
a

ABOUT ADSP-21371/ADSP-21375 SILICON ANOMALIES
These anomalies represent the currently known differences between revisions of the SHARC®ADSP-21371/ADSP-21375 product(s) and
the functionality specified in the ADSP-21371/ADSP-21375 data sheet(s) and the Hardware Reference book(s).

SILICON REVISIONS

A silicon revision number with the form "-x.x" is branded on all parts (see the data sheet for information on reading part branding). The
silicon revision can also be electronically read by reading the REVPID register either via JTAG or DSP code.

The following DSP code can be used to read the register:
<UREG> = REVPID;

Silicon REVISION REVPID[7:4]

0.0 0000

ANOMALY LIST REVISION HISTORY

The following revision history lists the anomaly list revisions and major changes for each anomaly list revision.

Date Anomaly List Revision Data Sheet Revision Additions and Changes

06/30/2010 G Rev C Added anomalies: 09000025.

06/07/2009 F Rev B Added anomalies: 09000023 and 09000024.

02/02/2009 E Rev B Revised anomaly 09000018. Added anomalies: 09000019, 09000020,
09000021, and 09000022.

06/05/2008 D Rev A Added anomalies: 09000014, 09000015, and 09000018.

03/21/2008 C Rev A Consolidated anomaly lists for ADSP-21371/ADSP-21375. Added new
anomalies 09000009 and 09000011. Consolidated old anomalies
09000006 (for ADSP-21371) and 09000001 (for ADSP-21375) into
09000013, and 09000007 (for ADSP-21371) and 09000002 (for ADSP-
21375) into 09000007.

01/03/2007 B PrA Removed anomalies: 09000008-This information is added to the HRM

11/06/2006 A PrA Initial release

SHARC Processor

 ADSP-21371/ADSP-21375Silicon Anomaly List

SHARC and the SHARC logo are registered trademarks of Analog Devices, Inc.

NR003347G
Information furnished by Analog Devices is believed to be accurate and reliable.
However, no responsibility is assumed by Analog Devices for its use, nor for any
infringements of patents or other rights of third parties that may result from its use.
Specifications subject to change without notice. No license is granted by implication or
otherwise under any patent or patent rights of Analog Devices. Trademarks and
registered trademarks are the property of their respective owners.

One Technology Way, P.O.Box 9106, Norwood, MA 02062-9106 U.S.A.
Tel: 781.329.4700 www.analog.com
Fax: 781.461.3113 ©2010 Analog Devices, Inc. All rights reserved.

http://www.analog.com

SUMMARY OF SILICON ANOMALIES
The following table provides a summary of ADSP-21371/ADSP-21375 anomalies and the applicable silicon revision(s) for each anomaly.

No. ID Description 0.0

 1 09000007 First bit of IDCODE register will not be a logical ONE when shifted out via boundary scan controller x

 2 09000009 BTC failure during external memory access x

 3 09000011 Indirect Branches from External to Internal Memory may corrupt the Instruction Cache, under Special
Conditions

x

 4 09000013 Parallel EPROM/FLASH boot following a Hard (Hot) Reset may fail if issued in the middle of external SDRAM
reads

x

 5 09000014 Incorrect Execution of Conditional External data accesses in a delayed branch (DB) slot x

 6 09000015 Incorrect Popping of stacks possible when exiting IRQx/Timer Interrupts with DB modifiers x

 7 09000018 Specific Multiplier operations must not be part of the same Instruction as an External Memory access x

 8 09000019 EMUCLK/EMUCLK2 counters do not function correctly in presence of external core data accesses x

 9 09000020 Wrong instruction address may be cached when PMDA instruction executing from external memory is
interrupted

x

 10 09000021 IOP Register access immediately following an External Memory access may not work x

 11 09000022 Effect latency may be 2 cycles instead of 1 for external data accesses x

 12 09000023 Writes to LCNTR, CURLCNTR and LADDR from Internal Memory may fail if there is a DMA block conflict x

 13 09000024 Specific Core Stall may not execute as expected x

 14 09000025 External port arbitration may not work as expected when the lower priority request is not continuous x

Key: x = anomaly exists in revision
 . = Not applicable

NR003347G | Page 2 of 10 | July 2010

 ADSP-21371/ADSP-21375 Silicon Anomaly List

DETAILED LIST OF SILICON ANOMALIES
The following list details all known silicon anomalies for the ADSP-21371/ADSP-21375 including a description, workaround, and
identification of applicable silicon revisions.

