ANALOG
DEVICES

AN-240
APPLICATION NOTE

ONE TECHNOLOGY WAY e P.0. BOX 9106 ¢ NORWOOD, MASSACHUSETTS 02062-9106 ® 617/329-4700

Considerations for Selecting a DSP Processor
ADSP-2101 vs. WE DSP16A

by Bruce Woifeld

INTRODUCTION

Digital signal processing systems contain high-performance
numerical processing units that capable of performing rapid
computations. The numerical performance of a DSP systemiis
measured by the processing unit's capabilities in the following
areas:

« Fastand flexible arithmetic with extended dynamic range
+ Efficient operand access

« Circular buffering capabilities

« Qverhead required for program loops

As with any microprocessor design, you, the system designer,
must consider other factors including:

» Interface to external devices

+ Quantity and speed of external memory

* Instruction set

» Development tools available for system debug

This application note first discusses the numericai processing
capabilities of the Analog Devices ADSP-2101 and the AT&T
DSP16A. The second part discuses other factors that you
should consider.

PO BUS 2/

ARITHMETIC CAPABILITIES

One indication of good arithmetic architecture is the ability to
perform a wide range of arithmetic computations. These
computations shouid be flexibly handled so that the algorithm
implementation preserves the order of the arithmetic
operations and operands. If the arithmetic architecture is too
special purpose, this is impossible. Rearranging an aigorithm
to fit the architecture requires extra programming, increases
the possibility of error and may increase product development
time.

Arithmetic Architecture

Figure 1 shows a block diagram of the arithmetic section of the
ADSP-2101 while Figure 2 shows that of the DSP16A. Both of
these devices utilize a modified Harvard architecture which
can fetch data operands from both program memory and data
memory. By utilizing on-chip memory, the ADSP-2101 can
fetch an instruction from program memory and fetch/store two
data operands from memory in a single cycle. The DSP16A
requires one cycle to fetch an instruction from program ROM.
Two cycles are required if the instruction and immediate data
both reside in the program ROM.

>) e

1L
LT Lo &
caljeal

v

Figure 1. Block Diagram of Arithmetic Section of the ADSP-2101

DIGITAL SIGNAL PROCESSING PRODUCTS 9-65

The arithmetic section of the ADSP-2101 architecture was
designed so DSP algorithms are easily coded and rapidly
executed. Unlike many DSP processors, the ADSP-2101 uses
an algebraic notation for a variety of multi-function instructions.
These operations exploit the inherent parallelism of the ADSP-

101 architecture by providing combinations of register
moves, memory transfers, and conditional computation. Each
program statement assembles into a single 24-bit opcode that
can execute in a single cycle. There are no multicycle
instructions in the ADSP-2101 instruction set.

The ADSP-2101 has three independent computational units:
an arithmetic/logic unit (ALU), a multiplier/accumulator (MAC),
and a barre! shifter. They are connected by the resuit bus (R
bus) so that the output of any computational unit can be used
directly as the input for itself or any other unit on the next
instruction cycle. In addition, the ALU and MAC are directly
connected to both the program and data memory busses.
Operands for ALU and MAC operations can come from
program memory, data memory or any of the result registers.
The arithmetic units have features that allow for 32-bit or 64-
bit computations.

The arithmetic section of the DSP16A contains a multiplier unit
with a scaling shifter and a ALU/shifter unit. The multiplier has
three input registers and one output register. While all three
input registers can be loaded from data memory, only the x
register can be loaded from program memory. The ALU/shifter
can operate on data in the y registers, the multiplier output

N
< > ROMDATABUS(16) |
v

register, or the accumulator registers. The y registers and the
accumulator registers are accessible only through data
memory. if arithmetic results are to be stored in external
memory, they must first be loaded into one of the accumulator
registers.

ADSP-2101 ALU

The ADSP-2101 ALU has two X and two Y input registers: AXO,
AX1, and AYO, AY1. ALU operations are performed on any X-
Y register combination. These registers may be loaded from
program memory, data memory, the counter or a variety of
other processor registers. ALU results can be stored in either
the ALU result (AR) or the ALU feedback (AF) register. AR and
AF are available as the X and Y operands (respectively) in
subsequent ALU operations. In addition, the result registers of
the MAC and barrel shifter can be used as the X input to the
ALU. :

The ALU performs mathematical operations on 16-bit data
operands. An internal carry bit is aiways updated during a
mathematicai operation. Addition with carry and subtraction
with borrow instructions are provided for implementing 32-bit
arithmetic.

