
66666

141141141141141

One-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTs

6.16.16.16.16.1 OVERVIEWOVERVIEWOVERVIEWOVERVIEWOVERVIEW
In many applications, frequency analysis is necessary and desirable.
Applications ranging from radar to spread-spectrum communications
employ the Fourier transform for spectral analysis and frequency domain
processing.

The discrete Fourier transform (DFT) is the discrete-time equivalent of the
continuous-time Fourier transform. Whereas the continuous-time Fourier
transform operates on a continuous time signal x(t), the DFT operates on
samples of x(t). If X(f) is the continuous Fourier transform of x(t), then the
DFT of x(t) (sampled) is a sequence of samples of X(f), equally spaced in
frequency. Equation (1) computes the DFT (Oppenheim and Schafer,
1975). X(k) is the discrete or sampled Fourier transform, and x(n) is a
sequence of samples of the input signal, x(t). The term WN, defined as
e–j2π/N, corresponds to the term e–j2πft used to compute the continuous
Fourier transform. Various powers of WN are used for each multiplication
in the DFT calculation.

N–1

(1) X(k) = ∑ x(n) WN
nk k = 0 to N–1

n=0

where WN = e–j2π/N

A complex summation of N complex multiplications is required for each
of the N output samples. In all, N2 complex multiplications and N2

complex additions compute an N-point DFT. The time burden created by
this large number of calculations limits the usefulness of the DFT in many
applications. For this reason, tremendous effort was devoted to
developing more efficient ways of computing the DFT. This effort
produced the fast Fourier transform (FFT). The FFT uses mathematical
shortcuts to reduce the number of calculations the DFT requires.

This chapter describes three variations of the FFT algorithm: the radix-2
decimation-in-time FFT, the radix-2 decimation-in-frequency FFT and the

142142142142142

One-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTs66666

radix-4 decimation-in-frequency FFT. Optimization, to make the code run
faster, and block floating-point scaling, to increase data precision, are also
addressed. In addition, bit- and digit-reversal and windowing, operations
related to the FFT, are described. An FFT in two dimensions is presented
in the next chapter.

6.26.26.26.26.2 RADIX-2 FAST FOURIER TRANSFORMSRADIX-2 FAST FOURIER TRANSFORMSRADIX-2 FAST FOURIER TRANSFORMSRADIX-2 FAST FOURIER TRANSFORMSRADIX-2 FAST FOURIER TRANSFORMS
Suppose an N-point DFT is accomplished by performing two N/2-point
DFTs and combining the outputs of the smaller DFTs to give the same
output as the original DFT. The original DFT requires N2 complex
multiplications and N2 complex additions. Each DFT of N/2 input
samples requires (N/2)2 = N2/4 multiplications and additions, a total of
N2/2 calculations for the complete DFT. Dividing the DFT into two
smaller DFTs reduces the number of computations by 50 percent. Each of
these smaller DFTs can be divided in half, yielding four N/4-point DFTs.
If we continue dividing the N-point DFT calculation into smaller DFTs
until we have only two-point DFTs, the total number of complex
multiplications and additions is reduced to Nlog2N. For example, a 1024-
point DFT requires over a million complex additions and multiplications.
A 1024-point DFT divided down into two-point DFTs needs fewer than
ten thousand complex additions and multiplications, a reduction of over
99 percent.

Dividing the DFT into smaller DFTs is the basis of the FFT. A radix-2 FFT
divides the DFT into two smaller DFTs, each of which is divided into two
smaller DFTs, and so on, resulting in a combination of two-point DFTs. In
a similar fashion, a radix-4 FFT divides the DFT into four smaller DFTs,
each of which is divided into four smaller DFTs, and so on. Two types of
radix-2 FFTs are described in this section: the decimation-in-time FFT and
the decimation-in-frequency FFT. The radix-4 decimation-in-frequency
FFT is described in a later section.

6.2.16.2.16.2.16.2.16.2.1 Radix-2 Decimation-In-Time FFT AlgorithmRadix-2 Decimation-In-Time FFT AlgorithmRadix-2 Decimation-In-Time FFT AlgorithmRadix-2 Decimation-In-Time FFT AlgorithmRadix-2 Decimation-In-Time FFT Algorithm
The decimation-in-time (DIT) FFT divides the input (time) sequence into
two groups, one of even samples and the other of odd samples. N/2-point
DFTs are performed on these sub-sequences, and their outputs are
combined to form the N-point DFT.

Decimation-in-time is illustrated by the following equations (Oppenheim
and Schafer, 1975). First, x(n), the input sequence in equation (1), is
divided into even and odd sub-sequences:

143143143143143

One-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTs 66666

N/2–1 N/2–1

(2) X(k) = ∑ x(2n) WN
2nk + ∑ x(2n+1) WN

(2n+1)k

n=0 n=0

N/2–1 N/2–1

= ∑ x(2n) WN
2nk + WN

k ∑ x(2n+1) WN
2nk

n=0 n=0

for k = 0 to N–1

By the substitutions

WN
2nk = (e–j2π/N)2nk = (e–j2π/(N/2))nk = WN/2

nk

x1(n) = x(2n)
x2(n) = x(2n+1)

this equation becomes

N/2–1 N/2–1

(3) X(k) = ∑ x1(n) WN/2
nk + WN

k ∑ x2(n) WN/2
nk

n=0 n=0

= Y(k) + WN
k Z(k)

for k = 0 to N–1

Equation (3) is the sum of two N/2-point DFTs (Y(k) and Z(k)) performed
on the sub-sequences of even and odd samples, respectively, of the input
sequence, x(n). Multiples of WN (called “twiddle factors”) appear as
coefficients in the FFT calculation. In equation (3), Z(k) is multiplied by
the twiddle factor WN

k.

