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Introduction 
ADSP-21262 devices are a members of the third 
generation of SHARC® family of processors. 
ADSP-21262 processors offer SIMD architecture 
and are equipped with powerful DMA 
engines,ensuring high bandwidth data transfers 
to and from the processor. Data transfers are 
completely transparent to the processor core. 
ADSP-21262 processors operate up to 200 MIPS 
and provide several peripherals (e.g., SPORTs, 
PP, SPI, IDPs) that are well suited for audio 
applications.  

MP3 is a standard for digitally compressed 
music. This compression algorithm is capable of 
up to 10:1 compression with no noticeable loss in 
quality of the audio data. MP3 (short for 
MPEG3) stands for Motion Picture Experts 
Group, Audio Layer 3. MP3 is becoming an 
increasingly popular way to store audio in 
electronic format. An MP3 decoder reads the 
compressed data from the storage media and 
performs various decoding steps to obtain the 
raw audio data. This audio data is in PCM audio 
format, which can be stored on storage media or 
played to an audio output device (speaker) in real 
time. 

This application note is based upon experience 
gained while porting pure PC-based C code for 
an MP3-decoder to ADSP-21262 processors 
using the VisualDSP++® 3.5 tools suite. The 
target platform was the ADSP-21262 EZ-
KIT Lite® evaluation system. This application 

note summarizes key considerations involved in 
porting general PC-based C-code to ADSP-
21262 processors.  

Data I/O - PC versus SHARC  
As depicted in Figure 1, general PC-based code 
primarily uses file I/O for data input and output 
operation. The data may be stored in the form of 
the files on the PC's hard drive. The file I/Os on 
PC are supported by the OS running on the PC. 
For example, MP3 files for an MP3 decoder may 
be stored on the PC's hard drive.  

 

                

 

Figure 1. Data I/O Scheme for a PC-based System 
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Unlike a PC environment, the data on the 
embedded processor would be available from an 
external device (e.g., memory or a Host device). 
The data from the external device would be 
transferred in and out of the processor through its 
peripheral. Figure 2 depicts the data I/O scheme 
for an MP3 decoder ported onto an ADSP-21262 
processor.  

 

Figure 2. Data I/O Scheme for the SHARC-based 
MP3 Decoder 

The first task in porting the PC-based code to the 
embedded platform, is to replace the file I/Os in 
the PC code with the peripheral-based I/Os on 
the SHARC processor. 

Code Profiling 
The next step is to obtain an estimate of the 
MIPS consumption. The optimization process 
can be an iterative procedure where MIPS for the 
different functions would be measured, changes 
would be made to the code structure, and the 
effect on the MIPS utilization would be 
evaluated. 

The first step in optimization is code profiling. 
The entire code is split into a set of smaller 
modules for analysis. The benchmarks (in terms 
of MIPS consumed) for these different modules 

can be obtained, and the information can be 
stored in an Excel spreadsheet. 

Using the above profile, identify the functions 
that consume the most MIPS. Devote your 
efforts toward optimizing these functions. Don't 
bother with the functions that require fewer 
MIPS. 

The following paragraphs summarize different 
techniques that may be used to optimize the 
different code modules. 

Table 1 shows the instruction count for various 
functions optimizing the MP3 code.  

Function  Cycle Count 

Huffman Decode 82327 

De-quantize Sample 239079 

Anti_alias 4292 

Inverse MDCT 52770 

Hybrid Synthesis 1201638 

Sub-band Synthesis 186984 

Table 1. Instruction Count for Various Functions 
Measured Before Optimization 

Using DMA Engines 
The data I/O operations through the peripherals 
can be performed in core mode or in DMA mode. 
For core-mode data transfers, the processor must 
execute a read/write instruction to an address to 
which the particular peripheral has been mapped. 
These transfers involve one instruction cycle for 
ever data transfer. 

For DMA-mode data transfers, the SHARC 
processor's I/O handles all of the data transfers. 
The core processor needs only to initialize the 
DMA control/parameter registers with 
appropriate values, which may involve only a 
few instructions cycles. Thus, while using the 
DMA based transfers, the processor core is 
relieved of the instruction penalties that would 
have occurred with core-mode transfers. The 
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DMA scheme is particularly suitable for real-
time applications in which huge amounts of data 
must be moved in and out of the processor in real 
time. 

ADSP-21262 processors offer powerful DMA 
engines to perform data transfers across: 

 Internal and external memory 

 Internal memory and an external peripheral 

The above data transfers are completely 
transparent to the core.  

