

ADP1043A Evaluation Board Quarter **Brick Full Bridge** 

**Reference Design** 

#### **PRD 1153**

#### FEATURES

Full Bridge Switching Power Supply Voltage Feedback Loop **Quarter Brick Size** Input Voltage Range from 38V to 72VDC 12V/25A DC Output from 48V DC Input I2C serial interface to PC Software GUI

#### DESCRIPTION

This Evaluation Board allows the ADP1043A to be quickly assessed in a switching power supply application. Using the evaluation board and its accompanying software, the ADP1043A can be interfaced to any PC running WindowsTM 2000, WindowsTM NT or WindowsTM XP via the computer's USB port.

The evaluation board allows all the input and output functions of the ADP1043A to be exercised without the need for external components. The software allows control and monitoring of the ADP1043A internal registers. The board is set up for the ADP1043A to act as an isolated switching power supply, outputting a 12V/25A DC voltage from a 38 to 72VDC input.

#### CAUTION

This eval board uses high voltages and currents. Extreme caution should be taken, especially on the primary side, to ensure safety of the user. It is strongly advised to switch off the eval board when not in use. It is recommended to use a current limited power supply as the input.

#### **EVALUATION SYSTEM CONTENTS**

The evaluation system package contains the following items:

- Application note
- ADP1043A evaluation board
- USB Interface cable
- Evaluation software on CD

#### **EVALUATION EQUIPMENT**

To evaluate this demo board, a PC, oscilloscope, electronic load and a power supply are required.

Rev. Prelim A. Oct 2009

Reference designs are as supplied "as is" and without warranties of any kind, express, implied, or statutory including, but not limited to, any implied warranty of merchantability or fitness for a particular purpose. No license is granted by implication or otherwise under any patents or other intellectual property by application or use of reference designs. Information furnished by Analog / Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Analog Devices reserves the right to change devices or specifications at any time without notice. Trademarks and registered trademarks are the property of their respective owners. Reference designs are not authorized to be used in life support devices or systems.

# TABLE OF CONTENTS

| Features                                                    |
|-------------------------------------------------------------|
| Description                                                 |
| Caution1                                                    |
| Evaluation System Contents                                  |
| Evaluation Equipment1                                       |
| Schematic                                                   |
| Evaluation Board hardware                                   |
| Specifications                                              |
| Topology And Operation Waveforms                            |
| Connectors                                                  |
| Usb Interface Connector                                     |
| Getting Started7                                            |
| Equipment7                                                  |
| Setup                                                       |
| Board Evaluation                                            |
| Line And Load Voltage Regulation                            |
| Output Voltage Setting                                      |
| Soft Start 10                                               |
| Digital Filter – Transient Analysis 11                      |
| Pwm – Switching Frequency                                   |
| Light Load Optimization                                     |
| Primary Side Current Sense and Secondary Side Current Sense |
| Volt-Second Balance                                         |
| Flags, and Fault configurations                             |
| Appendix                                                    |
| Bill of Materials                                           |

# TABLE OF FIGURES

| Power Module Block Diagram                  | 4                                                                                                                                                                                                                                                                                             |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pin connection diagram (Top view)           | 5                                                                                                                                                                                                                                                                                             |
| Eval Board Picture                          | 7                                                                                                                                                                                                                                                                                             |
| Test configuration for the Evaluation Board | 7                                                                                                                                                                                                                                                                                             |
| Getting Started                             | 8                                                                                                                                                                                                                                                                                             |
| Load Board Setting                          | 9                                                                                                                                                                                                                                                                                             |
| General Settings Window                     | 10                                                                                                                                                                                                                                                                                            |
| SoftStart (Yellow VOUT – Green IOUT)        | 11                                                                                                                                                                                                                                                                                            |
| Transient Response – 75% to 50% load step   | 12                                                                                                                                                                                                                                                                                            |
|                                             | Power Module Block Diagram<br>Pin connection diagram (Top view)<br>Eval Board Picture<br>Test configuration for the Evaluation Board<br>Getting Started<br>Load Board Setting<br>General Settings Window<br>SoftStart (Yellow VOUT – Green IOUT)<br>Transient Response – 75% to 50% load step |

