the data of the latches to the output pins. The operation of the ENABLE has no effect on the conversion process. Timing information is shown in Figure 2.

# **AD2S46**



Figure 2. Timing Diagrams

BYTE SELECT INPUT

The NTE SELECT input on the AD2S46 can be used to interface the converter to either an 8-bit or 16-bit microprocessor bust

To interface to a 16/bit parallel bus, the BCTE SELECT pin should be at logic IdI. Thus, the most senificant byte of the digital output position is at Pins 2) to 28 (Bit 1 MSB to Bit 8, respectively). Also the least significant byte is a Pin 1 to 8 (Bit 9 to Bit 16 LSB, respectively). The ENABLE control is used to present the digital 16-bit parallel digital output position data to the pins.

To interface to an 8-bit parallel bus, two sequential readings must take place. The BYTE SELECT pin at logic HI places the MS BYTE at Pins 21 (MSB) to 28. Using the ENABLE, the parallel data is presented to the bus.

A logic LO on the BYTE SELECT place the LS BYTE at Pins 21 to 28 (LSB). Using the ENABLE, the parallel data is presented to the bus.

The operation of the BYTE SELECT has no effect on the conversion process of the converter.

#### REFERENCE INPUT

The amplitude of the reference signal applied to the converter's input is not critical, but care should be taken to ensure it is within the recommended operating conditions.

The AD2S46 will not be damaged if the reference is supplied to the converter without the power supplies and/or the signal inputs.

#### CAUSES OF ERROR

#### Differential Phase Shift

Phase shift between the sine and the cosine signals from the resolver is known as differential phase shift and can cause static errors. Some differential phase shift will be present on all resolvers being a characteristic of the transducer. A small resolver residual voltage (quadrature voltage) indicates a small differential phase shift. Additional phase shift can be introduced if the sine channel wires and the cosine channel wires are treated differently. For instance, different cable lengths or different capactive loads could cause differential phase shift. The additional error caused by differential phase shift on the input signals approximates to:

Error =  $0.53 \times a \times b$  arc minutes

where a = differential phase shift in degrees and b = signal to reference phase shift in degrees.

This error can be minimized by choosing a resolver with a small residual voltage, ensuring that the sine and cosine signals are routed identically and removing the reference/signals phase shift (see section on "CONNECTING THE CONVERTER"). By taking these precautions, the extra error can be made insignificant.

#### Resolver Phase Shift

Under static operating conditions phase shift between the reference and the signal lines alone will not theoretically affect the converter's stated accuracy. However, most resolvers exhibit a phase shift between the signal and the reference. This phase shift will give rise under dynamic conditions to an additional error defined by

This effect can be eliminated by placing a phase lead/lag network on the reference signal to the converter equivalent to the phase shift caused by the resolver (see section "CONNECTING THE CONVERTER").

NOTE: Capacitive and inductive crosstalk in the signal and reference leads can cause similar conditions as described above.

#### SCALING FOR NONSTANDARD SIGNALS

A feature of these converters is that the signal and reference inputs can be resistively scaled to accommodate nonstandard input signal and reference voltages which are outside the nominal ±10% limits of the converter. Using this echanque, it is possible to use a standard converter with a "personality card" in systems where a wide range of input and reference voltages are encountered.

NOTE: The accuracy of the converter will be affected by the matching accuracies of resistors used for external scaling. For resolver format options, it is critical that the value of the resistors on the S1-S3 signal input pair be precisely matched to the S4-S2 input pair. For synchro options, the three resistors on S1, S2, S3 must be matched. In general, a 0.1% mismatch between resistor values will contribute an additional 1.7 arc minutes of error to the conversion. In addition, imbalances in resistor values can greatly reduce the common-mode rejection ratio of the signal inputs.

