
A Analog Devices Inc. Confidential & Proprietary – Do not Distribute

Revision A Page 1 20/06/2007

Integration Guide

AD7147 Button Firmware

A Analog Devices Inc. Confidential & Proprietary – Do not Distribute

Revision A Page 2 20/06/2007

Introduction

The following guide attempts to describe the software integration process
required to implement a simple 4 button capacitance sensor application.
The AD7147 Button firmware configures the device and then reads the
Interrupt Status Registers from the AD7147 when a sensor is activated.

AD7147 Configuration

On power-up the AD7147 registers must be configured to allow the part to
function correctly in the application. This configuration step is done in the main
system software; once the AD7147 register map is initialised an external host
interrupt must then be configured. Touching a button will then cause an
interrupt to fire which in turn causes software to jump to an Interrupt Service
Routine (ISR) where the status of each button will be read from the AD7147.
The following flowchart describes the AD7147 and ISR configuration process.

Fig.1

The AD7147 register configuration is done in two stages; firstly all 12 stages
must be initialised with the sensor configuration including CIN connection,
initial offset and threshold sensitivity information, there are 8 registers for each
of the 12 stages. The second stage of the register configuration is to program
the Bank 1 registers of the AD7147; these registers contain the power modes,
environmental calibration and interrupt configuration settings.
Once these registers have been initialised a single read of the Interrupt Status
registers is performed to clear the INT pin in case an interrupt was detected
during the register configuration process, the part is then ready to respond to
sensor activations immediately.

YES

Configure AD7147

True?

Enable External
Interrupt on Host

Processor

START

System Software

A Analog Devices Inc. Confidential & Proprietary – Do not Distribute

Revision A Page 3 20/06/2007

The AD7147 register configuration information is usually contained in an
“AD7147 Config.h” file provided by ADI. The complete register configuration
takes approximately 6.5mS with a 400kHz I2C interface as shown in Fig.2.

Fig.2 AD7147 Register Configuration

Example - 4 Button Configuration

In the following AD7147 Config.h example, 4 buttons connected to CIN0,
CIN1, CIN2 and CIN3 are configured to connect to the positive input of Stages
0 to 3 respectively, all other CIN inputs are not connected and bank 1 and
bank 2 registers are initialised as follows,

A Analog Devices Inc. Confidential & Proprietary – Do not Distribute

Revision A Page 4 20/06/2007

//-------------------
//General Definitions
//-------------------

//Error Recovery - Stage 0 to 3, Any Low limit interrupt on
//these bits will force calibration

#define POWER_UP_INTERRUPT 0x000F

//----------------------
//Function declaration
//----------------------
void ConfigAD7147(void);

//---------------------
//Function definition
//---------------------
void ConfigAD7147(void)
{

//==
//============ Bank 2 Registers ============
//==

WORD xdata StageBuffer[8];
//======================
//= Stage 0 - CIN0 (+) =
//======================
StageBuffer[0]=0xFFFE; //Register 0x80
StageBuffer[1]=0x1FFF; //Register 0x81
StageBuffer[2]=0x0000; //Register 0x82
StageBuffer[3]=0x2626; //Register 0x83
StageBuffer[4]=600; //Register 0x84
StageBuffer[5]=500; //Register 0x85
StageBuffer[6]=600; //Register 0x86
StageBuffer[7]=600; //Register 0x87
WriteToAD7147(STAGE0_CONNECTION, 8, StageBuffer, 0);

//======================
//= Stage 1 - CIN1 (+) =
//======================
StageBuffer[0]=0xFFFB; //Register 0x88
StageBuffer[1]=0x1FFF; //Register 0x89
StageBuffer[2]=0x0000; //Register 0x8A
StageBuffer[3]=0x2626; //Register 0x8B
StageBuffer[4]=950; //Register 0x8C
StageBuffer[5]=800; //Register 0x8D
StageBuffer[6]=950; //Register 0x8E
StageBuffer[7]=950; //Register 0x8F
WriteToAD7147(STAGE1_CONNECTION, 8, StageBuffer, 0);