# PRD 1153

| Figure 10. | Transient Response – 50% to 75% load step | 13 |
|------------|-------------------------------------------|----|
| Figure 11. | Digital Filter window                     | 14 |
| Figure 12. | PWM Timing Window                         | 15 |
| Figure 13. | Light Load Mode Control Window            | 16 |
| Figure 14. | Flags and Readings                        | 17 |
| Figure 15. | Flags in Light load mode                  | 18 |
| Figure 16. | Fault Configurations                      | 19 |
| Figure 17. | Primary Side Power Stage Schematic        | 20 |
| Figure 18. | Secondary Side Power Stage Schematic      | 21 |
| Figure 19. | Control Circuit Schematic                 | 22 |
| Figure 20. | ON/OFF & UVP Control Schematic            | 22 |
| Figure 21. | Auxiliary Power Schematic                 | 23 |
| Figure 22. | PCB Top View                              | 23 |
| Figure 23. | PCB Bottom View                           | 24 |

# PRD 1153

### SCHEMATIC



**EVALUATION BOARD HARDWARE** 

#### SPECIFICATIONS

- Nominal input voltage: 48 DC
- Input voltage range: 38-72V DC
- Nominal output voltage: 12V DC
- Max output voltage: 13.2V DC
- Max output current: 25A DC
- Switching frequency: 120kHz
- Efficiency: 95% at full load
- Cooling: 400 LFM (2.0 m/s)Air flow

#### TOPOLOGY AND OPERATION WAVEFORMS

A typical DC/DC switching power supply is the basis for the eval board. It is a full bridge topology. Figure 1 gives a block diagram of the main components on the board.

The primary side consists of the input terminals, full bridge switches and the main transformer. The gate signal for the switches comes from the ADP1043A, through the iCoupler and the drivers. This controls the switching of the

transformer. There is also a current sense transformer, to transmit the primary side current information to the ADP1043A on the secondary side.

The secondary side power stage consists of the synchronous rectifiers, output LC tank, sensing resistor. This provides 12V @ 25A at the output. The ADP1043A is also located on the secondary side. The ADP1043A provides the feedback signal that is used to regulate the voltage, limit the current, and allow current sharing and shutdown to be implemented. Low side current sensing is used. The ADP1043A also controls the share bus, which allows multiple power supplies to perform load sharing. The ADP1043A feedback to the primary side, through the iCoupler, consists of the voltage sense, current sense and share bus information.

There is a 4 pins connector for I2C communication. This allows the PC software to communicate with the eval board (and with other eval boards through extra 4 pin connectors) through the USB port of the PC. The user can readily change register settings on the ADP1043A this way, and also monitor the status registers.

The eval board is designed with a 0.5 mOhm RSENSE resistor. The power supply is designed to support a maximum continuous output of 25 A. The current sense has been calibrated such that 25 A corresponds to 100% of output current rating.

A variable load is required to perform a thorough evaluation. The output voltage is available between P4 and P9, and this is also where the load should be connected.

The power supply will be in Continuous Conduction Mode. If the synchronous rectifiers are enabled, the power supply will remain in CCM mode over the full load range. The output voltage ripple is approx 100mVp-p.





#### CONNECTORS

The connections to the eval board are shown in Table 1.

| Table 1. | Power Module Pin Assignment     |                 |  |  |
|----------|---------------------------------|-----------------|--|--|
| Pin      | Designation Eval Board Function |                 |  |  |
| P1       | Vin+                            | Positive Input  |  |  |
| P2       | On/Off                          | Remote Control  |  |  |
| P3       | Vin-                            | Negative Input  |  |  |
| P4       | Vo-                             | Negative Output |  |  |
| P5-P8    | Table 2                         | Signal Pins     |  |  |
| P9       | Vo+                             | Positive Output |  |  |

#### **USB INTERFACE CONNECTOR**

The signal pins are P5~P8 as shown in Table 2. Among them P5B, P6B, P7B and P8B are connected to USB dongle.

| Table 2. | Signal I    |     |             |
|----------|-------------|-----|-------------|
| Pin      | Designation | Pin | Designation |
| P5A      | PGOOD       | P5B | Ground      |
| P6A      | Vsen+       | P6B | SDA         |
| P7A      | Vsen-       | P7B | SCL         |
| P8A      | ADD/Share   | P8B | 5V          |

Figure 3 shows the photo of eval board. Figure 4 provides a typical circuit diagram which details the filtering for normal operation and output ripple test.