1. 09000007 - First bit of IDCODE register will not be a logical ONE when shifted out via boundary scan
controller:

DESCRIPTION:
The LSB of the newly introduced device identification register (IDCODE) is a 1 as per the IEEE 1149.1 standard.

Auto-detection of the existence of this register by the test-scan controller (which usually happens as soon as the first bit is shifted out) will
fail because in this case, the first bit that will be shifted out is not the LSB but is instead the MSB.

WORKAROUND:
Please use the processor-specific BSDL files provided by Analog Devices, and ignore the syntax error that will occur for the LSB (bit 0) of
the IDCODE register.

APPLIES TO REVISION(S):
0.0

2. 09000009 - BTC failure during external memory access:

DESCRIPTION:
The background telemetry channel (BTC) will not work if the processor core is accessing external memory data. External memory
execution will not interfere with BTC operation.

WORKAROUND:
Do not use BTC if the processor is expected to fetch data from external memory.

APPLIES TO REVISION(S):
0.0

NR003347G | Page 3 of 10 | July 2010

 ADSP-21371/ADSP-21375Silicon Anomaly List

3. 09000011 - Indirect Branches from External to Internal Memory may corrupt the Instruction Cache, under
Special Conditions:

DESCRIPTION:
When executing code from external memory with the cache enabled, if the following conditions are all true:

1. An indirect branch instruction is encountered (JUMP/CALL with branch address provided by a pair of modifier and index registers).
2. The target address of the indirect branch instruction points to a location in internal memory address space.
3. A redirection of instruction fetch sequence occurred just prior to the indirect branch (this could either be by an explicit instruction such
as a JUMP, CALL, RTS, etc., or implicitly by servicing an interrupt, looping back within a loop, etc.).

then the third instruction following the indirect branch instruction is incorrectly cached by the program sequencer. The following
examples illustrate scenarios where these conditions are satisfied:

 // following code resides in external memory
 jump _some_location;
 jump(m12,i12); // target points to internal memory
 nop;
 nop;
 r4=5; // <-- this instruction is improperly cached

Another example:

 // following code resides in external memory
 lcntr=<count>, do (pc, end) until lce;
 ...
 ...
 call(m12,i12); // target points to internal memory
 nop;
 end: nop;
 r4=5; // <--- this instruction is improperly cached

WORKAROUND:
1. Ensure that 3rd instruction following any indirect branch instruction in external memory never gets executed. An example code
sequence as shown below would accomplish this:

 // following code resides in external memory
 jump _some_location;
 call (m12,i12); // target is in internal memory
 nop;
 jump(pc,2);
 <instruction_3>; // <-- this instruction is improperly cached
 <instruction_4>; // start of useful code.

Note that for the above workaround to work, <instruction_3> must not be a target of any other branch.

2. Avoid any indirect branch in code residing in external memory with target in internal memory. If the target address of the branch does
not point to an internal memory location, this anomaly will not be experienced.
3. Add a "FLUSH CACHE;" instruction at any one of the following locations:
 - All possible target addresses of concerned indirect branch instructions.
 - Just before every concerned indirect branch instruction.
 - Convert all concerned indirect branches to delayed branches using (DB)modifier, and place the "FLUSH CACHE;" instruction in one
of the two delayed-branch slots.
4. Disable cache functionality by setting CADIS bit in MODE2 register. Please note that performance hit will be observed in this case,
because entire instruction caching functionality (internal as well as external memory) gets disabled.

APPLIES TO REVISION(S):
0.0

NR003347G | Page 4 of 10 | July 2010

 ADSP-21371/ADSP-21375 Silicon Anomaly List

4. 09000013 - Parallel EPROM/FLASH boot following a Hard (Hot) Reset may fail if issued in the middle of
external SDRAM reads:

DESCRIPTION:
If the processor is in the process of fetching data from external SDRAM memory, or executing code from external SDRAM memory,
initiating a Hard (hot) reset during this process may cause the SDRAM device to continue to drive the data bus during the entire duration
of RESET being asserted, and also failing to relinquish the external data bus even when the DSP comes out of /RESET.

