

AN-1572 Application Note

One Technology Way • P.O. Box 9106 • Norwood, MA 02062-9106, U.S.A. • Tel: 781.329.4700 • Fax: 781.461.3113 • www.analog.com

IEC 61000-4-x and CISPR 11 Tested Analog Input Design with AD4111 for Industrial Automation

by Li Ke

INTRODUCTION

The AD4111 integrates a low noise, fast settling, 24-bit, Σ - Δ analog-to-digital converter (ADC) with an analog front end for fully differential or single-ended, bipolar, ±10 V voltage inputs and single-ended, 20 mA inputs. The AD4111 is designed to work with programmable logic controller (PLC) and distributed control system (DCS) modules of industrial automation applications.

This application note details the functionality of the AD4111 electromagnetic compatibility (EMC) printed circuit board (PCB) that can be used with AD4111 for a typical ±10 V voltage and 0 mA to 20 mA current input. The board design demonstrates a proven EMC solution for industrial automation applications. The IEC 61000-4-x set of standards discusses the evaluation of immunity of electrical and electronic equipment at a system level.

The AD4111 EMC test board is characterized to ensure that the circuit performance is not affected by radiated radio frequency (RF) or conducted RF disturbances, and has sufficient immunity against electrostatic discharge (ESD), electrical fast transients (EFT), and surge. The board is also tested for CISPR 11, in which the radiated emissions of the board fall well below the Class A limits.

Figure 1. AD4111 EMC Test Board Photograph

TABLE OF CONTENTS

Introduction
Revision History 2
System Design
AD4111 ADC Description
Circuit Description
Circuit Evaluation and Test4
Software Needed 5
Equipment Needed5
Standards and Performance Criteria5
Printed Circuit Board
Component Placement and Layout Considerations
Other Component Considerations7
Voltage Supply Protection7

ESD Protection	7
EMC and EMI Measurement Results of the AD4111 EM	IC Test
Board	8
Conducted Immunity	8
Immunity to ESD	9
Immunity to Electrical Fast Transients	13
Immunity to Surge	16
Radiated Immunity	19
Radiated Emissions	22
EMC Board Schematics and Artwork	
Ordering Information	30
Bill of Materials	

REVISION HISTORY

10/2018—Revision 0: Initial Version

SYSTEM DESIGN AD4111 ADC DESCRIPTION

The AD4111 is a low power, low noise, 24-bit, Σ - Δ ADC that integrates an analog front end (AFE) for fully differential or single-ended bipolar, ±10 V voltage inputs, and 0 mA to 20 mA current inputs. The AD4111 features a maximum channel scan rate of 6.2 kSPS (161 µs) for fully settled data.

The embedded 2.5 V, low drift (5 ppm/°C), band gap internal reference with output reference buffer reduces the external component count. The digital filter allows flexible settings, including simultaneous 50 Hz and 60 Hz rejection at a 27.27 SPS output data rate. The user can select between the different filter settings depending on the demands of each channel in the application. An automatic channel sequencer enables the ADC to switch through each enabled channel.

The precision performance of the AD4111 is achieved by integrating the proprietary *i*Passives[™] technology from Analog Devices, Inc. The device is factory calibrated to achieve a high degree of specified accuracy. The AD4111 has the unique feature of open wire detection on the voltage inputs (patent pending) for system level diagnostics. The device operates with a single 3 V or 5 V power supply, making it easy to use in galvanically isolated applications.

For full details, refer to the AD4111 data sheet.

CIRCUIT DESCRIPTION

The AD4111 is designed for PLC and DCS applications that are involved with harsh industrial environments. The AD4111 also satisfies the IEC 6100-4-x and CISPR 11 standards.

The circuit shown in Figure 2 demonstrates a typical multiple channel, group isolated, industrial voltage and current input module for harsh EMI and EMC conditions using the AD4111.

In the example circuit, the ADuCM3029 ultra low power Arm^{*} Cortex-M3 microcontroller unit (MCU) handles local on-board control and data communication to the host computer. The ADuM5411 quad-channel isolator with integrated dc-to-dc converter enables a neat and robust solution of an isolated analog input design that operates off a single 3 V or 5 V supply. The AD4111 can simultaneously handle current input (singleended or bipolar differential voltage input).

Two low dropout regulators (LDOs) substantially simplify the on-board power supply in the example circuit to provide the necessary voltages for board functionality. The ADP7142 steps down a 6 V to 40 V input to 5 V for powering the primary side of the ADuM5411. The ADP124 regulates the ADP7142 output to 3.3 V for the microprocessor and the digital isolator session of the ADuM5411.

The power supplies are not intended to match the robustness of the power supply module or the backplane supply in a typical industrial automation control system. Only basic protections are implemented for the supply circuit. This AD4111 EMC test board has an option to fully function off the 5 V universal serial bus (USB) supply from the host computer while communicating with the host through a nonisolated universal asynchronous receiver transmitter (UART) to USB port. When undergoing the EMI and EMC testing, the AD4111 EMC test board is alternatively powered by a separate 12 V dc supply while data is sent to the host computer through the off board isolated data link.

Figure 2. AD4111 EMC Test Board in Circuit

CIRCUIT EVALUATION AND TEST

The AD4111 EMC test board can be run by being connected to a host computer or in standalone mode. The operational parameters are programmed in the on-board flash memory. During emission tests, the board is disconnected from the host computer while the firmware runs, and the hardware is kept operational. In the immunity tests, the board is connected to the host computer through the isolated data link. The serial port data capture program on the host computer receives ADC conversion samples from the AD4111.

The AD4111 on the EMC test board has only gone through the standard factory calibration at the component level. No further board level calibration was conducted.

