
ADSP-219x/2192 DSP
Hardware Reference

 Revision 1.1, April 2004

Part Number
82-002001-01

Analog Devices, Inc.
One Technology Way
Norwood, Mass. 02062-9106 a

Copyright Information
©2004 Analog Devices, Inc., ALL RIGHTS RESERVED. This document
may not be reproduced in any form without prior, express written consent
from Analog Devices, Inc.

Printed in the USA.

Disclaimer
Analog Devices, Inc. reserves the right to change this product without
prior notice. Information furnished by Analog Devices is believed to be
accurate and reliable. However, no responsibility is assumed by Analog
Devices for its use; nor for any infringement of patents or other rights of
third parties which may result from its use. No license is granted by impli-
cation or otherwise under the patent rights of Analog Devices, Inc.

Trademark and Service Mark Notice
The Analog Devices logo and VisualDSP++ are registered trademarks of
Analog Devices, Inc.

EZ-KIT Lite is a trademark of Analog Devices, Inc.

All other brand and product names are trademarks or service marks of
their respective owners.

CONTENTS
INTRODUCTION

Purpose ... 1-1

Audience .. 1-1

Overview—Why Fixed-Point DSP? ... 1-2

ADSP-219x Design Advantages ... 1-2

ADSP-219x Architecture Overview ... 1-5

DSP Core Architecture .. 1-7

DSP Peripherals Architecture ... 1-9

Memory Architecture .. 1-9

Internal (On-Chip) Memory ... 1-11

Interrupts .. 1-12

DMA Controller ... 1-12

PCI Port ... 1-12

USB Port .. 1-13

AC’97 Interface ... 1-13

Low Power Operation .. 1-13

Clock Signals .. 1-13

Reset Modes .. 1-14

JTAG Port ... 1-15
ADSP-219x/2192 DSP Hardware Reference i

CONTENTS
Development Tools ... 1-15

Differences from Previous DSPs .. 1-17

Computational Units and Data Register File 1-17

Shifter Result (SR) Register as Multiplier
Dual Accumulator ... 1-18

Shifter Exponent (SE) Register is not
Memory Accessible .. 1-18

Conditions (SWCOND) and Condition Code
(CCODE) Register .. 1-19

Unified Memory Space ... 1-20

Data Memory Page (DMPG1 and DMPG2) Registers 1-20

Data Address Generator (DAG) Addressing Modes 1-21

Base Registers for Circular Buffers. 1-21

Program Sequencer, Instruction Pipeline, and Stacks 1-22

Conditional Execution (Difference in Flag
Input Support) .. 1-22

Execution Latencies (Different for JUMP Instructions) 1-23

Instruction Set Enhancements ... 1-24

For More Information About Analog Products 1-24

For Technical or Customer Support ... 1-25

What’s New in This Manual ... 1-25

Related Documents .. 1-25

Conventions ... 1-27
ii ADSP-219x/2192 DSP Hardware Reference

CONTENTS
COMPUTATIONAL UNITS

Overview .. 2-1

Using Data Formats .. 2-4

Binary String ... 2-4

Unsigned ... 2-4

Signed Numbers: Two’s Complement 2-5

Fractional Representation: 1.15 .. 2-5

ALU Data Types .. 2-5

Multiplier Data Types .. 2-6

Shifter Data Types ... 2-7

Arithmetic Formats Summary .. 2-8

Setting Computational Modes ... 2-10

Latching ALU Result Overflow Status 2-10

Saturating ALU Results on Overflow 2-11

Using Multiplier Integer and Fractional Formats 2-12

Rounding Multiplier Results .. 2-14

Unbiased Rounding .. 2-14

Biased Rounding ... 2-15

Using Computational Status .. 2-16

Arithmetic Logic Unit (ALU) .. 2-17

ALU Operation ... 2-17

ALU Status Flags ... 2-18

ALU Instruction Summary .. 2-19
ADSP-219x/2192 DSP Hardware Reference iii

CONTENTS
ALU Data Flow Details ... 2-21

ALU Division Support Features ... 2-23

Multiply—Accumulator (Multiplier) ... 2-28

Multiplier Operation ... 2-28

Placing Multiplier Results in MR or SR Registers 2-29

Clearing, Rounding, or Saturating Multiplier Results 2-30

Multiplier Status Flags ... 2-31

Saturating Multiplier Results on Overflow 2-31

Multiplier Instruction Summary .. 2-33

Multiplier Data Flow Details ... 2-34

Barrel-Shifter (Shifter) .. 2-37

Shifter Operations ... 2-37

Derive Block Exponent ... 2-39

Immediate Shifts .. 2-40

Denormalize ... 2-42

Normalize, Single Precision Input 2-44

Normalize, ALU Result Overflow 2-45

Normalize, Double Precision Input 2-47

Shifter Status Flags .. 2-50

Shifter Instruction Summary ... 2-50

Shifter Data Flow Details .. 2-52

Data Register File ... 2-57

Secondary (Alternate) Data Registers ... 2-59

Multifunction Computations .. 2-60
iv ADSP-219x/2192 DSP Hardware Reference

CONTENTS
PROGRAM SEQUENCER

Overview .. 3-1

Instruction Pipeline .. 3-7

Instruction Cache ... 3-9

Using The Cache ... 3-11

Optimizing Cache Usage ... 3-12

Branches and Sequencing .. 3-14

Indirect Jump Page (IJPG) Register .. 3-15

Conditional Branches .. 3-16

Delayed Branches .. 3-16

Loops and Sequencing ... 3-20

Managing Loop Stacks ... 3-24

Restrictions On Ending Loops ... 3-24

Interrupts and Sequencing ... 3-24

Sensing Interrupts ... 3-30

Masking Interrupts .. 3-31

Latching Interrupts .. 3-31

Stacking Status During Interrupts .. 3-32

Nesting Interrupts ... 3-32

Interrupting Idle .. 3-34

Stacks and Sequencing .. 3-34

Conditional Sequencing .. 3-39

Sequencer Instruction Summary .. 3-42
ADSP-219x/2192 DSP Hardware Reference v

CONTENTS
DATA ADDRESS GENERATORS

Overview .. 4-1

Setting DAG Modes ... 4-4

Secondary (Alternate) DAG Registers 4-4

Bit-Reverse Addressing Mode .. 4-6

DAG Page Registers (DMPGx) .. 4-6

Using DAG Status .. 4-8

DAG Operations .. 4-9

Addressing with DAGs .. 4-9

Addressing Circular Buffers ... 4-11

Addressing With Bit-Reversed Addresses 4-15

Modifying DAG Registers ... 4-19

DAG Register Transfer Restrictions ... 4-20

DAG Instruction Summary ... 4-21

MEMORY

Overview .. 5-1

Internal Address and Data Buses .. 5-3

Internal Data Bus Exchange .. 5-5

ADSP-2192 Memory Map .. 5-8

P0 DSP Core Internal Memory Space 5-10

P1 DSP Core Internal Memory Space 5-11

Shared Memory .. 5-11

Host (PCI/USB) and DSP Internal Memory Space 5-12
vi ADSP-219x/2192 DSP Hardware Reference

CONTENTS
System Control Registers ... 5-13

Shared I/O Memory-mapped Registers 5-13

Arranging Data in Memory ... 5-13

Data Move Instruction Summary ... 5-14

DUAL DSP CORES

Overview .. 6-1

Shared Dual DSP Core Settings ... 6-1

Unique DSP Core Settings ... 6-2

Setting Dual DSP Core Features .. 6-3

System Control ... 6-3

Power Down Mode Control ... 6-5

Clock Multiplier Mode Control ... 6-10

GPIO and Serial EEPROM Mode Control 6-11

Using Dual-DSP Interrupts and Flags .. 6-13

Controlling I/O Register Bus Accesses ... 6-17

Using DSP and PCI Mailbox Registers .. 6-20

Mailbox Status (MBXSTAT) Register 6-21

Mailbox Interrupt Control (MBXCTL) Register 6-24

InBox 0 - PCI/USB to DSP Mailbox 0
(MBX_IN0) Register .. 6-26

InBox 1 - PCI/USB to DSP Mailbox 1
(MBX_IN1) Register .. 6-26
ADSP-219x/2192 DSP Hardware Reference vii

CONTENTS
OutBox 0 - DSP to PCI/USB Mailbox 0
(MBX_OUT0) Register ... 6-26

OutBox 1 - DSP to PCI/USB Mailbox 1
(MBX_OUT1) Register ... 6-26

I/O PROCESSOR

Overview .. 7-1

Setting I/O Processor—Host Port Modes 7-12

Host Port Buffer Modes .. 7-14

Host Port Scatter-Gather DMA Mode 7-16

Setting I/O Processor—AC’97 Port Modes 7-18

Host Port DMA Status ... 7-19

DMA Controller Operation .. 7-20

Managing DMA Channel Priority ... 7-21

Chaining DMA Processes .. 7-22

Host Port DMA .. 7-22

AC’97 Port DMA ... 7-24

HOST (PCI/USB) PORT

Overview .. 8-1

Host Port Selection ... 8-1

Mode Strap Pin Connections ... 8-2

PCI Parallel Interface .. 8-2

Configuration Spaces .. 8-2

Interactions Between Functions ... 8-5

Base Address Registers .. 8-8

Peripheral Device Control Registers 8-9
viii ADSP-219x/2192 DSP Hardware Reference

CONTENTS
Power Management Interactions .. 8-9

PCI Clock Domain ... 8-11

Peripheral Device Control Register Access 8-12

Resets .. 8-14

Interrupts .. 8-14

PCI Control Register ... 8-16

PCI Port Priority on the PDC Bus 8-18

DSP Mailbox Registers .. 8-18

InBoxes .. 8-18

OutBoxes .. 8-19

Status ... 8-19

Control ... 8-21

Indirect Access to I/O Space .. 8-23

USB Interface ... 8-25

Overview .. 8-25

USB Requirements .. 8-25

Implementation ... 8-26

Block Diagram of USB Module ... 8-27

USB-SIE ... 8-27

Endpoint 0 Control .. 8-28

MCU ... 8-28

I/O REG Interface .. 8-29

DSP DMA Interface ... 8-29

DSP Code/Data Endpoint Control 8-29
ADSP-219x/2192 DSP Hardware Reference ix

CONTENTS
Features and Modes ... 8-30

Endpoint Types .. 8-30

Data Transfers .. 8-30

References ... 8-32

MCU Register Definitions .. 8-33

Config USB Device Definitions and
Descriptor Tables ... 8-52

Vendor-Specific Commands .. 8-55

DSP Register Definitions .. 8-58

USB DSP Register Definitions .. 8-58

DSP Code Download .. 8-65

General Comments ... 8-67

Starting DSP Code Execution ... 8-67

MCU ROM Firmware Structure 8-70

MCU Firmware Programmers Model (Endpoint 0) 8-72

Example Initialization Process ... 8-81

Config Device Definition ... 8-85

Modem Device Definition .. 8-85

Serial EEPROM Interface ... 8-86

Serial EEPROM Changeable Fields for USB Descriptors ... 8-86

ADSP-2192 USB Data Pipe Operations 8-87

OUT Transactions (Host to Device) 8-91

 IN Transactions (Device to Host) 8-92

Register and Bit #Defines File ... 8-94
x ADSP-219x/2192 DSP Hardware Reference

CONTENTS
AC’97 CODEC PORT

Overview .. 9-1

ADSP-2192 Features and Functionality ... 9-1

FIFO Control and Status Register ... 9-3

FIFO Transmit Control and Status Register 9-3

FIFO Receive Control and Status Register 9-5

FIFO DMA Address Registers .. 9-8

FIFO DMA Current Count Registers 9-8

FIFO DMA Count Registers .. 9-9

FIFO DMA Next Address Registers ... 9-9

16-bit Transmit Data Register ... 9-9

16-bit Receive Data Register .. 9-9

AC-Link Digital Serial Interface Protocol 9-10

Resetting the AC’97 .. 9-12

ADSP-2192 AC’97 Control Registers .. 9-13

AC’97 Link Control/Status Register (AC97LCTL) 9-15

AC’97 Link Status Register (AC97STAT) 9-19

AC’97 Slot Enable Register (AC97SEN) 9-21

AC’97 Input Slot Valid Register (AC97SVAL) 9-22

AC’97 AC97STAT:REG and Frame Interrupt Timing 9-22

AC’97 External Codec Register Spaces 9-23

AC’97 Slot Request Register (AC97SREQ) 9-24

AC’97 GPIO Status Register (AC97SIF) 9-24
ADSP-219x/2192 DSP Hardware Reference xi

CONTENTS
ADSP-2192 AC’97 Audio Interface ... 9-25

External Audio Codec (AC’97) Subsystem 9-25

Resource Allocation .. 9-25

AC’97 2.1 Protocol Summary ... 9-27

Access to AC’97 Codec Control/Status Registers 9-28

AC’97 2.1 Link Powerdown States ... 9-30

State Transitions ... 9-33

Configuring AC’97 Sample Data Streams 9-36

JTAG TEST-EMULATION PORT

SYSTEM DESIGN

Overview .. 11-1

Sources for Additional Information ... 11-1

Pin Descriptions ... 11-3

Clock Signals .. 11-7

Synchronization Delay .. 11-9

Configurable Clock Multiplier Considerations 11-10

Maximizing Performance of DSP Algorithms 11-11

Resetting the Processor ... 11-13

Power On Reset .. 11-13

Forced Reset Via PCI/USB .. 11-14

Software Reset .. 11-14

Reset Progression .. 11-14

Resets and Software-Forced Rebooting 11-16
xii ADSP-219x/2192 DSP Hardware Reference

CONTENTS
Interrupts ... 11-22

Flag Pins ... 11-22

Powerup and Powerdown .. 11-23

Powerup Issues .. 11-24

Powerup Sequence ... 11-24

Power Regulators ... 11-26

2.5V Regulator Options .. 11-27

Power Management Description .. 11-28

Powerdown ... 11-29

Powerdown Control ... 11-30

Entering and Exiting Powerdown ... 11-31

Powering Down the USB ... 11-32

Powering Down the PCI .. 11-32

Powering Down the AC’97 Link .. 11-33

Entering Powerdown ... 11-34

Exiting Powerdown .. 11-35

Ending Powerdown ... 11-35

Ending Powerdown with the PORST Pin 11-35

Startup Time after Powerdown ... 11-36

Using an External TTL/CMOS Clock 11-36

Processor Operation During Powerdown 11-36

Interrupts And Flags ... 11-37

Conditions for Lowest Power Consumption 11-37

AC’97 Low Power Mode .. 11-38

Using Powerdown as A Non-Maskable Interrupt 11-39
ADSP-219x/2192 DSP Hardware Reference xiii

CONTENTS
Emulation .. 11-39

EZ-KIT Lite ... 11-40

Recommended Reading .. 11-41

ADSP-219X DSP CORE REGISTERS

Overview .. A-1

Core Registers Summary ... A-2

Register Load Latencies ... A-5

Core Status Registers .. A-8

Arithmetic Status (ASTAT) Register .. A-9

Mode Status (MSTAT) Register ... A-11

System Status (SSTAT) Register ... A-14

Computational Unit Registers ... A-15

Data Register File (DREG) Registers A-16

ALU X- and Y-Input (AX0, AX1, AY0, AY1) Registers A-16

ALU Results (AR) Register .. A-17

Multiplier X- and Y-Input (MX0, MX1, MY0, MY1)
Registers .. A-17

Multiplier Results (MR2, MR1, MR0) Registers A-17

Shifter Input (SI) Register ... A-17

Shifter Exponent (SE) and Block Exponent (SB) Registers A-18

Program Sequencer Registers ... A-18

Interrupt Mask (IMASK) and Interrupt
Latch (IRPTL) Registers ... A-19

Interrupt Control (ICNTL) Register A-20
xiv ADSP-219x/2192 DSP Hardware Reference

CONTENTS
Indirect Jump Page (IJPG) Register A-21

PC Stack Page (STACKP) and
PC Stack Address (STACKA) Registers A-21

Loop Stack Page (LPSTACKP) and
Loop Stack Address (LPSTACKA) Register A-22

Counter (CNTR) Register .. A-22

Condition Code (CCODE) Register A-23

Cache Control (CACTL) Register ... A-23

Data Address Generator Registers ... A-24

Index Registers (Ix) ... A-24

Modify Registers (Mx) .. A-24

Length and Base (Lx,Bx) Registers .. A-25

Data Memory Page (DMPGx) Register A-25

Memory Interface Registers .. A-26

PM Bus Exchange (PX) Register ... A-26

I/O Memory Page (IOPG) Register A-26

Register and Bit #Defines File .. A-27

ADSP-2192 DSP PERIPHERAL REGISTERS

Overview ... B-1

Peripheral Registers .. B-2

DSP Peripherals Architecture .. B-3

Peripheral Device Register Groups .. B-4

Summary ... B-4
ADSP-219x/2192 DSP Hardware Reference xv

CONTENTS
ADSP-2192 System Control Registers ... B-6

STCTLx FIFO Transmit Control Register B-9

SRCTLx FIFO Receive Control Register B-9

xxxADDR DMA Address Register B-10

xxxNXTADDR DMA Next Address Register B-10

xxxCNT DMA Count Register ... B-10

xxxCURCNT DMA Current Count Register B-10

ADSP-2192 Peripheral Device Control Registers B-11

ADSP-2192 Chip Control Registers B-13

Chip Control (SYSCON) Registers B-14

Power Management Functions .. B-18

DSP Powerdown (PWRPx) Registers B-19

DSP PLL Control (PLLCTL) Register B-23

General-purpose I/O (GPIO) Control Registers B-24

GPIO Configuration (GPIOCFG) Register B-25

GPIO Polarity (GPIOPOL) Register B-25

GPIO Sticky (GPIOSTKY) Register B-26

GPIO Wakeup Control (GPIOWAKECTL) Register B-26

GPIO Status (GPIOSTAT) Register B-26

GPIO Control (GPIOCTL) Register B-27

GPIO Pullup (GPIOPUP) Register B-27

GPIO Pulldown (GPIOPDN) Register B-27

EEPROM I/O Control/Status (SPROMCTL) Register B-28
xvi ADSP-219x/2192 DSP Hardware Reference

CONTENTS
Host Mailbox Registers ... B-30

Overview ... B-30

CardBus Function Event Registers .. B-32

CSTSCHG Signal .. B-33

INTA Signal .. B-34

CIS Tuple Requirements .. B-35

AC’97 Controller Registers ... B-41

AC’97 Link Control/Status Register (AC97LCTL) B-42

AC’97 Link Status Register (AC97STAT) B-42

AC’97 Slot Enable Register (AC97SEN) B-43

AC’97 Input Slot Valid Register (AC97SVAL) B-43

AC’97 Slot Request Register (AC97SREQ) B-44

AC’97 GPIO Status Register (AC97SIF) B-44

 AC’97 Codec Registers .. B-45

AC’97 Codec Register Space-Primary Codec 0
(AC97EXT0) Register .. B-45

AC’97 Codec Register Space, Secondary Codec 1
(AC97EXT1) Register .. B-45

AC’97 Codec Register Space, Secondary Codec 2
(AC97EXT2) Register .. B-46

PCI DMA Address, Count Registers B-46

DMA Control Registers ... B-46

PCI DMA Control Registers .. B-46

PCI Interrupt, Control Registers ... B-47
ADSP-219x/2192 DSP Hardware Reference xvii

CONTENTS
DMA Transfer Count 0 - Bus Master Sample Transfer
Count (PCI_MSTRCNT0) Register B-48

DMA Transfer Count 1 - Bus Master Sample Transfer
Count (PCI_MSTRCNT1) Register B-48

DMA Control X - Bus Master Control and Status
(PCI_DMACx) Register ... B-49

PCI Interrupt (PCI_IRQSTAT) Register B-50

PCI Control (PCI_CFGCTL) Register B-53

PCI Configuration Register Space ... B-54

Commonalities Between the Three Functions B-54

Interactions Between the Three Functions B-55

PCI Configuration Register Space, Function 0 B-56

PCI Configuration Register Space, Function 1 B-58

PCI Configuration Register Space, Function 2 B-59

PCI Configuration Space .. B-60

Interaction Between Registers ... B-67

USB DSP Registers ... B-71

Overview .. B-71

DSP Register Definitions .. B-72

DSP Memory Buffer Base Addr Register B-74

DSP Memory Buffer Size Register B-75

DSP Memory Buffer RD Pointer Offset Register B-75

DSP Memory Buffer WR Pointer Offset Register B-76

MCU Register Definitions .. B-76

USB Endpoint Description Register B-79
xviii ADSP-219x/2192 DSP Hardware Reference

CONTENTS
USB Endpoint NAK Counter Register B-80

USB Endpoint Stall Policy Register B-81

USB Endpoint 1 Code Download Base Address Register B-82

USB Endpoint 2 Code Download Base Address Register B-83

USB Endpoint 3 Code Download Base Address Register B-84

USB Endpoint 1 Code Download Current Write
Pointer Offset Register ... B-85

USB Endpoint 2 Code Download Current Write
Pointer Offset Register .. B-86

USB Endpoint 3 Code Download Current Write
Pointer Offset Register .. B-87

USB SETUP Token Command Register B-88

USB SETUP Token Data Register ... B-89

USB SETUP Counter Register .. B-90

USB Register I/O Address Register B-91

USB Register I/O Data Register ... B-92

USB Control Register ... B-93

USB Address/Endpoint Register .. B-94

USB Frame Number Register .. B-94

Register and Bit #Defines File .. B-95
ADSP-219x/2192 DSP Hardware Reference xix

CONTENTS
NUMERIC FORMATS

Overview .. C-1

Un/Signed: Twos-Complement Format ... C-1

Integer or Fractional ... C-1

Binary Multiplication ... C-5

Fractional Mode And Integer Mode ... C-6

Block Floating-Point Format ... C-7

ADSP-2192 TIMER

Overview ... D-1

Timer Architecture .. D-2

Resolution ... D-4

Timer Operation ... D-4

Enabling the Timer .. D-6

ADSP-2192 INTERRUPTS

Overview .. E-1

Peripheral Interrupts ... E-1

Other Interrupt Types ... E-4

GLOSSARY

Terms .. G-1

INDEX
xx ADSP-219x/2192 DSP Hardware Reference

1 INTRODUCTION
Figure 1-0.

Table 1-0.

Listing 1-0.
Purpose
The ADSP-219x/2192 DSP Hardware Reference provides architectural
information on the ADSP-219x modified Harvard architecture Digital
Signal Processor (DSP) core and ADSP-2192 DSP product. The architec-
tural descriptions cover functional blocks, buses, and ports, including all
features and processes they support. For programming information, see
the ADSP-219x DSP Instruction Set Reference.

Audience
DSP system designers and programmers who are familiar with signal pro-
cessing concepts are the primary audience for this manual. This manual
assumes that the audience has a working knowledge of microcomputer
technology and DSP-related mathematics.

DSP system designers and programmers who are unfamiliar with signal
processing can use this manual, but they should supplement this manual
with other texts that describe DSP techniques.

All readers, particularly system designers, should refer to the DSP’s data
sheet for timing, electrical, and package specifications. For additional sug-
gested reading, see “For More Information About Analog Products” on
page 1-24.
ADSP-219x/2192 DSP Hardware Reference 1-1

Overview�Why Fixed-Point DSP?
Overview�Why Fixed-Point DSP?
A digital signal processor’s data format determines its ability to handle sig-
nals of differing precision, dynamic range, and signal-to-noise ratios.
Because 16-bit, fixed-point DSP math is required for certain DSP coding
algorithms, using a 16-bit, fixed-point DSP can provide all the features
needed for certain algorithm and software development efforts. Also, a
narrower bus width (16-bit as opposed to 32- or 64-bit wide) leads to
reduced power consumption and other design savings. The extent to
which this is true depends on the fixed-point processor’s architecture.
High-level language programmability, large address spaces, and wide
dynamic range allow system development time to be spent on algorithms
and signal processing concerns, rather than assembly language coding,
code paging, and error handling. The ADSP-2192 DSP is a highly inte-
grated, 16-bit fixed-point DSP that provides many of these design
advantages.

ADSP-219x Design Advantages
The ADSP-219x family DSPs are high-performance 16-bit DSPs for com-
munications, instrumentation, industrial/control, voice/speech, medical,
military, and other applications. These DSPs provide a DSP core that is
compatible with previous ADSP-2100 family DSPs, but they also provide
many additional features. The ADSP-219x core combines with on-chip
peripherals to form a complete system-on-a-chip. The off-core peripherals
add on-chip SRAM, integrated I/O peripherals, timer, and interrupt
controller.

The ADSP-219x architecture balances a high performance processor core
with high performance buses (PM, DM, DMA). In the core, every compu-
tational instruction can execute in a single cycle. The buses and
instruction cache provide rapid, unimpeded data flow to the core to main-
tain the execution rate.
1-2 ADSP-219x/2192 DSP Hardware Reference

Introduction

ADSP
DSP C

DAT
REG IS

FIL

MULT

BUS
CONNE

T
(PX)

DAG1
4X4X16
Figure 1-1 shows a detailed block diagram of the ADSP-2192 processor.

Figure 1-1. ADSP-2192 Block Diagram

This diagram illustrates the following ADSP-2192 architectural features:

• Computation units for the ADSP-219x family—multiplier, ALU,
shifter, and data register file

• Program sequencer for the ADSP-219x family, with related instruc-
tion cache, interval timer, and Data Address Generators (DAG1 and
DAG2)

• PCI/USB Host port

INTERRUPT CONTRO LLER/
TIMER/FLA GS

CACHE
64 X 24-

B IT

PM ADDRESS BUS

DM ADDRESS BUS

PM DATA BUS

DM DATA BUS

2
4

1
6

-219X
ORE

A
TER
E

BARREL
SHIFTER

ALU

INPUT
REGISTERS

RESULT
REGISTERS

16 X 16-B IT

CORE
INTERFACE

2
4

2
4

C

PROGRAM
SEQUENCER

DAG2
4X4X16

PROCES SOR P0 PROCESSOR P1

SHARE D
MEM ORY

4K�16 DM

ADDR DATA

P0
MEMORY

16K�24 PM
64K�16 DM
BOOT ROM

P1
MEMORY

16K�24 PM
32K�16 DM
BOOT ROM

ADDR DATA ADDR DATA

P0 DM A
CONTROLLE R

FIFOS

SHARED DSP
I/O MAPPED
REGISTERS

P1 DMA
CONTROLLE R

FIFOS

ADDR DATA

HOST PORT

PCI 2.2
OR

USB 1.1

SERIAL PORT

AC'97
COM PLIANT

GP I/O PINS

(& OPTIONAL
SERIAL

EEPROM)

JTAG
EMULATION

PORT

ADDR DATAADDR DATA
ADSP-219x/2192 DSP Hardware Reference 1-3

ADSP-219x Design Advantages
• AC’97 codec port

• SRAM for the ADSP-2192

• Input/Output (I/O) processor with integrated DMA controllers

• JTAG Test Access Port for board test and emulation on the
ADSP-2192

Figure 1-1 also shows the two cores of the ADSP-2192 (processors P0 and
P1). Additionally, it shows the four on-chip buses of the ADSP-2192: the
Program Memory Address (PMA) bus, Program Memory Data (PMD)
bus, Data Memory Address (DMA) bus, and the Data Memory Data
(DMD) bus. During a single cycle, these buses let the processor access two
data operands (one from PMD and one from DMD), and access an
instruction (from the cache).

Further, the ADSP-219x addresses the five central requirements for DSPs:

• Fast, flexible arithmetic computation units

• Unconstrained data flow to and from the computation units

• Extended precision and dynamic range in the computation units

• Dual address generators with circular buffering support

• Efficient program sequencing

Unconstrained Data Flow. The ADSP-219x has a modified Harvard
architecture combined with a data register file. In every cycle, the DSP
can:

• Read two values from memory or write one value to memory

• Complete one computation

• Write up to three values back to the register file
1-4 ADSP-219x/2192 DSP Hardware Reference

Introduction
Fast, Flexible Arithmetic. The ADSP-219x family DSPs execute all com-
putational instructions in a single cycle. They provide both fast cycle
times and a complete set of arithmetic operations.

40-Bit Extended Precision. The DSP handles 16-bit integer and fractional
formats (twos-complement and unsigned). The processors carry extended
precision through result registers in their computation units, limiting
intermediate data truncation errors.

Dual Address Generators. The DSP has two data address generators
(DAGs) that provide immediate or indirect (pre- and post-modify)
addressing. Modulus and bit-reverse operations are supported with only
memory page constraints on data buffer placement.

Efficient Program Sequencing. In addition to zero-overhead loops, the
DSP supports quick setup and exit for loops. Loops are both nestable
(eight levels in hardware) and interruptable. The processors support both
delayed and non-delayed branches.

ADSP-219x Architecture Overview
An ADSP-219x is a single-chip microcomputer optimized for digital sig-
nal processing (DSP) and other high speed numeric processing
applications. These DSPs provide a complete system-on-a-chip, integrat-
ing a large, high-speed SRAM and I/O peripherals supported by a
dedicated I/O bus. The following sections summarize the features of each
functional block in the ADSP-219x architecture, which appears in
Figure 1-1 on page 1-3.

The ADSP-2192 combines the ADSP-219x family base architecture (three
computational units, two data address generators, and a program
sequencer) with PCI/USB interface, AC’97 serial port, a programmable
timer, a DMA controller, general-purpose Programmable Flag pins, exten-
sive interrupt capabilities, and on-chip program and data memory blocks.
ADSP-219x/2192 DSP Hardware Reference 1-5

ADSP-219x Architecture Overview
The ADSP-2192 architecture is code compatible with ADSP-218x family
DSPs. Though the architectures are compatible, the ADSP-2192 architec-
ture has a number of enhancements over the ADSP-218x architecture.
The enhancements to computational units, data address generators, and
program sequencer make the ADSP-2192 more flexible and even easier to
program than the ADSP-218x DSPs.

Indirect addressing options provide addressing flexibility—pre-modify
with no update, pre- and post-modify by an immediate 8-bit, two’s-com-
plement value and base address registers for easier implementation of
circular buffering.

The ADSP-2192 integrates 128K words of on-chip memory configured as
32K words (24-bit) of program RAM (16K words each on DSP P0 and
DSP P1) and 96K words (16-bit) of data RAM (64K words on DSP P0
and 32K words on DSP P1). Power-down circuitry is also provided to
meet the low power needs of battery operated portable equipment.

The ADSP-2192’s flexible architecture and comprehensive instruction set
support multiple operations in parallel. For example, in one processor
cycle, each core of the ADSP-2192 can:

• Generate an address for the next instruction fetch

• Fetch the next instruction

• Perform one or two data moves

• Update one or two data address pointers

• Perform a computational operation
1-6 ADSP-219x/2192 DSP Hardware Reference

Introduction
DSP Core Architecture
The ADSP-219x instruction set provides flexible data moves and multi-
function (one or two data moves with a computation) instructions. Every
single-word instruction can be executed in a single processor cycle. The
ADSP-219x assembly language uses an algebraic syntax for ease of coding
and readability. A comprehensive set of development tools supports pro-
gram development.

Figure 1-1 on page 1-3 shows the architecture of the ADSP-219x core. It
contains three independent computational units: the ALU, the multi-
plier/accumulator, and the shifter.

The computational units process 16-bit data from the register file and
have provisions to support multiprecision computations. The ALU per-
forms a standard set of arithmetic and logic operations; division primitives
also are supported. The multiplier performs single-cycle multiply, multi-
ply/add, and multiply/subtract operations. The multiplier now has two
40-bit accumulator results. The shifter performs logical and arithmetic
shifts, normalization, denormalization, and derive exponent operations.
The shifter can efficiently implement numeric format control, including
multiword and block floating-point representations.

Register-usage rules influence placement of input and results within the
computational units. For all unconditional, non-multi-function instruc-
tions, the computational units’ data registers act as a data register file,
permitting any input or result register to provide input to any unit for a
computation. For feedback operations, the computational units let the
output (result) of any unit be input to any unit on the next cycle. For con-
ditional or multifunction instructions, there are restrictions limiting
which data registers may provide inputs or receive results from each com-
putational unit. For more information, see “Multifunction
Computations” on page 2-60.
ADSP-219x/2192 DSP Hardware Reference 1-7

ADSP-219x Architecture Overview
A powerful program sequencer controls the flow of instruction execution.
The sequencer supports conditional jumps, subroutine calls, and low
interrupt overhead. With internal loop counters and loop stacks, the
ADSP-2192 executes looped code with zero overhead; no explicit jump
instructions are required to maintain loops.

Two data address generators (DAGs) provide addresses for simultaneous
dual operand fetches (from data memory and program memory). Each
DAG maintains and updates four 16-bit address pointers. Whenever the
pointer is used to access data (indirect addressing), it is pre- or post-modi-
fied by the value of one of four possible modify registers. A length value
and base address may be associated with each pointer to implement auto-
matic modulo addressing for circular buffers.

Page registers in the DAGs allow circular addressing within 64K word
boundaries of each of the 256 memory pages, but these buffers may not
cross page boundaries. Secondary registers duplicate all the primary regis-
ters in the DAGs; switching between primary and secondary registers
provides a fast context switch.

Efficient data transfer in the core is achieved by using internal buses:

• Program Memory Address (PMA) Bus

• Program Memory Data (PMD) Bus

• Data Memory Address (DMA) Bus

• Data Memory Data (DMD) Bus

• IO or DMA Address Bus

• IO or DMA Data Bus
1-8 ADSP-219x/2192 DSP Hardware Reference

Introduction
Program memory can store both instructions and data, permitting the
ADSP-219x to fetch two operands in a single cycle, one from program
memory and one from data memory. The DSP’s dual memory buses also
let the ADSP-219x core fetch an operand from data memory and the next
instruction from program memory in a single cycle.

DSP Peripherals Architecture
Figure 1-1 on page 1-3 shows the DSP’s on-chip peripherals, as part of a
typical ADSP-2192 system with peripheral connections.The ADSP-2192
has a 16-bit PCI/USB host port. This port provides either PCI or USB
functionality via the Peripheral Device Control (PDC) bus.

The ADSP-2192 can respond to up to thirteen interrupts, using a priority
scheme implemented by the interrupt controller.

Memory Architecture
The ADSP-2192 integrates 128K words of on-chip memory configured as
32K words (24-bit) of program RAM (16K words each on DSP P0 and
DSP P1) and 96K words (16-bit) of data RAM (64K words on DSP P0
and 32K words on DSP P1). Power-down circuitry is also provided to
meet the low power needs of battery operated portable equipment.

For more information on these blocks, see the section “ADSP-2192 Mem-
ory Map” on page 5-8, which discusses the memory map in detail.

