
571571571571571

1212121212Hardware InterfacingHardware InterfacingHardware InterfacingHardware InterfacingHardware Interfacing

12.112.112.112.112.1 OVERVIEWOVERVIEWOVERVIEWOVERVIEWOVERVIEW
This chapter describes several hardware interface solutions for connecting
ADSP-2100 Family digital signal processors to peripheral devices, such as
codecs. Because the peripheral devices are also programmable, this
chapter includes the code for configuring these devices. The
corresponding subroutines are listed at the end of each section.

This chapter includes the following hardware interface solutions:

• ADSP-2105/AD1849 SoundPort®

• ADSP-2111/AD1849 SoundPort

• ADSP-2101/AD1847 SoundPort

• ADSP-2100 Family/DRAM Interfacing

• Loading an ADSP-2101 Program Through the Serial Port

• Memory Interfacing with the ADSP-2105

Although most sections of this chapter contain solutions for specific
ADSP-2100 Family processor hardware interfaces, the code listings can be
modified to accommodate additional solutions. Several sections also
include suggestions for modifying the code.

When you change the code to accommodate ADSP-2100 Family DSPs
other than the ones specified, you must consider differences in interrupt
vectors, chip architecture, peripheral devices, and memory configurations.

12.212.212.212.212.2 SOUNDPORT INTERFACESSOUNDPORT INTERFACESSOUNDPORT INTERFACESSOUNDPORT INTERFACESSOUNDPORT INTERFACES
This section contains three solutions for interfacing the ADSP-2100 Family
DSPs with AD1849 and AD1847 SoundPorts.

Hardware InterfacingHardware InterfacingHardware InterfacingHardware InterfacingHardware Interfacing

1212121212

572572572572572

Hardware InterfacingHardware InterfacingHardware InterfacingHardware InterfacingHardware Interfacing

12.2.112.2.112.2.112.2.112.2.1 ADSP-2111/AD1849 SoundPort InterfaceADSP-2111/AD1849 SoundPort InterfaceADSP-2111/AD1849 SoundPort InterfaceADSP-2111/AD1849 SoundPort InterfaceADSP-2111/AD1849 SoundPort Interface
This code in this section provides the initialization of the control functions
needed to connect the AD1849 SoundPort Stereo Codec to the ADSP-2111.
Listing 12.1 performs an ADSP-2111/AD1849 talk-through routine.

You should consider the following points when using this program:

• The AD1849 works on 64-bit words. The DSP sees this as four 16-bit
words. Be careful when you set up control words so that the
appropriate control bits are in the correct locations.

• The source of SPORT signals is different between data and control
modes. In control mode, the DSP is expected to provide all signals. In
data mode, the AD1849 provides the signals. You must reset the DSP
SPORT when you change from control mode to data mode.

• When you change sampling rates (or other system parameters), you
must change the appropriate control field in the command word and in
the mask word used to check DCB status. Also, remember that the
AD1849 initiates its auto calibration sequence once the sampling rate is
changed.

• If you retain indirect addressing into the receive and transmit
autobuffers, the I3 pointer must be set immediately after the code
enters the interrupt routine. A delay can cause pointer misalignment
and render the code inoperable.

The following suggestions are included for modifying the code:

• Direct Addressing: Instead of resetting an indirect pointer into the
receive and transmit buffers, try using direct addressing. For example,
dm(datain) is the left channel data, dm(datain+1) is the right channel
data.

• Transmit Interrupt: Because of interrupt timing and other system
constraints, it may be advantageous to time your system from the
transmit interrupt instead of the receive interrupt. Refer to the ADSP-
2100 Family User’s Manual for more information about the different
interrupt latencies that are inherent with the different approaches.

573573573573573

1212121212Hardware InterfacingHardware InterfacingHardware InterfacingHardware InterfacingHardware Interfacing

{***
ADSP-2111 - AD1849(SOUNDPORT) INTERFACE PROGRAM
Analog Devices Sept, 1991

This program is written to run on an ADSP-2111. However, it can be easily
changed to work with an ADSP-2101 by modifying the interrupt vector table.

For the hardware connections between the ADSP-2111 and AD1849 please refer to
the diagrams shown on the AD1849 data sheet.

The AD1849 will be set up as follows:
(NC indicates a no care state, all control reg are 1 bit unless indicated
 by [#bits])

Control time slot control bits:
DCB=0 followed by 1
AC=1 autocalibrate
DFR=5 Data conversion frequency,44.1kH [3]
ST=1 stereo mode
DF=0 dataformat is 16 bit twos complement [2]
MCK=2 16.9344 MHz is the master clock [2]
FSEL=0 frame size, 64 bits [2]
MS=1 master mode (i.e. receive external serial clock)
TXDIS=0 enable serial output
ENL=0 disable loopback testing
ADL=NC loopback mode analog/digital (disabled)
PIO=NC paralell I/O bits not used [2]
REVID=NC

Data Timeslot Control Bits:
OM0=1 enable line 0 output
OM1=1 enable line 1 output
LO=0 no attenuation of left channel output [6]
SM=0 mono output is muted
RO=0 no attenuation of right channel output [6]
PIO=NC paralell I/O bits not used [2]
OVR=NC overrange INPUT
IS=0 line-level stereo input selected
LG=0 no gain for left channel [4]
MA=15 no monitor mix (i.e. ADC output is not mixed with DAC input
RG=0 no gain for right channel [4]

**

This program makes use of the multi-channel mode that is available on the
SPORT0 and it also uses autobuffering to reduce interrupt service overhead.
For a description of the multi-channel and autobuffering features, please
refer to the ADSP-2111 or ADSP-2101 architecture user’s manuals.

(listing continues on next page)

1212121212

574574574574574

Hardware InterfacingHardware InterfacingHardware InterfacingHardware InterfacingHardware Interfacing

In its current condition, this program can be used “as is” to perform straight
talkthrough (at 44.1 KHz sample rate) on both left and right channels of the
AD1849. The incoming audio data from the 16bit ADCs is placed in a short
buffer and immediately sent out to the 16bit DACs.

The initial setup and handshaking with the AD1849 starts with the “START”
routine. A state machine to perform the handshaking is executed in software.
Once the AD1849 is configured properly, the processor enters the WAIT_DATA
loop and waits for serial port interrupt requests.

This program is booted into the ADSP-2111 on power-up.

**}

.MODULE/ABS=0/BOOT=0 AD1849;

.VAR/CIRC CTRLIN[4]; {circular buffers for data input and}

.VAR/CIRC CTRLOUT[4]; {output for data mode and control mode}

.VAR/CIRC DATAIN[4];

.VAR/CIRC DATAOUT[8];

.VAR FIRST_FLG;

.VAR DCB_FLG;

.VAR DMODE_FLG;

JUMP START;nop;nop;nop; {restart interrupt}
RTI;nop;nop;nop; {IRQ2 int, not used}
RTI;nop;nop;nop; {HIP write int, not used}
RTI;nop;nop;nop; {HIP read int, not used}
JUMP SETUPCONTROL;nop;nop;nop; {SPORT0 transmit int}
JUMP NEWDATA;nop;nop;nop; {SPORT0 receive int}
RTI;nop;nop;nop; {SPORT1 tx or IRQ1 int, not used}
RTI;nop;nop;nop; {SPORT1 rx or IRQ0 int, not used}
nop;nop;nop;nop; {timer int,not used}

START: RESET FL0; {set the AD1849 D/C pin low}
L0=%CTRLIN;
M0=1;
I0=^CTRLIN;
L1=%CTRLOUT;
M1=1;
I1=^CTRLOUT;
AX0=1;
DM(FIRST_FLG)=AX0;
DM(DCB_FLG)=AX0;
AX0=0;
DM(DMODE_FLG)=AX0;
AY0=B#0010000100101100;

575575575575575

1212121212Hardware InterfacingHardware InterfacingHardware InterfacingHardware InterfacingHardware Interfacing

{Initialize contol mode output buffer}

DM(I1,M1)= B#0010000100101100; {DCB=0,AC=1,DFR=05,ST=1,DF=00}
DM(I1,M1)= B#0010001000000000; {MCK=02,FSEL=0,MS=0,TXDIS=0}

{ENL=0,ADL=0}
DM(I1,M1)= B#0000000000000000; {PIO = 00}
DM(I1,M1)= B#0000000000000000; {REVID=NC}
L2 = 0; {linear addressing for register }
I2 = 0x3fef; {pt. to last DM cntrl reg}

{3FEF} DM(I2,M1) = 0x0000; {sport1 not used}
{3FF0} DM(I2,M1) = 0x0000;
{3FF1} DM(I2,M1) = 0x0000;
{3FF2} DM(I2,M1) = 0x0000;
{3FF3} DM(I2,M1) = 0X0283; {autobuf. rx:i0, m0 tx:i1,m1}
{3FF4} DM(I2,M1) = 383; {sport rfsdiv, sets up FRAME sync freq}
{3FF5} DM(I2,M1) = 849; {sport0 sclkdiv, SCLK will be less than}

{8KHz from control mode}
{3FF6} DM(I2,M1) = B#1100010100011111;

{sport0 control register:
multi-channel mode, 24 channels
internal sclk & rfs
normal framing mode
frame sync not inverted
16 bit word length}

{3FF7} DM(I2,M1) = 0x000F; {first 4 xmit multichannels used}
{3FF8} DM(I2,M1) = 0x0000;
{3FF9} DM(I2,M1) = 0x000F; {first 4 rx multichannels used}
{3FFA} DM(I2,M1) = 0x0000;
{3FFB} DM(I2,M1) = 0x0000; {TSCALE register}
{3FFC} DM(I2,M1) = 0x0000; {TCOUNT register}
{3FFD} DM(I2,M1) = 0x0000; {TPERIOD register,initializing value

for TCOUNT after every interrupt}
{3FFE} DM(I2,M1) = 0x0000; {external data memory waits=0}

ICNTL=0x00;
IMASK=B#00010000; {only SPORT transmit intrpt enabled

initially while in control mode}

AX0=DM(I1,M1); {send first 16bits of ctrl word}
TX0=AX0;

{3FFF} DM(I2,M1) = 0x1418; {system control reg: sport0 enabled}

(listing continues on next page)

1212121212

576576576576576

Hardware InterfacingHardware InterfacingHardware InterfacingHardware InterfacingHardware Interfacing

{Wait for an interrupt indicating that transmit register is ready for
 new data and that the 2111 has received a 16bit word}

WAIT1: AX1=DM(DMODE_FLG);
AR=PASS AX1;
IF GT JUMP GO_DMODE;
JUMP WAIT1;

SETUPCONTROL:
AX0=DM(FIRST_FLG);
AF=PASS AX0;
IF NE JUMP DECR_FIRST;
AX0=DM(DCB_FLG);
AR=PASS AX0;
IF EQ JUMP DCBFLG_SET;
AX0=DM(CTRLIN); {DCB_FLG has not been set yet}
AR=AX0 XOR AY0; {check all incoming bits including DCB bit}
IF EQ JUMP SET_DCB; {set flag if DCB was 0}
RTI;

DCBFLG_SET:
AX0=DM(CTRLIN); {DCB_FLG was set}
AR=AX0 AND AY0; {only check for DCB bit}
IF NE JUMP SETDMODE; {if DBC=1 ready for datamode}
RTI;

SET_DCB: AX0=0;
DM(DCB_FLG)=AX0;
AX0=B#0010010100101100; {DCB was 0, prepare to send DCB=1}
DM(CTRLOUT)=AX0;
AY0=B#0000010000000000;
RTI;

DECR_FIRST:
AX0=0;
DM(FIRST_FLG)=AX0;
RTI;

SETDMODE:
IMASK=0;
AX0=0X0818; {disable sport0}
DM(0X3FFF)=AX0;

{ At this point we could boot page#1 and do the following data mode setup
 after the reboot occurs. This would free up some PM RAM for other uses}

I1 = ^DATAOUT;
L1=0;
DM(I1,M1) = 0x0000; {reset output & input data buffers}
DM(I1,M1) = 0x0000; {initialize embedded control bits}
DM(I1,M1) = B#1100000000000000; {OM1=1,OM1=1,LO=0,SM=1,RO=0}
DM(I1,M1) = B#0000000011110000;

{PIO=00,OVR=1,IS=0,LG=0,MA=15,RG=0}

577577577577577

1212121212Hardware InterfacingHardware InterfacingHardware InterfacingHardware InterfacingHardware Interfacing

DM(I1,M1) = 0x0000; {reset output & input data buffers}
DM(I1,M1) = 0x0000; {initialize embedded control bits}
DM(I1,M1) = B#1100000000000000; {OM1=1,OM1=1,LO=0,SM=1,RO=0}
DM(I1,M1) = B#0000000011110000; {PIO=00,OVR=1,IS=0,LG=0,MA=15,RG=0}
AX0=0X861F;
DM(0X3FF6)=AX0; {sport0 control:

multi-channel mode
external sclk & rfs
32 word frames, 16bit words}

SET FL0; {set D/C high}
AX0=1;
DM(DMODE_FLG)=AX0;
RTI;

GO_DMODE:
L0=%DATAIN;
I0=^DATAIN;
L1=%DATAOUT;
I1=^DATAOUT;
M2=3;
L3=L1;
AX0=0XFFFF;
DM(0X3FF7)=AX0; {enable all multi-channel words}
DM(0X3FF8)=AX0;
DM(0X3FF9)=AX0;
DM(0X3FFA)=AX0;
AX0=DM(I1,M1); {send first 16bits of data}
TX0=AX0;
AX0=0X1418;
DM(0X3FFF)=AX0; {turn on sport0}
IFC=B#000000111111; {clear all pending interrupts}
IMASK=B#00001000; {sport0 rx interrupt on}

WAIT_DATA:
JUMP WAIT_DATA; {wait for sport0 rx autobuffer interrupt}

NEWDATA:
I3=I1;
MODIFY(I3,M2);
AX0=DM(DATAIN); {this routine sends the incoming}
DM(I3,M1)=AX0; {a/d data straight to the d/a by}
AX0=DM(DATAIN+1); {copying newly arrived data words from}
DM(I3,M1)=AX0; {DATAIN into the DATAOUT buffer}
RTI;

{The DATAOUT buffer is twice as long as the DATAIN buffer, since it contains}
{control words, as well as output data. This program ignores the control}
{words arriving back from the AD1849 during the data mode}

.ENDMOD;

Listing 12.1 ADSP-2111/AD1849 Talk-Through Routine (18492111.DSP)Listing 12.1 ADSP-2111/AD1849 Talk-Through Routine (18492111.DSP)Listing 12.1 ADSP-2111/AD1849 Talk-Through Routine (18492111.DSP)Listing 12.1 ADSP-2111/AD1849 Talk-Through Routine (18492111.DSP)Listing 12.1 ADSP-2111/AD1849 Talk-Through Routine (18492111.DSP)

1212121212

578578578578578

Hardware InterfacingHardware InterfacingHardware InterfacingHardware InterfacingHardware Interfacing

12.2.212.2.212.2.212.2.212.2.2 ADSP-2105/AD1849 SoundPort InterfaceADSP-2105/AD1849 SoundPort InterfaceADSP-2105/AD1849 SoundPort InterfaceADSP-2105/AD1849 SoundPort InterfaceADSP-2105/AD1849 SoundPort Interface
This section contains a program that provides the initialization of control
functions needed to interface the AD1849 SoundPort Stereo Codec to the
ADSP-2105. Listing 12.2 is an ADSP-2105/AD1849 talk-through routine:
incoming data is echoed immediately to the output.

You should consider the following points when using this program:

• Multichannel mode is not available on SPORT1, so SPORT1 is run in
unframed mode. Any disruption in the serial data stream can cause the
AD1849 to lose synchronization. The interface code checks incoming
control words, and if there is a discrepancy, the code resets SPORT1.
This could cause a loss of data if the data stream is corrupted. In a
stable, electrically clean environment you should not have any
significant problems. The SPORT receive interrupt routine checks for
errors, and this routine can be removed if your environment does not
require it.

• Control for the AD1849’s D/C line is derived from a latched external
memory-mapped port (the mode_sel port definition). The program uses
data bit D8 (the LSB) as the mode select flag.

• RFS1 and TFS1 must be tied together for codec initialization and
operation.

579579579579579

1212121212Hardware InterfacingHardware InterfacingHardware InterfacingHardware InterfacingHardware Interfacing

{**

ADSP-2105 - AD1849(SOUNDPORT) INTERFACE PROGRAM
Analog Devices Jan, 1992

Revised 12/10/92: Equal length Tx and Rx buffers. Direct addressing
for Tx autobuffer writes (NEWDATA routine)

This program is written to run on an ADSP-2105.

For the hardware connections between the ADSP-2105 and AD1849, please refer to
the diagrams shown on the AD1849 data sheet.

Note:RFS1 and TFS1 MUST be tied together in order to initialize and operate
 the codec.