Two operands can be fetched or stored in parallel with an ALU
operation. By fetching operands while executing ALU
operations, the processor can perform one ALU operation per
cycle without speed penalties due to operand fetching. All ALU
operations can execute in a single cycle.

| DATA BUS (16)

| X (16) |
18 x 16 MULTIPLY
P(32)
!

com
e

g
3
DATA BUS (16)

;\[

pow (18)

I DATA BUS (16)

Figure 2. Block Diagram of Arithmetic Section of the DSP16A

9-66 DIGITAL SIGNAL PROCESSING PRODUCTS

Other features of the ADSP-2101 ALU include six status flags.
division primitives and a complete set of background registers
for fast context switching.

DSP16A ALU

DSP16A ALU operations require that one operand must come
from an accumulator registers while the other must come from
the muitiplier output or from the data bus through yh or yl
registers. Two-number addition is a two-step process. First,
the accumulator must be loaded with the first data value. After
the accumulator is loaded, a second number can then be
added. Before the resuit can be used as an input value to the
multiplier, it first must be stored back into data memory.

The ALU operates on 16- or 32-bit operands compared to 16-
bit operands on the ADSP-2101. There is no carry bit or
provisions for operating on larger operands. ALU result
registers are 36 bits wide.

The number of cycles required to execute an ALU operation
depends on the number of data transfer operations and if the
instruction word is present in the cache. Generally, a single
ALU operation executes in one cycle. An ALU operation with
a data transfer may require two cycles.

ADSP-2101 MAC

As shown in Figure 1, the ADSP-2101 multiplier/accumulator
(MAC) is separate from the ALU. All MAC operations occur in
a single cycle. The unit performs both muitiplications and MAC
operations independent of the ALU. This is a key difference
from the architecture of the DSP16A.

Like the ALU, the MAC has two X and two Y input registers,
MXO0, MX1 and MYO, MY 1. Operations are performed on any
X-Y pair of input registers. These registers can be loaded from
program memory, data memory or other registers in the
processor. The result of the operation appears in the multiplier
result register (MR) or the muitiplier feedback register (MF). As
in the ALU, the feedback and result registers can also serve as
the X and Y inputs to subsequent MAC operations. The barrel
shifter result registers and the ALU result register can also be
used directly as X inputs to the MAC.

The ADSP-2101 multiplier performs mathematical operations
on 16-bit data. The data formats can be any combination of
signed or unsigned values. This feature simplities the
implementation of 32-bit muitiplication.

The multiplier result register (MR) is a 40-bit accumulate
register. MR is divided into two 16-bit registers (MRO and MR1)
and one 8-bit extension register (MR2). DSP applications
frequently deal with accumulator operations that require a
large dynamic range. The extension register allows for 256
MAC overilows before a loss of data can occur.

All MAC operations can execute in a single cycle. Since two
new operands can be loaded into the input registers in paralilel
with the computation, a new MAC operation can be executed
every cycle.

Other features in the MAC include an overflow status bit. a 16-
bit rounding option, and a complete bank of background
registers for fast context switching.

DSP16A MAC

As shown in Figure 2, the DSP16A MAC consists of a 16x16
multiplier and the ALU described above. One muitiply operand
must come from the 16-bit x register. The second operand is
chosen from one of the two 16-bit y registers. Because a
multiply/accumulate operation requires both the ALU and the
multiplier, two cycles are required to perform a single MAC
operation.

There are only three registers available for MAC operands.
The x register can be loaded from program or data memory.
The y registers must be loaded from data memory. Two cycles
are required to load the x register if the load instruction is not
available in the cache. The 32-bit muitiplier result is stored in
the p register. To complete the MAC operation, the p value is
added to an accumulator. A minimum of two cycles are
required before a multiplier result can be used in another
multiplication.

The DSP16A accumulate registers are 36 bits wide. A MAC
operation can overfiow 16 times before data is lost.

Atleast two clock cycles are required to execute a singie MAC
operation. Multiple MAC operations can be pipelined to reduce
execution time. In addition, two new operands can be loaded
in parallel with the MAC operation.

ADSP-2101 Barre! Shifter

The barrel shifter in the ADSP-2101 has an Sl input register
and can also accept inputs from any result register in the
processor (e.9. MR1, AR) including its own result register. SR.
Like the MAC result registers, the 32-bit SR is divided into two
16-bit registers, SRO and SR1. The shifter also has an
exponent register, SE, which is set automatically by the
exponent adjust instruction and is used for normalization.

