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1 INTRODUCTION

Thank you for purchasing the Analog Devices SHARC® digital signal
processor (DSP).

Design Advantages

The ADSP-21161 processor is a high-performance 32-bit processor used
for medical imaging, communications, military, audio, test equipment,
3D graphics, speech recognition, motor control, imaging, and other appli-
cations. This processor builds on the ADSP-21000 Family processor core
to form a complete system-on-a-chip, adding a dual-ported on-chip
SRAM, integrated I/O peripherals, and an additional processing element
for Single-Instruction-Multiple-Data (SIMD) support.

The SHARC architecture balances a high performance processor core with
high performance buses (PM, DM, 10). In the core, every instruction can
execute in a single cycle. The buses and instruction cache provide rapid,
unimpeded data flow to the core to maintain the execution rate.

Figure 1-1 shows a detailed block diagram of the processor, which illus-
trates the following architectural features.

* Two processing elements (PEx and PEy), each containing 32-Bit
IEEE floating-point computation unit—multiplier, ALU, Shifter,
and data register file

* Program sequencer with related instruction cache, interval timer,

and Data Address Generators (DAG1 and DAG2)
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Design Advantages

* Dual-ported SRAM

* External port for interfacing to off-chip memory such as SDRAM,
peripherals, hosts, and multiprocessor systems

* Input/Output (IO) processor with integrated DMA controller,
SPI-compatible port, serial ports, and link ports for point-to-point
multiprocessor communications

* JTAG Test Access Port for emulation
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Figure 1-1. ADSP-21161 SHARC Block Diagram

1/0 PROCESSOR

Figure 1-1 also shows the three on-chip buses of the ADSP-21161 proces-
sor: the Program Memory (PM) bus, Data Memory (DM) bus, and
Input/Output (IO) bus. The PM bus provides access to either instructions
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or data. During a single cycle, these buses let the processor access two data
operands from memory, access an instruction (from the cache), and per-
form a DMA transfer.

The buses connect to the ADSP-21161 processor external port, which
provides the processor interface to external memory, memory-mapped
/0O, a host processor, and additional multiprocessing ADSP-21161 pro-
cessors. The external port performs bus arbitration and supplies control
signals to shared, global memory and I/O devices.

Figure 1-2 illustrates a typical single-processor system.

The ADSP-21161 processor includes extensive support for multiprocessor
systems as well. For more information, see “Multiprocessor (MP) Inter-

face” on page 7-87.

Further, the ADSP-21161 processor addresses the five central require-
ments for DSPs:

 Fast, flexible arithmetic computation units

* Unconstrained data flow to and from the computation units

* Extended precision and dynamic range in the computation units
* Dual address generators with circular buffering support

 Efficient program sequencing

Fast, Flexible Arithmetic. The ADSP-21000 Family processors execute all
instructions in a single cycle. They provide fast cycle times and a complete
set of arithmetic operations. The processor is IEEE floating-point compat-
ible and allows either interrupt on arithmetic exception or latched status
exception handling.

Unconstrained Data Flow. The ADSP-21161 processor has a Super Har-
vard Architecture combined with a 10-port data register file. In every
cycle, the processor can write or read two operands to or from the register
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Figure 1-2. Typical Single Processor System

file, supply two operands to the ALU, supply two operands to the multi-
plier, and receive three results from the ALU and multiplier. The
processor’s 48-bit orthogonal instruction word supports parallel data
transfers and arithmetic operations in the same instruction.
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40-Bit Extended Precision. The processor handles 32-bit IEEE float-
ing-point format, 32-bit integer and fractional formats (twos-complement
and unsigned), and extended-precision 40-bit floating-point format. The
processors carry extended precision throughout their computation units,
limiting intermediate data truncation errors.

Dual Address Generators. The processor has two Data Address Genera-
tors (DAGs) that provide immediate or indirect (pre- and post-modify)
addressing. Modulus, bit-reverse, and broadcast operations are supported
with no constraints on data buffer placement.

Efficient Program Sequencing. In addition to zero-overhead loops, the
processor supports single-cycle setup and exit for loops. Loops are both
nestable (six levels in hardware) and interruptable. The processors support

both delayed and non-delayed branches.

Architecture Overview

The ADSP-21161 processor forms a complete system-on-a-chip, integrat-
ing a large, high-speed SRAM and 1/O peripherals supported by a
dedicated I/O bus. The following sections summarize the features of each
functional block in the ADSP-21161 processor SHARC architecture,
which appears in Figure 1-1 on page 1-2. With each summary, a cross ref-
erence points to the sections where the features are described in greater
detail.

Processor Core

The processor core of the ADSP-21161 processor consists of two process-
ing elements (each with three computation units and data register file), a

program sequencer, two data address generators, a timer, and an instruc-

tion cache. All digital signal processing occurs in the processor core.
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Processing Elements

The processor core contains two processing elements (PEx and PEy). Each
element contains a data register file and three independent computation
units: an ALU, a multiplier with a fixed-point accumulator, and a shifter.
For meeting a wide variety of processing needs, the computation units
process data in three formats: 32-bit fixed-point, 32-bit floating-point and
40-bit floating-point.

The floating-point operations are single-precision IEEE-compatible. The
32-bit floating-point format is the standard IEEE format, whereas the
40-bit extended-precision format has eight additional Least Significant
Bits (LSBs) of mantissa for greater accuracy.

The ALU performs a set of arithmetic and logic operations on both
fixed-point and floating-point formats. The multiplier performs float-
ing-point or fixed-point multiplication and fixed-point multiply/add or
multiply/subtract operations. The shifter performs logical and arithmetic
shifts, bit manipulation, field deposit and extraction, and exponent deriva-
tion operations on 32-bit operands. These computation units perform
single-cycle operations; there is no computation pipeline. All units are
connected in parallel, rather than serially. The output of any unit may
serve as the input of any unit on the next cycle. In a multifunction compu-
tation, the ALU and multiplier perform independent, simultaneous
operations.

Each processing element has a general-purpose data register file that trans-
fers data between the computation units and the data buses and stores
intermediate results. A register file has two sets (primary and secondary) of
sixteen registers each, for fast context switching. All of the registers are 40
bits wide. The register file, combined with the core processor’s Super Har-
vard architecture, allows unconstrained data flow between computation
units and internal memory.
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Primary Processing Element (PEx). PEx processes all computational
instructions whether the processor is in Single-Instruction, Single-Data
(SISD) or Single-Instruction, Multiple-Data (SIMD) mode. This element
corresponds to the computational units and register file in previous
ADSP-21000 family DSPs.

Secondary Processing Element (PEy). PEy processes each computational
instruction in lock-step with PEx, but only processes these instructions
when the processor is in SIMD mode. Because many operations are influ-
enced by this mode, more information on SIMD is available in multiple
locations:

* For information on PEy operations, see “Processing Elements” on
page 2-1

* For information on data addressing in SIMD mode, see “Address-
ing in SISD and SIMD Modes” on page 4-18

* For information on data accesses in SIMD mode, see “SISD,

SIMD, and Broadcast Load Modes” on page 5-51

* For information on multiprocessing in SIMD mode, see “Multi-

processor (MP) Interface” on page 7-87

* For information on SIMD programming, see the ADSP-21160
SHARC DSP Instruction Set Reference

Program Sequence Control

Internal controls for ADSP-21161 processor program execution come
from four functional blocks: program sequencer, data address generators,
timer, and instruction cache. Two dedicated address generators and a pro-
gram sequencer supply addresses for memory accesses. Together the
sequencer and data address generators allow computational operations to
execute with maximum efficiency since the computation units can be
devoted exclusively to processing data. With its instruction cache, the
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ADSP-21161 processor can simultaneously fetch an instruction from the
cache and access two data operands from memory. The data address gener-
ators implement circular data buffers in hardware.

Program Sequencer. The program sequencer supplies instruction
addresses to program memory. It controls loop iterations and evaluates
conditional instructions. With an internal loop counter and loop stack,
the ADSP-21161 processor executes looped code with zero overhead. No
explicit jump instructions are required to loop or to decrement and test
the counter.

The ADSP-21161 processor achieves its fast execution rate by means of
pipelined fetch, decode, and execute cycles. If external memories are used,
they are allowed more time to complete an access than if there were no
decode cycle.

Data Address Generators. The Data Address Generators (DAGs) provide
memory addresses when data is transferred between memory and registers.
Dual data address generators enable the processor to output simultaneous
addresses for two operand reads or writes. DAG1 supplies 32-bit addresses
to data memory. DAG?2 supplies 32-bit addresses to program memory for
program memory data accesses.

Each DAG keeps track of up to eight address pointers, eight modifiers and
eight length values. A pointer used for indirect addressing can be modified
by a value in a specified register, either before (pre-modify) or after
(post-modify) the access. A length value may be associated with each
pointer to perform automatic modulo addressing for circular data buffers;
the circular buffers can be located at arbitrary boundaries in memory.
Each DAG register has a secondary register that can be activated for fast
context switching.
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Circular buffers allow efficient implementation of delay lines and other
data structures required in digital signal processing, and are commonly
used in digital filters and Fourier transforms. The DAGs automatically
handle address pointer wraparound, reducing overhead, increasing perfor-
mance, and simplifying implementation.

Interrupts. The ADSP-21161 processor has four external hardware inter-
rupts: three general-purpose interrupts, TRQ2-0, and a special interrupt for
reset. The processor also has internally generated interrupts for the timer,
DMA controller operations, circular buffer overflow, stack overflows,
arithmetic exceptions, multiprocessor vector interrupts, and user-defined
software interrupts.

For the general-purpose external interrupts and the internal timer inter-
rupt, the ADSP-21161 processor automatically stacks the arithmetic status
and mode (MODE1) registers in parallel with the interrupt servicing, allow-
ing fifteen nesting levels of very fast service for these interrupts.

Context Switch. Many of the processor’s registers have secondary registers
that can be activated during interrupt servicing for a fast context switch.
The data registers in the register file, the DAG registers, and the multiplier
result register all have secondary registers. The primary registers are active
at reset, while the secondary registers are activated by control bits in a
mode control register.

Timer. The programmable interval timer provides periodic interrupt gen-
eration. When enabled, the timer decrements a 32-bit count register every
cycle. When this count register reaches zero, the ADSP-21161 processor
generates an interrupt and asserts its timer expired output. The count reg-
ister is automatically reloaded from a 32-bit period register and the count
resumes immediately.

Instruction Cache. The program sequencer includes a 32-word instruc-
tion cache that enables three-bus operation for fetching an instruction and
two data values. The cache is selective; only instructions whose fetches
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conflict with program memory data accesses are cached. This caching
allows full-speed execution of core, looped operations such as digital filter
multiply-accumulates and FFT butterfly processing.

Processor Internal Buses

The processor core has six buses: PM address, PM data, DM address, DM
data, IO address, and IO data. Due to processor’s Super Harvard Archi-
tecture, data memory stores data operands, while program memory can
store both instructions and data. This architecture allows dual data
fetches, when the instruction is supplied by the cache.

Bus Capacities. The PM address bus and DM address bus transfer the
addresses for instructions and data. The PM data bus and DM data bus
transfer the data or instructions from each type of memory. the PM
address bus is 32 bits wide, allowing access of up to 62 Mwords for
non-SDRAM and 254 Mwords for SDRAM banks of mixed instructions
and data. The PM data bus is 64 bits wide from (8-, 16-, and 32-bits) to

accommodate the 48-bit instructions and 32-bit data.

The DM address bus is 32 bits wide allowing direct access of up to 4G
words of data. The DM data bus is 64 bits wide. The DM data bus pro-
vides a path for the contents of any register in the processor to be
transferred to any other register or to any data memory location in a single
cycle. The data memory address comes from one of two sources: an abso-
lute value specified in the instruction code (direct addressing) or the
output of a data address generator (indirect addressing).

The 1O address and IO data buses let the IO processor access internal
memory for DMA without delaying the processor core. The IO address
bus is 18 bits wide, and the IO data bus is 64 bits wide.

Data Transfers. Nearly every register in the processor core is classified as a
Universal Register (UREG). Instructions allow transferring data between
any two universal registers or between a universal register and memory.

This support includes transfers between control registers, status registers,
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and data registers in the register file. The PM bus connect (PX) registers
permit data to be passed between the 64-bit PM data bus and the 64-bit
DM data bus, or between the 40-bit register file and the PM data bus.
These registers contain hardware to handle the data width difference. For
more information, see For more information, see “Processing Element
Registers” on page A-23.

Processor Peripherals

The term processor peripherals refers to everything outside the processor
core. The ADSP-21161 processor peripherals include internal memory,
external port, I/O processor, JTAG port, and any external devices that

connect to the processor.

Dual-Ported Internal Memory (SRAM)

The ADSP-21161 processor contains 1 megabit of on-chip SRAM, orga-
nized as two blocks of 0.5 Mbits. Each block can be configured for
different combinations of code and data storage. Each memory block is
dual-ported for single-cycle, independent accesses by the core processor
and I/O processor or DMA controller. The dual-ported memory and sepa-
rate on-chip buses allow two data transfers from the core and one from
I/0O, all in a single cycle.

All of the memory can be accessed as 16-, 32-, 48-, or 64-bit words. On
the ADSP-21161 processor, the memory can be configured as a maximum
of 32K words of 32-bit data, 64K words of 16-bit data, 21.25K words of
48-bit instructions (and 40-bit data), or combinations of different word
sizes up to 1.0 Mbit.

The processor supports a 16-bit floating-point storage format, which
effectively doubles the amount of data that may be stored on chip. Con-
version between the 32-bit floating-point and 16-bit floating-point
formats completes in a single instruction.
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While each memory block can store combinations of code and data,
accesses are most efficient when one block stores data, using the DM bus
for transfers, and the other block stores instructions and data, using the
PM bus for transfers. Using the DM bus and PM bus in this way, with one
dedicated to each memory block, assures single-cycle execution with two
data transfers. In this case, the instruction must be available in the cache.
The processor uses its external port to maintain single-cycle execution
when one of the data operands is transferred to or from off-chip.

External Port

The ADSP-21161 processor external port provides the processor interface
to off-chip memory and peripherals. The 254 Mword off-chip address
space is included in the unified address space of the ADSP-21161 proces-
sor. The separate on-chip buses—for PM address, PM data, DM address,
DM data, IO address, and IO data—multiplex at the external port to cre-
ate an external system bus with a single 24-bit address bus and a single
32-bit data bus. The ADSP-21161 processor on-chip DMA controller
automatically packs external data into the appropriate word width during
transfers.

The ADSP-21161 processor supports instruction packing modes to exe-
cute from 48-, 32-, 16-, and 8-bit wide memories. With the link ports
disabled, the additional link port pins can be used to execute 48-bit wide
instructions. The ADSP-21161 processor also includes 32- to 48-bit, 16-
to 48-bit, 8- to 48-bit execution packing for executing instruction directly
from 32-bit, 16-bit, or 8-bit wide external memories. External SDRAM,
SRAM, or SBSRAM can be 8-, 16-, or 32-bits wide for DMA transfers to

or from external memory.

On-chip decoding of high-order address lines generates memory bank
select signals for addressing external memory devices. The ADSP-21161
processor provides programmable memory waitstates and external memory
acknowledge controls for interfacing to peripherals with variable access,
hold, and disable time requirements.
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SDRAM Interface. The ADSP-21161 processor integrated on-chip
SDRAM controller transfers data to and from synchronous DRAM
(SDRAM) at the core clock frequency or one-half the core clock fre-
quency. The synchronous approach, coupled with the core clock
frequency, supports data transfer at a high throughput—up to 400
Mbytes/second for 32-bit transfers and 600 Mbytes/second for 48-bit
transfers.

The SDRAM interface provides a glueless interface with standard
SDRAMs—16 Mbits, 64 Mbits, 128 Mbits, and 256 Mbits—and
includes options to support additional buffers between the ADSP-21161
processor and SDRAM. The SDRAM interface is extremely flexible and
provides capability for connecting SDRAMs to any one of the
ADSP-21161 processor four external memory banks, with up to all four
banks mapped to SDRAM.

Systems with several SDRAM devices connected in parallel may require
buffering to meet overall system timing requirements. The ADSP-21161
processor supports pipelining of the address and control signals to enable
such buffering between itself and multiple SDRAM devices.

Host Processor Interface. The ADSP-21161 processor host interface
allows easy connection to standard microprocessor buses, 8-bit, 16-bit and
32-bit, with little additional hardware required. The interface supports
asynchronous and synchronous transfers at speeds up to the half the inter-
nal core clock rate of the ADSP-21161 processor. The host interface
operates through the ADSP-21161 processor external port and maps into
the unified address space. Four channels of DMA are available for the host
interface; code and data transfers occur with low software overhead. The
host can directly read and write the IOP register space of the ADSP-21161
processor and can access the DMA channel setup and mailbox registers.
The host can also perform DMA transfers to and from the internal mem-
ory of the processor. Vector interrupt support provides for efficient
execution of host commands.
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Multiprocessor System Interface. The ADSP-21161 processor offers
powerful features tailored to multiprocessing systems. The unified address
space allows direct interprocessor accesses of each ADSP-21161 processor
internal IOP registers. Distributed bus arbitration logic on the processor
allows simple, glueless connection of systems containing up to six
ADSP-21161 processor and a host processor. Master processor changeover
incurs only one cycle of overhead. Bus arbitration handles either fixed or
rotating priority. Processor bus lock allows indivisible read-modify-write
sequences for semaphores. A vector interrupt capability is provided for
interprocessor commands.

I/O Processor

The ADSP-21161 processor Input/Output Processor (IOP) includes four
serial ports, two link ports, a SPI-compatible port, and a DMA controller.
One of the processes that the IO processor automates is booting. The pro-
cessor can boot from the external port (with data from an 8-bit EPROM
or a host processor) or a link port. Alternatively, a no-boot mode lets the
processor start by executing instructions from external memory without
booting.

Serial Ports. The ADSP-21161 processor features four synchronous serial
ports that provide an inexpensive interface to a wide variety of digital and
mixed-signal peripheral devices. The serial ports can operate at up to half
the processor core clock rate. Programmable data direction provides
greater flexibility for serial communications. Serial port data can automat-
ically transfer to and from on-chip memory using DMA. Each of the serial
ports offers a TDM multichannel mode (up to 128 channels) and supports
m-law or A-law companding. I*S support is also provided with the
ADSP-21161 processor.

The serial ports can operate with little-endian or big-endian transmission
formats, with word lengths from 3 to 32 bits. The serial ports offer select-
able synchronization and transmit modes. Serial port clocks and frame
syncs can be internally or externally generated.
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Link Ports. The ADSP-21161 processor features two 8-bit link ports that
provide additional I/O capabilities. Link port I/O is especially useful for
point-to-point interprocessor communication in multiprocessing systems.
The link ports can operate independently and simultaneously. The data
packs into 32-bit or 48-bit words, which the processor core can directly
read or the IO processor can DMA-transfer to on-chip memory. Clock
and acknowledge handshaking signals control link port transfers. Trans-
fers are programmable as either transmit or receive.

Serial Peripheral (Compatible) Interface. The ADSP-21161 processor
Serial Peripheral Interface (SPI) is an industry standard synchronous serial
link that enables the ADSP-21161 processor SPI-compatible port to com-
municate with other SPI-compatible devices. SPI is a 4-wire interface
consisting of two data pins, one device select pin, and one clock pin. Itisa
full-duplex synchronous serial interface, supporting both master and slave
modes. It can operate in a multi-master environment by interfacing with
up to four other SPI-compatible devices, either acting as a master or slave
device. The ADSP-21161 processor SPI-compatible peripheral implemen-
tation also supports programmable baud rate and clock phase/polarities,
and the use of open drain drivers to support the multi-master scenario to
avoid data contention.

DMA Controller. The ADSP-21161 processor on-chip DMA controller
allows zero-overhead data transfers without processor intervention. The
DMA controller operates independently and invisibly to the processor
core, allowing DMA operations to occur while the core is simultaneously
executing its program. Both code and data can be downloaded to the

ADSP-21161 processor using DMA transfers.

DMA transfers can occur between the ADSP-21161 processor internal
memory and external memory, external peripherals, or a host processor.
DMA transfers between external memory and external peripheral devices
are another option. External bus packing to 8-, 16-, 32-, 48-, or 64-bit
words is automatically performed during DMA transfers.
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Fourteen channels of DMA are available on the ADSP-21161 processor—
two over the link ports (shared with SPI), eight over the serial ports, and
four over the processor’s external port. The external port DMA channels
serve for host processor, other ADSP-21161 processor DSPs, memory, or
I/0O transfers.

JTAG Port

The JTAG port on the ADSP-21161 processor supports the IEEE stan-
dard 1149.1 Joint Test Action Group (JTAG) standard for system test.
This standard defines a method for serially scanning the I/O status of each
component in a system. Emulators use the JTAG port to monitor and
control the processor during emulation. Emulators using this port provide
full-speed emulation with access to inspect and modify memory, registers,
and processor stacks. JTAG-based emulation is non-intrusive and does not
effect target system loading or timing.

Differences From Previous SHARC
Processors

This section identifies differences between the ADSP-21161 processor and
previous SHARC processors: ADSP-21160, ADSP-21060, ADSP-21061,
ADSP-21062, and ADSP-21065. The ADSP-21161 processor preserves
much of the ADSP-2106x architecture and is comparable to the
ADSP-21160 with extended performance and functionality. For back-
ground information on SHARC and the ADSP-2106x Family processors,
see the ADSP-2106x SHARC User’s Manual or the ADSP-21065L SHARC
Technical Reference.
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Processor Core Enhancements

Computational bandwidth on the ADSP-21161 processor is significantly
greater than that on the ADSP-2106x DSPs. The increase comes from
raising the operational frequency and adding another processing element:
ALU, shifter, multiplier, and register file. The new processing element lets
the processor to process multiple data streams in parallel (SIMD mode).

Like the ADSP-21160, the program sequencer on the ADSP-21161 pro-
cessor differs from the ADSP-2106x family, having several enhancements:
new interrupt vector table definitions, SIMD mode stack and conditional
execution model, and instruction decodes associated with new instruc-
tions. Interrupt vectors have been added that detect illegal memory
accesses. Link port interrupt control has moved to a new register to sup-
port the additional DMA channels. Also, mode stack and mode mask
support has been added to improve context switch time.

As with the ADSP-21160, the data address generators on the
ADSP-21161 processor differ from the ADSP-2106x in that DAG2 (for
the PM bus) has the same addressing capability as DAG1 (for the DM
bus). The DAG registers move 64-bits per cycle. Additionally, the DAGs
support the new memory map and Long Word transfer capability. Circu-
lar buffering on the ADSP-21161 processor can be quickly disabled on
interrupts and restored on the return. Data “broadcast”, from one memory
location to both data register files, is determined by appropriate index reg-
ister usage.

Processor Internal Bus Enhancements

The PM, DM, and IO data buses on the ADSP-21161 processor have
increased on the ADSP-2106x processors to 64 bits. Additional multiplex-
ing and control logic on the ADSP-21161 processor enable 16-, 32-, or
64-bit wide moves between both register files and memory. The
ADSP-21161 processor is capable of broadcasting a single memory loca-
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tion to each of the register files in parallel. Also, the ADSP-21161
processor permits register contents to be exchanged between the two pro-
cessing elements’ register files in a single cycle.

Memory Organization Enhancements

The ADSP-21161 processor memory map differs from the ADSP-2106x’s
and is similar in organization to the ADSP-21160. The system memory
map on the ADSP-21161 processor supports double-word transfers each
cycle, reflects extended internal memory capacity for derivative designs,
and works with updated control register for SIMD support.

External Port Enhancements

The ADSP-21161 processor external port differs from the ADSP-2106x
DSPs. The data bus on the ADSP-21160 is 32-bits wide. A new packing
mode permits DMA for instructions and data to and from 8-bit external
memory. The ADSP-21161 processor has a new synchronous interface
that improves local bus switching frequency. Also, burst support on the
ADSP-21161 processor improves bus usage.

Host Interface Enhancements

The ADSP-21161 processor host interface differs from the ADSP-2106x
DSPs. It is 32-bit wide and supports 8-bit, 16- and 32-bit hosts. Although
the ADSP-21161 processor supports the ADSP-2106x asynchronous host
interface protocols, the ADSP-21161 processor also provides new syn-
chronous interface protocols for maximum throughput.

The host/local bus deadlock resolution function on the ADSP-21161 pro-
cessor is extended to the DMA controller. With this function the host (or
bridge) logic forces the local bus to wait until the host completes it’s
operation.
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Multiprocessor Interface Enhancements

The ADSP-21161 processor multiprocessor system interface supports
greater throughput than the ADSP-2106x DSPs. The throughput between
ADSP-21161 processors in a multiprocessing application increases due to
new shared bus transfer protocols, shared bus cycle time improvements
due to synchronous interface, and improvements in link port throughput.
The external port supports glueless multiprocessing, with distributed arbi-
tration for up to six ADSP-21161 processors.

IO Architecture Enhancements

The IO processor on the ADSP-21161 processor provides much greater
throughput than the ADSP-2106x DSPs. This section describes how the
link ports and DMA controller differ on the ADSP-21161 processor.

DMA Controller Enhancements

The ADSP-21161 processor DMA controller supports 14 channels com-
pared to 10 on the ADSP-2106x DSPs. New packing modes support the
64-bit internal busing. To resolve potential deadlock scenarios, the
ADSP-21161 processor DMA controller relinquishes the local bus in a
similar fashion to the processor core when host logic asserts both HBR and
SBTS.

Link Port Enhancements

The ADSP-21161 processor two link ports provide greater throughput
than the ADSP-2106x DSPs. The link port data bus width on the
ADSP-21161 processor is 8 bits wide (versus 4 bits on the ADSP-2106x
DSPs). Link port clock control on the ADSP-21161 processor supports a
wider frequency range.
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Differences From Previous SHARC Processors

Instruction Set Enhancements

ADSP-21161 processor provides source code compatibility with the previ-
ous SHARC family members, to the application assembly source code
level. All instructions, control registers, and system resources available in
the ADSP-21006x core programming model are available in ADSP-21161
processor. Instructions, control registers, or other facilities, required to
support the new feature set of ADSP-2116x core include the following.

* Code compatible to the ADSP-21160 SIMD core

* Supersets of the ADSP-2106x programming model

* Reserved facilities in the ADSP-2106x programming model

e Symbol name changes from the ADSP-2106x and ADSP-21161

processor programming models

These name changes can be managed through re-assembly using the
ADSP-21161 processor development tools to apply the ADSP-21161 pro-
cessor symbol definitions header file and linker description file. While
these changes have no direct impact on existing core applications, system
and I/O processor initialization code and control code do require
modifications.

Although the porting of source code written for the ADSP-2106x family
to ADSP-21161 processor has been simplified, code changes are required
to take full advantage of the new ADSP-21161 processor features. For
more information, see the ADSP-21160 SHARC DSP Instruction Set
Reference.
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INTRODUCTION

For More Information About Analog
Products

Analog Devices is online on the internet at http://www.analog.com. Our
web pages provide information on the company and products, including
access to technical information and documentation, product overviews,
and product announcements.

Additional information may be obtained about Analog Devices and its
products in any of the following ways:

* Visit our World Wide Web site at www.analog.com
» FAX questions or requests for information to 1(781)461-3010.

* Access the Computer Products Division File Transfer Protocol
(FTP) site at ftp ftp.analog.com or ftp 137.71.23.21 or
ftp://ftp.analog.com
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For Technical or Customer Support

For Technical or Customer Support

Our Customer Support group can be reached in the following ways:

E-mail questions to dsp.support@analog.com (hardware support),
dsptools.support@analog.com (software support) or
dsp.europe@analog.com (European customer support).

Contact your local ADI sales office or an authorized ADI
distributor

Send questions by mail to:

Analog Devices, Inc.
DSP Division

One Technology Way
P.0. Box 9106

Norwood, MA 02062-9106
USA

What’s New in This Manual

The fourth edition of the ADSP-21161 SHARC Processor Hardware Refer-
ence is revised based on the published document errata.
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INTRODUCTION

Related Documents

For more information about Analog Devices DSPs and development
products, see the following documents:

ADSP-21161 SHARC DSP Microcomputer Data Sheet
ADSP-21160 SHARC DSP Instruction Set Reference

Getting Started Guide for VisualDSP++ & ADSP-21xxx Family
DSPs

VisualDSP++ User's Guide for ADSP-21xxx Family DSPs

C/C++ Compiler & Library Manual for ADSP-21xxx Family DSPs
Assembler Manual for ADSP-21xxx Family DSPs

Linker & Utilities Manual for ADSP-21xxx Family DSPs

All the manuals are included in the software distribution CD-ROM. To
access these manuals, use the Help Topics command in the VisualDSP++
environment’s Help menu and select the Online Manuals book. From this

Help topic, you can open any of the manuals, which are in Adobe Acrobat
PDF format.
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Conventions

Conventions

The following are conventions that apply to all chapters. Note that addi-
tional conventions, which apply only to specific chapters, appear
throughout this document.

Table 1-1. Notation

Conventions

Example

Description

Close command
(File menu)

Titles in reference sections indicate the location of an item within the
Visual DSP++ environment’s menu system (for example, the Close
command appears on the File menu).

{this | that)

Alternative items in syntax descriptions appear within curly brackets
and separated by vertical bars; read the example as this or that. One
or the other is required.

[this | that]

Optional items in syntax descriptions appear within brackets and sepa-
rated by vertical bars; read the example as an optional this or that.

[this,..] Optional item lists in syntax descriptions appear within brackets
delimited by commas and terminated with an ellipse; read the example
as an optional comma-separated list of this.

.SECTION Commands, directives, keywords, and feature names are in text with
letter gothic font.

filename Non-keyword placeholders appear in text with italic style format.

Note: For correct operation, ...

A Note: provides supplementary information on a related topic. In the
online version of this book, the word Note appears instead of this
symbol.

®
N

Warning: Injury to device users may result if ...

A Warning: identifies conditions or inappropriate usage of the product
that could lead to conditions that are potentially hazardous for devices
users. In the online version of this book, the word Warning appears
instead of this symbol.

1-24

ADSP-21161 SHARC Processor Hardware Reference




2 PROCESSING ELEMENTS

The processor’s Processing Elements (PEx and PEy) perform numeric pro-
cessing for digital signal processing algorithms. Each processing element
contains a data register file and three computation units: an arith-
metic/logic unit (ALU), a multiplier, and a shifter. Computational
instructions for these elements include both fixed-point and floating-point
operations, and each computational instruction can execute in a single
cycle.

The computational units in a processing element handle different types of
operations. The ALU performs arithmetic and logic operations on
fixed-point and floating-point data. The multiplier does floating-point
and fixed-point multiplication and executes fixed-point multiply/add and
multiply/subtract operations. The shifter completes logical shifts, arith-
metic shifts, bit manipulation, field deposit, and field extraction
operations on 32-bit operands. Also, the Shifter can derive exponents.

Data flow paths through the computational units are arranged in parallel,
as shown in Figure 2-1. The output of any computation unit may serve as
the input of any computation unit on the next instruction cycle. Data
moving in and out of the computational units goes through a 10-port reg-
ister file, consisting of sixteen primary registers and sixteen alternate
registers. Two ports on the register file connect to the PM and DM data
buses, allowing data transfer between the computational units and mem-
ory (and anything else) connected to these buses.
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The processor’s assembly language provides access to the data register files
in both processing elements. The syntax lets programs move data to and
from these registers and specify a computation’s data format at the same
time with naming conventions for the registers. For information on the
data register names, see “Data Register File” on page 2-30.

Figure 2-1 provides a graphical guide to the other topics in this chapter.
First, a description of the MODE1 register shows how to set rounding, data
format, and other modes for the processing elements. Next, an examina-
tion of each computational unit provides details on operation and a
summary of computational instructions. Outside the computational units,
details on register files and data buses identify how to flow data for com-
putations. Finally, details on the processor’s advanced parallelism reveal
how to take advantage of multifunction instructions and SIMD mode.

2-2
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Setting Computational Modes

Setting Computational Modes

The MODE1 register controls the operating mode of the processing ele-
ments. Table A-2 on page A-3 lists all the bits in MODEL. The following bits
in MODE1 control computational modes.

Floating-point data format. Bit 16 (RND32) directs the computa-
tional units to round floating-point data to 32 bits (if 1) or round

to 40 bits (if 0).

Rounding mode. Bit 15 (TRUNC) directs the computational units to
round results with round-to-zero (if 1) or round-to-nearest (if 0).

ALU saturation. Bit 13 (ALUSAT) directs the computational units to
saturate results on positive or negative fixed-point overflows (if 1)
or return unsaturated results (if 0).

Short word sign extension. Bit 14 (SSE) directs the computational
units to sign extend short-word, 16-bit data (if 1) or zero-fill the
upper 16 bits (if 0).

Secondary processor element (PEy). Bit 21 (PEYEN) enables com-
putations in PEy—SIMD mode—(if 1) or disables PEy—SISD
mode—(if 0).

32-Bit (Normal Word) Floating-Point Format

In the default mode of the processor (RND32 bit=1), the multiplier and
ALU support a single-precision floating-point format, which is specified
in the IEEE 754/854 standard. For more information on this standard, see
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Processing Elements

For more information, see “Numeric Formats” on page C-1. This format
is IEEE 754/854 compatible for single-precision floating-point operations
in all respects except that:

* The processor does not provide inexact flags.

* NAN (“Not-A-Number”) inputs generate an invalid exception and
return a quiet NAN (all 1s).

* Denormal operands flush to zero when input to a computation
unit and do not generate an underflow exception. Any denormal or
underflow result from an arithmetic operation flushes to zero and
generates an underflow exception.

* The processor supports round to nearest and round toward zero
modes, but does not support round to +Infinity and round to
-Infinity.

IEEE Single-precision floating-point data uses a 23-bit mantissa with an
8-bit exponent plus sign bit. In this case, the computation unit sets the
eight LSBs of floating-point inputs to zeros before performing the opera-
tion. The mantissa of a result rounds to 23 bits (not including the hidden
bit), and the 8 LSBs of the 40-bit result clear to zeros to form a 32-bit
number, which is equivalent to the IEEE standard result.

In fixed-point to floating-point conversion, the rounding boundary is
always 40 bits even if the RND32 bit is set.

40-Bit Floating-Point Format

When in extended precision mode (RND32 bit=0), the processor supports a
40-bit extended precision floating-point mode, which has eight additional
LSBs of the mantissa and is compliant with the 754/854 standards; how-
ever, results in this format are more precise than the IEEE single-precision
standard specifies. Extended-precision floating-point data uses a 31-bit
mantissa with a 8-bit exponent plus sign bit.
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Setting Computational Modes

16-Bit (Short Word) Floating-Point Format

The processor supports a 16-bit floating-point storage format and pro-
vides instructions that convert the data for 40-bit computations. The
16-bit floating-point format uses an 11-bit mantissa with a 4-bit exponent
plus sign bit. The 16-bit data goes into bits 23 through 8 of a data register.
Two shifter instructions, Fpack and Funpack, perform the packing and
unpacking conversions between 32-bit floating-point words and 16-bit
floating-point words. The Fpack instruction converts a 32-bit IEEE float-
ing-point number in a data register into a 16-bit floating-point number.
Funpack converts a 16-bit floating-point number in a data register into a
32-bit IEEE floating-point number. Each instruction executes in a single
cycle.

When 16-bit data is written to bits 23 through 8 of a data register, the
processor automatically extends the data into a 32-bit integer (bits 39
through 8). If the SSE bit in MODE1 is set (1), the processor sign extends the
upper 16 bits. If the SSE bit is cleared (0), the processor zeros the upper 16
bits.

The 16-bit floating-point format supports gradual underflow. This
method sacrifices precision for dynamic range. When packing a number
that would have underflowed, the exponent clears to zero and the mantissa
(including “hidden” 1) right-shifts the appropriate amount. The packed
result is a denormal, which can be unpacked into a normal IEEE float-
ing-point number.

32-Bit Fixed-Point Format

The processor always represents fixed-point numbers in 32 bits, occupying
the 32 MSBs in 40-bit data registers. Fixed-point data may be fractional
or integer numbers and unsigned or twos-complement. Each computa-
tional unit has its own limitations on how these formats may be mixed for
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Processing Elements

a given operation. All computational units read the upper 32 bits of data
(inputs, operands) from the 40-bit registers (ignoring the 8 LSBs) and
write results to the upper 32 bits (zeroing the 8 LSBs).

Rounding Mode

The TRUNC bit in the MODE1 register determines the rounding mode for all
ALU operations, all floating-point multiplies, and fixed-point multiplies
of fractional data. The processor supports two modes of rounding:
round-toward-zero and round-toward-nearest. The rounding modes com-

ply with the IEEE 754 standard and have the following definitions.

* Round-Toward-Zero (TRUNC bit=1). If the result before rounding
is not exactly representable in the destination format, the rounded
result is the number that is nearer to zero. This definition is equiv-
alent to truncation.

* Round-Toward-Nearest (TRUNC bit=0). If the result before round-
ing is not exactly representable in the destination format, the
rounded result is the number that is nearer to the result before
rounding. If the result before rounding is exactly halfway between
two numbers in the destination format (differing by an LSB), the
rounded result is the number that has an LSB equal to zero.

Statistically, rounding up occurs as often as rounding down, so there is no
large sample bias. Because the maximum floating-point value is one LSB

less than the value that represents Infinity, a result that is halfway between
the maximum floating-point value and Infinity rounds to Infinity in this

mode.

Though these rounding modes comply with standards set for float-
ing-point data, they also apply for fixed-point multiplier operations on
fractional data. The same two rounding modes are supported, but only the
round-to-nearest operation is actually performed by the multiplier. Using
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Using Computational Status

its local result register for fixed-point operations, the multiplier
rounds-to-zero by reading only the upper bits of the result and discarding
the lower bits.

Using Computational Status

The multiplier and ALU each provide exception information when exe-
cuting floating-point operations. Each unit updates overflow, underflow,
and invalid operation flags in the processing element’s arithmetic status
(ASTATx and ASTATy) register and sticky status (STKYx and STKYy) register.
An underflow, overflow, or invalid operation from any unit also generates
a maskable interrupt. There are three ways to use floating-point excep-
tions from computations in program sequencing:

Interrupts. Enable interrupts and use an interrupt service routine
to handle the exception condition immediately. This method is
appropriate if it is important to correct all exceptions as they occur.

ASTATx and ASTATy registers. Use conditional instructions to test
the exception flags in the ASTATx or ASTATy register after the
instruction executes. This method permits monitoring each
instruction’s outcome.

STKYx and STKYy registers. Use the Bit T'st instruction to examine
exception flags in the STKY register after a series of operations. If
any flags are set, some of the results are incorrect. This method is
useful when exception handling is not critical.

More information on ASTAT and STKY status appears in the sections that
describe the computational units. For summaries relating instructions and

status bits, see Table 2-1, Table 2-2, Table 2-4, Table 2-6, and Table 2-7.
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Arithmetic Logic Unit (ALU)

The ALU performs arithmetic operations on fixed-point or floating-point
data and logical operations on fixed-point data. ALU fixed-point instruc-
tions operate on 32-bit fixed-point operands and output 32-bit
fixed-point results. ALU floating-point instructions operate on 32-bit or
40-bit floating-point operands and output 32-bit or 40-bit floating-point
results. ALU instructions include:

* Floating-point addition, subtraction, add/subtract, average
* Fixed-point addition, subtraction, add/subtract, average
* Floating-point manipulation: binary log, scale, mantissa

* Fixed-point add with carry, subtract with borrow, increment,
decrement

* Logical And, Or, Xor, Not
* Functions: Abs, pass, min, max, clip, compare
* Format conversion

* Reciprocal and reciprocal square root primitives

ALU Operation

ALU instructions take one or two inputs: X input and Y input. These
inputs (also known as operands) can be any data registers in the register
file. Most ALU operations return one result; in add/subtract operations,
the ALU operation returns two results, and in compare operations, the
ALU operation returns no result (only flags are updated). ALU results can
be returned to any location in the register file.
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Arithmetic Logic Unit (ALU)

The processor transfers input operands from the register file during the
first half of the cycle and transfers results to the register file during the sec-
ond half of the cycle. With this arrangement, the ALU can read and write
the same register file location in a single cycle. If the ALU operation is
fixed-point, the inputs are treated as 32-bit fixed-point operands. The
ALU transfers the upper 32 bits from the source location in the register
file. For fixed-point operations, the result(s) are always 32-bit fixed-point
values. Some floating-point operations (Logb, Mant and Fix) can also
yield fixed-point results.

The processor transfers fixed-point results to the upper 32 bits of the data
register and clears the lower eight bits of the register. The format of
fixed-point operands and results depends on the operation. In most arith-
metic operations, there is no need to distinguish between integer and
fractional formats. Fixed-point inputs to operations such as scaling a float-
ing-point value are treated as integers. For purposes of determining status
such as overflow, fixed-point arithmetic operands and results are treated as
twos-complement numbers.

ALU Saturation

When the ALUSAT bit is set (1) in the MODE1 register, the ALU is in satura-
tion mode. In this mode, all positive fixed-point overflows return the
maximum positive fixed-point number (0x7FFF FFFF), and all negative
overflows return the maximum negative number (0x8000 0000).

When the ALUSAT bit is cleared (0) in the MODE1 register, fixed-point results
that overflow are not saturated; the upper 32 bits of the result are returned
unaltered.

The ALU overflow flag reflects the ALU result before saturation.
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ALU Status Flags

ALU operations update seven status flags in the processing element’s
Arithmetic Status (ASTATx and ASTATy) register. Table A-4 on page A-18
lists all the bits in these registers. The following bits in ASTATx or ASTATy
flag ALU status (a 1 indicates the condition) for the most recent ALU
operation:

e ALU result zero or floating-point underflow. Bit 0 (A7)

* ALU overflow. Bit 1 (AV)

e ALU result negative. Bit 2 (AN)

* ALU fixed-point carry. Bit 3 (AC)

e ALU X input sign for Abs, Mant operations. Bit 4 (AS)

* ALU floating-point invalid operation. Bit 5 (AI)

e Last ALU operation was a floating-point operation. Bit 10 (AF)

e Compare Accumulation register results of last 8 compare opera-
tions. Bits 31-24 (CACC)

ALU operations also update four “sticky” status flags in the processing ele-
ment’s Sticky status (STKYx and STKYy) register. “Sticky Status Registers
(STKYx and STKYy)” on page A-18 lists all the bits in these registers. The
following bits in STKYx or STKYy flag ALU status (a 1 indicates the condi-
tion). Once set, a sticky flag remains high until explicitly cleared:

* ALU floating-point underflow. Bit 0 (AUS)
* ALU floating-point overflow. Bit 1 (AVS)
* ALU fixed-point overflow. Bit 2 (A05)

* ALU floating-point invalid operation. Bit 5 (A1S)
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Arithmetic Logic Unit (ALU)

Flag update occurs at the end of the cycle in which the status is generated
and is available on the next cycle. If a program writes the arithmetic status
register or sticky status register explicitly in the same cycle that the ALU is
performing an operation, the explicit write to the status register supersedes

any flag update from the ALU operation.

ALU Instruction Summary

Table 2-1 and Table 2-2 list the ALU instructions and how they relate to
ASTATx,y and STKYx,y flags. For more information on assembly language
syntax, see the ADSP-21160 SHARC DSP Instruction Set Reference. In
these tables, note the meaning of the following symbols.

* Rn, Rx, Ry indicate any register file location; treated as fixed-point

* Fn, Fx, Fy indicate any register file location; treated as
floating-point

* *indicates the flag may be set or cleared, depending on results of
instruction

* **indicates the flag may be set (but not cleared), depending on
results of instruction

e —indicates no effect
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Table 2-1. Fixed-Point ALU Instruction Summary

Instruction ASTATx,y Status Flags STKYx,y Status Flags
Fixed-Point: A |AV|A |A [AS|Al [AF|C |A |AV|A |AI

V4 N |C A |US|S |O |S

C S
C

Rn = Rx + Ry *ox x x 0 0 0 |- - - = _
Rn = Rx — Ry *ox o x x 0 0 0 |- - - = _
Rn =Rx + Ry + CI * * * * 0 0 0o |- - = *= _
Rn=Rx—Ry+CI-1 *ox ox o x 0 0 0 |- - - = _
Rn = (Rx + Ry)/2 0 * * 0 0 0 |- - - - -
COMP(Rx, Ry) * 0 * 0 0 0 o0 |* - - - -
COMPU(Rx,Ry) *x 0 * 0 0 0 0 |* - — - _
Rn=Rx + CI * * * * 0 0 0o |- - = ¥ _
Rn=Rx+CI-1 * * * * 0 0 0o |- - = *= _
Rn=Rx+1 *ox o 0 0 0 |- - - ¥ _
Rn=Rx-1 * * * * 0 0 0o |- - = > _
Rn = -Rx * * * * 0 0 0o |- - = *= _
Rn = ABS Rx * * 0 0 * 0 0o |- - - > _
Rn = PASS Rx * 0o = o o o o0 |- - - - =
Rn = Rx AND Ry * 0o o o o o0 |- - - - =
Rn = Rx OR Ry * 0 * 0 0 0 0 |- - - - -
Rn = Rx XOR Ry * 0o = o o o o0 |- - - - =
Rn = NOT Rx * 0o o o o o0 |- - - - =
Rn = MIN(Rx, Ry) * 0 * 0 0 0 0o |- - - - ~Z
Rn = MAX(Rx, Ry) * 0 * 0 0 0 0 |- - - - -
Rn = CLIP Rx BY Ry * 0 * 0 0 0 o |- - - = =
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Arithmetic Logic Unit (ALU)

Table 2-2. Floating-Point ALU Instruction Summary

Instruction ASTATx,y Status Flags STKYx,y Status Flags
Floating—Point: AZ |AV | AN |AC |AS |AlI |AF |CA |AU |AV |AO |AIS
CC (S S S

Fn = Fx + Fy * * * 0 0 * 1 — oK oK — ok
Fn = Fx - Fy * * * 0 0 * 1 _ T ok
Fn = ABS (Fx + Fy) * * 0 0 0 * 1 - ok Rk ok
Fn = ABS (Fx - Fy) * * 0 0 0 * 1 - A Hox
Fn = (Fx + Fy)/2 * 0 * 0 0 * 1 - A - o
COMP(Fx, Fy) * 0 * 0 0 * 1 * - - - *x
Fn = —Fx * * * 0 0 * 1 _ _ o _ -
Fn = ABS Fx * * 0 0 * * 1 - - R *ox
Fn = PASS Fx * 0 * 0 0 * 1 — — — — *k
Fn = RND Fx * * * 0 0 * 1 - - * - x
Fn = SCALB Fx BY Ry * * * 0 0 * 1 - R *ox
Rn = MANT Fx * * 0 0 * * 1 - - * ox
Rn = LOGB Fx * * * 0 0 * 1 - - R o
Rn = FIX Fx BY Ry * * * 0 0 * 1 - A Hox
Rn = FIX Fx * * * 0 0 * 1 - oo ox
Fn = FLOAT Rx BY Ry * * * 0 0 0 1 - ook -
Fn = FLOAT Rx * 0 * 0 0 0 1 - - - — —
Fn = RECIPS Fx * * * 0 0 * 1 - R N x
Fn = RSQRTS Fx * * * 0 0 * 1 - - R o
Fn = Fx COPYSIGN Fy * 0 * 0 0 * 1 - - - - *ox
Fn = MIN(Fx, Fy) * 0 * 0 0 * 1 - - - - *x
Fn = MAX(Fx, Fy) * 0 * 0 0 * 1 - - - - ok
Fn = CLIP Fx BY Fy * 0 * 0 0 * 1 - - - - *ox
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Multiply—Accumulator (Multiplier)

The multiplier performs fixed-point or floating-point multiplication and
fixed-point multiply/accumulate operations. Fixed-point multiply/accu-
mulates are available with either cumulative addition or cumulative
subtraction. Multiplier floating-point instructions operate on 32-bit or
40-bit floating-point operands and output 32-bit or 40-bit floating-point
results. Multiplier fixed-point instructions operate on 32-bit fixed-point
data and produce 80-bit results. Inputs are treated as fractional or integer,
unsigned or twos-complement. Multiplier instructions include:

* Floating-point multiplication
* Fixed-point multiplication
* Fixed-point multiply/accumulate with addition, rounding optional

 Fixed-point multiply/accumulate with subtraction, rounding
optional

* Rounding result register
 Saturating result register

* Clearing result register

Multiplier Operation

The multiplier takes two inputs: X input and Y input. These inputs (also
known as operands) can be any data registers in the register file. The
multiplier can accumulate fixed-point results in the local Multiplier Result
(MRF) registers or write results back to the register file. The results in MRF
can also be rounded or saturated in separate operations. Floating-point
multiplies yield floating-point results, which the multiplier always writes
directly to the register file.
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Multiply—Accumulator (Multiplier)

The multiplier transfers input operands during the first half of the cycle
and transfers results during the second half of the cycle. With this arrange-
ment, the multiplier can read and write the same register file location in a
single cycle.

For fixed-point multiplies, the multiplier reads the inputs from the upper
32 bits of the data registers. Fixed-point operands may be either both in
integer format or both in fractional format. The format of the result
matches the format of the inputs. Each fixed-point operand may be either
an unsigned or a twos-complement number. If both inputs are fractional
and signed, the multiplier automatically shifts the result left one bit to
remove the redundant sign bit. The register name(s) within the multiplier
instruction specify input data type(s)—Fx for floating-point and Rx for
fixed-point.

Multiplier (Fixed-Point) Result Register

Fixed-point operations place 80-bit results in the multiplier’s foreground
MRF register or background MRB register, depending on which is active. For
more information on selecting the result register, see “Alternate (Second-
ary) Data Registers” on page 2-32.

The location of a result in the MRF register’s 80-bit field depends on
whether the result is in fractional or integer format, as shown in

Figure 2-2. If the result is sent directly to a data register, the 32-bit result
with the same format as the input data is transferred, using bits 63-32 for
a fractional result or bits 31-0 for an integer result. The eight LSBs of the
40-bit register file location are zero-filled.
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79 63 31 0
MRF2 MRF1 MRFO
OVERFLOW| FRACTIONAL RESULT UNDERFLOW
OVERFLOW OVERFLOW INTEGER RESULT

Figure 2-2. Multiplier Fixed-Point Result Placement

Fractional results can be rounded-to-nearest before being sent to the regis-
ter file. If rounding is not specified, discarding bits 31-0 effectively
truncates a fractional result (rounds to zero). For more information on
rounding, see “Rounding Mode” on page 2-7.

The MRF register is divided into MRF2, MRF1, and MRFO registers, which can
be individually read from or written to the register file. Each of these reg-
isters has the same format. When data is read from MRF2, it is
sign-extended to 32 bits as shown in Figure 2-3. The processor zero fills
the eight LSBs of the 40-bit register file location when data is read from
MRF2, MRF1, or MRFO to the register file. When the processor writes data into
MRF2, MRF1, or MRFO from the 32 MSBs of a register file location, the eight
LSBs are ignored. Data written to MRF1 is sign-extended to MRF2, repeating
the MSB of MRF1 in the 16 bits of MRF2. Data written to MRFO is not
sign-extended.
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16BITS 16 BITS 16BITS

SIGN EXTEND MRF2 ZEROS

| 32BITS 8 BITS

MRF1 ZEROS

32-BITS 8-BITS

MRFO ZEROS

Figure 2-3. MR Transfer Formats

In addition to multiplication, fixed-point operations include accumula-
tion, rounding and saturation of fixed-point data. There are three MRF
register operations: Clear, Round, and Saturate.

The clear operation—MRF=0—resets the specified MRF register to zero.
Often, it is best to perform this operation at the start of a multiply/accu-
mulate operation to remove results left over from the previous operation.

The rounding operation—MRF=Rnd MRF—applies only to fractional
results, so integer results are not effected. This operation rounds the
80-bit MRF value to nearest at bit 32; for example, the MRF1-MRFO boundary.
Rounding of a fixed-point result occurs either as part of a multiply or mul-
tiply/accumulate operation or as an explicit operation on the MRF register.
The rounded result in MRF1 can be sent either to the register file or back to
the same MRF register. To round a fractional result to zero (truncation)
instead of to nearest, a program would transfer the unrounded result from
MRF1, discarding the lower 32 bits in MRFO.

The saturate operation—MRF=Sat MRF—sets MRF to a maximum value if the
MRF value has overflowed. Overflow occurs when the MRF value is greater
than the maximum value for the data format—unsigned or twos-comple-
ment and integer or fractional—as specified in the saturate instruction.
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The six possible maximum values appear in Table 2-3. The result from
MRF saturation can be sent either to the register file or back to the same MRF

register.

Table 2-3. Fixed-Point Format Maximum Values (For Saturation)

Maximum Number (Hexadecimal)
MREF2 MRF1 MRFO0

2’s complement fractional (positive) 0000 7FFF FFFF FFFF FFFF
2’s complement fractional (negative) FFFF 8000 0000 0000 0000
2’s complement integer (positive) 0000 0000 0000 7FFF FFFF
2’s complement integer (negative) FFEF FFFF FFFF 8000 0000
Unsigned fractional number 0000 FFFF FFFF FFFF FFFF
Unsigned integer number 0000 0000 0000 FFFF FFFF

Multiplier Status Flags

Multiplier operations update four status flags in the processing element’s
arithmetic status register (ASTATx and ASTATy). Table A-5 on page A-19
lists all the bits in these registers. The following bits in ASTATx or ASTATy
flag multiplier status (a 1 indicates the condition) for the most recent mul-

tiplier operation.

* Multiplier result negative. Bit 6 (MN)

* Multiplier overflow. Bit 7 (MV)

* Multiplier underflow. Bit 8 (MU)

* Multiplier floating-point invalid operation. Bit 9 (MI)
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Multiplier operations also update four “sticky” status flags in the process-
ing element’s Sticky status (STKYx and STKYy) register. Table A-5 on

page A-19 lists all the bits in these registers. The following bits in STKYx or
STKYy flag multiplier status (a 1 indicates the condition). Once set, a sticky
flag remains high until explicitly cleared:

Multiplier fixed-point overflow. Bit 6 (M0S)
Multiplier floating-point overflow. Bit 7 (MVS)
Multiplier underflow. Bit 8 (MUS)

Multiplier floating-point invalid operation. Bit 9 (MIS)

Flag update occurs at the end of the cycle in which the status is generated
and is available on the next cycle. If a program writes the arithmetic status
register or sticky register explicitly in the same cycle that the multiplier is
performing an operation, the explicit write to ASTAT or STKY supersedes
any flag update from the multiplier operation.

Multiplier Instruction Summary

Table 2-4 and Table 2-6 list the Multiplier instructions and how they
relate to ASTATx,y and STKYx,y flags. For more information on assembly
language syntax, see the ADSP-21160 SHARC DSP Instruction Set Refer-

ence. In these tables, note the meaning of the following symbols.

Rn, Rx, Ry indicate any register file location; treated as fixed-point

Fn, Fx, Fy indicate any register file location; treated as
floating-point

* indicates the flag may be set or cleared, depending on results of
instruction

** indicates the flag may be set (but not cleared), depending on
results of instruction

2-20
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¢ _indicates no effect

* The Input Mods column indicates the types of optional modifiers

that you can apply to the instructions inputs. For a list of modifi-
ers, see Table 2-5.

Table 2-4. Fixed-Point Multiplier Instruction Summary

Instruction Input ASTATx,y Flags STKYx,y Flags
Fixed-Point: Mods MU |MN |[MV |MI |MUS |MOS |MVS | MIS
For Input Mods, see

Table 2-5

Rn = Rx * Ry 1 * * * 0 - - -
MRF = Rx * Ry 1 * * * 0 - o -
MRB = Rx * Ry 1 * * * 0 - wo -
Rn = MRF + Rx * Ry 1 * * * 0 - o _
Rn = MRB + Rx * Ry 1 * * * 0 - LT -
MRF = MRF + Rx *Ry | 1 * * * 0 - ® o -
MRB = MRB + Rx *Ry | 1 * * * 0 - o -
Rn = MRF - Rx * Ry 1 * * * 0 - LB -
Rn = MRB - Rx * Ry 1 * * * 0 - ®o -
MRF = MRF - Rx *Ry | 1 * * * 0 - L -
MRB = MRB - Rx *Ry | 1 * * * 0 - o -
Rn = SAT MRF 2 * * * 0 - C— _
Rn = SAT MRB 2 * * * 0 - o _
MRF = SAT MRF 2 * * * 0 - LT -
MRB = SAT MRB 2 * * * 0 - ® -
Rn = RND MRF 3 * * * 0 - o -
Rn = RND MRB 3 * * * 0 - oo _
MRF = RND MRF 3 * * * 0 - o -
MRB = RND MRB 3 * * * 0 - o -
MRF = 0 - - - - - - - - -
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Table 2-4. Fixed-Point Multiplier Instruction Summary (Contd)

Instruction Input ASTATx,y Flags STKYx,y Flags

Fixed-Point: Mods MU |MN |MV |[MI |MUS |MOS|MVS | MIS

For Input Mods, see
Table 2-5

MRB = 0 - - - - - - - - -

MRxF = Rn - - - - - - - - -
MRxB = Rn - - - - - - - - -
Rn = MRxF - - - - - - - - -

Rn = MRxB - - - - - - - - -

Table 2-5. Input Modifiers For Fixed-Point Multiplier Instruction

Input Input Mods—Options For Fixed-point Multiplier Instructions
Mods from Note the meaning of the following symbols in this table:
Table 2-4 . .
SSigned input
UUnsigned input
IInteger input(s)
FFractional input(s)
FRFractional inputs, Rounded output
Note that (SF) is the default format for 1-input operations, and (SSF) is the default
format for 2-input operations
1 (SSF), (SSI), (SSFR), (SUF), (SUI), (SUFR), (USF), (USI), (USFR), (UUF), (UUI), or
(UUFR)
2 (SF), (SI), (UF), or (UI)
3 (SF) or (UF)

Table 2-6. Floating-Point Multiplier Instruction Summary

Instruction ASTATx,y Flags STKYx,y Flags
Floating-Point: MU [MN [MV [MI |MUS | MOS|MvVs | MIs
Fn = FX * Fy * * * * Xk _ Xk kK
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Barrel-Shifter (Shifter)

The shifter performs bit-wise operations on 32-bit fixed-point operands.
Shifter operations include:

 Shifts and rotates from off-scale left to off-scale right

* Bit manipulation operations, including bit set, clear, toggle, and
test

* Bit field manipulation operations, including extract and deposit
* Fixed-point/floating-point conversion operations, including expo-

nent extract, number of leading 1s or Os

Shifter Operation

The shifter takes from one to three inputs: X-input, Y-input, and Z-input.
The inputs (also known as operands) can be any register in the register
file. Within a shifter instruction, the inputs serve as follows.

* The X-input provides data that is operated on

e The Y-input specifies shift magnitudes, bit field lengths or bit

positions
e The Z-input provides data that is operated on and updated

In the following example, Rx is the X-input, Ry is the Y-input, and Rn is
the Z-input. The shifter returns one output (Rn) to the register file.

Rn = Rn OR LSHIFT Rx BY Ry;

As shown in Figure 2-4, the shifter fetches input operands from the upper
32 bits of a register file location (bits 39-8) or from an immediate value in
the instruction. The shifter transfers operands during the first half of the
cycle and transfers the result to the upper 32 bits of a register (with the
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eight LSBs zero-filled) during the second half of the cycle. With this
arrangement, the shifter can read and write the same register file location
in a single cycle.

The X-input and Z-input are always 32-bit fixed-point values. The
Y-input is a 32-bit fixed-point value or an 8-bit field (shf8), positioned in
the register file. These inputs appear in Figure 2-4.

Some shifter operations produce 8-bit or 6-bit results. As shown in
Figure 2-5, the shifter places these results in either the shf8 field or the
bit6 field and sign-extends the results to 32 bits. The shifter always returns
a 32-bit result.

39 7 0

32-BIT Y-INPUT OR RESULT

39 15 7 0

SHF8

8-BIT Y-INPUT OR RESULT
Figure 2-4. Register File Fields for Shifter Instructions

The shifter supports bit field deposit and bit field extract instructions for
manipulating groups of bits within an input. The Y-input for bit field
instructions specifies two 6-bit values: bit6 and len6, which are positioned
in the Ry register as shown in Figure 2-5. The shifter interprets bit6 and
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len6 as positive integers. Bit6 is the starting bit position for the deposit or
extract, and lenG is the bit field length, which specifies how many bits are
deposited or extracted.

39 32 24 16 8 0
R2 | 00000000 | 00000000 | 00000010|00010000| 00000000 | 0x0000 0210 00
lené bité len6 =8
bit6 = 16
39 32 24 16 8 0
R1 OOOOOOOO| 00000000| 00000000 | 1131113113 00000000 | 0x0000 OOFF 00
16 8 0
39 32 24 16 8 0
RO | 00000000 | 11111111| 00000000 | 00000000 | 00000000 | OXOOFF 0000 00
16 8 O’T‘
Starting bit Reference
position point
for deposit

Figure 2-5. Register File Fields for FDEP, FEXT Instructions

Field deposit (Fdep) instructions take a group of bits from the input regis-
ter (starting at the LSB of the 32-bit integer field) and deposit the bits as
directed anywhere within the result register. The bit6 value specifies the
starting bit position for the deposit. Figure 2-7 shows how the inputs, bit6
and len6, work in an field deposit instruction (Rn=Fdep Rx By Ry).

Figure 2-8 shows bit placement for the field deposit instruction R0 = FDEP
R1 BY RZ;.

Field extract (Fext) instructions extract a group of bits as directed from
anywhere within the input register and place them in the result register
(aligned with the LSB of the 32-bit integer field). The bit6 value specifies
the starting bit position for the extract. Figure 2-8 shows bit placement for
the following field extract instruction R3 = FEXT R4 BY R5;
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39 32 24 16 8 0
R2 | 00000000 | 00000000 | 00000010| 00010000 | 00000000 | 0x0000 0210 00

len6 bité len6 = 8
bité = 16
39 32 24 16 8 0
R1 00000000 | 00000000 | 00000000 | 111422111 00000000 | 0x0000 OOFF 00
)
16 8 0
39 32 _—Y 24 16 8 0
RO | 00000000 11111111|00000000 00000000|00000000 0x00FF 0000 00
164\ 8 O’T‘
Starting bit Reference
position point

for deposit

Figure 2-6. Bit Field Deposit Example

39 19 13 7 0

LEN6 BIT6

RY|

RY DETERMINES LENGTH OF BIT FIELD TO TAKE FROM RX AND STARTING POSITION FOR DEPOSIT IN RN

39 7 0

| — |

LEN6 = NUMBER OF BITS TO TAKE FROM RX, STARTING FROM LSB OF 32-BIT FIELD

39 7 0

RN | DEPOSIT FIELD | | |

A A

BIT6 REFERENCE POINT

BIT6 = STARTING BIT POSITION FOR DEPOSIT, REFERENCED FROM LSB OF 32-BIT FIELD

Figure 2-7. Bit Field Deposit Instruction
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39 32 24 16 8 0
R5 | 00000000 | 00000000 | 00000010| 00010111 00000000 | 0x0000 021700

len6 bité len6 = 8
bité = 23
39 32 24 16 8 0
R4 1@@@@111| 10000000 | 00000000 00000000| 00000000 | 0x8710 0000 00
gﬁ 16 8 0
Starting bit position Reference point
for deposit
39 32 24 16 —F—8 0
R3 | 00000000 | 00000000 | 00000000 @U@@1111| 00000000 | 0x0000 OOOF 00

16 8 0

Figure 2-8. Bit Field Extract Example

Shifter Status Flags

Shifter operations update three status flags in the processing element’s
arithmetic status register (ASTATx and ASTATy). Table A-4 on page A-13
lists all the bits in these registers. The following bits in ASTATx or ASTATy
indicate shifter status (a 1 indicates the condition) for the most recent
ALU operation:

* Shifter overflow of bits to left of MSB. Bit 11 (SV)
e Shifter result zero. Bit 12 (57)
* Shifter input sign for exponent extract only. Bit 13 (S5S)

Flag update occurs at the end of the cycle in which the status is generated
and is available on the next cycle. If a program writes the arithmetic status
register explicitly in the same cycle that the shifter is performing an opera-
tion, the explicit write to ASTAT supersedes any flag update caused by the
shift operation.
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Shifter Instruction Summary

Table 2-7 lists the Shifter instructions and how they relate to ASTATx, y

flags. For more information on assembly language syntax, see the
ADSP-21160 SHARC DSP Instruction Set Reference. In these tables, note
the meaning of the following symbols:

* Rn, Rx, Ry indicate any register file location; bit fields used
depend on instruction

* Fn, Fx indicate any register file location; floating-point word

* *indicates the flag may set or cleared, depending on data

Table 2-7. Shifter Instruction Summary

Instruction ASTATx,y Flags
SZ NY% SS

Rn = LSHIFT Rx BY Ry * * 0
Rn = LSHIFT Rx BY <data8> * * 0
Rn = Rn OR LSHIFT Rx BY Ry * * 0
Rn = Rn OR LSHIFT Rx BY <data8> * * 0
Rn = ASHIFT Rx BY Ry * * 0
Rn = ASHIFT Rx BY<data8> * * 0
Rn = Rn OR ASHIFT Rx BY Ry * * 0
Rn = Rn OR ASHIFT Rx BY <data8> * * 0
Rn = ROT Rx BY Ry * 0 0
Rn = ROT Rx BY <data8> * 0 0
Rn = BCLR Rx BY Ry * * 0
Rn = BCLR Rx BY <data8> * * 0
Rn = BSET Rx BY Ry * * 0
Rn = BSET Rx BY <data8> * * 0
Rn = BTGL Rx BY Ry * * 0
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Table 2-7. Shifter Instruction Summary (Cont'd)

Instruction ASTATx,y Flags
SZ | sv sS

Rn = BTGL Rx BY <data8> * * 0
BTST Rx BY Ry * * 0
BTST Rx BY <data8> * * 0
Rn = FDEP Rx BY Ry * * 0
Rn = FDEP Rx BY <bit6>:<len6> * * 0
Rn = Rn OR FDEP Rx BY Ry * * 0
Rn = Rn OR FDEP Rx BY <bit6>:<len6> * * 0
Rn = FDEP Rx BY Ry (SE) * * 0
Rn = FDEP Rx BY <bit6>:<len6> (SE) * * 0
Rn = Rn OR FDEP Rx BY Ry (SE) * * 0
Rn = Rn OR FDEP Rx BY <bit6>:<len6> (SE) * * 0
Rn = FEXT Rx BY Ry * * 0
Rn = FEXT Rx BY <bit6>:<len6> * * 0
Rn = FEXT Rx BY Ry (SE) * * 0
Rn = FEXT Rx BY <bit6>:<len6> (SE) * * 0
Rn = EXP Rx (EX) * 0 *
Rn = EXP Rx * 0 *
Rn = LEFTZ Rx * * 0
Rn = LEFTO Rx * * 0
Rn = FPACK Fx 0 * 0
Fn = FUNPACK Rx 0 0 0
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Data Register File

Each of the processor’s processing elements has a data register file: a set of
data registers that transfer data between the data buses and the computa-
tion units. These registers also provide local storage for operands and
results.

The two register files each consist of 16 primary registers and 16 alternate
(secondary) registers. All of the data registers are 40 bits wide. Within
these registers, 32-bit data is always left-justified. If an operation specifies
a 32-bit data transfer to these 40-bit registers, the eight LSBs are ignored
on register reads, and the eight LSBs are cleared to zeros on writes.

Program memory data accesses and data memory accesses to/from the reg-
ister file(s) occur on the PM data bus and DM data bus, respectively. One
PM data bus access for each processing element and/or one DM data bus

access for each processing element can occur in one cycle. Transfers

between the register files and the DM or PM data buses can move up to
64-bits of valid data on each bus.

If an operation specifies the same register file location as both an input
and output, the read occurs in the first half of the cycle and the write in
the second half. With this arrangement, the processor uses the old data as
the operand, before updating the location with the new result data. If
writes to the same location take place in the same cycle, only the write
with higher precedence actually occurs. The processor determines prece-
dence for the write operation from the source of the data; from highest to
lowest, the precedence is:

1. Data memory or universal register
2. Program memory

3. PEx ALU

4. PEy ALU
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PEx Multiplier
PEy Multiplier
PEx Shifter

© N

PEy Shifter

The data register file in Figure 2-1 on page 2-3 lists register names of RO
through R15 within PEX’s register file. When a program refers to these
registers as RO through R15, the computational units treat the registers’
contents as fixed-point data. To perform floating point computations,
refer to these registers as FO through F15. For example, the following
instructions refer to the same registers, but direct the computational units
to perform different operations:

FO=F1 * F2; /*floating-point multiply*/

RO=R1 * R2; /*fixed-point multiply*/

The F and R prefixes on register names do not effect the 32-bit or 40-bit
data transfer; the naming convention only determines how the ALU, mul-
tiplier, and shifter treat the data.

To maintain compatibility with code written for previous SHARC
DSPs, the assembly syntax accommodates references to PEx data
registers and PEy data registers.

Code may only refer to the PEy data registers (S0 through $15) for data
move instructions. The rules for using register names are as follows.

* RO through R15 and F0 through F15 always refer to PEx registers for
data move and computational instructions, whether the processor

is in SISD or SIMD mode
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e RO through R15 and FO through F15 refer to both PEx and PEy reg-
ister for computational instructions in SIMD mode

* S0 through S15 always refer to PEy registers for data move instruc-
tions, whether the processor is in SISD or SIMD mode

For more information on SISD and SIMD computational operations, see
“Alternate (Secondary) Data Registers” on page 2-32. For more informa-
tion on ADSP-21161 processor assembly language, see the ADSP-21160
SHARC DSP Instruction Set Reference.

Alternate (Secondary) Data Registers

Each register file has an alternate register set. To facilitate fast context
switching, the processor includes alternate register sets for data, results,
and data address generator registers. Bits in the MODE1 register control
when alternate registers become accessible. While inaccessible, the con-
tents of alternate registers are not effected by processor operations. Note
that there is a one cycle latency between writing to MODEL and being able to
access an alternate register set. The alternate register sets for data and
results are described in this section. For more information on alternate
data address generator registers, see the DAG “Alternate (Secondary) Data
Registers” on page 2-32.

Bits in the MODE1 register can activate independent-alternate-data-register
sets: the lower half (R0-R7 and S0-57) and the upper half (R8-R15 and
$8-515). To share data between contexts, a program places the data to be
shared in one half of either the current processing element’s register file or
the opposite processing element’s register file and activates the alternate
register set of the other half. For information on how to activate alternate
data registers, see the description on page 2-33.

Each multiplier has a primary or foreground (MRF) register and alternate or
background (MRB) results register. A bit in the MODE1 register selects which
result register receives the result from the multiplier operation, swapping

2-32 ADSP-21161 SHARC Processor Hardware Reference



Processing Elements

which register is the current MRF or MRB. This swapping facilitates context
switching. Unlike other registers that have alternates, both MRF and MRB are
accessible at the same time. All fixed-point multiplies can accumulate
results in either MRF or MRB, without regard to the state of the MODE1 regis-
ter. With this arrangement, code can use the result registers as primary
and alternate accumulators, or code can use these registers as two parallel
accumulators. This feature facilitates complex math.

The MODE1 register controls the access to alternate registers. Table A-2 on
page A-3 lists all the bits in MODEL. The following bits in MODE1 control
alternate registers (a 1 enables the alternate set).

* Secondary registers for computation unit results. Bit 2 (SRCU)

* Secondary registers for hi register file, R8-R15 and S8-15. Bit 7
(SRRFH)

* Secondary registers for lo register file, R0O-R7 and S0-S7. Bit 10
(SRRFL)

The following example demonstrates how code should handle the one
cycle of latency from the instruction setting the bit in MODE1 to when the
alternate registers may be accessed. Note that it is possible to use any
instruction that does not access the switching register file instead of an NOP

instruction.

BIT SET MODE1 SRRFL; /* activate alternate reg. file */
NOP; /* wait for access to alternates */
RO=7;
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Multifunction Computations

Using the many parallel data paths within its computational units, the
processor supports multiple-parallel (multifunction) computations. These
instructions complete in a single cycle, and they combine parallel opera-
tion of the multiplier and the ALU or dual ALU functions. The multiple
operations perform the same as if they were in corresponding single-func-
tion computations. Multifunction computations also handle flags in the
same way as the single-function computations, except that in the dual
add/subtract computation the ALU flags from the two operations are
Or’ed together.

To work with the available data paths, the computation units constrain
which data registers may hold the four input operands for multifunction
computations. These constraints limit which registers may hold the

X-input and Y-input for the ALU and multiplier.

Figure 2-9 shows a computational unit and indicates which registers may
serve as X-inputs and Y-inputs for the ALU and multiplier. For example,
the X-input to the ALU can only be R8, R9, R10 or R11. Note that the
shifter is gray in Figure 2-7 to indicate that there are no shifter multifunc-
tion operations.
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PM DATA BUS

A

NOTE THAT SHIFTER IS FADED
HERE, INDICATING THAT IT IS

DM DATA BUS

A

REGISTER FILE

NOT AVAILABLE FOR

MULTIFUNCTION INSTRUCTIONS.

i

ASTATX

(16 x 40-BIT)
H ro R8
R1 RO
v v R2 R10 Vv v y*
R3 R11
MULTIPLIER R4 R12 SHIFTER ALU
. R5 R13 . |
| R6 R14 | |« , | ,
. > | R7 R15 | | L |
] ] ]
] [} |
] T ] ]
. > MRF2 [MRF1 | MRFO ) :
| | |
e S AU A
]

AA

STKYx

!

i

TO PROGRAM SEQUENCER

Figure 2-9. Input Registers for Multifunction Computations (ALU and
Multiplier)

Table 2-8, through Table 2-11 list the multifunction computations. For

more information on assembly language syntax, see the ADSP-21160

SHARC DSP Instruction Set Reference. In these tables, note the meaning of
the following symbols.

Rm, Ra, Rs, Rx, Ry indicate any register file location; fixed-point

Fm, Fa, Fs, Fx, Fy indicate any register file location; floating-point

R3-0 indicates data file registers R3, R2, R1, or RO, and F3-0 indi-
cates data file registers F3, F2, F1, or FO

ADSP-21161 SHARC Processor Hardware Reference

2-35



Multifunction Computations

* R7-4 indicates data file registers R7, R6, R5, or R4, and F7-4 indi-
cates data file registers F7, F6, F5, or F4

e R11-8 indicates data file registers R11, R10, R9, or R8, and F11-8
indicates data file registers F11, F10, F9, or F8

e RI15-12 indicates data file registers R15, R14, R13, or R12, and
F15-12 indicates data file registers F15, F14, F13, or F12

* SSFR indicates the X-input is signed, Y-input is signed, use Frac-
tional inputs, and Rounded-to-nearest output

* SSF indicates the X-input is signed, Y-input is signed, use Frac-
tional input

Table 2-8. Dual Add And Subtract

Ra = Rx + Ry, Rs = Rx — Ry
Fa = Fx + Fy, Fs = Fx - Fy

Table 2-9. Fixed-Point Multiply and Add, Subtract, Or Average

(Any combination of left and right column)

Rm=R3-0 * R7-4 (SSFR), Ra=R11-8 + R15-12
MRF=MRF + R3-0 * R7-4 (SSF), Ra=R11-8 - R15-12
Rm=MRF + R3-0 * R7-4 (SSFR), Ra=(R11-8 + R15-12)/2

MRF=MRF — R3-0 * R7-4 (SSF),
Rm=MRF — R3-0 * R7-4 (SSFR),

Table 2-10. Floating-Point Multiply And ALU Operation

Fm=F3-0 * F7-4, Fa=F11-8 + F15-12
Fm=F3-0 * F7-4, Fa=F11-8 — F15-12
Fm=F3-0 * F7-4, Fa=FLOAT R11-8 by R15-12
Fm=F3-0 * F7-4, Ra=FIX F11-8 by R15-12
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Table 2-10. Floating-Point Multiply And ALU Operation (Cont'd)

Fm=F3-0 * F7-4, Fa=(F11-8 + F15-12)/2
Fm=F3-0 * F7-4, Fa=ABS F11-8

Fm=F3-0 * F7-4, Fa=MAX (F11-8, F15-12)
Fm=F3-0 * F7-4, Fa=MIN (F11-8, F15-12)

Table 2-11. Multiply With Dual Add and Subtract

Rm = R3-0 * R7-4 (SSFR), Ra = R11-8 + R15-12, Rs = R11-8 — R15-12
Fm = F3-0 * F7-4, Fa = F11-8 + F15-12, Fs = F11-8 — F15-12

Another type of multifunction operation is also available on the processor,
combining transfers between the results and data registers and transfers
between memory and data registers. Like other multifunction instructions,
these parallel operations complete in a single cycle. For example, the pro-
cessor can perform the following multiply and parallel read of data
memory:

MRF=MRF-R5*R0, R6=DM(I1,M2);

Or, the processor can perform the following result register transfer and

parallel read:

R5=MR1F, R6=DM(I1,M2);

Secondary Processing Element (PEy)

The ADSP-21161 processor contains two sets of computation units and
associated register files. As shown in Figure 2-10, these two Processing
Elements (PEx and PEy) support Single Instruction, Multiple Data
(SIMD) operation.
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Figure 2-10. Block Diagram Showing Secondary Execution Complex

The MODE1 register controls the operating mode of the processing ele-
ments. Table A-2 on page A-3 lists all the bits in MODEL. The PEYEN bit (bit
21) in the MODE1 register enables or disables the PEy processing element.
When PEYEN is cleared (0), the ADSP-21161 processor operates in Sin-
gle-Instruction-Single-Data (SISD) mode, using only PEx; this is the
mode in which ADSP-2106x family DSPs operate. When the PEYEN bit is
set (1), the ADSP-21161 processor operates in SIMD mode, using the
PEx and PEy processing elements. There is a one cycle delay after PEYEN is
set or cleared, before the change to or from SIMD mode takes effect.
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To support SIMD, the processor performs the following parallel

operations.

* Dispatches a single instruction to both processing element’s com-
putation units

* Loads two sets of data from memory, one for each processing
element

* Executes the same instruction simultaneously in both processing
elements

* Stores data results from the dual executions to memory

@ Using the information here and in the ADSP-21160 SHARC DSP
Instruction Set Reference, it is possible through SIMD mode’s paral-

lelism to double performance over similar algorithms running in
SISD (ADSP-2106x processor compatible) mode.

The two processing elements are symmetrical, and each contains the fol-
lowing functional blocks.

« ALU
* Multiplier primary and alternate result registers

e Shifter

* Data register file and alternate register file

Dual Compute Units Sets

The computation units (ALU, Multiplier, and Shifter) in PEx and PEy are
identical. The data bus connections for the dual computation units permit
asymmetric data moves to, from, and between the two processing ele-
ments. Identical instructions execute on the PEx and PEy computational
units; the difference is the data. The data registers for PEy operations are
identified (implicitly) from the PEx registers in the instruction. This
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implicit relation between PEx and PEy data registers corresponds to com-
plementary register pairs in Table 2-12. Any universal registers that don’t
appear in Table 2-12 have the same identities in both PEx and PEy. When
a computation in SIMD mode refers to a register in the PEx column, the
corresponding computation in PEy refers to the complimentary register in
the PEy column.

Table 2-12. SIMD Mode Complementary Register Pairs

PEx PEy
RO S0

R1 S1

R2 S2

R3 S3

R4 S4

RS S5

R6 S6

R7 7

R8 S8

R9 $9

R10 S10

R11 S11

RI12 S12
R13 S13
R14 S14
ASTATx ASTATy
STKYx STKYy
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Table 2-13 lists the multiplier result SIMD mode complementary register
pairs. These multiplier result registers are not universal (UREGs) registers
and cannot be accessed directly. These registers can be read with the fol-
lowing multiplier operations:

MRxF/B = Rn;
Rn = MRxF/B;

Table 2-13. Multiplier Result SIMD Mode Complementary Register Pairs

PEx PEy

MRFO MSF0
MRF1 MSF1
MRF2 MSF2
MRBO MSBO
MRBI1 MSB1
MRB2 MSB2

Table 2-14. Other Complementary Register Pairs

USTAT1 USTAT?2
USTAT3 USTAT4
PX1 PX2
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Dual Register Files

The two 16 entry data register files (one in each PE) and their operand
and result busing and porting are identical. The same is true for each 16
entry alternate register files. The transfer direction, source and destination
registers, and data bus usage depend on the following conditions:

Computational mode:

— Is PEy enabled—PEYEN bit=1 in MODE1 register

— Is the data register file in PEx (R0-R15, F0-F15) or PEy (S0-515)

— Is the instruction a data register swap between the processing
elements

Data addressing mode:

— What is the state of the Internal Memory Data Width (IMDW)
bits in the System Configuration (SYSCON) register

— Is Broadcast write enabled—BDCST1,9 bits in MODE1 register

— What is the type of address—long, normal, or short word

—Is Long Word override (LW) specified in the instruction
— What are the states of instruction fields for DAG1 or DAG2

Program sequencing (conditional logic):
—What is the outcome of the instruction’s condition comparison
on each processing element

For information on SIMD issues that relate to computational modes, see
“SIMD (Computational) Operations” on page 2-43. For information on
SIMD issues relating to data addressing, see “SIMD Mode and Sequenc-
ing” on page 3-57. For information on SIMD issues relating to program
sequencing, see “Addressing in SISD and SIMD Modes” on page 4-18.
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Dual Alternate Registers

Both register files consist of a primary set of 16 by 40-bit registers and an
alternate set of 16 by 40-bit registers. Context switching between the two
sets of registers occur in parallel between the two processing elements.
“Alternate (Secondary) Data Registers” on page 2-32.

SIMD (Computational) Operations

In SIMD mode, the dual processing elements execute the same instruc-
tion, but operate on different data. To support SIMD operation, the
elements support a variety of dual data move features.

The processor supports unidirectional and bidirectional register-to-regis-
ter transfers with the conditional compute and move instruction. All four
combinations of inter-register file and intra-register file transfers

(PEx <> PEx, PEx <> PEy, PEy <> PEx, and PEy <> PEy) are possible in
both SISD (unidirectional) and SIMD (bidirectional) modes.

In SISD mode (PEYEN bit=0), the register-to-register transfers are unidirec-
tional, meaning that an operation performed on one processing element is
not duplicated on the other processing element. The SISD transfer uses a
source register and a destination register, and either register can be in
either element’s data register file. For a summary of unidirectional trans-
fers, see the upper half of Table 2-15. Note that in SISD mode a
condition for an instruction only tests in the PEx element and applies to
the entire instruction.

In SIMD mode (PEYEN bit=1), the register-to-register transfers are bidirec-
tional, meaning that an operation performed on one element is duplicated
in parallel on the other element. The instruction uses two source registers
(one from each element’s register file) and two destination registers (one
from each element’s register file). For a summary of bidirectional trans-
fers, see the lower half of Table 2-15. Note that in SIMD mode a
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conditional for an instruction test in both the PEx and PEy elements,
dividing control of the explicit and implicit transfers as detailed in

Table 2-15.

Bidirectional register-to-register transfers in SIMD mode are allowed
between a data register and DAG, control, or status registers. When the
DAG, control, or status register is a source of the transfer, the destination
can be a data register. This SIMD transfer duplicates the contents of the
source register in a data register in both processing elements.

Careful programming is required when a DAG, control, or status
register is a destination of a transfer from a data register. If the des-
tination register has a complement (for example ASTATx and
ASTATy), the SIMD transfer moves the contents of the explicit data
register into the explicit destination and moves the contents of the
implicit data register into the implicit destination (the comple-
ment). If the destination register has no complement (for example,
10), only the explicit transfer occurs.

Even if the code uses a conditional operation to select whether the
transfer occurs, only the explicit transfer can take place if the desti-
nation register has no complement.

In the case where a DAG, control, or status register is both source and des-
tination, the data move operation executes the same as if SIMD mode
were disabled.

In both SISD and SIMD modes, the processor supports bidirectional reg-
ister-to-register swaps. The swap always occurs between one register in
each processing element’s data register file.

Registers swaps use the special swap operator, <->. A register-to-register
swap occurs when registers in different processing elements exchange val-
ues; for example RO <-> S1. Only single, 40-bit register to register swaps
are supported—no double register operations.
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When they are unconditional, register-to-register swaps operate the same
in SISD mode and SIMD mode. If a condition is added to the instruction
in SISD mode, the condition tests only in the PEx element and controls
the entire operation. If a condition is added in SIMD mode, the condition
tests in both the PEx and PEy elements and controls the halves of the
operation as detailed in Table 2-15.