The AD1849 will be set up as follows:
(NC indicates a no care state, all control reg are 1 bit unless indicated
by [#bits])

Control time slot control bits:
DCB=0 followed by 1
AC=1 autocalibrate
DFR=5 Data conversion frequency,44.1kH [3]
ST=1 stereo mode
DF=0 dataformat is 16 bit twos complement [2]
MCK=2 16.9344 MHz is the master clock [2]
FSEL=0 frame size, 64 bits [2]
MS=1 master mode (i.e. receive external serial clock)
TXDIS=0 enable serial output
ENL=0 disable loopback testing
ADL=NC loopback mode analog/digital (disabled)
PIO=NC parallel I/O bits not used [2]
REVID=NC

Data Timeslot Control Bits:
OM0=1 enable line 0 output
OM1=1 enable line 1 output
LO=0 no attenuation of left channel output [6]
SM=0 mono output is muted
RO=0 no attenuation of right channel output [6]
PIO=NC parallel I/O bits not used [2]
OVR=NC overrange INPUT
IS=0 line-level stereo input selected
LG=0 no gain for left channel [4]
MA=15 no monitor mix (i.e. ADC output is not mixed with DAC input)
RG=0 no gain for right channel [4]

(listing continues on next page)

1212121212

580580580580580

Hardware InterfacingHardware InterfacingHardware InterfacingHardware InterfacingHardware Interfacing

In its current condition, this program can be used “as is” to perform straight
talkthrough (at 44.1 KHz sample rate) on both left and right channels of the AD1849.
The incoming audio data from the 16bit ADCs is placed in a short buffer and
immediately sent out to the 16bit DACs.

The initial setup and handshaking with the AD1849 starts with the “START” routine. A
state machine to perform the handshaking is executed in software. Once the AD1849 is
configured properly, the processor enters the WAIT_DATA loop and waits for serial
port interrupt requests.
This program is booted into the ADSP-2105 on power-up.

***}
.
MODULE/ABS=0/BOOT=0 AD1849;
.VAR/CIRC CTRLIN[4]; {circular buffers for data input and}
.VAR/CIRC CTRLOUT[4]; {output for data mode and control mode}
.VAR/CIRC DATAIN[4];
.VAR/CIRC DATAOUT[4];
.VAR FIRST_FLG;
.VAR DCB_FLG;
.VAR DMODE_FLG;
.var sync_flag;

.port mode_sel; {latched control for Control/Data line}

JUMP START;nop;nop;nop; {restart interrupt}
RTI;nop;nop;nop; {IRQ2 int, not used}
RTI;nop;nop;nop; {SPORT0 tx not used}
RTI;nop;nop;nop; {SPORT0 rx not used}
JUMP SETUPCONTROL;nop;nop;nop; {SPORT1 transmit int}
JUMP NEWDATA;nop;nop;nop; {SPORT1 receive int}
RTI;nop;nop;nop; {timer int,not used}

START: AX0=0;
dm(mode_sel)=AX0; {set AD1849 D/C pin low}
L0=%CTRLIN;
M0=1;
I0=^CTRLIN;
L1=%CTRLOUT;
M1=1;
I1=^CTRLOUT;
AX0=1;
DM(FIRST_FLG)=AX0;
DM(DCB_FLG)=AX0;
AX0=0;
DM(DMODE_FLG)=AX0; {in control mode}
AY0=B#0010000100101100;

581581581581581

1212121212Hardware InterfacingHardware InterfacingHardware InterfacingHardware InterfacingHardware Interfacing

{Initialize contol mode output buffer}

DM(I1,M1)= B#0010000100101100; {DCB=0,AC=1,DFR=05,ST=1,DF=00}
DM(I1,M1)= B#0010001000000000; {MCK=02,FSEL=0,MS=1,TXDIS=0}

{ENL=0,ADL=0}
DM(I1,M1)= B#0000000000000000; {PIO = 00}
DM(I1,M1)= B#0000000000000000; {REVID=NC}
L2 = 0; {linear addressing for register}
I2 = 0x3fef; {point to last DM cntrl reg}

{3FEF} DM(I2,M1) = 0x0283; {sport1 autobuffer register}
{3FF0} DM(I2,M1) = 383; {rfsdiv1, not really used}
{3FF1} DM(I2,M1) = 849; {sclkdiv1}
{3FF2} DM(I2,M1) = B#0100000100011111; {sport1 control register:

internal sclk & rfs
normal framing mode
frame sync not inverted
16-bit word length }

I2=0x3ffb;
{3FFB} DM(I2,M1) = 0x0000; {TSCALE register}
{3FFC} DM(I2,M1) = 0x0000; {TCOUNT register}
{3FFD} DM(I2,M1) = 0x0000; {TPERIOD register,initializing value

for TCOUNT after every interrupt }
{3FFE} DM(I2,M1) = 0x0000; {external data memory waits=0}

ICNTL=0x00 ;
IMASK=B#000100; {only SPORT1 tx interurpt enabled

initially while in control mode }

{.... Set bit test mask for DCB bit, used in tx interrupt state machine}
AY0=B#0010000100101100; {test mask for DCB bit}

{.... send first control word to switch codec to data mode}
AX0=DM(I1,M1); {send first 16bits of ctrl word}
TX1=AX0;

{3FFF} DM(I2,M1) = 0x0c18; {system control reg: sport1 enabled}

{.... Wait for an interrupt indicating that transmit register is ready for
new data and that the 2105 has received a 16bit word}

WAIT1: AX1=DM(DMODE_FLG); {check dmode flag}
AR=PASS AX1;
IF GT JUMP GO_DMODE; {if set, in data mode}
JUMP WAIT1; {else, wait for initialization to

be completed from tx interrupt
routine }

GO_DMODE: L0=%DATAIN; {init I0, L0 for rx autobuffer}
 I0=^DATAIN;
 L1=%DATAOUT; {init I1, L1 for tx autobuffer}
 I1=^DATAOUT;

(listing continues on next page)

1212121212

582582582582582

Hardware InterfacingHardware InterfacingHardware InterfacingHardware InterfacingHardware Interfacing

M2=3;
AX0=DM(I1,M1); {send first 16bits of data}
TX1=AX0;
AX0=0X0c18;
DM(0X3FFF)=AX0; {turn on sport1}
IFC=B#000000111111; {clear all pending interrupts}
nop; {cycle for IFC latency}
IMASK=B#000010; {sport1 rx interrupt on}

WAIT_DATA:
JUMP WAIT_DATA; {wait for sport1 rx autobuffer interrupt}

{sport1 tx interrupt routine}

{This routine initializes the AD1849 control mode and then waits to }
{see if the codec is ready to be switched to data mode. The routine }
{also initializes the transmit autobuffer with the appropriate }
{data-mode control words. See the AD1849 data sheet for a complete }
{explanation of control word bits. }
{ }
{Note: AY0 contains a bit mask and must NOT be modified elsewhere }
{ }
{ }

SETUPCONTROL:
AX0=DM(FIRST_FLG); {first time through?}
AF=PASS AX0;
IF NE JUMP DECR_FIRST; {if so, wait until next word transmitted}
AX0=DM(DCB_FLG);
AR=PASS AX0;
IF EQ JUMP DCBFLG_SET;

AX0=DM(CTRLIN); {DCB_FLG has not been set yet}
AR=AX0 XOR AY0; {check all incoming bits including DCB bit}
IF EQ JUMP SET_DCB; {set flag if DCB was 0}
RTI;

DCBFLG_SET:
AX0=DM(CTRLIN); {DCB_FLG was set}
AR=AX0 AND AY0; {only check for DCB bit}
IF NE JUMP SETDMODE; {if DBC=1 ready for datamode}
RTI

SET_DCB:
AX0=0;
DM(DCB_FLG)=AX0;
AX0=B#0010010100101100; {DCB was 0, prepare to send DCB=1}
DM(CTRLOUT)=AX0;
AY0=B#0000010000000000;
RTI;

583583583583583

1212121212Hardware InterfacingHardware InterfacingHardware InterfacingHardware InterfacingHardware Interfacing

DECR_FIRST: AX0=0;
 DM(FIRST_FLG)=AX0; {if first time, set flag=0}
 RTI;

SETDMODE: IMASK=0;
 AX0=0X0418; {disable sport1}
 DM(0X3FFF)=AX0;

{ At this point we could boot page#1 and do the following data mode setup
 after the reboot occurs. This would free up some PM RAM for other uses.

 The data mode setup initializes the transmit autobuffer control word
 elements. These values are not changed in this talkthrough application. }

I1 = ^DATAOUT;
L1=0;
DM(I1,M1) = 0x0000; {reset output & input data buffers}
DM(I1,M1) = 0x0000; {initialize embedded control bits}
DM(I1,M1) = B#1100000000000000; {OM1=1,OM1=1,LO=0,SM=0,RO=0}
DM(I1,M1) = B#0000000011110000; {PIO=00,OVR=0,IS=0,LG=0,MA=15,RG=0}
DM(I1,M1) = 0x0000; {reset output & input data buffers}
DM(I1,M1) = 0x0000; {initialize embedded control bits}
DM(I1,M1) = B#1100000000000000; {OM1=1,OM1=1,LO=0,SM=0,RO=0}
DM(I1,M1) = B#0000000011110000; {PIO=00,OVR=0,IS=0,LG=0,MA=15,RG=0}
AX0=0X001F;
DM(0X3FF2)=AX0; { sport1 control:}

internal tfs
external sclk & rfs
16bit words }

AX0=1;
dm(mode_sel)=AX0; {set D/C high}
DM(DMODE_FLG)=AX0; {set data mode flag high}
RTI;

{ }
{ }
{ sport1 rx interrupt routine }
{ }
{ This routine sends the incoming a/d data straight to the d/a by copying }
{ newly arrived data words from the DATAIN buffer into the DATAOUT buffer }
{ }
{ }

NEWDATA: AX0=DM(DATAIN); {get LEFT channel data}
DM(dataout)=AX0; {output LEFT channel data}
AX0=DM(DATAIN+1); {get RIGHT channel data}
DM(dataout+1)=AX0; {output RIGHT channel data}

(listing continues on next page)

1212121212

584584584584584

Hardware InterfacingHardware InterfacingHardware InterfacingHardware InterfacingHardware Interfacing

{ }
{ Error checking section (optional). Incoming control words are compared }
{ to the outgoing control words. }
{ }

ax0=dm(dataout+2); {read known output control word}
ay0=dm(datain+2); {read newly received control word}
ar=ax0-ay0; {compare, they should be the same}
if eq jump no_error; {if same, no error}
ax0=dm(sync_flag); {if not, read SYNC_FLAG}
ar=pass ax0; {test for 0 or 1}
if ne jump reset_sport; {if 1, second failure, reset SPORT1}
ar=pass 1; {else, first failure, set SYNC_FLAG}
dm(sync_flag)=ar;
rti; {return}

reset_sport:
si=0x418; {disable SPORT1}
dm(0x3fff)=si;
si=0xc18; {re-enable SPORT1}
dm(0x3fff)=si;

no_error:
ar=pass 0;
dm(sync_flag)=ar; {reset SYNC_FLAG}
rti; {return}

{ }
{ The DATAOUT buffer is twice as long as the DATAIN buffer, since it }
{ contains control words, as well as output data. This program ignores the }
{ control words arriving back from the AD1849 during the data mode, except }
{ for the purpose of error checking. }
{ }

next: ax0=dm(0x3fff);
ay0=b#0000001001000000;
ar=ax0 OR ay0;
dm(0x3fff)=ar;
rti;

.ENDMOD;

Listing 12.2 ADSP-2105/AD1849 Talk-Through Routine (18492105.DSP)Listing 12.2 ADSP-2105/AD1849 Talk-Through Routine (18492105.DSP)Listing 12.2 ADSP-2105/AD1849 Talk-Through Routine (18492105.DSP)Listing 12.2 ADSP-2105/AD1849 Talk-Through Routine (18492105.DSP)Listing 12.2 ADSP-2105/AD1849 Talk-Through Routine (18492105.DSP)

585585585585585

1212121212Hardware InterfacingHardware InterfacingHardware InterfacingHardware InterfacingHardware Interfacing

12.2.312.2.312.2.312.2.312.2.3 ADSP-2101/AD1847 SoundPort InterfaceADSP-2101/AD1847 SoundPort InterfaceADSP-2101/AD1847 SoundPort InterfaceADSP-2101/AD1847 SoundPort InterfaceADSP-2101/AD1847 SoundPort Interface
This section contains a program that provides the initialization of control
functions needed to interface the AD1847 SoundPort Stereo Codec to the
ADSP-2101.

The AD1847 has a TDM serial interface. The code provided should work
without modifications for the ADSP-2101, ADSP-2103, and ADSP-2115.
The code requires minor modifications to the interrupt vector table to use
it with the ADSP-2111, ADSP-2171, and ADSP-21msp5x processors. Also,
you can probably use the additional flags available on these processors to
optimize the code.

Analog Devices does not recommend using this code on the ADSP-2105
because the ADSP-2105 does not have a TDM serial port. For additional
information about AD1847 interfacing, refer to the “README” file
included with the other files for this chapter.

Listing 12.3 is an ADSP-2101/AD1847 talk-through routine.

You should consider the following points when using this program:

• Although the AD1847 and the ADSP-2101 are set for 32-word blocks,
the AD1847 works on 16-word cycles. Therefore, control words are
sent on time slots 0 and 16, left channel data is sent on slots 1 and 17,
and right channel data is sent on slots 2 and 18. Receive data follows a
similar pattern.

• The AD1847 has a two-sample buffer to allow for slower sampling
rates. Since the AD1847’s serial bit clock rate is fixed, the interval
between time slot 0 and time slot 16 is less than the sample period. For
example, for an 8 kHz sampling rate, data is expected every 125 µsec.
At that sampling rate, the serial bit clock produced by the AD1847 is
12.288 MHz, yielding a time span between data samples of 20.83 µsec
(81.38 ns x 16 bits/word x 16 words). The actual data received,
however, is sampled at the correct time interval and stored in the
AD1847’s output buffer. Remember that time is needed to convert the
data, and that the AD1847 can wait between generating frame syncs to
insure proper sample timing.

1212121212

586586586586586

Hardware InterfacingHardware InterfacingHardware InterfacingHardware InterfacingHardware Interfacing

.module/ram/abs=0 ad1847;

/***
ADSP-2101 -> AD1847: Talkthru Interface

This code provides the necessary initializations and setup to allow for
communication between the AD1847 SoundPort codec and the ADSP-2100 family
Serial Port 0.

This interface code was written around an AD1847 connected to an ADSP-2101
EZ-Lab board through the J2 SPORT Connector.

When the board is RESET, the codec is initialized for an
8kHz sampling rate of stereo PCM data.

This module can be used without modification for the ADSP-2101, ADSP-2103,
and ADSP-2115. Use with the ADSP-2111, ADSP-2171, or ADSP-21msp5x processors
would require modification of the interrupt vector table and any instructions
relating to IFC, IMASK, or any other interrupt-related structure.

This interface is not recommended for the ADSP-2105.
***/

.var/dm/ram/circ rx_buf[3]; /* Status + L data + R data */

.var/dm/ram/circ tx_buf[3]; /* Cmd + L data + R data */

.init tx_buf: 0xc000, 0x0000, 0x0000; /* Initially set MCE */

.var/dm/ram/circ init_cmds[13];
/**/
/* Initial codec setup: */
/* 0: Left Input Control: 0 gain, Line 1 input */
/* 1: Right Input Control: 0 gain, Line 1 input */
/* 2: Left Aux #1 Input Control: Muted */
/* 3: Right Aux #1 Input Control: Muted */
/* 4: Left Aux #2 Input Control: Muted */
/* 5: Right Aux #2 Input Control: Muted */
/* 6: Left DAC Control: 0 attenuation, muted */
/* 7: Right DAC Control: 0 attenuation, muted */
/* 8: Data Format: XTAL1, 8kHz sampling, stereo, */
/* 16-bit linear PCM */
/* 9: Interface Config: Playback enabled, ACAL allowed */
/* 10: Pin Control: CLKOUT active, XCTL1/0 LO */
/* 12: Misc. Info: Transmit on 0,1,2, 32-word frame */
/* 13: Digital Mix Control: DME Disabled, 0 attenuation */
/* */
/* To start-up the codec with any other properties, */
/* change the appropriate initialization value. */
/* Refer to the AD1847 data sheet for detailed register */
/* descriptions. */
/**/

587587587587587

1212121212Hardware InterfacingHardware InterfacingHardware InterfacingHardware InterfacingHardware Interfacing

.init init_cmds:
0xc000,
0xc100,
0xc280,
0xc380,
0xc480,
0xc580,
0xc680,
0xc780,
0xc850,
0xc909,
0xca00,
0xcc40,
0xcd00;

.var/dm stat_flag;

reset_vect: jump sys_init; nop; nop; nop;

irq2_svc: rti; nop; nop; nop;

tx0_irq: ar = dm(stat_flag);
ar = pass ar;
if eq rti;
jump next_cmd;

rx0_irq: jump input_samples;
rti; nop; nop;

rti; nop; nop; nop;
rti; nop; nop; nop;
rti; nop; nop; nop;

/***************
 Code Start:
****************/
sys_init:

i0 = ^rx_buf;
l0 = %rx_buf;
i1 = ^tx_buf;
l1 = %tx_buf;
i3 = ^init_cmds;
l3 = %init_cmds;
m1 = 1;

(listing continues on next page)

1212121212

588588588588588

Hardware InterfacingHardware InterfacingHardware InterfacingHardware InterfacingHardware Interfacing