Because WN
k+N/2 = (e–j2π/N)k x (e–j2π/N)N/2 = –WN

k, equation (3) can also be
expressed as two equations:

(4) X(k) = Y(k) + WN
k Z(k)

X(k+N/2) = Y(k) – WN
k Z(k)

for k = 0 to N/2–1

144144144144144

One-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTs66666

Together these equations form an N-point FFT. Figure 6.1 illustrates this
first decimation of the DFT.

Figure 6.1 First Decimation of DIT FFTFigure 6.1 First Decimation of DIT FFTFigure 6.1 First Decimation of DIT FFTFigure 6.1 First Decimation of DIT FFTFigure 6.1 First Decimation of DIT FFT

The two N/2-point DFTs (Y(k) and Z(k)) can be divided to form four N/4-
point DFTs, yielding equation pairs (5) and (6).

(5) Y(k) = U(k) + WN
2k V(k)

Y(k+N/4) = U(k) – WN
2k V(k)

for k = 0 to N/4–1

(6) Z(k) = R(k) + WN
2k S(k)

Z(k+N/4) = R(k) – WN
2k S(k)

for k = 0 to N/4–1

U(k) and V(k) are N/4-point DFTs whose input sequences are created by
dividing x1(n) into even and odd sub-sequences. Similarly, R(k) and S(k)
are N/4-point DFTs performed on the even and odd sub-sequences of
x2(n). Each of these four equations can be divided to form two more. The
final decimation occurs when each pair of equations together computes a

X(0)

X(1)

X(N/2–1)

X(N/2)

X(N/2+1)

X(N–1)

Y(0)

Y(1)

Y(N/2–1)

Z(0)

Z(1)

Z(N/2–1)

W
0

W
N/2–1

W
1

N/2-Point
DFT

–1

–1

–1

x(N–2)

x(0)

x(2)

x(1)

x(3)

x(N–1)

N/2-Point
DFT

145145145145145

One-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTs 66666

two-point DFT (one point per equation). The pair of equations that make
up the two-point DFT is called a radix-2 “butterfly.” The butterfly is the
core calculation of the FFT. The entire FFT is performed by combining
butterflies in patterns determined by the FFT algorithm.

A complete eight-point DIT FFT is illustrated graphically in Figure 6.2.
Each pair of arrows represents a butterfly. Notice that the entire FFT
computation is made up of butterflies organized in different patterns,
called groups and stages. The first stage consists of four groups of one
butterfly each. The second stage has two groups of two butterflies, and the
last has one group of four butterflies. Every stage contains N/2 (four)
butterflies. Each butterfly has two input points, called the dual node and
the primary node. The spacing between the nodes in the sequence is
called the dual-node spacing. Associated with each butterfly is a twiddle
factor whose exponent depends on the group and stage of the butterfly.

Figure 6.2 Eight-Point DIT FFTFigure 6.2 Eight-Point DIT FFTFigure 6.2 Eight-Point DIT FFTFigure 6.2 Eight-Point DIT FFTFigure 6.2 Eight-Point DIT FFT

Notice that whereas the output sequence is sequentially ordered, the
input sequence is not. This is an effect of repeatedly dividing the input
sequence into sub-sequences of even and odd samples. It is possible to
perform an FFT using input and output sequences in other orders, but
these approaches generally complicate addressing in the FFT program

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

 W
 0

 W
 0

 W
 0

 W
 0

 W
 2

 W
 0

W
0

W
2

 W
 0

W
1

W
2

W
3

x(0)

x(4)

x(2)

x(6)

x(1)

x(5)

x(3)

x(7)

X(0)

X(1)

X(2)

X(3)

X(4)

X(5)

X(6)

X(7)

Stage 1 Stage 2 Stage 3

Butterfly Group Stage

Dual-Node
Spacing

Dual-Node
Spacing

Dual-Node
Spacing

146146146146146

One-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTs66666

and can require a different butterfly. In this section, we have opted to
scramble the input sequence of the DIT FFT because this approach uses
twiddle factors in sequential order, produces the output sequence in
sequential order, and requires a relatively simple butterfly. The
scrambling of the inputs is achieved by a process called bit reversal, which
is described later in this chapter.

The characteristics of an N-point DIT FFT with bit-reversed inputs are
summarized below.

Stage 1 Stage 2 Stage 3 Stage Log2N

Number of
Groups N/2 N/4 N/8 1

Butterflies
per Group 1 2 4 N/2

Dual-Node
Spacing 1 2 4 N/2

Twiddle
Factor (N/2)k, (N/4)k, (N/8)k, k,
Exponents k=0 k=0, 1 k=0, 1, 2, 3 k=0 to N/2–1

A generalized butterfly flow graph is shown in Figure 6.3. The variables x
and y represent the real and imaginary parts, respectively, of a sample.
The twiddle factor can be divided into real and imaginary parts because
WN = e–j2π/N = cos(2π/N) – jsin(2π/N). In the program presented later in
this section, the twiddle factors are initialized in memory as cosine and –
sine values (not +sine). For this reason, the twiddle factors are shown in
Figure 6.3 as C + j(–S). C represents cosine and –S represents –sine.

