
Engineer-to-Engineer Note EE-428 
 

Technical notes on using Analog Devices products and development tools 
Visit our Web resources http://www.analog.com/ee-notes and http://www.analog.com/processors or 
e-mail processor.support@analog.com or processor.tools.support@analog.com for technical support.
 

Tips and Tricks Using the ADSP-SC57x/ADSP-2157x Processor Boot ROM 
Contributed by Lalitha Selvaraj, Dineshkumar Sithayyan, Madhumadhi Srinivasan Rev 1 – October 14, 2020 

Copyright 2020, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of customers’ 
products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property of their 
respective holders. Information furnished by Analog Devices applications and development tools engineers is believed to be accurate and reliable, however no 
responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices Engineer-to-Engineer Notes. 

Introduction 
The ADSP-SC57x/ADSP-2157x products (hereafter referred to as ADSP-SC57x) are members of the 
SHARC+® family of processors. Unlike previous SHARC processors like the ADSP-212xx, ADSP-213xx 
and ADSP-214xx processors, the ADSP-SC57x/ADSP-2157x processors feature an on-chip boot ROM 
(mapped to L2 system memory) to control the boot scenario. The boot ROM provides a mechanism via 
One-Time Programmable (OTP) memory to customize various aspects of the boot process including 
enabling/disabling of specific features such as: the use of cache memory, overriding default boot peripheral 
initialization and timing parameters, and disabling of boot modes. For more details on various types of 
memory inside these processors, refer to the ADSP-SC57x SHARC+ Core Embedded Processor Data Sheet
[1]. 

The non-secure (i.e., “standard”) boot process does not verify any signatures nor perform any decryption on 
the application’s binary boot stream; however, the ADSP-SC57x processor supports secure booting when 
security is enabled, where the boot kernel uses cryptographic algorithms to perform checks of the application 
binary and to decrypt it. This EE-note highlights the new boot features and enables the user to create various 
boot streams and understand how boot customization can be achieved using the boot ROM and OTP 
memory. 

 While the term “ADSP-SC57x”  includes the ADSP-2157x processors, any differences 
between the two are explicitly highlighted where applicable. For more information 
related to this, refer to the ADSP-SC57x SHARC+ Processor Hardware Reference [2].  

Booting of the Processor 
The boot kernel in the ADSP-SC57x processor provides support to boot from various peripherals, as defined 
by the SYS_BMODE pins: 

• SPI2 Master Boot

• SPI2 Slave Boot

• LinkPort0 Slave Boot

• UART0 Slave Boot

http://www.analog.com/processors


 

 

Tips and Tricks Using the ADSP-SC57x/ADSP-2157x Processor Boot ROM Page 2 of 11 

Booting at Power-On Reset (POR) 
Upon reset, the processor begins fetching instructions from the boot ROM. The boot ROM code facilitates 
loading an application from the boot source. It can automatically initialize certain peripherals for 
communication based on a chosen boot mode prior to loading the application itself.  
At POR, only the primary booting core is released from reset, while the other cores in the system are held 
in reset until released by the application running on the primary booting core. 
During POR, the primary cores are: 

• ADSP-SC57xCore0 ARM Cortex-A5 

• ADSP-2157xCore1 SHARC+ (No ARM Core is present) 

Booting via ROM API 
The Boot ROM provides several Application Interfaces (API) to customize the boot process further. The 
ROM API can be accessed at runtime by any core to boot an application from a boot source, but booting 
via the API is completely different when compared with POR. It depends on which core is calling it: 
 If the ROM API is invoked from the ARM Cortex A5 (core0), then the boot kernel can boot applications 

to all three cores. 
 If the ROM API is invoked from the primary SHARC+ (core1), then the boot kernel can boot 

applications to both SHARC+ cores (core1 and core2), but not to the ARM (core0). 
 If the ROM API is invoked from the secondary SHARC+ (core2), then the boot kernel can only boot 

the core2 SHARC+ (not the core 0 ARM nor the core1 SHARC+). 
 The core that is executing the second-stage loader (required to load to the other cores) can execute a call 

to the boot ROM to boot the main application image or even a third-stage loader, if one is required. The 
boot kernel API can be used to implement custom boot modes as well, using the dbootcommand 
structure. Usage of the ROM API is shown in Listing 1: 

void * adi_rom_Boot(void *pAddress, uint32_t flags, int32_t blockCount, 
ROM_BOOT_HOOK_FUNC * pHook, uint32_t dbootcommand); 
 