/**********************
sport0 setup:

multichannel enable, ext. sclk, MFD=1,
32 words, ext. rfs, DTYPE 00, 16 bits

**********************/
ax0 = b#1000011000001111;
dm(0x3ff6) = ax0;

/*********************
Multichannel enable setup:

Rx: 3, 4, 5, 19, 20, 21
Tx: 0, 1, 2, 16, 17, 18

*********************/
ax0 = b#0000000000000111;
dm(0x3ff9) = ax0;
dm(0x3ffa) = ax0;

ax0 = b#0000000000000111;
dm(0x3ff7) = ax0;
dm(0x3ff8) = ax0;

/*********************
SPORT Autobuffer Setup

Rx: I0, M1
Tx: I1, M1

**********************/
ax0 = b#0000001010000111;
dm(0x3ff3) = ax0;

ax0 = b#0001000000000000;
dm(0x3fff) = ax0; /* SPORT0 Enabled,

SPORT1 = FI, FO, IRQs */

start_setup:
ifc = b#000000111111;
nop;

ax0 = 1;
dm(stat_flag) = ax0;

imask = b#010000; /* enable tx0 interrupt */

ax0 = dm(i1,m1);
tx0 = ax0;

check_init:
ax0 = dm(stat_flag); /* wait for entire init */
af = pass ax0; /* buffer to be sent to */
if ne jump check_init; /* the codec */

check_aci:
ax0 = dm(rx_buf); /* once initialized, wait */
ay0 = b#0000000000000010; /* for codec to come out */
ar = ax0 and ay0; /* of autocalibration */
if ne jump check_aci;

589589589589589

1212121212Hardware InterfacingHardware InterfacingHardware InterfacingHardware InterfacingHardware Interfacing

idle;

ay0 = 0xbf3f;
ax0 = dm(init_cmds+6);
ar = ax0 AND ay0;
dm(tx_buf) = ar; /* unmute left DAC */
idle;

ax0 = dm(init_cmds+7);
ar = ax0 AND ay0;
dm(tx_buf) = ar; /* unmute right DAC */
idle;

ifc = b#000000111111;
nop;
imask = b#001000; /* enable rx0 interrupt */

/**/
/* Main Loop: talkthru */
/**/
talkthru:idle;

jump talkthru;

/**/
input_samples:

ena sec_reg;
ax1 = dm(rx_buf+1); /* L channel input */
mx1 = dm(rx_buf+2); /* R channel input */
dm(tx_buf+2) = mx1;
dm(tx_buf+1) = ax1;
rti;

next_cmd:
ena sec_reg;
ax0 = dm(i3,m1);
dm(tx_buf) = ax0;
ax0 = i3;
ay0 = ^init_cmds;
ar = ax0 - ay0;
if gt rti;
ax0 = 0x8000;
dm(tx_buf) = ax0;
ax0 = 0; /* remove MCE if done initialization */
dm(stat_flag) = ax0; /* reset status flag */
rti;

.endmod;

Listing 12.3 ADSP-2101/AD1847 Talk-Through Routine (TALK_47.DSP)Listing 12.3 ADSP-2101/AD1847 Talk-Through Routine (TALK_47.DSP)Listing 12.3 ADSP-2101/AD1847 Talk-Through Routine (TALK_47.DSP)Listing 12.3 ADSP-2101/AD1847 Talk-Through Routine (TALK_47.DSP)Listing 12.3 ADSP-2101/AD1847 Talk-Through Routine (TALK_47.DSP)

1212121212

590590590590590

Hardware InterfacingHardware InterfacingHardware InterfacingHardware InterfacingHardware Interfacing

Listing 12.4 is an ADSP-2101/AD1847 demonstration routine. This
program was written to demonstrate several features of the AD1847 when
it is connected to the ADSP-2101 EZ-LAB® Demonstration Board.

.module/ram/abs=0 ad1847;

/***
 ADSP-2101 -> AD1847: Talkthru Interface

This code provides the necessary initializations and setup to allow for
communication between the AD1847 SoundPort codec and the ADSP-2100 family
Serial Port 0.

This interface code was written around an AD1847 connected to an ADSP-2101
EZ-Lab board through the J2 SPORT Connector.

There are two modes of operation of this interface:

1) If the board is RESET, the codec is initialized for an
 8kHz sampling rate of stereo PCM data.

2) If the FLAG_IN button is held at reset, then the code enters its AD1847
 configuration mode.

Codec attributes that can be changed are: line or microphone input source,
input gain, and the sample rate. Do not press the IRQ2 button too fast when
changing the sample rate as the codec needs time to perform its autoclibration
procedure for each sampling rate.

Initialization:
SPORT1 must be configured as flags and interrupts.
irq2 must be enabled.

Operation:
Press and hold <FLAG> button
Press and release <IRQ2> button
Release <FLAG> button to enter the setup routine

Push <IRQ2> button to toggle between Line_1 and Line_2 input
Push <FLAG> button to go to the next state

Push <IRQ2> button to change the input gain, (8 levels)
Push <FLAG> button to go to the next state

Push <IRQ2> button to change the sample rate, (16 steps)
Push <FLAG0> button to exit the setup routine

591591591591591

1212121212Hardware InterfacingHardware InterfacingHardware InterfacingHardware InterfacingHardware Interfacing

 Line Input Gain Default: level 0 = 0dB
 Sample Rates:

(1) 8 (default) (9) 5.5125
(2) 16 (10) 11.025
(3) 27.42857 (11) 18.9
(4) 32 (12) 22.05
(5) N/A (13) 37.8
(6) N/A (14) 44.1
(7) 48 (15) 33.075
(8) 9.6 (16) 6.615

This module can be used without modification for the ADSP-2101, ADSP-2103,
and ADSP-2115. Use with the ADSP-2111, ADSP-2171, or ADSP-21msp5x processors
would require modification of the interrupt vector table and any instructions
relating to IFC, IMASK, or any other interrupt-related structure.

This interface is not recommended for the ADSP-2105.
***/

.var/dm/ram/circ rx_buf[3]; /* Status + L data + R data */

.var/dm/ram/circ tx_buf[3]; /* Cmd + L data + R data */

.init tx_buf: 0xc000, 0x0000, 0x0000; /* Initially set MCE */

.var/dm/ram/circ init_cmds[13]; /
***/
/* Initial codec setup: */
/* 0: Left Input Control: 0 gain, Line 1 input */
/* 1: Right Input Control: 0 gain, Line 1 input */
/* 2: Left Aux #1 Input Control: Muted */
/* 3: Right Aux #1 Input Control: Muted */
/* 4: Left Aux #2 Input Control: Muted */
/* 5: Right Aux #2 Input Control: Muted */
/* 6: Left DAC Control: 0 attenuation, muted */
/* 7: Right DAC Control: 0 attenuation, muted */
/* 8: Data Format: XTAL1, 8kHz sampling, stereo, */
/* 16-bit linear PCM */
/* 9: Interface Config: Playback enabled, ACAL allowed */
/* 10: Pin Control: CLKOUT active, XCTL1/0 LO */
/* 12: Misc. Info: Transmit on 0,1,2, 32-word frame */
/* 13: Digital Mix Control: DME Disabled, 0 attenuation */
/**/

(listing continues on next page)

1212121212

592592592592592

Hardware InterfacingHardware InterfacingHardware InterfacingHardware InterfacingHardware Interfacing

.init init_cmds:
0xc000,
0xc100,
0xc280,
0xc380,
0xc480,
0xc580,
0xc680,
0xc780,
0xc850,
0xc909,
0xca00,
0xcc40,
0xcd00;

.var/dm stat_flag;

.var/dm gain_state;

.var/dm sampling_state;

.var/dm chng_state;

reset_vect: jump setup_mode; nop; nop; nop;

irq2_svc: toggle FLAG_OUT; si = 1; dm(chng_state) = si; rti;

tx0_irq: ar = dm(stat_flag);
ar = pass ar;
if eq rti;
jump next_cmd;

rx0_irq: jump input_samples;
rti; nop; nop;

rti; nop; nop; nop;
rti; nop; nop; nop;
rti; nop; nop; nop;

/********************
Code Start:

*********************/
setup_mode:

set flag_out;
icntl = b#00100; /* edge sensitive IRQ2 */
ax0 = 0x0018;
dm(0x3fff) = ax0;
nop;
nop;
if FLAG_IN jump sys_init;

ifc = b#000000111111;
ax0 = 0;
dm(chng_state) = ax0;

imask = b#100000;

593593593593593

1212121212Hardware InterfacingHardware InterfacingHardware InterfacingHardware InterfacingHardware Interfacing

wait_irq: ar = dm(chng_state); /* wait for IRQ2 */
ar = pass ar;
if eq jump wait_irq;
imask = 0x0000;

wait_rel_FO:if NOT FLAG_IN jump wait_rel_FO; /* wait for FLAG_IN release */

ax0 = 0;
dm(chng_state) = ax0;

jump set_codec;

sys_init:
i0 = ^rx_buf;
l0 = %rx_buf;
i1 = ^tx_buf;
l1 = %tx_buf;
i3 = ^init_cmds;
l3 = %init_cmds;

m1 = 1;

/**********************
sport0 setup: multichannel enable, ext. sclk, MFD=1,

32 words, ext. rfs, DTYPE 00, 16 bits
**********************/

ax0 = b#1000011000001111;
dm(0x3ff6) = ax0;

/*********************
Multichannel enable setup:

Rx: 3, 4, 5, 19, 20, 21
Tx: 0, 1, 2, 16, 17, 18

*********************/
ax0 = b#0000000000000111;
dm(0x3ff9) = ax0;
dm(0x3ffa) = ax0;

ax0 = b#0000000000000111;
dm(0x3ff7) = ax0;
dm(0x3ff8) = ax0;

(listing continues on next page)

1212121212

594594594594594

Hardware InterfacingHardware InterfacingHardware InterfacingHardware InterfacingHardware Interfacing

/*********************
SPORT Autobuffer Setup

Rx: I0, M1
Tx: I1, M1

**********************/
ax0 = b#0000001010000111;
dm(0x3ff3) = ax0;

ax0 = b#0001000000000000;
dm(0x3fff) = ax0; /* SPORT0 Enabled,

SPORT1 = FI, FO, IRQs */

start_setup:
ifc = b#000000111111;
nop;

ax0 = 1;
dm(stat_flag) = ax0;

imask = b#010000; /* enable tx0 interrupt */

ax0 = dm(i1,m1);
tx0 = ax0;

check_init:
ax0 = dm(stat_flag); /* wait for entire init */
af = pass ax0; /* buffer to be sent to */
if ne jump check_init; /* the codec */

check_aci:
ax0 = dm(rx_buf); /* once initialized, wait */
ay0 = b#0000000000000010; /* for codec to come out */
ar = ax0 and ay0; /* of autocalibration */
if ne jump check_aci;

idle;

ay0 = 0xbf3f;
ax0 = dm(init_cmds+6);
ar = ax0 AND ay0;
dm(tx_buf) = ar; /* unmute left DAC */
idle;

ax0 = dm(init_cmds+7);
ar = ax0 AND ay0;
dm(tx_buf) = ar; /* unmute right DAC */
idle;

ifc = b#000000111111;
nop;
imask = b#001000; /* enable rx0 interrupt */

595595595595595

1212121212Hardware InterfacingHardware InterfacingHardware InterfacingHardware InterfacingHardware Interfacing

/**/
/* Main Loop: talkthru */
/**/

talkthru:
idle;
jump talkthru;

/**/

input_samples:
ena sec_reg;
ax1 = dm(rx_buf+1); /* L channel input */
mx1 = dm(rx_buf+2); /* R channel input */
dm(tx_buf+2) = mx1;
dm(tx_buf+1) = ax1;
rti;

next_cmd:
ena sec_reg;
ax0 = dm(i3,m1);
dm(tx_buf) = ax0;
ax0 = i3;
ay0 = ^init_cmds;
ar = ax0 - ay0;
if gt rti;
ax0 = 0x8000;
dm(tx_buf) = ax0;
ax0 = 0; /* remove MCE if done initialization */
dm(stat_flag) = ax0; /* reset status flag */
rti;

/***
 Codec configuration section
***/
set_codec:

set FLAG_OUT;
ax0 = 0;
dm(gain_state) = ax0;
dm(sampling_state) = ax0;

IFC = b#000000111111;
nop;
imask = b#100000; /* enable IRQ2 interrupt */

(listing continues on next page)

1212121212

596596596596596

Hardware InterfacingHardware InterfacingHardware InterfacingHardware InterfacingHardware Interfacing

/****************
 Input Selection
****************/

set_input:
if NOT FLAG_IN jump gain_wait;
sr0 = dm(chng_state);
af = pass sr0;
if eq jump set_input;

ax0 = dm(init_cmds);
ay0 = 0xc080;
ar = ax0 XOR ay0; /* if already set for line 1 in, */
if ne jump set_to_2; /* switch to line 2 */
ax0 = 0xc000;
dm(init_cmds) = ax0;
ax0 = 0xc100;
dm(init_cmds+1) = ax0;
ax0 = 0; /* reset flag for IRQ2 */
dm(chng_state) = ax0;
jump set_input;

set_to_2:
ax0 = 0xc080;
dm(init_cmds) = ax0;
ax0 = 0xc180;
dm(init_cmds+1) = ax0;
ax0 = 0; /* reset flag for IRQ2 */
dm(chng_state) = ax0;
jump set_input;

/****************
 Gain Selection
****************/

gain_wait:
if NOT FLAG_IN jump gain_wait; /* software switch de-bounce */

set_gain:
if NOT FLAG_IN jump sampling_wait;
sr0 = dm(chng_state);
af = pass sr0;
if eq jump set_gain;

ax1 = dm(gain_state);
ar = pass ax1;
if gt jump next1;

597597597597597

1212121212Hardware InterfacingHardware InterfacingHardware InterfacingHardware InterfacingHardware Interfacing

ax0 = 0xfff0; /* set gain = 0 for both inputs */
ay0 = dm(init_cmds);
ar = ax0 AND ay0;
dm(init_cmds) = ar;
ay0 = dm(init_cmds+1);
ar = ax0 AND ay0;
dm(init_cmds+1) = ar;
ax0 = 1;
dm(gain_state) = ax0;
jump set_gain;

next1: ax1 = dm(gain_state);
ay0 = 1;
ar = ax1 - ay0;
if gt jump next2;

ax0 = 0x0002; /* set gain = 2 = 3dB */
call gain_adjust;
jump set_gain;

next2: ax1 = dm(gain_state);
ay0 = 2;
ar = ax1 - ay0;
if gt jump next3;

ax0 = 0x0006; /* set gain = 4 = 6dB */
call gain_adjust;
jump set_gain;

next3: ax1 = dm(gain_state);
ay0 = 3;
ar = ax1 - ay0;
if gt jump next4;

ax0 = 0x0002; /* set gain = 6 = 9dB */
call gain_adjust;
jump set_gain;

next4: ax1 = dm(gain_state);
ay0 = 4;
ar = ax1 - ay0;
if gt jump next5;

ax0 = 0x000e; /* set gain = 8 = 12dB */
call gain_adjust;
jump set_gain;

(listing continues on next page)

1212121212

598598598598598

Hardware InterfacingHardware InterfacingHardware InterfacingHardware InterfacingHardware Interfacing

next5: ax1 = dm(gain_state);
ay0 = 5;
ar = ax1 - ay0;
if gt jump next6;

ax0 = 0x0002; /* set gain = 10 = 15dB */
call gain_adjust;
jump set_gain;

next6: ax1 = dm(gain_state);
ay0 = 6;
ar = ax1 - ay0;
if gt jump next7;

ax0 = 0x0006; /* set gain = 12 = 18dB */
call gain_adjust;
jump set_gain;

next7: ax0 = 0x0002; /* set gain = 13 = 21dB */
call gain_adjust;
ax0 = 0;
dm(gain_state) = ax0;
jump set_gain;

/*——————
 gain adjust
——————*/
gain_adjust:

ay0 = dm(init_cmds);
ar = ax0 XOR ay0;
dm(init_cmds) = ar;
ay0 = dm(init_cmds+1);
ar = ax0 XOR ay0;
dm(init_cmds+1) = ar;
ay0 = dm(gain_state);
ar = ay0+1;
dm(gain_state) = ar;
ax0 = 0;
dm(chng_state) = ax0;
rts;

599599599599599

1212121212Hardware InterfacingHardware InterfacingHardware InterfacingHardware InterfacingHardware Interfacing

/************************
 Sampling Rate Selection
************************/
sampling_wait:

if NOT FLAG_IN jump sampling_wait;

set_sampling:
if NOT FLAG_IN jump done_config;
sr0 = dm(chng_state);
af = pass sr0;
if eq jump set_sampling;

ax0 = 0;
dm(chng_state) = ax0;

set_rate:
ar = dm(sampling_state);
ar = pass ar;
if gt jump to_16;

to_8: ar = 1; /* buffer initialized for 8 kHz */
dm(sampling_state) = ar;
jump set_sampling;

to_16: ax0 = dm(sampling_state);
ay0 = 1;
ar = ax0 - ay0;
if gt jump to_27;

ax1 = 0xc852; /* set for 16.0 kHz */
dm(init_cmds+8) = ax1;
ax0 = 2;
dm(sampling_state) = ax0;
jump set_sampling;

to_27: ax0 = dm(sampling_state);
ay0 = 2;
ar = ax0 - ay0;
if gt jump to_32;

ax1 = 0xc854; /* set for 27.42857 kHz */
dm(init_cmds+8) = ax1;
ax0 = 3;
dm(sampling_state) = ax0;
jump set_sampling;