The shifter can place a 16-bit input value anywhere in a 32-bit
field. The input can be shifted any number of bits from off-scale
left to off-scale right. The shift can be sign-extended or zero-
filled. Other functions such as exponent detection.
normalization, denormalization, block floating-point exponent
maintenance, and pattern merging can also be performed with
the shifter. All shifter operations are performed in a single cycle
regardiess of the number of bits shifted.

DSP16A Shifters

The DSP16A contains two shifters. One shifter can shift the
output of the muitiplier two bits, left or right. This shifter is used
for scaling multiplier results. The second shifter is contained in
the ALU. Since the second shifter requires the same circuitry
as the ALU, it has the same limitations as the ALU. The
DSP16A can only shift operands located in the accumuiators.

The ALU/shifter can perform a sign extended right-shift or a
zero-fill left shift. The DSP16A has no provisions for block
floating point, or pattern merging. Data can be shifted in a

DIGITAL SIGNAL PROCESSING PRODUCTS 967

single cycle only by 1,4, 8 or 16 bits. A 6-bit shiftrequires three
instruction cycles.

Arithmetic Summary
“able 1 summarizes the comparison of the arithmetic
apabilities of the ADSP-2101 and the DSP16A.

DSP Requirement ADSP-2101 DSP16A
Single cycle ALU operations v V!
Single cycle multiplication N N
Single cycle MAC operations v No?
Single cycle shifting 0-32 bits 1,4,8,
or 16
bits
Accumulator overflow protection 8 bits 4 bits
Signed, unsigned or mixed-mode v No

multiplications

1. May require 2 cycles if data transfer is required.
2. Multiple MAC operations can be pipelined to reduce execution
time.

Table 1. Arithmetic Capabilities
YATA ADDRESSING
_ A digital signal processor’s ability to perform fast arithmetic is

wasted if the required data cannot be fetched at a similar
speed. DSP algorithms require that data operands and

coefficients be available at the same time. Likewise. circular
buffers are a natural method for accessing tables and
coefficients. The Harvard architecture allows coefficients and
data to be available in both program or data memory.
Simultaneous fetches of two operands is necessary to make
efficient use of this architecture.

Figure 3 shows the data address generators ofthe ADSP-2101
while Figure 4 shows the data address generators of the
DSP16A.

ADSP-2101 Addressing

There are two independent data address generators (DAGS)
in the ADSP-2101. One typically supplies addresses for
program memory data fetches while the other supplies
addresses for datamemory. The ability to simultaneously fetch
two operands makes the ADSP-2101's Harvard architecture
very efficient. The address generators are completely
separate from the program sequencer.

Each DAG has four | registers which store pointers
(addresses), four M registers for address modifiers, and four L
registers which store circular buffer lengths for modulo
addressing.

DAG1 can bit reverse addresses as they are output to the
address bus. This zero-overhead bit-reversing is useful for
implementing FFTs. The 14-bitl, Mand L registers can alsobe
used for general purpose data storage.

ADSP-2101 Indirect Addressing
With indirect addressing, the address in an | register drives
either the data or program memory address bus. As shown in

1L
/I

14)l

"

MODULUS
Loarc

REGISTERS
4x14

Figure 3. Block Diagram of ADSP-2101 Data Address Generators (DAGs)

"

ADD

DIGITAL SIGNAL PROCESSING PRODUCTS

|
}um ONLY

XAAU

i(12) J

ADORESS
8us
(o =
pe (16)
pt(16)
pr(16)
pi(16)

DATA
BUS

Figure 4. Block Diagrams of DSP16A Address Generators

YAAU
i 19

k(9

Figure 3, while memory is being accessed, The DAG updates
the address simultaneously by adding to it the contents of any
modify (M) register in the DAG. The specific pairing ofthe 14-
bit | and M registers is up to the programmer. For example, 10
and M3 could be specified in the instruction as:

AX0=DM(IO0,M3) {Load AX0 fromData Memory!}

The ability to mix | registers and M registers is especially useful
for two-dimensional addressing or for supporting pointer
increment and decrement operations without constantly
loading different modify values. This instruction syntax shows
explicitly what registers are used to generate the address and
where the data is going; nothing is inferred.

The ADSP-2101 multifunction capability allows up to two data
accesses and one arithmetic operation in a single instruction.

This example instruction fetches two operands and performs
an ALU operation:

AR=AX0+AYO (SS), AX0=DM(I12,M3), AY0=PM(M4,MS),

Loading the length of a circular buffer into the L register
activates the modulus logic, guaranteeing that the address is
kept inside the buffer in a modulo fashion. This structure is
maintained automatically by the address generator hardware
and does not have to be calculated explicitly by the
programmer. Once initialized, circular buffers are used
transparently and require no overhead instructions.