The dual node (x1+jy1) is multiplied by the twiddle factor C+j(–S). The
result of this multiplication is added to the primary node (x0+jy0) to
produce x0´+jy0´ and subtracted from the primary node to produce x1´+
jy1´. Equations (7) through (10) calculate the real and imaginary parts of
the butterfly outputs.

(7) x0´ = x0 + [(C)x1 – (–S)y1]

(8) y0´ = y0 + [(C)y1 + (–S)x1]

147147147147147

One-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTs 66666

(9) x1´ = x0 – [(C)x1 – (–S)y1]

(10) y1´ = y0 – [(C)y1 + (–S)x1]

x + jy x ´ + jy ´

W=C+j(–S)

x ´ + jy ´x + jy -1

Primary
Node

Dual
Node

0000

1 111

Dual Node
Spacing

Figure 6.3 Radix-2 DIT FFT ButterflyFigure 6.3 Radix-2 DIT FFT ButterflyFigure 6.3 Radix-2 DIT FFT ButterflyFigure 6.3 Radix-2 DIT FFT ButterflyFigure 6.3 Radix-2 DIT FFT Butterfly

The butterfly produces two complex outputs that become butterfly inputs
in the next stage of the FFT. Because each stage has the same number of
butterflies (N/2), the number of butterfly inputs and outputs remains the
same from one stage to the next. An “in-place” implementation writes
each butterfly output over the corresponding butterfly input (x0´
overwrites x0, etc.) for each butterfly in a stage. In an in-place
implementation, the FFT results end up in the same memory range as the
original inputs.

6.2.26.2.26.2.26.2.26.2.2 Radix-2 Decimation-In-Time FFT ProgramRadix-2 Decimation-In-Time FFT ProgramRadix-2 Decimation-In-Time FFT ProgramRadix-2 Decimation-In-Time FFT ProgramRadix-2 Decimation-In-Time FFT Program
The flow chart for the DIT FFT program is shown in Figure 6.4. The FFT
program is divided into three subroutines. The first subroutine scrambles
the input data. The next subroutine computes the FFT, and the third scales
the output data.

Four modules are created. The main module declares and initializes data
buffers and calls subroutines. The other three modules contain the FFT, bit
reversal, and block floating-point scaling subroutines. The main module
and FFT module are described in this section. The bit reversal and block
floating-point scaling modules are described in later sections.

6.2.2.16.2.2.16.2.2.16.2.2.16.2.2.1 Main ModuleMain ModuleMain ModuleMain ModuleMain Module
The dit_fft_main module is shown in Listing 6.1. N is the number of points
in the FFT (in this example, N=1024) and N_div_2 is used for specifying
the lengths of buffers. To change the number of points in the FFT, you

Figure 6.4 Radix-2 DITFigure 6.4 Radix-2 DITFigure 6.4 Radix-2 DITFigure 6.4 Radix-2 DITFigure 6.4 Radix-2 DIT
FFT Flow ChartFFT Flow ChartFFT Flow ChartFFT Flow ChartFFT Flow Chart

S

Set Up

Set Up F

Bit Re
(s

148148148148148

One-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTs66666

change the value of these constants and the twiddle factors. The data
buffers twid_real and twid_imag in program memory hold the twiddle
factor cosine and sine values. The inplacereal, inplaceimag, inputreal and
inputimag buffers in data memory store real and imaginary data values.
Sequentially ordered input data is stored in inputreal and inputimag. This
data is scrambled and written to inplacereal and inplaceimag, which are the
data buffers used by the in-place FFT. A four-location buffer called padding
is placed at the end of inplaceimag to allow data accesses to exceed the
buffer length. If no padding was placed after inplaceimag and the program
attempted to read undefined memory locations, the ADSP-2100 Simulator
would signal an error. This buffer assists in debugging but is not necessary
in a real system. Variables (one-location buffers) groups, bflys_per_group,
blk_exponent and node_space are declared last.

The real part (cosine values) of the twiddle factors in the twid_real.dat file
are placed in the buffer twid_real. Likewise, twid_imag.dat is placed in
twid_imag. The variable groups is initialized to N_div_2, and bflys_per_group
and node_space are initialized to one because there are N/2 groups of one
butterfly in the first stage of the FFT. The blk_exponent is initialized to zero.
This exponent value is updated when the output data is scaled.

Two subroutines are called. The first subroutine places the input sequence
in bit-reversed order. The second performs the FFT and calls the block
floating-point scaling routine.

6.2.2.26.2.2.26.2.2.26.2.2.26.2.2.2 DIT FFT ModuleDIT FFT ModuleDIT FFT ModuleDIT FFT ModuleDIT FFT Module
The FFT routine uses three nested loops. The inner loop computes
butterflies, the middle loop controls the grouping of these butterflies, and
the outer loop controls the FFT stage characteristics. These loops are
described separately in the following sections. The complete routine is
presented at the end.