Table 2-15. Register-To-Register Move Summary (SISD Versus SIMD)

Mode Instruction

SISD!

Explicit Transfer
Rx loaded from Ry None
Rx loaded from Sy None
Sx loaded from Ry None
Sx loaded from Sy None

Implicit Transfer

IF condition compute, Rx = Ry;
IF condition compute, Rx = Sy;
IF condition compute, Sx = Ry;
IF condition compute, Sx = Sy;

Rx swaps to Sy None
Sy swaps to Rx

IF condition compute, Rx <-> Sy;

SIMD?

IF condition compute, Rx = Ry;
IF condition compute, Rx = Sy;
IF condition compute, Sx = Ry;
IF condition compute, Sx = Sy;

IF condition compute, Rx <-> Sy;3

Rx loaded from Ry
Rx loaded from Sy
Sx loaded from Ry
Sx loaded from Sy
Rx swaps to Sy

Sx loaded from Sy
Sx loaded from Ry
Rx loaded from Sy
Rx loaded from Ry

None

Sy swaps to Rx

1 In SISD mode, the conditional applies only to the entire operation and is only tested against PEX’s
flags. When the condition tests true, the entire operation occurs.

2 In SIMD mode, the conditional applies separately to the explicit and implicit transfers. Where the
condition tests true (PEx for the explicit and PEy for the implicit), the operation occurs in that pro-
cessing element.

3 Register to register transfers (R0=S0) and register swaps (R0<->S0) do not cause a PMD bus conflict.
These operations use only the DMD bus and a hidden 16-bit bus to do the two register moves.

SIMD conditional instructions with the same destination registers
do not produce predictable transfers. For example, the instruction
IF EQ R4 = R14 - R15, S4 = R6; may not work as expected. This
kind of usage is prohibited, as it is not logical to use it this way.
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SIMD And Status Flags

When the processor is in SIMD mode (PEYEN bit=1), computations on
both processing elements generate status flags, producing a logical Oring
of the exception status test on each processing element. If one of the four
fixed-point or floating-point exceptions is enabled, an exception condition
on either or both processing elements generates an exception interrupt.
Interrupt service routines must determine which of the processing ele-
ments encountered the exception. Note that returning from a floating
point interrupt does not automatically clear the STKY state. Code must
clear the STKY bits in both processing element’s sticky status (STKYx and
STKYy) registers as part of the exception service routine. For more informa-
tion, see “Interrupts and Sequencing” on page 3-34.
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The processor’s program sequencer implements program flow which con-
stantly provides the address of the next instruction to be executed by other
parts of the processor. Program flow in the processor is mostly linear, with
the processor executing program instructions sequentially. This linear flow
varies occasionally when the program uses non-sequential program struc-
tures, such as those illustrated in Figure 3-1. Non-sequential structures
direct the processor to execute an instruction that is not at the next
sequential address following the current instruction. These structures
include:

* Loops. One sequence of instructions executes several times with
zero overhead.

* Subroutines. The processor temporarily interrupts sequential flow
to execute instructions from another part of program memory.

* Jumps. Program flow transfers permanently to another part of pro-
gram memory.

* Interrupts. Subroutines in which a runtime event (not an instruc-
tion) triggers the execution of the routine.

* Idle. An instruction that causes the processor to cease operations
and hold its current state until an interrupt occurs. Then, the pro-
cessor services the interrupt and continues normal execution.

ADSP-21161 SHARC Processor Hardware Reference 3-1



The sequencer manages execution of these program structures by selecting
the address of the next instruction to execute. As part of its process, the
sequencer handles the following tasks:

e Increments the fetch address

* Maintains stacks

e Evaluates conditions

* Decrements the loop counter
e Calculates new addresses

e Maintains an instruction cache
* Handles interrupts

To accomplish these tasks, the sequencer uses the blocks shown in

Figure 3-2. The sequencer’s address multiplexer selects the value of the
next fetch address from several possible sources. The fetched address
enters the instruction pipeline, made up of the fetch address register,
decode address register, and program counter (PC). These contain the
24-bit addresses of the instructions currently being fetched, decoded, and
executed. The PC couples with the PC stack, which stores return addresses
and top-of-loop addresses. All addresses generated by the sequencer are
24-bit program memory instruction addresses.

To manage events, the sequencer’s interrupt controller handles interrupt
processing, determines whether an interrupt is masked, and generates the
appropriate interrupt vector address.

With selective caching, the instruction cache lets the processor access data
in program memory and fetch an instruction (from the cache) in the same
cycle. The DAG2 data address generator outputs program memory data
addresses.
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The sequencer evaluates conditional instructions and loop termination
conditions by using information from the status registers. The loop
address stack and loop counter stack support nested loops. The status
stack stores status registers for implementing nested interrupt routines.

Table 3-1 and Table 3-2 list the registers within and related to the pro-
gram sequencer. All registers in the program sequencer are universal

registers, so they are accessible to other universal registers and to data

memory. All the sequencer’s registers and the tops of stacks are readable,
y q g p
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Figure 3-2. Sequencer Block Diagram
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and all these registers are writable, except for the fetch address, decode
address, and PC. Pushing or popping the PC stack is done with a write to
the PC stack pointer, which is readable and writable. Pushing or popping
the loop address stack requires explicit instructions.

A set of system control registers configures or provides input to the
sequencer. These registers appear across the top and within the interrupt
controller shown in Figure 3-2. A bit manipulation instruction permits
setting, clearing, toggling, or testing specific bits in the system registers.
For information on this instruction (Bit), see the ADSP-21160 SHARC
DSP Instruction Set Reference. Writes to some of these registers do not take
effect on the next cycle. For example, after a write to the MODE1 register to
enable ALU saturation mode, the change does not take effect until two
cycles after the write. Also, some of these registers do not update on the
cycle immediately following a write. An extra cycle is required before a
read of the register returns the new value. With the lists of sequencer and
system registers, Table 3-1 and Table 3-2 summarize the number of extra
cycles (latency) for a write to take effect (effect latency) and for a new
value to appear in the register (read latency). A “0” indicates that the write
takes effect or appears in the register on the next cycle after the write
instruction is executed, and a “1” indicates one extra cycle.

Table 3-1. Program Sequencer Registers Read and Effect

Latencies
Register Contents Bits Read Effect
Latency Latency

FADDR fetch address 24 — —
DADDR decode address 24 — —

PC execute address 24 — —
PCSTK top of PC stack 24 0 0
PCSTKP PC stack pointer 5 1 1
LADDER top of loop address stack 32 0 0

ADSP-21161 SHARC Processor Hardware Reference 3-5



Table 3-1. Program Sequencer Registers Read and Effect
Latencies (Cont’d)

Register Contents Bits Read Effect
Latency Latency
CURLCNTR | top of loop count stack (current loop | 32 0 0
count)
LCNTR loop count for next DO UNTIL loop | 32 0 0

Table 3-2. System Registers Read and Effect Latencies

Register Contents Bits Read Latency | Maximum
Effect
Latency
MODE1 mode control bits 32 0 1
MODE2 mode control bits 32 0 1
IRPTL interrupt latch 32 0 1
IMASK interrupt mask 32 0 1
IMASKP interrupt mask pointer (for nest- | 32 1 1
ing)
MMASK mode mask 32 0 1
FLAGS flag inputs 32 0 1
LIRPTL link port interrupt latch/mask | 32 0 1
ASTATX arithmetic status flags 32 0 1
ASTATY arithmetic status flags 32 0 1
STKYX sticky status flags 32 0 1
STKYY sticky status flags 32 0 1
USTAT1 user-defined status flags 32 0 0
USTAT2 user-defined status 32 0 0
USTAT3 user-defined status 32 0 0
USTAT4 user-defined status 32 0 0
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The following sections in this chapter explain how to use each of the func-
tional blocks in Figure 3-2:

e “Instruction Pipeline” on page 3-7

e “Instruction Cache” on page 3-8

* “Branches and Sequencing” on page 3-13
* “Loops and Sequencing” on page 3-22

e “Interrupts and Sequencing” on page 3-34
e “Timer and Sequencing” on page 3-50

e “Stacks and Sequencing” on page 3-52

* “Conditional Sequencing” on page 3-53

e “SIMD Mode and Sequencing” on page 3-57

Instruction Pipeline

The program sequencer determines the next instruction address by exam-
ining both the current instruction being executed and the current state of
the processor. If no conditions require otherwise, the processor executes
instructions from program memory in sequential order by incrementing
the fetch address. Using its instruction pipeline, the processor processes
instructions in three clock cycles:

* Fetch cycle. The processor reads the instruction from either the
on-chip instruction cache or from program memory.

* Decode cycle. The processor decodes the instruction, generating
conditions that control instruction execution.

* Execute cycle. The processor executes the instruction; the opera-
tions specified by the instruction complete in a single cycle.
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These cycles overlap in the pipeline, as shown in Table 3-3. In sequential
program flow, when one instruction is being fetched, the instruction

fetched in the previous cycle is being decoded, and the instruction fetched
two cycles before is being executed. Sequential program flow always has a
throughput of one instruction per cycle.

Table 3-3. Pipelined Execution Cycles

Cycles Fetch Decode Execute
1 0x08

2 0x09 0x08

3 0x0A 0x09 0x08

4 0x0B 0x0A 0x09

5 0x0C 0x0B 0x0A

Any non-sequential program flow can potentially decrease the processor’s
instruction throughput. Non-sequential program operations include:

Instruction Cache

Program memory data accesses that conflict with instruction

fetches

Jumps

Subroutine calls and returns

Interrupts and return

Loops

Usually, the sequencer fetches an instruction from memory on each cycle.
Occasionally, bus constraints prevent some of the data and instructions
from being fetched in a single cycle. To alleviate these data flow con-

3-8

ADSP-21161 SHARC Processor Hardware Reference




Program Sequencer

straints, the processor has an instruction cache, which appears in

Figure 3-2. When the processor executes an instruction that requires data
access over the PM data bus, a bus conflict occurs because the sequencer
uses the PM data bus for fetching instructions. To avoid these conflicts,
the processor caches these instructions, reducing delays. Except for
enabling or disabling the cache, its operation requires no user interven-
tion. For more information, see “Using the Cache” on page 3-11.

When the processor first encounters a fetch conflict, the processor must
wait to fetch the instruction on the following cycle, causing a delay. The
processor automatically writes the fetched instruction to the cache to pre-
vent the same delay from happening again. The sequencer checks the
instruction cache on every program memory data access. If the instruction
needed is in the cache, the instruction fetch from the cache happens in
parallel with the program memory data access, without incurring a delay.

Because of the three-stage instruction pipeline, as the processor executes
an instruction (at address n) that requires a program memory data access,
this execution creates a conflict with the instruction fetch (at address
n+2), assuming sequential execution. The cache stores the fetched instruc-
tion (n+2), not the instruction requiring the program memory data access.

If the instruction needed to avoid a conflict is in the cache, the cache pro-
vides the instruction while the program memory data access is performed.
If the needed instruction is not in the cache, the instruction fetch from
memory takes place in the cycle following the program memory data
access, incurring one cycle of overhead. The fetched instruction is loaded
into the cache, if the cache is enabled and not frozen, so that it is available
the next time the same conflict occurs.

Figure 3-3 shows a block diagram of the instruction cache. The cache
holds 32 instuction-address pairs. These pairs (or cache entries) are
arranged into 16 (15-0) cache sets according to their address’ 4 least sig-
nificant bits (3-0). The two entries in each set (entry 0 and entry 1) have a
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valid bit, indicating whether the entry contains a valid instruction. The
least recently used (LRU) bit for each set indicates which entry was not used
last (O=entry 0 and 1=entry 1).

LRU VALID INSTRUCTIONS ADDRESSES ADDRESSES

BIT  BIT BITS (23-4) BITS (3-0)

sero enwmYo [] [] | [ | [ o000 ]
ENTRY 1 |:| [ | |

ser1 enmvo [ [ | [ | [ ooo1 ]
ENTRY 1 (11 | |

ser2 eNnmyo [] [ | [ | [ o010 ]
ENTRY 1 |:| [ | |

SET13 ENTRY O |:| |:| [ | | [(1z01 |
ENTRY 1 |:| [ | |

ser1a enmyo [ [] | [ | [ 1110 ]
ENTRY 1 (11 | |

ser1s ENRYO [] [] | [ | [[1222 ]
ENTRY 1 (] | |

Figure 3-3. Instruction Cache Architecture

The cache places instructions in entries according to the 4 LSBs of the
instruction’s address. When the sequencer checks for an instruction to
fetch from the cache, it uses the 4 address LSBs as an index to a cache set.
Within that set, the sequencer checks the addresses of the two entries,
looking for the needed instruction. If the cache contains the instruction,
the sequencer uses the entry and updates the LRU bit (if necessary) to indi-
cate the entry did not contain the needed instruction.

When the cache does not contain a needed instruction, the cache loads a
new instruction and its address, placing these in the least recently used
entry of the appropriate cache set and toggling the LRU bit (if necessary).
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Using the Cache

After a processor reset, the cache starts cleared (containing no instruc-
tions), unfrozen, and enabled. From then on, the MODE2 register controls
the operating mode of the instruction cache. Table A-3 on page A-10 lists
all the bits in MODE2. The following bits in MODE2 control cache modes:

* Cache Disable. Bit 4 (CADIS) directs the sequencer to disable the
cache (if 1) or enable the cache (if 0). Disabling the cache does not
mark the current content of the cache as invalid. If the cache is
enabled again, the existing content is used again. To clear the
cache, use the FLUSH CACHE instruction.

* Cache Freeze. Bit 19 (CAFRZ) directs the sequencer to freeze the
contents of the cache (if 1) or let new entries displace the entries in

the cache (if 0).
@ If self-modifying code (for example, software loader kernel) or soft-

ware overlays are used, execute a FLUSH CACHE instruction followed
by a NOP before executing the new code. Otherwise, old content
from the cache could still be used, although the code has changed.

When changing the cache’s mode, note that an instruction containing a
program memory data access must not be placed directly after a cache
enable or cache disable instruction, because the processor must wait at
least one cycle before executing the PM data access. A program should
have an NOP inserted after the cache enable instruction.

Optimizing Cache Usage

Cache operation is usually efficient and requires no intervention. How-
ever, certain ordering of instructions can work against the cache’s
architecture and degrade cache efficiency. When the order of PM data
accesses and instruction fetches continuously displaces cache entries and
loads new entries, the cache is not operating efficiently. Rearranging the
order of these instructions remedies this inefficiency.
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An example of inefficient cache code appears in Table 3-4. The program
memory data access at address 0x101 in the loop, Outer, causes the cache
to load the instruction at 0x103 (into set 3). Each time the program calls
the subroutine, Inner, the program memory data accesses at 0x201 and
0x211 displace the instruction at 0x103 by loading the instructions at
0x203 and 0x213 (also into set 3). If the program only calls the Inner sub-
routine rarely during the Outer loop execution, the repeated cache loads
do not greatly influence performance. If the program frequently calls the
subroutine while in the loop, the cache inefficiency has a noticeable effect
on performance. To improve cache efficiency on this code (if for instance,
execution of the Outer loop is time-critical), rearrange the order of some
instructions. Moving the subroutine call up one location (starting at
0x201) would work here, because with that order the two cached instruc-
tions end up in cache set 4 instead of set 3.

Table 3-4. Cache-Inefficient Code

Address Instruction

0x0100 lentr=1024, do Outer until LCE;
0x0101 r0=dm(i0,m0), pm(i8,m8)=£3;
0x0102 rl=r0-r15;

0x0103 if eq call (Inner);

0x0104 f2=float r1;

0x0105 f3=£2*f2;

0x0106 Outer: f3=f3+f4;

0x0107 pm(i8,m8)=f3;

0x0200 Inner: r1=R13;

0x0201 r14=pm(i9,m9);

0x0211 pm(i9,m9)=r12;
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Table 3-4. Cache-Inefficient Code (Contd)

Address

Instruction

0x021F

Its;

Branches and Sequencing

One of type of non-sequential program flow that the sequencer supports is

branch

ing. A branch occurs when a JUMP or CALL/return instruction begins

execution at a new location, other than the next sequential address. For
descriptions on how to use JUMP and CALL/return instructions, see the
ADSP-21160 SHARC DSP Instruction Set Reference. Briefly, these instruc-

tions operate as follows:

* A JUMP or a CALL instruction transfers program flow to another

memory location. The difference between a JUMP and a CALL is that
a CALL automatically pushes the return address (the next sequential
address after the CALL instruction) onto the PC stack. This push
makes the address available for the CALL instruction’s matching
return instruction, allowing easy return from the subroutine.

e A return instruction causes the sequencer to fetch the instruction at

the return address, which is stored at the top of the PC stack. The
two types of return instructions are return from subroutine (RTS)
and return from interrupt (RTI). While the return from subroutine
(RTS) only pops the return address off the PC stack, the return from
interrupt (RTI) pops the return address and:

1. Pops the status stack if the ASTATx,y and MODE1 status regis-
ters have been pushed for any of the following interrupts:
IRQ2-0, timer, or VIRPT.

2. Clears the interrupt’s bit in the interrupt latch register
(IRPTL) and the interrupt mask pointer (IMASKP).
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There are a number of parameters that can be specified for branches:

* JUMP and CALL/return instructions can be conditional. The program
sequencer can evaluate status conditions to decide whether to exe-
cute a branch. If no condition is specified, the branch is always
taken. For more information on these conditions, see “Conditional

Sequencing” on page 3-53.

* JUMP and CALL/return instructions can be immediate or delayed.
Because of the instructions pipeline, an immediate branch incurs
two lost (overhead) cycles. A delayed branch has no overhead. For
more information, see “Delayed Branches” on page 3-15.

* JUMP instructions that appear within a loop or within an interrupt
service routine have additional options. For information on the
loop abort (LA) option, see “Loops and Sequencing” on page 3-22.
For information on the loop re-entry (LR) option, see “Restrictions
on Ending Loops” on page 3-25.For information on the clear inter-
rupt (CI) option, see “Interrupts and Sequencing” on page 3-34.

The sequencer block diagram in Figure 3-2 on page 3-4 shows that
branches can be direct or indirect. The difference is that the sequencer
generates the address for a direct branch, and the PM data address genera-
tor (DAG2) produces the address for an indirect branch.

Direct branches are JUMP or CALL/return instructions that use an abso-
lute—not changing at runtime—address (such as a program label) or use a
PC-relative address. Some instruction examples that cause a direct branch
are:

JUMP fft1024; /*Where fft1024 is an address Tabel*/
CALL (pc,10); /*Where (pc,10) a PC-relative address*/
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Indirect branches are JUMP or CALL/return instructions that use a dynamic
address that comes from the PM data address generator. For more infor-
mation on the data address generator, see Chapter 4, Data Address
Generator. Some instruction examples that cause an indirect branch are:

JUMP (m8,112); /*where (m8,i12) are DAG2 registers*/
CALL (m9,i13); /*where (m9,i13) are DAG2 registers*/

Conditional Branches

The sequencer supports conditional branches. These are JUMP or
CALL/return instructions whose execution is based on testing an IF condi-
tion. For more information on condition types in IF condition
instructions, see “Conditional Sequencing” on page 3-53. Note that the
processor’s Single-Instruction, Multiple-Data mode influences the execu-
tion of conditional branches. For more information, see “SIMD Mode

and Sequencing” on page 3-57.

Delayed Branches

The instruction pipeline influences how the sequencer handles branches.
For immediate branches in which JUMPs and CALL/return instructions are
not specified as delayed branches (DB), two instruction cycles are lost

(NOPs) as the pipeline empties and refills with instructions from the new

branch.

As shown in Table 3-5 and Table 3-6, the processor does not execute the
two instructions after the branch, which are in the fetch and decode
stages. For a CALL, the decode address (the address of the instruction after
the CALL) is the return address. During the two lost (no-operation) cycles,
the pipeline fetches and decodes the first instruction at the branch address.
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Table 3-5. Pipelined Execution Cycles for Immediate Branch
(JUMP/Call)

Cycles Fetch Decode Execute
1 n+2 n+1 —)nop1 n

2 i? n+2—>nop> NOP

3 j+l j NOP

4 j+2 j+l j

Note that n is the branching instruction, and j is the instruction branch address
1. n+1 suppressed

2. For call, n+1 pushed on PC stack

3. n+2 suppressed

Table 3-6. Pipelined Execution Cycles for Immediate Branch (Return)

Cycles Fetch Decode Execute
1 n+2 n+l—>nop1 n?

2 r n+2—>nop3 NOP

3 r+l r NOP

4 r+2 r+1 r

Note that n is the branching instruction, and r is the instruction branch address
1. n+1 suppressed

2. r (n+1 in Table 3-5) popped from PC stack

3. n+2 suppressed

For delayed branches, JUMPs and CALL/return instructions with the delayed
branches (DB) modifier, no instruction cycles are lost in the pipeline,
because the processor executes the two instructions after the branch while
the pipeline fills with instructions from the new branch.

As shown in Table 3-7 and Table 3-8, the processor executes the two
instructions after the branch, while the instruction at the branch address is
fetched and decoded. In the case of a CALL, the return address is the third
address after the branch instruction. While delayed branches use the
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instruction pipeline more efficiently than immediate branches, note that
delayed branch code can be harder to understand because of the instruc-
tions between the branch instruction and the actual branch.

Table 3-7. Pipelined Execution Cycles for Delayed Branch (JUMP or

CALL)
Cycles Fetch Decode Execute
1 n+2 n+l n
2 it n+2 n+l
3 j+1 j n+2
4 j+2 j+1 j

Note that n is the branching instruction, and j is the instruction branch address
1. For call, n+3 pushed on PC stack

Table 3-8. Pipelined Execution Cycles For Delayed Branch (return)

Cycles Fetch Decode Execute
1 n+2 n+l n!

2 r n+2 n+1

3 r+l r n+2

4 r+2 r+1 r

n is the branching instruction, and r is the instruction branch address

1. r (n+3 in Table 3-7) popped from PC stack

ADSP-21161 SHARC Processor Hardware Reference
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Besides being more challenging to code, delayed branches impose some
limitations that stem from the instruction pipeline architecture. Because
the delayed branch instruction and the two instructions that follow it
must execute sequentially, the instructions in the two locations that follow
a delayed branch instruction cannot be any of the following:

e Other branches (no JUMP, CALL, or return instructions)

* Any stack manipulations (no PUSH or POP instructions or writes to
the PC stack or PC stack pointer)

* Any loops or other breaks in sequential operation (no DO/UNTIL or
IDLE instructions)

@ Development software for the processor should always flag these
types of instructions as code errors in the two locations after a
delayed branch instruction.

It is possible to follow a delayed branch instruction with a JUMP, CALL,
or return instruction in one special case. If the sequential branch instruc-
tions use mutually exclusive conditions, one branch may following
another. The following example is valid.

if gt jump (PC, 7) (db); // if greater than...
if le jump (PC,11) (db); // if less than or equal...

Interrupt processing is also influenced by delayed branches and the
instruction pipeline. Because the delayed branch instruction and the two
instructions that follow it must execute sequentially, the processor does
not immediately process an interrupt that occurs in between a delayed
branch instruction and either of the two instructions that follow. Any
interrupt that occurs during these instructions is latched, but is not pro-
cessed until the branch is complete.
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@ During a delayed branch, a program can read the PC stack or PC

stack pointer immediately after a delayed call or return. This read
shows that the return address on the PC stack has already been
pushed or popped, even though the branch has not occurred yet.

Restrictions and Limitations When Using Delayed Branches

Besides being more challenging to code, delayed branches impose some
limitations that stem from the instruction pipeline architecture. Because
the delayed branch instruction and the two instructions that follow it
must execute sequentially, the instructions in the two locations that follow
a delayed branch instruction cannot be any of those described in the fol-
lowing five sections.

Development software for the ADSP-21161 processor should
always flag the operations described in the next five sections as code
errors in the two locations after a delayed branch instruction.

Normally it is not valid to use two conditional instructions using the (DB)
option following each other. But the execution is allowed when these
instructions are mutually exclusive as shown below.

If gt jump (PC, 7) (db);
If 1Te jump (pc, 11) (db);

Other Jumps, or Calls with RTI, RTS

These instructions cannot be used when they follow a delayed branch
instruction. This is shown in the following code that uses the Jump
instruction.

Jjump foo(db);
jump my (db);
ro=rO0+rl;
rl=rl+r?;
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In this case, the delayed branch instruction ri=r1+r2, is not executed.
Further, the control jumps to my instead of foo, where the delayed branch
instruction is the execution of foo.

The exception is for the JUMP instruction, which applies for the mutually
exclusive conditions EQ (equal), and NE (not equal). If the first EQ con-
dition evaluates true, then the NE conditional jump has no meaning and
is the same as a NOP instruction. Code samples for these conditions are
shown below.

if eq jump labell (db);
if ne jump labell (db);
nop;
nop;

Pushes or Pops of the PC Stack

In this case a push of the PC stack in a delayed branch is followed by a
pop. If a value is pushed in the delayed branch of a call, it is first popped

in the called subroutine. This is followed by an RTS instruction.

call foo (db);

push PCSTK;

nop; /* second push due to PCSTK */
foo; /* first push because of call */

This example shows that when a program pushes the PCSTK during a
delayed slot, the PC stack pointer is pushed onto the PCSTK.

The following instructions are executed prior to executing the RTS.

pop PCSTK;
RTS (db);
nop;
nop;
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If pushing the PC stack, a stack pop must be performed first. This is fol-
lowed by an RTS instruction. If a value is popped inside a delayed branch,
whatever subroutine return address is pushed is popped back, which is not
allowed.

Writes to the PC Stack or PC Stack Pointer

The following two situations may arise when programs attempt to write to

the PC stack inside a delayed branch.

1. If programs write into the PC stack inside a jump, one of the fol-
lowing situations can occur.

a. The PC stack cannot hold a value that has already been
pushed onto the PC stack.

When the PC stack contains a value and a program writes
that same value onto the stack, the original value is over-
written by the new value and the original value becomes
corrupted.

b. The PC stack is empty.

Programs cannot write to the PC stack when they are inside
a jump. In this case the PC stack remains empty.

2. Write to the PC stack inside a call.

If a program writes to the PC stack inside of a call, the value that is
pushed onto the PC stack because that call is overwritten by the
value written onto the PC stack. Therefore, when a program per-
forms an RTS, the program returns to the address pushed onto the
PC stack and not to the address pushed while branching to the sub-
routine. For example:
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call foo3 (db);
PCSTK=0x9011C;
nop;

The value 90114 is pushed onto the PC stack, while the value
9011C is written to the PC stack. Accordingly, the value 90114 is
overwritten by the value 9011C in the PC stack because values that
are pushed onto the stack have precedence over values written to
the stack. Therefore, when the program comes back by executing
an RTS, the return is to address 9011C and not to 90114.

IDLE Instruction

An interrupt is needed to come out of the IDLE instruction. If a program

places an IDLE instruction inside the delayed branch the processor remains
in the idled state because interrupts are latched but not serviced until the
program exits a delayed branch.

Loops and Sequencing

Another type of non-sequential program flow that the sequencer supports
is looping. A loop occurs when a DO/UNTIL instruction causes the processor
to repeat a sequence of instructions until a condition tests true.

A special condition for terminating a loop is Loop Counter Expired (LCE).
This condition tests whether the loop has completed the number of itera-
tions in the LCNTR register. Loops that terminate with conditions other
than LCE have some additional restrictions. For more information, see
“Restrictions on Ending Loops” on page 3-25 and “Restrictions on Short
Loops” on page 3-26. For more information on condition types in
DO/UNTIL instructions, see “Conditional Sequencing” on page 3-53.

The processor’s Single-Instruction, Multiple-Data mode influences
the execution of loops. For more information, see “SIMD Mode

and Sequencing” on page 3-57.
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The DO/UNTIL instruction uses the sequencer’s loop and condition fea-
tures, which appear in Figure 3-2 on page 3-4. These features provide
efficient software loops without the overhead of additional instructions to
branch, test a condition, or decrement a counter. The following code
example shows a DO/UNTIL loop that contains three instructions and iter-
ates 30 times.

LCNTR=30, DO the_end UNTIL LCE; /*Loop iterates 30 times*/
RO=DM(IO,M0), F2=PM(I8,M8);

R1=R0-R15;

the_end: F4=F2+F3; /*Last instruction in loop*/

When executing a DO/UNTIL instruction, the program sequencer pushes
the address of the loop’s last instruction and loop’s termination condition
onto the loop address stack. The sequencer also pushes the top-of-loop
address—address of the instruction following the DO/UNTIL instruction—
onto the PC stack.

The sequencer’s instruction pipeline architecture influences loop termina-
tion. Because instructions are pipelined, the sequencer must test the
termination condition (and, if the loop is counter-based, decrement the
counter) before the end of the loop. Based on the test’s outcome, the next
fetch either exits the loop or returns to the top-of-loop.

The condition test occurs when the processor is executing the instruction
two locations before the last instruction in the loop (at location e — 2,
where e is the end-of-loop address). If the condition tests false, the
sequencer repeats the loop, fetching the instruction from the top-of-loop
address, which is stored on the top of the PC stack. If the condition tests
true, the sequencer terminates the loop, fetching the next instruction after

the end of the loop and popping the loop and PC stacks.
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A special case of loop termination is the loop abort instruction, JUMP (LA).
This instruction causes an automatic loop abort when it occurs inside a
loop. When the loop aborts, the sequencer pops the PC and loop address
stacks once. If the aborted loop was nested, the single pop of the stacks
leaves the correct values in place for the outer loop.

Table 3-9 and Table 3-10 show the pipeline states for loop iteration and
termination.

Table 3-9. Pipelined Execution Cycles for Loop Back (Iteration)

Cycles Fetch Decode Execute
1 e e—1 e-2!

2 b? e e-1

3 b+1 b e

4 b+2 b+1 b

Note that e is the loop end instruction, and b is the loop start instruction.

1. Termination condition tests false

2. Loop start address is top of PC stack

Table 3-10. Pipelined Execution Cycles for Loop Termination

Cycles Fetch Decode Execute
1 e e-1 e 2!

2 e+1? e e-1

3 e+2 e+l e

4 e+3 e+2 e+l
Note that e is the loop end instruction.

1. Termination condition tests true

2. Loop aborts and loop stacks pop
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Restrictions on Ending Loops

The sequencer’s loop features (which optimize performance in many ways)
limit the types of instructions that may appear at or near the end of the
loop. These restrictions include:

* Nested loops cannot use the same end-of-loop instruction address.

* Nested loops with a non-counter-based loop as the outer loop must
place the end address of the outer loop at least two addresses after
the end address of the inner loop.

* Nested loops with a non-counter-based loop as the outer loop that
use the loop abort instruction, JUMP (LA), to abort the inner loop
may not JUMP (LA) to the last instruction of the outer loop.

* An instruction that writes to the loop counter from memory can-
not be used as the third-to-last instruction of a counter-based loop
(at e=2, where e is the end-of-loop address).

e An IF NOT LCE instruction cannot be used as the instruction that
follows a write to CURLCNTR from memory.

* Branch (JUMP or CALL/return) instructions may not be used as any
of the last three instructions of a loop. This no end-of-loop
branches rule also applies to single-instruction and two-instruction
loops with only one iteration.

There is one exception to the no end-of-loop branches rule. The last three
instructions of a loop may contain an immediate CALL —a CALL without a
DB modifier—that is paired with a loop re-entry return—a return (RTS)
with loop re-entry modifier (LR). The immediate CALL may be one of the
last three instructions of a loop, but not in a one-instruction loop or a
two-instruction, single-iteration loop.
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Restrictions on Short Loops

The sequencer’s pipeline features (which optimize performance in many
ways) restrict how short loops iterate and terminate. Short loops (1- or
2-instruction loops) terminate in a special way because they are shorter
than the instruction pipeline. Counter-based loops (D0/UNTIL LCE) of one
or two instructions are not long enough for the sequencer to check the ter-
mination condition two instructions from the end of the loop. In these
short loops, the sequencer has already looped back when the termination
condition is tested. The sequencer provides special handling to prevent
overhead (NOP) cycles if the loop is iterated a minimum number of times.

Table 3-11 and Table 3-12 show the pipeline execution for counter-based
single-instruction loops. Table 3-13 and Table 3-14 show the pipeline
execution for counter-based two-instruction loops. For no overhead, a
loop of length one must be executed at least three times and a loop of
length two must be executed at least twice. Loops of length one that iter-
ate only once or twice and loops of length two that iterate only once incur
two cycles of overhead, because two aborted instructions after the last iter-
ation clear the instruction pipeline.

Table 3-11. Pipelined Execution Cycles for Single Instruction
Counter-Based Loop With Three Iterations

Cycles Fetch Decode Execute

1 n+2 n+l n!

2 n+1? n+1 n+1 (pass 1)
3 n+23 n+1 n+1 (pass 2)
4 n+3 n+2 n+1 (pass 3)
5 n+4 n+3 n+2

Note: n is the loop start instruction, and n+2 is the instruction after the loop.

1. Loop count (LCNTR) equals 3

2. No opcode latch or fetch address update; count expired tests true

3. Loop iteration aborts; PC and loop stacks pop
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Table 3-12. Pipelined Execution Cycles for Single Instruction
Counter-Based Loop With Two Iterations (Two Overhead Cycles)

Cycles Fetch Decode Execute

1 n+2 n+1 n!

2 n+12 n+1 n+1 (pass 1)
3 n+13 n+1—>nop4 n+1 (pass 2)
4 n+2 n+1—>nop’ NOP

5 n+3 n+2 NOP

6 n+4 n+3 n+2

Note: n is the loop start instruction, and n+2 is the instruction after the loop.
1. Loop count (LCNTR) equals 2

2. No opcode latch or fetch address update

3. Count expired tests true

4. Loop iteration aborts; PC and loop stacks pop; n+1 suppressed

5. n+1 suppressed

Table 3-13. Pipelined Execution Cycles for Two Instruction
Counter-Based Loop With Two Iterations

Cycles Fetch Decode Execute

1 n+2 n+l n!

2 n+1? n+2 n+1 (pass 1)
3 n+23 n+1 n+2 (pass 1)
4 n+34 n+2 n+1 (pass 2)
5 n+4 n+3 n+2 (pass 2)
6 n+5 n+4 n+3

Note: n is the loop start instruction, and n+3 is the instruction after the loop.

1. Loop count (LCNTR) equals 2

2. PC stack supplies loop start address

3. Count expired tests true

4. Loop iteration aborts; PC and loop stacks pop
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Table 3-14. Pipelined Execution Cycles for Two Instruction
Counter-Based Loop With One Iteration (Two Overhead Cycles)

Cycles Fetch Decode Execute

1 n+2 n+1 n!

2 n+12 n+2 n+1 (pass 1)
3 n+23 n+1—>nop4 n+2 (pass 1)
4 n+3 n+2—nop> NOP

5 n+4 n+3 NOP

6 n+5 n+4 n+3

Note: n is the loop start instruction, and n+3 is the instruction after the loop.
1. Loop count (LCNTR) equals 1

2. PC stack supplies loop start address

3. Count expired tests true

4. Loop iteration aborts; PC and loop stacks pop; n+1 suppressed

5. n+2 suppressed

Processing of an interrupt that occurs during the last iteration of a
one-instruction loop is delayed by one cycle in the following cases:

* the loop executes once or twice
* a two-instruction loop executes once

* acycle follows one of these loops (which is an NOP)

Similarly, in a one-instruction loop that iterates at least three times, pro-
cessing is delayed by one cycle if the interrupt occurs during the

t
i

hird-to-last iteration. For more information on pipeline execution during
nterrupts, see “Interrupts and Sequencing” on page 3-34.
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Short non-counter-based loops terminate differently from short
counter-based loops. These differences stem from the architecture of the
pipeline and conditional logic:

* In a three-instruction non-counter-based loop, the sequencer tests
the termination condition when the processor executes the top of
loop instruction. When the condition tests true, the sequencer
completes the iteration of the loop and terminates.

* In a two-instruction non-counter-based loop, the sequencer tests
the termination condition when the processor executes the last
(second) instruction. If the condition becomes true when the first
instruction is executed, the condition tests true during the second
instruction, and the sequencer completes one more iteration of the
loop before exiting. If the condition becomes true during the sec-
ond instruction, the sequencer completes two more iterations of
the loop before exiting.

* In a one-instruction non-counter-based loop, the sequencer tests
the termination condition every cycle. After the cycle when the
condition becomes true, the sequencer completes three more itera-
tions of the loop before exiting.

Loop Address Stack

The sequencer’s loop support, which appears in Figure 3-2 on page 3-4,
includes a loop address stack. The loop address stack is six levels deep by
32 bits wide.

The LADDR register contains the top entry on the loop address stack. This
register is readable and writable over the DM Data bus. Reading and writ-
ing LADDR does not move the loop address stack pointer; only a stack push
or pop performed with explicit instructions moves the stack pointer. LADDR
contains the value OxFFFF FFFF when the loop address stack is empty.
Table A-14 on page A-45 lists all the bits in LADDR.
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The sequencer pushes an entry onto the loop address stack when executing
a DO/UNTIL or PUSH loop instruction. The stack entry pops off the stack
two instructions before the end of its loop’s last iteration or on a POP loop
instruction. A stack overflow occurs if a seventh entry (one more than full)
is pushed onto the loop stack. The stack is empty when no entries are
occupied.

The loop stacks” overflow or empty status is available. Because the
sequencer keeps the loop stack and loop counter stack synchronized, the
same overflow and empty flags apply to both stacks. These flags are in the
sticky status register (STKYx). For more information on STKYx, see

Table A-5 on page A-19. For more information on how these flags work
with the loop stacks, see “Loop Counter Stack” on page 3-30. Note that a
loop stack overflow causes a maskable interrupt.

Because the sequencer tests the termination condition two instructions
before the end of the loop, the loop stack pops before the end of the loop’s
final iteration. If a program reads LADDR at either of these instructions, the
value is already the termination address for the next loop stack entry.

Loop Counter Stack

The sequencer’s loop support, which appears in Figure 3-2 on page 3-4,
includes a loop counter stack. The sequencer keeps the loop counter stack
synchronized with the loop address stack. Both stacks always have the
same number of locations occupied. Because these stacks are synchro-
nized, the same empty and overflow status flags from the STKYx register

apply to both stacks.

The loop counter stack is six locations deep. The stack is full when all
entries are occupied, is empty when no entries are occupied, and is over-
flowed if a push occurs when the stack is already full. Bits in the STKYx
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register indicate the loop counter stack full and empty states. Table A-5
on page A-19 lists the bits in the STYKx register. The STKYx bits that indi-
cate loop counter stack status are:

* Loop stacks overflowed. Bit 25 (LS0V) indicates that the loop
counter stack and loop stack are overflowed (if 1) or not over-

flowed (if 0)—A sticky bit.

* Loop stacks empty. Bit 26 (LSEM) indicates that the loop counter
stack and loop stack are empty (if 1) or not empty (if 0)—Not
sticky, cleared by a PUSH.

Within the sequencer, the current loop counter (CURLCNTR) and loop
counter (LCNTR) registers allow access to the loop counter stack. CURLCNTR
tracks iterations for a loop being executed, and LCNTR holds the count
value before the loop is executed. The two counters let the processor
maintain the count for an outer loop, while a program is setting up the
count for an inner loop.

The top entry in the loop counter stack (CURLCNTR) always contains the
current loop count. This register is readable and writable over the DM
Data bus. Reading CURLCNTR when the loop counter stack is empty returns
the value OxFFFF FFFF.

The sequencer decrements the value of CURLCNTR for each loop iteration.
Because the sequencer tests the termination condition two instruction
cycles before the end of the loop, the loop counter also decrements before
the end of the loop. If a program reads CURLCNTR at either of the last two
loop instructions, the value is already the count for the next iteration.

The loop counter stack pops two instructions before the end of the last
loop iteration. When the loop counter stack pops, the new top entry of the
stack becomes the CURLCNTR value—the count in effect for the executing
loop. If there is no executing loop, the value of CURLCNTR is OxFFFF FFFF
after the pop.
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Writing CURLCNTR does not cause a stack push. If a program writes a new
value to CURLCNTR, the program changes the count value of the loop cur-
rently executing. When no DO/UNTIL LCE loop is executing, writing to
CURLCNTR has no effect. Because the processor must use CURLCNTR to per-
form counter-based loops, some restrictions apply to how a program can
write CURLCNTR. For more information, see “Restrictions on Ending
Loops” on page 3-25.

The next-to-top entry in the loop counter stack (LCNTR) is the location on
the stack that takes effect on the next loop stack push. To set up a count

value for a nested loop without changing the count for the currently exe-
cuting loop, a program writes the count value to LCNTR.

@ A value of zero in LCNTR causes a loop to execute 232 times.

A DO/UNTIL LCE instruction pushes the value of LCNTR onto the loop count
stack, making that value the new CURLCNTR value. Figure 3-4 demonstrates
this process for a set of nested loops. The previous CURLCNTR value is pre-
served one location down in the stack. If a program reads LCNTR when the
loop counter stack is full, the stack returns invalid data. When the loop
counter stack is full, the stack discards any data written to LCNTR. If a pro-
gram reads LCNTR during the last two instructions of a terminating loop,
the value of LCNTR is the last CURLCNTR value for the loop.
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LCNTR| AAAA AAAA

CURLCNTR| OXFFFF FFFF
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Figure 3-4. Pushing the Loop Counter Stack for Nested Loops

ADSP-21161 SHARC Processor Hardware Reference 3-33



Interrupts and Sequencing

Interrupts and Sequencing

Another type of non-sequential program flow that the sequencer supports
is interrupt processing. Interrupts may stem from a variety of conditions,
both internal and external to the processor. In response to an interrupt,
the sequencer processes a subroutine call to a predefined address, the
interrupt vector. The processor assigns a unique vector to each type of
interrupt.

The processor supports three prioritized, individually-maskable external
interrupts, each of which can be either level- or edge-sensitive. External
interrupts occur when another device asserts one of the processor’s inter-
rupt inputs (IR02-0). The processor also supports internal interrupts. An
internal interrupt can stem from arithmetic exceptions, stack overflows, or
circular data buffer overflows. Several factors control the processor’s
response to an interrupt request. The processor responds to an interrupt
request if:

* The processor is executing instructions or is in an idle state
* The interrupt is not masked

* Interrupts are globally enabled

* A higher priority request is not pending

When the processor responds to an interrupt, the sequencer branches pro-
gram execution with a call to the corresponding interrupt vector address.
Within the processor’s program memory, the interrupt vectors are
grouped in an area called the interrupt vector table. The interrupt vectors
in this table are spaced at 4-instruction intervals. For a list of interrupt
vector addresses and their associated latch and mask bits, see Table B-1 on
page B-1. Each interrupt vector has associated latch and mask bits.

Table A-9 on page A-27 lists the latch and mask bits.
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To process an interrupt, the processor’s program sequencer does the
following;:

1. Outputs the appropriate interrupt vector address
2. Pushes the current PC value (the return address) onto the PC stack

3. Pushes the current value of the ASTATx,y and MODE1 registers onto
the status stack (if the interrupt is TRQ2-0, timer, or VIRPT)

4. Sets the appropriate bit in the interrupt latch register (IRPTL)

5. Alters the interrupt mask pointer (IMASKP) to reflect the current
interrupt nesting state, depending on the nesting mode

At the end of the interrupt service routine, the sequencer processes the
return from interrupt (RT1) instruction and does following;:

1. Returns to the address stored at the top of the PC stack
2. Pops this value off of the PC stack

3. Pops the status stack (if the ASTATx,y and MODE1 status registers
were pushed for the TR02-0, timer, or VIRPT interrupt)

4. Clears the appropriate bit in the interrupt latch register (IRPTL)
and interrupt mask pointer (IMASKP)

Except for reset, all interrupt service routines should end with a
return-from-interrupt (RT1) instruction. After reset, the PC stack is empty,
so there is no return address. The last instruction of the reset service rou-
tine should be a jump to the start of your program.

If software writes to a bit in IRPTL forcing an interrupt, the processor rec-
ognizes the interrupt in the following cycle, and two cycles of branching
to the interrupt vector follow the recognition cycle.
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The processor responds to interrupts in three stages: synchronization and

latching (1 cycle), recognition (1 cycle), and branching to the interrupt
vector (2 cycles). Table 3-15, Table 3-16, and Table 3-17 show the pipe-

lined execution cycles for interrupt processing.

Table 3-15. Pipelined Execution Cycles for Interrupt During Single-Cycle

Instruction
Cycles Fetch Decode Execute
1 n+l n n-1!
2 n+22 n+1—>nop3 n
3 v n+2—>nop’ nop
4 v+1 v nop
5 v+2 v+1 v

Note that n is the single-cycle instruction, and v is the interrupt vector instruction
. Interrupt occurs

. Interrupt recognized

. n+1 pushed on PC stack; n+1 suppressed

. Interrupt vector output

N RN =

. n+2 suppressed
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Table 3-16. Pipelined Execution Cycles for Interrupt During Instruction
With Conflicting PM Data Access (Instruction Not Cached)

Cycles Fetch Decode Execute
1 n+l n n-1!

2 2 n+1—>nop3 n

3 n+24 n+1—>nop’ nop

4 VO n+2—nop’ nop

5 v+l v nop

6 v+2 v+l v

. n+1 suppressed

. n+1 suppressed

N QAN AN =

. Interrupt occurs
. Interrupt recognized, but not processed; PM data access

. Interrupt processed

. Interrupt vector output
. n+1 pushed on PC stack; n+2 suppressed

Note that n is the conflicting instruction, and v is the interrupt vector instruction
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Table 3-17. Pipelined Execution Cycles for Interrupt During Delayed
Branch Instruction

Cycles Fetch Decode Execute
1 n+l n n-1!

2 n+22 n+l n

3 j n+2 n+l

4 j+13 j—)nop4 n+2

5 v j+1—>nop® nop

6 v+l v nop

7 v+2 v+l v

Note that n is the delayed branch instruction, j is the instruction at the branch address, and v
is the interrupt vector instruction

. Interrupt occurs

. Interrupt recognized, but not processed

. Interrupt processed

. For a Call, n+3 (return address) is pushed onto the PC stack; j suppressed

. Interrupt vector output

. j pushed on PC stack; j+1 suppressed

AN AN N =

For most interrupts, internal and external, only one instruction is exe-
cuted after the interrupt occurs (and before the two instructions aborted)
while the processor fetches and decodes the first instruction of the service
routine. Because of the one-cycle delay between an arithmetic exception
and the STKYx,y register update, interrupt processing starts two cycles
after an arithmetic exception occurs. Table 3-18 lists the latency associ-
ated with the TR02-0 interrupts and the multiprocessor vector interrupt.

Table 3-18. Minimum Latency of the IRQ2-0 and VIRPT Interrupts

Interrupt Minimum Latency
IRQ2-0 3 cycles
VIRPT 6 cycles
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If nesting is enabled and a higher priority interrupt occurs immediately
after a lower priority interrupt, the service routine of the higher priority
interrupt is delayed by one additional cycle. This delay allows the first
instruction of the lower priority interrupt routine to be executed before it
is interrupted. For more information, see “Nesting Interrupts” on

page 3-45.

Certain processor operations that span more than one cycle hold off inter-
rupt processing. If an interrupt occurs during one of these operations, the
processor latches the interrupt, but delays its processing. The operations
that have delayed interrupt processing are as follows:

e Abranch (JUMP or CALL/return) instruction and the following cycle,
whether it is an instruction (in a delayed branch) or an NOP (in a

non-delayed branch)

* The first of the two cycles used to perform a program memory data
access and an instruction fetch when the instruction is not cached

* The third-to-last iteration of a one-instruction loop

* The last iteration of either a one-instruction loop executed once or
twice or a two-instruction loop executed once, and the following
cycle (which is an NOP)

e The first of the two cycles used to fetch and decode the first
instruction of an interrupt service routine

* Any waitstates for external memory accesses

* Any external memory access required when the processor does not
have control of the external bus, during a host bus grant or when
the processor is a bus slave in a multiprocessing system
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Sensing Interrupts

The processor supports two types of interrupt sensitivity—the signal shape
that triggers the interrupt. On interrupt pins (IRQ2-0), either the input
signal’s edge or level can trigger an external interrupt.

The processor detects a level-sensitive interrupt if the signal input is low
(active) when sampled on the rising edge of CLKIN. A level-sensitive inter-
rupt must go high (inactive) before the processor returns from the
interrupt service routine. If a level-sensitive interrupt is still active when
the processor samples it after returning from its service routine, the pro-
cessor treats the signal as a new request. The processor repeats the same
interrupt routine without returning to the main program, assuming no
higher priority interrupts are active.

The processor detects an edge-sensitive interrupt if the input signal is high
(inactive) on one cycle and low (active) on the next cycle when sampled on
the rising edge of CLKIN. An edge-sensitive interrupt signal can stay active
indefinitely without triggering additional interrupts. To request another
interrupt, the signal must go high, then low again.

Edge-sensitive interrupts require less external hardware compared to
level-sensitive requests, because negating the request is unnecessary. An
advantage of level-sensitive interrupts is that multiple interrupting devices
may share a single level-sensitive request line on a wired-OR basis, allow-
ing easy system expansion.

The MODE? register controls external interrupt sensitivity. Table A-3 on
page A-10 lists all bits in the MODE?2 register. The following bits in MODE2
control interrupt sensitivity:

* Interrupt O Sensitivity. Bit 0 (IRQOE), directs the processor to
detect TRQO as edge-sensitive (if 1) or level-sensitive (if 0).
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* Interrupt 1 Sensitivity. Bit 1 (IRQ1E), directs the processor to
detect TRQO1 as edge-sensitive (if 1) or level-sensitive (if 0).

* Interrupt 2 Sensitivity. Bit 2 (IRQ2E), directs the processor to
detect TRQO2 as edge-sensitive (if 1) or level-sensitive (if 0).

The processor accepts external interrupts that are asynchronous to the
processor’s clock (CLKIN), allowing external interrupt signals to change at
any time. An external interrupt must be held low at least one CLKIN cycle
to guarantee that the processor samples the signal.

@ External interrupts must meet the setup and hold time require-
ments relative to the rising edge of CLKIN. For information on
interrupt signal timing requirements, see the processor’s Data

Sheet.

Masking Interrupts

The sequencer supports interrupt masking—latching an interrupt, but not
responding to it. Except for the RESET and EMU interrupts, all interrupts are
maskable. If a masked interrupt is latched, the processor responds to the
latched interrupt if it is later unmasked.

Interrupts can be masked globally or selectively. Bits in the MODEL, IMASK,
and LIRPTL registers control interrupt masking. Table A-2 on page A-3
lists the bits in MODE1, Table A-9 on page A-27 lists the bits in IMASK, and
Table A-10 on page A-34 lists the bits in LIRPTL. These bits control inter-
rupt masking as follows:

* Global interrupt enable. MODE1, Bit 12 (IRPTEN) directs the proces-
sor to enable (if 1) or disable (if 0) all interrupts.

* Selective interrupt enable. IMASK, Bits 30-10 and 8-0, direct the
processor to enable (if 1) or disable/mask (if 0) the corresponding
interrupt.
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* Selective link port interrupt enable. LIRPTL, Bits 17-16 (LPxMSK)
direct the processor to enable (if 1) or disable/mask (if 0) the corre-
sponding link port interrupt.

e SPI port interrupt enable. LIRPTL, Bit 18 (SPIRMSK) and Bit 19
(SPITMSK) direct the processor to enable (if 1) or disable/mask (if 0)
the SPI port receive interrupt or transmit interrupt, respectively.

Except for the non-maskable interrupts and boot interrupts, all interrupts
are masked at reset. For booting, the processor automatically unmasks and
uses the external port (EP0I), link port (LP0I) or SPI port (SPIRI) inter-
rupt after reset. Usage depends on whether the ADSP-21161 processor is
booting from EPROM, host, SPI or link ports.

Latching Interrupts

When the processor recognizes an interrupt, the processor’s interrupt latch
(IRPTL and LIRPTL) registers latch the interrupts—set a bit to record that
the interrupt occurred. The bits in these registers indicate all interrupts
that are currently being serviced or are pending. Because these registers are
readable and writable, any interrupt except reset can be set or cleared in
software. Note that writing to the reset bit (bit 1) in IRPTL puts the pro-
cessor into an illegal state.

When an interrupt occurs, the sequencer sets the corresponding bit in
IRPTL or LIRPTL. During execution of the interrupt’s service routine, the
processor clears this bit during every cycle to prevent the same interrupt
from being latched while its service routine is executing. After the return
from interrupt (RTI), the sequencer stops clearing the latch bit.

If necessary, it is possible to re-use an interrupt while it is being serviced.
For more information, see “Reusing Interrupts” on page 3-47.

The interrupt latch bits in IRPTL correspond to interrupt mask bits in the
IMASK register. In both registers, the interrupt bits are arranged in order of
priority. The interrupt priority is from 0 (highest) to 31 (lowest). Inter-
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rupt priority determines which interrupt is serviced first when more than
one occurs in the same cycle. Priority also determines which interrupts are
nested when the processor has interrupt nesting enabled. For more infor-
mation, see “Nesting Interrupts” on page 3-45.

While IRPTL latches interrupts for a variety of events, the LIRPTL register
contains latch and mask bits only for Link port and SPI DMA interrupts.
A logical Or’ing of link port interrupts (masked-latch state) appears in the
LPSUM bit in the IRPTL register. Because the LPSUM bit has a corresponding
mask bit in the IMASK register, programs can use LPSUM for a second level of
link port interrupt masking.

Multiple events can cause arithmetic interrupts—fixed-point overflow
(FIx1) and floating-point overflow (FLTO0I), underflow (FLTUI), and
invalid operation (FLTII). To determine which event caused the interrupt,
a program can read the arithmetic status flags in the STYKx or STKYy status
registers. Table A-5 on page A-19 lists the bits in these registers. Service
routines for arithmetic interrupts must clear the appropriate STKYx or
STKYy bits to clear the interrupt. If the bits are not cleared, the interrupt is
still active after the return from interrupt (RTI).

Status bits in STKYy apply only in SIMD mode. For more informa-
tion, see “Secondary Processing Element (PEy)” on page 2-37.

One event can cause multiple interrupts. The timer decrementing to zero
causes two timer expired interrupts, TMZHI (high priority) and TMZLI (low
priority). This feature allows selection of the priority for the timer inter-
rupt. Programs should unmask the timer interrupt with the desired
priority and leave the other one masked. If both interrupts are unmasked,
IRPTL latches both interrupts when the timer reaches zero, and the proces-
sor services the higher priority interrupt first, and then the lower priority
interrupt.
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The IRPTL also supports software interrupts. When a program sets the
latch bit for one of these interrupts (SFT0I, SFT1I, SFT21I, or SFT31), the
sequencer services the interrupt, and the processor branches to the corre-
sponding interrupt routine. Software interrupts have the same behavior as
all other maskable interrupts.

Stacking Status During Interrupts

To run in an interrupt driven system, programs depend on the processor
being restored to its pre-interrupt state after an interrupt is serviced. The
sequencer’s status stack eases the return from interrupt process by elimi-
nating some interrupt service overhead—register saves and restores.

The status stack is fifteen locations deep. The stack is full when all entries
are occupied, is empty when no entries are occupied, and is overflowed if a
push occurs when the stack is already full. Bits in the STKYx register indi-
cate the status stack full and empty states. Table A-5 on page A-19 lists
the bits in the STYKx register. The STKYx bits that indicate status stack sta-
tus are:

e Status stack overflow. Bit 23 (SS0V) indicates that the status stack
is overflowed (if 1) or not overflowed (if 0)—A sticky bit.

* Status stack empty. Bit 24, (SSEM) indicates that the status stack is
empty (if 1) or not empty (if 0)—Not sticky, cleared by a PUSH.

For some interrupts (TRQ2-0, timer expired, and VIRPT), the sequencer
automatically pushes the ASTATX, ASTATy, and MODE1 registers onto the sta-
tus stack. When the sequencer pushes an entry onto the status stack, the
processor uses the MMASK register to clear the corresponding bits in the
MODE1 register. All other bit settings remain the same. For more informa-
tion and an example of how the MMASK and MODE1 registers work together,
see the section “Mode Mask Register (MMASK)” on page A-8.
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The sequencer automatically pops the ASTATx, ASTATY, and MODE1 registers
from the status stack during the return from interrupt instruction (RTI).
In one other case, JUMP (C1), the sequencer pops the stack. For more
information, see “Reusing Interrupts” on page 3-47.

Only the TRQ2-0, timer expired, and VIRPT interrupts cause the sequencer
to push an entry onto the status stack. All other interrupts require either
explicit saves and restores of effected registers or an explicit push or pop of
the stack (PUSH/POP STS).

Pushing ASTATx, ASTATy, and MODE1 preserves the status and control bit
settings. This feature allows a service routine to alter these bits with the
knowledge that the original settings are automatically restored upon the
return from the interrupt.

The top of the status stack contains the current values of ASTATX, ASTATYy,
and MODEL. Reading and writing these registers does not move the stack
pointer. Explicit PUSH or POP instructions do move the status stack pointer.

Nesting Interrupts

The sequencer supports interrupt nesting—responding to another inter-
rupt while a previous interrupt is being serviced. Bits in the MODEL, IMASKP,
and LIRPTL registers control interrupt nesting. Table A-2 on page A-3 lists
the bits in MODE1, Table A-9 on page A-27 lists the bits in IMASKP, and
Table A-10 on page A-34 lists the bits in LIRPTL. These bits control inter-
rupt nesting as follows:

* Interrupt nesting enable. MODE1 Bit 11 (NESTM). This bit directs the
processor to enable (if 1) or disable (if 0) interrupt nesting.

* Interrupt Mask Pointer. IMASKP Bits 30- 15, 13-10 and 8-0. These
bits list the interrupts in priority order and provide a temporary
interrupt mask for each nesting level.
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* Link Port DMA Interrupt Mask Pointer. LIRPTL Bits 25-24,
(LPxMSKP). These bits are the link port DMA interrupts in priority
order. They provide a temporary interrupt mask for each nesting
level.

* SPI Port DMA Interrupt Mask Pointer. LIRPTL Bits 27-26,
(SPITMSKP and SPIRMSKP). These bits are the SPI port transmit and
receive DMA interrupts respectively. They provide a temporary
interrupt mask.

When interrupt nesting is disabled, a higher priority interrupt can not
interrupt a lower priority interrupt’s service routine. Other interrupts are
latched as they occur, but the processor processes them after the active
routine finishes.

When interrupt nesting is enabled, a higher priority interrupt can inter-
rupt a lower priority interrupt’s service routine. Lower interrupts are
latched as they occur, but the processor process them after the nested rou-
tines finish.

Programs should change the interrupt nesting enable (NESTM) bit only
while outside of an interrupt service routine or during the reset service
routine.

If nesting is enabled and a higher priority interrupt occurs immediately
after a lower priority interrupt, the service routine of the higher priority
interrupt is delayed by one cycle. This delay allows the first instruction of
the lower priority interrupt routine to be executed, before it is
interrupted.

When servicing nested interrupts, the processor uses the interrupt mask
pointer (IMASKP) to create a temporary interrupt mask for each level of
interrupt nesting; the IMASK value is not effected. The processor changes
IMASKP each time a higher priority interrupt interrupts a lower priority ser-
vice routine.
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The bits in IMASKP correspond to the interrupts in order of priority. When
an interrupt occurs, the processor sets its bit in IMASKP. If nesting is
enabled, the processor uses IMASKP to generate a new temporary interrupt
mask, masking all interrupts of equal or lower priority to the highest pri-
ority bit set in IMASKP and keeping higher priority interrupts the same as
in IMASK. When a return from an interrupt service routine (RTI) is exe-
cuted, the processor clears the highest priority bit set in IMASKP and
generates a new temporary interrupt mask. The processor masks all inter-
rupts of equal or lower priority to the highest priority bit set in IMASKP.
The bit set in IMASKP that has the highest priority always corresponds to
the priority of the interrupt being serviced.

If an interrupt recurs while its service routine is running and nesting is
enabled, the processor updates IRPTL, but does not service the interrupt.
The processor waits until the return from interrupt (RTI) completes before
vectoring to the service routine again.

If nesting is not enabled, the processor masks out all interrupts and IMASKP
is not used, but the processor still updates IMASKP to create a temporary
interrupt mask.

The interrupt controller uses the IMASKP register and the LPxMSKP,
SPITMSKP, and SPIRMSKP bits of the LIRPTL register. These bits
should not be modified.

Reusing Interrupts

When an interrupt occurs the sequencer sets the corresponding bit in
IRPTL. During execution of the service routine, the sequencer keeps this
bit cleared—the processor clears the bit during every cycle, preventing the
same interrupt from being latched while its service routine is already
executing.
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If necessary, it is possible to re-use an interrupt while it is being serviced.
Using a JuMP clear interrupt, JUMP (CI), instruction in the interrupt ser-
vice routine clears the interrupt, allowing its reuse while the service
routing is executing.

The JUMP (C1) instruction reduces an interrupt service routine to a normal
subroutine, clearing the appropriate bit in the interrupt latch and inter-
rupt mask pointer and popping the status stack. After the JUMP (C1)
instruction, the processor stops automatically clearing the interrupt’s latch
bit, allowing the interrupt to latch again.

When returning from a subroutine entered with a JUMP (CI) instruction, a
program must use a return loop reentry, RTS(LR), instruction. For more
information, see “Restrictions on Ending Loops” on page 3-25.

The following example shows an interrupt service routine that is reduced
to a subroutine with the (C1) modifier:

instrl; /*Interrupt entry from main program*/

JUMP(PC,3) (DB,CI); /*Clear interrupt status*/

instr3;

instré;

instrb;

RTS (LR); /*Use LR modifier with return from subroutinex/

The JuMP (PC,3)(DB.CI) instruction actually only continues linear
execution flow by jumping to the location PC + 3 (instr5). The two
intervening instructions (instr3, instr4) are executed because of the
delayed branch (DB). This JUMP instruction is only an example—a
JUMP (CI) can be to any location.

Interrupting IDLE

The sequencer supports placing the processor in IDLE—a special instruc-
tion that halts the processor core in a low-power state. The halt occurs
until an external interrupt (TRQ2-0), timer interrupt, DMA interrupt, or

3-48 ADSP-21161 SHARC Processor Hardware Reference



Program Sequencer

VIRPT vector interrupt occurs. When executing an IDLE instruction, the
sequencer fetches one more instruction at the current fetch address and
then suspends operation. The processor’s I/O processor is not effected by
the IDLE instruction—DMA transfers to or from internal memory contin-
ues uninterrupted.

The processor’s internal clock and timer (if enabled) continue to run dur-
ing IDLE. When an external interrupt (TRQ2-0), timer interrupt, DMA
interrupt, or VIRPT vector interrupt occurs, the processor responds nor-
mally. After two cycles used to fetch and decode the first instruction of the
interrupt service routine, the processor continues executing instructions
normally.

Multiprocessing Interrupts

The sequencer supports a multiprocessor vector interrupt. The vector
interrupt (VIRPT) permits passing interprocessor commands in multi-
ple-processor systems. This interrupt occurs when an external processor (a
host or another processor) writes an address to the VIRPT register, inserting
a new vector address for VIRPT.

The VIRPT register has space for the vector address and data for the service
routine. Table A-19 on page A-64 lists the bits in the VIRPT registers.

When servicing a VIRPT interrupt, the processor automatically pushes the
status stack and executes the service routine located at the address speci-
fied in VIRPT. During the return from interrupt (RTI), the processor
automatically pops the status stack.
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To flag that a VIRPT interrupt is pending, the processor sets the VIPD bit in
the SYSTAT register when the external processor writes to the VIRPT regis-
ter. Programs passing interprocessor commands must monitor VIPD to
check if the processor can receive a new VIRPT address, because:

* If an external processor writes VIRPT while a previous vector is
pending, the new VIRPT address replaces the previous pending one.

* If an external processor writes VIRPT while a previous vector is exe-
cuting, the new VIRPT address does not execute (no new interrupt is
triggered).

When returning from a VIRPT interrupt, the processor clears the VIPD bit.
Note that if a processor writes to its own VIRPT register, the write is
ignored.

Timer and Sequencing

The sequencer includes a programmable interval timer, which appears in
Figure 3-2 on page 3-4. Bits in the MODE2, TCOUNT, and TPERIOD registers
control timer operations. Table A-3 on page A-10 lists the bits in the
MODE2 register. The bits that control the timer are given as follows:

e Timer enable. MODE2 Bit 5 (TIMEN). This bit directs the processor to
enable (if 1) or disable (if 0) the timer.

* Timer count. (TCOUNT) This register contains the decrementing
timer count value, counting down the cycles between timer
interrupts.

e Timer period. (TPERIOD) This register contains the timer period,
indicating the number of cycles between timer interrupts.

The TCOUNT register contains the timer counter. The timer decrements the
TCOUNT register during each clock cycle. When the TCOUNT value reaches
zero, the timer generates an interrupt and asserts the TIMEXP output high
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for 4 cycles (when the timer is enabled), as shown in Figure 3-5. On the
clock cycle after TCOUNT reaches zero, the timer automatically reloads
TCOUNT from the TPERIOD register.

The TPERIOD value specifies the frequency of timer interrupts. The num-
ber of cycles between interrupts is TPERIOD + 1. The maximum value of
TPERIOD is 272 — 1.

To start and stop the timer, programs use the MODE2 register’s TIMEN bit.
With the timer disabled (TIMEN=0), the program loads TCOUNT with an ini-
tial count value and loads TPERIOD with the number of cycles for the
desired interval. Then, the program enables the timer (TIMEN=1) to begin
the count.

When a program enables the timer, the timer starts decrementing the
TCOUNT register at the end of the next clock cycle. If the timer is subse-
quently disabled, the timer stops decrementing TCOUNT after the next clock
cycle as shown in Figure 3-5.

The timer expired event (TCOUNT decrements to zero) generates two inter-
rupts, TMZHI and TMZLI. For information on latching and masking these
interrupts to select timer expired priority, see “Latching Interrupts” on

page 3-42.

As with other interrupts, the sequencer needs two cycles to fetch and
decode the first instruction of the timer expired service routine before exe-
cuting the routine. The pipeline execution for the timer interrupt appears

in Table 3-15 on page 3-306.

Programs can read and write the TPERIOD and TCOUNT registers by using
universal register transfers. Reading the registers does not effect the timer.
Note that an explicit write to TCOUNT takes priority over the sequencer’s
loading TCOUNT from TPERIOD and the timer’s decrementing of TCOUNT.
Also note that TCOUNT and TPERIOD are not initialized at reset. Programs
should initialize these registers before enabling the timer.
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TIMER
ENABLE Set TIMEN Timer Active
in MODE2

CLKIN

TCOUNT=N TCOUNT=N TCOUNT=N-1
TIMER

Clear TIMEN
DISABLE in MODE2 Timer Inactive
CLKIN

|TCOUNT=M-1 TCOUNT=M-2 TCOUNT=M-2

Figure 3-5. Timer Enable and Disable

Stacks and Sequencing

The sequencer includes a Program Counter (PC) stack, which appears in
Figure 3-2 on page 3-4. At the start of a subroutine or loop, the sequencer
pushes return addresses for subroutines (CALL/return instructions) and
top-of-loop addresses for loops (D0/UNTIL) instructions onto the PC stack.
The sequencer pops the PC stack during a return from interrupt (RTI),
returns from subroutine (RTS), and loop termination.

The pPC stack is 30 locations deep. The stack is full when all entries are
occupied, is empty when no entries are occupied, and is overflowed if a
push occurs when the stack is already full. Bits in the STKYx register indi-
cate the PC stack full and empty states. Table A-5 on page A-19 lists the
bits in the STYKx register. The STKYx bits that indicate PC stack status are:
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e PC stack full. Bit 21 (PCFL) indicates that the PC stack is full (if 1)
or not full (if 0)—Not a sticky bit, cleared by a POP.

e PC stack empty. Bit 22 (PCEM) indicates that the PC stack is empty
(if 1) or not empty (if 0)—Not sticky, cleared by a PUSH.

The PC stack full condition causes a maskable interrupt (SOVFI). This
interrupt occurs when the PC stack has 29 locations filled (the almost full
state). The PC stack full interrupt occurs when one location is left, because
the PC stack full service routine needs that last location for its return

address.

The address of the top of the PC stack is available in the PC stack pointer
(PCSTKP) register. The value of PCSTKP is zero when the PC stack is empty,
is 1...30 when the stack contains data, and is 31 when the stack overflows.
This register is a readable and writable register. A write to PCSTKP takes
effect after a one-cycle delay. If the PC stack is overflowed, a write to
PCSTKP has no effect.

The overflow and full flags provide diagnostic aid only. Programs should
not use these flags for runtime recovery from overflow. Note that the sta-
tus stack, loop stack overflow, and PC stack full conditions trigger a
maskable interrupt.

The empty flags can ease stack saves to memory. Programs can monitor
the empty flag when saving a stack to memory to determine when the pro-
cessor has transferred all values.

Conditional Sequencing

The sequencer supports conditional execution with conditional logic that
appears in Figure 3-2 on page 3-4. This logic evaluates conditions for con-
ditional (IF) instructions and loop (DO/UNTIL) terminations. The
conditions are based on information from the arithmetic status registers
(ASTATx and ASTATy), the mode control 1 register (MODE1), the flag inputs,
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and the loop counter. For more information on arithmetic status, see
“Using Computational Status” on page 2-8. When in SIMD mode, condi-
tional execution is effected by the arithmetic status of both processing
elements. For information on conditional sequencing in SIMD mode, see

“SIMD Mode and Sequencing” on page 3-57.

Each condition that the processor evaluates has an assembler mnemonic.
The condition mnemonics for conditional instructions appear in

Table 3-19. For most conditions, the sequencer can test both true and
false states. For example, the sequencer can evaluate ALU equal-to-zero
() and ALU not-equal-to-zero (NZ).

To test conditions that do not appear in Table 3-19, a program can use
the Test Flag (TF) condition generated from a Bit Test Flag (BTF) instruc-
tion. The TF flag is set or cleared as a result of a BIT TEST or BIT XOR
instruction, which can test the contents of any of the processor’s system
registers, including STKYx and STKYy.

Table 3-19. IF Condition and DO/UNTIL Termination

Mnemonics
Condition From | Description True if... Mnemonic
ALU ALU =0 AZ =1 EQ
ALU =0 AZ=0 NE
ALU > 0 footnote! GT
ALU < zero footnote? LT
ALU >0 footnote® GE
ALU <0 footnote? LE
ALU carry AC=1 AC
ALU not carry AC=0 NOT AC
ALU overflow AV =1 AV
ALU not overflow AV =0 NOT AV
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Table 3-19. IF Condition and DO/UNTIL Termination
Mnemonics (Cont’d)

Condition From | Description True if... Mnemonic
Multiplier Multiplier overflow MV =1 MV
Multiplier not overflow MV=0 NOT MV
Multiplier sign MN =1 MS
Multiplier not sign MN =0 NOT MS
Shifter Shifter overflow SV=1 SV
Shifter not overflow SV=0 NOT SV
Shifter zero SZ=1 Sz
Shifter not zero SZ=0 NOT SZ
Bit Test Bit test flag true BTF =1 TF
Bit test flag false BTF =0 NOT TF
Flag Input Flag0 asserted FI0O =1 FLAGO_IN
Flag0 not asserted FI0 =0 NOT FLAGO_IN
Flagl asserted FI1 =1 FLAG1_IN
Flagl not asserted FI1 =0 NOT FLAGI1_IN
Flag?2 asserted FI2 =1 FLAG2_IN
Flag?2 not asserted FI2 =0 NOT FLAG2_IN
Flag3 asserted FI3 =1 FLAG3_IN
Flag3 not asserted FI3 =0 NOT FLAG3_IN
Mode Bus master true BM
Bus master false NOT BM
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Table 3-19. IF Condition and DO/UNTIL Termination
Mnemonics (Cont’d)

Condition From | Description True if... Mnemonic
Sequencer Loop counter expired (Do) | CURLCNTR =1 LCE
Loop counter not expired CURLCNTR # 1 NOT ICE
(F)
Always false (Do) Always FOREVER
Always true (IF) Always TRUE

ALU greater than (GT) is true if: [AF and (AN xor (AV and ALUSAT)) or (AF and AN)] or AZ = 0
ALU less than (LT) is true if: [AF and (AN xor (AV and ALUSAT)) or (AF and AN and AZ)] = 1
ALU greater equal (GE) is true if: [AF and (AN xor (AV and ALUSAT)) or

(AF and AN and AZ)] =0

ALU lesser or equal (LT) is true if: [AF and (AN xor (AV and ALUSAT)) or

(AF and AN)] or AZ = 1

The two conditions that do not have complements are LCE/NOT LCE (loop
counter expired/not expired) and TRUE/FOREVER. The context of these con-
dition codes determines their interpretation. Programs should use TRUE
and NOT LCE in conditional (IF) instructions. Programs should use FOR-
EVER and LCE to specify loop (DO/UNTIL) termination. A DO FOREVER
instruction executes a loop indefinitely, until an interrupt or reset
intervenes.

There are some restrictions on how programs may use conditions in
DO/UNTIL loops. For more information, see “Restrictions on Ending
Loops” on page 3-25 and “Restrictions on Short Loops” on page 3-26.

The bus master (BM) condition indicates whether the processor is
the current bus master in a multiprocessor system. To enable test-
ing this condition, a program must clear the MODE1 register’s
Condition Code Select (CSEL) bits. Otherwise, the bus master con-
dition is always false.
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SIMD Mode and Sequencing

The processor supports a Single-Instruction, Multiple-Data (SIMD)
mode. In this mode, both of the processor’s processing elements (PEx and
PEy) execute instructions and generate status conditions. For more infor-
mation on SIMD computations, see “Secondary Processing Element
(PEy)” on page 2-37.

Because the two processing elements can generate different outcomes, the
sequencers must evaluate conditions from both elements (in SIMD mode)
for conditional (IF) instructions and loop (DO/UNTIL) terminations. The
processor records status for the PEx element in the ASTATx and STKYx reg-
isters. The processor records status for the PEy element in the ASTATy and
STKYy registers. Table A-4 on page A-13 lists the bits in ASTATx and
ASTATy, and Table A-5 on page A-19 lists the bits in STKYx and STKYy.

Even though the processor has dual processing elements, the sequencer
does not have dual sets of stacks. The sequencer has one PC stack, one loop
address stack, and one loop counter stack. The status bits for stacks are in
STKYx and are not duplicated in STKYy. In SIMD mode, the status stack
stores both ASTATx and ASTATy. A status stack PUSH or POP instruction in
SIMD mode affects both registers in parallel.

While in SIMD mode, the sequencer evaluates conditions from both PE’s
for conditional (IF) and loop (DO/UNTIL) instructions. Table 3-20 summa-
rizes how the sequencer resolves each conditional test when SIMD mode is

enabled.
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Table 3-20. Conditional Execution Summary

Conditional Operation

Conditional Outcome Depends On ...

Compute Operations

Executes in each processing element independently
depending on condition test in each processing element

Branches and Loops

Executes in sequencer depending on ANDing condition
test in each processing element

Data Moves (from complementary
pair1 to complementary pair)

Executes move in each processing element (and/or mem-
ory) independently depending on condition test in each
processing element. The same uncomplimented universal
register is the source for each move, including X<->Y
swap.

Data Moves (from uncomplemented
Ureg register to complementary pair)

Executes move in each processing element (and/or mem-
ory) independently depending on condition test in each
processing element. The same uncomplimented universal
register is the source for each move, including X<->Y
swap.

Data Moves (from complementary
pair to uncomplemented register?)

Executes explicit move to uncomplemented universal reg-
ister depending on condition test in PEx only; no
implicit move occurs. The same uncomplimented univer-
sal register is the source for each move, including X<->Y
swap.

DAG Operations

Executes modify” in DAG depending on ORing condi-
tion test in each processing element

1 Complementary pairs are registers with SIMD complements, include PEx/y data registers and
USTAT1/2, USTAT3/4, ASTATx/y, STKYx/y, and PX1/2 universal registers.

2 Uncomplemented registers are universal registers that do not have SIMD complements.

3 Post-modify operations follow this rule, but pre-modify operations always occur despite out-

come.

Conditional Compute Operations

While in SIMD mode, a conditional compute operation can execute on
both PE’s, either PE, or neither PE, depending on the outcome of the sta-
tus flag test. Flag testing is independently performed on each PE.
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Conditional Branches and Loops

The processor executes a conditional branch (JUMP or CALL/return) or loop
(DO/UNTIL) based on the result of AND’ing the condition tests on both
PEx and PEy. A conditional branch or loop in SIMD mode occurs only
when the condition is true in PEx and PEy.

Using complementary conditions (for example £Q and NE), programs can
produce an OR’ing of the condition tests for branches and loops in SIMD
mode. A conditional branch or loop that uses this technique should con-
sist of a series of conditional compute operations. These conditional
computes generate NOPs on the processing element where a branch or loop

does not execute. For more information on programming in SIMD mode,
see the ADSP-21160 SHARC DSP Instruction Set Reference.

Conditional Data Moves

The execution of a conditional (IF) data move (register-to-register and
register-to/from-memory) instruction depends on three factors:

* The explicit data move depends on the evaluation of the condi-
tional test in the PEx processing element

* The implicit data move depends on the evaluation of the condi-
tional test in the PEy processing element

* Both moves depend on the types of registers used in the move

There are four cases for SIMD conditional data moves:
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Case 1: Complementary Register Pair Data Move

In this case data moves from a complementary register pair to a comple-
mentary register pair. The processor executes the explicit move depending
on the evaluation of the conditional test in the PEx processing element
and the implicit move depending on the evaluation of the conditional test
in the PEy processing element.

Example: Register—to—-Memory Move — PEx Explicit Register
IF EQ DM(IO,M0) = RZ;

For this instruction the processor is operating in SIMD mode, a register in
the PEx data register file is the explicit register and 10 is pointing to an
even address in internal memory. Indirect addressing is shown in the
instructions shown in this example. However, the same results occur using
direct addressing. The data movement resulting from the evaluation of the
conditional test in the PEx and PEy processing elements is shown in

Table 3-21.

Table 3-21. Register—to—Memory Moves — Complementary Pairs

Condition Condition Result

in PEx in PEy

AZx AZy Explicit Implicit

0 0 NO data move occurs NO data move occurs

0 1 NO data move occurs from | s2 transfers to location

r2 to location I0 (10+1)

1 0 r2 transfers to location 10 NO data move occurs from
s2 to location (I10+1)

1 1 r2 transfers to location 10 s2 transfers to location
(10+1)
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Example: Register—to—-Memory Move — PEy Explicit Register
IF EQ DM(IO,MO) = S2;

For this instruction the processor is operating in SIMD mode, a register in
the PEy data register file is the explicit register and 10 is pointing to an
even address in internal memory. The data movement resulting from the
evaluation of the conditional test in the PEx and PEy processing elements
is shown in Table 3-22.

Table 3-22. Register—to—Register Moves — Complementary Pairs

Condition Condition Result

in PEx in PEy

AZx AZy Explicit Implicit

0 0 NO data move occurs NO data move occurs

0 1 NO data move occurs from | r2 transfers to location 10+1
s2 to location 10

1 0 s2 transfers to location 10 NO data move occurs from r2

to location 10+1
1 1 s2 transfers to location 10 r2 transfers to location 10+1

Examples: Register—to—Register Move Instructions

IF EQ R8 = RZ;
IF EQ PX1 = R2Z;
IF EQ USTATL = R2Z;

For these instruction the processor is operating in SIMD mode and regis-
ters in the PEx data register file are used as the explicit registers. The data
movement resulting from the evaluation of the conditional test in the PEx
and PEy processing elements is shown in Table 3-23.
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Table 3-23. Register—to—Register Moves — Complementary Pairs

Condition Condition Result

in PEx in PEy

AZx AZy Explicit Implicit

0 0 NO data move occurs NO data move occurs

0 1 NO data move to registers | s2 transfers to registers s9,px2
r9,px1,ustatl occurs and ustat2

1 0 12 transfers to registers NO data move to s9, px2, or
r9,px1 and ustatl ustat2 occurs

1 1 r2 transfers to registers s2 transfers to registers
19,px1, and ustatl $9,px2,and ustat2

Examples: Register—to—Register Move Instructions

IF EQ R8
IF EQ PX1

IF EQ USTATL =

S2;
S2;
S2;

For these instructions the processor is operating in SIMD mode and regis-
ters in the PEy data register file are used as explicit registers. The data
movement resulting from the evaluation of the conditional test in the PEx
and PEy processing elements is shown in Table 3-24.

Table 3-24. Register—to—Register Moves — Complementary Register

Pairs
Condition Condition Result
in PEx in PEy
AZx AZy Explicit Implicit
0 0 NO data move occurs NO data move occurs
0 1 NO data move to registers r2 transfers to registers s9,px2,
s9,px and ustatl occurs and ustat2
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Table 3-24. Register—to—Register Moves — Complementary Register
Pairs (Cont’d)

Condition Condition Result

in PEx in PEy

AZx AZy Explicit Implicit

1 0 s2 transfers to registers r9,px1 NO data move to registers
and ustatl $9,px2, and ustat2 occurs

1 1 s2 transfers to registers r9,px1, | r2 transfers to registers s9,px2,
and ustatl and ustat2

Case 2: Uncomplemented-to-Complementary
Register Move

In this case data moves from an uncomplemented register (Ureg without a
SIMD complement) to a complementary register pair. The processor exe-
cutes the explicit move depending on the evaluation of the conditional test
in the PEx processing element. The processor executes the implicit move
depending on the evaluation of the conditional test in the PEy processing
element. In each processing element where the move occurs, the content
of the source register is duplicated in destination.

Example: Register—to—Register Move
IF EQ R1 = PX;

While PX1 and PX2 are complementary registers, the combined PX
register has no complementary register. For more information, see
“Internal Data Bus Exchange” on page 5-10.

For this instruction the processor is operating in SIMD mode. The data
movement resulting from the evaluation of the conditional test in the PEx
and PEy processing elements is shown in Table 3-24.
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Table 3-25. Complementary—to—Uncomplemented Register Move

Condition Condition Result

in PEx in PEy

AZx AZy Explicit Implicit

0 0 rl remains unchanged s1 remains unchanged
0 1 rl remains unchanged s1 gets px value

1 0 rl gets px value s1 remains unchanged
1 1 rl gets px value s1 gets px value

Case 3: Complementary Register => Uncomplimentary
Register

In this case data moves from a complementary register pair to an uncom-
plemented register. The processor executes the explicit move to the
uncomplemented universal register, depending on the condition test in
the PEx processing element only. The processor does not perform an
implicit move.

Example: Register—to—Register Move
IF EQ PX = RI;

For this instruction the processor is operating in SIMD mode. The data
movement resulting from the evaluation of the conditional test in the PEx
and PEy processing elements is shown in Table 3-26.

Table 3-26. Complementary—to—Uncomplemented Move

Condition Condition Result

in PEx in PEy

AZx AZy Explicit Implicit

0 0 px remains unchanged no implicit move
0 1 px remains unchanged no implicit move
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Table 3-26. Complementary—to—Uncomplemented Move (Contd)
Condition Condition Result
in PEx in PEy
AZx AZy Explicit Implicit
1 0 r1 40-bit explicit move to px no implicit move
1 1 r1 40-bit explicit move to px no implicit move

For more details on PX register transfers, refer to “Internal Data Bus

Exchange” on page 5-10.

Case 4: Data Move Involves External Memory or
IOP Memory Space

Conditional data moves from a complementary register pair to an uncom-

plemented register with an access to external memory space or IOP
memory space. This results in unexpected behavior and should not be

used.

IF EQ DM(IO,MO)
IF EQ DM(IO,MO)

R2:
S2;

For these instruction the processor is operating in SIMD mode and the
explicit register is either a PEx register or PEy register. 10 points to either
external memory space or IOP memory space.

Indirect addressing is shown in the instructions shown in this example.
However, the same results occur using direct addressing.
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Conditional DAG Operations

Conditional post-modify DAG operations update the DAG register based
on OR’ing of the condition tests on both processing elements. Actual data
movement involved in a conditional DAG operation is based on indepen-
dent evaluation of condition tests in PEx and PEy. Only the post modify
update is based on the OR’ing of the these conditional tests.