(listing continues on next page)

1212121212

600600600600600

Hardware InterfacingHardware InterfacingHardware InterfacingHardware InterfacingHardware Interfacing

to_32: ax0 = dm(sampling_state);
ay0 = 3;
ar = ax0 - ay0;
if gt jump to_na;

ax1 = 0xc856; /* set for 32.0 kHz */
dm(init_cmds+8) = ax1;
ax0 = 4;
dm(sampling_state) = ax0;
jump set_sampling;

to_na: ax0 = dm(sampling_state);
ay0 = 4;
ar = ax0 - ay0;
if gt jump to_na2;

ax0 = 5;
dm(sampling_state) = ax0;
jump set_sampling;

to_na2: ax0 = dm(sampling_state);
ay0 = 5;
ar = ax0 - ay0;
if gt jump to_48;

ax0 = 6;
dm(sampling_state) = ax0;
jump set_sampling;

to_48: ax0 = dm(sampling_state);
ay0 = 6;
ar = ax0 - ay0;
if gt jump to_96;

ax1 = 0xc85c; /* set for 48.0 kHz */
dm(init_cmds+8) = ax1;
ax0 = 7;
dm(sampling_state) = ax0;
jump set_sampling;

to_96: ax0 = dm(sampling_state);
ay0 = 7;
ar = ax0 - ay0;
if gt jump to_55;

ax1 = 0xc85e; /* set for 9.6 kHz */
dm(init_cmds+8) = ax1;
ax0 = 8;
dm(sampling_state) = ax0;
jump set_sampling;

601601601601601

1212121212Hardware InterfacingHardware InterfacingHardware InterfacingHardware InterfacingHardware Interfacing

to_55: ax0 = dm(sampling_state);
ay0 = 8;
ar = ax0 - ay0;
if gt jump to_11;

ax1 = 0xc851; /* set for 5.5125 kHz */
dm(init_cmds+8) = ax1;
ax0 = 9;
dm(sampling_state) = ax0;
jump set_sampling;

to_11: ax0 = dm(sampling_state);
ay0 = 9;
ar = ax0 - ay0;
if gt jump to_18;

ax1 = 0xc853; /* set for 11.025 kHz */
dm(init_cmds+8) = ax1;
ax0 = 10;
dm(sampling_state) = ax0;
jump set_sampling;

to_18: ax0 = dm(sampling_state);
ay0 = 10;
ar = ax0 - ay0;
if gt jump to_22;

ax1 = 0xc855; /* set for 18.9 kHz */
dm(init_cmds+8) = ax1;
ax0 = 11;
dm(sampling_state) = ax0;
jump set_sampling;

to_22: ax0 = dm(sampling_state);
ay0 = 11;
ar = ax0 - ay0;
if gt jump to_37;

ax1 = 0xc857; /* set for 22.05 kHz */
dm(init_cmds+8) = ax1;
ax0 = 12;
dm(sampling_state) = ax0;
jump set_sampling;

(listing continues on next page)

1212121212

602602602602602

Hardware InterfacingHardware InterfacingHardware InterfacingHardware InterfacingHardware Interfacing

to_37: ax0 = dm(sampling_state);
ay0 = 12;
ar = ax0 - ay0;
if gt jump to_44;

ax1 = 0xc859; /* set for 37.8 kHz */
dm(init_cmds+8) = ax1;
ax0 = 13;
dm(sampling_state) = ax0;
jump set_sampling;

to_44: ax0 = dm(sampling_state);
ay0 = 13;
ar = ax0 - ay0;
if gt jump to_33;

ax1 = 0xc85b; /* set for 44.1 kHz */
dm(init_cmds+8) = ax1;
ax0 = 14;
dm(sampling_state) = ax0;
jump set_sampling;

to_33: ax0 = dm(sampling_state);
ay0 = 14;
ar = ax0 - ay0;
if gt jump to_66;

ax1 = 0xc85d; /* set for 33.075 kHz */
dm(init_cmds+8) = ax1;
ax0 = 15;
dm(sampling_state) = ax0;
jump set_sampling;

to_66: ax0 = 0;
dm(sampling_state) = ax0;

ax1 = 0xc85f; /* set for 6.615 kHz */
dm(init_cmds+8) = ax1;
jump set_sampling;

done_config:
toggle FLAG_OUT;
jump sys_init;

.endmod;

Listing 12.4 ADSP-2101/AD1847 Demonstration Routine (DEMO_47.DSP)Listing 12.4 ADSP-2101/AD1847 Demonstration Routine (DEMO_47.DSP)Listing 12.4 ADSP-2101/AD1847 Demonstration Routine (DEMO_47.DSP)Listing 12.4 ADSP-2101/AD1847 Demonstration Routine (DEMO_47.DSP)Listing 12.4 ADSP-2101/AD1847 Demonstration Routine (DEMO_47.DSP)

603603603603603

1212121212Hardware InterfacingHardware InterfacingHardware InterfacingHardware InterfacingHardware Interfacing

12.312.312.312.312.3 INTERFACING DRAMS WITH THE ADSP-2100 FAMILYINTERFACING DRAMS WITH THE ADSP-2100 FAMILYINTERFACING DRAMS WITH THE ADSP-2100 FAMILYINTERFACING DRAMS WITH THE ADSP-2100 FAMILYINTERFACING DRAMS WITH THE ADSP-2100 FAMILY
As new algorithms for digital signal processors are developed, the
memory requirements for these applications will continue to grow. Not
only will these applications require more memory, but they will require
increased efficiency for data storage and retrieval. Examples of these new
applications include digital processing for two- and three-dimensional
graphic images and speech storage for voice mail systems and digital
telephone answering machines.

Two common storage options for these applications are Static Random
Access Memories (SRAMs) and Dynamic Random Access Memories
(DRAMs).

The functional difference between an SRAM and a DRAM is how the
devices store data. In an SRAM, data is stored in transistors that hold their
value until you overwrite them with new data. The DRAM stores data in
capacitors that gradually loose their charge and, without refreshing, will
loose the data.

Size is another important difference. Capacitors are significantly smaller
than transistors, so DRAMs have a higher bit density.

Although a DRAM package is smaller than the equivalent memory size in
an SRAM package, you should consider the following factors when you
decide which memory device to use:

• Capacitor leakage.
Over time, DRAM capacitors “leak” or lose current and they must be
“refreshed” periodically.

• Multiplexed-addressing.
To take advantage of the higher bit density of the DRAM, the capacitor
cells are accessed using multiplexed-addressing. This reduces the
required number of address pins because you can use each pin twice:
once to address a memory row and a second time to address a memory
column. Although this makes the package smaller, it complicates
memory addressing.

• Availability, price, and performance.
DRAMs are readily available in 1 Mbit, 4 Mbit, and larger capacities,
while SRAMs are typically available in 64 Kbyte (512 Kbit) and 128
Kbyte (1 Mbit) ranges. DRAMs are usually less expensive than SRAMs,
but DRAM access times are significantly slower than SRAM access
times.

1212121212

604604604604604

Hardware InterfacingHardware InterfacingHardware InterfacingHardware InterfacingHardware Interfacing

• Program and hardware simplicity.
The SRAM has a simple microprocessor interface. With N address
lines, you can address 2N sequential locations in SRAM. You do not
need additional software overhead (to refresh) when your program
reads or writes to memory. Each read or write requires only a single
DSP instruction. When using the ADSP-2100 family, each instruction
takes one clock cycle. If necessary, wait states can be programmed for
addressing slower memories.

When you use a DSP to address DRAM, you need additional hardware
or software to handle the multiplexed row and column addressing and
the refresh or precharge requirements. Many systems with DRAM use
a hardware-intensive solution, like a DRAM controller.

As an alternative, you can move the control functions into the DSP
software. This is a good implementation for systems requiring large
memory spaces and cost efficient solutions. The chip count is reduced
at the expense of decreased software throughput.

Although DSPs were designed to interface with SRAMs, in the right
application, DRAMs can provide a larger, more cost-effective storage
medium.

This chapter presents a software solution for addressing DRAM with the
ADSP-2100 family. To implement this solution, the ADSP-2101 EZ-LAB®
Evaluation Board was used as the development platform. A simple DRAM
interface board was designed for this application. The DRAM interface
board connects to the EZ-LAB through the expansion connector to let the
EZ-LAB access the interface board’s bank of memory. Figure 12.1 is a
block diagram of the test system. The subroutines included at the end of
this chapter were verified on this interface board and the ADSP-2101 EZ-
LAB®.

605605605605605

1212121212Hardware InterfacingHardware InterfacingHardware InterfacingHardware InterfacingHardware Interfacing

ADSP-2101

Data
(D8–D23)

Address
(A0–A9)

10

16

GAL16V8

I/O0

I/O1

I/O2

DRAM

RAS

CAS

WRITE

OE

TC514400AP-80

DRAM

RAS

CAS

WRITE

OE

TC514400AP-80

DRAM

RAS

CAS

WRITE

OE

TC514400AP-80

DRAM

Data
Address

RAS

CAS

WRITE

OE

TC514400AP-80
I0DMS

I1WR

I2RD

A13 I3

A12 I4

CLKCLKOUT

Data
Address

Data
Address

Data
Address

ADSP-2101 EZ-LAB®
Evaluation Board

Figure 12.1 Functional Block Diagram Of DRAM Interface Test SystemFigure 12.1 Functional Block Diagram Of DRAM Interface Test SystemFigure 12.1 Functional Block Diagram Of DRAM Interface Test SystemFigure 12.1 Functional Block Diagram Of DRAM Interface Test SystemFigure 12.1 Functional Block Diagram Of DRAM Interface Test System

1212121212

606606606606606

Hardware InterfacingHardware InterfacingHardware InterfacingHardware InterfacingHardware Interfacing

Depending on your application and DRAM selection, you may have to
modify the subroutines and the PAL equations included in this chapter.

Table 12.1 lists the components used in the test system described above.

ADSP-2101 EZ-LAB Evaluation Board 1
1 M x 4 DRAM, PN TC514400AP-80 4

DRAM, 80 ns access time
Programmable Logic Device,

PN GAL16V8-15 1
Ribbon Cable Connector, 1

60-Pin, Straight wire-wrap
Wire-wrap board 1

Table 12.1 Test System ComponentsTable 12.1 Test System ComponentsTable 12.1 Test System ComponentsTable 12.1 Test System ComponentsTable 12.1 Test System Components

When you design a DRAM memory system for an ADSP-2100 family DSP,
you must consider the following points:

• DRAM configuration

• Multiplexed memory addressing

• DSP and DRAM control signals

• DSP to DRAM Interface timing

• DRAM Memory access modes

• DRAM Refresh

12.3.112.3.112.3.112.3.112.3.1 DRAM ConfigurationDRAM ConfigurationDRAM ConfigurationDRAM ConfigurationDRAM Configuration
Originally, DRAMs were organized in one-bit widths, such as 256 K x 1 or
1 M x 1. Since ADSP-2100 family DSPs are 16-bit fixed point processors, it
would have taken 16 DRAMs to store data memory. As DRAM chip
organization evolves, larger memories and wider widths are becoming
available. DRAMs are available up to 4 M and larger with 4-bit and 16-bit
widths.

You must make a trade-off between system cost, power consumption, and
available board space when you choose DRAMs. Larger and wider
DRAMs are more expensive and consume more power than smaller
DRAMs, but you need fewer chips for the same amount of memory.

607607607607607

1212121212Hardware InterfacingHardware InterfacingHardware InterfacingHardware InterfacingHardware Interfacing

For this application, 1 M x 4 DRAMs (available from several
manufactures) were chosen. These four DRAMs provide 1 M x 16 data
memory.

12.3.212.3.212.3.212.3.212.3.2 Multiplexed Memory AddressingMultiplexed Memory AddressingMultiplexed Memory AddressingMultiplexed Memory AddressingMultiplexed Memory Addressing
To address a 1 M x 4 DRAM, you need ten address lines. With ten
multiplexed address lines, you can address each row (210, or 1024 rows)
and each column (210, or 1024 columns) in the DRAM. This is equal to
1024 x 1024, or 1 M, of addressable, 4-bit locations.

The ADSP-2100 family processors have 14 address lines for data memory.
In an SRAM this can provide up to 214, or 16,384 (16 K) addressable data
memory locations. In this application, you only need ten address lines to
address 4, 1 M x 4 DRAMs; this system uses A0–A9 of the ADSP-2101 (see
Figure 12.1). Since the remaining address lines are not used to address
memory, they could be left unconnected, but this system uses two
available address lines (A12 and A13) as control lines for the DRAMs.

12.3.312.3.312.3.312.3.312.3.3 DSP & DRAM Control SignalsDSP & DRAM Control SignalsDSP & DRAM Control SignalsDSP & DRAM Control SignalsDSP & DRAM Control Signals
To interface a DRAM to the DSP, compare the control signals and timing
diagrams for both parts. Although this section has a brief overview of DSP
and DRAM timing, you must determine the most effective use of the
ADSP-2100 family control signals to control the reads and writes to
DRAM in your application.

The DSP uses several control lines to access data memory: RD, WR, DMS.
This application uses DMS (Data Memory Select) to differentiate between
a program and data memory access because the program memory (PM)
and data memory (DM) address and data lines are multiplexed off-chip.

12.3.3.112.3.3.112.3.3.112.3.3.112.3.3.1 DSP Read/Write TimingDSP Read/Write TimingDSP Read/Write TimingDSP Read/Write TimingDSP Read/Write Timing
Figure 12.2 shows the read and write timing for the DSP. The read cycle
(or write cycle) begins when the processor puts the address on the data
memory address (DMA) bus and asserts DMS. The RD (or WR) signal is
then asserted. Data is placed on the data bus within a specified time, then
RD (or WR) is deasserted. Finally, DMS is deasserted, ending the memory
access.

1212121212

608608608608608

Hardware InterfacingHardware InterfacingHardware InterfacingHardware InterfacingHardware Interfacing

DMS

CLKOUT

RD or WR

A13–A0 ADDRESS VALID

DATA IND23–D8

DATA OUTD23–D8

Figure 12.2 DSP Read/Write TimingFigure 12.2 DSP Read/Write TimingFigure 12.2 DSP Read/Write TimingFigure 12.2 DSP Read/Write TimingFigure 12.2 DSP Read/Write Timing

12.3.3.212.3.3.212.3.3.212.3.3.212.3.3.2 DRAM Read/Write TimingDRAM Read/Write TimingDRAM Read/Write TimingDRAM Read/Write TimingDRAM Read/Write Timing
The DRAM uses the control signals RAS (Row Address Strobe), CAS
(Column Address Strobe), WRITE, and OE (Output Enable).

A DRAM read cycle (see Figure 12.3 for the read cycle timing) starts when
the falling edge of RAS strobes the row address into the DRAM. The
falling edge of CAS strobes the column address into the DRAM and, after
an access delay, enables the output buffer. The WRITE signal must stay
high before and after the falling edge of CAS. The read cycle ends when
the RAS and CAS lines are brought high.

CAS

A9–A0

WRITE

I/O4-I/O1

RAS

ROW COLUMN

OE

DATA OUT

Figure 12.3 DRAM Read Cycle TimingFigure 12.3 DRAM Read Cycle TimingFigure 12.3 DRAM Read Cycle TimingFigure 12.3 DRAM Read Cycle TimingFigure 12.3 DRAM Read Cycle Timing

Another read cannot occur until the precharge time is met after RAS and
CAS are brought high. There are minimum pulse-widths and setup and
hold times associated with all control lines.

609609609609609

1212121212Hardware InterfacingHardware InterfacingHardware InterfacingHardware InterfacingHardware Interfacing

The DRAM write cycle is similar to the read cycle, except the WRITE line
is held low. There are two basic write cycles for DRAMs: the early-write
cycle and the delayed-write cycle. In the early-write cycle, the WRITE line
is asserted before the assertion of CAS; in the delayed-write cycle, it is
asserted after. For this DSP interface, use the delayed-write (or output
enabled write) cycle.

A DRAM delayed-write cycle (write cycle timing shown in Figure 12.4)
also starts when the falling edge of RAS strobes the row address into the
DRAM. The falling edge of CAS strobes the column address into the
DRAM. Then, the falling edge of WRITE latches the data into the DRAM.
There are minimum pulse-widths and setup and hold times associated
with these control lines as well.

CAS

A9–A0

WRITE

I/O4–I/O1

RAS

ROW COLUMN

OE

DATA IN

Figure 12.4 DRAM Delayed-Write (Output Enabled) Cycle TimingFigure 12.4 DRAM Delayed-Write (Output Enabled) Cycle TimingFigure 12.4 DRAM Delayed-Write (Output Enabled) Cycle TimingFigure 12.4 DRAM Delayed-Write (Output Enabled) Cycle TimingFigure 12.4 DRAM Delayed-Write (Output Enabled) Cycle Timing

12.3.3.312.3.3.312.3.3.312.3.3.312.3.3.3 RASRASRASRASRAS GenerationGenerationGenerationGenerationGeneration
Because the falling edge of RAS latches the row address into the DRAM,
the address must be valid before RAS is deasserted.