Figure 1-2 shows the ADSP-2192’s memory map.
ADSP-219x/2192 DSP Hardware Reference 1-9

ADSP-219x Architecture Overview
Figure 1-2. ADSP-2192 Memory Maps

SHARED RAM
(16x4K)

DATA RAM
BLOCK3
(16x16K)

DATA RAM
BLOCK2
(16x16K)

DATA RAM
BLOCK1
(16x16K)

RESERVED

0x00 0000

0x00 3FFF

0x00 4000

0x00 8000

0x00 C000

0x01 0000

0x01 4FFF
0x01 5000

0x01 FFFF

ADDRESS

DATA RAM
BLOCK0
(16x16K)

0x00 7FFF

0x00 BFFF

0x00 FFFF

PROGRAM RAM,
(24x16K)

PROGRAM ROM,
24x4K

0x01 3FFF

0x01 4000

0x02 0000

0x02 0FFF

DSP P0
MEMORY MAP

PAGE 2

PAGE 1

PAGE 0

 SHARED
DSP I/O
MAPPED

REGISTERS

 PAGES 0-255
(16x256)

0x00 00

0xFF FF

ADDRESS

SHARED RAM
(16x4K)

DATA RAM
BLOCK1
(16x16K)

RESERVED

0x00 0000

0x00 3FFF

0x00 4000

0x00 8000

0x01 0000

0x01 4FFF
0x01 5000

0x01 FFFF

ADDRESS

DATA RAM
BLOCK0
(16x16K)

0x00 7FFF

0x00 FFFF

PROGRAM RAM,
(24x16K)

PROGRAM ROM,
24x4K

0x01 3FFF

0x01 4000

0x02 0000

0x02 0FFF

DSP P1
MEMORY MAP

RESERVED

PAGE 2

PAGE 1

PAGE 0

SAME
1-10 ADSP-219x/2192 DSP Hardware Reference

Introduction
Internal (On-Chip) Memory

The ADSP-2192’s unified program and data memory space consists of
16M locations that are accessible through two 24-bit address buses, the
PMA and DMA buses. The DSP uses slightly different mechanisms to
generate a 24-bit address for each bus. The DSP has three functions that
support access to the full memory map:

• The DAGs generate 24-bit addresses for data fetches from the entire
DSP memory address range. Because DAG index (address) registers
are 16 bits wide and hold the lower 16-bits of the address, each of
the DAGs has its own 8-bit page register (DMPGx) to hold the most
significant eight address bits. Before a DAG generates an address,
the program must set the DAG’s DMPGx register to the appropriate
memory page.

• The Program Sequencer generates the addresses for instruction
fetches. For relative addressing instructions, the program sequencer
bases addresses for relative jumps, calls, and loops on the 24-bit Pro-
gram Counter (PC). For direct addressing instructions (two-word
instructions), the instruction provides an immediate 24-bit address
value. The PC allows linear addressing of the full 24 bit address
range.

• The Program Sequencer relies on an 8-bit Indirect Jump page (IJPG)
register to supply the most significant eight address bits for indirect
jumps and calls that use a 16-bit DAG address register for part of
the branch address. Before a cross page jump or call, the program
must set the program sequencer’s IJPG register to the appropriate
memory page.
ADSP-219x/2192 DSP Hardware Reference 1-11

ADSP-219x Architecture Overview
The ADSP-2192 has 4K words of on-chip ROM that holds boot routines.
If peripheral booting is selected, the DSP starts executing instructions
from the on-chip boot ROM, which starts the boot process from the
selected peripheral. For more information, see “Reset Modes” on page
1-14. The on-chip boot ROM is located on Page 255 in the DSP’s mem-
ory map.

Interrupts
The interrupt controller lets the DSP respond to thirteen interrupts with
minimum overhead.

DMA Controller
The ADSP-2192 has a DMA controller that supports automated data
transfers with minimal overhead for the DSP core. Cycle stealing DMA
transfers can occur between the ADSP-2192’s internal memory and any of
its DMA capable peripherals. Additionally, DMA transfers also can be
accomplished between any of the DMA capable peripherals. DMA capable
peripherals include the PCI, USB, and AC’97. Each individual DMA
capable peripheral has one or more dedicated DMA channels. DMA
sequences do not contend for bus access with the DSP core, instead DMAs
“steal” cycles to access memory.

PCI Port
The ADSP-2192 can interface with a host computer through a PCI port.
The PCI port accesses the DSPs via the Peripheral Device Control (PDC)
bus. The PCI port connects through the internal PCI interface to the
PDC bus.
1-12 ADSP-219x/2192 DSP Hardware Reference

Introduction
USB Port
The ADSP-2192 can interface with a host computer through a USB port.
The USB port accesses the DSPs via the Peripheral Device Control (PDC)
bus. The USB port connects through the internal USB interface to the
PDC bus.

AC�97 Interface
The ADSP-2192 includes an AC’97 interface that complies with the
AC’97 specification. The AC’97 interface connects the host’s Digital Con-
troller (DC) chip set and between one and four analog codecs.

Low Power Operation
All pins on the ADSP-2192 remain active as long as power is maintained
to the chip. This chip does not have a specifically-defined powerdown
state; at any time either or both of the two processors can be in a low
power state, and any or all of the interfaces can be in a low power state.
Additionally, each peripheral interface (USB, PCI, and AC’97) can be put
into a low power mode, as described in “System Design” on page 11-1.

Clock Signals
The ADSP-2192 can be clocked by a crystal oscillator. If a crystal oscilla-
tor is used, the crystal should be connected across the XTALI/O pins, with
two capacitors connected as shown in Figure 1-3 on page 1-14. Capacitor
values are dependent on crystal type and should be specified by the crystal
manufacturer. A parallel-resonant, fundamental frequency, microproces-
sor-grade 24.576 MHz crystal should be used for this configuration.
ADSP-219x/2192 DSP Hardware Reference 1-13

ADSP-219x Architecture Overview
Reset Modes
The ADSP-2192 can be reset in three ways: Power On Reset, Software
Reset, or Forced Reset Via PCI or USB.

See “Resetting the Processor” on page 11-13 for more details about
booting.

Figure 1-3. ADSP-2192 External Crystal Connections

XTALI XTALO

ADSP-2192

CLKRUN

PORST

BUS0

BUS1

CLKSEL

BITCLK

24.576 MHz

CLK

RST

BUS SELECT

POWER ON RESET
(NO CONNECT)

PCI CLOCK RUN

PCI CLOCK

PCI RESET

AC'97 BIT CLOCK
1-14 ADSP-219x/2192 DSP Hardware Reference

Introduction
JTAG Port
The ADSP-2192 includes a JTAG port. Emulators use the JTAG port to
monitor and control the DSP during emulation. Emulators using this port
provide full-speed emulation with access to inspect and modify memory,
registers, and processor stacks. JTAG-based emulation is non-intrusive
and does not affect target system loading or timing. Note that the
ADSP-2192 JTAG does not support boundary scan.

Development Tools
The ADSP-219x is supported by VisualDSP++®, an easy-to-use project
management environment, comprised of an Integrated Development and
Debugging Environment (IDDE). VisualDSP++ lets you manage projects
from start to finish from within a single, integrated interface. Because the
project development and debug environments are integrated, you can
move easily between editing, building, and debugging activities.

Flexible Project Management. The IDDE provides flexible project man-
agement for the development of DSP applications. It provides you with
access to all the activities necessary to create and debug DSP projects. You
can create or modify source files or view listing or map files with the
IDDE Editor. This powerful Editor includes multiple language syntax
highlighting, OLE drag and drop, bookmarks, and standard editing opera-
tions such as undo/redo, find/replace, copy/paste/cut, and go to.

VisualDSP++ includes access to the DSP C/C++ Compiler, C Run-time
Library, Assembler, Linker, Loader, Splitter, and Simulator. You specify
options for these Tools through property page dialog boxes. These options
control how the tools process inputs and generate outputs, and the
options have a one-to-one correspondence to the tools’ command-line
switches. You can define these options once or modify them to meet
changing development needs. You also can access the Tools from the oper-
ating system command line if you choose.
ADSP-219x/2192 DSP Hardware Reference 1-15

Development Tools
Greatly Reduced Debugging Time. VisualDSP++ has an easy-to-use,
common interface for all processor simulators and emulators available
through Analog Devices and third parties or custom developments. It has
many features that greatly reduce debugging time. You can view C source
interspersed with the resulting Assembly code. You can profile execution
of a range of instructions in a program; set simulated watch points on
hardware and software registers, program and data memory; and trace
instruction execution and memory accesses.

These features enable you to correct coding errors, identify bottlenecks,
and examine DSP performance. You can select any combination of regis-
ters to view in a single customizable window. VisualDSP++ can also
generate inputs, outputs, and interrupts, so you can simulate real-world
application conditions.

Software Development Tools. Software development tools, which support
the ADSP-219x family, let you develop applications that take full advan-
tage of the DSP architecture, including shared memory and memory
overlays. Software development tools include the C/C++ Compiler,
C Run-time Library, DSP and Math Libraries, Assembler, Linker, Loader,
Splitter, and Simulator.

C/C++ Compiler and Assembler. The C/C++ Compiler generates effi-
cient code that is optimized for both code density and execution time. The
C/C++ Compiler allows you to include Assembly language statements
inline. Because of this, you can program in C/C++ and still use Assembly
for time-critical loops.

You can also use pretested Math, DSP, and C Run-time Library routines
to help shorten your time to market. The ADSP-219x family assembly
language is based on an algebraic syntax that is easy to learn, program, and
debug.
1-16 ADSP-219x/2192 DSP Hardware Reference

Introduction
Linker and Loader. The Linker provides flexible system definition
through Linker Description Files (.LDF). In a single LDF, you can define
different types of executables for a single processor or multiprocessor sys-
tem. The Linker resolves symbols over multiple executables, maximizes
memory use, and easily shares common code among multiple processors.
The Loader allows multiprocessor system configuration with smaller code
and faster boot time.

Differences from Previous DSPs
This section identifies differences between the ADSP-219x DSPs and pre-
vious ADSP-2100 family DSPs: ADSP-210x, ADSP-211x, ADSP-217x,
and ADSP-218x. The ADSP-219x preserves much of the core ADSP-2100
family architecture, while extending performance and functionality. For
background information on previous ADSP-2100 family DSPs, see the
ADSP-2100 Family User’s Manual. For background information on the
ADSP-218x family DSPs, see the ADSP-218x DSP Hardware Reference.

The sections that follow describe key differences and enhancements of the
ADSP-219x over previous ADSP-2100 family DSPs. These enhancements
also lead to some differences in the instruction sets between DSP families.
For more information, see the ADSP-219x DSP Instruction Set Reference.

Computational Units and Data Register File

The ADSP-219x DSP’s computational units differ from those of the
ADSP-218x’s, because the ADSP-219x data registers act as a register file
for unconditional, single-function instructions. In these instructions, any
data register may be an input to any computational unit. For conditional
and/or multifunction instructions, the ADSP-219x and ADSP-218x DSP
families have the same data register usage restrictions — AX and AY for
ALU, MX and MY for the multiplier, and SI for shifter inputs. For more
information, see “Computational Units” on page 2-1.
ADSP-219x/2192 DSP Hardware Reference 1-17

Differences from Previous DSPs
Shifter Result (SR) Register as Multiplier
Dual Accumulator

The ADSP-219x architecture introduces a new 16-bit register in addition
to the SR0 and SR1 registers, the combination of which composes the
40-bit wide SR register on the ADSP-218x DSPs. This new register, called
SR2, can be used in multiplier or shift operations (lower 8 bits) and as a
full 16-bit-wide scratch register. As a result, the ADSP-219x DSP has two
40-bit-wide accumulators, MR and SR. The SR dual accumulator has
replaced the multiplier feedback register MF, as shown in the following
example:|

Shifter Exponent (SE) Register is not
Memory Accessible

The ADSP-218x DSPs use SE as a data or scratch register. The SE register
of the ADSP-219x architecture is not accessible from the data or program
memory buses. Therefore, the multifunction instructions of the
ADSP-218x that use SE as a data or scratch register, should use one of the
data file registers (DREG) as a scratch register on the ADSP-219x DSP.

ADSP-218x Instruction ADSP-219x Instruction (Replacement)

MF=MR+MX0*MY1(UU);

IF NOT MV MR=AR*MF;

MR=MR+MX0*MY1(UU);

IF NOT MV MR=AR*SR2;

ADSP-218x Instruction ADSP-219x Instruction (Replacement)

SR=Lshift MR1(HI),
SE=DM(I6,M5);

SR=Lshift MR1(HI),
AX0=DM(I6,M5);
1-18 ADSP-219x/2192 DSP Hardware Reference

Introduction
Conditions (SWCOND) and Condition Code
(CCODE) Register

The ADSP-219x DSP changes support for the ALU Signed (AS) condition
and supports additional arithmetic and status condition testing with the
Condition Code (CCODE) register and Software Condition (SWCOND) test.
The two conditions are SWCOND and Not SWCOND. The usage of the
ADSP-219x’s and most ADSP-218x’s arithmetic conditions (EQ, NE, GE,
GT, LE, LT, AV, Not AV, AC, Not AC, MV, Not MV) are compatible.

The new Shifter Overflow (SV) condition of the ADSP-219x architecture
is a good example of how the CCODE register and SWCOND test work. The
ADSP-219x DSP’s Arithmetic Status (ASTAT) register contains a bit indi-
cating the status of the shifter’s result. The shifter is a computational unit
that performs arithmetic or logical bitwise shifts on fields within a data
register. The result of the operation goes into the Shifter Result (SR2, SR1,
and SR0, which are combined into SR) register. If the result overflows the
SR register, the Shifter Overflow (SV) bit in the ASTAT register records this
overflow/underflow condition for the SR result register (0 = No overflow
or underflow, 1 = Overflow or underflow).

For the most part, bits (status condition indicators) in the ASTAT register
correspond to condition codes that appear in conditional instructions. For
example, the AZ (ALU Zero) bit in ASTAT corresponds to the EQ (ALU
result equals zero) condition and would be used in code like this:

IF EQ AR = AX0 + AY0;
/* if the ALU result (AR) register is zero, add AX0 and AY0 */

The SV status condition in the ASTAT bits does not correspond to a condi-
tion code that can be directly used in a conditional instruction. To test for
this status condition, software selects a condition to test by loading a value
into the Condition Code (CCODE) register and uses the Software Condition
ADSP-219x/2192 DSP Hardware Reference 1-19

Differences from Previous DSPs
(SWCOND) condition code in the conditional instruction. The DSP code
would look like this:

CCODE = 0x09; Nop; // set CCODE for SV condition
IF SWCOND SR = MR0 * SR1 (UU); // mult unsigned X and Y

The Nop after loading the CCODE register accommodates the one cycle effect
latency of the CCODE register.

The ADSP-218x DSP supports two conditions to detect the sign of the
ALU result. On the ADSP-219x, these two conditions (Pos and Neg) are
supported as AS and Not AS conditions in the CCODE register. For more
information on CCODE register values and SWCOND conditions, see “Condi-
tional Sequencing” on page 3-39.

Unified Memory Space

The ADSP-219x architecture has a unified memory space with separate
memory blocks to differentiate between 24- and 16-bit memory. In the
unified memory, the term program or data memory only has semantic sig-
nificance; a physical address determines the “PM” or “DM” functionality. It
is best to revise any code with non-symbolic addressing in order to use the
new tools.

Data Memory Page (DMPG1 and DMPG2) Registers

The ADSP-219x processor introduces a paged memory architecture that
uses 16-bit DAG registers to access 64K pages. The 16-bit DAG registers
correspond to the lower 16 bits of the DSP’s address buses, which are
24-bit wide. To store the upper 8 bits of the 24-bit address, the
ADSP-219x DSP architecture uses two additional registers, DMPG1 and
DMPG2. DMPG1 and DMPG2 work with the DAG registers I0-I3 and I4-I7,
respectively.
1-20 ADSP-219x/2192 DSP Hardware Reference

Introduction
Data Address Generator (DAG) Addressing Modes

The ADSP-219x architecture provides additional flexibility over the
ADSP-218x DSP family in DAG addressing modes:

• Pre-modify without update addressing in addition to the post-mod-
ify with update mode of the ADSP-218x instruction set:

DM(IO+M1) = AR; /* pre-modify syntax */

DM(IO+=M1) = AR; /* post-modify syntax */

• Pre-modify and post-modify with an 8-bit two’s-complement
immediate modify value instead of an M register:

AX0 = PM(I5+-4); /* pre-modify syntax (for modifier = -4)*/

AX0 = PM(I5+=4); /* post-modify syntax (for modifier = 4) */

• DAG modify with an 8-bit two’s-complement immediate-modify
value:

Modify(I7+=0x24);

Base Registers for Circular Buffers.

The ADSP-219x processor eliminates the existing hardware restriction of
the ADSP-218x DSP architecture on a circular buffer starting address.
ADSP-219x enables declaration of any number of circular buffers by des-
ignating B0-B7 as the base registers for addressing circular buffers; these
base registers are mapped to the “register” space on the core.
ADSP-219x/2192 DSP Hardware Reference 1-21

Differences from Previous DSPs
Program Sequencer, Instruction Pipeline, and Stacks

The ADSP-219x DSP core and inputs to the sequencer differ for various
members of the ADSP-219x family DSPs. The main differences between
the ADSP-218x and ADSP-219x sequencers are that the ADSP-219x
sequencer has:

• A 6-stage instruction pipeline, which works with the sequencer’s
loop and PC stacks, conditional branching, interrupt processing,
and instruction caching.

• A wider branch execution range, supporting:

• 13-bit non-delayed or delayed relative conditional Jump

• 16-bit non-delayed or delayed relative unconditional Jump or
Call

• Conditional non-delayed or delayed indirect Jump or Call
with address pointed to by a DAG register

• 24-bit conditional non-delayed absolute long Jump or Call

• A narrowing of the Do/Until termination conditions to Counter
Expired (CE) and Forever.

Conditional Execution (Difference in Flag
Input Support)

Unlike the ADSP-218x DSP family, the ADSP-219x processors do not
directly support a conditional Jump/Call instruction execution based on
flag input. Instead, the ADSP-219x supports this type of conditional exe-
cution with the CCODE register and SWCOND condition. For more
information, see “Conditions (SWCOND) and Condition Code
(CCODE) Register” on page 1-19.
1-22 ADSP-219x/2192 DSP Hardware Reference

Introduction
The ADSP-219x architecture has 16 programmable flag pins that can be
configured as either inputs or outputs. The flags can be checked by using a
software condition flag.

Execution Latencies (Different for JUMP Instructions)

The ADSP-219x processor has an instruction pipeline (unlike ADSP-218x
DSPs) and branches execution for immediate Jump and Call instructions
in four clock cycles if the branch is taken. To minimize branch latency,
ADSP-219x programs can use the delayed branch option on jumps and
calls, reducing branch latency by two cycles. This savings comes from exe-
cuting of two instructions following the branch before the Jump/Call
occurs.

ADSP-218x Instruction ADSP-219x Instruction Replacement

If Not FLAG_IN AR=MR0 And 8192; CCODE=0x03;

NOP;

If Not SWCOND AR=MR0 And 8192;

IOPG = 0x06;

AX0=IO();

AR=Tstbit 11 OF AXO;

If EQ AR=MRO And 8192;
ADSP-219x/2192 DSP Hardware Reference 1-23

For More Information About Analog Products
Instruction Set Enhancements

ADSP-219x provides near source code compatibility with the previous
family members, easing the process of porting code. All computational
instructions (but not all registers) from previous ADSP-2100 family DSPs
are available in ADSP-219x. New instructions, control registers, or other
facilities, required to support the new feature set of ADSP-219x core are:

• Program flow control differences (pipeline execution and changes to
looping)

• Memory accessing differences (DAG support and memory map)

• Peripheral I/O differences (additional ports and added DMA func-
tionality)

For more information, see the ADSP-219x DSP Instruction Set Reference.

For More Information About Analog
Products

Analog Devices is online on the internet at http://www.analog.com. Our
Web pages provide information on the company and products, including
access to technical information and documentation, product overviews,
and product announcements.

You may also obtain additional information about Analog Devices and its
products in any of the following ways:

• Visit our World Wide Web site at www.analog.com

• FAX questions or requests for information to 1(781)461-3010.

• Access the DSP Division File Transfer Protocol (FTP) site at ftp
ftp.analog.com or ftp 137.71.23.21 or ftp://ftp.analog.com.
1-24 ADSP-219x/2192 DSP Hardware Reference

Introduction
For Technical or Customer Support
You can reach our Customer Support group in the following ways:

• E-mail questions to dsp.support@analog.com or
dsp.europe@analog.com (European customer support)

• Telex questions to 924491, TWX:710/394-6577

• Cable questions to ANALOG NORWOODMASS

• Contact your local ADI sales office or an authorized ADI distributor

• Send questions by mail to:
Analog Devices, Inc.
DSP Division
One Technology Way
P.O. Box 9106
Norwood, MA 02062-9106
USA

What�s New in This Manual
This is Revision 1.1 of the ADSP-219x/2192 DSP Hardware Reference.
Changes to this book from the first edition include only the reporting of doc-
ument errata. See Pages 11-34, A-23, B-23.

Related Documents
For more information about Analog Devices DSPs and development
products, see the following documents:

• ADSP-2192 DSP Microcomputer Data Sheet

• ADSP-219x DSP Instruction Set Reference
ADSP-219x/2192 DSP Hardware Reference 1-25

Related Documents
• VisualDSP++ 2.0 Getting Started Guide for ADSP-21xx DSPs

• VisualDSP++ 2.0 User’s Guide for ADSP-21xx DSPs

• VisualDSP++ 2.0 C/C++ Compiler and Library Manual for
ADSP-219x DSPs

• VisualDSP++ 2.0 Assembler and Preprocessor Manual for
ADSP-219x DSPs

• VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xx DSPs

• VisualDSP++ Kernel (VDK) User’s Guide

All the manuals are included in the software distribution CD-ROM. To
access these documents within VisualDSP++:

1. Choose Help Topics from the VisualDSP++ Help menu.

2. Select the Reference book icon.

3. Select the Online Manuals topic.

4. Click the “Click here to view online manuals” button.

A list of manuals displays.

5. Select the document you want to view.

If you are not using VisualDSP++, you can manually access these PDF
files from the CD-ROM using Adobe Acrobat PDF format.
1-26 ADSP-219x/2192 DSP Hardware Reference

Introduction
Conventions
Table 1-1 identifies and describes text conventions used in this manual.

! Additional conventions, which apply only to specific chapters,
appear throughout this document.

Table 1-1. Notation Conventions

Example Description

AX0, SR, PX Register names appear in UPPERCASE and keyword font

TMR0E, RESET Pin names appear in UPPERCASE and keyword font; active
low signals appear with an OVERBAR.

DRx, MS3-0 Register and pin names in the text may refer to groups of regis-
ters or pins. When a lowercase “x” appears in a register name
(e.g., DRx), that indicates a set of registers (e.g., DR0, DR1, and
DR2). A range also may be shown with a hyphen (e.g., MS3-0
indicates MS3, MS2, MS1, and MS0).

If, Do/Until Assembler instructions (mnemonics) appear in mixed-case and
keyword font

[this,that]

|this,that|

Assembler instruction syntax summaries show optional items in
two ways. When the items are optional and none is required,
the list is shown enclosed in square brackets, []. When the
choices are optional, but one is required, the list is shown
enclosed in vertical bars, ||.

0xabcd, b#1111 A 0x prefix indicates hexadecimal; a b# prefix indicates binary

! A note, providing information of special interest or identifying
a related DSP topic.
ADSP-219x/2192 DSP Hardware Reference 1-27

Conventions
" A caution, providing information on critical design or pro-
gramming issues that influence operation of the DSP.

Click Here In the online version of this document, a cross reference acts as
a hypertext link to the item being referenced. Click on blue ref-
erences (Table, Figure, or section names) to jump to the loca-
tion.

Table 1-1. Notation Conventions

Example Description
1-28 ADSP-219x/2192 DSP Hardware Reference

2 COMPUTATIONAL UNITS
Figure 2-0.

Table 2-0.

Listing 2-0.
Overview
The DSP’s computational units perform numeric processing for DSP
algorithms. The three computational units are the arithmetic/logic unit
(ALU), multiplier/accumulator (multiplier), and shifter. These units get
data from registers in the data register file. Computational instructions for
these units provide fixed-point operations, and each computational
instruction can execute in a single cycle.

The computational units handle different types of operations. The ALU
performs arithmetic and logic operations. The multiplier does multiplica-
tion and executes multiply/add and multiply/subtract operations. The
shifter executes logical shifts and arithmetic shifts. Also, the shifter can
derive exponents.

Data flow paths through the computational units are arranged in parallel,
as shown in Figure 2-1 on page 2-3. The output of any computational
unit may serve as the input of any computational unit on the next instruc-
tion cycle. Data moving in and out of the computational units goes
through a data register file, consisting of sixteen primary registers and six-
teen secondary registers. Two ports on the register file connect to the PM
and DM data buses, allowing data transfer between the computational
units and memory.

The DSP’s assembly language provides access to the data register files. The
syntax lets programs move data to and from these registers and specify a
computation’s data format at the same time. For information on the data
registers, see “Data Register File” on page 2-57.
ADSP-219x/2192 DSP Hardware Reference 2-1

Overview
Figure 2-1 provides a graphical guide to the other topics in this chapter.
First, a description of the MSTAT register shows how to set rounding, data
format, and other modes for the computational units. Next, an examina-
tion of each computational unit provides details on operation and a
summary of computational instructions. Looking at inputs to the compu-
tational units, details on register files, and data buses identify how to flow
data for computations. Finally, details on the DSP’s advanced parallelism
reveal how to take advantage of conditional and multifunction
instructions.

The diagrams in Figure 2-1 on page 2-3 and Figure 2-17 on page 2-62
describe the relationship between the ADSP-219x data register file and
computational units: multiplier, ALU, and shifter.

Figure 2-1 shows how unconditional, single-function multiplier, ALU,
and shifter instructions have unrestricted access to the data registers in the
register file. Figure 2-1 also indicates that the Results Bus lets the compu-
tational units use any result registers (MR2, MR1, MR0, SR1, SR0, or AR) as an
X-input for any operation. The upper part of the Shifter Results (SR) reg-
ister, SR2, may not serve as feedback over the results bus.

The MR2 and SR2 registers differ from the other results registers. As a data
register file register, MR2 and SR2 are 16-bit registers that may be X- or
Y-inputs to the multiplier, ALU, or shifter. As result registers (part of MR
or SR), only the lower 8-bits of MR2 or SR2 hold data (the upper 8-bits are
sign extended). This difference (16-bit as input, 8-bit as output) influ-
ences how code can use the MR2 and SR2 registers. This sign extension
appears in Figure 2-12 on page 2-30.

Using register-to-register move instructions, the data registers can load (or
be loaded from) the Shifter Block (SB) and Shifter Exponent (SE) registers,
but the SB and SE registers may not provide X- or Y-input to the computa-
tional units. The SB and SE registers serve as additional inputs to the
shifter.
2-2 ADSP-219x/2192 DSP Hardware Reference

Computational Units
The shaded boxes behind the data register file and the SB, SE, MR, SR, AR,
and AF registers indicate that secondary registers are available for these reg-
isters. For more information, see “Secondary (Alternate) Data Registers”
on page 2-59.

Figure 2-1. Register Access—Unconditional, Single-Function Instructions

SB SE

REG ISTER FILE (16 × 16-B IT)

M A C SH IFTER A LU

D M DA TA BU S

M STA T

STA TU S TO
PRO G RA M SEQ U EN C ER

X Y

Z

X

Y

XY

A F A R

PM DA TA BU S

SR0SR1 **SR2 *M R2* M R1 M R0

M X 0 M X 1 A X 0 A X 1

M Y0 M Y1 A Y0 A Y1

M R2 M R1 M R0 A R

SR2* SR1** SR0 SI

A STA T

* The M R2 a nd SR2 re g iste rs ha ve so m e usa g e
re stric tio ns tha t d o no t a p p e a r in th is
d ia g ra m . Fo r d e ta ils, se e the te x t.

** The SR1 re g iste r a lso m a y se rve a s a Y inp u t
in c o nd itio na l o r m u ltifunc tio n M A C a nd A LU
instruc tio ns.

RESU LTS BU S
ADSP-219x/2192 DSP Hardware Reference 2-3

Using Data Formats
The Mode Status (MSTAT) register input sets arithmetic modes for the
computational units, and the Arithmetic Status (ASTAT) register records
status/conditions for the computation operations’ results.

Using Data Formats
ADSP-219x DSPs are 16-bit, fixed-point machines. Most operations
assume a two’s complement number representation, while others assume
unsigned numbers or simple binary strings. Special features support multi-
word arithmetic and block floating-point. For detailed information on
each number format, see “Numeric Formats” on page C-1.

In ADSP-219x family arithmetic, signed numbers are always in two’s
complement format. These DSPs do not use signed magnitude, one’s
complement, BCD, or excess-n formats.

Binary String
The binary string format is the least complex binary notation; sixteen bits
are treated as a bit pattern. Examples of computations using this format
are the logical operations: NOT, AND, OR, XOR. These ALU operations
treat their operands as binary strings with no provision for sign bit or
binary point placement.

Unsigned
Unsigned binary numbers may be thought of as positive, having nearly
twice the magnitude of a signed number of the same length. The DSP
treats the least significant words of multiple precision numbers as
unsigned numbers.
2-4 ADSP-219x/2192 DSP Hardware Reference

Computational Units
Signed Numbers: Two�s Complement
In ADSP-219x DSP arithmetic, the term “signed” refers to two’s comple-
ment. Most ADSP-219x family operations presume or support two’s
complement arithmetic.

Fractional Representation: 1.15
ADSP-219x DSP arithmetic is optimized for numerical values in a frac-
tional binary format denoted by 1.15 (“one dot fifteen”). In the 1.15
format, there is one sign bit (the MSB) and fifteen fractional bits, which
represent values from –1 up to one LSB less than +1.

Figure 2-2 shows the bit weighting for 1.15 numbers. These are examples
of 1.15 numbers and their decimal equivalents.

ALU Data Types
All operations on the ALU treat operands and results as 16-bit binary
strings, except the signed division primitive (DIVS). ALU result status bits
treat the results as signed, indicating status with the overflow (AV) condi-
tion code and the negative (AN) flag.

Figure 2-2. Bit Weighting for 1.15 Numbers

–2
0

2
–1

2
–2

2
–3

2
–4

2
–5

2
–6

2
–7

2
–8

2
–9

2
–10

2
–11

2
–12

2
–13

2
–14

2
–15

1.15 NUMBER (HEXADECIM AL)
0X0001
0X7FFF
0XFFFF
0X8000

DECIM AL EQUIVALENT
 0.000031
 0.999969
–0.000031
–1.000000
ADSP-219x/2192 DSP Hardware Reference 2-5

Using Data Formats
The logic of the overflow bit (AV) is based on two’s complement arith-
metic. It is set if the MSB changes in a manner not predicted by the signs
of the operands and the nature of the operation. For example, adding two
positive numbers must generate a positive result; a change in the sign bit
signifies an overflow and sets AV. Adding a negative and a positive may
result in either a negative or positive result, but cannot overflow.

The logic of the carry bit (AC) is based on unsigned-magnitude arithmetic.
It is set if a carry is generated from bit 16 (the MSB). The (AC) bit is most
useful for the lower word portions of a multiword operation.

ALU results generate status information. For more information on using
ALU status, see “ALU Status Flags” on page 2-18.

Multiplier Data Types
The multiplier produces results that are binary strings. The inputs are
“interpreted” according to the information given in the instruction itself
(signed times signed, unsigned times unsigned, a mixture, or a rounding
operation). The 32-bit result from the multiplier is assumed to be signed,
in that it is sign-extended across the full 40-bit width of the MR or SR regis-
ter set.

The ADSP-219x DSPs support two modes of format adjustment: the frac-
tional mode for fractional operands (1.15 format with 1 signed bit and 15
fractional bits) and the integer mode for integer operands (16.0 format).

When the processor multiplies two 1.15 operands, the result is a 2.30
(2 sign bits and 30 fractional bits) number. In the fractional mode, the
multiplier automatically shifts the multiplier product (P) left one bit
before transferring the result to the multiplier result register (MR). This
shift causes the multiplier result to be in 1.31 format, which can be
rounded to 1.15 format. This result format appears in Figure 2-3 on
page 2-12.
2-6 ADSP-219x/2192 DSP Hardware Reference

Computational Units
In the integer mode, the left shift does not occur. For example, if the oper-
ands are in the 16.0 format, the 32-bit multiplier result would be in 32.0
format. A left shift is not needed; it would change the numerical represen-
tation. This result format appears in Figure 2-4 on page 2-13.

Multiplier results generate status information. For more information on
using multiplier status, see “Multiplier Status Flags” on page 2-31.

Shifter Data Types
Many operations in the shifter are explicitly geared to signed (two’s com-
plement) or unsigned values: logical shifts assume unsigned-magnitude or
binary string values, and arithmetic shifts assume two’s complement
values.

The exponent logic assumes two’s complement numbers. The exponent
logic supports block floating-point, which is also based on two’s comple-
ment fractions.

Shifter results generate status information. For more information on using
shifter status, see “Shifter Status Flags” on page 2-50.
ADSP-219x/2192 DSP Hardware Reference 2-7

Using Data Formats
Arithmetic Formats Summary
Table 2-1, Table 2-2, and Table 2-3 summarize some of the arithmetic
characteristics of computational operations.

Table 2-1. ALU Arithmetic Formats

Operation Operands Formats Result Formats

Addition Signed or unsigned Interpret flags

Subtraction Signed or unsigned Interpret flags

Logical Operations Binary string same as operands

Division Explicitly signed/unsigned same as operands

ALU Overflow Signed same as operands

ALU Carry Bit 16-bit unsigned same as operands

ALU Saturation Signed same as operands

Table 2-2. Multiplier Arithmetic Formats

Operation (by Mode) Operands Formats Result Formats

Multiplier, Fractional Mode

Multiplication (MR/SR) 1.15 Explicitly
signed/unsigned

2.30 shifted to 1.31

Mult / Add 1.15 Explicitly
signed/unsigned

2.30 shifted to 1.31

Mult / Subtract 1.15 Explicitly
signed/unsigned

2.30 shifted to 1.31

Multiplier Saturation Signed same as operands
2-8 ADSP-219x/2192 DSP Hardware Reference

Computational Units
Multiplier, Integer Mode

Multiplication (MR/SR) 16.0 Explicitly
signed/unsigned

32.0 no shift

Mult / Add 16.0 Explicitly
signed/unsigned

32.0 no shift

Mult / Subtract 16.0 Explicitly
signed/unsigned

32.0 no shift

Multiplier Saturation Signed same as operands

Table 2-3. Shifter Arithmetic Formats

Operation Operands Formats Result Formats

Logical Shift Unsigned / binary string same as operands

Arithmetic Shift Signed same as operands

Exponent Detection Signed same as operands

Table 2-2. Multiplier Arithmetic Formats (Cont’d)

Operation (by Mode) Operands Formats Result Formats
ADSP-219x/2192 DSP Hardware Reference 2-9

Setting Computational Modes
Setting Computational Modes
The MSTAT and ICNTL registers control the operating mode of the computa-
tional units. Table A-6 on page A-11 lists all the bits in MSTAT, and
Table A-11 on page A-20 lists all the bits in ICNTL. The following bits in
MSTAT and ICNTL control computational modes:

• ALU overflow latch mode. MSTAT Bit 2 (AV_LATCH) determines how
the ALU overflow flag, AV, gets cleared (0=AV is “not-sticky”, 1=AV
is “sticky”).