Conditional pre-modify DAG operations behave differently. The DAGs
always pre-modify an index, independent of the outcome of the condition
tests on each processing element.
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The processor’s Data Address Generators (DAGs) generate addresses for
data moves to and from Data Memory (DM) and Program Memory (PM).
By generating addresses, the DAGs let programs refer to addresses indi-
rectly, using a DAG register instead of an absolute address. The DAGs
architecture, which appears in Figure 4-1, supports several functions that
minimize overhead in data access routines. These functions include:

Supply address and post-modify—provides an address during a
data move and auto-increments the stored address for the next
move.

Supply pre-modified address—provides a modified address during

a data move without incrementing the stored address.

Modify address—increments the stored address without perform-
ing a data move.

Bit-reverse address—provides a bit-reversed address during a data
move without reversing the stored address.

Broadcast data moves—performs dual data moves to complemen-
tary registers in each processing element to support SIMD mode.
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As shown in Figure 4-1, each DAG has four types of registers. These regis-
ters hold the values that the DAG uses for generating addresses. The four
types of registers are:

* Index registers (10-17 for DAG1 and I8-115 for DAG2). An index
register holds an address and acts as a pointer to memory. For
example, the DAG interprets DM(10,0) and PM(18,0) syntax in an
instruction as addresses.

* Modify registers (M0-M7 for DAG1 and M8-M15 for DAG2). A
modify register provides the increment or step size by which an
index register is pre- or post-modified during a register move. For
example, the DM(10, M1) instruction directs the DAG to output the
address in register 10 then modify the contents of 10 using the M1
register.

* Length and Base registers (L0-L7 and B0-B7 for DAG1 and
L8-L15 and B8-B15 for DAG2). Length and base registers setup
the range of addresses and the starting address for a circular buffer.
For more information on circular buffers, see “Addressing Circular
Buffers” on page 4-12.

Setting DAG Modes

The MODE1 register controls the operating mode of the DAGs. Table A-2
on page A-3 lists all the bits in MODEL. The following bits in MODE1 control
Data Address Generator modes:

* Circular buffering enable. Bit 24 (CBUFEN) enables circular buffer-
ing (if 1) or disables circular buffering (if 0).

* Broadcast register loading enable, DAG1-I1. Bit 23 (BDCST1)
enables register broadcast loads to complementary registers from 11
indexed moves (if 1) or disables broadcast loads (if 0).
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Figure 4-1. Data Address Generator (DAG) Block Diagram

* Broadcast register loading enable, DAG2-19. Bit 22 (BDCST9)
enables register broadcast loads to complementary registers from 19
indexed moves (if 1) or disables broadcast loads (if 0).

e SIMD mode enable. Bit 21 (PEYEN) enables computations in
PEy—SIMD mode—(if 1) or disables PEy—SISD mode—(if 0).
For more information on SIMD mode, see “Secondary Processing

Element (PEy)” on page 2-37.
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* Secondary registers for DAG2 lo, I,M,L,B8-11. Bit 6 (SRD2L)
Secondary registers for DAG2 hi, I,M,L,B12-15. Bit 5 (SRD2H)
Secondary registers for DAG1 lo, I,M,L,B0-3. Bit 4 (SRD1L)
Secondary registers for DAG1 hi, I,M,L,B4-7. Bit 3 (SRD1H)
These bits select the corresponding secondary register set (if 1) or
select the corresponding primary register set—the set that is avail-

able at reset—(if 0).

* Bit-reverse addressing enable, DAG1-10. Bit 1 (BR0) enables
bit-reversed addressing on 10 indexed moves (if 1) or disables
bit-reversed addressing (if 0).

* Bit-reverse addressing enable, DAG2-18. Bit 0 (BR8) enables
bit-reversed addressing on I8 indexed moves (if 1) or disables
bit-reversed addressing (if 0).

Circular Buffering Mode

The CBUFEN bit in the MODE1 register enables circular buffering—a mode in
which the DAG supplies addresses ranging within a constrained buffer
length (set with an L register), starting at a base address (set with a B regis-
ter), and incrementing the addresses on each access by a modify value (set
with an M register).

For revision 1.0 and greater of ADSP-21161 processor, the Circu-
lar Buffer Enable bit (CBUFEN) in SYSCON is set (=1) upon reset. For
earlier silicon revisions 0.x, this bit is cleared (=0) upon reset. This
change was made to ensure code compatibility with the
ADSP-2106x SHARC family (ADSP-21060/1/2 and
ADSP-21065L) where circular buffering is active upon reset.

However, circular buffering is disabled upon reset for the
ADSP-21160. Make note of this when porting code from
ADSP-21160 to ADSP-21161 processor.
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For more information on setting up and using circular buffers, see
“Addressing Circular Buffers” on page 4-12. When using circular buffers,
the DAGs can generate an interrupt on buffer overflow (wrap around).
For more information, see “Using DAG Status” on page 4-8.

Broadcast Loading Mode

The BDCST1 and BDCSTY bits in the MODE1 register enable broadcast loading
mode—multiple register loads from a single load command. When the
BDCSTI bit is set (1), the DAG performs a dual data register load on
instructions that use the I1 register for the address. The DAG loads both
the named register (explicit register) in one processing element and loads
that register’s complementary register (implicit register) in the other pro-
cessing element. The BDCST9 bit in the MODEL register enables this feature
for the 19 register.

Enabling either DAG1 or DAG?2 register load broadcasting has no effect
on register stores or loads to universal registers other than the register file
data registers. Table 4-1 demonstrates the effects of a register load opera-
tion on both processing elements with register load broadcasting enabled.
In Table 4-1, note that Rx and Sx are complementary data registers.

Table 4-1. Dual Processing Element Register Load Broadcasts

Instruction syntax Rx = DM(I1,Ma); {Syntax #1}
Rx = PM(I9,Mb); {Syntax #2}
Rx = DM(I1,Ma), Rx = PM(I9,Mb); {Syntax #3}

PEx explicit operations Rx = DM(I1,Ma); {Explicit #1}
Rx = PM(I9,Mb); {Explicit #2}
Rx = DM(I1,Ma), Rx = PM(I9,Mb); {Explicit #3}

PEy implicit operations Sx = DM(I1,Ma); {Implicit #1}
Sx = PM(I9,Mb); {Implicit #2}
Sx = DM(I1,Ma), Sx = PM(I9,Mb); {Implicit #3}

1. Note that the letters a and b (as in Ma or Mb) indicate numbers for modify registers in
DAGI1 and DAG2. The letter a indicates a DAGI1 register and can be replaced with
0 through 7. The letter b indicates a DAG2 register and can be replaced with 8 through 15.
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The PEYEN bit (SISD/SIMD mode select) does not influence broadcast
operations. Broadcast loading is particularly useful in SIMD applications
where the algorithm needs identical data loaded into each processing ele-
ment. For more information on SIMD mode (in particular, a list of
complementary data registers), see “Secondary Processing Element (PEy)”
on page 2-37.

Alternate (Secondary) DAG Registers

Each DAG has an alternate register set. To facilitate fast context switch-
ing, the processor includes alternate register sets for data, results, and data
address generator registers. Bits in the MODE1 register control when alter-
nate registers become accessible. While inaccessible, the contents of
alternate registers are not effected by processor operations. Note that there
is a one cycle latency between writing to MODE1 and being able to access an
alternate register set. The alternate register sets for the DAGs are described
in this section. For more information on alternate data and results regis-
ters, see “Alternate (Secondary) Data Registers” on page 2-32.

Bits in the MODE1 register can activate alternate register sets within the
DAGs: the lower half of DAG1 (1,M,L,80-3), the upper half of DAG1
(I,M,L,B4-7), the lower half of DAG2 (I,M,L,B8-11), and the upper half
of DAG2 (1.M,L,B12-15). Figure 4-1 shows the DAG’s primary and alter-
nate register sets.

To share data between contexts, a program places the data to be shared in
one half of either the current DAG’s registers or the other DAG’s registers
and activates the alternate register set of the other half. The following
example demonstrates how code should handle the one cycle of latency
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MODE1 SELECT BIT

SRDIL ~——>
SRDIH —>
SRD2L ~—>
SRD2H —>

Figure 4-2. Data Address Generator Primary and Alternate Registers

Data Address Generator

DAG1 REGISTERS (DATA MEMORY)

MO

LO

BO

M1

L1

Bl

M2

L2

B2

M3
—

L3
_—

B3
m—

M4

L4

B4

M5

L5

B5

M6

L6

B6

M7
m——

L7

REGISTERS (PROGRAM

B7

MEMORY)

M8

L8

B8

M9

L9

B9

110

M10

L10

B10

111

M11

L11

B11

112

M12

L12

B12

113

M13

L13

B13

114

M14

L14

B14

115

M15

L15

B15

from the instruction setting the bit in MODE1 to when the alternate registers
may be accessed. Note that it is possible to use any instruction that does

not access the switching register file instead of an NOP instruction.

BIT SET MODE1 SRDIL;
NOP;
RO=DM(i0,ml);

/* Activate alternate dagl lo regs */

/* Wait for access to alternates */
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Usi

ng DAG Status

Bit-reverse Addressing Mode

The BRO and BR8 bits in the MODE1 register enable bit-reverse addressing
mode—outputting addresses in reverse bit order. When BRO is set (1),
DAGT bit-reverses 32-bit addresses output from 10. When BR8 is set (1),
DAG?2 bit-reverses 32-bit addresses output from 18. The DAGs only
bit-reverse the address output from 10 or 18; the contents of these registers
are not reversed. Bit-reverse addressing mode effects both pre-modify and
post-modify operations. The following example demonstrates how
bit-reverse mode effects address output:

BIT SET Model BRO; /* Enables bit-rev. addressing for DAGl */
[0=0x8a000; /* Loads I0 with the bit reverse of the
buffer’s base address, DM(0x51000) */

MO=0x4000000; /* Loads MO with value for post-modify */
R1=DM(I0,M0); /* Loads rl with contents of DM address

DM(0x51000), which is the bit-reverse of 0x8a000, then post modi-
fies I0 for the next access with (0x8a000 + 0x4000000)=0x408a000,
which is the bit-reverse of DM(0x51020) */

In addition to bit-reverse addressing mode, the processor supports a
bit-reverse instruction (BITREV). This instruction bit-reverses the contents
of the selected register. For more information on the BITREV instruction,
see “Modifying DAG Registers” on page 4-17 or the ADSP-21160
SHARC DSP Instruction Set Reference.

Using DAG Status

As described in “Addressing Circular Buffers” on page 4-12, the DAGs
can provide addressing for a constrained range of addresses, repeatedly
cycling through this data (or buffer). A buffer overflow (or wrap around)
occurs each time the DAG circles past the buffer’s base address.

4-8
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The DAGs can provide buffer overflow information when executing circu-
lar buffer addressing for 17 or 115. When a buffer overflow occurs (a
circular buffering operation increments the I register past the end of the
buffer), the appropriate DAG updates a buffer overflow flag in a sticky
status (STKYx) register. A buffer overflow can also generate a maskable
interrupt. Two ways to use buffer overflows from circular buffering are:

* Interrupts. Enable interrupts and use an interrupt service routine
to handle the overflow condition immediately. This method is
appropriate if it is important to handle all overflows as they occur;
for example in a “ping-pong” or swap 1/O buffer pointers routine.

* STKYx registers. Use the BIT TST instruction to examine overflow
flags in the STKY register after a series of operations. If an overflow
flag is set, the buffer has overflowed—wrapped around—at least
once. This method is useful when overflow handling is not critical.

DAG Operations

The processor’s DAGs perform several types of operations to generate data
addresses. As shown in Figure 4-1 on page 4-3, the DAG registers and the
MODE1, MODE2, and STKYx registers all contribute to DAG operations. The
following sections provide details on DAG operations:

* “Addressing With DAGs” on page 4-10
e “Addressing Circular Buffers” on page 4-12
* “Modifying DAG Registers” on page 4-17

An important item to note from Figure 4-1 on page 4-3 is that the DAG
automatically adjusts the output address per the word size of the address
location (short word, normal word, or long word). This address adjust-
ment lets internal memory use the address directly.
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SISD/SIMD mode, access word size, and data location (inter-
nal/external) all influence data access operations.

Addressing With DAGs

The DAGs support two types of modified addressing—generating an
address that is incremented by a value or a register. In pre-modify address-
ing, the DAG adds an offset (modifier), either an M register or an
immediate value, to an I register and outputs the resulting address.
Pre-modify addressing does not change (or update) the I register. The
other type of modified addressing is post-modify addressing. In post-mod-
ify addressing, the DAG outputs the I register value unchanged then adds
an M register or immediate value, updating the I register value. Figure 4-3
compares pre- and post-modify addressing.

PRE-MODIFY POST-MODIFY
NO | REGISTER UPDATE | REGISTER UPDATE
SYNTAX:  PM(MX, IX) SYNTAX:  PM(IX, MX)
DM(MX, IX) DM(IX, MX)

2. UPDATE
| LouPlT « | | |«

+ +
M M
OUTPUT 1+M I+M

Figure 4-3. Pre-Modify and Post-Modify Operations

The difference between pre-modify and post-modify instructions in the
processor’s assembly syntax is the position of the index and modifier in the
instruction. If the I register comes before the modifier, the instruction is a
post-modify operation. If the modifier comes before the I register, the
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instruction is a pre-modify without update operation. The following
instruction accesses the program memory location indicated by the value
in 115 and writes the value 115 + M12 to the 115 register:

R6 = PM(I15,M12); /* Post-modify addressing with update */

By comparison, the following instruction accesses the program memory
location indicated by the value 115 + M12 and does not change the value in
I15:

R6 = PM(M12,115); /* Pre-modify addressing without update */

Modify (M) registers can work with any index (I) register in the same
DAG (DAGI1 or DAG2). For a list of T and M registers and their DAGs,
see Figure 4-2 on page 4-7.

Instructions can use a number (immediate value), instead of an M register,
as the modifier. The size of an immediate value that can modify an I regis-
ter depends on the instruction type. For all single data access operations,
modify immediate values can be up to 32 bits wide. Instructions that com-
bine DAG addressing with computations limit the size of the modify
immediate value. In these instructions (multifunction computations), the
modify immediate values can be up to 6 bits wide. The following example
instruction accepts up to 32-bit modifiers:

R1=DM(0x40000000,11); /* DM address = I1+0x4000 0000 */
The following example instruction accepts up to 6-bit modifiers:
F6=F1+F2,PM(18,0x0B)=ASTAT; /* PM address = I8, I8=I8+0x0B */

Note that pre-modify addressing operations must not change the memory
space of the address. For example, pre-modifying an address in the proces-
sor’s internal memory space should not generate an address in external
memory space.
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Addressing Circular Buffers

The DAGs support addressing circular buffers—a range of addresses con-
taining data that the DAG steps through repeatedly, “wrapping around”
to repeat stepping through the range of addresses in a circular pattern. To
address a circular buffer, the DAG steps the index pointer (I register)
through the buffer, post-modifying and updating the index on each access
with a positive or negative modify value (M register or immediate value). If
the index pointer falls outside the buffer, the DAG subtracts or adds the
length of the buffer from or to the value, wrapping the index pointer back
to the start of the buffer. The DAG’s support for circular buffer address-
ing appears in Figure 4-1 on page 4-3, and an example of circular buffer

addressing appears in Figure 4-4.
The starting address that the DAG wraps around is called the buffer’s base

address (B register). There are no restrictions on the value of the base
address for a circular buffer.

@ Circular buffering may only use post-modify addressing. The

DAG’s architecture, as shown in Figure 4-1 on page 4-3, cannot
support pre-modify addressing for circular buffering, because cir-
cular buffering requires that the index be updated on each access.

It is important to note that the DAGs do not detect memory map over-
flow or underflow. If the address post-modify produces [+M > OxFFFF
FFFF or I-M < 0, circular buffering may not function correctly. Also, the
length of a circular buffer should not let the buffer straddle the top of the
memory map. For more information on the processor’s memory map, see

“Internal Address and Data Buses” on page 5-7.
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THE FOLLOWING SYNTAX SETS UP AND ACCESSES A CIRCULAR BUFFER WITH:

10

LENGTH =11

BASE ADDRESS = 0X55000

MODIFIER = 4

BIT SET MODE1 CBUFEN;

/* ENABLES CIRCULAR BUFFER ADDRESSING; JUST ONCE IN PROGRAM */

B0 = 0X55000; /* LOADS BO AND LO REGISTERS WITH BASE ADDRESS */
LO = 0XB; /* LOADS LO REGISTER WITH LENGTH OF BUFFER */
M1 = 0X4, /* LOADS M1 WITH MODIFIER OR STEP SIZE */

LCNTR = 11, DO MY_CIR_BUFFER UNTIL LCE; /* SETS UP A LOOP CONTAINING BUFFER ACCESSES */

RO = DM(I0,M1);

MY_CIR_BUFFER: NOP;

/* AN ACCESS WITHIN THE BUFFER USES POST MODIFY ADDRESSING */
/* OTHER INSTRUCTIONS IN THE MY_CIR_BUFFER LOOP */
/* END OF MY_CIR_BUFFER LOOP */

1 0 0 0
1 4 1 1
2 2 7 2

3 3 3 10
2 4 4 4
5 5 5 5
6 6 8 6

7 7 7 11
3 8 8 8
9 9 9
10 10 9 10

THE COLUMNS ABOVE SHOW THE SEQUENCE IN ORDER OF LOCATIONS ACCESSED IN ONE PASS.
NOTE THAT "0" ABOVE IS ADDRESS DM(0X55000). THE SEQUENCE REPEATS ON SUBSEQUENT PASSES.

Figure 4-4. Circular Data Buffers

As shown in Figure 4-4, programs use the following steps to set up a circu-

lar buffer:

1. Enable circular buffering (BIT SET Model CBUFEN:). This operation
is only needed once in a program.

2. Load the buffer’s base address into the B register. This operation
automatically loads the corresponding I register.

ADSP-21161 SHARC Processor Hardware Reference
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3. Load the buffer’s length into the corresponding L register. For
example, LO corresponds to BO.

4. Load the modify value (step size) into an M register in the corre-
sponding DAG. For example, M0 through M7 correspond to BO.
Alternatively, the program can use an immediate value for the
modifier.

After this set up, the DAGs use the modulus logic in Figure 4-1 on
page 4-3 to process circular buffer addressing.

On the ADSP-21161 processor, programs enable circular buffering by set-
ting the CBUFEN bit in the MODE1 register. This bit has a corresponding
mask bit in the MMASK register. Setting the corresponding MMASK bit causes
the CBUFEN bit to be cleared following a push status instruction (PUSH STS),
the execution of an external interrupt, timer interrupt, or vectored inter-
rupt. This feature lets programs disable circular buffering while in an
interrupt service routine that does not use circular buffering. By disabling
circular buffering, the routine does not need to save and restore the

DAG’s B and L registers.

Clearing the CBUFEN bit disables circular buffering for all data load and
store operations. The DAGs perform normal post-modify load and store
accesses instead, ignoring the B and L register values. Note that a write to a
B register modifies the corresponding I register, independent of the state
of the CBUFEN bit. The MODIFY instruction executes independent of the
state of the CBUFEN bit. The MODIFY instruction always performs circular
buffer modify of the index registers if the corresponding B and L registers
are set up, independent of the state of the CBUFEN bit.

For revision 1.0 and greater of ADSP-21161 processor, the Circu-
lar Buffer Enable bit (CBUFEN) in SYSCON is set (=1) upon reset. For
earlier silicon revisions 0.x, this bit is cleared (=0) upon reset. This
change was made to ensure code compatibility with the
ADSP-2106x SHARC family (ADSP-21060/1/2 and
ADSP-21065L) where circular buffering is active upon reset.
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However, circular buffering is disabled upon reset for the
ADSP-21160. Make note of this when porting code from
ADSP-21160 to ADSP-21161 processor.

On the first post-modify access to the buffer, the DAG outputs the I reg-
ister value on the address bus then modifies the address by adding the
modify value. If the updated index value is within the buffer length, the
DAG writes the value to the I register. If the updated value is outside the
buffer length, the DAG subtracts (positive) or adds (negative) the L regis-
ter value before writing the updated index value to the I register. In
equation form, these post-modify and wrap around operations work as
follows:

* If M is positive:
Inew = I )y + M if I}y + M < Buffer base + length (end of buffer)

Lew = Ioig + M = Lif Iy + M > Buffer base + length (end of
buffer)

e If M is negative:

Lhew = Lol + M if I )y + M > Buffer base (start of buffer)

Lew = Loig + M + Lif I}y + M < Buffer base (start of buffer)

The DAGs use all four types of DAG registers for addressing circular buff-

ers. These registers operate as follows for circular buffering:

e The index (1) register contains the value that the DAG outputs on
the address bus.

* The modify (M) register contains the post-modify amount (posi-
tive or negative) that the DAG adds to the I register at the end of
each memory access. The M register can be any M register in the
same DAG as the I register and does not have to have the same
number. The modify value also can be an immediate value instead
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of an M register. The size of the modify value, whether from an M
register or immediate, must be less than the length (L register) of
the circular buffer.

* The length (L) register sets the size of the circular buffer and the
address range that the DAG circulates the I register through. L
must be positive and cannot have a value greater than 231 — 1. If an
L register’s value is zero, its circular buffer operation is disabled.

* The base (B) register, or the B register plus the L register, is the
value that the DAG compares the modified 1 value with after each
access. When the B register is loaded, the corresponding I register is
simultaneously loaded with the same value. When I is loaded, B is
not changed. Programs can read the B and I registers
independently.

There is one set of registers (I7 and 115) in each DAG that can generate an
interrupt on circular buffer overflow (address wraparound). For more
information, see “Using DAG Status” on page 4-8.

When a program needs to use 17 or 115 without circular buffering and the
processor has the circular buffer overflow interrupts unmasked, the pro-
gram should disable the generation of these interrupts by setting the
B7/B15 and L7/L15 registers to values that prevent the interrupts from
occurring. If 17 were accessing the address range 0x1000-0x2000, the pro-
gram could set B7=0x0000 and L7=0xFFFF. Because the processor
generates the circular buffer interrupt based on the wrap around equations
on page 4-15, setting the L register to zero does not necessarily achieve the
desired results. If the program is using either of the circular buffer over-
flow interrupts, it should avoid using the corresponding I register(s) (17 or
115) where interrupt branching is not needed.
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In the case of circular buffer overflow interrupts, if CBUFEN = 1 and register
L7 =0 (or L15 = 0), then the CB71 (or CB15I) interrupt occurs at every
change of 17 (or 115), after the index register (I7 or 115) crosses the base
register (B7 or B15) value. This behavior is independent of the context of
the DAG registers, both primary and alternate.

When a Long word access, SIMD access, or Normal word access
(with LW option) crosses the end of the circular buffer, the proces-
sor completes the access before responding to the end of buffer
condition.

Modifying DAG Registers

The DAGs support two operations that modify an address value in an
index register without outputting an address. These two operations,
address bit-reversal and address modify, are useful for bit-reverse address-
ing and maintaining pointers.

The MODIFY instruction modifies addresses in any DAG index register
(10-115) without accessing memory. If the I register’s corresponding 8 and
L registers are set up for circular buffering, a MODIFY instruction performs
the specified buffer wrap around (if needed). The syntax for MODIFY is sim-
ilar to post-modify addressing (index, then modifier). MODIFY accepts
either a 32-bit immediate values or an M register as the modifier. The fol-
lowing example adds 4 to 11 and updates I1 with the new value:

MODIFY(I1,4);

The BITREV instruction modifies and bit-reverses addresses in any DAG
index register (10-115) without accessing memory. This instruction is
independent of the bit-reverse mode. The BITREV instruction adds a 32-bit
immediate value to a DAG index register, bit-reverses the result, and
writes the result back to the same index register. The following example
adds 4 to 11, bit-reverses the result, and updates 11 with the new value:

BITREV(I1,4);

ADSP-21161 SHARC Processor Hardware Reference 4-17



DAGs, Registers, and Memory

Addressing in SISD and SIMD Modes

Single-Instruction, Multiple-Data (SIMD) mode (PEYEN bit=1) does not
change the addressing operations in the DAGs, but it does change the
amount of data that moves during each access. The DAGs put the same
addresses on the address buses in SIMD and SISD modes. In SIMD
mode, the processor’s memory and processing elements get data from the
locations named (explicit) in the instruction syntax and complementary
(implicit) locations. For more information on data moves between regis-
ters, see “Secondary Processing Element (PEy)” on page 2-37.

DAGs, Registers, and Memory

DAG registers are part of the processor’s universal register set. Programs
may load the DAG registers from memory, from another universal regis-
ter, or with an immediate value. Programs may store DAG registers’
contents to memory or to another universal register.

The DAG’s registers support the bidirectional register-to-register transfers
that are described in “SIMD (Computational) Operations” on page 2-43.
When the DAG register is a source of the transfer, the destination can be a
register file data register. This transfer results in the contents of the single
source register being duplicated in complementary data registers in each
processing element.

Programs should use care in the case where the DAG register is a destina-
tion of a transfer from a register file data register source. Programs should
use a conditional operation to select either one processing element or nei-
ther as the source. Having both processing elements contribute a source
value results in the PEx element’s write having precedence over the PEy
element’s write.

In the case where a DAG register is both source and destination, the data
move operation executes the same as it would if SIMD mode were dis-
abled (PEYEN cleared).
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DAG Register-to-Bus Alignment

There are three word alignment cases for DAG registers and PM or DM
data buses: Normal word, Extended-precision Normal word, and Long
word.

The DAGs align normal word (32-bit) addressed transfers to the low order
bits of the buses. These transfers between memory and 32-bit DAG1 or
DAG?2 registers use the 64-bit DM and PM data buses. Figure 4-5 illus-

trates these transfers.

DM OR PM DATA BUS
63 31 0
| 0X0000 0000 | |

31 ¢ 0

DAG1 OR DAG2 REGISTERS

Figure 4-5. Normal Word (32-bit) DAG Register Memory Transfers

The DAGs align extended-precision normal word (40-bit) addressed
transfers or register-to-register transfers to bits 39-8 of the buses. These
transfers between a 40-bit data register and 32-bit DAG1 or DAG2 regis-
ters use the 64-bit DM and PM data buses. Figure 4-6 illustrates these

transfers.
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DM OR PM DATA BUS
63 39 8 0
| 0X0000 00 [ | oxoo |

31 ¢ 0

DAG1 OR DAG2 REGISTERS

Figure 4-6. DAG Register to Data Register Transfers

Long word (64-bit) addressed transfers between memory and 32-bit
DAGI1 or DAG2 registers target double DAG registers and use the 64-bit
DM and PM data buses. Figure 4-7 illustrates how the bus works in these
transfers.

If the Long word transfer specifies an even-numbered DAG register (e.g.,
10 or 12), then the even numbered register value transfers on the lower
half of the 64-bit bus, and the even numbered register + 1 value transfers

on the upper half (bits 63-32) of the bus.

DM OR PM DATA BUS

63 31 0
I I |
31 ¢ 0 31 ¢ 0
[ [ |
IMPLICIT (NAMED+1) EXPLICIT (NAMED)
DAG1 OR DAG2 REGISTERS DAG1 OR DAG2 REGISTERS

Figure 4-7. Long Word DAG Register to Data Register Transfers

If the Long word transfer specifies an odd numbered DAG register (e.g.,
I1, or B3), the odd numbered register value transfers on the lower half of
the 64-bit bus, and the odd numbered register - 1 value (10 or B2 in this
example) transfers on the upper half (bits 63-32) of the bus.
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In both the even- and odd-numbered cases, the explicitly specified DAG

register sources or sinks bits 31-0 of the Long word addressed memory.

DAG Register Transfer Restrictions

The two types of transfer restrictions are hold-off conditions and illegal
conditions that the processor does not detect.

For certain instruction sequences involving transfers to and from DAG
registers, an extra (NOP) cycle is automatically inserted by the processor.
When an instruction that loads a DAG register is followed by an instruc-
tion that uses any register in the same DAG register pair! for data
addressing, modify instructions, or indirect jumps, the processor inserts an
extra (NOP) cycle between the two instructions. This hold-off happens
because the same bus is needed by both operations in the same cycle. So,
the second operation must be delayed. The following case causes a delay
because it exhibits a write/read dependency in which 10 is written in one
cycle. The results of that register write are not available to a register read
for one cycle. Note that if either instruction had specified 11, the stall
would still occur, because the processor’s DAG register transfers can occur
in pairs. The DAG detects write/read dependencies with a register pair
granularity:

10=8;
DM(I0,M1)=R1;

1 DAG register are accessible in pair granularity for single-cycle access. The pairings are odd-even. For
example 10 and I1 are a pair, and 12 and I3 are a pair.
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Certain other sequences of instructions cause incorrect results on the pro-
cessor and are flagged as errors by processor assembler software. These
types of instructions can execute on the processor, but cause incorrect
results:

* An instruction that stores a DAG register in memory using indirect
addressing from the same DAG, with or without update of the
index register. The instruction writes the wrong data to memory or
updates the wrong index register.

Do not try these: DM(M2,11)=10; or DM(I1,M2)=10;
These example instructions do not work because 10 and 11 are both

DAGTI registers.

* An instruction that loads a DAG register from memory using indi-
rect addressing from the same DAG, with update of the index
register. The instruction either loads the DAG register or updates
the index register, but not both.

Do not try this: L2=DM(I1,M0);

This example instruction does not work because L2 and 11 are both
DAGTI registers.
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DAG Instruction Summary

Table 4-3 through, Table 4-9 list the DAG instructions. For more infor-
mation on assembly language syntax, see the ADSP-21160 SHARC DSP
Instruction Set Reference. In these tables, note the meaning of the following
symbols:

e I15-8 indicates a DAG2 index register: 115, 114, 113, 112, 111, 110,
19, or 18, and I7-0 indicates a DAG1 index register 17, 16, I5, 14,
13, 12, 11, or I0.

e M15-8 indicates a DAG2 modify register: M15, M14, M13, M12, M11,
M10, M9, or M8, and M7-0 indicates a DAG1 modify register M7, M6,
M5, M4, M3, M2, M1, or MO.

* Ureg indicates any universal register; For a list of the processor’s
universal registers, see Table A-1 on page A-2.

* Dreg indicates any data register; For a list of the processor’s data
registers, see the Data Register File registers that are listed in
Table A-1 on page A-2.

e Data32 indicates any 32-bit value, and Data6 indicates any 6-bit
value

Table 4-2. Post-Modify Addressing, Modified By M Register and
Updating I Register

DM(17-0,M7-0)=Ureg (LW); {DAG1}

PM(I15-8,M15-8)=Ureg (LW); {DAG2}

Ureg=DM(I7-0,M7-0) (LW); {DAG1}

Ureg=PM(I15-8,M15-8) (LW); {DAG2}

DM(17-0,M7-0)=Data32; {DAG1}

PM(I115-8,M15-8)=Data32; {DAG2}
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Table 4-3. Post-Modify Addressing, Modified By 6-Bit Data and Updating
I Register

DM((I7-0,Data6)=Dreg; {DAGI}

PM(I15-8,Data6)=Dreg; {DAG2}

Dreg=DM(I7-0,Data6); {DAGI}

Dreg=PM(I15-8,Data6); {DAG2}

Table 4-4. Pre-Modify Addressing, Modified By M Register (No I Register
Update)

DM(M7-0,17-0)=Ureg (LW); {DAG1}

PM(M15-8,115-8)=Ureg (LW); {DAG2}

Ureg=DM(M7-0,17-0) (LW); {DAG1}

Ureg=PM(M15-8,115-8) (LW); {DAG2}

Table 4-5. Pre-Modify Addressing, Modified By 6-Bit Data (No I Register
Update)

DM(Data6,17-0)=Dreg; {DAG1}

PM(Data6,115-8)=Dreg; {DAG2}

Dreg=DM(Data6,17-0); {DAG1}

Dreg=PM(Data6,115-8); {DAG2}

Table 4-6. Pre-Modify Addressing, Modified By 32-Bit Data
(No I Register Update)

Ureg=DM(Data32,17-0) (LW); {DAG1}

Ureg=PM(Data32,115-8) (LW); {DAG2}

DM(Data32,17-0)=Ureg (LW); {DAG1}

PM(Data32,115-8)=Ureg (LW); {DAG2}
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Table 4-7. Update (Modify) I Register, Modified By M Register

Modify(I17-0,M7-0); {DAG1}

Modify(I15-8,M15-8); {DAG2}

Table 4-8. Update (Modify) I Register, Modified By 32-Bit Data

Modify(I7-0,Data32); {DAGI1}

Modify(I15-8,Data32); {DAG2}

Table 4-9. Bit-Reverse and Update I Register, Modified By 32-Bit Data

Bitrev(I7-0,Data32); {DAGI1}

Bitrev(I15-8,Data32); {DAG2}
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5 MEMORY

The ADSP-21161 processor contains a large, dual-ported internal mem-
ory for single-cycle, simultaneous, independent accesses by the core
processor and 1/O processor. The dual-ported memory in combination
with three separate on-chip buses allow two data transfers from the core
and one transfer from the I/O processor in a single cycle. Using the IO
bus, the I/O processor provides data transfers between internal memory
and the processor’s communication ports (link ports, serial ports, and
external port) without hindering the processor core’s access to memory.
This chapter describes the processor’s memory and how to use it. The pro-
cessor provides access to external memory through the processor’s external
port. For information on connecting and timing accesses to external mem-
ory, see “External Memory Interface” on page 7-3.

The processor contains one megabit of on-chip SRAM, organized as two
blocks of 0.5 Mbits. Each block can be configured for different combina-
tions of code and data storage. All of the memory can be accessed as
16-bit, 32-bit, 48-bit, or 64-bit words. The memory can be configured in
each block as a maximum of 16K words of 32-bit data, 8K words of 64-bit
data, 32K words of 16-bit data, 10.67K words of 48-bit instructions (or
40-bit data), or combinations of different word sizes up to 0.5 Mbit. This
gives a total for the complete internal memory: a maximum of 32K words
of 32-bit data, 16K words of 64-bit data, 64K words of 16-bit data, and
21K words of 48-bit instructions (or 40-bit data). The processor features a
16-bit floating-point storage format that effectively doubles the amount of
data that may be stored on-chip. A single instruction converts the format
from 32-bit floating-point to 16-bit floating-point.
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While each memory block can store combinations of code and data,
accesses are most efficient when one block stores data using the DM bus,
(typically block 1) for transfers, and the other block (typically block 0)
stores instructions and data using the PM bus. Using the DM bus and PM
bus with one dedicated to each memory block assures single-cycle execu-
tion with two data transfers. In this case, the instruction must be available
in the cache.

Internal Memory

The ADSP-21161 has 2 MBits of internal memory space; 1 MBit is
addressable. The 1 MBit of memory is divided into two 0.5 MBit blocks:
Block 0 and Block 1. The additional 1MBit of the memory space is
reserved on the ADSP-21161. Table 5-1 shows the maximum number of
data or instruction words that can fit in each 0.5 MBit internal memory

block.

Table 5-1. Words Per 0.5 MBit Internal Memory Block

Word Type Bits Per Word | Maximum Number of Words
Per 0.5 MBit block

Instruction 48-bits 10.67K Words

Long Word Data 64-bits 8K Words

Extended Precision Normal Word Data 40-bits 10.67K Words

Normal Word Data 32-bits 16K Words

Short Word Data 16-bits 32K Words

External Memory

While the processor’s internal memory is divided into blocks, the proces-
sor’s external memory spaces are divided into banks. The internal memory
blocks and the external memory spaces may be addressed by either data

5-2
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address generator. External memory banks are fixed sizes that can be con-
figured for various waitstate and access configurations. For more
information, see “External Memory” on page 5-22.

There are 254 Mwords of external memory space that the processor can
address. External memory connects to the processor’s external port, which
extends the processor’s 24-bit address and 32-bit data buses off the proces-
sor. The processor can make 8, 16, 32, or 48-bit accesses to external
memory for instructions and 8,16, or 32-bit accesses for data. Table 5-2
shows the access types and words for processor external memory accesses.
The processor’s DMA controller automatically packs external data into
the appropriate word width during data transfer.

The external data bus can be expanded to 48-bits if the link ports
are disabled and the corresponding full width instruction packing
mode (IPACK) is enabled in the SYSCON register. Ensure that link
ports are disabled when executing code from external 48-bit mem-
ory. For more information, see “Executing Instructions From
External Memory” on page 5-101.

Table 5-2. Internal-to-External Memory Word Transfers'

Word Type Transfer Type

Packed Instruction 32, 16, or 8- to 48-bit packing
Normal Word Data 32-bit word in 32-bit transfer
Short Word Data Not supported

1 For external port word alignment, see Figure 7-1 on page 7-2.

The total addressable space for the fixed external memory bank sizes
depends on whether SDRAM or Non-SDRAM (for example, SRAM,
SBSRAM) is used. Each external memory bank for SDRAM can address
64M words. For Non-SDRAM memory, each bank can address up to

ADSP-21161 SHARC Processor Hardware Reference 5-3



Processor Architecture

16M words. The remaining 48M words are reserved. These reserved
addresses for non-SDRAM accesses are aliased to the first 16M spaces
within the bank.

The total external memory available is given as follows:
3*(16M) + 14M = 62M (Non- SDRAM banks)
3*(64M) + 62M = 254M (SDRAM banks)

Banks 1, 2 and 3 have the same amount of external memory (16M for
Non-SDRAM and 64M for SDRAM), while bank 0 is smaller (14M for
Non-SDRAM and 62M for SDRAM).

The external memory address bus is 24-bits wide with four additional
bank select MSx lines. For more information on the external memory, see
the section “External Memory” on page 5-22.

Processor Architecture

Most microprocessors use a single address and single data bus for memory
access. This type of memory architecture is called Von Neumann architec-
ture. But, DSPs require greater data throughput than Von Neumann
architecture provides, so many DSPs use memory architectures that have
separate data and address buses for program and data storage. These two
sets of buses let the processor retrieve a data word and an instruction
simultaneously. This type of memory architecture is called Harvard
architecture.

SHARC DSPs go a step further by using a Super Harvard architecture.
This four bus architecture has two address buses and two data buses, but
provides a single, unified address space for program and data storage.
While the Data Memory (DM) bus only carries data, the Program Mem-
ory (PM) bus handles instructions and data, allowing dual-data accesses.
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Processor core and I/O processor accesses to internal memory are com-
pletely independent and transparent to one another. Each block of
memory can be accessed by the processor core and I/O processor in every
cycle—no extra cycles are incurred if the processor core and the I/O pro-
cessor access the same block.

A memory access conflict can occur when the processor core attempts two
accesses to the same internal memory block in the same cycle. When this
conflict, known as block conflict occurs, an extra cycle is incurred. The
DM bus access completes first and the PM bus access completes in the fol-
lowing (extra) cycle.

During a single-cycle, dual-data access, the processor core uses the inde-
pendent PM and DM buses to simultaneously access data from both
memory blocks. Though dual-data accesses provide greater data through-
put, it is important to note some limitations on how programs may use
them. The limitations on single-cycle, dual-data accesses are:

* The two pieces of data must come from different memory blocks.

If the core accesses two words from the same memory block over
the same bus in a single instruction, an extra cycle is needed.

e The data access execution may not conflict with an instruction
fetch operation. The PM data bus tries to fetch an instruction in
every cycle. If a data fetch is also attempted over the PM bus, an
extra cycle may be required depending on the cache.

If the cache contains the conflicting instruction, the data access
completes in a single-cycle and the sequencer uses the cached
instruction. If the conflicting instruction is not in the cache, an
extra cycle is needed to complete the data access and cache the con-
flicting instruction. For more information, see “Instruction Cache”

on page 3-8.

For more information on how the buses access memory blocks, see “Inter-
nal Memory” on page 5-16.
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Off-Chip Memory and Peripherals
Interface

The ADSP-21161 processor’s external port provides the processor’s inter-
face to off-chip memory and peripherals. Figure 5-9 on page 5-23 shows
the external memory of ADSP-21161. The 62 Mword off-chip address
space (254 Mword if all SDRAM) is included in the ADSP-21161’s uni-
fied address space. The separate on-chip buses-for PM addresses, PM data,
DM addresses, DM data, I/O addresses, and I/O data-are multiplexed at
the external port to create an external system bus with a single 24-bit
address bus and a single 32-bit data bus. Every access to external memory
is based on an address that fetches a 32-bit word. When fetching instruc-
tions from external 32-bit memory, the program sequencer accesses two
32-bit data locations, four 16-bit locations or eight 8-bit locations.
Unused link port lines can also be used as additional data lines DATA15-0,
allowing single cycle execution of 48-bit instructions from external mem-
ory at up to 100 MHz.

The external port supports asynchronous, synchronous, and synchronous
burst accesses. ZBT synchronous burst SRAM can be interfaced gluelessly.
However, the zero bus turnaround feature is not supported by this proces-
sor; only the bursting protocol is supported. The ADSP-21161 processor
also can interface gluelessly to SDRAM. Addressing of external memory
devices is facilitated by on-chip decoding of high-order address lines to
generate memory bank select signals. The ADSP-21161 processor pro-
vides programmable memory wait states and external memory
acknowledge controls to allow interfacing to memory and peripherals with
variable access, hold, and disable time requirements.

Efficient memory usage relies on how the program and data are arranged
in memory and varies how the program accesses the data. For more infor-
mation, see “Arranging Data in Memory” on page 5-100.
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Buses

As shown in Figure 5-1 on page 5-9, the processor has three sets of inter-
nal buses connected to its dual-ported memory, the Program Memory
(PM) bus, Data Memory (DM) bus, and I/O Processor (I0) bus. The PM
bus and DM bus share one memory port and the IO bus connects to the
other port. Memory accesses from the processor’s core (computational
units, data address generators, or program sequencer) use the PM or DM
buses, while the I/O processor uses the IO bus for memory accesses.

The processor core’s PM bus and DM bus and I/O processor’s External
Port (EP) bus can try to access multiprocessor memory space or external
memory space in the same cycle. The processor has a two level arbitration
system to handle this conflicting access. Arbitration stems from a priority
convention and the state of the SYSCON register’s EBPRx bits. When arbi-
trating between the processor core buses, the DM bus always has priority
over the PM bus. Arbitration between the winning core bus and I/O pro-
cessor EP bus depends on the priority set with the EBPRx bits. For more
information on setting this priority, see “External Bus Priority” on

page 5-39.

Internal Address and Data Buses

Figure 5-1 shows that the PM buses, DM buses, and I/O processor have
access to the external bus (pins DATA47-16, ADDR23-0) through the
processor’s external port. The external port provides access to system
(off-processor) memory and peripherals. This port also lets the processor
access the IOP register space of other DSPs when connected in a multi-
processing system.
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Almost without exception, the processor’s three buses can access all mem-
ory spaces, supporting all data sizes. There are three restrictions on the
access of buses to memory. The limitations on the PM, DM, and IO buses
are as follows:

e The PM, DM, and IO buses make Normal Word addressing
accesses to multiprocessor or external memory. These buses can
make 40/48 bit data transfers by configuring the link data pins as
additional data pins for external accesses. For more information,
see “Multiprocessor Memory” on page 5-19.

* The IO bus may not access the I/O processor’s memory mapped
registers. For more information, see “I/O Processor” on page 6-1.

e The IO bus may not use short word addressing for DMA

operation.

Addresses for the PM and DM buses come from the processor’s program
sequencer and Data Address Generators (DAGs). The program sequencer
generates 24-bit program memory addresses while DAGs supply 32-bit
addresses for locations throughout the processor’s memory spaces. The
DAGs supply addresses for data reads and writes on both the PM and DM
address buses, while the program sequencer uses only the PM address bus
for sequencing execution.

Each DAG is associated with a particular data bus. DAG1 supplies
addresses over the DM bus and DAG2 supplies addresses over the PM
bus. For more information on address generation, see “Program
Sequencer” on page 3-1 or “Data Address Generator” on page 4-1.

Because the processor’s internal memory is arranged in four 16-bit wide
by 8K high columns, memory is addressable in widths that are multiples
of columns up to 64 bits: 1 column = 16-bit words, 2 columns = 32-bit
words, 3 columns = 48- or 40-bit words, and 4 columns = 64-bit words.
For more information on the how the processor works with memory
words, see “Memory Organization and Word Size” on page 5-25.
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(DSP) MEMORY (SYSTEM) MEMORY
9 DATA DATA (
BLOCK 0
(NORMAL WORD 0X40000 - OX43FFF)
) ADDRESS ADDRESS
BANK 0
BLOCK 1
STARTING AT NORMAL WORD 0X200000
(NORMAL WORD 0X50000 - 0X53FFF) ( )
IADDRESS ~ DATA ADDRESS  DATA ADDRESS ~ DATA
A A A A $ $
) V ﬂ ANY TWO PATHS
SIMULTANEOUSLY
.
ADDRESSES AND EXTERNAL POR
| DATA FOLLOW
PARALLEL PATHS A A A A A

/ PM ADDRESS BUS /

Y Y

PM DATA BUS
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18 /|64 32 /| 64 ® 32 /|64 32 /|64
| PXBUS EXCHANGE REGISTER |

7 2. 4

/ DM ADDRESS BUS /
Y Y Y
/ DM DATA BUS /
y Y 7 / | Y VY
10 ADDRESS BUS EP EP
IO ADDRESS
v 'l O DATA I/O PROCESSOR ~ AAPPREss DATA
10 DATA BUS >

Figure 5-1. ADSP-21161 Memory and Internal Buses Block Diagram
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The PM and DM data buses are 64 bits wide. Both data buses can handle
long word (64-bit), normal word (32-bit), extended-precision normal
word (40-bit), and short word (16-bit) data, but only the PM data bus

carries Instruction words (48-bit).

Internal Data Bus Exchange

The data buses let programs transfer the contents of any register in the
processor to any other register or to any internal memory location in a sin-
gle cycle. As shown in Figure 5-1 on page 5-2, the PM Bus Exchange (PX)
register permits data to flow between the PM and DM data buses. The Px
register can work as one 64-bit register or as two 32-bit registers (PX1 and
Px2). The alignment of PX1 and PX2 within PX appears in Figure 5-2.

Instruction Examples

PX = DM(0x80000) (LW);
PX = DM(0x40000);
I
Combined PX Register
1
63 32 31 0
A 4
PX2 PX1
31 0 31 0

Figure 5-2. PM Bus Exchange (PX, PX1, and PX2) Registers

The Px1, PX2, and the combined PX register are Universal registers
(UREG) that are accessible for register-to-register or memory-to-register
transfers.
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Instruction Examples

R3 = PX;

Register File Transfer

40 bits

39 0
y
I

40 bits | 0x0

63 24 23 0
PX2 PX1
Combined PX

Memory

R3 = PX1; or R3 = PXZ2;

Register File Transfer

32 bits 0x0

39 1 87 0

A 4

32 bits

31 0
PX1 or PX2

Figure 5-3. PX, PX1, and PX2 Register-to-Register Transfers

PX register-to-register transfers with data registers are either 40-bit transfers
for the combined PX or 32-bit transfers for PXI or PX2. Figure 5-3 shows
the bit alignment and gives an example of instructions for register-to-reg-

ister transfers.

Figure 5-3 shows that during a transfer between PX1 or PX2 and a data
register (DREG), the bus transfers the upper 32 bits of the register file and
zero fills the eight LSBs.

During a transfer between the combined PX register and a register file, the
bus transfers the upper 40 bits of PX and zero fills the lower 24 bits.
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PX register-to- internal memory transfers over the DM or PM data bus are
either 48-bit for the combined PX or 32-bit transfers (on bits 31-0 of the
bus) for PX1 or PX2. Figure 5-4 shows these transfers.

Instruction Examples

PX = DM (0xC0000) (LW); PM(I7,M7) = PX1;
DM and PM Data Bus Transfer (not LW) DM or PM Data Bus Transfer
T
48 bits 0x0 0x0 32 bits
1
63 31 1t 87 0 63 31 0
v | v
48 bits 0x0 32 bits
1
63 31 8 7 0 31 0
PX2 PX1 PX1 or PX2
Combined PX

Figure 5-4. PX, PX1, PX2 Register-to-Memory Transfers on DM (LW) or
PM (LW) Data Bus

Figure 5-4 shows that during a transfer between PX1 or PX2 and internal
memory, the bus transfers the lower 32 bits of the register.

During a transfer between the combined PX register and internal memory,
the bus transfers the upper 48 bits of PX and zero fills the lower 8 bits.

The status of the memory block’s Internal Memory Data Width
(IMDWx) setting does not effect this default transfer size for PX to
internal memory.

Figure 5-5 shows a PX register-to-external memory transfer. The PX register
transfers the upper 32 bits of the PM data bus into PX1 and the lower 16
bits to PX2, zero filling the remaining 16 bits.
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Instruction Example

PX = PM (0xB8000) (LW);

DM (LW) or PM (LW)
Data Bus Transfer

T
64 bits

|
63 4 31 4 0
v I v
64 bits
|
63 31 0
Combined PX

Figure 5-5. PX Register-to-External Memory Transfers

Since there are 32 DATA pins on the ADSP-21161 processor, 40/48 bit data
transfers using register to register transfers are not directly supported. To
accomplish 40/48 bit data transfers with the PX register, you must config-
ure the link data pins as additional data pins for external accesses. Full
width instruction mode (IPACK) must be enabled in the SYSCON register.
The 16 link data pins are configured as DATA pins and the processor fetches
the upper 32 bits of instruction on 32 DATA pins and lower 16 bits of
instruction on the link data pins.

To transfer both 48-bit instructions and 40-bit double precision data to a
register, you must swap the PX1 and PX2 registers. See the following code
examples:
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Example 1: To transfer 48-bits from external memory to internal memory,
use the following code:

PX = DM(EXT_MEMORY_LOC);
RO = PX1;
PX1 = PX2;
PX2 = RO;

DM(INT_MEMORY_LOC) = PX;

Example 2: To transfer a 40-bit data from external memory to a register,
use the following code:

PX = DM(EXT_MEMORY_LOC);

RO = PX1;
PX1 = PX2;
PX2 = RO;
R1 = PX;

All transfers between the PX register and the I/O processor LBUFx registers
are 48-bit transfers (most significant 48-bits of PX).

All transfers between the PX register (or any other internal register/mem-
ory) and any I/O processor register (other than the EPBx or LBUFx) are
32-bit transfers (least significant 32-bits of PX).

All transfers between the PX register and data registers (RO-R15 or S0-5S15)
are 40-bit transfers. The most significant 40-bits are transferred as shown
in Figure 5-3 on page 5-11.

Figure 5-6 shows the transfer size between PX and internal memory over

the PM or DM data bus when using the long word (LW) option.
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Instruction Example

PX = PM (0x40200)LW;

DM (LW) or PM (LW)
Data Bus Transfer

T
64-bits
|
63 31 0
T
64-bits
|
63 31 0

Combined PX

Figure 5-6. PX Register-to-Memory Transfers on PM Data Bus

The LW notation in Figure 5-6 draws attention to an important feature of
PX register-to-internal memory transfers over the PM or DM data bus for
the combined PX register. PX transfers to memory are 48-bit (3-column)
transfers on bits 0-31 of the PM or DM data bus, unless forced to be
64-bit (4-column) transfers with the LW (Long Word) mnemonic.

There is no implicit move when the combined PX register is used in SIMD
mode. For example, in SIMD mode, the following moves could occur:

PX1 = RO; /* RO 32-bit explicit move to PX1,

and R1 32-bit implicit move to PX2 */
PX = RO; /* RO 40-bit explicit move to PX,

but no implicit move for R1 */
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ADSP-21161 Memory Map

The ADSP-21161’s memory map appears in Figure 5-7 and has three
memory spaces: internal memory space, multiprocessor memory space,
and external memory space. These spaces have the following definitions:

* Internal memory space. This space ranges from address
0x0000 0000 through 0x0005 3FFF (Normal word). Internal
memory space refers to the processor’s on-chip SRAM and memory
mapped registers.

* Multiprocessor memory space. This space ranges from address
0x0010 0000 through 0x001F FFFF (Normal word). Multiproces-
sor memory space refers to the internal memory space of other
DSPs that are connected in a multiprocessor system.

* External memory space. This space ranges from address
0x0200 0000 to 0xOCFF FFFF for Non-SDRAM and
0x0020 0000 through 0xOFFF FFFF (Normal word) for SDRAM.
External memory space refers to the off-chip memory or memory
mapped peripherals that are attached to the processor’s external
address (ADDR23-0) and data (DATA47-16) buses.

Internal Memory

The ADSP-21161’s internal memory space appears in Figure 5-7. This
memory space has four address regions.

* 1/O processor memory mapped registers. This region ranges from
address 0x0000 0000 through 0x0000 01FF (Normal Word).

* Reserved memory. This region ranges from address 0x0000 0200
through 0x0001 FFFF. These addresses are not accessible.
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EXT. PREC. NORMAL

WORD (40-BIT)
LONG NORMAL OR SHORT
WORD WORD INSTRUCTION WORD
(64-BIT) (32-BIT)  WORD (48-BIT) (16-BIT)
0X0000 0000 |10 PROCESSOR
REGISTERS
0X0000 01FF
RESERVED EACH OF THESE ADDRESSING TYPES ADDRESS THE
(I/0) SAME PHYSICAL MEMORY BUT USE DIFFERENT

WORD WIDTHS.

0X0002 0000  0X0004 0000 0X0004 0000 0X0008 0000

A A A A
BLOCK 0
\ 4 Y Y \ 4
0X0002 1FFF  0X0004 3FFF  0X0004 2AA9  0X0008 7FFF
0X0002 8000  0X0005 0000  0X0005 0000  0X000A 0000
A A A A ﬁ
BLOCK 1
\ 4 \4 Y \ 4

0X0002 9FFF  0X0005 3FFF 0X0005 2AA9 0X000A 7FFF

Figure 5-7. ADSP-21161 Internal Memory Space
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* Block 0 memory. This region, typically PM, ranges from address
0x0004 0000 through 0x0004 3FFF (Normal Word). DAG2 gen-
erates PM data addresses.

* Block 1 memory. This region, typically DM, ranges from address
0x0005 0000 through 0x0005 3FFF (Normal Word). DAG1 gen-
erates DM data addresses.

The I/O processor’s memory-mapped registers control the system configu-
ration of the processor and I/O operations. For more information, see
“I/O Processor” on page 6-1. These registers occupy consecutive 32-bit
locations in this region.

If a program uses long word addressing (forced with the LW mnemonic) to
accesses this region, the access is only to the addressed 32-bit register,
rather than accessing two adjacent I/O processor registers. The register
contents are transferred on bits 31-0 of the data bus. There are a couple of
exceptions to this one-at-a-time I/O processor register access rule:

* Long word accesses to external port buffer (EPBx) or link port
buffer (LBUFx) locations using the PX register access two adjacent
32-bit I/O registers.

* Long word accesses to the external port data buffer locations (EPBx)
in SIMD mode access two adjacent 32-bit I/O registers.

As shown in Figure 5-7 on page 5-17, the processor can address memory
in the Block 0 and Block 1 using long word, normal word, or short word
addressing. The processor interprets the addressing mode from the address
range for the access. Though there are multiple addressing modes for each
memory region, these different modes are addressing the same physical
memory. For example, the long word address 0x0002 0000 corresponds to
the same locations as normal word addresses 0x0004 0000 and

0x0004 0001. This also corresponds to the same locations as short word
addresses 0x0008 0000, 0x0008 0001, 0x0008 0002, and 0x0008 0003.
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Figure 5-7 on page 5-17 also shows that there are gaps in the processor’s
memory map when using normal word addressing for 48-bit (instruction
word) or 40-bit (extended-precision normal word) accesses. These gaps of
missing addresses stem from the arrangement of this 3-column data in
memory. For more information, see “Memory Organization and Word
Size” on page 5-25.

Multiprocessor Memory

The ADSP-21161’s multiprocessor memory space appears in Figure 5-8.
This memory space has seven address regions that correspond to the IOP
register space of the DSPs in a multiprocessing system. Each of the proces-
sors in such a system has a processor ID, which is set with the processor’s
102-0 pins. The address regions by processor ID are:

* Internal memory with ID=001. This region ranges from address
0x0010 0000 through 0x0011 FFFF.

* Internal memory with ID=010. This region ranges from address

0x0012 0000 through 0x0013 FFFF.

* Internal memory with ID=011. This region ranges from address
0x0014 0000 through 0x0015 FFFF.

* Internal memory with ID=100. This region ranges from address
0x0016 0000 through 0x0017 FFFF.

* Internal memory with ID=101. This region ranges from address
0x0018 0000 through 0x0019 FFFF.

* Internal memory with ID=110. This region ranges from address
0x001A 0000 through 0x001B FFFF.
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INTERNAL
MEMORY -~
SPACE

MULTIPROCESSOR
MEMORY SPACE

|IOP Registers

Long Word Addressing

Normal Word Addressing

Short Word Addressing

0P Space
of ADSP-21161
with 1D=001

10P Space
of ADSP-21161
with ID=010

0P Space
of ADSP-21161
with ID=011

0P Space
of ADSP-21161
with 1D=100

0P Space
of ADSP-21161
with ID=101

IOP Space
of ADSP-21161
with ID=110

Reserved

Normal Word Addressing
Short Word Addressing

0x0000 0000

0x0002 0000

0x0004 0000

0x0008 0000

0x0010 0000

0x0012 0000

0x0014 0000

0x0016 0000

0x0018 0000

0x001A 0000

0x001C 0000

0x001F FFFF

: 32-bit Data Words
: 16-bit Data Words

EXTERNAL
MEMORY
SPACE

Figure 5-8. Multiprocessor Memory Map

0x0020 0000

BANK 0 T
0x0400 0000
BANK 1 - S,
0x0800 0000
BANK 2 - i,
0x0C00 0000
BANK 3 -—— TS,
OXOFFF FFFF
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It is important to note that programs may only use normal word address-
ing in multiprocessor memory space. Long or short word writes may
corrupt valid data, and long or short word reads return invalid data.

The address range of the access determines which processor’s internal
memory is the multiprocessor memory access source or destination.
Instead of using its own IOP register address range, a processor can access
its IOP space through the corresponding address range in multiprocessor
memory space. In this case, the processor reads or writes to its own IOP
registers and does not make an access on the external system bus. Note
that such self-accesses through multiprocessor memory space may only be
accomplished with processor-core-generated addresses, not I/O proces-
sor-generated addresses.

For more information on memory accesses in multiprocessor systems, see
<« »
External Port” on page 7-1.

Table 5-3 shows how the processor decodes and routes memory addresses
over the DM and PM buses.

Table 5-3. Address Decoding For Memory Accesses

Address Bits! Field Description
ADDR31-28 NA Reserved
ADDR27-24 A\ Virtual address. Drives MS3-0 as follows:

00 = Depends on E, S and M bits; address corresponds to
local processor’s internal or external memory bank 0

01 = External memory bank 1, local processor

10 = External memory bank 2, local processor

11 = External memory bank 3, local processor

ADDR23-21 E2 Memory address.

00000[00] = Address in local or remote processor’s internal
memory space.

xxxxx[xx] = Based on V bits; address in one of local proces-
sor’s four external memory banks.
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Table 5-3. Address Decoding For Memory Accesses (Cont'd)

Address Bits! Field Description

ADDR20 M2 Multiprocessor memory. If this bit is 1, the address is in
multiprocessor memory space. If this bit is 0, the address is
in IOP register space.

ADDR19-17 s? IOP MMS accesses. Depends on M bit. When bit 20 is set
to 1, bits 19:17 indicate the following:

000 = Address is in IOP space of processor with ID1

001 = Address is in IOP space of processor with ID2

010 = Address is in IOP space of processor with ID3

100 = Address is in IOP space of processor with ID4

011 = Address is in IOP space of processor with ID5

101 = Address is in IOP space of processor with ID6

ADDRI16-0 NA Internal memory and IOP register space.

1 Setup and hold times for these address lines are specified in the processor Data Sheet.
2 For a description of these address fields, see “Multiprocessor Memory” on page 5-19.

External Memory

The ADSP-21161’s external memory space appears in Figure 5-9. The
processor accesses external memory space through the external port, which
multiplexes the processor core’s PM and DM buses and the I/O proces-
sor’s EP bus. To address this space, the processor’s DAG1, DAG2, and
I/O processor generate 32-bit addresses over the DM, PM, and EP address
buses, allowing the processor to access to the complete 254 Mword mem-
ory map.

The program sequencer only generates 24-bit addresses over the
PM bus, limiting sequencing to the low 62 Mwords (for SDRAM)
or low 14 Mwords (for SRAM) of the memory map.

The external memory space has four banks (bank 0-3). The processor con-
trols access to the banked regions with memory select lines (MS3-0) in
addition to the memory address. Each region of external memory may be
configured for access modes and waitstates. For more information on con-
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figuring external memory banks, see “Setting Data Access Modes” on
page 5-32. For more information on accessing external memory, see
“External Port” on page 7-1.

The external memory space can also accommodate an optional boot mem-
ory EPROM or FLASH. For more information, see “Using Boot
Memory” on page 5-35.

ALWAYS ADDRESSED
AS NORMAL WORD

0X0020 0000

BANKO | <—mso

O0XOOFF FFFF ( NON-SDRAM )
OXO3FF FFFF ( SDRAM )
0X0400 0000

BANK 1 | <—wsi <—BWs
EPROM
OXO4FF FFFF ( NON-SDRAM ) (BOOT)
OXO7FF FFFF ( SDRAM ) MEMORY
0X0800 0000
BANK 2 | «—ms2

0XO08FF FFFF ( NON-SDRAM )
O0XOBFF FFFF ( SDRAM )
0X0CO00 0000

BANK 4 | <—Ws3

O0XOCFF FFFF ( NON-SDRAM )
OXOFFF FFFF ( SDRAM )

EXTERNAL
MEMORY

Figure 5-9. ADSP-21161 External Memory Space
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Shadow Write FIFO

Because the processor’s internal memory operates at high speeds, writes to
the memory do not go directly into the memory array, but rather to a
two-deep FIFO called the shadow write FIFO. This FIFO uses a non-read
cycle (either a write cycle, or a cycle in which there is no access of internal
memory) to load data from the FIFO into internal memory. When an
internal memory write cycle occurs, the FIFO loads any data from a previ-
ous write into memory and accepts new data. FIFO operation is normally
transparent, but there is one case in which programs need to intervene in
the operation of the shadow write FIFO: mixing 48-bit and 32-bit word
accesses to the same locations in memory.

The shadow FIFO cannot differentiate between the mapping of 48-bit
words and the mapping of 32-bit words. Examples of these mappings
appear in Figure 5-10 through Figure 5-13. If a program writes a 48-bit
word to memory and then tries to read the data with a 16-, 32- or 64-bit
word access or writes a 16-, 32- or 64-bit word to memory and tries to
read the data with a 48-bit access, the shadow FIFO does not intercept the
read. It returns incorrect data.

If a program must mix 48-bit or 40-bit accesses and 16-, 32-, or 64-bit
accesses to the same locations, the program must ensure that the FIFO is
flushed before attempting to read the data. The program flushes the FIFO
by performing two dummy writes or executing two instructions that do
not access the internal memory. These operations force the FIFO to auto-
matically use the non-access cycles to push the write data.
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Memory Organization and Word Size

The processor’s internal memory is organized as four 16-bit wide by 8K
high columns. These columns of memory are addressable as a variety of
word sizes:

* 64-bit long word data (4-columns)

* 48-bit instruction words or 40-bit extended-precision normal word
data (3-columns)

e 32-bit normal word data (2-columns)
e 16-bit short word data (1-column)

@ Extended precision normal word data is only accessible if the IMDWx
bit is set in the SYSCON register. It is left-justified within a three col-
umn location, using bits 47-8 of the location.

Placing 32-Bit Words and 48-Bit Words

When the processor core or I/O processor addresses memory, the word
width of the access determines which columns within the memory are
accessed. For instruction words (48-bit) or extended-precision normal
word data (40-bit), the word width is 48 bits, and the processor accesses
from the memory’s 16-bit columns in groups of three. Because these sets
of three column accesses are packed into a four column matrix, there are
four rotations of the columns for storing 40/48-bit data. The 3-column
word rotations within the 4-column matrix appear in Figure 5-10.

For long word (64-bit), normal word (32-bit), and short word (16-bit)
memory accesses, The processor selects from fixed columns in memory.
No rotations of words within columns occur for these data types.
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Figure 5-7 on page 5-17 shows the memory ranges for each data size in the
processor’s internal memory.

|| | | |
Rotation 3 Rotation 2
|
Rotation 2 Rotation 1
5 | |
8 Rotation 1 Rotation 0
< | || | |
< 0 15 0 15 0 15 0 15
Column 3 Column 2 Column 1 Column 0

Figure 5-10. 48-bit Word Rotations

Mixing 32-Bit and 48-Bit Words

The processor’s memory organization lets programs freely place memory
words of all sizes (see “Memory Organization and Word Size” on

page 5-25) with few restrictions (see “Restrictions on Mixing 32-Bit and
48-Bit Words” on page 5-28). This memory organization also lets pro-
grams mix (place in adjacent addresses) words of all sizes. This section
discusses how to mix odd (3-column) and even (4-column) data words in
the processor’s memory.

Transition boundaries between 48-bit (3-column) data and any other data
size, can only occur at any 64-bit address boundary within either internal
memory block. Depending on the ending address of the 48-bit words,
there are zero, one, or two empty locations at the transition between the
48-bit (3-column) words and the 64-bit (4-column) words. These empty
locations result from the column rotation for storing 48-bit words. The
three possible transition arrangements appear in Figure 5-11, Figure 5-12,

and Figure 5-13.
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Transitioning from 48-bit to 32-bit
data with zero empty locations:

(48-bit word top address)

| | ||
i 32-bit| v|vord 3 32-bit| v|vord 2
32—bit| vrord 1 32-bit word 0
48-bit word to 48-bit word top-1
| | |
48-bit word top-1 48-bit word top-2
5 | | |
? 48-bit word top-2 48-bit word top-3 |
s | | | | |
< 0 15 0 15 0 15 0 15
Column 3 Column 2 Column 1 Column 0

Figure 5-11. Mixed Instructions and Data With No Unused Locations

ADSP-21161 SHARC Processor Hardware Reference 5-27



ADSP-21161 Memory Map

Transitioning from 48-bit to 32-bit

data with one empty locations:
(48-bit word top address)

| | | |
* 32-bit word 3 32-bit word 2
32-bit word 1 32-bit word 0
Empty 48-bit word top
L
48-bit word top-1 48-bit word top-2
. ] |
Q
g 48-bit word top-2 48-bit word top-3
3 | | | | | |
< 0 15 0 15 0 15 0 15
Column 3 Column 2 Column 1 Column 0

Figure 5-12. Mixed Instructions and Data With One Unused Location

Restrictions on Mixing 32-Bit and 48-Bit Words

There are some restrictions that stem from the memory column rotations
for 3-column data (48- or 40-bit words) and relate to the way that 3-col-
umn data can mix with 4-column data (32-bit words) in memory. These
restrictions apply to mixing 48- and 32-bit words, because the processor
uses a normal word address to access both of these types of data even
though 48-bit data maps onto 3-columns of memory and 32-bit data maps
onto 2-columns of memory.
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Transitioning from 48-bit to 32-bit
data with two empty locations:
(48-bit word top address)

32-bit word 3 32-bit word 2

32-bit word 1 32-bit word 0

Empty Empty 48-bit word top

48-bit word top 48-bit word top-1

48-bit word top-2 48-bit word top-3

Addresses

| | | |
0 15 0 15 0 15 0 15

Column 3 Column 2 Column 1 Column 0

Figure 5-13. Mixed Instructions and Data With One Unused Location

When a system has a range of 3-column (48-bit) words followed by a
range of 2-column (32-bit) words, there is often a gap of empty 16-bit
locations between the two address ranges. The size of the address gap var-
ies with the ending address of the range of 48-bit words. Because the
addresses within the gap alias to both 48- and 32-bit words, a 48-bit write
into the gap corrupts 32-bit locations, and a 32-bit write into the gap cor-
rupts 48-bit locations. The locations within the gap are only accessible
with short word (16-bit) accesses.
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Calculating the starting address for 4-column data that minimizes the gap
after 3-column data is a useful calculation for programs that are mixing 3-
and 4-column data. Given the last address of the 3-column (48-bit) data,
the starting address of the 32-bit range that most efficiently uses memory
can be determined by the equation shown in Listing 5-1:

Listing 5-1. Starting Address

m=B+2[(n MOD 10,922) - TRUNC((n MOD 10,922) / 4)]
where:

* nis the number of contiguous 48-bit words allocated in the inter-
nal memory block (n < 21845)

* B is the base normal word address of the internal memory block; if
{0 < n < 10,922} then B = 0x40000 (Block 0) else B = 0x50000
(Block 1)

e m is the first 32-bit normal word address to use after the end of
48-bit words

Example 1: Calculating a starting address for a 32-bit addresses

The last valid address is 0x42694. The number of 48-bit words (n) is

given as follows:
n = 0x42694 - 0x40000+1= 0x2695
When you convert 0x2695 to decimal representation, the result is 9877.

The base (B) Normal word address of the internal memory block is
0x40000 since the condition: 0 < 10922 is TRUE.
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The first 32-bit Normal word address to use after the end of the 48-bit
words is given by:

m = 0x40000 + 2 [(9877 MOD 10922)- TRUNC (9877 MOD 10922)/4]
m = 0x40000 + 14816decimal

Convert to a hexadecimal address:

14816 gocimal = 0x39E0

m = 0x40000 + 0x39E0 = 0x439E0

The first valid starting 32-bit address is 0x439E0. The starting address

must begin on an even address.

48-Bit Word Allocation

Another useful calculation for programs that are mixing 3- and 4-column
data is to calculate the amount of 3-column data that minimizes the gap
before starting 4-column data. Given the starting address of the 4-column
(32-bit) darta, the number of 48-bit words to allocate that most efficiently
uses memory can be determined as shown in Listing 5-2:

Listing 5-2. 48-bit Word Allocation

m = TRUNC{(4/3)[(L/2)(m-b)]} + W

where

e m is the first 32-bit normal word address after the end of 48-bit
words (0x3FFFF < m < 0x44000 for block 1, 0x4FFFF < m <
0x54000 for block 2)

* B is the base normal word address of the internal memory block; if
{0x3FFFF < m < 0x50000} then B = 0x40000 else B = 0x50000
(Block 1)
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W is the number of offset words; if {B = 0x50000} then
W = 43,690 else W =0

n is the number of contiguous 48-bit words the system should allo-
cate in the internal memory block

Setting Data Access Modes

The SYSCON, MODEL, MODE2, and WAIT registers control the operating mode
of the processor’s memory. Table A-18 on page A-60 lists all the bits in
SYSCON, Table A-2 on page A-3 lists all the bits in MODE1, Table A-2 on
page A-3 lists all the bits in MODE2, and Table A-20 on page A-66 lists all
the bits in WAIT.

SYSCON Register Control Bits

Figure 5-14 shows the control bits for the SYSCON register. The following
bits in the SYSCON register control memory access modes:

Boot Select Override. SYSCON Bit 1 (8S0). This bit overrides
normal usage of MSx chip select lines in favor of the BVS select line
for access to boot memory instead of external memory (if 1) or
allows normal access to external memory with the MSx chip select

lines (if 0).

Internal Interrupt Vector Table. SYScON Bit 2 (11vT). This bit
forces placement of the interrupt vector table at address

0x0004 0000 regardless of booting mode (if 1) or allows placement
of the interrupt vector table as selected by the booting mode (if 0).

Internal Memory Block Data Width. SYSCON Bit 9 (IMDWO0) and
Bit 10 (1MDW1). These bits select the normal word data access size
for internal memory Block 0 and Blockl. A block’s normal word
access size is fixed as 32-bit (2-column, I1MDWx=0) or 40-bit
(3-column, IMDWx=1).
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* Instruction Packing Mode. SYSCON Bits 30 and 31 (IPACKI and
IPACKO). These bits select the external packing instruction execu-
tion as 8- to 48-bit, 16- to 48-bit, 32- to 48-bit or no pack mode.

* External Bus Priority. SYSCON Bits 18-17 (EBPRx). This bit field
selects the priority for the I/O processor’s EP bus when both the
core and the IOP attempt to access external memory.

SYSCON 31 30 2928 27 26 25 24 23 22 2120 19 18 17 16

(x0000)  []e[efefefefefo]o]so]of o o[ :]

IPACK :l
External Packed Instruction Execution Mode
00 = 32-t0-48 packed instruction execution
01 = Full 48-bit instruction execution /
EBPR

No-Packing Mode o
10 = 16 -t0-48 packed instruction execution External Bus Priority
11 = 8-t0-48 packed instruction execution 00=even priority between core processor
and |IOP bus 01=core processor priority,

15141312 1110 9 8 7 6 5 4 3 2 1 o 07 V/Oprocessorpriority

[elefefo]o]e[o[ofefolo[ofe]o[o o]

.

BSO .
IMDW1 Boot Select Override
Internal Memory Block 1 Data Width T
0=32 -bit data, 1=40 -bit data Internal Interrupt Vector Table
IMDWO (“no boot” mode)

Internal Memory Block 0 Data Width
0=32-bit data, 1=40 -bit data

Figure 5-14. Syscon Register — Control Bits Only
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Mode 1 Register Control Bits

The following bits in the MODE1 register control memory access modes:

* Secondary Processor Element (PEy). MODE1 Bit 21 (PEYEN) enables
computations in PEy—SIMD mode—(if 1) or disables PEy—SISD
mode—(if 0).

* Broadcast Register Loads. Model Bit 22 (BDCST9) and Bit 23
(BDCST1) enable broadcast register loads for memory transfers
indexed with I1 (if BDCST1 = 1) or indexed with 19 (if BDCST9 =1).

Mode 2 Register Control Bits

The following bits in the MODE2 register control memory access modes:

* Illegal IOP Register Access Enable. MODE2 Bit 20 (I11RAE) enables
detection of I/O processor register access (if 1) or disables detection

(if 0).
* Unaligned 64-bit Memory Access Enable. MODE2 Bit 21 (U64MAE)

enables detection of uneven address memory access (if 1) or dis-
ables detection (if 0).

Wait Register Control Bits

The following bits in the WAIT register control memory access modes:

e External Bank X Access Mode. WAIT Bits 1-0 (EB0AM), Bits 6-5
(EB1AM), Bits 11-10 (EB2AM), Bits 16-15 (EB3AM), and Bits 21-20

(RBAM). These bit fields select the access modes (synchronous, asyn-
chronous, SDRAM, SBSRAM) for the external memory banks.
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e External Bank X Waitstates. WAIT Bits 4-2 (EBOWS), Bits 9-7
(EB1WS), Bits 14-12 (EB2WS), Bits 19-17 (EB3WS) and Bits 24-22
(RBWS). These bit fields independently select the number of wait-
states for each of the external memory banks. After reset, the
default number of waitstates is seven.

Using Boot Memory

As shown in Figure 5-9 on page 5-23, the processor supports an external
boot EPROM mapped to external memory and selected with the BNMS pin.
The boot EPROM provides one of the methods for automatically loading
a program in to the internal memory of the processor after power-up or
after a software reset. This process is called booting. For information on
boot options and the booting process, see the following sections:

* “Bootloading Through The External Port” on page 6-70
* “Bootloading Through The Link Port” on page 6-88
* “Bootloading Through the SPI Port” on page 6-113

For information on systems with a boot EPROM, see “Booting Single and
Multiple Processors” on page 13-71.

Reading From Boot Memory

When the processor boots from an EPROM, the processor’s I/O processor
is hard-wired to load 256 instructions automatically from EPROM (via
DMA). Once the initial 256-word DMA is complete, the processor typi-
cally needs to maintain access to boot memory. The processor does this by
setting the Boot Select Override (BS0) bit in the SYSCON register.

Setting (=1) the BSO bit overrides the external memory selects and asserts
the processor’s BMS pin for an external memory DMA transfer. For access-
ing boot memory, the program first sets the BSO bit in SYSCON then sets up
an external port DMA channel to read the EPROM’s contents. The pro-
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gram must unmask the DMA channel’s interrupt in the IMASK register; if
using external port DMA buffer zero (EP0I), the program could enable
this interrupt by setting the EPOI bit to 1 in the IMASK register. For more
information on external port DMA, see “External Port DMA” on

page 6-29.

While a program may use any external port DMA channel for accessing
boot memory, it is important to note that only DMA channel 10 has a
fixed 8- to 48-bit packing mode for boot memory reads. By using DMA
channel 10 to complete initial program loading, a program can take
advantage of this special packing mode.

When a program sets BSO, the processor ignores the DMA channel’s pack-
ing mode (PMODE) bits for DMA channel 10 and forces 8- to 48-bit
packing for reads. This 8-bit packing mode is used on DMA channel 10
during EPROM booting or on DMA reads when BS0 is set. While one of
the external port DMA channels is making a DMA access to boot memory
with the BSO bit set, none of the other three channels may make a DMA
access to external (not boot) memory.

Only external port DMA transfers assert BMS when BSO0 is set; processor
core accesses to external memory always use the MSx pins. Because the pro-
cessor core only accesses external (not boot) memory, programs can access
external memory in between DMA accesses to boot memory.

Writing to Boot Memory

In systems using write-able EEPROM or FLASH memory for boot mem-
ory, programs can write new data to the processor’s boot memory using
the boot select override (BS0) pin. As described in “Reading From Boot
Memory” on page 5-35, setting (=1) the BSO bit overrides the external

memory selects and asserts the processor’s BMS pin for an external memory
DMA transfer.
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To write to boot memory using the BNS signal, programs must use DMA
channels 11, 12 or 13, but not DMA channel 10. With the BSO0 bit set,
programs should only use DMA channel 10 for reads.

When 850 is set, programs can use DMA channels 11-13 with any settings
in channel’s the DMACx register, any packing mode, and any data or
instruction.

Internal Interrupt Vector Table

The default location of the ADSP-21161’s interrupt vector table depends
on the processor’s booting mode. When the processor boots from an exter-
nal source (EPROM, host port, SPI port or link port booting), the vector
table starts at address 0x0004 0000 (normal word). When the processor is
in “no boot” mode (runs from external memory location 0x0020 0000

without loading), the interrupt vector table starts at address 0x0020 0000.

The Internal Interrupt Vector Table (I11VT) bit in the SYSCON register over-
rides the default placement of the vector table. If TIVT is set (=1), the
interrupt table starts at address 0x0004 0000 (internal memory) regardless
of the booting mode.

Internal Memory Data Width

The processor’s internal memory blocks use normal word addressing to
access either single-precision 32-bit data or extended-precision 40-bit
data. Programs select the data width independently for each internal
memory block using the Internal Memory Data Width (IMDWO and IMDW1)
bits in the SYSCON register. If a block’s IMDWx bit is cleared (=0), normal
word addressed accesses to the block access 32-bit data. If a block’s IMDWx
bit is set (=1), normal word addressed accesses to the block access 40-bit
extended-precision data. Reading or writing 40-bit data using a normal
word access to a memory block whose IMDWx bit is cleared (=0) has the fol-
lowing results.
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e Ifa program tries to write 40-bit data (for example, a data regis-
ter-to-memory transfer), the transfer truncates the lower 8-bits
from the register; only writing 32 most significant bits.

e Ifa program tries to read 40-bit data (for example, a mem-
ory-to-data register transfer), the transfer zero-fills the lower 8 bits
of the register; only reading the 32 most significant bits.

The Program Memory Bus Exchange (PX) register is the only exception to
these transfer rules—all loads/stores of the PX register are performed as
48-bit accesses unless forced to 64-bit access with the LW mnemonic. If any
40-bit data must be stored in a memory block configured for 32-bit
words, the program should use the PX register to access the 40-bit data in
48-bit words. Programs should take care not to corrupt any 32-bit data
with this type of access. For more information, see “Restrictions on Mix-
ing 32-Bit and 48-Bit Words” on page 5-28.

The Long word (LW) mnemonic only effects normal word address
accesses and overrides all other factors (SIMD, IMDWXx).

Memory Bank Size

The processor’s external memory space has four banks of equal, fixed size.
Mapping peripherals into different banks lets systems accommodate I/0
devices with different timing requirements, because the banked regions
have associated waitstate and access mode settings. This processor permits
a glueless interface to multiple devices because each bank has a indepen-
dent memory select signal associated with it. For more information, see
“External Bank X Access Mode” on page 5-42 and “External Bank X
Waitstates” on page 5-45.

As shown in Figure 5-9 on page 5-23, bank 0 starts at address
0x0020 0000 in external memory, and the banks 1, 2, and 3 regions fol-
low. Whenever the processor generates an address that is located within
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one of the four banks, the processor asserts the corresponding memory
select line (MS3-0).The size of the memory banks is 3.67 Mwords (SRAM)
or 15.67 Mwords (SDRAM).

External Bus Priority

The processor’s internal bus architecture lets the PM bus, DM bus, and
IOP bus try to access multiprocessor memory space or external memory
space in the same cycle. This contending access produces a conflict that
the processor resolves with a two level arbitration policy. The processor
core’s DM bus always has priority over the PM bus. External Bus Priority
(EBPRx) bits in the SYSCON register control the further arbitration between
the winning core bus and the I/O processor. The EBPRx field assigns prior-
ity as follows:

e IfEBPRis 00, priority rotates between core and I/O processor buses.
Priority is evaluated and switched in each cycle in which the con-
flict exists. For example, if the IOP was transferring data to the
external port and the core tried to read from the external memory
four times consecutively, the core and IOP would take turns access-
ing external memory for eight cycles.

e IfEBPRis 01, the winning core bus has priority over the I/O proces-
sor bus.

e IfEBPRis 10, the I/O processor bus has priority over the winning
core bus.

Secondary Processor Element (PEy)

When the PEYEN bit in the MODEL register is set (=1), the processor is in
Single-Instruction, Multiple-Data (SIMD) mode. In SIMD mode, many
data access operations differ from the processor’s default Single-Instruc-
tion, Single-Data (SISD) mode. These differences relate to doubling the
amount of data transferred for each data access.
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Accesses in SIMD mode transfer both an explicit (named) location and an
implicit (un-named, complementary) location. The explicit transfers is a
data transfers between the explicit register and the explicit address, and
the implicit transfer is between the implicit register and the implicit

address.

For information on complementary (implicit) registers in SIMD mode
accesses, see “Secondary Processing Element (PEy)” on page 2-37. For
more information on complementary (implicit) memory locations in
SIMD mode accesses, see “Accessing Memory” on page 5-46.

Broadcast Register Loads

The processor’s BDCST1 and BDCSTY bits in the MODE1 register control
broadcast register loading. When broadcast loading is enabled, the proces-
sor writes to complementary registers or complementary register pairs in
each processing element on writes that are indexed with DAGI register 11
(if BDCST1 =1) or DAG2 register 19 (if BDCST9 =1). Broadcast load accesses
are similar to SIMD mode accesses in that the processor transfers both an
explicit (named) location and an implicit (un-named, complementary)
location, but broadcast loading only influences writes to registers and
write identical data to these registers. Broadcast mode is independent of

SIMD mode.

Table 5-4 shows examples of explicit and implicit effects of broadcast reg-
ister loads to both processing elements. Note that broadcast loading only
effects loads of data registers (register file); broadcast loading does not
effect register stores or loads to other system registers. And, broadcast
loads only work on register loads; broadcast loading cannot be used for
memory writes. For more information on broadcast loading, see “Access-

ing Memory” on page 5-46.
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Table 5-4. Register Load Dual PE Broadcast Operation

Instruction

(Explicit, PEx Operation)1 (Implicit, PEy operation)

Rx = dm(il,ma); Sx = dm(il,ma);

Rx = pm(i9,mb); Sx = pm(i9,mb);

Rx = dm(il,ma), Ry = pm(i9,mb); Sx = dm(il,ma), Sy = pm(i9,mb);

1 The post increment in the explicit operation is performed before the implicit instructions are
executed.

lllegal I/0O Processor Register Access

The processor monitors I/O processor register access when the Illegal I/0
processor Register Access (I1RAE) bit in the MODE?2 register is set (=1). If
access to the IOP registers is detected, an Illegal Input Condition
Detected (11CDI) interrupt occurs. The interrupt is enabled in the IMASK
register in the following cases:

* A core access to an IOP register occurs.
* A host external port access to an IOP register occurs.

