
A Analog Devices Inc. Confidential & Proprietary – Do not Distribute

Revision A Page 1 23/07/2009

AD7147 Slider Firmware

Integration Guide

A Analog Devices Inc. Confidential & Proprietary – Do not Distribute

Revision A Page 2 23/07/2009

Introduction

The following guide attempts to describe the software integration process
required to implement an 8-Segment slider sensor application.
The 8-Segment slider firmware configures the device and then reads the
Interrupt Status Registers, the ADC results, the Max average values and the
Ambient values for each stage of the sensor from the AD7147 when a sensor
is activated.

AD7147 Configuration

On power-up the AD7147 registers must be configured to allow the part to
function correctly in the application. This configuration step is done in the main
system software; once the AD7147 register map is initialised an external host
interrupt must then be configured. Touching any area of the 8-Segment Slider
will then cause an interrupt to fire which in turn causes software to jump to an
Interrupt Service Routine (ISR) where registers will be read from the AD7147
and the absolute position will be computed.
The following flowchart describes the AD7147 and ISR configuration process.

The AD7147 register configuration is done in two stages; firstly all 12 stages
must be initialised with the sensor configuration including CIN connection,
initial offset and threshold sensitivity information, there are 8 registers for each
of the 12 stages. The second stage of the register configuration is to program
the Bank 1 registers of the AD7147; these registers contain the power modes,
environmental calibration and interrupt configuration settings.

YES

Configure AD7147

Enable External
Interrupt on Host

Processor

START

System Software

END

NO True?

A Analog Devices Inc. Confidential & Proprietary – Do not Distribute

Revision A Page 3 23/07/2009

Once these registers have been initialised a single read of the Interrupt Status
registers is performed to clear the INT pin in case an interrupt was detected
during the register configuration process, the part is then ready to respond to
sensor activations immediately.
The AD7147 register configuration information is usually contained in an
“AD7147 Config.c” file provided by ADI. The complete register configuration
takes approximately 6.5mS with a 400kHz I2C interface as shown in Fig.1.

Fig.1 AD7147 Register Configuration

A Analog Devices Inc. Confidential & Proprietary – Do not Distribute

Revision A Page 4 23/07/2009

8-Segment Slider Configuration

In the following “AD7147 - Slider Firmware Config.c” file, an 8-Segment Slider
sensor made out of 8 sensors is connected to CIN5, CIN6… CIN12. The
inputs are configured to connect to the positive input of Stages 0 to 7
respectively, all other CIN inputs are not connected and bank 1 and bank 2
registers are initialised as follows:

Fig.2 AD7147 – 8 Segment Slider Connection Diagram

#include "Include\General Definitions.h"

#include "Include\AD7147RegMap.h"

#include "Include\AD7147 - Slider Definitions.h"

//---------------------------------

//Function prototypes

//---------------------------------

//External functions

extern void ReadFromAD7147(const WORD RegisterStartAddress, const

BYTE NumberOfRegisters, WORD *DataBuffer, const WORD OffsetInBuffer);

extern void WriteToAD7147(const WORD RegisterAddress, const BYTE

NumberOfRegisters, WORD *DataBuffer, const BYTE OffsetInBuffer);

//Local functions

void ConfigAD7147(void);

//---------------------------------

//Global variables

//---------------------------------

//External global variables

//---------------------------------

extern WORD xdata AD7147Registers[NUMBER_OF_AD7147_REGISTERS];

extern WORD xdata UpperClampValue[NB_OF_SENSORS_FOR_SLIDER];

//----------------------

//Function declarations

//----------------------

void ConfigAD7147(void);

//---------------------

A Analog Devices Inc. Confidential & Proprietary – Do not Distribute

Revision A Page 5 23/07/2009

//Function definitions

//---------------------

void ConfigAD7147(void)

{

 WORD xdata StageBuffer[8];

 //==

 //============ Bank 2 Registers ============

 //==

 //===

 //= Stage 0 - CIN5(+) - Slider Segment S1 =

 //===

 StageBuffer[0]=0xFBFF; //Register 0x88

 StageBuffer[1]=0x1FFF; //Register 0x89

 StageBuffer[2]=0x0100; //Register 0x8A

 StageBuffer[3]=0x2626; //Register 0x8B

 StageBuffer[4]=2000; //Register 0x8C

 StageBuffer[5]=2000; //Register 0x8D

 StageBuffer[6]=2000; //Register 0x8E

 StageBuffer[7]=2000; //Register 0x8F

 WriteToAD7147(STAGE0_CONNECTION, 8, StageBuffer, 0);

 //===

 //= Stage 1 - CIN6(+) - Slider Segment S2 =

 //===

 StageBuffer[0]=0xEFFF; //Register 0x90

 StageBuffer[1]=0x1FFF; //Register 0x91

 StageBuffer[2]=0x0100; //Register 0x92

 StageBuffer[3]=0x2626; //Register 0x93

 StageBuffer[4]=2000; //Register 0x94

 StageBuffer[5]=2000; //Register 0x95

 StageBuffer[6]=2000; //Register 0x96

 StageBuffer[7]=2000; //Register 0x97

 WriteToAD7147(STAGE1_CONNECTION, 8, StageBuffer, 0);