ADSP-2101 Direct Addressing

Due to the 24-bit width of the ADSP-2101 instruction, a full 14-
bit address can be specified within a single-word instruction.
This feature allows single cycle access to data located in data

DIGITAL SIGNAL PROCESSING PRODUCTS 9-69

memory. There is no paging or memory segmentation on the
ADSP-2101. The programmer can specify an immediate
address or a predefined variable. Below are some examples of
direct addressing read instructions.

MxX0=DM (beta),
AY1=DM(OxOFE3);

DSP16A Addressing

Like the ADSP-2101, the DSP16A contains two address
generators - the ROM address arithmetic unit (XAAU) and the
RAM address arithmetic unit (YAAU). Like the ADSP-2101,
the ability to fetch two operands allows efficient use of the
DSP16A's Harvard architecture. Only the YAAU can
implement circular buffers.

The XAAU generates addresses for program memory ROM. it
acts as an instruction sequencer for the CPU and as a data
address generator. It has four 16-bit static pointer registers that
are used for the program counter (pc), the subroutine return
address (pr), interrupt return address (pi) and table lookup (pt).
The pt register is used for fetching data words from program
ROM. This register is automatically post modified by +1orby
the value stored in the 12-biti register. There is no provision for
circular buffers in the XAAU.

The YAAU is dedicated to addressing data RAM. It contains
four pointer registers, two address modify registers and
provisions for one modulo or circular buffer. While the data
address bus is 16 bits wide, the registers in the YAAU are only
9 bits wide. The DSP16A can indirectly access 64K of data
memory, but only 2K bytes are available at any time.

There is no bit-reverse capability on the DSP16A.

DSP16A indirect Addressing

The DSP16A uses indirect addressing in both the XAAU and
the YAAU. The XAAU contains four 16-bit registers thatcan be
post-modified after data is fetched from a ROM location. The
XAAU lacks circular buffering capabilities. If filter coefficients
are stored in program ROM, the program must reset the pt
register after every filter iteration.

The YAAU contains four 9-bit pointer registers used to
indirectly address data RAM. The pointers can be post-
modified by -1, 0, +1, +2 or by a value stored in one of two post-
modify registers.

The DSP16A has provisions for one circular bufter, limited to
2K words. Only +1 is allowed as a post-modify value. Thera
and rb registers contain the last and first address of the circular
buffer. If an address register is post-modified to a value equal
tothatinthe ra register, then the value in rb is written back into
the address register.

9-70 DIGITAL SIGNAL PROCESSING PRODUCTS

DSP16A Direct Addressing

The DSP16A can directly load a data value from memory.
Below is an example of an instruction using direct addressing
to read from data memory (user-defined variable, ibuf) to
register zero:

" rO=ibuf

Other DSP16A Addressing Modes

Most of the DSP16A internal registers can be immediately
loaded from program memory. In most cases, it takes two
instruction cycles and two ROM locations to implement an
immediate load. Registers in the YAAU can be loaded in one
instruction.

The DSP16A has a compound addressing mode. The
programmer can specify a swap between an internal register
and a data RAM location addressed by a YAAU register. The
YAAU register can be post-modified during this operation.
Compound addressing requires two instruction cycles to
execute.

Address Generation Summary

Sustained intensive arithmetic operations demand maximum
performance from the data addressing section of a processor
architecture. Table 2 summarizes the differences between the
ADSP-2101 and the DSP16A.

DSP Requirement ADSP-2101 DSP16A
Single cycle fetch of ¥ N

two operands

Generate new program memory v V!

and data memory addresses each cycle

Bit reverse data memory v No

addresses for FFT

Transparent, no overhead 1-8 1

circular buffers

Maximum circular buffer size 16K 2K
words words

1. The YAAU can directly access only 2K-bytes of data memory.
Table 2. Data Addressing Capabilities

PROGRAM SEQUENCING

Efficient architectures for signal processing require fast
arithmetic and matching speed in data addressing and
fetching capabilities. To fully deliver the performance required
for real-world signal processing, a DSP machine must execute
its program with little or no overhead spent on maintaining the

proper program flow.

Efficiency in program sequencing has many different aspects.
The comparison in this application note focuses on three
areas:

« Execution of Loops

. Execution of branches and conditional instructions

+ Processing of interrupts and subroutine calls

Loops are fundamental to the implementation of DSP
algorithms. Many operations, such as the sum-of-products,
are repetitive. If a program is efficiently expressed in looped
form then coding is quite straightforward. in addition,
modifying the program (for example, increasing the number of
filter taps) is easy.