# PRD 1153

# PRD 1153



#### Figure 3. Eval Board Picture

Figure 4. Test configuration for the Evaluation Board



Note:

1.C1 100uFx2 parallel 2.C2 560uFx2 parallel 3. C3 MLCC 10uF 4. L1 0.47uH

#### **GETTING STARTED**

#### EQUIPMENT

• DC Power Supply 0-100V

- Electronic Load capable of 12V/30A
- Oscilloscope
- PC with ADP1043A GUI installed
- Precision Digital Multimeters (HP34401 or equivalent 6 digits)
- Portable DMM (Fluke) for measuring up to 30A DC current

#### SETUP

Note: Do not connect the usb cable to the eval board until after the software has been installed.

- 1. Install the ADP1043A software. Refer to the Quick Start Guide that comes on the CD (If already installed, skip to the next step).
- 2. Connect the evaluation board to the USB port on the computer, using the "USB to I2C interface" dongle. If the dongle driver was not previously installed, run the software from the Start Menu under "Programs/Analog Devices/ADP1043A".
- 3. The software should report that the ADP1043A has been located on the board. Click "Finish" to proceed to the Main Software Interface Window.



1

4. Click on the select the "25A QB300W board.43b file". This file contains all the board information including values of shunt and voltage dividers.

# PRD 1153

| )pen           |                  |                           |   |    |       | ?      |
|----------------|------------------|---------------------------|---|----|-------|--------|
| Look in        | : 🗀 Board Settin | ngs                       | ~ | GØ | 🤊 🛄 • |        |
| Content Recent | Default          | V board.43b<br>.43b<br>8b |   |    |       |        |
| Desktop        |                  |                           |   |    |       |        |
| My Documents   |                  |                           |   |    |       |        |
| My Computer    |                  |                           |   |    |       |        |
|                | File name:       | 25A QB300W board 43b      |   |    | • (   | Open   |
| My Network     | Files of type:   | Board Setup File          |   |    | · (   | Cancel |

#### Figure 6. Load Board Setting

- 5. The ADP1043A is pre-programmed and calibrated, so there is no programming necessary.
- 6. Connect an electronic load at the output.
- For the input voltage source, a DC power supply can be used. The input voltage range is 0 to 100 VDC (48VDC is recommended). This input voltage is the signal which will be regulated to provide a 12V/25A supply at the output. Set the voltage to 48VDC
- 8. The eval board should now up and running, and ready to evaluate. The output should be 12 VDC.

#### **BOARD EVALUATION**

The ADP1043A is optimized for improving the power supply design and evaluation process. The goal of this eval kit is to allow the user to get an insight into the flexibility offered by the extensive programming options offered by the ADP1043A.

The ADP1043A performs many monitoring and housekeeping functions in the power supply. The eval board allows the user to simulate various events that could affect the ADP1043A in a working system. The user can monitor how the ADP1043A handles this event in many ways. One way is to use an oscilloscope and/or multimeter, and probe the eval board, to see various conditions in the system. Many test points have been provided for this function. The user can also use the software to monitor the conditions of the ADP1043A, and how it has reacted to the event. The following section gives some experiments that the user might typically evaluate.

#### LINE AND LOAD VOLTAGE REGULATION

Vary the input voltage from 38 VDC to 72VDC. The output voltage remains 12V. Vary the load current from 0 to 25A. The output voltage remains 12V.

#### **OUTPUT VOLTAGE SETTING**

The output voltage setting is programmable. Using the Voltage setting window in the software, adjust the output voltage (using the o/p trim menu). Monitor the actual output voltage of the power supply using the software or a multimeter, or looking at the output voltage reading on the electronic load. It should match the programmed value. This will be used to calibrate the power supply in the production environment. By doing this evaluation, the user can see how the ADP1043A can be trimmed digitally to adjust the output voltage.

#### SOFT START

Once the input voltage is applied it is possible to test the Soft Start of the ADP1043A. The settings are located in the General Settings Window. Please refer to the Software Reference Guide for a detailed explanation of all the controls (EVAL-ADP1043A-GUI-RG).





Soft Start is enabled and set to 40ms. You can experiment with different times.

# PRD 1153



#### Figure 8. SoftStart (Yellow VOUT – Green IOUT)

#### **DIGITAL FILTER – TRANSIENT ANALYSIS**

The digital filter can be changed using the software. The effect on transient analysis can be evaluated this way. Connect a switching electronic load to the output of the eval board. The load should be set to switch between 25%-50% or 50%-75%, changing every 10msecs. Set up an oscilloscope to capture the transient waveform of the power supply output.