 //===

 //= Stage 2 - CIN7(+) - Slider Segment S3 =

 //===

 StageBuffer[0]=0xFFFF; //Register 0x98

 StageBuffer[1]=0x1FFE; //Register 0x99

 StageBuffer[2]=0x0100; //Register 0x9A

 StageBuffer[3]=0x2626; //Register 0x9B

 StageBuffer[4]=2000; //Register 0x9C

 StageBuffer[5]=2000; //Register 0x9D

 StageBuffer[6]=2000; //Register 0x9E

 StageBuffer[7]=2000; //Register 0x9F

 WriteToAD7147(STAGE2_CONNECTION, 8, StageBuffer, 0);

 //===

 //= Stage 3 - CIN8(+) - Slider Segment S4 =

 //===

 StageBuffer[0]=0xFFFF; //Register 0xA0

 StageBuffer[1]=0x1FFB; //Register 0xA1

 StageBuffer[2]=0x0100; //Register 0xA2

 StageBuffer[3]=0x2626; //Register 0xA3

 StageBuffer[4]=2000; //Register 0xA4

 StageBuffer[5]=2000; //Register 0xA5

 StageBuffer[6]=2000; //Register 0xA6

 StageBuffer[7]=2000; //Register 0xA7

 WriteToAD7147(STAGE3_CONNECTION, 8, StageBuffer, 0);

A Analog Devices Inc. Confidential & Proprietary – Do not Distribute

Revision A Page 6 23/07/2009

 //===

 //= Stage 4 - CIN9(+) - Slider Segment S5 =

 //===

 StageBuffer[0]=0xFFFF; //Register 0xA8

 StageBuffer[1]=0x1FEF; //Register 0xA9

 StageBuffer[2]=0x0100; //Register 0xAA

 StageBuffer[3]=0x2626; //Register 0xAB

 StageBuffer[4]=2000; //Register 0xAC

 StageBuffer[5]=2000; //Register 0xAD

 StageBuffer[6]=2000; //Register 0xAE

 StageBuffer[7]=2000; //Register 0xAF

 WriteToAD7147(STAGE4_CONNECTION, 8, StageBuffer, 0);

 //===

 //= Stage 5 - CIN10(+) - Slider Segment S6 =

 //===

 StageBuffer[0]=0xFFFF; //Register 0xB0

 StageBuffer[1]=0x1FBF; //Register 0xB1

 StageBuffer[2]=0x0100; //Register 0xB2

 StageBuffer[3]=0x2626; //Register 0xB3

 StageBuffer[4]=2000; //Register 0xB4

 StageBuffer[5]=2000; //Register 0xB5

 StageBuffer[6]=2000; //Register 0xB6

 StageBuffer[7]=2000; //Register 0xB7

 WriteToAD7147(STAGE5_CONNECTION, 8, StageBuffer, 0);

 //==

 //= Stage 6 - CIN11(+) - Slider Segment S7 =

 //==

 StageBuffer[0]=0xFFFF; //Register 0xB8

 StageBuffer[1]=0x1EFF; //Register 0xB9

 StageBuffer[2]=0x0100; //Register 0xBA

 StageBuffer[3]=0x2626; //Register 0xBB

 StageBuffer[4]=2000; //Register 0xBC

 StageBuffer[5]=2000; //Register 0xBD

 StageBuffer[6]=2000; //Register 0xBE

 StageBuffer[7]=2000; //Register 0xBF

 WriteToAD7147(STAGE6_CONNECTION, 8, StageBuffer, 0);

 //==

 //= Stage 7 - CIN12(+) - Slider Segment S8 =

 //==

 StageBuffer[0]=0xFFFF; //Register 0xC0

 StageBuffer[1]=0x1BFF; //Register 0xC1

 StageBuffer[2]=0x0100; //Register 0xC2

 StageBuffer[3]=0x2626; //Register 0xC3

 StageBuffer[4]=2000; //Register 0xC4

 StageBuffer[5]=2000; //Register 0xC5

 StageBuffer[6]=2000; //Register 0xC6

 StageBuffer[7]=2000; //Register 0xC7

 WriteToAD7147(STAGE7_CONNECTION, 8, StageBuffer, 0);

 //===========================

 //= Stage 8 - Not connected =

 //===========================

 StageBuffer[0]=0xFFFF; //Register 0xC8

 StageBuffer[1]=0x3FFF; //Register 0xC9

 StageBuffer[2]=0x0000; //Register 0xCA

 StageBuffer[3]=0x2626; //Register 0xCB

 StageBuffer[4]=5000; //Register 0xCC

 StageBuffer[5]=5000; //Register 0xCD

A Analog Devices Inc. Confidential & Proprietary – Do not Distribute

Revision A Page 7 23/07/2009

 StageBuffer[6]=5000; //Register 0xCE

 StageBuffer[7]=5000; //Register 0xCF

 WriteToAD7147(STAGE8_CONNECTION, 8, StageBuffer, 0);