#define ROMBOOTpAddress 0x60000000 //boot stream address 
#define ROMBOOTflags 0 //no flags  
#define ROMBOOTblockCount 0 //process until final block 
#define ROMBOOTpHook 0 //NULL – no hook routine 
#define ROMBOOTdbootcommand 0x207 //SPI Master boot 
 
int main(int argc, char *argv[]) 
{ 
 adi_initComponents(); 
 
/* Configure secure peripheral register to do secure accesses to memory */ 
 /* Secure peripheral register for SPI2_Rx_DMA */ 
 *pREG_SPU0_SECUREP74= 0x3; 
 /*Secure peripheral register for  MDMA0_SRC */ 
 *pREG_SPU0_SECUREP102= 0x3;  
 /*Secure peripheral register for  MDMA0_DST */  



 

 

Tips and Tricks Using the ADSP-SC57x/ADSP-2157x Processor Boot ROM Page 3 of 11 

 *pREG_SPU0_SECUREP103= 0x3; 
/* Call ROM API to boot via SPI2 configured for memory-mapped mode of operation */ 
 adi_rom_Boot(ROMBOOTpAddress , ROMBOOTflags , ROMBOOTblockCount , ROMBOOTpHook  
ROMBOOTdbootcommand); 
 return 0; 
} 

Listing 1. Usage of ROM API for SPI Master 

 

 Configure the SPU_SECUREPx register for the appropriate boot peripheral/DMA so that 
it performs secure accesses to the memories. This configuration avoids system fabric 
errors that could lead to boot failure. 

Application Types 
The ADSP-SC57x processor has three cores, so various combinations of cores for an application can be 
developed. Depending on the boot image for the core, the following boot options are supported: 

• Single-Core Application 
o Core0 ARM Cortex-A5: boot on POR and via ROM API 
o Core1/Core2 SHARC+: boot via ROM API only 

• Dual-Core Application 
o With core0 ARM Cortex-A5 as the primary core: boot on POR and via ROM API 
o With core1 SHARC+ as the application core: boot via ROM API only 

• Multicore Application (all three cores) 
o Booting on POR and via ROM API 

The ADSP-2157x processor has two SHARC+ cores. Depending on the boot image for the core, the 
following boot options are supported: 

• Single-Core Application 
o Core1 SHARC+: boot on POR and via ROM API 
o Core2 SHARC+: boot via ROM API only 

• Dual-Core Application 

o With core1 SHARC+ as the primary core: boot on POR and via ROM API 

OTP API Overview 
The ADSP-SC57x boot ROM includes a set of functions to access OTP memory, thereby providing a 
mechanism that uses OTP memory to customize the boot process, including configuring the Clock 
Generation Unit (CGU), initializing the Dynamic Memory Controller (DMC0), storing keys for the secure 
boot process, etc. All OTP accesses are allowed using the following OTP APIs only: 



 

 

Tips and Tricks Using the ADSP-SC57x/ADSP-2157x Processor Boot ROM Page 4 of 11 

 To program the OTP data field 
bool adi_rom_otp_pgm(otp_data* data); 

• To read the OTP data field 
bool adi_rom_otp_get( OTPCMD cmd, uint32_t*data); 

 

• To lock the ADSP-SC57x processor (for secure booting) 
bool adi_rom_lock(); 

The associated ZIP file[3] for this EE-note contains example code in the “5. OTP API code” folder to access 
(program/read) the ADSP-SC57x processor OTP space from the Cortex-A5 core. For more information, 
refer to the “OTP Controller” chapter of the Hardware Reference Manual. 

 Once the part is locked, it can only be accessed via JTAG with the emulation key. 

Boot Stream Generation 
As mentioned, the ADSP-SC57x processors support both standard and secure booting. The secure booting 
is detailed in application note (EE-366) Secure Booting Guide for Blackfin+ and SHARC+ Processors[4] 
Refer to this document for more details regarding secure boot mode support. 