Parallel Data Fetch and SIMD 
ADSP-21262 processors offer dual data fetches 
and a MAC operation in a single cycle. The 
internal bus architecture of the ADSP-21262 
processor consists of separate PM and DM buses. 
In normal scenarios, the PM bus fetches 
instructions from Program Memory and the DM 
bus reads/writes data from Data Memory. While 
executing computation instructions with dual 
data fetch, one operand is fetched on the PM bus 
and the second operand is fetched on the DM 
bus. Having the executed instructions available 
in the Instruction Cache (so instruction fetches 
are not needed and the PM bus is free to access 
data) is a prerequisite for the above operation to 
complete in a single cycle. 

Instructions involving dual operands are 
encountered frequently in typical signal-
processing code. Some examples include FIR/IIR 
filter loops, DCT, FFT, and other transforms. 

The above routines involve MAC operations on 
two vectors. The operations are performed in a 
loop (so all instructions are moved to Instruction 
Cache during the first execution of the loop, and 
no instruction fetches are required for subsequent 
loop iterations). If the two data vectors are 
located in different memory blocks (PM and 
DM), it may be possible to use a dual fetch in a 
single cycle. 

Another important feature of the ADSP-21262 
processor is its SIMD architecture. The ADSP-
21262 has two parallel compute units which can 
execute same instructions on different data sets 
in parallel. 

Consider the following multiplication loop: 
 
float operand1[1024]; 

float operand2[1024]; 

float result; 

{ 

  int j; 

  result = 0; 

  for (j= 0; j<1024; j++) 

{   

   result += operand1[j] * 
operand2[j]; 

  } 

} 

Listing 1. Multiplication Loop Without Optimization 

In the absence of a dual data fetch, the inner 
multiplication loop in the above example would 
require 2048 cycles to finish the execution. This 
is because the fetching of operand1 and operand2 
for each instruction requires a total of two cycles. 

The above code structure can be modified such 
that one of the operands lies in the PM block. 
With the above modification, the two operands 
can be fetched in a single cycle. Since the 
multiplication is being performed within a loop, 
the instruction would get cached after the first 
execution, so that processor can fetch the two 
operands in a single cycle. 
 
float PM operand1[1024]; 

// the “PM” command would place 
operand1  

// in PM  

float operand2[1024]; 

float result; 

{ 
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  int j; 

  result = 0; 

  for (j= 0; j<1024; j++) 

  { 

   result += operand1[j] * operand2[j]; 

  } 

} 

Listing 2. Multiplication Loop with Dual Data Fetch 

As shown above, the PM command instructs the 
compiler that this particular variable must be 
stored in the PM block. The above loop would 
take approximately 1024 cycles to execute. The 
code can be structured further, allowing the 
compiler to use SIMD mode. 
 
float PM operand1[1024]; 

// the “PM” command would place 
operand1  

// in PM 

float operand2[1024]; 

float result1, result2; 

{ 

  int j; 

  result1 = 0; 

  result1 = 0; 

  for (j= 0; j<512; j++) 

  {  

    result1+= operand1[j] * 
operand2[j]; 

    result2+= 
operand1[j+1]*operand2[j+1]; 

  } 

  result = result1 +result2; 

} 

Listing 3:  

Listing 3. Multiplication Loop with Dual Data Fetch 
and SIMD 

With the multiplication loop re-structured in the 
above fashion, the compiler would enable SIMD 
mode and execute the instructions for result1 and 
result2 on different processing elements. The 

above loop would take approximately 512 cycles 
to execute. 

Native Instructions  
Instructions in the processor's instruction set can 
be executed in a single cycle. However, 
operations that are not native to the instruction 
set take multiple cycles.  

Some complex operations can be performed in 
alternative ways that rely only on the native 
instructions to perform the operation. For 
example, signal-processing code frequently 
involves division by a factor of 2/4/8 and so on, 
which take approximately 40 cycles. However, 
these divisions can be replaced by right-shift 
operations which would be performed in a single 
cycle. 

Function Calls 
Another important consideration is function 
calls. The C run-time manager must save/restore 
the context information across the function calls. 
The context information is pushed onto the stack 
while calling a new function and is popped from 
the stack when returning from the function call. 
If frequent function calls are made to a relatively 
smaller function, large overheads are required. 
These overheads can be eliminated by replacing 
such function calls with inline code.  

The VisualDSP++ 3.5 compiler also provides 
built-in versions of some C library functions. The 
compiler immediately recognizes them and 
replaces them with inline assembly code instead 
of a function call. Inline assembly code is faster 
than an average library routine, and it does not 
incur the calling overhead.  

Processor Built-In Functions 
The VisualDSP++ compiler supports intrinsic 
(built-in) functions that enable efficient use of 
hardware resources. These functions are different 
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from the built-in library functions which we 
discussed above, in which the function call is 
replaced by inline assembly. Rather, the 
processor built-in functions provide a means to 
use the processor's hardware efficiently.  