Branching on conditions is a natural way to code any program
which must respond to its environment. Efficient response to
interrupt requests is also important.

Figure 5 shows the architecture of the ADSP-2101 program
sequencer. The program control section of the DSP16A is
shown in Figure 6.

ADSP-2101 Program Sequencer

The program sequencer on the ADSP-2101 contains logic that
selects a program memory address source and routes the
address to the program memory address bus (PMA). This
address selection occurs automatically in response to the

DMD BUS 18
rd
CONOITION CODE (4 bits)
ADDRESS of JUMP (14 bits)
COUNT STACK
axis FUNCTION FIELD
ADORESS of
COUNTER oux s: LOOP (14 bits)
LoGic TERMINATION
CONOITION (4 bits)
DOWN
COUNTER |
CE our
l T W, From INSTRUCTION REGISTER
7
18,
4 LOOP STACK
STATUS 4 4x18
STACK .
ax1e A
E___I e
STATUS 2
LOGIC wux LooP
LoGic 4 —— COMPARATOR
STATUS
P o |
STATUS 1)
1 ,l /’"
y 4 (mesh)
—
_4- INTERRUPT {
g CONTROLLER
PG STACK COUNTER
X14
INCREMENT I WX I
waxt
ADDRESS
NEXT ADDRESS MUX j— SOURCE
SELECT

i PMA B8US "

I d

Figure 5. Block Diagram of ADSP-2101 Program Sequencer

DIGITAL SIGNAL PROCESSING PRODUCTS 9-71

ABOO-AB15 < ADDRESS BUS (16) 7
CKI > —
X
[]
0 0)
AOM ADD |
CACHE
CONTROL :,' 15X 16 2048 x 16 _
RSTE X fo-
pc
pt
EXM > pr
pi
LN\ , V.
RBOO-RB1S D AOM DATA BUS (16) J
1~

Figure 6. Block Diagram of DSP16A Program Sequencer

current instruction. The address placed on the address bus

can come from .

+ The program counter (for sequential addressing),

+ A 14-bit address in the instruction word itself, for direct
jumps and subroutine calls,

. The PC stack, for returns from subroutines and interrupts,

. Theinterrupt logic, to automatically vector to the interrupt
routine in response to assertion of any external interrupt.

All instructions can execute in a single cycle; this applies
equally to jumps, calls, and interrupts. No pipelined
instructions are required. Since the ADSP-2101 can tetch an
instruction and access both on-chip program and on-chip data
memory in one cycle, no cache is required.

When an interrupt occurs, the complete status of the processor
(stack status, mode status, arithmetic status and interrupt
mask) is automatically pushed onto the status stack as part of
the interrupt vector process.

ADSP-2101 Looping Capabilities

The ADSP-2101 program sequencer can support zero-
overhead loops. Using the loop stack and loop comparator, the
processor can decide if the loop should terminate and
determine the address of the next instruction (either the top of
the loop or the instruction following the ioop). These actions
are performed in paraliel with instruction execution, are
transparent to the user and require no overhead cycles.
Program loops can be nested up to four deep.

A DO UNTIL loop may be as large as program memory size

permits. A loop may terminate when the 1 4-bit counter expires
or when a specified arithmetic condition occurs. The example

9-72 DIGITAL SIGNAL PROCESSING PRODUCTS

below shows a three instruction loop that is repeated 100
times:

CNTR = 100;
DO foo UNTIL CE;
first loop instructicn
second loop instruction
foo: third loop instructizn
first instruction outside ¢f j00p

The first instruction loads the counter with 100, The DO UNTIL
instruction contains the termination condition (counter
expired) and the address foo, the last instruction in the loop.
The execution of the DO UNTIL instruction causes the address
of the first instruction of the loop to be pushed on the PC stack
and the address of the last instruction of the loop to be pushed
onto the loop stack.

As instruction addresses are output to the program memory
address bus, the loop comparator determines if the instruction
is the last instruction in the loop. if it is, the program sequencer
checks the status and condition logic to see if the termination
condition is satisfied. The program sequencer then takes
gither the address from the PC stack (to go back to the top of
the loop) or simply increments the PC (to go to the first
instruction outside the loop).

The looping mechanism of the ADSP-2101 is automatic and
transparent to the user. Once the DO UNTIL instruction is
specified, program flow, all stack updates. and counter
updates are handled by the sequencer logic. No program
overhead or extra cycles are required. After the last loop
instruction is executed, the next instruction will be the firstioop
instruction or the first instruction following the loop.