Butterfly LoopButterfly LoopButterfly LoopButterfly LoopButterfly Loop
The butterfly calculation involves a complex multiplication, a complex
addition, and a complex subtraction. These operations can potentially
cause the butterfly data to grow by two bits from input to output. For
example, if x0 is H#07FF (five sign bits), x0´ could be H#100F (three sign
bits). Because of this bit growth, precautions must be taken to ensure that
16-bit data never overflows.

149149149149149

One-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTs 66666

.MODULE/ABS=4 dit_fft_main;

.CONST N=1024, N_div_2=512; {Const. for 1024 points}

.VAR/PM/RAM/CIRC twid_real [N_div_2];

.VAR/PM/RAM/CIRC twid_imag [N_div_2];

.VAR/DM/RAM/ABS=0 inplacereal [N], inplaceimag [N];

.VAR/DM/RAM/ABS=H#1000 inputreal [N], inputimag [N], padding [4];

.VAR/DM/RAM groups, bflys_per_group,
node_space, blk_exponent;

.INIT twid_real: <twid_real.dat>;

.INIT twid_imag: <twid_imag.dat>;

.INIT inputreal: <inputreal.dat>;

.INIT inputimag: <inputimag.dat>;

.INIT inplaceimag: <inputimag.dat>;

.INIT groups: N_div_2;

.INIT bflys_per_group: 1;

.INIT node_space: 1;

.INIT blk_exponent: 0;

.INIT padding: 0,0,0,0; {Zeros after inplaceimag}

.GLOBAL inplacereal, inplaceimag;

.GLOBAL inputreal, inputimag;

.GLOBAL twid_real, twid_imag;

.GLOBAL groups, bflys_per_group, node_space, blk_exponent;

.EXTERNAL scramble, fft_strt;

CALL scramble; {Subroutine calls}
CALL fft_strt;
TRAP; {Halt program}

.ENDMOD;

Listing 6.1 Main Module, Radix-2 DIT FFTListing 6.1 Main Module, Radix-2 DIT FFTListing 6.1 Main Module, Radix-2 DIT FFTListing 6.1 Main Module, Radix-2 DIT FFTListing 6.1 Main Module, Radix-2 DIT FFT

150150150150150

One-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTs66666

An example of bit growth and overflow is shown below.

Bit Growth:
Input to butterfly H#0F00 = 0000 1111 0000 0000
Output from butterfly H#1E00 = 0001 1110 0000 0000

Overflow:
Input to butterfly H#7000 = 0111 0000 0000 0000
Output from butterfly H#E000 = 1110 0000 0000 0000

In overflow, the positive number H#7000 is multiplied by a positive
number, resulting in H#E000, which is too large to represent as a positive,
signed 16-bit number. H#E000 is erroneously interpreted as a negative
number.

To avoid errors caused by overflow, one of three methods of
compensating for bit growth can be applied:

• Input data scaling
• Unconditional block floating-point scaling (output data)
• Conditional block floating-point scaling (output data)

Three different code segments for the butterfly calculation are presented in
this section; each uses a different method of compensating for bit growth.

One way to ensure that overflow never occurs is to include enough extra
sign bits, called guard bits, in the FFT input data to ensure that bit growth
never results in overflow (Rabiner and Gold, 1975). Data can grow by a
maximum factor of 2.4 from butterfly input to output (two bits of growth).
However, a data value cannot grow by this maximum amount in two
consecutive stages. The number of guard bits necessary to compensate for
the maximum possible bit growth in an N-point FFT is log2N+1. For
example, each of the input samples of a 32-point FFT (requiring five
stages) must contain six guard bits, so ten bits are available for data (one
sign bit, nine magnitude bits). This method requires no data shifting and is
therefore the fastest of the three methods discussed in this section.
However, for large FFTs the resolution of the input data is greatly limited.
For small, low-precision FFTs, this is the fastest and most efficient method.

The code segment for a butterfly with no shifting is shown in Listing 6.2.
This section of code computes one butterfly equation while setting up
values for the next butterfly. The butterfly outputs (x0´, y0´ x1´ and y1´) are
written over the inputs to the butterfly (x0, y0, x1 and y1) in the boldface

151151151151151

One-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTs 66666

instructions. The input and output parameters of the butterfly loop are
shown below.

Initial Conditions Final Conditions

MX0 = x1 MX0 = next x1
MY0 = C MY0 = next C
MY1 = (–S) MY1 = next (–S)
I0 --> x0 I0 --> next x0
I1 --> x1 I1 --> next x1
I2 --> y0 I2 --> next y0
I3 --> y1 I3 --> next y1
I4 --> next C I4 --> C after next C
I5 --> next (–S) I5 --> (–S) after next (–S)
I6 --> y1 I6 --> next y1
CNTR = butterfly count CNTR = butterfly count –1
M0 = 0
M1 = 1
M4 = twiddle factor modify value
M5 = 1

Another way to compensate for bit growth is to scale the outputs down by
a factor of two unconditionally after each stage. This approach is called
unconditional block floating-point scaling. Initially, two guard bits are
included in the input data to accommodate the maximum bit growth in
the first stage. In each butterfly of a stage calculation, the data can grow
into the guard bits. To prevent overflow in the next stage, the guard bits
are replaced before the next stage is executed by shifting the entire block
of data one bit to the right and updating the block exponent. This shift is
necessary after every stage except the last, because no overflow can occur
after the last stage.