 //===========================

 //= Stage 9 - Not connected =

 //===========================

 StageBuffer[0]=0xFFFF; //Register 0xD0

 StageBuffer[1]=0x3FFF; //Register 0xD1

 StageBuffer[2]=0x0000; //Register 0xD2

 StageBuffer[3]=0x2626; //Register 0xD3

 StageBuffer[4]=5000; //Register 0xD4

 StageBuffer[5]=5000; //Register 0xD5

 StageBuffer[6]=5000; //Register 0xD6

 StageBuffer[7]=5000; //Register 0xD7

 WriteToAD7147(STAGE9_CONNECTION, 8, StageBuffer, 0);

 //============================

 //= Stage 10 - Not connected =

 //============================

 StageBuffer[0]=0xFFFF; //Register 0xD8

 StageBuffer[1]=0x3FFF; //Register 0xD9

 StageBuffer[2]=0x0000; //Register 0xDA

 StageBuffer[3]=0x2626; //Register 0xDB

 StageBuffer[4]=5000; //Register 0xDC

 StageBuffer[5]=5000; //Register 0xDD

 StageBuffer[6]=5000; //Register 0xDE

 StageBuffer[7]=5000; //Register 0xDF

 WriteToAD7147(STAGE10_CONNECTION, 8, StageBuffer, 0);

 //============================

 //= Stage 11 - Not connected =

 //============================

 StageBuffer[0]=0xFFFF; //Register 0x80

 StageBuffer[1]=0x3FFF; //Register 0x81

 StageBuffer[2]=0x0000; //Register 0x82

 StageBuffer[3]=0x2626; //Register 0x83

 StageBuffer[4]=5000; //Register 0x84

 StageBuffer[5]=5000; //Register 0x85

 StageBuffer[6]=5000; //Register 0x86

 StageBuffer[7]=5000; //Register 0x87

 WriteToAD7147(STAGE11_CONNECTION, 8, StageBuffer, 0);

 //==

 //============ Bank 1 Registers ============

 //==

 //Initialisation of Bank 1 Registers

 AD7147Registers[PWR_CONTROL]=0x02B2; //Register 0x00

 WriteToAD7147(PWR_CONTROL, 1, AD7147Registers, 0);

 //Read High and Low Limit Status registers to clear INT pin

 ReadFromAD7147(STAGE_LOW_LIMIT_INT, 3, AD7147Registers,

 STAGE_LOW_LIMIT_INT);//Registers 0x08, 0x09 and 0x0A

 AD7147Registers[AMB_COMP_CTRL0]=0x3233; //Register 0x02

 AD7147Registers[AMB_COMP_CTRL1]=0x0A19; //Register 0x03

 AD7147Registers[AMB_COMP_CTRL2]=0x0832; //Register 0x04

 AD7147Registers[STAGE_LOW_INT_EN]=0x0000; //Register 0x05

 AD7147Registers[STAGE_HIGH_INT_EN]=0x0000; //Register 0x06

 AD7147Registers[STAGE_COMPLETE_INT_EN]=0x0001; //Register 0x07

A Analog Devices Inc. Confidential & Proprietary – Do not Distribute

Revision A Page 8 23/07/2009

 WriteToAD7147(AMB_COMP_CTRL0, 6, AD7147Registers, AMB_COMP_CTRL0);

 //Enable calibration for all sequences in use

 AD7147Registers[STAGE_CAL_EN]=0x00FF;

 WriteToAD7147(STAGE_CAL_EN, 1, AD7147Registers,

 STAGE_CAL_EN);//Register 0x01

 //Read High and Low Limit Status registers to clear INT pin

 ReadFromAD7147(STAGE_LOW_LIMIT_INT, 3, AD7147Registers,

 STAGE_LOW_LIMIT_INT);//Registers 0x08, 0x09 and 0x0A

}

Hardware Interrupt Configuration

In the 8-Segment Slider application firmware, ADI developed a routine that
configures the AD7147 either in End of Conversion interrupt mode or
Threshold interrupt mode. On power up the AD7147 is configured in End of
Conversion Interrupt mode. This mode is enabled by configuring the 3
interrupt enable registers as follow:

AD7147Registers[STAGE_LOW_INT_EN] = 0x0000; //Register 0x05

AD7147Registers[STAGE_HIGH_INT_EN] = 0x0000; //Register 0x06

AD7147Registers[STAGE_COMPLETE_INT_EN]=0x0001;//Register 0x07

AD7147Registers[STAGE_COMPLETE_INT_EN] = 0x0001;

This configures the Stage Complete Interrupt Enable Register 0x07 Bit <0> so
that the INT pin will be asserted on completion of each stage 0 ADC
conversion, all the stages will also be converted on each interrupt cycle. The
STAGE_0_COMPLETE_STATUS_INT bit in the
STAGE_COMPLETE_LIMIT_INT register (address 0x0A) is set automatically
by the AD7147 when it has completed the conversion of all stages. When this
bit is set, the interrupt pin is asserted which causes software to jump to an
Interrupt Service Routine where the 3 interrupt status registers at address
0x08, 0x09 and 0x0A are read to clear the hardware interrupt.