The ADSP-2101 has up to six interrupts. Three of these
interrupts are external to the processor. The interrupts are
prioritized. maskable and can be edge or level sensitive. When
an interrupt is asserted, the ADSP-2101 aborts execution of
the current instruction and vectors to the appropriate interrupt
service routine. Because the interrupts are prioritized,
concurrent interrupts can be handled without external
hardware.

The PC stack is 16 words deep. Up to seven nested interrupts
are allowed. The size of the loop stack and the count stack
allow four-deep nested loops.

Conditional execution of instructions is available onthe ADSP-
2101. All ALU, MAC and shifter instructions can be executed
conditionally. The only exceptions are ALU division and
immediate shifts. All program jumps, subroutine calls and
returns can also be conditionally executed. All of these
instructions execute in a single cycle.

DSP16A Program Sequencer

Program sequencing in the DSP16A is controlled by the
XAAU. a 16 word cache and other control logic. The XAAU
contains the program counter, an interrupt return register and
a subroutine return register. The program counter can address
up to 64K of program memory ROM.

The DSP16A can implement one level of program looping with
the internal cache. The loop is limited to 15 bytes of instruction
and cannot execute more than 127 times. An advantage ofthe
internal cache is that instructions that require a ROM memory
read execute more efficiently. However, interrupt requests are
not recognized if the DSP16A is executing instructions from
the cache.

The example below shows a two instruction ioop that executes
100 times:

40 100 ¢
first loop instruction
second loop instruction

There are two classes of instructions that can be executed
conditionally: special-function instructions and branch
instructions. Special-function instructions consist of data
shifts, accumulator increments and some data transfer
operations. These instructions can be conditionally executed
based on the status of the muitiplier/ALU status fiags or a
pseudo-random sequence bit. Special-function instructions
execute in one cycle.

Branch instructions include goto, subroutine calls and return
instructions. These instructions require two cycles to execute.
Ifthe instruction is conditional, three cycles are required. Since
there is only one subroutine return register, extra instructions
are required to implement nested subroutine calis.

There are four internal and one external interrupts on the
DSP16A. The internal interrupts are asserted by the parallel

and serial interface ports. In addition, there is one software
interrupt available. All interrupts are maskable. When an
interrupt is recognized, the DSP16A completes the current
instruction and vectors to the interrupt service routine. Note
that the processor supports only one service routine. The
service routine must determine which interrupt was
processed. The DSP16A does not recognize interrupts when
executing branch instructions or instructions in the cache.
Interrupts are not prioritized. Providing for concurrent
interrupts requires extra hardware and/or programming.

Program Sequencer Summary

Efficient looping capabilities are very import for DSP
algorithms due to their repetitive nature. Table 3 summarizes
the program sequencing capabilities

of the ADSP-2101 and the DSP16A.

DSP Requirement ADSP-2101 DSP16A
Zero-overhead looping V! V2
Conditional arithmetic v V3
instructions ’

Single-cycle branching v No !
Zero-overhead nested Upto?7 No
interrupts deep

1. Four levels of nested loops.

2. One leve! of looping; up to 15 instructions long; can execute only
127 times.

3. Shifts and accumulator increments only.

Table 3. Program Sequencing Capabilities

PROGRAMMING EXAMPLE

A good illustration of the differences between the ADSP-2101
and the DSP16A is the implementation of the stochastic
gradient algorithm for updating taps in an adaptive filter.

C._.=b*e*Y

A pseudo-code description of this algorithm is shown for a 256
tap filter.

MOD=beta*e;

Loop n=0 to 255;
C...=C, MOD*Y ;

EndLoop:

When impiementing this algorithm you should consider the
following:
How many cycles are required for loop overhead?

How many cycles are required for loading and storing
operands?

How many extra cycles are required to move intermediate
resuits?

DIGITAL SIGNAL PROCESSING PRODUCTS 9-73

Listing 1 shows an ADSP-2101 code segment for updating the
taps in a 256-tap adaptive filter. The coefficients are stored in
program data memory and the sample data is stored in data
memory. Efficient operand manipulation is achieved by storing
the MOD term in the multiplier feedback register. In the loop,
data is fetched in parallel with instruction execution. No cycles
are wasted fetching or storing data.

Listing 2 shows a DSP16A code segment for updating the taps
in a 256-tap adaptive filter. Although data operands can be
fetched from program memory ROM, is not possible to write
updated values back to program ROM. Therefore, both
coefficients and data must be stored in data memory. Since the
muttiplier output register is not available as an input for another
multiplication, two extra instruction cycles are required to move
the MOD term back into the x register. The program loop
contains two instructions. Three clock cycles are required to
execute this loop.