To drive RAS, use a combination of the DMS, RD, and address lines A13
and A12. A read from data memory locations 0x1000 to 0x13FF drives RAS
low and latches the row address from 0x000 to 0x3FF. To drive RAS high
again, read from any data memory address in the range 0x2000 to 0x27FF.

1212121212

610610610610610

Hardware InterfacingHardware InterfacingHardware InterfacingHardware InterfacingHardware Interfacing

Use the following logic to drive RAS:

When (A13 = 0), (A12 = 1), (DMS = 0), and (RD = 0),
RAS = 0;

or, when (A13 = 1), (A12 = 0), (DMS = 0), and (RD = 0),
RAS =1;

otherwise, RAS = RAS;

You can implement the above logic discretely, or in a PAL, such as the
GAL16V8 used in this application.

12.3.3.412.3.3.412.3.3.412.3.3.412.3.3.4 CASCASCASCASCAS GenerationGenerationGenerationGenerationGeneration
The generation of CAS must occur after the generation of RAS. Since the
negative transition of CAS latches the column address into the DRAM, the
address must be present before CAS goes low. To generate CAS, use the
same control pins (DMS, RD, WR, A13, and A12). A read or write to the
data memory addresses 0x3000 to 0x33FF drives CAS low and latches the
column address from 0x000 to 0x3FF. (Note a read from data memory
0x3800 or higher reads from the DSP’s internal data memory and does not
assert the external RD or address lines.) CAS returns to logic high at the
completion of the read or write (when DMS returns high).

Use the following logic to drive CAS:

When (A13 = 1), (A12 = 1), (DMS = 0), ((RD = 0)#(WR =0))),
then CAS = 0;

otherwise CAS = 1;

The actual read or write from the DSP occurs when CAS is low. To meet
the write timing requirements of the DRAM and the DSP, CAS must be
held low for two clock cycles. To accomplish this, use the external data
memory wait states of the processor.

Data memory has several configurable wait states. The address range for
CAS (0x3000–0x33FF) is configured by setting DWAIT3 in the data
memory wait state control register. For this application, set DWAIT3 to 1.

611611611611611

1212121212Hardware InterfacingHardware InterfacingHardware InterfacingHardware InterfacingHardware Interfacing

12.3.3.512.3.3.512.3.3.512.3.3.512.3.3.5 WRITEWRITEWRITEWRITEWRITE & & & & & OEOEOEOEOE GenerationGenerationGenerationGenerationGeneration
The DRAM latches data on the falling edge of WRITE, while the DSP
latches data on the rising edge. To ensure that the data from the DSP is
still valid during the high-to-low transition of WRITE, the WR signal must
be delayed one clock cycle. By delaying WR one cycle to create WRITE,
you create a falling edge to latch valid data into the DRAM (see Figure
12.6). You can use a D flip-flop or PAL with registers to delay WR.

The RD output of the DSP can be run directly into the OE input of the
DRAM.

12.3.412.3.412.3.412.3.412.3.4 DSP To DRAM Interface TimingDSP To DRAM Interface TimingDSP To DRAM Interface TimingDSP To DRAM Interface TimingDSP To DRAM Interface Timing
This section describes the specific interface timing required between the
DSP and DRAM.

12.3.4.112.3.4.112.3.4.112.3.4.112.3.4.1 DRAM Read TimingDRAM Read TimingDRAM Read TimingDRAM Read TimingDRAM Read Timing
To read from the DRAM, the OE signal of the DRAM is tied to the DSP’s
RD line. Data is latched into the DSP on the rising edge of the RD signal
and this matches the availability of data from the DRAM. Figure 12.5
shows the timing for generating the RAS and CAS signals to read from
DRAM.

DMS

A13-A0

RD = OE

CLKOUT

ROW=0x1000 COL=0x3000 ROW=0x2000

RAS

CAS

DATA D23–D8

Figure 12.5 Figure 12.5 Figure 12.5 Figure 12.5 Figure 12.5 RASRASRASRASRAS & & & & & CASCASCASCASCAS Timing For DRAM Read Timing For DRAM Read Timing For DRAM Read Timing For DRAM Read Timing For DRAM Read

To accomplish the read cycle, execute a dummy read to a DM location
(0x1000 to 0x13FF) to select a row and generate RAS. Follow this cycle
with a read from external DM (0x3000 to 0x33FF), which selects a column,
makes data available on bus lines, and latches it on the DSP. To finish the
read cycle, perform a dummy read to a DM location (0x2000) to drive the
RAS line high again.

1212121212

612612612612612

Hardware InterfacingHardware InterfacingHardware InterfacingHardware InterfacingHardware Interfacing

Implemented in ADSP-2100 family assembly code, a DRAM read requires
four DSP cycles. A fifth cycle (nop) is needed when consecutive reads are
performed to assure RAS precharge timing is met. The following example
illustrates a read from row address 0xABC and column address 0xDEF:

DRAM_read:
ax0=DM(0x1ABC); /* dummy read sets !RAS, ROW addr */

ay0=DM(0x3DEF); /* !CAS set, ay0=DRAM data */
ax0=DM(0x2000); /* dummy read to deselect !RAS */
nop; /* necessary for precharge time */

This may appear to be excessive overhead for a single memory read. You
can achieve faster reads by using a DRAM with Fast-Page addressing
(described later in this chapter).

12.3.4.212.3.4.212.3.4.212.3.4.212.3.4.2 DRAM Write TimingDRAM Write TimingDRAM Write TimingDRAM Write TimingDRAM Write Timing
A write cycle is similar to a read cycle. For a write to the DRAM, the DSP’s
WR line must be delayed to create the DRAM WRITE signal. The DRAM
WRITE signal is generated from a clocked D-flip flop within the GAL16V8
with the ADSP-2101 WR signal as input. The clock is obtained from DSP’s
CLKOUT signal. Figure 12.6 shows the timing for generating the RAS and
CAS signals to write to DRAM.

DMS

A13–A0

RD = OE

CLKOUT

ROW=0x1000 COL=0x3000 ROW=0x2000

RAS

CAS

DATA VALID D23–D8

WRITE

WR

Figure 12.6 Figure 12.6 Figure 12.6 Figure 12.6 Figure 12.6 RASRASRASRASRAS & & & & & CASCASCASCASCAS Timing For DRAM Write Timing For DRAM Write Timing For DRAM Write Timing For DRAM Write Timing For DRAM Write

613613613613613

1212121212Hardware InterfacingHardware InterfacingHardware InterfacingHardware InterfacingHardware Interfacing

For a delayed-write (or output-enable write), the falling edge of WRITE
latches the data into the DRAM.

In ADSP-2100 family assembly code, a DRAM write requires four DSP
cycles. A fifth cycle (nop) is needed when consecutive writes are
performed to assure RAS precharge timing is met. The following example
shows you how to write to row address 0xABC and column address
0xDEF:

DRAM_write:
ax0=DM(0x1ABC); /* dummy read sets !RAS, ROW addr */
DM(0x3DEF)=ay0; /* !CAS set, ay0 written to DRAM */
ax0=DM(0x2000); /* dummy read to deselect !RAS */

nop; /* necessary for precharge time */

12.3.512.3.512.3.512.3.512.3.5 Memory Access ModesMemory Access ModesMemory Access ModesMemory Access ModesMemory Access Modes
DRAMs support several memory access modes to help reduce memory
access times. The access mode that you select depends on the modes
supported by the particular DRAM used in your application. Memory
access modes include: Page Mode, Enhanced or Fast Page Mode, Static
Column Mode, and Nibble or Ripple Mode. This section describes two
modes: page mode and fast page mode.

12.3.5.112.3.5.112.3.5.112.3.5.112.3.5.1 Page ModePage ModePage ModePage ModePage Mode
Page mode is the simplest memory access for a DRAM, but it also takes
the longest time. To read one memory location requires a row and then a
column access. A “page” is equivalent to a row.

Page-access provides quick access to memory locations in a page and can
be accomplished by any DRAM. Page mode starts as a normal access
when RAS is driven low. A memory access is accomplished by asserting
CAS and performing a read or write. While keeping RAS low, you can
access any other column location in the page by again asserting CAS.
Since RAS remains low, the RAS precharge time is saved, which results in
a faster access speed.

12.3.5.212.3.5.212.3.5.212.3.5.212.3.5.2 Enhanced Or Fast Page ModeEnhanced Or Fast Page ModeEnhanced Or Fast Page ModeEnhanced Or Fast Page ModeEnhanced Or Fast Page Mode
Fast page mode requires a DRAM that supports this feature. It is similar to
page-mode access because you can access multiple columns within one
page. However, it is faster than normal page mode because the column
access is started as soon as the new address is placed on the DRAM
address input. This saves the CAS precharge time.

1212121212

614614614614614

Hardware InterfacingHardware InterfacingHardware InterfacingHardware InterfacingHardware Interfacing

Memory access in fast page mode is possible using the available signals. In
this mode, memory reads or writes to dynamic memory are executed by
leaving the RAS signal low after the row latch occurs. You can
continuously fill columns in the same row. The only limitation is that RAS
has a maximum pulse width timing requirement (for example 200 µs).

Multiple reads or writes are performed much faster if done within the
same page. The following example shows you how to read three locations
in one row;

DRAM_page_reads:
ax0=DM(0x1ABC); /* dummy read sets !RAS, ROW addr */
ay0=DM(0x3123); /* !CAS set, ay0=DRAM data */

ay1=DM(0x3456); /* !CAS set, ay0=DRAM data */
ax1=DM(0x3789); /* !CAS set, ay0=DRAM data */
ax0=DM(0x2000); /* dummy read to deselect !RAS */
nop; /* necessary for precharge time */

12.3.612.3.612.3.612.3.612.3.6 DRAM RefreshDRAM RefreshDRAM RefreshDRAM RefreshDRAM Refresh
The DRAM stores data in capacitor cells. Since capacitors lose their charge,
or “leak”, over time, each cell of the DRAM must be refreshed periodically
to maintain adequate voltage levels. Each memory read actually causes
the capacitors to discharge slightly, so DRAMs have built-in write-back
features that follow a read. This write-back feature is called a “precharge”.
The precharge occurs after the read when both RAS and CAS have
returned high. It is part of the read cycle timing and you must account for
it in timing analysis.

The read/write-back of the DRAM recharges the capacitor cells. The
DRAM architecture refreshes every column cell when a row is accessed.
Therefore, to accomplish a refresh of all memory cells, it is only necessary
to read every DRAM row within the specified refresh period of your
DRAM.

The RAS-only refresh is the simplest type of refresh operation and is
supported by all DRAMs. To accomplish an RAS-only refresh, the RAS
line is brought low one cycle for each row of the DRAM while the CAS
remains high.

On the DRAM interface, this is done by reading from external data
memory twice. One read sends RAS low and latches the row address, the
other read brings RAS back high. CAS (DMS) remains high through the
entire RAS cycle. The following example shows you one method to refresh
DRAM.

615615615615615

1212121212Hardware InterfacingHardware InterfacingHardware InterfacingHardware InterfacingHardware Interfacing

DRAM_refresh:

ax0=DM(0x1ABC); /* dummy read sets !RAS, ROW addr */
ax0=DM(0x2000); /* dummy read to deselect !RAS */

Note: You may have to use a NOP instruction at the end of the refresh
loop if the processor’s instruction rate is less than 100 ns. The NOP
instruction is necessary to meet the RAS precharge time and varies with
DRAM access time (the DRAMs used in this application need a minimum
RAS precharge time of 60 ns).

Some DRAMs have other refresh methods built-in. These include the
hidden refresh, the CAS-before-RAS refresh, and refresh with scrubbing.
For simplicity, this application concentrates on the RAS-only refresh.

12.3.712.3.712.3.712.3.712.3.7 DRAM Refresh TimingDRAM Refresh TimingDRAM Refresh TimingDRAM Refresh TimingDRAM Refresh Timing
Typical DRAM refresh periods are 4–16 ms. Depending on your
application, you can refresh all the rows at one time, called a burst refresh,
or interleave refreshes with normal memory accesses, called an
interleaved refresh.

If you use a 1 M deep DRAM with a 16 ms refresh period, you must access
each of the 1024 rows during the 16 ms interval. The overall time needed
to refresh the DRAM is the same regardless of whether you choose burst
or interleaved refreshes. To refresh 1024 rows, you need 1024 x 2 cycles
since it takes one cycle to assert RAS and one cycle to deassert RAS. For a
DSP running at 10 MHz, there is a 100 ns cycle time. So, your 2048 cycles
will take 2048 x 100 ns, or about 0.2 ms.

If your application can afford to pause for 0.2 ms every 16 ms, then the
burst method is the simplest. If not, consider breaking the 0.2 ms into
more manageable pieces, for example ten refreshes of 0.02 ms each.

Typical real-time applications are based on some periodic input or cycle.
You can use this timing to determine when to perform the refresh.
Otherwise, you must generate the period interrupt yourself to ensure that
refresh occurs to prevent data loss. With ADSP-2100 family DSPs, you can
use the internal timer to generate this periodic input. If the timer is not
available, use an external interrupt through IRQ2. If the external interrupt
is not available, use a serial port to create a periodic interrupt even if the
port is not being used for communication.

1212121212

616616616616616

Hardware InterfacingHardware InterfacingHardware InterfacingHardware InterfacingHardware Interfacing

The following code example refreshes all 1M DRAM locations within 16 ms.
Since a 1M DRAM consists of 1024 rows x 1024 columns, you need to access
1024 rows within the 16 ms. The code uses the DSP’s internal timer to create
a periodic interrupt that refreshes 256 rows every 4 ms. For this example,
assume the DSP is running at 16.67 MHz (60 ns clock cycle).

To refresh every 4 ms using 60 ns cycles, you need to create a timer
interrupt every 4 ms/60 ns, or 66,667 clock cycles. If you set TSCALE to 2,
TCOUNT is decremented every third clock cycle. Setting TCOUNT and
TPERIOD to 22,222 or 0x56CE generates a timer interrupt every 66,666
cycles.

Timer_initialization:

ax0=0x2 /* TSCALE=2, */
dm(0x3ffb)=ax0;
ax0=0x56CE /* TCOUNT=22,222 */
dm(0x3ffc)=ax0;
ax0=0x56CE /* TPERIOD=22,222 */
dm(0x3ffd)=ax0;

During a timer interrupt, the timer interrupt service routine calls the
following refresh subroutine.

/* Refresh for 256 rows

bank1: 000-0FF

bank2: 100-1FF
bank3: 200-2FF
bank4: 300-3FF */

DRAM_timer_refresh:
ax0=DM(bank); /* determine which bank to refresh */

ay0=0x3; /* set ay0 for masking */
ay1=1; /* set ay1 for incrementing */
ar=ax0+ay0; /* update for next bank */
ar=ar and ay1; /* mask upper bits (bank = 0-3) */
DM(bank)=ar; /* store new bank for next refresh */
sr=lshift ar by 8 (lo); /* left shift bank by 8 */

M0=SR0;
I0=0x1000; /* start of RAS addresses */
modify(I0,M0); /* offset to start of bank */
M1=1;
CNTR=256;

617617617617617

1212121212Hardware InterfacingHardware InterfacingHardware InterfacingHardware InterfacingHardware Interfacing

do refresh until ce;

ax0=DM(I0,M1); /* dummy read sets !RAS, ROW addr */
ax0=DM(0x2000); /* dummy read to deselect !RAS */
refresh: nop; /* end of loop (nop for precharge) */

rts;

12.3.812.3.812.3.812.3.812.3.8 EZ-LAB ImplementationEZ-LAB ImplementationEZ-LAB ImplementationEZ-LAB ImplementationEZ-LAB Implementation
To illustrate a DRAM interface to a DSP, this application uses the ADSP-2101
EZ-LAB evaluation board and a DRAM expansion card. The 2101 EZ-LAB
has an ADSP-2101 processor and 64k x 8 EPROM. The EPROM is used only
for booting the internal program RAM of the DSP. No additional data
memory is on the board, however all data, address, and control lines are
available through the connector.

To add DRAM to the EZ-LAB, the expansion card is connected to the EZ-
LAB with a ribbon cable (see Figure 12.7). The DRAM interface card has one
programmable logic device (GAL16V8), and four 1M x 4 DRAMs,
(TC514400). Since the ADSP-2101 is a 16-bit fixed point DSP, the application
needs four 1M x 4 DRAMs for 16-bit wide memory. The 16V8 PAL provides
the glue logic to create the DRAM control signals, RAS, CAS, and WRITE.

ADSP-2101 EZ-LAB
DRAM INTERFACE

CARD

RIBBON
CABLE

Figure 12.7 EZ-LAB/DRAM Interface Board ConnectionFigure 12.7 EZ-LAB/DRAM Interface Board ConnectionFigure 12.7 EZ-LAB/DRAM Interface Board ConnectionFigure 12.7 EZ-LAB/DRAM Interface Board ConnectionFigure 12.7 EZ-LAB/DRAM Interface Board Connection

1212121212

618618618618618

Hardware InterfacingHardware InterfacingHardware InterfacingHardware InterfacingHardware Interfacing

12.3.912.3.912.3.912.3.912.3.9 DRAM Program ListingsDRAM Program ListingsDRAM Program ListingsDRAM Program ListingsDRAM Program Listings
This section contains several program listings that were tested on the
application described in this chapter.