Standard Boot Streams 
The elfloader utility (‘elfloader.exe’) in the CCES installation path is used to generate standard boot 
streams for all three cores. Listings 2-8 depict invocation of the elfloader utility to generate the boot stream 
for an SPI master boot in single-bit SPI mode for numerous scenarios. 
For a single-core application running on the Cortex-A5 ARM core, the executable file (for example, 
ARM_Application_Core0) must be designated for the appropriate core using the –core0 switch, and an 
output loader stream (LDR) file name (for example, SPIMASTER_Single_ARM.ldr) can optionally be 
designated using the –o switch, as shown in Listing 2: 

"<CCES Root Directory>\elfloader.exe" -proc ADSP-SC573 -core0=ARM_Application_Core0 
-b SPI -f BINARY -Width 8 -bcode 0x1 –verbose -o SPIMASTER_Single_ARM.ldr 

Listing 2. Elfloader Command Line for Application Created for Core0 ARM Cortex-A5 

If the single-core application instead targets either the primary or secondary SHARC+ core, a similar calling 
convention is used. However, the command line must associate the appropriate SHARC+ executable file 
(DXE) with the targeted core using the following switches: 

• -core1 for the primary SHARC+ (Listing 3) 
• -core2 for the secondary SHARC+ (Listing 4) 

"<CCES Root Directory>\elfloader.exe" -proc ADSP-SC573 -
core1=SHARC0_Application_Core1.dxe -b SPI -f BINARY -Width 8 -bcode 0x1 -verbose -o 
SPIMASTER_Single_SHARC0.ldr 



 

 

Tips and Tricks Using the ADSP-SC57x/ADSP-2157x Processor Boot ROM Page 5 of 11 

Listing 3. Elfloader Command Line for Application Created for Core1 SHARC+ 

"<CCES Root Directory>\elfloader.exe" -proc ADSP-SC573 –
core2=SHARC1_Application_Core2.dxe -b SPI -f BINARY -Width 8 -bcode 0x1 -verbose -o 
SPIMASTER_Single_SHARC1.ldr 

Listing 4. Elfloader Command Line for Application Created for Core2 SHARC 

For a multi-core application, the boot stream is a mix of the above invocations, but there is an additional 
requirement that must be considered. In the defined boot stream, there is a “Final” tag associated with the 
last block in the stream destined for the specified core. The tag indicates to the boot ROM during loading 
that this is the last block to load before exiting the boot ROM. In a multi-core scenario, however, this tag 
must be omitted if other cores still need to be loaded after the current one. Otherwise, the boot ROM exits 
prematurely during the boot after loading to that core. This sequence results in the other cores not booting 
at all. The capability to remove the “Final” tag from the boot stream generated for a specific core is available 
via the –NoFinalTag switch, which must be applied to the primary core loader stream in each of the two-
core scenarios: 

• Core0 ARM Cortex-A5 and Core1 SHARC+ (Listing 5) 
• Core0 ARM Cortex-A5 and Core2 SHARC+ (Listing 6) 
• Core1 SHARC and Core2 SHARC+ (Listing 7) 

"<CCES Root Directory>\elfloader.exe" -proc ADSP-SC573 -core0= ARM_Application_Core0 
-core1= SHARC0_Application_Core1.dxe -NoFinalTag= ARM_Application_Core0 -b SPI -f 
BINARY -Width 8 -bcode 0x1 -verbose -o SPIMASTER_Single_ARM_SHARC0.ldr 

Listing 5. Elfloader Command Line for Application Created for Core0 ARM Cortex-A5 and Core1 SHARC+ 

"<CCES Root Directory>\elfloader.exe" -proc ADSP-SC573 -core0= 
ARM_Application_Core0 –core2= SHARC1_Application_Core2.dxe -NoFinalTag= 
ARM_Application_Core0 -b SPI -f BINARY -Width 8 -bcode 0x1 -verbose -o 
SPIMASTER_Single_ARM_SHARC1.ldr  

Listing 6. Elfloader Command Line for Application Created for Core0 ARM Cortex-A5 and Core2 SHARC+ 

"<CCES Root Directory>\elfloader.exe" -proc ADSP-SC573 -core1= 
SHARC0_Application_Core1.dxe -core2 SHARC1_Application_Core2.dxe -NoFinalTag= 
SHARC0_Application_Core1.dxe -b SPI -f BINARY -Width 8 -bcode 0x1 -verbose -o 
SPIMASTER_Single_SHARC1_SHARC2.ldr 

