FEATURES

Operates at Supply Voltages 2 V to 9 V Fixed 3.3 V, 5 V, 12 V and Adjustable Output Minimum External Components Required Ground Current: $460 \mu \mathrm{~A}$ Oscillator Frequency: $\mathbf{1 2 0} \mathbf{~ k H z}$ Logic Shutdown 8-Lead DIP and SO-8 Packages

GENERAL DESCRIPTION

The AD P1109A is a versatile step-up switching regulator. The device requires only minimal external components to operate as a complete switching regulator.

The ADP1109A-5 can deliver 100 mA at 5 V from a 3 V input and the ADP1109A-12 can deliver 60 mA at 12 V from a 5 V input. The device also features a logic controlled shutdown capability that, when a logic low is applied, will shut down the oscillator. The 120 kHz operating frequency allows for the use of small surface mount components.
The gated oscillator capability eliminates the need for frequency compensation.

FUNCTIONAL BLOCK DIAGRAM

TYPICAL APPLICATION

Flash Memory VPP Generator

REV. 0

[^0]One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

ADP1109A-SDECIFICATONS $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}=3 \mathrm{~V}\right.$ unless otherwise noted)

NOTES
All limits at temperature extremes are guaranteed via correlation using standard quality control methods.
Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS*

Supply Voltage, $\mathrm{V}_{\text {out }}$. -0.4 V to 20 V
SW Pin Voltage . -0.4 V to 50 V
Shutdown Pin Voltage . 6.0 V
Switch Current 1.2 A
M aximum Power Dissipation 300 mW
O perating Temperature Range $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $+300^{\circ} \mathrm{C}$
*T his is a stress rating only; operation beyond these limits can cause the device to be permanently damaged.

PIN FUNCTION DESCRIPTIONS

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD P1109A features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS

8-Lead Plastic DIP (N-8)

8-Lead SOIC
(SO-8)

Figure 3. 2 V to 5 V Converter

Fiqure 6. Oscillator Frequency vs. Temperature

Figure 7. Duty Cycle vs. Temperature

Figure 8. Saturation Voltage vs. $I_{\text {swirch }}$ Current in Step-Up Mode

Figure 10. Switch-On Time vs. Temperature

Figure 13. Quiescent Current vs. Input Voltage

ADP1109A

APPLICATION INFORMATION THEORY OF OPERATION

The ADP 1109A is a flexible, low power switch-mode power supply (SM PS) controller for step-up dc/dc converter applications. This device uses a gated-oscillator technique to provide very high performance with low quiescent current. F or example, more than 2 W of output power can be generated from a +5 V source, while quiescent current is only $360 \mu \mathrm{~A}$.
A functional block diagram of the ADP 1109A is shown on the front page. The internal 1.25 V reference is connected to one input of the comparator, while the other input is externally connected (via the FB pin) to a feedback network connected to the regulated output. When the voltage at the FB pin falls below 1.25 V , the 120 kHz oscillator turns on. A driver amplifier provides base drive to the internal power switch, and the switching aetion raises the putpu voltage. When the voltage at the FB pin exceeds 1.25 , the oscillator is shut off. While the oscillator is off, the AD P1 109 A quiescent current is monty $462 \mu \mathrm{~A}$. The comparator includes \neq spall amount of hysteresis, which ensures LOop stability without requiring extern al components for froquincy compensation. C shutdown featufepermits the oscillator to be shit of. Hold ing SHUTDOWN low will disable the oscillator, and the ADP 1109A's quiescent current will renting $460 \not \mu A$.

The output voltage of the ADP1109A is set with two external resistors. Three fixed-voltage models are also available: the AD P1109A-3.3 (+3.3 V), AD P1109A-5 (+5 V) and ADP 1109A-12 (+12 V). The fixed-voltage models are identical to the AD P1109A, except that laser-trimmed voltage-setting resistors are included on the chip. On the fixed-voltage models of the AD P1109A, simply connect the SEN SE pin (Pin 8) directly to the output voltage.

COMPONENT SELECTION

General Notes on Inductor Selection

When the AD P1109A internal power switch turns on, current begins to flow in the inductor. Energy is stored in the inductor core while the switch is on, and this stored energy is then transferred to the load when the switch turns off.