With an output data rate set to 1007 SPS, the AD4111 is configured to continuously sequence sample the voltage and current input channels VIN0 to VIN1, VIN6, VIN2 to VIN3, VIN7, VIN4 to VIN5, IIN3, IIN2, IIN1, and IIN0. When evaluating performance in EMC testing, VIN2 to VIN3 represent the differential voltage input channels, VIN7 represents the single-ended voltage input channels, and IIN3 represents the current input channels. Further connections in EMC testing are detailed in Table 1. **Table 1. AD4111 Pin Connection in EMC Testing**

AD4111 Pin	Connection in the EMC Tests
AVDD	5 V
IOVDD	5 V
AVSS	GND_ISO
DGND	GND_ISO
REF+	Internally enabled
VIN0 to VIN1	GND_ISO
VIN6	GND_ISO
VIN2 to VIN3	2.5 V
VIN7	2.5 V
VIN4 to VIN5	GND_ISO
IIN3	2.5 V
IIN2	GND_ISO
IIN1	GND_ISO
IINO	GND_ISO

Before and after each possibly destructive EMC test, the board samples the 2.5 V external signal source together with an independent precision bench digital multimeter (DMM). After being translated into voltage or current, the AD4111 samples from the representative channels are compared with the measurement from the DMM in the same period to quantify the error. The deviation between the two measurements must stay within the predefined range to meet the performance criterion. The maximum allowable error is 0.1% of full scale, which aligns with the common requirements of the industrial automation applications.

During the nondestructive EMC tests, the board samples the 2.5 V external signal source together with the bench DMM. The voltage or current measurements are compared to that of the DMM for judging the performance criterion.

During emissions testing, the analog input channels of the board are shorted to the isolated ground. The board is disconnected from the host computer while AD4111 keeps sampling at 1007 SPS in each channel. The only auxiliary device in this setup is a 12 V battery to power the EMC test board and which is assumed not to contribute EMI. The general setup for EMC testing is shown in Figure 3.

A pair of twisted leads followed by a low pass filter probe the output of the precision signal source. The filtered output is wired to the DMM with a pair of twisted leads. The DMM is connected to the PC via the USB cable. The RealTerm software on the host computer logs AD4111 samples via the electrically isolated data link. For each EMC test item, the EMC test board was tested in its voltage input mode and the current input mode.

Rev. 0 | Page 4 of 33

SOFTWARE NEEDED

To perform EMC testing on the AD4111, the following software is required:

- Firmware revision E0-01 on AD4111 EMC board
- RealTerm: Serial/TCP Terminal 2.0.0.70
- Keysight Technologies BenchVue software V 2.6

EQUIPMENT NEEDED

To perform EMC testing on the AD4111, the following equipment is required:

- Optical USB transceiver board
- Industrial fiber optic cable
- PC running Windows[®] 7, 64-bit version, image V3.0.2011.10.14
- DC power supply: Agilent 3630A or YUASA NP7-12
- Digital multimeter: Keysight 33470A
- Precision signal source: ADR421
- Shielded two-conductor cable, foil/braid
- Schaffner FN353Z-30-33

STANDARDS AND PERFORMANCE CRITERIA

The EMC and electromagnetic interference (EMI) test items, limits, and performance criteria for which this board was designed are defined according to IEC 61131-2. According to this standard, the following six applicable tests were selected:

- IEC 61000-4-2
- IEC 61000-4-3
- IEC 61000-4-4
- IEC 61000-4-5
- IEC 61000-4-6
- CISPR 11

According to these standards, the performance criteria are classified as described in Table 4.

The AD4111 EMC test board was tested and has met the CISPR 11 and IEC 61000-4-x standards detailed in Table 2 and Table 3.

Table 2. Emission Performance Summary

Test	Basic Standard	Frequency Range	Limits	Measured Minimum Margin	Result
Radiated Emissions	CISPR 11 Class A	30 MHz to 1000 MHz	See Table 11 and Table 12	7.5 dBµV	Pass

Table 3. Immunity Performance Summary

Test	Basic Standard	Test Levels	Performance Criterion	Measured Minimum Margin	Result
Conducted Immunity	IEC 61000-4-6	10 V/m	A	See Table 5	Pass
Radiated Immunity	IEC 61000-4-3	10 V/m	A	See Table 9	Pass
ESD	IEC 61000-4-2	±6 kV	В	See Table 6	Pass
EFT	IEC 61000-4-4	±2 kV	В	See Table 7	Pass
Surge	IEC 61000-4-5	±2 kV	В	See Table 8	Pass

Table 4. Performance Criteria

Performance Criterion	Description
A	Normal performance within an error band specified by the manufacturer.
В	Temporary loss of function or degradation of performance, which ceases after the disturbance is removed. The equipment under test recovers its normal performance without operator intervention.
С	Temporary loss of function or degradation of performance, and correction of performance requires operator intervention such as manual restart, power off, or power on.
D	Loss of function or degradation of performance, which is not recoverable. Permanent damage to hardware or software, or loss of data.

PRINTED CIRCUIT BOARD

The AD4111 EMC test board is a separate design from the standard AD4111 evaluation board, EVAL-AD4111SDZ, which is designed to give optimum ADC performance but is not optimized for EMC and EMI testing.

The AD4111 EMC test board is built on a FR4 four layer PCB. The PCB stack up is shown in Figure 4. Both the primary side and the secondary side have 0.5 oz copper foil. The system side of the board (consisting of the LDOs, the microprocessor, the primary side of ADuM5411, and the UART to USB transceiver) sits on the four-layer structure. The internal layers are on 1 oz copper. These layers are designed to provide the optimum EMC and EMI performance on the portion of the board that does not directly host the AD4111.

Figure 4. PCB Stack Up

The field side of the EMC board, including the AD4111 and its entire periphery, sit on a pseudo two layer structure where the inner layers for the ground plane and the power plane are completely etched out. These layers are designed to demonstrate the feasibility for AD4111 to achieve its specified functional performance, as well as EMC and EMI performance on a low cost two layer PCB.