The I/O processor’s DMA controller cannot generate the 11CDI
interrupt. For more information, see “Mode Control 2 Register

(MODE2)” on page A-10.

Unaligned 64-Bit Memory Access

The processor monitors for unaligned 64-bit memory accesses if the
Unaligned 64-bit Memory Accesses (U64MAE) bit in the MODE? register (bit
21) is set (=1). An unaligned access is an odd numbered address normal
word access that is forced to 64-bit with the LW mnemonic. When
detected, this condition is an input that can cause an Illegal Input Condi-
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tion Detected (11CD1) interrupt if the interrupt is enabled in the IMASK
register. For more information, see “Mode Control 2 Register (MODE2)”
on page A-10.

The following code example shows the access for even and odd addresses.
When accessing an odd address, the sticky bit is set to indicate the
unaligned access.

bit set mode2 U64MAE; //set testbit for align or unaligned 64

bit access

ro=0x11111111;

r1=0x22222222;

pm(0x4e800)=r0(1w); //even address in 32 bit, access is aligned
pm(0x4e803)=r0(1w); //odd address in 32 bit, sticky bit is set

External Bank X Access Mode

The processor has four modes for accessing external memory space. The
External Bank Access Mode (EBxAM) fields in the WAIT register select how
the processor uses waitstates and the acknowledge (ACK) pin to access each
external memory bank region. ACK has a 20 kQ) internal pull-up resistor
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that is enabled during reset or on DSPs with 102-0=00x. The external
bank access modes appear in Table 5-5. The WAIT register bit descriptions
appear in Figure 5-15.

Table 5-5. External Bank Access Mode

EBxAM
Field

External Bank Access Mode

00

Asynchronous

RD and WR strobes change before CLKOUT’s edge.
Accesses use the waitstate count setting from EBxWS AND require external
acknowledge (ACK), allowing a de-asserted ACK to extend the access time.

01

Synchronous

RD and WR strobes change on CLKOUT’s edge.

Accesses use the waitstate count setting from EBxWS (minimum EBxWS=001)
AND require external acknowledge (ACK), allowing a de-asserted ACK to extend
the read access time.

Writes are 0-wait state.

10

Synchronous

RD and WR strobes change on CLKOUT’s edge.

Accesses use the waitstate count setting from EBxWS (minimum EBxWS=001)
AND require external acknowledge (ACK), allowing a de-asserted ACK to extend
the read access time.

Writes are 1-wait state.

11

Reserved
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WAIT

(OXOOOZ) ojofofojojojOof1g21|1(of|Of1]1f1]0O
| I I 1 ]
HIDMA J I_l_— EB3AM
External Bank 3
gﬁnr}_(\jj:;ﬁeand Idle for Access Mode
0 =no idle cycle EB3WS
1=adds an idle cycle after External Bank 3
every handshake DMA waitstates
DMAG asserted longer reduces RBAM
bus contention for slower devices
RBWS
ROM Boot Waitstates
1514 1312 1110 9 8 7 6 5 4 3 2 1 O
of1f1f{1g0fo0j1)1g1f(ofof1g1|1])0]0
| I I I I I ]
EB2WS EBOAM
\Il_:v)e(xtiteg::t‘(lasank 2 External Bank 0 Access Mode
EB2AM
External Bank 2 Access Mode
EB1WS
External Bank 1 11=reserved
waitstates
EB1AM

31 30 2928 27 26 25 24 23 22 2120 19 18 17 16

ROM Boot Access Mode

External Bank 1 Access Mode

Figure 5-15. WAIT Register

BOWS .
External Bank 0 Waitstates

000= 0 waitstates, no hold time cycle
001=1 waitstate, no hold time cycle, minimum for sync

010=2 waitstates, hold time cycle
011=3 waitstates, hold time cycle
100=4 waitstates, hold time cycle
101=5 waitstates, hold time cycle
110=6 waitstates, hold time cycle
111=7 waitstates, hold time cycle

(hold time cycles for Async Mode only)
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External Bank X Waitstates

The processor applies waitstates to each external memory access depend-
ing on the bank’s external memory access mode (EBxAM). The External
Bank Waitstate (EBxWS) field in the WAIT register sets the number of wait-
states for each bank as shown in Table 5-6.

Table 5-6 lists the hold time settings that EBxWS associates with external
memory accesses. A hold time cycle is an inactive bus cycle that the pro-
cessor inserts automatically at the end of a read or write, allowing a longer
hold time for address and data. The address and data remain unchanged
and are driven for one cycle after the processor deasserts the read or write
strobes.

Table 5-6. External Bank Waitstates

EBxWS # of Waitstates Hold Time Cycle?!
000 0 no
001 1 no
010 2 yes
011 3 yes
100 4 yes
101 5 yes
110 6 yes
111 7 yes

1 Hold cycle applies to asynchronous mode only.

The processor applies hold time cycles regardless of the external
bank access mode (EBxAM). For example, the asynchronous (ACK
plus waitstate) mode could also have an associated hold time cycle.
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Using Memory Access Status

As described in “Illegal I/O Processor Register Access” on page 5-41 and
“Unaligned 64-Bit Memory Access” on page 5-41, the processor can pro-
vide illegal access information for long word or 1/O register accesses.
When these conditions occur, the processor updates an illegal condition
flag in a sticky status (STKYx) register. Either of these two conditions can
also generate a maskable interrupt. Two ways to use illegal access informa-
tion are:

* Interrupts. Enable interrupts and use an interrupt service routine
to handle the illegal access condition immediately. This method is
appropriate if it is important to handle all illegal accesses as they
occur.

* STKYx registers. Sticky registers hold a value that can be checked
for a specific condition at a later time. Use the Bit Tst instruction
to examine illegal condition flags in the STKY register after an inter-
rupt to determine which illegal access condition occurred.

Accessing Memory

The word width of the processor core accesses to internal memory include

the following:

48-bit access for instruction words, extended-precision normal word
(40-bit) data, and PX register

* 64-bit access for long word data, and normal word (32-bit) or PX
register data with the LW mnemonic

e 32-bit access for normal word (32-bit) data

e 16-bit access for short word data
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The processor determines whether a normal word access is 32- or 40-bit
from the internal memory block’s IMDWx setting. For more information,
see “Internal Memory Data Width” on page 5-37. While mixed accesses of
48-bit words and 16-, 32-, or 64-bit words at the same address are not
allowed, mixed read/writes of 16-, 32-, and 64-bit words to the same
address are allowed. For more information, see “Restrictions on Mixing

32-Bit and 48-Bit Words” on page 5-28.

The processor’s DM and PM buses support 24 combinations of regis-
ter-to-memory data access options. The following factors influence the
data access type:

Size of words: short word, normal word, extended-precision nor-
mal word, or long word

Number of words: single- or dual-data move

Mode of processor: SISD, SIMD, or broadcast load

Access Word Size

The processor’s internal memory accommodates the following word sizes:

64-bit word data

48-bit instruction words

40-bit extended-precision normal word data
32-bit normal word data

16-bit short word data
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The processor’s external memory accommodates the following word sizes:
e 48-bit instruction words

* 40-bit extended-precision normal word data (accessed as
48-bit via PX)

e 32-bit normal word data

Long Word (64-Bit) Accesses

A program makes a long word (64-bit) access to internal memory, using
an access to a long word address. Programs can also make a 64-bit access
through normal word addressing with the LW mnemonic or through a P
register move with the LW mnemonic. Programs may not use long word
addressing to access multiprocessor memory space or external memory.
The address ranges for internal memory accesses appear in Figure 5-7 on

page 5-17.

Since the ADSP-21161 processor external port is 32 bits wide, the
SIMD and long word accesses are not supported.

When data is accessed using long word addressing, the data is always long
word aligned on 64-bit boundaries in internal memory space. When data
is accessed using normal word addressing and the LW mnemonic, the pro-
gram should maintain this alignment by using an even normal word
address (least significant bit of address =0). This register selection aligns
the normal word address with a 64-bit boundary (long word address).

All long word accesses load or store two consecutive 32-bit data values.
The register file source or destination of a long word access is a set of two
neighboring data registers in a processing element. In a forced long word
access (uses the LW mnemonic), the even (normal word address) location
moves to or from the explicit register in the neighbor-pair, and the odd
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(normal word address) location moves to or from the implicit register in
the neighbor-pair. For example, the following long word moves could
occur:

DM(0x40000) = RO (LW);

/* The data in RO moves to location DM(0x40000),

and the data in R1 moves to Tocation DM(0x40001) */
RO (LW) = DM(0x40003)(LW);

/* The data at Tocation DM(0x40002) moves to RO,

and the data at location DM(0x40003) moves to R1 */

The example shows that RO and R1 are a neighbor registers in the same
processing element. Table 5-7 lists the other neighbor register assignments
that apply to long word accesses.

In un-forced long word accesses (accesses to LW memory space), the proces-
sor places the lower 32-bits of the long word in the named (explicit)
register and places the upper 32-bits of the long word in the neighbor
(implicit) register.

Table 5-7. Neighbor Registers for Long Word Accesses

PEx neighbor registers PEy neighbor registers
10 neighbors rl s0 neighbors sl

r2 neighbors r3 s2 neighbors s3

r4 neighbors r5 s4 neighbors s5

r6 neighbors r7 s6 neighbors s7

8 neighbors r9 s8 neighbors s9

r10 neighbors r11 s10 neighbors s11

r12 neighbors r13 s12 neighbors s13

r14 neighbors r15 s14 neighbors s15
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Programs can monitor for unaligned 64-bit accesses by enabling the
U64MAE bit. For more information, see “Unaligned 64-Bit Memory Access”
on page 5-41.

The Long word (LW) mnemonic only effects normal word address
accesses and overrides all other factors (PEYEN, IMDWx).

Instruction Word (48-Bit) and Extended-Precision Normal
Word (40-Bit) Accesses

The sequencer uses 48-bit memory accesses for instruction fetches. Pro-
gram can make 48-bit accesses with PX register moves, which default to

48-bit.

A program makes an extended-precision normal word (40-bit) access to
internal memory using an access to a normal word address when that
internal memory block’s IMDWx bit is set (=1) for 40-bit words. Programs
may not use extended-precision normal word addressing to access multi-
processor memory space or external memory. The address ranges for
internal memory accesses appear in Figure 5-7 on page 5-17. For more
information on configuring memory for extended-precision normal word
accesses, see “Internal Memory Data Width” on page 5-37.

The processor transfers the 40-bit data to internal memory as a 48-bit
value, zero-filling the least significant 8 bits on stores and truncating these
8 bits on loads. The register file source or destination of such an access is a
single 40-bit data register.

Normal Word (32-Bit) Accesses

A program makes a normal word (32-bit) access to internal memory using
an access to a normal word address when that internal memory block’s
IMDWx bit is cleared (=0) for 32-bit words. Programs use normal word
addressing to access all processor memory spaces: internal, multiprocessor,
and external memory space. The address ranges for memory accesses

appear in Figure 5-7 on page 5-17, and Figure 5-9 on page 5-23.
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The register file source or destination of a normal word access is a single
40-bit data register. The processor zero-fills the least significant 8 bits on
loads and truncates these bits on stores.

External memory space accesses using normal word addressing and
the LW mnemonic perform a 32-bit accesses, not a 64-bit access.

Short Word (16-Bit) Accesses

A program makes a short word (16-bit) access to internal memory, using
an access to a short word address. Programs may not use short word
addressing to access multiprocessor memory space or external memory.
The address ranges for internal memory accesses appear in Figure 5-7 on

page 5-17.

The register file source or destination of such an access is a single 40-bit
data register. The processor zero-fills the least significant 8 bits on loads
and truncates these bits on stores. Depending on the value of the SSE bit
in the MODE1 system register, the processor loads the register’s upper 16
bits by either:

* Zero-filling these bits if SSE=0

* Sign-extending these bits if SSE=1

SISD, SIMD, and Broadcast Load Modes

These three processing element modes influence memory accesses. For a
comparison of their effects, see the examples in “Data Access Options” on
page 5-52. For more information on SISD and SIMD modes, see “Sec-
ondary Processing Element (PEy)” on page 2-37.

Broadcast load mode is a hybrid between SISD and SIMD modes, trans-
ferring dual-data under special conditions. For examples of broadcast
transfers, see “Data Access Options” on page 5-52. For more information
on broadcast load mode, see “Broadcast Register Loads” on page 5-40.
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Single and Dual Data Accesses

The number of transfers that occur in a cycle influences the data access
operation. As described on page 5-5, the processor supports single-cycle,
dual-data accesses to and from internal memory for register-to-memory
and memory-to-register transfers. Dual-data accesses occur over the PM
and DM bus and act independent of SIMD/SISD. Though only available
for transfers between memory and data registers, dual-data transfers are
extremely useful because they double the data throughput over single-data
transfers.

Instruction Examples

R8 = DM (I4,M3), PM (I12,M13) = RO; /* Dual access */
RO DM (I5,M5); / * Single access */

For examples of data flow paths for single- and dual-data transfers, see
“Data Access Options” on page 5-52.

Data Access Options

Table 5-8 on page 5-53 lists the processor’s possible memory transfer
modes and provides a cross reference to examples of each memory access
option that stems from the processor’s data access options.

Table 5-8 shows the transfer modes that stem from the following data
access options:

* The mode of the processor: SISD, SIMD, or Broadcast Load

* The size of access words: long, extended-precision normal word,
normal word, or short word

e The number of transferred words: single- or dual-data

Note that long and short word addressing may not target multiprocessor
memory space or external memory space.
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Table 5-8. Memory Transfer Modes Cross Reference
Access Mode | Address Space
Type
Long Word Extended Normal Word Short Word
Precision

Single SISD LW EW NW SW

Data mode page 5-76 page 5-70 page 5-62 page 5-54

Access
SIMD Lw EW Lw SWx2
mode page 5-76 page 5-70 page 5-64 page 5-56
B-cast Lw EW NW SW
Load Figure 5-38 Figure 5-36 Figure 5-34 Figure 5-32

Dual Data | SISD LW EW NW SW

Access mode page 5-78 page 5-72 page 5-66 page 5-58
SIMD |LW EW LW SWx2
mode page 5-80 page 5-74 page 5-68 page 5-60
B-cast LW EW NW SW
Load Figure 5-35 Figure 5-37 Figure 5-35 Figure 5-33

Symbols:LW = 64-bit data value (two 32-bit values), EW = 40-bit data value (48-bit value),
NW = 32-bit data value, SW = 16-bit data value, and SWx2 = two 16-bit data values.
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Short Word Addressing of Single Data in SISD Mode

Figure 5-16 displays one possible SISD mode, single data, short word
addressed access. For short word addressing, the processor treats the data
buses as four 16-bit short word lanes. The 16-bit value for the short word
access transfers using the least significant short word lane of the PM or
DM data bus. The processor drives the other short word lanes of the data
buses with zeros.

In SISD mode, the instruction accesses PEx registers to transfer data from
memory. This instruction accesses WORD X0 whose short word address has
“00” for its least significant two bits of address. Other locations within
this row have addresses with least significant two bits of “01”, “10”, or
“11” and select WORD X1, WORD X2, or WORD X3 from memory respectively.
The syntax targets register, RX, in PEx. The example would target a PEy
register if using the syntax SX.

The cross (1) in the PEx registers in Figure 5-16 indicates that the proces-
sor zero-fills or sign-extends the most significant 16 bits of the data
register while loading the short word value into a 40-bit data register. This
depends on the state of the SSE bit in the MODEL system register. For SW
transfers, the least significant 8 bits of the data register are always zero.
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BLOCK 0 (PM) MEMORY BLOCK 1 (DM)
I 'WORD Y11|WORD Y10| WORD Y9 | WORD Y8 T 'WORD X11|WORD X10| WORD X9 | WORD X8
)]
7] 7]
w w
g WORD Y7 | WORD Y6 | WORD Y5 | WORD Y4 g WORD X7 | WORD X6 | WORD X5 | WORD X4
=] a
< <
WORD Y3 | WORD Y2 | WORD Y1 | WORD Y0 WORD X3 | WORD X2 | WORD X1 | WORD X0
\ A \ A A A A A
y \ 4 y \J A\ A\ A\ \
\ NO ACCESS / \ SHORT WORD ACCESS /
63-48 47-32 31-16 15-0 63-48 47-32 y 31-16 15-0
PM DATA DM DATA
PEX REGISTERS RB RA RY RX
39-24 23-8 7-0 39-24 23-8 7-0 39-24 23-8 7-0 39-24 23-8 7-0
_ _ 00000t |WORD X0 000
PEY REGISTERS SB SA sy SX
39-24 23-8 7-0 39-24 23-8 7-0 39-24 23-8 7-0 39-24 23-8 7-0

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(SHORT WORD X0 ADDRESS);

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SISD, SHORT WORD, SINGLE-DATA TRANSFERS ARE:
UREG = PM(SHORT WORD ADDRESS);
UREG = DM(SHORT WORD ADDRESS);|
PM(SHORT WORD ADDRESS) = UREG;
DM(SHORT WORD ADDRESS) = UREG;|

NOTE: DIRECT ADDRESSING IS NOT SUPPORTED FOR DUAL DATA ACCESSES. DUAL DATA ACCESSES
CAN BE ACCOMPLISHED BY INDIRECT ADDRESSING USING THE DAG REGISTERS.

Figure 5-16. Short Word Addressing of Single Data in SISD Mode
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Short Word Addressing of Single Data in SIMD Mode

Figure 5-17 displays one possible SIMD mode, single data, short word
addressed access. For short word addressing, the processor treats the data
buses as four 16-bit short word lanes. The explicitly addressed (named in
the instruction) 16-bit value transfers using the least significant short
word lane of the PM or DM data bus. The implicitly addressed (not
named in the instruction, but inferred from the address in SIMD mode)
short word value transfers using the 47-32 bit short word lane of the PM
or DM data bus. The processor drives the other short word lanes of the
PM or DM data buses with zeros.

The instruction explicitly accesses the register, RX, and implicitly accesses
that register’s complementary register, SX. This instruction uses a PEx reg-
ister with an RX mnemonic. If the syntax named a PEy register SX as the
explicit target the processor would use that register’s complement RX as the
implicit target. For more information on complementary registers, see
“Secondary Processing Element (PEy)” on page 2-37.

The cross () in the PEx and PEy registers in Figure 5-17 indicates that the
processor zero-fills or sign-extends the most significant 16 bits of the data
register while loading the short word value into a 40-bit data register. This
depends on the state of the SSE bit in the MODE1 system register. For short
word accesses, the least significant 8 bits of the data register are always
zero.

Figure 5-17 shows the data path for one transfer. The processor accesses
short words sequentially in memory. Table 5-9 shows the pattern of
SIMD mode short word accesses. For more information on arranging data
in memory to take advantage of this access pattern, see “Arranging Data in
Memory” on page 5-100.
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BLOCK 0 (PM) MEMORY BLOCK 1 (DM)
I WORD Y11|WORD Y10[ WORD Y9 | WORD Y8 T WORD X11|WORD X10| WORD X9 | WORD X8
[}
n 7]
w w
X [WORD Y7 | WORD Y6 | WORD Y5 | WORD Y4 Z | WORD X7 | WORD X6 | WORD X5 | WORD X4
a a
< <
WORD Y3 | WORD Y2 | WORD Y1 | WORD Y0 WORD X3 | WORD X2 | WORD X1 | WORD X0
A A A A A A A A
\J A \ A 4 Y \ A
\ NO ACCESS / \ SHORT WORD ACCESS /
47-32 31-16 15 63-48 47-32 y 31-16 15-0
PM DATA DM DATA
PEX REGISTERS RB RA RY RX
39-24 39-24 238 70 39-24 238 70 39-24 238 70
PEY REGISTERS SA sy SX
39-24 238 70 39-24 238 70 39-24 238 70 39-24 23-8 70
oxoo0oT |WORD x2|ox00

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(SHORT WORD X0 ADDRESS);
OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SIMD, SHORT WORD, SINGLE-DATA TRANSFERS ARE:
UREG = PM(SHORT WORD ADDRESS);
UREG = DM(SHORT WORD ADDRESS);
PM(SHORT WORD ADDRESS) = UREG;
DM(SHORT WORD ADDRESS) = UREG;

NOTE: DIRECT ADDRESSING IS NOT SUPPORTED FOR DUAL DATA ACCESSES.
DUAL DATA ACCESSES CAN BE ACCOMPLISHED BY INDIRECT ADDRESSING USING THE DAG REGISTERS.

Figure 5-17. Short Word Addressing of Single Data in SIMD Mode
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Table 5-9. Short Word Addressing in SIMD Mode

Explicit Short Word Accessed Implicit Short Word Accessed

Word X0 (Address two LSBs = 00) Word X2 (Address two LSBs = 10)
Word X1 (Address two LSBs = 01) Word X3 (Address two LSBs = 11)
Word X2 (Address two LSBs = 10) Word X4 (Address two LSBs = 00)
Word X3 (Address two LSBs = 11) Word X5 (Address two LSBs = 01)

Short Word Addressing of Dual-Data in SISD Mode

Figure 5-18 displays one possible SISD mode, dual-data, short word
addressed access. For short word addressing, the processor treats the data
buses as four 16-bit short word lanes. The 16-bit values for short word
accesses transfer using the least significant short word lanes of the PM and
DM data buses. The processor drives the other short word lanes of the
data buses with zeros. Note that the accesses on both buses do not have to
be the same word width. SISD mode dual-data accesses can handle any
combination of short word, normal word, extended-precision normal
word, or long word accesses. For more information, see “Mixed Word

Width Addressing of Dual Data in SISD Mode” on page 5-82.

In SISD mode, the instruction explicitly accesses PEx registers. This
instruction accesses WORD X0 in block 1 and WORD Y0 in block 0. Each of
these words has a short word address with “00” for its least significant two
bits of address. Other accesses within these 4-column location have the
addresses with least significant two bits of “01”, “10”, or “11” and select
WORD X1/Y1, WORD X2/Y2, or WORD X3/Y3 from memory respectively. The
syntax explicitly accesses registers, RX and RY, in PEx. The example would
target PEy registers if using the syntax SX or SY.
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MEMORY
BLOCK 0 (PM) 0 BLOCK 1 (DM)
o |worp y11lworp y1o| worp ve | worp vs o  |worp x11jworp x10| worp x9 | worp xs
7] 7]
w w
§ WORD Y7 | WORD Y6 | woRD Y5 | woRD v4 § WORD X7 | WoRD x6 | WoRD x5 | woRrD x4
< <
WORD Y3 | WORD Y2 | WORD Y1 | WoRD Yo WORD X3 | WORD X2 | WORD x1 | WORD X0
A A Y A A A A A
y w y i i y Y A
\ SHORT WORD ACCESS / \ SHORT WORD ACCESS /
6348 4732 y 3116  15-0 6348  47-32 y 3116  15-0
PMDATA | ox0000 0 0X0000 |WORD Y0 DM DATA | 4x0000 0 0X0000 |WORD X0
BUS BUS
PEX REGISTERS RB RA RY RX
3924 238  7-0 3924 238 70 3924 238  7-0 3924 238  7-0
_ 0X0000t JwoRD vo]oxco _ OX0000t |WORD X0]0X00
PEY REGISTERS sB SA sy sX
3924 238 70 3924 238 70 3924 238 70 3924 238 70

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(SHORT WORD X0 ADDRESS), RA = PM(SHORT WORD Y0 ADDRESS);

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SIMD, SHORT WORD, DUAL-DATA TRANSFERS ARE:
DREG = PM(SHORT WORD ADDRESS), | DREG = DM(SHORT WORD ADDRESS);
PM(SHORT WORD ADDRESS) = DREG, | DM(SHORT WORD ADDRESS) = DREG;

NOTE: DIRECT ADDRESSING IS NOT SUPPORTED FOR DUAL-DATA ACCESSES. DUAL-DATA ACCESSES
CAN BE ACCOMPLISHED BY INDIRECT ADDRESSING USING THE DAG REGISTERS.

Figure 5-18. Short Word Addressing of Dual-Data in SISD Mode
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The cross (T) in the PEx registers in Figure 5-18 indicates that the proces-
sor zero-fills or sign-extends the most significant 16 bits of the data
register while loading a short word value into a 40-bit data register. This
depends on the state of the SSE bit in the MODE1 system register. For short
word accesses, the least significant 8 bits of the data register are always
zero.

Short Word Addressing of Dual-Data in SIMD Mode

Figure 5-19 displays one possible SIMD mode, dual-data, short word
addressed access. For short word addressing, the processor treats the data
buses as four 16-bit short word lanes. The explicitly addressed (named in
the instruction) 16-bit values transfer using the least significant short
word lanes of the PM and DM data bus. The implicitly addressed (not
named in the instruction, but inferred from the address in SIMD mode)
short word values transfer using the 47-32 bit short word lanes of the PM

and DM data buses. The processor drives the other short word lanes of the
PM and DM data buses with zeros.

The accesses on both buses do not have to be the same word width.
SIMD mode dual-data accesses can handle combinations of short
word and normal word or extended-precision normal word and
long word accesses. For more information, see “Mixed Word
Width Addressing of Dual Data in SIMD Mode” on page 5-84.

The instruction explicitly accesses registers RX and RA, and implicitly
accesses the complementary registers, SX and SA. This instruction uses a
PEx registers with the RX and RA mnemonics. If the syntax named PEy reg-
isters SX and SA as the explicit targets, the processor would use those
registers’ complements, RX and RA, as the implicit targets. For more infor-
mation on complementary registers, see “Secondary Processing Element

(PEy)” on page 2-37.
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MEMORY
BLOCK 0 (PM) o BLOCK 1 (DM)
o |WORD Y11[woRD Y10| WORD Yo | woRD Y8 «» |WORD Xx11WORD Xx10| WORD X3 | WORD X8
7] 7]
w w
§ WORD Y7 | WORD Y6 | WORD Y5 | WORD Y4 & |worp x7|worp xe | worD x5 | worp xa
2 E
WORD Y3 | WORD Y2 | WORD Y1 | WORD Yo WORD X3 | WORD X2 | WORD X1 | woRD xo
A A A A A A A A
A\ Y Y v Y A\ \ \i
\ SHORT WORD ACCESS / \ SHORT WORD ACCESS /
63-48 4732 y 31-16 15-0 63-48 4732 y 31-16 15-0
PMB'I’J’;TA 0X0000 |WORD Y2| 0X0000 |WORD Y0 DMB'I’J’;TA 0X0000 |WORD X2| o0xc000 |WORD X0
PEX REGISTERS RB RA RY RX
39-24 238 70 39-24 238 70 39-24 238 70 39-24 238 70
_ 00000t | WORD ¥0] 0X0 _ OX0000t [WORD X0]ox00
PEY REGISTERS sB SA sy sX
39-24 238 70 39-24 238 70 39-24 238 70 39-24 238 70
0Xx0000+ |WORD Y2 |0xo00 0X0000t |WORD X2 |0x00

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM (SHORT WORD X0 ADDRESS), RA = PM (SHORT WORD Y0 ADDRESS);

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SIMD, SHORT WORD, DUAL-DATA TRANSFERS ARE:
DREG = PM(SHORT WORD ADDRESS), | DREG = DM(SHORT WORD ADDRESS);
PM(SHORT WORD ADDRESS) = DREG, | DM(SHORT WORD ADDRESS) = DREG;

NOTE: DIRECT ADDRESSING IS NOT SUPPORTED FOR DUAL-DATA ACCESSES. DUAL-DATA ACCESSES
CAN BE ACCOMPLISHED BY INDIRECT ADDRESSING USING THE DAG REGISTERS.

Figure 5-19. Short Word Addressing of Dual-Data in SIMD Mode

ADSP-21161 SHARC Processor Hardware Reference 5-61



Accessing Memory

The cross () in the PEx and PEy registers in Figure 5-19 indicates that the
processor zero-fills or sign-extends the most significant 16 bits of the data
registers while loading the short word values into the 40-bit data registers.
For short word accesses, this depends on the state of the SSE bit in the
MODE1 system register. For the short word accesses, the least significant 8
bits of the data register are always zero.

Figure 5-19 shows the data path for one transfer. For short word accesses,
the processor accesses short words sequentially in memory. Table 5-9 on
page 5-58 shows the pattern of SIMD mode short word accesses. For more
information on arranging data in memory to take advantage of this access
pattern, see “Arranging Data in Memory” on page 5-100.

32-Bit Normal Word Addressing of Single Data in SISD Mode

Figure 5-20 displays one possible SISD mode, single data, 32-bit normal
word addressed access. For normal word addressing, the processor treats

the data buses as two 32-bit normal word lanes. The 32-bit value for the
normal word access transfers using the least significant normal word lane
of the PM or DM data bus. The processor drives the other normal word

lanes of the data buses with zeros.

In SISD mode, the instruction accesses a PEx register. This mode accesses
WORD X0 whose normal word address has “0” for its least significant address
bit. The other access within this 4-column location has an addresses with a
least significant bit of “1” and selects WORD X1 from memory. The syntax
targets register RX in PEx. The example would target a PEy register if using
the syntax SX.

For normal word accesses, the processor zero-fills least significant 8 bits of
the data register on loads and truncates these bits on stores to memory.
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MEMORY
BLOCK 0 (PM) o BLOCK 1 (DM)
T WOFllD Y5 WORID Y4 T WOF;D X5 WORID X4
a2 I I a I I
w WORD Y3 WORD Y2 w WORD X3 WORD X2
& | | = | |
a 1 1 a 1 1
< WOFIID Y1 WOFiD YO < WOFIID X1 WOFiD X0
A A A A A A A A
Y \ 4 Y Y Y Y Y \ 4
\ NO ACCESS / \ NORMAL WORD ACCESS /
63-48 47-32 31-16 15-0 63-48 47-32 y 31-16 15-0
1
PM DATA DM DATA
BUS BUS 0X0000 | 0X0000 WOF:D X0
PEX REGISTERS RB RA RY RX
39-24 238 70 39-24 23-8  7-0 39-24 238 70 39-24 238 70
1
T T . o [
PEY REGISTERS SB SA sy SX
39-24 238 70 39-24 23-8  7-0 39-24 238 70 39-24 238 70

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(NORMAL WORD X0 ADDRESS);

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SISD, NORMAL WORD, SINGLE-DATA TRANSFERS ARE:

UREG = PM(NORMAL WORD ADDRESS);
UREG = DM(NORMAL WORD ADDRESS);
PM(NORMAL WORD ADDRESS) = UREG;
DM(NORMAL WORD ADDRESS) = UREG;

Figure 5-20. 32-Bit Normal Word Addressing of Single Data in SISD

Mode
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32-Bit Normal Word Addressing of Single Data in SIMD Mode

Figure 5-21 displays one possible SIMD mode, single data, normal word
addressed access. For normal word addressing, the processor treats the
data buses as two 32-bit normal word lanes. The explicitly addressed
(named in the instruction) 32-bit value transfers using the least significant
normal word lane of the PM or DM data bus. The implicitly addressed
(not named in the instruction, but inferred from the address in SIMD
mode) Normal word value transfers using the most significant normal

word lane of the PM or DM data bus.

In Figure 5-21, the explicit access targets the named register RX, and the
implicit access targets that register’s complementary register SX. This case
uses a PEx register with an RX mnemonic. If the syntax named a PEy regis-
ter SX as the explicit target, the processor would use that register’s
complement, RX, as the implicit target. For more information on comple-
mentary registers, see “Secondary Processing Element (PEy)” on

page 2-37.

For normal word accesses, the processor zero-fills least significant 8 bits of
the data register on loads and truncates these bits on stores to memory.

Figure 5-21 shows the data path for one transfer. For normal word
accesses, the processor accesses normal words sequentially in memory.
Table 5-9 shows the pattern of SIMD mode normal word accesses. For
more information on arranging data in memory to take advantage of this
access pattern, see “Arranging Data in Memory” on page 5-100.
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BLOCK 0 (PM) MEMORY BLOCK 1(DM)
T WORD Y5 WORD Y4 T WORD X5 WORD X4
a ] | a ] ]
w I I w I I
z WORD Y3 WORD Y2 z WORD X3 WORD X2
=) ] ] =] ] ]
< I T < I I
WORID Y1 WORID Yo WORID X1 WORID X0
A A A A A A A A
i A i Y Y Y Y A
\ NO ACCESS / \ NORMAL WORD ACCESS /
63-48  47-32  31-16 15-0 63-48  47-32 y 31-16 15-0
I I
PM DATA DM DATA
PEX REGISTERS RB RA RY RX
39-24 23-8 70 39-24 238 7-0 39-24 23-8 70 39-24 23-8 70
I
1
PEY REGISTERS sB SA sy sX
39-24 23-8 70 39-24 238 7-0 39-24 23-8 70 39-24 23-8 70
[
1
PEY
REGISTER S

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:

RX = DM(NORMAL WORD X0 ADDRESS);

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SIMD, NORMAL WORD, SINGLE-DATA TRANSFERS ARE:

UREG = PM(NORMAL WORD ADDRESS);
UREG = DM(NORMAL WORD ADDRESS);
PM(NORMAL WORD ADDRESS) = UREG;
DM(NORMAL WORD ADDRESS) = UREG;

Figure 5-21. 32-Bit Normal Word Addressing of Single Data in SIMD

Mode
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Table 5-10. Normal Word Addressing in SIMD Mode

Explicit Normal Word Accessed Implicit Normal Word Accessed
Word X0 (Address LSB = 0) Word X1 (Address LSB = 1)
Word X1 (Address LSB = 1) Word X2 (Address LSB = 0)

32-Bit Normal Word Addressing of Dual Data in SISD Mode

Figure 5-22 displays one possible SISD mode, dual data, 32-bit normal
word addressed access. For normal word addressing, the processor treats
the data buses as two 32-bit normal word lanes. The 32-bit values for nor-
mal word accesses transfer using the least significant normal word lanes of
the PM and DM data buses. The processor drives the other normal word
lanes of the data buses with zeros. Note that the accesses on both buses do
not have to be the same word width. SISD mode dual-data accesses can
handle any combination of short word, normal word, extended-precision
normal word, or long word accesses. For more information, see “Mixed

Word Width Addressing of Dual Data in SISD Mode” on page 5-82.

In Figure 5-22, the access targets PEx registers in a SISD mode operation.
This case accesses WORD X0 in block 1 and WORD Y0 in block 0. Each of
these words has a normal word address with “0” for its least significant
address bit. Other accesses within these 4-column locations have the
addresses with the least significant bit of “1” and select WORD X1/Y1 from
memory. The syntax targets registers RX and RY in PEx. The example would
target PEy registers if using the syntax SX or SY.

For normal word accesses, the processor zero-fills least significant 8 bits of
the data register on loads and truncates these bits on stores to memory.
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MEMORY
BLOCK 0 (PM) 0 BLOCK 1 (DM)
T WORD Y5 WORD Y4 T WORD X5 WORD X4
° l ] ° l l
@ 1 1 @ 1 1
i WORD Y3 WORD Y2 i WORD X3 WORD X2
z I 1 z I I
8 1 1 8 1 1
< WORD V1 WORD Yo < WORD x1 WORD X0
\ A \ A A A A A
y \ y ¥ i y i i
\ NORMAL WORD ACCESS / \ NORMAL WORD ACCESS /
63-48 4732 y 3116 150 63-48 4732 y 3116 15-0
T T
PMDATA | gx0000 | 0x0000 WORD Y0 DMDATA | gx0000 | 0x0000 WORD X0
BUS BUS i
PEX REGISTERS RB RA * RY RX
39-24 238 70 3924 238 70 3924 238 7-0 39-24 238 70
1 1
WORD Yo 0X00 WORD X0 0X00
PEY REGISTERS sB SA sy sX
39-24 238 70 3924 238 70 3924 238 7-0 39-24 238 70

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(NORMAL WORD X0 ADDRESS), RY = PM(NORMAL WORD Y0 ADDRESS);

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SISD, NORMAL WORD, DUAL-DATA TRANSFERS ARE:
DREG = DM(NORMAL WORD ADDRESS);
DM(NORMAL WORD ADDRESS) = DREG;

DREG = PM(NORMAL WORD ADDRESS),
PM(NORMAL WORD ADDRESS) = DREG,

NOTE: DIRECT ADDRESSING IS NOT SUPPORTED FOR DUAL-DATA ACCESSES. DUAL-DATA ACCESSES
CAN BE ACCOMPLISHED BY INDIRECT ADDRESSING USING THE DAG REGISTERS.

Figure 5-22. 32-Bit Normal Word Addressing of Dual Data in SISD Mode
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32-Bit Normal Word Addressing of Dual Data in SIMD Mode

Figure 5-23 displays one possible SIMD mode, dual data, 32-bit normal
word addressed access. For normal word addressing, the processor treats
the data buses as two 32-bit normal word lanes. The explicitly addressed
(named in the instruction) 32-bit values transfer using the least significant
normal word lane of the PM or DM data bus. The implicitly addressed
(not named in the instruction, but inferred from the address in SIMD
mode) normal word values transfer using the most significant normal
word lanes of the PM and DM data bus. Note that the accesses on both
buses do not have to be the same word width. SIMD mode dual-data
accesses can handle combinations of short word and normal word or
extended-precision normal word and long word accesses. For more infor-
mation, see “Mixed Word Width Addressing of Dual Data in SIMD
Mode” on page 5-84.

In Figure 5-23, the explicit access targets the named registers RX and RA,
and the implicit access targets those register’s complementary registers SX
and SA. This case uses a PEx registers with the RX and RA mnemonics. If the
syntax named PEy registers SX and SA as the explicit targets, the processor
would use those registers’ complements RX and RA as the implicit targets.
For more information on complementary registers, see “Secondary Pro-
cessing Element (PEy)” on page 2-37.

For normal word accesses, the processor zero-fills least significant 8 bits of
the data register on loads and truncates these bits on stores to memory.

Figure 5-23 shows the data path for one transfer. For normal word
accesses, the processor accesses normal words sequentially in memory.
Table 5-9 on page 5-58 shows the pattern of SIMD mode normal word
accesses. For more information on arranging data in memory to take
advantage of this access pattern, see “Arranging Data in Memory” on
page 5-100.
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BLOCK 0 (PM) MEMORY BLOCK 1 (DM)
T WORD Y5 WORD Y4 T WORD X5 WORD X4
7] | | 0 | |
@ 1 1 @ 1 1
E WORD Y3 WORD Y2 o WORD X3 WORD X2
2 | | g | |
WORF Y1 WORID YO0 WORF X1 WORID X0
Y A Y A A A A A
y A y \J A\ A\ A\ A\
\ NORMAL WORD ACCESS / \ NORMAL WORD ACCESS /
63-48 47-32 y 31-16 15-0 63-48 47-32 y 31-16 15-0
1 I T T
PM DATA DM DATA WORDIX0
BUS WORD Y1 WORID YO BUS WORD X1
PEX REGISTERS RB RA RY RX
39-24 23-8 7-0 39-24 23-8 70 39-24 23-8 7-0 39-24 23-8 7-0
| |
_ WoRpYo  |%% WORDX0  oxoo
PEY REGISTERS SB SA SY SX
39-24 23-8 7-0 39-24 23-8 7-0 39-24 23-8 7-0 39-24 23-8 7-0
I T
WORID Y1 0X00 WORID X1 0X00

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:

RX = DM(NORMAL WORD X0 ADDRESS), RY = PM(NORMAL WORD Y0 ADDRESS);

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SIMD, NORMAL WORD,
DUAL-DATA TRANSFERS ARE:
DREG = DM(NORMAL WORD ADDRESS);

DREG = PM(NORMAL WORD ADDRESS),
PM(NORMAL WORD ADDRESS) = DREG,

DM(NORMAL WORD ADDRESS) = DREG;

NOTE: DIRECT ADDRESSING IS NOT SUPPORTED FOR DUAL-DATA ACCESSES. DUAL-DATA ACCESSES
CAN BE ACCOMPLISHED BY INDIRECT ADDRESSING USING THE DAG REGISTERS.

Figure 5-23. 32-Bit Normal Word Addressing of Dual Data in SIMD

Mode
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Extended Precision Normal Word Addressing of Single Data

Figure 5-24 displays one possible single data, 40-bit extended-precision
normal word addressed access. For extended-precision normal word
addressing, the processor treats each data bus as a 40-bit extended-preci-
sion normal word lane. The 40-bit value for the extended-precision
normal word access transfers using the most significant 40 bits of the PM
or DM data bus. The processor drives the lower 24 bits of the data buses
with zeros.

In Figure 5-24, the access targets a PEx register in a SISD or SIMD mode
operation; extended-precision normal word single-data access operate the
same in SISD or SIMD mode. This case accesses WORD X0 with syntax that
targets register RX in PEx. The example would target a PEy register if using
the syntax SX.
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BLOCK 0 (PM) MEMORY BLOCK 1 (DM)
T WORD Y3 WORD Y2 T WORD X3 WORD X2
2 | @ :
(7]
E <« WORD Y2 WO?D Yi—> E <~ WORD X2 WOIRD X1—>
a [=]
1 o 1
< «|WORD Y1 I WORD YOI—) < |{WORD X1 | WORD XOI
A A A A A A A A
\i Y Y A\ A\ Y A Y
EXTENDED PRECISION NORMAL
NO ACCESS
\ / \ WORD ACCESS /
63-48 47-32 31-16 15-0 63-48 47-32 vy 31-16 15-0
I
PM DATA DM DATA
WORD X0 0X00 | 0X0000
PEX REGISTERS RB RA RY * RX
39-24 39-24 39-24 39-24 23-8 70

|

PEY REGISTERS ; SX
39-24 23-8 39-24 23-8 7-0 39-24 39-24 23-8 7-0

I
_ _ rpRe e

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(EXTENDED-PRECISION NORMAL WORD X0 ADDRESS);

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR BROADCAST, EXTENDED-PRECISION
NORMAL WORD, SINGLE-DATA TRANSFERS ARE:
UREG = PM(EP NORMAL WORD ADDRESS);
UREG = DM(EP NORMAL WORD ADDRESS);
PM(EP NORMAL WORD ADDRESS) = UREG;
DM(EP NORMAL WORD ADDRESS) = UREG;

Figure 5-24. Extended Precision Normal Word Addressing of Single Data
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Extended Precision Normal Word Addressing of Dual Data in
SISD Mode

Figure 5-25 displays one possible SISD mode, dual data, 40-bit
extended-precision normal word addressed access. For extended-precision
normal word addressing, the processor treats each data bus as a 40-bit
extended-precision normal word lane. The 40-bit values for the
extended-precision normal word accesses transfer using the most signifi-
cant 40 bits of the PM and DM data bus. The processor drives the lower
24 bits of the data buses with zeros. Note that the accesses on both buses
do not have to be the same word width. SISD mode dual-data accesses can
handle any combination of short word, normal word, extended-precision
normal word, or long word accesses. For more information, see “Mixed

Word Width Addressing of Dual Data in SISD Mode” on page 5-82.

In Figure 5-25, the access targets PEx registers in a SISD mode operation.
This case accesses WORD X0 in block 1 and WORD YO0 in block 0 with syntax
that targets registers RX and RY in PEx. The example would target a PEy reg-
isters if using the syntax SX or SY.
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BLOCK 0 (PM) MEMORY BLOCK 1 (DM)
T | WORD Y3 WORD Y2 T WORD X3 WORD X2
o 1 o 1
@ «— WORD Y2 WORD Y1 @ —WORD X2 WORD X1—>
: | : |
2 worbv1 IWORD voI 2 «|worp x1 IWORD xoI
A A A A A A A A
A\ Y A\ w A A\ A \i
EXTENDED PRECISION NORMAL EXTENDED PRECISION NORMAL
WORD ACCESS WORD ACCESS
63-48 4732 y 31-16 15-0 63-48 4732 y 31-16 15-0
1 1
PM DATA WORD Y0 0X00 | 0X0000 DM DATA WORD X0 0X00 | 0X0000
BUS ] ] BUS ] ]
PEX REGISTERS RB RA ¢ RY ‘ RX
39-24 238 70 39-24 238 70 39-24 238 70 39-24 238 70
T T T
WoRDY0 WORD X0
1
PEY REGISTERS sB SA sy sX
39-24 238 70 39-24 238 70 39-24 39-24 238 70

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(EP NORMAL WORD X0 ADDR.), RY = PM(EP NORMAL WORD Y0 ADDR.);

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SISD, EXTENDED PRECISION
NORMAL WORD, DUAL-DATA TRANSFERS ARE:
DREG = PM(EXT. PREC. NORMAL WORD ADDRESS), | DREG = DM(EXT. PREC. NORMAL WORD ADDRESS);
PM(EXT. PREC. NORMAL WORD ADDRESS) = DREG, | DM(EXT. PREC. NORMAL WORD ADDRESS) = DREG;

NOTE: DIRECT ADDRESSING IS NOT SUPPORTED FOR DUAL-DATA ACCESSES. DUAL-DATA ACCESSES
CAN BE ACCOMPLISHED BY INDIRECT ADDRESSING USING THE DAG REGISTERS.

Figure 5-25. Extended-Precision Normal Word Addressing of Dual Data
in SISD Mode
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Extended-Precision Normal Word Addressing of Dual Data in
SIMD Mode

Figure 5-26 displays one possible SIMD mode, dual data, 40-bit
extended-precision normal word addressed access. For extended-precision
normal word addressing, the processor treats each data bus as a 40-bit
extended-precision normal word lane.

Because this word size approaches the limit of the data buses capacity, this
SIMD mode transfer only moves the explicitly addressed locations and
restricts data bus usage. The explicitly addressed (named in the instruc-
tion) 40-bit values transferred over the DM bus must source or sink a PEx
data register, and the explicitly addressed (named in the instruction)
40-bit values transferred over the PM bus must source or sink a PEy data
register; there are no implicit transfers in this mode. The 40-bit values for
the extended-precision normal word accesses transfer using the most sig-
nificant 40 bits of the PM and DM data bus. The processor drives the
lower 24 bits of the data buses with zeros.

The accesses on both buses do not have to be the same word width.
This special case of SIMD mode dual-data accesses can handle any
combination of extended-precision normal word or long word

accesses. For more information, see “Mixed Word Width Address-

ing of Dual Data in SIMD Mode” on page 5-84.

In Figure 5-26, the access targets PEx and PEy registers in a SIMD mode
operation. This case accesses WORD X0 in block 1 with syntax that targets
register RX in PEx and accesses WORD YO in block 0 with syntax that targets
register SX in PEy.
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BLOCK 0 (PM) MEMORY BLOCK 1 (DM)
T IWORD Y3 WORD Y2 T IWORD X3 WORD X2
a ' a '
E <~WORD Y2 WORD Y1— E < WORD X2 WORD X1—
) I S I
<~WORD Y1 WORD YO (—YVOHD X1 : WORD X0 :
L 1 1
Y A Y A A A A A
y A y \J A\ \ i A\ A\
EXTENDED PRECISION NORMAL EXTENDED PRECISION NORMAL
WORD ACCESS WORD ACCESS
63-48 47-32 y 31-16 15-0 63-48 47-32 y 31-16 15-0
T |
PM DATA DM DATA
BUS WCI)RD YO0 0X00| 0X0000 BUS WIORD X0 0X00| 0X0000
PEX REGISTERS RB RA RY RX
39-24 23-8 7-0 39-24 23-8 70 39-24 23-8 7-0 39-24 23-8 7-0
I I
1 1
PEY REGISTERS SB SA SY SX
39-24 23-8 7-0 39-24 23-8 70 39-24 23-8 7-0 39-24 23-8 7-0
I I
1 1

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(EP NORMAL WORD X0 ADDR.), SX = PM(EP NORMAL WORD Y0 ADDR.);

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SIMD, EXTENDED-PRECISION NORMAL WORD,
DUAL-DATA TRANSFERS ARE:
PEY DREG = PM(EP NORMAL WORD ADDRESS), | PEX DREG = DM(EP NORMAL WORD ADDRESS);
PM(EP NORMAL WORD ADDRESS) = PEY DREG, | DM(EP NORMAL WORD ADDRESS) = PEX DREG;

NOTE: DIRECT ADDRESSING IS NOT SUPPORTED FOR DUAL-DATA ACCESSES. DUAL-DATA ACCESSES
CAN BE ACCOMPLISHED BY INDIRECT ADDRESSING USING THE DAG REGISTERS.

Figure 5-26. Extended-Precision Normal Word Addressing of Dual Data
in SIMD Mode
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Long Word Addressing of Single Data

Figure 5-27 displays one possible single data, long word addressed access.
For long word addressing, the processor treats each data bus as a 64-bit
long word lane. The 64-bit value for the long word access transfers using

the full width of the PM or DM data bus.

In Figure 5-27, the access targets a PEx register in a SISD or SIMD mode
operation; long word single-data access operate the same in SISD or
SIMD mode. This case accesses WORD X0 with syntax that explicitly targets
register RX and implicitly targets its neighbor register RY in PEx. The exam-
ple would target PEy registers if using the syntax SX. For more information
on how neighbor registers (listed in Table 5-7 on page 5-49) work, see
“Long Word (64-Bit) Accesses” on page 5-48.
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BLOCK 0 (PM) MEMORY BLOCK 1 (DM)
T WORD Y2 T WORD X2
o ] ] 1 @ ] 1 ]
7] | | | 7] | 1 |
o WORD Y1 u WORD X1
a ] ] 1 a ] 1 ]
a | | | a | I |
< WORD Y0 < WORD X0
] ] 1 ] ] ]
A A \ A A \ A A
Y Y i Y Y y Y \i
\ NO ACCESS / \ LONG WORD ACCESS /
6348 4732  31-16 150 63-48 4732 y 31-16 150
PM DATA DM DATA
PEX REGISTERS RB RA ; RY RX
39-24 238 70 39-24 238 7-0 39-24 238 70 39-24 238 70
T T
WORD )io, 63-32 |0X00, WORD X0,31-0 |0X00
]
PEY REGISTERS sB SA sy sX
39-24 238 70 39-24 238 70 39-24 238 70 39-24 3-8 70

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(LONG WORD X0 ADDRESS);

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SISD OR SIMD, LONG WORD, SINGLE-DATA TRANSFERS ARE:
UREG = PM(LONG WORD ADDRESS);
UREG = DM(LONG WORD ADDRESS);
PM(LONG WORD ADDRESS) = UREG;
DM(LONG WORD ADDRESS) = UREG;

NOTE: DIRECT ADDRESSING IS NOT SUPPORTED FOR DUAL-DATA ACCESSES. DUAL-DATA ACCESSES
CAN BE ACCOMPLISHED BY INDIRECT ADDRESSING USING THE DAG REGISTERS.

Figure 5-27. Long Word Addressing of Single Data
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Long Word Addressing of Dual Data in SISD Mode

Figure 5-28 displays one possible SISD mode, dual data, long word
addressed access. For long word addressing, the processor treats each data
bus as a 64-bit long word lane. The 64-bit values for the long word
accesses transfer using the full width of the PM or DM data bus.

In Figure 5-28, the access targets PEx registers in a SISD mode operation.
This case accesses WORD X0 and WORD Y0 with syntax that explicitly targets
registers RX registers RA and implicitly targets their neighbor registers RY
and RB in PEx. The example would target PEy registers if using the syntax
sX and SA. For more information on how neighbor registers (listed in
Table 5-7 on page 5-49) work, see “Long Word (64-Bit) Accesses” on
page 5-48.

Programs must be careful not to explicitly target neighbor registers in this
case. While the syntax lets programs target these registers, one of the
explicit accesses targets the other access’s implicit target. The processor
resolves this conflict by performing only the access with higher priority.
For more information on the priority order of data register file accesses,
see “Data Register File” on page 2-30.
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MEMORY
BLOCK 0 (PM) o BLOCK 1 (DM)
T WORD Y2 T WORD X2
@ 1 1 1 @ | | |
w 1 1 ] w 1 I ]
[ WORD Y1 o WORD X1
2 ] ] ] 2 ] | ]
[=] [=]
< | | | < | I |
WORD Y0 WORD X0
1 1 1 | 1 |
A A A A A A A A
\ Y \ A \ Y 4 A
\ LONG WORD ACCESS / \ LONG WORD ACCESS /
63-48 47-32 y 31-16 15-0 63-48 47-32 y 31-16 15-0
T T T
PM DATA DM DATA
BUS WOF:D ) | BUS woaln X0
PEX REGISTERS; RB RA { RY RX
39-24 23-8 70 39-24 238 7-0 39-24 23-8 70 39-24 23-8  7-0
T T I |
WORD YIO, 63-32 |ox00 WORD ro, 31-0  |oxo0 WORD X0, 63-32 | 0X0 I WORD X0, 31-0 | 0X00
1 0 1
PEY REGISTERS SB SA sy sX
39-24 23-8 70 39-24 23-8  7-0 39-24 23-8 70 39-24 23-8  7-0

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(LONG WORD X0 ADDRESS), RA = PM(LONG WORD Y0 ADDRESS);

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SISD, LONG WORD, DUAL-DATA TRANSFERS ARE:
DREG = PM(LONG WORD ADDRESS), | DREG = DM(LONG WORD ADDRESS);
PM(LONG WORD ADDRESS) = DREG, | DM(LONG WORD ADDRESS) = DREG;

NOTE: DIRECT ADDRESSING IS NOT SUPPORTED FOR DUAL-DATA ACCESSES. DUAL-DATA ACCESSES
CAN BE ACCOMPLISHED BY INDIRECT ADDRESSING USING THE DAG REGISTERS.

Figure 5-28. Long Word Addressing of Dual Data in SISD Mode

ADSP-21161 SHARC Processor Hardware Reference 5-79



Accessing Memory

Long Word Addressing of Dual Data in SIMD Mode

Figure 5-29 displays one possible SIMD mode, dual data, long word
addressed access targeting internal memory space. For long word address-
ing, the processor treats each data bus as a 64-bit long word lane. The

64-bit values for the long word accesses transfer using the full width of the
PM or DM data bus.

Because this word size approaches the limit of the data buses capacity, this
SIMD mode transfer only moves the explicitly addressed locations and
restricts data bus usage. The explicitly addressed (named in the instruc-
tion) 64-bit values transferred over the DM bus must source or sink a PEx
data register, and the explicitly addressed (named in the instruction)
64-bit values transferred over the PM bus must source or sink a PEy data
register; there are no implicit transfers in this mode.

In Figure 5-29, the access targets PEx and PEy registers in a SIMD mode
operation. This case accesses WORD X0 in block 1 with syntax that targets
register RX and its neighbor register RY in PEx and accesses WORD YO0 in
block 0 with syntax that targets register SX and its neighbor register SY in
PEy. For more information on how neighbor registers (listed in Table 5-7
on page 5-49) work, see “Long Word (64-Bit) Accesses” on page 5-48.

The accesses on both buses do not have to be the same word width.
This special case of SIMD mode dual-data accesses can handle any
combination of extended-precision normal word or long word
accesses. For more information, see “Mixed Word Width Address-
ing of Dual Data in SIMD Mode” on page 5-84.
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Memory

BLOCK 0 (PM) MEMORY BLOCK 1 (DM)
T WORD Y2 T WORD X2
" g
/2]
] WORD Y1 ] WORD X1
E 1 1 L E 1 1 1
a | | | 2 | | |
< | WORDYO < | WORDX0
\ A \ A A A A A
y V y Y Y Y Y Y
\ LONG WORD ACCESS / \ LONG WORD ACCESS /
6348 4732 y 31-16 15-0 6348 4732 y 31-16 15-0
PM DATA I 1 DM DATA I
BUS WORDY0 BUS WORD X0

L

PEX REGISTERS RB RA { RY RX
39-24 23-8 7-0 39-24 23-8 7-0 39-24 23-8 7-0 39-24 23-8 7-0
| |
_ _ b il ol ) i o e
1
PEY REGISTERS SB SA I sy + SX
39-24 23-8 7-0 39-24 23-8 7-0 39-24 23-8 7-0 39-24 23-8 7-0
I |
WORD YIO, 63-32 | 0X00 WORD Y0, 31-0  |0X00
1

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(LONG WORD X0 ADDRESS), SX = PM(LONG WORD Y0 ADDRESS);

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SIMD, LONG WORD, DUAL-DATA TRANSFERS ARE:

PEY DREG = PM(LONG WORD ADDRESS), | PEX DREG = DM(LONG WORD ADDRESS);
PM(LONG WORD ADDRESS) = PEY DREG, | DM(LONG WORD ADDRESS) = PEX DREG;

NOTE: DIRECT ADDRESSING IS NOT SUPPORTED FOR DUAL-DATA ACCESSES. DUAL-DATA ACCESSES
CAN BE ACCOMPLISHED BY INDIRECT ADDRESSING USING THE DAG REGISTERS.

Figure 5-29. Long Word Addressing of Dual Data in SIMD Mode
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Mixed Word Width Addressing of Dual Data in SISD Mode

Figure 5-30 displays an example of a mixed word width, dual data, SISD
mode access. This example shows how the processor transfers a long word
access on the DM bus and transfers a short word access on the PM bus.
The memory architecture permits mixing all other combinations of
dual-data SISD mode short word, normal word, extended-precision nor-
mal word, and long word accesses.

@ In case of conflicting dual access to the data register file, the pro-

cessor only performs the access with higher priority. For more
information on how the processor prioritizes accesses, see “Data
Register File” on page 2-30.
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MEMORY
BLOCK 0 (PM) 0 BLOCK 1 (DM)
T WORD Y11|WORD Y10| WORD Y9 | WORD Y8 T WORD X2
» » | | |
7] » 1 | 1
u WORD Y7 | WORD Y6 | WORD Y5 | WORD Y4 w WORD X1
s z ] ] ]
a a | | |
< WORD Y3 | WORD Y2 | WORD Y1 | WORD Y0 < - WOF;D X0 -
A A A 'y A A A A
Y Y 4 Y Y 4 Y Y
\ LONG WORD ACCESS / \ LONG WORD ACCESS /
63-48 47-32 y 31-16 15-0 63-48 47-32 y 31-16 15-0
PM DATA DM DATA
BUS 0X0000 0X0000 | 0X0000 |WORD YO BUS WORID X0
PEX REGISTERS RB RA ; RY RX
39-24 238 70 39-24 23-8 7-0 39-24 238 7-0 39-24 23-8 70
| T
oxooooT [WORD Y0|0X00 WORD XIO, 63-32 |0X00 WORD )I(O, 31-0 0X00|
PEY REGISTERS SB SA sy SX
39-24 39-24 23-8 7-0 39-24 238 7-0 39-24

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(LONG WORD X0 ADDRESS), RA = PM(SHORT WORD Y0 ADDRESS);

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SISD, MIXED-WORD, DUAL-DATA TRANSFERS ARE:

DREG = PM(SHORT, NORMAL, EP NORMAL, LONG ADD), | DREG = DM(SHORT, NORMAL, EP NORMAL, LONG ADD);
PM(SHORT, NORMAL, EP NORMAL, LONG ADD) = DREG, | DM(SHORT, NORMAL, EP NORMAL, LONG ADD) = DREG;

NOTE: DIRECT ADDRESSING IS NOT SUPPORTED FOR DUAL-DATA ACCESSES. DUAL-DATA ACCESSES
CAN BE ACCOMPLISHED BY INDIRECT ADDRESSING USING THE DAG REGISTERS.

Figure 5-30. Mixed Word Width Addressing of Dual Data in SISD Mode
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Mixed Word Width Addressing of Dual Data in SIMD Mode

Figure 5-31 displays an example of a mixed word width, dual data, SIMD
mode access. This example shows how the processor transfers a long word
access on the DM bus and transfers an extended-precision normal word
access on the PM bus.

@ The memory architecture permits mixing SIMD mode dual data

short word and normal word accesses or extended-precision normal
word and long word accesses. No other combinations of mixed
word dual-data SIMD mode accesses are permissible.
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BLOCK 0 (PM) MEMORY BLOCK 1 (DM)
I WORD Y3 WORD Y2 I WORD X2
a 1 a 1 1 1
w I w | | |
S «<WORD Y2 WORD Y1— S WORD X1
a | a 1 1 1
< I < | | |
<|WORD Y1 ' WORD YOI WORD X0
1 1 1
A A A A 'y A 'y A
4 A 4 Y Y Y Y \
EXTENDED PRECISION NORMAL
\ WORD ACCESS / \ LONG WORD ACCESS /
63-48 4732 y 31-16 15-0 63-48 47-32 y 31-16 150
1
PM DATA DM DATA
BUS WOIRD Y0 | 0X00 | 0X0000 BUS WORD X0
PEX REGISTERS RB RA { RY RX
39-24 238  7-0 39-24 39-24 238 70 39-24 238 70
[ [
PEY REGISTERS 34 + SX
39-24 23-8 7-0 39-24 39-24 23-8 39-24 23-8 7-0
1 |
_ B [

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(LONG WORD X0 ADDRESS), SX = PM(EP NORMAL WORD Y0 ADDRESS);

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SIMD, MIXED-WORD,
DUAL-DATA TRANSFERS ARE:
DREG = PM(ADDRESS), | DREG = DM(ADDRESS);
PM(ADDRESS) = DREG, | DM(ADDRESS) = DREG;

NOTE: DIRECT ADDRESSING IS NOT SUPPORTED FOR DUAL-DATA ACCESSES. DUAL-DATA ACCESSES
CAN BE ACCOMPLISHED BY INDIRECT ADDRESSING USING THE DAG REGISTERS.

Figure 5-31. Mixed Word Width Addressing of Dual Data in SIMD
Mode
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Broadcast Load Access

Figure 5-32 through Figure 5-39 provide examples of broadcast load
accesses for single- and dual-data transfers. These examples show that the
broadcast load’s memory and register access is a hybrid of the correspond-
ing non-broadcast SISD and SIMD mode accesses. The exceptions to this
relation are broadcast load dual-data, extended-precision normal word and
long word accesses. These broadcast accesses differ from their correspond-
ing non-broadcast mode accesses.
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Memory

BLOCK 0 (PM) MEMORY BLOCK 1 (DM)
T 'WORD Y11|WORD Y10| WORD Y9 | WORD Y8 T 'WORD X11|WORD X10] WORD X9 | WORD X8
] ]
E WORD Y7 | WORD Y6 | WORD Y5 | WORD Y4 E WORD X7 | WORD X6 | WORD X5 | WORD X4
[=} [=}
a a
< WORD Y3 | WORD Y2 | WORD Y1 | WORD Y0 < WORD X3 | WORD X2 | WORD X1 | WORD X0
Y A Y A A A A A
y Y y A\ A\ \ i A\ A
\ NO ACCESS / \ SHORT WORD ACCESS /
63-48 47-32 31-16 15-0 63-48 47-32 y 31-16 15-0
PM DATA DM DATA
PEX REGISTERS RB RA RY RX
39-24 23-8 7-0 39-24 23-8 70 39-24 23-8 70 39-24 23-8 7-0

_ _ _ 0X0000t | WORD X0) 000

PEY REGISTERS SB SA sY ; SX
39-24 23-8 7-0 39-24 23-8 7-0 39-24 23-8 7-0 39-24 23-8 7-0

_ _ oo WORD X0 oxao

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(SHORT WORD X0 ADDRESS);

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR BROADCAST, SHORT WORD, SINGLE-DATA TRANSFERS ARE:
UREG = PM(SHORT WORD ADDRESS);
UREG = DM(SHORT WORD ADDRESS);
PM(SHORT WORD ADDRESS) = UREG;
DM(SHORT WORD ADDRESS) = UREG;

Figure 5-32. Short Word Addressing of Single Data in Broadcast Load
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BLOCK 0 (PM) MEMORY BLOCK 1 (DM)
@ [WORD Y11(WORD Y10| WORD Yo | WORD Y @ [WORD X11|WORD X10| WORD X9 | WORD X8
w w
['4 ['4
S | worp v7|worb v6 [ woRrD v [ woRbD va S [worp x7 | worp xe | woRrbD x5 | worbD xa
< <
WORD Y3 | WORD Y2 [ worp Y1 |worp o WORD X3 | WORD x2 | worDp x1 | WoRD xo
A A A A A A A A
\ Y \ v Y v Y Y
\ SHORT WORD ACCESS / \ SHORT WORD ACCESS /
63-48  47-32 y 3116 1590 6348 4732 y 3116 150
PVoa A | 0x0000 | 0X0000 | 0X0000 |WORD YO DMOATA | oxo000 | oxo000 | oxo000 [WORD X0
PEX REGISTERS  RB RA * RY RX
3824 238 790 3924 238 70 3924 238 790 3924 238 70

0X00001 |WORD Y0|oxo0|| | 0X0000t |WORD X0 |oxo00

PEY REGISTERS SB SA { sy ; SX

39-24 23-8 7-0 39-24 23-8 7-0 39-24 23-8 7-0 39-24 23-8 7-0

0X00001 |WORD YO0 | 0x00[ | 0X00001 |[wORD X0 |0X00

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(SHORT WORD X0 ADDRESS), RY = PM(SHORT WORD Y0 ADDRESS);

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR BROADCAST,
SHORT WORD, DUAL-DATA TRANSFERS ARE:
DREG = PM(SHORT WORD ADDRESS), | DREG = DM(SHORT WORD ADDRESS);
PM(SHORT WORD ADDRESS) = DREG, | DM(SHORT WORD ADDRESS) = DREG;

NOTE: DIRECT ADDRESSING IS NOT SUPPORTED FOR DUAL-DATA ACCESSES. DUAL-DATA ACCESSES
CAN BE ACCOMPLISHED BY INDIRECT ADDRESSING USING THE DAG REGISTERS.

Figure 5-33. Short Word Addressing of Dual Data in Broadcast Load
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MEMORY
BLOCK 0 (PM) o BLOCK 1 (DM)
T WORD Y5 WORD Y4 T WORD X5 WORD X4
® l | @ l l
17} 1 1 17 1 1
u WORD Y3 WORD Y2 w WORD X3 WORD X2
o | | a | |
=] 1 1 =] 1 1
< wonID Y1 woaiD Y0 < wonID X1 WOFiD X0
A A A A A A A A
Y \ \ A A 4 Y \
\ NO ACCESS / \ NORMAL WORD ACCESS /
63-48 4732 31-16 15-0 63-48 4732 ¥ 3116 15-0
T
PM DATA DM DATA
PEX REGISTERS RB RA RY # RX
39-24 238 7-0 39-24 238 70 39-24 238 70 39-24 238 7-0
T
|
PEY REGISTERS SB SA sy sX
39-24 238 7-0 39-24 238 7-0 39-24 238 70 39-24 238  7-0
T
T i T T M L

THE ABOVE EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(NORMAL WORD X0 ADDRESS);

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR BROADCAST, NORMAL WORD, SINGLE-DATA TRANSFERS ARE:
UREG = PM(NORMAL WORD ADDRESS);
UREG = DM(NORMAL WORD ADDRESS);
PM(NORMAL WORD ADDRESS) = UREG;
DM(NORMAL WORD ADDRESS) = UREG;

Figure 5-34. Normal Word Addressing of Single Data in Broadcast Load
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BLOCK 0 (PM) MEMORY BLOCK 1 (DM)
T WORD Y5 WORD Y4 T WORD X5 WORD X4
P l l P l l
@ 1 1 o 1 1
g WORD Y3 WORD Y2 g WORD X3 WORD X2
Q | | a | |
) 1 T 2 1 1
WORD V1 WORD Y0 WORD x1 WORD X0
Y Y Y 1 Y Y Y Y
y A Y v Y y v Y
\ NORMAL WORD ACCESS / \ NORMAL WORD ACCESS /
63-48 4732 y 31-16 150 6348 4732 y 3116 150
T T
PMDATA o000 | oxoo00 WORD Y0 DM DATA [ 5x0000 | oxo000 WORD X0
BUS BUS
PEX REGISTERS RB RA ¢ RY ‘ RX
3924 238 790 3924 238 70 3024 238 70 3924 238 790
T T
WORD Y0 |oxoo WORD X0 0X00
PEY REGISTERS sB SA 57 sX
3924 238 70 3924 238 70 3924 | 238 70 3924 | 238 70
T T
_ _ worp Y X worpXe oxeo
1 1

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(NORMAL WORD X0 ADDRESS), RY = PM(NORMAL WORD Y0 ADDRESS);

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR BROADCAST, NORMAL WORD, DUAL-DATA TRANSFERS ARE:
DREG = PM(NORMAL WORD ADDRESS), | DREG = DM(NORMAL WORD ADDRESS);
PM(NORMAL WORD ADDRESS) = DREG, | DM(NORMAL WORD ADDRESS) = DREG;

NOTE: DIRECT ADDRESSING IS NOT SUPPORTED FOR DUAL-DATA ACCESSES. DUAL-DATA ACCESSES
CAN BE ACCOMPLISHED BY INDIRECT ADDRESSING USING THE DAG REGISTERS.

Figure 5-35. Normal Word Addressing of Dual Data in Broadcast Load
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Memory

BLOCK 0 (PM) MEMORY BLOCK 1 (DM)
T WORD Y3 WORD Y2 T WORD X3 WORD X2
(7] ] »
m 1 17 1
E < WORD Y2 WO?D Yi—> E <~ WORD X2 WOIRD X1—>
a [=]
1 o 1
< «|WORD Y1 I WORD YOI—) < |{WORD X1 | WORD XOI
A A A A A A A \
\i Y A\ A\ A\ A\ A y
EXTENDED PRECISION NORMAL
NO ACCESS
\ / \ WORD ACCESS /
63-48 47-32 31-16 15-0 63-48 47-32 vy 31-16 15-0
I
PM DATA DM DATA
WORD X0 0X00 | 0X0000
PEX REGISTERS RB RA RY * RX
39-24 39-24 39-24 39-24 23-8 70

|

PEY REGISTERS ; SX
39-24 23-8 39-24 23-8 7-0 39-24 39-24 23-8 7-0

I
_ _ HpRe e

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(EXTENDED-PRECISION NORMAL WORD X0 ADDRESS);

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR BROADCAST, EXTENDED-PRECISION
NORMAL WORD, SINGLE-DATA TRANSFERS ARE:
UREG = PM(EP NORMAL WORD ADDRESS);
UREG = DM(EP NORMAL WORD ADDRESS);
PM(EP NORMAL WORD ADDRESS) = UREG;
DM(EP NORMAL WORD ADDRESS) = UREG;

Figure 5-36. Extended Precision Normal Word Addressing of Single Data
in Broadcast Load
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MEMORY
BLOCK 0 (PM) ° BLOCK 1 (DM)
T WORD Y3 WORD Y2 T WORD X3 WORD X2
) | 1) !
7] | 7] |
o «WORD Y2 WOI;!D Yi- u < WORD X2 WOI?D X1—
3 . 3 .
< «{worp v1 WORD YO < (—IWOFID X1 | WORD xoI
1 1
A A A A VORD [ A A A
Y Y Y Y Y Y Y Y
EXTENDED PRECISION NORMAL EXTENDED PRECISION NORMAL
WORD ACCESS WORD ACCESS
63-48 a7.32Y 116 15-0 63-48 47-32 y 31-16 15-0
1 1 1
PM DATA DM DATA
BUS WOIRD Yo | 0X00 | 0X0000 BUS WOIRD X0 | 0X00 | 0X0000
PEX REGISTERS RB RA * RY * RX
39-24 238 7-0 39-24 23-8 70 39-24 238 7-0 39-24 238 7-0
| 1 |
WORD Y0 W?RD X0
1 1
PEY REGISTERS SB SA ; sy ; sX
39-24 238 7-0 39-24 23-8 70 39-24 238 7-0 39-24 238 7-0
I I I
T I T 11 pen R
1 1

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(EP NORMAL WORD X0 ADDR.), RY = PM(EP NORMAL WORD Y0 ADDR.);

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR BROADCAST, EXTENDED-PRECISION
NORMAL WORD, DUAL-DATA TRANSFERS ARE:
DREG = PM(EP NORMAL WORD ADDRESS), | DREG = DM(EP NORMAL WORD ADDRESS);
PM(EP NORMAL WORD ADDRESS) = DREG, | DM(EP NORMAL WORD ADDRESS) = DREG;

NOTE: DIRECT ADDRESSING IS NOT SUPPORTED FOR DUAL-DATA ACCESSES. DUAL-DATA ACCESSES
CAN BE ACCOMPLISHED BY INDIRECT ADDRESSING USING THE DAG REGISTERS.

Figure 5-37. Extended Precision Normal Word Addressing of Dual Data
in Broadcast Load
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MEMORY
BLOCK 0 (PM) o BLOCK 1 (DM)
T WORD Y2 T WORD X2
1] | » |
@ ! @ !
© WORD Y1 T WORD X1
o 1 a |
2 I 2 I
WOF:D Yo WOFIRD X0
A A A 'y A A A A
y \ y A A y A A
\ NO ACCESS / \ LONG WORD ACCESS /
63-48 47-32 31-16 15-0 63-48 47-32 y 31-16 15-0
PM DATA DM DATA
BUS BUS WOF}D X0
PEX REGISTERS RB RA * RY # RX
39-24 23-8 39-24 39-24 23-8 70 39-24 238 7-0
T T
_ woro X, ss52_[oxoo] | [ woroxa 510 [oxo
PEY REGISTERS sy SX
39-24 23-8 7-0 39-24 39-24 23-8 70 39-24 238 7-0
| I
_ WORD )io, 63-32  |0X00 WORD i(o, 31-0 |oxo0

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(LONG WORD X0 ADDRESS);

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR BROADCAST, LONG WORD, SINGLE-DATA TRANSFERS ARE:
UREG = PM(LONG WORD ADDRESS);
UREG = DM(LONG WORD ADDRESS);

PM(LONG WORD ADDRESS) = UREG;
DM(LONG WORD ADDRESS) = UREG;

Figure 5-38. Long Word Addressing of Single Data in Broadcast Load
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MEMORY
BLOCK 0 (PM) ° BLOCK 1 (DM)
T WORD Y2 T WORD X2
@ ] ] ] @ ] ] ]
w ] | | w 1 1 1
o WORD Y1 [ WORD X1
=] ] ] ] =] ] ] ]
< 1 1 1 < 1 ! !
WORD Y0 WORD X0
1 1 1 ] ] ]
[} A [} A [} A [} )
y Y Y A Y A Y Y
\ LONG WORD ACCESS / \ LONG WORD ACCESS /
63-48 47-32 y 31-16 150 63-48 47-32 y 31-16 15-0
I T T
PM DATA DM DATA
BUS | worin Yo BUS WOFlID X0
PEX REGISTERS RB RA * RY ¢ RX
39-24 23-8 70 39-24 238 7-0 39-24 238 70 39-24 238 70
T T I I
WORD vlo, 63-32  |0X00 WORD ro, 31-0 |0X00|l| WORD PO B WORD X0, 310 0x00
PEY REGISTERS SB SA sy SX
39-24 23-8 70 39-24 238 7-0 39-24 23-8  7-0 39-24 23-8 70
I I [ |
WORD ¥0,63.32 | 0X00 WORD ¥0,31-0_[0X00( | WORD X0, 63-32 | 0X00 WORD X0, 31-0  [oxo0
1 1

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(LONG WORD X0 ADDRESS), RA = PM(LONG WORD Y0 ADDRESS);

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR BROADCAST, LONG WORD, DUAL-DATA TRANSFERS ARE:

DREG = PM(LONG WORD ADDRESS), | DREG = DM(LONG WORD ADDRESS);
PM(LONG WORD ADDRESS) = DREG, | DM(LONG WORD ADDRESS) = DREG;

NOTE: DIRECT ADDRESSING IS NOT SUPPORTED FOR DUAL-DATA ACCESSES. DUAL-DATA ACCESSES
CAN BE ACCOMPLISHED BY INDIRECT ADDRESSING USING THE DAG REGISTERS.

Figure 5-39. Long Word Addressing of Dual Data in Broadcast Load
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Shadow Write FIFO Considerations in SIMD Mode

The shadow write FIFOs is located between the internal memory array of
the ADSP-21161 and core and the IOP busses that access the memory.

When performing SIMD reads that cross long word address boundaries
and the data read resides in the shadow write FIFO, the read in SIMD
mode causes unpredictable results for explicit accesses of odd normal word
addresses in internal memory. The implicit part of this SIMD mode trans-

fer incorrectly accesses the previous sequential even address when the data
is in the shadow write FIFO.

When the read data resides in internal memory, a SIMD mode explicit
access to normal word address 0x40001 results in an implicit access to the
next sequential even address value. As shown in Table 5-11, a SIMD
mode explicit access to normal word address 0x40001 result in an implicit
access to normal word address 0x40002.

Table 5-11. Data Resides In Internal Memory

Explicit “R0” RO=dm(I0,MO0); Explicit “S0” S0=dm(10,MO0);
Explicit RO SO RO SO
Address (I0)
0x40001 32-bit word at 32-bit word at 32-bit word at 32-bit word at
0x40001 0x40002 0x40002 0x40001

Table 5-12 illustrates operation when the previously written data still
resides in the shadow write FIFO. For example, from a previous memory
write instruction. A SIMD mode explicit access to normal word address
0x40001 results in an implicit access to normal word address 0x40000 if
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the reading of the data from 0x40001 occurs while the data is still in the
shadow write FIFO. This access type results in an implicit access to the

next sequential even address value.

Table 5-12. Data Resides In Shadow Write FIFO

Explicit “R0” RO=dm(10,M0);

Explicit “S0” S0=dm(I0,M0);

Explicit
Address (I0)

RO

SO

RO

SO

0x40001

32-bit word at
0x40001

32-bit word at
0x40000

32-bit word at
0x40000

32-bit word at
0x40001

To better demonstrate what results if the read data is in the shadow write
FIFO versus internal memory, Table 5-13 shows the failing cases for a
SIMD shadow aligned and non-aligned access when a SIMD read imme-

diately follows a SIMD write.

Table 5-13. SIMD Write - SIMD Read Illegal Cases

Address of Immediate Read after | Result Resultant Register Address

Write Data in | Write Contents

Shadow Write

FIFO

0x50001" r0=dm(0x50000) Incorrect r0=(0x50002), s0=(0x50001)
r0=dm(0x50001) Correct r0=(0x50001), s0=(0x50002)
r0=dm(0x50002) Incorrect r0=(0x50002)2, s0=(0x50003)

0x50002" r0=dm(0x50001) Incorrect 10=(0x50001), s0=(0x50002)*
r0=dm(0x50002) Correct r0=(0x50002), s0=(0x50003)
r0=dm(0x50003) Incorrect r0=(0x50003), s0=(0x50002)

0xA0002 3 r0=dm(0xA0000) Incorrect r0=(0xA0004), s0=(0xA0002)
r0=dm(0xA0001) Correct r0=(0xA0001), s0=(0xA0003)
r0=dm(0xA0002) Correct r0=(0xA0002), s0=(0xA0004)
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Table 5-13. SIMD Wrrite - SIMD Read Illegal Cases (Cont'd)

Address of Immediate Read after | Result Resultant Register Address

Write Data in | Write Contents

Shadow Write

FIFO
r0=dm(0xA0003) Correct r0=(0xA0003), s0=(0xA0005)
r0=dm(0xA0004) Incorrect 10=(0xA0004)?, s0=(0xA0006)

0xA00033 0=dm(0xA0001) Incorrect 10=(0xA0005), s0=(0xA0003)
r0=dm(0xA0002) Correct r0=(0xA0002), s0=(0xA0004)
r0=dm(0xA0003) Correct r0=(0xA0003), s0=(0xA0005)2
r0=dm(0xA0004) Correct r0=(0xA0004), s0=(0xA0006)
r0=dm(0xA0005) Incorrect r0=(0xA0005), s0=(0xA0007)

0xA00043 r0=dm(0xA0002) Incorrect r0=(0xA0002), s0=(0xA0004)2
r0=dm(0xA0003) Correct r0=(0xA0003), s0=(0xA0005)
r0=dm(0xA0004) Correct r0=(0xA0004), s0=(0xA0006)
r0=dm(0xA0005) Correct r0=(0xA0005), s0=(0xA0007)
r0=dm(0xA0006) Incorrect r0=(0xA0006)?, s0=(0xA0004)

0xA00053 r0=dm(0xA0003) Incorrect r0=(0xA0003), s0=(0xA0005)2
r0=dm(0xA0004) Correct r0=(0xA0004), s0=(0xA0006)
r0=dm(0xA0005) Correct r0=(0xA0005), s0=(0xA0007)
r0=dm(0xA0006) Correct r0=(0xA0006), s0=(0xA0008)
r0=dm(0xA0007) Incorrect r0=(0xA0007), s0=(0xA0005)

0x28001 0=dm(0x50000) Correct r0=(0x50000), s0=(0x50001)
0=dm(0x50001) Incorrect 10=(0x50001), s0=(0x50002)2
r0=dm(0x50002) Correct r0=(0x50002), s0=(0x50003)
r0=dm(0x50003) Incorrect r0=(0x50003), s0=(0x50002)
r0=dm(0x50004) Correct r0=(0x50004), s0=(0x50005)

0x28001 0=dm(0xA0001) Correct r0=(0xA0001), s0=(0xA0003)
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Table 5-13. SIMD Write - SIMD Read Illegal Cases (Cont'd)

Address of Immediate Read after | Result Resultant Register Address

Write Data in | Write Contents

Shadow Write

FIFO
r0=dm(0xA0002) Incorrect r0=(0xA0002), s0=(0xA0004)2
r0=dm(0xA0003) Incorrect r0=(0xA0003), s0=(0xA0005)2
r0=dm(0xA0004) Correct r0=(0xA0004), s0=(0xA0006)
r0=dm(0xA0005) Correct r0=(0xA0005), s0=(0xA0007)
r0=dm(0xA0006) Incorrect r0=(0xA0006), s0=(0xA0004)
r0=dm(0xA0007) Incorrect r0=(0xA0007), s0=(0xA0005)
r0=dm(0xA0008) Correct r0=(0xA0008), s0=(0xA000A)

0x50002 0=dm(0x28000) Correct r0=(0x50000), r1=(0x50001)
r0=dm(0x28001) Correct r0=(0x50002), r1=(0x50003)
r0=dm(0x28002) Correct r0=(0x50004), r1=(0x50005)

0x50003 r0=dm(0x28000) Correct r0=(0x50000), r1=(0x50001)
r0=dm(0x28001) Incorrect r0=(0x50004), r1=(0x50003)
r0=dm(0x28002) Incorrect 1‘0:(0X50004)2, r1=(0x50005)
r0=dm(0x28003) Correct r0=(0x50006), r1=(0x50007)

0x50002 0=dm(0xA0001) Correct r0=(0xA0001), s0=(0xA0003)
r0=dm(0xA0002) Incorrect r0=(0xA0002), s0=(0xA0004)2
r0=dm(0xA0003) Incorrect r0=(0xA0003), s0=(0xA0005)2
r0=dm(0xA0004) Correct r0=(0xA0004), s0=(0xA0006)
r0=dm(0xA0005) Correct r0=(0xA0005), s0=(0xA0007)
r0=dm(0xA0006) Incorrect r0=(0xA0006), s0=(0xA0004)
r0=dm(0xA0007) Incorrect r0=(0xA0007), s0=(0xA0005)
r0=dm(0xA0008) Correct r0=(0xA0008), s0=(0xA000A)

0xA0004 r0=dm(0x28000) Correct r0=(0x50000), r1=(0x50001)

5-98

ADSP-21161 SHARC Processor Hardware Reference




Memory

Table 5-13. SIMD Write - SIMD Read Illegal Cases (Contd)

Address of Immediate Read after | Result Resultant Register Address
Write Data in Write Contents
Shadow Write
FIFO
r0=dm(0x28001) Correct r0=(0x50002), r1=(0x50003)
r0=dm(0x28002) Correct r0=(0x50004), r1=(0x50005)
0xA0006 r0=dm(0x28000) Correct r0=(0x50000), r1=(0x50001)
r0=dm(0x28001) Incorrect rO:(0x50002)4, r1=(0x50003)
r0=dm(0x28002) Incorrect r0=(0x50004)2, r1=(0x50005)
r0=dm(0x28003) Correct r0=(0x50006), r1=(0x50007)
0xA0004 r0=dm(0x50000) Correct r0=(0x50000), s0=(0x50001)
r0=dm(0x50001) Incorrect r0=(0x50001), s0=(0x50002)2
r0=dm(0x50002) Correct r0=(0x50002), s0=(0x50003)
r0=dm(0x50003) Incorrect r0=(0x50003), s0=(0x50002)4
r0=dm(0x50004) Correct r0=(0x50004), s0=(0x50005)
1 Normal word accesses
2 Old data from memory is accessed instead of new data in Shadow Write FIFO
3 Short word accesses
4 PEx and PEy data is partly from shadow and partly from memory

@ If the new written data resides in shadow write FIFO, then for nor-

mal and short word SIMD accesses, a write access to an even
address followed by a read access to the adjacent (higher or lower)
odd address results in incorrect SIMD access operation. Similarly, a
write access to an odd address followed by a read access to the adja-
cent (higher or lower) even address results in incorrect SIMD
access operation.
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To prevent unexpected SIMD read results when a write is followed by a
read from the same long word boundary addresses, two options are recom-
mended. These two suggestions are independent of one another and can

be used to work around the SIMD shadow write FIFO.