MR=MX0*MY0(SS),MX1=DM(I6,M5); {MR=x1(C),MX1=y1}
MR=MR-MX1*MY1(RND),AY0=DM(I0,M0); {MR=x1(C)-y1(-S),AY0=x0}
AR=MR1+AY0,AY1=DM(I2,M0); {AR=x0+[x1(C)-y1(-S)],AY1=y0}
AR=AY0-MR1,DM(I0,M1)=AR; {AR=x0-[x1(C)-y1(-S)],x0´=x0+[x1(C)-y1(-S)]}
MR=MX0*MY1(SS),DM(I1,M1)=AR; {MR=x1(-S),x1´=x0-[x1(C)-y1(-S)]}
MR=MR+MX1*MY0(RND),MX0=DM(I1,M0),MY1=PM(I5,M4);

{MR=x1(-S)+y1(C),MX0=next x1,MY1=next (-S)}
AR=AY1-MR1,MY0=PM(I4,M4); {AR=y0-[x1(-S)+y1(C)],MY0=next C}
AR=MR1+AY1,DM(I3,M1)=AR; {AR=y0+[x1(-S)+y1(C)],y1´=y0-[x1(-S)+y1(C)]}
DM(I2,M1)=AR; {y0´=y0+[x1(-S)+y1(C)]}

Listing 6.2 DIT FFT Butterfly, Input Data ScaledListing 6.2 DIT FFT Butterfly, Input Data ScaledListing 6.2 DIT FFT Butterfly, Input Data ScaledListing 6.2 DIT FFT Butterfly, Input Data ScaledListing 6.2 DIT FFT Butterfly, Input Data Scaled

152152152152152

One-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTs66666

The input data to an unconditional block floating-point FFT can have at
most 14 bits (one sign bit and 13 magnitude bits). In the FFT calculation,
the data loses a total of (log2N)–1 bits because of shifting. Unconditional
block floating-point scaling results in the same number of bits lost as in
input data scaling. However, it produces more precise results because the
FFT starts with more precise input data. The tradeoff is a slower FFT
calculation because of the extra cycles needed to shift the output of each
stage.

The code for the unconditional block floating-point butterfly is shown in
Listing 6.3. Instructions that write butterfly results to memory are
boldface. After the last stage of the FFT, no compensation for bit growth is
needed, so a butterfly with no shifting can be used in the last stage.

Initial Conditions Final Conditions

SR0 = last y0´ SR0 = y0´
MX0 = x1 MX0 = next x1
MX1 = y1 MX1 = next y1
MY0 = C MY0 = next C
MY1 = (–S) MY1 = next (–S)
I0 --> x0 I0 --> next x0
I1 --> x1 I1 --> next x1
I2 --> last y0´ I2 --> y0´
I3 --> y1 I3 --> next y1
I4 --> next C I4 --> C after next C
I5 --> next (–S) I5 --> (–S) after next (–S)
I6 --> next y1 I6 --> y1 after next y1
CNTR = butterfly count CNTR = butterfly count –1
M0 = 0
M1 = 1
M4 = twiddle factor modify value
M5 = 1
SE = –1

153153153153153

One-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTs 66666

MR=MX0*MY0(SS),DM(I2,M1)=SR0; {MR=x1(C),last y0=last y0´}
MR=MR-MX1*MY1(RND),AY0=DM(I0,M0); {MR=x1(C)-y1(-S),AY0=x0}
AR=MR1+AY0,AY1=DM(I2,M0); {AR=x0+[x1(C)-y1(-S)],AY1=y0}
SR=ASHIFT AR(LO); {Shift result right 1 bit}
DM(I0,M1)=SR0 ,AR=AY0-MR1; {x0´=x0-[x1(C)-y1(-S)],AR=x0-[x1(C)-y1(-S)]}
SR=ASHIFT AR(LO); {Shift result right 1 bit}
DM(I1,M1)=SR0 ,MR=MX0*MY1(SS); {x1´=x0-[x1(C)-y1(-S)],MR=x1(-S)]}
MR=MR+MX1*MY0(RND),MX0=DM(I1,M0),MY1=PM(I5,M4);

{MR=x1(-S)-y1(C),MX0=next x1,MY1=next(-S)}
AR=AY1-MR1,MY0=PM(I4,M4); {AR=y0-[x1(-S)-y1(C)],MY0=next C}
SR=ASHIFT AR(LO),MX1=DM(I6,M5); {Shift result right 1 bit,MX1=next y1}
DM(I3,M1)=SR0 ,AR=MR1+AY1; {y1´=y0-[x1(-S)-y1(C),AR=y0+[x1(-S)-y1(C)]}
SR=ASHIFT AR(LO); {Shift result right 1 bit}

Listing 6.3 DIT FFT Butterfly, Unconditional Block Floating-Point ScalingListing 6.3 DIT FFT Butterfly, Unconditional Block Floating-Point ScalingListing 6.3 DIT FFT Butterfly, Unconditional Block Floating-Point ScalingListing 6.3 DIT FFT Butterfly, Unconditional Block Floating-Point ScalingListing 6.3 DIT FFT Butterfly, Unconditional Block Floating-Point Scaling

In conditional block floating-point scaling, data is shifted only if bit
growth occurs. If one or more outputs grows, the entire block of data is
shifted to the right and the block exponent is updated. For example, if the
original block exponent is 0 and data is shifted three positions, the
resulting block exponent is +3.