• ALU saturation mode. MSTAT Bit 3 (AR_SAT) determines (for signed
values) whether ALU AR results that overflowed or underflowed are
saturated or not (0=unsaturated, 1=saturated).

• Multiplier result mode. MSTAT Bit 4 (M_MODE) selects fractional 1.15
format (=0) or integer 16.0 format (=1) for all multiplier operations.
The multiplier adjusts the format of the result according to the
selected mode.

• Multiplier biased rounding mode. ICNTL Bit 7 (BIASRND) selects
unbiased (=0) or biased (=1) rounding for multiplier results.

Latching ALU Result Overflow Status
The DSP supports an ALU overflow latch mode with the AV_LATCH bit in
the MSTAT register. This bit determines how the ALU overflow flag, AV,
gets cleared.

If AV_LATCH is disabled (=0), the AV bit is “not-sticky”. When an ALU
overflow sets the AV bit in the ASTAT register, the AV bit only remains set
until cleared by a subsequent ALU operation that does not generate an
overflow (or is explicitly cleared).
2-10 ADSP-219x/2192 DSP Hardware Reference

Computational Units
If AV_LATCH is enabled (=1), the AV bit is “sticky”. When an ALU overflow
sets the AV bit in the ASTAT register, the AV bit remains set until the appli-
cation explicitly clears it.

Saturating ALU Results on Overflow
The DSP supports an ALU saturation mode with the AR_SAT bit in the
MSTAT register. This bit determines (for signed values) whether ALU AR
results that overflowed or underflowed are saturated or not. This bit
enables (if set, =1) or disables (if cleared, =0) saturation for all subsequent
ALU operations. If AR_SAT is disabled, AR results remain unsaturated and is
returned unchanged. If AR_SAT is enabled, AR results are saturated accord-
ing to the state of the AV and AC status flags in ASTAT, as shown in
Table 2-4.

! The AR_SAT bit in MSTAT only affects the AR register. Only the results
written to the AR register are saturated. If results are written to the
AF register, wraparound occurs, but the AV and AC flags reflect the
saturated result.

Table 2-4. ALU Result Saturation With AR_SAT Enabled

AV AC AR register

0 0 ALU output not saturated

0 1 ALU output not saturated

1 0 ALU output saturated, maximum positive 0x7FFF

1 1 ALU output saturated, maximum negative 0x8000
ADSP-219x/2192 DSP Hardware Reference 2-11

Setting Computational Modes
Using Multiplier Integer and Fractional Formats
For multiply/accumulate functions, the DSP provides two modes: frac-
tional mode for fractional numbers (1.15), and integer mode for integers
(16.0).

In the fractional mode, the 32-bit Product output is format adjusted—
sign-extended and shifted one bit to the left—before being added to MR.
For example, bit 31 of the Product lines up with bit 32 of MR (which is bit
0 of MR2) and bit 0 of the Product lines up with bit 1 of MR (which is bit 1
of MR0). The LSB is zero-filled. The fractional multiplier result format
appears in Figure 2-3.

Figure 2-3. Fractional Multiplier Results Format

31 31 31 31 31 31 31 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 015 14 13 12 11 10 9 8 7 6 5 4 3 2 1 07 6 5 4 3 2 1 0

P SIGN,
7 BITS MULTIPLIER P OUTPUT

MR2 MR1 MR0

SHIFTED
OUT

ZERO
FILLED
2-12 ADSP-219x/2192 DSP Hardware Reference

Computational Units
In the integer mode, the 32-bit Product register is not shifted before being
added to MR. Figure 2-4 shows the integer-mode result placement.

The mode is selected by the M_MODE bit in the Mode Status (MSTAT) regis-
ter. If M_MODE is set (=1), integer mode is selected. If M_MODE is cleared (=0),
the fractional mode is selected. In either mode, the multiplier output
Product is fed into a 40-bit adder/subtracter which adds or subtracts the
new product with the current contents of the MR register to form the final
40-bit result.

Figure 2-4. Integer Multiplier Results Format

31 31 31 31 31 31 31 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 015 14 13 12 11 10 9 8 7 6 5 4 3 2 1 07 6 5 4 3 2 1 0

P SIGN,
8 BITS MULTIPLIER P OUTPUT

MR2 MR1 M R0
ADSP-219x/2192 DSP Hardware Reference 2-13

Setting Computational Modes
Rounding Multiplier Results
The DSP supports multiplier results rounding (Rnd option) on most mul-
tiplier operations. With the Biasrnd bit in the ICNTL register, programs
select whether the Rnd option provides biased or unbiased rounding.

Unbiased Rounding

Unbiased rounding uses the multiplier’s capability for rounding the 40-bit
result at the boundary between bit 15 and bit 16. Rounding can be speci-
fied as part of the instruction code. The rounded output is directed to
either MR or SR. When rounding is selected, MR1/SR1 contains the rounded
16-bit result; the rounding effect in MR1/SR1 affects MR2/SR2 as well. The
MR2/MR1 and SR2/SR1 registers represent the rounded 24-bit result.

The accumulator uses an unbiased rounding scheme. The conventional
method of biased rounding is to add a 1 into bit position 15 of the adder
chain. This method causes a net positive bias since the midway value
(when MR0=0x8000) is always rounded upward. The accumulator elimi-
nates this bias by forcing bit 16 in the result output to zero when it detects
this midway point. This has the effect of rounding odd MR1 values upward
and even MR1 values downward, yielding a zero large-sample bias assuming
uniformly distributed values.

Using x to represent any bit pattern (not all zeros), here are two examples
of rounding. The example in Figure 2-5 shows a typical rounding opera-
tion for MR; these also apply for SR.

Figure 2-5. Typical Unbiased Multiplier Rounding Operation

...MR2..|.......MR1......|.......MR0......
xxxxxxxx|xxxxxxxx00100101|1xxxxxxxxxxxxxxx
........|................|1...............
xxxxxxxx|xxxxxxxx00100110|0xxxxxxxxxxxxxxx

Unrounded value:
Add 1 and carry:
Rounded value:
2-14 ADSP-219x/2192 DSP Hardware Reference

Computational Units
The compensation to avoid net bias becomes visible when the lower 15
bits are all zero and bit 15 is one (the midpoint value) as shown in
Figure 2-6.

In Figure 2-6, MR bit 16 is forced to zero. This algorithm is employed on
every rounding operation, but it is only evident when the bit patterns
shown in the lower 16 bits of the last example are present.

Biased Rounding

The Biasrnd bit in the ICNTL register enables biased rounding. When the
Biasrnd bit is cleared (=0), the Rnd option in multiplier instructions uses
the normal unbiased rounding operation (as discussed in “Unbiased
Rounding” on page 2-14). When the Biasrnd bit is set to 1, the DSP uses
biased rounding instead of unbiased rounding. When operating in biased
rounding mode, all rounding operations with MR0 set to 0x8000 round up,
rather than only rounding odd MR1 values up. For an example, see
Figure 2-7.

This mode only has an effect when the MR0 register contains 0x8000; all
other rounding operations work normally. This mode allows more effi-
cient implementation of bit-specified algorithms that use biased rounding,
for example, the GSM speech compression routines. Unbiased rounding is
preferred for most algorithms.

Figure 2-6. Avoiding Net Bias in Unbiased Multiplier Rounding
Operation

...MR2
xxxxxxxx|xxxxxxxx01100110|1000000000000000
........|................|1...............
xxxxxxxx|xxxxxxxx01100111|0000000000000000

Unrounded value:
Add 1 and carry:
MR bit 16=1:

xxxxxxxx|xxxxxxxx01100110|0000000000000000Rounded value:

|.......MR1......|.......MR0......
ADSP-219x/2192 DSP Hardware Reference 2-15

Using Computational Status
Using Computational Status
The multiplier, ALU, and shifter update overflow and other status flags in
the DSP’s arithmetic status (ASTAT) register. To use status conditions from
computations in program sequencing, use conditional instructions to test
the exception flags in the ASTAT register after the instruction executes. This
method permits monitoring each instruction’s outcome.

More information on ASTAT appears in the sections that describe the com-
putational units. For summaries relating instructions and status bits, see
“ALU Status Flags” on page 2-18, “Multiplier Status Flags” on page 2-31,
and “Shifter Status Flags” on page 2-50.

Figure 2-7. Bias Rounding in Multiplier Operation

0x00 0000 8000 0x00 0001 0000 0x00 0000 0000
0x00 0001 8000 0x00 0002 0000 0x00 0002 0000
0x00 0000 8001 0x00 0001 0001 0x00 0001 0001
0x00 0001 8001 0x00 0002 0001 0x00 0002 0001
0x00 0000 7FFF 0x00 0000 FFFF 0x00 0000 FFFF
0x00 0001 7FFF 0x00 0001 FFFF 0x00 0001 FFFF

MR before RND

Biased RND result

Unbiased RND result
2-16 ADSP-219x/2192 DSP Hardware Reference

Computational Units
Arithmetic Logic Unit (ALU)
The ALU performs arithmetic and logical operations on fixed-point data.
ALU fixed-point instructions operate on 16-bit fixed-point operands and
output 16-bit fixed-point results. ALU instructions include:

• Fixed-point addition and subtraction

• Fixed-point add with carry, subtract with borrow, increment, dec-
rement

• Logical AND, OR, XOR, NOT

• Functions: Abs, Pass, division primitives

ALU Operation
ALU instructions take one or two inputs: X input and Y input. For uncon-
ditional, single-function instructions, these inputs (also known as
operands) can be any data registers in the register file. Most ALU opera-
tions return one result, but in Pass operations the ALU operation returns
no result (only status flags are updated). ALU results are written to the
ALU Result (AR) or ALU Feedback (AF) register.

The DSP transfers input operands from the register file during the first
half of the cycle and transfers results to the result register during the sec-
ond half of the cycle. With this arrangement, the ALU can read and write
the AR register file location in a single cycle.
ADSP-219x/2192 DSP Hardware Reference 2-17

Arithmetic Logic Unit (ALU)
ALU Status Flags
ALU operations update status flags in the DSP’s Arithmetic Status (ASTAT)
register. Table A-5 on page A-9 lists all the bits in this register. Table 2-5
shows the bits in ASTAT that flag ALU status (a 1 indicates the condition is
true) for the most recent ALU operation:

Flag updates occur at the end of the cycle in which the status is generated
and are available in the next cycle.

! On previous 16-bit, fixed-point DSPs (ADSP-2100 family), the Pos
(AS bit =1) and Neg (AS bit =0) conditions permit checking the ALU
result’s sign. On ADSP-219x DSPs, the CCODE register and SWCOND
condition support this feature.

Table 2-5. ALU Status Bits in the ASTAT Register

Flag Name Definition

AZ Zero Logical NOR of all the bits in the ALU result register. True if ALU output
equals zero.

AN Negative Sign bit of the ALU result. True if the ALU output is negative.

AV Overflow Exclusive-OR of the carry outputs of the two most significant adder stages.
True if the ALU overflows.

AC Carry Carry output from the most significant adder stage.

AS Sign Sign bit of the ALU X input port. Affected only by the ABS instruction.

AQ Quotient Quotient bit generated only by the DIVS and DIVQ instructions.
2-18 ADSP-219x/2192 DSP Hardware Reference

Computational Units
! Unlike previous ADSP-218x DSPs, ASTAT writes on ADSP-219x
DSPs have a one cycle effect latency. Code being ported from
ADSP-218x to ADSP-219x DSPs that checks ALU status during the
instruction following an ASTAT clear (ASTAT=0) instruction may not
function as intended. Re-arranging the order of instructions to
accommodate the one cycle effect latency on the ADSP-219x ASTAT
register corrects this issue.

ALU Instruction Summary
Table 2-6 lists the ALU instructions and shows how they relate to ASTAT
flags. As indicated in the table, the ALU handles flags in the same manner
whether the result goes to the AR or AF registers. For more information on
assembly language syntax, see the ADSP-219x DSP Instruction Set
Reference. In Table 2-6, note the meaning of the following symbols:

• Dreg, Dreg1, Dreg2 indicate any register file location

• Xop, Yop indicate any X- and Y-input registers, indicating a register
usage restriction for conditional and/or multifunction instructions.
For more information, see “Multifunction Computations” on
page 2-60.

• * indicates the flag may be set or cleared, depending on the results
of the instruction

• ** indicates the flag is cleared, regardless of the results of
the instruction

• – indicates no effect
ADSP-219x/2192 DSP Hardware Reference 2-19

Arithmetic Logic Unit (ALU)
Table 2-6. ALU Instruction Summary

Instruction ASTAT Status Flags

AZ AV AN AC AS AQ

|AR, AF| = Dreg1 + |Dreg2, Dreg2 + C, C |; * * * * – –

[IF Cond] |AR, AF| = Xop + |Yop, Yop + C, C, Const, Const + C|; * * * * – –

|AR, AF| = Dreg1 − |Dreg2, Dreg2 + C −1, +C −1|; * * * * – –

[IF Cond]|AR,AF| = Xop − |Yop,Yop+C−1,+C−1,Const,Const+C −1|; * * * * – –

|AR, AF| = Dreg2 − |Dreg1, Dreg1 + C −1|; * * * * – –

[IF Cond] |AR, AF| = Yop − |Xop, Xop+C−1|; * * * * – –

[IF Cond] |AR,AF| = − |Xop+C −1, Xop+Const, Xop+Const+C−1|; * * * * – –

|AR, AF| = Dreg1 |AND, OR, XOR| Dreg2; * ** * ** – –

[IF Cond] |AR, AF| = Xop |AND, OR, XOR| |Yop, Const|; * ** * ** – –

[IF Cond]|AR,AF| = |TSTBIT,SETBIT,CLRBIT,TGLBIT| n of Xop; * ** * ** – –

|AR, AF| = PASS |Dreg1, Dreg2, Const|; * ** * ** – –

|AR, AF| = PASS 0; ** ** * ** – –

[IF Cond] |AR, AF| = PASS |Xop, Yop, Const|; * ** * ** – –

|AR, AF| = NOT |Dreg|; * ** * ** – –

[IF Cond] |AR, AF| = NOT |Xop, Yop|; * ** * ** – –

|AR, AF| = ABS Dreg; * ** ** ** * –

[IF Cond] |AR, AF| = ABS Xop; * ** ** ** * –

|AR, AF| = Dreg +1; * * * * – –

[IF Cond] |AR, AF| = Yop +1; * * * * – –

|AR, AF| = Dreg −1; * * * * – –

[IF Cond] |AR, AF| = Yop −1; * * * * – –

DIVS Yop, Xop; – – – – – *

DIVQ Xop; – – – – – *
2-20 ADSP-219x/2192 DSP Hardware Reference

Computational Units
ALU Data Flow Details
Figure 2-8 shows a detailed diagram of the ALU.

The ALU is 16 bits wide with two 16-bit input ports, X and Y, and one
output port, R. The ALU accepts a carry-in signal (CI) which is the carry
bit (AC) from the processor arithmetic status register (ASTAT). The ALU
generates six status signals: the zero (AZ) status, the negative (AN) status,
the carry (AC) status, the overflow (AV) status, the X-input sign (AS) status,
and the quotient (AQ) status.

Figure 2-8. ALU Block Diagram

X Y

ALU

R

AZ

AN

AC

AV

AS

AQ

CI

MUXMUX

M UX

16

16 16

16

16

R - BUS

DMD/PMD
BUSES

AR

REGISTER

AF

REGISTER

X-INPUT
REGISTER

Y-INPUT
REGISTER

AR_SAT

AV_LATCH
ADSP-219x/2192 DSP Hardware Reference 2-21

Arithmetic Logic Unit (ALU)
All arithmetic status signals are latched into the arithmetic status register
(ASTAT) at the end of the cycle. For information on how each instruction
affects the ALU flags, see Table 2-6 on page 2-20.

Depending on the instruction, the X input port of the ALU can accept
data from two sources: the data register file (X-input registers for condi-
tional/multifunction instructions) or the result (R) bus. The R bus
connects the output registers of all the computational units, permitting
them to be used as input operands directly.

Also depending on the instruction, the Y input port of the ALU can accept
data from two sources: the data register file (Y-input registers for condi-
tional/multifunction instructions) and the ALU feedback (AF) register.

! For more information on register usage restrictions in conditional
and multifunction instructions, see “Multifunction Computations”
on page 2-60.

The output of the ALU goes into either the ALU feedback (AF) register or
the ALU result (AR) register. The AF register is an ALU internal register,
which lets the ALU result serve as the ALU Y input. The AR register can
drive both the DMD bus and the R bus. It is also loadable directly from
the DMD bus.

The ALU can read and write any of its associated registers in the same
cycle. Registers are read at the beginning of the cycle and written at the
end of the cycle. A register read gets the value loaded at the end of a previ-
ous cycle. A new value written to a register cannot be read out until a
subsequent cycle. This read/write pattern lets an input register provide an
operand to the ALU at the beginning of the cycle and be updated with the
next operand from memory at the end of the same cycle. Also, this
read/write pattern lets a result register be stored in memory and be
updated with a new result in the same cycle.
2-22 ADSP-219x/2192 DSP Hardware Reference

Computational Units
The ALU contains a duplicate bank of registers (shown behind the pri-
mary registers in Figure 2-8 on page 2-21). There are two sets of data and
results registers. Only one bank is accessible at a time. The additional
bank of registers can be activated (such as during an interrupt service rou-
tine) for extremely fast context switching. A new task, such as an interrupt
service routine, can be executed without transferring current states to stor-
age. For more information, see “Secondary (Alternate) Data Registers” on
page 2-59.

Multiprecision operations are supported in the ALU with the carry-in sig-
nal and ALU carry (AC) status bit. The carry-in signal is the AC status bit
that was generated by a previous ALU operation. The “add with carry”
(+C) operation is intended for adding the upper portions of multipreci-
sion numbers. The “subtract with borrow” (C–1 is effectively a “borrow”)
operation is intended for subtracting the upper portions of multiprecision
numbers.

ALU Division Support Features
The ALU supports division with two special divide primitives. These
instructions (DIVS, DIVQ) let programs implement a non-restoring, condi-
tional (error checking), add-subtract division algorithm. The division can
be either signed or unsigned, but the dividend and divisor must both be of
the same type. More details on using division and programming examples
are available in the ADSP-219x DSP Instruction Set Reference.

A single-precision divide, with a 32-bit dividend (numerator) and a 16-bit
divisor (denominator), yielding a 16-bit quotient, executes in 16 cycles.
Higher and lower precision quotients can also be calculated. The divisor
can be stored in AX0, AX1, or any of the R registers. The upper half of a
signed dividend can start in either AY1 or AF. The upper half of an
unsigned dividend must be in AF. The lower half of any dividend must be
in AY0. At the end of the divide operation, the quotient is in AY0.
ADSP-219x/2192 DSP Hardware Reference 2-23

Arithmetic Logic Unit (ALU)
The first of the two primitive instructions “divide-sign” (DIVS) is executed
at the beginning of the division when dividing signed numbers. This oper-
ation computes the sign bit of the quotient by performing an
exclusive-OR of the sign bits of the divisor and the dividend. The AY0 reg-
ister is shifted one place so that the computed sign bit is moved into the
LSB position. The computed sign bit is also loaded into the AQ bit of the
arithmetic status register. The MSB of AY0 shifts into the LSB position of
AF, and the upper 15 bits of AF are loaded with the lower 15 R bits from
the ALU, which simply passes the Y input value straight through to the R
output. The net effect is to left shift the AF-AY0 register pair and move the
quotient sign bit into the LSB position. The operation of DIVS is illus-
trated in Figure 2-9.

When dividing unsigned numbers, the DIVS operation is not used. Instead,
the AQ bit in the arithmetic status register (ASTAT) should be initialized to
zero by manually clearing it. The AQ bit indicates to the following opera-
tions that the quotient should be assumed positive.

The second division primitive is the “divide-quotient” (DIVQ) instruction,
which generates one bit of quotient at a time and is executed repeatedly to
compute the remaining quotient bits.

For unsigned single precision divides, the DIVQ instruction is executed 16
times to produce 16 quotient bits. For signed single precision divides, the
DIVQ instruction is executed 15 times after the sign bit is computed by the
DIVS operation. DIVQ instruction shifts the AY0 register left by one bit so
that the new quotient bit can be moved into the LSB position.

The status of the AQ bit generated from the previous operation determines
the ALU operation to calculate the partial remainder. If AQ = 1, the ALU
adds the divisor to the partial remainder in AF. If AQ = 0, the ALU sub-
tracts the divisor from the partial remainder in AF.
2-24 ADSP-219x/2192 DSP Hardware Reference

Computational Units
Figure 2-9. DIVS Operation

MUX

L

S

B

AX1 AY1 A FAX0 AY0

 LOWER

DIVIDEND

R-BUS

LEFT SHIFT

15

MUX

 UPPER

DIVIDEND

MSB

DIVISOR M SB

AQ
X Y

ALU

R = PASS Y

15 LSBS

16
ADSP-219x/2192 DSP Hardware Reference 2-25

Arithmetic Logic Unit (ALU)
The ALU output R is offset loaded into AF just as with the DIVS operation.
The AQ bit is computed as the exclusive-OR of the divisor MSB and the
ALU output MSB, and the quotient bit is this value inverted. The quo-
tient bit is loaded into the LSB of the AY0 register which is also shifted left
by one bit. The DIVQ operation is illustrated in Figure 2-10.

Figure 2-10. DIVQ Operation

MUX

AX1AX0

R-BUS

DIVISOR M SB

AQX Y

ALU

1 MSB

L

S

B

AF AY0

 LOWER

DIVIDEND

LEFT SHIFT

15

 PARTIAL

REM AINDER

16

R=Y+X IF AQ=1

R=Y-X IF AQ=0

15 LSBS
2-26 ADSP-219x/2192 DSP Hardware Reference

Computational Units
The format of the quotient for any numeric representation can be deter-
mined by the format of the dividend and divisor as shown in Figure 2-11.
Let NL represent the number of bits to the left of the binary point, let NR
represent the number of bits to the right of the binary point of the divi-
dend, let DL represent the number of bits to the left of the binary point,
and let DR represent the number of bits to the right of the binary point of
the divisor. Then, the quotient has NL–DL+1 bits to the left of the binary
point and has NR–DR–1 bits to the right of the binary point.

Some format manipulation may be necessary to guarantee the validity of
the quotient. For example, if both operands are signed and fully fractional
(dividend in 1.31 format and divisor in 1.15 format) the result is fully
fractional (in 1.15 format), and the dividend must be smaller than the
divisor for a valid result.

To divide two integers (dividend in 32.0 format and divisor in 16.0 for-
mat) and produce an integer quotient (in 16.0 format), the program must
shift the dividend one bit to the left (into 31.1 format) before dividing.
Additional discussion and code examples can be found in the ADSP-219x
DSP Instruction Set Reference.

Figure 2-11. Quotient Format

Dividend BBBBB .BBBBBBBBBBBBBBBBBBBBBBBBBBB

NL bits NR bits

Divisor BB .BBBBBBBBBBBBBB

DL bits DR bits

Quotient BBBB .BBBBBBBBBBBB

(NL–DL+1) bits (NR–DR–1) bits
ADSP-219x/2192 DSP Hardware Reference 2-27

Multiply�Accumulator (Multiplier)
The algorithm overflows if the result cannot be represented in the format
of the quotient as shown in the calculation in Figure 2-11 on page 2-27,
or when the divisor is zero or less than the dividend in magnitude.

Multiply�Accumulator (Multiplier)
The multiplier performs fixed-point multiplication and multiply/accumu-
late operations. Multiply/accumulates are available with either cumulative
addition or cumulative subtraction. Multiplier fixed-point instructions
operate on 16-bit fixed-point data and produce 40-bit results. Inputs are
treated as fractional or integer, unsigned or two’s complement. Multiplier
instructions include:

• Multiplication

• Multiply/accumulate with addition, rounding optional

• Multiply/accumulate with subtraction, rounding optional

• Rounding, saturating, or clearing result register

Multiplier Operation
The multiplier takes two inputs: X input and Y input. For unconditional,
single-function instructions, these inputs (also known as operands) can be
any data registers in the register file. The multiplier accumulates results in
either the Multiplier Result (MR) or Shifter Result (SR) register. The results
can also be rounded or saturated.

! On previous 16-bit, fixed-point DSPs (ADSP-2100 family), only
the multiplier results (MR) register can accumulate results for the
multiplier. On ADSP-219x DSPs, both MR and SR registers can accu-
mulate multiplier results.
2-28 ADSP-219x/2192 DSP Hardware Reference

Computational Units
The multiplier transfers input operands during the first half of the cycle
and transfers results during the second half of the cycle. With this arrange-
ment, the multiplier can read and write the same result register in a single
cycle.

Depending on the multiplier mode (M_MODE) setting, operands are either
both in integer format or both in fractional format. The format of the
result matches the format of the inputs. Each operand may be either an
unsigned or a two’s complement value. If both inputs are fractional and
signed, the multiplier automatically shifts the result left one bit to remove
the redundant sign bit. Multiplier instruction options (required within the
multiplier instruction) specify inputs’ data format(s)—SS for signed, UU
for unsigned, SU for signed X-input and unsigned Y-input, and US for
unsigned X-input and signed Y-input.

Placing Multiplier Results in MR or SR Registers

As shown in Figure 2-12, the MR register is divided into three sections: MR0
(bits 0-15), MR1 (bits 16-31), and MR2 (bits 32-39). Similarly, the SR regis-
ter is divided into three sections: SR0 (bits 0-15), SR1 (bits 16-31), and
SR2 (bits 32-39). Each of these registers can be loaded from the DMD bus
and output to the R bus or the DMD bus.

When the multiplier writes to either of the result registers, the 40-bit
result goes into the lower 40 bits of the combined register (MR2, MR1, and
MR0 or SR2, SR1, and SR0), and the MSB is sign extended into the upper
eight bits of the uppermost register (MR2 or SR2). When an instruction
explicitly loads the middle result register (MR1 or SR1), the DSP also sign
extends the MSB of the data into the related uppermost register (MR2 or
SR2). These sign extension operations appear in Figure 2-12.

To load the MR2 register with a value other than MR1’s sign extension, pro-
grams must load MR2 after MR1 has been loaded. Loading MR0 affects neither
MR1 nor MR2; no sign extension occurs in MR0 loads. This technique also
applies to SR2, SR1, and SR0.
ADSP-219x/2192 DSP Hardware Reference 2-29

Multiply�Accumulator (Multiplier)
Clearing, Rounding, or Saturating Multiplier Results

Besides using the results registers to accumulate, the multiplier also can
clear, round, or saturate result data in the results registers. These opera-
tions work as follows:

• The clear operation—[MR,SR]=0—clears the specified result register
to zero.

• The rounding operation—[MR,SR]=Rnd [MR,SR]—applies only to
fractional results—integer results are not affected. This explicit
rounding operation generates the same results as using the Rnd
option in other multiplier instructions. For more information, see
“Rounding Multiplier Results” on page 2-14.

• The saturate operation—Sat [MR,SR]—sets the specified result reg-
ister to the maximum positive or negative value if an overflow or
underflow has occurred. The saturation operation depends on the
overflow status bit (MV or SV) and the MSB of the corresponding
result register (MR2 or SR2). For more information, see “Saturating
Multiplier Results on Overflow” on page 2-31.

Figure 2-12. Placing Multiplier Results

SR

39 0

SR1 SR0

7 15 15 000

SR2

815

SIG N EX TEN SIO N (W H EN PLA C IN G RESULTS)

M R

39 0

M R1 M R0

7 15 15 000

M R2

815

SIG N EX TEN S IO N (W H EN PLA C IN G R ESULTS)

SIG N EX TEN SIO N (EX PLIC T W R ITE)SIG N EX TEN SIO N (EX PLIC T W R ITE)
2-30 ADSP-219x/2192 DSP Hardware Reference

Computational Units
Multiplier Status Flags
Multiplier operations update two status flags in the computational unit’s
arithmetic status register (ASTAT). Table A-5 on page A-9 lists all the bits
in these registers. The following bits in ASTAT flag multiplier status (a 1
indicates the condition) for the most recent multiplier operation:

• Multiplier overflow. Bit 6 (MV) records overflow/underflow condi-
tion for MR result register. If cleared (=0), no overflow or underflow
has occurred. If set (=1), an overflow or underflow has occurred.

• Shifter overflow. Bit 8 (SV) records overflow/underflow condition
for SR result register. If cleared (=0) no overflow or underflow has
occurred. If set (=1), an overflow or underflow has occurred.

Flag updates occur at the end of the cycle in which the status is generated
and are available on the next cycle.

Saturating Multiplier Results on Overflow
The adder/subtracter generates an overflow status signal every time a mul-
tiplier operation is executed. When the accumulator result in MR or SR,
interpreted as a two’s complement number, crosses the 32-bit (MR1/MR2)
boundary (overflows), the multiplier sets the MV or SV bit in the ASTAT
register.

The multiplier saturation instruction provides control over a multiplica-
tion result that has overflowed or underflowed. It saturates the value in the
specified register only for the cycle in which it executes. It does not enable
a mode that continuously saturates results until disabled, like the ALU.
Used at the end of a series of multiply and accumulate operations, the sat-
uration instruction prevents the accumulator from overflowing.

For every operation it performs, the multiplier generates an overflow sta-
tus signal MV (SV when SR is the specified result register), which is recorded
in the ASTAT status register. The multiplier sets MV = 1 when the upper
ADSP-219x/2192 DSP Hardware Reference 2-31

Multiply�Accumulator (Multiplier)
nine bits in MR are anything other than all 0s or all 1s, setting MV when the
accumulator result—interpreted as a signed, two’s complement number—
crosses the 32-bit boundary and spills over from MR1 into MR2. Otherwise,
the multiplier clears MV = 0.

The operation of the saturation instruction depends on the overflow status
bit MV (or SV) and the MSB of the result, which appear in Table 2-7 on
page 2-32. If MV/SV = 0, no saturation occurs. When MV/SV = 1, the mul-
tiplier examines the MSB of MR2 to determine whether the result has
overflowed or underflowed. If the MSB = 0, the result has overflowed, and
the multiplier saturates the result register, setting it to the maximum posi-
tive value. If the MSB = 1, the result has underflowed, and the multiplier
saturates the MR register, setting it to the maximum negative value.

! Avoid result overflows beyond the MSB of the result register. In
such a case, the true sign bit of the result is irretrievably lost, and
saturation may not produce a correct result. It takes over 255 over-
flows to lose the sign.

Table 2-7. Saturation Status Bits and Result Registers

MV/SV MSB of MR2/SR2 MR/SR Results

0 0 No change.

0 1 No change.

1 0 00000000 0111111111111111 1111111111111111

1 1 11111111 1000000000000000 0000000000000000
2-32 ADSP-219x/2192 DSP Hardware Reference

Computational Units
Multiplier Instruction Summary
Table 2-8 lists the multiplier instructions and how they relate to ASTAT
flags. For more information on assembly language syntax, see the
ADSP-219x DSP Instruction Set Reference. In Table 2-8, note the meaning
of the following symbols:

• Dreg1, Dreg2 indicate any register file location

• Xop, Yop indicate any X- and Y-input registers, indicating a register
usage restriction for conditional and/or multifunction instructions.
For more information, see “Multifunction Computations” on
page 2-60.

• * indicates the flag may be set or cleared, depending on results of
instruction

• ** indicates the flag is cleared, regardless of the results of instruction

• – indicates no effect

Table 2-8. Multiplier Instruction Summary

Instruction ASTAT Status Flags

MV SV

|MR, SR| = Dreg1 * Dreg2 [(|RND, SS, SU, US, UU|)]; * *

[IF Cond] |MR, SR| = Xop * Yop [(|RND, SS, SU, US, UU|)]; * *

[IF Cond] |MR, SR| = Yop * Xop [(|RND, SS, SU, US, UU|)]; * *

|MR, SR| = |MR, SR| + Dreg1 * Dreg2 [(|RND, SS, SU, US, UU|)]; * *

[IF Cond]|MR, SR| = |MR, SR| + Xop * Yop [(|RND, SS, SU, US, UU|)]; * *

[IF Cond] |MR, SR| = |MR, SR| + Yop * Xop [(|RND, SS, SU, US, UU|)]; * *

|MR, SR| = |MR, SR| − Dreg1 * Dreg2 [(|RND, SS, SU, US, UU|)]; * *

[IF Cond] |MR, SR| = |MR, SR| − Xop * Yop [(|RND, SS, SU, US, UU|)]; * *

[IF Cond] |MR, SR| = |MR, SR| − Yop * Xop [(|RND, SS, SU, US, UU|)]; * *
ADSP-219x/2192 DSP Hardware Reference 2-33

Multiply�Accumulator (Multiplier)
Multiplier Data Flow Details
Figure 2-13 on page 2-35 shows a detailed diagram of the
multiplier/accumulator.

The multiplier has two 16-bit input ports, X and Y, and a 32-bit product
output port, Product. The 32-bit product is passed to a 40-bit adder/sub-
tracter, which adds or subtracts the new product from the content of the
multiplier result (MR or SR) register or passes the new product directly to
the results register. For results, the MR and SR registers are 40 bits wide.
These registers each consist of smaller 16-bit registers: MR0, MR1, MR2, SR0,
SR1, and SR2. For more information on these registers, see Figure 2-12 on
page 2-30.

The adder/subtracters are greater than 32 bits to allow for intermediate
overflow in a series of multiply/accumulate operations. A multiply over-
flow (MV or SV) status bit is set when an accumulator has overflowed
beyond the 32-bit boundary—when there are significant (non-sign) bits in
the top nine bits of the MR or SR registers (based on two’s complement
arithmetic).

Depending on the instruction, the X input port of the multiplier can
accept data from two sources: the data register file (X-input registers for
conditional/multifunction instructions) or the result (R) bus. The R bus
connects the output registers of all the computational units, permitting
them to be used as input operands directly.