The built-in functions can be used to: 

(a) Access the System registers: Some intrinsic 
functions provide efficient access to registers, 
modes, and addresses not normally accessible 
from C source. This can be achieved through 
a set of functions defined in the “sysreg.h” 
file. Examples include reading/writing 
System registers and setting/clearing 
particular System register bits. 

(b) Instruct the compiler to use circular buffer 
indexing. This is important for access to a 
data array with a fixed offset between two 
accesses. Decimation, filtering, and FFTs are 
examples of algorithms that may utilize the 
above function. Consider the following 
example: 

 
int m, jj; 

float sum, COS[SIZE]; 

#define circindex __builtin_circindex  

  for (m=0;m<N ; m++) 

  {  

     sum += COS [jj]; 

     jj = circindex (jj, MODIFY, SIZE); 

  } 

Listing 4. circindex Function for Circular Buffering 

In the above example, the COS array is accessed 
inside a loop. The circindex function instructs 
the compiler to access COS using circular 
buffering with Mx = modify and Lx = length. 
However, if circindex is not specified in the 
above example, the compiler may not implement 
the accesses to COS with index registers. Instead, 
it may use other calculations to calculate the 
index for each access, which would consume 
extra cycles. 

Other Optimizations 
C code that performs satisfactorily on a PC may 
not be MIPS efficient on a processor. The MIPS 
on the processor are constrained generally and 
may require further optimizations specific to the 
algorithms being used. For example, DCT 
computations may be replaced by fast DCT 
algorithms.  

As discussed already, great benefits may be 
achieved by using processor native instructions 
in place of complex computations. We would 
like to share the following example:  
 
N=36; 

for( p= 0;p<N; p++) 

{ 

   sum = 0.0; 

   for(m=0;m<N/2;m++) 

   sum += in [m] *   

          
COS[((2*p+1+N/2)*(2*m+1))%(4*36)]; 

   out [p] = sum * win [block_type] 
[p]; 

} 

Listing 5. An IDCT Loop 

The above code section (taken from the MP3 
algorithm) is used for the inverse DCT 
computation. 

The instruction in the innermost FOR loop uses 
complex logic to calculate the index of a COS 
table. In the particular algorithm, the FOR loop  
instruction would execute 41472 (2x32x36x18) 
times to process each audio frame. Using the 
above code on ADSP-21262 processor in place 
the algorithm takes 330 MIPS. 

We have tried to use simple logic to index the 
COS table in the above example. A “%” is not a 
native operation for the processor. It would be 
performed using a certain library function (C-
library) that would introduce additional 
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overheads (due to the function call) each time the 
index in the above code is calculated. 

We tried to implement the index calculation logic 
using the additions and comparisons. These 
operations can be performed easily on the 
processor. We can replace the earlier code with: 
 
int start = 19 ; 

int modify = 38 ; 

N=36; 

for (p= 0;p<N ;p++) 

{ 

  int jj = start ; 

  double temp1, temp2 ; 

  sum = 0.0; 

  for(m=0;m<N/2;m++) 

  {  

     sum += in [m] * COS [jj]; 

     jj = circindex (jj, modify, 144); 

  } 

  start += 2 ;    

  modify += 4 ; 

  if (modify > 144)  

  { 

    modify = modify - 144 ; 

  } 

   out [p] = sum * win [block type] 
[p]; 

} 

Listing 6. IDCT Loop with Optimizations 

The above code section is functionally equivalent 
to the earlier code example. Implementing the 
above changes to the original code reduces the 
MIPS count for the algorithm dramatically from 
330 to 110.  

Summary 
Key guidelines that permit efficient use of 
processor resources include: exploring DMA 
capabilities, using parallel data fetches (from PM 

and DM), exploiting the processor's SIMD 
architecture, and using native instructions to 
replace complex computations.  

Table 2 shows the instruction count for various 
functions after the optimization and the 
performance improvement as a percentage of 
initial count.  

The Figure 3 depicts the optimization results 
graphically.  

Function Instruction 
Count 

Reduction in 
Cycle Count 

(%) 

Huffman Decode 76655 6.8 

De-quantize Sample 44822 81.3 

Anti_alias 3117 27.4 

Inverse MDCT 5196 90.1 

Hybrid Synthesis 119348 90.1 

Sub-band Synthesis 30345 83.8 

Table 2. Final Instruction Count for Various Functions 
and % Reduction in Cycle Count 

The Figure 3 depicts the optimization results 
graphically. The color bars represent various 
functions (similar to the color in Table 2) versus 
% reduction in the cycle count  

 

Figure 3. Graphical Representation of Optimization 
Results. 
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