Use a differential probe on the scope, connecting it to the eval board output. Turn on the load, and note the waveform response.

The scope should be ac-coupled, 200mV/division, with a timebase of 1msecs/division. Also connect a current probe, set up for 5A/div. Set the trigger at 9A on the current probe signal.

# Figure 9. Transient Response – 75% to 50% load step

30 Dec 2008 17:50:41

PRD 1153

Rev. Prelim A, Oct 2009 | Page 12 of 27

# 

Now, vary the digital filter using the software. Click on "Filter Settings" the window shows the filter settings for Normal mode. Click on the curve to move position of poles, zeroes and gains.

#### Figure 10. Transient Response – 50% to 75% load step

PRD 1153

# PRD 1153





The transient response will change. This evaluation shows the user how the digital filter can easily be programmed to optimize the transient response of the power supply.

#### **PWM – SWITCHING FREQUENCY**

The converter switching frequency is programmable. In the "PWM & SR Settings" change the switching frequency.

The minimum and maximum modulation limits can also be modified.

#### 👺 Analog Devices, Inc. - ADP1043A - Digital Power Controller - Version : 1. 2. 11 \_ F 🗙 6. **副**+帶 2 . 015-50h PWH SR Settings Setup Monitor Register Access Disable General Modulating Edges | Adaptive Dead Time OUTA TR TR = 4.215 us **PWM** Settings TF = 8.275 us O Device settings Recommended settings for selected toplogy OUTB TE TR = 0.05 us TF = 0.135 us: 4.035 us Frequency Settings • PWM Frequency (KHz) 120.2 × TR = 0.05 us OUTC TF AUX Frequency (KHz) 97.7 ÷ TE = 4.115 us le T Modulation Settings TR = 4.215 us OUTD TH TF = 4.295 us: 8.195 us PWM Fuli Bridge Mode le T Pulse Skipping TR = 0.25 us: 4.15 us SRI TR TF = 8.31 us Modulation High Limit Nominal + 23.44% \* Modulation Low Limit Nominal - 23,44% × TR = 4.4 us: 8.3 us SR2 TF = 4.2 us Regulate with AUX Calculate time between two edges able V TR S TR = 0 us OUTA-TR V OUTA-TR V Dus AUX TF = 5.115 us 10.24 us Reset Apply Settings 815-50h+ Setup .815-50h: PWM & SR Sett



**PRD 1153** 

NOTE: It is recommended to evaluate this feature with the power supply turned off. This prevents the chance of damaging the power supply by introducing shoot-through.

#### LIGHT LOAD OPTIMIZATION

The ADP1043A can be programmed to optimize performance when a output current drops below a certain level.

The threshold for light load mode can be programmed in the "CS2 Settings" window.

Once the current will drop below this level the sync rectifiers (SR1 and SR2) will be disabled and the other five PWM can also be disabled by marking the corresponding checkboxes. The "Light Load Mode Settings" in "Filter Settings" will be used. The response time for the ADP1043A to switch from one mode to another is between 10 and 20ms.

The light load mode can be disabled by selecting a Light Load Current Threshold of 0%.



#### PRIMARY SIDE CURRENT SENSE AND SECONDARY SIDE CURRENT SENSE

Current sensing is available for both the primary side current and the secondary side current. Primary side current sensing is performed using the current transformer, T1. Secondary side current sensing uses a low-side sense resistor (R21, R29, R98 and R99).

Open the Flags and Readings window in the software. Adjust the load current from 0A to 25A. The input current and output current values will change in the software, matching the changes being made at the load.

#### **VOLT-SECOND BALANCE**

The ADP1043A has an integrated Volt-Second Balance circuit. This means that there is no need for a dc blocking capacitor in the main power path on the primary side. Set the load current to 1A. Place a scope probe on the CS1 pin of the ADP1043A. Setup the scope to 200mV/div, 5usecs/div. A typical CT waveform should be on the scope. Using the software, toggle Reg 52h, Bit 1. To exaggerate an imbalance, use the PWM window in the software to intentionally place a timing mismatch. For example, move T3 from 2.5usecs to 2.51usecs.

#### FLAGS, AND FAULT CONFIGURATIONS

Open the Flags and Readings window in the software. The window will show all of the fault flags. If a flag is set, then there is a red box next to the flag. If the flag is ok, then there is a green box next to the flag.