In the End of Conversion interrupt mode the frequency of the interrupt
depends on bit 8 and bit 9 of the Power Control Register (referenced as
AD7147Registers[PWR_CONTROL]in the code at address 0x00). These bits
control the decimation rate.

Bit 8 Bit 9 Decimation rate Frequency of the Interrupt
for 12 conversion stages

0 0 256 36ms
0 1 128 18ms
1 0 64 9ms
1 1 64 9ms

Table.1 Interrupt Frequency

A Analog Devices Inc. Confidential & Proprietary – Do not Distribute

Revision A Page 9 23/07/2009

In order to minimise the interrupt frequency to the host, ADI implemented a
software routine in the ISR which changes the AD7147 interrupt mode
depending on whether the user is contacting the sensor or not. When the user
touches the sensor, the firmware configures the AD7147 in End of Conversion
interrupt mode. When the user lifts off the sensor, the firmware configures the
AD7147 in Threshold mode shortly after lifting off.

This is the code that implements this functionality:

/*************************/

/* Change interrupt mode */

/*************************/

if (((AD7147Registers[STAGE_HIGH_LIMIT_INT] &

POWER_UP_INTERRUPT)!=0x0000) ||

((AD7147Registers[STAGE_LOW_LIMIT_INT] &

POWER_UP_INTERRUPT)!=0x0000))

{

 //Configure the AD7147 in End of Conversion Interrupt mode

 if (AD7147Registers[STAGE_COMPLETE_INT_EN]==0x0000)

 {

 AD7147Registers[STAGE_LOW_INT_EN] &= 0xF000;

 AD7147Registers[STAGE_HIGH_INT_EN] &= 0xF000;

 AD7147Registers[STAGE_COMPLETE_INT_EN]=0x0001;

 WriteToAD7147(STAGE_LOW_INT_EN, 3, AD7147Registers,

 STAGE_LOW_INT_EN);

 }

 InterruptCounterForBtnIntMode=NUMBER_OF_INTS_BEFORE_BTN_INT_MODE;

}

else

{

 //Configure the AD7147 in threshold interrupt mode

 if (InterruptCounterForBtnIntMode>0)

 InterruptCounterForBtnIntMode--;

 if (AD7147Registers[STAGE_HIGH_INT_EN]==0x0000 &&

 InterruptCounterForBtnIntMode==0)

 {

 AD7147Registers[STAGE_LOW_INT_EN] |= POWER_UP_INTERRUPT;

 AD7147Registers[STAGE_HIGH_INT_EN] |= 0x00FF;

 AD7147Registers[STAGE_COMPLETE_INT_EN]=0x0000;

 WriteToAD7147(STAGE_LOW_INT_EN, 3, AD7147Registers,

 STAGE_LOW_INT_EN);

 }

}

When the sensor is not being touched, the AD7147 is configured in threshold
mode so that no hardware interrupt are generated by the AD7147. When the
sensor is touched a bit will be set in the Stage High Limit Interrupt Status
register (address 0x09) and a hardware interrupt will be generated. As soon
as a bit is set in this register, we clear bit 0 to 11 in the High and Low Limit
Interrupt Enable registers and set bit 0 in the Stage Complete Interrupt Enable
Register (address 0x07).

AD7147Registers[STAGE_LOW_INT_EN] &= 0xF000;

AD7147Registers[STAGE_HIGH_INT_EN] &= 0xF000;

AD7147Registers[STAGE_COMPLETE_INT_EN]=0x0001;

WriteToAD7147(STAGE_LOW_INT_EN,3,AD7147Registers,STAGE_LOW_INT_EN);

A Analog Devices Inc. Confidential & Proprietary – Do not Distribute

Revision A Page 10 23/07/2009

When the user lifts off the sensor, the firmware waits for 8 End of Conversion
interrupts and changes the AD7147 back into threshold interrupt mode by
writing to the following registers:

AD7147Registers[STAGE_LOW_INT_EN] |= POWER_UP_INTERRUPT;

AD7147Registers[STAGE_HIGH_INT_EN] |= 0x00FF;

AD7147Registers[STAGE_COMPLETE_INT_EN]=0x0000;

WriteToAD7147(STAGE_LOW_INT_EN,3,AD7147Registers,STAGE_LOW_INT_EN);

POWER_UP_INTERRUPT has the value 0x00FF.

AD7147Registers[STAGE_HIGH_INT_EN] |= 0x00FF;

This configures the High Limit Interrupt Enable Register 0x06 Bits 0-7; if any
of these bits are set, then a hardware interrupt is generated on the INT pin
when a sensor is activated and a high limit threshold is exceeded on the
AD7147.

AD7147Registers[STAGE_LOW_INT_EN] |= POWER_UP_INTERRUPT;

This configures the Low Limit Interrupt Enable Register 0x05 Bits 0-7; this will
only generate a hardware interrupt if an error needs to be corrected by a
forced recalibration on the AD7147.