If the DSP had been configured to boot via parallel external FLASH or EPROM (which shares part of the same data bus with the external
SDRAM), the resulting bus contention on the external data bus between the DSP trying to boot from the FLASH memory and the SDRAM
continuing to drive the data bus causes incorrect boot data to be loaded in, and the booting fails. Once the above state is hit, subsequent
DSP Resets will not correct the situation. A power-cycling sequence is required to recover from this state.

If a microcontroller or host processor controls the /RESET pin of the ADSP-21375 and is responsible for performing the Reset of the DSP, a
simple communication protocol between the microcontroller/host processor and the DSP, that ensures that the DSP's program execution
jumps to internal memory (in case of external code execution) or that any DMA transfer/external data fetch is completed (in case of data
accesses from external SDRAM) before /RESET is asserted, will avoid this problem.

Note that the probability of encountering this problem is greatly reduced during normal mode of DSP operation, i.e.,
- when the cache is enabled (CADIS bit of the MODE2 register is not set)
- if Bit 31 of the SDCTL register (NO_BSTOP bit) is set to disable burst-mode accesses from the SDRAM.
The above conditions reduce the probability of encountering this problem, but are not suggested as workarounds. For this, please refer to
the techniques listed in the workaround section. This anomaly is not observed during writes to SDRAM memory. It is only seen on reads
from external SDRAM, and sequencer fetches from external SDRAM. The anomaly is also not observed during other Reset scenarios such
as Power-on Reset, software Reset, or Running Reset.

WORKAROUND:
Software:
Configure the DSP to boot via SPI port (master or slave) and perform the following sequence within the loader kernel:
- Initialize the SDCTL and SDRRC registers to the appropriate values
- Perform a dummy read access of external SDRAM memory.
This has the effect of resetting and re-initializing the states of the SDRAM controller as well as that of the external SDRAM memory, and
avoid hitting the problem state.

Hardware:
Providing an external delay of at least 3 SDCLK clock cycles between the SDRAM's DQM signal and the /RESET_IN to the DSP will also
cause the problem to be avoided (see attached Figure).

APPLIES TO REVISION(S):
0.0

NR003347G | Page 5 of 10 | July 2010

 ADSP-21371/ADSP-21375Silicon Anomaly List

5. 09000014 - Incorrect Execution of Conditional External data accesses in a delayed branch (DB) slot:

DESCRIPTION:
Conditional external data access instructions in the delay slots of a branch instruction (such as JUMP/CALL/RTS/RTI) maybe incorrectly
executed because the evaluation of the condition maybe wrong. This applies to both internal and external memory execution.

For example:

 // Code residing in either internal or external memory
 jump (some_addr) (DB);
 <instruction_1>;
 if eq r0=dm(ext_addr); //Condition evaluation may be wrong

WORKAROUND:
Do not use conditional external data access instructions in the delay slots of any branch instruction.

APPLIES TO REVISION(S):
0.0

6. 09000015 - Incorrect Popping of stacks possible when exiting IRQx/Timer Interrupts with DB modifiers:

DESCRIPTION:
If a delayed branch modifier (DB) is used to return from the interrupt service routines of any of IRQx (hardware) or timer interrupts, the
automatic popping of ASTATx/ASTATy/MODE1 registers from the status stack may go wrong.

The specific instructions affected by this anomaly are "RTI (DB);" and "JUMP (CI) (DB);".

This anomaly affects only IRQx and Timer Interrupts as these are the only interrupts that cause the sequencer to push an entry onto the
status stack. This anomaly applies to both internal and external memory execution.

WORKAROUND:
Do not use (DB) modifiers in instructions exiting IRQx or Timer ISRs. Instructions in the delay slots should be moved to a location prior to
the branch.

APPLIES TO REVISION(S):
0.0

7. 09000018 - Specific Multiplier operations must not be part of the same Instruction as an External Memory
access:

DESCRIPTION:
Specific Multiplier operations where Multiplier Results Registers (MRF/MRB) are used as a destination, must not be part of the same
instruction as an External Memory access.

If such an operation is combined with external data access, the MR* registers will not get updated with expected value. This applies to
both internal and external memory code execution.