The code segment for the conditional block floating-point butterfly is
shown in Listing 6.4. As in the other types of butterflies, one butterfly
equation is calculated and its outputs (x0´, y0´, x1´ and y1´) are written over
its inputs (x0, y0, x1 and y1) in the boldface instructions.

The conditional block floating-point butterfly checks each butterfly output
for growth with the EXPADJ instruction. This instruction does no shifting;
instead, it monitors the output data and updates the SB register if bit
growth is detected. (See the ADSP-2100 User's Manual for a complete
description of this instruction.) If shifting is necessary it is performed after
the entire stage is complete (in the block floating-point scaling routine).
The butterfly code computes one butterfly equation while setting up
values for the next butterfly. The input and output parameters of the
butterfly loop are as follows:

154154154154154

One-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTs66666

Initial Conditions Final Conditions

MX0 = x1 MX0 = next x1
MX1 = y1 MX1 = next y1
MY0 = C MY0 = next C
MY1 = (–S) MY1 = next (–S)
I0 --> x0 I0 --> next x0
I1 -> x1 I1 --> next x1
I2 --> y0 I2 --> next y0
I3 --> y1 I3 --> next y1
I4 --> next C I4 --> C after next C
I5 --> next (–S) I5 --> (–S) after next (–S)
CNTR = butterfly count CNTR = butterfly count –1
M1 = 1
M4 = twiddle factor modify value
M0 = 0
SB = monitored block exponent for this stage

MR=MX0*MY1(SS),AX0=DM(I0,M0); {MR=x1(-S),AX0=x0}
MR=MR+MX1*MY0(RND),AX1=DM(I2,M0); {MR=[y1(C)+x1(-S)];AX1=y0}
AY1=MR1,MR=MX0*MY0(SS); {AY1=[y1(C)+x1(-S)];MR=x1(C)}
MR=MR-MX1*MY1(RND); {MR=[x1(C)-y1(-S)]}
AY0=MR1,AR=AX1-AY1; {AY0=[x1(C)-y1(-S)],AR=y0-[y1(C)+x1(-S)]}
SB=EXPADJ AR,DM(I3,M1)=AR; {check for bit growth,y1´=y0-[y1(C)+x1(-S)]}
AR=AX0-AY0,MX1=DM(I3,M0),MY1=PM(I5,M4);

{AR=x0-[x1(C)-y1(-S)],MX1=next y1,MY1=next S}
SB=EXPADJ AR,DM(I1,M1)=AR; {check for bit growth,x1´=x0-[x1(C)-y1(-S)]}
AR=AX0+AY0,MX0=DM(I1,M0),MY0=PM(I4,M4);

{AR=x0+[x1(C)-y1(-S)],MX0=next x1,MY0=next C}
SB=EXPADJ AR,DM(I0,M1)=AR; {check for bit growth,x0´=x0+[x1(C)-y1(-S)]}
AR=AX1+AY1; {AR=y0+[y1(C)+x1(-S)]}
SB=EXPADJ AR,DM(I2,M1)=AR; {check for bit growth,y0´=y0+[y1(C)+x1(-S)]}

Listing 6.4 DIT FFT Butterfly, Conditional Block Floating-Point ScalingListing 6.4 DIT FFT Butterfly, Conditional Block Floating-Point ScalingListing 6.4 DIT FFT Butterfly, Conditional Block Floating-Point ScalingListing 6.4 DIT FFT Butterfly, Conditional Block Floating-Point ScalingListing 6.4 DIT FFT Butterfly, Conditional Block Floating-Point Scaling

155155155155155

One-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTs 66666

Group LoopGroup LoopGroup LoopGroup LoopGroup Loop
The group loop controls the grouping of butterflies. It sets pointers to the
input data and twiddle factors of the first butterfly in the group, initializes
the butterfly counter and sets up the butterfly loop for each group.

The code segment for the group loop is shown in Listing 6.5. This code is
designed for the conditional block floating-point butterfly and thus
requires slight modification for use with the other types (input scaling,
unconditional block floating-point) of butterflies. The first butterfly of
every group in the first stage of the DIT FFT has a twiddle factor of W0.
Thus, I4 and I5 are initialized to point to the cosine and sine values of W0

before the butterfly loop is entered. In the group loop, the butterfly
counter is initialized and initial butterfly data is fetched. The butterfly
loop is executed bflys_per_group times to compute all butterflies in the
group. After the butterfly loop is complete, pointers I0, I1, I2 and I3 are
updated with the MODIFY instruction to point to x0, x1, y0 and y1 of the
first butterfly in the next group. The group loop is executed groups times.