There are two sources of error that may need to be corrected:

1. If the sensor is touched when the part is powered up, the initial sensor
thresholds calculated by the AD7147 will be incorrect, when the user
lifts off the sensor a low limit threshold will be asserted and software
must then recalibrate the part in the interrupt service routine

2. The second error that may occur is when the sensor value drifts below
the low limit threshold due to excessive temperature or humidity errors.
In this case the recalibration function in the interrupt service routine
also needs to be called.

AD7147Registers[STAGE_COMPLETE_INT_EN] = 0x0000;

If this Register were set to 0x0001 then hardware interrupts would be asserted
after each Stage0 conversion regardless of whether we are touching the
sensor or not. CDC results would then be available for all 12 stages.

AD7147Registers[STAGE_CAL_EN] = 0x00FF;

In this configuration file, the STAGE_CAL_EN bits are set to 0x00FF, this
enables the environmental calibration and adaptive threshold logic from stage
0 to stage 7 only as these are the only stages used in this application. Any
unused or un-configured stages should not be enabled in the
STAGE_CAL_EN register.

A Analog Devices Inc. Confidential & Proprietary – Do not Distribute

Revision A Page 11 23/07/2009

Interrupt Service Routine (ISR)

The following diagram shows the interrupt sequence used in the 8-Segment
Slider application.

Fig.3 Interrupt Sequence

The interrupt service routine is executed every time the AD7147 generates a
hardware interrupt on the INT pin. This interrupt is generated in the following
conditions:

 When the user touches the sensor
 When a recalibration event is required
 Every 9ms, 18ms or 36ms when the AD7147 is operating in End of

Conversion interrupt mode

In End of Conversion interrupt mode, the AD7147 continuously generates
hardware interrupts while the sensor is being touched. As shown in Fig.3 the
ISR is called every 9ms, 18ms or 36ms depending on the decimation rate.

The INT pin on the AD7147 is cleared by a read of the Interrupt status
registers, 0x08, 0x09 and 0x0A. However, on the very first interrupt, the
firmware will write to registers 0x05, 0x06 and 0x07 to change the AD7147
from Threshold interrupt mode to End of Conversion interrupt mode.

Once the user lifts off the sensor software will write again to registers 0x05,
0x06 and 0x07 to change the AD7147 back to Threshold Interrupt mode.

Recalibration

The code checks if a recalibration of the sensors is necessary in case an error
has occurred as described below. If a low limit status bit is set which signifies
an error then the ReCalibrate() function is called which forces a recalibration
of the sensors by writing to the Forced_CAL bit<14> in the Ambient
Compensation Control register (at address 0x02). A simple way to test the
functionality of this code is to physically touch the sensor while power is
applied to the part and the sensors are configured by the ConfigAD7147()

Finger Touches
Sensor

AD714X
INT

OFF

ON

THRESHOLD INTERRUPT
MODE END OF CONVERSION INTERRUPT MODE

CURRENTLY SET
To 8 Interrupts

HOST uC
SERIAL

INTERFACE

THRESHOLD INTERRUPT
MODE

Finger Leaves
Sensor

A Analog Devices Inc. Confidential & Proprietary – Do not Distribute

Revision A Page 12 23/07/2009

function, when the use lifts off the sensor this software routine should
recalibrate the sensors to the untouched value allowing the sensor to function
correctly afterwards as shown in Fig.4

Fig.4 Recalibration

It is absolutely necessary to have the recalibration routine in your code, this
software does two things:

 Firstly it recalibrates the sensor response if the user has been touching
the sensor while the part is being configured after power up. If the user
has been touching the sensor while the part is initialised the upper and
lower sensor thresholds will be set at the incorrect levels around the
touched sensor value, therefore without the recalibration code the high
sensor threshold would never get set as it would always be higher than
the touched sensor value. The recalibration code determines if a low
threshold limit is exceeded as the user lifts off the sensor after part
initialisation and then forces a recalibration of the sensor thresholds on
chip so that they now centre around the untouched sensor value which
is correct. When the user then touches the sensor again the high
threshold will be exceeded as normal.

 Secondly the recalibration code corrects for various errors that may

occur causing the sensor value to drift lower very quickly due to

A Analog Devices Inc. Confidential & Proprietary – Do not Distribute

Revision A Page 13 23/07/2009

excessive temperature drifts, if the sensor value drifts below the low
limit threshold the recalibration code will then re-centre the high and
low thresholds around the current sensor value.

8-Segment Slider Algorithm

As soon as the 8-Segment Slider is touched the INT pin on the AD7147 is
asserted which causes a hardware interrupt on the host processor to call the
Interrupt Service Routine (ISR). In the AD7147 ISR, new position is available
after calling the function “GetNewSliderUpdate()”.

BEGIN
 Read Interrupt Status Registers at 0x008, 0x009, 0x00A

 Increment Interrupt Counter

 IF Interrupt counter = 2 THEN
 //Initialisation
 Initialise slider algorithm
 ELSE IF Interrupt counter > 2 THEN
 IF Sensor Error is detected THEN

//Recalibration
 Force Calibration
 Reset Interrupt Counter to reload the initialisation
 ELSE
 Get new Slider position
 END IF

 //Change of Interrupt mode
 IF slider is touched AND AD7147 is in Threshold Interrupt Mode THEN

Change AD7147 from Threshold Interrupt Mode to End of Conversion
Interrupt mode.
Reload Interrupt Counter for Changing interrupt mode

ELSE IF slider is not touched AND AD7147 is in End of Conversion Interrupt Mode
THEN

Decrement Interrupt Counter for Changing interrupt mode
IF Counter for Changing interrupt mode = 0 THEN

Change AD7147 from End of Conversion Interrupt mode to Threshold
Interrupt Mode.