* Align all variables and arrays in memory to long word address
boundaries using the .ALIGN assembler directive. Do not explicitly
access odd normal word addresses or non-long word boundary
aligned short word addresses in SIMD mode. Note that for pro-
gram generated addresses which are odd, you cannot use the .ALIGN
workaround. For example, this workaround cannot be used for
indirect addressing using the index or pointer DAG registers.

OR

* Include two NOPs or non-memory access instructions to clear the
shadow write FIFO.

Arranging Data in Memory

Each processor’s access to internal memory gets data from 4-columns
(long, word) or 3-columns (instruction or extended-precision normal
word), 2-column (normal word), or 1-column (short word) memory loca-
tion. For more information on how the processor accesses 4- or 3-column
data, see “Memory Organization and Word Size” on page 5-25.

To take advantage of the processor’s data accesses to 4- and 3-column
locations, programs must adjust the interleaving of data into memory
locations to accommodate the memory access mode.
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The following guidelines provide an overview of how programs should
interleave data in memory locations. For more information and examples,
see the ADSP-21160 SHARC DSP Instruction Set Reference:

* Programs can use odd or even modify values (1, 2, 3, ...) to step
through a buffer in single-or dual-data, SISD or Broadcast load
mode regardless of the data word size (long word, extended-preci-
sion normal word, normal word, or short word).

e Programs should use multiple of 4 modify values (4, 8, 12, ...) to
step through a buffer of short word data in single-or dual-data,
SIMD mode. Programs must step through a buffer twice, once for
addressing even short word addresses and once for addressing odd
short word addresses.

* Programs should use multiple of 2 modify values (2, 4, 6, ...) to
step through a buffer of normal word data in single- or dual-data

SIMD mode.

e Programs can use odd or even modify values (1, 2, 3, ...) to step
through a buffer of long word or extended-precision normal word
data in single- or dual-data, SIMD mode.

Executing Instructions From External
Memory

The ADSP-21161 supports the execution of 48-bit wide program instruc-
tions from external memory devices of various widths. The processor can

transparently pack and execute 8-bit, 16-bit or 32-bit external memory or
execute 48-bit non-packed instructions. This requires that instructions be
packed into external memory in a way that differs from the normal pack-

ing modes that exist for DMA accesses or host accesses.

ADSP-21161 SHARC Processor Hardware Reference 5-101



Executing Instructions From External Memory

This automatic instruction packing is performed only when the Program
Sequencer initiates an external access to fetch an instruction with one of
four instruction packing modes enabled in the SYSCON register: 8- to

48-bit, 16- to 48-bit, 32- to 48-bit or 48- to 48-bit packing.

Note that the processor only supports program execution from
external memory bank 0.

The default packing mode the ADSP-21161 processor is 32- to 48-bit
packing. Packed instruction execution for 8-, 16-, 32-, or 48-bit wide
external memory is also supported and controlled by the 1PACK[1:0] bits of
the SYSCON register. Table 5-14 summarizes the packing mode configura-
tions controlled by 1PACK[1:0] bits.

There is a no packing 48-bit bus width mode available on the processor
which assumes the EPD bus is 48 bits wide. This full instruction width
execution from external memory is made possible by multiplexing 16 link
port pins with DATA[15:0] enabling the program execution to run at
full-rate. These additional 16 data lines should only be enabled when the
link ports are not used. Data lines DATA[15:8] multiplex with L1DAT[7:0]
and data lines DATA[7:0] multiplex with LODAT[7:0]. Set the IPACK bits
[1:0] of the SYSCON register to 01 in order to enable DATA[15:0] pins for a
48-bit wide external bus.

There are four boot and one no boot modes available on the processor. In
the no-boot mode, the processor fetches instructions using a 32- to 48-bit
packing. In a boot mode, the packing mode can be changed by writing the
new execution packing mode to the IPACK bits before a fetch from external
memory occurs. A host can write the new values into the processor or the
software loader kernel can change the values during booting.
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Memory

IPACK1 IPACKO Packing Mode Description

0 0 32- to 48-bit packed instruction execution

0 1 Full 48-bit instruction execution / No-Pack mode
(DATA[15:0] enabled) with unused L1IDAT([7:0] and
LODAT([7:0].

1 0 16- to 48-bit packed instruction execution

1 1 8- to 48-bit packed instruction execution

48-bit Instruction Fetch
(No Packing)

| Extra Data Lines DATA[15-0]

L1DATA[7:0] | LODATA[7:0]
DATA 15-8| DATA 7-0
«—— DATA 47-16 ——><— DATA 15-0 >
47 40439 32131 24123 1615 8§7 :
| | < ;
| | ! PROM |
| | oo |
| | | |
| | 8-bit Packed DMA Data
! ! 8-bit Pcked Instructipn Execution
| < | o
| | 16-bit Packed DMA Datay
! 16-bjt Packed Instfuction Execulion
| | | |
| | | |
| Float or Fixed, D31-DO DMA |
! < 32-bit Packed Instruction : >
|
|
I
|
|
|

: Are Only Accessible If Link
| Ports Are Disabled. Enabled
| by setting IPACK [1:0] to the
I no instruction pack mode in
the SYSCON register

Figure 5-40. ADSP-21161 External Data Alignment Options
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When writing to bits 30 and 31(IPACK[1:01) in the SYSCON register to
enable the packed instruction mode, delay the instruction fetch from
external memory by two instructions. This can be done by inserting two
NOPs after a write to SYSCON register or by following the execution sequence
shown in the code segment.

ext_isr_tabl_seg_dmalO:
jump int_codeaddr (db);
ustatx = 0x80000000 ; /* change packing from 32-48 to 16-48 */
dm(syscon) = ustatx;
int_codeaddr:
jump ext_codeaddr (db);
ustatx = new_wait_value;
dm(WAIT) = ustatx;

The following tables show the addresses for instructions packed in two,
three or six consecutive locations in external memory:

e “48- to 48-Bit External Instruction Packing” on page 5-104
e “32- to 48-Bit External Instruction Packing” on page 5-105
e “16- to 48-Bit External Instruction Packing” on page 5-106
* “8- to 48-Bit External Instruction Packing” on page 5-107

For more information on instruction packing in external memory, see the

VisualDSP++ User’s Guide for ADSP-21xxx Family DSPs.

Table 5-15. 48- to 48-Bit External Instruction Packing

ADDRESS DATA[47:0]
0x200000 Instr0[47:0]
0x200001 Instr1[47:0]
0x200002 Instr2[47:0]
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Table 5-15. 48- to 48-Bit External Instruction Packing (Cont’d)

ADDRESS DATA[47:0]
0x200003 Instr3[47:0]
0x200004 | ....... ..

For 48- to 48-bit full instruction width packing, the processor stores one
instruction in every 48-bit word memory location. In this packing mode,
no address translation is performed by the program sequencer. Instruc-
tions are executed from SDRAM at the core clock rate. By enabling
IPACK[1:0], the link port data pins L1DAT[7:0] and LODAT[7:0] are acti-
vated as DATA[15:01].

Table 5-16. 32- to 48-Bit External Instruction Packing

ADDRESS DATA[47: 2] DATA[31:16]
0x200000 Instr0[47:16]

0x200001 Instr0[{15:0]
0x200002 Instr1[47:16]

0x200003 Instr1{15:0]
0x200004 |.........

For 32- to 48-bit instruction packing, the processor stores an instruction
in two consecutive memory locations. In this packing mode, the first 32
bits of the 48-bit instruction are stored in an even location and the lower
16 bits of the 48-bit opcode are stored in the adjacent odd location in
memory. The program sequencer automatically generates the correct
external addresses based on the IPACK bits in the SYSCON register. The pro-
gram sequencer generates addresses in groups of two physical locations.
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To generate a corresponding address in external memory for the second
part of the 48-bit instruction, the processor increments the internal logical
address of the previous access by 1.

Table 5-17. 16- to 48-Bit External Instruction Packing

ADDRESS DATA[31:16]
0x200000 Instr0[47:32]
0x200001 InstrO[31:16]
0x200002 Instr0[15:0]

0x200003 Unused Memory Space
0x200004 Instr1[47:32]
0x200005 Instr1[31:16]
0x200006 Instr1{15:0]

0x200007 Unused Memory Space

Similarly, for 16- to 48-bit instruction packing, the first 16 bits are stored
at an even address and the remaining 16 bit segments are stored in consec-
utive locations. The program sequencer generates addresses in groups of
four physical locations. For the remaining accesses, the previous internal
logical address is incremented by 1. However, this leaves an unused 16-bit
location after every three 16-bit valid instruction segments in the external
memory. For example, the three 16 bit segments may be placed at
0x0200000, 0x0200001 and 0x0200002 respectively. The next instruc-
tion sixteen bit segments should be placed from address 0x200004 to
0x200007 and so on.
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Address DATA[23:16]
0x200000 Instr0[47:40]
0x200001 Instr0[39:32]
0x200002 Instr0[31:24]
0x200003 Instr0[23:16]
0x200004 Instr0[15:8]

0x200005 Instr0[7:0]

0x200006 Unused Memory Space
0x200007 Unused Memory Space
0x200008 Instr1[47:40]
0x200009 Instr1[39:32]
0x20000A Instr1[31:24]
0x20000B Instr1{23:16]
0x20000C Instr1[15:8]
0x20000D Instr1[7:0]

0x20000E Unused Memory Space
0x20000F Unused Memory Space

Memory

For 8- to 48-bit instruction packing, the first 8 bits are stored at an even
address and the remaining 8-bit segments are stored in consecutive loca-
tions. The program sequencer generate addresses in groups of eight

physical locations. For the remaining accesses, the previous internal logical
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address is incremented by 1. However, this leaves two unused 8-bit loca-
tions after every six 8-bit internal logical segments in the external memory.
For example, the six 8-bit segments may be placed at 0x0200000,
0x0200001, 0x0200002, 0x0200003, 0x0200004 and 0x0200005 respec-
tively. The next instruction eight bit segments should be placed from
address 0x200008 to 0x20000D and so on.

In 32- to 48-bit packing mode, each access of external memory to fetch an
instruction translates into two accesses to successive locations. In 16- to
48-bit packing mode, each access of external memory to fetch an instruc-
tion translates into three accesses to successive locations. In 8- to 48-bit
packing mode, each access of external memory to fetch an instruction
translates into six accesses to successive locations.

The processor core speed for instruction execution is affected by the type
of external memory (SDRAM or non-SDRAM) and external memory
width.

* For packed execution modes of 32- to 48-bit, 16- to 48-bit and 8-
to 48-bit, with the SDCKR bit in the SDCTL register set (=1) and the
program executing from SDRAM, the core instruction rate is 2, 3
or 6 times slower than executing from internal memory.

e When SDCKR=0, the core instruction rate is 4, 6 or 12 times slower.
If the program is executing from SRAM or FLASH with a
CLKIN-core clock ratio of 2:1, the core speed is reduced by the
number of waitstates and a factor of 4, 6 or 12.

The effect of external memory accesses on core speed is shown in

Table 5-19.
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Table 5-19. External Memory Width Versus Core Speeds

External SDRAM Non SDRAM

Memory (FLASH, SRAM, SBSRAM)

Width SDCKR = 1 SDCKR = 0 for CLKIN-core clock ratio of 2:1
8-bit Core Speed + 6 | Core Speed + 12 | Core Speed + 12 x number of waitstates
16-bit Core Speed + 3 | Core Speed + 6 Core Speed + 6 x number of waitstates
32-bit Core Speed + 2 | Core Speed + 4 Core Speed + 4 x number of waitstates
48-bit Core Speed Core Speed + 2 Core Speed + 2 x number of waitstates

In summary, instruction access to external memory translate to one (full
48-bit data bus mode), two, three, or six accesses to successive locations
depending on the instruction packing mode selected in bits 30 and 31 in
the SYSCON register.

For 16- to 48-bit packing, one external address space (two bytes) is unused
for every single instruction. Similarly, for 8- to 48-bit packing two exter-
nal address spaces (two bytes) are unused for every single instruction. For
32- to 48-bit packing, every external address contains valid data. The next
sections examine the addressing schemes and unused addresses for all three
packing mode cases.

32- to 48-Bit Packing Address Generation Scheme

To generate a corresponding address in external memory for the first part
of the instruction, the processor left-shifts the lower bits [19:0] to generate

[20:1] bits (ADDR20-0)in external memory, while the processor leaves bits
[23:21] unaltered.

ADDRLO] is O for the first access and 1 for the second in the case of operat-
ing in 32- to 48-bit packing mode. In this way, internal address 0x200000
on the PM address bus aligns with the beginning of external memory at
address 0x200000.
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Table 5-20. Address Generation Scheme for 32- to 48-bit Packing1

Segment PM ADDR Bus External Address - ADDR23-0
Seg 1 0x0200000 0x0200000/1
0x0200001 0x0200002/3
0x0200002 0x0200004/5
0x02FFFFF 0x03FFFFE/F
Seg 2 0x0400000 0x0400000/1
0x0400001 0x0400002/3
0x0400002 0x0400004/5
0x04FFFFF 0x05FFFFE/F
Seg 3 0x0600000 0x0600000/1
0x0600001 0x0600002/3
0x0600002 0x0600004/5
0x06FFFFF 0x07FFFFE/F

1 Note that segmented internal address ranges allows continuous addresses in external memory
for 48- to 32-bit packing.

Total Program Size (32- to 48-Bit Packing)

Total external memory available is 14 Mwords (non-SDRAM) and 62
Mwords (SDRAM). Given that one instruction takes two external mem-
ory locations, the external program memory is 7 Mwords non-SDRAM
space and 31 Mwords SDRAM space. This scheme limits the size of the
contiguous program segment (internal) to 1 Mword. There are seven of
these segments in bank 0 non-SDRAM space and 30 segments in bank 0
SDRAM space. See Table 5-22 on page 5-112 for a comparison of total
program sizes based on different packing modes.
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16- to 48-Bit Packing Address Generation Scheme

For a 16- to 48-bit packing the lower [18:0] bits of the address are left

shifted by two positions to generate [20:2] bits of ADDR (address in external
memory) while bits [23:21] are unaltered. ADDR1-0 is 00 for the first access
and 01 for the next access and 10 for the third access.

Table 5-21. Address Generation Scheme for 16- to 48-Bit Packing

Segment PM ADDR Bus External Address - ADDR23-0
Seg 1 0x0200000 0x0200000/1/2
0x0200001 0x0200004/5/6
0x0200002 0x0200008/9/A
0x027FFFF 0x03FFFFC/D/E
Seg 2 0x0400000 0x0400000/1/2
0x0400001 0x0400004/5/6
0x0400002 0x0400008/9/A
0x047FFFF 0x05FFFFC/D/E
Seg 3 0x0600000 0x0600000/1/2
0x0600001 0x0600004/5/6
0x0600002 0x0600008/9/A
0x067FFFF 0x07FFFFC/D/E

Total Program Size (16- to 48-Bit Packing)

Total external memory available is 14 Mwords (non-SDRAM) and 62

Mwords (SDRAM). Given that one instruction takes four external mem-
ory locations, the external program memory is 3.5 Mwords non-SDRAM
space and 15.5 Mwords SDRAM space. This scheme limits the size of the
contiguous program segment (internal) to 0.5M. There are seven of these
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segments in bank 0 non-SDRAM space and 30 segments in bank 0
SDRAM space. See Table 5-23 on page 5-113 for a comparison of total

program sizes based on different packing modes.

8- to 48-Bit Packing Address Generation Scheme

Similarly, for a 8- to 48-bit packing the lower [17:0] bits of the address are
left shifted by three positions to generate [20:3] bits of ADDR while bits

[23:21] are unaltered. This way internal address 0x200000 aligns with the
beginning of external memory at 0x200000. However, this sort of execu-
tion packing gives variable maximum program lengths in external memory

for different packing.

Table 5-22. Address Generation Scheme for 8- to 48-Bit Packing

Segment PM ADDR Bus External Address - ADDR23-0
Seg 1 0x0200000 0x0200000/1/2/3/4/5
0x0200001 0x0200008/9/A/B/C/D
0x0200002 0x0200010/1/2/3/4/5
0x023FFFF 0x03FFFF8/9/A/B/C/D
Seg 2 0x0400000 0x0400000/1/2/3/4/5
0x0400001 0x0400008/9/A/B/C/D
0x0400002 0x0400010/1/2/3/4/5
0x043FFFF 0x05FFFF8/9/A/B/C/D
Seg 3 0x0600000 0x0600000/1/2/3/4/5
0x0600001 0x0600008/9/A/B/C/D
0x0600002 0x0600010/1/2/3/4/5
0x063FFFF 0x07FFFF8/9/A/B/C/D
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Total Program Size (8- to 48-Bit Packing)

Total external memory available is 14 Mwords (non-SDRAM) and 62
Mwords (SDRAM). Given that one instruction takes eight external mem-
ory locations, the external program memory is 1.75 Mwords non-SDRAM
space and 7.75 Mwords SDRAM space. This scheme limits the size of the
contiguous program segment (internal) to 0.25 Mwords. There are seven
of these segments in bank 0 non-SDRAM space and 30 segments in bank
0 SDRAM space.

No Packing (48- to 48-Bit) Address Generation
Scheme

In no-packing 48- to 48-bit mode, execution at full-rate is supported and
the size of the external program memory can be 14 Mwords non-SDRAM
space or 62 Mwords SDRAM space. No packing is performed for data

accesses to external memory.

Table 5-23. Total Program Size Comparison

48- to 48-bit 32- to 48-bit 16- to 48-bit 8- to 48-bit
(Mwords) (Mwords) (Mwords) (Mwords)
SRAM 14 7 3.5 1.75
SDRAM 62 31.34 15.67 7.83
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6 1/0 PROCESSOR

The processor’s I/O processor manages Direct Memory Accessing (DMA)
of processor memory through the external, SPI, link, and serial ports.
Each DMA operation transfers an entire block of data. By managing
DMA, the I/O processor lets programs move data as a background task
while using the processor core for other processor operations. The I/0
processor’s architecture supports a number of DMA operations. These
operations include the following transfer types:

Internal memory <> external memory or external peripherals
* Internal memory <> internal memory of other processors
* Internal memory <> host processor
* Internal memory <> serial port I/O
* Internal memory <> link port I/O
* Internal memory <> SPI I/O
* External memory <> external peripherals

This chapter describes the I/O processor and how it controls external port,
link port, SPI port, and serial port operations.

DMA transfers between internal memory and external memory, multipro-
cessor memory, or a host use the processor’s external port. For these types
of transfers, a program provides the DMA controller with the internal

memory buffer size and address, the address modifier, and the direction of
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transfer. After setup, the DMA transfers begin when the program enables
the channel and continues until the I/O processor transfers the entire
buffer to or from processor memory.

Similarly, DMA transfers between internal memory and link, serial, or SPI
port have DMA parameters. When the I/O processor performs DMA
between internal memory and one of these ports, the program sets up the
parameters, and the I/O uses the port instead of the external bus.

The direction (receive or transmit) of the I/O port determines the direc-
tion of data transfer. When the port receives data, the I/O processor
automatically transfers the data to internal memory. When the port needs
to transmit a word, the I/O processor automatically fetches the data from
internal memory.

The I/0 processor also lets the processor system perform DMA transfers
between an external device and external memory. This external to external
transfer only uses the external port and I/O processor. External devices
can control external port DMA transfers in two ways. If the external
device can handle bus mastership, the external device master reads or
writes to DMA buffers on the processor. External devices also can assert a
DMA Request input (DMARX) to request service.

To further minimize loading on the processor core, the I/O processor sup-
ports chained DMA operations. When using chained DMA, a program
initiates a DMA transfer to automatically set up and start the next DMA
transfer after the current one completes.

External bus packing and unpacking of 16-, 32-, 48-, or 64- bit words in
internal memory is performed during DMA transfers from either 8-, 16-,
or 32- bit wide external memory. Fourteen channels of DMA are available
on the ADSP-21161; two channels are shared between the SPI interface
and the link ports, eight channels are available via the serial ports, and
four channels are available via the processor's external port for host pro-
cessor, other ADSP-21161s, memory, or I/O transfers. Asynchronous
off-chip peripherals can control two DMA channels using DMA
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/0O Processor

Request/Grant lines (DMAR1 -2, DMAGL-2). Other DMA features include
interrupt generation upon completion of DMA transfers and DMA chain-
ing for automatic linked DMA transfers.

For information on connecting external devices to the external
port, link ports, SPI port, or serial ports, see “External Port” on
page 7-1, “Link Ports” on page 9-1, “Serial Peripheral Interface
(SPI)” on page 11-1 or “Serial Ports” on page 10-1.

Figure 6-1 shows the processor’s I/O processor, related ports, and buses.
Figure 6-5 on page 6-23 shows more detail on DMA channel data paths.

Core

Addr

Internal Memory

Data

Addr__Data

Processor 4

PM Addr

A

F] I

( External \

Port

DM Addr

Addr (24-bit)

PM Data
DM Data

/0 Address 18
Bus (IOA)

DMA Controller
Internal Address
Generator

Ext. Port  4g|
644 1/0 Data Data Bus
Bus (I0D) (EPD)

Data (32:bit)

Serial Port Buffer FIFOs
(2 deep x 32-bits)

32

\

Ext. Port
Addr Bus
(EPA)

Slave Write FIFO
(Async writes 4-deep)

\ | (Sync writes 2-deep) )/
! Serial Ports (4) I

-

Link Port Buffer FIFOs
(2 deep x 48-bits)

SPI Port Buffer FIFOs
(2 deep x 32-bits)

i Link Ports (2) I

a7 11

I A

External Port Buffer FIFO
(8 deep x 64-bits)

=

Figure 6-1. I/O Processor Block Diagram
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The Data Buffer Registers column in Figure 6-2 shows the data buffer reg-
isters for each port. These registers include:

External Port Buffer (EBPx). These 64-bit buffers for the external
port have eight-position FIFOs for transmitting or receiving data
when interfacing with a host or external devices such as memory
and memory mapped devices.

Link Port Buffer (LBUFx). These buffers for the link ports have
two-position FIFOs for transmitting or receiving DMA data when
connected to another link port.

Serial Port Receive Buffer (RXx). These receive buffers for the serial
ports have two-position FIFOs for receiving data when connected
to another serial device.

Serial Port Transmit Buffer (TXx). These transmit buffers for the
serial ports have two position FIFOs for transmitting data when
connected to another serial device.

SPI Receive Buffer (SPIRX). This receive buffer for the SPI port has
two-position FIFOs for receiving data when connected to another
serial device.

SPI Transmit Buffer (SP1TX). This transmit buffer for the SPI port
has two position FIFOs for transmitting data when connected to
another serial device.

6-4
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Figure 6-2. I/O Processor Registers
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The Port, Buffer, and DMA Control Registers column in Figure 6-2
shows the control registers for the ports and DMA channels. These regis-
ters include:

System Configuration register (SYSCON). This register configures
packing, priority, and word order for the external port.

Waitstate and Access Mode register (WAIT). This register config-
ures handshake, idle cycle insertion, and waitstate insertion for
external memory DMA accesses.

External Port DMA Control registers (DMACx). These control regis-
ters for each external port DMA channel select the direction,
format, handshake, and enable chaining, transfer mode, and DMA
start.

Link Port Control register (LCTL). This control register selects the
direction, word width, transfer rate, and enable chaining and DMA
start. This register assigns link buffers to link ports for link port
operations. This register indicates link buffer packing and error sta-
tus for link port operations.

Serial Port Control registers (SPCTLx). These control registers for
each port select the receive or transmit format, monitor FIFO sta-
tus, enable chaining, and start DMA.

SPI Port Control register (SPICTL). This control register config-
ures and enables the SPI interface, selects the device as master or
slave, and determines the data transfer and word size.

6-6
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The DMA Parameter Registers column in Figure 6-2 shows the parameter
registers for each DMA channel. These registers function similarly to data
address generator registers and include:

Internal Index registers (11x). Index registers provide an internal
memory address, acting as a pointer to the next internal memory
DMA read or write location. These registers are 18 bits wide and
are offset 0x40000 for internal addressing in normal word space.

Internal Modify registers (IMx). Modify registers provide the
signed increment by which the DMA controller post-modifies the
corresponding internal memory index register after the DMA read
or write. These registers are 16 bits wide.

Count registers (Cx). Count registers indicate the number of words
remaining to be transferred to or from internal memory on the cor-

responding DMA channel. These registers are 16 bits wide.

Chain Pointer registers (CPx). Chain pointer registers hold the
starting address of the Transfer Control Block (parameter register
values) for the next DMA operation on the corresponding channel.
These registers also control whether the I/O processor generates an
interrupt when the current DMA process ends. These registers are
19 bits wide and are offset 0x40000 for internal addressing in nor-
mal word space.

General Purpose registers (GPx). General purpose DMA registers
hold an address or other value. These registers are 17 bits wide.

External Index registers (E1EPx). Index registers provide an exter-
nal memory address, acting as a pointer to the next external
memory DMA read or write location. These registers only apply to
external port EPBx DMA. These External Port DMA registers are
32 bits wide.
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* External Modify registers (EMEPx). Modify registers provide the
increment by which the DMA controller post-modifies the corre-
sponding external memory index register after the DMA read or
write. These registers only apply to external port EPBx DMA. These
External Port DMA registers are 32 bits wide.

* External Count registers (ECEPx). External count registers indicate
the number of words remaining to be transferred to or from exter-
nal memory on the corresponding DMA channel. These registers
only apply to external port EPBx DMA. These External Port DMA

registers are 32 bits wide.

Figure 6-3 shows a block diagram of the I/O processor’s address generator
(DMA controller). Table 6-1 lists the parameter registers for each DMA
channel. The parameter registers are uninitialized following a processor
reset.

6-8
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Figure 6-3. DMA Address Generator

The I/O processor generates addresses for DMA channels much the same
way that the Data Address Generators (DAGs) generate addresses for data
memory accesses. Each channel has a set of parameter registers (shown in
Figure 6-4) including an index register (11x) and modify register (IMx)
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that the I/O processor uses to address a data buffer in internal memory.
The index register must be initialized with a starting address for the data
buffer. As part of the DMA operation, the I/O processor outputs the
address in the index register onto the processor’s I/O address bus and
applies the address to internal memory during each DMA cycle—a clock
cycle in which a DMA transfer is taking place.
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(Reserved bits must always be set to zero when programming DMA parameter registers)

Figure 6-4. IOP Parameter Registers
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All addresses in the index (I1x) registers are offset by a value matching the
processor’s first internal Normal word addressed RAM location, before the
I/O processor uses the addresses. For the ADSP-21161, this offset value is
0x0004 0000.

While DMA addresses must always be Normal word (32-bit) memory, the
internal memory data transfer sizes may be 64-, 48-, or 32-bits. External
memory data transfer sizes may be 32-, 16 or 8-bits. The I/O processor
can transfer Short word data (16-bit) using the packing capability of the
external port, serial port and SPI port DMA channels.

After transferring each data word to or from internal memory, the I/O
processor adds the modify value to the index register to generate the
address for the next DMA transfer and writes the modified index value to
the index register. The modify value in the IMx register is a signed integer,
which allows both increment and decrement modifies. The modify value
IMx (which was fixed to 1 on the ADSP-21065L) can now have any posi-
tive or negative integer value because of SIMD mode.

If the I/O processor modifies the index register past the maximum
18-bit value to indicate an address out of internal memory, the
index wraps around to zero. With the offset for the ADSP-21161,
the wrap around address is 0x0004 0000.

Each DMA channel has a count register (Cx) that loads the programs with
a word count to be transferred. The I/O processor decrements the count
register after each DMA transfer on that channel. When the count reaches
zero, the I/O processor generates the interrupt for that DMA channel. For
more information on DMA interrupts, see “Using I/O Processor Status”
on page 6-121.

If a program loads the count (Cx) register with zero, the I/O proces-
sor does not disable DMA transfers on that channel. The I/O
processor interprets the zero as a request for 2'© transfers. This
count occurs because the I/O processor starts the first transfer
before the testing the count value. The only way to disable a DMA
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channel is to clear its DMA enable bit. For more information, see
“External Port Channel Transfer Modes” on page 6-46, “Link Port
Channel Transfer Modes” on page 6-85, or “Serial Port Channel
Transfer Modes” on page 6-99.

Each DMA channel also has a chain pointer register (CPx) and a gen-
eral-purpose register (GPx). Chained DMA sequences are a set of multiple
DMA sequences, each autoinitializing the next in line. The location of the
parameters for the next sequence comes from the CPx register. These
parameters are called a Transfer Control Block (TCB), and they set up
DMA parameter values for autoinitializing the next DMA sequence in the
chain. Programs can use the GP register for any purpose, but usually pro-
grams store the address of the previous TCB in this register during
chained DMA. For more information, see “Chaining DMA Processes” on

page 6-25.

The external port DMA channels each contain three additional parameter
registers, the external index register (EIEPx), external modify register
(EMEPx), and external count register (ECEPx). These three registers are not
available for the serial port, SPI port and link port DMA channels. The
I/O processor generates 32-bit external memory addresses using the EIEPx,
EMEPx, and ECEPx registers, during DMA transfers between internal mem-
ory and external memory or devices.

Programs must load the ECEPx register with the count of external
bus transfers in the DMA. If the external port is using word pack-
ing, the ECEPx count differs from the number of words transferred
in the DMA.

Memory mapped devices can communicate with the I/O processor using
an internal DMA request/grant handshake on an external port DMA
channel. Each channel has a single request and a single grant. When a par-
ticular I/O port needs to perform transfers to or from internal memory,
the channel asserts a request. The I/O processor prioritizes this request

with all other valid DMA requests. The default channel priority is DMA
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channel 0 as highest and DMA channel 13 as lowest. Table 6-1 lists the
DMA channels in priority order. For more information, see “Managing
DMA Channel Priority” on page 6-22.

When a channel becomes the highest priority requester, the I/O processor
services the channel’s request. In the next clock cycle, the I/O processor

starts the DMA transfer.

If a DMA channel is disabled, the I/O processor does not service
requests for that channel, whether or not the channel has data to
transfer.

The processor’s 14 DMA channels are numbered as shown in Table 6-1.
This table also shows the control, parameter, and data buffer registers that
correspond to each channel.

Table 6-1. DMA Channel Registers: Controls, Parameters,
and Buffers

DMA Control Parameter Registers Buffer Description

Chan# Registers Register

0 SPCTLO I10A, IMOA, COA, CPOA, GPOA | RX0A, TXO0A | Serial Port 0
A Data

1 110B, IMOB, C0B, CP0B, GPOB | RX0B, TXO0B | Serial Port 0
B Data

2 SPCTL1 I11A, IM1A, C1A, CP1A, GP1A | RX1A, TX1A | Serial Port 1
A Data

3 111B, IM1B, C1B, CP1B, GP1B | RX1B, TX1B | Serial Port 1
B Data

4 SPCTL2 112A, IM2A, C2A, CP2A, GP2A | RX2A, TX2A | Serial Port 2
A Data

5 112B, IM2B, C2B, CP2B, GP2B | RX2B, TX2B | Serial Port 2
B Data
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Table 6-1. DMA Channel Registers: Controls, Parameters,

and Buffers (Contd)

DMA Control Parameter Registers Buffer Description

Chan# Registers Register

6 SPCTL3 113A, IM3A, C3A, CP3A, GP3A | RX3A, TX3A | Serial Port 3

A Data
7 113B, IM3B, C3B, CP3B, GP3B | RX3B, TX3B | Serial Port 3
B Data
8 LCTL, 1ILBO, IMLBO, CLB0O, CPLBO, LBUFO, Link Buffer 0
SPICTL! GPLBO SPIRX SPI Receive

IISRX, IMSRX, CSRX, GPSRX

9 IILB1, IMLB1, CLB1, CPLBI1, LBUF1 Link Buffer 1
GPLB1 SPITX SPI Transmit
IISTX, IMSTX, CSTX, GPSTX

10 DMACI10 IIEPO, IMEPO, CEPO, CPEPO, EPBO External Port
GPEPO, EIEPO, EMEPO, FIFO Buffer 0
ECEPO

112 DMACI11 IIEP1, IMEP1, CEP1, CPEP1, EPB1 External Port
GPEP1, EIEP1, EMEP1, FIFO Buffer 1
ECEP1

123 DMACI12 IIEP2, IMEP2, CEP2, CPEP2, EPB2 External Port
GPEP2, EIEP2, EMEP2, FIFO Buffer 2
ECEP2

13 DMACI13 1IEP3, IMEP3, CEP3, CPEP3, EPB3 External Port

GPEP3, EIEP3, EMEP3,
ECEP3

FIFO Buffer 3

Link port and SPI DMA parameter register names correspond to the same IOP addresses since
these peripherals share DMA channels 8 and 9. Since chaining is not supported for SPI DMA, a
chain pointer register cannot be use for DMA operation.

The DMAR1 and DMAGT pins are handshake controls for DMA channel 11.
The DMAR2 and DMAG?2 pins are handshake controls for DMA channel 12.

6-14
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All of the I/O processor’s registers are memory-mapped in the processor’s
internal memory, ranging from address 0x0000 0000 to 0x0000 O1FF.
For more information on these registers, see “I/O Processor Registers” on

page A-47.

Because the I/O processor registers are memory-mapped, the processor
and external processors (host or multiprocessors) have access to program
DMA operations. A processor sets up a DMA channel by writing the
transfer’s parameters to the DMA parameter registers. After the I1x, IMx,
and Cx registers (among others) are loaded with a starting source or desti-
nation address, an address modifier, and a word count, the processor is

ready to start the DMA.

The external ports, link ports, SPI port, and serial ports each have a DMA
enable bit (DEN, LxDEN, SPIEN, or SDEN) in their channel control register.
Setting this bit for a DMA channel with configured DMA parameters
starts the DMA on that channel. If the parameters configure the channel
to receive, the I/O processor transfers data words received at the buffer to
the destination in internal memory. If the parameters configure the chan-
nel to transmit, the I/O processor transfers a word automatically from the
source memory to the channel’s buffer register. These transfers continue
until the I/O processor transfers the selected number of words as deter-
mined by the count parameter.

@ To start a new (non-chained) DMA sequence after the current one

is finished, programs must disable the channel (clear its DEN bit);
write new parameters to the I1x, IMx, and CEPx registers; then
enable the channel (set its DEN bit). For chained DMA operations,
this disable-enable process is not necessary. For more information,

see “Chaining DMA Processes” on page 6-25.
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DMA Channel Allocation and Priorities

DMA Channel Allocation and Priorities

ADSP-21161 has 14 DMA channels including eight channels accessible
via the serial ports, four via the external port and two via the link ports.
SPI shares the link port channels for receive and transmit. It is assumed
that if DMA is enabled in SPI, then link ports cannot use any of the DMA
channels. Table 6-2 shows the DMA channel allocation for the
ADSP-21161.

Table 6-2. DMA Channel Allocation and Parameter

Register Assignments

DMA Data Buffer Parameter Registers IOP Address of Description
Channel # DMA Parameter
Register

0 RX0A or TX0A I10A, IMOA, COA, 0x60 to 0x64 Serial Port 0
CPOA, GPOA A data

1 RX0B or TX0B 110B, IMOB, CO0B, 0x80 to 0x84 Serial Port 0
CPOB, GP0OB B data

2 RX1A or TX1A IT11A, IM1A, CI1A, 0x68 to 0x6C Serial Port 1
CP1A, GP1A A data

3 RX1B or TX1B I11B, IM1B, C1B, 0x88 to 0x8C Serial Port 1
CP1B, GP1B B data

4 RX2A or TX2A 112A, IM2A, C2A, 0x70 to 0x74 Serial Port 2
CP2A, GP2A A data

5 RX2B or TX2B 112B, IM2B, C2B, 0x90 to 0x94 Serial Port 2
CP2B, GP2B B data

6 RX3A or TX3A I13A, IM3A, C3A, 0x78 to 0x7C Serial Port 3
CP3A, GP3A A data

7 RX3B or TX3B 113B, IM3B,C3B, 0x98 to 0x9C Serial Port 3
CP3B, GP3B B dara
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Table 6-2. DMA Channel Allocation and Parameter
Register Assignments (Cont'd)

/0O Processor

DMA Data Buffer Parameter Registers | IOP Address of Description
Channel # DMA Parameter
Register

8 LBUFO0/SPIRX IILBO,IMLBO0,CLBO, | 0x30 to 0x34 Link Buffer 0 /
CPLB0,GPLBO SPI Receive
IISRX, IMSRX,
CSRX, GPSRX
(no CPx)

9 LBUF1/SPITX IILB1, IMLBI, 0x38 to 0x3C Link Buffer 1/
CLB1, CPLBI1, SPI Transmit
GPLB1
IISTX, IMSTX,
CSTX, GPSTX
(no CPx)

10 EPBO IIEPO, IMEPO, CEPO, | 0x40 to 0x47 External Port
CPEPO, GPEPO, FIFO Buffer 0
EIEPO, EMEPO,
ECEPO

11! EPB1 IIEP1, IMEP1, CEP1, | 0x48 to 0x4F External Port
CPEP1, GPEP1, FIFO Buffer 1
EIEP1, EMEPI,
ECEP1

122 EPB2 IIEP2, IMEP2, CEP2, | 0x50 to 0x57 External Port
CPEP2, GPEP2, FIFO Buffer 2
EIEP2, EMEP2,
ECEP2

13 EPB3 IIEP3, IMEP3, CEP3, | 0x58 to 0x5F External Port
CPEP3, GPEP3, FIFO Buffer 3
EIEP3, EMEP3,
ECEP3

1 DMARI and DMAGTI are handshake controls for DMA channel 11

2 DMAR2 and DMAG?2 are handshake controls for DMA channel 12.

DMA channel 0 has the highest priority and DMA channel 13 has the

lowest priority.
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DMA Interrupt Vector Locations

The DMA channel arbitration feature allows the link port or SPI channel
group to rotate priority with the external port channels. This feature may
be enabled by setting the PRROT bit in the SYSCON IOP register. The DMA
controller can be programmed to use a rotating priority scheme for the
four external port channels by setting the DCPR bit in the SYSCON register.
The DMA controller can be programmed to use a rotating priority scheme
for the two link port DMA channels (channels 8 and 9) by setting the
LDCPR bit in the SYSCON register.

Each channel has a set of parameter registers (11, IM, C, CP, GP etc.) which
are used to setup DMA transfers. DMA parameter register assignments for
the various channels are shown in Table 6-2.

For ADSP-21160 programs to run on ADSP-21161 processor with no
modifications, note that previously used mnemonics and the new mne-
monics map to the same addresses whenever appropriate.

DMA Interrupt Vector Locations

Interrupts on the ADSP-21161 are generated at the end of a DMA trans-
fer. This happens when the count register Cx for that channel decrements
to zero. The interrupt vector locations for the each channel is listed in
Table 6-3. The Link Port Interrupt vector locations and channels are
listed in Table 6-4. The interrupt register diagram and bit descriptions are
given in “Interrupt Mask Pointer Register (IMASKP)” on page A-32

Table 6-3. Interrupt Vector Locations

IRPTL/IMASK Bit # | Vector Address DMA Channel Data Buffer

10 0x28 0 RX0A or TX0A
11 0x2C 2 RX1A or TX1A
12 0x30 4 RX2A or TX2A
13 0x34 6 RX3A or TX3A

6-18 ADSP-21161 SHARC Processor Hardware Reference



Table 6-3. Interrupt Vector Locations (Cont'd)

/0O Processor

IRPTL/IMASK Bit # | Vector Address DMA Channel Data Buffer

10 0x28 1 RX0B or TX0B
11 0x2C 3 RX1B or TX1B
12 0x30 5 RX2B or TX2B
13 0x34 7 RX3B or TX3B
15 0x50 10 EPBO

16 0x54 11 EPB1

17 0x58 12 EPB2

18 0x5C 13 EPB3

Table 6-4. Link Port Interrupt Vector Locations

LIRPTL Bits Vector Address DMA Channel Data Buffer
Ptr/Mask/Latch

24/16/0 0x38 8 LBUFO0
26/18/2 0x40 SPIRX
25/17/1 0x3C 9 LBUF1
27/19/3 0x44 SPITX
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Booting Modes

Booting Modes

The booting modes that are supported by the ADSP-21161 processor are
given in Table 6-5.

Table 6-5. Booting Modes for ADSP-21161

EBOOT LBOOT BMS Booting Mode

1 0 output EPROM Boot (connect BMS to EPROM chip
select)!

0 0 1 (input) Host Boot!

0 1 1 (input) Link Boot?

0 1 0 (input) Serial Boot (SPI)?

0 0 0 (input) No Booting (processor executes from the external
memory)

1 For the Host and EPROM boots, the DMA channel 10 (EPBO) is used.
2 For the link boot, the DMA channel 8 (LBUFO0) is used.
3 Serial boot (SPI) uses DMA channel 8 (its mutually exclusive with the link ports).

DMA Controller Operation

DMA sequences start in different ways depending on whether DMA
chaining is enabled. When chaining is not enabled, only the DMA enable
bit (DEN) allows DMA transfers to occur. A DMA sequence starts when
one of the following occurs:

* Chaining is disabled and the DMA enable bit (DEN) transitions
from low to high.

e Chaining is enabled, DMA is enabled (DEN=1), and the CPx register
address field is written with a non-zero value. In this case, TCB
chain loading of the channel parameter registers occurs first.
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* Chaining is enabled, the CPx register address field is non-zero, and
the current DMA sequence finishes. Again, TCB chain loading

occurs.
A DMA sequence ends when one of the following occurs:

e The count register Cx decrements to zero (both CEPx and ECEPx for
external port channels).

e Chaining is disabled and the channel’s DEN bit transitions from
high to low. If the DEN bit goes low (=0) and chaining is enabled,
the channel enters chain insertion mode and the DMA sequence
continues. For more information, see “Inserting a TCB in an
Active Chain” on page 6-28.

@ When a program sets the DEN bit (=1) after a single DMA finishes,

the DMA sequence continues from where it left off (for
non-chained operations only). To start a new DMA sequence after
the current one is finished, a program must first clear the DEN
enable bit, write new parameters to the IIx, IMx, and Cx registers,
then set the DEN bit to re-enable DMA. For chained DMA opera-
tions, these steps are not necessary. For more information, see

“Chaining DMA Processes” on page 6-25.

® If a DMA operation completes and the count register is rewritten
before the DMA enable bit is cleared, the DMA transfer restarts at

the new count.

Once a program starts a DMA process, the process is influenced by two
external controls: DMA channel priority and DMA chaining. For more
information, see “Managing DMA Channel Priority” on page 6-22 or
“Chaining DMA Processes” on page 6-25.
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Managing DMA Channel Priority

The DMA channels for each of the processor’s I/O ports negotiate chan-
nel priority with the I/O processor using an internal DMA request/grant
handshake. Each I/O port (link ports, serial port, SPI port, and external
port) has one or more DMA channels, with each channel having a single
request and a single grant. When a particular channel needs to read or
write data to internal memory, the channel asserts an internal DMA
request. The I/O processor prioritizes the request with all other valid
DMA requests. When a channel becomes the highest priority requester,
the I/O processor asserts the channel’s internal DMA grant. In the next
clock cycle, the DMA transfer starts. Figure 6-5 shows the paths for inter-
nal DMA requests within the I/O processor.

If a DMA channel is disabled (DEN, LxDEN, SPIEN, or SDEN bit =0),
the I/O processor does not issue internal DMA grants to that chan-
nel, whether or not the channel has data to transfer.

Because more than one DMA channel can make a DMA request in a par-
ticular cycle, the I/O processor prioritizes DMA channel service. DMA
channel prioritization determines which channel can use the IOD (I/0
Data) bus to access memory. Default DMA channel priority is fixed prior-
itization by DMA channel type (serial ports, SPI port, link ports, or
external port). Within the DMA channel types, the serial port DMA chan-
nels are always fixed priority, the external port DMA channels may be
either fixed or rotated priority, and the link port DMA channels may be
either fixed or rotated priority. Table 6-1 on page 6-13 lists the DMA

channels in descending order of priority.

e For information on programming external port priority modes, see
“External Port Channel Priority Modes” on page 6-43.

* For information on programming link port priority modes, see
“Link Port Channel Priority Modes” on page 6-83.
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* For information on programming serial port priority modes, see
“Serial Port Channel Priority Modes” on page 6-99.

* For information on programming SPI port priority modes, see
“SPI DMA Channel Priority” on page 6-112.

@ The SPI port does not support DMA chaining.

The I/O processor determines which DMA channel has the highest prior-
ity internal DMA request during every cycle between each data transfer.
Internal DMA channel arbitration differs from external bus arbitration.
For more information on external bus arbitration, see “Multiprocessor Bus

Arbitration” on page 7-93.

Processor core accesses of I/O processor registers and TCB chain loading
are subject to the same prioritization scheme as the DMA channels.
Applying this scheme uniformly prevents I/O bus contention, because
these accesses are also performed over the internal I/O bus. TCB chain
loading has a higher priority than external port accesses and link port/SPI
port DMA accesses. This TCB priority permits chained serial port DMA,
even when the external port is attempting an access in every cycle. For
more information, see “Chaining DMA Processes” on page 6-25.

If a processor has the link ports enabled and active at the same time, the
default priority scheme could hold off external port DMA channels for
extended periods of time. Because this hold off could have a significant
negative impact on external bus performance, the I/O processor permits
rotating DMA channel priority between the link port channel group and
external port channel group. For more information on using the PRROT bit
to rotate priority between link ports and the external port, see “Link Port

Channel Priority Modes” on page 6-83.
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Chaining DMA Processes

DMA chaining lets the I/O processor automatically load DMA parameters
and start the next DMA when the current DMA finishes. This feature per-
mits unlimited multiple DMA transfers without processor core
intervention. Using chaining, programs can set up multiple DMA opera-
tions with each operation can have different attributes.

To chain together multiple DMA operations, the I/O processor must load
the next Transfer Control Block (DMA parameters) into the DMA
parameter registers when the current DMA finishes (DMA count =0). The
chain pointer register (CPx) points to the next set of DMA parameters,
which are stored in internal memory. This process of loading the TCB
into the parameter registers is called TCB chain loading.

Two controls enable chained DMA. Each DMA channel has a chaining
enable bit (CHEN) in the channel’s control register. When set, the CHEN bit
directs the I/O processor to use the CPx register for chained DMA. Pro-
grams start the chained DMA by writing a non-zero address to the CPx
register, directing the I/O processor to start the DMA with TCB chain
loading. Programs can disable chained DMA by writing all zeros to the
address field of the CPx register.

Chained DMA operations may only occur within the same chan-
nel. The processor does not support cross-channel chaining and the

SPI port does not support DMA chaining

The CPx register is 19 bits wide, of which the lower 18 bits are the memory
address field. Like other I/O processor address registers, the CPx registers
value is offset to match the starting address of internal memory before
being used by the I/O processor. On the ADSP-21161, this offset value is
0x0004 0000.
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Bit 18 of the CPx register (shown in Figure 6-6) is the Program Controlled
Interrupts (PCI) bit. If set, the PCI bit enables a DMA channel interrupt to
occurs at the completion of the current DMA sequence.

The PCI bit only effects DMA channels that have chaining enabled
(CHEN =1). Also, interrupt requests enabled by the PCI bit are
maskable with the IMASK register.

® Because the PCI bit is not part of the memory address in the CPx

register, programs must be careful when writing and reading
addresses to and from the register. To prevent errors, programs
should mask out the PCI bit (bit 18) when copying the address in
CPx to another address register.

18 17 16 1514 13 12 11 10 9 8 7 6 5 4 3 2 1 O

CPx

= -
PCI Bit

Program -Controlled Interrupt Bit
If this bit is set, the 1/0 processor will generate a DMA
interrupt on completion of a chained DMA

Figure 6-6. CPX Register

During chained DMA, the channel’s General Purpose (GP) register is a
useful place to point to the last completed DMA sequence. This practice
lets programs determine where the last full (or empty) data buffer is
located.

Transfer Control Block (TCB) Chain Loading
During TCB chain loading, the I/O processor loads the DMA channel

parameter registers with values retrieved from internal memory. The
address in the CPx register points to the highest address of the TCB (con-
taining the ITx or I1EPx parameter). The TCB values reside in consecutive
memory locations.
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Table 6-6 shows the TCB-to-register loading sequence for the external
port, link port, and serial port DMA channels. The I/O processor reads
each word of the TCB and loads it into the corresponding register. Pro-
grams must set up the TCB in memory in the order shown in Table 6-6,
placing the ITx parameter at the address pointed to by the CPx register of
the previous DMA operation of the chain.

Table 6-6. TCB Chain Loading Sequence

Address! External Port Link and Serial Ports
CPx + 0x0004 0000 IIEPx IIx

CPx — 1 + 0x0004 0000 IMEPx IMx

CPx — 2 + 0x0004 0000 CEPx Cx

CPx — 3 + 0x0004 0000 CPEPx CPx

CPx — 4 + 0x0004 0000 GPEPx GPx

CPx — 5 + 0x0004 0000 EIEPx

CPx — 6 + 0x0004 0000 EMEPx

CPx — 7 + 0x0004 0000 ECEPx

CPx — 8 + 0x0004 0000 -

1 An “%” denotes the DMA channel used. Link, SPI, and serial ports use the first five locations
only.

A TCB chain load request is prioritized like all other DMA operations.
The I/0 processor latches a TCB loading request and holds it until the
load request has the highest priority. If multiple chaining requests are
present, the I/O processor services the TCB registers for the highest prior-
ity DMA channel first. A channel which is in the process of chain loading
cannot be interrupted by a higher priority channel. For a list of DMA
channels in priority order, see Table 6-1 on page 6-13. For more informa-
tion on DMA priority, see “Managing DMA Channel Priority” on

page 6-22.
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Setting Up and Starting the Chain
To setup and initiate a chain of DMA operations, use the following steps:
1. Set up all TCBs in internal memory.

2. Write to the appropriate DMA control register, setting the DEN
DMA enable bit to 1 and the CHEN chaining enable bit to 1.

3. Write the address containing the 11x register value of the first TCB
to the CPx register, starting the chain.

The I/O processor responds by autoinitializing the channel’s parameter
registers with the first TCB and starting the first transfer. When the trans-
fer finishes, the I/O processor begins the next TCB chain load if the
current chain pointer address is non-zero. The CPx address points to the

next TCB.

The address field of the CPx registers is only 18 bits wide. If a pro-
gram writes a symbolic address to bit 18 of CPx, there may be a
conflict with the PCI bit. Programs should clear the upper bits of
the address, then AND the PCI bit separately, if needed.

Inserting a TCB in an Active Chain

It is possible to insert a single DMA operation or another DMA chain
within an active DMA chain. Programs may need to perform insertion
when a high priority DMA requires service and cannot wait for the cur-
rent chain to finish.
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When DMA on a channel is disabled (DEN=0) and chaining on the channel
is enabled (CHEN=1), the DMA channel is in chain insertion mode. This
mode lets a program insert a new DMA or DMA chain within the current
chain without effecting the current DMA transfer. Use the following
sequence to insert a DMA subchain while another chain is active:

1. Enter chain insertion mode by setting CHEN=1 and DEN=0 in the
channel’s DMA control register. The DMA interrupt indicates
when the current DMA sequence has completed.

2. Write the CPx register value into the CP position of the last TCB in
the new chain.

3. Enter chained DMA mode by setting DEN=1 and CHEN=1.

4. Write the start address of the first TCB of the new chain into the
CPx register.

Chain insertion mode operates the same as chained DMA mode (DEN=1,
CHEN=1), except that when the current DMA transfer ends, automatic
chaining is disabled and an interrupt request occurs. This interrupt
request is independent of the PCI bit state.

Chain insertion should not be set up as an initial mode of opera-
tion. This mode should only be used to insert a DMA within an
active DMA chaining operation.

External Port DMA

There are four external port DMA channels available on the
ADSP-21161: channels 10, 11, 12 and 13. These DMA channels enable
efficient data transfers between the processor's internal memory and exter-
nal memory, peripherals, host processor, or other SHARCs. DMA
transfers between the processor and any external devices that do not have
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bus master capability use these channels. Channels 10, 11, 12, and 13 are
assigned to EPBO, EBP1, EPB2 and EPB3 buffers respectively, and are con-
trolled by DMAC10, DMAC11, DMAC12 and DMAC13 DMA control registers.

The ADSP-21161 processor supports a number of DMA modes for exter-
nal port DMA. The following sections describes typical external port
DMA processes:

e “Setting Up External Port DMA” on page 6-68

* “Bootloading Through The External Port” on page 6-70
* “Boot Memory DMA Mode” on page 6-42

e “External Port Buffer Modes” on page 6-42

e “External Port Channel Priority Modes” on page 6-43

e “External Port Channel Transfer Modes” on page 6-46

e “External Port Channel Handshake Modes” on page 6-47

External Port Registers

The SYSCON, WAIT, and DMACx registers control the external port operating
mode for the I/O processor. The following tables and figures describe the

external port registers:
» Table A-10 on page A-34 lists all the bits in SYSCON
e Table A-11 on page A-37 lists all the bits in WAIT

e Table A-13 on page A-43 and Figure 6-8 on page 6-41 lists all the
bits in DMACx

The following bits control external port I/O processor modes. Except for
the FLSH bit, the control bits in the DMACx registers have a one cycle effect
latency. The FLSH bit has a two cycle effect latency. Programs should not
modify an active DMA channel’s DMACx register other than to disable the
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channel by clearing the DEN bit. For information on verifying a channel’s
status with the DMASTAT register, see “Using I/O Processor Status” on
page 6-121. Some other bits in SYSCON, WAIT, and DMACx setup non-DMA
external port features. For information on these features, see “Setting
External Port Modes” on page 7-3.

Boot Select Override. SYSCON Bit 1 (BS0). This bit enables (if set,
=1) or disables (if cleared, =0) access to Boot Memory Space. When
BSO is set, the processor uses the BMS select line (instead of MS3-0) to
perform DMA channel 10 accesses to external memory.

Host Bus Width. syscon Bits 5-4 (HBW). These bits select the host
bus width as follows: 00=32-bit width, 01=16-bit width, 10=8-bit
width (reset value).

Host Most Significant Word First Packing Select. SYSCON Bit 7
(HMSWF). This bit selects the word packing order for host accesses as

most-significant-word first (if set, =1) or least-significant-word first
(if cleared, =0).

Buffer Hang Disable. syscon Bit 16 (8HD). This bit controls
whether the processor core proceeds (hang disabled if set, =1) or is
held-off (hang enabled if cleared, =0) when the core tries to read
from an empty EPBx, RXx, LBUFx or SPIRX buffer or tries to write to
a full EPBx, TXx, LBUFx or SPITX buffer.

External Port DMA Channel Priority Rotation Enable. SYSCON
Bit 19 (DCPR). This bit enables (rotates if set, =1) or disables (fixed
if cleared, =0) priority rotation among external port DMA channels
(channel 10-13).

Handshake and Idle for DMA Enable. WAIT Bit 30 (H1DMA). This
bit enables (if set, =1) or disables (if cleared, =0) adding an idle
cycle after every memory access for DMAs with handshaking
(DMARX-DMAGX).
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External Port DMA Enable. DMACx Bit O (DEN). This bit enables (if
set, =1) or disables (if cleared, =0) DMA for the corresponding
external port FIFO buffer (EPBX).

External Port DMA Chaining Enable. DMACx Bit 1 (CHEN). This bit
enables (if set, =1) or disables (if cleared, =0) DMA chaining for
the corresponding external port FIFO buffer (EPBX).

External Port Transmit/Receive Select. DMACx Bit 2 (TRAN). This
bit selects the transfer direction for the corresponding external port
FIFO buffer (EPBx). If set (=1), the port transmits data from inter-
nal memory. If cleared (=0), the port receives data from external
memory.

External Port Data Type Select. DMACx Bit 5 (DTYPE). This bit
selects the transfer data type (40/48=bit, 3-column if set, =1)

(32/64-bit, 4-column if cleared, =0) for the corresponding external
port FIFO buffer (EPBx).

External Port Packing Mode. DMACx Bits 8-6 (PMODE). These bits
select the packing mode for the corresponding external port FIFO
buffer (EPBx) as follows: 000=reserved, 001=16 external to 32/64
internal packing, 010=16 external to 48 internal packing, 011=32
external to 48 internal packing, 100= no packing, 101=8 external
to 48 internal packing, 110= 8 external to 32/64 internal packing,
111=reserved. During reset, the default is PMODE = 101.

Most Significant Word First. DMACx Bit 9 (MSWF). When the
buffer’s PMODE is 001 or 010, this bit selects the packing order of
8-bit or 16-bit words (most significant first if set, =1) (least signifi-
cant first if cleared, =0) for the corresponding external port FIFO

buffer (EPBx).

Master Mode Enable. DMACx Bit 10 (MASTER). This bit enables (if
set, =1) or disables (if cleared, =0) master mode for the correspond-

ing external port FIFO buffer (EPBx).
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e Handshake Mode Enable. DMACx Bit 11 (HSHAKE) This bit enables
(if set, =1) or disables (if cleared, =0) handshake mode for the cor-
responding external port FIFO buffer (EPBx).

e External Handshake Mode Enable. bMACx Bit 13 (EXTERN). This bit
enables (if set, =1) or disables (if cleared, =0) external handshake
mode for the corresponding external port FIFO buffer (EPBx).

* External Port Bus Priority. DMACx Bit 15 (PR10). This bit selects
the external bus access priority level (high if set, =1) (low if cleared,
=0) for the corresponding external port FIFO buffer (EPBx).

External Port FIFO Buffers

DMA channels 10, 11, 12 and 13 are associated with the external port
FIFO data buffers £PB0, EPB1, EPB2, and EPB3. Each buffer acts as an
eight-location FIFO that has two ports: a read port and a write port. Each
port can connect to either the EPD (External Port Data) or one of the fol-
lowing buses: the IOD (I/O Data) bus, the PM Data bus, or the DM Data

bus.

The FIFO structure enables DMA transfers at full processor clock fre-
quency with SDRAM or at the CLKIN system clock rate for host and other
memories. This is possible because reads and writes for the same data can
occur simultaneously through the FIFO's separate read and write ports.
You can also use the external port FIFO buffers for non-DMA, single
word data transfers too.

Do not attempt to make core reads or writes to or from an EPBx
buffer when a DMA operation using that buffer is in progress. This
corrupts the DMA data.
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To flush (clear) an external port buffer, write 1 to the FLSH bit in the
appropriate DMACx control register. The DMA for the channel must be dis-
abled during the write operation. The FLSH bit is not latched internally
and always reads as 0. Status can change in the following cycle. Do not
enable and flush an external port buffer in the same cycle.

For DMA transfers between the processor’s internal memory and external
memory, the DMA controller must generate addresses in both memories.
The external port DMA channels contain both EIEPx (External Index) and
EMEPx (External Modify) registers to generate external addresses. The
EIEPx register provides the external port address for the current DMA
cycle. It is updated with the modifier value in EMEPx for the next external
memory access.

External Port DMA Data Packing

Each external port buffer contains data packing logic to pack 8-, 16-, or
32-bit external bus words into 32/64 or 48-bit internal words. The pack-
ing logic works in reverse to unpack 32/64-bit data or 48-bit internal data
into 8-, 16-, or 32-bit external data.

The external port data alignment is shown in Figure 6-7.

To support the wide range of data packing options provided for external
DMA transfers, the ETEPx and EMEPx registers can generate addresses at a
different rate than the internal address generating registers ITEPx and
IMEPx. For this reason, the internal and external address generators operate
independently, and the ECEPx (External Count) register serves as the exter-
nal DMA word counter.

For example, when a 16-bit DMA device reads data from the processor’s
internal memory, two external 16-bit transfers occur for each 32-bit inter-
nal memory word. The ECEPx (external) word count is twice the value of
the CEPx (internal) word count.
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Figure 6-7. External Port Data Alignment

The PMODE bits in the DMACx control registers determine the packing mode
for internal bus words while the HBW bits in the SYSCON register determine
the packing mode for external bus words. Table 6-7 shows the packing
modes of operation for the PMODE[2:0] that correspond to bits 8, 7, and 6
in the DMACx register.

During reset, the default value PMODE in DMAC10 is 101 (8- to 48-bit
packing for PROM or Host booting)
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Table 6-7. Packing Mode Combinations

PMODE | HBW Host Packing Mode (External:Internal)
8/16/32 .
IOP Buffers Link Ports Buffers External Port Buffers
Internal Packing Internal Packing Uses PMODE,
Fixed to 32-bit Fixed to 48-bit INT32 and DTYPE
(1=48/40, 0=32/64)

000 - Reserved

001 01 (16-bit) | 16: 32 16 : 48 16 : 32/64

010 01 (16-bit) | 16: 32 16 : 48 16 : 48

011 00 (32-bit) | 32:32 32: 48 32: 48

100 00 (32-bit) | 32:32 32: 48 32:32/64

101 10 (8-bit) 8:32 8 : 48 8: 48

110 10 (8-bit) 8:32 8 : 48 8 :32/64

111 - Reserved

Each external port DMA control register contains a three bit PS field that
indicates the number of short words currently packed in the £EPBx buffer.
The PS status field behaves the same way during packing and unpacking
operations. All packing functions are available for all types of DMA trans-
fers. Table 6-8 shows the values of PS[2:0] that correspond to bits 23, 22,
and 21 of the DMACx register.

Packing mode bit settings depend on whether the host access is proces-
SOr-tO-processor or processor-to-memory. To access another ADSP-21161
or memory, you must set the PMODE bits only (HBW bits have no effect) to
pack and unpack individual data words for the following modes: master

mode, paced master mode and handshake mode DMA.
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For host accesses, to pack and unpack individual data words, you must set
both the PMODE bits in the appropriate DMACx control register and the
HBW bits in the SYSCON register. Table 6-7 shows the packing mode bit

settings for access to IOP, link port and external port buffers.

Table 6-8. External Port FIFO Buffer Packing Status (Read Only)

PS[2:0] EPBx Packing Status
000 Packing complete
001 Ist stage

010 2nd stage

011 3rd stage

100 fifth stage of 8/48

For transfers to or from the EPBx data buffers, the packing mode is
determined by the setting of the HBW bits of the SYSCON register
AND the PMODE bits in the DMACx control register of each external
port buffer.

The external port buffer can pack data in most significant word first
(MSWF) order or in least significant word first (LSWF) order. Setting the bit
MSWF to 1 in the DMACx control register selects MSW mode for both pack-
ing and unpacking operations. The MSWF bit has no effect when PMODE=111
or PMODE=000.

32-Bit Bus Downloading

The packing sequence for downloading processor instruction from a
32-bit bus (PMODE=011, HBW=00) takes three cycles for every two words, as
shown in Table 6-9.
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Table 6-9. Download Packing Sequence From a 32-Bit Bus

Transfer Data Bus Pins 47-32 Data Bus Pins 31-16
First Word 1; bits 47-32 Word 1; bits 31-16
Second Word 2; bits 15-0 Word 1; bits 15-0
Third Word 2; bits 47-32 Word 2; bits 31-16

For host transfers to or from the EPBx buffers, you must set the HBW bits in
the SYSCON register to correspond to the external bus width. Note that the
processor transfers 32-bit data on data bus lines DATAL47-161. To transfer
an odd number of instruction words, you must write a dummy access to
flush the packing buffer and remove the unused word.

For 32- to 48-bit host packing, the processor ignores the HMSWF bit
in the SYSCON register and the MSWF bit in the DMACx control register.
For non-host accesses (for example, DMA master mode accesses to
external memory) the processor uses the MSWF bit for packing and
ignores the value of HMSWF in SYSCON.

16-Bit Bus Downloading

Table 6-10 and Table 6-11 show the packing sequence for downloading
processor instructions from a 16-bit bus (PM0DE=010, HBW=01). When
interfacing to a host processor, the HMSWF bit determines whether the I/O
processor packs to most significant 16-bit word first (=1) or least signifi-
cant 16-bit word first (=0).

Table 6-10. Download Packing sequence for 16-bit bus (MSW first)

Transfer Data Bus Pins 31-16
First Word 1; bits 47-32
Second Word 1; bits 31-16
Third Word 1; bits 15-0

6-38 ADSP-21161 SHARC Processor Hardware Reference



/0O Processor

Table 6-11. Download Packing Sequence For 16-Bit Bus (LSW first)

Transfer Data Bus Pins
First Word 1; bits 15-0
Second Word 1; bits 31-16
Third Word 1; bits 47-32

8-Bit Bus Downloading

The packing sequence for downloading processor instructions from an

8-bit host (PMODE=101, HBW=10) takes six cycles for each word, as shown in
Table 6-12 and Table 6-13. The HMSWF bit in SYSCON determines whether
the I/O processor packs the most significant (=1) or least significant 8-bit

word first (=0).

Table 6-12. Download Packing Sequence From 8-Bit Bus (MSW first)

Transfer Data Bus Pins 23-16
First Word 1; bits 47-40
Second Word 1; bits 39-32
Third Word 1; bits 31-24
Fourth Word 1; bits 23-16
Fifth Word 1; bits 15-8
Sixth Word 1; bits 7-0
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Table 6-13. Download Packing Sequence From 8-bit Bus (LSW first)

Transfer Data Bus Pins 23-16
First Word 1; bits 7-0
Second Word 1; bits 15-8
Third Word 1; bits 23-16
Fourth Word 1; bits 31-24
Fifth Word 1; bits 39-32
Sixth Word 1; bits 47-40
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DMAC13 Oxif
PS

—

Ext Port EPBx FIFO Buffer Packing Status
(read-only)
000=packing complete
001=1* stage pack/unpack
010=2r¢stage pack/unpack
011=3¢stage
100=5" stage of 8 to 48 -bit packing
101=110=111=reserved

T

Ext. Port FIFO Buffer Status (read-only)
00=buffer empty

01=buffer-not-full

10=buffer-not- empty

11=buffer full

INT32
Internal Memory 32 -bit Transfers Select

MAXBL

Maximum Burst Length Select

00=burst disabled

01=burst limit of 4
10=11=reserved

1514 13 12 11 10 9 8

1=32-bit transfers/EPBx access width
0=64-bit transfers/EPBx access width

7 6 5 4 3 2 10

Lefele[ofefe[e]o]ofe o]

Lol ofe]

~ PRIO-
External Port Bus Priority Access

1=DSP asserts PA~ for external bus access
0=PA~ not asserted

FLSH
Flush EPBx FIFO Buffers & Status
1=flush EPBx

EXTERN

External Handshake Mode Enable

1=enable, external devices to external memory
O=disable

INTIO
Single Word Interrupts for EPBx FIFO Buffers
1=enable single-wd non -DMA interrupt-driven xfers

O=disabled, FIFO fully enabled

HSHAKE
EPBx DMA Handshake Mode Enable
1=enable, O=disable

MASTER
EPBx DMA Master Mode Enable
1=enable, O=disable

MSWF

Most Significant Word First During Packing
1=enable, MSW first

O=disable, LSW first

Figure 6-8. DMAC Register

L

N

| bEN
Ext. Port DMA Enable
1=enable, O=disable

CHEN
Ext. Port DMA Chaining Enable
1=enable, O=disable

TRAN

Ext. Port EPBx Transmit/Rcv. Select
1=transmit data from intern memory
O=receive data from ext memory

DTYPE

EPBx FIFO Buffer Data Type Select
1=40/48 - bit, 3-column data
0=32/64 - bit, 4- column data

PMODE

Ext Port EPBx FIFO Packing Mode
000, 111=reserved

001=16 ext-to-32/64int

010=16 ext-to-48int

011=32 ext-to-48 int

100=no pack (32 ext-to-32/64 int)
101=8 ext-to-48int

110=8 ext-to-32/64int
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Boot Memory DMA Mode

The BSO bit in the SYSCON register enables Boot Memory Select Override, a
mode in which the I/O processor supports DMA access to boot memory
space. When BSO0 is set, the processor uses the BVS select line (instead of
MS3-0) to perform DMA channel 10 accesses to external memory.

When reading from 8-bit boot memory space, the processor uses 8- to
48-bit packing. Programs most often use this feature to finish loading pro-
grams and data after the processor completes its automatic
256-instruction bootload.

External Port Buffer Modes

The HBW, HMSWF, PMODE, MSWF, and BHD bits in the SYSCON and DMACx regis-
ters select a buffer’s packing mode and disable buffer not-ready processor
core stalls. The packing mode bits PMODE for processor and HBW for host
select the external bus width and word size for transfers. Packed data or
instructions are arranged in external memory according to the memory
address that stems from their word size. For more information, see “Mem-
ory Organization and Word Size” on page 5-25. When data or
instructions in external memory are not packed, the words are arranged in
memory according to the external bus’ data alignment. This data align-
ment appears in Figure 7-1 on page 7-2.

During reset, the default value for the PMODE bits in the DMAC10 register is
101 (8- to 48-bit packing for PROM/Host boot).

When the packing mode (PMODE or HBW) is set for a 16-bit bus, programs
should set up the 16-bit word order. The 16-bit word order bits (MSWF for
processor and HMSWF for host) control the order of 16-bit words being
packed or unpacked in the 32-, 48-, or 64-bit word being transferred. If
the MSWF or HMSWF bit is set (=1), the packing and unpacking is most signif-
icant 16-bit word first.
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In addition to selecting the packing mode for external port processor
transfers, programs must indicate the type of data in the transfer, using the
Data Type (DTYPE) bit. For more information, see “External Port Channel
Transfer Modes” on page 6-46.

The Buffer Hang Disable (BHD) bit lets the processor core proceed if the
core tries to read from an empty EPBx, TXx, LBUFx or SPIRX buffer or tries
to write to a full EPBx, RXx, LBUFx or SPITX buffer. The processor core still
performs buffer accesses when buffer hang is disabled (FBHD=1). If the pro-
cessor core attempts to read from an empty receive buffer, the core gets a
repeat of the last value that was in the buffer. If the processor core
attempts to write to a full buffer, the core overwrites the last value that was
written to the buffer. Because these buffers are not initialized at reset, a
read from a buffer that hasn't been filled since the reset returns an unde-
fined value.

If an external port buffer’s INTIO0 bit is set and DMA for that chan-
nel is not enabled, the external port channel is in single-word,
interrupt-driven transfer mode. For more information, see “Using
I/O Processor Status” on page 6-121.

External Port Channel Priority Modes

The DCPR and PRIO bits in the SYSCON and DMACx registers influence prior-
ity levels for an external port buffer and the external port in relation to
external port DMA channels and external bus arbitration. For more infor-
mation on prioritization operations, see “Managing DMA Channel
Priority” on page 6-22.

Priority for DMA requests from external port channels can be fixed or
rotated. When the DMA Channel Priority Rotate (DCPR) bit is cleared, the
lowest number external port channel has the highest priority, ranging
from highest-priority channel 10 to lowest-priority channel 13.
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When the DCPR bit is set, the priority levels rotate. High priority shifts to a
new channel after each packed single-word transfer. The I/O processor
services a single-word transfer then rotates priority to the next higher
numbered channel. Rotation continues until the I/O processor services all

four external port channels. Figure 6-9 illustrates this process as described
in the following steps:

1. At reset, external port channels have priority order—from high to
low—10, 11, 12, and 13.

2. The external port performs a single transfer on channel 11.

3. The I/O processor rotates channel priority, changing it to 12, 13,
10, and 11 (because rotating priority is enabled for this example,

DCPR=1).
HIGHEST HIGHEST
PRIORITY PRIORITY
10 12
LOWEST LOWEST
smoany 13 STEP 2 11 smoany 1t STEP 3 13
12 10

ONE TRANSFER OCCURS ON CHANNEL 11 (STEP 2),
ROTATING CHANNEL 11'S PRIORITY TO THE LOWEST PRIORITY SLOT (STEP 3).

Figure 6-9. Rotating External Port DMA Channel Priority
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Even though the external port channel DMA priority can rotate,
the interrupt priorities of all DMA channels are fixed.

When external port DMA channel priority is fixed (DCPR=0), channel 10
has the highest priority, and channel 13 has the lowest priority. But, pro-
grams can redefine this priority order by assigning one of the other
channels the highest priority. To change the fixed priority sequence of the
external port DMA channels, a program could use the following
procedure:

1. Disable all external port DMA channels except the one which is to
have lowest priority.

2. Select rotating priority.
3. Cause at least one transfer to occur on the enabled channel.

4. Disable rotating priority and re-enable all of the external port
DMA channels.

After completing this procedure, the channel immediately after the
selected channel has the highest fixed priority.

In systems where multiple processors are using the external bus, the PRIO
bit raises the priority level for external port DMA transfers. When a chan-
nel’s PRIO bit is set, the I/O processor asserts the Priority Access (PA) pin
when that channel uses the external bus. The channel gets higher priority
in bus arbitration, allowing the DMA to complete more quickly.

Programs can also rotate priority between external port and link port
DMA channels. For more information, see “Link Port Channel Priority

Modes” on page 6-83.
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External Port Channel Transfer Modes

The DEN, CHEN, TRAN, and DTYPE bits in the DMACx register enable DMA and
chained DMA and select the transfer direction and data type. The DMA
enable (DEN) and Chained DMA enable (CHEN) bits work together to select
an external port DMA channel’s transfer mode. Table 6-14 lists the possi-
ble modes.

Table 6-14. External Port DMA Enable Modes

CHEN DEN DMA Enable Mode Description

0 0 Channel disabled (chaining disabled, DMA disabled)

0 1 Single DMA mode (chaining disabled, DMA enabled)

1 0 Chain insertion mode (chaining enabled, DMA enabled,

auto-chaining disabled); For more information, see “Chaining DMA
Processes” on page 6-25.

1 1 Chained DMA mode (chaining enabled, DMA enabled,
auto-chaining enabled)

Because the external port is bidirectional, the I/O processor uses the
Transmit select (TRAN) bit to determine the transfer direction (transmit or
receive). Data flows from internal to external memory when in transmit
mode. In transmit mode, the I/O processor fills the channel’s EPBx buffer
with data from internal memory when the channel’s DEN bit is set.

The Data Type (DTYPE) bit determines how the DMA channel accesses
columns of internal memory. If DTYPE is set, the data is 40- or 48-bit
words, and the I/O processor makes 3-column internal memory accesses.
If DTYPE is cleared, the data is 32- or 64-bit words, and the I/O processor
makes 4-column internal memory accesses. For more information, see
“Memory Organization and Word Size” on page 5-25.

The DTYPE for the transfer overrides the Internal Memory Data
Width (IMDWx) setting for the internal memory block.
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External Port Channel Handshake Modes

The MASTER, HSHAKE, EXTERN, and HIDMA bits in the DMACx and WAIT regis-
ters select the channel’s DMA handshake and enable the hold cycles for
host DMA. Table 6-15 summarizes the external port DMA modes.

Table 6-16 shows how the MASTER, HSHAKE, and EXTERN bits work to select
the channel’s DMA handshake mode.

Table 6-15. External Port DMA Modes

Mode Operation
Slave Internal Memory <--> EPBx
Master Internal Memory <--> EPBx <-->External Memory

Uses strobes and address, No DMAR and DMAG.

Paced Master Internal Memory <--> EPBx <-->External Memory
Uses strobes and address, Uses DMAR , No DMAG.

Handshake Internal Memory <--> EPBx <-->External Memory
No strobes and address, Uses DMAR and DMAG.

External Handshake | External Memory <--> External Device

Uses strobes and address, Uses DMAR and DMAG.
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Table 6-16. External Port DMA Handshake Modes: DMACx MASTER (M),
HSHAKE (H), and EXTERN (E) Bits

EHM

DMA Mode of Operation

000

Slave Mode. The processor responds to the buffer’s internal memory transfer activ-
ity based on the buffer status in the FS field, generating a DMA request whenever
the buffer is not empty (on receive) or is not full (on transmit). During transmit
(TRAN=1), the processor fills the EPBx buffer with data from internal memory
when the program enables the buffer (DEN=1).

For more information, see “Slave Mode” on page 6-55.

001

Master Mode. The processor attempts the internal memory DMA transfers indi-
cated by the DMA counter (CEPx) based on the buffer status in the FS field, mak-
ing transfers whenever the buffer is not empty (on receive) or is not full (on
transmit).

Systems using Master Mode should de-assert corresponding DMA request inputs,
de-asserting DMARLI if channel 11 is in master mode and de-asserting DMAR2 if

channel 12 is in master mode.

For more information, see “Master Mode” on page 6-50.

010

Handshake Mode. When in this mode, the processor generates a DMA request
whenever the external device asserts the DMARKx pin, then the processor asserts the
DMAGx pin, transferring the data (and de-asserting DMAGx) when the external
devices de-asserts the DMARx pin.

@ Note that this mode only applies to external port buffers EPB1 and
EPB2 and DMA channels 11 and 12.

For more information, see “Handshake Mode” on page 6-57.

011

Paced Master Mode. The processor attempts the internal memory DMA transfers
indicated by the DMA counter (CEPx), making transfers based on external DMA
request inputs. The processor generates a DMA request whenever the external
device asserts the DMARx pin. The processor controls the data transfer using the
RD or WR and ACK pins and by applying the selected number of waitstates.

@ Note that this mode only applies to external port buffers EPB1 and
EPB2 and DMA channels 11 and 12.

For more information, see “Paced Master Mode” on page 6-54.
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Table 6-16. External Port DMA Handshake Modes: DMACx MASTER (M),
HSHAKE (H), and EXTERN (E) Bits (Cont’d)

EHM DMA Mode of Operation

100 Reserved

101 Reserved

110 External-Handshake Mode. The processor responds to external memory DMA

requests based on external DMA request inputs. This mode is identical to Hand-
shake Mode, but applies to transfers between external memory and external devices.

The processor generates a DMA request whenever the external device asserts the
DMARx pin. The processor asserts the DMAGx pin, transferring the data (and
de-asserting DMAGx) when the external devices de-asserts the DMARx pin.

@ Note that this mode only applies to external port buffers EPB1 and
EPB2 and DMA channels 11 and 12.

For more information, see “External-Handshake Mode” on page 6-66.

111 Reserved

For the handshake and external-handshake modes shown in Table 6-16,
programs can insert an added idle cycle after every memory access. The
handshake and Idle for DMA (HI1DMA) bit in the WAIT register enables this
added cycle, which reduces bus contention from devices with slow
three-state timing or long recovery times.

Because external port DMA transfers can go between processor internal
memory and external memory, the I/O processor must generate addresses
for both memory spaces. The external port DMA channels have additional
parameter registers (EIEPX, EMEPx, ECEPX) for external memaory access.

To support data packing options for external memory DMA transfers, the
EIEPx and EMEPx registers can generate addresses at a different rate than
the internal address registers (I1EPx and IMEPx). Figure 6-5 on page 6-23
shows that the I/O processor has separate address generators for internal
and external addresses. For this reason, when packing is used for external
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memory DMA, the external count (ECEPx) register indicates the number of
external port transfers, not the number of internal memory words being
transferred.

The DMA mode and other factors determine the size of the DMA data
transfer on the external port. These other factors include the ETEPX, EMEPX,
and ECEPx parameters; the PMODE, DTYPE, and MAXBL values in DMACx; and
the transfer capacity available in the EPBx data buffer employed in the
transfer. The internal I/O processor bus transfer size varies with the ITEPx,
IMEPx, and CEPx parameters, and the PMODE, DMA mode, DTYPE, and INT32
values in DMACx. The following sections describe these DMA modes and
transfer sizes in more detail:

*  “Master Mode” on page 6-50

e “Paced Master Mode” on page 6-54

e “Slave Mode” on page 6-55

* “Handshake Mode” on page 6-57

* “External-Handshake Mode” on page 6-66

Master Mode

When the MASTER bit is set (=1) and the EXTERN and HSHAKE bits are cleared
(=0) in the channel’s DMACx register, the DMA channel is in master mode.
A channel in this mode can independently initiate internal or external
memory transfers.

Master mode applies to all external port DMA channels: 10, 11,
12, and 13. When interfacing to SDRAM memory, only master
mode DMA can be used for external port DMA transfers between
SDRAM and internal memory. DMARX and DMAGX pins cannot be
used to pace or handshake DMA transfers using SDRAM interface

pins.
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To initiate a master mode DMA transfer, the processor sets up the chan-
nel’s parameter registers and sets the channel’s DMA enable (DEN) bit. A
master mode DMA channel performing internal memory to external
memory data transfer automatically performs enough transfers from inter-
nal memory to keep the EPBx buffer full. When the data transfer direction
is external to internal, a master mode DMA channel also performs enough
transfers from external memory to keep the EPBx buffer full.

The I/O processor uses the EIEPx, EMEPx, and ECEPx registers to
access external processor memory in master mode DMA.

External Transfer Controls In Master Mode. In master mode, the proces-
sor determines the size of the external transfer from the channel’s PMODE
bits and EIEPx, EMEPx, and ECEPx registers. Table 6-8 on page 6-37 shows
the packing mode selected by the PMODE bits, and Table 6-17 shows the
external transfer size in master mode that results from the combination of
the PMODE bits.

Table 6-17. Master Mode External Transfer Size

Transfer Size 32-bit 16-bit 8-bit

PMODE 011, 100 001, 010 110, 101
EIEP X! X X

EMEP X X X

ECEP X # of 16-bit xfers | # of 8-bit xfers
DTYPE X X X

EPBx Depth >=1 >=1 >=1

1 An X in Table 6-17 indicates any supported value.

32-bit External Transfers. The processor performs 32-bit transfers when
PMODE= 011 (32- to 48-bit internal), or 100 (32-bit exter-
nal-to-32-bit/64-bit internal). In PMODE=011or 100, all data transfers
across the upper word of the data bus (DATA47-16) are as indicated in
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Figure 7-1 on page 7-2. This mode supports all values of ETEPx, EMEPX,
and ECEPx. ECEPx contains the number of 32-bit words to transfer. There
must be at least one 32-bit EPBx FIFO entry available to support the
32-bit external transfer.

16-bit External Transfers. The processor performs 16-bit transfers when
PMODE=001 (16-bit external-to-32/64-bit internal) or 010 (16-bit external
to 48-bit internal). This mode supports all values of ETEPx, EMEPx, and
ECEPx. The value ECEPx is programmed to the number of 16-bit words to
transfer. There must be at least one 32-bit EPBx FIFO entry available to
support the 16-bit external transfer. In PMODE=001, or 010, all data trans-
fers across DATA31-16 as indicated in Figure 7-1 on page 7-2.

8-bit External Transfers. The processor performs 8-bit transfers when
PMODE=110 (8-bit external to 32/64-bit internal) or 101 (8-bit external to
48-bit internal). This mode supports all values of ETEPx, EMEPX, and ECEPXx.
The value ECEPx is programmed to be the number of 8-bit words to trans-
fer. There must be at least one 32-bit EPBx FIFO entry available to support
the 8-bit external transfer. In PMODE=110 or 101, all data transfers across
DATA23-16 as indicated in Figure 7-1 on page 7-2.

Internal Address/Transfer Size Generation. In master mode, the proces-
sor determines the size of the internal transfer from the channel’s PMODE
bits and I1EPx, IMEPx, and CEPx registers. Table 6-7 on page 6-36 shows
the packing mode selected by the PMODE bits, and Table 6-18 shows the
internal transfer size in master mode that results from the combination of
the PMODE bits.

Table 6-18. Master Mode Internal Transfer Size Determination

Transfer Size 64-bit! 48-bit 32-bit
PMODE 001, 100, 110 010,011, 101 001, 100, 110
IIEPx depends on IM? x3 X

IMEPx -lorl X X

6-52

ADSP-21161 SHARC Processor Hardware Reference




/0O Processor

Table 6-18. Master Mode Internal Transfer Size Determination (Cont'd)

CEPx even # of 32-bit # of 48-bit words X
words

DTYPE 0 1 0

EPBx Depth >1 >1 =1

INT32 0 0 Oorl

1 Including packed instructions.

2 IfIMEPx s 1 for increment, IIEPx must be an even, 64-bit aligned Normal word address.
If IMEPx is -1 for decrement, IIEPx must be an odd, Normal word address.