Listing 7. Elfloader Command Line for Application Created for Core1 SHARC and Core2 SHARC 

Finally, for an application loading to all three cores, the same concept applies, except the –NoFinalTag 
switch must be applied twice (once for the ARM core, and once for the primary SHARC+ core), as shown 
in Listing 8: 

"<CCES Root Directory>\elfloader.exe" -proc ADSP-SC573 -core0= 
ARM_Application_Core0 -core1= SHARC0_Application_Core1.dxe -core2= 
SHARC1_Application_Core2.dxe -NoFinalTag= ARM_Application_Core0 -NoFinalTag= 
SHARC0_Application_Core1.dxe -b SPI -f BINARY -Width 8 -bcode 0x1 -verbose -o 
SPIMASTER_Single_MULTI_CORE.ldr 



 

 

Tips and Tricks Using the ADSP-SC57x/ADSP-2157x Processor Boot ROM Page 6 of 11 

Listing 8. Elfloader Command Line for Application Created for All Three Cores 

The –bcode switch in the Listing 5 through Listing 8  is in support of single-bit SPI data and can be modified 
to select among the various supported SPI operating modes (for example, 0x9 for dual-bit mode and 0xD 
for quad-bit mode). For more details, refer to the Hardware Reference Manual. 
Usage of the elfloader utility can be extended to apply to all the supported boot sources (using the –b switch) 
and to support various LDR file formats (via the –f switch). For more details regarding the elfloader utility, 
consult the CCES Online Help documentation[5].  

Generation of Secure Boot Stream 
The generation of the secure boot stream is just a conversion of the standard boot stream. It involves the use 
of a private key to create a digital signature which is stored in a secure header as part of the secure boot 
stream. 
The signtool.exe utility, via the sign command, is used for signing and encrypting the boot stream image, 
and is applied for all three secure boot types, as governed by the –type switch: Plaintext (BLp), Wrapped 
(BLw), and Keyless (BLx). 

Listing 9 is an example of a command line to sign a standard boot loader stream 
(Normal_Boot_Stream.ldr, identified by the –infile switch) for Plaintext security (-type BLp) using 
the private key stored in the key pair file keychain.der (designated by the –prikey switch), and the 
converted secure LDR stream (BLp_Secure_Boot_Stream.ldr) is designated by the –outfile switch. 

"<CCES Root Directory>\signtool.exe" sign -type BLp -prikey keychain.der -infile 
Normal_Boot_Stream.ldr -outfile BLp_Secure_Boot_Stream.ldr 

Listing 9. Signtool Command Line to Sign Boot Stream for Integrity/Authenticity Protection 

If confidentiality protection is also desired, it can be either keyless (-type BLx) or wrapped (-type BLw). 
For Keyless encryption, only the encryption key file is provided, using the –enckey switch (Listing 10): 

"<CCES Root Directory>\signtool.exe" sign -type BLx -prikey keychain.der -enckey 
encrypt_key.bin -infile Normal_Boot_Stream.ldr -outfile BLx_Secure_Boot_Stream.ldr 

Listing 10. Signtool Command Line to Sign/Encrypt Boot Stream for Integrity/Authenticity/Confidentiality Protection 

Wrapped encryption, where the cipher key is sent along with the secure boot stream, requires both an 
encryption key file (using the –enckey switch) and a wrap key file, as specified by the –wrapkey switch 
(Listing 11): 

"<CCES Root Directory>\signtool.exe" sign -type BLw -prikey keychain.der -enckey 
encrypt_key.bin -wrapkey wrapper_key.bin -infile Normal_Boot_Stream.ldr -outfile 
BLw_Secure_Boot_Stream.ldr 

Listing 11. Signtool Command Line to Sign/Encrypt Boot Stream for Integrity/Authenticity/Confidentiality Protection 
with Wrapped Encryption Key 



 

 

Tips and Tricks Using the ADSP-SC57x/ADSP-2157x Processor Boot ROM Page 7 of 11 

 The Normal_Boot_Stream.ldr, keychain.der, BLp_Secure_Boot_Stream.ldr, 
encrypt_key.bin, wrapper_key.bin, BLx_Secure_Boot_Stream.ldr and 
BLw_Secure_Boot_Stream.ldr files are in binary format. 