To specify an inductor for the AD P1109A, the proper values of inductance, saturation current and dc resistance must be determined. This process is not difficult, and specific equations are provided in this data sheet. In general terms, however, the inductance value must be low enough to store the required amount of energy (when both input voltage and switch ON time are at a minimum) but high enough that the inductor will not saturate when both V_{IN} and switch $O N$ time are at their maximum valuses. The inductor must also store enough energy to supply the load, without saturating. Finally, the dc resistance of the inductor should be low, so that excessive power will not be wasted by heating the windings. For most ADP 1109A applications, an inductor of $10 \mu \mathrm{H}$ to $47 \mu \mathrm{H}$, with a saturation current rating of 300 mA to 1 A and dc resistance $<0.4 \Omega$ is suitable. Ferrite core inductors that meet these specifications are available in small, surface-mount packages. Air-core inductors, as well as RF chokes, are unsuitable because of their low peak current ratings.
The AD P1109A is designed for applications where the input voltage is fairly stable, such as generating +12 V from $\mathrm{a}+5 \mathrm{~V}$ logic supply. The ADP1109A does not have an internal switch current limiting circuit, so the inductor may saturate if the input voltage is too high. The ADP 1111 or AD P3000 should be
considered for battery powered and similar applications where the input voltage varies.
To minimize Electro-M agnetic Interference (EMI), a toroid or pot core type inductor is recommended. Rod core inductors are a lower-cost alternative if EMI is not a problem.

Calculating the Inductor Value

Selecting the proper inductor value is a simple two step process:

1. Define the operating parameters: minimum input voltage, maximum input voltage, output voltage and output current.
2. Calculate the inductor value, using the equations in the following section.

Inductor Selection

In a step-up, or boost, converter (Figure 1), the inductor must store enough power to make up the difference between the input voltage and the output voltage. The inductor power is calculated from the equation:

$$
\begin{equation*}
P_{L}=\left(V_{\text {OUT }}+V_{D}-V_{\text {IN (MIN })}\right) \times\left(I_{\text {OUT }}\right) \tag{1}
\end{equation*}
$$

where $\sqrt{0} 7$ the diode forward voltage ($\approx 0.5 \mathrm{~V}$ for a 1 N 5818
Schotyky) Energy is quystored in the inductor while the ADP 1109A switch is 0 N , so the energy stored in the inductor on each switching cycle must be must be equal to or greater

in order for the ADP1109A to regulate the output voltage. When the internal power switch turns ON, current flow in the inductor increases at the rate of:

$$
\begin{equation*}
I_{L}(t)=\frac{V_{I N}}{R^{\prime}}\left(1-e^{\frac{-R^{\prime} t}{L}}\right) \tag{3}
\end{equation*}
$$

where L is in H enrys and R^{\prime} is the sum of the switch equivalent resistance (typically 0.8Ω at $+25^{\circ} \mathrm{C}$) and the dc resistance of the inductor. In most applications, the voltage drop across the switch is small compared to $\mathrm{V}_{\text {IN }}$ so a simpler equation can be used:

$$
\begin{equation*}
I_{L}(t)=\frac{V_{\text {IN }}}{L} t \tag{4}
\end{equation*}
$$

Replacing t in the above equation with the ON time of the ADP1109A ($5.5 \mu \mathrm{~s}$, typical) will define the peak current for a given inductor value and input voltage. At this point, the inductor energy can be calculated as follows:

$$
\begin{equation*}
E_{L}=\frac{1}{2} L \times I^{2} \text { peak } \tag{5}
\end{equation*}
$$

As previously mentioned, E_{L} must be greater than $\mathrm{P}_{\mathrm{L}} / \mathrm{f}_{\mathrm{Osc}} \mathrm{so}$ that the AD P1109A can deliver the necessary power to the load. F or best efficiency, peak current should be limited to 1 A or less. Higher switch currents will reduce efficiency because of increased saturation voltage in the switch. High peak current also increases output ripple. As a general rule, keep peak current as low as possible to minimize losses in the switch, inductor and diode.