3 X indicates any supported value.

64-bit Internal Transfers. To enable internal 64-bit transfers and incre-
ment the internal ITEPx pointer, programs must set ITEPx to match the
IMEPx selection as shown in Table 6-18. CEPx contains the number of
32-bit words to transfer, and should be set to an even number of 32-bit
words. The processor decrements CEPx by 2 for each 64-bit transfer. For
64-bit transfers, PMODE must be set to 001 (16-bit-to-32/64-bit internal),
100 (32-bit external-to-32/64-bit internal) or 110 (8-bit exter-
nal-to-32/64-bit internal). DTYPE and INT32 must be cleared. There must
be at least two 32-bit EPBx FIFO entries available to support the 64-bit
external transfer.

48-bit Internal Transfers. The processor can perform 48-bit internal
transfers for DMA of packed or unpacked 48-bit instructions. Many
applications can use internal 64-bit transfer for 48-bit instructions. This
technique can provide greater throughput than 48-bit internal transfers.

In either of the 48-bit internal transfer modes in Table 6-18 (PMODE=101
and DTYPE=1 or PMODE=010 or 011 and DTYPE=0), the processor accesses
the memory using instruction alignment (3-column read or write) for the
EPBx buffer. In this case, ITEPx points to 48-bit words, and CEPx counts
the number of 48-bit internal transfers.
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32-bit Internal Transfers. The processor performs according to the condi-
tions in Table 6-18. Under these additional conditions, the processor
performs 32-bit transfers instead of 64- or 48-bit transfers: PMODE= 001
(16-bit external to 32-bit internal), or 100 (32-bit external to 32-bit inter-
nal), and I1EPx is not aligned to a 64-bit boundary, or IMEPx is < -1, or >
1, or CEPx is < 2, or EPBx depth < 2, or INT32 = 1, and DTYPE=0.

Paced Master Mode

When the MASTER and HSHAKE bits are set (=1) and the EXTERN bit is cleared
(=0) in the channel’s DMACx register, the DMA channel is in Paced Master
mode. A channel in this mode can independently initiate internal or exter-
nal memory transfers.

Paced Master mode applies only to external port DMA channels 11
and 12.

In Paced Master mode, the processor has the same control for address gen-
eration and transfer size as in master mode. For more information, see
“Master Mode” on page 6-50. The difference between these modes is that
in Paced Master mode external transfers are controlled and initiated
(paced) by the DMARX signal as in handshake mode. For more information,

see “Handshake Mode” on page 6-57.

The processor responds to the DMARX request only with the RD, or WR
strobes, depending on direction and data alignment. DMAGX is not asserted
in Paced Master mode. This method lets the processor share the same
buffer between the I/O processor and processor core without external gat-
ing. Paced Master mode accesses can be extended by the ACK input, by
waitstates programmed in the WAIT register, and by holding the DMARX
input low.
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Slave Mode

When the MASTER, HSHAKE, and EXTERN bits in the channel’s DMACx register
are cleared (=0), the DMA channel is in slave mode. A channel in this
mode cannot independently initiate external memory transfers.

To initiate a slave mode DMA transfer, an external device must read or
write the channel’s EPBx buffer. A slave mode DMA channel performing
internal to external data transfer automatically performs enough transfers
from internal memory to keep the EPBx buffer full. When the data transfer
direction is external to internal, a slave mode DMA channel does not ini-
tiate any internal DMA transfers until the external device writes data to
the channel’s EPBx buffer. Note that the I/O processor does not use the
ETEPX, EMEPxX, and ECEPx registers in slave mode DMA

The following sequence describes a typical external to internal slave mode
DMA operation where an external device transfers a block of data into the
processor’s internal memory:

1. The external device initializes the channel by writing the DMA
channel’s parameter registers (I1EPx, IMEPx, and CEPx) and DMACx
control register.

2. The external device begins writing data to the EPBx buffer.

3. The EPBx buffer detects that data is present and asserts an internal
DMA request to the I/O processor.

4. The I/O processor grants the request and performs the internal
DMA transfer, emptying the EPBx buffer FIFO.

If the internal DMA transfer is held off, the external device can continue
writing to the EPBx buffer because of its eight-deep FIFO. When the EPBx
FIFO becomes full, the processor holds off the external device with the
ACK signal (for synchronous accesses) or with the REDY signal (for asynchro-
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nous, host-driven accesses). This hold-off state continues until the I/O
processor finishes the internal DMA transfer, freeing space in the EPBx

buffer.

The following sequence describes a typical internal to external slave mode
DMA operation where an external device transfers a block of data from
the processor’s internal memory:

1. The external device writes the DMA channel’s parameter registers
(ITEPx, IMEPx, and CEPx) and DMACx control register, initializing the
channel and automatically asserting an internal DMA request to
the I/O processor.

2. The I/O processor grants the request and performs the internal
DMA transfer, filling the EPBx buffers FIFO.

3. The external device begins reading data from the EPBx buffer.

4. The £PBx buffer detects that there is room in the buffer (it is now
partially empty) and asserts another internal DMA request to the
I/O processor, continuing the process.

If the internal DMA transfers cannot fill the EPBx FIFO buffer at the same
rate as the external device empties it, the processor holds off the external
device with the ACK signal (for synchronous accesses) or with the REDY sig-
nal (for asynchronous, host-driven accesses) until valid data can be
transferred to the EPBx buffer.

The processor only deasserts the ACK (or REDY) signal when the EPBx
FIFO buffer (or pad data buffer) is full during a write. The ACK (or
REDY) signal remains asserted at the end of a completed block trans-
fer if the EPBx buffer is not full. For reads, the processor deasserts
the ACK (or REDY) signal for each read to handle the latency of the
read versus posting the write to a buffer.
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In slave mode, the processor determines the size of the transfer based on
the setting of channel’s PMODE bits. Table 6-19 shows the transfer size in
slave mode that results from the PMODE bits and Table 6-7 on page 6-36
shows the packing mode selected by the PMODE bits.

Table 6-19. Slave Mode Transfer Size Determination

Transfer Size 32-bit<> 32-bit<> 16-bit<> 16-bit<> 8-bit<> 8-bit<>
(external<>inter- | 32/64-bit | 48-bit 32/64-bit! | 48-bitl 32/64-bit* | 48-bit2
nal)

PMODE 100 011 001 010 110 101
DTYPE 0 1 0 1 0 1

1 External device must be connected to DATA[31:16]
2 External device must be connected to DATA[23:16]

Handshake Mode

When the MASTER and EXTERN bits are cleared (=0) and the HSHAKE bit is set
(=1) in the channel’s DMACx register, the DMA channel is in handshake
mode. A channel in this mode cannot independently initiate external
memory transfers. Note that handshake mode only applies to DMA chan-
nels 11 and 12.

To initiate a handshake mode DMA transfer, an external device must
assert an external DMA request, asserting DMART for access to EPB1 or
DMAR? for access to EPB2. The buffers pass these request to the I/O proces-
sor, which prioritizes these requests with other internal DMA requests.
When the external DMA request has the highest priority, the I/O proces-
sor asserts an external DMA grant, asserting DMAGI for EPB1 or DMAGZ for
EPB2. The grant signals the external device to read or write the EPBx buffer.
A handshake mode DMA channel performing internal to external data
transfer automatically performs enough transfers from internal memory to
keep the EPBx buffer full. When the data transfer direction is external to
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internal, a handshake mode DMA channel does not initiate any internal
DMA transfers until the external devices writes data to the channel’s EPBx

buffer.

The I/0 processor does not use the EIEPx or EMEPx registers in
handshake mode DMA. It uses the ECEPx registers.

Other than the DMARX/DMAGx handshake, handshake mode DMA opera-
tions follow almost the same process as slave mode DMA operations. The
exception is that in handshake mode DMAs from internal to external
memory the external device must load the channel’s ECEPx register with
the number of external bus transfers.

In handshake mode, the processor determines the size of the transfer from
the channel’s parameter registers and PMODE bits. Table 6-7 on page 6-36
shows the packing mode selected by the PMODE bits, and Table 6-20 shows
the transfer size in handshake mode that results from the combination of
the read and write signals and PMODE bits.

Table 6-20. Handshake Mode Transfer Size Determination

Transfer Size 32-bit<> 32-bit¢<> 16-bit<> 16-bit<> 8-bit<> 8-bit<>
(external¢>internal) || 32/64-bic! | 48-bit2 32/64-bic® | 48-bir2 32/64-bic® | 48-bir2
PMODE 100 011 001 010 110 101
IIEPx x4 X X X X X
IMEPx X X X X X X
CEPx # of 32-bit | # of 32-bit | # of 16-bit | # of 16-bit | # of 8-bit | # of 8-bit
words words words words words words
ECEPx # of 32-bit | 6/4 * 2*CEPx |3*CEPx |4*CEPx |6*CEPx
words CEPx
DTYPE 0 1 0 1 0 1
1 External device must be connected to the upper half of the data bus (Data[47:16])
2 External device must be connected to Data[16:31])
3  External device must be connected to Data[16:23])
4 X indicates any legal value
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DMA transfers are supported at the full system CLKIN/CLKOUT rates of
50MHz. However, full bandwidth at 2:1 core clock (CCLK) to CLKIN/CLK-
0UT ratio is not possible. Non synchronous timing specifications limit
throughput for three DMA handshake modes: paced master mode, hand-
shake mode and external handshake mode. The sampling rate of the DMARX
signal by the internal circuitry of the ADSP-21161 processor prohibits
maximum throughput at a CCLK to CLKIN/CLKOUT ratio of 2:1. For hand-
shake mode DMA, the processor does not assert the MS3-0 memory select
lines (the address strobes). For information on DMARX/DMAGx handshake
timing, see Figure 6-10.

CCLK to CLKIN ratios of 3:1 and 4:1 with CLKDBL =1 and CCLK to CLKIN
ratios of 4:1, 6:1 and 8:1 with CLKDBL =0 support full speed throughput at
the CLKIN frequency. If the maximum DMARX/DMAGx throughput at 50MHz
is needed, synchronize the assertions and deassertions of DMARX with
respect to CLKOUT. Refer to the ADSP-21161N DSP Microcomputer Data

Sheet for specific timing information.
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Figure 6-10. Handshake DMA Timing (Asynchronous Requests)
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The I/O processor uses the rising and falling edges of DMARX in the
DMARX/DMAGX handshake as prompts for DMA operations. On the falling
edge of DMARX, the edge signals the I/O processor to begin a DMA access.
On the rising edge of DMARX, the edge signals the I/O processor to com-
plete the DMA access.

The following sequence describes the process for requesting access to an
EPBx buffer in handshake mode:

1.

The external device asserts the buffer’s DMARX signal, placing an
external DMA request for access to the EPBx buffer.

The EPBx buffer detects the falling edge of the DMARX signal and
passes the external DMA request to the I/O processor, synchroniz-
ing the DMA operation with the processor’s system clock.

To be recognized in a particular cycle, the DMARX low transition
must meet the signal setup time from the processor data sheet. If
the transition is slower than the setup time, the signal may not take
effect until the following cycle.

The I/O processor prioritizes the external DMA request with other
internal DMA requests. If the processor is not already bus master,
the processor arbitrates for the external bus when the external
DMA request has the highest priority, unless the EPBx buffer is
blocked.

If the £PBx buffer is full during a write or empty during a read, the
buffer is blocked. The processor does not begin external bus arbi-
tration until the I/O processor services the EPBx buffer, returning it
to the unblocked state empty for writing or full for reading.

The processor becomes bus master and asserts DMAGx.

The processor keeps DMAGx asserted until the cycle after the external
device deasserts DMARx. By holding DMARX asserted, the external
device holds the processor until the external device is ready to pro-
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ceed. If the external device does not need to extend the DMA grant
cycle, the external device can deassert DMARx immediately (not wait-
ing for DMAGx), providing the DMARX assertion time meets the timing
requirements from the processor data sheet. The responding DMAGx
in this case is a short pulse, and the processor only uses the external
bus for one cycle.

The I/0 processor has a three-cycle DMA pipeline and a seven-deep exter-
nal request counter. The I/O processor’s DMA pipeline is similar to the
program sequencer’s fetch—decode—execute instruction pipeline. The I/O
processor processes the DMA pipeline in the following stages:

e It recognizes the DMA request and arbitrates internal DMA prior-
ity during the DMA fetch cycle.

e It generates the DMA address and arbitrates external bus access
during the DMA decode cycle.

e It transfers DMA data during the DMA execute cycle.
@ Because the I/O processor has a three-cycle DMA pipeline, there is

a minimum delay of three cycles before the processor asserts DMAGXx.
This delay is in addition to any delay from internal DMA arbitra-
tion, so the external device must not assume that the DMA grant
can arrive within two cycles even if higher priority DMA opera-
tions are disabled and the external bus is available for the transfer.

The I/O processor’s external request counter increments each time the
external device asserts DMARx and decrements each time the processor
replies by asserting DMAGx. The external request counter records up to
seven requests, so the external device can make up to seven requests before
the first one has been serviced.
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If the processor cannot immediately service the DMA requests in the
external request counter, the processor services the requests on a priori-
tized basis. The external DMA device is responsible for keeping track of
requests, monitoring grants, and pipelining the data when operating at

full speed.

If the external device makes more than seven DMARX without receiv-
ing a grant, the delayed grant causes unpredictable results.

The processor only asserts DMAGx for the number of DMARX requests indi-
cated by the external request counter. If the external devices make more
requests than the count indicates, the processor DMAGX assertions cannot
match the number of external device requests. To clear this mismatch,
programs can clear the buffer and the external request counter using the
flush bit (FCSH) in the channel’s DMACx register.

To prevent holding off the processor, the external device must service the
processor’s data requirements when it asserts the DMAGx grant signal. The
external device should immediately supply data for writes to the processor
or immediately accept data on reads from the processor. External inter-
faces can handle this I/O by placing the data in an external FIFO. When
performing DMA operations at the full CLKIN speed of the processor, the
system may need a three-deep external FIFO to handle the latency
between request and grant. Programs on the external device can optimize
operation of this FIFO by issuing three requests rapidly and making the
next requests conditional on when the processor issues a grant.

The external devices must follow the conditions in Figure 6-11 when
enabling or disabling handshake mode for an external port DMA channel:

e The processor ignores a disabled (transitioning from disabled to
enabled) DMA channel’s DMARX and DMAGX pins and ignores internal
DMARX assertions for up to two processor core clock cycles after the
instruction that enables the channel in handshake mode.
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e The external devices must maintain DMARx deasserted (kept high,
not low or changing) during the instruction that enables DMA in
handshake mode. Before using the channel for the first time, pro-
grams flush the DMA channel, asserting the FLSH bit in the DMACx
control register. This action is not required during chain insertion.

* The processor deasserts DMAGx if a program disables the channel
while DMARX and DMAGx are asserted (=0). This action clears the
channel’s active status bit, avoiding a potential deadlock condition.
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Figure 6-11. DMARx Delay After Enabling Handshake DMA

ADSP-21161 processors in a multiprocessing cluster may share a DMAGx
signal, because only the bus master drives DMAGx. On the bus slaves, DMAGx
is three-stated. This state eliminates the need for external gating if more
than one processor or the host needs to drive the DMA buffer. Systems
may need a pullup resistor on this line if the host is not connected to the
pin or does not drive it when it acquires the bus. DMAGx has the same tim-
ing and transitions as the RD and WR strobes in asynchronous access mode.
For more information, see “Bus Arbitration Protocol” on page 7-95. DMAGX
responds to the SBTS and HBR signals in the same way as the read and write
strobes.
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DMA Handshake Idle Cycle

Idle cycles can be inserted during DMA handshaking to interface with
slower devices. Normally a bus idle cycle occurs when an asynchronous
read is followed by an immediate write to an external memory bank or
when crossing bank boundary. During this idle cycle, the address and data
lines continue to drive the previous value. RD, WR and DMAGx lines deassert.

If the asynchronous read is immediately followed by a write, the processor
recognizes that a write request is pending during the idle cycle. Therefore,
the MSx lines do not deassert during the idle cycle. Instead, the lines are
driven with their previous value (asserted).

Idle cycles can be inserted after every memory access by setting the HIDMA
bit in the WAIT register for DMAs with handshaking. For a handshake
mode DMA transfer, the MSx lines are never asserted. When an external
handshake mode DMA is enabled with a bus idle cycle inserted in between
the transfers, the MSx lines do not deassert during the bus idle cycle if the
I/O processor recognizes a pending DMARx request. If there are no pending
DMARX requests, MSx lines do deassert.

Figure 6-12 shows an external handshake mode DMA transfer on channel
11 with three DMART pulses asserted. The HIDMA bit is set in the WAIT regis-
ter in order to insert bus idle cycles between two handshake transfers. The
first data transfer is to location 0x255000 in bank 0 and the second trans-
fer is to location 0x255001. An idle cycle is inserted between the two
transfers. Note that the first two DMART pulses are sequential. Therefore,
during this idle cycle, the I/O processor recognizes that there is a DMART
request pending. As a result of the pending request, the MSO line is not
deasserted.

The third data transfer is to location 0x255002. Again, an idle cycle is
inserted between the second and third transfers. However, the third DMA
transfer request happens after some time has transpired and following the
2nd DMART pulse. In this case, the I/O processor recognizes that there are
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Figure 6-12. DMA Handshake Idle Cycle

no more DMART requests pending. Therefore, during the idle cycle between
the second and third transfers, the MS0 line goes high. MS0 goes low again
when the 3rd data transfer occurs.

Systems must be evaluated to determine if the idle cycle during a external
handshake DMA with an activated MSx line has an adverse impact on the
chip selected memory devices or peripherals. The RD, WR, and DMAG strobes
are inactive during the idle cycle, and therefore the MSx lines being acti-
vated should not affect interconnection to other devices as long as RD and
WR remain inactive. Otherwise, an idle cycle insertion between DMA
handshake transfers cannot be used.
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External-Handshake Mode

External-handshake mode is identical to handshake mode, except that
external-handshake mode transfers data between external memory and an
external device. This section describes the differences between handshake
mode and external-handshake mode. For more information, see “Hand-

shake Mode” on page 6-57.

When the MASTER bit is cleared (=0) and the HSHAKE and EXTERN bits are set
(=1) in the channel’s DMACx register, the DMA channel is in external-hand-
shake mode. A channel in this mode cannot independently initiate
external memory transfers.

Like handshake mode, external-handshake mode only applies to
DMA channels 11 and 12.

Do not use external handshake mode DMA on an external memory
bank that has SDRAM mapped and connected to its MSx line.

To initiate an external-handshake mode DMA transfer, an external device
must assert an external DMA request, asserting DMART for access to DMA
channel 11or DMAR? for access to DMA channel 12. The channels pass
these request to the I/O processor, which prioritizes these requests with
other internal DMA requests. When the external DMA request has the
highest priority, the I/O processor asserts an external DMA grant, assert-
ing DMAGT for channel 11 or DMAGZ for channel 12. The grant signals the
external device to read or write the external bus. An external-handshake
mode DMA channel performing external to external data transfer auto-
matically generates external memory addresses and strobes for transfers

between external memory and the external device.

Unlike handshake mode, the I/O processor must use the EIEPx,
EMEPx, and ECEPx registers in external-handshake mode DMA. Also
unlike handshake mode, the data for DMA channels 11 and 12
does not pass through the EPB1 or EPB2 buffers.
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During external-handshake mode transfers, the I/O processor generates
external memory access cycles. DMARXx and DMAGx operate the same as in
handshake mode, but the processor also outputs addresses, MS3-0 memory
selects, and RD and WR strobes, and responds to ACK. On external memory
writes, the processor asserts DMAGx until the external device releases the ACK
line or any of the processor waitstates expire. The external memory access
by the external devices responds as if the processor core were making the
access. For more information, see “External Port” on page 7-1.

Because the I/O processor accesses external memory in external-handshake
mode, programs must load the DMA channel’s ETEPx, EMEPX, and ECEPx
parameter registers and the DMAC10 or DMAC11 PMODE bits. These settings let
the I/O processor generate the external memory addresses and word
count.

External-handshake mode does not support chained DMA inter-
rupts. Because no internal DMA transfers occur in
external-handshake mode, the PCI bit in the channel’s CPEPx regis-
ter cannot disable the DMA interrupt. Programs must use the
IMASK register to mask this interrupt.

In external-handshake mode, the processor does not perform packing. The
processor does determine the size of the transfer from the channel’s
parameter registers, PMODE bits. Table 6-21 shows the transfer size in exter-
nal handshake mode that results from the combination of the read and
write signals and PMODE bits. For 32-bit memory transfers to an external
device, PMODE must be set to the no packing mode (=100) in the DMACx
register.
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Setting Up External Port DMA

The method for setting up and starting an external port DMA sequence
varies slightly with the selection of transfer and DMA handshake for the
channel.

e TFor more information on transfer modes, see “External Port Chan-

nel Transfer Modes” on page 6-46.

¢ For more information on DMA handshake modes, see“External

Port Channel Handshake Modes” on page 6-47.

Table 6-21. External Handshake Mode Transfer Size

Transfer Size 32-bit memory<>32-bit device!
(memory<>device)

PMODE 100

Elx X

EMx

ECx

DTYPE 0

1 External device must be connected to the upper half of the data
bus (Data[47:16])

2 X indicates any legal value

The following sequence describes a typical external to internal DMA oper-
ation where an external device transfers a block of data into the processor’s
internal memory:

1. The processor or host (depending on the mode) writes to the DMA
channel’s parameter registers (I1EPx, IMEPx, and CEPx) and the
DMACx register, initializing the channel for receive (TRAN=0).

2. The processor or host (depending on the mode) sets the channel’s
DEN bit to 1 enabling the DMA process.
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The external device begins writing data to the EPBx buffer through
the external port.

The EPBx buffer detects data is present and asserts an internal
DMA request to the I/O processor.

The I/0 processor grants the request and performs the internal
DMA transfer, emptying the EPBx buffer FIFO.

The following sequence describes a typical internal to external DMA oper-
ation where an external device transfers a block of data from the
processor’s internal memory:

1.

The processor or host (depending on the mode) writes the DMA
channel’s parameter registers (II1EPx, IMEPx, and CEPx) and the
DMACx register, initializing the channel for transmit (TRAN=1).

The processor or host (depending on the mode) sets the channel’s
DEN bit to 1 enabling the DMA process. Because this is a transmit,
setting DEN automatically asserts an internal DMA request to the
I/O processor.

The I/0 processor grants the request and performs the internal
DMA transfer, filling the EPBx buffer’s FIFO.

The processor may signal the start of this transfer depending on the
mode.

The external device begins reading data from the EPBx buffer
through the external port. The processor may signal the start of this
transfer depending on the mode.

The £PBx buffer detects that there is room in the buffer because it is
now partially empty and asserts another internal DMA request to
the I/O processor, continuing the process.
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Bootloading Through The External Port

The processor can boot from an EPROM or host processor through the
external port. The DMAC10 control register is initialized for booting in each
case. Each booting mode packs boot data into 48-bit instructions.
EPROM and host boot use channel 10 of the I/O processor’s DMA con-
troller to transfer the instructions to internal memory. For EPROM
booting, the processor reads data from an 8-bit external EPROM. For host
booting, the processor accepts data from a 8-, 16- or 32-bit host micro-
processor (or other external device).

It is important to note that DMA channel differences between the
ADSP-21161 and previous SHARC processors (ADSP-2106x)
introduce some booting differences. Even with these differences,
the ADSP-21161 supports the same boot capability and configura-
tion as the ADSP-2106x processors.

The DMACx register default values differ because the ADSP-21161
has additional parameters and different DMA channel assignments.

The EPROM and Host boot modes use EPB0, DMA channel 10.
Like the ADSP-2106x, the ADSP-21161 boots from DATA23-16.

For EPROM or host booting the ADSP-21161, the Program
sequencer automatically unmasks the DMA channel 10 channel
interrupt, initializing the IMASK register to 0x00008003.

The processor determines the booting mode at reset from the EB0OT,
LB0OT, and BMS pin inputs. When EB00T=1 and LB00T=0, the processor
boots from an EPROM through the external port and uses BNS as the
memory select output. When EB00T=0, LB00T=0, and BNS =1, the processor
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boots from a host through the external port. For a list showing how to
select different boot modes, see the Boot Memory Select pin description in

the table Table 13-11 on page 13-72.

When using any of the power-up booting modes, address

0x0004 0004 should not contain a valid instruction since it is not
executed during the booting sequence. A NOP or IDLE instruction
should be placed at this location.

In EPROM booting through the external port, an 8-bit wide boot
EPROM must be connected to data bus pins 23-16 (DATA23-16). The low-
est address pins of the processor should be connected to the EPROM’s
address lines. The EPROM’s chip select should be connected to BMS and

its output enable should be connected to RD.

In a multiprocessor system, the BMS output is only driven by the
ADSP-21161 bus master. This allows wire-ORing of multiple BMS signals
for a single common boot EPROM. Systems can boot any number of

ADSP-21161’s from a single EPROM using the same code for each pro-
cessor or differing code for each.

During reset, the processor’s ACK line is internally pulled high with a 20kQ
equivalent resistor and is held high with an internal keeper latch. It is not
necessary to use an external pullup resistor on the ACK line during booting
or at any other time.

After the boot process loads 256 words into memory locations 0x4 0000
through 0x4 00FF, the processor begins executing instructions. Because
most processor programs require more than 256 words of instructions and
initialization data, the 256 words typically serve as a loading routine for
the application. Analog Devices supplies loading routines (loader kernels)
that can load entire programs. These routines come with the development
tools. For more information on loader kernels, see the development tools
documentation.
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Host Processor Booting

When host booting mode is configured, the ADSP-21161 enters slave
mode after reset and waits for the host to download the boot program.
After reset the ADSP-21161 processor goes into an idle state, identical to
that caused by the IDLE instruction, with the program counter (PC) set to
address 0x0004 0004. The parameter registers for the external port DMA
channel 10 are initialized as shown in Table 6-22.

Table 6-22. DMA Channel 10 Parameter Register Initialization
for Host Booting

Parameter Initialization Value

Register

IIEPO 0x0004 0000

IMEPO uninitialized (increment by 1 is automatic)
CEPO 0x0100 (256 instruction words)

CPEPO uninitialized

GPEPO uninitialized

EIEPO uninitialized

EMEPO uninitialized

ECEPO uninitialized

Table 6-22 shows how the DMA channel 10 parameter registers are ini-
tialized at reset for host booting. The count register (CEP0) is initialized to
0x0100 for transferring 256 words to internal memory. The DMAC10 con-
trol register is initialized to 0x00000161. The default value sets up
external port transfers as follows:

* DEN = 1, external port enabled

e MSWF =0, LSW first
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e PMODE = 101, 8- to 48-bit packing
e DTYPE = 1, three-column data

The external port DMA Channel 10 (DMAC10) becomes active following

reset; it is initialized to 0x0000 0161. This enables the external port DMA
and selects DTYPE for instruction words. The packing mode bits (PMODE) in
the DMACx register are set to 8- to 48-bit packing. The host bus width (HBW)
and word order (HMSWF) bits must be programmed in the SYSCON register.

For each 48-bit word of boot image, an 8-bit host performs the following
sequence of operations:

1. Assert HBR and CS.

2. Wait for HBG. After the host receives the host bus grant signal back
from the ADSP-21161 processor, it can start downloading instruc-
tions or it can change the reset initialization conditions of the
ADSP-21161 processor by writing to any of the IOP control
registers.

3. Werite the six subwords to the external port buffer, EPB0. This
buffer corresponds to DMA channel 10. The host must use data
pins DATA23-16.

4. Deassert CS and HBR. The processor samples the inactive HBR and
allows a host transition cycle. The processor can access the bus for
external memory initialization.

For 16 and 32-bit host bus widths, the HBW bits in the SYSCON register must
be modified. The host must use the data lines as follows:

16-bit host bus width = 3 subwords using data pins DATA31-16

32-bit host bus width = 2 subwords using data pins DATA47-16
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PROM Booting

When the EPROM boot mode is configured, the external port DMA
Channel 10 (DMAC10) becomes active following reset; it is initialized to
0000 0561. This enables the external port DMA and selects DTYPE for
instruction words. 8- to 48-bit packing is forced with least-signifi-
cant-word first.

The RBWS and RBAM fields of the WAIT register are initialized to perform
asynchronous access and to generate seven wait states (eight cycles total)
for the EPROM access in external memory space. Note that wait states
defined for boot memory are applied to BNMS-asserted accesses.

Table 6-23 shows how the DMA channel 10 parameter registers are ini-
tialized at reset for EPROM. The count register (CEPO) is initialized to
0x0100 for transferring 256 words to internal memory. The external
count register (ECEP0), which is used when external addresses are gener-
ated by the DMA controller, is initialized to 0x0600 (for example, 0x0100
words with six bytes per word). The DMAC10 control register is initialized to
0000 0561. The default value sets up external port transfers as follows:

* DEN = 1, external port enabled
e MSWF =0, LSW first

e PMODE = 101, 8- to 48-bit packing

e DTYPE = 1, three-column data
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Table 6-23. DMA Channel 10 Parameter Register Initialization for
EPROM Booting

Parameter Initialization Value

Register

IIEPO 0x0004 0000

IMEPO uninitialized (increment by 1 is automatic)
CEPO 0x0100 (256 instruction words)

CPEPO uninitialized

GPEPO uninitialized

EIEPO 0x0080 0000

EMEPO uninitialized (increment by 1 is automatic)
ECEPO 0x0600 (256 words x 6 bytes/word)

At system start-up, when the processor’s RESET input goes inactive, the fol-
lowing sequence occurs:

1. The processor goes into an idle state, identical to that caused by the
IDLE instruction. The program counter (PC) is set to address

0x0004 0004.

2. The DMA parameter registers for channel 10 are initialized as
shown in Table 6-23.

3. BMS becomes the boot EPROM chip select.

4. 8-bit Master Mode DMA transfers from EPROM to internal mem-
ory begin, on the external port data bus lines 23-16.

5. The external address lines (ADDR23-0) start at 0x0080 0000 and
increment after each access.

6. The RD strobe asserts as in a normal memory access with seven wait
states (eight cycles).

ADSP-21161 SHARC Processor Hardware Reference 6-75



External Port DMA

The processor’s DMA controller reads the 8-bit EPROM words, packs
them into 48-bit instruction words, and transfers them to internal mem-
ory until 256 words have been loaded. The EPROM is automatically
selected by the BVS pin; other memory select pins are disabled.

The DMA external count register (ECEP0) decrements after each EPROM
transfer. When ECEPO reaches zero, the following wake-up sequence
occurs:

1. The DMA transfers stop.
2. The External Port DMA Channel 10 interrupt (EPOI) is activated.

3. BWS is deactivated and normal external memory selects are
activated.

4. The processor vectors to the EP0OI interrupt vector at 0x0004 0050.

At this point the processor has completed its booting mode and is execut-
ing instructions normally. The first instruction at the EPOI interrupt
vector location, address 0x0004 0050, should be an RTI (Return from
Interrupt). This process returns execution to the reset routine at location
0x0004 0005 where normal program execution can resume. After reaching
this point, a program can write a different service routine at the EP0OT vec-
tor location 0x0004 0050.

External Port DMA Programming Examples

This section provides two programming examples written for the
ADSP-21161 processor. The example shown in Listing 6-1 demonstrates
how the I/O processor uses DMA to read from the external port receive
buffer and write to the external port transmit buffer after an interrupt.
The example shown in Listing 6-2 demonstrates how the I/O processor
uses DMA chaining to read from the external port receive buffer and write
to the external port transmit buffer.
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Listing 6-1. External Port DMA Example

/*

ADSP-21161 Internal-to-External Memory (External Port) DMA
Example

This example shows an internal to external memory no packing
32-bit DMA transfer.

*/

#include "def21161.h"
j#define N 8

.GLOBALinit_int_to_ext_memory_DMA;

.SECTION/DM dm_data;

.VAR source[N]= Ox11111111,
0x22222222,
0x33333333,
0x44444444
0x55555555,
0x66666666,
0x77777777,
0x88888888;

.SECTION/DM segsdram;
.VAR dest[8];

/* start of DMA initialization

routine */

.SECTION/PMpm_code;

init_int_to_ext_memory_DMA:

ADSP-21161 SHARC Processor Hardware Reference 6-77



External Port DMA

r0=0;dm(DMAC10)=r0; /* Clear DMA Control Register */

rO=source;dm(IIEPO) = r0; /* Write source address to IIEPO */

rO=1;dm(IMEPQ)=r0;

/* Write internal address modify
to IMEPO */

r0=@source;dm(CEP0)=r0; /* Load internal DMA 10 Count

rO=dest; dm(EIEPOQ)

Register */

=r0; /* Write destination address to
EIEPO register */

r0=1; dm(EMEPO)=r0; /* Write external address modify

rO=@dest;dm(ECEPO)

to EMEPO */
=r0; /* Load external DMA 10 Count
Register */

/* master mode, no packing mode [PMODE=100] */

/* transmit data from int>ext, enable EP DMA */

/* DMAC10=b#00000000000000000000010100000101; */
ustatl = 0x00000000;

bit set ustatl

MASTER | PMODE4 | TRAN | DEN;

dm(DMAC10)=ustatl;

bit set imask EPOI

rts;

; /* Unmask external port buffer 0
DMA interrupt */
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Listing 6-2. External Port Chained DMA Example

/*
ADSP-21161 Internal-to-External Memory (External Port)
Chained DMA Example

This example shows an internal to external memory, no packing
32-bit chained DMA transfer.
*/

#include "def21161.h"
J#fdefine N 8

.GLOBALint_to_ext_memory_chainDMA;

.SECTION/DM dm_data;
.VAR source[N]= Ox11111111,
0x22222222,

0x33333333,

0x44444444

0x55555555,

0x66666666,

0x77777777,

0x88888888;

.VAR tcb[8] = N, /* ECx */
1, /* EMx */
/* EIx */
, /* GPx */
/* CPx */
/* Cx  */
, /* IMx */
/* 1Ix */

O =P = O O O
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.SECTION/DM segsdram;
.VAR dest[81;

/*__ start of DMA initialization routine */

.SECTION/PMpm_code;

int_to_ext_memory_chainDMA:

r0=source;

dm(tcb + 7) = r0; /* Write Sourcel address to II tcb_a */
rO=dest;

dm(tch + 2) = r0; /* Write Destl address to EI slot in tcb_a */
rOo=tcb + 7;

rl= b#10000000000000000000;

rO=r0 or rl;/* set PCI Bit */

dm(tcbh + 4) = r0; /* Write tcb address to CP slot in tcbhb */

ro=0;

dm(DMAC10)=r0; /* Clear DMA Control Register */
r0=b700000000000000000000010100000111;

dm(DMAC10)=r0; /* dma enable, Chain enable,int>ext, master mode
*/

rO=tchb + 7;

dm(CPEPO) =r0; /* Load CP register*/

bit set imask EPOI;

rts;
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Link Port DMA

There are two link ports DMA channels available on the ADSP-21161:
channels 8 and 9. These two channels are shared with the SPI port. Chan-
nel 8 is assigned to link port 0 while channel 9 is assigned to link port 1.
These bidirectional ports transfer data to other processors or link port

peripherals.

The processor support a number of DMA modes for link port DMA. The
following sections describe typical link port DMA processes:

e “Setting Up Link Port DMA” on page 6-86

* “Bootloading Through The Link Port” on page 6-88
e “Link Port Buffer Modes” on page 6-83

e “Link Port Channel Priority Modes” on page 6-83

e “Link Port Channel Transfer Modes” on page 6-85

Link Port Registers

The SYSCON and LCTL registers control the link ports operating modes for
the I/O processor.

* Table A-18 on page A-60 lists all the bits in SYSCON.
e Table A-25 on page A-93 lists all the bits in LCTL.

The following bits control link port I/O processor modes. The control bits
in the LCTL registers have a one cycle effect latency. Programs should not
modify an active DMA channel’s bits in the LCTL register other than to
disable the channel by clearing the LxDEN bit. For information on verifying
a channel’s status with the DMASTAT register, see “Using I/O Processor Sta-
tus” on page 6-121.
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Some other bits in LCTL setup non-DMA link port features. For informa-
tion on these features, see “Setting Link Port Modes” on page 9-5.

Link Port DMA Channel Priority Rotation Enable. SYSCON Bit 20
(LpcPR). This bit enables (rotates if set, =1) or disables (fixed if
cleared, =0) priority rotation between link port DMA channels 8
and 9.

Link—External Port DMA Channel Priority Rotation Enable.
SYSCON Bit 21 (PRROT). This bit enables (rotates if set, =1) or dis-
ables (fixed if cleared, =0) priority rotation between link port DMA
channels 8 and 9 and external port DMA channels 10 to 13.

Link Port assignment for LBUFx. LCTL Bits 9-0 and 23-22 corre-
spond to link buffer 0. LCTL Bits 19-10 and 25-24 correspond to
link buffer 1.

Link Buffer Enable. LCTL Bits 0 and 10 (LxEN). This bit enables
(if set, =1) or disables (if cleared, =0) the corresponding link buffer
(LBUFx).

Link Buffer DMA Enable. LCTL Bits 1 and 11 (LxDEN). This bit
enables (if set, =1) or disables (if cleared, =0) DMA transfers for the
corresponding link buffer (LBUFx).

Link Buffer DMA Chaining Enable. LCTL Bits 2 and 12 (LxCHEN).
This bit enables (if set, =1) or disables (if cleared, =0) DMA chain-
ing for the corresponding link buffer (LBUFx).

Link Buffer Transfer Direction. LCTL Bits 3 and 13 (LxTRAN).
This bit selects the transfer direction (transmit if set, =1) (receive if
cleared, =0) for the corresponding link buffer (LBUFx).
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e Link Buffer Extended Word Size. LCTL Bits 4 and 14 (LxEXT). This
bit selects the transfer extended word size (48-bit if set, =1) (32-bit
if cleared, =0) for the corresponding link buffer (LBUFx). Programs

must not change a buffer’s LxEXT setting while the buffer is
enabled.

Link Port Buffer Modes

The LABx bits in the LCTL register assign link ports to link buffers and
enable link buffers. Bit 19 LABO enables link buffer 0 while Bit 20 LAB1
enables link buffer 1. To enable a link buffer, a program sets the buffer’s
LXEN bit in LCTL. To disable a link buffer, a program clears the buffer’s
LXEN bit in LCTL. The LCTL bit descriptions appear in “Link Port Buffer
Control Registers (LCTL) Bit Definitions” on page A-93.

When the processor disables the buffer (LxEN transitions from high

to low), the processor clears the corresponding LxSTATx and LRERRx
bits.

Link Port Channel Priority Modes

The LDCPR and PRROT bits in the SYSCON register select priority levels for
the link port buffers in relation to the priority of other link port buffer
and the other I/O ports.

The Link Port DMA Channel Priority Rotation Enable (LDCPR) bit
enables (rotates if set, =1) or disables (fixed if cleared, =0) priority rotation
between link port DMA channels 8 and 9. Rotating priority distributes
link port DMA channels’ access to the I/O bus. When channel priority is
rotating, the processor arbitrates I/O bus access between contending link
port DMA channels, forcing the channels to take turns. When channel
priorities fixed, the lower numbered link port DMA channel always has
priority over the higher numbered channel when contending for I/O bus
access.
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When LDCPR is set (rotating priority), high priority shifts to a new channel
after each single-word transfer. The following steps illustrate this process:

1.
2.
3.

®

At reset, link port channels have priority order—from high to low.
The link port performs a single transfer on channel 8.

The /0 processor rotates channel priority,
changing it from 8 to 9.

Even though the link port channel DMA priority can rotate, the
interrupt priorities of all DMA channels are fixed.

When a program uses fixed priority for the link port DMA channels, the
I/O processor assigns the higher priority to channel 8 and the lower prior-
ity to channel 9. For a list of all channel assignments, see Table 6-1 on

page 6-13.

Programs can change the fixed priority order, assigning a different channel
to the highest priority. The following example shows how to change the
fixed priority sequence of the link port DMA channels:

1.

Disable all link port DMA channels except the one immediately
above the channel that is to have highest priority.

Select rotating priority by setting the LDCPR bit.
Cause at least one transfer to occur on the enabled channel.

Disable rotating priority and re-enable all of the link port DMA
channels.

The channel immediately after the selected channel now has the highest
fixed priority.
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Programs can also rotate priority between the link port and external port
DMA channels. The DMA Channel Priority Rotation Enable (PRROT) bit
enables (rotates if set, =1) or disables (fixed if cleared, =0) priority rotation
between link port DMA channels 8 and 9 and external port DMA chan-
nels 10 to 13.

Rotating priority distributes link port and external port DMA channels’
access to the I/O bus. When channel priority is rotating, the processor
arbitrates I/O bus access between contending link port and external port
DMA channels, forcing the channel types to take turns. When channel
priority is fixed, any link port DMA channel always has priority over any
external port DMA channel when contending for I/O bus access.

Link Port Channel Transfer Modes

The LxDEN, LxCHEN, LxTRAN, and LxEXT bits in the LCTL register enable link
port DMA, and chained DMA and select the transfer direction and for-
mat. The link DMA enable (LxDEN) and link Chained DMA enable
(LxCHEN) bits work together to select a link port DMA channel’s transfer
mode. Table 6-24 lists the modes.

Table 6-24. Link Port DMA Enable Modes

LxCHEN LxDEN DMA Enable Mode Description

0 0 Channel disabled (chaining disabled, DMA disabled)

0 1 Single DMA mode (chaining disabled, DMA enabled)

1 0 Chain insertion mode (chaining enabled, DMA enabled,

auto-chaining disabled); For more information, see “Chaining
DMA Processes” on page 6-25.

1 1 Chained DMA mode (chaining enabled, DMA enabled,

auto-chaining enabled)
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Because link ports are bidirectional, the I/O processor uses the link Trans-
mit select (LxTRAN) bit to determine the transfer direction (transmit or
receive). Data flows from internal to external memory when in transmit
mode. In transmit mode, the I/O processor fills the channel’s LBUFx buffer
when the channel’s LxDEN bit is set.

The Link Extended Word Size (LxEXT) bit determines how the DMA
channel accesses columns of internal memory. If LxEXT is set, the data is
40- or 48-bit words, and the I/O processor makes 3-column internal
memory accesses. If LxEXT is cleared, the data is 32-bit words, and the I/O
processor makes 2-column internal memory accesses. For more informa-
tion, see “Memory Organization and Word Size” on page 5-25.

The LxEXT for the transfer overrides the Internal Memory Data
Width (IMDWx) setting for the internal memory block.

Setting Up Link Port DMA

The method for setting up and starting an link port DMA sequence varies
slightly with the transfer mode for the channel. For more information on
DMA transfer modes, see “Link Port Channel Transfer Modes” on

page 6-85.

The following sequence describes a typical external to internal DMA oper-
ation where an external device transfers a block of data into the processor’s
internal memory using a link port.

1. The processor or host (depending on the mode) assigns the DMA
channel’s link buffer to a link port using the channel’s LABx bits in
the LCTL register.

2. The processor or host (depending on the mode) enables the DMA
channel’s link buffer, setting the buffer’s LxEN bit in the channel’s
LCTL register. The processor or host selects a words size (32- or
40/48-bits) using the LxEXT in the channel’s LCTL register.
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3. The processor or host (depending on the mode) writes the DMA
channel’s parameter registers (I1LBx, IMLBx, and CLBx) and LCTL
control register, initializing the channel for receive (LxTRAN=0).

4. The processor or host (depending on the mode) sets (=1) the chan-
nel’s LxDEN bit enabling the DMA process.

5. The external device begins writing data to the LBUFx buffer through
the link port.

6. The LBUFx buffer detects data is present and asserts an internal

DMA request to the I/O processor.

7. The I/O processor grants the request and performs the internal
DMA transfer, emptying the LBUFx buffer FIFO.

In general, the following sequence describes a typical internal to external
DMA operation where an external device transfers a block of data from
the processor’s internal memory using a link port:

1. The processor or host (depending on the mode) assigns the DMA
channel’s link buffer to a link port using the channel’s LABx bits in
the LCTL register.

2. The processor or host (depending on the mode) enables the DMA
channel’s link buffer, setting the buffer’s LxEN bit in the channel’s
LCTL register. The processor or host selects a words size (32- or
40/48-bits) using the LxEXT in the channel’s LCTL register.

3. The processor or host (depending on the mode) writes the DMA
channel’s parameter registers (I1LBx, IMLBx, and CLBx) and LCTL
control register, initializing the channel for transmit (LxTRAN=1).

4. The processor or host (depending on the mode) sets (=1) the chan-
nel’s LxDEN bit enabling the DMA process. Because this is a
transmit, setting LxDEN automatically asserts an internal DMA
request to the I/O processor.
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5. The I/O processor grants the request and performs the internal
DMA transfer, filling the LBUFx buffer’s FIFO.

6. The external device begins reading data from the LBUFx buffer
(through the link port).

7. The LBUFx buffer detects that there is room in the buffer (it is now
partially empty) and asserts another internal DMA request to the
I/0 processor, continuing the process.

Bootloading Through The Link Port

One of the processor’s booting modes is booting the processor through the
link port. Link port booting uses DMA channel 8 of the I/O processor to
transfer the instructions to internal memory. In this boot mode, the pro-
cessor receives 4-bit wide data in link buffer 0.

After the boot process loads 256 words into memory locations 0x40000
through 0x400FF, the processor begins executing instructions. Because
most processor programs require more than 256 words of instructions and
initialization data, the 256 words typically serve as a loading routine for
the application. Analog Devices supplies loading routines (loader kernels)
that load an entire program through the selected port. These routines
come with the development tools. For more information on loader ker-
nels, see the development tools documentation.

It is important to note that DMA channel differences between the
ADSP-21161 and previous SHARC processors (ADSP-2106x)
introduce some booting differences. Even with these differences,
the ADSP-21161 supports the same boot capability and configura-
tion as the ADSP-2106x processors. For link booting the
ADSP-21161, the program sequencer automatically unmasks the
DMA channel 8 interrupt, initializing the LIRPTL register to
0x00010000 and IMASK register to 0x00004003.
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The processor determines the booting mode at reset from the EB0OT,
LBOOT, and BMS pin inputs. When EB00T=0, LB00T=1, and BMS=1, the pro-
cessor boots through the link port. For a list showing how to select
different boot modes, see the Boot Memory Select pin description in the
table “Booting Modes” on page 13-72.

When using any of the power-up booting modes, address

0x0004 0004 should not contain a valid instruction since it is not
executed during the booting sequence. A NOP or IDLE instruction
should be placed at this location.

In link port booting, the processor gets boot data from another processor’s
link port or 4-bit wide external device after system powerup.

The external device must provide a clock signal to the link port assigned
to link buffer 0. The clock can be any frequency, up to a maximum of the
processor clock frequency. The clock’s falling edges strobe the data into
the link port. The most significant 4-bit nibble of the 48-bit instruction
must be downloaded first.

Table 6-25 shows how the DMA channel 8 parameter registers are initial-
ized at reset for EPROM booting. The count register (CLB0) is initialized

to 0x0100 for transferring 256 words to internal memory. The LCTL regis-
ter is overridden during link port booting to allow link buffer 0 to receive

48-bit data.

Table 6-25. DMA Channel 8 Parameter Register Initialization For Link
Port Booting

Parameter Initialization Value

Register

1ILBO 0x0004 0000

IMLBO uninitialized (increment by 1 is automatic)
CLBO 0x0100 (256 instruction words)
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Table 6-25. DMA Channel 8 Parameter Register Initialization For Link
Port Booting (Contd)

Parameter Initialization Value
Register

CPLBO uninitialized
GPLBO uninitialized

In systems where multiple processors are not connected by the parallel
external bus, booting can be accomplished from a single source through
the link ports. To simultaneously boot all of the processors, a parallel
common connection should be made to link buffer 0 on each of the pro-
cessors. If only a daisy chain connection exists between the processors’ link
ports, then each processor can boot the next one in turn. Link buffer 0
must always be used for booting.

Link Port DMA Programming Examples

This section provides two programming examples written for the
ADSP-21161 processor. The example shown in Listing 6-3 demonstrates
how the I/O processor uses DMA chaining to read from the link port
receive buffer and write to the link port transmit buffer. The example
shown in Listing 6-4 demonstrates how the I/O processor uses DMA to
read from the link port receive buffer and write to the link port transmit
buffer after an interrupt.
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Listing 6-3. DMA-Chained Link Loopback Example

/*____ ADSP-21161 DMA-Chained LINK Loopback Example
This example shows an internally looped-back Tink port 32-bit

transfer. DMA is used to transfer the data to and from the buff-
ers. Loopback is achieved by assigning the transmit and receive

link buffers to the same port (Port 0). */

#Hinclude "def21161.h"
jtdefine N 8

.section/pm seg_rth; /*Reset vector from 1df file*/
nop;
Jjump start;

.section/dm seg_dmda;/*Data section from 1df file*/

.var source[NJ]= 0X11111111, 0X22222222, 0X33333333, 0X44444444,
0X55555555, 0X66666666, 0X77777777, 0X88888888;

.var dest[N];

.var txtcb_source[8]=0,0,0,0,0,N,1,source; /*DMA TCB settings*/
.var rxtcb_dest[8]=0,0,0,0,0,N,1,dest; /*DMA TCB settings*/

/* Main Routine */
.section/pm seg_pmco;/*Main code section described in .1df file*/

start:

ustatl = dm(SYSCON);

bit clr ustatl BHD; /*Disable Buffer Hang*/
dm(SYSCON) = ustatl;

imask = 0; /*Clear IMASK and IRPTL registers*/
irptl = 0;

bit set imask LPISUMI; /*Enable Link port interrupts*/
bit set Tirptl LPIMSK; /*Enable Link port 1 interrupt*/
bit set model IRPTEN; /*Enable global interrupts*/
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r0 = 0; dm(LCTL) = r0;
ustatl=dm(LCTL);

/*LCTL REGISTER-->LBUFO=TX, LBUF1=RX, 2x CLK RATE, LBUF 0 & 1
ENABLED, LBUF 0 & 1 -> PORT 0 DMA Enabled, DMA Chain Enabled*/
bit clr ustatl LOTRAN | LABO | LAB1 | LOCLKDO | L1CLKDO;

bit set ustatl LITRAN | L1EN | LOEN | LOCLKD1 | L1CLKD1 | LODEN |
LIDEN | LOCHEN | L1CHEN;

dm(LCTL)=ustatl;

rl = Ox0003FFFF; /* CPX register mask */

ro = txtcb_source + 7; /* Get DMA chaining int. mem. ptr
with tx buf address */

rO = rl AND rO; /* Mask the pointer */

ro = BSET r0 BY 18; /* Set the pci bit */

dm(txtcb_source + 4) = r0; /* Write DMA transmit block chain
pointer to TCB buffer */
dm(CPLB1) = rO; /* Transmit blk chain ptr, init.LP1
DMA transfers */

r0 = rxtcb_dest + 7;

rO = rl AND rO;/* Mask the pointer */

rO = BSET r0 BY 18;/* Set the pci bit */

dm(rxtcb_dest + 4) = r0; /* Write DMA receive block chain
pointer to TCB buffer*/

dm(CPLBO) = r0; /* Receive block chain pointer,

Initiate LPO DMA transfers */

wait: idle;
Jjump wait;

6-92 ADSP-21161 SHARC Processor Hardware Reference



/0O Processor

Listing 6-4. Interrupt DMA-Driven Link Loopback Example

/*

ADSP-21161 Interrupt DMA-Driven LINK Loopback Example
This example shows an internally looped-back Tink port 32-bit
transfer. DMA is used to write to and read from the buffers.
Loopback is achieved by assigning the transmit and receive link
buffers to the same port. (Port 0)

*/

#include "def21161.h"
Jfdefine N 8

.section/pm seg_rth; /*Reset vector from 1df file*/
nop;
Jjump start;

.section/dm seg_dmda; /*Data segment section from 1df filex/
.var source[N]= 0X11111111, 0Xx22222222, 0X33333333, 0X44444444,
0X55555555, 0X66666666, 0X77777777, 0X88888888;

.var dest[N];

.section/pm Ipli_svc; /*Link Port 1 Vector from 1df file*/
jump TpISRL;rti;rti;rti;

.section/pm 1p0i_svc; /*Link Port 0 Vector from 1df file*/
jump TpISRO;rti;rti;rti;
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/* Main Routine */
.section/pm seg_pmco;/*Main code section from 1df file*/
start:

ro = 0; DM(LCTL) = rO0;

rO=source;

dm(IILBO)=r0; /*Set DMA tx index to start of source buffer*/
rO=dest;

dm(ITLB1)=r0; /*Set DMA rx index to start of destination
buffer*/

r0=@source;
dm(CLBO)=r0; /*Set DMA count to length of data buffers*/
dm(CLB1)=r0;

ro=1;
dm(IMLBO)=r0; /*Set DMA modify (stride) to 1*/
dm(IMLB1)=r0;

ustatl = dm(SYSCON); /*Disable Buffer Hang*/
bit clr ustatl BHD;
dm(SYSCON) = ustatl;

imask = 0; Tirptl = 0;

/*Enable Global,Link Port and Link Port Buffer 1 interrupt */
bit set imask LPISUMI;

bit set Tirptl LPIMSK | LPOMSK;

bit set model IRPTEN | CBUFEN;

ustatl=dm(LCTL);

/*LCTL Register-->LBUF1=TX, LBUFO=RX, 1/4x CCLK RATE, LBUF 0 & 1
ENABLED, LBUF 0 & 1 -> PORT O Link buffer O & 1 DMA Enabled*/
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bit clr ustatl LITRAN | LOCLKDO | LICLKDO | LABO | LABI;
bit set ustatl LOTRAN | L1EN | LOEN | LOCLKD1 | L1CLKD1 | LODEN
L1IDEN;

dm(LCTL)=ustatl;

wait:

idle;

jump wait;
1pISRO: rti;
1pISRL: rti;

Serial Port DMA

Serial Port DMA provides a mechanism for receiving or transmitting an
entire block of serial data before an interrupt is generated. The processor's
on-chip DMA controller handles DMA transfers, allowing the processor
core to continue running until the entire block of data is transmitted or
received. There are eight serial port channels available on the
ADSP-21161 for DMA transfers: channels 0 through 7. Each of the serial
port channels can be configured to transmit or receive data. The A path
for each sport allows expansion or compression of data.

The processor supports a number of DMA modes for serial port DMA.
The following sections describe typical serial port DMA processes:

e “Setting Up Serial Port DMA” on page 6-100

e “Serial Port Buffer Modes” on page 6-97

e “Serial Port Channel Priority Modes” on page 6-99
* “Serial Port Channel Transfer Modes” on page 6-99
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Serial Port Registers

The SPCTLx registers control the serial port operating mode for the I/0
processor. Figure 6-13 lists all the bits in SPCTLx.

The following bits control serial port I/O processor modes. The control
bits in the SPCTLx registers have a one cycle effect latency. Programs
should not modify an active DMA channel’s bits in the SPCTLx registers;
other than to disable the channel by clearing the SDEN bit. To change an
inactive serial port’s operating mode, programs should clear a serial port’s
control register before writing new settings to the control register. For
information on verifying a channel’s status with the DMASTAT register, see
“Using I/O Processor Status” on page 6-121.

Some other bits in SPCTLx setup non-DMA serial port features. For infor-
mation on these features, see “Serial Port DMA” on page 6-95.

e Serial Port Enable. SPCTLx Bit 0 (SPEN_A) and Bit 24 (SPEN_B).
These bits enables (if set, =1) or disables (if cleared, =0) the corre-
sponding serial port. SPEN_A corresponds to the A channel
(companding). SPEN_B corresponds to the B channel (no compand-
ing). You can enable one or both of these bits.

* Data Type Select. SPCTLx Bits 2-1 (DTYPE). These bits select the
data type formatting for normal and multi-channel reception as
follows: (normal/multichannel= format) 00/x0=Right-justify and
zero-fill unused MSBs, 01/x1=Right-justify and sign-extend
unused MSBs, 10/0x=Compand using p-law, 11/1x=Compand
using A-law.

e Serial Word Endian Select. SPCTLx Bit 3 (SENDN). This bit selects
little endian words (LSB first, if set, =1) or big endian words (MSB
first, if cleared, =0).

* Serial Word Length Select. SPCTLx Bits 8-4 (SLEN). These bits
select the word length —1 in bits. Word sizes can be from 3-bit
(SLEN=2) to 32-bit (SLEN=31).
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* 16-bit to 32-bit Word Packing Enable. spcTLx Bit 9 (PACK). This
bit enables (if set, =1) or disables (if cleared, =0) 16- to 32-bit word
packing.

e Serial Port DMA Enable. SPcTLx Bit 18 (SDEN_A) and Bit 20
(SDEN_B).These bits enable (if set, =1) or disable (if cleared, =0) the
serial port’s A or B channel DMA.

 Serial Port DMA Chaining Enable. SPCTLx Bit 19 (SCHEN_A) and
Bit 21 (SCHEN_B). These bits enable (if set, =1) or disables (if
cleared, =0) the serial port’s A or B channel DMA chaining.

Serial Port Buffer Modes

The SPEN, SENDN, SLEN, and PACK bits in the SPCTLx registers enable the
serial port and select the transfer format.

To enable a serial port transmit or receive buffer, a program sets the
buffer’s SPEN bit in the SPCTLx register. To disable a serial port transmit or
receive buffer, a program clears the buffer’s SPEN_A or SPEN_B bit in the
SPCTLx register.

@ If a serial port buffer is enabled and DMA for that channel is not

enabled, the serial port is in single-word, interrupt-driven transfer
mode. For more information, see “Using I/O Processor Status” on
page 6-121.

Each serial port buffer allows independent settings for the three transfer
format features: bit order, word length, and word packing. For transfer-
ring little endian words (LSB first, if set, =1) to or from little endian
devices, the serial port buffers have a Serial Word Endian Select (SENDN)
bit. This bit selects little endian words (LSB first, if set, =1) or big endian
words (MSB first, if cleared, =0). The Serial Word Length Select (SLEN)
bit field selects the transfer word length (-1) in bits. Word sizes can be
from 3-bit (SLEN=2) to 32-bit (SLEN=31).
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SPCTLO (0x01c0)
SPCTL1 (0x01e0)
SPCTL2 (0x01d0)
SPCTL3 (0x01f0)

DXS_A —T

DXA Data Buffer Status
11=full, 10=partially full, 00=empty

DERR_A

DXA Error Status (sticky)
DDIR=1,transmit underflow’ status
DDIR=0, ‘receive overflow’ status
DXS_B*

DXB Data Buffer Status

11=full, 10=partially full ,00=empty
DERR_B*

DXB Error Status (sticky)

DDIR**

Data Direction Control

1=Active Transmit Buffers TXnB/TXnA
0=Enable Receive Buffers RXnB/RXnA

SPEN_B
SPORT Enable B
1=enable, O=disable

* Status is Read-only
** Do not read/write from/to inactive
RXn/TXn buffers

DITFS

Data Independent ‘tx’ FS (if DDIR=1)
l1=data independent, 0= data dependent
IFS

Internally generated FS
1=internal FS, O=external FS

FSR
FS requirement
1=FS required, 0=FS not required

CKRE

Clock edge for data Frame Sync sampling
or driving (1=rising edge, O=falling edge)
OPMODE

SPORT Operation Mode

0=DSP serial mode/multichannel mode
1=12S mode

ICLK

Internally generated SCLK

1=internal clock, O=external clock

DSP Serial Mode

31 30 29 28 27 26 25 24 23 22 21 20

19 18 17 16

L]

o

1514 13 12 11 10 9 8 7 6 5 4

Figure 6-13. SPCTLx Register — DSP Serial Mode

LFS

Active Low FS

O=active high, 1=active low
LAFS

Late FS

O=early FS, 1=late FS
SDEN_A

SPORT DMA enable A channel
l1=enable, O=disable
SCHEN_A

DMA chaining enable A channel
1l=enable, O=disable

SDEN_B

SPORT DMA enable B channel
1l=enable, O=disable

SCHEN_B

DMA chaining enable B channel
l1=enable, O=disable
FS_BOTH

1=issue WS only if data is
presentin both Tx

O=issue WS if data is

presentin either Tx

L spEN_A

SPORT Enable A

(1=enable, 0=disable)

DTYPE

Data type

00=right-justify; fill MSB with Os
01=right-justify; sign extend MSB
10=compand mu-law
ll1=compand A-law

SENDN

Endian word format

0=MSB first, 1=LSB first
SLEN

Serial Word Length-1

PACK
16/32 packing
1=packing, 0=no packing

If the serial word length is 16-bits or smaller, the serial port can pack two
of these words into the serial port buffer. The 16-bit to 32-bit word Pack-
ing Enable (PACK) bit can enable this packing because the I/O processor
performs 32-bit transfers between the serial port buffers and processor

memory.
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In addition to selecting the endian, length, and packing modes for serial
port processor transfers, programs must indicate the type of data in the
transfer, using the Data Type (DTYPE) bit. For more information, see

“Serial Port Channel Transfer Modes” on page 6-99.

Serial Port Channel Priority Modes

Serial port DMA transfers always take priority over external port, SPI
port, or link port DMA transfers. For more information on prioritization
operations, see “Managing DMA Channel Priority” on page 6-22.

Serial Port Channel Transfer Modes

The SDEN_A, SDEN_B, SCHEN_A, SCHEN_B, and DTYPE bits in the SPCTLx regis-
ter enable serial port DMA, chained DMA, and select the format. The
DMA enable (SDEN) and Chained DMA enable (SCHEN) bits work together
to select a serial port DMA channel’s transfer mode. Table 6-26 lists the
modes.

Table 6-26. Serial Port DMA Enable Modes

SCHEN SDEN DMA Enable Mode Description

AorB AorB

0 0 Channel disabled (chaining disabled, DMA disabled)

0 1 Single DMA mode (chaining disabled, DMA enabled)

1 0 Chain insertion mode (chaining enabled, DMA enabled,

auto-chaining disabled); For more information, see “Chaining
DMA Processes” on page 6-25.

1 1 Chained DMA mode (chaining enabled, DMA enabled,

auto-chaining enabled)
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Because serial port buffers are bidirectional, the I/O processor does not
need an indicator to determine the transfer direction (transmit or receive).
Data flows from internal to external devices using a transmit (TXx) buffer.
When transmitting serial data as DMA, the I/O processor fills the chan-
nel’s TXx buffer when the channel’s SDEN bit is set.

Setting Up Serial Port DMA

The method for setting up and starting an serial port DMA sequence var-
ies slightly with the transfer mode for the channel. For more information
on DMA transfer modes, see “Serial Port Channel Transfer Modes” on

page 6-99.

In general, the following sequence describes a typical external to internal
DMA operation where an external device transfers a block of data into the
processor’s internal memory using a serial port:

1. The processor or host (depending on the mode) enables the DMA
channel’s serial port, setting the port’s SPEN_A or SPEN_B bit in the
port’s SPCTLx register. The processor or host selects a words size
using the DTYPE in the port’s SPCTLx register. When you clear
DDIR(= 0), the program configures SPORT A and B data pins as

receivers and activates the RXA and RXB registers.

2. The processor or host (depending on the mode) writes to the DMA
channel’s parameter registers (I1x, IMx, and Cx) and SPCTLx control
register, initializing the channel for receive.

3. The processor or host (depending on the mode) sets (=1) the chan-
nel’s SDEN_A or SDEN_B bit enabling the DMA process.

4. The external device begins writing data to the RXx buffer through
the serial port.
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The RXx buffer detects data is present and asserts an internal DMA
request to the I/O processor.

The I/0 processor grants the request and performs the internal
DMA transfer, emptying the RXx buffer.

In general, the following sequence describes a typical internal to external
DMA operation where an external device transfers a block of data from
the processor’s internal memory using a serial port:

1.

The processor or host (depending on the mode) enables the DMA
channel’s serial port, setting the port’s SPEN bit in the port’s SPCTLx
register. The processor or host selects a words size using the DTYPE

in the port’s SPCTLx register. The DDIR bit is set (=1) to enable the
serial interface as a transmitter. The program activates the Tx buff-
ers allowing data to transmit out of the SPORT A and B data pins.

The processor or host (depending on the mode) writes to the DMA
channel’s parameter registers (I11x, IMx, and Cx) and SPCTLx control
register, initializing the channel for transmit.

The processor or host (depending on the mode) sets (=1) the chan-
nel’s SDEN bit enabling the DMA process. Because this is a transmit,
setting SDEN_A or SDEN_B automatically asserts an internal DMA
request to the I/O processor.

The I/0 processor grants the request and performs the internal

DMA transfer, filling the Txx buffer.

The external device begins reading data from the TXx buffer
through the serial port.

The Txx buffer detects that there is room in the buffer because it is
now “partially empty” and asserts another internal DMA request to
the I/O processor, continuing the process.
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When programming the serial port channel (A or B) as a transmit-
ter only the corresponding TXA and TXB become active, while the
receive buffers RXA and RXB remain inactive. Similarly, when the
SPORT channel A and B is programmed as receive only the corre-
sponding RX0A and RX0B is activated.

When performing core driven transfers, programs must write to the
proper buffer depending on the direction setting in the SPCTL register
(DDIR). For DMA-driven transfers the serial port logic performs the data
transfer from internal memory to/from the appropriate buffer depending
on the DDIR bit setting.

If the inactive SPORT data buffers are read or written to by core while the
port is already being enabled, the SPORT does not operate correctly. If,
for example, the SPORT is programmed to be a transmitter, while at the
same time, the core reads from the receive buffer of the same SPORT, the
core hangs, just as it would if it was reading an empty buffer which was
currently active. This locks up the core permanently until the SPORT is
reset.

The program must set the direction bit along with serial port enable and
DMA enable bits before initiating any operations on the SPORT data
buffers. If the processor operates on the inactive transmit or receive buffers
while the SPORT is enabled it can cause unpredictable results.

SPORT DMA Programming Examples

This section provides two programming examples written for the
ADSP-21161 processor. The example shown in Listing 6-5 demonstrates
how the I/O processor uses DMA chaining to read from the SPORT
receive buffer and write to the SPORT transmit buffer. The example
shown in Listing 6-6 demonstrates how the I/O processor uses DMA to
read from the SPORT receive buffer and write to the SPORT transmit
buffer.
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Listing 6-5. DMA-Chained Sport Loopback Example

/*

ADSP-21161 DMA-Chained SPORT Loopback Example

This example shows an internally looped-back SPORT 32-bit trans-
fer. The transfer buffer (TX2A) and receive buffer (RX0A) are
both handled via DMA chaining.

*/

#Hinclude "def21161.h"
jfdefine N 8

.section/pm seg_rth; /*Reset vector from 1df file*/
nop;
Jjump start;

.section/dm seg_dmda;
.var source[N]= 0X11111111, 0Xx22222222, 0X33333333, 0X44444444,
0X55555555, 0X66666666, 0X77777777, 0X88888888;

.var dest[N];

.var txtcb[8] = 0,0,0,0,0,N,1,source; /*DMA tcb settings*/
.var rxtcb[8] 0,0,0,0,0,N,1,dest;

.section/pm sp0i_svc;
Jump IRQ; rti;rti;rti;

.section/pm sp2i_svc;
Jump IRQ; rti;rti;rti;

A Main Routine---------------------------- */
.section/pm seg_pmco;
start:
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ustat3=dm(SYSCON) ;
bit clr ustat3 BHD; /*Disable Buffer Hang*/
dm(SYSCON)=ustat3;

bit set imask SPOI |SP2I; /*Unmask SPORT 0 & 2 Interrupts*/
bit set model CBUFEN | IRPTEN; /*Enable Circ Buffers &
Interupts*/

r0 = 0x00001000;
/*Set the SPL bit in the SPxxMCTL register to enable loopback*/
dm(SP0O2MCTL)=r0;

r0 = 0x0; /*Externally generated clock and framesync*/
dm(DIVO) = r0;
r0 = 0x000c21f1;

/*Set bits SPEN_A, SLENO-4, FSR--enable the A channel, set the
word Tength to 32 bits, require frame synch, and enable DMA and
DMA Chaining.*/

dm(SPCTLO)=r0;

r0=0x00270004;
/*TCLKDIV=[FCCLK(96Mhz)/2xFSCLK((19.2Mhz)]1-1=0x0004*/
/*TFSDIV=[FSCLK(9.6Mhz)/TFS(.24Mhz)]-1=0x0027*/
dm(DIV2)=r0;

ro=0x20c65f1;

/*Set bits SPEN_A, SLENO-4, ICLK, IFS, FSR, DDIR--enable the A
channel, set the word length to 32 bits, generate internal frame-
synch and clock, require frame synch, set for transmit, and
enable DMA and DMA Chaining.*/

dm(SPCTL2)=r0;

r1=0x0003FFFF; /*CPx register mask*/
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rO=txtcb+7; /*Get DMA chaining memory pntr containing
tx buff address*/

rO=rl AND rO; /*Mask the pointer*/

rO= BSET r0 by 18; /*Set the PCI bit*/

dm(txtcb+4)=r0; /*Write DMA transmit block chain pntr to
TCB buffer*/

dm(CP2A)=r0; /*Transmit block chain pointer, init SP2

DMA transfers*/

rO=rxtcb+7;

r0=rl AND rO0;

r0=BSET r0 by 18;

dm(rxtcb+4)=r0;

dm(CPOA)=r0; /*Initiate SPO DMA transfers*/

wait: idle;
Jjump wait;

IRQ: rti;
Listing 6-6. DMA-Driven Sport Loopback Example

/*
ADSP-21161 DMA-Driven SPORT Loopback Example

This example shows an internally looped-back SPORT 32-bit trans-
fer. The transfer buffer (TX2A) and receive buffer (RX0A) are
pboth handled via DMA.

*/

#include "def21161.h"
Jfdefine N 8

.section/pm seg_rth; /*Reset vector from 1df file*/
nop;
Jjump start;
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.section/dm seg_dmda;

.var source[N]= 0X11111111, 0X22222222, 0X33333333, 0X44444444,

0X55555555, 0X66666666, 0X77777777, 0X88888888;

.var dest[N];

.section/pm sp0i_svc;
Jump IRQ; rti;rti;rti;

.section/pm sp2i_svc;
Jump IRQ; rti;rti;rti;

[Fommm e Main Routine---------------------------- */
.section/pm seg_pmco;

start:

rO0=source;

dm(II2A)=r0; /*Set DMA tx index to start of source buffer*/
rO=dest;
dm(II0OA)=r0; /*Set DMA rx index to start of dest buffer*/

r0=@source;
dm(COA)=r0; /*Set DMA count to length of data buffers*/
dm(C2A)=r0;

ro=1;
dm(IMOA)=r0; /*Set DMA modify (stride) to 1.*/
dm(IM2A)=r0;

ustat3=dm(SYSCON);
bit clr ustat3 BHD; /*Disable Core Buffer Hang*/
dm(SYSCON)=ustat3;

bit set imask SPOI |SP2I; /*Unmask Sport 0&2 interrupts*/
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bit set model CBUFEN | IRPTEN; /*Enable Circ. Buffer & Global
Inters*/

r0 = 0x00001000;
/*Set the SPL bit in the SPxxMCTL register to enable loopback*/
dm(SPO2MCTL)=r0;

r0 = 0x0; /*Externally generated clock and framesync*/
dm(DIVQO) = r0;
r0 = 0x000421f1;

/*Set bits SPEN_A, SLEN=32, FSR--enable the A channel, set the
word Tength to 32 bits, and require frame synch.*/
dm(SPCTLO)=r0;

r0=0x00270004;
/*TCLKDIV=[FCCLK(96Mhz)/2xFSCLK((19.2Mhz)]1-1=0x0004*/
/*TFSDIV=[FSCLK(9.6Mhz)/TFS(.24Mhz)]-1=0x0027*/
dm(DIV2)=r0;

r0=0x20465f1;

/*Set bits SPEN_A, SLEN=32, ICLK, IFS, FSR, DDIR--enable the A
channel, set the word length to 32 bits, generate internal frame-
synch and clock, require frame synch, and set for transmit.*/
dm(SPCTL2)=r0;

wait: idle;
Jjump wait;

IRQ: rti;
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SPl Port DMA

There are two DMA channels available on the ADSP-21161 for SPI port
transfers: channels 8 and 9. These two channels are shared with the link
port. Channel 8 which is assigned to SPI receive buffer SPIRX handles
receive data while channel 9 which is assigned to SPI transmit buffer
SPITX handles transmit data.

The following sections describe typical SPI port DMA processes:
e “Setting up SPI Port DMA” on page 6-112
* “Bootloading Through the SPI Port” on page 6-113
e “SPI Port Buffer” on page 6-109
e “SPI DMA Channel Priority” on page 6-112

SPI Port Registers

The SPICTL register controls the SPI port operating mode for the 1/0O pro-
cessor. Figure 6-14 lists all the bits in SPICTL.

The following bits control SPI port I/O processor modes. The control bits
in the SPICTL registers have a one cycle effect latency. Programs should
not modify an active DMA channel’s SPICTL register; other than to disable
the channel by clearing the SPIEN bit. For information on verifying a
channel’s status with the DMASTAT register, see “DMA Channel Status Reg-
ister (DMASTAT)” on page A-90. For information on SPI port status, see
“SPI Port Status Register” on page A-115.
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The following bits in SPICTL setup DMA SPI port features:

e SPI Port Enable. SPICTL Bit 0 (SPIEN). This bit enables (if set, =1)
or disables (if cleared, =0) the SPI port.

e Data Format. SPICTL Bits 6 (DF). This bit selects the data format.
When set (=1), the MSB is sent/received first. When cleared (=0),
the LSB is sent/received first.

e SPI Word Length Select. SPICTL Bits 8-7 (WL). These bits select
the word length. Word sizes can be 8-bit (WL = 00), 16-bit (WL =
01) or 32-bit (WL = 11).

*  Word Packing Enable. SPICTL Bit 28 (PACKEN). This bit enables
(if set, =1) 8- to 32-bit packing or (if cleared, =0) disables the pack-
ing. If this bit is enabled, the receiver packs the received byte
whereas the transmitter unpacks the data before sending it. For
more information on packing formats, see “SPI Word Packing” on
page 11-24. This bit should be 1 only in 8-bit data word length
(WL=00).

e SPI Port Receive DMA Enable. SPICTL Bit 27 (RDMAEN). This bit
enables (if set, =1) or disables (if cleared, =0) DMA transfers from
the receive data buffer. At SPI boot this bit is set to 1 to enable the
booting process through the SPI port.

e SPI Port Transmit DMA Enable. sP1CTL Bit 13 (TDMAEN). This bit
enables (if set, =1) or disables (if cleared, =0) DMA transfers to the
transmit data buffer. At SPI boot this bit is 0.

SPI Port Buffer

The SPIEN bit in the SPICTL register enables the SPI port. The SPI port
shares channel 8 with link buffer 0 for the receive function. It shares chan-
nel 9 with link buffer 1 for the transmit function. Data is loaded into
SPITX from internal memory by the DMA controller. Once the SPI is
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SPICTL 31 30 29 28 27 26 25 24 23 22 2120 19 18 17 16

7Bt Pllo[olo[o[o[ofolofolo[o[o[o <]

v

Fetch/Discard Incoming RXB data when RXB full
0=Discard incoming data

1=Overwrite with new data

SENDLW

Send Zero/Repeat Byte When TXB Empty
0=Send zero, 1=Repeat last data

SGN

Sign Extend Data
0=no sign extend, 1=sign extend

PACKEN

8-bit Packing Enable

0=no packing, 1=8 to 32-bit packing
RDMAEN

Receive DMA Enable

1=Enable, 0=Disable

OPD

Open Drain Output Enable for Data Pins
0=Normal, 1=Open Drain

DMISO
Disable MISO Pin (Broadcast)
0=MISO Enabled, 1=MISO Disabled

L FLS1
FLAG1 Slave Device Select
1=Enable, 0=Disable

FLS2
FLAG?2 Slave Device Select
1=Enable, 0=Disable

FLS3
FLAGS Slave Device Select
1=Enable, O=Disable

NSMLS

Non-Seamless operation

0=no delay, 1=delay before next
word starts

DCPHO

Deselect SPIDS in CPHASE =0
(master mode only, NSMLS bit=1)
0=No SPI device select
1=Deselects slaves between
successive transfers

1514 13 12 11 10 9 8 7 6 5 4 3 2 1 O

FLSO —I

FLAGO Slave Device Select
1=Enable, 0=Disable

PSSE
Programmable Slave Select Enable
0=Disable, 1=Enable

TDMAEN
Transmit DMA Enable
1=Enable, 0=Disable

BAUDR
Baud Rate
CCLK / (2*(2 + BR))

WL

Word Length
00=8 bits, 01=16 bits,
11=32 bits, 10=RESERVED

DF

Data Format

0=LSB sent / received first
1=MSB sent / received first

Figure 6-14. SPICTL Register

I' SPIEN
SPI System Enable
1=enable, O=disable

SPRINT
SPI RX Buffer Interrupt Enable
1=enable SPI IRQ on RXB empty, O=disable

SPTINT
SPI TX Buffer Interrupt Enable
1=enable SPI IRQ on TXB not full, O=disable

MS
Master/Slave Mode Bit
0=SPI slave device, 1=SP| Master Device

CpP

Clock polarity
0=SPICLK active high, low in idle state

1=SPICLK active low, high in idle state

CPHASE

Clock phase

0=SPICLK toggles at middle of 1st data bit
1=SPICLK toggles at beginning of 1st data bit

enabled, data in SPITX is automatically loaded into the transmit shift regis-
ter. After a word is received completely in the receive shift register, it is
automatically transferred to the SPIRX. The data in SPIRX is moved into
internal memory by the DMA controller All DMA transfers are 32-bit
words. To disable the SPI port, clear the SPIEN bit in the SPICTL register,
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which also clears the status of the buffers in the SPISTAT register. The bits

in the SPI control register (SPICTL) are shown in Figure A-38 on
page A-120.

If the SPI port is enabled without enabling DMA, the SPI port is
either in single-word, interrupt-driven data transfer mode (if the
corresponding interrupt enable bits in the SPICTL is set) or is in
core-driven data transfer mode. The software must do the data
transfers to the SPI data buffers. For more information on the dif-
ferent SPI transfer modes, see “Master Mode Operation” on

page 11-25. For more information on transfer status, see “Using
I/O Processor Status” on page 6-121.

The SPI allows independent settings for the three transfer format features:
bit order, word length, and word packing.

The SPI port buffer has a SPI data format (DF) bit, which when cleared
(=0) can transmit data as little endian words (LSB first) to or from little

endian devices. This bit selects big endian words (MSB first, if set, =1) or
little endian words (LSB first, if cleared, =0).

The SPI Word Length (WL) bit field selects the transfer word length. Word
sizes can be 8-bit (WL = 00), 16-bit (WL = 01) or 32-bit (WL = 11). If the
SPI word length is 8-bits or smaller, the SPI port can pack two of these
words into the SPI port data buffer. The 8-bit to 32-bit Word Packing
Enable (PACKEN) bit can enable this packing because the I/O processor per-
forms 32-bit transfers between the SPI port buffer and processor memory.
If this bit is enabled, the transmitter unpacks the data before sending it,
while the receiver packs the received byte. For more information on pack-
ing formats, see “SPI Word Packing” on page 11-24. This bit should be 1
only in 8-bit data word length (WL= 00).
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SPI DMA Channel Priority

SPI shares DMA channels with the link port. The receive DMA is shared
with link port 0 DMA while the transmit DMA is shared with link port 1.
SPI port DMA transfers have the same priority as link port DMA trans-
fers. If SPI DMAs are enabled, you should disable the link port DMAs.
For more information on prioritization operations, see “Managing DMA
Channel Priority” on page 6-22.

Setting up SPI Port DMA

In general, the following sequence describes a typical external to internal
DMA operation where an external device transfers a block of data into the
processor’s internal memory using a SPI port:

1.

The processor or host (depending on the mode) enables the DMA
channel’s serial port, setting the port’s SPIEN bit in the port’s
SPICTL register. The processor or host selects a words size using the
WL bits in the port’s SPICTL register.

The processor or host (depending on the mode) writes the DMA
channel’s parameter registers (IISRx, IMSRx, and CSRx) and SPICTL
control register, initializing the channel for receive.

Depending on the mode, the processor or host sets the channel’s
RDMAEN bit to 1 enabling the DMA process.

4. The external device begins writing data to the SPIRX buffer through
the SPI port.
5. The SPIRX buffer detects data is present and asserts an internal
DMA request to the I/O processor.
6. The I/O processor grants the request and performs the internal
DMA transfer, emptying the SPIRX buffer.
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In general, the following sequence describes a typical internal to external
DMA operation where an external device transfers a block of data from
the processor’s internal memory using a serial port:

1.

The processor or host (depending on the mode) enables the DMA
channel’s serial port, setting the port’s SPIEN bit in the port’s
SPICTL register. The processor or host selects a words size using the
WL bits in the port’s SPICTL register.

. The processor or host (depending on the mode) writes the DMA

channel’s parameter registers (I1STx, IMSTx, and CSTx) and SPICTL
control register, initializing the channel for transmit.

The processor or host (depending on the mode) sets the channel’s
TDMAEN bit to 1 enabling the DMA process. Because this is a trans-
mit, setting TOMAEN automatically asserts an internal DMA request
to the I/O processor.

The 1/0 processor grants the request and performs the internal

DMA transfer, filling the SPITX buffer.

The external device begins reading data from the SPITX buffer
through the SPI port.

The SPITX buffer detects that there is room in the buffer because it
is now partially empty and asserts another internal DMA request to
the I/O processor, continuing the process.

Bootloading Through the SPI Port

One of the processor’s booting modes is booting the processor through the
SPI port. SPI port booting uses DMA channel 8 of the I/O processor to
transfer the instructions to internal memory. In this boot mode, the pro-
cessor receives 32-bit wide data in the SPIRX buffer.
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During the boot process the program loads 256 words into memory loca-
tions 0x40000 through 0x400FF. The processor subsequently begins
executing instructions. Because most programs require more than 256
words of instructions and initialization data, the 256 words typically serve
as a loading routine for the application. Analog Devices supplies loading
routines (loader kernels) that load an entire program through the selected
port. These routines come with the development tools. For more informa-
tion on loader kernels, see the development tools documentation.

For SPI booting the ADSP-21161, the Program sequencer auto-
matically unmasks the DMA channel 8 interrupt, initializing the
SPICTL register to 0xOAOO1F81 and IMASK register to 0x00004003.

The processor determines the booting mode at reset from the EB0OT,
LB0OT, and BMS pin inputs. When EB00T=0, LB00T=1, and BMS=0, the pro-
cessor boots through the SPI Port. For a list showing how to select
different boot modes, see the Boot Memory Select pin description in the
table “Booting Modes” on page 13-72.

When using any of the power-up booting modes, address

0x0004 0004 should not contain a valid instruction since it is not
executed during the booting sequence. A NOP or IDLE instruction
should be placed at this location.

In SPI Port Booting, the processor gets boot data from another processor’s
SPI port or another SPI compatible device after system powerup.

Table 6-27 on page 6-115 shows how the DMA channel 8 parameter reg-
isters are initialized at reset for EPROM booting. The count register
(CSRX) is initialized to 0x0180 for transferring 256 words to internal mem-
ory. The SPI Control Register (SPICTL) is configured to 0x0A001F81
upon reset during on SPI boot. The default value sets up SPI transfers as
follows:

e SPIEN = 1, SPI enabled

e MS =0, slave device
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e DF =0, LSB first

* WL =11, 32-bit SPI receive shift register word length
* BAUDR = 1111 (at 100 MHz, SPICLK = 763 Hz)

e DMISO = 1, MISO disabled

e RDMA = 1, SPIRX DMA enabled on channel 8

This configuration sets up the SPIRX register for 32-bit serial transfers.
The sPIRXx DMA channel 8 parameter registers are configured to DMA in
0x180 number of 32-bit words into internal memory normal word address
space starting at 0x40000. Once the 32-bit DMA transfer completes, the
data is then accessed as 3-column 48-bit instructions. The processor exe-
cutes a 256 (0x100) word loader kernel upon completion of the 32-bit,
0x180 word DMA. Note that for 16-bit SPI hosts, shift two words into
the 32-bit receive shift register before a DMA transfer to internal memory
occurs. For 8-bit SPI hosts, shift four words into the 32-bit receive shift
register before a DMA transfer to internal memory occurs.