 

Tips for Booting  

Secure SPI Master Boot 
For SPI master boot mode, the ROM code checks for the –bcode value present in the standard boot stream 
to determine the SPI configuration to be used. For a secure boot stream, which may be encrypted, extra 
steps are required to perform the same auto-detect functionality. The standard boot image can be signed 
with attribute 0x80000002 set to a value of 0x0 through 0xF, which will determine the SPI configuration to 
use. If the attribute was not found in the secure header, the default bcode of 0x1 is applied. For example, if 
the SPI needed to be configured for quad-bit mode, the value 0xD must be associated with attribute 
0x80000002, as in Listing 12: 

"<CCES Root Directory>\signtool.exe" sign -type BLw -prikey keychain.der -enckey 
encrypt_key.bin -wrapkey wrapper_key.bin -attribute 0x80000002=0xD -infile 
Normal_Boot_Stream.ldr -outfile BLw_Secure_Boot_Stream.ldr 

Listing 12. Signtool Command Line to Sign/Encrypt Boot Stream for Integrity/Authenticity/Confidentiality Protection 
with Wrapped Encryption Key for Attribute 0x80000002 = 0xD. 

Tips for Secure Slave Boot  
To boot the ADSP-SC57x processor in slave boot mode, the host code should send an extra 1024 dummy 
bytes at the end of all secure boot streams. This ensures that the boot stream is completely sent from the 
host and is received by the processor to boot an application. 
The associated ZIP file has a ‘2. Loader Streams’ folder which generates both standard and secure boot 
streams for a simple LED_Blink application (‘1. Led_Blink_Code’) running on an ADSP-SC57x EZ-
KIT® evaluation system. 

Boot Support in Open/Locked Parts 
By default, the processor is considered to be an “open” part non-secure, default state). Open parts support 
both standard and secure boot. To lock a processor and enable security, a particular location in OTP memory 
must be written. 

 Standard booting is no longer supported once the part is locked. 

 
 The plaintext format (BLp) boot stream can be authenticated by pre-programming the corresponding 

public key of the ECDSA-224-bit algorithm into the OTP public_key field using the OTP program 
API. 



 

 

Tips and Tricks Using the ADSP-SC57x/ADSP-2157x Processor Boot ROM Page 8 of 11 

 The wrapped key format (BLw) boot stream image data is encrypted with the wrapped key, preventing 
cloning. An additional key is required to unwrap the wrapped key in the header. This key must be pre-
programmed into the OTP pvt_128key field using the OTP program API. 

 The keyless format (BLx) is similar to the wrapped key format, except the image does not contain the 
key. The decryption key for the data must be pre-programmed into the OTP pvt_128key field using the 
OTP program API. 

 Once the part is locked, the debugger only has access when the userkey passed from the debugger 
matches the emulation key. The emulation key must be programmed into the OTP secure_emu_key 
field using the OTP program API before locking the part. 

Public and Encryption (Private) Key in OTP Space 
 There are two instances of public keys and four instances of confidentiality keys in the OTP space 

available. By default, the public_key0 field and the pvt_128key0 field are used for authentication and 
decryption of the secure boot stream. To use the other instances of the keys, like public_key1 and 
pvt_128key1, the previous instances must be invalidated in the OTP space by setting the pubkey0Inv 
and privkey0Inv bits in the OTP space using the OTP program API. 

 All the public and private keys can be invalidated using the various key*Inv fields provided in the 
ADI_ROM_OTP_BOOT_INFO structure. This feature is useful when a new key is required, because the boot 
ROM always uses the lowest valid key enumeration. If key0 is valid, then it is used; if key0 is invalid 
and key1 is valid, then key1 is used. 

 Once a key is invalidated, it cannot be used again. 

Testing Secure Boot Using ROM API 
The ROM code provides a mechanism to boot a secure boot stream without writing any keys into OTP 
memory. This mechanism is useful when validating the generated keys and application stream before 
writing to OTP memory and locking the part. Secure booting is accomplished by loading an application into 
memory using the emulator. The emulator utilizes the ROM API function adi_rom_Boot in conjunction 
with a hook function, configuring the kernel for secure boot, and initiating the boot process. The associated 
ZIP file contains a ‘4. ROM_API_Flags’ folder which has example code for using the ROM API hook 
function. 