.module/ram/boot=0 DRAM_read;
/*
File Name: DRAMRD.DSP
Version: Version 0.00
Purpose: Conducts a random read from DRAM
Calling parameters:

setras: points to read location for RAS deassertion
i3: points to the row being accessed
i2: points to the column being accessed

Return Values
ax1: contains data stored in location (row = i3, column = i2)

Registers affected:
ax0, ax1, i2

Computation Time:
5 cycles
Random read from DRAM = 4 cycles (dwait3 = 1)

*/

.external setras;

.entry read;

read: ax0 = dm(i3, m3); /* select row for DRAM access */
ax1 = dm(i2, m2); /* read from column pointed by i2 */
ax0 = dm(setras); /* deassert RAS */
rts;

.endmod;

Listing 12.5 DRAM Read ProgramListing 12.5 DRAM Read ProgramListing 12.5 DRAM Read ProgramListing 12.5 DRAM Read ProgramListing 12.5 DRAM Read Program

619619619619619

1212121212Hardware InterfacingHardware InterfacingHardware InterfacingHardware InterfacingHardware Interfacing

.module/ram/boot=0 DRAM_write;
/*
File Name: DRAMWR.DSP
Version: Version 0.00
Purpose: Conducts a random write to DRAM
Calling parameters:

setras: points to read location for RAS deassertion
i3: points to the row being accessed
i2: points to the column being accessed
mx0: contains the data that requires to be written

Return Values:
data in mx0 stored in location (row = i3, column = i2)

Registers affected:
ax0, i2

Computation Time:
5 cycles
Random (OE controlled write) to DRAM = 4 cycles (dwait3 = 1)

*/

.external setras;

.entry write;

write: ax0 = dm(i3, m3); /* read selects row to be accessed */
dm(i2, m2) = mx0; /* write to column pointed by i2 */
ax0 = dm(setras); /* deassert RAS */
rts;

.endmod;

Listing 12.6 DRAM Write ProgramListing 12.6 DRAM Write ProgramListing 12.6 DRAM Write ProgramListing 12.6 DRAM Write ProgramListing 12.6 DRAM Write Program

1212121212

620620620620620

Hardware InterfacingHardware InterfacingHardware InterfacingHardware InterfacingHardware Interfacing

.module/ram/boot=0 DRAM_refresh;
/*
File Name: DRAMREF.DSP
Version: Version 0.00
Purpose: Conduct memory accesses to DRAM for refresh
Calling Parameters:

refcntr: has the number of rows to refresh
setras: points to the read location for RAS deassertion
i6: contains the address of the first row to refresh

Return Values:
Refresh of the number of rows specified by refcntr

Registers Affected:
ax0, i6

Computation Time:
Total execution time = 3 + cntr(3) cycles;
RAS-only refresh per row = 3 cycles

*/

.external refcntr;

.external setras;

.external row;

.entry refresh;

refresh: cntr = dm(refcntr); /* number of rows to refresh */
do rasonly until ce;
ax0 = dm(i6, m6); /* refresh row i6 */
ax0 = dm(setras); /* deassert RAS */

rasonly: nop; /* inserted to meet RAS precharge */
rts;

.endmod;

Listing 12.7 DRAM Refresh ProgramListing 12.7 DRAM Refresh ProgramListing 12.7 DRAM Refresh ProgramListing 12.7 DRAM Refresh ProgramListing 12.7 DRAM Refresh Program

621621621621621

1212121212Hardware InterfacingHardware InterfacingHardware InterfacingHardware InterfacingHardware Interfacing

.module/boot=0/abs=0 DRAM_test;
/*
File Name: DRAMTST.DSP
Version: Version 0.00
Purpose: Assembly source code for Dynamic memory test. This code was

written for the purpose of testing the DRAM interface board using
the EZ-ICE emulator. It accomodates testing of refresh as well as
independence of address lines.

It is designed with two sections, the first fills all of the
external DRAM and the second section reads and tests stored values
for errors.

This routine also sustains the DRAM storage using a timer
implemented burst refresh every 16ms.

Return Values:
buffer of 256 locations in internal data memory of error values
followed by the actual data values that should have been read back
from the DRAMs.

*/

.const rows = 1024; /* number of rows */

.const cols = 1024; /* number of columns */

.const ref_rows = 1024;

.const maxfill = 0xffff; /* maximum fill value */

.var/dm/ram/seg=int_dm nbr_err, err_row, err_col, err_ov, buffer, refcntr;

.var/dm/ram/seg=row_deassert setras;

.var/dm/ram/seg=row_range row;

.var/dm/ram/seg=col_range col;

.global row, setras, refcntr;

/* _____________ Interrupt vectors ____________ */
jump main; nop; nop; nop; /* reset interrupt */
rti; nop; nop; nop; /* irq2 */
rti; nop; nop; nop; /* sport0 transmit */
rti; nop; nop; nop; /* sport0 receive */
rti; nop; nop; nop; /* sport1 transmit or irq1 */
rti; nop; nop; nop; /* sport1 receive or irq0 */
i6 = ^row; m6 = 0;
call refresh; rti; /* timer expired */

/* _____________ External functions ____________ */
.external refresh, write, read;

(listing continues on next page)

1212121212

622622622622622

Hardware InterfacingHardware InterfacingHardware InterfacingHardware InterfacingHardware Interfacing

/* ________________ M a i n ___________________ */
main: call setup;

ax0 = 0; /* initialize DM variables */
dm(nbr_err) = ax0; /* number of errors encountered */
dm(err_ov) = ax0; /* number of errors plus nbr_err */
dm(err_row) = ax0; /* saves row location of one error */
dm(err_col) = ax0; /* saves col loc. of one error */
ifc = 0x3f; nop; /* clear all pending interrupts */
icntl = b#00111; /* interrupts are edge sensitive*/
ax0 = ref_rows;
dm(refcntr) = ax0; /* initialize refresh counter */
i3 = ^row;
m3 = 1;
l3 = 0; /* init. row pointer */
i2 = ^col;
m2 = 1;
l2 = 0; /* init. column pointer */
i4 = ^buffer;
m4 = 1;
l4 = 0x200; /* init. error buffer */
imask = b#000001; /* enable timer irq*/
mstat = b#0100000; /* begin decrementing */

/* Fill routine - This routine fills all of memory with values in the range of
0 to 0xffff using random writes (non-fast-page mode) so that address
line errors can be debugged. */

ax0 = dm(setras); /* deassert RAS initially */
cntr = rows; /* initialize variables */
mx0 = 0; /* for nested fill loop */
ay1 = 1; /* increment value for fill counter*/
m3 = 0;
mr1 = 0;
do rowfill until ce;

i2 = ^col; /* reset column pointer */
cntr = cols; /* reset cntr to number of colums */
do colfill until ce;
imask = 0; /* disable timer during write */

call write;
imask = 1;
ax1 = maxfill;
ay0 = mx0; /* mx0 is the fill counter */
ar = ay0 + 1; /* compare with max. fill value */
af = ax1 - ay0;
if eq ar = pass af; /* if mx0 = 0xffff, reset to 0 */

colfill: mx0 = ar;
rowfill: modify(i3,m2); /* increment row pointer */

623623623623623

1212121212Hardware InterfacingHardware InterfacingHardware InterfacingHardware InterfacingHardware Interfacing

/* Check routine - reads stored values and compares them to actual filled
values, if a difference is encountered in the read value it is
accumulated in the error routine, which stores actual and erroneous
values. */

reread: i3 = ^row; /* reset row pointer */
i2 = ^col; /* reset column pointer */
mr0 = 0; /* mr0 = check counter */
cntr = rows; /* cntr = number of rows */
do rowread until ce;

i2 = ^col;
cntr = cols;
do colread until ce;

imask = 0; /* disable timer during read */
call read;
imask = 1;
ay0 = mr0;
ar = dm(nbr_err);
af = ax1 - ay0;
if ne call error;
ax1 = maxfill;
ar = ay0 + 1;
af = ax1 - ay0;
if eq ar = pass af; /* if mr0 = 0xffff, reset it to 0 */

colread: mr0 = ar;
rowread: modify(i3,m2); /* increment row pointer */

sr1 = dm(nbr_err); /* sr1 + mr0 = number of errors */
mr0 = dm(err_ov);
ar = sr1;
ar = pass ar; /* this tests refresh ability */
if eq jump reread; /* continually read until error */

wait: idle; /* set breakpoint here in emulation */
jump wait;

/* _________________ End Main _________________ */

/* _______________ Subroutines ________________ */
error: ay1 = maxfill; /* if an error occurs */

ar = dm(nbr_err);
af = ar - ay1; /* add it to nbr_err or err_ov */
if ne jump not_ov;
ay1 = 1;
ax1 = dm(err_ov);
ar = ax1 + ay1;
dm(err_ov) = ar;
jump cont;

(listing continues on next page)

1212121212

624624624624624

Hardware InterfacingHardware InterfacingHardware InterfacingHardware InterfacingHardware Interfacing

not_ov: ay1 = 1;
ar = ar + ay1;
dm(nbr_err) = ar; /* save 256 error values */

cont: dm(i4, m4) = ax1; /* saves error value followed by */
dm(i4, m4) = ay0; /* actual value in internal DM */
dm(err_row) = i3; /* saves last error row and */
dm(err_col) = i2; /* column location */
rts;

setup: ax0 = 0x0003;
dm(0x3ffb) =ax0; /* TSCALE */
ax0 = 0xc350; /* 50,000 for 16ms per interrupt */
dm(0x3ffc) =ax0; /* TCOUNT */
dm(0x3ffd) =ax0; /* TPERIOD */
ax0=0x0200;
dm(0x3ffe)=ax0; /* dWait3 = 1 WS */
ax0=0x0000;
dm(0x3ffa)=ax0; /* No Sport functions enabled */
dm(0x3ff9)=ax0;
dm(0x3ff8)=ax0;
dm(0x3ff7)=ax0;
dm(0x3ff6)=ax0;
dm(0x3ff5)=ax0;
dm(0x3ff4)=ax0;
dm(0x3ff3)=ax0;
dm(0x3ff2)=ax0;
dm(0x3ff1)=ax0;
dm(0x3ff0)=ax0;
dm(0x3fef)=ax0;
dm(0x3fff)=ax0;
rts;

.endmod;

Listing 12.8 DRAM Test ProgramListing 12.8 DRAM Test ProgramListing 12.8 DRAM Test ProgramListing 12.8 DRAM Test ProgramListing 12.8 DRAM Test Program

625625625625625

1212121212Hardware InterfacingHardware InterfacingHardware InterfacingHardware InterfacingHardware Interfacing

.module/boot=0/abs=0 DRAM_record;
/*
File Name: DRAMRCRD.DSP
Version: Version 0.00
Purpose: Assembly source code for u-law companded speech sample

storage and playback. This routine enables approximately
2 minutes and 11 seconds of storage on the DRAM interface
board. The maximum storage time possible is twice that
mentioned above using u-law companding (8-bit word length).

Return Values:
IRQ2 - switch between record and forward playback
FLAG_IN - switch between foward and backward playback.
Note: pressing FLAG_IN in record mode causes backward
playback.
record mode - flag_out is low
playback mode - flag_out is high

*/
.const rows = 0x400; /* # of rows and columns on 1M DRAM */
.const cols = 0x400;
.const lastrow = 0x13ff;
.const lastcol = 0x33ff;
.const ref_rows = 0x10;
.var/dm/ram/seg=int_dm lastr, lastc, sflag, flagin, refcntr; .var/dm/ram/
seg=row_deassert setras; /* location for RAS deselection */
.var/dm/ram/seg=row_range row; /* row selection range */ .var/dm/ram/
seg=col_range col; /* column selection range */
.global row, setras, refcntr;

/* ____________ Interrupt vectors ______________ */
jump main; nop; nop; nop; /* reset interrupt */
jump changestate; nop; nop; nop; /* irq2 */
rti; nop; nop; nop; /* sport0 transmit */
jump record; nop; nop; nop; /* sport0 receive */
rti; nop; nop; nop; /* sport1 transmit or irq1 */
rti; nop; nop; nop; /* sport1 receive or irq0 */
rti; nop; nop; nop; /* timer expired */

/* ____________ External functions ______________ */
.external refresh, read, write;

/* _____________ Interrupt handlers _____________ */
changestate: ax0 = 0; /* pressing IRQ2 causes state change */

dm(flagin) = ax0; /* clear backward playback mode */
ax0 = dm(sflag); /* if 0 make 1 = record mode */
ar = pass ax0;
if ne jump set_s1; /* sflag = 0 = playback mode */
ax0 = 0x0001; /* sflag = 1 = record mode */
dm(sflag) = ax0;
rti;

(listing continues on next page)

1212121212

626626626626626

Hardware InterfacingHardware InterfacingHardware InterfacingHardware InterfacingHardware Interfacing

set_s1: ax0 = 0; /* if 1 make 0 = playback mode */
dm(sflag) = ax0;
dm(lastr) = i3; /* save row location for wraparound */
dm(lastc) = i2; /* save column location for wraparound */
rti;

record: ax0 = dm(flagin); /* if flagin = 1 playback backwards */
ar = pass ax0;
if ne jump yalp;
ax0 = dm(sflag); /* if sflag = 0 playback forwards */
ar = pass ax0;
if eq jump play;
reset flag_out; /* flag_out = low */
mx0 = rx0;
tx0 = mx0;
call write; /* read a sample and write it to DRAM */
call inc_loc; /* increment column/row pointer */
ax0 = i3; /* compare inc’d location with */
ay0 = lastrow; /* ...the last row and column */
ar = ax0 - ay0;
if le jump refr;
ax0 = i2;
ay0 = ^col;
ar = ax0 - ay0;
if ne jump refr;
ax0 = 0; /* if the last row and column available */
dm(sflag) = ax0; /* has been reached save the current */
ax0 = lastrow; /* row and column location for */
dm(lastr) = ax0; /* wraparound */
ax0 = lastcol;
dm(lastc) = ax0;
jump refr;

play: call read; /* playback forward */
tx0 = ax1; /* read from DRAM and output sample */
call inc_loc;
ax0 = dm(lastr); /* compare to last column and row, */
ay0 = i3; /* if so set to row and column 0 */
ar = ax0 - ay0;
if ne jump refr;
ax0 = dm(lastc);
ay0 = i2;
ar = ax0 - ay0;
if ne jump refr;
i3 = ^row;
i2 = ^col;
jump refr;

yalp: call read; /* playback backward */

627627627627627

1212121212Hardware InterfacingHardware InterfacingHardware InterfacingHardware InterfacingHardware Interfacing

tx0 = ax1; /* read from DRAM and output sample */
ax0 = i2; /* decrement the colunm/row pointer */
ay0 = ^col;
ar = ax0 - ay0;
if ge jump done;
i2 = lastcol;
modify(i3, m2);

done: ax0 = i3; /* compare to row and column 0, if so */
ay0 = ^row; /* reset to last row and last column */
ar = ax0 - ay0;
if ge jump refr;
ax0 = i2;
ay0 = lastcol;
ar = ax0 - ay0;
if ne jump refr;
i3 = dm(lastr);
i2 = dm(lastc);

refr: call refresh;
ar = i6;
ay1 = lastrow; /* if last row to refresh has been */
af = ar - ay1; /* reached reset it to row 0 */
if lt jump cont;
i6 = ^row;

cont: rti;

/* _________________ M a i n ____________________ */
main: call setup; /* initialize sport registers */

ax0 = 0; /* initialize state variables */
dm(sflag) = ax0;
dm(flagin) = ax0;
ax0 = ref_rows; /* initialize refresh counter */
dm(refcntr) = ax0;
i6 = ^row;
m6 = 1; l6 = 0; /* init. refresh row pointer */
i3 = ^row;
m3 = 0; l3 = 0; /* init. row pointer */
i2 = ^col;
m2 = 1; l2 = 0; /* init. column pointer */
ax0 = dm(setras); /* initially deassert RAS */
ifc = 0x3F; NOP;
icntl = b#00111; /* interrupts are edge sensitive */
imask = b#100000; /* enable irq2 */
idle; /* wait for irq2 */

(listing continues on next page)

1212121212

628628628628628

Hardware InterfacingHardware InterfacingHardware InterfacingHardware InterfacingHardware Interfacing

state_1: reset flag_out; /* flag_out = low (indicate record) */
ax0 = 0;
dm(flagin) = ax0;
i3 = ^row;
i2 = ^col;
m2 = 1;
imask = b#101000; /* enable irq2 and sp0 receive */

wait1: idle; /* receive until flag_in or irq2 */
ax0 = dm(sflag); /* or last column and row */
ar = pass ax0; /* check mode (record/playback) */
if eq jump playback;
if not flag_in jump f1; /* if not_flagin play backwards */
jump wait1;

f1: if not flag_in jump f1; /* first debounce flag_in */
dm(lastr) = i3; /* save row location for wraparound */
dm(lastc) = i2; /* save column location for wraparound */
jump kabyalp;

playback: set flag_out; /* flag_out = high (indicate playback) */
ax0 = 0;
dm(flagin) = ax0;
m2 = 1; /* reset modify value to + 1 */
i3 = ^row; /* reset to row and col 0 */
i2 = ^col;

wait2: idle; /* wait for irq2 or flag_in */
ax0 = dm(sflag);
ar = pass ax0; /* if sflag = 0 = record */
if ne jump state_1;
if not flag_in jump f3; /* if FLAG_IN play backwards */
jump wait2;

f3: if not flag_in jump f3; /* first debounce flag_in */

kabyalp: set flag_out; /* set up for backward play */
m2 = -1; /* modify for column = -1 */
ax0 = 0; /* signify playback mode */
dm(sflag) = ax0;
ax0 = 1; /* signify play backwards mode */
dm(flagin) = ax0;
i3 = dm(lastr); /* init. to last row and col. location */
i2 = dm(lastc);

wait3: idle; /* wait for irq2 or flag_in */
if not flag_in jump f5; /* switch back to playback */
ax0 = dm(sflag);
ar = pass ax0; /* if sflag = 0, record again */