Interrupt requests are ignored when the DSP16A is executing
from a cache loop. The code segment shown below
periodically stops the loop so pending interrupt requests can
be serviced.

The total number of clock cycles for each algorithm are:

N Taps 256 Taps Time

DSP16A BN+25 2073 69 us (33 ns cycle)
ADSP-2101 3N +15 783 63 us (80 ns cycle)
CONNECTING THE PROCESSOR TO OTHER DEVICES
Although digital signal processors that have efficient
architectures, fast arithmetic capabilities and efficient data
addressing are well suited for high performance systems, a
DSP system designer must also consider how the
microprocessor communicates with other components in the
system. These devices can include other DSP processor, a
host processor, or peripherais such as CODECs, A/D
converters and D/A converters. The configuration of off-chip
memory and the size of on-chip memory can significantly affect
the cost of a DSP system.

Connecting the ADSP-2101 to Other Devices

The ADSP-2101 has two bidirectional double-buffered serial
ports. These ports can be used to communicate with serial
devices such as CODECs, serial A/D converters and serial
ports on other ADSP-2101s. The ADSP-2101 can
communicate with parallel devices by memory-mapping them
into external data memory space.

The serial ports (SPORTSs) are synchronous and use framing
signals to control data flow. Each SPORT can generate its own
serial clock internally or use an external clock. The framing
sync signals may be generated internally or by an external
device. Word lengths may vary from three to sixteen bits. The
serial ports can have a zero chip interface to other serial
devices and can perform single cycle u-law and A-law
companding in hardware.

m s memiema: MEMRIAD PAAAEOOIANS DDAMN 10T

SPORTO0 has a multichannel capability which allows the
receiving or transmitting of arbitrary data words from a 24-word
or 32-word bitstream. This is useful for implementing a T1
interface or a networking scheme for mulitiple processors.

SPORT1 may be optionally configured as two external
interrupts, IR0 and IRQ1, and the Flag in and Flag Out signals
instead of as a serial port.

The SPORTs aiso have an autobuffering capability. This
feature allows a block of data to be loaded into memory while
the ADSP-2101 is executing program code. When all data is
loaded, the SPORT interrupts the processor.

The ADSP-2101 can intertace to parallel devices such as
parallel DACs and UARTs through external data memory.
Software-controlled wait states in the ADSP-2101 allow for a
simple interface to these devices. The only additional circuitry
that may be required is address decode logic.

Connecting the DSP16A to Other Devices

The DSP16A has two ports for communicating with the other
devices. The SIO is a serial communications port. The PIO is
designed for paraliel communications. Either the SIO or the
PIO is required to load internal RAM from off-chip devices,
such as external memory or a host processor.

The SIO is a synchronous port. The framing signals are ILD
and OLD and must be synchronized to the input and output
clocks respectively (ICK and OCK). Framing and clock signals
can be generated internally or externally. The internal clock is
programmable to one of four different clock speeds. Word
lengths are limited to 8 or 16 bits. A time division multiplex
(TDM) communications scheme can be used to communicate
with up to seven other DSP16As.

The PIO interfaces to AT&T CODECs without any additional
circuitry. A bit-reversing capability on the PIO allows for an
easier software implementation of companding operations.

The DSP16A PIO is a parallel port that can be programmed to
transmit or receive 16-bit data words or simultaneously
transmit and receive 8-bit data words. The PO can operate in
either the active or the passive modes. In the passive mode, an
external device provides the I/O strobe signals. In active mode,
the strobe signals are provided by the DSP16A. The width of
the strobe signals is programmable allowing connections to
slow peripherais.

Memory Configuration on the ADSP-2101

The ADSP-2101 contains 2K words of on-chip program
memory and 1K words of on-chip data memory. In a single
cycle, the ADSP-2101 can access on-chip program RAM twice
and on-chip data RAM once. Allinstructions execute in asingle
cycle when the processor is executing from on-chip memory.