[IF Cond] |MR, SR| = 0; ** **

[IF Cond] MR = MR [(RND)]; * –

[IF Cond] SR = SR [(RND)]; – *

SAT [MR,SR]; – –

Table 2-8. Multiplier Instruction Summary (Cont’d)

Instruction ASTAT Status Flags

MV SV
2-34 ADSP-219x/2192 DSP Hardware Reference

Computational Units
! On previous 16-bit, fixed-point DSPs (ADSP-2100 family), only
the dedicated input registers for each computational unit can pro-
vide inputs. On ADSP-219x DSPs, any register in the data register
file can provide input to any computational unit.

Depending on the instruction, the Y input port of the multiplier can also
accept data from two sources: the data register file (Y-input registers for
conditional/multifunction instructions) and the multiplier feedback (SR1)
register.

Figure 2-13. Multiplier Block Diagram

M R

REGISTER

X Y

MULTIPLIER

R

MV SV

MUXMUX

M UX

40

16 16

40

40

R - BUS

DM D/PM D
BUSES

SR1

REGISTER

X-INPUT
REGISTER

Y-INPUT
REGISTER

ADD/S UBTRACT

P

SR

REGISTER

ADD/S UBTRACT

M UX

40

4040

32 32

R

ADSP-219x/2192 DSP Hardware Reference 2-35

Multiply�Accumulator (Multiplier)
! On previous 16-bit, fixed-point DSPs (ADSP-2100 family), a ded-
icated multiplier feedback (MF) register is available. On ADSP-219x
DSPs, there is no MF register; therefore, code should use SR1.

! For more information on register usage restrictions in conditional
and multifunction instructions, see “Multifunction Computations”
on page 2-60.

The output of an adder/subtracter goes to the feedback (SR) register or a
results (MR or SR) register. The SR1 register is a feedback register which
allows bits 16–31 of the result to be used directly as the multiplier Y input
on a subsequent cycle.

The multiplier reads and writes any of its associated registers within the
same cycle. Registers are read at the beginning of the cycle and written at
the end of the cycle. A register read gets the value loaded at the end of a
previous cycle. A new value written to a register cannot be read out until a
subsequent cycle. This read/write pattern lets an input register provide an
operand to the multiplier at the beginning of the cycle and be updated
with the next operand from memory at the end of the same cycle. This
pattern also lets a result register be stored in memory and updated with a
new result in the same cycle.

The multiplier contains a duplicate bank of registers (shown behind the
primary registers in Figure 2-13 on page 2-35). There are two sets of data
and results registers. Only one bank is accessible at a time. The additional
bank of registers can be activated (for example, during an interrupt service
routine) for extremely fast context switching. A new task, such as an inter-
rupt service routine, can be executed without transferring current states to
storage. For more information, see “Secondary (Alternate) Data Registers”
on page 2-59.
2-36 ADSP-219x/2192 DSP Hardware Reference

Computational Units
Barrel-Shifter (Shifter)
The shifter provides bitwise shifting functions for 16-bit inputs, yielding a
40-bit output. These functions include arithmetic shift (ASHIFT), logical
shift (LSHIFT), and normalization (NORM). The shifter also performs deriva-
tion of exponent (EXP) and derivation of common exponent (EXPADJ) for
an entire block of numbers. These shift functions can be combined to
implement numerical format control, including full floating-point
representation.

Shifter Operations
The shifter instructions (ASHIFT, LSHIFT, NORM, EXP, and EXPADJ) can be
used in a variety of ways, depending on the underlying arithmetic require-
ments. The following sections present single and multiple precision
examples for these functions:

• “Derive Block Exponent” on page 2-39

• “Immediate Shifts” on page 2-40

• “Denormalize” on page 2-42

• “Normalize, Single Precision Input” on page 2-44

The shift functions (arithmetic shift, logical shift, and normalize) can be
optionally specified with [SR OR] to facilitate multiprecision operations.
[SR OR] logically OR’s the shift result with the current contents of SR. This
option is used to join 16-bit inputs with the 40-bit value in SR. When
[SR OR] is not used, the shift value is passed through to SR directly.

Almost all shifter instructions have two or three options: (Hi), (Lo), and
(Hix). Each option enables a different exponent detector mode that oper-
ates only while the instruction executes. The shifter interprets and handles
the input data according to the selected mode.
ADSP-219x/2192 DSP Hardware Reference 2-37

Barrel-Shifter (Shifter)
For the derive exponent (EXP) and block exponent adjust (EXPADJ) opera-
tions, the shifter calculates the shift code—the direction and number of
bits to shift—then stores the value in SE (for EXP) or SB (for EXPADJ). For
the ASHIFT, LSHIFT, and NORM operations, a program can supply the value
of the shift code directly to the SE register or use the result of a previous
EXP or EXPADJ operation.

For the ASHIFT, LSHIFT, and NORM operations:

(Hi) Operation references the upper half of the output field.

(Lo) Operation references the lower half of the output field.

For the exponent derive (EXP) operation:

(Hix) Mode used for shifts and normalization of results from ALU
operations.

Input data is the result of an add or subtract operation that may
have overflowed. The shifter examines the ALU overflow bit AV. If
AV=1, the effective exponent of the input is +1 (this value indicates
that overflowed occurred before the EXP operation executed). If
AV=0, no overflow occurred and the shifter performs the same oper-
ations as the (Hi) mode.

(Hi) Input data is a single-precision signed number or the upper half of
a double-precision signed number. The number of leading sign bits
in the input operand, which equals the number of sign bits minus
one, determines the shift code.

(By default, the EXPADJ operation always operates in this mode.)

(Lo) Input data is the lower half of a double-precision signed number.
To derive the exponent on a double-precision number, the pro-
gram must perform the EXP operation twice, once on the upper half
of the input, and once on the lower half.
2-38 ADSP-219x/2192 DSP Hardware Reference

Computational Units
Derive Block Exponent

The EXPADJ instruction detects the exponent of the number largest in
magnitude in an array of numbers. The steps for a typical block exponent
derivation are as follows:

1. Load SB with –16. The SB register contains the exponent for the
entire block. The possible values at the conclusion of a series of
EXPADJ operations range from –15 to 0. The exponent compare
logic updates the SB register if the new value is greater than the cur-
rent value. Loading the register with –16 initializes it to a value
certain to be less than any actual exponents detected.

2. Process the first array element as follows:

Array(1) = 11110101 10110001

Exponent = –3
– 3 > SB (–16)

SB gets –3

3. Process next array element as follows:

Array(2)= 00000001 01110110

Exponent = –6
–6 < –3

SB remains –3

4. Continue processing array elements.

When and if an array element is found whose exponent is greater than SB,
that value is loaded into SB. When all array elements have been processed,
the SB register contains the exponent of the largest number in the entire
block. No normalization is performed. EXPADJ is purely an inspection
operation. The value in SB could be transferred to SE and used to normal-
ize the block on the next pass through the shifter. Or, SB could be
associated with that data for subsequent interpretation.
ADSP-219x/2192 DSP Hardware Reference 2-39

Barrel-Shifter (Shifter)
Immediate Shifts

An immediate shift shifts the input bit pattern to the right (downshift) or
left (upshift) by a given number of bits. Immediate shift instructions use
the data value in the instruction itself to control the amount and direction
of the shifting operation. For examples using this instruction, see the
ADSP-219x DSP Instruction Set Reference. The data value controlling the
shift is an 8-bit signed number. The SE register is not used or changed by
an immediate shift.

The following example shows the input value downshifted relative to the
upper half of SR (SR1). This is the (Hi) version of the shift:

SI = 0xB6A3;
SR = LSHIFT SI By –5 (Hi);

Input (SI): 1011 0110 1010 0011

Shift value: –5

SR (shifted by):
0000 0000 0000 0101 1011 0101 0001 1000 0000 0000

---sr2---|--------sr1--------|--------sr0--------

This next example uses the same input value, but shifts in the other direc-
tion, referenced to the lower half (Lo) of SR:

SI = 0xB6A3;
SR = LSHIFT SI By 5 (LO);

Input (SI): 1011 0110 1010 0011

Shift value: +5

SR (shifted by):
0000 0000 0000 0000 0001 0110 1101 0100 0110 0000

---sr2---|--------sr1--------|--------sr0--------
2-40 ADSP-219x/2192 DSP Hardware Reference

Computational Units
Note that a negative shift cannot place data (except a sign extension) into
SR2, but a positive shift with value greater than 16 puts data into SR2. This
next example also sets the SV bit (because the MSB of SR1 does not match
the value in SR2):

SI = 0xB6A3; SR = LSHIFT SI By 17 (Lo);

Input (SI): 1011 0110 1010 0011

Shift value: +17

SR (shifted by):
0000 0001 0110 1101 0100 0110 0000 0000 0000 0000

---sr2---|--------sr1--------|--------sr0--------

In addition to the direction of the shifting operation, the shift may be
either arithmetic (ASHIFT) or logical (LSHIFT). For example, the following
shows a logical shift, relative to the upper half of SR (Hi):

SI = 0xB6A3;
SR = LSHIFT SI By –5 (HI);

Input (SI): 10110110 10100011

Shift value: -5

SR (shifted by):
0000 0000 0000 0101 1011 0101 0001 1000 0000 0000

---sr2---|--------sr1--------|--------sr0--------
ADSP-219x/2192 DSP Hardware Reference 2-41

Barrel-Shifter (Shifter)
This next example uses the same input value, but performs an arithmetic
shift:

SI = 0xB6A3;
SR = ASHIFT SI By –5 (HI);

Input (SI): 10110110 10100011

Shift value: -5

SR (shifted by):
1111 1111 1111 1101 1011 0101 0001 1000 0000 0000

---sr2---|--------sr1--------|--------sr0--------

Denormalize

Denormalizing refers to shifting a number according to a predefined expo-
nent. The operation is effectively a floating-point to fixed-point
conversion.

Denormalizing requires a sequence of operations. First, the SE register
must contain the exponent value. This value may be explicitly loaded or
may be the result of some previous operation. Next, the shift itself is per-
formed, taking its shift value from the SE register, not from an immediate
data value.

Two examples of denormalizing a double-precision number follow. The
first example shows a denormalization in which the upper half of the
number is shifted first, followed by the lower half. Because computations
may produce output in either order, the second example shows the same
operation in the other order—lower half first.

This first denormalization example processes the upper half first. Some
important points here are: (1) always select the arithmetic shift for the
higher half (Hi) of the two’s complement input (or logical for unsigned),
and (2) the first half processed does not use the [SR OR] option.
2-42 ADSP-219x/2192 DSP Hardware Reference

Computational Units
SI = 0xB6A3; {first input, upper half result}
SE = -3; {shifter exponent}
SR = ASHIFT SI By –3 (HI); {must use HI option}

First input (SI): 1011011010100011

SR (shifted by):
1111 1111 1111 0110 1101 0100 0110 0000 0000 0000

---sr2---|--------sr1--------|--------sr0--------

Continuing this example, next, the lower half is processed. Some impor-
tant points here are: (1) always select a logical shift for the lower half of
the input, and (2) the second half processed must use the [SR OR] option
to avoid overwriting the previous half of the output value.

SI = 0x765D; {second input, lower half result}
 {SE = -3 still}
SR = SR OR LSHIFT SI By –3 (Lo); {must use Lo option}

Second input (SI): 0111 0110 0101 1101

SR (OR’d, shifted):
1111 1111 1111 0110 1101 0100 0110 1110 1100 1011

---sr2---|--------sr1--------|--------sr0--------

This second denormalization example uses the same input, but processes it
in the opposite (lower half first) order. The same important points from
before apply: (1) the high half is always arithmetically shifted, (2) the low
half is logically shifted, (3) the first input is passed straight through to SR,
and (4) the second half is OR’ed, creating a double-precision value in SR.

SI = 0x765D; {first input, lower half result}
SE = -3; {shifter exponent}
SR = LSHIFT SI By –3 (LO); {must use LO option}
SI = 0xB6A3; {second input, upper half result}
ADSP-219x/2192 DSP Hardware Reference 2-43

Barrel-Shifter (Shifter)
SR = SR OR ASHIFT SI By –3 (Hi); {must use Hi option}

First input (SI): 0111 0110 0101 1101

SR (shifted by):
0000 0000 0000 0000 0000 0000 0000 1110 1100 1011

---sr2---|--------sr1--------|--------sr0--------

Second input (SI): 1011 0110 1010 0011

SR (OR’d, shifted):
1111 1111 1111 0110 1101 0100 0110 1110 1100 1011

---sr2---|--------sr1--------|--------sr0--------

Normalize, Single Precision Input

Numbers with redundant sign bits require normalizing. Normalizing a
number is the process of shifting a two’s complement number within a
field so that the right-most sign bit lines up with the MSB position of the
field and recording how many places the number was shifted. This opera-
tion can be thought of as a fixed-point to floating-point conversion,
generating an exponent and a mantissa.

Normalizing is a two-stage process. The first stage derives the exponent.
The second stage does the actual shifting. The first stage uses the EXP
instruction which detects the exponent value and loads it into the SE regis-
ter. The EXP instruction recognizes a (Hi) and (Lo) modifier. The second
stage uses the NORM instruction. NORM recognizes (Hi) and (Lo) and also
has the [SR OR] option. NORM uses the negated value of the SE register as its
shift control code. The negated value is used so that the shift is made in
the correct direction.
2-44 ADSP-219x/2192 DSP Hardware Reference

Computational Units
This normalization example for a single precision input. First, the EXP
instruction derives the exponent:

AR = 0xF6D4; {single precision input}
SE = EXP AR (Hi); {Detects Exponent With Hi Modifier}

Input (AR): 1111 0110 1101 0100

Exponent (SE): –3

Next for this single precision example, the NORM instruction normalizes the
input using the derived exponent in SE:

SR = NORM AR (Hi);

Input (AR): 1111 0110 1101 0100

SR (Normalized):
1111 1111 1011 0110 1010 0000 0000 0000 0000 0000

---sr2---|--------sr1--------|--------sr0--------

For a single precision input, the normalize operation can use either the
(Hi) or (Lo) modifier, depending on whether the result is needed in SR1
or SR0.

Normalize, ALU Result Overflow

For single precision data, there is a special normalization situation—nor-
malizing ALU results (AR) that may have overflowed—that requires the
Hi-extended (Hix) modifier. When using this modifier, the shifter reads
the arithmetic status word (ASTAT) overflow bit (AV) and the carry bit (AC)
in conjunction with the value in AR. If AV is set (=1), an overflow has
occurred. AC contains the true sign of the two’s complement value.
ADSP-219x/2192 DSP Hardware Reference 2-45

Barrel-Shifter (Shifter)
Given the following conditions, the normalize operation would be as
follows:

AR = 1111 1010 0011 0010

AV = 1 (indicating overflow)
AC = 0 (the true sign bit of this value)

SE=EXP AR (HIX); SR=NORM AR (HI);

1. Detect Exponent, Modifier = Hix

SE gets set to: +1

2. Normalize, Modifier = Hi, SE = 1

AR = 1111 1010 0011 0010

SR (Normalized):
0000 0000 0111 1101 0001 1001 0000 0000 0000 0000

---sr2---|--------sr1--------|--------sr0--------

The AC bit is supplied as the sign bit, MSB of SR above.

! The NORM instruction differs slightly between the ADSP-219x and
previous 16-bit, fixed-point DSPs in the ADSP-2100 family. The
difference can only be seen when performing overflow normaliza-
tion.

• On the ADSP-219x, the NORM instruction checks only that
(SE == +1) for performing the shift in of the AC flag (overflow
normalization).

• On previous ADSP-2100 family DSP’s, the NORM instruction
checks both that (SE == +1) and (AV == 1) before shifting in
the AC flag.

The EXP (HIX) instruction always sets (SE = +1) when the AV flag is
set, so this execution difference only appears when NORM is used
without a preceding EXP instruction.
2-46 ADSP-219x/2192 DSP Hardware Reference

Computational Units
The Hix operation executes properly whether or not there has actually
been an overflow, as demonstrated by this second example:

AR = 1110 0011 0101 1011

AV = 0 (indicating no overflow)
AC = 0 (not meaningful if AV = 0)

1. Detect Exponent, Modifier = Hix

SE set to –2

2. Normalize, Modifier = Hi, SE = –2

AR = 1110 0011 0101 1011

SR (Normalized):
1111 1111 1000 1101 0110 1000 0000 0000 0000 0000

---sr2---|--------sr1--------|--------sr0--------

The AC bit is not used as the sign bit. As Figure 2-15 shows, the Hix mode
is identical to the Hi mode when AV is not set. When the NORM, Lo opera-
tion is done, the extension bit is zero; when the NORM, Hi operation is done,
the extension bit is AC.

Normalize, Double Precision Input

For double precision values, the normalization process follows the same
general scheme as with single precision values. The first stage detects the
exponent and the second stage normalizes the two halves of the input. For
normalizing double precision values, there are two operations in each
stage.

For the first stage, the upper half of the input must be operated on first.
This first exponent derivation loads the exponent value into SE. The sec-
ond exponent derivation, operating on the lower half of the number does
not alter the SE register unless SE = –15. This happens only when the first
half contained all sign bits. In this case, the second operation loads a value
ADSP-219x/2192 DSP Hardware Reference 2-47

Barrel-Shifter (Shifter)
into SE (see Figure 2-16). This value is used to control both parts of the
normalization that follows.

For the second stage (SE now contains the correct exponent value), the
order of operations is immaterial. The first half (whether Hi or Lo) is nor-
malized without the [SR OR], and the second half is normalized with
[SR OR] to create one double-precision value in SR. The (Hi) and (Lo)
modifiers identify which half is being processed.

The following example normalizes double precision values:

1. Detect Exponent, Modifier = Hi

First Input: 1111 0110 1101 0100 (upper half)
SE set to: -3

2. Detect Exponent, Modifier = Lo

Second Input: 0110 1110 1100 1011

SE unchanged: -3

Normalize, Modifier=Hi, No [SR OR], SE = –3

First Input: 1111 0110 1101 0100

SR (Normalized):
1111 1111 1011 0110 1010 0000 0000 0000 0000 0000

---sr2---|--------sr1--------|--------sr0--------

3. Normalize, Modifier=Lo, [SR OR], SE = –3

Second Input: 0110 1110 1100 1011

SR (Normalized):
1111 1111 1011 0110 1010 0011 0111 0110 0101 1000

---sr2---|--------sr1--------|--------sr0--------
2-48 ADSP-219x/2192 DSP Hardware Reference

Computational Units
If the upper half of the double precision input contains all sign bits, the SE
register value is determined by the second derive exponent operation as
shown in this second double precision normalization example:

1. Detect Exponent, Modifier = Hi

First Input: 1111 1111 1111 1111 (upper half)
SE set to: -15

2. Detect Exponent, Modifier = Lo

Second Input: 1111 0110 1101 0100

SE now set to: -19

3. Normalize, Modifier=Hi, No [SR OR], SE = –19 (negated)

First Input: 1111 1111 1111 1111

SR (Normalized):
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

---sr2---|--------sr1--------|--------sr0--------

Note that all values of SE less than –15 (resulting in a shift of +16
or more) upshift the input completely off scale.

4. Normalize, Modifier=Lo, [SR OR], SE = –19 (negated)

Second Input: 1111 0110 1101 0100

SR (Normalized):
1111 1111 1011 0110 1010 0000 0000 0000 0000 0000

---sr2---|--------sr1--------|--------sr0--------
ADSP-219x/2192 DSP Hardware Reference 2-49

Barrel-Shifter (Shifter)
Shifter Status Flags
The shifter’s logical shift, arithmetic shift, normalize, and derive exponent
operations update status flags in the computational unit’s arithmetic status
register (ASTAT). Table A-5 on page A-9 lists all the bits in this register.
The following bit in ASTAT flags shifter status (a 1 indicates the condition)
for the most recent shifter derive exponent operation:

• Shifter result overflow. Bit 7 (SV) indicates overflow (if set, =1)
when the MSB of SR1 does not match the eight LSBs of SR2 or indi-
cates no overflow (if clear, =0).

• Shifter input sign for exponent extract only. Bit 8 (SS)

Flag updates occur at the end of the cycle in which the status is generated
and is available on the next cycle.

! On previous 16-bit, fixed-point DSPs (ADSP-2100 family), the
Shifter Results (SR) register is 32 bits wide and has no overflow
detection. On ADSP-219x DSPs, the SR register is 40 bits wide, and
the SV flag indicates overflow in SR.

Shifter Instruction Summary
Table 2-9 on page 2-51 lists the shifter instructions and shows how they
relate to ASTAT flags. For more information on assembly language syntax,
see the ADSP-219x DSP Instruction Set Reference. In Table 2-9, note the
meaning of the following symbols:

• Dreg indicates any register file location

• * indicates the flag may be set or cleared, depending on the results
of the instruction

• – indicates no effect
2-50 ADSP-219x/2192 DSP Hardware Reference

Computational Units

Table 2-9. Shifter Instruction Summary

Instruction ASTAT Status Flags

SV SS

[IF Cond] SR = [SR OR] ASHIFT Dreg [(|HI, LO|)]; * –

SR = [SR OR] ASHIFT BY <Imm8> [(|HI, LO|)]; * –

[IF Cond] SR = [SR OR] LSHIFT Dreg [(|HI, LO|)]; * –

SR = [SR OR] LSHIFT BY <Imm8> [(|HI, LO|)]; * –

[IF Cond] SR = [SR OR] NORM Dreg [(|HI, LO|)]; * –

[IF Cond] SR = [SR OR] NORM <Imm8> [(|HI, LO|)]; * –

[IF Cond] SE = EXP Dreg [(|HIX, HI, LO|)]; – *1

1 The SS bit is the MSB of input for the HI option and is the MSB of input (for AV=0) or inverted
MSB of input (for AV=1) for the HIX option; there is no effect on SS flag for the LO option.

[IF Cond] SB = EXPADJ Dreg; – –
ADSP-219x/2192 DSP Hardware Reference 2-51

Barrel-Shifter (Shifter)
Shifter Data Flow Details
Figure 2-14 shows a more detailed diagram of the shifter, which appears
in Figure 2-1 on page 2-3. The shifter has the following components: the
shifter array, the OR/PASS logic, the exponent detector, and the exponent
compare logic.

The shifter array is a 16x40 barrel shifter. It accepts a 16-bit input and can
place it anywhere in the 40-bit output field, from off-scale right to
off-scale left, in a single cycle. This spread gives 57 possible placements

Figure 2-14. Shifter Block Diagram

MUX

16

SR
REGISTER

DREG/SI
REGISTER

SB
REGISTER

M UX

M UX

SE
REGISTER

NEGATE

MUX

COM PARE
EXPONENT
DETECTOR

HI / LO
SHIFTER
ARRAY

I
R

C
O

X

OR / PASS

M UX

8
40

16

FROM
INSTRUCTION

8

SS

DM D BUS

R - BUS

40

SV

X

2-52 ADSP-219x/2192 DSP Hardware Reference

Computational Units
within the 40-bit field. The placement of the 16 input bits is determined
by a shift control code (C) and a Hi/Lo option.

Depending on the instruction, the input port of the shifter can accept data
from two sources: the data register file or the result (R) bus. Register usage
for shifter input is only restricted in one instruction: the multifunction
shift with memory read or write. In this instruction, only the shifter input
(SI) register or result registers can provide input to the shifter array and
the exponent detector.

! For more information on register usage restrictions in conditional
and multifunction instructions, see “Multifunction Computations”
on page 2-60.

The shifter input (from register file or SI) provides input to the shifter
array and the exponent detector. The SI register is 16 bits wide and is
readable and writable from the DMD bus. The shifter array and the expo-
nent detector also take as inputs AR, SR or MR via the R bus. The shifter
result (SR) register is 40 bits wide and is divided into three sections: SR0,
SR1, and SR2. These registers can be loaded from the DMD bus and out-
put to either the DMD bus or the R bus. The SR register is also fed back to
the OR/PASS logic to allow double-precision shift operations.

The SE register (“shifter exponent”) is 8 bits wide and holds the exponent
during the normalize and denormalize operations. The SE register is load-
able and readable from the lower 8 bits of the DMD bus. It is a two’s
complement, 8.0 value.

The SB register (“shifter block”) is important in block floating-point oper-
ations because it holds the block exponent value. The block exponent
value is the value by which the block values must be shifted to normalize
the largest value. SB is 5 bits wide and holds the most recent block expo-
nent value. The SB register is loadable and readable from the lower 5 bits
of the DMD bus. It is a two’s complement, 5.0 value.

Whenever the SE or SB registers are output onto the DMD bus, they are
sign-extended to form a 16-bit value.
ADSP-219x/2192 DSP Hardware Reference 2-53

Barrel-Shifter (Shifter)
Any of the SI, SE, or SR registers can be read and written in the same cycle.
Registers are read at the beginning of the cycle and written at the end of
the cycle. All register reads get values loaded at the end of a previous cycle.
A new value written to a register cannot be read out until a subsequent
cycle. This allows an input register to provide an operand to the shifter at
the beginning of the cycle and be updated with the next operand at the
end of the same cycle. It also allows a result register to be stored in mem-
ory and updated with a new result in the same cycle.

The shifter contains a duplicate bank of registers (shown behind the pri-
mary registers in Figure 2-14). There are actually two sets of SE, SB, SI,
SR2, SR1, and SR0 registers. Only one bank is accessible at a time. The
additional bank of registers can be activated for extremely fast context
switching. A new task, such as an interrupt service routine, can then be
executed without transferring current states to storage. For more informa-
tion, see “Secondary (Alternate) Data Registers” on page 2-59.

The shifting of the input is determined by a control code (C) and a Hi/Lo
option. The control code is an 8-bit signed value that indicates the direc-
tion and number of places the input is to be shifted. Positive codes
indicate a left shift (upshift) and negative codes indicate a right shift
(downshift). The control code can come from three sources: the content
of the shifter exponent (SE) register, the negated content of the SE register,
or an immediate value from the instruction.

The Hi/Lo option determines the reference point for the shifting. In the Hi
state, all shifts are referenced to SR1 (the upper half of the output field),
and in the Lo state, all shifts are referenced to SR0 (the lower half). The
Hi/Lo feature is useful when shifting 32-bit values because it allows both
halves of the number to be shifted with the same control code.The Hi/Lo
option is selectable each time the shifter is used.

The shifter fills any bits to the right of the input value in the output field
with zeros, and bits to the left are filled with the extension bit (X). The
extension bit can be fed by three possible sources depending on the
2-54 ADSP-219x/2192 DSP Hardware Reference

Computational Units
instruction being performed. The three sources are the MSB of the input,
the AC bit from the arithmetic status register (ASTAT), or a zero.

Figure 2-15 on page 2-56 shows the shifter array output as a function of
the control code and Hi/Lo signal. In the figure, ABCDEFGHIJKLMNPR repre-
sents the 16-bit input pattern, and X stands for the extension bit.

The OR/PASS logic allows the shifted sections of a multiprecision num-
ber to be combined into a single quantity. In some shifter instructions, the
shifted output may be logically OR’ed with the contents of the SR register;
the shifter array is bitwise OR’ed with the current contents of the SR regis-
ter before being loaded there. When the [SR OR] option is not used in the
instruction, the shifter array output is passed through and loaded into the
shifter result (SR) register unmodified.

The exponent detector derives an exponent for the shifter input value.
The exponent detector operates in one of three ways that determine how
the input value is interpreted. In the Hi state, the input is interpreted as a
single precision number or the upper half of a double precision number.
The exponent detector determines the number of leading sign bits and
produces a code that indicates how many places the input must be
up-shifted to eliminate all but one of the sign bits. The code is negative so
that it can become the effective exponent for the mantissa formed by
removing the redundant sign bits.

In the Hi-extend state (Hix), the input is interpreted as the result of an add
or subtract performed in the ALU which may have overflowed. The expo-
nent detector takes the arithmetic overflow (AV) status into consideration.
If AV is set, then a +1 exponent is output to indicate an extra bit is needed
in the normalized mantissa (the ALU Carry bit); if AV is not set, then
Hi-extend functions exactly like the Hi state. When performing a derive
exponent function in Hi or Hi-extend modes, the exponent detector also
outputs a shifter sign (SS) bit, which is loaded into the arithmetic status
register (ASTAT). The sign bit is the same as the MSB of the shifter input
except when AV is set; when AV is set in Hi-extend state, the MSB is
inverted to restore the sign bit of the overflowed value.
ADSP-219x/2192 DSP Hardware Reference 2-55

Barrel-Shifter (Shifter)
Figure 2-15. Shifter Array Output Placement

HI Reference LO Reference Shifter Results
Shift Value Shift Value ---SR2--|-------SR1-------|-------SR0-------
+24 to +127 +40 to +127 00000000 00000000 00000000 00000000 00000000
+23 +39 R0000000 00000000 00000000 00000000 00000000
+22 +38 PR000000 00000000 00000000 00000000 00000000
+21 +37 NPR00000 00000000 00000000 00000000 00000000
+20 +36 MNPR0000 00000000 00000000 00000000 00000000
+19 +35 LMNPR000 00000000 00000000 00000000 00000000
+18 +34 KLMNPR00 00000000 00000000 00000000 00000000
+17 +33 JKLMNPR0 00000000 00000000 00000000 00000000
+16 +32 IJKLMNPR 00000000 00000000 00000000 00000000
+15 +31 HIJKLMNP R0000000 00000000 00000000 00000000
+14 +30 GHIJKLMN PR000000 00000000 00000000 00000000
+13 +29 FGHIJKLM NPR00000 00000000 00000000 00000000
+12 +28 EFGHIJKL MNPR0000 00000000 00000000 00000000
+11 +27 DEFGHIJK LMNPR000 00000000 00000000 00000000
+10 +26 CDEFGHIJ KLMNPR00 00000000 00000000 00000000
+ 9 +25 BCDEFGHI JKLMNPR0 00000000 00000000 00000000
+ 8 +24 ABCDEFGH IJKLMNPR 00000000 00000000 00000000
+ 7 +23 XABCDEFG HIJKLMNP R0000000 00000000 00000000
+ 6 +22 XXABCDEF GHIJKLMN PR000000 00000000 00000000
+ 5 +21 XXXABCDE FGHIJKLM NPR00000 00000000 00000000
+ 4 +20 XXXXABCD EFGHIJKL MNPR0000 00000000 00000000
+ 3 +19 XXXXXABC DEFGHIJK LMNPR000 00000000 00000000
+ 2 +18 XXXXXXAB CDEFGHIJ KLMNPR00 00000000 00000000
+ 1 +17 XXXXXXXA BCDEFGHI JKLMNPR0 00000000 00000000
 0 +16 XXXXXXXX ABCDEFGH IJKLMNPR 00000000 00000000
- 1 +15 XXXXXXXX XABCDEFG HIJKLMNP R0000000 00000000
- 2 +14 XXXXXXXX XXABCDEF GHIJKLMN PR000000 00000000
- 3 +13 XXXXXXXX XXXABCDE FGHIJKLM NPR00000 00000000
- 4 +12 XXXXXXXX XXXXABCD EFGHIJKL MNPR0000 00000000
- 5 +11 XXXXXXXX XXXXXABC DEFGHIJK LMNPR000 00000000
- 6 +10 XXXXXXXX XXXXXXAB CDEFGHIJ KLMNPR00 00000000
- 7 + 9 XXXXXXXX XXXXXXXA BCDEFGHI JKLMNPR0 00000000
- 8 + 8 XXXXXXXX XXXXXXXX ABCDEFGH IJKLMNPR 00000000
- 9 + 7 XXXXXXXX XXXXXXXX XABCDEFG HIJKLMNP R0000000
-10 + 6 XXXXXXXX XXXXXXXX XXABCDEF GHIJKLMN PR000000
-11 + 5 XXXXXXXX XXXXXXXX XXXABCDE FGHIJKLM NPR00000
-12 + 4 XXXXXXXX XXXXXXXX XXXXABCD EFGHIJKL MNPR0000
-13 + 3 XXXXXXXX XXXXXXXX XXXXXABC DEFGHIJK LMNPR000
-14 + 2 XXXXXXXX XXXXXXXX XXXXXXAB CDEFGHIJ KLMNPR00
-15 + 1 XXXXXXXX XXXXXXXX XXXXXXXA BCDEFGHI JKLMNPR0
-16 0 XXXXXXXX XXXXXXXX XXXXXXXX ABCDEFGH IJKLMNPR
-17 - 1 XXXXXXXX XXXXXXXX XXXXXXXX XABCDEFG HIJKLMNP
-18 - 2 XXXXXXXX XXXXXXXX XXXXXXXX XXABCDEF GHIJKLMN
-19 - 3 XXXXXXXX XXXXXXXX XXXXXXXX XXXABCDE FGHIJKLM
-20 - 4 XXXXXXXX XXXXXXXX XXXXXXXX XXXXABCD EFGHIJKL
-21 - 5 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXABC DEFGHIJK
-22 - 6 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXAB CDEFGHIJ
-23 - 7 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXA BCDEFGHI
-24 - 8 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX ABCDEFGH
-25 - 9 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XABCDEFG
-26 -10 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXABCDEF
-27 -11 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXABCDE
-28 -12 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXABCD
-29 -13 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXABC
-30 -14 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXAB
-31 -15 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXA
-32 to -128 -16 to -128 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX
2-56 ADSP-219x/2192 DSP Hardware Reference

Computational Units
In the Lo state, the input is interpreted as the lower half of a double preci-
sion number. In the Lo state, the exponent detector interprets the SS bit in
the arithmetic status register (ASTAT) as the sign bit of the number. The SE
register is loaded with the output of the exponent detector only if SE con-
tains –15. This occurs only when the upper half (which must be processed
first) contains all sign bits. The exponent detector output is also offset by
–16 to account for the fact that the input is actually the lower 16 bits of a
40-bit value. Figure 2-16 on page 2-58 gives the exponent detector char-
acteristics for all three modes.

The exponent compare logic is used to find the largest exponent value in
an array of shifter input values. The exponent compare logic, in conjunc-
tion with the exponent detector, derives a block exponent. The
comparator compares the exponent value derived by the exponent detector
with the value stored in the shifter block exponent (SB) register and
updates the SB register only when the derived exponent value is larger than
the value in SB register.

Data Register File
The DSP’s computational units have a data register file: a set of data regis-
ters that transfer data between the data buses and the computation units.
DSP programs use these registers for local storage of operands and results.

Figure 2-1 on page 2-3 shows the register file appears. The register file
consists of 16 primary registers and 16 secondary (alternate) registers. All
of the data registers are 16 bits wide.