629629629629629

1212121212Hardware InterfacingHardware InterfacingHardware InterfacingHardware InterfacingHardware Interfacing

if ne jump state_1;
jump wait3;

f5: if not flag_in jump f5; /* first debounce flag_in */
jump playback;

/* ________________ End Main ___________________ */

/* ______________ Subroutines _________________ */
inc_loc: ax0 = i2; /* increment column and/or row pointer */

ay0 = lastcol;
ar = ax0 - ay0;
if le jump done1;
i2 = ^col;
modify(i3, m2);

done1: rts;

setup: ax0 = 0;
dm(0x3ffb) =ax0; /* TSCALE */
dm(0x3ffc) =ax0; /* TCOUNT */
dm(0x3ffd) =ax0; /* TPERIOD */
ax0=0x0200;
dm(0x3ffe)=ax0; /* Dwait3 = 1 WS */
ax0=0x0000;
dm(0x3ff9)=ax0; /* Disable Receive Multichannels */
dm(0x3ffa)=ax0;
dm(0x3ff7)=ax0; /* Disable Transmit Multichannels */
dm(0x3ff8)=ax0;
ax0=0x6b27; /* Multichannel disabled */
dm(0x3ff6)=ax0; /* Int. gen serial clock */

/* Receive frame sync required, width 0 */
/* Transmit frame sync required, width 0 */
/* Int trans, receive frame sync enabled */
/* u-law companding, 8 bit word length */

ax0=0x0002;
dm(0x3ff5)=ax0; /* Generate 2.048 MHz serial clock */
ax0=255;
dm(0x3ff4)=ax0; /* Divide by 256 for 8KHz sampling rate */
ax0=0x0000;
dm(0x3ff3)=ax0; /* SPORT0 AUTOBUFF disabled */
dm(0x3ff2)=ax0; /* SPORT1 CNTL disabled */
dm(0x3ff1)=ax0; /* SPORT1 timer not used */
dm(0x3fef)=ax0; /* SPORT1 AUTOBUFF disabled */
ax0 = 0x1000;
dm(0x3fff)=ax0; /* SPORT0 enabled, No PM Wait States */

/* BOOT Wait State 0, BOOT page 0 */
rts;

.endmod;

Listing 12.9 DRAM Speech Sample Record/Playback ProgramListing 12.9 DRAM Speech Sample Record/Playback ProgramListing 12.9 DRAM Speech Sample Record/Playback ProgramListing 12.9 DRAM Speech Sample Record/Playback ProgramListing 12.9 DRAM Speech Sample Record/Playback Program

1212121212

630630630630630

Hardware InterfacingHardware InterfacingHardware InterfacingHardware InterfacingHardware Interfacing

12.3.1012.3.1012.3.1012.3.1012.3.10 DRAM Interfacing ReferencesDRAM Interfacing ReferencesDRAM Interfacing ReferencesDRAM Interfacing ReferencesDRAM Interfacing References
Analog Devices:

ADSP-2100 Family User’s Manual
ADSP-2100 Family EZ-Tool Manual
ADSP-2100 Family Assembler Tools & Simulator Manual
Digital Signal Processing Laboratory

Using the ADSP-2101 Microcomputer
ADSP-2101 and ADSP-21msp50 data sheets

Data I/O Corp.,
Abel Design Software User’s Manual, 1990.

Driscoll, Frederick F.,
“Dynamic Refresh”, Interfacing the 68000 Microprocessor

pgs. 358-65, 173-177.

Clements, Alan,
“Designing Dynamic Read/Write RAM Systems”, Microprocessor

Systems Design, pg. 275-93.

Steve Gumm, Carl T. Dreher,
“Unraveling the Intricacies of Dynamic RAMs”, Dynamic RAMs Part 1,

pg. 162.

Toshiba, Signetics, SGS Thomson data sheets.

631631631631631

1212121212Hardware InterfacingHardware InterfacingHardware InterfacingHardware InterfacingHardware Interfacing

12.412.412.412.412.4 LOADING AN ADSP-2101 PROGRAM VIA THE SERIAL PORTLOADING AN ADSP-2101 PROGRAM VIA THE SERIAL PORTLOADING AN ADSP-2101 PROGRAM VIA THE SERIAL PORTLOADING AN ADSP-2101 PROGRAM VIA THE SERIAL PORTLOADING AN ADSP-2101 PROGRAM VIA THE SERIAL PORT
For many DSP applications, it is desirable to have a DSP processor under
the control of a host computer. In these situations, the host computer
would download a program for the DSP to execute. The ADSP-2101
provides two serial ports suitable for program download from a host
computer. This section note details the ADSP-2101 monitor program for
downloading from a serial port. The monitor program itself would be
booted from EPROM or other boot memory. While this example uses
serial port zero, the principal could be extended to download via a
memory-mapped parallel port.

12.4.112.4.112.4.112.4.112.4.1 A MonitorA MonitorA MonitorA MonitorA Monitor
The task of the host computer is to download a series of instructions to the
ADSP-2101 for execution. The ADSP-2101 receives the incoming
instructions, loads them into program memory and when all instructions
have been received, executes them. Prior to and during the download
from the host, the ADSP-2101 executes a monitor program. This monitor
activates the serial port, receives the instructions and places them in
program memory for execution.

The ADSP-2101 instruction is twenty-four bits wide but many hosts,
including eight-bit processors, more readily handle byte-wide data. Since
the serial port can accommodate serial words from three to sixteen bits in
length, byte-length data words are easily received.

Whenever a program memory write occurs, the sixteen most significant
bits are supplied by the source register, explicitly named in the
instruction, and the eight LSBs are supplied by the PX register. The basic
tactic of the monitor program is to assemble the two most significant bytes
in a data register (using the Shifter) and load PX explicitly with the least
significant byte. A program memory write then writes the correct twenty-
four bit instruction.

In addition to the transfer of instructions through the serial port into
program memory, the monitor program must also know when the
download is complete and execution can begin. A straight forward
method is to count the number of instructions sent to the serial port. A
count value is sent to the ADSP-2101 before the first instruction. This is the
count of the instructions to follow. After each instruction is downloaded,
the count can be decremented.

1212121212

632632632632632

Hardware InterfacingHardware InterfacingHardware InterfacingHardware InterfacingHardware Interfacing

The downloaded program must avoid overwriting the monitor program
while the monitor executes. The last instruction of the monitor program is
identified by a global label which also identifies the beginning of the
available space for downloaded code. The monitor program must be
linked with the downloaded program so that the downloaded program
makes the correct address references including the reference to this global
label.

The indirect addressing capabilities of the Data Address Generators on the
ADSP-2101 make it easy to cycle through the correct sequential locations
starting with the label.

The final concern is the interrupt table. If the downloaded program is
interrupt-driven, the interrupt table (program memory H#0000 to
H#001C) must contain valid instructions for servicing expected interrupts.

There are several ways to do this. First, the monitor program itself could
contain the valid interrupt table for the program to be downloaded. This
assumes that the interrupt structure of the downloaded program is known
when the monitor program is created. Second, the interrupt table may be
downloaded through the serial port just as the rest of the program is. The
DAG can loaded with the start address of the interrupt table and the
instructions can be loaded, but you may not overwrite the interrupt being
used to receive the data on the serial port until all instructions have been
received.

The monitor program example does not load an interrupt table. The best
approach is dependent on your application.

12.4.212.4.212.4.212.4.212.4.2 ImplementationImplementationImplementationImplementationImplementation
The first task of the monitor program is to setup and enable the serial port.
Serial ports on the ADSP-2101 are extremely flexible in terms of framing
options, word lengths and timing. The ADSP-2101 serial ports may receive
the frame synch and serial clock from the host processor or generate them
internally.

As the program is downloaded from a host computer, the ADSP-2101
looks to the host for serial port information. That is, the serial port frame
synchronization and serial port clock are supplied by the host computer.
For purposes of illustration, the code that appears at the end of this section
uses normal framing and external receive frame synchronization. For
externally generated serial clocks the ADSP-2101 can support frequencies
up to the processor instruction rate.

633633633633633

1212121212Hardware InterfacingHardware InterfacingHardware InterfacingHardware InterfacingHardware Interfacing

The flow for the monitor program is shown in Figure 12.8.

Call
Initializations

NO

 YES

 YES

NO

NO
Input 1st byte

 YES

Input 2nd byte

NO

 YES

NO Load middle
byte into SR0

 YES

Load LS byte
into PX register

Write 24 bit ins. to PM,
increment pointer,
decrement count

ins_count
set?

Load MS byte
into SI register

1st byte loaded?

Serial
Interrupt?

2nd byte loaded?

1st byte loaded?

Figure 12.8 Boot Program Flow DiagramFigure 12.8 Boot Program Flow DiagramFigure 12.8 Boot Program Flow DiagramFigure 12.8 Boot Program Flow DiagramFigure 12.8 Boot Program Flow Diagram

1212121212

634634634634634

Hardware InterfacingHardware InterfacingHardware InterfacingHardware InterfacingHardware Interfacing

Once the serial ports are enabled, the monitor program waits for a serial
port interrupt signifying that a serial word has been received. The first
two serial words received are the instruction count. As the serial word is
eight bits, two serial port words make up the instruction count. The
separate bytes of the instruction count are combined in the shifter and
loaded into data memory. This count represents the number of
instructions to be downloaded from the host and does not include the
interrupt table. The interrupts are handled automatically, as the interrupt
table has a fixed length.

With the count downloaded, the ADSP-2101 is ready to accept instructions
through the serial port. Instructions are downloaded a byte at a time just
as the instruction count was. The most significant byte is first. It is loaded
into the SI register and the byte count (“count”) is decremented. The
middle byte of the instruction is loaded into the SR0 register. These two
bytes are combined in the shifter with the results residing in the SR0
register. Once again the byte count is decremented. Finally, the least
significant byte is loaded into the PX register. Now that all three bytes are
loaded into registers on the ADSP-2101, the downloaded instruction can
be written to program memory.

When all is downloaded, a jump to the new downloaded program is all
that is necessary to begin execution.

The monitor program is shown in Listing 12.10.

A monitor program initializes the serial port and receives instructions,
writing them into program memory, then beginning execution. This
method of booting is useful when the ADSP-2101 is under the control of a
host computer or controller. Any size program may be downloaded (up to
the full addressing capability of the ADSP-2101) with this particular
method of implementation. Only the program memory used by the
monitor program (eighty-six instructions) cannot be loaded. That space
could, however, be used for program memory data storage.

635635635635635

1212121212Hardware InterfacingHardware InterfacingHardware InterfacingHardware InterfacingHardware Interfacing

.Module/ram/BOOT=0 serial_boot_monitor;

.Var/dm count; {counts bytes}

.VAR/DM ins_count; {counts instructions}

.GLOBAL code_start; {end of monitor space}

JUMP restarter; NOP; NOP; NOP; {restart vector}
RTI; NOP; NOP; NOP; {IRQ2 not used}
RTI; NOP; NOP; NOP; {sport0 TX not used}
JUMP serial; NOP; NOP; NOP; {sport0 RX }
RTI; NOP; NOP; NOP; {sport1 TX not used}
RTI; NOP; NOP; NOP; {sport1 RX not used}
RTI; NOP; NOP; NOP; {no timer used}

restarter: CALL initializations;
wait_loop: IDLE;

JUMP wait_loop;

initializations: I4 = H#3ff3; {pointer to mem map reg}
I5 = PM(^code_start); {pointer to start of prog}
I6 = 0000; {pointer to interrupt tab}
M4 = 0;
M5 = 1;

DM(count) = 1; {count val for # of bytes}

DM(I4,M5) = 0; {disable autobuffer}
DM(I4,M5) = 0; {no frame divide modulus}
DM(I4,M5) = 0; {no clk divide modulus}
DM(I4,M5) = H#2007; {extrnl RFS & SCLK, no compand}

{SLEN 8, no multichannel}
DM(H#3fff) = H#1000; {enable sport0}

DM(ins_count) = H#FFFF;

imask = 8; {sport0 rec interrupt only}
RTS;

serial: AY1 = DM(ins_count);
AR = PASS AY1;
IF GT JUMP next_instruction; {get next instruction}
IF LT JUMP load_word_count; {get number of instructions}
IF EQ IMASK=0; {done; turn off interrupts}
JUMP code_start; {start downloaded program}

{load the count, that is, the number of instructions to be downloaded}
{this happens in two bytes The most significant byte first}

(listing continues on next page)

1212121212

636636636636636

Hardware InterfacingHardware InterfacingHardware InterfacingHardware InterfacingHardware Interfacing

load_word_count: AY0 = DM(count); {is this 1st or 2nd byte}
AR = PASS AY0;
IF NE JUMP first_byte;
IF EQ JUMP second_byte;

first_byte: SI = RX0; {first byte decrem. count}
AR = AY0 - 1;
DM(count) = AR;
RTI;

second_byte: SR0 = RX0; {second byte...}
SR = SR OR LSHIFT SI BY 8 (LO); {put two bytes together}
DM(ins_count) = SR0; {store in ins_count}
DM(count) = 3; {load count for ins.}
RTI;

{load the next instruction. Instructions are 24 bits long and appear}
{at the serial port in 8 bit fragments. The most significant byte 1st}

next_instruction: AX0 = 2; {decide which byte is due}
AY0 = DM(count);
AR = AX0 - AY0;

IF LT JUMP most_sig_byte;
IF EQ JUMP middle_byte;
IF GT JUMP least_sig_byte;

most_sig_byte: SI = RX0; {load MS byte into SI}
AR = AY0 - 1; {decrement count}
DM(count) = AR;
RTI;

middle_byte: SR0 = RX0; {load Middle into SR}
SR = SR OR LSHIFT SI BY 8 (LO); {put MS and middle together}
AR = AY0 - 1; {decrement count}
DM(count) = AR;
RTI;

least_byte: PX = RX0; {put LS byte into PX}
PM(I5,M5) = SR0; {write SR0 into PM}

{PX provides 8 LS bits}
DM(count) = 3; {reset byte count}
AR = AY1 - 1; {decrement ins count}
DM(ins_count) = AR;
RTI;

code_start: NOP;

.ENDMOD;

Listing 12.10 Monitor Program ListingListing 12.10 Monitor Program ListingListing 12.10 Monitor Program ListingListing 12.10 Monitor Program ListingListing 12.10 Monitor Program Listing

637637637637637

1212121212Hardware InterfacingHardware InterfacingHardware InterfacingHardware InterfacingHardware Interfacing

12.512.512.512.512.5 MEMORY INTERFACING FOR THE ADSP-2105MEMORY INTERFACING FOR THE ADSP-2105MEMORY INTERFACING FOR THE ADSP-2105MEMORY INTERFACING FOR THE ADSP-2105MEMORY INTERFACING FOR THE ADSP-2105
In order to utilize the full potential of the ADSP-2105, several techniques
for memory allocation and development tools usage will be discussed. The
techniques and examples described here can also be applied to any of the
processors in the ADSP-2100 family.

This section will describe several example systems, along with the correct
development tool set-ups to implement them. Listings of example
architecture descriptions, module declarations, and linker-output map
files will be provided for each example. A description of C-compiler use
for each case will follow the examples.

12.5.112.5.112.5.112.5.112.5.1 Example System1:Example System1:Example System1:Example System1:Example System1:
Using Boot Pages For Program MemoryUsing Boot Pages For Program MemoryUsing Boot Pages For Program MemoryUsing Boot Pages For Program MemoryUsing Boot Pages For Program Memory

An ADSP-2105 system may contain up to eight pages of boot memory.
ADSP-2105 boot pages are 1K long, as opposed to ADSP-2101/2111 boot
pages which are 2K long.

To use boot pages, the following steps should be taken.

Builder In your .SYS file, use the ADSP2105 directive. Define
BOOT ROM pages as needed for your system.

Assembler Define each module as bootable. (.MODULE / boot=x,
where x=0-7)

Linker Use linker as you normally would.

Splitter Use the -bs[1024] option. This sets the generated boot
page size to 1024.

The example system provided uses all eight boot pages. Each module
performs a dummy task and then boots in the next page. Note that in the
.map file (ex1.map), the data memory declared for each overlaps. This is
because each boot page is treated as a separate run-time context by the
processor. Each boot page is an entirely different program with no relation
to any other program; thus memory space is reused for each boot page. If
there is a need to share variables between boot pages, the variables must
be defined as static variables when declared. This forces the linker to place
these variables in high memory and not to overwrite them when booting
in a new page.