| Binary Resolution Bits (N) (2 <sup>N</sup> ) |        | Degrees<br>/Bit | Minutes<br>/Bit | Seconds<br>/Bit |  |
|----------------------------------------------|--------|-----------------|-----------------|-----------------|--|
| 0                                            | 1      | 360.0           | 21600.0         | 1296000.0       |  |
| 1                                            | 2      | 180.0           | 10800.0         | 648000.0        |  |
| 2                                            | 4      | 90.0            | 5400.0          | 324000.0        |  |
| 3                                            | 8      | 45.0            | 2700.0          | 162000.0        |  |
| 4                                            | 16     | 22.5            | 1350.0          | 81000.0         |  |
| 5                                            | 32     | 11.25           | 675.0           | 40500.0         |  |
| 6                                            | 64     | 5.625           | 337.5           | 20250.0         |  |
| 7                                            | 128    | 2.8125          | 168.75          | 10125.0         |  |
| 8                                            | 256    | 1.40625         | 84.375          | 5062.5          |  |
| 9                                            | 512    | 0.703125        | 42.1875         | 2531.25         |  |
| 10                                           | 1024   | 0.3515625       | 21.09375        | 1265.625        |  |
| 11                                           | 2048   | 0.1757813       | 10.546875       | 632.8125        |  |
| 12                                           | 4096   | 0.0878906       | 5.273438        | 316.40625       |  |
| 13                                           | 8192   | 0.0439453       | 2.636719        | 158.20313       |  |
| 14                                           | 16384  | 0.0219727       | 1.318359        | 79.10156        |  |
| 15                                           | 32768  | 0.0109836       | 0.659180        | 39.55078        |  |
| 16                                           | 65536  | 0.0054932       | 0.329590        | 19.77539        |  |
| 17                                           | 131072 | 0.0027466       | 0.164795        | 9.88770         |  |
| 18                                           | 262144 | 0.0013733       | 0.082397        | 4.94385         |  |

Bit Weight Table

To calculate the values of the external scaling resistors add 1.111 k $\Omega$  extra per volt of signal in series with S1, S2, S3 and S4 (resolver options only), and 3 k $\Omega$  in extra per volt of reference in series with  $R_{\rm LO}$  and  $R_{\rm HI}$ .

#### DYNAMIC PERFORMANCE

The transfer function of the converter is given below.

Open-loop transfer function

$$\frac{\theta_{OUT}}{\theta_{IN}} = \frac{K_A (1 + sT_1)}{S^2 (1 + sT_2)}$$

Closed-loop transfer function

$$\frac{\theta_{OUT}}{\theta_{IN}} = \frac{1 + sT_1}{1 + sT_1 + s^2/K_A + s^3 T_2/K_A}$$

where  $K_A = 48000 \text{ sec}^{-2}$   $T_1 = 0.0071 \text{ sec}$   $T_2 = 0.00125 \text{ sec}$ The gain and phase diagrams are shown in Figures 3 and 4.

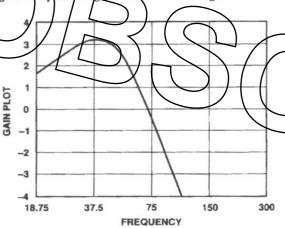



Figure 3. AD2S46 Gain Plot

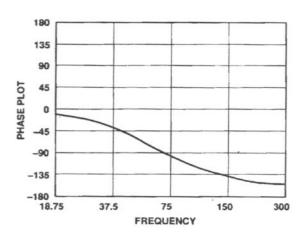



Figure 4. AD2S46 Phase Plot

#### ACCELERATION ERROR

A tracking converter employing a Type 2 servo loop does not suffer any velocity lag, however, there is an additional error due to acceleration. This additional error can be defined using the acceleration constant  $K_A$  of the converter.

$$K_A = \frac{Input\ Acceleration}{Error\ in\ Output\ Angle}$$

The numerator and denominator must have consistent angular units. For example, if  $K_A$  is in  $\sec^{-2}$ , then the input acceleration may be specified in degrees/sec and the error in output angle in degrees. Alternatively, the angular unit of measure may be in radians, minutes of arc, LSBs, etc.