Program memory data accesses and data memory accesses to/from the reg-
ister file occur on the PM data bus and DM data bus, respectively. One
PM data bus access and/or one DM data bus access can occur in one cycle.
Transfers between the register files and the DM or PM data buses can
move up to 16-bits of valid data on each bus.
ADSP-219x/2192 DSP Hardware Reference 2-57

Data Register File
Figure 2-16. Exponent Detector Characteristics

S = Sign bit
N = Non-sign bit
D = Don’t care bit

HI Mode HIX Mode

Shifter Array Input Output AV Shifter Array Input Output

1 DDDDDDDD DDDDDDDD +1
SNDDDDDD DDDDDDDD 0 0 SNDDDDDD DDDDDDDD 0
SSNDDDDD DDDDDDDD -1 0 SSNDDDDD DDDDDDDD -1
SSSNDDDD DDDDDDDD -2 0 SSSNDDDD DDDDDDDD -2
SSSSNDDD DDDDDDDD -3 0 SSSSNDDD DDDDDDDD -3
SSSSSNDD DDDDDDDD -4 0 SSSSSNDD DDDDDDDD -4
SSSSSSND DDDDDDDD -5 0 SSSSSSND DDDDDDDD -5
SSSSSSSN DDDDDDDD -6 0 SSSSSSSN DDDDDDDD -6
SSSSSSSS NDDDDDDD -7 0 SSSSSSSS NDDDDDDD -7
SSSSSSSS SNDDDDDD -8 0 SSSSSSSS SNDDDDDD -8
SSSSSSSS SSNDDDDD -9 0 SSSSSSSS SSNDDDDD -9
SSSSSSSS SSSNDDDD -10 0 SSSSSSSS SSSNDDDD -10
SSSSSSSS SSSSNDDD -11 0 SSSSSSSS SSSSNDDD -11
SSSSSSSS SSSSSNDD -12 0 SSSSSSSS SSSSSNDD -12
SSSSSSSS SSSSSSND -13 0 SSSSSSSS SSSSSSND -13
SSSSSSSS SSSSSSSN -14 0 SSSSSSSS SSSSSSSN -14
SSSSSSSS SSSSSSSS -15 0 SSSSSSSS SSSSSSSS -15

LO Mode

SS Shifter Array Input Output

S NDDDDDDD DDDDDDDD -15
S SNDDDDDD DDDDDDDD -16
S SSNDDDDD DDDDDDDD -17
S SSSNDDDD DDDDDDDD -18
S SSSSNDDD DDDDDDDD -19
S SSSSSNDD DDDDDDDD -20
S SSSSSSND DDDDDDDD -21
S SSSSSSSN DDDDDDDD -22
S SSSSSSSS NDDDDDDD -23
S SSSSSSSS SNDDDDDD -24
S SSSSSSSS SSNDDDDD -25
S SSSSSSSS SSSNDDDD -26
S SSSSSSSS SSSSNDDD -27
S SSSSSSSS SSSSSNDD -28
S SSSSSSSS SSSSSSND -29
S SSSSSSSS SSSSSSSN -30
S SSSSSSSS SSSSSSSS -31
2-58 ADSP-219x/2192 DSP Hardware Reference

Computational Units
If an operation specifies the same register file location as both an input
and output, the read occurs in the first half of the cycle and the write in
the second half. With this arrangement, the DSP uses the old data as the
operand, before updating the location with the new result data. If writes
to the same location take place in the same cycle, only the write with
higher precedence actually occurs. The DSP determines precedence for
the write from the type of the operation; from highest to lowest, the prece-
dence is:

1. Move operations: register-to-register, register-to-memory, or
memory-to-register

2. Compute operations: ALU, multiplier, or shifter

Secondary (Alternate) Data Registers
Computational units have a secondary register set. To facilitate fast con-
text switching, the DSP includes secondary register sets for data, results,
and data address generator registers. Bits in the MSTAT register control
when secondary registers become accessible. While inaccessible, the con-
tents of secondary registers are not affected by DSP operations. Note that
there is a one cycle latency between writing to MSTAT and being able to
access a secondary register set. The secondary register sets for data and
results are described in this section.

! For more information on secondary data address generator
registers, see the “Secondary (Alternate) DAG Registers” on
page 4-4.

The MSTAT register controls access to the secondary registers. Table A-6 on
page A-11 lists all the bits in MSTAT. The SEC_REG bit in MSTAT controls sec-
ondary registers (a 1 enables the secondary set). When set (=1), secondary
registers are enabled for the AX0, AX1, AY0, AY1, MX0, MX1, MY0, MY1, SI, SB,
SE, AR, MR, and SR registers.
ADSP-219x/2192 DSP Hardware Reference 2-59

Multifunction Computations
The following example demonstrates how code handles the one cycle of
latency that occurs from the time the instruction sets the bit in MSTAT to
when the secondary registers are available for accessing.

AR = MSTAT;
AR = Setbit SEC_REG Of AR;
MSTAT=AR; /* activate secondary reg. file */
Nop; /* wait for access to secondaries */
AX0 = 7;

It is more efficient (no latency) to use the mode enable instruction to
select secondary registers. In the following example, note that the swap to
secondary registers is immediate:

Ena SEC_REG; /* activate secondary reg. file */
AX0 = 7; /* now use the secondaries */

Multifunction Computations
Using the many parallel data paths within its computational units, the
DSP supports multiple-parallel (multifunction) computations. These
instructions complete in a single cycle, and they combine parallel opera-
tion of the multiplier, ALU, or shifter with data move operations. The
multiple operations perform the same as if they were in corresponding sin-
gle-function computations. Multifunction computations also handle flags
in the same way as the single-function computations.

To work with the available data paths, the computation units constrain
which data registers may hold the input operands for multifunction com-
putations. These constraints limit which registers may hold the X-input
and Y-input for the ALU, multiplier, and shifter.

Figure 2-17 on page 2-62 shows how some register access restrictions
apply to conditional and/or multifunction instructions. The boxes around
the X- and Y-inputs within the register file only apply for conditional
and/or multifunction instructions. For unconditional, single-function
instructions, any of the registers within the register file may serve as X- or
2-60 ADSP-219x/2192 DSP Hardware Reference

Computational Units
Y-inputs (see Figure 2-1 on page 2-3). The following code example shows
the differences between conditional versus unconditional instructions and
single-function versus multifunction instructions.

/* Conditional computation instructions begin with an IF
clause. The DSP tests whether the condition is true before
executing the instruction. */

AR = AX0 + AY0; /*unconditional: add X and Y ops*/
If EQ AR = AX0 + AY0; /*conditional: if AR=0, add X and Y ops*/

/* Multifunction instructions are sets of instruction that
execute in a single cycle. The instructions are delimited with
commas, and the combined multifunction instruction is
terminated with a semicolon. */

AR = AX0-AY0; /* single function ALU subtract */
AX0 = MR1; /* single function register-to-register move */
AR = AX0-AY0, AX0 = MR1; /* multifunction, both in 1 cycle */

The data paths over the Results Bus from the results registers let the result
registers (MR2, MR1, MR0, SR1, SR0, or AR) serve as X-inputs to the ALU and
multiplier in both the conditional/multifunction and unconditional/sin-
gle-function cases. The upper part of the Shifter Results (SR) register, SR2,
may not serve as feedback over the results bus. For information on the
SR2, SB, SE, MSTAT, and ASTAT registers in Figure 2-17, see the discussion
on page 2-2.

Only the ALU and multiplier X- and Y-operand registers (MX0, MX1, MY0,
MY1, AX0, AY1) have memory data bus access in dual memory read multi-
function instructions.
ADSP-219x/2192 DSP Hardware Reference 2-61

Multifunction Computations
Figure 2-17. Register Access for Conditional/Multifunction Instructions

SB SE

REG ISTER FILE (16 × 16-B IT)

M A C SH IFTER A LU

D M DA TA BU S

M STA T

STA TU S TO
PRO G RA M SEQ U EN C ER

X Y

Z

X

Y

XY

A F A R

PM DA TA BU S

SR0SR1 **SR2 *M R2* M R1 M R0

M X 0 M X 1 A X 0 A X 1

M Y0 M Y1 A Y0 A Y1

M R2 M R1 M R0 A R

SR2* SR1** SR0 SI

A STA T

* The M R2 a nd SR2 re g iste rs ha ve so m e usa g e
re stric tio ns tha t d o no t a p p e a r in th is
d ia g ra m . Fo r d e ta ils, se e the te xt.

** The SR1 re g iste r a lso m a y se rve a s a Y inp u t
in c o nd itio na l o r m u ltifunc tio n M A C a nd A LU
instruc tio ns.

RESU LTS BU S
2-62 ADSP-219x/2192 DSP Hardware Reference

Computational Units
Table 2-10 lists the multifunction instructions. For more information on
assembly language syntax, see the ADSP-219x DSP Instruction Set
Reference. In these tables, note the meaning of the following symbols:

• ALU, MAC, SHIFT indicate any ALU, multiplier, or shifter
instruction

• Dreg indicates any register file location

• Xop, Yop indicate any X- and Y-input registers, indicating a register
usage restriction for conditional and/or multifunction instructions.

Table 2-10. ADSP-219x Multifunction Instruction Summary

Instruction1

1 Multifunction instructions are sets of instruction that execute in a single cycle. The instructions are
delimited with commas, and the combined multifunction instruction is terminated with a semicolon.

|<ALU>, <MAC>|, Xop = DM(Ia += Mb), Yop = PM(Ic += Md);

Xop = DM(Ia += Mb), Yop = PM(Ic += Md);

|<ALU>, <MAC>,<SHIFT> |, Dreg = |DM(Ia += Mb), PM(Ic += Md)|;

|<ALU>, <MAC>, <SHIFT>|, |DM(Ia += Mb), PM(Ic += Md)| = Dreg;

|<ALU>, <MAC>, <SHIFT>|, Dreg = Dreg;
ADSP-219x/2192 DSP Hardware Reference 2-63

Multifunction Computations
2-64 ADSP-219x/2192 DSP Hardware Reference

3 PROGRAM SEQUENCER
Figure 3-0.

Table 3-0.

Listing 3-0.
Overview
The DSP’s program sequencer controls program flow by providing the
address of the next instruction to be executed by other parts of the DSP.
Program flow in the DSP is mostly linear, with the processor executing
program instructions sequentially. This linear flow varies occasionally
when the program uses non-sequential program structures, such as those
illustrated in Figure 3-1 on page 3-2. Non-sequential structures direct the
DSP to execute an instruction that is not at the next sequential address.
These structures include:

• Loops. One sequence of instructions executes several times with
near-zero overhead.

• Subroutines. The processor temporarily interrupts sequential flow
to execute instructions from another part of program memory.

• Jumps. Program flow transfers permanently to another part of pro-
gram memory.

• Interrupts. Subroutines in which a runtime event (not an instruc-
tion) triggers the execution of the routine.

• Idle. An instruction that causes the processor to cease operations,
holding its current state until an interrupt occurs. Then, the proces-
sor services the interrupt and continues normal execution.
ADSP-219x/2192 DSP Hardware Reference 3-1

Overview
The sequencer manages execution of these program structures by selecting
the address of the next instruction to execute. As part of this process, the
sequencer handles the following tasks:

• Increments the fetch address

• Maintains stacks

• Evaluates conditions

• Decrements the loop counter

Figure 3-1. Program Flow Variations

N

N+1

N+2

N+3

N+4

N+5

ADDRESS:

IN STRUC TIO N

IN STRUC TIO N

IN STRUC TIO N

IN STRUC TIO N

IN STRUC TIO N

IN STRUC TIO N

LIN EA R FLO W

IN STRUC TIO N

IN STRUC TIO N

IN STRUC TIO N

IN STRUC TIO N

IN STRUC TIO N

DO UN TIL

LO O P

N T I M E S

IN STR UC TIO N

IN STR UC TIO N

IN STR UC TIO N

IN STR UC TIO N

IN STR UC TIO N

JUM P

JU M P

IN STRUC TIO N

IN STRUC TIO N

�

IN STRUC TIO N

CA LL

SU BRO U TIN E

IN STRUC TIO N

R TS

IN STRUC TIO N

IN STRUC TIO N

�

IN STRUC TIO N

IN STRUC TIO N

IN STRUC TIO N

R TI

IN STRUC TIO N

IN TERRU PT

IRQ

VEC TO R

IN STRUC TIO N

IN STR UC TIO N

IN STR UC TIO N

IN STR UC TIO N

IDLE

IN STR UC TIO N

IN STR UC TIO N

ID LE

W A ITIN G
FO R IRQ

IN STR UC TIO N

IN STR UC TIO N
3-2 ADSP-219x/2192 DSP Hardware Reference

Program Sequencer
• Calculates new addresses

• Maintains an instruction cache

• Handles interrupts

To accomplish these tasks, the sequencer uses the blocks shown in
Figure 3-2 on page 3-4. The sequencer’s address multiplexer selects the
value of the next fetch address from several possible sources. The fetched
address enters the instruction pipeline, ending with the program counter
(PC). The pipeline contains the 24-bit addresses of the instructions cur-
rently being fetched, decoded, and executed. The PC couples with the PC
stack, which stores return addresses. All addresses generated by the
sequencer are 24-bit program memory instruction addresses.

! Figure 3-2 uses the following abbreviations: ADDR=address,
BRAN=branch, IND=indirect, DIR=direct, RT=return, RB=roll-
back, INCR=increment, PC-REL=PC relative, PC=program
counter.

The diagram in Figure 3-2 also describes the relationship between the pro-
gram sequencer in the ADSP-219x DSP core and inputs to that sequencer
that differ for various members of the ADSP-219x family DSPs.

To manage events, the sequencer’s interrupt controller handles interrupt
processing, determines whether an interrupt is masked, and generates the
appropriate interrupt vector address.

With selective caching, the instruction cache lets the DSP access data in
program memory and fetch an instruction (from the cache) in the same
cycle. The program sequencer uses the cache if there are two data accesses
in a single cycle or if a single data access uses the same 16K block of mem-
ory as the current instruction fetch.

In addition to providing data addresses, the Data Address Generators
(DAGs) provide instruction addresses for the sequencer’s indirect
branches.
ADSP-219x/2192 DSP Hardware Reference 3-3

Overview
Figure 3-2. Program Sequencer Block Diagram

IN TERRUPT C O N TRO LLER

IN TERRUPTS

PREFETC H A DDRESS (PA)

FETC H A DDRESS (FA)

A DDRESS DEC O DE (A D)

IN STRUC TIO N DEC O DE (ID)

EX EC UTE (PC)

IN STRUC TIO N P IPELIN E

RB
A DDR

IN C R
A DDR

PC -R EL
BRA N

DIR
BRA N

IN D
BRA N

LO O P
A DDR

RT
A DDR

PC STA C KLO O P STA C K

STACK
ADDRESS

LO O K A H EA D A DDRESS (LA)

+1

+

IN STR CA C H E

IN STR LA TC H

A DDR ESS
FR O M DA G S

STA TUS &
CO N DITIO N

LO O P STA TUS

AR ITH M ETIC STA TUS

CO UN TER EX PIRED (C E)

LO O P & BR A N C H
C O N TR O L

A D SP-219X
D SP SPEC IFIC

A D SP-219X D SP C O RE
(C O M M O N TO A DSP-219X FA M ILY)

DM A C O N TRO LLER

DM A REQ UESTS

PRO G RA M MA BLE
FLA G S

PM DA TA BUS

PM A DDRESS BUS

VEC TO R
A DDR

PC STA TUS
3-4 ADSP-219x/2192 DSP Hardware Reference

Program Sequencer
The sequencer evaluates conditional instructions and loop termination
conditions using information from the status registers. The loop stacks
support nested loops. The status stack stores status registers for imple-
menting interrupt service routines.

Table 3-1 and Table 3-2 list the registers within and related to the pro-
gram sequencer. All registers in the program sequencer are Register
Group 1 (Reg1), 2 (Reg2), or 3 (Reg3) registers, so they are accessible to
other data (Dreg) registers and to memory. All the sequencer’s registers are
directly readable and writable, except for the PC. Manual pushing or pop-
ping the PC stack is done using explicit instructions and the PC stack page
(STACKP) and address (STACKA) registers, which are readable and writable.
Pushing or popping the loop stacks and status stack also requires explicit
instructions. For information on using these stacks, see “Stacks and
Sequencing” on page 3-34.

A set of system control registers configures or provides input to the
sequencer. These registers include ASTAT, MSTAT, CCODE, IMASK, IRPTL, and
ICNTL. Writes to some of these registers do not take effect on the next
cycle. For example, after a write to the MSTAT register to enable ALU satu-
ration mode, the change does not take effect until one cycle after the
write. Table 3-1 and Table 3-2 summarize the number of extra cycles
(latency) for a write to take effect (effect latency) and for a new value to
appear in the register (read latency). A “0” indicates that the write takes
effect or appears in the register on the next cycle after the write instruction
is executed, and a “1” indicates one extra cycle.
ADSP-219x/2192 DSP Hardware Reference 3-5

Overview
Table 3-1. Program Sequencer Registers

Register Contents Bits Effect Latency

CNTR loop count loaded on next Do/Until loop 16 11

IJPG Jump Page (upper eight bits of address) 8 1

IOPG I/O Page (upper eight bits of address) 8 1

DMPG1 DAG1 Page (upper eight bits of address) 8 1

DMPG2 DAG2 Page (upper eight bits of address) 8 1

1 CNTR has a one-cycle latency before an If Not CE instruction, but has zero latency otherwise.

Table 3-2. System Registers

Register Contents Bits Effect Latency

ASTAT Arithmetic status 9 1

MSTAT Mode status 7 01

SSTAT System status 8 n/a

CCODE Condition Code 16 1

IRPTL Interrupt latch 16 1

IMASK Interrupt mask 16 1

ICNTL Interrupt control 16 1

CACTL Cache control 3 52

1 Changing MSTAT bits with the Ena or Dis mode instruction has a 0 effect latency; when writing to
MSTAT or performing a Pop Sts the effect latencies vary based on the altered bits.

2 Except for the CFZ bit, which has an effect latency of four cycles.
3-6 ADSP-219x/2192 DSP Hardware Reference

Program Sequencer
Instruction Pipeline
The program sequencer determines the next instruction address by exam-
ining both the current instruction being executed and the current state of
the processor. If no conditions require otherwise, the DSP executes
instructions from program memory in sequential order by incrementing
the look-ahead address. Using its instruction pipeline, the DSP processes
instructions in six clock cycles:

• Look-Ahead Instruction (LA). The DSP determines the source for
the instruction from inputs to the look-ahead address multiplexer.

• Prefetch Instruction (PA) and Fetch Instruction (FA). The DSP
reads the instruction from either the on-chip instruction cache or
from program memory.

• Address Decode (AD) and Instruction Decode (ID). The DSP
decodes the instruction, generating conditions that control instruc-
tion execution.

• Execute (PC). The DSP executes the instruction; the operations
specified by the instruction complete in a single cycle.

These cycles overlap in the pipeline, as shown in Table 3-3 on page 3-8.
In sequential program flow, when one instruction is being fetched, the
instruction fetched three cycles previously is being executed. With few
exceptions, sequential program flow has a throughput of one instruction
per cycle. The exceptions are the two-cycle instructions: 16- or 24-bit
immediate data write to memory with indirect addressing, long jump
(Ljump), and long call (Lcall).

Any non-sequential program flow can potentially decrease the DSP’s
instruction throughput. Non-sequential program operations include:

• Program memory data accesses that conflict with instruction fetches

• Jumps
ADSP-219x/2192 DSP Hardware Reference 3-7

Instruction Pipeline
• Subroutine calls and returns

• Interrupts and return

• Loops (of less than five instructions)

Table 3-3. Pipelined Execution Cycles

Cycles LA PA FA AD ID PC

1 0x08 !

2 0x09 ! 0x08 !

3 0x0A ! 0x09 ! 0x08 !

4 0x0B ! 0x0A ! 0x09 ! 0x08 !

5 0x0C ! 0x0B ! 0x0A ! 0x09 ! 0x08 !

6 0x0D ! 0x0C ! 0x0B ! 0x0A ! 0x09 ! 0x08

7 0x0E ! 0x0D ! 0x0C ! 0x0B ! 0x0A ! 0x09

8 0x0F 0x0E 0x0D 0x0C 0x0B 0x0A

Look Ahead Address (LA). Prefetch Address (PA). Fetch Address (FA).
Address Decode (AD). Instruction Decode (ID). Execute (PC).
3-8 ADSP-219x/2192 DSP Hardware Reference

Program Sequencer
Instruction Cache
Usually, the sequencer fetches an instruction from memory on each cycle.
Occasionally, bus constraints prevent some of the data and instructions
from being fetched in a single cycle. To minimize the impact of these bus
constraints on data flow, the DSP has an instruction cache, as shown in
Figure 3-3. When the DSP executes an instruction that requires data
access over the PM data bus, there is a bus conflict because the sequencer
also uses the PM data bus for fetching instructions. To avoid these con-
flicts and reduce delays, the DSP caches instructions.

When the DSP encounters a fetch conflict, it must wait to fetch the
instruction on the following cycle, causing a delay. The DSP automati-
cally writes the fetched instruction to the cache to prevent the same delay
from happening again. The sequencer checks the instruction cache on
every program memory data access. If the appropriate instruction is in the
cache, the instruction fetch (from the cache) occurs in parallel with the
data access (from the PM data bus), without incurring a delay.

Because of the six-stage instruction pipeline, as the DSP executes an
instruction (at address n) that requires a program memory data access, this
execution creates a conflict with the instruction fetch (at address n+3).
The cache stores the fetched instruction (n+3), not the instruction requir-
ing the program memory data access.

If the instruction needed to avoid a conflict is in the cache, the cache pro-
vides the instruction while the program memory data access is performed.
If the needed instruction is not in the cache, the instruction fetch from
memory takes place in the cycle following the program memory data
access, incurring one cycle of overhead. If the cache is enabled and not fro-
zen, the fetched instruction is loaded into the cache, so that it is available
the next time the same conflict occurs.
ADSP-219x/2192 DSP Hardware Reference 3-9

Instruction Cache
Figure 3-3 shows a block diagram of the instruction cache. The cache
holds 64 instruction-address pairs. These pairs (or cache entries) are
arranged into 32 (31-0) cache sets according to the instruction address’
five least significant bits (4-0). The two entries in each set (entry 0 and
entry 1) have a valid bit, indicating whether the entry contains a valid
instruction. The least recently used (LRU) bit for each set indicates which
entry was not used last (0=entry 0 and 1=entry 1).

The cache places instructions in entries according to the five LSBs of the
instruction’s address. When the sequencer checks for an instruction to
fetch from the cache, it uses the five address LSBs as an index to a cache
set. Within that set, the sequencer checks the addresses and valid bits of
the two entries, looking for the needed instruction. If the cache contains
the instruction, the sequencer uses the entry and updates the LRU bit to
indicate the entry did not contain the needed instruction.

Figure 3-3. Instruction Cache Architecture

IN S TR UC TIO N S

SE T 0

SE T 1

SE T 2

SE T 2 9

SE T 3 0

SE T 3 1

A D D R ES SE S
B ITS (23 -5)

LR U
BIT

V A LID
BIT

EN TR Y 0

EN TR Y 0

EN TR Y 0

EN TR Y 1

EN TR Y 1

EN TR Y 1

EN TR Y 0

EN TR Y 0

EN TR Y 0

EN TR Y 1

EN TR Y 1

EN TR Y 1

A D D R ESS ES
B ITS (4 -0)

00 0 00

00 0 01

00 0 10

11 1 01

11 1 10

11 1 11
3-10 ADSP-219x/2192 DSP Hardware Reference

Program Sequencer
When the cache does not contain a needed instruction, the cache loads a
new instruction and its address, placing these in the least recently used
entry of the appropriate cache set and toggling the LRU bit.

Using The Cache
After a DSP reset, the cache starts cleared (containing no instructions),
unfrozen, and enabled. From then on, the CACTL register controls the
operating mode of the instruction cache. All of the bits in the CACTL regis-
ter are listed in “ADSP-219x DSP Core Registers” on page A-1. The
following bits in the CACTL register control cache modes:

• Cache DM access Enable. Bit 5 (CDE) directs the sequencer to cache
conflicting DM bus accesses (if 1) or not to cache conflicting DM
bus accesses (if 0).

• Cache Freeze. Bit 6 (CFZ) directs the sequencer to freeze the contents
of the cache (if 1) or let new entries displace the entries in the cache
(if 0).

• Cache PM access Enable. Bit 7 (CPE) directs the sequencer to cache
conflicting PM bus accesses (if 1) or not to cache conflicting PM bus
accesses (if 0).

When changing the cache mode or flushing the cache, the instruction con-
taining a program memory data access must not be placed directly after a
cache enable or cache disable instruction, because the DSP must wait at
least one cycle before executing the PM data access. A program should
have a Nop inserted after the cache enable instruction if necessary.

! When program memory changes, the programs should resynchro-
nize the instruction cache with the program memory using the
Flush Cache instruction. This instruction flushes the instruction
cache, invalidating all instructions currently cached, so that the next
instruction fetch results in a memory access.
ADSP-219x/2192 DSP Hardware Reference 3-11

Instruction Cache
Optimizing Cache Usage
Usually, cache operation is efficient and requires no intervention, but cer-
tain ordering of instructions can work against the cache architecture and
can degrade cache efficiency. When the order of PM data accesses and
instruction fetches continuously displaces cache entries and loads new
entries, the cache is not being efficient. Rearranging the order of these
instructions can improve efficiency.

An example of code that works against cache efficiency appears in
Table 3-4 on page 3-13. The program memory data access at address
0x0100 in the loop, Outer, causes the cache to load the instruction at
0x0103 (into set 19). Each time the program calls the subroutine, Inner,
the program memory data accesses at 0x0300 and 0x500 displace the
instruction at 0x0103 by loading the instructions at 0x0303 and 0x0503
(also into set 19). If the program only calls the Inner subroutine rarely
during the Outer loop execution, the repeated cache loads do not greatly
influence performance. If the program frequently calls the subroutine
while in the loop, the cache inefficiency has a noticeable effect on perfor-
mance. To improve cache efficiency on this code (if for instance,
execution of the Outer loop is time-critical), it would be good to rearrange
the order of some instructions. Moving the subroutine call up one loca-
tion (starting at 0x02FE) would work here, because with that order the
two cached instructions end up in cache set 18 instead of set 19.

! Because the least significant five address bits determine which cache
set store an instruction, instructions in the same cache set are mul-
tiples of 64 address locations apart. As demonstrated in the optimi-
zation example, it is a rare combination of instruction sequences
that can lead to “cache thrashing”—iterative swapping of cache
entries.
3-12 ADSP-219x/2192 DSP Hardware Reference

Program Sequencer
Table 3-4. Cache-Inefficient Code

Address Instruction

0x00FE CNTR=1024;

0x00FF Do Outer Until CE;

0x0100 AX0=DM(I0+=M0), AY0=PM(I4,M4);

...

0x0103 If EQ Call Inner;

0x0104 AR=AX1 + AY1;

0x0105 MR=MX0*MY0 (SS);

0x0106 Outer: SR=MX1*MY1(SS);

0x0107 PM(I7+=M7)=SR1;

...

0x02FF Inner: SR0=AY0;

0x0300 AY0=PM(I5+=M5);

...

0x0500 PM(I5+=M5)=AY1;

...

0x05FF Rts;
ADSP-219x/2192 DSP Hardware Reference 3-13

Branches and Sequencing
Branches and Sequencing
One of the types of non-sequential program flow that the sequencer sup-
ports is branching. A branch occurs when a Jump or Call/return
instruction begins execution at a new location, other than the next
sequential address. For descriptions on how to use the Jump and
Call/return instructions, see the ADSP-219x DSP Instruction Set Refer-
ence. Briefly, these instructions operate as follows:

• A Jump or a Call/return instruction transfers program flow to
another memory location. The difference between a Jump and a Call
is that a Call automatically pushes the return address (the next
sequential address after the Call instruction) onto the PC stack. This
push makes the address available for the Call instruction’s matching
return instruction, allowing easy return from the subroutine.

• A return instruction causes the sequencer to fetch the instruction at
the return address, which is stored at the top of the PC stack. The
two types of return instructions are return from subroutine (Rts)
and return from interrupt (Rti). While the return from subroutine
(Rts) only pops the return address off the PC stack, the return from
interrupt (Rti) pops the return address and pops the status stack.

There are a number of parameters that programs can specify for branches:

• Jump and Call/return instructions can be conditional. The program
sequencer can evaluate status conditions to decide whether to exe-
cute a branch. If no condition is specified, the branch is always
taken. For more information on these conditions, see “Conditional
Sequencing” on page 3-39.

• Jump and Call/return instructions can be immediate or delayed.
Because of the instructions pipeline, an immediate branch incurs
four lost (overhead) cycles. A delayed branch incurs two cycles of
overhead. For more information, see “Delayed Branches” on page
3-16.
3-14 ADSP-219x/2192 DSP Hardware Reference

Program Sequencer
• Jump and Call/return instructions can be used within Do/Until
counter (CE) or infinite (Forever) loops, but a Jump or Call instruc-
tion may not be the last instruction in the loop. For information,
see “Restrictions On Ending Loops” on page 3-24.

The sequencer block diagram in Figure 3-2 on page 3-4 shows that
branches can be direct or indirect. The difference is that the sequencer
generates the address for a direct branch, and the PM data address genera-
tor (DAG2) produces the address for an indirect branch.

Direct branches are Jump or Call/return instructions that use an abso-
lute—not changing at runtime—address (such as a program label) or use a
PC-relative 16-bit address. To branch farther, the Ljump or Lcall instruc-
tions use a 24-bit address. Some instruction examples that cause a direct
branch are:

Jump fft1024; {where fft1024 is an address label}
Call 10; {where 10 a PC-relative address}

Indirect branches are Jump or Call/return instructions that use a
dynamic—changes at runtime—address that comes from either data
address generator. For more information on the data address generator,
see “DAG Operations” on page 4-9. Some instruction examples that cause
an indirect branch are:

Jump (I6); {where (i6) is a DAG1 or DAG2 register}
Call (I7); {where (i7) is a DAG1 or DAG2 register}

Indirect Jump Page (IJPG) Register
The IJPG register provides the upper eight address bits for indirect Jump
and Call instructions. When performing an indirect branch, the
sequencer gets the lower 16 bits of the branch address from the I register
specified in the Jump or Call instruction and uses the IJPG register to com-
plete the address.
ADSP-219x/2192 DSP Hardware Reference 3-15

Branches and Sequencing
At power up, the DSP initializes the IJPG register to 0x0. Initializing the
page register is only necessary when the instruction is located on a page
other than the current page.

! Changing the contents of the sequencer page register is not auto-
matic and requires explicit programming.

Conditional Branches
The sequencer supports conditional branches. These are Jump or
Call/return instructions whose execution is based on testing an If condi-
tion. For more information on condition types in If condition
instructions, see “Conditional Sequencing” on page 3-39.

Delayed Branches
The instruction pipeline influences how the sequencer handles branches.
For immediate branches—Jump and Call/return instructions not specified
as delayed branches (DB), four instruction cycles are lost (Nops) as the pipe-
line empties and refills with instructions from the new branch.

As shown in Table 3-5 and Table 3-6, the DSP does not execute the four
instructions after the branch, which are in the fetch and decode stages. For
a Call, the next instruction (the instruction after the Call) is the return
address. During the four lost (no-operation) cycles, the pipeline fetches
and decodes the first instruction at the branch address.

For delayed branches—Jump and Call/return instructions with the delayed
branches (DB) modifier, only two instruction cycles are lost in the pipeline,
because the DSP executes the two instructions after the branch while the
pipeline fills with instructions from the new branch.
3-16 ADSP-219x/2192 DSP Hardware Reference

Program Sequencer
Table 3-5. Pipelined Execution Cycles For Immediate Branch (Jump/Call)

Cycles LA PA FA AD ID PC

1 j n+4→nop1 n+3→nop1 n+2→nop1 n+1→nop1 n

2 j+1 j n+4→nop1 n+3→nop1 n+2→nop1 Nop2

3 j+2 j+1 j n+4→nop1 n+3→nop1 Nop

4 j+3 j+2 j+1 j n+4→nop1 Nop

5 j+4 j+3 j+2 j+1 j Nop

6 j+5 j+4 j+3 j+2 j+1 j

Note that n is the branching instruction, and j is the instruction branch address. Notes: (1) n+1, n+2,
n+3, and n+4 are suppressed. (2) For call, return address (n+1) is pushed on PC stack.

Table 3-6. Pipelined Execution Cycles For Immediate Branch (Return)

Cycles LA PA FA AD ID PC

1 r n+4→nop1 n+3→nop1 n+2→nop1 n+1→nop1 n

2 r+1 r n+4→nop1 n+3→nop1 n+2→nop1 Nop2

3 r+2 r+1 r n+4→nop1 n+3→nop1 Nop

4 r+3 r+2 r+1 r n+4→nop1 Nop

5 r+4 r+3 r+2 r+1 r Nop

6 r+5 r+4 r+3 r+2 r+1 r

Note that n is the branching instruction, and r is the instruction branch address. Notes: (1) n+1, n+2,
n+3, and n+4 are suppressed. (2) r (n+1 in Table 3-5) the return address is popped from PC stack.
ADSP-219x/2192 DSP Hardware Reference 3-17

Branches and Sequencing
As shown in Table 3-7 and Table 3-8, the DSP executes the two instruc-
tions after the branch, while the instruction at the branch address is
fetched and decoded. In the case of a Call, the return address is the third
instruction after the branch instruction. While delayed branches use the
instruction pipeline more efficiently than immediate branches, it is impor-
tant to note that delayed branch code can be harder to understand because
of the instructions between the branch instruction and the actual branch.

Table 3-7. Pipelined Execution Cycles For Delayed Branch (Jump/Call)

Cycles LA PA FA AD ID PC

1 j n+4→nop1 n+3→nop1 n+2 n+1 n

2 j+1 j n+4→nop1 n+3→nop1 n+2 n+12

3 j+2 j+1 j n+4→nop1 n+3→nop1 n+22

4 j+3 j+2 j+1 j n+4→nop1 Nop3

5 j+4 j+3 j+2 j+1 j Nop

6 j+5 j+4 j+3 j+2 j+1 j

Note that n is the branching instruction, and j is the instruction branch address. Notes: (1) n+3 and
n+4 are suppressed. (2)Delayed branch slots. (3) For call, return address (n+3) is pushed on PC stack.
3-18 ADSP-219x/2192 DSP Hardware Reference

Program Sequencer
Besides being somewhat more challenging to code, there are also some
limitations on delayed branches that stem from the instruction pipeline
architecture. Because the delayed branch instruction and the two instruc-
tions that follow it must execute sequentially, the instructions in the two
locations (delayed branch slots) that follow a delayed branch instruction
may not be any of the following:

• Other branches (no Jump, Call, or Rti/Rts instructions)

• Any stack manipulations (no Push or Pop instructions or writes to
the PC stack)

• Any loops or other breaks in sequential operation (no Do/Until or
Idle instructions)

• Two-cycle instructions may not appear in the second delay branch
slot; these instructions may appear in the first delay branch slot.