 END IF
 END IF
 END IF
END

Once the ISR is called the first thing that is done is to read the status registers
from the AD7147.
Next the firmware keeps track of the first few interrupts after powering up the
AD7147. On the second interrupt after power up, initialisation of some
variables needs to be done. On the 3rd interrupt after power up, the 8-
Segment Slider algorithm can be processed.

First the code checks if a recalibration of the sensors is necessary in case an
error has occurred as described above. If a low limit status bit is set which
signifies an error then the “ForceCalibration()” function is called which

A Analog Devices Inc. Confidential & Proprietary – Do not Distribute

Revision A Page 14 23/07/2009

forces a recalibration of the sensors by writing to the Forced_CAL bit<14> in
the Ambient Compensation Control register, 0x02.
A simple way to test the functionality of this code is to physically touch the
sensor while power is applied to the part and the sensors are configured by
the ConfigAD7147() function. When the use lifts off the sensor this software
routine should recalibrate the 8-Segment Slider to the untouched value
allowing the sensor to function correctly afterwards.
If an error is not detected then we process the change of interrupt mode as
described previously and the 8-Segment Slider algorithm. The slider algorithm
is executed calling the function “GetNewSliderUpdate()”.

The following pseudo code describes the functionality behind the
“GetNewSliderUpdate()”function.

BEGIN
 IF any stages used in the slider is activated THEN
 //Read from AD7147
 Read ADC Values
 Read Ambient Values.
 END IF
 Calculate Max Average values.
 Detect touch errors on 8-Segment Slider

 FOREACH Stage

//Calculate a sensor response representing the distance between the
//current value and the ambient value

 Sensor value = Absolute (Current ADC Value - Ambient Value)
 NEXT

 //Determine activation
 IF Any bit of the 8 stages is set in Stage High Limit Threshold register THEN
 Slider activated = TRUE
 Increment interrupt counter for the TAP
 IF interrupt counter > (T_MIN+T_MAX) THEN
 Clear No Touch Interrupt Counter
 END IF
 ELSE

Slider activated = FALSE
 Reset activation variables
 Reset list box variables

//Determine fast scroll
 IF Slider Activation Counter < T_MAX_TOUCHING THEN

NumberOfUpdates = abs(PositionOnLiftOff - PositionOnActivation) /
Menu Item Resolution;

 IF (PositionOnLiftOff < PositionOnActivation)
 ScrollingDirection = UP;
 ELSE IF (PositionOnLiftOff > PositionOnActivation)
 ScrollingDirection = DOWN;
 END IF

 IF abs(PositionOnLiftOff - PositionOnActivation) > 1/4 of screen length THEN
 NumberOfUpdates = NumberOfUpdates + 5
 END IF
 ELSE
 NumberOfUpdates = 0
 END IF

A Analog Devices Inc. Confidential & Proprietary – Do not Distribute

Revision A Page 15 23/07/2009

 //Work out the tap
 Increment No Touch Interrupt Counter
 IF T_MIN > interrupt counter for the TAP > T_MAX AND

No Touch Interrupt Counter > interrupt counter for the TAP THEN
Set tapping bit for a few interrupts.

 END IF
 END IF
 END IF

 IF Slider activated = TRUE THEN
 //Calculate absolute position
 IF No touch errors were detected THEN
 Find sensor with highest response

 SELECT CASE (sensor with highest response)
 CASE 0
 A parameter = Sensor value 1

B parameter = Sensor value 0 + Sensor value 1

Slider position = (PIXEL_RESOLUTION * A_parameter) /

 B_parameter
 CASE Last sensor
 A parameter = (Last sensor value * Index of last sensor) +
 (Second last sensor value * Index of second last sensor)

B parameter = Last sensor value + Second last sensor value

Slider position = (PIXEL_RESOLUTION * A_parameter) /

 B_parameter
 CASE ELSE
 A parameter = (Sensor with highest response – 1) *
 (Index of sensor with highest response-1) +

(Sensor with highest response) *
 (Index of sensor with highest response) +

(Sensor with highest response + 1) *
 (Index of sensor with highest response + 1)

B parameter = (Sensor with highest response – 1) +
 (Sensor with highest response) +

(Sensor with highest response + 1)

Slider position = (PIXEL_RESOLUTION * A_parameter) /

 B_parameter
 END SELECT

 //Apply IIR filter to smooth slider response
 IF first interrupt where the activation is registered THEN
 Initialise IIR filter with slider position
 ELSE
 Update IIR filter with new slider position
 END IF