//======================
//= Stage 2 - CIN2 (+) =
//======================
StageBuffer[0]=0xFFEF; //Register 0x90
StageBuffer[1]=0x1FFF; //Register 0x91
StageBuffer[2]=0x0000; //Register 0x92
StageBuffer[3]=0x2626; //Register 0x93
StageBuffer[4]=1400; //Register 0x94

A Analog Devices Inc. Confidential & Proprietary – Do not Distribute

Revision A Page 5 20/06/2007

StageBuffer[5]=1200; //Register 0x95
StageBuffer[6]=1400; //Register 0x96
StageBuffer[7]=1400; //Register 0x97
WriteToAD7147(STAGE2_CONNECTION, 8, StageBuffer, 0);

//======================
//= Stage 3 - CIN3 (+) =
//======================
StageBuffer[0]=0xFFBF; //Register 0x98
StageBuffer[1]=0x1FFF; //Register 0x99
StageBuffer[2]=0x0000; //Register 0x9A
StageBuffer[3]=0x2626; //Register 0x9B
StageBuffer[4]=2000; //Register 0x9C
StageBuffer[5]=1800; //Register 0x9D
StageBuffer[6]=2000; //Register 0x9E
StageBuffer[7]=2000; //Register 0x9F
WriteToAD7147(STAGE3_CONNECTION, 8, StageBuffer, 0);

//===========================
//= Stage 4 - Not Connected =
//===========================
StageBuffer[0]=0xFFFF; //Register 0xA0
StageBuffer[1]=0x1FFF; //Register 0xA1
StageBuffer[2]=0x0000; //Register 0xA2
StageBuffer[3]=0x2626; //Register 0xA3
StageBuffer[4]=2700; //Register 0xA4
StageBuffer[5]=2500; //Register 0xA5
StageBuffer[6]=2700; //Register 0xA6
StageBuffer[7]=2700; //Register 0xA7
WriteToAD7147(STAGE4_CONNECTION, 8, StageBuffer, 0);

//===========================
//= Stage 5 - Not Connected =
//===========================
StageBuffer[0]=0xFFFF; //Register 0xA8
StageBuffer[1]=0x1FFF; //Register 0xA9
StageBuffer[2]=0x0000; //Register 0xAA
StageBuffer[3]=0x2626; //Register 0xAB
StageBuffer[4]=3350; //Register 0xAC
StageBuffer[5]=3000; //Register 0xAD
StageBuffer[6]=3350; //Register 0xAE
StageBuffer[7]=3350; //Register 0xAF
WriteToAD7147(STAGE5_CONNECTION, 8, StageBuffer, 0);

//===========================
//= Stage 6 - Not Connected =
//===========================
StageBuffer[0]=0xFFFF; //Register 0xB0
StageBuffer[1]=0x1FFF; //Register 0xB1
StageBuffer[2]=0x0000; //Register 0xB2
StageBuffer[3]=0x2626; //Register 0xB3
StageBuffer[4]=650; //Register 0xB4
StageBuffer[5]=500; //Register 0xB5
StageBuffer[6]=650; //Register 0xB6
StageBuffer[7]=650; //Register 0xB7
WriteToAD7147(STAGE6_CONNECTION, 8, StageBuffer, 0);

//===========================
//= Stage 7 - Not Connected =
//===========================
StageBuffer[0]=0xFFFF; //Register 0xB8
StageBuffer[1]=0x1FFF; //Register 0xB9
StageBuffer[2]=0x0000; //Register 0xBA

A Analog Devices Inc. Confidential & Proprietary – Do not Distribute

Revision A Page 6 20/06/2007

StageBuffer[3]=0x2626; //Register 0xBB
StageBuffer[4]=1150; //Register 0xBC
StageBuffer[5]=1000; //Register 0xBD
StageBuffer[6]=1150; //Register 0xBE
StageBuffer[7]=1150; //Register 0xBF
WriteToAD7147(STAGE7_CONNECTION, 8, StageBuffer, 0);