The input and output parameters of the group loop are as follows:

Initial Conditions Final Conditions

I0 --> x0 of first butterfly in group I0 --> x0 of first butterfly in next group
I1 --> x1 of first butterfly in group I1 --> x1 of first butterfly in next group
I2 --> y0 of first butterfly in group I2 --> y0 of first butterfly in next group
I3 --> y1 of first butterfly in group I3 --> y1 of first butterfly in next group
CNTR = group count CNTR = group count –1
M2 = node_space

I4=^twid_real;
I5=^twid_imag; {Initialize twiddle factor pointers}
CNTR=DM(bflys_per_group); {Initialize butterfly counter}
MY0=PM(I4,M4),MX0=DM(I1,M0); {MY0=C,MX0=x1}
MY1=PM(I5,M4),MX1=DM(I3,M0); {MY1=(-S),MX1=y1}
DO bfly_loop UNTIL CE;

bfly_loop: {Calculate All Butterflies in Group}

MODIFY(I0,M2); {I0 -->first x0 in next group}
MODIFY(I1,M2); {I1 -->first x1 in next group}
MODIFY(I2,M2); {I2 -->first y0 in next group}

group_loop: MODIFY(I3,M2); {I3 -->first y1 in next group}

Listing 6.5 Radix-2 DIT FFT Group LoopListing 6.5 Radix-2 DIT FFT Group LoopListing 6.5 Radix-2 DIT FFT Group LoopListing 6.5 Radix-2 DIT FFT Group LoopListing 6.5 Radix-2 DIT FFT Group Loop

156156156156156

One-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTs66666

Stage LoopStage LoopStage LoopStage LoopStage Loop
The stage loop controls the grouping characteristics of the FFT. These
include the number of groups in a stage, the number of butterflies in each
group, and the node spacing. The stage loop also calls a subroutine which
performs conditional block floating-point scaling on the outputs of a stage
calculation. Note that if unconditional block floating-point scaling or input
data scaling were used, this call would be omitted.

The stage loop code for a conditional block floating-point FFT is shown in
Listing 6.6. The stage loop sets up the group loop by initializing I0, I1, I2
and I3 to point to x0, x1, y0 and y1, respectively, for the first butterfly in the
first group. It also initializes the group loop counter and node space
modifier so that pointers can be updated for new groups. The value of the
twiddle factor exponent is increased by groups for each butterfly. M4,
initialized to groups, is the modifier for the twiddle factor pointers.

The group loop calculates all groups in the stage. After the group loop is
complete, a block floating-point subroutine is called to check the stage
outputs for bit growth and scale the data if necessary. The stage
characteristics are then updated for the next stage; bflys_per_group and
node_space are doubled and groups is divided by two.

The input and output parameters for the stage loop are as follows. Note
that all the parameters except the stage count are passed in memory.

Initial Conditions Final Conditions

groups=# groups current stage groups=# groups next stage
bflys_per_group=# butterflies/group bflys_per_group=# butterflies/

group next stage
node_space=node spacing current stage node_space=node spacing

next stage
CNTR=stage count CNTR=stage count –1
inplacereal=real stage input data inplacereal=real stage output data
inplaceimag=imag. stage input data inplaceimag=imag. stage output

data

157157157157157

One-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTs 66666

I0=^inplacereal; {I0 -->first x0 in first group of stage}
I2=^inplaceimag; {I2 -->first y0 in first group of stage}
SB=-2 {SB = -(number of guard bits)}
SI=DM(groups); {SI = groups}
CNTR=SI; {Initialize group counter}
M4=SI; {Initialize twiddle factor modifier}
M2=DM(node_space); {Initialize node spacing modifier}
I1=I0;
MODIFY(I1,M2); {I1 -->first x1 of first group in stage}
I3=I2;
MODIFY(I3,M2); {I3 -->first y1 of first group in stage}
DO group_loop UNTIL CE;

group_loop: {Compute All Groups in Stage}

CALL bfp_adj; {Adjust stage output for bit growth}
SI=DM(bflys_per_group);
SR=ASHIFT SI BY 1(LO);
DM(node_space)=SR0; {node_space=node_space × 2}
DM(bflys_per_group)=SR0; {bflys_per_group=bflys_per_group × 2}
SI=DM(groups);
SR=ASHIFT SI BY -1(LO);
DM(groups)=SR0; (groups = groups ÷ 2}

Listing 6.6 Radix-2 DIT FFT Stage LoopListing 6.6 Radix-2 DIT FFT Stage LoopListing 6.6 Radix-2 DIT FFT Stage LoopListing 6.6 Radix-2 DIT FFT Stage LoopListing 6.6 Radix-2 DIT FFT Stage Loop

DIT FFT SubroutineDIT FFT SubroutineDIT FFT SubroutineDIT FFT SubroutineDIT FFT Subroutine
The complete conditional block floating-point radix-2 DIT FFT routine is
shown in Listing 6.7. The constants N and log2N are the number of points
and the number of stages in the FFT, respectively. To change the number
of points in the FFT, you modify these constants. Notice that the length
and modify registers (that retain the same values throughout the FFT
calculation) and the stage counter are initialized before the stage loop is
executed. Instructions that write butterfly results to memory are boldface.