COMPONENT PLACEMENT AND LAYOUT CONSIDERATIONS

Because the resolution of the high resolution of and the low noise levels from the AD4111, take care with regard to decoupling, grounding, and layout. The analog and digital sections are separated on the EMC board and confined to certain areas of the board. The AD4111 is placed on one solid ground plane, to which both the AVSS and DGND pins are soldered when a more than 2-layer printed circuit board is used. The digital interface side of AD4111 is located close to the isolators, and the analog side faces the voltage and current input terminal blocks. The power supplies are decoupled with a $0.1 \,\mu\text{F}$ capacitor in parallel with a 10 nF capacitor. Both are low equivalent series resistance (ESR) ceramic capacitors in a surface mount footprint and located as close as possible to the AD4111 power supply pins.

The damping resistors attenuate the electrical transients from tens of ohms to hundreds of ohms on the digital lines due to the complementary metal-oxide semiconductor (CMOS) switching on and off, helping to reduce EMI. The resistors can also reduce the ringing caused by adding ferrite beads in the serial peripheral interface (SPI).

Take care to follow the recommendations in the ADuM5411 data sheet to achieve improved radiated emissions performance. A parallel combination of at least two capacitors between the V_{DD1} pin and GND₁ pin, between the V_{DDP} pin and GND₁ pin, between the V_{ISO} pin and GND_{1SO} pin, and between the VDD_2 pin and GND_{1SO} pin is used to suppress noise and reduce ripple. The 0.1 μ F and 10 nF low ESR ceramic capacitors provide low inductance in high frequencies. The 10 μ F capacitor is used for ripple suppression and proper regulation at V_{DDP} and V_{ISO} . Both these capacitors are placed as close as possible to the ADuM5411 power pins, with PCB traces of minimum length.

A surface-mount ferrite bead (BLM15HD182SN1D) is placed in series with the $V_{\rm ISO}$ and GND_{ISO} pins to increase the impedance to high frequency currents. The ferrite bead typically has 2 k Ω impedance from 100 MHz to 1 GHz, which can reduce the emissions at the 125 MHz primary switching frequency and the 250 MHz secondary side rectifying frequency and harmonics. $V_{\rm ISO}$ directly powers VDD₂ via a short trace. GND_{ISO} (Pin 23) is connected to other GND_{ISO} pins internally. Pin 23 is wired only to the bypassing capacitors as shown in Figure 5.

A high voltage surface-mount technology (SMT) capacitor is connected directly between GND₁ (Pin 12) and GND_{1SO} (Pin 13) for optimal performance. For additional reduction in emissions, PCB stitching capacitance can be implemented, as detailed in the AN-0971 Application Note.

Figure 5. ADuM5411 Bypass and Peripheral

OTHER COMPONENT CONSIDERATIONS

The AD4111 EMC test board uses 0.1 μ F, 50 V/X5R, 10%, low ESR ceramic capacitors in a C0402 footprint for the decoupling capacitors on the field side of the board. Use of ESR capacitors is a trade-off among considerations for performance, derating, cost, and space saving. The decoupling capacitors on the system microprocessor side use 0.1 μ F, 50 V/X7R, 10%, low ESR ceramic capacitors in a C0603 footprint.

VOLTAGE SUPPLY PROTECTION

The scope of EMC and EMI evaluation and demonstration is focused on the AD4111 and its companion devices. The power supply circuits on the AD4111 EMC test board provide the necessary voltages for board functionality. The supply circuits are not intended to match the robustness of the power supply module or the backplane supply in an industrial automation control system. As such, only basic protections are implemented for these supply circuits. A 1 nF capacitor is placed next to each pin of the power input terminal to the protected ground, where transient energy can be discharged to the earth ground through a 3.3 nF/3 kV capacitor. The 4.7 M Ω resistor bleeds the energy to the earth that may be accumulated on the protected ground. A diode is inserted to protect from miswiring to the power supply input. The SMBJ26CA transient voltage suppression (TVS) diode clamps the transient voltage from going higher than 24 V (nominal). A common-mode inductor blocks the emissions escaping from the downstream circuits. A second SMBJ26CA TVS diode after the inductor provides further clamping for the transient.

ESD PROTECTION

Appropriate ESD protection circuitry must exist on the EMC test board. The protection consists of a current limiting resistor, a transient voltage clamp, and a transient energy diverting capacitor.

There are three minimum mandatory components for AD4111 EMC and EMI in the voltage input channels: a 180 Ω resistor, a 4.7 nF capacitor, and a TVS device. The 180 Ω resistor on the trace between the AD4111 VINx pin and the terminal block in conjunction with the 4.7 nF/50 V COG GRT155R71H472KE01D capacitor provides antialias filtering for the ADC. The RC filter can attenuate the RF interferences during the EMC testing. Because the AD4111 VINx pins are internally connected to approximately 1 M Ω resistors, the 180 Ω serial resistor provides some additional isolation between the AD4111 and the high voltages that the TVS clamps. The TVS device is crucial to clamp the electrical transient on the board during the EMC events. An SMAJ33CA-TR is inserted between the AD4111 and the input terminal block. The TVS pins are routed to the VINx terminal pins with short and heavy traces.

There are four minimum mandatory components for AD4111 EMC and EMI in the current input channels: a PTC resettable fuse, a 180 Ω resistor, a TVS device, and a GRM1555C1H471JA01D capacitor. The fuse trips when the current flowing through it exceeds 150 mA. A 180 Ω resistor on the trace between the AD4111 IINx pin and the terminal block helps to limit the transient current to and from the device because the input resistance of the IINx is approximately 60 Ω . The TVS device is crucial to clamp the electrical transient on the board during the EMC events. An SMA6J10A-TR is inserted after the input terminal block and before the current limiting resistor. The TVS pins are routed to the VINx terminals with short and heavy traces. A 470 pF/50 V C0G GRM1555C1H471JA01D capacitor located after the current limiting resistor diverts the small amount of high frequency transient to the isolated ground.