//Calculate relative position
IF it is the first interrupt since activation THEN

 Position on first touch = Scaled Down Displacement
 ELSE
 //Auto scroll
 IF Position on first touch < Item resolution AND

 we’ve moved since the activation of the slider THEN
 Auto scroll upward

ELSE IF Position on first touch < (Number of Wanted Positions –

A Analog Devices Inc. Confidential & Proprietary – Do not Distribute

Revision A Page 16 23/07/2009

Item resolution) AND we’ve moved since the activation THEN
 Auto scroll downward
 ELSE
 IF (abs(Position on first touch - Scaled Down Displacement)

 > Item resolution) THEN
 Only scroll by 1 item
 Moved since the activation = TRUE
 END IF
 END IF
 END IF

//Clear tap if we’re scrolling
IF Movement has been detected AND
 Slider Activation Counter < T_MAX_TOUCHING THEN

Cancel Tap
END IF

//Format position data
Slider status = Touch error

 IF Slider status = TRUE THEN
Slider status = Slider status OR Activation bit
IF Lift off detected = FALSE AND 2 finger flag=FALSE THEN

Slider status = Slider status OR new position
 END IF
 ELSE
 Slider status = Slider status with activation bit cleared
 IF Tap detected =TRUE THEN
 Set tap bit
 ELSE
 Clear tap bit
 END IF
 //Send UP and DOWN commands if a fast scroll was detected
 IF NumberOfUpdates > 0 THEN
 IF Fast scroll update counter = 0 THEN
 Reload fast scroll update counter
 IF Scrolling Direction = UP THEN
 Send UP command
 ELSE
 Send DOWN command
 END IF
 Fast scroll update counter = Fast scroll update counter - 1
 END IF
 END IF
 END IF
 END IF
 END IF
END

A Analog Devices Inc. Confidential & Proprietary – Do not Distribute

Revision A Page 17 23/07/2009

Fig.5 Communication and execution timing between
the AD7147 and host processor

Explanation of the slider pseudo code

Activation, Tap and Fast Swipe

When calling the function “GetNewSliderUpdate()”, the entire slider algorithm
is executed. This function extracts on it own absolute positions data based on
the CDC response of the 8 sensors making the slider.
This function returns formatted position data as well as commands to update a
menu list control.

When entering this function, the firmware checks if any of the bits in the High
Limit status register is set. If any is set the following registers are read from
the AD7147:

- ADC values for the first 8 stages
- Ambient values for the first 8 stages

All registers are read back within 2.3ms using a 400KHz I2C interface, the
algorithm to process position data takes a further 1.72ms with a host
processor running at 16MHz core clock frequency.

After reading from the AD7147, the firmware computes the sensor responses.

A Analog Devices Inc. Confidential & Proprietary – Do not Distribute

Revision A Page 18 23/07/2009

The response of a sensor is defined by the absolute number of codes
between the current CDC value and the ambient value.

)__(_ valueAmbientvalueCurrentabsvalueSensor 

Next, we look for touch errors. A touch error is registered when 2 fingers are
detected or when a wide surface area of the sensor is in contact with user’s
hand. To detect 2 fingers, we look at the High Limit Interrupt Status register
(at address 0x09) and search for the interrupt bits that are not contiguously
set. An error registered due to a contact of a wide sensor area occurs when
too many bits are set in the High Limit Interrupt Status register.

The next step in the algorithm is the registration of the activation. The
activation is determined checking if any of the 8 lower bits in High Limit
Interrupt Status register (0x09) is set. We consider the Slider activated if any
of the 8 lower bits is set.

When the slider activation changes of state, we keep track for certain duration
the number of interrupts elapsed since the change of state. We use for this
two counters.
One counter keeps track of the interrupts when touching and the second
keeps track of the interrupts when the sensor is untouched.

The counters used in these 2 operations are useful to determine a valid Tap
event on the Slider.
When lifting off, we check if the number of interrupt when the user was
touching is within certain bounds. If it is and if the number of interrupt
registered when lifting off is greater that the number of interrupts when
touching, then we register a valid tap.

   ounterTouchDownCnterNoTouchCouANDMAXTounterTouchDownCMINTTap  _._

Fig.6 Tap timing

T_MIN < TouchDownCounter < T_MAX
AND NoTouchCounter > TouchDownCounter

Finger
Touches
Sensor

AD714X
INT

OFF

ON

THRESHOLD
INTERRUPT

MODE
END OF CONVERSION
INTERRUPT MODE

CURRENTLY SET
To 8 Interrupts

TouchDownCounter

THRESHOLD INTERRUPT
MODE

NoTouchCounter

Tap Bit

T_MIN T_MAX

A Analog Devices Inc. Confidential & Proprietary – Do not Distribute

Revision A Page 19 23/07/2009

When the user lifts off the sensor, the next event the firmware tries to catch is
a fast swipe. A fast swipe is detected when the user scrolls from one point to
another within a certain time. If a fast swipe is detected, the firmware issues
“UP” and “DOWN” commands that can be used by a higher level application
to control a menu list.