#### 🞇 Analog Devices, Inc. - ADP1043A - Digital Power Controller - Version : 1. 2. 11 - 7 🛛 .s 6º & 1 1-A2C 1DF 1 ----i 🕘 🖬 🛃 Р. 🗖 ..815-50h: Flags and Readings Setup **Register Access** Monitor x 47.43 V 1.59 A 75.41 W 12 V 0.3 A 3.55 W 12 V 0.01 V 30.26 C 0 74.5 % O/P Voltage O/P Current O/P Power VS1 VS2 I/P Voltage I/P Current I/P Power Temperature Share Bus (Master) Modulation Value Power Supply - Voltage Continuity -OTP Reserved OrFET - UVP Chip Temp Alert Modulation Regular Flags PGood1 Fault -CS2 Reverse Voltage Share Bus I2C Address O Latched Flags - VDD UV - PGood2 Fault - Constant Current - Light Load Mode - SR Off VCORE OV Reserved - Reserved -CS1 Fast OCP - VDD OV Line Impedance ACSNS -CS1 Accurate OCP - CRC Fault - Load OVP - Soft-Start Filter in use Get First Flag CS2 Accurate OCP Local OVP External Flag EEPROM Unlocked ..815-50h: Setup .815-50h: Voltage Setting ..815-50h: Monitor ..815-50h: Flags and Read



PRD 1153

Set the load current to 0.3A. The CS2 OCP flag should be green.

Note that the SR flag and the Light load mode flags are red to indicate that the ADP1043A is in this state.

#### 👺 Analog Devices, Inc. - ADP1043A - Digital Power Controller - Version: 1.2.11 6ª. 1 105 12 🖵 -==- 🗊 🕘 🖪 🛃 , . ...815-50h: Flags and Readings Setup Monitor Register Access 45.58 V 0.2 A 8.91 W 12 V 0.3 A 3.55 W 12 V 0.01 V 29.84 C 0 27.1 % Share Bus (Master) I/P Voltage I/P Current I/P Power O/P Voltage O/P Current O/P Power VS1 VS2 Temperature Modulation Value OTP Power Supply Voltage Continuity Reserved OrFET - UVP Chip Temp Alert Modulation Regular Flags - CS2 Reverse Voltage I2C Address - PGood1 Fault Share Bus O Latched Flags PGood2 Fault VDD UV Constant Current Light Load Mode - SR Off VCORFOV Reserved Reserved - CS1 Fast OCP VDD OV ACSNS Line Impedance -CS1 Accurate OCP - Load OVP Soft-Start Filter in use - CRC Fault Get First - CS2 Accurate OCP External Flag EEPROM Unlocked Local OVP ...815-50h: Flags and Read

Figure 15. Flags in Light load mode

**PRD 1153** 

Now change the load to 28 A. The CS2 OCP flag should now have turned red, because the CS2 OCP threshold has been reached. The board wills ender in hiccup mode and try and restart.

Set the load back to 2A, and the flag turns green again. This shows how the user can easily monitor the health of the power supply by monitoring the status of the various flags.

#### FLAG & FAULT RESPONSE CONFIGURATION:

The ADP1043A is programmed to respond to the various fault conditions in the "Flag Settings" window.