1212121212

638638638638638

Hardware InterfacingHardware InterfacingHardware InterfacingHardware InterfacingHardware Interfacing

12.5.212.5.212.5.212.5.212.5.2 Example System 2:Example System 2:Example System 2:Example System 2:Example System 2:
Booting With The -loader Option (RAM Initialization)Booting With The -loader Option (RAM Initialization)Booting With The -loader Option (RAM Initialization)Booting With The -loader Option (RAM Initialization)Booting With The -loader Option (RAM Initialization)

Like Example 1, this system uses the concept of boot pages to store the
executable code. What is different in this system is the automatic
initialization of external PM RAM as well as internal and external DM
RAM. This initialization is done through the use of the -loader option
when using the Prom Splitter (see ADSP-2100 Family Development Software,
Release 3.1 Release Note for a description of the -loader option operation).

In order to use the -loader option, the following steps must be taken.

Builder In your .SYS file, define internal PM and DM RAM
segments, as well as any desired external PM and DM
RAM segments. Define BOOT ROM pages (but don’t
assign any modules to it). Boot page 0 will be filled with
the splitter-generated loader code. User code will be
placed in subsequent boot pages (1 and higher if
needed).

Assembler DO NOT use the “BOOT = xx” qualifier in any module
description. (Modules may, however, be defined to
reside in internal PM RAM segments.)

Linker Use linker as you normally would. Linker will place
modules according to their definition and the
architecture description.

Splitter Use -loader and -bs[1024]
(and -bb[] if needed) options. The splitter will create a
bootable image file which will load program memory
with the appropriate modules, and data memory with
appropriate values, according to their definitions.

Do not use the -pm, -dm, or -bm switches when using the -loader
option.

The boot-page qualifiers are removed from the module declarations
because, on chip reset, the loader option causes special code to be booted
into internal PM RAM which copies the ROM’s contents into the
appropriate RAM spaces. The executable code will be written into internal
PM RAM when the initialization procedure is complete. This operation is
transparent to the user and system operation on startup will appear to be
the same as for Example 1, except that RAM will be initialized

639639639639639

1212121212Hardware InterfacingHardware InterfacingHardware InterfacingHardware InterfacingHardware Interfacing

automatically. The linker output file (.BNM image file) should be used to
burn boot memory PROMs. The bootable image file will contain multiple
pages. The -loader routine will be placed on boot page 0. User modules
will be placed in ROM starting on boot page 1.

12.5.312.5.312.5.312.5.312.5.3 Example System 3:Example System 3:Example System 3:Example System 3:Example System 3:
Using Internal & External PM RAM For CodeUsing Internal & External PM RAM For CodeUsing Internal & External PM RAM For CodeUsing Internal & External PM RAM For CodeUsing Internal & External PM RAM For Code

If your particular application requires code that is longer than the 1K
internal PM RAM limit of the ADSP-2105, do not despair. The 2100 family
PROM splitter -loader option will allow these types of programs to be
used with the ADSP-2105. As described in the previous section, the loader
option will initialize external memory. This feature can be used to
initialize external PM RAM with executable code while still using the
internal PM RAM to its fullest extent.

System development should follow the following steps.

Builder In your .SYS file, define sufficient internal and external
PM RAM space. Define BOOT ROM pages (but don’t
assign any modules to it) sufficient for the -loader code
and your code.

Assembler DO NOT use the “BOOT = xx” qualifier in any module
description. (Modules may, however, be defined to
reside in internal PM RAM segments.)

Linker Use linker as you normally would. Linker will place
modules according to their definition and the
architecture description.

Splitter Use -loader and -bs[1024] options. The splitter will
create a bootable image file which will load program
memory with the appropriate module according to their
definitions.

Do not use the -pm, -dm, or -bm switches when using the
-loader option.

This strategy is especially useful if your application software can be
subdivided into time-critical and non-time-critical modules. The time-critical
modules should be set to reside in the internal PM segment, while non-
time-critical modules can be placed in external PM RAM.

1212121212

640640640640640

Hardware InterfacingHardware InterfacingHardware InterfacingHardware InterfacingHardware Interfacing

12.5.412.5.412.5.412.5.412.5.4 Example System 4:Example System 4:Example System 4:Example System 4:Example System 4:
Using External PM ROMUsing External PM ROMUsing External PM ROMUsing External PM ROMUsing External PM ROM

Another useful method for partitioning code too big to fit in one page of
memory is to use a combination of boot memory and external ROM. To
accomplish this both internal and external ROM modules must be defined
to reside in the same boot page. Since boot page size is limited to 1K,
defining the modules this way forces the linker to place one module
externally while keeping it in the same run-time context.

To implement this system, the following steps should be taken.

Builder In your .SYS file, use the ADSP2105 directive. Define the
necessary boot page. Define an appropriate PM ROM
segment.

Assembler Define each module to be bootable from boot page 0
(/boot=0).

Linker Use linker as you normally would.

Splitter Run the splitter twice--once to generate the BOOT ROM
and once to generate the program memory ROM.

The example system provided uses one page of boot memory along with
1K of internal program ROM. The program ROM module (ex4_2.dsp) is
declared to reside in program ROM and is defined with the /boot=0
directive. This qualifier insures ex4_2.dsp is included in the same run-time
context as the module defined to reside in the boot ROM (ex4_1.dsp).

12.5.512.5.512.5.512.5.512.5.5 Hardware ImplicationsHardware ImplicationsHardware ImplicationsHardware ImplicationsHardware Implications
The ADSP-2105 allows several boot EPROM configurations to be used.
Refer to the Memory Interface chapter of the ADSP-2100 Family User’s
Manual for an in-depth discussion of the boot memory interface.

For direct plug-in compatibility with an ADSP-2101, use the following
connections (for 27512).

ADSP-2105 A0 - A13 => EPROM A0 - A13
ADSP-2105 D22 - D23 => EPROM A14 - A15

This allows for eight 1K boot pages on 2K boundaries.

641641641641641

1212121212Hardware InterfacingHardware InterfacingHardware InterfacingHardware InterfacingHardware Interfacing

Since the ADSP-2105 only uses 1K boot pages, it is possible to access all
eight boot pages while using a smaller EPROM. To accomplish this, boot
pages can be placed on 1K boundaries by using the Prom Splitter’s
-bb[1024] option and the following hardware connections (for 27256).

ADSP-2105 A0 - A11 => EPROM A0 - A11
ADSP-2105 A12 => no connection
ADSP-2105 A13 => EPROM A12
ADSP-2105 D22 - D23 => EPROM A13 - A14

This connection scheme is also useful with a 27512, where code for
another processor can utilize the upper half of the EPROM.

Note: Using the -bb[1024] option and the above hardware connections is
not compatible with the ADSP-2101. On boot-up, the ADSP-2101 will
always load 2K worth of information from the EPROM. Therefore, this
configuration cannot be used with any ADSP-2101 In-Circuit Emulator™
(ICE) if booting the ICE from the target system. To use an ICE in these
systems, remove the target EPROM and download the executable code
into the ICE’s overlay memory. The same caveat holds true when
simulating the bootable code in the ADSP-2101 simulator using the ‘LR’
command.

12.5.612.5.612.5.612.5.612.5.6 Use Of The C-Compiler With ADSP-2105 SystemsUse Of The C-Compiler With ADSP-2105 SystemsUse Of The C-Compiler With ADSP-2105 SystemsUse Of The C-Compiler With ADSP-2105 SystemsUse Of The C-Compiler With ADSP-2105 Systems
If your application software is derived from C code, the following options
and strategies should be employed when using the C-compiler for the
above example.

Example 1 Use the -b# option when compiling to assign each module to
the appropriate boot page. For example, typing cc21 filename
-b0 would assign the module filename to boot page 0. Also,
modify the run_hdr program so that it will be assigned to the
correct boot page (ex. MODULE/boot=0 run_hdr;). When re-
assembling the modified run_hdr program, ALWAYS use
the -c (case sensitivity) option.

Example 2 DO NOT use the compiler -b# option. The -loader option of
the PROM splitter automatically generates the correct boot
image file. Compile the module as you would normally.

1212121212

642642642642642

Hardware InterfacingHardware InterfacingHardware InterfacingHardware InterfacingHardware Interfacing

Example 3 For memory usage considerations, the -lpm option can be
used. This places literals into PM rather than the default,
DM. This is not a requirement but may come in handy if
memory space is tight. Again, when using the -loader
option, DO NOT use the -b# option when compiling.

Example 4 Modify the run_hdr program to reside in boot page 0 (see
Example 1). For module 1 (INTERNAL), compile with the
-b0 option. For module 2 (EXTERNAL), compile with both
the -b0 and -crom options. This will assign both modules to
the same run-time context and places PM modules into ROM
segments.

12.5.712.5.712.5.712.5.712.5.7 Linking Modules Generated By The C-CompilerLinking Modules Generated By The C-CompilerLinking Modules Generated By The C-CompilerLinking Modules Generated By The C-CompilerLinking Modules Generated By The C-Compiler
For Examples 1, 3, and 4, use the -p option when linking. This places the
run-time libraries on the correct boot pages. For Example 2, link without
this option.

12.5.812.5.812.5.812.5.812.5.8 Additional SuggestionsAdditional SuggestionsAdditional SuggestionsAdditional SuggestionsAdditional Suggestions
If you find that you have memory limitations, such as the stack having no
room to grow (examine the .MAP file generated by the linker’s -x option),
use the -s### option when you link to define the minimum stack size
(default = 1). This is important because the linker allocates internal DM
memory first, starting with the stack, until internal DM is filled. If you
suspect that the stack will grow past its default boundaries, such that it
may start to overwrite DM variables, give yourself some room using the
-s### option. The linker will reserve the specified space and then proceed
to fill internal memory until space is exhausted. The linker will then start
to fill external DM RAM if it exists. The C-compiler does not allow you to
explicitly define variables in external memory. External memory is
allocated only after internal memory is filled.

643643643643643

1212121212Hardware InterfacingHardware InterfacingHardware InterfacingHardware InterfacingHardware Interfacing

12.5.912.5.912.5.912.5.912.5.9 About The Example ProgramsAbout The Example ProgramsAbout The Example ProgramsAbout The Example ProgramsAbout The Example Programs
The disk provided with this book contains sample architecture, assembler,
and C files for each example system. Batch files are also provided to create
final bootable image files for each example system so that their operation
can be examined in the simulator or emulator. Please examine these files
and feel free to use them as a framework for your own systems.

Example 1 System file ex1.sys
Source modules ex1_1.dsp, ex1_2.dsp, ex1_3.dsp,

ex1_4.dsp,
ex1_5.dsp, ex1_6.dsp, ex1_7.dsp,
ex1_8.dsp

Batch file makeex1.bat
C source modules ex1_1.c, ex1_2.c, ex1_3.c, ex1_4.c,

ex1_5.c, ex1_6.c, ex1_7.c, ex1_8.c
C batch file makeex1c.bat

Each source module for Example 1 resides on a separate boot page. Each
module performs a dummy task and then boots in the next page. Note in
the .map file (ex1.map) that the data memory variables declared in each
module overlap. This occurs because each boot page is considered to be a
separate run-time context by the processor system.

In the C modules, the construct

*(short *)Sys_Ctrl_reg = BOOTx

is used to boot in page x.

Example 2 System file ex2.sys
Source module ex2_1.dsp
Batch file makeex2.bat
C source module ex2_1.c
C batch file makeex2c.bat

The source module for Example 2 declares and initializes two buffers
stored in RAM and then performs a dummy task. The PROM Splitter
creates two boot pages (0 and 1). The loader code is placed on boot page 0
and the source code on boot page 1. In the simulator you will see the
loader code booted in first. This code initializes the proper memory
locations and then boots in the source module.

1212121212

644644644644644

Hardware InterfacingHardware InterfacingHardware InterfacingHardware InterfacingHardware Interfacing

Example 3 System file ex3.sys
Source module ex3_1.dsp, ex3_2.dsp
Batch file makeex3.bat
C source module ex3_1.c, ex3_2.c
C batch file makeex3c.bat

One source module in Example 3 is defined to reside in internal PM RAM,
the other in external PM RAM. When viewing the C example, the code is
loaded starting with internal memory, until it is filled, and then will begin
placing code in external memory, if needed. It is not possible to explicitly
place modules in internal or external memory in C. If this feature is
desired, the C-compiler-generated assembly modules must be hand
modified for explicit placement.

Example 4 System file ex4.sys
Source module ex4_1.dsp, ex4_2.dsp
Batch file makeex4.bat
C source module ex4_1.c, ex4_2.c
C batch file makeex4c.bat

The program ROM module (ex4_2.dsp) is declared to reside in both
program ROM and on the boot page. Note that in contrast to Example 1,
there is no data memory overlap, since both modules are part of the same
run-time context.

645645645645645

1212121212Hardware InterfacingHardware InterfacingHardware InterfacingHardware InterfacingHardware Interfacing

12.5.1012.5.1012.5.1012.5.1012.5.10 Appendix: Example System 1Appendix: Example System 1Appendix: Example System 1Appendix: Example System 1Appendix: Example System 1

ex1.sys

.SYSTEM example1;

.ADSP2105;

.MMAP0;

.seg/rom/boot=0 boot_page_0[1024]; {2105 1K boot size}

.seg/rom/boot=1 boot_page_1[1024]; {2105 1K boot size}

.seg/rom/boot=2 boot_page_2[1024]; {2105 1K boot size}

.seg/rom/boot=3 boot_page_3[1024]; {2105 1K boot size}

.seg/rom/boot=4 boot_page_4[1024]; {2105 1K boot size}

.seg/rom/boot=5 boot_page_5[1024]; {2105 1K boot size}

.seg/rom/boot=6 boot_page_6[1024]; {2105 1K boot size}

.seg/rom/boot=7 boot_page_7[1024]; {2105 1K boot size}

.seg/PM/ram/abs=0/code/data int_pm[1024]; {2105 1K int pm}

.seg/DM/ram/abs=h#3800/data int_dm[512]; {2105 int dm}

.endsys;

ex1_1.dsp

.module/ram/boot=0 ex1_module_1;
#include <def2105.h>

{this module is loaded into boot memory page 0}

.var/dm/ram var_mod1_1[100]; {module 1 dm variable 1}

.var/dm/ram var_mod1_2[100]; {module 1 dm variable 2}

{code section of module 1: this code boots module 2}

ex1_pg0: ax0=1;
ax0=2;
ax0=3;
ax0=4;
ax0=5;
ax0=6;
ax0=7;
ax0=8;
ax0=9;
ax0=10;
ax0=0x240;
dm(Sys_Crtl_Reg)=ax0; {boot page 1}

(example system continues on next page)

1212121212

646646646646646

Hardware InterfacingHardware InterfacingHardware InterfacingHardware InterfacingHardware Interfacing

makeex1.bat

bld21 ex1
asm21 -cp ex1_1
asm21 -cp ex1_2
asm21 -cp ex1_3
asm21 -cp ex1_4
asm21 -cp ex1_5
asm21 -cp ex1_6
asm21 -cp ex1_7
asm21 -cp ex1_8
ld21 ex1_1 ex1_2 ex1_3 ex1_4 ex1_5 ex1_6 ex1_7 ex1_8 -a ex1 -e ex1 -g -x
spl21 ex1 ex1 -bs 1024

	Chapter 12: Hardware Interfacing
	12.1 Overview
	12.2 Soundport Interfaces
	12.2.1 ADSP-2111/AD1849 Sound Port Interface
	12.2.2 ADSP-2105/AD1849 Sound Port Interface
	12.2.3 ADSP-2101/AD1847 Sound Port Interface

	12.3 Interfacing Drams with the ADSP-2100 Family
	12.3.1 DRAM Configuration
	12.3.2 Multiplexed Memory Addressing
	12.3.3 DSP & DRAM Control Signals
	12.3.3.1 DSP Read/Write Timing
	12.3.3.2 DRAM Read/Write Timing
	12.3.3.3 RAS Generation
	12.3.3.4 CAS Generation
	12.3.3.5 WRITE & OC Generation

	12.3.4 DSP to DRAM Interface Timing
	12.3.4.1 DRAM Read Timing
	12.3.4.2 DRAM Write Timing

	12.3.5 Memory Access Modes
	12.3.5.1 Page Mode
	12.3.5.2 Enhanced or Fast Page Mode

	12.3.6 DRAM Refresh
	12.3.7 DRAM Refresh Timing
	12.3.8 EZ-LAB Implementation
	12.3.9 DRAM Program Listings
	12.3.10 DRAM Interfacing References

	12.4 Loading an ADSP-2101 Program Via the Serial Port
	12.4.1 A Monitor
	12.4.2 Implementation

	12.5 Memory Interfacing for the ADSP-2105
	12.5.1 Example System 1: Using Boot Pages for Program Memory
	12.5.2 Example System 2: Booting with the loader Option (RAM Initialization)
	12.5.3 System 3: Using Internal & External PM RAM for Code
	12.5.4 Example System 4: Using External PM ROM
	12.5.5 Hardware Implications
	12.5.6 Use of the C-Compiler with ADSP-2105 Systems
	12.5.7 Linking Modules Generated by the C-Compiler
	12.5.8 Additional Suggestions
	12.5.9 About the Example Programs
	12.5.10 Appendix: Example System 1