EMC AND EMI MEASUREMENT RESULTS OF THE AD4111 EMC TEST BOARD CONDUCTED IMMUNITY

As per IEC 61000-4-6, the equipment under test (EUT) is placed on an insulating support of 0.1 meter height above a ground reference plane. All cables exiting the EUT are supported at a height of at least 30 mm above the ground reference plane. The interference is injected with a coupling/decoupling network (CDN), KEMA 801A. The cable is decoupled by an attenuation clamp, KEMA 801A. The frequency range is swept from 150 kHz to 80 MHz (10 V/m) with the disturbance signal of 80% amplitude modulated with a 1 kHz sine wave. The step size is 1% of the start and thereafter 1% of the preceding frequency value where the frequency is swept incrementally. The dwell time of the amplitude modulated carrier at each frequency is 1 sec.

Figure 6. Voltage Measurement vs. Frequency, VIN2 to VIN3 Under 10 V/m

Figure 7. Voltage Measurement vs. Frequency, VIN7 Under 10 V/m

Figure 8. Current Measurement vs. Frequency, IIN3 Under 10 V/m

Figure 9. IEC 61000-4-6 Test Setup Connection Diagram

Figure 10. IEC 61000-4-6 Test Setup Photograph

		During Zap				
Input Mode	Average	Min	Max	Deviation	Pass or Fail	
VIN2 to VIN3	2.502017	2.501917	2.502137	–10 ppm, 12 ppm × full scale (FS)	Pass, Criterion A	
VIN7	2.503531	2.503422	2.503645	–4 ppm, 5 ppm × FS	Pass, Criterion A	
IIN3	9.684782	9.681976	9.688193	-14 ppm, 18 ppm × full scale range (FSR)	Pass, Criterion A	

Table 5. 61000-4-6 Test Levels and Results

IMMUNITY TO ESD

As per IEC 61000-4-2, the test setup consists of a nonconductive table, 0.8 m high, standing on the ground reference plane. A horizontal coupling plane (HCP) of 1.6 m \times 0.8 m is placed on the table. The EUT and its cable are isolated from the coupling plane by an insulating mat 0.5 mm in thickness. The contact discharges are applied to the VINx and IINx screws of the AD4111 input terminal block. The EUT is exposed to at least 20 discharges at each rating, 10 each at negative and positive polarity. The discharges are repeated at a rate of 1 per sec.

Because the precision signal as the auxiliary equipment is essentially a voltage source, the measurements in the AD4111 current mode can vary due to the parameter drift of the components in the measurement loop during the immunity tests. For the current input channel, the 2.5 V reference voltage forces a 10 mA dc current (approximately). The performance is judged with the difference between the AD4111 reading and the multimeter reading, rather than the absolute measurements. The same applies for the EFT and surge test.

Figure 11. Voltage Measurement vs. Sample Count, VIN2 to VIN3 Under 6 kV ESD

Figure 13. Voltage Measurement vs. Sample Count, VIN2 to VIN3 During 6 kV ESD

Application Note

Figure 15. Voltage Measurement vs. Sample Count, VIN7 Under 6 kV ESD

Figure 17. Voltage Measurement vs. Sample Count, VIN7 During 6 kV ESD

Figure 18. Voltage Measurement vs. Sample Count, VIN7 During –6 kV ESD

Figure 19. Current Measurement Difference vs. Sample Count, ΔIIN3 Under 6 kV ESD

Under –6 kV ESD

Figure 21. Current Measurement vs. Sample Count, IIN3 During 6 kV ESD

Figure 22. Current Measurement vs. Sample Count, IIN3 During -6 kV ESD

Figure 23. IEC 61000-4-2 Test Setup Connection Diagram

Figure 24. IEC 61000-4-2 Test Setup, Measurements Before and After Disturbances

Figure 25. IEC 61000-4-2 Test Setup Photograph

Table 6. IEC 61000-4-2 Test Levels and Results of +6 kV Contact ESD	
Tuble 0, The 01000 The rest hereis and results of how of the long	

Input Mode	Zap Point	Test Level (kV)	Before Zap	After Zap	Deviation (ppm)	Pass or Fail
Differential Voltage	VIN2 to VIN3	6	-2.507621 V	-2.507634 V	-5	Pass, Criterion A
		-6	-2.507673 V	-2.507674 V	-0.4	Pass, Criterion A
Single-Ended Voltage	VIN7	6	2.503477 V	2.503476 V	-0.5	Pass, Criterion B
		-6	2.503480 V	2.503452 V	-11	Pass, Criterion B
Current	ΔIIN3	6	–12.731 μA	–12.734 μA	-0.4	Pass, Criterion B
		-6	–12.669 μA	–12.641 μA	3	Pass, Criterion B

Table 7. IEC 61000-4-2 Test Results During ±6 kV Contact ESD

				During Zap (V)		
Input Mode	Zap Point	Test Level (kV)	Before Zap (V)	Min	Max	Deviation
Differential Voltage	VIN2 to VIN3	6	-2.507621	-2.507854	-2.507541	–32 ppm, 93 ppm
		-6	-2.507673	-2.507788	-2.507496	–11 ppm, 18 ppm
Single-Ended Voltage	VIN7	6	2.503477	2.503362	2.521655	–46 ppm, 0.73%
		-6	2.503480	2.503291	2.518806	–75 ppm, 0.61%
Current	ΔIIN3	6	9.597673	9.667706	9.698868	0.73%, 1.05%
		-6	9.597954	9.682500	9.698671	0.88%, 1.05%

IMMUNITY TO ELECTRICAL FAST TRANSIENTS

As per IEC 61000-4-4, the EUT is tested with 2000 V discharges on the analog input cable. Both positive and negative polarity discharges are applied. The length of the hot wire from the coaxial output of the EFT generator to the terminals on the EUT must not exceed 1 m. The duration time of each test sequential is 1 min. The transient and burst waveform is in accordance with IEC 61000-4-4, 5 ns or 50 ns. The configuration consists of a wooden table 0.8 m high covered with a sheet of copper at least 0.25 mm thick connected to the protective grounding system. The EUT is placed on a 0.1 m thick isolating support. A minimum distance of 0.5 m is provided between the EUT and the walls of the laboratory.