The ADSP-2101 can address 16K words of program memory
and up to 16K words of data memory. An additional 16K words
of data memory are available with the PMDA pin. The
processor can be configured with all memory off-chip or with a

{ DAG Initialization }
{ }
(I2—>0Oldest input data value in delay line}

{L2=Filter Length}

{I6—>Beginning of filter coefficient table}

{L6=Filter Length}

{M1,M5=1}

{M6=2}

{M3,M7=-1}

.ENTRY affir;
strt: CNTR=< Filter Length >
MX0=< error >
MY1l=beta;
MF=MX0*MY1 (RND) , MX0=DM(I2,M1); {MF=error*beta}
MR=MXO0*MF (RND) , AYQO=PM(I6,M5);

DO adapt UNTIL CE;
AR=MR1+AY0, MX0=DM(I2,M1), AYO=PM(I6,M7);
adapt: PM(I6,M6)=AR, MR=MXQ*MF (RND);

MODIFY(I2,M3); {Point to oldest data}l
MODIFY (I6,M7); {Point to start of table}

Listing 1. ADSP-2101 Code Segment for Stochastic Gradient Algorithm

j=0
k=1
rO=beta /*Load beta and e*/
rl=e
x=*rQ
y=*rl
p=x*y /*Calculate MOD*/
al0=p
x=a0 ’ /*Store MOD in x*/
rO=<address of coefficients C> /*Init pointers*/
rl=<address of data A >
i a0=*r0
y=*rl++
p=x*y
DO 2 { /*Program loop */
al0=a0+p y=*rl++
p=x*y *rQik:a0
}
REDO 127 /*Service Interrupts*/

Listing 2. DSP16A Code Segment for LMS Stochastic Gradient Algorithm

DIGITAL SIGNAL PROCESSING PRODUCTS

9-75

portion of memory on-chip. For off-chip memory, the program

and data memory lines are multiplexed into a single off-chip

address bus and a single off-chip data bus. Extra cycles may

he required to execute instructions when more than one piece
data is located off-chip.

The boot capability of the ADSP-2101 allows loading internal
program memory directly from an inexpensive boot EPROM.
On reset, up to 2K words of instructions can automatically be
loaded into on-chip program memory. Up to seven more 2K
instruction blocks can be paged into the processor on demand.
If desired, the boot code can contain a short program for
downiloading data and program code through the serial ports.

Software programmabie wait states on the ADSP-2101 makes
it compatible with slow external RAM or ROM. Using slower
memories reduces overall system cost at the expense of
reduced execution speeds. Regardiess of the speed of
external memory, the ADSP-2101 always executes at full
speed when accessing on-chip program and data memories.

Memory Contiguration on the DSP16A

The DSP16A contains 2K words of on-chip data memory and
4K words of on-chip program memory ROM. In one cycle, the
DSP16A can access data RAM and instructions in the program
memory ROM. A second cycle is required to fetch data from
program ROM.

The DSP16A can address up to 64K of program ROM. Like the
" DSP-2101, the part can be configured to use off-chip memory
__anly or acombination of on-chip and off-chip program memory.
Since there is no off-chip data bus, data memory cannot be
expanded off-chip. The data memory address space can be
expanded through the PIO port. However, this requires
external circuitry and additional software.

Because the DSP16A is designed to execute ROM code, there
are no read/write strobes associated with the program memory
address and data lines. This makes it difficult to use RAM for
program memory. Extra hardware is required to download
code from a host processor.

Theinternal ROM on the DSP16A must be programmed by the
factory. The extra costs associated with programming internal
ROM make it impractical for low-volume applications. ltis also
expensive to fix bugs or upgrade code once the device is
programmed. in applications with external program memories,
the high clock speeds of currently available DSP16As require
extremely fast external EPROMS. The 33 ns version requires
EPROMs with 15 ns access times. A system that uses fast
versions of the DSP16A will be very expensive to design and
manufacture. There are no programmable wait states on the
DSP16A.

SUMMARY

.Jlgltal signal processing is a specialized branching of
processor design and application. Table 4 summarizes the
fundamental requirements of DSP.

A =2 mIRITAL CIRNAL DROCESSING PRODUCTS

The DSP processors available today vary drastically in their
ability to meet the requirements described above. Some
processors are optimized for very specific applications while
others are fiexible and allow for future growth. Analyzing the
requirements of your DSP system and matching them to the
capabilities of a DSP architecture assures efficient operation.

Due to space limits, this application note does not cover many
topics in detail. Consuit the ADSP-2101 User's Manualand the
ADSP-2101 Cross-Software Manual for a greater depth of
information on this processor.

DSP Requirement ADSP-2101 DSP16A
Fast arithmetic J v
Extended dynamic range on W 2

multiplication/accumulation

Hardware circular buffering v No
(both on- and off-chip)

Zero overhead looping & branching v No

1. Accumulator may overfiow 256 times.
2. Accumulator may overfiow 16 times.

Table 4. Fundamental Requirements of DSP

