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INTRODUCTION 
The performance of contemporary high speed analog-to-digital 
converters (ADCs) depends directly on their clocks. However, 
the oscillators in the signal generators employed to generate 
these clocks are nonideal; both clock amplitude and phase 
may deviate from the ideal. The ADC sampling circuits tend 
to be resilient to small clock amplitude changes; however, even 
small phase offsets can have a profound effect on the ADC 
output. Therefore, the phase noise of clock oscillators must be 
carefully examined if accurate readings are to be taken with 
high speed ADCs.  

This application note provides an overview of the well established 
but, in practice, fairly unused mathematical background necessary 
to understand the effects of the clock and analog input phase noise. 
It discusses the differences and similarities between amplitude 
noise and phase noise, suggests simple formulas to estimate the 
sideband power, and clarifies the mechanisms that couple clock 
and analog input noise onto measured ADC signals.  

Finally, it also shows how these methods can be applied for 
contemporary high speed ADC evaluation and performance 
estimation, using the AD9684 as an example.  

 

 

http://www.analog.com/AD9684?doc=AN-1386.pdf
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AMPLITUDE NOISE vs. PHASE NOISE 
Sinusoidal waves are the predominant clock waveforms for high 
speed ADCs because they are easier to generate, transfer, and 
match at RF frequencies than other waveforms, such as square 
waves. Sinusoidal waves can be described mathematically as 
follows: 

c(t) = Ac sinωct 

where: 
c(t) is the carrier (clock). 
Ac is the carrier amplitude. 
ωc is the angular frequency. 
t is time.  

Typically, clock signals are high power (that is, >13 dBm), which 
alleviates losses in the cabling, connectors, and traces. It can be 
safely assumed that the clock power is higher than noise power.  

APPROXIMATING TRIGONOMETRIC FUNCTIONS 
The following approximations for x << 1 are used extensively 
throughout this application note. Therefore, it is important to 
be aware when these approaches break down, and what happens 
after. These simple, linear approximations produce increasing 
error for larger x values, as shown in Figure 1. 
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Figure 1. Approximation Error for Trigonometric Functions 

DETERMINISTIC APPROACH 
The first subject is clock noise, which is assumed to be sinusoidal 
in the following proof. This simplification allows examination 
of the phase between the carrier and the noise. Amplitude noise 
is discussed as a form of amplitude modulation (AM). 

( ) tωAtωAtc ccnnAM sin)cos1( −=  
tωtωAAtωA cnnccc sincossin −=  

( )tωωtωωAAtωA ncnc
nc

cc )sin()sin(
2

sin −++−=  

where: 
cAM(t) is the carrier (clock) with AM noise. 
Ac is the carrier amplitude. 
An is the noise amplitude. 
ωn is the noise angular frequency. 

Notice that AM generates two components: one below the 
carrier frequency and one above it. Therefore, this modulation 
is commonly referred to as double sideband (DSB). The phase 
of these two components are also aligned with the phase of the 
carrier; all of them are sines. 
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Figure 2. Phasor Diagram of an AM-DSB Modulated Signal 

The phasor diagram of the signal in Figure 2 reveals the phase 
connection more intuitively. The sinωct carrier is depicted at 
a phase of 90° pointing vertically up. Compared to the carrier 
as reference, the two noise components rotate in opposing 
directions at an angular speed of ωn. Their sum is therefore 
always a vector that falls in line with the carrier. In other words, 
the amplitude noise is always in phase with the carrier. Figure 3 
shows the spectrum of such an AM modulated signal. 
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Figure 3. Spectrum of an AM-DSB Modulated Signal 
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The next subject is phase noise as a form of phase modulation 
(PM). 

cPM(t) = Ac sin(ωct + An cosωnt) 
= Ac sinωct cos(An cosωnt) + Ac cosωct sin(An cosωnt) 

An can be referred to as the phase modulation index in this 
context. If An << 1, 

cos(An cosωnt) ≈ 1 

sin(An cosωnt) ≈ An cosωnt 

This allows the PM equation to be simplified: 

( ) tωtωAAtωAtc ncncccPM coscossin +≈  
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cc −+++= coscos
2

sin  

Two noise components are found at the same frequencies as the 
AM-DSB case. The only difference is their phase, which is 90° 
off compared to the AM-DSB signal. Therefore, their sum is 
always perpendicular to the carrier. The phasor diagram and 
the signal spectrum help to visualize the signal (see Figure 4 
and Figure 5).  
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Figure 4. Phasor Diagram of a Low Modulation Index PM Signal 