Table 6-27. DMA Channel 8 Parameter Register Initialization for SPI Port

Booting
Parameter Initialization Value
Register
IISRX 0x0004 0000
IMSRX uninitialized (increment by 1 is automatic)
CSRX 0x0180 (256 instruction words)
GPSRX uninitialized
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SPI Port DMA Programming Examples

This section provides two programming examples written for the
ADSP-21161 processor. The example shown in Listing 6-7 demonstrates
how the I/O processor uses DMA to read from the SPI port receive buffer
and write to the SPI port transmit buffer. The example shown in

Listing 6-8 demonstrates how the I/O processor uses DMA to read from
the SPI port receive buffer and write to the SPI port transmit buffer after
an interrupt.

Listing 6-7. DMA-Driven SPI Loopback

/*
ADSP-21161 DMA-Driven SPI Loopback Example

This example shows looped-back SPI 32-bit transfer. On this
peripheral Toop-back is performed by externally connecting the
hardware MOSI and MISO pins on the processor. The transfer buffer
and receive buffer are both handled via DMA. Hardware loop-back
does not require the use of flags as device selects so the FLS
bits do not need to be used as they would in an SPI transfer
between two different SPI devices (non-loop-back.)

*/

#include <def21161.h>
ffdefine size 10

/* vector code for reset vector from 1df file */
.section/pm seg_rth;
Chip_Reset: idle; Jjump start; nop; nop;

/* vector code for receive interrupt vector from 1df file */
.section/pm spiri_svc;
nop; nop; jump finish; nop;
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.section/dm seg_dmda;

/* transmit buffer */

.var spi_tx_bufl[size]l =0x11111111,0x22222222, 0x33333333,
0x44444444 , 0x55555555,0x66666666, 0x77777777, 0x88888888,
0x99999999,0xaaaaaaaa;

/* receive buffer */

.var spi_rx_buf[sizel;

.section/pm seg_pmco;
start:
rO=spi_tx_buf; /* configure index register for SPI transmit */

dm(IISTX)=r0;

r0=@spi_tx_buf; /* configure count register for SPI transmit */
dm(CSTX)=r0;

ro=1; /* configure modify register for SPI transmit */
dm(IMSTX)=r0;

rO=spi_rx_buf; /* configure index register for SPI receive */
dm(IISRX)=r0;

rO0=@spi_rx_buf; /* configure count register for SPI receive */
dm(CSRX)=r0;

ro=1;
dm(IMSRX)=r0; /* configure modify register for SPI receive */

ustatl = dm(SYSCON);
bit clr ustatl BHD; /* Clear Buffer Hang Disable in SYSCON */
dm(SYSCON) = ustatl;

bit set LIRPTL SPIRMSK ; /* enable SPI RX interrupts */
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bit set MODEL IRPTEN | CBUFEN; /* allow global interrupts and
circular buffer enable */
bit set IMASK LPISUMI; /* unmask spi interrupts */

r0=0x00000000; /* initially clear SPI control register */
dm(SPICTL)=r0;
ustatl=dm(SPICTL);

/* set up options for the SPI port */

bit set ustatl SPIEN | SPRINT | SPTINT | MS | CPHASE | DF | WL32
| BAUDRS | SGN | GM | RDMAEN | TDMAEN;

/* enable spi port, spitx and spirx interrupts, master device
spiclk toggles at beginning of first data transfer bit, MSB first
format, 32 bit word length, baud rate sign extend, get more new
data even if receive buffer is full enable transmit and receive
dma */

dm(SPICTL) = ustatl; /* start transfer by configuring SPICTL */
wait: idle; jump wait;

finish:rti;

Listing 6-8. Interrupt DMA-Driven SPI Loopback Example

/*
ADSP-21161 Interrupt DMA-Driven SPI Loopback Example

This example shows an externally Tooped-back SPI 32-bit transfer.
DMA is used to write to and read from the buffers. Loopback is
achieved by physically connecting the MOSI and MISO pins external
to the processor.
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*/

#include "def21161.h"
jtdefine size 10

/* PM interrupt vector code */
.SECTION/pm seg_rth;

Reserved_1: rti; nop; nop; nop;
Chip_Reset: idle; jump start; nop; nop;

.SECTION/DMseg_dmda;
.var spi_tx_bufl[size]l =0x11111111,
0x22222222,
0x33333333,
0x44444444
0x55555555,
0x66666666,
0x77777777,
0x88888888,
0x99999999,
Oxaaaaaaaa;
.var spi_rx_buf[sizel;

.SECTION/PMseg_pmco;
.GLOBAL SPI_register_init;
.GLOBALSPI_1Tpbk_irg_test;

start:

ustatl = dm(SYSCON); /* Clear Buffer Hang Disable in SYSCON */
bit clr ustatl BHD;

dm(SYSCON) = ustatl;

bit set model CBUFEN; /* set circular buffer enable */
SPIDMA_tx:

rO=spi_tx_buf;dm(IILB1)=r0;
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r0=@spi_tx_buf;dm(CLB1)=r0;

r0=1;dm(IMLB1)=r0;

SPIDMA_rx:

rO=spi_rx_buf;dm(IILBO)=r0;

rO0=@spi_rx_buf;dm(CLBO)=r0;

rO0=1;dm(IMLBO)=r0;

r0=0x00000000;dm(SPICTL)=r0; /* Initially clear SPI control
reg.*/

ustatl=dm(SPICTL);

bit set ustatl
SPIEN|SPRINT|SPTINT|MS|CPHASE|DF|WL32|BAUDRS|PSSE|DCPHO|SGN|GM|R
DMAEN | TDMAEN ;

bit clr ustatl
CP|FLSO|FLS1|FLS2|FLS3|SMLS|DMISO|OPD|PACKEN|SENDLW;

dm(SPICTL) = ustatl;

bit set LIRPTL SPIRMSK | SPITMSK; /* enable SPI TX & SPI RX */
interrupts

bit set MODE1l IRPTEN; /* Allow global interrupts */

wait: jump start;
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Using I/O Processor Status

The I/O processor monitors the status of data transfers on DMA channels
and indicates status in the DMASTAT, IRPTL, and LIRPTL registers.

e Table A-9 on page A-27 lists all the bits in IRPTL.
e Table A-10 on page A-34 lists all the bits in LIRPTL.

* A discussion of DMASTAT appears in “DMA Channel Status Register
(DMASTAT)” on page A-90.

The DMA controller of ADSP-21161 processor maintains the status
information of the channels in a read only register, DMASTAT. Bits 0-13
indicate which DMA channel is active; bits 16-29 indicate the chaining
status of the channels.

* Bit definitions for the DMASTAT register are defined in Table 6-28
and in Figure 6-15.

* Bit definitions for the SPISTAT register are defined in Table A-29
on page A-115.
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DMAG6CHST
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* Channel Active Status: 1=Active [ transferring data or waiting to transfer current block, and not transferring TCB ]
0= Inactive [DMA transter complete, or in TCB chain loading]

** Channel Chaining Status: 1=Chaining is Enabled and currently transferring TCB, or is Pending to transfer TCB,

0 = Chaining Disabled

Status does not change on the master ADSP-21161 processor during external port DMA until the external portion is
completed (for example, the EPBXx buffers are emptied).

If in chain insertion mode (DEN=0, CHEN=1), then channel chaining status will never go to a 1. Therefore, test
channel status to see if it is ready so that your program can rewrite the chain pointer (CPX) register.

Figure 6-15. DMA STAT Register
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Bit # DMA Channel # Definitions

0 0 Status' (RXOA or TX0A)

1 2 Status' (RX1A or TX1A)

2 4 Status' (RX2A or TX2A)

3 6 Status' (RX3A or TX3A)

4 8 Status' (LBUF0/SPIRX)

5 9 Status! (LBUF1/SPITX)

6 1 Status' (RXOB or TXO0B)

7 3 Status' (RX1B or TX1B)

8 5 Status' (RX2B or TX2B)

9 7 Status' (RX3B or TX3B)

10 10 Status' (EPBO)

11 11 Status' (EPB1)

12 12 Status' (EPB2)

13 13 Status' (EPB3)

14 -15 Reserved

16 0 Chaining Status® (RX0A or TX0A)
17 2 Chaining Status® (RX1A or TX1A)
18 4 Chaining Status® (RX2A or TX2A)
19 6 Chaining Status® (RX3A or TX3A)
20 8 Chaining Status® (LBUFO0)

21 9 Chaining Status® (LBUF1)

22 1 Chaining Status®> (RX0B or TX0B)
23 3 Chaining Status®> (RX1B or TX1B)
24 5 Chaining Status®> (RX2B or TX2B)
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Table 6-28. DMASTAT Register Definitions (Cont’d)

Bit # DMA Channel # Definitions

25 7 Chaining Status® (RX3B or TX3B)
26 10 Chaining Status® (EPBO0)

27 11 Chaining Status® (EPB1)

28 12 Chaining Status® (EPB2)

29 13 Chaining Status® (EPB3)

30-31 Reserved

1 Channel Active status: 1-active, 0 = inactive

2 Channel Chaining status: 1 = chaining enabled/pending, 0 = chaining disabled

The I/O processor reports on DMA in progress, DMA complete, or DMA

channel not ready status as follows:

All DMA channels can be active or inactive. If a channel is active, a
DMA is in progress on that channel. The I/O processor indicates
the active status by setting the channel’s bit in the DMASTAT register.

When an unchained (single-block) DMA process reaches comple-
tion on any DMA channel, the I/O processor generates that DMA
channel's interrupt. It does this by setting the DMA channel's
interrupt latch bit in the IRPTL or LIRPTL register. The DMA pro-
cess is complete when the count in CEPx=0 (for Slave mode and
Handshake modes) or when the count in ECEPx=0 (for External
Handshake mode) or when the count in CEPx=0 and ECEPx=0 (for
Master mode and Paced Master mode).

When a DMA process in a chained DMA sequence reaches com-
pletion (the count in Cx=0 or CEPx=0) on any DMA channel, the
I/O processor generates an interrupt if the PCI bit in the channels
CPx register is set. The only exception is external-handshake mode.
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The I/O processor also generates that DMA channel’s interrupt
when the last block in a chained DMA reaches completion regard-
less of the PCI setting.

*  When a DMA channel’s buffer not being used for a DMA process,
the I/O processor can generate an interrupt on single word writes
or reads of the buffer. This interrupt service differs slightly for each
port. For more information on single-word interrupt-driven trans-
fers, see “External Port Status” on page 6-127, “Link Port Status”
on page 6-131, and “Serial Port Status” on page 6-135.

Using the DMA Channel Status Register (DMASTAT), programs can check

which DMA channels are performing a DMA or chained DMA. For each
channel, the I/O processor sets the channel’s active status bit if DMA for
that channel is enabled and a DMA sequence is in progress on that chan-
nel. The I/O processor sets the channel’s chaining status bit if a chained

DMA sequence is in progress or pending on that channel.

There is a one cycle latency between a change in DMA channel sta-
tus and the status update in the DMASTAT register.

As an alternative to interrupt-driven DMA, programs can poll the DMASTAT
register to determine when a single DMA sequence is done. To poll chan-
nel status, programs read DMASTAT. If both status bits for the channel are
cleared, the DMA sequence has completed.

If chaining is enabled on a DMA channel, programs should not use
polling to determine channel status. Polling could provide inaccu-
rate information in this case because the next DMA sequence
might be under way by the time the polled status is returned.

During interrupt-driven DMA, programs use the interrupt mask bits in
the IMASK and LIRPTL registers to selectively mask DMA channel inter-
rupts that the I/O processor latches into the IRPTL and LIRPTL registers.
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The I/O processor only generates a DMA complete interrupt when
the channel’s count register decrements to zero as a result of actual
DMA transfers. Writing zero to a count register does not generate
the interrupt.

A channel interrupt mask in IMASK and IRPTL masks out DMA complete
interrupts for a channel, but other types of interrupt masking are also
available. These other types of interrupt masking include:

* By clearing a channels PCI bit during chained DMA, programs
mask the DMA complete interrupt for a DMA processes within a
chained DMA sequence.

* By masking the LPISUM interrupt, programs mask out the logical
Oring of link port interrupt status.

* By masking the LSRQ interrupt, programs mask out link port service
requests to link ports that do not have an assigned link buffer.

These lower levels of interrupt masking let programs limit some of the
conditions that can cause DMA channel interrupts.

Each DMA channel has its own interrupt. Although the external
port and link port channel access priority can rotate, the interrupt

priorities of all DMA channels are fixed.

In processor systems using I/O processor interrupts, an external device
may need to change the processor’s interrupt mask. This task presents a
challenge because the IMASK register is not memory-mapped and is not
directly accessible to external devices through the external port. To read or
write IMASK through the external port, programs can set up an interrupt
vector routine to handle this task. The VIRPT vector interrupt register may
be used for this task.

The I/O processor can also generate non-DMA single-word interrupts for
I/O port operations that do not use DMA. In this case, the I/O processor
generates a DMA interrupt when data becomes available at the receive
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buffer or when the transmit buffer does not have new data to transmit.
Generating DMA interrupts in this fashion lets programs implement
interrupt-driven I/O under control of the processor core. Care is needed
because multiple interrupts can occur if several I/O ports transmit or
receive data in the same cycle.

External Port Status

The I/O processor monitors the status of data transfers on the external
port. DMA channel status for the external port is described in “Using I/O
Processor Status” on page 6-121. This section describes external port spe-
cific status features, such as buffer status, buffer control, and single-word
interrupt-driven transfers.

Bits in the SYSTAT, SYSCON and DMACx registers indicate and control the sta-
tus of external port buffers.

e Table A-21 on page A-69 lists all the bits in SYSTAT.
e Table A-18 on page A-60 lists all the bits in SYSCON.

e Table A-24 on page A-80 and Figure 6-16 lists all the bits in the
DMACx register .

* For a description of the IOP registers, see the Registers appendix of
this manual.

The following bits influence external port buffer status:

* Host Packing Status. SYSTAT bits 24-22 (HPS). These bits indicate
the host’s packing status.

* External Port Packing Status. DMACx Bits 23-21(PS). These bits
indicate the corresponding FIFO buffer’s packing status.
Table 6-29 shows the available bit setting.
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* Single-Word Interrupt Enable. DMACx Bit 12 (INTI0). This bit
enables (if set, =1) or disables (if cleared, =0) single-word,
non-DMA, interrupt-driven transfers for the corresponding exter-
nal port FIFO buffer (EPBx). To avoid spurious interrupts,
programs must not change a buffer’s INTI0 setting while the buffer
is enabled.

*  Flush DMA Buffers and Status. DMACx Bit 14 (FLSH). This bit
flushes (when set, =1) settings for the corresponding external port

FIFO buffer (EPBx).

e External Port FIFO Buffer Status. DMACx bit 17-16 (FS). These bits
indicate the corresponding external port FIFO buffer’s status.
Table 6-30 shows the available setting.

DMAC10 0Oxlc

DMACll Ox1d 31 30 2928 27 26 25 24 23 22 2120 19 18 17 16
DMAC12 O0Oxle |0|0|0|0|0|0|0|o|o|o|o|o|o|o|o o|
DMAC13 Oxif . o |_L_FIS

Ext Port EPBXx FIFO Buffer Packing Status Ext. Port FIFO Buffer Status (read-only)
(read-only) 00=buffer empty
000=packing complete 01=buffer-not-full
001=1* stage pack/unpack 10=buffer-not- empty
010=2r¢stage pack/unpack 11=buffer full

011=3¢ stage
100 = 5 stage of 8 to 48 -bit packing
101=110=111= reserved

1514 13 12 1110 9 8 7 6 5 4 3 2 1 O

ojo|lo|jojojojOo|jOjJO|jO]JO|O)JOfO]|O]O

LSH J

F
Flush EPBx FIFO Buffers & Status
1=flush EPBx

INTIO

Single Word Interrupts for EPBx FIFO Buffers
1=enable single-wd non -DMA interrupt-driven xfers
O=disabled, FIFO fully enabled

Figure 6-16. DMAC Register—Status Bits Only
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The HPS bits in the SYSTAT and PS bits in the DMACx registers indicate an
external buffer’s packing status. These bits are read-only, and the proces-
sor clears these bits when DEN is cleared (changes from 1 to 0).

Table 6-29. Processor (PS) and Host (HPS) Packing Status

PS or HPS Packing Status

000 packing complete (6th stage of 8- to 48-bit packing, 4th stage of 8- to
32-bit packing, etc.)

001 Ist stage

010 2nd stage

011 3rd stage

100 fifth stage of 8/48

The FS bits in the DMACx registers indicate an external buffer’s FIFO status.
These bits are read-only. The processor clears these bits when DEN is
cleared (changes from 1 to 0).

Table 6-30. External Port Buffer FIFO Status

ES FIFO Buffer Status
00 buffer empty

01 buffer-not-full

10 buffer-not-empty
11 buffer full

For transmit (TRAN=1), buffer-not-full means that the buffer has space for
one normal word, and buffer-not-empty means that the buffer has space
for two-or-more normal words. For receive (TRAN=0), buffer-not-full
means that the buffer contains one normal word, and buffer-not-empty
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means that the buffer contains two or more normal words. Any type of full
status (01, 10, or 11) in receive mode indicates that new (unread) data is

in the buffer.

When a program sets (=1) the FLSH bit, the processor flushes the settings
for the corresponding external port FIFO buffer (EPBx). Flushing these
settings does the following: clears (=0) the FS and PS status bits, clears (=0)
the FIFO buffer and DMA request counter, clears any partially packed
words. There is a two-cycle effect latency in completing the flush opera-
tion. Programs must not set a buffer’s FLSH during the same write that
enables the buffer. Also, programs must not set a buffer’s FLSH bit while
the DMA channel is active. Programs should determine the channel’s
active status by reading the corresponding bit in the DMASTAT register.

Status does not change on the master processor during external
port DMA until the external portion is completed (for example,
the EPBx buffers are emptied). If in chain insertion mode (DEN=0,
CHEN=1), then channel chaining status never goes to 1. Programs
should test channel status to see if it is ready before re-writing the
chain pointer (CPx).

The INTIO bit in the DMACx registers support single-word interrupt-driven
transfers for each corresponding external port buffer. These non-DMA
transfers are available under the following conditions:

The external port DMA channel’s DEN bit is cleared (DMA disabled).

e The external port DMA channel’s INTIO bit is set enabling inter-
rupt-driven I/O.

* The external port DMA channel’s buffer is not empty on an exter-
nal read or not full on an external write.

Under these conditions, the I/O processor generates that DMA channel’s
interrupt on the single word transfer to or from that channel’s external

port buffer.
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Link Port Status

The I/O processor monitors the status of data transfers on the link ports.
DMA channel status for the link ports is described in “Using I/O Proces-
sor Status” on page 6-121. This section describes link ports specific status
features, such as buffer status, buffer control, and single-word inter-
rupt-driven transfers.

The LRSQ (Link Service Request) register allows a disabled link port to
respond to a link port transmit or receive request from another processor.
Bits in the LSRQ registers indicate and control status of link port buft-
ers. The following bits influence link port buffer status:

* Link Port x Transmit Mask. LSRQ Bit 4 and 6 (LxTM). These bits
mask (if set, =1) or unmask (if cleared, =0) the LOTRQ through
L1TRQ status bits.

* Link Port x Receive Mask. LSRQ Bit 5 and 7 (LxRM). These bits
mask (if set, =1) or unmask (if cleared, =0) the LORRQ and L1RRQ
status bits.

* Link Port x Transmit Request Status (read-only). LSRQ Bit 20 and
22 (LxTRQ). If set (=1), these bits indicate that the corresponding
link port (0 or 1) is disabled, but has a request to transmit data.

* Link Port x Receive Request Status (read-only). LSRQ Bit 21and
23 (LxRRQ). If set (=1), these bits indicate that the corresponding
link port (0 or 1) is disabled, but has a request to receive data.

The Link Port Status Register (LSRQ) is shown in Figure 6-16. The status
bits in the Link Port Control Register (LCTL) are shown in Figure 6-17 on
page 6-132.
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Figure 6-17. LSRQ Register
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Figure 6-18. LCTL Register — Status Bits

L1STAT[1:0]
Link Buffer 1 Status (Read - Only)
11=Full, 00=Empty, 10=one word
LOSTAT[1:0]

Link Buffer 0 Status (Read - Only)
11=Full, 00=Empty, 10=one word

The LRERRx bits in the LCTL register indicate a link port buffer’s receive
packing status. When the buffer is ready to receive and pack a new word,
the processor clears (=0) LRERRx. If this bit remains set (=1) after the buffer
receives a word, a link transfer error (for example, a clock glitch) has

6-132

ADSP-21161 SHARC Processor Hardware Reference



/0O Processor

occurred. These bits are read-only, and the processor clears these bits
when LxEN is cleared (changes from 1 to 0). Table 6-31 shows the available
settings.

Table 6-31. Link Port Buffer Receive Packing Status

LRERRx Receive Packing Status
0 pack complete (reset value)
1 pack not complete

The LxSTATx bits in the LCTL register indicate a link buffer’s FIFO status.
When transmitting, these bits indicate when the buffer has space for more
data. When receiving, these status bits indicate when the buffer contains
new (unread) data. These bits are read-only. The processor clears these
bits when LxEN is cleared (changes from 1 to 0) and empties the buffer.
Table 6-32 shows the available settings.

Table 6-32. Link Port Buffer FIFO Status

LxSTATx FIFO Buffer Status
00 buffer empty

01 reserved

10 one word

11 buffer full

The LCTL register lets programs assign link buffers to link ports. Bits LABO
and LAB1 in the LCTL register assign link buffers to link ports. Because this
mapping allows link ports to be unassigned (no buffer), the I/O processor
has an interrupt (LSRQI) to notify programs that an external device has
made a read or write request on a disabled link port.
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When an LSRQI interrupt is latched into the IRPTL register, programs use
the transmit (LxTRQ) and receive (LxRRQ) request bits in LSRQ register to
determine which port has a request. The LSRQ register’s bits indicate the
following:

* For a transmit request (LxTRQ=1), the LSRQI interrupt indicates that
the link port (0 or 1) is disabled, but another processor has
requested more data by setting the link port’s acknowledge
(LxACK=1).

* For a receive request (LxRRQ=1), the LSRQI interrupt indicates that
the link port is disabled, but another processor has requested to
send data by setting the link port’s clock (LxCLK=1).

To control sources of link port service requests, the I/O processor lets pro-
grams mask these service requests. The LSRQ register provides mask bits for
transmit (LxTM) and receive (LxRM) link service requests.

The LxEN bits in the LCTL register support single-word interrupt-driven
transfers for each corresponding link port buffer. These non-DMA trans-
fers are available under the following conditions:

* The link port DMA channel’s LxDEN bit is cleared (DMA disabled).

e The link port DMA channel’s LxEN bit is set enabling the link
buffer.

e The link port DMA channel’s buffer is not empty on receive or not
full on transmit.

Under these conditions, the I/O processor generates that DMA channel’s
interrupt on the single word transfer to or from that channel’s link port

buffer.
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Serial Port Status

The I/O processor monitors the status of data transfers on the serial ports.
DMA channel status for the serial ports is described in “Using I/O Proces-
sor Status” on page 6-121. This section describes serial ports specific
status features, such as buffer status, transmit buffer underflow, receive
buffer overflow, and single-word interrupt-driven transfers.

Bits in the SPCTLx registers indicate and control status of serial port buff-
ers. For more information, see “SPORT Serial Control Registers

(SPCTLx)” on page A-100.
The following bits influence serial port buffer status:

* DXA Error Status (sticky, read-only). SPCTLx Bit 29 (DERR_A).
This bit indicates (if set, =1 and DDIR =1) whether the serial trans-
mit operation has underflowed or (if cleared, =0 and DDIR =0)the
serial receive has overflowed on the A path.

e DXS_A Data Buffer Status (read-only). SPCTLx Bits 31-30
(DXS_A). These bits indicate the status of the serial port’s DXA data
buffer. See Table 6-33 for available bit settings.

* DXB Error Status (sticky, read-only). SPCTLx Bit 26 (DERR_B).
This bit indicates (if set, =1 and DDIR =1) whether the serial trans-
mit operation has underflowed or (if cleared, =0 and DDIR =0)the
serial receive has overflowed on the B path.

* DXS_B Data Buffer Status (read-only). SPCTLx Bits 28-27
(DxS_B). These bits indicate the status of the serial port’s DXB data
buffer. See Table 6-33 for available bit settings.

The DXS_A and DXS_B bits in the SPCTLx registers indicate a serial port
transmit or receive buffer’s FIFO status. Status bits are read-only. Dis-
abling the serial port (setting SPEN=0), clears the status bits and empties
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the buffer. The bits may change state if the data is read or written by the
processor core while the serial port is disabled. Table 6-33 shows the avail-
able settings.

Table 6-33. Serial Port Transmit and Receive Buffer FIFO Status

DXS_A or DXS_B FIFO Buffer Status
00 buffer empty

01 reserved

10 partially full

11 buffer full

The DERR_A and DERR_B bits in the SPCTLx registers indicate a serial port
transmit underflow or receive overflow to the buffer’s FIFO. Status bits
are read-only. Disabling the serial port (setting SPEN=0), clears the status
bits and empties the buffer. These overflow and underflow bits are sticky;
once set, they remain set regardless of buffer status until the serial port is

disabled.

The SPEN bit in the SPCTLx register support single-word interrupt-driven
transfers for each corresponding serial port transmit or receive buffer.
These non-DMA transfers are available under the following conditions:

The serial port DMA channel’s SDEN bit is cleared (DMA disabled).

* The serial port DMA channel’s SPEN bit is set (enabling the serial
port transmit or receive buffer).

* The serial port DMA channel’s buffer is not empty on receive or
not full on transmit.

Under these conditions, the I/O processor generates that DMA channel’s
interrupt on the single word transfer to or from that channel’s serial port

buffer.
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SPI Port Status

The I/O processor monitors the status of data transfers on the SPI port.
DMA channel status for the SPI port is described in “Using I/O Processor
Status” on page 6-121. This section describes SPI port specific status fea-
tures, such as buffer status, transmit or receive buffer errors, and transfer
completion test.

Bits in the SPISTAT register indicate and control status of SPI port buffers,
SPIRX and SPITX. Table A-29 on page A-115 and Figure 6-19 lists all the
bits in SPISTAT. The following bits influence SPI port buffer status:

SPI Transmit Transfer Completion. SPISTAT Bit 0 (SPIF). This
bit is set (=1) when the SPI transfer is complete. For example, the
following condition is met: the transmit data buffer is empty and
the last data has been transmitted out of the transmit shift register.
The bit is cleared (=0) when the transfer is active.

Transmit Error (sticky, read-only). SPISTAT Bit 2 (TXE). This bit
indicates an error in the transmission. This bit is set (=1) when the
transmit data buffer is empty and the last data has been transmitted
out of the transmit shift register. If you are not servicing the inter-
rupt quickly enough and not updating the contents of SPITX so
that it is available to be transferred to the transmit shift register
when required, this bit is set.

Transmit Data Buffer Status (read-only). SPISTAT Bit 3-4 (TXS).
These bits indicate the status of the SPI port transmit buffer
(SPITX). If TS =00, the buffer is empty. See Table 6-34 for avail-
able TXS bit settings.

Receive Error (sticky, read-only). SPISTAT Bit 5 (RBSY). This bit
indicates an error in the receive operation. This bit is set (=1) when
the SPITX data buffer is full and the last data has been received into
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the receive shift register. If you are not servicing the interrupt
quickly enough and not transferring the contents of SPIRX, this bit
s set.

* Receive Data Buffer Status (read-only). SPISTAT Bits 6-7 (RXS).
These bits indicate the status of the SPI port receive buffer (SPIRX).
If RXS =00, the buffer is empty. See Table 6-34 for available RXS bit

settings.
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SPIRX Data Buffer Status (Read-only) SPI Transmit Transfer Complete
00=SPIRX empty 1=transfer complete, O=active transfer
01=SPIRX partially full
11=SPIRX full MME
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0=no error, 1=SPIDS~ asserted by slave
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Reception Error (Overflow) L———————— TXE
1=new data received with full RXB FIFO Transmission Error (Underflow)
SPI enters idle mode if master device 1=no new data in TX FIFO,
TXS SPI enters idle mode if master device

SPITX Data Buffer Status (read only)
00=SPITX empty

01=TXB partially full

11=SPITX full

10=Reserved

Figure 6-19. SPISTAT Register

The TxS and RXS bits in the SPISTAT registers indicate a SPI port transmit
(SPITX) or receive (SPIRX) buffer’s FIFO status. Disabling the SPI port
(setting SPIEN=0), clears the status bits and empties the buffer. TXS and
RXS may change state if the data is read or written by the processor core

while the SPI port is disabled. Table 6-34 shows the available settings.
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Table 6-34. SPI Port Transmit and Receive Buffer FIFO Status

TXS or RXS FIFO Buffer Status
00 buffer empty

01 partially full

10 reserved

11 buffer full

The TXE and RBSY bits in the SPISTAT registers indicate a SPI port transmit
underflow or receive overflow to the buffer’s FIFO. Status bits are
read-only. Disabling the SPI port (setting SPIEN=0), clears the status bits
and empties the buffer. These overflow and underflow bits are sticky; once
set, they remain set regardless of buffer status until the SPI port is

disabled.

Under these conditions, the I/O processor generates that DMA channel’s
transfer request over the IOD bus on the single word transfer to the SPITX
data buffer or from the SPIRX data buffers.

Optimizing DMA Throughput

This section discusses overall DMA throughput when several DMA chan-
nels are trying to access internal or external memory at the same time.
Table 6-35 summarizes the advantages of different system configurations.

Internal Memory DMA

The DMA channels arbitrate for access to the processor’s internal mem-
ory. The DMA controller determines, on a cycle-by-cycle basis, which
channel is allowed access to the internal I/O bus and consequently which
channel can read or write to internal memory. The priority order of the

DMA channels appears in Table 6-1 on page 6-3.
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Each DMA transfer takes one clock cycle even when different DMA chan-
nels are being allowed access on sequential cycles; for example, there is no
overall throughput loss in switching between channels. Thus, two link
port DMA channels, each transferring one byte per cycle, would have one
half the I/O transfer rate as one external port DMA channel transferring
data to internal memory on every cycle. Any combination of link ports,
serial ports, and external port transfers has the same maximum transfer
rate.

External Memory DMA

When the DMA transfer is between processor internal memory and exter-
nal memory, the external memory may have one or more wait states.
External memory wait states, however, do not reduce the overall internal
DMA transfer rate if other channels have data available to transfer. In
other words, the processor’s internal I/O data bus cannot be held up by an
incomplete external transfer.
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Table 6-35. Configurations for Processor — Processor DMA

Processor Config. Processor Config. C/T! Advantages, Disadvantages
(Data Source) (Data Destination)
Bus Master Bus Slave 1 Advantage: Destination auto-
DMA Master Mode DMA Slave Mode matically generates interrupt
(MASTER= 1) TRAN=1, (MASTER= 0), upon completion.
EIEPx = address of EPBx TRAN= 0
buffer in destination, Disadvantage: DMA must be
EMEPx= 0 programmed on both source
and destination.
Bus Slave Bus Master 32 Advantage: Source automati-
DMA Slave Mode DMA Master Mode cally generates interrupt upon
(MASTER= 0), TRAN=1 (MASTER= 1), completion.
TRAN=0,
EIEPx = address of Disadvantages: Slower through-
EPBx buffer in source, put. DMA must be programmed
EMEPx=0 on both source and destination.

1 C/T is throughput in cycles/transfer.
2 Maximum burst read throughput: 3-2-2-2

Figure 6-20 shows an example DMA hardware interface. The following
should be noted in this figure.

* Because DMARx and DMAGx are tied together, only one of the proces-
sors may have DMA enabled at a time.

* DMAGx is only driven by the processor bus master.

e The DMA Write Grant signal can be the combination of iR and
MS3-0 instead of DMAG? if paced master mode is used.

e The DMA Read Grant signal can be the combination of RD and
MS3-0 instead of DMAGT if paced master mode is used.

* DMA transfers may be to either processor or to external memory
(in external handshake mode).
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Figure 6-20. Example DMA Hardware Interface
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Figure 6-21. DMAR and DMAG Timing

Figure 6-21 shows DMAR and DMAG timing. The following should be noted
in this figure.

* DMARx setup times relate to the use of the signal in that cycle by the
processor. DMA requests may be asserted asynchronously to CLKIN.

* DMAGx drives DATA47-16 if the processor is receiving. DMAGx latches
DATA47-16 if the processor is transmitting.

When data is to be transferred from internal to external memory, the
internal memory data is first placed in the external port’s EPBx buffer by
the DMA controller; the external memory access begins independently
once the data is detected in the EPBx buffer. Likewise, for exter-
nal-to-internal DMA, the internal DMA request is not be made until the
external memory data is in the EPBx buffer. In both cases, the external
DMA address generator—the EIEPx and EMEPx parameter registers—main-
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tains the external address until the data transfer is completed. The internal
and external address generators of a DMA channel are decoupled and
operate independently.

When EXTERN mode DMA transfers occur between an external device and
external memory, no internal resources of the processor are utilized and

internal DMA throughput is not affected.

System-Level Considerations

Slave mode DMA is useful in systems with a host processor because it
allows the host to access any processor internal memory location indirectly
through DMA while limiting the address space the host must recognize—
only the address space of the processor’s I/O processor registers. Slave
mode DMA is also useful for processor-to-processor DMA transfers.

Slave mode DMA has one drawback when interfacing to a slow host—the
fact that the external bus is held up during the transfer (whether initiated
by the processor or the host) and no other transactions can proceed. To
overcome this, the handshake DMA mode may be used.

In handshake mode, the host does not have to master the bus in order to
make a DMA request, nor does the processor (in master mode) have to
wait on the bus for the transfer to complete. Instead, the host asserts the
DMARX pin. When the processor is ready to make the transfer, it can com-
plete it in one bus cycle. For more information, see “Handshake Mode”

on page 6-57.
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The ADSP-21161 processor’s external port extends its address and data
buses off-chip. Using these buses and external control lines, systems can
interface the processor with external memory, 8-, 16- or 32-bit host pro-
cessors, and other DSPs. Because many of the external port operations
relate to external memory accessing or I/O processing, this chapter refers
to the memory and I/O processor chapters (“Memory” on page 5-1 and
“I/O Processor” on page 6-1) frequently.

This chapter describes connection and timing issues for the external port.
The main sections of this chapter describe the interfaces that are available
through the external port. These interfaces include:

* “External Memory Interface” on page 7-3
* “Host Processor Interface” on page 7-42
e “Multiprocessor (MP) Interface” on page 7-87

Data alignment through the external port is identical for these interfaces.
Figure 7-1 shows the external port’s data alignment.
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Figure 7-1. ADSP-21161 External Data Alignment Options
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Setting External Port Modes

This section describes the various ways to use the external port for data
transfer. The SYSCON, WAIT, and DMACx registers control the external port
operating mode. Table A-18 on page A-60 lists all the bits in SYSCON,
Table A-17 on page A-68 lists all the bits in WAIT, and Table A-24 on
page A-80 lists all the bits in DMACx.

* For information about setting up memory access modes (synchro-
nous versus asynchronous interface), see “Setting Data Access

Modes” on page 5-32.

e For information on setting DMA through the external port, see
“External Port DMA” on page 6-29.

e For information on using external port interrupts, see “Using I/0
Processor Status” on page 6-121.

@ There is a 3:1 bus conflict resolution ratio at the external port

interface (three internal buses to one external bus) in addition to
the 2:1 or greater clock ratio between the processor’s internal clock
and the external system clock. Systems that fetch instructions or
data through the external port must tolerate at least one cycle—and
possibly many additional cycles—of latency for non-SDRAM

accesses. SDRAM accesses operate at the core clock rate.

External Memory Interface

In addition to its on-chip SRAM, the processor provides addressing of up
to 64 megawords SRAM or SBSRAM or 254 megawords of off-chip
SDRAM memory through its external port. This external address space
includes multiprocessor memory space—the IOP register space of all other
ADSP-21161s connected in a multiprocessor system—as well as external
memory space—the region for standard addressing of off-chip memory.
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Figure 7-2 shows how the buses and control signals extend off-chip, con-
necting to external memory. Table 7-1 defines the processor pins used for
interfacing to external memory. The processor’s memory control signals
permit direct connection to fast static RAM devices. Memory mapped
peripherals and slower memories can also connect to the processor using a
user-defined combination of programmable waitstates and hardware
acknowledge signals.

External memory can hold instructions and data. Packed instructions can
be executed directly from 32-bit, 16-bit, or 8-bit wide external memories
using 32- to 48-bit, 16- to 48-bit or 8- to 48-bit execution packing modes
supported by the external port and program sequencer. The external port
can also be configured to have a 48-bit wide external data bus for 48-bit
non-packed execution of instructions when link ports are not used. The
link port data lines are multiplexed with the data lines D0 to D15 and are
enabled through control bits in the memory mapped control register
SYSCON. Data packing of 32- to 48-bit, 16- to 48-bit, 8- to 48-bit, 32- to
32/64-bit, 16- to 32/64-bit or 8- to 32/64-bit is supported for DMA
transfers directly from 32-bit, 16-bit, or 8-bit wide external memories to
and from 32-, 48-, or 64-bit internal memory. Figure 7-1 shows how the
processor transfers different data word sizes over the external port.
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Figure 7-2. ADSP-21161 Processor System
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Table 7-1. External Memory Interface Signals

Pin Type Function

ACK 1/0/S Memory Acknowledge. External devices can deassert ACK (low) to
add wait states to an external memory access. ACK is used by I/O
devices, memory controllers, or other peripherals to hold off com-
pletion of an external memory access. The ADSP-21161 processor
deasserts ACK as an output to add wait states to a synchronous
access of its IOP registers. ACK has a 20 kQ internal pull-up resis-
tor that is enabled during reset or on processors with ID2-0=00x.

ADDR23-0 1/0/T External Bus Address. The ADSP-21161 processor outputs
addresses for external memory and peripherals on these pins. In a
multiprocessor system the bus master outputs addresses for
read/writes of the IOP registers of other ADSP-21161 processors
while all other internal memory resources can be accessed indirectly
via DMA control (that is, accessing IOP DMA parameter registers).
The ADSP-21161 processor inputs addresses when a host processor
or multiprocessing bus master is reading or writing its IOP registers.
A keeper latch on the processor’s ADDR23-0 pins maintains the
input at the level it was last driven. This latch is only enabled on the
processors with ID2-0=00x.

BRST 1/0/T Sequential Burst Access. BRST is asserted by ADSP-21161 proces-
sor to indicate that data associated with consecutive addresses is
being read or written. A slave device samples the initial address and
increments an internal address counter after each transfer. The
incremented address is not pipelined on the bus. A master
ADSP-21161 processor in a multiprocessor environment can read
slave external port buffers (EPBx) using the burst protocol. BRST is
asserted after the initial access of a burst transfer. It is asserted for
every cycle after that, except for the last data request cycle (denoted
by RD or WR asserted and BRST negated). A keeper latch on the
processor’s BRST pin maintains the input at the level it was last
driven. This latch is only enabled on processors with ID2-0=00x.

I (Input), S (Synchronous), o/d (Open Drain), O (Output), A (Asynchronous), a/d (Active
Drive), T (Three-state, when SBTS or HBR is asserted, or when the processor is a bus slave)
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Table 7-1. External Memory Interface Signals (Cont'd)

Pin

Type

Function

CLKIN

I

Local Clock In. Used in conjunction with XTAL. CLKIN is the
ADSP-21161 processor clock input. It configures the ADSP-21161
processor to use either its internal clock generator or an external
clock source. Connecting the necessary components to CLKIN and
XTAL enables the internal clock generator. Connecting the external
clock to CLKIN while leaving XTAL unconnected configures the
ADSP-21161 processor to use the external clock source such as an
external clock oscillator.The ADSP-21161 processor external port
cycles at the frequency of CLKIN. The instruction cycle rate is a
multiple of the CLKIN frequency; it is programmable at power-up
via the CLK_CFG1-0 pins. CLKIN may not be halted, changed, or
operated below the specified frequency.

CLKOUT

o/T

Local Clock Out. CLKOUT is 1x or 2x and is driven at either 1x or
2x the frequency of CLKIN frequency by the current bus master.
The frequency is determined by the CLKDBL pin. This output is
three-stated when the ADSP-21161 processor is not the bus master.
A keeper latch on the processor’s CLKOUT pin maintains the out-
put at the level it was last driven. This latch is only enabled on pro-
cessors with ID2-0=00x.

If CLKDBL enabled, CLKOUT = 2xCLKIN

If CLKDBL disabled, CLKOUT = 1xCLKIN

Note: CLKOUT is only controlled by the CLKDBL pin and oper-
ates at either 1xCLKIN or 2xCLKIN.

Do not use CLKOUT in multiprocessing systems. Use CLKIN
instead.

I (Input), S (Synchronous), o/d (Open Drain), O (Output), A (Asynchronous), a/d (Active
Drive), T (Three-state, when SBTS or HBR is asserted, or when the processor is a bus slave)
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Table 7-1. External Memory Interface Signals (Cont'd)

Pin

Type

Function

DATA47-16

1/0/T

External Bus Data. The ADSP-21161 processor inputs and outputs
data and instructions on these pins. Pull-up resistors on unused data
pins are not necessary. A keeper latch on the processor’s
DATA47-16 pins maintains the input at the level it was last driven.
This latch is only enabled on the processors with ID2-0=00x.
Note: DATA[15:8] pins (multiplexed with LIDATA[7:0]) can also
be used to extend the data bus if the link ports are disabled and not
used. In addition, DATA[7:0] pins (multiplexed with
LODATA[7:0]) can also be used to extend the data bus if the link
ports are not used. This allows execution of 48-bit instructions from
external SBSRAM (system clock speed-external port), SRAM (sys-
tem clock speed-external port) and SDRAM (core clock or one-half
the core clock speed). The IPACKx Instruction Packing Mode Bits
in SYSCON should be set correctly (IPACK1-0 = 0x1) to enable
this full instruction Width/No-packing Mode of operation.

LxDAT7-0
[DAT15-0]

/0
(I/0/T]

Link Port Data (Link Ports 0-1). Each LxDAT pin has a 50 kQ
internal pull-down resistor that is enabled or disabled by the LxP-
DRDE bit of the LCTL register.

Note: LIDATA[7:0] are multiplexed with the DATA[15:8] pins
LODATA([7:0] are multiplexed with the DATA[7:0] pins. If link
ports are disabled and are not be used, then these pins can be used
as additional data lines for executing instructions at up to the full
clock rate from external memory.

MS3-0

1/O0/T

Memory Select Lines. These outputs are asserted (low) as chip
selects for the corresponding banks of external memory. Memory
bank sizes are fixed to 16 Mwords for non-SDRAM and 64 Mwords
for SDRAM. The MS3-0 outputs are decoded memory address
lines. In asynchronous access mode, the MS3-0 outputs transition
with the other address outputs. In synchronous access modes, the
MS3-0 outputs assert with the other address lines; however, they
de-assert after the first CLKIN cycle in which ACK is sampled
asserted. In a multiprocessor systems, the MSx signals are tracked by

slave SHARC:s.

I (Input), S (Synchronous), o/d (Open Drain), O (Output), A (Asynchronous), a/d (Active
Drive), T (Three-state, when SBTS or HBR is asserted, or when the processor is a bus slave)
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Table 7-1. External Memory Interface Signals (Cont'd)

Pin Type

Function

RD 1/0/T

Memory Read Strobe. RD is asserted whenever ADSP-21161 pro-
cessor reads a word from external memory or from the IOP registers
of other ADSP-21161 processors. External devices, including other
ADSP-21161 processors, must assert RD for reading from a word of
the ADSP-21161 processor IOP register memory. In a multiprocess-
ing system, RD is driven by the bus master. RD has a 20 kQ inter-
nal pull-up resistor that is enabled for processors with ID2-0=00x.

WR 1/0/T

Memory Write Low Strobe. WR is asserted when ADSP-21161 pro-
cessor writes a word to external memory or IOP registers of other
ADSP-21161 processors. External devices must assert WR for writ-
ing to ADSP-21161 processor's IOP registers. In a multiprocessing
system, WR is driven by the bus master. WR has a 20 kQ internal
pull-up resistor that is enabled for processors with ID2-0=00x.

I (Input), S (Synchronous), o/d (Open Drain), O (Output), A (Asynchronous), a/d (Active
Drive), T (Three-state, when SBTS or HBR is asserted, or when the processor is a bus slave)

Banked External Memory

The processor divides external memory into four equal-size, fixed banks.
Bank sizes are 16 Mword for non-SDRAM and 64 Mword for SDRAM.
By mapping peripherals into different banks, systems can accommodate
I/O devices with different timing requirements. For information on con-
figuring these memory banks for waitstates and synchronous or
asynchronous access modes, see “Setting Data Access Modes” on

page 5-32.

On the ADSP-21161 processor, Bank 0 starts at address 0x20 0000
in external memory and is followed in order by Banks 1, 2, and 3.
When the processor generates an address located within one of the
four banks, the processor asserts the corresponding memory select

line, MS3-0.
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The MS3-0 outputs serve as chip selects for memories or other external
devices, eliminating the need for external decoding logic. For more infor-
mation, see “Timing External Memory Accesses” on page 7-13. The MS3-0
lines are decoded memory address lines that change at the same time as the
other address lines. When no external memory access is occurring, the
MS3-0 lines are inactive.

Unlike previous SHARC:, strobe assertion for conditional instruc-
tions occurs only when the instruction condition code evaluates as
true.

Boot Memory

Most often, the processor only asserts the BMS memory select line when the
processor is reading from a boot EPROM. This line allows access to a sep-
arate external memory space for booting. Both ROM boot memory
waitstates and the mode of the WAIT register are applied to BVS-selected
accesses.

The BVS output is only driven by the processor bus master. For more
information on booting, see “Bootloading Through The External Port” on

page 6-70 or “Bootloading Through The Link Port” on page 6-88.

It is also possible to write to boot memory using BMS. For more informa-
tion, see “Using Boot Memory” on page 5-35.

Idle Cycle

A bus idle cycle is an inactive bus cycle that the processor automatically
generates to avoid data bus driver conflicts. Such a conflict can occur
when a device with a long output disable time continues to drive after RD
is deasserted while another device begins driving on the following cycle.
Idle cycles are also required to provide time for a slave in one bank to
three-state its ACK driver, before the slave in the next bank enables its ACK
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driver in the synchronous access modes. Figure 7-3 shows idle cycle inser-
tion between a synchronous read and a zero-wait, synchronous write in

cycle 3.

READ OP IDLE CYCLE ~ WRITE OP

ADDRESS 23:0 |

RO\ /

BRST

para4zie p—— (K
kN N

Figure 7-3. Idle Cycle Example

All timing diagrams show the default data bus width DATA [47:16].
When the full bus is enabled for 48-bit non-packed execution of
instructions or transfers of data with the PX register, the data bus

width is 48 bits, DATA47:0.
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To avoid this data bus driver conflict, the processor generates an idle cycle
in the following cases:

* On a transition from a read operation to a write operation in the
same bank.

* On a transition from one bank or multiprocessor memory ID space
to any other bank or multiprocessor slave ID space, independent of
access mode.

@ Unlike previous SHARCs, the ADSP-21161 processor does not
support idle cycle insertion on a page boundary crossing.

Data Hold Cycle

The data hold cycle is another configurable memory access feature for
adding cycles much like waitstates, as discussed in “Setting Data Access
Modes” on page 5-32. A hold time cycle is an inactive bus cycle that the
processor automatically generates at the end of a read or write to allow a
longer hold time for address and data. The address, data (if a write), and
bank select (if in banked external memory) remain unchanged and are
driven for one cycle after the read or write strobes are deasserted. The pro-
cessor inserts the data hold cycle only in asynchronous mode and only if
the number of programmed waitstates code (EBxWS) is 010-111.

Figure 7-4 demonstrates a hold time cycle appended to an asynchronous
write access (EBxWS=011).

The ADSP-21161 processor does not append an Idle cycle after a
Hold cycle.

Multiprocessor Memory Space Waitstates and Acknowledge

Multiprocessor memory space uses only the synchronous transfer proto-
cols, using the zero-waitstate access for writes and a minimum
one-waitstate access for reads. Slave processors deassert ACK if more access

7-12 ADSP-21161 SHARC Processor Hardware Reference



External Port

WRITE OPERATION HOLD TIME
v ~ CYCLE
12 3 4 5

ADDRESS 23:0 K

MS30 \
WR |\ ]

DATA 47:16 [ -

Figure 7-4. Hold Time Cycle Example

time is required. DMA burst transfers are only defined for direct read
access of a processor slave’s external port buffers (EPBx). For more infor-
mation, see “Multiprocessor (MP) Interface” on page 7-87.

The ADSP-21161 processor does not support the MMSWS bit from
previous SHARC:.

Timing External Memory Accesses

Memory access timing for external memory space and multiprocessor

space is the same. For exact timing specifications, refer to the
ADSP-21161N DSP Microcomputer Data Sheet.

The processor can interface to external memories and memory-mapped
peripherals that operate asynchronously with respect to CLKIN. The pro-
cessor also supports synchronous external memories and memory-mapped
peripherals. Synchronous devices derive all of their bus timing from CLKIN
of the processor.
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@ CLKOUT with CLKDBL tied low can be used as a clock source to
peripherals only in single processor systems.

The synchronous interface mode supports DMA burst transfers, which
can significantly improve bus throughput for large, contiguous block
transfers. The synchronous interface protocols are compatible with Syn-
chronous Burst SRAMS (SBSRAMs) from a variety of vendors. In a
multiprocessing system, the ADSP-21161 processor must be the bus mas-
ter in order to access external memory.

@ When interfacing to synchronous external memories, CLKIN must
be used to provide the clock source to the synchronous device.

Asynchronous Mode Interface Timing

Figure 7-5 shows typical timing for an asynchronous read or write of
external memory. Here, the CLKIN clock signal indicates that the access
occurs within a single CLKIN cycle. All timing for the master processor is
derived synchronously from CLKIN. The asynchronous slave mode modi-
fies the basic synchronous access to better support slaves whose timing is
not derived from CLKIN.

Figure 7-6 shows timing relationships used by the asynchronous external
access mode. In this mode,

* The strobes assert and deassert based on timing derived from an
internal clock whose frequency is twice that of the core clock. (This
differs from synchronous mode where the strobes assert from the
same edge.) The trailing edge timing is derived from the rising edge
of the internal version of CLKIN.

* The MSx memory select lines are held stable for the entire access.
(This differs from synchronous read or synchronous write—mini-
mum 2-cycle—modes where the memory select lines are deasserted
after the first cycle of the transfer that uses ACK.)
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CLKIN / \

ADDRESS[23:0] [ READ/WRITE ADDRESS
ws3-o JJ
RD or WR \

(WRITE) DATA 47:16 [ WRITE DATA

(READ) DATA 47:16

Eﬂiwiij

ACK

Figure 7-5. External Memory Asynchronous Access Cycle

* Forread operations, DATA47:16 are sampled by the processor on the
rising edge of the RD. This differs from synchronous mode where
DATA47:16 are sampled by the internal version of CLKIN.

* Asynchronous memories or memory mapped devices that require
added waitstates through the deassertion of ACK must be configured
for a minimum of one internal waitstate due to a potential lack of
sufficient decode time for ACK delay from address/selects Refer to

ADSP-21161N DSP Microcomputer Data Sheet for timing
specifications.

Asynchronous Mode Read—Bus Master

Processor bus master reads of external memory, in asynchronous mode,
occur with the following sequence of events as shown in Figure 7-5.

1. The processor samples ACK synchronously. If ACK is asserted, the
processor drives the read address and asserts a memory select signal
(MS3-0) to indicate the selected bank. A memory select signal is not
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ADDRESS 23:0

Interface

1 2

A0

ACK

DATA 47:16

5 \

Figure 7-6. Asynchronous Access Timing Derivation

deasserted between successive accesses of the same memory bank. If
ACK is sampled deasserted, the processor waits one CLKIN cycle to

sample ACK
2. The proces
3. The proces

Waitstates

again.

sor asserts the read strobe.

sor checks whether waitstates are needed. If so, the
memory select and read strobe remain active for additional cycles.
are determined by a combination of the state of the
external acknowledge signal (ACK) AND the internally programmed

waitstate count.
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The processor deasserts the read strobe in the cycle where no fur-
ther waitstates are indicated. The data bus (DATA47:16) is sampled
on the rising edge of the read strobe.

If a hold cycle is programmed for the accessed bank (via the EBxWS
parameter of the WAIT register), the address bus and memory selects
are held stable for an additional cycle. If initiating another read
memory access to the same bank, the processor drives the address
and memory select for that access in the next cycle.

Asynchronous Mode Write—Bus Master

Processor bus master writes to external memory, in asynchronous mode,
occur with the following sequence of events as shown in Figure 7-5.

1.

The processor samples ACK synchronously. If ACK is asserted, the
processor drives the write address and asserts a memory select signal
(MS3-0) to indicate the selected bank. A memory select signal is not
deasserted between successive accesses of the same memory bank.
The processor also drives the write data (DATA47:16). If ACK is sam-
pled deasserted, the processor waits one CLKIN cycle to sample ACK
again.

The processor asserts the write strobes.

The processor checks whether waitstates are needed. If so, the
memory select and write strobe remain active for additional cycles.
Waitstates are determined by a combination of the state of the
external acknowledge signal (ACK) AND the internally programmed
waltstate count.

The processor deasserts the write strobes near the end of the cycle
where no further waitstates are indicated.

The processor three-states its data outputs, unless the next access is
also a write to the same bank, or if a hold cycle is programmed for
the accessed bank using the EBxWS parameter of the WAIT register. If
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a Hold cycle is inserted, the address bus, data bus, and memory
selects are held stable for an additional cycle. If initiating another
memory access to the same bank, the processor drives the address
and memory select for the next access in the following cycle.

Synchronous Mode Interface Timing

Any slave addressed by a processor in a bank configured for synchronous
transfer mode must use a clock with frequency and phase characteristics
similar to CLKIN on the processor. The slave samples all inputs, and drives
all outputs on the rising edge of this clock.

Except for zero-waitstate writes, the slave must assert ACK at least twice for
each access; once to acknowledge the address/command (strobe assertion)
and once (if not a burst) or more to acknowledge the data transfer. Due to
insufficient decode time, the first ACK can be due to the keeper latch
(internal pullup enabled for ID=00x) holding the assertion of ACK from the
previous slave.

The following notes apply to all synchronous access modes:

* A slave recognizes the start of a valid bus operation by synchro-
nously sampling one or more of the strobes and ACK asserted. ACK

assertion is by the previous bus slave, allowing a new bus access to
launch.

For each of the non-burst, synchronous read/write accesses (except

zero-waitstate writes), the master recognizes the end of the access as
the cycle in which:

1. The slave samples or drives data in response to a valid oper-
ation driven by the master (read or write),

2. The slave asserts ACK to the master (except for zero-waitstate
write operations), and
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3. The number of waitstates for read or write access to that
bank has occurred—asserting ACK does not terminate the
wait count early.

e The program must select a number of waitstates that is consistent
with the access time for the slave addressed by that external mem-
ory bank.

* For the zero-waitstate writes, the access can only be extended
beyond one clock cycle by deasserting ACK in the cycle of the trans-
fer. This extension can occur on back-to-back writes in which ACK
is deasserted due to full write buffer capacity from the previous
write. Otherwise, slaves can asynchronously deassert ACK in the first
cycle.

e Deasserting ACK during the initial command phase does inhibit
waitstate count and change of bus signals. After the first ACK asser-
tion, deasserting ACK for the data phase does not inhibit waitstate
counting.

* Only one slave (or driver for ACK) should be allocated per external
memory bank. More than one slave may introduce ACK drive
contention.

* The read/write strobes for an access do not assert until ACK is sam-
pled asserted. This conditional strobe assertion delays the start of
an access until ACK is asserted by the previous slave. This sampling
is because the slave target of a single-cycle write operation may
have deasserted ACK in the cycle (due to a previous write access), to
stall further writes to that slave. To provide a cycle for the previous
slave to three-state its ACK driver before the next slave drives ACK,
the next operation to a new bank must not launch on the bus.
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*  Write/read access stalls (no state change, other than internal wait-
state counting) on the bus if ACK is deasserted in cycle(s) of data
transfer.

e The last read/write operation must be acknowledged via ACK before
a transition to a new bus master (BTC), bank, or multiprocessor
space slave occurs. The master always inserts an Idle cycle on this
transition. No pipelining can occur across these boundaries.

Synchronous Mode Read—Bus Master

An example synchronous read cycle appears in Figure 7-7. Propagation
delays are not shown in this timing diagram. Because a synchronous access
requires a rising clock edge for the slave to sample the asserted signals of
the master (and for the master to sample the signals of the slave), the min-
imum read access in the synchronous mode is two CLKIN cycles.

In synchronous access mode, the waitstate selection in the WAIT
register (EBxWS) must be 001 or greater. EBxWS=000 is not sup-
ported in synchronous access mode.

This example demonstrates a minimum latency, one-waitstate, 32-bit
(normal word) read, from external memory.

Bus master synchronous reads from external memory occur with the fol-
lowing sequence of events as shown in Figure 7-7:

1. (cycle 1) If AcK is sampled as asserted at the beginning of cycle 1,
the processor drives the read address and asserts a memory select
signal (MS3-0) to indicate the selected bank. The processor asserts
the RD strobe. The read strobe is not deasserted between successive
read accesses of the same memory bank.

2. (cycle 2) If ACK was sampled as deasserted at the beginning of the
cycle (not shown), the MSx strobes would remain asserted. If ACK
was sampled asserted, the MSx strobes would deassert. The slave
must be capable of detecting that MSx was asserted in cycle 1 and
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must retain this information internally. If ACK was deasserted by the
previous slave (for a single-cycle write), deassertion of the MSx is

delayed.

CLKIN

ADDRESS 23:0

RD

THN

WR
BRST

R
-

DATA 47:16

ACK

Figure 7-7. Typical Synchronous Read Timing

3. (cycle 2) The processor checks whether more than one waitstate is
needed. If so, the read strobe remains active for additional cycle(s).
Waitstates are determined by a combination of the state of the
external acknowledge signal (ACK) AND the programmed waitstate
count.

4. (end of cycle 2) The data bus (DATA47:16) is sampled on the rising
edge of CLKIN.
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5. (cycle 3) If initiating another read memory access to the same bank,
the processor drives the address, memory select, and strobe for the
next access.

Figure 7-8 shows back-to-back reads to the same bank with the second
access stalled for one cycle by the slave deasserting ACK. This example
assumes that the EBxWS=001 for this bank, indicating one internal
waltstate.

Synchronous Write, Zero-Waitstate Mode

Figure 7-9 on page 7-24 shows typical synchronous write cycle timing.
Propagation delays are not shown in this timing diagram. Synchronous
access requires a rising clock edge for the slave to sample the asserted sig-
nals of the master (and for the master to sample the signals of the slave). In
the case of writes, the latency can be reduced to a single cycle if the slave
always latches the bus signals on each clock cycle (it does not sample ACK).
For example, the slave can not sample the bus, decode that it is being
addressed as a slave, and sample the write data of the bus in the following
cycle. The slave samples the bus each cycle and decodes the sampled value
to determine if that slave was addressed by the write operation. If the
slave’s write queue goes full with that write, the slave deasserts ACK in the
cycle after the write operation transferred on the bus. Any subsequent bus
operation (read or write) stalls until ACK is sampled asserted, as shown in
cycle 2 of Figure 7-9.

The example demonstrates a minimum latency, zero-waitstate, 32-bit
write in cycle 1 followed by a write to the same bank. This write stalls
because ACK is deasserted in cycle 2 in response to the write in cycle 1. The
second access is a 32-bit write to external memory.

The zero-waitstate write mode provides the highest performance if the
slave has sufficient write buffer storage. Systems should use this mode
where the slave can always accept one write transfer (unless ACK is deas-
serted) and can generally accept more than one write. If the slave has only
one store buffer, such that it always deasserts ACK after the first write, the
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1 2 3 4 5

ADDRESS 23:0 .< >< |

S /
RD |\ s

WR

BRST

pata47:16 [l— ) & 4
B AWV A

Figure 7-8. Two Synchronous Reads From Same Bank

ﬁ

ACK

one-waitstate write mode may be the better choice. The zero-waitstate
write mode is targeted towards ASIC/FPGA designs, which implement
multiple write buffers (including processor as a slave), and fully pipelined
synchronous devices such as SBSRAMs.

Slaves that do not support bursting protocols do not need to con-
nect to the BRST signal.
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1 2 3
| | | |
cwn N\
| | | |
Appress 230 [ wrrEsr () WRITE 2 |
! | |
| | |
I | | -
| | | |
| | | -
| i i
BRST | | | |
| | |
DATA 47:16 WRITE#1 | WRITE #2 ) |

STALiL 2ND WRITE —\

ACK

Figure 7-9. Typical Synchronous Write Example

Bus master synchronous writes to external memory occur with the follow-
ing sequence of events as shown in Figure 7-9:

1. (cycle 1 in Figure 7-9) If ACK is sampled asserted at the start of cycle
1, the processor bus master drives the write address and asserts a
memory select signal (MS3-0) to indicate the selected bank. The
processor asserts the WR strobe. The write strobe is not deasserted
between successive write accesses of the same memory bank.

2. (cycle 1) The previous slave three-states ACK. Note that the previous
slave could have driven ACK deasserted through cycle 1 if a write in
the previous cycle caused its write queue to fill. Only one slave is
supported per bank, and any bank transition has an 1DLE cycle
inserted to provide time for the slave to three-state ACK.
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3. (cycle 2) The processor is initiating another write memory access to
the same bank. It drives the address, memory select, and strobe for
the next access.

4. (cycle 2) The slave, having decoded that it received a valid write
operation in the previous cycle, detects that it cannot accept fur-
ther bus operations until an element in the write queue becomes
available, so it deasserts ACK.

5. (cycle 3) The processor samples ACK deasserted by the slave. It
inserts waitstates until ACK is sampled asserted. The write ends in
the cycle where ACK is asserted by the slave (end of cycle 3).

Figure 7-10 shows a zero waitstate write, followed by a synchronous read
from the same bank. The slave addressed by both accesses determines in
cycle 2 that it has no more write capacity. It deasserts ACK in this cycle, in
response to the write in cycle 1. In cycle 3, the slave determines that it is
now addressed by the master to perform a read and asserts ACK to acknowl-
edge the transfer. The slave asserts ACK in cycle 4 when read data is
available to complete the data transfer. The memory select for the read
access is held asserted by the master until cycle 4, because ACK was deas-
serted in cycle 2.

Synchronous Write, One Waitstate Mode

Because some synchronous slaves cannot support a free-running latch
function to capture zero-wait bus writes, the processor also supports a
minimum two-cycle (minimum one-waitstate) write access. This mode is
set using the bank Access Mode bits (EBxAM). For more information on
access modes, see Table A-20 on page A-606.

The one-waitstate, synchronous write access is shown in the second write
of Figure 7-11. In this example, the first access is to a bank configured for
asynchronous writes (cycle 1). In Figure 7-11, this condition is shown by
the deassertion of the write strobe before the rising edge of CLKIN for cycle
2. In cycle 2, a bank transition occurs, and an idle cycle is inserted to
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CLKIN

Ewrite addressi

ADDREss 23:0 [ X read addreSiS -
MS3-0 .< /

RD \ [
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write data read data
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ACK Ul AWy

Figure 7-10. Synchronous Write Followed by Synchronous Read Example

allow the slaves to transition ownership of ACK. In cycle 3, the second write
begins, to a new bank configured for one-waitstate write access. The
address and data are held for a minimum of two cycles. Similar to the syn-
chronous read, MSx deassert in the second cycle of the write (cycle 4), and
the waitstate counter decrements if ACK is sampled asserted. The access can
be held off the bus by deasserting ACK in cycle 2, or extended by deassert-
ing ACK in cycle 3 (unlikely for a synchronous slave) or cycle 4.

Synchronous Burst Mode Interface Timing

Synchronous burst mode provides improved performance on synchronous
operations. The processor supports a DMA-mastered burst mode. If the
addressed slave supports this burst transfer, after the one or more wait-
states associated with access to the first 32-bit read data transfer,
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contiguous data can transfer on each subsequent clock cycle, up to a max-
imum of four 32-bit transfers. Burst accesses support only 32-bit data
transfers. Partial data bus width transfers are not supported.

For burst transfers, the master drives the address of the first access on the
bus during the entire burst transfer. The master does not increment the
address for the slave. Because the maximum length of the burst transfer is
four, slaves only need a 2-bit address incrementer to generate the offset
address from the address driven by the master on the bus. Table 7-2 shows
burst length determination as a function of initial address. If the DMA
channel has sufficient data to transfer, it initiates a new burst transfer
starting at ADDR1-0 = 00, 01, or 10 when it wins bus arbitration. Bursts
always terminate when ADDR1-0=11.

WRITE #1 IDLE WRITE #2, DIFFERENT BANK
; 1 2 3 4

CLKIN

wiss-o [ i/ \ /

RD
wa \
BRST
N — w

hdda

Figure 7-11. Asynchronous Write Followed By Synchronous Write -
One-Waitstate Mode
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Table 7-2. Linear Burst Address Order

First Address[1:0] Second Address Third Address Fourth Address
(external) (internal) (internal) (internal)

00 01 10 11

01 10 11 Burst Terminated'
10 11 Burst Terminated!

11 Burst Terminated?

1 Master always terminates burst when internal address[1:0] = 11

2 Master transfers this case as a single synchronous access

An example of a synchronous burst read of length three appears in
Figure 7-12. Here, the bank used in the transfer has two waitstates.

CLKIN

ADDRESS 23:0 .(

'

ADDRESS[1:0] = 01

ws3-o

RD

-

WR
BRST

DATA 47:16 [J———
- e

ACK

(U
- a
A A A B

Figure 7-12. External Memory Synchronous Burst Read Example
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Burst Length Determination

The DMA arbitration logic reduces the initial access latency by bursting
up to the maximum burst length of four when possible, assuming the
channel is burst enabled. When a DMA channel wins internal I/O proces-
sor arbitration, the channel drives the internal buses as with a non-burst
transfer. At the same time, the I/O processor detects whether it can per-
form a burst transfer, according to the following criteria:

1. The DMAC burst enable (MAXBL1-0) control bit field is set for that
DMA channel.

2. The EM register is set to 0 or 1. A value of 0 does not increment EI.
This is useful when bursting to or from a registered data port,
buffer, or register, such as the EPBx FIFOs of another processor.

3. The EC register is greater than or equal to two (32-bit) words.

4. The £PBx FIFO for that channel has at least two 32-bit words to
transfer for an external burst write or has at least two empty 32-bit
elements to receive data for an external burst read.

5. The two least significant bits of the DMA channel external address
are not set (ADDR1-0 does not equal 11).

Burst Stall Criteria

If the I/O processor determines that it can perform a burst transfer
(according to the burst length criteria), the arbitration between the proces-
sor core and the I/O processor locks the effective arbitration grant to that

DMA channel until:

1. The DMA channel external ADDR1-0 = 11. By disconnecting the
burst on this boundary, a modulo4 (ADDR23-0) is effectively imple-
mented, which is required by SBSRAMs, and other slaves with
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3.
4.

limited address incrementing capability. For processor-based sys-
tems, slaves only need a 2-bit counter to support the address
incrementing function of the burst.

Space in the EPB FIFO drops to less than two 32-bit elements (if an
external bus read), or less than four valid 32-bit elements for exter-
nal bus writes. This almost full or empty detection is required by
the master logic to deassert BRST on the cycle before the end of the
burst.

EC goes to < 2; the burst pin must negate at EC=1.

HBR and SBTS are asserted on the external bus, indicating the dead-
lock resolution case in which the processor must three-state its
outputs and switch into slave mode. For more information, see
“Deadlock Resolution” on page 7-82. Assertion of either signal
alone does not terminate the burst early. HBR assertion does not
receive an HBG until the burst finishes. SBTS assertion causes the
master to three-state outputs and insert waitstates.

If any of these conditions occur, normal arbitration between the processor
core and I/O processor for the external bus occurs. If the same bursting
channel wins arbitration again, a new burst is initiated, introducing at
least one lost or dead cycle in the burst throughput for reads.

When arbitration occurs, the DMA channel loses arbitration if any of the
following conditions are detected:

1.

Higher priority external request for the bus:

a. HBR asserted

b. BRx asserted and BMAX time out has occurred
B

c. BRx asserted and PA asserted, but not by this master
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Higher priority internal I/O processor requester:
a. Processor core request (DAGs or program sequencer)

b. A higher priority request from another DMA channel or
direct read/write access causes this channel to lose arbitra-
tion. For more information, see “I/O Processor” on

page 6-1.

Synchronous Burst Reads

External memory synchronous burst reads occur with the following
sequence of events as shown in Figure 7-12:

1.

(cycle 1 in Figure 7-12) If ACK is sampled asserted at the beginning
of cycle 1, the processor drives the read address and asserts a mem-
ory select signal (MS3-0) to indicate the selected bank.

(cycle 1) The processor asserts RD strobe to indicate a read request
of the slave.

(cycle 2) As with the non-burst synchronous read, the processor
deasserts the MSx output signal, asserts the BRST output signal, and
enables waitstate counting if ACK is sampled asserted at the end of
cycle 1.

(cycle 2) The processor checks whether more than one waitstates (2
waitstates for this example) is needed. If so, BRST and the read
strobe remain active for additional cycle(s).

(cycle 3) The slave samples BRST asserted, informing it that the
master requests at least one more transfer after the current transfer
is acknowledged via ACK by the slave.

(cycle 3) The programmed number of waitstates has been counted,
and the slave is driving 32-bits of valid data and asserting the ACK
signal. This ends the first access.

ADSP-21161 SHARC Processor Hardware Reference 7-31



External Memory Interface

7. (cycle 4) The slave drives the next 32-bits of contiguous data and
asserts ACK. If the slave needs more time to service any one transfer
within the burst, it can deassert ACK to stall the bus transfer.

8. (cycle 4) The slave samples BRST asserted, informing it that the
master requests at least one more 32-bit transfer.

9. (cycle 5) The master deasserts BRST to inform the slave that this is
the last transfer of the burst. In this example, the master deasserts
BRST due to the address modulo4 function. The two LSBs of the
initial address = 01. The slave increments the address as
01->10->11. This is the maximum offset needed to support from
the initial address.

10.(cycle 5) The slave drives valid data for the last transfer, and asserts
ACK.

11.(cycle 6) If initiating another burst read memory access to the same
bank, the processor asserts the address, memory select, and strobes
for the next access. This introduces at least two dead cycles in the
back-to-back burst throughput, because the initial waitstate count
applies to the first access of the second burst.

12.(cycle 6) With BRST sampled deasserted, the slave concludes its ser-
vice of the burst request by three-stating the DATA47:16 and ACK
drivers.

As a master, the processor supports burst reads on each of the four external
port DMA channels. Each channel has an independent burst enable con-
trol field (MAXBL1-0).

As a slave, the processor supports read bursts from the EPBx buffers (with
the EPBx read). For more information, see “Multiprocessor (MP) Inter-
face” on page 7-87 and “Host Processor Interface” on page 7-42.
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Because reads of the EPBx FIFO are destructive, the processor slave
must deassert ACK on each transfer of the burst to guarantee that it
samples the deasserted BRST input before performing the EPBx
FIFO read. If your system design uses a similar destructive read
data buffer, use precaution when burst reads of the buffer are
supported.

Synchronous Burst Writes

The processor can master burst read and write operations in the one-wait-
state write access mode (EBxAM=10) if one or more DMA channels are
configured appropriately. The processor can master non-burst, zero-wait-
state, writes in every cycle. Burst write transfers are not supported in this
access mode. Synchronous external devices require at least one cycle of
write access latency (for example, bus bridges, SDRAM controllers, and
others). These devices may be able to optimize throughput for burst write
operations, based on the contiguous, incrementing block transfer informa-
tion conveyed by the burst protocol. Burst accesses support only 32-bit
data transfers; partial data bus width transfers are not supported.

An example of a synchronous burst write appears in Figure 7-13. Here,
the bank used in the transfer has the one-waitstate mode, for the first write
of the burst.

External memory synchronous burst writes occur with the following
sequence of events as shown in Figure 7-13:

1. (cycle 1 in Figure 7-13) If ACK is sampled asserted at the start of
cycle 1, the processor drives the write address and asserts a memory
select signal (MS3-0) to indicate the selected bank. The processor
also drives valid data in this cycle. The processor asserts the WR
strobe to indicate a write command to the slave.

2. (cycle 2) The slave samples the write command and address. At this
point, the slave does not see that a burst write is in progress—the
access looks identical to a non-burst synchronous write. If the slave
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Figure 7-13. External Memory Synchronous Burst Write Example

cannot accept the write command, it deasserts ACK in this cycle to
stall the bus until it can. In this example, it has buffer capacity to
accept all of the data of the burst, so ACK stays asserted.

3. (cycle 2) If ACK was sampled asserted at the start of the cycle, the
processor asserts the BRST output signal and deasserts the MSx out-
put signal.

4. (cycle 3) The processor samples ACK asserted by the slave at the start
of the cycle. It increments the data bus to the second of four data
transfers within the burst.
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5. (cycle 3) The slave samples BRST asserted at the start of the cycle,
informing it that the master is writing at least one more 32-bit
transfer. The slave samples the second of four data transfers within
the burst and asserts ACK.

6. (cycle 4) The processor samples ACK asserted by the slave at the start
of the cycle. It increments the data bus to the third of four data
transfers within the burst.

7. (cycle 4) The slave samples BRST asserted at the start of the cycle,
informing it that the master is writing at least one more 32-bit
transfer. The slave also samples the third of four data transfers
within the burst, and asserts ACK. If the slave needs more time to
service any one transfer within the burst, it can deassert ACK to stall
the bus transfer.

8. (cycle 5) The processor samples ACK asserted by the slave at the start
of the cycle. It increments the data bus to the last of four data
transfers within the burst. The master deasserts BRST to inform the
slave that this is the last transfer of the burst.

9. (cycle 5) The slave samples BRST asserted at the start of the cycle,
informing it that the master is writing at least one more 32-bit
transfer. The slave samples the fourth of four data transfers within
the burst and asserts ACK.

10.(cycle 6) If initiating another write burst memory access to the
same bank, the processor asserts the address, memory select, and
strobes for the next access. This introduces at least one dead cycle
in the back-to-back burst throughput, because the initial waitstate
count applies to the first access of the second burst.

11.(cycle 6) With BRST sampled deasserted, the slave concludes its ser-
vice of the burst request by three-stating the ACK driver.
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As a master, the processor supports burst writes on each of the four exter-
nal port DMA channels. Each channel has an independent burst enable
control field (MAXBL1-0).

As a slave, ADSP-21161 processor does not support burst writes.
Bursting is enabled by setting MAXBL1-0 to 01 in the DMACx register.
Enabling bursting can corrupt data transmitted during DMA mas-
ter writes because the MAXBL bit setting is not ignored when the
BRST signal is asserted. The ADSP-21161 only supports proces-
sor-to-processor single cycle writes. Therefore, no improvement in
throughput performance is achieved by enabling bursting. To
enable ADSP-21161 to ADSP-21161 DMA driven write transfers,
set MAXBL1-0 to 00.

Using External SBSRAM

The processor can connect to a variety of synchronous burst static RAMs
(SBSRAM:) with a glueless interface—no external logic required. These
synchronous memories can provide high throughput, especially when
using the burst read transfer modes. The processor has features to support
SBSRAMs from several memory vendors.

The processor can support both flow-through and fully-pipelined
SBSRAMs. Using flow-through devices delivers lower latency and higher

system performance when a system is designed properly.

®
N

CLKIN must be used as the clock source for SBSRAM. You cannot
use an external crystal when interfacing with SBSRAM.

Do not use CLKOUT as the clock source for the SBSRAM device.
Using an external crystal in conjunction with CLKDBL to generate a
CLKOUT frequency is not supported. Negative hold times can result
from the potential skew between CLKIN and CLKOUT.
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The processor can support SBSRAMs on any of the four external memory
banks. The processor supports SBSRAM single transfer reads and writes
and SBSRAM burst read transfer operations.

Burst write transfers are not supported, because the single-write
feature of SBSRAM:s achieves the same throughput level, with less
complexity.

SBSRAM support is enabled by configuring the bank access mode (EBxAM)
bits for synchronous, one-cycle writes and waitstate (EBxWS) bits for one
waitstate (flow-through SBSRAMs) or two waitstates (fully pipelined
SBRAMs). For more information on programming access modes and wait-
states, see the WAIT register bits in Table A-20 on page A-66.

If burst read transfer functionality is needed, one or more of the external
port DMA channels must be configured appropriately. Because burst
transfers are controlled at the DMA channel, the DMA sequence must
make sure that the DMA burst transfer addresses a memory bank or slave
that supports the read burst transfer.

Figure 7-14 and Table 7-3 show how the processor I/0O should be con-
nected to the SBSRAM I/O. Table 7-3 assumes a 512 Kbyte SBSRAM
array consisting of one bank with a 3.3V, 32K x 32 device. The names of
the SBSRAM signals may vary from between vendors.

Figure 7-14 is for illustrative purposes—actual system designs may
differ and must be carefully analyzed to determine the actual sys-
tem topology.

The SBSRAM devices are fully synchronous devices, except for the output
enable. The processor issues commands and updates the SBSRAM address
latches, as a controller, using the ADSC input of the SBSRAMs, rather than
the ADSP processor input. Using the ADSC SBSRAM input enables single
cycle writes and simplifies SBSRAM deselect operations.
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Figure 7-14. SBSRAM System Interface Example

Table 7-3. ADSP-21161 to SBSRAM Signal Mapping

ADSP-21161 SBSRAM Comment

CLKIN CLK Clock input of SBSRAM should be driven by CLKIN of the
processor.

ADDRI15-0 ADDR15-0 Address connection

MSx CE Chip Enable, active low

BRST ADSC Address Status Controller, active low

RD OE Asynchronous Output Enable of SBSRAM, active low

WR GW Global Write Enable of SBSRAM, active low

DATA47:16 DATA31-0 1/0 of SBSRAM (High word of bus, odd address)

No connect CE Chip Enable, active high, always asserted (Vdd)

No connect CE2 Second Chip Enable, always asserted (GND)

No connect ADSP Always Deasserted (Vdd)

No connect ADV Always Asserted (GND)

No connect BWE Byte Write Enable, always deasserted (Vdd)

No connect BW4-1 Byte Write Selects, always deasserted (Vdd)
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Table 7-3. ADSP-21161 to SBSRAM Signal Mapping (Cont’d)

External Port

ADSP-21161 SBSRAM Comment
No connect LBO Linear Burst Order, active low, always asserted (GND)
No connect 77 Sleep Mode Enable, active high, always deasserted (GND)

By asserting the ADV (advance address) input to the SBSRAM, the device is
continuously attempting to burst. This input is ignored when ADSC is
asserted. Because the BRST/ADSC signal is always low for a single access or
the first access of a burst, the SBSRAM always updates its address latches
correctly. For the subsequent transfers (up to three, after the initial access)
of a read burst, the SBSRAM samples BRST/ADSC high. The asserted ADV

correctly advances the internal address count of the SBSRAM.

The processor issues four types of bus operations to the SBSRAMs, as
shown in Table 7-4.

Table 7-4. SBSRAM Partial Truth Table

SBSRAM Operation | CE1 ADSC ADV! GW OE 1/0
MSx BRST WR RD

Read cycle, begin 12 L X H L Data
burst
Write cycle, begin L L X L H Hi-Z
burst
Read cycle, continue | X H L H L Data
burst
Deselect Cycle H L X X X Hi-Z
All other signal inputs held static per Figure 7-14

1 ADV statically held asserted, low

2 L=low, H=High, X=don’t care, Hi-Z=three-stated, high impedance output

ADSP-21161 SHARC Processor Hardware Reference 7-39




External Memory Interface

Single read or write transfers, and the first transfer of a burst read, use the
read or write cycle and begin burst bus operation. Burst write transfers are
not supported. The subsequent transfers (up to three) of a read burst use
the read cycle and continue burst bus operation. The last cycle of any read
access performs a deselect bus operation ensure that the SBSRAM data
buffers remain three-stated for accesses to other banks.

The write operations are achieved by configuring the appropriate bank of
the processor to synchronous minimum one-cycle write mode. The syn-
chronous read waitstate count should be programmed to one for

flow-through SBSRAMs, or two for fully pipelined SBSRAMs.

SBSRAMs are not stalled, or suspended, by assertion of ACK in this
configuration. Systems should not deassert ACK during any
SBSRAM access. The processor has a weak pullup device on ACK;
ACK does not need to be driven during an access to a slave which
does not or cannot control ACK.

Figure 7-15 demonstrates a burst read of the flow-through SBSRAM, fol-
lowed by a single write to the SBSRAM, and a single read of the

SBSRAM. For burst operations, the deasserting BRST is not required in the
last cycle of the burst transfer. The processor’s burst protocols also support
ASIC/FPGA systems. The pipelined end-of-burst indicator may be useful

in these systems.

The SBSRAM array size can be increased from the example by using
higher density devices or implementing multiple banks of SBSRAM. Mul-
tiple banks are possible using the depth expansion feature of the
SBSRAMs and the multiple memory select outputs of the processor.
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Figure 7-15. SBSRAM — Burst Read, Single Write, Single Read

SBSRAM Restrictions

SBSRAM (or other synchronous peripherals such as bridge chips) is
restricted using the same external clock generator source provided to the
CLKIN pin of the processor.

Do not use CLKOUT as the clock source to the SBSRAM. The clock
source connected to both the CLKIN and the clock input of the
SBSRAM must be a clock source provided by an external oscillator
or other clock source. External crystals in conjunction with the
internal clock generator (and CLKDBL) should not be used to gener-
ate a CLKOUT source for the SBSRAM.
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Host Processor Interface

The ADSP-21161 processor’s host interface supports connecting the pro-
cessor to 8-, 16- or 32-bit microprocessor buses. By providing an address,
a data bus, and memory control signals—such as read, write and chip
select—a host may access any device on the processor bus as if it were a
memory. The processor accommodates asynchronous data transfers,
allowing the host to use a different clock frequency. For maximum host
throughput and low and high pulse widths for WR and RD, refer to the
ADSP-21161N processor Microcomputer Data Sheet.

The ADSP-21161 processor host processor interface does not sup-
port synchronous data transfers.

Figure 7-16 shows an example of how to connect a host processor to the
ADSP-21161 processor and Table 7-5 defines the processor pins used in
host processor interfacing.

The host accesses the ADSP-21161 processor through its external port.
Figure 6-5 on page 6-23 shows a block diagram of the external port, I/O
processor, and FIFO data buffers, illustrating the on-chip data paths for
host-driven transfers. The four external port DMA channels are available
for use by the host—DMA transfers of code and data can be performed
with low software overhead.

The host processor requests and controls the processor’s external bus with
the host bus request (HBR) and host bus grant (HBG) signals. Host logic does
not need to duplicate the distributed multiprocessor arbitration protocol
of the DSPs. After the host gets control of the bus, the host transfers data
asynchronously. The host bus may be 8-, 16-, or 32-bits wide for asyn-
chronous transfers.

The host also uses the chip select (CS) and ready (REDY) signals. After get-
ting control of the bus, the host can read and write to any of the

processor’s I/O processor registers, including the EPBx FIFO buffers. The
host uses I/O processor registers such as SYSCON and SYSTAT to control and
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Figure 7-16. Example Processor to Host System Interface
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monitor the processor and to set up DMA transfers. DMA transfers are
controlled by the processor’s I/O processor after they are set up by the
host. In a multiprocessor system, the host can access the I/O processor

registers of every ADSP-21161.

Data written to and read from the processor can be packed or unpacked
into different word widths. The host bus width control bits (HBW) in the
SYSCON register configure data packing and unpacking.
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Table 7-5. Host Interface Signals

Signal

Type

Definition

BR

an
o
)

I/A

I/0

I/A

Host Bus Request. Must be asserted by a host processor to request con-
trol of the ADSP-21161 processor's external bus. When HBR is asserted
in a multiprocessing system, the ADSP-21161 processor that is bus mas-
ter relinquishes the bus and asserts HBG. To relinquish the bus, the
ADSP-21161 processor places the address, data, select, and strobe lines
in a high impedance state. HBR has priority over all ADSP-21161 pro-

cessor bus requests (BR6-1) in a multiprocessing system.