//===========================
//= Stage 8 - Not Connected =
//===========================
StageBuffer[0]=0xFFFF; //Register 0xC0
StageBuffer[1]=0x1FFF; //Register 0xC1
StageBuffer[2]=0x0000; //Register 0xC2
StageBuffer[3]=0x2626; //Register 0xC3
StageBuffer[4]=1800; //Register 0xC4
StageBuffer[5]=1600; //Register 0xC5
StageBuffer[6]=1800; //Register 0xC6
StageBuffer[7]=1800; //Register 0xC7
WriteToAD7147(STAGE8_CONNECTION, 8, StageBuffer, 0);

//===========================
//= Stage 9 - Not Connected =
//===========================
StageBuffer[0]=0xFFFF; //Register 0xC8
StageBuffer[1]=0x1FFF; //Register 0xC9
StageBuffer[2]=0x0000; //Register 0xCA
StageBuffer[3]=0x2626; //Register 0xCB
StageBuffer[4]=2400; //Register 0xCC
StageBuffer[5]=2200; //Register 0xCD
StageBuffer[6]=2400; //Register 0xCE
StageBuffer[7]=2400; //Register 0xCF
WriteToAD7147(STAGE9_CONNECTION, 8, StageBuffer, 0);

//============================
//= Stage 10 - Not Connected =
//============================
StageBuffer[0]=0xFFFF; //Register 0xD0
StageBuffer[1]=0x1FFF; //Register 0xD1
StageBuffer[2]=0x0000; //Register 0xD2
StageBuffer[3]=0x2626; //Register 0xD3
StageBuffer[4]=3400; //Register 0xD4
StageBuffer[5]=3200; //Register 0xD5
StageBuffer[6]=3400; //Register 0xD6
StageBuffer[7]=3400; //Register 0xD7
WriteToAD7147(STAGE10_CONNECTION, 8, StageBuffer, 0);

//============================
//= Stage 11 - Not Connected =
//============================
StageBuffer[0]=0xFFFF; //Register 0xD8
StageBuffer[1]=0x1FFF; //Register 0xD9
StageBuffer[2]=0x0000; //Register 0xDA
StageBuffer[3]=0x2626; //Register 0xDB
StageBuffer[4]=4400; //Register 0xDC
StageBuffer[5]=4200; //Register 0xDD
StageBuffer[6]=4400; //Register 0xDE
StageBuffer[7]=4400; //Register 0xDF
WriteToAD7147(STAGE11_CONNECTION, 8, StageBuffer, 0);

//==
//============ Bank 1 Registers ============
//==

A Analog Devices Inc. Confidential & Proprietary – Do not Distribute

Revision A Page 7 20/06/2007

//Initialisation of Bank 1 Registers

AD7147Registers[PWR_CONTROL]=0x00B2; //Register 0x00
WriteToAD7147(PWR_CONTROL, 1, AD7147Registers, PWR_CONTROL);

AD7147Registers[AMB_COMP_CTRL0]=0x3230; //Register 0x02
AD7147Registers[AMB_COMP_CTRL1]=0x0419; //Register 0x03
AD7147Registers[AMB_COMP_CTRL2]=0x0832; //Register 0x04
AD7147Registers[STAGE_LOW_INT_EN]=POWER_UP_INTERRUPT; //0x05
AD7147Registers[STAGE_HIGH_INT_EN]=0x000F; //Register 0x06
AD7147Registers[STAGE_COMPLETE_INT_EN]=0x0000; //Register 0x07
WriteToAD7147(AMB_COMP_CTRL0, 6, AD7147Registers,
AMB_COMP_CTRL0);

//Enable calibration on 4 stages
AD7147Registers[STAGE_CAL_EN]=0x000F; //Register 0x01
WriteToAD7147(STAGE_CAL_EN, 1, AD7147Registers, STAGE_CAL_EN);

//Read High and Low Limit Status registers to clear INT pin
ReadFromAD7147(STAGE_LOW_LIMIT_INT, 2, AD7147Registers,
STAGE_LOW_LIMIT_INT); //Registers 0x08 & 0x09
}

Hardware Interrupt Configuration

AD7147Registers[STAGE_LOW_INT_EN] = POWER_UP_INTERRUPT;
AD7147Registers[STAGE_HIGH_INT_EN] = 0x000F;
AD7147Registers[STAGE_COMPLETE_INT_EN] = 0x0000;