The figures also show one inherent problem of spectral analysis: 
the spectrum of an AM-DSB and a low modulation index PM 
signal are indistinguishable. Often AM and PM noise are 
simultaneously present, and the measured spectrum is a 
combination of their respective spectra. 
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Figure 5. Spectrum of a Low Modulation Index PM Signal 

 

 

 

 

STOCHASTIC APPROACH 
Noise is not deterministic, nor is it sinusoidal in most cases. 
Therefore, the next topic of analysis is power spectral density 
(PSD) of stochastic noise. The spectrum includes negative 
frequencies, which correspond to the convention of how signals 
are analyzed in telecommunications. 

It is assumed that the noise function, n(t), has an expected value 
of zero, that is, E[n(t)] = 0, and it has a DSB PSD of ν(ω), that is, 
ν(ω) = ν(−ω). 

Starting with the AM noise signal, 

cAM(t) = (1 + n(t))Ac sinωct 

If its Fourier transform is defined as 

( ){ } ( ) ( )∫
−

ω−

∞→
==

2

2

lim

T

T

tj
AMTAMAM dtetcωCtcF  

where T is the period time. 

Then, the equations for its PSD can be written as follows: 
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The critical portion is the expected value expression within the 
integral; it is dealt with separately. 

E[cAM(t1)cAM(t2)]  
= E[(1 + n(t1))Ac sinωct1 (1 + n(t2))Ac sinωct2] 
= Ac

2
 sinωct1 sinωct2 E[(1 + n(t1)) (1 + n(t2))] 

= Ac
2

 sinωct1 sinωct2 E[1 + n(t1) + n(t2) + n(t1)n(t2)] 
= Ac

2
 sinωct1 sinωct2 (1 + 0 + 0 + E[n(t1)n(t2)]) 
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The t1 and t2 variables are replaced with τ = t1 − t2 and υ = t1 + t2. It 
is assumed that E[n(t1)n(t2)] only depends on the time differences; 
therefore, it can be replaced with the autocorrelation, R(τ). 
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This result can be substituted back into the PSD calculation. 
The rules for changing variables in multiple integrals require 
the expression to be multiplied with the determinant of the 
Jacobian matrix, which is 1/2 in this case. Note that the variable 
change also affects the integration limits. 
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Only (cosωcτ − cosωcυ) depends on the variable υ; therefore, it 
can be integrated separately. 
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This further simplifies the PSD expression. 
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The result corresponds to the previous conclusions. The signal 
spectrum is made up of two main portions: the first portion is 
the pure carrier at ωc angular frequency, which is represented by 
the two Dirac delta functions: δ(ω − ωc) for the positive 
frequencies, and δ(ω + ωc) for the negative frequencies.  

The second portion is the DSB PSD of the noise signal itself, 
also mixed to ωc (see ν(ω − ωc) and ν(ω + ωc)). It is scaled by 
Ac

2/4, and any absolute measurement of the spectrum 
incorporates this factor. However, in practice, the measured 
noise is scaled back in power and shifted back to dc based on 
the measured carrier to avoid any such dependence. The result 
is the original noise PSD, ν(ω), which is now referred to as the 
noise PSD relative to carrier. 

Next, the phase modulation is examined. 

cPM(t) = Ac sin(ωct + n(t))  
= Ac sinωct cos n(t) + Ac cosωct sin n(t) 

If n(t) << 1, 

cos(n(t)) ≈ 1 

sin(n(t)) ≈ n(t) 

This allows the expression to be simplified: 

cPM(t) ≈ Ac sinωct + n(t)Ac cosωct 

The equations for its PSD can be written as follows: 
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The critical portion is the expected value; it is examined separately. 

E[cPM(t1)cPM(t2)]  
≈ Ac

2
 E[(sinωc t1 + n(t1)cosωc t1)(sinωct2 + n(t2)cosωc t2)] 

= Ac
2

 E[sinωc t1 sinωc t2 + sinωc t1 n(t2)cosωc t2 + 
n(t1)cosωc t1 sinωc t2 + n(t1)n(t2)cosωc t1 cosωc t2] 
= Ac

2
 sinωc t1 sinωc t2 + Ac

2
 cosωc t1 cosωc t2 E[n(t1)n(t2)] 

The first part is the pure carrier and is the same as in the 
previous proof; therefore, only the second part is of interest. 
The t1 and t2 variables are replaced with τ = t1 − t2 and υ = t1 + t2, 
and E[n(t1)n(t2)] = R(τ). The second part is 
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Integrated separately for υ variable, 
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Substituting this equation back into the PSD calculation, 
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Finally, putting together all the pieces, 
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Again, it can be seen that the signal spectrum is made up of the 
pure carrier at ωc angular frequency, and the DSB PSD of the 
noise signal itself mixed to ωc. However, in this case, the mixing 
is performed by a cosine adding the 90° phase shift. 