Table 3-8. Pipelined Execution Cycles For Delayed Branch (Return)

Cycles LA PA FA AD ID PC

1 r1 n+4→nop2 n+3→nop2 n+2 n+1 n

2 r+1 r n+4→nop2 n+3→nop2 n+2 n+13

3 r+2 r+1 r n+4→nop2 n+3→nop2 n+23

4 r+3 r+2 r+1 r n+4→nop2 Nop

5 r+4 r+3 r+2 r+1 r Nop

6 r+5 r+4 r+3 r+2 r+1 r

Note that n is the branching instruction, and r is the instruction branch address. Notes: (1) r (n+1
in Table 3-7) the return address is popped from PC. (2) stackn+3 and n+4 are suppressed. (3) De-
layed branch slots.
ADSP-219x/2192 DSP Hardware Reference 3-19

Loops and Sequencing
Interrupt processing is also influenced by delayed branches and the
instruction pipeline. Because the delayed branch instruction and the two
instructions that follow it must execute sequentially, the DSP does not
immediately process an interrupt that occurs in between a delayed branch
instruction and either of the two instructions that follow. Any interrupt
that occurs during these instructions is latched, but not processed until
the branch is complete.

Loops and Sequencing
Another type of non-sequential program flow that the sequencer supports
is looping. A loop occurs when a Do/Until instruction causes the DSP to
repeat a sequence of instructions infinitely (Forever) or until the counter
expires (CE).

The condition for terminating a loop with the Do/Until logic is loop
Counter Expired (CE). This condition tests whether the loop has com-
pleted the number of iterations loaded from the CNTR register. Loops that
exit with conditions other than CE (using a conditional Jump) have some
additional restrictions. For more information, see “Restrictions On End-
ing Loops” on page 3-24. For more information on condition types in
Do/Until instructions, see “Conditional Sequencing” on page 3-39.

The Do/Until instruction uses the sequencer’s loop and condition features,
which appear in Figure 3-2 on page 3-4. These features provide efficient
software loops, without the overhead of additional instructions to branch,
test a condition, or decrement a counter. The following code example
shows a Do/Until loop that contains three instructions and iterates 30
times.

CNTR=30; Do the_end Until CE; {loop iterates 30 times}
AX0=DM(I0+=M0), AY0=PM(I4+=M4);
AR=AX0-AY0;
the_end: DM(I1+=M0)=AR; {last instruction in loop}
3-20 ADSP-219x/2192 DSP Hardware Reference

Program Sequencer
When executing a Do/Until instruction, the program sequencer pushes the
address of the loop’s last instruction and loop’s termination condition
onto the loop-end stack. The sequencer also pushes the loop-begin
address—address of the instruction following the Do/Until instruction—
onto the loop-begin stack.

The sequencer’s instruction pipeline architecture influences loop termina-
tion. Because instructions are pipelined, the sequencer must test the
termination condition and decrement the counter at the end of the loop.
Based on the test’s outcome, the next fetch either exits the loop or returns
to the beginning of the loop.

! The Do/Until instruction supports infinite loops, using the Forever
condition instead of CE. Software can use a conditional Jump instruc-
tion to exit such an infinite loop.

! When using a conditional Jump to exit any Do/Until loop, software
must perform some loop stack maintenance (Pop Loop). For more
information, see “Stacks and Sequencing” on page 3-34.

The condition test occurs when the DSP is executing the last instruction
in the loop (at location e, where e is the end-of-loop address). If the condi-
tion tests false, the sequencer repeats the loop, fetching the instruction
from the loop-begin address, which is stored on the loop-begin stack. If
the condition tests true, the sequencer terminates the loop, fetching the
next instruction after the end of the loop and popping the loop stacks. For
more information, see “Stacks and Sequencing” on page 3-34.
ADSP-219x/2192 DSP Hardware Reference 3-21

Loops and Sequencing
Table 3-9 and Table 3-10 show the pipeline states for loop iteration and
termination.

Table 3-9. Pipelined Execution Cycles For Loop Back (Iteration)

Cycles LA PA FA AD ID PC

1 e1 e–1 e–2 e–3 e–4 e–5

2 b2 e e–1 e–2 e–3 e–4

3 b+1 b e e–1 e–2 e–3

4 b+2 b+1 b e e–1 e–2

5 b+3 b+2 b+1 b e e–1

6 b+43 b+33 b+23 b+13 b3 e3

7 b+5 b+4 b+3 b+2 b+1 b

Note that e is the loop end instruction, and b is the loop begin instruction.
1. Termination condition tests false.
2. Loop start address is top of loop-begin stack.
3. For loops of less than six instructions (shorter than the pipeline), the pipeline retains the instructions

in the loop (e through b+4). On the first iteration of such a short loop, there is a branch penalty of
four Nops while the pipeline sets up for the short loop.
3-22 ADSP-219x/2192 DSP Hardware Reference

Program Sequencer
Table 3-10. Pipelined Execution Cycles For Loop Termination

Cycles LA PA FA AD ID PC

1 e1 e–1 e–2 e–3 e–4 e–5

2 e+1 e e–1 e–2 e–3 e–4

3 e+2 e+1 e e–1 e–2 e–3

4 e+3 e+2 e+1 e e–1 e–2

5 e+4 e+3 e+2 e+1 e e–1

6 e+5 e+4 e+3 e+2 e+1 e

7 e+6 e+5 e+4 e+3 e+2 e+12

Note that e is the loop end instruction.
1. Termination condition tests true.
2. Loop aborts and loop stacks pop.
ADSP-219x/2192 DSP Hardware Reference 3-23

Interrupts and Sequencing
Managing Loop Stacks
To support low overhead looping, the DSP stores information for loop
processing in three stacks: loop-begin stack, loop-end stack, and counter
stack. The sequencer manages these stacks for loops that terminate when
the counter expires (Do/Until CE), but does not manage these stacks for
loops that terminate with a conditional Jump. For information on manag-
ing loop stacks, see “Stacks and Sequencing” on page 3-34.

Restrictions On Ending Loops
The sequencer’s loop features (which optimize performance in many ways)
limit the types of instructions that may appear at or near the end of the
loop. The only absolute restriction is that the last instruction in a loop (at
the loop end label) may not be a Call/return, a Jump (DB), or a two cycle
instruction.

There are restrictions on placing nested loops. For example, nested loops
may not use the same end-of-loop instruction address.

! Use care if using Push Loop or Pop Loop instruction inside loops. It
is best to perform any stack maintenance outside of loops.

Interrupts and Sequencing
Another type of non-sequential program flow that the sequencer supports
is interrupt processing. Interrupts may stem from a variety of conditions,
both internal and external to the processor. In response to an interrupt,
the sequencer processes a subroutine call to a predefined address, the
interrupt vector. The DSP assigns a unique vector to each interrupt.
3-24 ADSP-219x/2192 DSP Hardware Reference

Program Sequencer
The ADSP-219x DSP core supports 16 prioritized interrupts. The four
highest priority interrupts (reset, powerdown, stack, and kernel) are part
of the DSP core and are common to all ADSP-219x DSPs. The rest of the
interrupt levels are assignable to peripherals off the DSP core and vary
with the particular DSP. For information on working with peripheral
interrupts, see “ADSP-2192 Interrupts” on page E-1 and “Interrupts” on
page 11-22.

The DSP supports a number of prioritized, individually-maskable external
interrupts, each of which can be either level- or edge-sensitive. External
interrupts occur when another device asserts one of the DSP’s interrupt
inputs. The DSP also supports internal interrupts. An internal interrupt
can stem from stack overflows or a program writing to the interrupt’s bit
in the IRPTL register. Several factors control the DSP’s response to an
interrupt. The DSP responds to an interrupt request if:

• The DSP is executing instructions or is in an Idle state

• The interrupt is not masked

• Interrupts are globally enabled

• A higher priority request is not pending

When the DSP responds to an interrupt, the sequencer branches program
execution with a call to the corresponding interrupt vector address.
Within the DSP’s program memory, the interrupt vectors are grouped in
an area called the interrupt vector table. The interrupt vectors in this table
are spaced at intervals that permit placing most interrupt service routines
at the vector location—instead of branching to the actual interrupt service
routine from the vector location. For a list of interrupt vector addresses
and their associated latch and mask bits, see “ADSP-2192 Interrupts” on
page E-1. Each interrupt vector has associated latch and mask bits.
Table A-10 on page A-19 lists the latch and mask bits.
ADSP-219x/2192 DSP Hardware Reference 3-25

Interrupts and Sequencing
To process an interrupt, the DSP’s program sequencer does the following:

1. Outputs the appropriate interrupt vector address

2. Pushes the next PC value (the return address) on to the PC stack

3. Pushes the current value of the ASTAT and MSTAT registers onto the
status stack

4. Clears the appropriate bit in the interrupt latch register (IRPTL)

At the end of the interrupt service routine, the sequencer processes the
return from interrupt (Rti) instruction and does following:

1. Returns to the address stored at the top of the PC stack

2. Pops this value off of the PC stack

3. Pops the status stack

All interrupt service routines should end with a return-from-interrupt
(Rti) instruction. Although the interrupt vector table holds space for a
reset service routine, it is important to note that DSP reset/startup rou-
tines do not operate the same as other interrupt service routines. After
reset, the PC stack is empty, so there is no return address. The last instruc-
tion of the reset service routine should be a Jump to the start of the
program.

If software writes to a bit in IRPTL, forcing an interrupt, the processor rec-
ognizes the interrupt in the following cycle. Four cycles of branching to
the interrupt vector then follow the recognition cycle.

The DSP responds to interrupts in three stages: synchronization and
latching (one cycle), recognition (one cycle), and branching to the inter-
rupt vector (four cycles). Table 3-11, Table 3-12, and Table 3-13 show
the pipelined execution cycles for interrupt processing.
3-26 ADSP-219x/2192 DSP Hardware Reference

Program Sequencer
Table 3-11. Pipelined Execution Cycles For Interrupt During Single-cycle
Instruction

Cycles LA PA FA AD ID PC

1 n+4 n+3 n+2 n+1 n n–11

2 v n+4→nop3 n+3→nop3 n+2→nop3 n+1→nop3 n2

3 v+1 v n+4→nop3 n+3→nop3 n+2→nop3 Nop3

4 v+2 v+1 v n+4→nop3 n+3→nop3 Nop

5 v+3 v+2 v+1 v n+4→nop3 Nop

6 v+4 v+3 v+2 v+1 v Nop

7 v+5 v+4 v+3 v+2 v+1 v4

Note that n is the single-cycle instruction, and v is the interrupt vector instruction.
1. Interrupt occurs.
2. Interrupt recognized.
3. n+1 pushed on PC stack; ASTAT/MSTAT pushed onto status stack; n+1 suppressed.
4. Interrupt vector output.
ADSP-219x/2192 DSP Hardware Reference 3-27

Interrupts and Sequencing
Table 3-12. Pipelined Execution Cycles For Interrupt During Instruction
With Conflicting PM Data Access (Instruction Not Cached)

Cycles LA PA FA AD ID PC

1 n+4 n+3 n+2 n+1 n n–11

2 — n+4 n+3 n+2 n+1 n2

3 v3 n+5→nop4 n+4→nop4 n+3→nop4 n+2→nop4 Nop4

4 v+1 v n+5→nop4 n+4→nop4 n+3→nop4 Nop4

5 v+2 v+1 v n+5→nop4 n+4→nop4 Nop

6 v+3 v+2 v+1 v n+5→nop4 Nop

7 v+4 v+3 v+2 v+1 v Nop

8 v+5 v+4 v+3 v+2 v+1 v5

Note that n is the single-cycle instruction, and v is the interrupt vector instruction.
1. Interrupt occurs.
2. Interrupt recognized, but not processed; PM data access.
3. Interrupt processed.
4. n+1 pushed on PC stack; ASTAT/MSTAT pushed onto status stack; n+1 suppressed.
5. Interrupt vector output.
3-28 ADSP-219x/2192 DSP Hardware Reference

Program Sequencer
Table 3-13. Pipelined Execution Cycles For Interrupt During Delayed
Branch Instruction

Cycles LA PA FA AD ID PC

1 n+4 n+3 n+2 n+1 n n–11

2 j n+4→nop n+3→nop n+2 n+1 n2

3 j+1 j n+4→nop n+3→nop n+2 n+1

4 v3 j+1→nop4 j→nop4 n+4→nop4 n+3→nop4 n+2

5 v+1 v j+1→nop4 j→nop4 n+4→nop4 Nop3

6 v+2 v+1 v j+1→nop4 j→nop4 Nop4

7 v+3 v+2 v+1 v j+1→nop4 Nop4

8 v+4 v+3 v+2 v+1 v Nop5

9 v+5 v+4 v+3 v+2 v+1 v6

Note that n is the delayed branch instruction, j is the instruction at the branch address, and v is the
interrupt vector instruction.

1. Interrupt occurs.
2. Interrupt recognized, but not processed.
3. Interrupt processed.
4. ASTAT/MSTAT pushed onto status stack; n+3 suppressed.
5. j pushed on PC stack; j+1 suppressed.
6. Interrupt vector output.
ADSP-219x/2192 DSP Hardware Reference 3-29

Interrupts and Sequencing
For most interrupts, internal and external, only one instruction is exe-
cuted after the interrupt occurs (and before the two instructions are
aborted) while the processor fetches and decodes the first instruction of
the service routine. For more information on interrupt latency, see
“ADSP-2192 Interrupts” on page E-1.

If nesting is enabled and a higher priority interrupt occurs immediately
after a lower priority interrupt, the service routine of the higher priority
interrupt is delayed by at least three additional cycles. For more informa-
tion, see “Nesting Interrupts” on page 3-32.

Certain DSP operations that span more than one cycle hold off interrupt
processing. If an interrupt occurs during one of these operations, the DSP
latches the interrupt, but delays processing the interrupt. The operations
that delay interrupt processing are as follows:

• A branch (Jump or Call/return) instruction and the following cycle,
whether it is an instruction (in a delayed branch) or a Nop (in a
non-delayed branch)

• The first of the two cycles used to perform a program memory data
access and an instruction fetch

• The set up cycles for loops shorter than the instruction pipeline (<5
instructions).

• Any waitstates for external memory accesses

• Any external memory access that is required when the DSP does not
have control of the external bus or during a host bus grant

Sensing Interrupts
The DSP supports two types of interrupt sensitivity—the signal shape that
triggers the interrupt. On interrupt pins, either the input signal’s edge or
level can trigger an external interrupt. For more information on interrupt
sensitivity and timing, see “ADSP-2192 Interrupts” on page E-1.
3-30 ADSP-219x/2192 DSP Hardware Reference

Program Sequencer
Masking Interrupts
The sequencer supports interrupt masking—latching an interrupt, but not
responding to it. Except for the emulator (EMU), reset (RESET), and power-
down interrupts, all interrupts are maskable. If a masked interrupt is
latched, the DSP responds to the latched interrupt if it is later unmasked.

Interrupts can be masked globally or selectively. Bits in the ICNTL and
IMASK registers control interrupt masking. Table A-11 on page A-20 lists
the bits in ICNTL, and Table A-10 on page A-19 lists the bits in IMASK.
These bits control interrupt masking as follows:

• Global interrupt enable. ICNTL, Bit 5 (GIE) directs the DSP to
enable (if 1) or disable (if 0) all interrupts

• Interrupt mask. IMASK, Bits 15-0 direct the DSP to enable (if 1) or
disable/mask (if 0) the corresponding interrupt

Except for the non-maskable interrupts and boot interrupts, all interrupts
are masked at reset. For booting, the DSP automatically unmasks and uses
the selected peripheral as the source for boot data.

Latching Interrupts
When the DSP recognizes an interrupt, the DSP’s interrupt latch (IRPTL)
register latches the interrupts and sets a bit to record that the interrupt
occurred. The bits in this register indicate all interrupts that are currently
pending or are being serviced. Because these registers are readable and
writable, any interrupt can be set or cleared in software.

When responding to an interrupt, the sequencer clears the corresponding
bit in IRPTL. During execution of the interrupt’s service routine, the DSP
can latch the same interrupt again while the service routine is executing.
ADSP-219x/2192 DSP Hardware Reference 3-31

Interrupts and Sequencing
The interrupt latch bits in IRPTL correspond to interrupt mask bits in the
IMASK register. In both registers, the interrupt bits are arranged in order of
priority. The interrupt priority is from 0 (highest) to 15 (lowest). Inter-
rupt priority determines which interrupt is serviced first when more than
one occurs in the same cycle. Priority also determines which interrupts are
nested when the DSP has interrupt nesting enabled. For more informa-
tion, see “Nesting Interrupts” on page 3-32.

Depending on the assignment of interrupts to peripherals, one event can
cause multiple interrupts, and multiple events can trigger the same inter-
rupt. For more information, see “ADSP-2192 Interrupts” on page E-1.

Stacking Status During Interrupts
To run in an interrupt driven system, programs depend on the DSP being
restored to its pre-interrupt state after an interrupt is serviced. The
sequencer’s status stack eases the return from interrupt process by elimi-
nating some interrupt service overhead, such as register saves and restores.
For a description of stack operations, see “Stacks and Sequencing” on
page 3-34.

Nesting Interrupts
The sequencer supports interrupt nesting—responding to another inter-
rupt while a previous interrupt is being serviced. Bits in the ICNTL, IMASK,
and IRPTL registers control interrupt nesting. Table A-11 on page A-20
lists the bits in ICNTL, Table A-10 on page A-19 lists the bits in IMASK and
IRPTL. These bits control interrupt nesting as follows:

• Interrupt nesting enable. ICNTL, Bit 4 (INE), directs the DSP to
enable (if 1) or disable (if 0) interrupt nesting.
3-32 ADSP-219x/2192 DSP Hardware Reference

Program Sequencer
• Interrupt Mask. IMASK, 16 Bits, selectively mask the interrupts. For
each bit’s corresponding interrupt, these bits direct the DSP to
unmask (1=enable) or mask (0=disable) the matching interrupt.

• Interrupt Latch. IRPTL, 16 Bits, latch interrupts. For each corre-
sponding interrupt, these bits indicate that the DSP has latched
(1=pending) or not latched (0=pending) the matching interrupt.

When interrupt nesting is disabled, a higher priority interrupt cannot
interrupt a lower priority interrupt’s service routine. Other interrupts are
latched as they occur, but the DSP processes them after the active routine
finishes.

When interrupt nesting is enabled, a higher priority interrupt can inter-
rupt a lower priority interrupt’s service routine. Lower interrupts are
latched as they occur, but the DSP processes them after the nested rou-
tines finish.

Programs should only change the interrupt nesting enable (INE) bit while
outside of an interrupt service routine.

If nesting is enabled and a higher priority interrupt occurs immediately
after a lower priority interrupt, the service routine of the higher priority
interrupt is delayed by up to several cycles. This delay allows the first
instruction of the lower priority interrupt routine to be executed, before it
is interrupted.

If an interrupt re-occurs while its service routine is running and nesting is
enabled, the DSP does not latch the re-occurrence in IRPTL. The DSP
waits until the return from interrupt (Rti) completes, before permitting
the interrupt to latch again.
ADSP-219x/2192 DSP Hardware Reference 3-33

Stacks and Sequencing
Interrupting Idle
The sequencer supports placing the DSP in Idle—until an interrupt
occurs. When executing an Idle instruction, the sequencer fetches one
more instruction at the current fetch address and then suspends operation.
The DSP’s I/O processor is not affected by the Idle instruction. DMA
transfers to or from internal memory continue uninterrupted.

The processor’s on-chip peripherals continue to run during Idle. When
an interrupt occurs, the processor responds normally. After two cycles
used to fetch and decode the first instruction of the interrupt service rou-
tine, the processor resumes execution with the service routine.

Stacks and Sequencing
The sequencer includes five stacks: PC stack, loop-begin stack, loop-end
stack, counter stack, and status stack. These stacks preserve information
about program flow during execution branches. Figure 3-4 shows how
these stacks relate to each other and to the registers that load (push) or are
loaded from (pop) these stacks. Besides showing the operations that occur
during explicit push and pop instructions, Figure 3-4 also indicates which
stacks the DSP automatically pushes and pops when processing different
types of branches: loops (Do/Until), calls (Call/return), and interrupts.

These stacks have differing depths. The PC stack is 33 locations deep; the
status stack is 16 locations deep; and the loop begin, loop end, and
counter stacks are 8 locations deep. A stack is full when all entries are
occupied. Bits in the SSTAT register indicate the stack status.
3-34 ADSP-219x/2192 DSP Hardware Reference

Program Sequencer
Figure 3-4. Program Sequencer Stacks

8 B ITS 16 B ITS 8 B ITS 16 B ITS 16 B ITS

C N TRLPSTA C K P LPSTA C K A:STA C K P STA C KA:

LO O P BEG IN STA C K

(8 EN TR IES)

LO O P EN D STA C K

(8 EN TR IES)

CO UN TER S TA C K

(8 EN TR IES)

PC STA C K

(33 EN TR IES)

9 B ITS

A STA T

7 B ITS

M STA T

STA TUS STA C K

(16 EN TR IES)

TH E D SP U SES TH ESE STA C KS FO R:

� D O /U N TIL LO O PS

� C A LL/RETU RN IN STRU C TIO N S

� IN TERRU PT SERV IC E RO U N TIN ES

24 B ITS

PC

D O /U N TIL,
 C A LL ,

 O R

IN TERRU PT
(IM PLIC IT PUSH)

PU SH PC
O R

 LO O P
(EX PLIC IT

PUSH)

LO O P
ITERA TE

 O R

RETU RN
(IM PLIC IT PO P)

PO P PC
O R

 LO O P
(EX PLIC IT

PO P)

PU SH
LO O P

(EX PLIC IT
PUSH)

PO P
LO O P

(EX PLIC IT
PO P)

DO
UN TIL

(IM PLIC IT
PUSH)

O R

PU SH
LO O P
(EX PLIC IT

PUSH)

PO P
LO O P
(EX PLIC IT

PO P)

24 B ITS

LO O P-EN D-A DDRESS D O /U N TIL
(IM PLIC IT PUSH)

IN TERRU PT
(IM PLIC IT PUSH)

O R

PU SH STS
(EX PLIC IT PUSH)

RETU RN
(IM PLIC IT PO P)

O R

PO P STS
(EX PLIC IT PO P)
ADSP-219x/2192 DSP Hardware Reference 3-35

Stacks and Sequencing
Table A-7 on page A-14 lists the bits in the SSTAT register. The SSTAT bits
that indicate stack status are:

• PC stack empty. Bit 0 (PCSTKEMPTY) indicates that the PC stack con-
tains at least one pushed address (if 0) or PC stack is empty (if 1).

• PC stack full. Bit 1 (PCSTKFULL) indicates that the PC stack contains
at least one empty location (if 0) or PC stack is full (if 1).

• PC stack level. Bit 2 (PCSTKLVL) indicates that the PC stack contains
between 3 and 28 pushed addresses (if 0) or PC stack is at or above
the high-water mark—28 pushed addresses, or it is at or below the
low-water mark—3 pushed addresses (if 1).

• Loop stack empty. Bit 4 (LPSTKEMPTY) indicates that the Loop stack
contains at least one pushed address (if 0) or Loop stack is empty
(if 1).

• Loop stack full. Bit 5 (LPSTKFULL) indicates that the Loop stack con-
tains at least one empty location (if 0) or Loop stack is full (if 1).

• Status stack empty. Bit 6 (STSSTKEMPTY) indicates that the Status
stack contains at least one pushed status (if 0) or Status stack is
empty (if 1).

• Stacks overflowed. Bit 7 (STKOVERFLOW) indicates that an Over-
flow/underflow has not occurred (if 0) or indicates that at least one
of the stacks (PC, loop, counter, status) has overflowed, or the PC
or status stack has underflowed (if 1). Note that STKOVERFLOW is only
cleared on reset. Loop stack underflow is not detected because it
occurs only as a result of a Pop Loop operation.
3-36 ADSP-219x/2192 DSP Hardware Reference

Program Sequencer
Stack status conditions can cause a STACK interrupt. The stack interrupt
always is generated by a stack overflow condition, but also can be gener-
ated by OR’ing together the stack overflow status (STKOVERFLOW) bit and
stack high/low level status (PCSTKLVL) bit. The level bit is set when:

• The PC stack is pushed and the resulting level is at or above the high
water-mark.

• The PC stack is popped and the resulting level is at or below the low
water-mark.

This spill-fill mode (using the stacks’ status to generate a stack interrupt)
is disabled on reset. Bits in the ICNTL register control whether the DSP
generates this interrupt based on stack status. Table A-11 on page A-20
lists the bits in the ICNTL register. The bits in ICNTL that enable the STACK
interrupt are:

• Global interrupt enable. Bit 5 (GIE) globally disables (if 0) or
enables (if 1) unmasked interrupts

• PC stack interrupt enable. Bit 10 (PCSTKE) directs the DSP to dis-
able (if 0) or enable (if 1) spill-fill mode—OR’ing of stack status—
to generate the STACK interrupt.

! When switching on spill-fill mode, a spurious (low) stack level inter-
rupt may occur (depending on the level of the stack). In this case,
the interrupt handler should push some values on the stack to raise
the level above the low level threshold.

Values move on (push) or off (pop) the stacks through implicit and
explicit operations. Implicit stack operations are stack accesses that the
DSP performs while executing a branch instruction (Call/return,
Do/Until) or while responding to an interrupt. Explicit stack operations
are stack accesses that the DSP performs while executing the stack instruc-
tions (Push, Pop).
ADSP-219x/2192 DSP Hardware Reference 3-37

Stacks and Sequencing
As shown in Figure 3-4, the source for the pushed values and destination
for the pop value differs depending on whether the stack operations is
implicit or explicit.

In implicit stack operations, the DSP places values on the stacks from reg-
isters (PC, CNTR, ASTAT, MSTAT) and from calculated addresses (end-of-loop,
PC+1). For example a Call/return instruction directs the DSP to branch
execution to the called subroutine and push the return address (PC+1) onto
the PC stack. The matching return from subroutine instruction (Rts)
causes the DSP to pop the return address off of the PC stack and branch
execution to the address following the Call.

A second instruction that makes the DSP perform implicit stack opera-
tions is the Do/Until instruction. It takes the following steps to set up a
Do/Until loop:

• Load the loop count into the CNTR register

• Initiate the loop with a Do/Until instruction

• Terminate the loop with an end-of-loop label

When executing a Do/Until instruction, the DSP performs the following
implicit stack operations:

• Pushes the loop count from the CNTR register onto the counter stack

• Pushes the start-of-loop address from the PC onto the loop start
stack

• Pushes the end-of-loop address from the end-of-loop label onto the
loop-end stack

When the count in the top location of the counter stack expires, the loop
terminates, and the DSP pops the three loop stacks, resuming execution at
the address after the end of the loop. The count is decremented on the
stack, not in the CNTR register.
3-38 ADSP-219x/2192 DSP Hardware Reference

Program Sequencer
A third condition/instruction that makes the DSP perform implicit stack
operations is an interrupt/return instruction. When interrupted, the DSP
pushes the PC onto the PC stack, pushes the ASTAT and MSTAT registers onto
the status stack, and branches execution to the interrupt service routine’s
location (vector). At the end of the routine, the return from interrupt
instruction directs the DSP to pop these stacks and branch execution to
the instruction after the interrupt (PC+1).

In explicit stack operations, a program’s access to the stacks goes through a
set of registers: STACKP, STACKA, LPSTACKP, LPSTACKA, CNTR, ASTAT, and
MSTAT. A Pop instruction retrieves the value or address from the corre-
sponding stack (PC, Loop, or Sts) and places that value in the
corresponding register (as shown in Figure 3-4 on page 3-35). A Push
instruction takes the value or address from the register and puts it on the
corresponding stack. Programs should use explicit stack operations for
stack maintenance, such as managing the stacks when exiting a Do/Until
loop with a conditional Jump.

Conditional Sequencing
The sequencer supports conditional execution with conditional logic that
appears in Figure 3-4 on page 3-35. This logic evaluates conditions for
conditional (If) instructions and loop (Do/Until) terminations. The con-
ditions are based on information from the arithmetic status registers
(ASTAT), the condition code register (CCODE), the flag inputs, and the loop
counter. For more information on arithmetic status, see “Using Computa-
tional Status” on page 2-16.

Each condition that the DSP evaluates has an assembler mnemonic. The
condition mnemonics for conditional instructions appear in Table 3-14.
For most conditions, the sequencer can test both true and false states. For
example, the sequencer can evaluate ALU equal-to-zero (EQ) and ALU
not-equal-to-zero (NE).
ADSP-219x/2192 DSP Hardware Reference 3-39

Conditional Sequencing
To test conditions that do not appear in Table 3-14, a program can use
the Test Bit (Tstbit) instruction to test bit values loaded from status reg-
isters. For more information, see the ADSP-219x DSP Instruction Set
Reference.

Table 3-14. If Condition and Do/Until Termination Condition Logic

Syntax Status Condition True If: Do/Until If cond

EQ Equal Zero AZ = 1 " #

NE Not Equal Zero AZ = 0 " #

LT Less Than Zero AN .XOR. AV = 1 " #

GE Greater Than or Equal
Zero

AN .XOR. AV = 0 " #

LE Less Than or Equal Zero (AN .XOR. AV)
.OR. AZ = 1

" #

GT Greater Than Zero (AN .XOR. AV)
.OR. AZ = 0

" #

AC ALU Carry AC = 1 " #

Not AC Not ALU Carry AC = 0 " #

AV ALU Overflow AV = 1 " #

Not AV Not ALU Overflow AV = 0 " #

MV MAC Overflow MV = 1 " #

Not MV Not MAC Overflow MV = 0 " #
3-40 ADSP-219x/2192 DSP Hardware Reference

Program Sequencer
The two conditions that do not have complements are CE/Not CE (loop
counter expired/not expired) and True/Forever. The context of these con-
dition codes determines their interpretation. Programs should use True
and Not CE in conditional (If) instructions. Programs should use Forever
and CE to specify loop (Do/Until) termination. A Do Forever instruction
executes a loop indefinitely, until an interrupt, jump, or reset intervenes.

There are some restrictions on how programs may use conditions in
Do/Until loops. For more information, see “Restrictions On Ending
Loops” on page 3-24.

SWCOND Compares value in
CCODE register with
following DSP condi-
tions: PF0-13 inputs Hi,
AS, SV

CCODE=SWCOND " #

Not SWCOND Compares value in
CCODE register with
following DSP condi-
tions: PF0-13 inputs Lo,
Not AS, Not SV

CCODE= Not SWCOND " #

CE Counter Expired loop counter = 0 # "

Not CE1 Counter Not Expired loop counter = Not 0 " #

Forever Always (Do) # "

True Always (If) " #

1 Executing this instruction decrements the CNTR register.

Table 3-14. If Condition and Do/Until Termination Condition Logic

Syntax Status Condition True If: Do/Until If cond
ADSP-219x/2192 DSP Hardware Reference 3-41

Sequencer Instruction Summary
Sequencer Instruction Summary
Table 3-15 lists the program sequencer instructions and how they relate to
SSTAT flags. For more information on assembly language syntax, see the
ADSP-219x DSP Instruction Set Reference. In Table 3-15, note the mean-
ing of the following symbols:

• Reladdr# indicates a PC-relative address of #number of bits

• Addr24 indicates an absolute 24-bit address.

• Ireg indicates an Index (I) register in either DAG.

• Imm4 indicates an immediate 4-bit value.

• Addr24 indicates an absolute 24-bit address.

• * indicates the flag may be set or cleared, depending on results of
instruction.

• – indicates no effect.
3-42 ADSP-219x/2192 DSP Hardware Reference

Program Sequencer
Table 3-15. Sequencer Instruction Summary

Instruction SSTAT Status Flags

LE LF PE PF PL SE SO

Do <Reladdr12> Until [CE, Forever]; * * – – – – *

[If Cond] Jump <Reladdr13> [(DB)]; – – – – – – –

Call <Reladdr16> [(DB)]; – – * * * – *

Jump <Reladdr16> [(DB)]; – – – – – – –

[If Cond] Lcall <Addr24>; – – * * * – *

[If Cond] Ljump <Addr24>; – – – – – – –

[If Cond] Call <Ireg> [(DB)]; – – * * * – *

[If Cond] Jump <Ireg> [(DB)]; – – – – – – –

[If Cond] Rti [(DB)]; – – * * * * –

[If Cond] Rts [(DB)]; – – * * * – –

Push |PC, Loop, Sts|; * * * * * * *

Pop |PC, Loop, Sts|; * * * * * * *

Flush Cache; – – – – – – –

Setint <Imm4>; – – * * * * *

Clrint <Imm4>; – – – – – – –

Nop; – – – – – – –

Idle; – – – – – – –

Ena | TI, MM, AS, OL, BR, SR, BSR, INT | ; – – – – – – –

Dis | TI, MM, AS, OL, BR, SR, BSR, INT | ; – – – – – – –

Abbreviations for SSTAT Flags:
LE=LPSTKEMPTY, LF=LPSTKFULL, PE=PCSTKEMPTY, PF=PCSTKFULL, PL=PCST-
KLVL, SE=STSSTKEMPTY, SO=STKOVERFLOW
ADSP-219x/2192 DSP Hardware Reference 3-43

Sequencer Instruction Summary
3-44 ADSP-219x/2192 DSP Hardware Reference

4 DATA ADDRESS
GENERATORS

Figure 4-0.

Table 4-0.

Listing 4-0.
Overview
The DSP’s Data Address Generators (DAGs) generate addresses for data
moves to and from Data Memory (DM) and Program Memory (PM). By
generating addresses, the DAGs let programs refer to addresses indirectly,
using a DAG register instead of an absolute address. The DAG architec-
ture, which appears in Figure 4-1, supports several functions that
minimize overhead in data access routines. These functions include:

• Supply address and post-modify—provides an address during a
data move and auto-increments the stored address for the next
move.

• Supply pre-modified address—provides a modified address during
a data move without incrementing the stored address.

• Modify address—increments the stored address without perform-
ing a data move.