158158158158158

One-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTs66666

.MODULE fft;

{ Performs Radix-2 DIT FFT

Calling Parameters
inplacereal = Real input data in scrambled order
inplaceimag = All zeroes (real input assumed)
twid_real = Twiddle factor cosine values
twid_imag = Twiddle factor sine values
groups = N/2
bflys_per_group = 1
node_space = 1

Return Values
inplacereal = Real FFT results in sequential order
inplaceimag = Imaginary FFT results in sequential order

Altered Registers
I0,I1,I2,I3,I4,I5,L0,L1,L2,L3,L4,L5
M0,M1,M2,M3,M4,M5
AX0,AX1,AY0,AY1,AR,AF
MX0,MX1,MY0,MY1,MR,SB,SE,SR,SI

Altered Memory
inplacereal, inplaceimag, groups, node_space,
bflys_per_group, blk_exponent

}
.CONST log 2N=10, N=1024; {Set constants for N-point FFT}
.EXTERNAL twid_real, twid_imag;
.EXTERNAL inplacereal, inplaceimag;
.EXTERNAL groups, bflys_per_group, node_space;
.EXTERNAL bfp_adj;
.ENTRY fft_strt;

fft_strt: CNTR=log 2N; {Initialize stage counter}
M0=0;
M1=1;
L1=0;
L2=0;
L3=0;
L4=%twid_real;
L5=%twid_imag;
DO stage_loop UNTIL CE; {Compute all stages in FFT}

I0=^inplacereal; {I0 -->x0 in 1st grp of stage}
I2=^inplaceimag; {I2 -->y0 in 1st grp of stage}
SB=-2 {SB to detect data > 14 bits}
SI=DM(groups);
CNTR=SI; {CNTR = group counter}
M4=SI; {M4=twiddle factor modifier}
M2=DM(node_space); {M2=node space modifier}
I1=I0;

159159159159159

One-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTs 66666

MODIFY(I1,M2); {I1 -->x1 of 1st grp in stage}
I3=I2;
MODIFY(I3,M2); {I3 -->y1 of 1st grp in stage}
DO group_loop UNTIL CE;

I4=^twid_real; {I4 --> C of W 0}
I5=^twid_imag; {I5 --> (-S) of W 0}
CNTR=DM(bflys_per_group); {CNTR = butterfly counter}
MY0=PM(I4,M4),MX0=DM(I1,M0); {MY0=C,MX0=x1 }
MY1=PM(I5,M4),MX1=DM(I3,M0); {MY1=-S,MX1=y1}
DO bfly_loop UNTIL CE;

MR=MX0*MY1(SS),AX0=DM(I0,M0);{MR=x1(-S),AX0=x0}
MR=MR+MX1*MY0(RND),AX1=DM(I2,M0);

{MR=(y1(C)+x1(-S)),AX1=y0}
AY1=MR1,MR=MX0*MY0(SS); {AY1=y1(C)+x1(-S),MR=x1(C)}
MR=MR-MX1*MY1(RND); {MR=x1(C)-y1(-S)}
AY0=MR1,AR=AX1-AY1; {AY0=x1(C)-y1(-S),}

{AR=y0-[y1(C)+x1(-S)]}
SB=EXPADJ AR,DM(I3,M1)=AR; {Check for bit growth,}

{y1´=y0-[y1(C)+x1(-S)]}
AR=AX0-AY0,MX1=DM(I3,M0),MY1=PM(I5,M4);

{AR=x0-[x1(C)-y1(-S)],}
{MX1=next y1,MY1=next (-S)}

SB=EXPADJ AR,DM(I1,M1)=AR; {Check for bit growth,}
{x1´=x0-[x1(C)-y1(-S)]}

AR=AX0+AY0,MX0=DM(I1,M0),MY0=PM(I4,M4);
{AR=x0+[x1(C)-y1(-S)],}
{MX0=next x1,MY0=next C}

SB=EXPADJ AR,DM(I0,M1)=AR; {Check for bit growth,}
{x0´=x0+[x1(C)-y1(-S)]}

AR=AX1+AY1; {AR=y0+[y1(C)+x1(-S)]}
bfly_loop: SB=EXPADJ AR, DM(I2,M1)=AR; {Check for bit growth,}

{y0´=y0+[y1(C)+x1(-S)]}
MODIFY(I0,M2); {I0 -->1st x0 in next group}
MODIFY(I1,M2); {I1 -->1st x1 in next group}
MODIFY(I2,M2); {I2 -->1st y0 in next group}

group_loop: MODIFY(I3,M2); {I3 -->1st y1 in next group}
CALL bfp_adj; {Compensate for bit growth}
SI=DM(bflys_per_group);
SR=ASHIFT SI BY 1(LO);
DM(node_space)=SR0; {node_space=node_space × 2}
DM(bflys_per_group)=SR0; {bflys_per_group= }

{bflys_per_group × 2}
SI=DM(groups);
SR=ASHIFT SI BY -1(LO);

stage_loop: DM(groups)=SR0; {groups=groups ÷ 2}
RTS;

.ENDMOD;

Listing 6.7 Radix-2 DIT FFT Routine, Conditional Block Floating-PointListing 6.7 Radix-2 DIT FFT Routine, Conditional Block Floating-PointListing 6.7 Radix-2 DIT FFT Routine, Conditional Block Floating-PointListing 6.7 Radix-2 DIT FFT Routine, Conditional Block Floating-PointListing 6.7 Radix-2 DIT FFT Routine, Conditional Block Floating-Point

	Chapter 6: One-Dimentional FFTs
	6.1 Overview
	6.2 Radix-2 Fast Fourier Transforms
	6.2.1 Radix-2 Decimation-In-Time FFT Algorithm
	6.2.2 Radix-2 Decimation-In-Time FFT Program
	6.2.2.1 Main Module
	6.2.2.2 DIT FFT Module
	Butterfly Loop
	Group Loop
	Stage Loop
	DIT FFT Subroutine