CONSEQUENCES 
Both the deterministic phasor and the stochastic approaches 
reveal the same far-reaching consequences. First, for low 
modulation index PM signals, the sidebands are directly 
connected to the modulation index. Examining the power of 
the sidebands reveals the power of the phase noise. 

Second, any additive noise vector can be interpreted as the 
sum of AM noise (in phase with the carrier) and PM noise 
(perpendicular to the carrier). If PM noise is of interest, the AM 
component must be removed before the phase noise power can 
be estimated based on sideband powers. 

Third, this proof is only valid if the modulation index is low. In 
any other case, the sideband powers do not have a direct 
connection with the phase noise power, and estimations based 
on this conclusion are inherently flawed. 
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LOW PM MODULATION INDEX CRITERION 
The Taylor series of the sine and cosine functions reveal what 
happens if the modulation index is high. The noise function 
enters a nonlinear region, which, in case of the simple, 
deterministic sinusoidal noise, is as follows: 

( ) −+−=
!5

cos
!3

cos
coscossin

5533 tωAtωA
tωAtωA nnnn

nnnn  

The third power, fifth power, and so on in the equation yield 
harmonics with additional power in the sidebands; the PSD 

calculation turns into a Bessel’s integration. The affiliated 
equations can be trivially written based on the previously 
described proofs; however, they are long and provide little 
insight. Effectively, the sideband power becomes higher than 
the PM noise power, and the latter cannot be estimated with the 
former. However, there is no sharp border between low and 
high modulation index, and it is up to the user to decide if the 
simple approximations are viable or not. 
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SIDEBAND POWER 
A nonideal clock examined with a spectrum analyzer is not a 
single, infinitely narrow peak. On the contrary, it has continuous 
sidebands that fade away into the noise floor without a clear 
delimitation. The questions to consider are as follows: 

1. How much of the sideband power has to be integrated? 
2. Is the noise floor part of the sideband power? 

The second question can be easily answered: simply compare 
the noise floor with and without any input signals. The noise of 
the spectrum analyzer has nothing to do with the clock noise, 
and therefore it can be disregarded. 

The first question requires further discussion. First, the 
bandwidth of the noise needs to be established. It is tempting 
to take only the low frequency, high power PSD regions of the 
signal into account; however, because a wide region is ultimately 
integrated, the contribution of a very low power, wideband noise 
can be more than that of the low frequency noise.  

Furthermore, because the wideband portion likely originates 
from thermal noise, it is conceivable that it is white and 
therefore has infinite energy. Luckily, the combination of 
parasitic capacitance and equivalent resistance form a low-pass 
filter (LPF) on most practical circuits, which introduces a roll-
off at some point and thus reduces this energy.  

To quantify this power, assume that the signal PSD, σ(f), is made up 
of segments of the form σ(f) = αf β or σdB(f) = 10log10 α + β10log10 α. 
(Note that regular frequency, f, is used here as opposed to the 
angular frequency, ω; the latter is more applicable to discuss 
sinusoidal waves, but it is the former that is usually measured.) 

Other forms can also be considered, but this form conveniently 
results in straight lines in the dB vs. decade plots. Using any two 
points on a segment, its α and β parameters can be calculated. 
β defines the steepness of the PSD; therefore, if β = −2, the 
steepness is −20 dB/dec. 
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The power under the segments can be calculated with the 
following integral: 
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Noise with infinite bandwidth (that is, f2 = ∞, as is the case with a 
simple thermal noise model) can lead to infinite power if β ≥ −1. 
However, if β < −1, f2

β + 1 = 0, and thus the power is finite and can 
be calculated: 
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JITTER AND PHASE NOISE 
CLOCK 
Clock phase noise coupling is examined first with simple 
mixing (see Figure 6).  
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Figure 6. Multiplying a Signal with an Ideal Clock 

In this case, multiplying with the clock results in an ideal frequency 
translation; the signal spectrum is shifted to the clock frequency. 
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Figure 7. Multiplying a Signal with a Nonideal Clock 