 $K_A$  does not define maximum acceleration, only the error due to acceleration. The maximum acceleration for which the AD2S46 will not lose track is in the order of 5°  $\times$   $K_A = 238,000$  °/sec<sup>2</sup> or about 660 revolutions/sec<sup>2</sup>.

 $K_A$  can be used to predict the output position error due to input acceleration. For example, for an acceleration of 50 revolutions/sec<sup>2</sup> with  $K_A=48000$ ,

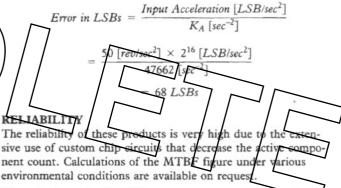



Figure 5 shows the MTBF in years vs. case temperature for Naval Sheltered conditions and airborne uninhabited cargo calculated in accordance with MIL-HDBK-217E.

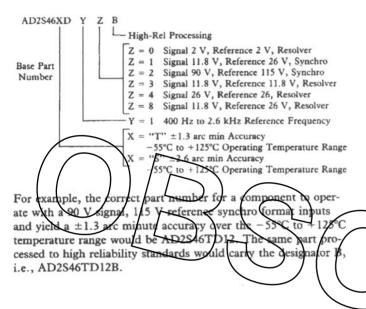



Figure 5. AD2S46 MTBF vs. Temperature

## AD2S46

#### ORDERING INFORMATION

When ordering, the converter part numbers should be suffixed by a two letter code defining the accuracy grade, and a two digit numeric code defining the signal/reference voltage and frequency. All the standard options and their option codes are shown below. For options not shown, please contact Analog Devices, Inc.



#### OTHER PRODUCTS

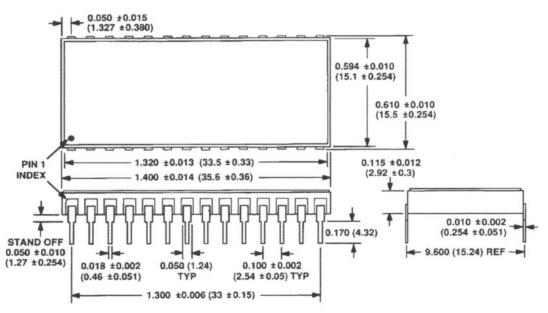
Many other products concerned with the conversion of synchro/ resolver data are manufactured by Analog Devices, some of which are listed below. If you have any questions about our products or require advice about their use for a particular application please contact our Applications Engineering Department.

The SDC/RDC1740/41/42 are hybrid synchro/resolver-to-digital converters with internal isolating micro transformers.

The SDC/RDC1767/1768 are identical to the SDC/RDC1740 series but with the additional features of analog velocity output and dc error output.

The OSC1758 is a hybrid sine/cosine power oscillator which can provide a maximum power output of 1.5 watts. The device operates over a frequency range of 1 to 10 kHz.

The DRC1745 and DRC1746 are 14- and 16-bit natural binary latched output high power hybrid digital-to-resolver converters. The accuracies available are  $\pm 2$  and  $\pm 4$  arc minutes and the outputs can supply 2 VA at 7 V rms. Transformers are available to convert the output to synchro or resolver format at high voltage levels.


The AD2S65/66 are similar to the DRC1745/46 but do not include the power output stage. These devices are available with accuracy grades up to  $\pm 1$  arc minute.

The AD2944 and AD2S34 are 14 bit, dual channel synchro and resolver-to-digital converters. They are available with accuracy grades up to ±2.6 arc minutes and can be supplied in surface mount packages.

The 2580 series are monolithic ICs performing resolver-to-digitation with accuracies up to  $\pm 2$  arc minutes and 16-bit resolution.

## **OUTLINE DIMENSIONS**

Dimensions shown in inches and (mm).