AD7147Registers[STAGE_HIGH_INT_EN] = 0x000F;

This configures the High Limit Interrupt Enable Register 0x06 Bits 0-3; if any
of these bits are set, then a hardware interrupt is generated on the INT pin
when a sensor is activated and a high limit threshold is exceeded on the
AD7147. A second interrupt is generated when the user lifts off the sensor as
shown in Fig.3

Fig.3 Interrupt Sequence

A Analog Devices Inc. Confidential & Proprietary – Do not Distribute

Revision A Page 8 20/06/2007

AD7147Registers[STAGE_LOW_INT_EN] = POWER_UP_INTERRUPT;

This configures the Low Limit Interrupt Enable Register 0x05 Bits 0-3; this will
only generate a hardware interrupt if an error needs to be corrected by a
forced recalibration on the AD7147. There are two sources of error that may
need to be corrected:

1. If the sensor is touched when the part is powered up, the initial sensor
thresholds calculated by the AD7147 will be incorrect, when the user
lifts off the sensor a low limit threshold will be asserted and software
must then recalibrate the part in the interrupt service routine

2. The second error that may occur is when the sensor value drifts below
the low limit threshold due to excessive temperature or humidity errors.
In this case the recalibration function in the interrupt service routine
also needs to be called.

AD7147Registers[STAGE_COMPLETE_INT_EN] = 0x0000;

If this Register were set to 0x0001 then hardware interrupts would be asserted
after each Stage0 conversion regardless of whether we are touching the
sensor or not. CDC results would then be available for all 12 stages.

AD7147Registers[STAGE_CAL_EN] = 0x000F;

In this configuration file, the STAGE_CAL_EN bits are set to 0x000F, this
enables the environmental calibration and adaptive threshold logic on stage 0
stage 1, stage 2 and stage 3 only as these are the only stages used in this
application. Any unused or un-configured stages should not be enabled in the
STAGE_CAL_EN register. E.g. When using an 8 channel device such as the
AD7148; a maximum of 8 calibration stages should only be configured in the
STAGE_CAL_EN register.

A Analog Devices Inc. Confidential & Proprietary – Do not Distribute

Revision A Page 9 20/06/2007

Interrupt Service Routine (ISR)

The interrupt service routine is executed every time the AD7147 generates a
hardware interrupt on the INT pin. This interrupt is generated when the user
touches the sensor and lifts off from the sensor or when a recalibration event
is required. The AD7147 does not continuously generate hardware interrupts
in this mode while the sensor is being touched. As shown in Fig.2 the ISR is
only called twice, once for a touch and a second time when the user leaves
the sensor, therefore software always knows the current state of the sensors
while not having to continuously service hardware interrupts. The INT pin on
the AD7147 is cleared by a read of the Interrupt status registers, 0x08 and
0x09.

This flowchart above and the following example code describe the button
processing code implemented in the Interrupt Service Routine. As soon as a
button is touched the INT pin on the AD7147 is asserted which causes a
hardware interrupt on the host processor to call the Interrupt Service Routine.
Once the ISR is called the first thing that is done is a read from the Low Limit
and High Limit status registers, these registers contain the current sensor
status.

Recalibration

Next the code checks if a recalibration of the sensors is necessary in case an
error has occurred as described below. If a low limit status bit is set which
signifies an error then the ForceCalibration() function is called which forces a
recalibration of the sensors by writing to the Forced_CAL bit<14> in the
Ambient Compensation Control register, 0x02. A simple way to test the
functionality of this code is to physically touch the sensor while power is
applied to the part and the sensors are configured by the ConfigAD7147(void)

NO

YES

READ STATUS REGISTERS 0x08, 0x09

START

END

Check for sensor
Errors

?