A nonideal clock affects the output spectrum (see Figure 7). A 
multiplication in time domain is equivalent to a convolution in 
the frequency domain. This phenomenon is called reciprocal 
mixing, and is of particular importance in the design of radio 
frequency (RF) transceivers, where an insufficient clock with 
high phase noise can cause the mixed signal to leak into the 
adjacent radio channels.  
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Figure 8. Sampling with an Ideal Pulse Train 

However, in case of an ADC sampling clock, neither the ideal 
nor the nonideal multiplication model can describe precisely 
the clock noise coupling mechanism and the associated jitter. 
The simplest sampling model assumes that every rising edge of 
the clock generates an ideal sampling impulse (see Figure 8, note 
that both the time and the frequency domain representations of 
the clock and the sampling pulse train are shown). This pulse 
train is what is multiplied in time by the input signal to give the 

sampled output. Note that there is no direct multiplication 
between the input signal and the clock; therefore, there is no 
direct convolution between their spectra. It is the spectrum of 
the sampling pulse train that is convolved with the spectrum of 
the signal. The spectrum of a pulse train is also a pulse train in 
the frequency domain, which results in the well known periodic 
output spectrum as described in the Shannon-Nyquist sampling 
theorem. The theory proves that if the sampling frequency is 
high enough, the sampled output signal is an accurate 
representation of the continuous input signal. 

sOUT(t) = sIN(t) = As sinωst 

where: 
sOUT(t) is the output signal. 
sIN(t) is the input signal. 
As is the signal amplitude. 
ωs is the signal angular frequency. 

To be perfectly precise, this statement only holds at sampling 
time points; therefore, lTc must be employed here instead of t, 
representing discrete time and continuous time respectively. 
However, t is used for brevity in most cases. 

Using this model, jitter emerges as a natural consequence of 
clock phase noise.  
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Figure 9. Sampling with a Nonideal Pulse Train 

The phase noise moves the sampling pulses in time from their 
ideal positions (see Figure 9). This deviation from an ideal clock 
is called time interval error (TIE), tj(t), which constitutes a good 
mathematical model but is hard to measure. Instead, the time 
between consecutive pulses is usually measured to obtain the 
period or cycle-to-cycle jitter; TIE can then be calculated from 
period jitter. Note that jitter is fundamentally a discrete time 
concept: it is only meaningful at sampling times.  

The connection between TIE and phase noise is simple. The 
clock period Tc corresponds to a full circle and an angle of 2π. 
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Figure 10. Instantaneous, Additive Error in Time due to Jitter 

The modified sampling pulse train has a spectrum that is 
difficult to express analytically, and so the output spectrum 
cannot be expressed either. What can be examined instead is 
the instantaneous, additive error caused by jitter, assuming a 
sinusoidal input signal (see Figure 10).  

sOUT(t) = As sinωs (t + tj (t))  
= As cosωstj (t)sinωst + As sinωstj (t)cosωst 

Note that t is used instead of lTc only for the sake of brevity.  

Assuming that ωstj(t) << 1, the previously discussed 
approximations can be used.  

sOUT(t) = As sinωst + As ωstj (t)cosωst 

Note that ωstj(t) can be simplified. 
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Therefore, the following simple relationship is obtained: 
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where ec(t) is the additive error due to clock jitter. 

This result has profound consequences. Given the 
approximations, the DSB clock phase noise, n(t), is directly 
mapped around the input signal. The spectrum of the clock 
signal is directly copied onto the input signal, much like in the 
case of reciprocal mixing. However, the coupling mechanism is 
different, and the power is also different due to the As(ωs/ωc) 
constant. 

This result also allows comparisons. Two sampling solutions are 
equivalent in terms of jitter noise power if  

( ) ( )
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2
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ω
tn

ω
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Conversely, if a hypothetical signal generator with frequency-
independent, fixed phase noise characteristics is used for the 
clock, running it at a higher frequency (that is, sampling at a 
higher rate) reduces the jitter noise power.  

 

 

 

 

ANALOG INPUT 
Up to this point, this application note has ignored the fact that 
the input signal itself needs to be generated, and that process is 
also nonideal, so the derived results are not fully accurate. 
However, the tools to describe such a system are now available. 
The first step is acknowledging that the input signal also has 
phase noise, m(t). The input and clock phase noises are 
independent. 

sOUT (t) = As sin(ωs (t + tj (t)) + m(t + tj (t))) 

The m(t + tj(t)) portion can be simplified with a few assumptions. 
The shape of the signal phase noise is likely a peak in the frequency 
domain, which is equivalent to a very broad autocorrelation 
function. In other words, at any given time, the signal phase 
noise is very similar to previous and future values. Furthermore, 
tj(t) << 1, so it can be assumed that m(t + tj(t)) ≈ m(t).  
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where es(t) is the additive error due to signal phase noise. 