As soon as the user touches, the firmware keeps a copy of the first position
registered on activation. When lifting off, we check if the fast swipe took place
within a 450ms window. If it did we calculate the distance swiped taking the
absolute difference between the last position and the first position registered
on activation. This distance is then divided by the resolution of 1 item of the
menu list.
The resolution of 1 item corresponds to the number of positions required to
swipe to select the next item in the menu list.
This method gives to the high level application the number of update to
perform in the menu list depending on the distance swiped.
If the distance is too small, a minimal number of updates is set to 9. This
setting can be changed altering the definition named “MIN_NUMBER_OF_UPDATES”
in the file “AD7147 - Slider Definitions.h”.
If the user swiped over a quarter of the length of the slider, then the number of
updates is incremented by 5.

To know which way execute the updates, we must determine the direction of
the swipe. If the last position is greater than the position on activation then we
can be sure the user scrolled downwards and vice versa.

The updates of the menu list are taking place when the user lifts off the
sensor. The updates are done inserting UP and Go DOWN commands in the
slider status value returned from the function “GetNewSliderUpdate()”.

As mentioned before, when the user lifts off the sensor, the firmware
configures the AD7147 back to threshold interrupt mode. To make sure that
this does not happen before all the updates have taken place, we alter the
value of the interrupt counter dedicated to this task.

This is the code implementing this functionality:

All the above calculation used to determine a fast swipe are only execute
once, on the first interrupt after the user lifts off.

//Check if there will be enough interrupts after lifting off before to switch to

//threshold mode.

MinimalNumberOfInterruptsAfterLiftingOff = NumberOfUpdates * LISTBOX_QUICK_UPDATE;

if (MinimalNumberOfInterruptsAfterLiftingOff > NUMBER_OF_INTS_BEFORE_THRES_INT_MODE)

 InterruptCounterForThresIntMode = MinimalNumberOfInterruptsAfterLiftingOff;

A Analog Devices Inc. Confidential & Proprietary – Do not Distribute

Revision A Page 20 23/07/2009

Absolute Position Calculation

The next big step of the algorithm is to calculate the absolute position based
on the sensor responses.

The first step is to find out which sensor has the highest response. Then the
following formulae can be applied

The “A” and “B” formulae use the sensor with the highest response and the
two adjacent sensor responses in the calculation. However, when the sensor
with the highest response is the first one or the last one, only 1 adjacent
sensor is used in the calculations.

In the integration code, we used a constant called “PIXEL_RESOLUTION” is
defined by:

1__
__




sensorsofNumber
resolutionTouchRESOLUTIONPIXEL

E.g: We want to achieve 128 positions with an 8 segment slider sensor.
Therefore:

18
7

128
18

128
1__

__ 






sensorsofNumber

resolutionTouchRESOLUTIONPIXEL

Next, we must smooth the response of the slider applying an IIR filter to the
position data calculated with the above formulae.

This is the formula of the IIR filter:

10
4__6__ 


positionsliderNewpositionAveragepositionAverage

The average position is then inserted in the returned variable of the function
“GetNewSliderUpdate()”.

A Analog Devices Inc. Confidential & Proprietary – Do not Distribute

Revision A Page 21 23/07/2009

Relative position calculation

In order to create commands to update a list box in user’s application, we
must calculate the relative position. The calculation of the relative position is
done by recording the absolute position on the first touch and then subtracting
it from the latest absolute position.

When the relative position is greater than the item resolution in the list box
(defined as DISPLAY_ITEMS_CONSTANT in the code), the position on the first
touched is re-initialised to the current position and at the same time an update
in the list box is done. If the relative position is negative then the firmware will
generate a GO UP command. If the relative position is positive, the firmware
will generate a GO DOWN command.
As soon as 1 update is made to the list box, we set a flag that indicates that
user’s finger moved since he/she touched the sensor.

To provide extra functionality ADI added auto scroll functionality.
This auto scroll enables the user to go through different items in a list box
without having to scroll.
The auto scroll is enabled if the user has moved by at least 1 item in the list
box and his/her finger is at the top or at the bottom of the slider.
If the user touches any of the extremities of the slider on activation and
remains static, then the auto-scroll will enable after 1 second. This time is
defined by the constant “LISTBOX_SLOW_UPDATE” in the file “AD7147 - Slider
Definitions.h”. It is set to 1000 by default.

Configuration of the firmware

All the constants used to tune the firmware have been described in the
present document. All of them are located in the file “AD7147 - Slider
Definitions.h”.

The table below shows the data format returned by the “SliderStatus” variable.

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Slider
Status Activation Tap Go

UP
Go

DOWN
Touch
errors

Absolute positions ranging from 0
to127

Table 2 – 8-Segment Slider Status

Code and data memory requirements

The 8-Segment Slider firmware requires 5.49Kb of program memory and 195
bytes of RAM. These are the requirements to implement the AD7147 register
configuration, recalibration and 8-Segment Slider algorithm processing on a
host controller. These code sizes do not include any software I2C or SPI

A Analog Devices Inc. Confidential & Proprietary – Do not Distribute

Revision A Page 22 23/07/2009

driver; it assumes the host processor will have a dedicated hardware driver.
As an example to add a software I2C driver requires an additional 726 bytes
of code memory and 16 bytes of data memory.