In practice, the inductor value is easily selected using the equations above. For example, consider a supply that will generate 12 V at 120 mA from a +5 V source. The inductor power required is, from Equation 1 :

$$
P_{L}=(12 \mathrm{~V}+0.5 \mathrm{~V}-5 \mathrm{~V}) \times(120 \mathrm{~mA})=900 \mathrm{~mW}
$$

On each switching cycle, the inductor must supply:

$$
\frac{\mathrm{P}_{\mathrm{L}}}{\mathrm{f}_{\mathrm{OSC}}}=\frac{900 \mathrm{~mW}}{120 \mathrm{kHz}}=7.5 \mu \mathrm{~J}
$$

The required inductor power is fairly low in this example, so the peak current can also be low. Assuming a peak current of 600 mA as a starting point, Equation 4 can be rearranged to recommend an inductor value:

$$
\mathrm{E}_{\mathrm{L}}=\frac{1}{2}(33 \mu \mathrm{H}) \times(768 \mathrm{~mA})^{2}=9.7 \mu \mathrm{~J}
$$

The inductor energy of 9.7μ is greater than the $P_{\mathrm{L}} / f_{\text {osc }}$ requirement of 7.5μ, so the $33 \mu \mathrm{H}$ inductor will work in this application. By substituting other inductor values into the same equations, the optimum inductor value can be selected. When selecting an inductor, the peak current must not exceed the maximum switch current of 1.2 A . If the calculated peak current is greater than 1.2 A, either the input voltage must be increased or the load current decreased.

Output Voltage Selection

The output voltage is fed back to the AD P1109A via resistors R1 and R2 (Figure 5). When the voltage at the comparator's inverting input falls below 1.25 V , the oscillator turns "on" and the output voltage begins to rise. The output voltage is therefore set by the formula:

$$
\mathrm{V}_{\text {OUT }}=1.25 \mathrm{~V} \times\left(1+\frac{\mathrm{R} 2}{\mathrm{R} 1}\right)
$$

Resistors R1 and R2 are provided internally on fixed-voltage versions of the AD P1109A. In this case, a complete dc-dc converter requires only four external components.

Capacitor Selection

F or optimum performance, the AD P1109A 's output capacitor must be carefully selected. Choosing an inappropriate capacitor can result in low efficiency and/or high output ripple.
Ordinary aluminum electrolytic capacitors are inexpensive, but often have poor Equivalent Series Resistance (ESR) and Equivalent Series Inductance (ESL). L ow ESR aluminum capacitors, specifically designed for switch mode converter applications, are also available, and these are a better choice than general purpose devices. Even better performance can be achieved with tantalum capacitors, although their cost is higher. Very low values of ESR can be achieved by using OS-CON capacitors (Sanyo Corporation, San Diego, CA). These devices are fairly small, available with tape-and-reel packaging, and have very low ESR.

Diode Selection

In specifying a diode, consideration must be given to speed, forward voltage drop and reverse leakage current. When the ADP1109A switch turns off, the diode must turn on rapidly if high efficiency is to be maintained. Schottky rectifiers, as well as fast signal diodes such as the 1N 4148, are appropriate. The forward voltage of the diode represents power that is not delivered to the lpad, so V_{F} must also be minimized. A gain, skhoftky diodes dre recommended. Leakage current is especially imp rtant in low/curfentapplidafions, where the leakage can be

Fok most circults, the 1 N 5818 is a suitable companion to the ADR1109A. This diode has a V_{F} of 0.5 N at $1 \mathrm{~A}, 4$ A to 10 A leakage, and last turn-on and turn- ff 4 mes . A surfacemernt version, the M BRSI 307 3, /h s also quailable.
For switch currents of 100 mA or Tess, a Schqttkyldiode such as the BAT 85 provides a V_{F} of 0.8 V at 100 mA and leakage less than $1 \mu \mathrm{~A}$. A similar device, the BAT 54, is available In on SOT - 23 package. Even lower leakage, in the 1 nA to 5 nA range, can be obtained with a 1N 4148 signal diode.
General purpose rectifiers, such as the 1N 4001, are not suitable for AD P1109A circuits. These devices, which have turn-on times of 10μ s or more, are far too slow for switching power supply applications. U sing such a diode "just to get started" will result in wasted time and effort. Even if an ADP1109A circuit appears to function with a 1 N 4001 , the resulting performance will not be indicative of the circuit performance when the correct diode is used.

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

[^0]: Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