# PRD 1153

| 815-50h: Flag S          | Settings                    | Setup                   | Monitor Registe                              | er Access GUT Setting       |
|--------------------------|-----------------------------|-------------------------|----------------------------------------------|-----------------------------|
|                          | Action                      | Timing                  | Resolve Issue                                | Blank flag during Soft-Star |
| CS1 Fast OCP             | Disable Power Supply        | Immediately V           | Re-enable after 2 s                          |                             |
| CS1 Accurate OCP         | Ignore Flag Completely 💊    | 600 ms Debounce 🛛 👻     | Remain disabled, Only PSON can re-enable 🛛 👻 |                             |
| CS2 Accurate OCP         | Disable Power Supply        | 600 ms Debounce 🗸 🗸     | Re-enable after 2 s                          |                             |
| Load OVP (VS2 or VS3)    | Ignore Flag Completely 🔽    | After 2 ms Debounce 🗸   | Re-enable after 2 s                          | V                           |
| Local OVP (VS1)          | Disable Power Supply        | Immediately             | Remain disabled, Only PSON can re-enable 🛛 🗸 |                             |
| External Flag            | Ignore Flag Completely 🛛 👻  | After 100 ms Debounce 🐱 | Re-enable after 2 s                          |                             |
| ОТР                      | Disable Power Supply        | Immediately 🗸           | Re-enable after 2 s                          |                             |
| UVP                      | Ignore Flag Completely 🗸    | Immediately 🗸           | Remain disabled, Only PSON can re-enable 🗸   |                             |
| Accurate OrFET           | Ignore Flag Completely 🛛 👻  | Immediately             | Re-enable after 2 s                          |                             |
| Line Impedance           | Ignore Flag Completely 😽    | After 100 ms Debounce 👻 | Re-enable after 2 s                          |                             |
| Share Bus                | Ignore Flag Completely      | After 100 ms Debounce 🗸 | Re-enable after 2 s                          |                             |
| ACSNS                    | Ignore Flag Completely 🔽    | After 1 ms Debounce 💉   | Re-enable after 2 s                          |                             |
| VDD/VCORE OV             | Shutdown and Restart        | After 2 us Debounce 🗸   | Restart without EEPROM download              |                             |
| Additional Flag Settings | Power Supply re-enable time | 2s 🔽 🗍 OUT/             | UX PWM Immediate Shutdown                    | Apply Settings              |

Figure 16. Fault Configurations

You can change the resolve issue to "Remain Disabled". If the overcurrent is applied again the ADP1043A will shut down and remain off until PSON is cycled.

This evaluation shows how it is quite easy to configure the response to a fault condition. Change the load back to 2A, then toggle the PS\_ON switch to restart the power supply.

#### **APPENDIX**



Figure 17. Primary Side Power Stage Schematic

# PRD 1153



Figure 18. Secondary Side Power Stage Schematic

# PRD 1153





Figure 20.

ON/OFF & UVP Control Schematic



Rev. Prelim A, Oct 2009 | Page 22 of 27

Vin+

PRD 1153





Figure 22.