• Bit-reverse address—provides a bit-reversed address during a data
move without reversing the stored address.
ADSP-219x/2192 DSP Hardware Reference 4-1

Overview
As shown in Figure 4-1, each DAG has five types of registers. These regis-
ters hold the values that the DAG uses for generating addresses. The types
of registers are:

• Index registers (I0-I3 for DAG1 and I4-I7 for DAG2). An index
register holds an address and acts as a pointer to memory. For exam-
ple, the DAG interprets DM(I0) and PM(I4) syntax in an instruction
as addresses.

• Modify registers (M0-M3 for DAG1 and M4-M7 for DAG2). A
modify register provides the increment or step size by which an
index register is pre- or post-modified during a register move. For
example, the dm(I0+=M1) instruction directs the DAG to output the
address in register I0 then modify the contents of I0 using the M1
register.

• Length and Base registers (L0-L3 and B0-B3 for DAG1 and L4-L7
and B4-B7 for DAG2). Length and base registers setup the range of
addresses and the starting address for a circular buffer. For more
information on circular buffers, see “Addressing Circular Buffers”
on page 4-11.

• DAG Memory Page registers (DMPG1 for DAG1 and DMPG2
for DAG2). Page registers set the upper eight bits address for DAG
memory accesses; the 16-bit Index and Base registers hold the lower
16 bits. For more information on about DAG page registers and
addresses from the DAGs, see “DAG Page Registers (DMPGx)” on
page 4-6.

! Do not assume that the L registers are automatically initialized to
zero for linear addressing. The I, M, L, and B registers contain ran-
dom values following DSP reset. For each I register used, programs
must initialize the corresponding L registers to the appropriate
value—either 0 for linear addressing or the buffer length for circular
buffer addressing.
4-2 ADSP-219x/2192 DSP Hardware Reference

Data Address Generators
! On previous 16-bit, fixed-point DSPs (ADSP-218x family), the
DAG registers are 14-bits wide. Because the ADSP-219x DAG reg-
isters are 16-bits wide, the DAGs do not need to perform the zero
padding on I and L register writes to memory or the sign extension
on M register writes to memory that is required for previous
ADSP-218x family DSPs.

Figure 4-1. Data Address Generator (DAG) Block Diagram

M STA T

M UX

M UX

A DD

I
REG ISTERS

4 X 16

16

16

16

1616

IM M EDIA TE
VA LUE FRO M
IN STRUC TIO N

DA G PA G E (DM PG 1 O R DM PG 2) PRO VIDES UPPER 8 B ITS O F A DDR ESS

(OPTIO N A L B IT-R EVER SE DO ES N O T A PPLY TO PA G E)

M
REG ISTERS

4 X 16

DM ADDR ESS BUS (E ITH ER DA G 1 O R DA G 2)

PM ADDR ESS BUS (E ITH ER DA G 1 O R DA G 2)

24 24

DM O R PM DA TA B US

L
REG ISTERS

4 X 16

B
REG ISTERS

4 X 16

M O DULUS
LO G IC

1616

UPDA TE16

PRE-M O DIFY
ADDRESSIN G

PO ST-M O DIFY
ADDR ESSIN G
ADSP-219x/2192 DSP Hardware Reference 4-3

Setting DAG Modes
Setting DAG Modes
The MSTAT register controls the operating mode of the DAGs. Table A-6
on page A-11 lists all the bits in MSTAT. The following bits in MSTAT control
Data Address Generator modes:

• Bit-reverse addressing enable. Bit 1 (BIT_REV) enables bit-reversed
addressing (if 1) or disables bit-reversed addressing (if 0) for DAG1
Index (I0-I3) registers.

• Secondary registers for DAG. Bit 6 (SEC_DAG) selects the corre-
sponding secondary register set (if 1) or selects the corresponding
primary register set—the set that is available at reset—(if 0).

Secondary (Alternate) DAG Registers
Each DAG has an secondary register set. To facilitate fast context switch-
ing, the DSP includes secondary register sets for data, results, and data
address generator registers. The SEC_DAG bit in the MSTAT register controls
when secondary DAG registers become accessible. While inaccessible, the
contents of secondary registers are not affected by DSP operations.
Figure 4-2 on page 4-5 shows the DAG’s primary and secondary register
sets.

! The secondary register sets for the DAGs are described in this sec-
tion. For more information on secondary data and results registers,
see “Secondary (Alternate) Data Registers” on page 2-59.

! There are no secondary DMPGx registers. Changing between primary
and secondary DAG registers does not affect the DMPGx register set-
tings.
4-4 ADSP-219x/2192 DSP Hardware Reference

Data Address Generators
Figure 4-2. Data Address Generator Primary and Alternate Registers

System power-up and reset enable the primary set of DAG address regis-
ters. To enable or disable the secondary address registers, programs set or
clear the SEC_DAG bit in MSTAT. The instruction set provides three methods
for swapping the active set. Each method incurs a latency, which is the
delay between the time the instruction affecting the change executes until
the time the change takes effect and is available to other instructions.
Table A-3 on page A-5 shows the latencies associated with each method.

When switching between primary and secondary DAG registers, the pro-
gram needs to account for the latency associated with the method used.
For example, after the MSTAT = data12; instruction, a minimum of three
cycles of latency occur before the mode change takes effect. So for this
method, the program must issue at least three instructions after
MSTAT = 0x20; before attempting to use the other set of DAG registers.

I0

I1

I2

I3

M 0

M 1

M 2

M 3

L0

L1

L2

L3

B 0

B 1

B 2

B 3

SEC_DA G

I4

I5

I6

I7

M 4

M 5

M 6

M 7

L4

L5

L6

L7

B 4

B 5

B 6

B 7

M STA T SELEC T B IT D A G 1 REG ISTERS

D A G 2 REG ISTERS
ADSP-219x/2192 DSP Hardware Reference 4-5

Setting DAG Modes
The Ena/Dis mode instructions are more efficient for enabling and dis-
abling DSP modes because these instructions incur no cycles of effect
latency. For example:

CCODE = 0x9; Nop;
If SWCOND Jump do_data;/* Jump to do_data */
do_data:
 Ena SEC_REG; /* Switch to 2nd Dregs */
 Ena SEC_DAG; /* Switch to 2nd DAGs */
 AX0 = DM(buffer); /* if buffer empty, go */
 AR = Pass AX0; /* right to fill and */
 If EQ Jump fill; /* get new data */
 Rti;
fill: /* fill routine */
 Nop;
buffer: /* buffer data */
 Nop;

! On previous 16-bit, fixed-point DSPs (ADSP-218x family), there
are no secondary DAG registers.

Bit-Reverse Addressing Mode
The BIT_REV bit in the MSTAT register enables bit-reverse addressing
mode—outputting addresses in bit-reversed order. When BIT_REV is set
(1), the DAG bit-reverses 16-bit addresses output from DAG1 index regis-
ters—I0, I1, I2, and I3. Bit-reverse addressing mode affects post-modify
operations. For more information, see “Addressing With Bit-Reversed
Addresses” on page 4-15.

DAG Page Registers (DMPGx)
The DAGs and their associated page registers generate 24-bit addresses for
accessing the data needed by instructions. For data accesses, the DSP’s
unified memory space is organized into 256 pages, with 64K locations per
page. The page registers provide the eight MSBs of the 24-bit address,
specifying the page on which the data is located.
4-6 ADSP-219x/2192 DSP Hardware Reference

Data Address Generators
The DAGs provide the sixteen LSBs of the 24-bit address, specifying the
exact location of the data on the page.

• The DMPG1 page register is associated with DAG1 (registers I0—I3)
indirect memory accesses and immediate addressing.

• The DMPG2 page register is associated with DAG2 (registers I4—I7)
indirect memory accesses.

At power up, the DSP initializes both page registers to 0x0. Initializing
page registers is only necessary when the data is located on a page other
than the current page. Programs should set the corresponding page regis-
ter when initializing a DAG index register to set up a data buffer.

For example,

DMPG1 = 0x12; /* set page register */
 /* or the syntax: DMPG1 = page(data_buffer);
 for relative addressing */
I2 = 0x3456; /* init data buffer; 24b addr=0x123456 */
L2 = 0; /* define linear buffer */
M2 = 1; /* increment address by one */

 /* two stall cycles inserted here */

DM(I2 += M2) = AX0; /* write data to buffer and update I2 */

! DAG register (DMPGx, Ix, Mx, Lx, Bx) loads can incur up to two stall
cycles when a memory access based on the initialized register imme-
diately follows the initialization.

To avoid stall cycles, programs could perform the following memory
access sequence:

I2 = 0x3456; /* init data buffer; 24b addr=0x123456 */
L2 = 0; /* define linear buffer */
M2 = 1; /* increment address by one */
DMPG1 = 0x12; /* set page register */
 /* or use the syntax: DMPG1 = page(data_buffer);
 for relative addressing */
AX0 = 0xAAAA;
AR = AX0 − 1;
DM(I2 += M2) = AR; /* write data to buffer and update I2 */
ADSP-219x/2192 DSP Hardware Reference 4-7

Using DAG Status
Typically, programs load both page registers with the same page value
(0-255), but programs can increase memory flexibility by loading each
with a different page value. For example, by loading the page registers
with different page values, programs could perform high-speed data trans-
fers between pages.

! Changing the contents of the DAG page registers is not automatic
and requires explicit programming.

Using DAG Status
As described in “Addressing Circular Buffers” on page 4-11, the DAGs
can provide addressing for a constrained range of addresses, repeatedly
cycling through this data (or buffer). A buffer overflow (or wrap around)
occurs each time the DAG circles past the buffer’s base address.

Unlike the computational units and program sequencer, the DAGs do not
generate status information. So, the DAGs do not provide buffer overflow
information when executing circular buffer addressing. If a program
requires status information for the circular buffer overflow condition, the
program should implement an address range checking routine to trap this
condition.
4-8 ADSP-219x/2192 DSP Hardware Reference

Data Address Generators
DAG Operations
The DSP’s DAGs perform several types of operations to generate data
addresses. As shown in Figure 4-1 on page 4-3, the DAG registers and the
MSTAT register control DAG operations. The following sections provide
details on DAG operations:

• “Addressing with DAGs” on page 4-9

• “Addressing Circular Buffers” on page 4-11

• “Modifying DAG Registers” on page 4-19

An important item to note from Figure 4-1 is that each DAG automati-
cally uses its DAG memory page (DMPGx) register to include the page
number as part of the output address. By including the page, DAGs can
generate addresses for the DSP’s entire memory map. For details on these
address adjustments, see “DAG Page Registers (DMPGx)” on page 4-6.

Addressing with DAGs
The DAGs support two types of modified addressing—generating an
address that is incremented by a value or a register. In pre-modify address-
ing, the DAG adds an offset (modifier), either an M register or an
immediate value, to an I register and outputs the resulting address.
Pre-modify addressing does not change (or update) the I register. The
other type of modified addressing is post-modify addressing. In post-mod-
ify addressing, the DAG outputs the I register value unchanged, then the
DAG adds an M register or immediate value, updating the I register value.
Figure 4-3 compares pre- and post-modify addressing.
ADSP-219x/2192 DSP Hardware Reference 4-9

DAG Operations

The difference between pre-modify and post-modify instructions in the
DSP’s assembly syntax is the operator that appears between the index and
modify registers in the instruction. If the operator between the I and M
registers is += (plus-equals), the instruction is a post-modify operation. If
the operator between the I and M registers is + (plus), the instruction is a
pre-modify without update operation. The following instruction accesses
the program memory location indicated by the value in I7 and writes the
value I7 plus M6 to the I7 register:

AX0 = PM(I7+=M6); /* Post-modify addressing with update */

By comparison, the following instruction accesses the program memory
location indicated by the value I7 plus M6 and does not change the value in
I7:

AX0 = PM(I7+M6); /* Pre-modify addressing without update */

Modify (M) registers can work with any index (I) register in the same
DAG (DAG1 or DAG2). For a list of I and M registers and their DAGs,
see Figure 4-2 on page 4-5.

Figure 4-3. Pre-Modify and Post-Modify Operations

I

M

+

O UTP UT I+M

PRE-M O D IFY
N O I REG ISTER U PD A TE

SY N TA X : PM (Ix+M x)
D M (Ix+M x)

1. O UTPUT I

M

I+M

+

2. UPDA TE

PO ST-M O D IFY
I REG ISTER U PD A TE

SYN TA X : PM (Ix+=M x)
D M (Ix+=M x)
4-10 ADSP-219x/2192 DSP Hardware Reference

Data Address Generators
! On previous 16-bit, fixed-point DSPs (ADSP-2180 family), the
assembly syntax uses a comma between the DAG registers (I,M indi-
cates post-modify) to select the DAG operation. While the legacy
support in the ADSP-219x assembler permits this syntax, updating
ported code to use the ADSP-219x syntax (I+M for premodify and
I+=M for post-modify) is advised.

Instructions can use a signed 8-bit number (immediate value), instead of
an M register, as the modifier. For all single data access operations, modify
values can be from an M register or an 8-bit immediate value. The follow-
ing example instruction accepts up to 8-bit modifiers:

AX0=DM(I1+0x40); /* DM address = I1+0x40 */

Instructions that combine DAG addressing with computations do not
accept immediate values for the modifier. In these instructions (multi-
function computations), the modify value must come from an M register:

AR=AX0+AY0,PM(I4+=m5)=AR; /* PM address = I4, I4=I4+M5 */

! Note that pre- and post-modify addressing operations do not
change the memory page of the address. For more information, see
“DAG Page Registers (DMPGx)” on page 4-6.

Addressing Circular Buffers
The DAGs support addressing circular buffers. The DAG steps repeatedly
through a range of addresses containing data, “wrapping around” in a cir-
cular pattern. To address a circular buffer, the DAG steps the index
pointer (I register) through the buffer, post-modifying and updating the
index on each access with a positive or negative modify value (M register
or immediate value). If the index pointer falls outside the buffer, the DAG
subtracts or adds the length of the buffer from or to the value, wrapping
the index pointer back to the start of the buffer.

The DAG’s support for circular buffer addressing appears in Figure 4-1 on
page 4-3. An example of circular buffer addressing appears in Figure 4-4.
ADSP-219x/2192 DSP Hardware Reference 4-11

DAG Operations
The starting address that the DAG wraps around is called the buffer’s base
address (B register). There are no restrictions on the value of the base
address for a circular buffer.

! Circular buffering may only use post-modify addressing. The
DAG’s architecture, as shown in Figure 4-1 on page 4-3, cannot
support pre-modify addressing for circular buffering, because circu-
lar buffering requires that the index be updated on each access.

" Do not place the index pointer for a circular buffer such that it
crosses a memory page boundary during post-modify addressing. All
memory locations in a circular buffer must reside on the same mem-
ory page. For more information on the DSP’s memory map, see
“Memory” on page 5-1.

As shown in Figure 4-4, programs use the following steps to set up a circu-
lar buffer:

1. Load the memory page address into the selected DAG’s DMPGx reg-
ister. This operation is needed only once per page change in a
program.

2. Load the starting address within the buffer into an I register in the
selected DAG.

3. Load the modify value (step size) into an M register in the corre-
sponding DAG as the I register. For corresponding registers list, see
Figure 4-2 on page 4-5.

4. Load the buffer’s length into the L register that corresponds to the
I register. For example, L0 corresponds to I0.

5. Load the buffer’s base address into the B register that corresponds
to the I register. For example, B0 corresponds to I0.

After this setup, the DAGs use the modulus logic in Figure 4-1 on page
4-3 to process circular buffer addressing.
4-12 ADSP-219x/2192 DSP Hardware Reference

Data Address Generators
Figure 4-4. Circular Data Buffers

0

1

2

3

4

5

6

7

8

9

10

1

2

3

0

1

2

3

4

5

6

7

8

9

10

4

5

6

0

1

2

3

4

5

6

7

8

9

10

7

8

9

0

1

2

3

4

5

6

7

8

9

10

10

11

TH E C O LUM N S A BO VE SH O W TH E SEQ UEN C E IN O RDER O F LO C A TIO N S A C C ESSED IN O N E PA SS.
NO TE TH A T "0" A BO VE IS A DDRESS DM (0X 1000). TH E SEQ UEN C E REPEA TS O N SUBSEQ UEN T PA SSES.

.section/dm seg_data;

.var coeff_buffer[11] = 0,1,2,3,4,5,6,7,8,9,10;

.section/pm seg_code;

dmpg1 = page(coeff_buffer);/* set the memory page */

i0 = coeff_buffer; /* set the current addr */

m1 = 4; /* set the modify value */

l0 = length(coeff_buffer); /* if l = 0 buffer is linear */

ax0 = i0; /* copy the base addr into ax0 */

reg(b0) = ax0; /* set the buffer’s base addr */

ar = ax1 and ay0;

ar = dm(i0 += m1); /* read 1st buffer location */

cntr = 11; do my_cir_buffer until ce;

 /* sets up a loop accessing the buffer */

ax0 = dm(i0,m1); /* access using post modify addressing */

nop; /* other instructions in the loop */

my_cir_buffer: nop; /* end of my_cir_buffer loop */
ADSP-219x/2192 DSP Hardware Reference 4-13

DAG Operations
On the first post-modify access to the buffer, the DAG outputs the I regis-
ter value on the address bus then modifies the address by adding the
modify value. If the updated index value is within the buffer length, the
DAG writes the value to the I register. If the updated value is outside the
buffer length, the DAG subtracts (positive) or adds (negative) the L regis-
ter value before writing the updated index value to the I register.

In equation form, these post-modify and wrap around operations work as
follows:

• If M is positive:

Inew = Iold + M if Iold + M < Buffer base + length (end of buffer)

Inew = Iold + M – L if Iold + M ≥ Buffer base + length (end of buffer)

• If M is negative:

Inew = Iold + M if Iold + M ≥ Buffer base (start of buffer)

Inew = Iold + M + L if Iold + M < Buffer base (start of buffer)

The DAGs use all types of DAG registers for addressing circular buffers.
These registers operate as follows for circular buffering:

• The index (I) register contains the value that the DAG outputs on
the address bus.

• The modify (M) register contains the post-modify amount (positive
or negative) that the DAG adds to the I register at the end of each
memory access. The M register can be any M register in the same
DAG as the I register. The modify value also can be an immediate
value instead of an M register. The size of the modify value, whether
from an M register or immediate, must be less than the length (L
register) of the circular buffer.
4-14 ADSP-219x/2192 DSP Hardware Reference

Data Address Generators
• The length (L) register sets the size of the circular buffer and the
address range that the DAG circulates the I register through. L is
positive and cannot have a value greater than 216 – 1. If an L regis-
ter’s value is zero, its circular buffer operation is disabled.

• The base (B) register, or the B register plus the L register, is the value
that the DAG compares the modified I value with after each access.

! On previous 16-bit, fixed-point DSPs (ADSP-218x family), the
DAGs do not have B registers. When porting code that uses circular
buffer addressing, add the instructions needed for loading the
ADSP-219x B register that is associated with the corresponding cir-
cular buffer.

Addressing With Bit-Reversed Addresses
Programs need bit-reversed addressing for some algorithms (particularly
FFT calculations) to obtain results in sequential order. To meet the needs
of these algorithms, the DAG’s bit-reverse addressing feature permits
repeatedly subdividing data sequences and storing this data in bit-reversed
order.

Bit-reversed address output is available on DAG1, while DAG2 always
outputs its address bits in normal, Big Endian format. Because the two
DAGs operate independently, programs can use them in tandem, with one
generating sequentially ordered addresses and the other generating
bit-reversed addresses, to perform memory reads and writes of the same
data.

To use bit-reversed addressing, programs set the BIT_REV bit in MSTAT
(Ena BIT_REV). When enabled, DAG1 outputs all addresses generated by
its index registers (I0–I3) in bit-reversed order. The reversal applies only
to the address value DAG1 outputs, not to the address value stored in the
index register, so the address value is stored in Big Endian format.
Bit-reversed mode remains in effect until disabled (Dis BIT_REV).
ADSP-219x/2192 DSP Hardware Reference 4-15

DAG Operations
Bit reversal operates on the binary number that represents the position of
a sample within an array of samples. Using 3-bit addresses, Table 4-1
shows the position of each sample within an array before and after the
bit-reverse operation. Sample 0x4 occupies position b#100 in sequential
order and position b#001 in bit-reversed order. Bit reversing transposes the
bits of a binary number about its midpoint, so b#001 becomes b#100,
b#011 becomes b#110, and so on. Some numbers, like b#000, b#111, and
b#101, remain unchanged and retain their original position within the
array.

Bit-reversing the samples in a sequentially ordered array scrambles their
positions within the array. Bit-reversing the samples in a scrambled array
restores their sequential order within the array.

Table 4-1. 8-point array sequence before and after bit reversal

Sequential Order Bit Reversed Order

Sample (hexadecimal) Binary Binary Sample (hexadecimal)

0x0 b#000 b#000 0x0

0x1 b#001 b#100 0x4

0x2 b#010 b#010 0x2

0x3 b#011 b#110 0x6

0x4 b#100 b#001 0x1

0x5 b#101 b#101 0x5

0x6 b#110 b#011 0x3

0x7 b#111 b#111 0x7
4-16 ADSP-219x/2192 DSP Hardware Reference

Data Address Generators
In full 16-bit reversed addressing, bits 7 and 8 of the 16-bit address are the
pivot points for the reversal:

The Fast Fourier Transform (FFT) algorithm is a special case for bit-rever-
sal. FFT operations often need only a few address bits reversed. For
example, a a 16-point sequence requires four reversed bits, and a 1024-bit
sequence requires ten reversed bits. Programs can bit-reverse address val-
ues less than 16-bits—which reverses a specified number of LSBs only.
Bit-reversing less than the full 16-bit index register value requires that the
program adds the correct modify value to the index pointer after each
memory access to generate the correct bit-reversed addresses.

To set up bit-reversed addressing for address values < 16 bits, determine:

1. The number of bits to reverse (N)—permits calculating the modify
value

2. The starting address of the linear data buffer—this address must
be zero or an integer multiple of the number of bits to reverse
(starting address = 0, N, 2N, …)

3. The first bit-reversed address that the DAG outputs—the buffer’s
starting address with the N LSBs bit-reversed

4. The initialization value for the index register—the bit-reversed
value of the first bit-reversed address the DAG outputs

5. The modify register value for updating (correcting) the index
pointer after each memory access—calculated from the formula:
Mreg = 2(16-N).

Normal 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bit-reversed 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
ADSP-219x/2192 DSP Hardware Reference 4-17

DAG Operations
The following example, sets up bit-reversed addressing that reverses the
eight address LSBs (N = 8) of a data buffer with a starting address of
0x0020 (4N). Following the described steps, the factors to determine are:

1. The number of bits to reverse (N)—eight bits (from description)

2. The starting address of the linear data buffer—0x0020 (4N) (from
description)

3. The first bit-reversed address that the DAG outputs—This value is
the buffer’s starting address (0x0020) with bits 7–0 reversed:
0x0004.

4. The initialization value for the index register—This is the first
bit-reversed address DAG1 outputs (0x0004) with bits 15–0
reversed: 0x2000.

5. The modify register value for updating (correcting) the index
pointer after each memory access—This is 216-N which evaluates to
28 or 0x0100.

Listing 4-1 implements this example in assembly code.

0x0020 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0x0004 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0x0004 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0x2000 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
4-18 ADSP-219x/2192 DSP Hardware Reference

Data Address Generators
Listing 4-1. Bit-reversed addressing, 8 LSBs

br_adds: I4=read_in; /* DAG2 pointer to input samples */
 I0=0x0200; /* Base address of bit_rev output */
 M4=1; /* DAG2 increment by 1 */
 M0=0x0100; /* DAG1 increment for 8-bit rev. */
 L4=0; /* Linear data buffer */
 L0=0; /* Linear data buffer */
 CNTR=8; /* 8 samples */
 Ena BIT_REV; /* Enable DAG1 bit reverse mode */
 Do brev Until CE;
 AY1=DM(I4+=M4); /* Read samples sequentially */
 brev: DM(I0+=M0)=AY1; /* Write results nonsequentially */
 Dis BIT_REV; /* Disable DAG1 bit reverse mode */
 Rts; /* Return to calling routine */
read_in: /* input buffer, could be .extern */
 Nop;

Modifying DAG Registers
The DAGs support an operation that modifies an address value in an
index register without outputting an address. The operation, address mod-
ify, is useful for maintaining pointers.

The Modify instruction modifies addresses in any DAG index register
(I0-I7) without accessing memory. If the I register’s corresponding B and
L registers are set up for circular buffering, a Modify instruction performs
the specified buffer wrap around (if needed). The syntax for Modify is sim-
ilar to post-modify addressing (index+=modifier). Modify accepts either a
signed 8-bit immediate values or an M register as the modifier. The fol-
lowing example adds 4 to I1 and updates I1 with the new value:

Modify(I1+=4);
ADSP-219x/2192 DSP Hardware Reference 4-19

DAG Register Transfer Restrictions
DAG Register Transfer Restrictions
DAG I, M, and L registers are part of the DSP’s Register Group 1 (Reg1),
2 (Reg2), and 3 (Reg3) register sets; the B registers are in register memory
space. Programs may load the DAG registers from memory, from another
data register, or with an immediate value. Programs may store DAG regis-
ters’ contents to memory or to another data register.

While instructions to load and use DAG registers may be sequential, the
DAGs insert stall cycles for sequences of instructions that cause instruc-
tion pipeline conflicts. The two types of conflicts are:

• Using an I register (or its corresponding L or B registers) within two
cycles of loading the I register (or its corresponding L or B registers)

• Using an M register within two cycles of loading the M register

• Using an I register within two cycles of performing the modify
instruction

The following code examples and comments demonstrate the conditions
under which the DAG inserts stall cycles. These examples also show how
to avoid these stall conditions.

/* The following sequence of loading and using the DAG
 registers does NOT force the DAG to insert stall cycles. */
I0=0x1000;
M0=1;
L0=0xF;
Reg(B0)=AX0;
AR = AX0 +AY0;
MR = MX0 * MY0 (SS);
AX1=DM(I0+=M0);

/* This sequence of loading and using the DAG registers
 FORCES the DAG to insert two stall cycles. */
M0=1;
L0=0xF;
Reg(b0)=ax0;
I0=0x1000;
4-20 ADSP-219x/2192 DSP Hardware Reference

Data Address Generators
AX1=DM(I0+=M0); /* DAG inserts two stall cycles here
 until i0 can be used */

/* This sequence of loading and using the DAG registers
 FORCES the DAG to insert two stall cycles. */
I0=0x1000;
L0=0xF;
Reg(B0)=AX0;
M0=1;
AX1=DM(I0+=M0); /* DAG inserts two stall cycles here
 until m0 can be used */

/* This sequence of loading and using the DAG registers
 FORCES the DAG to insert one stall cycle. */
M0=1;
L0=0xF;
I0=0x1000;
Reg(B0)=AX0;
AR = AX0 + AY0;
AX1=DM(I0+=M0); /* DAG inserts one stall cycle here
 until i0 (corresponds to b0) can be used */

DAG Instruction Summary
Table 4-2 lists the DAG instructions. For more information on assembly
language syntax, see the ADSP-219x DSP Instruction Set Reference. In
Table 4-2, note the meaning of the following symbols:

• Dreg, Dreg1, Dreg2 indicate any register file location (Register
Group).

• Reg1, Reg2, Reg3, or Reg indicate Register Group 1, 2, 3 or any
register.

• Ia and Mb indicate DAG1 I and M registers.

• Ic and Md indicate DAG2 I and M registers.

• Ireg and Mreg indicate I and M registers in either DAG.

• Imm# and Data# indicate immediate values or data of the # of bits.
ADSP-219x/2192 DSP Hardware Reference 4-21

DAG Instruction Summary
Table 4-2. DAG Instruction Summary

Instruction

|DM(Ia += Mb), DM(Ic += Md)| = Reg;

Reg = |DM(Ia += Mb), DM(Ic += Md)|;

|DM(Ia + Mb), DM(Ic + Md)| = Reg;

Reg = |DM (Ia + Mb), DM (Ic + Md)|;

|PM(Ia += Mb), PM(Ic += Md)| = Reg;

Reg = |PM(Ia += Mb), PM(Ic += Md)|;

|PM(Ia + Mb), PM(Ic + Md)| = Reg;

Reg = |PM(Ia + Mb), PM(Ic + Md)|;

DM(Ireg1 += Mreg1) = |Ireg2, Mreg2, Lreg2|, |Ireg2, Mreg2, Lreg2| = Ireg1;

Dreg = DM(Ireg += <Imm8>);

DM(Ireg += <Imm8>) = Dreg;

Dreg = DM(Ireg + <Imm8>);

DM(Ireg + <Imm8>) = Dreg;

|DM(Ia += Mb), DM (Ic += Md)| = <Data16>;

|PM (Ia += Mb), PM (Ic += Md)| = <Data24>:24;

|Modify (Ia += Mb), Modify (Ic += Md)|;

Modify (Ireg += <Imm8>);
4-22 ADSP-219x/2192 DSP Hardware Reference

5 MEMORY
Figure 5-0.

Table 5-0.

Listing 5-0.
Overview
Each DSP core in the ADSP-2192 contains large internal memory. This
chapter describes the DSP’s memory and how to use it. The two DSP
cores also have shared memory and memory-mapped registers. For infor-
mation on using the shared memory, see “Dual DSP Cores” on page 6-1.

There are 140K words of internal memory on the ADSP-2192. Within
this space, the P0 DSP core has 80K words of SRAM and 4K words of
ROM, and the P1 DSP core has 48K words of SRAM and 4K words of
ROM. The P0 and P1 DSP cores also have 4K words of shared memory
space. The memory is divided into 16K word blocks for access. For more
information on these blocks, see “ADSP-2192 Memory Map” on
page 5-8.

Most microprocessors use a single address and data bus for memory access.
This type of memory architecture is called Von Neumann architecture.
But, DSPs require greater data throughput than Von Neumann architec-
ture provides, so many DSPs use memory architectures that have separate
buses for program and data transfer. The two buses let the DSP get a data
word and an instruction simultaneously. This type of memory architecture
is called Harvard architecture.

ADSP-219x family DSPs go a step farther by using a modified Harvard
architecture. This architecture has program and data buses, but provides a
single, unified address space for program and data storage. While the Data
Memory (DM) bus only carries data, the Program Memory (PM) bus han-
dles instructions or data, allowing dual-data accesses.
ADSP-219x/2192 DSP Hardware Reference 5-1

Overview
DSP core and I/O processor share accesses to internal memory. Each
block of memory can be accessed by the DSP core or I/O processor in
every cycle, but the DSP is held off if contending with the I/O processor
core for accesses to the same block.

A memory access conflict can occur when the DSP core attempts two
accesses to the same internal memory block in the same cycle. When this
conflict happens, an extra cycle is incurred. The DM bus access completes
first and the PM bus access completes in the following (extra) cycle.

During a single-cycle, dual-data access, the DSP core uses the independent
PM and DM buses to simultaneously access data from two separate mem-
ory blocks. Though dual-data accesses provide maximum data
throughput, it is important to note some limitations on how programs
may use them. The limitations on single-cycle, dual-data accesses are:

• The two pieces of data must come from different memory blocks.

If the core tries to access two words from the same memory block
for a single instruction, an extra cycle is needed. For more informa-
tion on how the buses access these blocks, see “Internal Data Bus
Exchange” on page 5-5.

• The PM data access execution may not conflict with an instruction
fetch operation.

If the cache contains the conflicting instruction, the data access
completes in a single-cycle and the sequencer uses the cached
instruction. If the conflicting instruction is not in the cache, an
extra cycle is needed to complete the data access and cache the con-
flicting instruction. For more information, see “Instruction Cache”
on page 3-9.

Efficient memory usage relies on how the program and data are arranged
in memory and how the program accesses the data. For more information,
see “Arranging Data in Memory” on page 5-13.
5-2 ADSP-219x/2192 DSP Hardware Reference

Memory
As shown in Figure 5-1, the DSP has three internal buses connected to its
internal memory, the Program Memory (PM) bus, Data Memory (DM)
bus, and I/O Processor (IO) bus. The PM bus, DM bus, and IO bus share
two memory ports; one for each block. Memory accesses from the DSP’s
core (computational units, data address generators, or program sequencer)
use the PM or DM buses, while the I/O processor uses the IO bus for
memory accesses. Using the IO bus and cycle-stealing DMA, the I/O pro-
cessor can provide data transfers between internal memory and the DSP’s
communication ports (host PCI/USB port or AC’97 port) without hin-
dering the DSP core’s access to memory (except for stealing a cycle).

There are some bus arbitration issues involved in memory accesses. A DSP
core’s PM and DM buses can try to access the same block of memory in
the same cycle. Also, the DSP cores’ DM buses can try to access shared
memory space in the same cycle. The ADSP-2192 has an arbitration sys-
tem to handle this conflicting access. Arbitration for accesses to a DSP
core’s internal memory is fixed at the following priority: (highest priority)
I/O processor accesses over the DMA bus, core accesses over the DM bus,
and core accesses over the PM bus (lowest priority). Also, I/O processor
accesses may not be sequential, so the DSP core’s buses are never held off
for more than one cycle. Arbitration for accesses to shared memory is fixed
with the highest priority for DSP P0 and the lowest priority for DSP P1.

Internal Address and Data Buses
Each DAG is associated with a particular data bus and memory page.
From settings at reset, DAG1 supplies addresses over the DM bus for
memory page 0 and DAG2 supplies addresses over the PM bus for mem-
ory page 0. These selections can be changed using the DMPGx registers. For
more information on address generation, see “Program Sequencer” on
page 3-1 or “Data Address Generators” on page 4-1.
ADSP-219x/2192 DSP Hardware Reference 5-3

Overview
Figure 5-1. ADSP-2192 Memory and Internal Buses Block Diagram

DATAADDR

PX REGISTER

PM ADDRESS
BUS

PM DATA
BUS

DM ADDRESS
BUS

DM DATA
BUS

IO ADDR IO DATA

P0 DSP CORE
INTERNAL MEMORY*

24 16

8
1624

8

DATAADDR

24 24

PAGE 0, BLOCK 0
(0X0000 - 0X3FFF, 16 BIT)

PAGE 0, BLOCK 1
(0X4000 - 0X7FFF, 16 BIT)

PAGE 0, BLOCK 2
(0X8000 - 0XBFFF, 16 BIT)

PAGE 0, BLOCK 3
(0XC000 - 0XFFFF, 16 BIT)

PAGE 1, BLOCK 0
(0X10000 - 0X13FFF, 24 BIT)

ANY TWO PATHS SIMULTANEOUSLY

ADDRESSES AND DATA FOLLOW PARALLEL PATHS

SHARED MEMORY
ARBITRATION

ADDR DATA

SHARED MEMORY
PAGE 2, BLOCK 0

(0X20000 - 0X20FFF, 16 BIT)

PAGE 0, BLOCK 1
(0X4000 - 0X7FFF, 16 BIT)

I/O REGISTERS
ARBITRATION

I/O REGISTERS

*NOTE: EACH MEMORY BLOCK HAS A SEPARATE CONNECTION TO THE PM AND DM BUSES.