Figure 28. Voltage Measurement vs. Sample Count, VIN7 Under 2 kV EFT

Figure 29. Voltage Measurement vs. Sample Count, VIN7 Under -2 kV EFT

Figure 30. Current Measurement Difference vs. Sample Count, Δ IIN3 vs. DMM Under 2 kV EFT

Figure 31. Current Measurement Difference vs. Sample Count, Δ IIN3 vs. DMM Under –2 kV EFT

Figure 32. IEC 61000-4-4 Test Setup Connection Diagram

17167-035

AN-1572

Figure 34. IEC 610004-4 Test Setup Photograph

Table 8. Test Levels and Results of ±2 kV EFT

Input Mode	Zap Point	Test Level (kV)	Before Zap	After Zap	Deviation (ppm)	Pass or Fail
Differential Voltage	VIN2 to VIN3	2	2.504909 V	2.504802 V	-0.1	Pass, Criterion B
		-2	2.504900 V	2.504908 V	-0.5	Pass, Criterion B
Single-Ended Voltage	VIN7	2	2.505330 V	2.505337 V	-0.2	Pass, Criterion B
		-2	2.505335 V	2.505339 V	0.2	Pass, Criterion B
Current	IIN3	2	0.292 μA	0.373 μA	9	Pass, Criterion B
		-2	0.404 μA	0.474 μA	8	Pass, Criterion B

IMMUNITY TO SURGE

As per IEC 61000-4-5, the surge is a combination wave of 1.2 μ S and 50 μ S open circuit voltage, 8 μ S and 20 μ S short circuit current. The EUT is subject to five positive and five negative surges at each rating. The interval between each surge is 1 min. The surge is tested to the AD4111 input cable, which is treated as unshielded asymmetrically operated interconnection lines of the EUT. The surge is applied to the lines via the capacitive coupling. The coupling and decoupling networks cannot influence the specified functional conditions of the EUT. The interconnection line between the EUT and the coupling and decoupling networks is 2 m in length (or shorter).

Figure 35. Voltage Measurement vs. Sample Count, VIN2 to VIN3 Under 2 kV Surge

Figure 36. Voltage Measurement vs. Sample Count, VIN2 to VIN3 Under –2 kV Surge

Figure 37. Voltage Measurement vs. Sample Count, VIN7 Under 2 kV Surge

igure 38. Current Measurement Difference vs. Sample Count, VIN. Under –2 kV Surge

Figure 39. Current Measurement Difference vs. Sample Count, ΔIIN3 vs. DMM Under 2 kV Surge

Figure 40. Current Measurement Difference vs. Sample Count, ΔIIN3 vs. DMM Under –2 kV Surge

17167-040

Figure 41. IEC 61000-4-5 Test Setup Connection Diagram

Figure 42. IEC 61000-4-5 Test Setup Connection Diagram, Measurements Before and After Disturbances

Figure 43. IEC 61000-4-5 Test Setup Photograph

Table 9. IEC 61000-4-5 Test Levels and Results

Input Mode	Zap Point	Test Level (kV)	Before Zap	After Zap	Deviation (ppm)	Pass or Fail
Differential Voltage	VIN2 to VIN3	2	2.504817 V	2.504828 V	5	Pass, Criterion B
		-2	2.504820 V	2.504813 V	-3	Pass, Criterion B
Single-Ended Voltage	VIN7	2	2.505272 V	2.505276 V	2	Pass, Criterion B
		-2	2.505263 V	2.505248 V	-6	Pass, Criterion B
Current	IIN3	2	0.435 μA	0.440 μA	0.5	Pass, Criterion B
		-2	0.375 μA	0.496 µA	13	Pass, Criterion B

RADIATED IMMUNITY

As per IEC 61000-4-3, the test is performed in a fully anechoic chamber. The EUT is placed on a nonconductive table 0.8 m in height. The AD4111 inputs are shorted to its isolated ground. The transmit antenna is located at a distance of 3 m from the EUT. The frequency range is swept from 80 MHz to 1000 MHz with the signal 80% amplitude modulated with a 1 kHz sinewave. The frequency range is swept incrementally, and the step size is 1% of the preceding frequency value. The dwell time at each frequency is 1 sec, and cannot be less than the time necessary for the EUT to respond. The field strength is 10 V/m. The test is performed with the EUT exposed to both a vertically and horizontally polarized field. The AD4111 samples are sent to the host PC that is outside of the chamber through optically isolated data link.

17167-143

Figure 44. Voltage Measurement vs. Frequency, VIN2 to VIN3 Under 10 V/m, Horizontal Antenna

Figure 47. Voltage Measurement vs. Frequency, VIN7 Under 10 V/m, Vertical Antenna

Figure 48. Current Measurement vs. Frequency, IIN3 Under 10 V/m, Horizontal Antenna

Figure 49. Current Measurement vs. Frequency, IIN3 Under 10 V/m, Vertical Antenna

Figure 50. IEC 61000-4-3 Test Setup Configuration Diagram

Figure 51. IEC 61000-4-3 Test Setup Photograph

Table 10. IEC 61000-4-3	3 Test Levels and Results,	10 V/m Radiated RF Immunity
-------------------------	----------------------------	-----------------------------

			During Zap				
Input Mode	Input Channel	Average	Min	Max	Deviation (ppm)	Antenna	Pass or Fail
Differential Voltage	VIN2 to VIN3	–2.729 mV	–2.816 mV	–2.506 mV	22 × FS	Horizontal	Pass, Criterion A
		–2.728 mV	–2.819 mV	–2.620 mV	$11 \times FS$	Vertical	Pass, Criterion A
Single-Ended Voltage	VIN7	–1.249 mV	–1.377 mV	–1.130 mV	$-13 \times FS$	Horizontal	Pass, Criterion A
		–1.248 mV	–1.359 mV	–1.138 mV	$11 \times FS$	Vertical	Pass, Criterion A
Current	IIN3	–1.345 μA	–1.854 μA	–0.978 μA	$-25 \times FSR$	Horizontal	Pass, Criterion A
		–1.343 μA	–1.764 μA	–1.001 μA	$-21 \times FSR$	Vertical	Pass, Criterion A