Further, if any multiplier operation is part of the same instruction as an external memory data access, the corresponding status flags
ASTATx/y and STKYx/y registers may not be correctly updated and interrupts associated with them may also not get triggered.

WORKAROUND:
Ensure that these specific Multiplier operations are on a separate instruction from external memory accesses.

APPLIES TO REVISION(S):
0.0

NR003347G | Page 6 of 10 | July 2010

 ADSP-21371/ADSP-21375 Silicon Anomaly List

8. 09000019 - EMUCLK/EMUCLK2 counters do not function correctly in presence of external core data
accesses:

DESCRIPTION:
EMUCLK and EMUCLK2 counters do not increment correctly for core accesses involving external memory. As a result, they count lesser
than actual intervals in presence of external data accesses. This anomaly is specific only to core driven data accesses involving external
memory. DMA accesses and/or instruction accesses are not affected.

WORKAROUND:
1. Use other counters if core accesses to external memory are required.
2. Avoid core accesses involving external memory while using EMUCLK and EMUCLK2 counters.

APPLIES TO REVISION(S):
0.0

9. 09000020 - Wrong instruction address may be cached when PMDA instruction executing from external
memory is interrupted:

DESCRIPTION:
While executing a PMDA instruction (one that contains a PM() access) from external memory, if the core is interrupted then the instruction
being cached at that time may not get cached properly. Note that the anomaly is limited to instructions containing PMDA instructions. It
does not affect all instructions being executed from external memory.

WORKAROUND:
1. If a user application contains PMDA instructions that are executed from external memory and interrupts may occur and need to be
serviced during this interval, then insert a "flush cache" instruction as the first instruction within affected Interrupt service routines (ISRs).
2. Disable cache using CADIS bit in MODE2. This will disable both internal as well as external memory cache, thereby reducing
performance.
3. If possible, the user may disable and then re-enable global interrupts around PMDA instructions executing from external memory. Care
must be taken to account for any latencies involved when disabling the interrupts.

APPLIES TO REVISION(S):
0.0

10. 09000021 - IOP Register access immediately following an External Memory access may not work:

DESCRIPTION:
If an instruction making an access to an IOP register immediately follows another instruction that performs an access to external memory,
the IOP register access may not occur correctly.

WORKAROUND:
Separate the two instructions by inserting another instruction in between them, such as a NOP.

APPLIES TO REVISION(S):
0.0

NR003347G | Page 7 of 10 | July 2010

 ADSP-21371/ADSP-21375Silicon Anomaly List

11. 09000022 - Effect latency may be 2 cycles instead of 1 for external data accesses:

DESCRIPTION:
The following registers that have an effect latency of 1 (the maximum number of instructions it takes for a write to these registers to take
effect) will instead have an effect latency of 2 if any of their bits impact an instruction containing an external data access:

 MODE1, MODE2, MMASK, ASTATx, ASTATy, STKYx, and STKYy.

For example, consider the following sequence of instructions:

 bit set MODE1 BR8;
 nop; //Sufficient if not immediately followed by external memory access instruction
 nop; //Extra NOP needed if following instruction accesses external memory
 pm(i8,m12)=f9; //i8 is pointing to an address in external memory

Registers other than the ones listed above are not affected by this anomaly.
Note that the anomaly is independent of whether the instruction itself resides in internal or external memory. Rather, the anomaly is
encountered if there are external memory data accesses within the two instructions immediately following the register modification.

WORKAROUND:
If any of the above registers with an effect latency of 1 is modified, it is recommended that no accesses involving external memory (over
either PM or DM bus) are performed in the two instructions immediately following the register modification. It is recommended to insert
two NOPs after such register modifications.

APPLIES TO REVISION(S):
0.0

12. 09000023 - Writes to LCNTR, CURLCNTR and LADDR from Internal Memory may fail if there is a DMA
block conflict:

DESCRIPTION:
Write to LCNTR, CURLCNTR and LADDR from internal memory (either as a DM access or as a PM access) fails when a DMA transfer to/from
the same block occurs in the same cycle.

For example, consider the following instruction:

 CURLCNTR = dm (i0,m0);

Now consider any DMA access involving the same memory block as pointed to by address (I0 + M0). If the DMA and the above write align
in such a way that DMA transfer happens in the same cycle as the above instruction, then the above write will fail.