Host Bus Grant. HBG acknowledges an HBR bus request, indicating
that the host processor may take control of the external bus. HBG is
asserted (held low) by the processor until HBR is released. In a multi-
processing system, HBG is output by the processor bus master and is
monitored by all others.

Chip Select. Asserted by host processor to select the ADSP-21161 pro-

cessor.

I=Input, S=Synchronous, (0/d)=Open Drain, O=Output, A=Asynchronous, (a/d)=Active Drive

Acquiring the Bus

For a host processor to gain access to the processor, the host must first
assert HBR, the host bus request signal. HBR has priority over all BRx multi-

processor bus requests. When asserted, HBR causes the current master to
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give up the bus to the host after the it finishes the current bus operation. If
the current operation is a burst transfer, the change in bus mastership
interrupts the transfer on a modulo4 boundary.

The current bus master signals that it is transferring ownership of the bus
by asserting HBG (low) when the current bus operation ends. The cycle in
which control of the bus is transferred to the host is called a Host Transi-

tion Cycle (HTC).

Bus slaves respond to HBG assertion with or without the assertion of
HBR. Therefore erroneous assertions of HBG (glitching, etc.) can
cause slave DSPs to believe that the host is the current bus master.

Figure 7-17 shows the timing for the host acquiring the bus. HBG is
asserted while the bus master releases control of the bus and remains
asserted until HBR is sampled deasserted by the ADSP-21161 processor.
The cycle in which control of the bus is released by the bus master is called
the processor’s Bus Transition Cycle (BTC). HBG freezes the multiproces-
sor bus arbitration during the time that the host has control of the bus.
HBG may be used to enable the host’s signal buffers, as shown in

Figure 7-16 on page 7-43, Figure 7-24 on page 7-80, and Figure 7-25 on
page 7-81. Arbitration is frozen due to the current bus master continu-
ously asserting its BRx. While HBG is asserted in a multiprocessor system,
the DSPs continue to assert their BRx outputs, as in normal operation, but
no BTC occurs. The current bus master keeps its BRx output asserted
throughout the entire time the host controls the bus.

After HBR is asserted, and before HBG is given, HBG floats for 1 tok (1
CLKIN cycle). To avoid erroneous grants, HBG should be pulled up
with a 20kQ to 50kQ external resistor.

After the host gets control of the bus, the host can perform transfers with
the processor or other system components. To initiate transfers, the host

asserts (low) the CS and HBR inputs of the processor that it intends to access
and performs the read or write. The processor does not respond to CS until
HBG is asserted.

ADSP-21161 SHARC Processor Hardware Reference 7-45



Host Processor Interface

The host may also communicate directly with system peripherals, such as
SBSRAMs. These transfers occur using the protocol of the peripheral or
using the external handshake mode of DMA channels 10 and 11 to con-
trol the memory or peripheral. With DMA handshaking, the host only
needs to source or sink the data with the correct timing. Either of these
solutions may require additional hardware support for the host.

The host is responsible for driving the following signals during the HTC
in which it gains control of the bus: ADDR23-0, RD, WR, and DMAGx (if used
in the system). These signals must be driven by the host while the host is
bus master. Also, the host must drive or weakly pull up or down the
MS3-0, BRST, CLKIN, DMAGT, and DMAGZ signals as required. The bus master
three-states these lines, letting the host use them.

The processor with device 10=000 or 001 enables internal pullup devices

on the MS3-0, RD, WR, DMART, DMARZ, DMAGI, and DMAGZ signals. The pullup

provides a weak current source to hold these signals in the deasserted state
when driven to that state.

Excessive system noise can cause these weakly driven signals
(MS3-0, RD, WR, DMART, DMARZ, DMAGI, and DMAG2) to be sampled
asserted.

The processor with device 10=000 or 001 enables its keeper latches on
ADDR23-0 and DATA47-16, BRST, and CLKOUT, so these signals are weakly
pulled to the last value driven on them if any of these signals remain
undriven for multiple cycles.

During read-modify-write operations, the host should keep HBR asserted to
avoid temporary loss of bus mastership. HBR must remain asserted until
after the host completes the last data transfer.
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Figure 7-17. Example Timing for Host Acquisition of Bus
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The following restrictions apply to bus acquisition by the host:

» If HBR is asserted while the processor is in reset, it does not respond
with HBG until after reset and multiprocessor synchronization is
completed.

e The host should keep HBR asserted until after the host completes its
last data transfer and is ready to give up bus ownership.

e If SBTS is asserted after HBR, the processor enters slave mode and
suspends any unfinished access to the external bus.

* In uniprocessor systems (with 102-0=000), the host must assert CS
in the same cycle as HBR to initiate an asynchronous access.

After the host finishes its task, it can relinquish control of the bus by deas-
serting HBR. The bus master responds by deasserting HBG in the cycle after
sampling HBR deasserted. In the cycle following deassertion of HBG, the bus
master assumes control of the bus and normal multiprocessor arbitration
resumes.

Asynchronous Transfers

To initiate asynchronous transfers after acquiring control of the proces-
sor’s external bus, the host must assert the CS input of the processor to be
accessed. The host then drives the address of the I/O processor register to
access. To simplify the hardware requirements for external interface logic,
only the address bits shown in Table 7-6 need to be driven.

7-48 ADSP-21161 SHARC Processor Hardware Reference



External Port

Table 7-6. Address Fields For Asynchronous Host Accesses

Address Bits! Comments
ADDRS-0 Must be driven in all cases.
ADDR16-9 Floating

ADDRI19-17 S field?, floating

ADDR20 M field?, must be 0

or

ADDR23-21 E field%, One of these bits must be 1.

ADDR25-24 V field?, virtual.

ADDR27-26 V field?, virtual, MSx.

1 Setup and hold times for these address lines are specified in the Data Sheet.
2 For a complete description of these address fields, see “Multiprocessor Memory” on page 5-19.

Table 7-6 applies to all asynchronous host access cases, including multi-
processor systems. Fewer address bits may need to be driven depending on
the system. For example, in a uniprocessor system, the host does not need
to drive the ADDR20 address pins. Use the following guidelines when
designing a system that uses asynchronous host accesses.

* A host can only access IOP register space on the ADSP-21161
processor.

e The ADSP-21161 processor now uses 9 address lines to access the
IOP registers.

e The ADSP-21161 processor does not support the Instruction
Word Transfer (IWT) function from previous SHARC DSPs. 48-bit
instructions can be transferred by configuring the host packing
mode to one of the 48-bit internal transfer modes.
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Host accesses to non-existent IOP register addresses are not sup-
ported. These accesses result in a host bus grant (HBG) hang.
Therefore, ensure that host accesses generate valid IOP register
addresses.

When using asynchronous transfers and direct access to IOP register
space, only the lower 9 bits, ADDR8-0, need be supplied by the host. The
upper address bits can be configured as Table 7-6.

Asynchronous write operations are latched at the I/O pads in a four-deep
FIFO buffer; this buffer is called the slave write FIFO and appears in
Figure 6-5 on page 6-23. This buffering allows previously written words
to be re-synchronized while a new word is being written. For maximum
host throughput and low and high pulse widths for WR and RD, refer to the
ADSP-21161N DSP Microcomputer Data Sheet.

A host may write to several ADSP-21161s simultaneously (a broadcast
write) by asserting each of their CS pins. Each processor accepts the write
as if it were the only device being addressed. Because the REDY output is
wire-ORed (if configured as an open-drain output), REDY only appears
asserted when all selected DSPs are ready, unless REDY is actively pulled
up. ACK is not active when CS is asserted.

To eliminate the need for a host to drive the multiprocessor address lines
(ADDR20-17) in systems with only one processor (I1D2-0=000), the proces-
sor with 102-0=000 does not recognize synchronous accesses to these
addresses. The host must drive these address lines with 0000 or one of the
ADDR23-21 address pins must be driven high to select an address in external
memory if the processor’s 1D2-0 is anything other than 000. To account
for buffer delays when sampling the REDY signal, systems must make sure
that REDY is properly re-synchronized by the host.
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Host Transfer Timing

When a processor’s CS chip select is asserted (low), the selected processor
deasserts the REDY signal. Refer to the ADSP-21161N DSP Microcomputer
Data Sheet for exact timing specifications.

As shown in Figure 7-18, the processor deasserts REDY in response to CS.
The host can assert CS before or after HBR is asserted. When HBG is not
asserted, this timing is determined by the tTRDYHG switching characteristic
specified in the “Multiprocessor Bus Request and Host Bus Request” tim-
ing data in the ADSP-21161N DSP Microcomputer Data Sheet.

REDY is asserted prior to RD or WR being asserted and becomes deasserted
only if the processor is not ready for the read or write to complete—the
only exception is when CS is first asserted. The REDY pin is an open-drain
output to facilitate interfacing to common buses. It can be changed to an
active-drive output by setting the ADREDY bit in the SYSCON register.

Figure 7-18 shows the timing of a host write cycle, including details of
data packing and unpacking. This timing applies to the example host
interface hardware shown in Figure 7-25 on page 7-81 and has the follow-
ing sequence:

1. The host asserts the address. HBR and CS are decoded from the host
bus interface address comparator and do not need to be supplied
directly by the host. The selected processor deasserts REDY
immediately.

2. The host asserts WR and drives data according to the timing require-
ments specified in the ADSP-21161N DSP Microcomputer Data
Sheet.

3. The selected processor asserts REDY when it is ready to accept the
data. This transition occurs after the current bus master has com-
pleted its current transfer and has asserted HBG. HBG enables the host
interface buffers to drive onto the processor bus.
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4. The host deasserts WR when REDY is high and stops driving data.
5. The selected processor latches data on the rising edge of WR.
After the first word, the write sequence is:

1. The host asserts WR and drives data according to the timing require-
ments specified in the ADSP-21161N DSP Microcomputer Data
Sheet.

2. The processor deasserts REDY if it is not ready to accept data.
3. The host deasserts WR when REDY is high and stops driving data.
4. The selected processor latches data on the rising edge of WR.

More than one processor may have its CS pin asserted at any one time dur-
ing a write, but not during a read because of bus conflicts.

Figure 7-18 also shows the timing of a host read cycle. This timing applies
to the bus interface hardware in Figure 7-25 on page 7-81 and has the fol-
lowing sequence:

1. The host asserts the address. HBR and the appropriate CS line are
decoded by the host bus interface address comparator. The selected
processor deasserts REDY immediately and asserts HBG.

2. The host asserts RD.

3. The selected processor drives data onto the bus and asserts REDY
when the data is available.

4. The host latches the data and deasserts RD.
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After the first word, the read sequence is:
1. The host asserts RD.

2. The selected processor deasserts REDY then asserts REDY, driving
data when it becomes available.

3. The host deasserts RD when REDY is high and latches the data.

Host Interface Deadlock Resolution With SBTS

In host systems, the host may need to recover the processor from a slave
deadlock condition. When a host processor uses SBTS and HBR for deadlock
resolution, SBTS operates differently than when the host uses only SBTS.

By asserting both SBTS and HEBR, the host places the ADSP-21161 in slave
mode. ACK, HBG, REDY, and the data bus may all be active in slave mode. If
the ADSP-21161 was performing an external access (which did not com-
plete) in the same cycle that SBTS and HBR were asserted, the access is
suspended until SBTS and HBR are both deasserted again.

As with previous SHARC:, this functionality—using SBTS and HBR
together—can be used for host/processor deadlock resolution. If SBTS and
HBR are asserted while bus lock is set, the processor three-states its bus sig-
nals, but does not go into slave mode. For more information, see
“Deadlock Resolution” on page 7-82.

If SBTS and HBR are asserted while an external DMA access is occur-
ring, HBG is not asserted until the access is completed.

The processor also supports burst transfers, which can be truncated by
assertion of HBR and SBTS. If the DMA transaction was a burst transfer,
when the host relinquishes control of the local bus, the processor resumes
the burst transfer, starting at the address of the last operation that did not
complete.
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Slave Reads and Writes

The host can directly access the I/O processor registers of a processor by
reading or writing the appropriate address.

These accesses are invisible to the slave processor’s core. They do not
degrade internal memory or internal bus performance. This capability is
important, because it lets the processor core continue program execution
uninterrupted.

The host can directly read or write the I/O processor registers to control
and configure the processor or to set up DMA transfers for indirect
read/write access to internal memory.

IOP Shadow Registers

To ease host and multiprocessor system operations, the I/O processor reg-
isters include registers that shadow or mirror some processor core system
registers, including the program counter (PC), and MODE2_SHDW registers.
These registers facilitate system start up and debug, by letting the host (or
another processor in an multiprocessor system) interrogate these processor
core registers. These shadow registers are read only and lag the value of the
registers they shadow by one internal core clock. For more information,
see “PC Shadow Register (PC_SHDW)” on page A-77 and “MODE?2
Shadow Register (MODE2_SHDW)” on page A-78.

The silicon revision field of the MODE2 shadow register MODE2_SHDW
is now used for differentiating between silicon revisions. These cor-
responding bits in the MODE?2 (foreground) register are now
reserved. The application program must read the MODE2_SHDW regis-
ter bits [31:25] to identify the silicon revision. MODE2_SHDW is a
memory-mapped IOP register whose address is Ox11.
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Instruction Transfers

For 8-, 16- or 32-bit host interfaces, the ADSP-21161 can pack and
unpack 48-bit instructions or 40-bit extended precision normal word data
based on the host packing mode selected with the HBW bits in the SYSCON
register.

Slave Write Latency

The processor handles asynchronous (from a host) and synchronous (from
another processor) writes differently. This difference influences the
latency for the writes.

When a bus slave receives data from an asynchronous write, the processor
latches the data and address in a four-level FIFO buffer. For synchronous
writes, this buffer is two levels deep. This buffer is called the slave write
FIFO and appears in Figure 6-5 on page 6-23. In the following cycle, the
slave write FIFO attempts to complete the write internally. This buffering
lets the host (or bus master) perform writes at the full clock rate.

The slave’s core cannot explicitly read the slave write FIFO. Also,
the processor cannot determine the slave write FIFO’s status.

Writes to the I/0 processor registers from the slave write FIFO usually
occur in the following one or two cycles or when any current DMA trans-
fer is completed. The write takes more than two cycles only if a direct
write in the previous cycle was held off by a full buffer.

If the slave write FIFO is full when a write is attempted, the processor
deasserts ACK (or REDY) until the FIFO is not full. Unless higher priority
on-chip DMA transfers are occurring, the slave write FIFO usually emp-
ties out within one cycle, creating a one-cycle write latency.

Slave reads are held off when there is data in the slave write FIFO—cthis
prevents false data reads and out-of-sequence operations.
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Slave Reads

When a read of an ADSP-21161 occurs, the address is latched on-chip by
the I/O processor and REDY is deasserted asynchronously. When the data is
available, the I/O processor drives the data and asserts REDY.

I/O processor register reads have a maximum throughput of one access per
every three CLKIN cycles. As a slave, the processor supports burst read
accesses, which improve throughput for I/O processor register reads of
EPBx FIFOs only. Maximum throughput for synchronous burst direct read
accesses is summarized in Table 7-7. For hosts, the processor does not
support the synchronous burst protocol.

Table 7-7. Direct Read Latencies for a 1:2 Clock Ratio

Access Type Latency (CLKIN cycles)
Single Read of I/O processor register 3
Burst Read of I/O processor registers (EPBx only) 3-2-2-2

Broadcast Writes

Broadcast writes allow simultaneous transmission of data to all of the
ADSP-21161 processors in a multiprocessing system. The host processor
can perform broadcast writes to the same I/O processor register on all of
the slaves. Broadcast writes can be used to implement reflective sema-
phores in a multiprocessing system.

The host processor must assert the CS input of all processors in the system
and the address of the appropriate memory mapped I/O processor register
for a broadcast write.

Unlike previous SHARCs, the ADSP-21161 processor does not
include a broadcast write memory space into its address space and
therefore processor to processor broadcast writes are not supported.
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Data Transfers Through the EPBx Buffers

The host processor can transfer data to and from the ADSP-21161
through the external port FIFO buffers, EPBO, EPB1, EPB2, and EPB3. Each
of these buffers, which are part of the I/O processor register set, is an
eight-location FIFO, 64-bit wide (or sixteen-location, 32-bit wide). These
buffers support single-word transfers, DMA transfers, and sequential burst
accesses. DMA transfers are handled internally by the I/O processor, but
single-word transfers must be handled by the processor core.

The processor supports synchronous burst read transfers (32-bit only)
from the £EPBx FIFOs as a slave. Burst write transfers are not supported.

To perform a burst read transfer from an EPBx buffer, the master issues a
starting burst address pointing to one of the EPBx buffer addresses in I/O
processor control register space. The slave does not increment an EPBx
burst read address, and the master limits the burst transfer length to the
modulo4 address boundary restriction.

For information on external port transfers, see “External Port Channel
Transfer Modes” on page 6-46. For information on external port hand-
shaking, see “External Port Channel Handshake Modes” on page 6-47.

To support debugging buffer transfers, the processor has a Buffer
Hang Disable (8HD) bit. When set (=1), this bit prevents the pro-
cessor core from detecting a buffer-related stall condition,
permitting debugging of this type of stall condition. For more
information, see the BHD discussion on page 6-43.

DMA Transfers

The host processor can also set up DMA transfers to and from the
ADSP-21161. After the host gets control of the processor, the host can
access the on-chip DMA control and parameter registers to set up an
external port DMA operation. DMA is the most efficient way to transfer
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blocks of data. For DMA programming examples, see “External Port
DMA Example” on page 6-77 and “External Port Chained DMA Exam-
ple” on page 6-79.

e DMA Transfers to Internal Memory. The host can set up external
port DMA channels to transfer data to and from internal memory.

* DMA Transfers to External Memory. The host can set up an
external port DMA channel to transfer data directly to external
memory using the DMA request and grant lines (DMARX, DMAGX).

For more information, see “Setting Up External Port DMA” on

page 6-68.

The host may also use the DMARX/DMAGx handshake signals for a
DMA transfer as a bus slave, but may not use DMA as a bus master
while HBR retains control of the bus.

Host Data Packing

The host interface uses the same data packing features as the I/O processor
uses. The “8- to 32-Bit Data Packing” on page 7-66 and “48-Bit Instruc-
tion Packing” on page 7-74 sections describe timing for these data packing
operations.

For transfers to or from the EPBx data buffers, the packing mode is
determined by the setting of the HBW bits of the SYSCON register
AND the PMODE bits in the DMACx control register for each external
port buffer.

For host accesses, to pack and unpack individual data words, you must set
both the PMODE bits in the appropriate DMACx control register and the HBW
bits in the SYSCON register. Table 7-8 shows the packing mode bit settings
for access to IOP, link port and external port buffers.
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Table 7-8. Packing Mode Combinations

PMODE | HBW Host Packing Mode (External:Internal)
8/16/32
IOP Buffers Link Ports Buffers External Port Buffers
Internal Packing Internal Packing Uses PMODE,
Fixed to 32-bit Fixed to 48-bit INT32 & DTYPE
(1=48/40, 0=32/64)

000 - Reserved

001 01 (16-bit) | 16: 32 16 : 48 16 : 32/64

010 01 (16-bit) | 16: 32 16 : 48 16 : 48-bit

011 00 32-bi) | 32:32 3248 32 : 48-bit

100 00 32-bi) | 32:32 3248 32:32/64

101 10 (8-bi) 8:32 8 : 48 8 : 48

110 10 (8-bi) 8:32 8 : 48 8 : 32/64

111 - Reserved

The ADSP-21161 provides a glueless interface to 8-, 16-, and 32-bit
hosts. Three differences between the ADSP-21161 and the ADSP-21160

are:

Connection of 8-bit hosts (in addition to 16- or 32-bit hosts) is

supported.

There is limited direct access to IOP register space. A host proces-
sor and other ADSP-21161s in a multiprocessing configuration can
only directly access the memory mapped IOP registers of an
ADSP-21161. A host can only use asynchronous access to
ADSP-21161 registers (by using CS of the processor). The lower
nine bits of the 24-bit address bus are decoded to select an IOP
register for any access into the ADSP-21161’s internal memory.
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* Synchronous broadcast write is not supported by the ADSP-21161
because there is no broadcast memory space. However, the host can
simultaneously write to the same address on all the processors asyn-
chronously by asserting CS for each processor simultaneously
during a write without any multiprocessor memory offset.

The host data bus is connected to the ADSP-21161 data bus in a
LSB-alignment to the default 32-bit active data bus DATA47-16. For exam-
ple, data pin 0 (D0) of host data bus connects to DATA16 of ADSP-21161
data bus, data pin 1 (D1) of the host data bus connects to DATA17 of the
ADSP-21161 data bus, and so on.

Depending on the register access, the processor packs/unpacks data as 32
bits, 48 bits, or up to 64 bits. A host can indirectly transfer data (via
DMA) to and from internal memory by writing or reading to/from EPBx.
To support this, several packing options are available. The newly defined
Host Bus Width (HBW) bits 5 and 4 in the SYSCON register control the host
data packing. They are described in Table 7-9 on page 7-65. Host Packing
Status (HPS) bits 24-22 have also been redefined in SYSTAT. They are
described in Table A-21 on page A-69.

Packing Mode Variations For Host Accesses

The host interface (using HBR, HBG, CS) uses data packing logic to allow the
packing of 8-, 16-, and 32-bit external bus words into 32-, 48-, and 64-bit
internal words. The packing logic is fully reversible; packing and unpack-
ing of data is performed for both directions of data transfer to external
data.

For 32-bit, 16-bit, and 8-bit host processors accessing IOP register space,
the processor can pack and unpack data to or from internal memory, inde-
pendent of the setting of the PMODE bits in the DMACx register, to either
32-bit, 48-bit, or up to 64-bits internal packing depending on the type of
host access. Although the packing mode for host access is configurable, it
can sometimes revert to fixed packing modes depending on the IOP regis-
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ter accessed. In most cases, when a host accesses IOP control/status
registers, the processor defaults to internal data packing and unpacking to
a 32-bit access (independent of the setting of the PMODE bits in the DMACx
register). LBUFx buffer access is limited to 48-bits internal packing, ignor-
ing the PMODE bits in DMACx. EPBx buffer access always depends on the
PMODE bits, DTYPE and INT32 bits in DMACx.

The three host access cases are described in the following sections:
e “IOP Register Host Accesses” on page 7-62
e “LINK Port Buffer Access” on page 7-63
* “EPBx Buffer Accesses” on page 7-64

IOP Register Host Accesses

For accesses to all IOP registers except EPBx and LBUFx, the host data is
fixed to packed or unpacked to/from 32-bit internal data word. In most
cases, when accessing an IOP control or status register, or serial port and
SPI data buffers (TXn/RXn, SPIRX/SPITX), the PMODE bits in the DMACx regis-
ter are ignored. A fixed packing mode of 8-, 16- or 32-bit external to
32-bit internal is selected. This is because all IOP registers except LBUFx
and EPBx are 32 bits wide.

Ensure that host accesses generate valid IOP register addresses.
Host accesses to non-existent IOP register addresses are not sup-
ported, and can result in host bus grant (HBG) hang.

Host access of IOP control/status registers and SPORT/SPI data
buffers (excepr EPBx and LBUFx) will pack or unpack to 32 bits inter-
nally, ignoring the value of PMODE in DMACx. The HBW bits in the
SYSCON register are used as a reference to set the external packing
mode.
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For example, when interfacing the ADSP-21161 to an 8-bit microcontrol-
ler, the HBW bits are set in the SYSCON register to specify a host bus width of
8 bits. This results in an 8-bit external to 32-bit internal fixed data pack-
ing mode to an IOP register. Table 7-8 on page 7-60 shows the packing

mode combinations.

LINK Port Buffer Access

The link buffers LBUFO and LBUF1 can also be accessed by an external host
processor, using direct reads and writes to IOP register space. However,
there are differences in how data is accessed with the link buffers com-
pared to other IOP control/status registers. When the host processor reads
or writes to these buffers, the external packing data access width is also
determined by the host bus width bits in the SYSCON register while the
internal packing mode is restricted to 48 bits.

Hosts accesses to the link port buffers pack or unpack to 48 bits
internally, ignoring the value of PMODE in DMACx. The HBW bits in the
SYSCON register are used to set the external packing mode.

In the case where a host processor reads or writes to the LBUF0 and LBUF1
link buffers, the PMODE bits in the DMACx external port DMA control regis-
ter are ignored and are fixed to a special 48-bit internal packing mode.
This fixed 48-bit internal packing mode is required because the
ADSP-21161 link port buffers transmit and receive 48-bit words.
Depending on the HBW bits in SYSCON, the appropriate external to 48-bit
internal memory packing mode are selected. The available bit settings are

shown in Table 7-8 on page 7-60.

It may be desirable in some applications for a host processor to transfer
instruction opcodes to another SHARC indirectly via the directly con-
nected SHARCs link port by reading or writing the opcode data to or
from the LBUFO and LBUF1 link buffers through the external port. For
example, with a 16-bit host, the packing mode internally defaults to
48-bit packed transfers such that the packing mode is 16-bit external to
48-bit internal packed data transfers.
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EPBx Buffer Accesses

The external port buffers, EPBO, EPB1, EPB2, and EPB3 can also be accessed
by an external host processor, using direct reads and writes to IOP register
space. There are differences in how data is accessed with the EPBx buffers
as compared with other IOP control/status registers. When the host pro-
cessor reads or writes to external port buffers, the packing mode indicated
by the PMODE bits in the corresponding DMACx register are selected.

Host accesses to the external port buffers pack or unpack according
to the packing mode specified with the PMODE bits in DMACx.

Depending on the HBW bits in SYSCON and PMODE in DMACx, the appropriate
packing mode are selected as shown in Table 7-8 on page 7-60.

There is no direct write pending bit in SYSTAT (as in the
ADSP-21160) since the ADSP-21161 does not have a direct write
FIFO. However, the ADSP-21161 processor has two newly defined
bits in SYSTAT for checking the status of the slave write FIFO.

The following bits in the SYSTAT register affect host access:

* Synchronous Slave Write FIFO Data Pending. SYSTAT Bit 20
(SSWPD) . Since a host cannot be synchronous, this bit is set for syn-
chronous access by another ADSP-21161. The bit is set (=1) when
synchronous slave IOP register write is pending. The bit is cleared
(=0) when the direct write is complete.

* Slave Write FIFO Data Pending. SYSTAT Bit 21 (SWPD) . This status
bit is set for any host or SHARC write access to an IOP register. If
a host processor attempts to write data through the asynchronous
protocol, this status bit is set. The bit is set (=1) when a slave (asyn-

7-64 ADSP-21161 SHARC Processor Hardware Reference



External Port

chronous or synchronous) write to an IOP register is pending. The
bit is cleared (=0) when there is no slave write pending. The proces-
sor clears SWPD when the direct write is complete.

* Host Packing Order. SYSCON Bit 7 (HMSWF) . This bit determines
whether the I/O processor packs the most significant or least signif-
icant word first for 8-bit and 16-bit hosts. For 32- to 32/64 and
32- to 48-bit packing, the processor ignores the HMSWF bit in the

SYSCON register and the MSWF bit in the DMACx register.

Host packing examples are shown below for host direct read/write access
to IOP control/status registers, TXn/RXn, SPIRX/SPITX and LBUFx data buff-

ers. The default internal packing is 32-bit for host accesses to IOP
control/status registers and 48-bit for host accesses to LBUFx, ignoring

PMODE bits in DMACx. If the HMSWF bit is set (=1), the packing and unpack-

ing is most significant word first. If the HMSWF bit is cleared (=0), the

packing and unpacking is least significant word first.

Table 7-9. Packing sequence for 32-bit IOP Register Data

Transfer Data Bus Pins 23-16 (8-bit | Data Bus Pins 31-16 (16-bit
bus, LSW first) bus, MSW first)

First Word 1; bits 7-0 Word 1; bits 31-16

Second Word 1; bits 15-8 Word 1; bits 15-0

Third Word 1; bits 23-16

Fourth Word 1; bits 31-24

Table 7-10. Packing Sequence for Accessing 48-bit LBUFx Data

Transfer Data Bus Pins 31-16 (16-bit | Data Bus Pins 23-16 (8-bit
bus, MSW first) bus, MSW first)

First LBUFx; bits 47-32 LBUFx; bits 47-40

Second LBUFx; bits 31-16 LBUFx; bits 39-32

Third LBUFx; bits 15-0 LBUFx; bits 31-24

ADSP-21161 SHARC Processor Hardware Reference

7-65



Host Processor Interface

Table 7-10. Packing Sequence for Accessing 48-bit LBUFx Data (Cont’d)

Transfer Data Bus Pins 31-16 (16-bit | Data Bus Pins 23-16 (8-bit
bus, MSW first) bus, MSW first)

Fourth LBUFx; bits 23-16

Fifth LBUFx; bits 15-8

Sixth LBUFx; bits 7-0

Table 7-11. Packing Sequence for Accessing 48-bit LBUFx Data From a
32-bit bus (MSW First)

Transfer Data Bus Pins 47-32 Data Bus Pins 31-16
First LBUFx 1; bits 47-32 LBUFx 1; bits 31-16
Second LBUFx 2; bits 15-0 LBUFx 1; bits 15-0

Third LBUFx 2; bits 47-32 LBUFx 2; bits 31-16

To write a single 48-bit word or an odd number of 48-bit words to
LBUFx, write a dummy access to completely fill the packing buffer.

8- to 32-Bit Data Packing

The processor latches incoming data on pins DATA23-16 for 8- to 32-bit
packing on an 8-bit host bus. Similarly, the processor drives outgoing data
on DATA23-16 with the other lines equal to zeroes. The sequence of events
for 32-bit packing and unpacking for writes and reads are shown in

Figure 7-19 on page 7-71.

When a host reads a 32-bit word with 8-bit unpacking using the typical
bus interface hardware shown in Figure 7-25 on page 7-81, the following
sequence of events occurs:

* The host initiates a read cycle by driving an address, asserting CS,
and asserting RD (low).
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* The selected processor deasserts REDY, latches the address, and per-
forms an internal read to get the data.

*  When the processor has the data, it asserts REDY and drives the first
8-bit word.

e The host latches the data and deasserts RD (high).

e The host initiates another read access, driving the address of the
data to be accessed then asserting RD.

* The processor transmits the second 8-bit word.

* The host initiates another read access, driving the address of the
data to be accessed then asserting RD.

* The processor transmits the third 8-bit word.

* The host initiates another read access, driving the address of the
data to be accessed then asserting RD.

e The processor transmits the final 8-bit word. 8- to 32-bit packing
is complete.

When a host writes a 32-bit word with 8-bit packing using the typical bus
interface hardware shown in Figure 7-25 on page 7-81, the following
sequence of events occurs:

* The host initiates a write cycle by driving the write address, assert-
ing CS, and asserting WR (low).

* The processor asserts REDY when it is ready to accept data.

e The host drives the address and the first 8-bit word and deasserts
WR (high).

* The processor latches the first 8-bit word.
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* The host drives the address and initiates another write cycle for the
second 8-bit word by asserting WR.

* The processor latches the second 8-bit word.

* The host drives the address and initiates another write cycle for the
third 8-bit word by asserting WR.

* The processor latches the third 8-bit word.

* The host drives the address and initiates another write cycle for the
fourth 8-bit word by asserting WR.

* When the processor has accepted the fourth word, it performs an
internal write to its memory-mapped 1/O processor register. If the
processor's internal write has not completed by the time another
host access occurs, the processor holds off that access with REDY.

The packing sequence for downloading 32-bit data from a 8-bit host bus
takes four cycles for every word, as illustrated in as shown in Table 7-12.
The endian format of the transfers is controlled by the HMSWF bit in the
SYSCON register. If HMSWF=0, the least significant 8-bit word is packed first.
If HMSWF=1, the most significant 8-bit word is packed first.

Table 7-12. 8- to 32-Bit Word Packing, HMSWF=1
(Host Bus <-> ADSP-21161)

Transfer Data Bus Pins 23-16
First transfer Wordl, bits 31-24
Second transfer Wordl, bits 23-16
Third transfer Wordl, bits 15-8
Fourth transfer Word1, bits 7-0
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16- to 32-Bit Packing

For a 16-bit host bus, the processor latches incoming data on pins
DATA31-16. Similarly, the processor drives outgoing data on DATA31-16
with the other lines equal to zeroes. The sequence of events for 32-bit
packing and unpacking is different for writes and reads.

When a host reads a 32-bit word with 16-bit unpacking using the bus
interface hardware shown in Figure 7-25 on page 7-81, the following
sequence of events occurs as illustrated in Figure 7-23 on page 7-73:

The host initiates a read cycle by driving an address, asserting CS,
and asserting RD (low).

The selected processor deasserts REDY, latches the address, and per-
forms an internal read to get the data.

When the processor has the data, it asserts REDY and drives the first
16-bit word.

The host latches the data and deasserts RD (high).

The host initiates another read access, driving the address of the
data to be accessed then asserting RD.

The processor transmits the second 16-bit word (16 to 32-bit pack-
ing is complete).

When a host writes a 32-bit word with 16-bit packing using typical bus
interface hardware shown in Figure 7-25 on page 7-81, the following
sequence of events occurs as illustrated in Figure 7-23 on page 7-73:

The host initiates a write cycle by driving the write address, assert-
ing CS, and asserting WR (low).

The processor asserts REDY when it is ready to accept data.

The host drives the address and the first 16-bit word and deasserts
WR (high).
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* The processor latches the first 16-bit word.

* The host drives the address and initiates another write cycle for the
second 16-bit word by asserting WR.

*  When the processor has accepted the second word, it performs an
internal write to its memory-mapped 1/O processor register. If the
processor's internal write has not completed by the time another
host access occurs and the 4 deep asynchronous slave FIFO is full,
the processor holds off that access with REDY.

The packing sequence for downloading or uploading instructions over an
16-bit host bus takes two cycles for every 32-bit word, as shown in

Table 7-13. The endian format of the transfers is controlled by the HMSWF
bit in the SYSCON register. If HMSWF=0, the least significant 16-bit word is
packed first. If HMSWF=1, the most significant 16-bit word is packed first.

Table 7-13. 16- to 32-Bit Word Packing, HMSWF=1
(Host Bus <-> ADSP-21161)

Transfer Data Bus Pins 31-16
First transfer Word1, bits 31-16
Second transfer Word1, bits 15-0
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8/32 BIT PACKING
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Figure 7-19. Timing for 8- to 32-Bit Host Data Packing

8/48 BIT PACKING (WRITE)
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Figure 7-20. Timing for 8- to 48-Bit Host Data Packing (Write)
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8/48 BIT PACKING(READ)
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Figure 7-21. Timing for 8- to 48-Bit Host Data Packing (Read)
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Figure 7-22. Timing for 16- to 48-Bit Host Data Packing
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16/32 BIT PACKING
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Figure 7-23. Timing for Host Data Packing
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If the processor is waiting for another 8- or 16-bit word from the host to
complete the packed word, the HPS field in the SYSTAT register is non-zero.
For more information, see “Host Interface Status” on page 7-76.

Because there is only one packing buffer for the host interface, the
host must complete each packed transfer before another is begun.
For more information, see “External Port Status” on page 6-127.

48-Bit Instruction Packing

The host can also download and upload 48-bit instructions over its 8-,
16-, or 32-bit bus.

32- to 48-Bit Packing

The packing sequence for downloading instructions from a 32-bit host
bus (HBW=00) takes 3 cycles for every 2 words, as illustrated in Table 7-14.
Data (32-bit) is transferred on data bus lines 47-16 (DATA47-16). If an odd
number of instruction words are transferred, the packing buffer must be
flushed by a dummy access to remove the unused word.

40-bit extended precision data may be transferred using the 48-bit pack-
ing mode. For more information on memory allocation for different word
widths, see “Memory Organization and Word Size” on page 5-25.

Table 7-14. 32- to 48-Bit Word Packing (Host Bus <-> ADSP-21161)

Transfer

Data Bus Lines 47-32

Data Bus Lines 31-16

First transfer

Wordl1, bits 47-32

Wordl, bits 31-16

Second transfer

Word2, bits 15-0

Word1, bits 15-0

Third transfer

Word2, bits 47-32

Word2, bits 31-16

@ The HMSWF bit of SYSCON is ignored for 32- to-48-bit packing.
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When a host writes a 48-bit word with 32-bit packing using typical bus
interface hardware shown in Figure 7-25 on page 7-81, the sequence of
events occurs as illustrated in Figure 7-23 on page 7-73.

16- to 48-Bit Packing

The packing sequence for downloading or uploading instructions over a
16-bit host bus takes three cycles for every 48-bit word, as shown in

Table 7-15.

Table 7-15. 16- to 48-Bit Word Packing, HMSWF=1
(Host Bus <-> ADSP-21161)

Transfer Data Bus Pins 31-16
First transfer Word1, bits 47-32
Second transfer Word1, bits 31-16
Third transfer Word1, bits 15-0

When a host writes a 48-bit word with 16-bit packing using typical bus
interface hardware shown in Figure 7-25 on page 7-81, the sequence of
events occurs as illustrated in Figure 7-22 on page 7-72.

8- to 48-Bit Packing

The packing sequence for downloading or uploading instructions over an
8-bit host bus takes six cycles for every 48-bit word, as shown in

Table 7-16. The endian format of the transfers is controlled by the HMSWF
bit in the SYSCON register. If HMSWF=0, the least significant word is packed
first. If HMSWF=1, the most significant word is packed first.

When a host writes a 48-bit word with 8-bit packing using typical bus
interface hardware shown in Figure 7-25 on page 7-81, the sequence of
events occurs as illustrated in Figure 7-23 on page 7-73.
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Table 7-16. 8- to 48-Bit Word Packing, HMSWF=1
(Host Bus <-> ADSP-21161)

Transfer Data Bus Pins 23-16
First transfer Word1, bits 47-40
Second transfer Word1, bits 39-32
Third transfer Word1, bits 31-24
Fourth transfer Word1, bits 23-16
Fifth transfer Word1, bits 15-8
Sixth transfer Word1, bits 7-0

Host Interface Status

The SYSTAT register provides status information for host and multiproces-
sor systems. For more information on the SYSTAT register, see Table A-21

on page A-69.

Interprocessor Messages and Vector Interrupts

After getting control of the ADSP-21161, the host processor communi-
cates with it by writing messages to the memory-mapped I/O processor
registers. In a multiprocessor system, the host can access the I/O processor
registers of every ADSP-21161.

The MSGRx registers are general-purpose registers that can be used for mes-
sage passing between the host and the ADSP-21161. They are also useful
for semaphores and resource sharing between multiple DSPs. The MSGRx
and VIRPT registers can be used for message passing in the following ways:

* Message Passing. The host can use any of the eight message regis-
ters, MSGRO through MSGR7, to communicate with the processor.
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* Vector Interrupts. The host can issue a vector interrupt to the
processor by writing the address of an interrupt service routine to
the VIRPT register. When serviced, this high priority interrupt
causes the processor to branch to the service routine at that address.

The MSGRx and VIRPT registers also support shared-bus multiprocessing
through the external port. Because these registers may be shared resources
within a single processor, conflicts may occur—your system software must
prevent this. For further discussion of I/O processor register access con-

flicts, see “I/O Processor Registers” on page A-47.

Message Passing (MSGRX)

There are three possible software protocols that the host can use for com-
municating with the processor through the MSGRx message registers:
vector-interrupt-driven, register handshake, and register write-back.

For the vector-interrupt-driven method, the host fills predetermined
MSGRx registers with data, and triggers a vector interrupt by writing the
address of the service routine to VIRPT. The service routine should read the
data from the MSGRx registers and then write 0 into VIRPT. This signals the
host that the routine is complete. The service routine also could use one of
the processor’s FLAGL1-0 pins to indicate completion.

For the register handshake method, four of the MSGRx registers are desig-
nated as follows: a receive register (R), a receive handshake register (RH), a
transmit register (T), and a transmit handshake register (TH). To pass data
to the ADSP-21161processor, the host would write data into T and then
write a 1 into TH. When the ADSP-21161 sees a 1 in TH, it reads the data
from T and then writes back a 0 into TH. When the host sees a 0 in TH, it
knows that the transfer is complete. A similar sequence of events occurs
when the ADSP-21161 passes data to the host through R and RH.
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The register write-back method is similar to register handshaking, but uses
only the T and R data registers. The host writes data to T. When the
ADSP-21161 sees a non-zero value in T, it retrieves it and writes back a 0
to T. A similar sequence occurs when the host is receiving data. This sim-
pler method works well when the data to be passed does not include 0.

Host Vector Interrupts (VIRPT)

Vector interrupts are used for interprocessor commands between the host
and a ADSP-21161 or between two ADSP-21161s. When the external
processor writes an address to the ADSP-21161s VIRPT register, the write

triggers a vector interrupt. For more information, see “Multiprocessing
Interrupts” on page 3-49.

To use the ADSP-21161’s vector interrupt feature, the host can perform
the following sequence of actions:

1. Poll the processor’s VIRPT register until the host reads a certain
token value (for example, zero).

2. Write the vector interrupt service routine address to VIRPT.

3. When the service routine is finished, the processor writes the token
back into VIRPT to indicate that it is finished and that another vec-
tor interrupt can be initiated.

System Bus Interfacing

A processor subsystem, consisting of several DSPs with local memory, may
be viewed as one of several processors connected together by a system bus.
Examples of such systems are the EISA bus, PCI bus, or several processor
subsystems. The processors in this kind of system arbitrate for the system
bus using an arbitration unit. Each device on the bus that needs to become
a bus master must be able to drive a bus request signal and respond to a

bus grant signal. The arbitration unit determines which request to grant in
any given cycle.
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Access to the Processor Bus — Slave Processor

Figure 7-24 shows an example of a interface to a system bus that isolates
the local processor bus from the system bus. When the system is not
accessing the DSPs, the local bus supports transfers between other local
DSPs and local external memory or devices.

When the system needs to access a processor, the system executes a read or
write to the address range of the processor subsystem. The external address
comparator detects a local access and asserts HBR and one of the appropri-
ate CS lines. The processor holds off the system bus with REDY until the
processor is ready to accept the data. The HBG signal enables the system bus
buffers. The buffers” direction for data is controlled by the read or write
signals. To avoid glitching the HBR line when addresses are changing, the
address comparator may be qualified by an enable signal from the system
or qualified by the system read or write signals. These methods cause HER
to be deasserted each time system read or write is deasserted or the address
is changed. Because these techniques deassert HBR with each access, the
overhead of an HTC occurs as part of each access.

Access to the System Bus — Master Processor

Figure 7-25 shows a bidirectional system interface in which the processor
subsystem can access the system bus by becoming a bus master. Before
beginning the access, the processor first requests permission to become the
bus master by generating the System Bus Request signal (SBR). A bus arbi-
tration unit determines when to respond with SBR. Here, each system bus
master generates and responds to its own unique pair of signals.

The method a processor uses to arbitrate for the system bus depends on
whether the access is from the processor processor core or the I/O proces-
sor. For more information, see “Processor Core Access to System Bus” on
page 7-82 and “DMA Access to System Bus” on page 7-84.
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Figure 7-24. Slave System Bus Interface
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Processor Core Access to System Bus

The processor core may arbitrate for the system bus by setting a flag and
waiting for SBG on another flag. This technique has the benefit of not stall-
ing the local bus while waiting. If SBG is tied to an interrupt pin, the
processor can continue processing while waiting.

Another method for the processor access is to attempt the access assuming
that the system bus is available. The processor then either waits or aborts
the access if the bus is not available. The processor begins the access to the
system bus by asserting one of the memory select lines, MS3-0. This asser-
tion also asserts SBR. If the system bus is not available (for example, SBG is
deasserted), the processor should be held off with ACK. This approach is
simple, but stalls the processor and the local bus when the system bus is
accessed while it is busy. To overcome this stall, programs can use the
Type 10 instruction:

IF condition JUMP(addr), ELSE compute, DM(addr)=dreg;

This instruction aborts the bus access if the condition (SBG) is not true and
causes the program to branch to a try-again-later routine. This method
works well if SBG is asserted most of the time. If the Type 10 instruction is
not used, a deadlock condition can result if an access is attempted before
the bus is granted.

The processor samples FLAG inputs at the CLKIN frequency except
when CLKDBL is enabled. When CLKDBL is enabled, the processor
samples FLAG inputs at the CLKOUT frequency. FLAG outputs must
be held stable for at least one full CLKIN cycle.

Deadlock Resolution

When both the processor subsystem and the system try to access each
other’s bus in the same cycle, a deadlock may occur in which neither
access can complete; ACK stays deasserted.
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Normally, the master processor responds to an HBR request by asserting
HBG after the completion of the current access. If the processor is accessing
the system bus at the same time, HBG is not asserted, because this current
access cannot complete—this condition results in a deadlock in which nei-
ther access can complete. The deadlock may be broken by asserting the
Suspend Bus Three-state (SBTS) input for one or more cycles after the
deadlock is detected—when the system bus to local bus buffer is requested
from both sides.

The combination of SBTS and HBR puts the master processor into slave
mode and suspends the processor core’s external access. This suspension
lets the system access to the local bus proceed, after the processor asserts
HBG. The combination of HBR and SBTS should only be applied when there
is a deadlock caused by a processor access to the system bus. SBTS should
not be used when there is a local bus transfer, because the WR signal is
asserted twice—once before the SBTS is asserted and once after the access
resumes. For processor-to-processor transfers on the local bus, this double
assertion violates the slave timing requirements.

The following sequence of actions allows the host processor to suspend an
ongoing processor access and gain access to its internal resources, provided
that: 1) the access originates from the processor’s core, not the DMA con-
troller, 2) a DRAM page miss is not detected for that memory access, and
3) bus lock is not enabled.

1. After HBR is asserted, the host asserts SBTS for one or more cycles. If
SBTS is asserted one or more cycles after HBR is recognized, HBG is
guaranteed to be asserted in the next cycle. SBTS should be deas-
serted before HBR is deasserted.

2. The host drives the RD and WR strobe to their correct values after HBG
is asserted. The host may then perform as many accesses as desired.

3. The host has full control of the bus and may access any of the pro-
cessors or peripherals on the bus.
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4. The host deasserts HBR. HBG is deasserted when the internal read
buffer is empty.

5. One cycle after the processor deasserts HBG, it restarts its suspended
access.

DMA Access to System Bus

Using the SBTS and HBR inputs to resolve a system bus deadlock, as
described in “Deadlock Resolution” on page 7-82, cannot be used for
DMA transfers, because after a DMA word transfer has begun in the
ADSP-21161, it must be completed (for example, it must receive the ACK
signal). If SBTS and HBR are asserted during a DMA access, the HBG pin is
not asserted until the access cycle has completed. If the single DMA access
is not allowed to complete, a deadlock condition may result.

To prevent system bus deadlock when using DMA, programs must make
sure that SBG has been asserted before the DMA sequence begins. If a
higher priority access is needed, the DMA sequence may be held off (by
asserting HBR) at any time after a word has been transferred. Systems must
ensure that SBG is asserted before HBR is deasserted to prevent the possibil-
ity of another deadlock occurring. When the DMA sequence is complete,
the DMA interrupt service routine should clear the external SBR flag.

Because the system bus is likely to be considerably slower than the local
bus, performance on the local bus may be improved considerably by using
handshake mode DMA. In this case, the SBG signal is tied to the DMA
request line, DMARX. The local and system bus accesses are only initiated
when the system bus is available.

Using a FIFO in the system interface unit, to allow DMA data
from the local bus to be posted, may also increase performance on
the local bus when using a slow system bus.
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Multiprocessing With Local Memory

Figure 7-26 shows how several subsystems may be connected together on a
system bus for high throughput. The gate array implements bus arbitra-
tion when the system bus is accessed. The buffers isolate the local buses
from the system bus.

The example system in Figure 7-26 works in the following way:

* A processor requests the system bus with SBR when it asserts the MS2
line. The gate array arbitrates between the SBR lines and then
enables the highest priority group by asserting SBG, which is tied to
FLAGO.

* The master processor may connect to system memory or to other
processor groups. When the bus buffer is enabled, the read or write
strobe enables should be asserted with a delay to allow the address
to stabilize.

* To access a processor slave in another group, the master processor
addresses that group’s multiprocessor memory space. The gate
array detects group multiprocessor memory space from three
high-order address bits and asserts the HBR line for the selected
group. When HBG is asserted, the gate array enables the slave’s bus
buffer. The high-order group address bits are cleared by the buffer
to allow the group to decode the address as local multiprocessor
memory space. The access is asynchronous because the CS line is
asserted. The single waitstate option for the bus should be enabled.

* If two groups access each other in the same cycle, a deadlock may
occur. The SBTS pin may be used to clear the deadlock.

ADSP-21161 to Microprocessor Interface

A ADSP-21161 without external memory may connect to a host micro-
processor’s bus. Depending on the microprocessor’s I/O capabilities, the
interface may not require any buffers. This type of connection assumes
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Figure 7-26. Subsystems on a System Bus

that the processor can execute its application from internal memory most
of the time and only occasionally needs to request an external access. The
host microprocessor should always keep the HBR request asserted unless it
sees BRI asserted (for the BRx line of the processor with 10=001). The host
can then deassert HBR to allow the processor to perform an external access
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when the host is ready to give up its bus. Usually, the host can read or
write to the processor as needed. The host accesses the processor by assert-
ing CS and handshaking with REDY. The HBG is not necessary in this system.

Multiprocessor (MP) Interface

The ADSP-21161 processor supports connecting to other ADSP-21161
processors to create multiprocessing processor systems. This support
includes:

* Distributed, on-chip arbitration for the shared external bus

* A unified multiprocessor address space that makes the I/O proces-
sor registers of all processors directly accessible to each processor
(and host interface)

* Dedicated hardware support for interprocessor communication
(for example, reflective semaphores)

* Dedicated, point-to-point communication channels between pro-
cessors using the link ports

Figure 7-27 illustrates a basic multiprocessing system. In a multiprocessor
system with several processors sharing the external bus, any of the proces-
sors can become the bus master. The bus master has control of the bus,
which consists of the DATA47-16, ADDR23-0, and associated control lines.
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Figure 7-27. ADSP-21161 Multiprocessor System
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Table 7-17 shows the external port signals for multiprocessor processor
arbitration and communication.

Table 7-17. Signal for Cluster Multiprocessor Systems

Signal Types Signals

Synchronization CLKIN, RESET

Arbitration BRG6-1, PA!

Bused Information ADDR23-0, DATA47-16
Master Controls RD, WR, BRST

Slave Control ACK

Host Interface? HBR, HBG, CS, REDY, SBTS

1 Optional, only needed if Priority Access function is used
2 Optional, only needed if Host Interface is used.

The I/0 processor registers of the system’s processors make up the multi-
processor memory space. Multiprocessor memory space is mapped into
the unified address space of each processor. For more information, see the
multiprocessor memory map in Figure 5-8 on page 5-20.

After a processor becomes the bus master, it can read and write to any of
the slave’s I/0 processor registers, including their external port FIFO data
buffers. For example, the master processor may write to a slave’s I/O pro-
cessor registers to set up DMA transfers or to send a vector interrupt.

The ADSP-21161 processor only supports direct reads and writes
to I/O processor registers. However, internal memory can be
accessed indirectly through EPBx DMA transfers.
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Multiprocessing System Architectures

Multiprocessor systems typically use one of two schemes to communicate
between processor nodes. One scheme uses dedicated point-to-point com-
munication channels. In the other scheme, nodes communicate through a
single shared global memory over a parallel bus.

The ADSP-21161 supports point-to-point communication—data flow
multiprocessing—through its two link ports. Also, the ADSP-21161 sup-
ports a shared parallel bus communication—cluster multiprocessing—
through its link ports and external port. The following sections provide
more detail on on data flow multiprocessing and cluster multiprocessing.

Data Flow Multiprocessing

Data flow multiprocessing works for applications requiring high computa-
tional bandwidth, but requiring only limited flexibility. The program
partitions its algorithm sequentially across multiple processors and passes
data through a line of processors, as shown in Figure 7-28.

ADSP-21161 ADSP-21161 ADSP-21161
LINK LINK LINK LINK LINK LINK
—> poRT PORT > pORT PORT > pORT PORT >

Figure 7-28. Data Flow Multiprocessing

The ADSP-21161 provides complete support for data flow multiprocess-
ing applications, because the processor eliminates the need for
interprocessor data FIFOs and external memory. The internal memory of
the processor is usually large enough to contain both code and data for
most applications using data-flow system topology. Data flow systems
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only require a number of processors and point-to-point signals connecting
them. This design yields savings in complexity, board space, and system
cost. For more information on connecting multiple processors using link
ports, see “Host Processor Access To Link Buffers” on page 9-14.

Cluster Multiprocessing

Cluster multiprocessing works for applications where flexibility is
required. This flexibility is needed when a system must be able to support
a variety of different tasks, some of which may be running concurrently.
The cluster multiprocessing configuration is shown in Figure 7-29. Also,
the processor has an on-chip host interface that lets a cluster be interfaced
to a host processor or another cluster.

ADSP-21161 ADSP-21161 ADSP-21161
LINK LINK LINK LINK LINK LINK
—>{ pORT PORT > PORT PORT > pPORT PORT [—>
EXTERNAL EXTERNAL EXTERNAL
PORT PORT PORT

A
< Y

A ¢

v

A >
v

BULK
MEMORY

Figure 7-29. Cluster Multiprocessing

Cluster multiprocessing systems include multiple ADSP-21161s con-
nected to a parallel bus that supports interprocessor access of on-chip
memory-mapped registers and access to shared global memory. In a typi-
cal cluster of processors, up to six processors and a host can arbitrate for
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the bus. The on-chip bus arbitration logic lets these processors share the
common bus. The ADSP-21161’s features (such as large internal memory,
link ports, and external port FIFOs) help eliminate the need for any extra
hardware in the cluster multiprocessor configuration. External memory,
both local and global, can frequently be eliminated in this type of system.

The ADSP-21161 supports fixed and rotating priority schemes. Other
supported techniques include bus locking, timed release, DMA prioritiza-
tion, and core processor access preemption of background DMA transfers.
The on-chip arbitration logic lets transitions in bus mastership take up to
only one cycle of overhead. Bus requests are generated implicitly when a
processor accesses an external address. Because each processor monitors all
bus requests and applies the same priority logic to the requests, each can
independently determine who is the next bus master.

After getting mastership of the bus, a processor can access external mem-
ory and the I/O processor registers of all other processors (slaves) in the
system. A processor can directly transfer data to another processor or set
up a DMA channel to transfer the data. The processors are mapped into a
common memory map—to identify the address space of each processor
within the unified memory map of the system cluster. Also, each processor
has a unique ID. The processor’s I/O processor registers and external
memory are all part of the unified address space.

The cluster configuration allows the processors to have a very fast
node-to-node data transfer rate. Clusters also allow a simple, efficient soft-
ware communication model. For example, all of the required setup
operations for a DMA transfer can be accomplished by a single processor
on one side of the transfer. The other processor is not interrupted until

the DMA transfer is complete.

The ADSP-21161’s internal memory facilitates I/O in multiproces-
sor systems. The on-chip, dual-ported RAM supports full-speed

inter-processor DMA transfers concurrent with dual accesses by the
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processor’s processor core. Because no cycles are stolen from the
processor core, the processor’s full performance is maintained dur-
ing these accesses.

Link Port Data Transfers In A Cluster. A bottleneck exists within the
cluster because only two processors can communicate over the shared bus
during each cycle—other processors are held off until the bus is released.
Because the processor can also perform point-to-point link port transfers
within a cluster, systems can eliminate this bottleneck by setting up data
communication through the link ports. Data links between processors can
be dynamically set up and initiated over the common bus. Both link ports
can operate simultaneously on each processor.

A disadvantage of the link ports is that individual transfers occur at a
much lower rate than that of the shared parallel bus. Because the link
ports’ 8-bit data path is smaller than the processor’s native word size, the
transfer of each word requires multiple clock cycles. Link ports may also
require more software overhead and complexity because they must be set
up on both sides of the transfers before they can occur.

SIMD Multiprocessing. For certain classes of applications such as radar
imaging, a Single-Instruction Multiple-Data (SIMD) array of processors
may be the most efficient topology to coordinate a large number of pro-
cessors in a single system. The SIMD array of Figure 7-29 on page 7-91
consists of multiple processors connected in a two- or three-dimensional
mesh. The data link ports provide nearest neighbor communications and
through-routing of data. A single master processor provides the instruc-
tion stream that the array executes. Data flow in and out the array can be
managed through multiple serial port streams.

Multiprocessor Bus Arbitration

Multiple processors can share the external bus with no additional arbitra-
tion logic. Arbitration logic is included on-chip to allow the connection of
up to six processors and a host processor.
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The processor accomplishes bus arbitration through the BRI-6, HBR, and
HBG signals. BR1-6 arbitrate between multiple processors, and HBR/HBG pass
control of the bus from the processor bus master to the host and back. The
priority scheme for bus arbitration is determined by the setting of the RPBA
pin. Table 7-18 defines the processor pins used in multiprocessing

systems.

Table 7-18. MultiprocessingPins

Signal

Type

Definition

BR6-1

1/0/S

Multiprocessing Bus Requests. Used by multiprocessing to arbitrate
for bus mastership. A processor only drives its own BRx line (corre-
sponding to the value of its ID2-0 inputs) and monitors all others.
In a multiprocessor system with less than six processors, the unused
BRx pins should be tied high; the processor’s own BRx line must not
be tied high or low because it is an output.

1D2-0

Multiprocessing ID. Determines which multiprocessing bus request
(BR1 - BR6) is used by ADSP-21161 processor. ID = 001 corre-
sponds to BR1, ID = 010 corresponds to BR2, and so on. Use

ID = 000 or ID = 001 in single-processor systems. These lines are a
system configuration selection that should be hardwired or only
changed at reset.

RPBA

Rotating Priority Bus Arbitration Select. When RPBA is high,
rotating priority for multiprocessor bus arbitration is selected. When
RPBA is low, fixed priority is selected. This signal is a system config-
uration selection which must be set to the same value on every pro-
cessor. If the value of RPBA is changed during system operation, it
must be changed in the same CLKIN cycle on every processor.

(a/d)
1/0/S

Priority Access. The processor slave may assert the PA signal to
interrupt background DMA transfers and gain access to the external
bus. This signal is asserted when a processor slave’s processor core
requests the bus or if an external DMA channel requests the bus
with the DMACx PRIO control bit set. The PA signal is an active
drive output, which may be asserted (low) by one or more slaves. It
is deasserted (high) by the master. A protocol is used to avoid driver
contention.

Active Drive

I = Input, S = Synchronous, (o/d) = Open Drain; O = Output, A = Asynchronous, (a/d) =
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The 102-0pins provide a unique identity for each processor in a multipro-
cessing system. The first processor should be assigned 10=001, the second
should be assigned 10=010, and so on. One of the processors must be
assigned 1D=001 in order for the bus synchronization scheme to function

properly.

The processor with 10=001 holds the external bus control lines sta-
ble during reset.

When the 102-0 inputs of a processor are equal to 001, 010, 011, 100,
101, or 110, the processor configures itself for a multiprocessor system
and maps its I/O processor registers into the multiprocessor memory
space. 1D=000 configures the processor for a single-processor system.
1D=111 is reserved and should not be used.

A processor in a multiprocessor system can determine which processor is
the current bus master, by reading the CRBM2-0 bits of the SYSTAT register.
These bits give the value of the 1D2-0 inputs of the current bus master.

Conditional instructions can be written that depend upon whether the
processor is the current bus master in a multiprocessor system. The assem-
bly language mnemonic for this condition code is BM, and its complement
is Not BM (not bus master). The BM condition indicates whether the pro-
cessor is the current bus master. For more information, see “Conditional
Sequencing” on page 3-53. To use the bus master condition, the condi-
tion code select (CSEL) field in the MODE1 register must be zero or the
condition is always evaluated as false.

Bus Arbitration Protocol

The Bus Request (BRI-6) pins are connected between each processor in a
multiprocessing system, with the number of BRx lines used equal to the
number of processors in the system. Each processor drives the BRx pin that
corresponds to its 1D2-0 inputs and monitors all others. If less than six
processors are used in the system, the unused BRx pins should be tied high.
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When one of the slave processors needs to become bus master, it automat-
ically initiates the bus arbitration process by asserting its BRx line at the
beginning of the cycle. Later in the same cycle, the processor samples the
value of the other BRx lines.

The cycle in which mastership of the bus is passed from one processor to
another is called a Bus Transition Cycle (BTC). A bus transition cycle
occurs when the current bus master’s BRx pin is deasserted and one or
more of the slave’s BRx pins is asserted. The bus master can retain bus mas-
tership by keeping its BRx pin asserted. Also, the bus master does not
always lose bus mastership when it deasserts its BRx line—another BRx line
must be asserted by one or more of the slaves at the same time. In this
case, when no other BRX is asserted, the master does not lose any bus
cycles.

By observing all of the BRx lines, each processor can detect when a bus
transition cycle occurs and which processor has become the new bus mas-
ter. A bus transition cycle is the only time that bus mastership is
transferred.

After conditions determine that a bus transition cycle is going to occur,
every processor in the system evaluates the priority of the BRx lines asserted
within that cycle. For a description of bus arbitration priority, see “Bus
Arbitration Priority (RPBA)” on page 7-98. The processor with the high-
est priority request becomes the bus master on the following cycle, and all
of the processors update their internal records to indicate which processor
is the current bus master. This information can be read from the current
bus master field, CRBM, of the SYSTAT register. Figure 7-29 on page 7-91
shows typical timing for bus arbitration.

The actual transfer of bus mastership is accomplished by the current bus

master three-stating the external bus—DATA47-16, ADDR23-0, CLKOUTY, RD,
WR, BRST, MS3-0, HBG, DMAGZ - I—at the end of the bus transition cycle and
the new bus master driving these signals at the beginning of the next cycle.

! For a complete description of CLKOUT functionality, see Table 13-1 on page 13-4.
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The bus strobes (RD, WR) and MS3-0 are driven high (inactive) before
three-stating occurs. ACK must be sampled high by the new master before it
starts a new bus operation. For more information, see Figure 7-30.

During bus transition cycle delays, execution of external accesses are
delayed. When one of the slave processors needs to perform an external
read or write, it automatically initiates the bus arbitration process by
asserting its BRx line. This read or write is delayed until the processor
receives bus mastership. If the read or write was generated by the proces-
sor’s processor core (not the I/O processor), program execution stops on
that processor until the instruction is completed.

The following steps occur as a slave acquires bus mastership and performs
an external read or write over the bus as shown in Figure 7-31 on

page 7-100.

1. The slave determines that it is executing an instruction which
requires an off-chip access. It asserts its BRx line at the beginning of
the cycle. Extra cycles are generated by the core processor (or I/O
processor) until the slave acquires bus mastership.

2. To acquire bus mastership, the slave waits for a bus transition cycle
in which the current bus master deasserts its BRx line. If the slave
has the highest priority request in the bus transition cycle, it
becomes the bus master in the next cycle. If not, it continues
waiting.

3. At the end of the bus transition cycle the current bus master
releases the bus, and the new bus master starts driving.

During the CLKIN cycle in which the bus master deasserts its BRx output, it
three-states its outputs in case another bus master wins arbitration and
enables its drivers in the next CLKIN cycle. If the current bus master retains
control of the bus in the next cycle, it enables its bus drivers, even if it has
no bus operation to run.
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The processor with 10=00x enables internal keeper latches, or pullup
devices, on key signals, including the address and data buses, strobes, and
ACK. These devices provide a weak current source or sink—approximate
20KQ impedance—to keep these signals from drifting near input receiver
thresholds when all drivers are three-stated.

When the bus master stops using the bus, its BRx line is deasserted, allow-
ing other processors to arbitrate for mastership if they need it. If no other
processors are asserting their BRx line when the master deasserts its BRx,
the master retains control of the bus and continues to drive the memory
control signals until: 1) it needs to use the bus again, or 2) another proces-
sor asserts its BRx line.

While a slave waits to be a master for a DMA transfer, it asserts
BRx. If that slave’s core accesses the DMA address registers, the BRx
is deasserted during that access. See “I/O Processor Registers Mem-
ory Map” on page A-51.

Bus Arbitration Priority (RPBA)

To resolve competing bus requests, there are two available priority
schemes: fixed and rotating. The RPBA pin selects the scheme. When RPBA
is high, rotating priority bus arbitration is selected, and when RPBA is low,
fixed priority is selected.

The RPBA pin must be set to the same value on each processor in a multi-
processing system. If the value of RPBA is changed during system
operation, it must be changed synchronously to CLKIN and must meet a
setup time that lets all processors recognize the change in the same cycle.
The priority scheme changes in that (same) cycle.
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Figure 7-30. Bus Request and Read/Write Timing

In the fixed priority scheme, the processor with the lowest 10 number
among the competing bus requests becomes the bus master. If, for exam-
ple, the processor with 10=010 and the processor with 10=100 request the
bus simultaneously, the processor with 10=010 becomes bus master in the
following cycle.

Each processor knows the 1D of the other processors requesting the
bus, because the 1D corresponds to the BRx line being used for each
processor.
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Figure 7-31. Bus Arbitration Timing

The rotating priority scheme gives roughly equal priority to each proces-
sor. When rotating priority is selected, the priority of each processor is
reassigned after every transfer of bus mastership. Highest priority is

rotated from processor to processor as if they were arranged in a circle—
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the processor located next to (one place down from) the current bus mas-
ter is the one that receives highest priority. Table 7-19 shows an example
of how rotating priority changes on a cycle-by-cycle basis.

Table 7-19. Rotating Priority Arbitration Example

Cycle Number | Hardwired Processor IDs & Priority’

ID1 ID2 ID3 D4 ID5 ID6
12 M 1 2-BR 3 4 5
2 4 5-BR M-BR 1 2 3
3 4 5-BR M 1 2 3
4 5-BR M 1 2 3 4-BR
59 1-BR 2 3 4 5

1 The following symbols appear in these cells: 1-5 = assigned priority, M = bus mastership (in that
cycle), BR = requesting bus mastership with BRx
2 Initial priority assignments

3  Final priority assignments

Bus Mastership Timeout

In either the fixed or rotating priority scheme, systems may need to limit
how long a bus master can retain the bus. Systems can limit bus master-
ship by forcing the bus master to deassert its BRx line after a specified
number of CLKIN cycles and giving the other processors a chance to acquire
bus mastership.

To set up a bus master timeout, a program must load the BMAX register
(Figure 7-32) with the maximum number of CLKIN cycles (minus 2) that
allows the processor to retain bus mastership. This equation is shown
below

BMAX = (maximum # of bus mastership CLKIN cycles) — 2

@ Internal processor clock cycles are a multiple of CLKIN cycles.

ADSP-21161 SHARC Processor Hardware Reference 7-101



Multiprocessor (MP) Interface

The minimum value for BMAX is 2, which lets the processor retain bus mas-
tership for four CLKIN cycles. Setting BMAX=1 is not allowed. To disable the
bus master timeout function, set BMAX=0.

Each time a processor acquires bus mastership, its BCNT register is loaded
with the value in BMAX. BCNT is then decremented in every CLKIN cycle that
the master performs a read or write over the bus and any other (slave) pro-
cessors are requesting the bus. Any time the bus master deasserts its BRx
line, BCNT is reloaded from BMAX.

When BCNT decrements to zero, the bus master first completes its off-chip
read/write and then deasserts its own BRx (any new off-chip accesses are
delayed)—this allows transfer of bus mastership. If the ACK signal is hold-
ing off an access when BCNT reaches zero, bus mastership is not
relinquished until the access can complete.

If BCNT reaches zero while a burst transfer is in progress, the bus master
completes the burst transfer before deasserting its BRx output. If BCNT
reaches zero while bus lock is active, the bus master does not deassert its
BRx line until bus lock is removed. If FBR is being serviced, BCNT stops dec-
rementing and continues only after HBR is deasserted.

Bus lock is enabled by the BUSLK bit in the MODE?2 register. For more
information, see “Bus Lock and Semaphores” on page 7-110.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

BMAX
(ox18) |o|ofofofofofojofofojofofojofo]o

1514 13 12 11 10 9 8 7 6 5 4 3 2 1 O

I—BMAX = (maximum # of bus

mastership cycles -2)

Figure 7-32. BMAX Register
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Priority Access

The Priority Access signal (PA) lets external bus accesses by a slave proces-
sor take priority over ongoing DMA transfers. Normally when external
port DMA transfers are in progress, the slave processors cannot use the
external bus until the DMA transfer is finished. By asserting its PA pin, the
slave processor can acquire the bus without waiting for the DMA opera-
tion to complete. The PA signal can also be asserted by a slave with a
high-priority DMA access pending on the external bus.

If the PA signal is not used in a multiprocessor system, the processor bus
master does not give up the bus to another processor until: 1) a cycle in
which it does not perform an external bus access or 2) a bus timeout. If a
slave processor needs to send a high priority message or perform an impor-
tant data transfer, it normally must wait until any DMA operation
completes. Using the PA signal lets the slave perform its higher priority bus
access with less delay.

Each of the DMACx registers has a PRIO bit that raises that DMA channel to
a higher priority than all other internal DMA channels that do not have
the PRIO bit set. Unless configured differently with the EBPR bit in the
SYSCON register, this channel still has lower priority (internally) than the
core. Programs should be careful to minimize the number of DMA chan-
nels enabled to high priority status in the multiprocessor system, because
both core and (external) high priority DMA requests from slaves are arbi-
trated at the same priority level. For example, a slave core cannot arbitrate
bus ownership away from a high priority DMA transfer, unless the bus
timeout (BMAX function) occurs.

When PA is asserted, the current processor bus master deasserts its BRx out-
put, and gives up the bus, provided:

1. Its core does not have an external access pending, and

2. None of its external bus DMA channels have pending high-priority
bus requests.
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All processor slaves also deassert their BRx outputs, if each slave meets the
same provisions. The current bus master never asserts PA, because it
already has control of the bus. If the current master detects a condition
that would assert PA while it is bus master, it performs that high priority
operation before giving up bus ownership.

In the CLKIN cycle after PA has been asserted, only the processor slaves with
a pending high priority access have their bus requests asserted. Bus arbitra-
tion proceeds as usual with the highest priority device becoming the
master when the previous bus master releases its BRx output.

The new master samples all BRx inputs after gaining bus mastership—dur-
ing the cycle that follows the BTC. If no other bus requests are asserted,
the master is the only device driving PA, and the master deasserts and
three-states PA in this cycle as shown in Figure 7-33.

102 3 4

| | | | |

| | | | |

BR1S | | - All ADSP-21161s that do not

' ' ' have core access pending

BR6 | : | remove their BRx |

| | | |

| | | |

— t | | |

PA | I I ;

| 1 1 |

| | | |

BTC %ves cannot assert
PA in this cycle

Bus Master samples
all other BRx negated
and negates PA

Figure 7-33. Example PA Deassertion
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If the master samples other BRx inputs as asserted, multiple devices are
driving PA, and the new bus master cannot deassert PA. The new bus mas-
ter three-states its PA driver in this case. All processor slaves recognize the
cycle following the BTC. They do not assert PA during this cycle, unless
they were already driving their BR and PA outputs in the BTC. This behav-
ior is demonstrated in Figure 7-34.

All ADSP-21161s that
do not have core access
pending remove their BRx

L1 l 2 13 1 4
| | | | |
T T I I T
BR1-6 | I >< I I I
| | | | |
ﬁ | | | | |
| | | | |
I | | | I
BTC T
Bus Master samples Slaves continue
other BRx asserted ___ to assert PA in
and three-states (only) PA this cycle

Figure 7-34. Example of PA Driven by Multiple Slaves

Bus Synchronization After Reset

When a multiprocessing system is reset (RESET asserted), the bus arbitra-
tion logic on each processor must synchronize, making sure that only one
processor drives the external bus. One processor must become the bus
master, and all other processors must recognize which one it is before
actively arbitrating for the bus. The bus synchronization scheme also lets
the system safely bring individual processors into and out of reset.
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One of the processors in the system must be assigned 10=001 in order for
the bus synchronization scheme to function properly. This processor also
holds the external bus control lines stable during reset. Bus arbitration
synchronization is disabled if the processor is in a single-processor system
(10=000).

To synchronize their bus arbitration logic and define the bus master after
a system reset, the multiple processors obey the following rules:

* All processors except the one with 10=001 deassert their BRx line
during reset. They keep their BRx deasserted for at least two cycles
after reset and until their bus arbitration logic is synchronized!.

* After reset, a processor considers itself synchronized when it detects
a cycle in which only one BRx line is asserted. The processor identi-
fies the bus master by recognizing which BRx is asserted and
updates its internal record to indicate the current master.

* The processor with 1D=001 asserts its BRx (BRI) during reset and for
at least two cycles after reset. If no other BRx lines are asserted dur-
ing these cycles, the processor with 10=001 drives the memory
control signals to prevent them from glitching. Although it is
asserting its BRx and driving the memory control signals during
these cycles, this processor does not perform reads or writes over

the bus.

If the processor with 10=001 is synchronized by the end of the two cycles
following reset, it becomes the bus master. If it is not synchronized at this
time, it deasserts its BRx (BRI) and waits until it is synchronized.

When a processor has synchronized itself, it sets the BSYN bit in the
SYSTAT register.

1 PFora complete description of the functionality of the internal reset signal, RSTOUT, see Table 13-1
on page 13-4.
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If one processor comes out of reset after the others have synchronized and
started program execution, that processor may not be able to synchronize
immediately (for example, if it detects more than one BRx line asserted). If
the un-synchronized processor tries to execute an instruction with an
off-chip read or write, it cannot assert its BRx line to request the bus and
execution is delayed until it can synchronize and correctly arbitrate for the
bus.

Synchronization cannot occur while FBG is asserted, because bus arbitra-
tion is suspended while the bus is controlled by a host. If HBR is asserted
immediately after reset and no bus arbitration has taken place, the proces-
sor with 10=001 is considered to be the last bus master.

The processor with 10=001 maintains correct logic levels on the RD, WR,
MS3-0, and HBG signals during reset. Because the “001” processor can be
accidently reset by an erroneous write to the soft reset bit (SRST) of the
SYSCON register, it behaves in the following manner during reset:

e While it is in reset, the processor with 10=001 attempts to gain
control of the bus by asserting BRT.

e While it is in reset, the processor with 10=001 drives the RD, WR,
MS3-0, DMAGI, DMAGZ, and HBG signals only if it determines that it
has control of the bus. For the processor to decide it has control of
the bus, two conditions must be true: 1) BRI was asserted and no
other BRx lines were asserted in the previous cycle, and 2) HBG was
deasserted in the previous cycle.

The processor with 10=001 continues to drive the RD, WR, MS3-0, DMAGI,
DMAGZ, and HBG signals for two cycles after reset, as long as neither HBG nor
any other BRx lines are asserted. At the end of the second cycle it assumes
bus mastership (if it is synchronized), and normal bus arbitration begins
in the following cycle. If it is not synchronized, it deasserts BRI, stops driv-
ing the memory control signals and does not arbitrate for the bus until it
becomes synchronized.
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Although the bus synchronization scheme allows individual processors to
be reset, the processor with 10=001 may fail to drive the memory control
signals if it is in reset while any other processors are asserting their BRx
line.If the processor with 10=001 has asserted HBG while it is in reset, it is
synchronized when RSTOUT is deasserted. This lets the host start using the
bus while the processors are still in reset. If a host processor attempts to
reset the processor bus master (which is driving the HBG output), the host
immediately loses control of the bus.

During reset?, the Ack line is pulled high internally by the processor bus
master with a 20 kQ equivalent resistor.

Booting Another processor

If the system uses one processor to boot another processor over the cluster
bus, the master processor must (for maximum efficiency) do the following
to communicate to the slave processor through the external port interface:

1. Program the PMODE field in DMAC10 of the booting processor for 32-
to 48-bit packing. This modification must be made to the boot
loader kernel as well.

2. Write 48-bit words to EPBO on the booting processor.

For a complete description of the functionality of the internal reset signal, RSTOUT, see Table 13-1
on page 13-4.

For a complete description of the functionality of the internal reset signal, RSTOUT, see Table 13-1
on page 13-4.
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Multiprocessor Writes and Reads

A processor bus master can read or write to the I/O processor registers of a
slave processor. For more information, see “Slave Reads and Writes” on

page 7-55.

@ For synchronous write accesses, the slave write FIFO functions as a

2-deep FIFO. One or both of the stages may be used to store write
accesses. If a synchronous write to this processor completes by the
end of cycle N and if this is the first write to be stored in the slave
write FIFO (for example, due to stalled write to the EPBx FIFO),
then the ACK deasserts in cycle N+2. If a subsequent write to the
same slave processor completes in cycle N+1, the access is correctly
stored in the second stage of slave FIFO. Independent of this access
in cycle N+1, an access in cycle N+2 is stalled on the bus due to a
deasserted ACK. Only when the slave write FIFO is empty is ACK
asserted again.

Each processor bus slave monitors addresses driven on the external bus
and responds to any that fall within its region of multiprocessor memory
space. These accesses are invisible to the slave processor’s processor core.
They do not degrade internal memory or internal bus performance as seen
by the core. This feature lets the processor core continue program execu-
tion uninterrupted.

The processor bus master can read and write the slave’s I/O processor reg-
isters (for example, SYSCON, SYSTAT) to send a vector interrupt or to set up
DMA transfers.

For information on topics relevant to multiprocessing, see the following
referenced sections:

e IOP Shadow Registers. For more information, see “lOP Shadow
Registers” on page 7-55.

* Slave Write Latency. For more information, see “Slave Write
Latency” on page 7-56.
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¢ Slave Reads. For more information, see “Slave Reads” on

page 7-57.

¢ Shadow Write FIFO. For more information, see “Slave Reads” on

page 7-57.

e Data Transfers Through the EPBx Buffers. For more information,
see “Data Transfers Through the EPBx Buffers” on page 7-58.

* Interprocessor Messages & Vector Interrupts. For more informa-
tion, see “Interprocessor Messages and Vector Interrupts” on

page 7-76.

Instruction Transfers

Multiprocessor instruction transfers to or from internal memory of pro-
cessor should use 32-bit transfers for maximum performance. The 48-bit

internal transfers use one of the slave EPBx FIFOs and the packing mode
function (PMODE) of the DMA channel (32- to 48-bit).

Maximum throughput is achieved by transferring packed instructions to
or from internal memory, using DMA transfers with 32- to 48-bit

packing.

Bus Lock and Semaphores

Semaphores can be used in multiprocessor systems to allow the processors
to share resources such as memory or I/O. A semaphore is a flag that can
be read and written by any of the processors sharing the resource. The
value of the semaphore tells the processor when it can access the resource.
Semaphores are also useful for synchronizing the tasks being performed by
different processors in a multiprocessing system.

With the use of its bus lock feature, the processor has the ability to read
and modify a semaphore in a single indivisible operation—a key require-
ment of multiprocessing systems.
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Because both external memory and each processor’s I/O processor regis-
ters are accessible by every other processor, semaphores can be located
almost anywhere. Read-modify-write operations on semaphores can be
performed if all of the processors obey two simple rules:

1. A processor must not write to a semaphore unless it is the bus mas-
ter. This is especially important if the semaphore is located in the
processor’s own internal memory or I/O processor registers.

2. When attempting a read-modify-write operation on a semaphore,
the processor must have bus mastership for the duration of the
operation.

Both of these rules apply when a processor uses its bus lock feature, which
retains its mastership of the bus and prevents the other processors from
simultaneously accessing the semaphore.

Bus lock is requested by setting the BUSLK bit in the MODE?2 register. When
this happens, the processor initiates the bus arbitration process by assert-
ing its BRx line. When it becomes bus master, it locks the bus by keeping
its BRx line asserted even when it is not performing an external read or
write. Host Bus Request (HBR) is also ignored during a bus lock. When the
BUSLK bit is cleared, the processor gives up the bus by deasserting its BRx
line.

While the BUSLK bit is set, the processor can determine if it has acquired
bus mastership by executing a conditional instruction with the Bus Master
(8M) or Not Bus Master (Not BM) condition codes, for example:

IF NOT BM JUMP(PC,0); /* Wait for bus mastership */

If it has become the bus master, the processor can proceed with the exter-
nal read or write. If not, it can clear its BUSLK bit and try again later.
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A read-modify-write operation is accomplished with the following steps:
1. Request bus lock by setting the BUSLK bit in MODE2.
2. Wait for bus mastership to be acquired.
3. Wait until Slave Write Pending bit (SWPD) is zero.
4. Read the semaphore, test it, then write to it.

Locking the bus prevents other processors from writing to the semaphore
while the read-modify-write is occurring. After bus mastership is acquired,
check the SWPD bit’s status in SYSTAT to ensure that a semaphore write by
another processor is not pending.

If the semaphore is reflective, located in one of the processor’s I/0O
processor register, the processor must write to it only when it has

bus lock.

Multiprocessor Interface Status

The SYSTAT register provides status information for host and multiproces-
sor systems. Figure 7-35 shows the status bits in this register.
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0x03

HPS

Host Packing Status

000=packing complete [6t stage of 8-to -48,

4t stage of 8-10-32, etc ]

001=1st stage pack/unpack

010=2n¢ stage pack/unpack

011=3« stage pack/unpack

100=5u stage of 8- to-48 bit packing
101=110=111=reserved

SWPD

31 30 2928 27 26 25 24 23 22 2120 19 18 17 16

[efefefo]eTefo]ofo]c|o[ofa] [ [ ]

Slave Write FIFO Data Pending

any data (sync or async)

1=slave write pending to IOP register
O=slave no write pending to IOP register

VIP
Vector Interrupt Pending
1=Vector interrupt pending

IDC
ID Code

Displays state of the ID[2:0] pins

1514 13 12 11 10 9 8

7

6 54 3 2 10

Figure 7-35. SYSTAT Register

External Port

|
I— CRAT

CCLK-to-CLKIN ratio
Indicate state of CLKCFG[1:0] pins
Undefined at RESET~

SSWPD

Synchronous Slave Write FIFO Data Pending
1=sync slave IOP register write pending
0=no sync slave IOP register write pending

HSTM

Host Bus Master

1=host bus master controls ext bus
0=no host bus master

BSYN .

Bus Synchronized

1=bus arbitration logic synchronized
0=not synchronized

CRBM

Current ADSP-21161 Bus Master
Status of ID of DSP who is Bus Master
CRPM=001 when ID=000
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8 SDRAM INTERFACE

The ADSP-21161 processor’s synchronous DRAM (SDRAM) interface
enables it to transfer data at either the core clock frequency or one-half the
core clock frequency. The synchronous approach, coupled with the ability
to transfer data at the core clock frequency, supports data transfer at a
high throughput—up to 400 Mbytes/second for a 32-bit bus width, and
600 Mbytes/second for 48-bit bus width.

All inputs are sampled and all outputs are valid on the rising edge of the
clock spcLk. The SDRAM’s flexible interface allows you to connect
SDRAMs to any one or more of the four external memory banks of the
ADSP-21161 processor or to all four banks simultaneously.

The ADSP-21161 processor’s SDRAM controller provides a glueless
interface with standard SDRAMs. It supports:

¢ SDRAMs of 16 Mbits, 64 Mbits, 128 Mbits, and 256 Mbits with
configurations 4-bit, 8-bit, 16-bit and 32-bit wide devices

* Additional buffers between ADSP-21161 processor and SDRAM
* Zero wait state, 100 Mwords/second with some access types

e Up to 254.68 Mwords [3x(64M) + 62.68M] of SDRAM in exter-

nal memory
* SDRAM page sizes of 2048, 1024, 512, and 256 words

* A programmable refresh counter to coordinate between varying

clock frequencies and the SDRAM’s required refresh rate
* Buffering for multiple SDRAMs connected in parallel
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A separate A10 pin that enables applications to precharge SDRAM
before issuing a refresh command

Connection to up to four external memory banks (0 to 3) of the
ADSP-21161 processor

Self-refresh, low-power mode

Two power-up options

The following are definitions used throughout this chapter:

Bank Activate command. Activates the selected bank and latches in
a new row address. It must be applied before a read or write
command.

Burst length. Determines the number of words that the SDRAM
inputs or outputs after detecting a write or read command, respec-
tively. The processor supports burst length ONE mode only.

During a burst length of one cycle, the ADSP-21161 processor
SDRAM controller applies the command every cycle and keeps
accessing the data. See also, page size