PCB Top View



Rev. Prelim A, Oct 2009 | Page 23 of 27

# PRD 1153



Figure 23. PCB Bottom View

Rev. Prelim A, Oct 2009 | Page 24 of 27

#### **BILL OF MATERIALS**

#### Table 3. Bill of Materials

| ltem | Reference                                            | Part Number       | Description                             | Package  | Qty | Mfg      |
|------|------------------------------------------------------|-------------------|-----------------------------------------|----------|-----|----------|
| 1    | C1,C2,C4,C5,C6,C60                                   | C3225X7R2A155K    | CAP 1.5uF/100V X7R                      | 1210     | 6   | TDK      |
| 2    | C7,C8,C9,C11,C12,C13,C26,<br>C27,C46,C47,C51,C56,C63 | C1005X7R1C104K    | CAP 0.1uF/16V X7R                       | 0402     | 13  | TDK      |
| 3    | C10,C14,C24,C32,C54,C55                              | C1608X7R1C105K    | CAP 1uF/16V X7R                         | 0603     | 6   | TDK      |
| 4    | C15,C50,C58,C59                                      | C1005X7R1H102K    | CAP 1nF/50V X7R                         | 0402     | 4   | TDK      |
| 5    | C16,C17,C19,C20                                      | C3216X7R1C335K    | CAP 3.3uF/16V X7R                       | 1206     | 4   | TDK      |
| 6    | C18,C21                                              | 16TQC68M          | CAP 68uF/16V                            | D3L      | 2   | Sanyo    |
| 7    | C22                                                  | C1608X7R2A223K    | CAP 22nF/100V X7R                       | 0603     | 1   | TDK      |
| 8    | C23                                                  | C1608X7R2A223K    | CAP 33nF/100V X7R                       | 0603     | 1   | TDK      |
| 9    | C25                                                  | C1005COG1H101J    | CAP 100pF/50V C0G                       | 0402     | 1   | TDK      |
| 10   | C28,C29,C30,C31                                      | C1005COG1H330J    | CAP 33pF/50V COG                        | 0402     | 4   | TDK      |
| 11   | C33,C34,C35                                          | C1005X7R1E103K    | CAP 10nF/25V X7R                        | 0402     | 3   | TDK      |
| 12   | C41                                                  | C1608C0G2E471J    | CAP 470pF/250V COG                      | 0603     | 1   | TDK      |
| 13   | C43,C48,C49                                          | C3216X7R1C106K    | CAP 10uF/16V X7R                        | 1206     | 3   | TDK      |
| 14   | C45                                                  | C1005COG1H391J    | CAP 390pF/50V COG                       | 0402     | 1   | TDK      |
| 15   | C52                                                  | C4520X7R3D102K    | CAP 1000pF/2000V X7R                    | 1808     | 1   | TDK      |
| 16   | C53                                                  | C1005X7R1H221K    | CAP 220pF/50V X7R                       | 0402     | 1   | TDK      |
| 17   | D1,D4,D8                                             | 1N4148WS          | Diode 150mA 75V                         | SOD323   | 3   | Diodes   |
| 18   | D2,D5                                                | MURA110           | Diode 1A 100V                           | SMA      | 2   | Vishay   |
| 19   | D6,D11,D15,D17                                       | BAV70WT1          | Diode 200mA 70V                         | SOT323   | 4   | ON Semi  |
| 20   | D10                                                  | ZR431F01          | Adjustable precision shunt<br>regulator | SOT23    | 1   | ZETEX    |
| 21   | D16                                                  | MMBD1504A         | Diode 200mA 200V                        | SOT23    | 1   | ON Semi  |
| 22   | D18                                                  | MMBZ5231BLT       | Zener 5.1V                              | SOT23    | 1   | ON Semi  |
| 23   | D19                                                  | MMBZ5227BL        | Zener 3.6V                              | SOT23    | 1   | ON Semi  |
| 24   | JP1                                                  |                   | PIN                                     | HDR1X1   | 1   |          |
| 25   | JP2                                                  |                   | PIN                                     | HDR1X1   | 1   |          |
| 26   | JP3                                                  |                   | PIN                                     | HDR1X1   | 1   |          |
| 27   | JP4                                                  |                   | PIN                                     | HDR2x1   | 1   |          |
| 28   | JP8                                                  |                   | PIN                                     | HDR2x1   | 1   |          |
| 29   | JP9                                                  |                   | PIN                                     | shortpin | 1   |          |
| 30   | JP10                                                 |                   |                                         |          | 1   |          |
| 31   | L3                                                   | Planar Transfomer | RM8_PC95                                | RM8      | 1   | Vishay   |
| 32   | M1,M2,M5,M6                                          | BSC047N08NS3      | MOSFET                                  | SuperSO8 | 4   | Infineon |
| 33   | M3                                                   | Si3430DV          | MOSFET                                  | TSOP-6-3 | 1   | Vishay   |
| 34   | Q1,Q2,Q3,Q4                                          | BSC079N10NS       | MOSFET                                  | SuperSO8 | 4   | Infineon |
| 35   | Q5                                                   | MMBT2907AWT1      | PNP -800mA -40V                         | SOT23    | 1   | ON Semi  |
| 36   | RT1                                                  |                   | THERMISTOR 1%                           | 0603     | 1   | Vishay   |
| 37   | R1,R3,R5,R7                                          |                   | RES 4.70HM 5% 1/10W                     | 0603     | 4   | Vishay   |
| 38   | R2,R4,R6,R8,R14,R18,R49,<br>R83,R85                  |                   | RES 10KOHM 5% 1/16W                     | 0402     | 9   | Vishay   |
| 39   | R9,R10,R11,R12,R36,R87                               |                   | RES 00HM 5% 1/16W                       | 0402     | 6   | Vishay   |