Again, the result shows a surprisingly simple relationship. To 
take the signal phase noise into account, simply add it. 

Finally, the PSD of this signal is examined. The different portions 
are uncorrelated, and therefore the power can be added up. 

σOUT(ω) ≈ σIN(ω) + εc(ω) + εs(ω) 

where: 
σOUT(ω) is the PSD of the output signal. 
σIN(ω) is the PSD of the input signal. 
εc(ω) is the PSD of additive error due to clock jitter. 
εs(ω) is the PSD of additive error due to signal phase noise. 

If expanded, the PSD is as follows: 
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RESULTS RELATIVE TO FULL SCALE 
The previous description is mathematically correct, but 
somewhat cumbersome to use in practical situations, because 
the absolute signal power, PIN = As

2/2, is likely not available. The 
signal generator can be set to a well known value; however, it is 
not necessarily known what the actual signal level is at the ADC 
input. Losses, attenuation, reflection, and other variables can 
affect the signal before it actually arrives at the ADC input. 
Therefore, instead of an absolute power number in terms of 
mW, a relative value is used. The input signal power is 
expressed relative to the power of a sine that results in a full-
scale (FS) signal at the input.  
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The PSD then becomes, 
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Recall that the signal generator DSB phase noise PSDs, that is 
ν(ω) and μ(ω), are not measured in absolute terms, but relative 
to carrier: the nominal clock signal power for the clock, and the 
nominal analog input signal power for the analog input. 

Finally, the result can be consolidated to positive frequencies 
only by adding up the power for the negative and positive 
components. 
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EXAMPLES 
There are deterministic and stochastic subtypes of jitter. The 
proofs in this application note were kept as nonrestrictive as 
possible, so that the derived results are generally applicable and 
can be used to predict signal spectra in various cases.  

INTERLEAVED ADC CLOCK SKEW JITTER—
APPLYING THE THEORY TO EXPLAIN THE 
BEHAVIOR OF COMPLEX ADCS  
For example, in case of time interleaving converters, multiple 
identical ADCs process samples at a faster rate than the 
operating sample rate of each individual converter. The result is 
an overall higher net sample rate even though each ADC in the 
array is actually sampling at a lower rate. Therefore, for 
example, by interleaving four 100 MSPS ADCs, a 400 MSPS 
ADC can be realized in principle. 

However, the concept hinges on individual ADCs having 
precise and accurate timing. In practice, situations may occur 
where the clock of one ADC has an offset compared to the 
others. This offset is commonly referred to as clock skew, which 
can be interpreted as a deterministic jitter or TIE that repeats to 
produce a distinctive tj(t) function. With the theory shown 
previously, the resulting spectrum can be explained and 
predicted. The phase noise directly maps onto the output signal 
as As(ωs/ωc). Therefore, examining the output spectrum is 
enough to determine if there are any offsets in the timing of 
interleaved ADCs. 

SMA100A SIGNAL GENERATOR AND AD9684 
ADC—APPLYING THE THEORY TO PREDICT THE 
SPECTRUM 
In the following example, the Rohde & Schwarz SMA100A 
signal generator (9 kHz to 3 GHz) was employed as the input 
clock for a high speed AD9684 ADC. The analog input was 
supplied by the same type of signal generator. The phase noise 
measured at 500 MHz is shown in Figure 11. 
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Figure 11. Phase Noise of Rohde & Schwarz SMA100A 

With additional input parameters (input frequency of 125 MHz, 
input power level of −2.0 dBFS, resolution of 14 bits, aperture 
jitter of 80 fs, input white noise of 1.9 LSB rms, FFT size of 
131072), the output spectrum can be estimated (see Figure 12). 
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Figure 12. Estimated Output Spectrum 

Actual measurement data for this setup is shown in Figure 13. 
In this case, the mathematical predictions (shown as a thin gray 
line) correlate very well with the actual measurements. To put 
this result in perspective, the AD9684 ADC has multistage, 
pipelined architecture with complicated analog and digital 
signal processing capabilities, yet its behavior can be predicted 
using just the simple model shown in Figure 9 and the final 
equation shown in the Results Relative to Full Scale section. 
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Figure 13. Measured Output Spectrum (with Coherent Sampling) 
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