RADIATED EMISSIONS

As per CISPR 11, the EUT is placed on the top of a rotating table 0.8 m above the ground in a 10 m semianechoic chamber. The table is rotated 360° to identify the position of the highest radiation. The EUT is set 10 m away from the interference receiving antenna, which can be set to horizontal or vertical polarization position. The antennas are mounted on the top of a variable height antenna tower. The heights of the antennas vary from 1 m to 4 m above the ground to identify the maximum value of the field strength. The EUT is configured to its worst case, the antenna is tuned to a height from 1 m to 4 m, and the table is turned from 0 degrees to 360° to find the maximum reading. The test receiver system is set to quasi peak detection mode. The EUT is powered by a 12 V dc battery pack. As such, any radiated emission from the auxiliary supply can be excluded.

Figure 53. Emission Level vs. Frequency, Radiated Emissions, Horizontal Antenna Polarization

Figure 54. CISPR 11 Test Setup Configuration Diagram

AN-1572

Figure 55. CISPR 11 Test Setup Photograph

Table 11. CISPR 11 Radiated Emissions, Vertical Antenna Polarization at Critical Frequencies

Frequency (MHz)	Result (dBµV)	Limit (dBµV)	Margin (dB)	Height (cm)	Antenna Polarity	Conditions
140.004	14.8	40	-25.2	1	Vertical	Quasi peak
890.712	28.9	47	-18.1	1	Vertical	Quasi peak

Table 12. CISPR 11 Radiated Emissions, Horizontal Antenna Polarization at Critical Frequencies

Frequency (MHz)	Result (dBµV)	Limit (dBµV)	Margin (dB)	Height (cm)	Antenna Polarity	Conditions
187.216	32.5	40	-7.5	4	Horizontal	Quasi peak
201.360	25.6	40	-14.4	2.5	Horizontal	Quasi peak
276.256	29.2	47	-17.8	4	Horizontal	Quasi peak
567.672	29.7	47	-17.3	1	Horizontal	Quasi peak
788.512	36.9	47	-10.1	3	Horizontal	Quasi peak

EMC BOARD SCHEMATICS AND ARTWORK

Figure 56. EMC Board Schematics, AD4111 and ADuM5411

Figure 57. EMC Board Schematics, MCU and Periphery

Figure 58. EMC Board Schematics, Power Supply and Communication Interface

7167-053

Figure 59. Layer 1, Top Side

Figure 60. Layer 2, Inner Ground Plane

Figure 61. Layer 3, Inner Power Plane

Figure 62. Layer 4, Bottom Side

17167-057

Figure 63. Silkscreen Top

Figure 64. Silkscreen Bottom

ORDERING INFORMATION

BILL OF MATERIALS

Table 13.

Reference Designator	Part Description	Value	Part Number	Farnell Order Code	Manufacturer
C1, C4, C12, C16, C39, C40, C46, C48, C50, C52	Capacitor, ceramic, 0.1 μF, 50 V, X5R, 0402	0.1 μF	GRM155R61H104KE19D	FEC-2218856	Murata
C2, C3, C13, C41, C47, C53, C55, C66, C72, C73, C74, C75, C79, C80, C147, C154, C155, C156, C160, C161, C162, C163, C169	Capacitor, ceramic, 0.01 μF, 50 V, X5R, 0402	0.01 μF	GRM155R71H102JA01D	FEC-2470474	Murata
C5, C11, C14	Capacitor, ceramic, 10 μF, 10 V, X7R, 0805	10 μF	C2012X7R1A106K125AC	FEC-2346934	ТДК
C6, C7, C8, C9	Capacitor, ceramic, 0402	Do not populate (DNP)	Not applicable	Not applicable	Not applicable
C17, C19	Capacitor, ceramic, 4.7 nF, 2000 V, X7R, 1812	4.7 nF	CC1812KKX7RDBB472	FEC-1284179	Yageo
C20, C21, C22, C23, C24, C25, C26, C27, C28	Capacitor, ceramic, 4.7 nF, 50 V, C0G, 0402	4.7 nF	GRT155R71H472KE01D	FEC-2672129	Murata
C29, C38	Capacitor, ceramic, 0603	DNP	Not applicable	Not applicable	Not applicable
C30, C31, C32, C33, C34, C35, C36, C37	Capacitor, ceramic, 680 pF, 50 V, X7R, 0402	680 pF	GRT155R71H681KE01D	FEC-2672130	Murata
C42, C43, C44, C45	Capacitor, ceramic, 470 pF, 50 V, C0G, 0402	470 pF	GRM1555C1H471JA01D	FEC-8819688	Murata
C49, C51, C54, C172	Сарасіtor, ceramic, 1 µF, 16 V, X5R, 0402	1 μF	GRM155R61C105KA12D	FEC-2362093	Murata
C56, C57	Capacitor, ceramic, 12 pF, 50 V, C0G, 0603	12 pF	GRM1885C1H120JA01D	FEC-1828907	Murata
C58, C59, C60, C61	Capacitor, ceramic, 20 pF, 50 V, C0G, 0402	20 pF	MC0402N200J500CT	FEC-2627461	Multicomp
C62, C63	Capacitor, ceramic, 0.47 μϜ, 50 V, X7R, 0603	0.47 μF	UMK107B7474KA-TR	FEC-2779057	Taiyo Yuden
C64, C65, C67, C68, C69, C70, C71, C76, C77, C78, C81, C82, C132, C135, C137, C139, C144, C146, C148, C149, C152, C153, C157, C158, C159, C164, C166, C167	Capacitor, ceramic, 0.1 μF, 50 V, X7R, 0603	0.1 μF	MCSH18B104K500CT	FEC-1856385	Multicomp
C103, C142	Capacitor, ceramic, 3300 pF, 3 kV, X7R, 1812	3.3 nF	HV1812Y332KXHATHV	FEC-2611555	Vishay
C130, C141	Capacitor, ceramic, 1000 pF, 50 V, X7R, 1206	1 nF	C1206C102M5RACTU	FEC-2678368	KEMET
C131, C133, C134, C136, C138	Capacitor, ceramic, 2.2 μF, 50 V, X7R, 0805	2.2 μF	UMK212BB7225KG-T	FEC-2779058	Taiyo Yuden
C140	Capacitor, ceramic, 2000 pF, 50 V, C0G, 0603	2 nF	GRM1885C1H202JA01D	FEC-2470480	Murata
C143, C145, C150, C151, C165	Capacitor, ceramic, 10 μϜ, 25 V, X7R, 1210	10 μF	C1210C106K3RACAUTO	FEC-2665759	KEMET
C173	Capacitor, ceramic, 1812	Not applicable	Not applicable	Not applicable	Not Applicable