Rev. Prelim A, Oct 2009 | Page 25 of 27

# PRD 1153

| ltem | Reference           | Part Number            | Description              | Package        | Qty | Mfg     |
|------|---------------------|------------------------|--------------------------|----------------|-----|---------|
| 40   | R13,R47,R52         |                        | RES 1KOHM 5% 1/16W       | 0402           | 3   | Vishay  |
| 41   | R17                 |                        | RES 10 KOHM 5% 1/4W      | 1206           | 1   | Vishay  |
| 42   | R21,R29,R98,R99     |                        | RES 2m OHM 1% 1/2W       | 1206           | 4   | Vishay  |
| 43   | R22,R23,R38         |                        | RES 100HM 5% 1/16W       | 0402           | 3   | Vishay  |
| 44   | R24                 |                        | RES 11KOHM 1% 1/16W      | 0402           | 1   | Vishay  |
| 45   | R25                 |                        | RES 6800HM 5% 1/16W      | 0402           | 1   | Vishay  |
| 46   | R26,R35             |                        | RES 11KOHM 1% 1/16W      | 0402           | 2   | Vishay  |
| 47   | R27                 |                        | RES4.7KOHM 5% 1/16W      | 0402           | 1   | Vishay  |
| 48   | R28,R31             |                        | RES 4.99KOHM 1% 1/16W    | 0402           | 2   | Vishay  |
| 49   | R30,R44             |                        | RES 100HM 5% 1/10W       | 0603           | 2   | Vishay  |
| 50   | R32                 |                        | RES 1KOHM 1% 1/16W       | 0402           | 1   | Vishay  |
| 51   | R33,R37             |                        | RES 1KOHM 1% 1/16W       | 0402           | 2   | Vishay  |
| 52   | R34                 |                        | RES 100HM 5% 1/16W       | 0402           | 1   | Vishay  |
| 53   | R39,R40,R43,R93     |                        | RES 2.2KOHM 1% 1/16W     | 0402           | 4   | Vishay  |
| 54   | R41,R64,R71,R73     |                        | RES 10KOHM 1% 1/16W      | 0402           | 4   | Vishay  |
| 55   | R42                 |                        | RES 49.9KOHM 0.1% 1/16W  | 0402           | 1   | Vishay  |
| 56   | R45                 |                        | RES 20HM 1% 1/16W        | 0402           | 1   | Vishay  |
| 57   | R46                 |                        | RES 220KOHM 1% 1/16W     | 0402           | 1   | Vishay  |
| 58   | R48                 |                        | RES 100KOHM 5% 1/10W     | 0603           | 1   | Vishay  |
| 59   | R50,R53,R54,R56,R82 |                        | RES 5.1KOHM 5% 1/16W     | 0402           | 5   | Vishay  |
| 60   | R51                 |                        | RES 8.2KOHM 1% 1/16W     | 0402           | 1   | Vishay  |
| 61   | R55,R57             |                        | RES 2200HM 5% 1/16W      | 0402           | 2   | Vishay  |
| 62   | R58,R59,R60,R61     |                        | RES 00HM 5% 1/10W        | 0603           | 4   | Vishay  |
| 63   | R67,R70             |                        | RES 100OHM 5% 1/16W      | 0402           | 2   | Vishay  |
| 64   | R76,R77             |                        | RES 20KOHM 5% 1/10W      | 0603           | 2   | Vishay  |
| 65   | R78                 |                        | RES 1MOHM 5% 1/10W       | 0603           | 1   | Vishay  |
| 66   | R79                 |                        | RES 14KOHM 5% 1/16W      | 0402           | 1   | Vishay  |
| 67   | R80                 |                        | RES 6800HM 5% 1/8W       | 0805           | 1   | Vishay  |
| 68   | R84                 |                        | RES 55KOHM 5% 1/16W      | 0402           | 1   | Vishay  |
| 69   | R86                 |                        | RES 36KOHM 5% 1/16W      | 0402           | 1   | Vishay  |
| 70   | R88                 |                        | RES 1KOHM 5% 1/8W        | 0805           | 1   | Vishay  |
| 71   | T1                  | PA1005.100NL           | 20A 1:100                | P820x          | 1   | PULSE   |
| 72   | T2                  | RM8                    | RM8_PC95                 | RM8            | 1   | TDK     |
| 73   | Т3                  | ER11                   | Transformer ER11         | ER11           | 1   | TDK     |
| 74   | U1,U4               | LM5101A                | Gate Driver              | LLP-10         | 2   | NS      |
| 75   | U2,U3               | ADuM3200               | iCoupler                 | SO8            | 2   | ADI     |
| 76   | U5                  | ADP3634                | Dual channel driver IC   | 8ld<br>MSOP_ED | 1   | ADI     |
| 77   | U6                  | ADP1043A               | Secondary PWM Controller | LFCSP32        | 1   | ADI     |
| 78   | U7                  | PS2911-1               | Optocoupler PS2911       | 4ld MSOP       | 1   | Vishay  |
| 79   | U10                 | NCP1031                | TOP Switch               | DFN8           | 1   | ON Semi |
| 80   | U11                 | ADP1720ARMZ-3.3-<br>R7 | LDO                      | 8ld MSOP       | 1   | ADI     |
| 81   | R81                 |                        | RES 8200HM 5% 1/8W       | 0805           | 1   | Vishay  |

# PRD 1153

#### NOTES

©2009 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. Error! Unknow



www.analog.com