Also note that the anomaly also occurs if (I0 + M0) points to a memory-mapped I/O register.

WORKAROUND:
1) Change the DMA to source/target a different internal memory block thereby avoiding any DMA block conflict.

2) Instead of loading these registers directly from memory, they can be loaded indirectly as a 2-step process as shown below:

 r0 = dm (i0,m0);
 CURLCNTR = r0;

APPLIES TO REVISION(S):
0.0

NR003347G | Page 8 of 10 | July 2010

 ADSP-21371/ADSP-21375 Silicon Anomaly List

13. 09000024 - Specific Core Stall may not execute as expected:

DESCRIPTION:
Under certain specific conditions outlined below, one type of core stall that is normally incurred does not get executed. In certain cases
this can cause incorrect code operation.

When PCSTK is loaded, and an RTI/RTS instruction is executed immediately afterward, there is a stall as the return waits for a writeback of
PCSTK before the return.
Example:

 [1] PCSTK = DM(I0,M0);
 [2] RTS;

If: The memory access in instruction 1 is to a memory-mapped IOP register.
-OR-
DMA is simultaneously accessing the same bank as the memory access in instruction 1.
Then: Stall does not occur, and this results in the RTI/RTS vectoring to some undefined location instead of the value from PCSTK.

WORKAROUND:
Add a nop between instructions 1 and 2.

APPLIES TO REVISION(S):
0.0

NR003347G | Page 9 of 10 | July 2010

 ADSP-21371/ADSP-21375Silicon Anomaly List

14. 09000025 - External port arbitration may not work as expected when the lower priority request is not
continuous:

DESCRIPTION:
The external port arbitration logic between core, EPDMA0, and EPDMA1 (configurable using EPBRx and DMAPRx bits of the EPCTL
register), may behave unexpectedly when the lower priority request is single/non-sequential. Some scenarios where the external port
request may be single/non-sequential are:

a) Single core external access

 Non-external access instruction..
 R0= dm (<external memory address>);
 Non-external access instruction..

 b) Interrupted back to back core accesses

 r0=dm(<external memory address>);
 Interrupt occurs here....
 r1=dm(<external memory address>);

 c) A DMA transfer with count =1

d) A DMA transfer with count greater than one, but the external port access requests not continuous because of some internal memory
conflicts.

 In general, the lower priority access should complete only when there is no pending higher priority request. But, because of the
anomalous behavior, the lower priority access may still be completed even if there is a pending higher priority request. This behavior is
applicable for both AMI and SDRAM accesses.

WORKAROUND:
There is no workaround for this anomaly.

APPLIES TO REVISION(S):
0.0

NR003347G | Page 10 of 10 | July 2010

 ADSP-21371/ADSP-21375 Silicon Anomaly List

©2010 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners. w w w . a n a l o g . c o ma

http://www.analog.com
http://www.analog.com
http://www.analog.com

	About ADSP-21371/ADSP-21375 Silicon Anomalies
	Summary of Silicon Anomalies
	Detailed List of Silicon Anomalies
	09000007 - First bit of IDCODE register will not be a logical ONE when shifted out via boundary scan controller
	09000009 - BTC failure during external memory access
	09000011 - Indirect Branches from External to Internal Memory may corrupt the Instruction Cache, under Special Conditions
	09000013 - Parallel EPROM/FLASH boot following a Hard (Hot) Reset may fail if issued in the middle of external SDRAM reads
	09000014 - Incorrect Execution of Conditional External data accesses in a delayed branch (DB) slot
	09000015 - Incorrect Popping of stacks possible when exiting IRQx/Timer Interrupts with DB modifiers
	09000018 - Specific Multiplier operations must not be part of the same Instruction as an External Memory access
	09000019 - EMUCLK/EMUCLK2 counters do not function correctly in presence of external core data accesses
	09000020 - Wrong instruction address may be cached when PMDA instruction executing from external memory is interrupted
	09000021 - IOP Register access immediately following an External Memory access may not work
	09000022 - Effect latency may be 2 cycles instead of 1 for external data accesses
	09000023 - Writes to LCNTR, CURLCNTR and LADDR from Internal Memory may fail if there is a DMA block conflict
	09000024 - Specific Core Stall may not execute as expected
	09000025 - External port arbitration may not work as expected when the lower priority request is not continuous