Useful Boot ROM Features 

Booting to External Memory 
The following techniques can be used to boot an application that is mapped to external memory: 
 The boot ROM supports initialization blocks to load code on-chip and run it prior to attempting to load 

the next block in the stream. This small executable code can initialize the DMC controllers prior to any 
attempt by the boot sequence to load code/data to external DDR memory, and it is supported using the 
–init switch in the elfloader command line (Listing 13). 



 

 

Tips and Tricks Using the ADSP-SC57x/ADSP-2157x Processor Boot ROM Page 9 of 11 

"<CCES Root Directory>\elfloader.exe" -proc ADSP-SC573  -core0=ARM_Application_Core0 
–init Initcode_Core0 -b SPI -f BINARY -Width 8 -bcode 0x1 –verbose -o 
SPIMASTER_Single_ARM.ldr” 

Listing 13. Elfloader Command Line for Application in Cortex-A5 Core with Initialization Block 

 DMC initialization can be pre-programmed into the OTP dmcEn field using the OTP Program API. By 
setting the dmcEn field of the ADI_ROM_BOOT_CONFIG structure, the ADI_ROM_OTP_DMC_CONFIG structure 
is read from OTP and used to configure the DMC peripheral. 

 A second-stage loader can be implemented, where the first application configures the external memory 
controller and then issues a call using the boot routine to boot an application into external memory. 

Optimizing Boot Time 
Overall boot time performance can be increased using the following techniques: 

• Program the CGU to increase clocks throughout the device by programming the OTP cgu field 
using the OTP Program API. 

• Use an initialization block to customize boot mechanisms exposed by the boot kernel. In addition to 
configuring the external memory controllers, initialization block code can also be used to modify 
the CGU and peripheral bit rates/settings. Because this code is executed at the start of the boot 
process, the rest of the application can load much faster with whatever optimized settings are set in 
the initialization block. 

 Initialization blocks require a call to user application code prior to the 
authentication of the boot image; therefore, they are not supported for 
secure boot streams. 

 

 SPI master boot mode can occur in dual-bit or quad-bit mode, if the flash supports it, which is supported 
via the –bcode switch when generating the boot stream. 

• A second-stage loader can be implemented, where the first application configures the CGU to run 
the processor at maximum speed and then issues a call using the boot routine to boot at the desired 
speed. 

• Secure boot image authentication can be disabled by setting the ADI_ROM_OTP_BOOT_INFO field 
decryptOnlyEn to 1 and field decryptOnlyEnInv to 0, which will remove the overhead associated 
with authenticating the boot stream. 

Debugging Boot Using Global Boot Flags in adi_rom_Boot 

The adi_rom_Boot() API supports additional flags which can impact the processing of the boot stream or 
modify some control behavior after the boot stream has been processed. For more information, refer to the 
“Boot ROM and Booting the Processor” chapter of the ADSP-SC57x SHARC+ Processor Hardware 
Reference.  

ROM_BFLAG_RETURN 
The ROM_BFLAG_RETURN flag can be set in the boot routine call from the Cortex-A5 core to boot an 
application to the SHARC+ cores. When set, the boot code does not vector to the entry address of the loaded 



 

 

Tips and Tricks Using the ADSP-SC57x/ADSP-2157x Processor Boot ROM Page 10 of 11 

application once booted. Instead, it returns to the original calling routine like any other function call and 
return. This mechanism allows for a core to load a single-core boot stream intended for another core. 
The associated ZIP file contains a ‘4. ROM_API_Flags’ folder, which has example code for using the 
ROM API function.   

ROM_BFLAG_HOOK 
When enabled, the ROM_BFLAG_HOOK flag allows a callback hook routine to be called after the execution of 
the initialization and configuration functions that were registered with the boot kernel. The address of the 
hook function to execute is passed as a parameter when calling the boot routine. 
When using the ROM API, this mechanism allows user routines in SRAM to be registered and called. The 
boot software passes a flag to the hook routine, indicating whether the call was due to completion of the 
initialization routine or the configuration routine. In addition, a pointer to the entire boot configuration 
structure is passed, allowing the hook routine to reconfigure the boot process. Thus, the hook routine is 
called twice, once during initialization and later during boot process.  