AN-1572

Poforonco Dosignator	Part Description	Value	Part Number	Earnall Order Code	Manufacturor
					Visbor
01,02	(LED), yellow, 0603, surface mount device (SMD)	LED	1LMI11000-G508	FEC-1328310	visnay
D12, D21	LED, red, 0603, SMD	LED	TLMS1000-GS08	FEC-1328308	Vishay
D18, D19, D20, D22, D29	LED, green, 0603, SMD	LED	KPT-1608LVZGCK	FEC-2610409	Kingbright
D13, D14, D15, D16	TVS diode, 10 V, 19.6 V, Subminiature Version A (SMA)	TVS	SMA6J10A-TR	Digi-Key 497-5915- 1-ND	STMicroelectronics
D17	Diode, general- purpose, 75 V, 150 mA, SOD123	1N4148	1N4148W-E3-08	FEC-2433353	Vishay
D26	Diode, general- purpose, 1 kV, 2 A, DO214AA	S2M	S2M	FEC-2677413	Taiwan Semiconductor
D3, D4, D5, D6, D7, D8, D9, D10, D11	TVS diode, 33 V, 69.7 V, SMA	TVS	SMAJ33CA-TR	FEC-9802843	STMicroelectronics
D27, D28	TVS diode, 26 V, 42.1 V, DO214AA	TVS	SMBJ26CA	FEC-1749366	STMicroelectronics
D13, D14, D15, D16	TVS diode, 10 V, 19.6 V, SMA	TVS	SMA6J10A-TR	Digi-Key 497-5915- 1-ND	STMicroelectronics
ESD3	TVS diode, 5.25 V, SOT23-6	ESD	ESDA6V1SC6	FEC-9802274	STMicroelectronics
ESD4	TVS diode, 5 V, 10 V, 10UDFN	ESD	ESD7004MUTAG	FEC-1961708	ON Semiconductor
F1, F2, F3, F4	Positive temperature coefficient (PTC), reset fuse, 30 V, 50 mA, 1210	Fuse	MF-USMF005-2	FEC-2309134	Bourns
J1	Connected header, 20 position, gold	Joint Action Test Group (JATG)	5103308-5	FEC-2452432	TE Connectivity
JP1	2 Pin (2x1), 0.1", header	JP2	M20-9990245	FEC-1022245	Harwin
JP2, JP4, JP6	3 Pin (3x1), 0.1", header	JP3	M20-9990345	FEC-1022248	Harwin
INSERTED TO JP1, JP2, JP4, JP6	2 Pin (2x1), 0.1", shorting block	Not applicable	M7566-05	FEC-150411	Harwin
L1, L2, L3, L4, L15, L16	Ferrite bead, 1.8 kΩ, 0402 1 line	1.8 kΩ	BLM15HD182SN1D	FEC-1515786	Murata
L9, L10, L11, L12, L13	Ferrite bead, 150 Ω, 1206, 1 line	150 Ω	LI1206H151R-10	FEC-2292444	Laird Technologies
L14	USB, common-mode filter, 0805	Filter	0805USB-502MLB	FEC-2458105	Coilcraft
P1, P10	Mounting hole, 3 mm diameter	Not applicable	Not applicable	Not applicable	Not applicable
P2, P3, P4, P11	Terminal block header, 5 position, 90°, 3.81 mm	CON5	1860870	Digi-Key 277- 11004-ND	Phoenix Contact
Р9	Terminal block, 2 position, 3.81 mm, PCB, green	CON2	1727010	FEC-3704579	Phoenix Contact
P12	Connected receipt, mini USB 2.0, 5 position	CON5	UX60SC-MB-5S8	FEC-2300433	Hirose (HRS)
R1, R2, R3, R4, R5, R6, R7, R8	Resistor, SMD, 33 Ω, 1%, 1/16 W, 50 V, 0402	33 Ω	MCWR04X33R0FTL	FEC-2447161	Multicomp