Decode Button Status

Force Calibration

A Analog Devices Inc. Confidential & Proprietary – Do not Distribute

Revision A Page 10 20/06/2007

function, when the use lifts off the sensor this software routine should
recalibrate the sensors to the untouched value allowing the sensor to function
correctly afterwards as shown in Fig.4

Fig.4

It is absolutely necessary to have the recalibration routine in your code, this
software does two things. Firstly it recalibrates the sensor response if the
user has been touching the sensor while the part is being configured after
power up. If the user has been touching the sensor while the part is initialised
the upper and lower sensor thresholds will be set at the incorrect levels
around the touched sensor value, therefore without the recalibration code the
high sensor threshold would never get set as it would always be higher than
the touched sensor value. The recalibration code determines if a low threshold
limit is exceeded as the user lifts off the sensor after part initialisation and then
forces a recalibration of the sensor thresholds on chip so that they now
centre around the untouched sensor value which is correct. When the user
then touches the sensor again the high threshold will be exceeded as normal.
Secondly the recalibration code corrects for various errors that may occur
causing the sensor value to drift lower very quickly due to excessive
temperature drifts, if the sensor value drifts below the low limit threshold the
recalibration code will then re-centre the high and low thresholds around the
current sensor value.

A Analog Devices Inc. Confidential & Proprietary – Do not Distribute

Revision A Page 11 20/06/2007

Button Decode

If an error was not detected then the button status is decoded in the
DecodeButtons() function as shown in the example code below. The ISR is
then completed and host software can read the button status variable and
process the information accordingly.

//ServiceAD7147Isr();
//---
// Function called by the AD7147 ISR. Anything that must be
// executed during the ISR needs to be done here
//---
static int ServiceAD7147Isr(void)
{
//Read Low Limit and High Limit Status Registers
ReadFromAD7147(STAGE_LOW_LIMIT_INT, 2, AD7147Registers,
 STAGE_LOW_LIMIT_INT);

//Recover from errors if needed
if (((AD7147Registers[STAGE_LOW_LIMIT_INT] & POWER_UP_INTERRUPT)!=
 0x0000) && ((AD7147Registers[STAGE_HIGH_LIMIT_INT] &
 POWER_UP_INTERRUPT) == 0x0000))
{
 ForceCalibration();
}
else
{
 ButtonStatus = DecodeButtons(AD7147Registers[STAGE_HIGH_LIMIT_INT]);
}

// ForceCalibration();
//---
// Function called by ServiceAD7147Isr when there is a touch on
//power up or when there is a problem with the //calibration.
//--
static void ForceCalibration(void)
{
 ReadFromAD7147(AMB_COMP_CTRL0, 1, AD7147Registers, AMB_COMP_CTRL0);
 AD7147Registers[AMB_COMP_CTRL0] |= 0x4000;
 WriteToAD7147(AMB_COMP_CTRL0, 1, AD7147Registers, AMB_COMP_CTRL0);
}

//DecodeButtons()
//--
// Function called by ServiceAD7147Isr. This function //retrieves the
// button being set based on the High Limit Status Register.
//--
static WORD DecodeButtons(const WORD HighLimitStatusRegister)
{
 WORD ButtonStatusValue=0;

 if ((HighLimitStatusRegister & 0x0001) == 0x0001)
 ButtonStatusValue |= 0x0001;

 if ((HighLimitStatusRegister & 0x0002) == 0x0002)
 ButtonStatusValue |= 0x0002;

 if ((HighLimitStatusRegister & 0x0004) == 0x0004)
 ButtonStatusValue |= 0x0004;

 if ((HighLimitStatusRegister & 0x0008) == 0x0008)
 ButtonStatusValue |= 0x0008;

 return (ButtonStatusValue);
}

A Analog Devices Inc. Confidential & Proprietary – Do not Distribute

Revision A Page 12 20/06/2007

Code and data memory requirements

The following table lists the program code and data memory required to
implement the AD7147 register configuration, recalibration and button
decoding on a host controller. These code sizes do not include any software
I2C or SPI driver; it assumes the host processor will have a dedicated
hardware driver. As an example to add a software I2C driver requires an
additional 726 bytes of code memory and 16 bytes of data memory. Also,
additional code memory may be required to perform specific functions based
on button combinations etc.

No. Buttons

Memory 2 4 6 8 10 12
Code 0.574kB 0.737kB 0.903kB 1.069kB 1.232kB 1.398kB
Data 0.106kB 0.106kB 0.106kB 0.106kB 0.106kB 0.106kB