 Hook routines provide an efficient means of performing validation of the 
configuration of a boot peripheral at boot-time. Software can call the boot API with 
a specific configuration. The hook routine can then verify that the configuration is 
correct for the parameters passed. It can then pass or fail without progressing through 
the entire boot sequence. 

Booting using Non-Default Peripheral Instances 
By default, the ADSP-SC57x processor supports booting using the SPI2, UART0, and LP0 peripherals. To 
boot an application using an alternate instance of a supported peripheral (for example, SPI0, UART1, LP1, 
etc.), the dbootcommand in the boot routine call can be modified accordingly. 

The dbootcommand can also be programmed into the OTP bcmd field of the ADI_ROM_OTP_BOOT_INFO 
structure using the OTP program API. 
The ROM code also provides the option to disable a particular boot mode by programming the OTP 
bootModeDisable field using the OTP program API. 

Using ROM API for a Second-Stage Loader (SSL) 
To support extensions to the boot process, a second-stage loader (SSL) can be introduced, where a small 
application is loaded into the processor using a natively supported boot mode. This SSL kernel can be used 
to customize the configuration of the processor and/or perform automated tasks as part of the boot process. 
An SSL is a stand-alone application that is executed at boot time before the actual application is dynamically 
loaded into memory. The SSL can be used to invoke a ROM API to boot a second application. For example, 
this approach can be used to boot an application from external memory mapped to the DMC0 controller 
into the cores of the ADSP-SC57x processor. The associated ZIP file contains a ‘3. SSL_Code_Example’ 
folder, which implements this approach. 

 The boot kernel requires 8k of SRAM (0x200fe000 to 0x200fffff) for the stack and 
buffers. This space is reserved until AFTER the boot process is complete, and the boot 
kernel will flag an exception if this rule is violated. 



 

 

Tips and Tricks Using the ADSP-SC57x/ADSP-2157x Processor Boot ROM Page 11 of 11 

Conclusions 
This EE-Note summarizes the steps and requirements to generate both standard and secure boot streams for 
all boot modes of the ADSP-SC57x processor family. It also explains the usage of the ROM API with 
accompanying examples in use case scenarios such as SSL implementation and secure boot on open parts. 
 

References 
[1]  ADSP-SC570/SC571/SC572/SC573/ADSP-21571/21573: SHARC+ Dual-Core DSP with arm® Cortex-A5 Data Sheet, 

Rev B, June 2018. Analog Devices, Inc. 

[2] ADSP-SC57x/ADSP-2157x SHARC+ Processor Hardware Reference. Revision 1.1, January 2020. Analog Devices, Inc. 

[3] Associated ZIP File for EE-428. Analog Devices, Inc. 

[4] Secure Booting Guide for Blackfin+ and SHARC+ Processors (EE-366) 

[5] CrossCore® Embedded Studio online Help > SHARC® Development Tools Documentation > Loader and Utilities 
Manual > Loader for ADSP-SC5xx/ADSP-215xx Processors 

 

Document History 

Revision Description 

Rev 1 – October ,2020 
by Lalitha Selvaraj, 
Dineshkumar Sithayyan, 
Madhumadhi Srinivasan 

Initial Release 

 


	Introduction
	Booting of the Processor
	Booting at Power-On Reset (POR)
	Booting via ROM API

	Application Types
	OTP API Overview
	Boot Stream Generation
	Standard Boot Streams
	Generation of Secure Boot Stream
	Tips for Booting
	Secure SPI Master Boot
	Tips for Secure Slave Boot


	Boot Support in Open/Locked Parts
	Public and Encryption (Private) Key in OTP Space

	Testing Secure Boot Using ROM API
	Useful Boot ROM Features
	Booting to External Memory
	Optimizing Boot Time
	Debugging Boot Using Global Boot Flags in adi_rom_Boot
	The adi_rom_Boot() API supports additional flags which can impact the processing of the boot stream or modify some control behavior after the boot stream has been processed. For more information, refer to the “Boot ROM and Booting the Processor” chapt...
	ROM_BFLAG_RETURN
	ROM_BFLAG_HOOK

	Booting using Non-Default Peripheral Instances
	Using ROM API for a Second-Stage Loader (SSL)

	Conclusions
	References
	Document History