Reference Designator	Part Description	Value	Part Number	Farnell Order Code	Manufacturer
R9	Resistor, SMD, 16.9 kΩ,	16.9 kΩ	CRCW040216K9FKED	FEC-1652757	Vishay
D10	1%, 1/16 W, 50 V, 0402	1410			
K10	Kesistor, SMD, 14 kΩ, 1%, 1/16 W, 50 V. 0402	14 KΩ	MCWR04X1402FTL	FEC-2447109	Multicomp
R11, R127	Resistor, SMD, 4.7 MΩ, 5%, 1/2 W, 2 kV, 2010	4.7 ΜΩ	CHV2010-JW-475ELF	FEC-2470939	Bourns
R12	Resistor, SMD, 10 kΩ, 1%, 1/16 W, 50 V, 0402	10 kΩ	RC0402FR-0710KL	FEC-2144755	Yageo
R13, R14	Resistor, SMD, 4.7 kΩ, 1%, 1/10 W, 50 V, 0402	4.7 kΩ	ERJ2GEJ472X	FEC-2059234	Panasonic
R15, R16, R17, R18, R19, R20, R21, R22	Resistor, SMD, 1 kΩ, 1%, 1/16 W, 50 V, 0402	1 kΩ	CRG0402F1K0	FEC-2331474	TE Connectivity
R23	Resistor, SMD, 2.2 kΩ, 1%, 1/10 W, 50 V, 0402	2.2 kΩ	ERJ2RKF2201X	FEC-2302673	Panasonic
R24, R27, R28, R30, R31, R32, R33, R34, R35	Resistor, SMD, 180 Ω, 1%, 1/10 W, 50 V, 0603	180 Ω	MCWR06X1800FTL	FEC-2447267	Multicomp
R25, R26, R152, R153	Resistor, SMD, 100 kΩ, 1%, 1/16 W, 50 V, 0402	100 kΩ	MCWR04X1003FTL	FEC-2447094	Multicomp
R29, R41, R43, R44, R45, R104, R109, R110, R151	Resistor, SMD, 0 Ω, 1%, 1/16 W, 50 V, 0402	0Ω	CRG0402ZR	FEC-1174140	TE Connectivity
R36, R37, R39, R40	Resistor, SMD, 180 Ω, 5%, 1/2 W, 0805	180 Ω	ERJ-P6WJ181V	Digi-Key P16945CT-ND	Panasonic
R38, R42, R54, R89, R155	Resistor, SMD, 0 Ω, 1%, 1/8 W, 150 V, 0805	0Ω	WR08X000 PTL	FEC-2502664	Walsin
R46, R55, R57, R111, R112, R142	Resistor, SMD, 499 Ω, 1%, 1/16 W, 50 V, 0603	499 Ω	MC0603SAF4990T5E	FEC-1632442	Multicomp
R47, R48, R56, R58, R63, R79, R80, R90, R91, R98	Resistor, SMD, 100 kΩ, 1%, 1/16 W, 50 V, 0603	100 kΩ	RC0603FR-13100KL	FEC-1799369	Yageo
R49, R50, R51, R52, R86, R147	Resistor, SMD, 0 Ω, 1%, 1/16 W, 50 V, 0603	0Ω	MC0603SAF0000T5E	FEC-2309111	Multicomp
R53, R59, R60, R61, R62, R64, R65, R66, R67, R69, R71, R73, R75, R76, R77, R78, R81, R82, R83, R84, R85, R94, R96, R99, R100, R102, R103, R105, R106, R107, R108	Resistor, SMD, 10 kΩ, 1%, 1/16 W, 50 V, 0603	10 kΩ	RC0603FR-0710KL	FEC-9238603	Yageo
R68, R70, R72, R74, R87, R88, R92, R93, R95, R97, R101, R143, R144, R145, R148, R149, R150	Resistor, SMD, 33 Ω, 1%, 1/16 W, 50 V, 0603	33 Ω	MCWR06X33R0FTL	FEC-2447344	Multicomp
R141	Resistor, SMD, 0 Ω, 1%, 1/2 W, 200 V, 1210	0Ω	CRCW12100000ZSTA	FEC-1653183	Vishay
R146	Resistor, SMD, 1 MΩ, 1%, 1/16 W, 50 V, 0603	1 ΜΩ	MCWR06X1004FTL	FEC-2447285	Multicomp
R154	Resistor, SMD, 2010	DNP	Not applicable	Not applicable	Not applicable
S1, S2, S3, S4	Switch, tactile, single pole single throw (SPST), number, 0.05 A, 24 V	Switch	B3S-1000	FEC-177807	Omron
Τ1	2 line, common- mode choke, surface- mount, 190 Ω at 100 MHz, 5 A dc resistance, 20 mΩ	DLW5BS	DLW5BSN191SQ2L	FEC-1515607	Murata
TP1, TP2	Test point, tin, SMD	CON1	S1751-46R	FEC-2293786	Harwin
U1	IC digital iso, 2.5 kV, 4 channel, 24 SSOP	ADuM5411	ADUM5411BRSZ	FEC-2667947	Analog Devices

AN-1572

Reference Designator	Part Description	Value	Part Number	Farnell Order Code	Manufacturer
U2	IC, ADC, 24-bit, SPI, serial, 40 LFSCP	AD4111	AD4111BCPZ	Not applicable	Analog Devices
U3	IC, VREF, series, 2.5 V, 8 SOIC	ADR4525	ADR4525ARZ	FEC-2112685	Analog Devices
U4	IC, MCU, 32-bit, 256 KB, flash, 64 LFCSP	ADuCM3029	ADUCM3029BCPZ	FEC-2747646	Analog Devices
U14	IC, regulator, linear, 3.3 V, 500 mA, 8 MSOP	ADP124	ADP124ARHZ-3.3-R7	FEC-1827296	Analog Devices
U15	IC, regulator, linear, 5.0 V, 200 mA, 8 MSOP	ADP7142	ADP7142ARDZ-5.0-R7	FEC-2727495	Analog Devices
U5, U6	IC, flash, 256-mbit, 80 MHz, 8 WSON	W25Q256FV	W25Q256FV	Digi-Key W25Q256FVEIG-ND	Winbond Electronics
U16, U17	IC, gate, 1 channel, 2-INP SOT23-5	74LVC1G08	SN74LVC1G08DBV	FEC-1287593	Texas Instruments
U18	IC, USB, FS, serial, UART, 32-QFN	FT232R	FT232RQ	FEC-1146033	FTDI
Y1	Crystal, 16.00 MHz, 9.0 pF, SMD	16 MHz	Q24FA20H00044 FA-20H 16 MHz 9.0 pF	FEC-1712814	Epson
Y2	Crystal, 32.7680 KHz, 12.5 pF, SMD	32.768 KHz	ABS07-32.768KHZ-T	FEC-2101347	Abracon
Y3	Crystal, 26.0000 MHz, 10 pF, SMD	26 MHz	ABM8G-26.000MHZ-B4Y-T	FEC-2101340	Abracon

www.analog.com

©2018 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. AN17167-0-10/18(0)

Rev. 0 | Page 33 of 33