DMA
ADDRESS

DMA
ADDRESS

DMA
DATA

DMA
DATA

DSP P0
DMA CONTROLLER

DSP P1
DMA CONTROLLER
5-4 ADSP-219x/2192 DSP Hardware Reference

Memory
Because the DSP’s blocks of internal memory have different widths, plac-
ing 16-bit data in a Program Memory block leaves some space unused. For
more information on how the DSP works with memory words, see “P0
DSP Core Internal Memory Space” on page 5-10.

The PM data bus is 24 bits wide, and the DM data bus is 16 bits wide.
Both data buses can handle data words (16-bit), but only the PM data bus
carries instruction words (24-bit).

Internal Data Bus Exchange
The data buses let programs transfer the contents of one register to
another or to any internal memory location in a single cycle. As shown in
Figure 5-1, the PM Bus Exchange (PX) register permits data to flow
between the PM and DM data buses. The PX register holds the lower 8
bits during transfers between the PM and DM buses. The alignment of PX
register to the buses appears in Figure 5-2.

Figure 5-2. PM Bus Exchange (PX) Registers

PX Register

0

015

23

DM Data Bus (16-bit)

PM Data Bus (24-bit)

(lower 8 bits)(upper 16 bits)
ADSP-219x/2192 DSP Hardware Reference 5-5

Overview
The PX register is a Register Group 3 (REG3) registers and is accessible for
register-to-register transfers.

! When reading data from program memory and data memory simul-
taneously, there is a dedicated path from the upper 16 bits of the
PM data bus to the Y registers of the computational units. This
read-only path does not use the bus exchange circuit.

For transferring data from the PM data bus, the PX register is:

1. Loaded automatically whenever data (not an instruction) is read
from program memory to any register. For example:

AX0 = PM(I4,M4);

In this example, the upper 16 bits of a 24-bit program memory word
are loaded into AX0 and the lower 8 bits are automatically loaded
into PX.

2. Read out automatically as the lower 8 bits when data is written to
program memory. For example:

PM(I4,M4) = AX0;

In this example, the 16 bits of AX0 are stored into the upper 16 bits
of a 24-bit program memory word. The 8 bits of PX are automati-
cally stored to the 8 lower bits of the memory word.
5-6 ADSP-219x/2192 DSP Hardware Reference

Memory
For transferring data from the DM data bus, the PX register may be:

1. Loaded with a data move instruction, explicitly specifying the PX
register as the destination. The lower 8 bits of the data value are
used and the upper 8 are discarded.

PX = AX0;

2. Read with a data move instruction, explicitly specifying the PX reg-
ister as a source. The upper 8 bits of the value read from the
register are all zeroes.

AX0 = PX;

Whenever any register is written out to program memory, the source regis-
ter supplies the upper 16 bits. The contents of the PX register are added as
the lower 8 bits for instructions (such as the Type-1 and Type-32) that use
the PX register, but the PX register is not used for other instructions (such
as the Type-4, Type-12, and Type-29). If these lower 8 bits of data to be
transferred to program memory (through the PM data bus) are important,
and any instructions will be using the PX register, you should load the PX
register from DM data bus before the program memory write operation.
ADSP-219x/2192 DSP Hardware Reference 5-7

ADSP-2192 Memory Map
ADSP-2192 Memory Map
The ADSP-2192’s memory map appears in Figure 5-3. This memory has
multiple memory spaces: internal memory space, shared memory space,
system control registers, and shared DSP I/O mapped registers.

Figure 5-3. ADSP-2192 Memory Map

SHARED RAM
(16x4K)

DATA RAM
BLOCK3
(16x16K)

DATA RAM
BLOCK2
(16x16K)

DATA RAM
BLOCK1
(16x16K)

RESERVED

0x00 0000

0x00 3FFF

0x00 4000

0x00 8000

0x00 C000

0x01 0000

0x01 4FFF

0x01 5000

0x01 FFFF

ADDRESS

DATA RAM
BLOCK0
(16x16K)

0x00 7FFF

0x00 BFFF

0x00 FFFF

PROGRAM RAM,
(24x16K)

PROGRAM ROM,
24x4K

0x01 3FFF

0x01 4000

0x02 0000

0x02 0FFF

DSP P0
MEMORY MAP

P
A

G
E

 2
P

A
G

E
 1

P
A

G
E

 0

 SHARED
DSP I/O

MAPPED
REGISTERS

 PAGES 0-255

(16x256)

0x00 00

0xFF FF

ADDRESS

SHARED RAM
(16x4K)

DATA RAM
BLOCK1
(16x16K)

RESERVED

0x00 0000

0x00 3FFF

0x00 4000

0x00 8000

0x01 0000

0x01 4FFF

0x01 5000

0x01 FFFF

ADDRESS

DATA RAM
BLOCK0
(16x16K)

0x00 7FFF

0x00 FFFF

PROGRAM RAM,
(24x16K)

PROGRAM ROM,
24x4K

0x01 3FFF

0x01 4000

0x02 0000

0x02 0FFF

DSP P1
MEMORY MAP

RESERVED

P
A

G
E

 2
P

A
G

E
 1

P
A

G
E

 0

SAME
5-8 ADSP-219x/2192 DSP Hardware Reference

Memory
These memory spaces have the following definitions:

• Internal memory space. The internal RAM space ranges from
address 0x00 0000 through 0x01 3FFF on the P0 DSP and
0x00 0000 through 0x00 7FFF plus 0x01 0000 through 0x01 3FFF
on the P1 DSP. The internal (boot kernel) ROM space ranges from
address 0x01 4000 through 0x01 4FFF on both DSP cores. Internal
memory space refers to the DSP’s on-chip SRAM and boot kernel
ROM.

• Shared memory space. This space ranges from address 0x02 0000
through 0x02 0FFF on both DSP cores. Shared memory space refers
to on-chip memory that is accessed through data move instructions
and permits communications between the two cores. Accesses to
shared memory space are arbitrated, with the highest priority for
DSP P0 and the lowest priority for DSP P1.

• System control registers. This space is separate from other memory
spaces and has 256 locations. (This space does not appear in
Figure 5-3.) Each DSP core has its own system control register
space. These locations are reserved for core-based controls and are
accessed through system control register read/write instructions
(REG()).

• Shared I/O memory-mapped registers. This space is separate from
other memory spaces and has an address range from address 0x00 00
through 0xFF FF. The DSP cores share access to the I/O registers.
The I/O registers setup and control memory-mapped peripherals.
These registers are accessed through I/O port read/write instruc-
tions (IO()). Access to I/O memory-mapped registers is arbitrated.
The priorities (from highest to lowest) are as follows: DSP P0,
DSP P1, PCI interface, USB interface.
ADSP-219x/2192 DSP Hardware Reference 5-9

ADSP-2192 Memory Map
P0 DSP Core Internal Memory Space
The P0 DSP’s internal memory space contains four 16K word blocks of
Data Memory on Page 0 and one 16K word block of Program Memory on
Page 1 on the DSP’s memory map. The memory map has a unified, con-
tinuous address range.

Some features of the DSP’s architecture lead to block and page distinc-
tions within the map. These distinctions include:

• Internal memory block width. Blocks 0, 1, 2, and 3 reside on
Page 0, are 16 bits wide, and can contain data only. The block on
Page 1 (Program Memory) is 24 bits wide and can contain instruc-
tions or data.

• Internal bus width. The PM data bus is 24 bits wide, and the DM
data bus is 16 bits wide. While either bus can access any internal
memory block for data, only the PM bus can fetch instructions. The
PM address bus and DM address bus are each 24 bits wide.

• Data Address Generators. For Type-1 instructions, DAG1 gener-
ates addresses for DM bus, and DAG2 generates addresses for the
PM bus; however, for most instructions, both DAGs can access
either bus. At reset, the DAGs generate addresses for Page 0; the
page selections are configurable with the DMPGx registers.

• Page size. Architectural features (which are described in “Program
Sequencer” on page 3-1 and “Data Address Generators” on
page 4-1) lead to 64K word page segmentation of memory—a
16-bit address range per page. To move beyond a page range
requires changing a value in a page register. These registers hold the
upper 8 bits of the 24-bit address. There are page registers associated
with I/O memory space.
5-10 ADSP-219x/2192 DSP Hardware Reference

Memory
! To execute programs and use data in internal memory, the
ADSP-2192 operates very similarly to previous ADSP-218x DSPs.
For most internal memory operations, paging is not required, and
the page registers remain at their reset values (Page 0).

The DSP’s memory architecture permits either bus to access either inter-
nal memory block and also permits dual accesses—a single cycle operation
where each bus accesses a block of memory. To arbitrate simultaneous
access, the memory interface:

• Processes a memory read before memory write

• Processes a DM bus access before a PM bus access

! Also on-chip, the DSP has an internal boot kernel ROM in the
upper part of Page 1. Programs should treat this area as reserved and
should not access this area at runtime.

P1 DSP Core Internal Memory Space
The P1 DSP’s internal memory space is identical to the P0 except that it
contains two 16K word blocks of Data Memory on Page 0 and contains
one 16K word block of Program Memory on Page 1 on the DSP’s mem-
ory map.

Shared Memory
The ADSP-2192’s shared memory space contains one 4K word block of
memory. Because this memory is outside of each DSP core and because
access is arbitrated between the two cores, access to shared memory has
core stall and latency issues. Some points on these issues include:

• Every access to shared memory incurs at least one cycle of stall (to
perform synchronization), therefore minimum latency is 2 cycles.

• Arbitrated access leads to stalls for the loser of the arbitration.
ADSP-219x/2192 DSP Hardware Reference 5-11

ADSP-2192 Memory Map
• When accessing shared memory, a DSP locks out the other DSP for
several cycles. A DSP can completely lock out the other DSP from
shared memory by performing back to back or nearly back to back
cycles to shared memory.

• Once a particular DSP “owns” the shared memory, it takes two
cycles of inactivity to shared memory from that DSP to relinquish
the interface.

If, for example, both DSP's are accessing the shared memory with the fol-
lowing code loop:

ar = dm(shared_memory);
nop;
nop;
/* REPEAT */

Each DSP gets a single shared access every 6 cycles.

! The best way to get good bandwidth from shared memory is to do
bursts of accesses. Each access after the first takes 2 cycles, which is
the maximum throughput.

Host (PCI/USB) and DSP Internal Memory Space
PCI and USB hosts can access both DSP cores’ internal memory. These
accesses occur as DMA processes and are executed by the DSP core’s
DMA controller. To a host, a DSP core’s memory appears as a memory
peripheral and is accessible through a set of addresses. For more informa-
tion, see Host Memory Maps in “Host (PCI/USB) Port” on page 8-1.
5-12 ADSP-219x/2192 DSP Hardware Reference

Memory
System Control Registers
Each DSP core has a separate memory space for system control registers.
These registers support parts of the core (for example, DAGs and program
sequencer) for controls. For information on using system control registers,
see “ADSP-219x DSP Core Registers” on page A-1. To access system con-
trol registers, programs use the system control register read/write
instructions (REG()).

Shared I/O Memory-mapped Registers
The DSP cores share I/O memory spaces for I/O memory-mapped regis-
ters. Similar to internal memory, the addressing for I/O memory is
divided into pages. Programs select a page with the IOPG registers. The I/O
registers control and contain status information from DSP peripherals
(Host port or AC’97 port) and peripheral DMA.

Arranging Data in Memory
Each DSP core’s memory is divided into 16K word blocks of program and
data memory. Although the memory map is unified (either bus can access
any address), programs can achieve efficient operation only by minimizing
data access conflicts. The following guidelines provide an overview of how
programs should interleave data in memory locations. For more informa-
tion and examples, see the ADSP-219x DSP Instruction Set Reference:

• If two pieces of data are needed simultaneously (a dual-read), put
them in different memory blocks and uses the DM bus to fetch one
and the PM bus to fetch the other.

• If instruction and data fetch combinations repeatedly cause cached
conflicts (repeatedly empty and fill cache), re-order the instruction
to minimize these conflicts. For more information, see “Instruction
Cache” on page 3-9.
ADSP-219x/2192 DSP Hardware Reference 5-13

Data Move Instruction Summary
Data Move Instruction Summary
Table 5-1 lists the data move instructions. For more information on
assembly language syntax, see the ADSP-219x DSP Instruction Set Refer-
ence. In Table 5-1, note the meaning of the following symbols:

• Dreg, Dreg1, Dreg2 indicate any register file location (Register
Group)

• Reg1, Reg2, Reg3, or Reg indicate Register Group 1, 2, 3 or any
register.

• Ia and Mb indicate DAG1 I and M registers.

• Ic and Md indicate DAG2 I and M registers.

• Ireg and Mreg indicate I and M registers in either DAG.

• Imm# and Data# indicate immediate values or data of the # of bits.

Table 5-1. Data/Register Move Instruction Summary

Instruction

Reg = Reg;

DM(<Addr16>) = |Dreg, Ireg, Mreg|;

|Dreg, Ireg, Mreg| = DM(<Addr16>);

|<Dreg>, <Reg1>, <Reg2>| = <Data16>;

Reg3 = <Data12>;

IO(<Addr10>) = Dreg;

Dreg = IO (<Addr10>);

REG(<Addr8>) = Dreg;

Dreg = REG(<Addr8>);
5-14 ADSP-219x/2192 DSP Hardware Reference

6 DUAL DSP CORES
Figure 6-0.

Table 6-0.

Listing 6-0.
Overview
The ADSP-2192 contains two ADSP-219x DSP cores. The two cores are
independent, but the ADSP-2192’s architecture provides a number of
interactive DSP core features. These features include shared memory,
shared I/O mapped registers, inter-core flags and interrupts, and mailbox
registers. For information on shared memory, see “Memory” on page 5-1.

Although code execution is independent on the two cores, some
ADSP-2192 settings must apply for both cores. These settings include
clock and reset modes, some power down features, and general-purpose
I/O settings.

Shared Dual DSP Core Settings
Settings for dual core features are contained in shared I/O mapped regis-
ters. I/O registers are accessible through the combination of a 8-bit
address and an 8-bit memory page selection. To select the memory page
for I/O register accesses, a program can load the IOPG register using either
of the following instructions:

IOPG = eight_bit_immediate_value;
IOPG = register_name;
ADSP-219x/2192 DSP Hardware Reference 6-1

Overview
The I/O registers are grouped by related function onto pages to minimize
the need for frequent changes of the IOPG register. To access I/O registers,
programs use the following instructions:

IO(eight_bit_address) = Dreg; {write access}
Dreg = IO(eight_bit_address); {read access}

A Dreg is one of the 16 data registers within the DSP computation unit.

I/O accesses take one or more cycles within the ADSP-2192. The addi-
tional cycles often occur because the access must cross a clock boundary
within the part to reach these registers. Additional cycles may also occur
due to latencies for getting ownership of the internal register access bus.
These additional cycles are transparent to the program.

Because each DSP core may access I/O registers simultaneously, these
accesses are arbitrated. Also, the PCI interface and the USB interface can
access the I/O registers using the same bus as the DSP cores. The prioriti-
zation for I/O register access among these possible masters is fixed. The
priorities from highest to lowest are: DSP core P0, DSP core P1, PCI
interface, and USB interface.

Unique DSP Core Settings
Settings for DSP core features (unique to one core) are contained in sys-
tem control registers. To access system control registers, programs use the
following instructions:

REG(eight_bit_address) = Dreg; {write access}
Dreg = REG(eight_bit_address); {read access}

A Dreg is one of the 16 data registers within the DSP computation unit.

There are two sets of system control registers on the ADSP-2192, one for
each core. For a list of system registers, see “ADSP-219x DSP Core Regis-
ters” on page A-1.
6-2 ADSP-219x/2192 DSP Hardware Reference

Dual DSP Cores
Setting Dual DSP Core Features
The SYSCON, PWRCFGx, PWRPx, PLLCTL, and GPIOxxx I/O registers control
the ADSP-2192’s dual DSP core features.

System Control
The following bits in SYSCON control PCI bus, I/O voltage, and reset
modes for the ADSP-2192. Table B-4 on page B-14 lists all the bits in
SYSCON. These modes affect operations for both DSP cores:

• PCI Reset. SYSCON Bit 15 (PCIRST) This bit indicates the RST pin is
asserted (if =0) or is not asserted (if =1).

• Vaux Present. SYSCON Bit 14 (VAUX) This bit indicates the VAUX sup-
ply is not powered (if =0) or is powered (if =1). (read only)

• PCI 5V level. SYSCON Bit 13 (PCI_5V) This bit indicates the PCI,
ISA, and Card Bus interface supply (PCIVDD pins) is powered from
nominal 3.3V (if =0) or is powered from nominal 5V (if =1). (read
only)

• Bus Mode. SYSCON Bits 11–10 (BUS1–0) These bits indicate the state
of the BUSMODE1–0 pins when sampled at power-on reset as: 00=PCI,
01=CardBus, 10=USB, or 11= Sub-ISA. (read only)

• Chip Reset Source. SYSCON Bits 9–8 (CRST1–0) These bits indicate
the source of the last chip reset as: 00=power-on reset; 01=reserved;
10=PCI, ISA, CardBus, or USB bus interface hard reset; or 11=Soft
Reset from the RST bit in SYSCON. A fifth possible reset source—
PWRPx Soft Reset—is indicated by a PWRPx register’s RD=1. Each
DSP must check its PWRPx register’s RD bit and clear it to zero upon
reset. (read only)
ADSP-219x/2192 DSP Hardware Reference 6-3

Setting Dual DSP Core Features
• 2.5V Regulator Control Disable. SYSCON Bit 7 (REGD) This bit
enables (if =0) or disables (if =1) the on-chip 2.5V Regulator con-
troller when the 2.5V (IVDD) supply is derived from an external reg-
ulator (for example, in USB and Mini-PCI applications).

• Vaux Policy for AC’97 Pad Drivers. SYSCON Bit 6 (VXPD) This bit
selects where power is drawn from to drive the AC’97 and PME pads,
(if=0) using BVDD when RST is deasserted and using EVAUX when RST
is asserted or (if=1) using EVAUX if possible at all times. (If EVAUX is
not powered, drive automatically switches to BVDD.)

• Vaux Policy for AC’97 Pad Well Bias. SYSCON Bit 5 (VXPW) This bit
selects how the pads’ N-wells are biased for the AC’97 and PME pads.
If Bit 5 = 0 (if=0), the higher voltage of EVAUX is used. If Bit 5 = 1
(if=1), BVDD is used when RST is deasserted and EVAUX is used when
RST is asserted. (Normally, the ADSP-2192 selects the higher volt-
age of BVDD and EVAUX, but for lowest EVAUX current it may be nec-
essary to always bias the wells from BVDD.)

• AC’97 External Devices Vaux Powered. SYSCON Bit 4 (ACVX) This
bit selects how the AC’97 interface operates during reset (RST
asserted, D3cold). If Bit 4 = 0 (if=0), the interface is disabled (drive
0, disable all inputs) during reset. If Bit 4 = 1 (if=1), the interface is
enabled during reset. If external AC97 devices are NOT powered
during d3cold, the interface disable feature protects the ADSP-2192
from floating inputs and from outputs driving input clamps on an
external device.
6-4 ADSP-219x/2192 DSP Hardware Reference

Dual DSP Cores
• Reset Disable. SYSCON Bit 2 (RDIS) If Bit 2 = 0 (if=0), a host bus reset
of the DSPs, AC’97 codec, and the host interface is enabled. If
Bit 2 = 1 (if=1), a host bus reset of the ADSP-2192 is disabled—
except for the bus interface itself. (If RDIS is set, the DSP can detect
that the bus is in reset by the PCIRST bit in the SYSCON register.)

Un-masked, a bus reset affects the DSPs, the GPIOs, the AC’97,
and the PCI/USB interface. Un-masked, a bus reset does not affect
the Mailboxes.

! The DSP memory pipeline (last 2 writes per bank) is lost upon reset.
If desired, it may be flushed by three writes in a row to the same
location.

• Soft Chip Reset. SYSCON Bit 0 (RST) When set (=1), this bit performs
a soft reset of the ADSP-2192. Clearing RST (=0) has effect—always
reads 0.

Soft reset affects the DSPs and the GPIOs. Soft reset does not affect
the PCI, USB, Mailboxes, AC’97, or serial EPROM.

! The DSP memory pipeline (last 2 writes per bank) is lost upon reset.
If desired, it may be flushed by three writes in a row to the same
location.

Power Down Mode Control
The following bits control power down modes for the ADSP-2192.
Table B-4 on page B-14 lists all the bits in SYSCON, Table B-5 on
page B-18 lists all the bits in PWRCFGx, and Table B-6 on page B-20 lists all
the bits in PWRPx.These modes affect operations for both DSP cores:

• XTAL Force On. SYSCON Bit 3 (XON) This bit stops (if =0) the crystal
oscillator when it is not needed by an on-chip system or runs (if =1)
the crystal oscillator always (even when not needed by an on-chip
system. (Keeping the oscillator running permits access to the
ADSP-219x/2192 DSP Hardware Reference 6-5

Setting Dual DSP Core Features
on-chip control registers when the part is powered down. If the chip
and the XTAL oscillator are powered off, attempting to write I/O reg-
isters—including this one—results in powering up the XTAL and set-
ting the XON bit. The write succeeds, after a delay for the oscillator
to stabilize. Subsequent writes or reads should not be attempted
until the oscillator has stabilized, about 8K clocks or 333 µs.)

• Power Management Event (Status/Clear). PWRCFGx Bit 15 (PME)
This bit indicates that a power management event has not (if = 0) or
has (if =1) been detected for this PCI configuration (Config0, 1, or
2). Setting (=1) this bit clears PME. Clearing (=0) this bit has no
effect. (This bit is an alias of the PME bit in the Power Management
Control/Status Register in PCI Configuration Space for this
function.)

• Power Management Event (Set). PWRCFGx Bit 14 (SPME) Setting (=1)
this bit sets (=1) the PME bit. Clearing this bit (=0) has no effect.
Always reads 0.

• Power Management Event Enable. PWRCFGx Bit 8 (PME_EN) This bit
clears (=0) or sets (=1) the PME_EN bit in the PMCSR register in PCI
Configuration space.

• GPIO Power Management Event Enable. PWRCFGx Bit 6 (GPME) This
bit disables (if =0) or enables (if =1) setting this configuration’s PME
bit upon a GPIO wake up event.

• AC’97 Power Management Event Enable. PWRCFGx Bit 5 (APME)
This bit disables (if =0) or enables (if =1) setting this configuration’s
PME bit upon an AC’97 interrupt/wake event.

• PCI Function Power State. PWRCFGx Bits 1–0 (PWRST1–0) Reports
this configuration’s PCI Power Management state from its PMCSR
register in PCI Configuration Space. (read only)
6-6 ADSP-219x/2192 DSP Hardware Reference

Dual DSP Cores
• DSP Interrupt Pending from GPIO Input. PWRPx Bit 14 (GINT)
This bit indicates that no interrupt is pending (if =0) or an interrupt
is pending (if =1) from GPIO input. Setting this bit (=1) clears this
interrupt flag. Clearing the bit (=0) has no effect. Programs should
clear the interrupt source first (for example, clearing a GPIO status
bit) before clearing this interrupt flag, or the flag may be retrig-
gered. Similarly, this interrupt flag must be cleared before executing
an RTI from the DSP interrupt handler routine, or the DSP may
immediately take another interrupt.

• DSP Interrupt Pending from AC’97 Input. PWRPx Bit 13 (AINT)
This bit indicates that no interrupt is pending (if =0) or an interrupt
is pending (if =1) from AC’97 input. Setting this bit (=1) clears this
interrupt flag. Clearing the bit (=0) has no effect. Programs should
clear the interrupt source first (for example, clearing an AC’97 sta-
tus bit) before clearing this interrupt flag, or the flag may be retrig-
gered. Similarly, this interrupt flag must be cleared before executing
an RTI from the DSP interrupt handler routine, or the DSP may
immediately take another interrupt.

• Power Management Interrupt Pending. PWRPx Bit 12 (PMINT) This
bit indicates that no interrupt is pending (if =0) or an interrupt is
pending (if =1) from the DSP’s Power Management State Change
event. Setting this bit (=1) clears this interrupt flag. Clearing this bit
(=0) has no effect.

• DSP Interrupt Enable for GPIO Input. PWRPx Bit 10 (GIEN) This
bit disables (if =0) or enables (if =1) a DSP interrupt on GPIO
input. When disabled (=0), GPIO input does not signal an inter-
rupt, and the DSP does not set the corresponding Interrupt Pending
bit on GPIO input. When enabled (=1), the DSP responds to an
interrupt on GPIO input. (read/write)
ADSP-219x/2192 DSP Hardware Reference 6-7

Setting Dual DSP Core Features
• DSP Interrupt Enable for AC’97 Input. PWRPx Bit 9 (AIEN) This bit
disables (if =0) or enables (if =1) a DSP interrupt on AC’97 input.
When disabled (=0), AC’97 input does not signal an interrupt, and
the DSP does not set the corresponding Interrupt Pending bit on
AC’97 input. When enabled (=1), the DSP responds to an interrupt
on AC’97 input. (read/write)

• Power Management Interrupt Enable. PWRPx Bit 8 (PMIEN) This bit
disables (if =0) or enables (if =1) the DSP’s interrupt on a Power
Management State Change event.

• DSP Wake up on GPIO Input Enable. PWRPx Bit 6 (GWE) This bit
disables (if =0) or enables (if =1) the DSP to wake from power down
on GPIO input. (read/write)

• DSP Wake up on AC’97 Input Enable. PWRPx Bit 5 (AWE) This bit
disables (if =0) or enables (if =1) the DSP to wake from power down
on AC’97 input. (read/write)

• Power Management Wake up Enable. PWRPx Bit 4 (PMWE) This bit
disables (if =0) or enables (if =1) the DSP to wake up on a Power
Management State Change event. (read/write)

• DSP Interrupt on AC’97 Frame Input Enable. PWRPx Bit 3 (FIEN)
This bit disables (if =0) or enables (if =1) an AC’97 Frame interrupt.
If disabled (=0), no interrupt is signalled (read/write).

The actual interrupt occurs once per AC’97 Frame, at the second bit
of Slot 12.

• DSP Soft Reset. PWRPx Bit 2 (RSTD) This bit causes a soft reset to
this DSP core when set (=1). The bit remains set until cleared (=0)
with a write. (If the DSP core is powered down, it must be powered
up first—PWRPx register PU bit set—before resetting.
6-8 ADSP-219x/2192 DSP Hardware Reference

Dual DSP Cores
• DSP Power Up. PWRPx Bit 1 (PU) This bit causes the DSP to power
up —exit the IDLE within its power down handler—when set (=1).
Programs also can use this bit to abort a power down by setting PU
while the DSP is within its power down handler prior to the IDLE.
At this point, setting PU causes execution to immediately continue
through the IDLE without stopping clocks. On a read, PU=1 indi-
cates that this DSP is in the power down interrupt handler, whether
or not it has executed the power down IDLE.

• DSP Power Down. PWRPx Bit 0 (PD) This bit causes the DSP to
power down—enter its power down handler—when set (=1). Pro-
grams also can use this bit to abort a power up by setting PD while
the DSP is in the power down handler after executing an IDLE. At
this point, setting PD causes the DSP to immediately re-enter the
Power Down interrupt handler after it executes the RTI. On a read,
PD=1 indicates that this DSP is powered down: either (a) it is in the
power down handler and has executed an IDLE instruction), and/or
(b) the DSP Clock Generator (PLL) is not running and stable.
Whenever both DSPs are powered down, the DSP Clock Generator
is powered down and is automatically restarted when either DSP
wakes up.

! DSP memory cannot be accessed via PCI when the DSP clock gen-
erator is powered down. There is a delay after powering up the DSPs
with the PU bit. During this delay, memory reads must not be per-
formed because the XTAL or the DSP PLL is not yet running and
stable. After powering up by writing a 1 to the PU bit, the PD bit
must be polled until it becomes 0. After it becomes 0, you know the
clock generator is running and it is safe to access DSP memory
again.
ADSP-219x/2192 DSP Hardware Reference 6-9

Setting Dual DSP Core Features
Clock Multiplier Mode Control
The PLLCTL register controls clock multiplier modes for the ADSP-2192.
“DSP PLL Control (PLLCTL) Register” on page B-23 describes the bits
in PLLCTL. These modes affect operations for both DSP cores.

! The PLLCTL controls the frequencies of the PLL (Phase Locked
Loop) clock generator. It should not be written unless the PLLs are
powered down.

• DSP PLL Divisor Selects. PLLCTL Bits 7–4, 9–8, and 11–10 (DPLLM,
DPLLK, DPLLN) These bits select the output frequency of the
ADSP-2192’s PLL as shown in Figure 6-1.

Where: FIN = 24.576 MHz; reset values for selects are DPLLM=11,
DPLLK=0, and DPLLN=0; and FOUT = 6×FIN = 147.456 MHz.

! To achieve the maximum possible ADSP-2192 clock rate
(163.840 MHz), programs should change the DSP PLL divisor
selects to: DPLLM=9, DPLLK=3, and DPLLKN=2.

• DSP PLL Resistor Select. PLLCTL Bit 3 (DSELR) is reserved—leave at
reset value.

• DSP PLL Capacitor Select. PLLCTL Bit 2 (DSELC) is reserved—leave
at reset value.

• DSP PLL Boost. PLLCTL Bit 1 (DBOOST) is reserved—leave at reset
value.

Figure 6-1. PLL FOUT Formula (DSP PLL Divisor)

FOUT FIN
DPLLM 1+() DPLLK 1+()×

2 DPLLN 1+()×
---×=
6-10 ADSP-219x/2192 DSP Hardware Reference

Dual DSP Cores
• DSP PLL Adjust. PLLCTL Bit 0 (DADJ) This bit selects whether the
PLLCTL bits for the DSP are not (if =0) or are (if =1) applied from
PLLCTL bits 11-1. When DADJ is cleared (=0), the PLL uses reset val-
ues for the DSP PLL. These reset values also are returned on reading
the register. When DADJ is set (=1), the PLL uses the values in bits
11–1 for the DSP PLL.

The clock speed for the DSP cores may not be changed while the DSP
cores are powered. Programs should use the following procedure to change
the core clock speed through the host interface:

1. Put the DSP cores into Idle, waiting to go into power management
interrupt service routine (power management event interrupt is
enabled).

2. Power down the DSP cores using the host interface to set (=1) the
PD bit in the PWRP0 and PWRP1 registers.

3. Load the clock divisor selects into the PLLCTL register using the
host interface--for the maximum core clock rate of 163.840 MHz
(and defaults for the other settings), load 0x0B91 into PLLCTL.

4. Power up the cores by setting the PU bit in the PWRP0 and PWRP1
registers.

After the clocks stabilize, the DSP cores service the power management
event interrupt, exiting the Idle state and resuming execution after the
RTI.

GPIO and Serial EEPROM Mode Control
The following bits control general-purpose I/O and serial EEPROM
modes for the ADSP-2192. See “ADSP-2192 DSP Peripheral Registers”
on page B-1 for more information about the bits in these registers. These
modes affect operations for both DSP cores:
ADSP-219x/2192 DSP Hardware Reference 6-11

Setting Dual DSP Core Features
• GPIO Configuration. (GPIOCFG) Bits 7–0 of this register select Gen-
eral-purpose I/O bit direction control for each I/O line as 1=input
and 0=output. This bit resets to 0x7F.

• GPIO Polarity. (GPIOPOL) Bits 7–0 of this register select Gen-
eral-purpose I/O polarity as: Inputs: 0=active high, Outputs:
0=CMOS, 1=Open Drain. This bit resets to 0xFF.

• GPIO Sticky. (GPIOSTKY) Bits 7–0 of this register enable the Gen-
eral-purpose I/O “sticky-bit” feature as 1=sticky, 0=not sticky. This
bit resets to 0x00.

• GPIO Wake up Enable. (GPIOWAKECTL) Bits 7–0 of this register
enable the General-purpose I/O wake up on input feature as
1=wake-up enabled, 0=disabled (this enable requires sticky set).

• GPIO Status. (GPIOSTAT) Bits 7–0 of this register indicate the pin
status for General-purpose I/O pins as Read=Pin state; Write:
0=clear sticky status, 1=no effect. This bit resets to 0xFF.

• GPIO Control. (GPIOCTL) Bits 7–0 of this register control output
states for General-purpose I/O pins as Read=(Non-Inverting)
Power-on state; Write = 0 or 1 set the state of output pins. This bit
resets to 0x7F.

• GPIO Pull up. (GPIOPUP) Bits 7–0 of this register enable pull-up
resistors on General-purpose I/O pins (if input) as 1=enable,
0=hi-Z. This bit resets to 0xFF.

• GPIO Pull down. (GPIOPDN) Bits 7–0 of this register enable
pull-down resistors on General-purpose I/O pins (if input) as
1=enable, 0=hi-Z. This bit resets to 0x00.

Serial EPROM I/O Control/Status. (SPROMCTL) This register contains the
following bits that configure Serial EPROM access features: SCKI, SENI,
SDAI, SCK, SEN, and SDA. Table B-9 on page B-29 lists all the bits in
SPROMCTL
6-12 ADSP-219x/2192 DSP Hardware Reference

Dual DSP Cores
Using Dual-DSP Interrupts and Flags
Two features on each DSP core permit DSP-to-DSP communications: the
DSP-DSP interrupt and DSP-DSP flags (or semaphores). Each DSP core
has its own interrupt controller and interrupt vector table as shown in
Table 6-1. Each DSP core has a FLAGS system control register as shown
in Table 6-2.

Table 6-1. Interrupt Vectors for an ADSP-2192 DSP Core

IRPTL/IMASK
Bit

Interrupt
Priority

Interrupt Description Vector Address

Offset1

0 1 Reset (Non-maskable) 0x00

1 2 Power down (Non-maskable) 0x04

2 3 Kernel interrupt (single step) 0x08

3 4 Stack Status 0x0C

4 5 Mailbox 0x10

5 6 Timer 0x14

6 7 Reserved 0x18

7 8 PCI Bus Master 0x1C

8 9 DSP-DSP 0x20

9 10 FIFO0 Transmit 0x24

10 11 FIFO0 Receive 0x28

11 12 FIFO1 Transmit 0x2C

12 13 FIFO1 Receive 0x30

13 14 Reserved 0x34
ADSP-219x/2192 DSP Hardware Reference 6-13

Using Dual-DSP Interrupts and Flags
14 15 Reserved 0x38

15 16 AC’97 Frame 0x3C

1 The Interrupt Vector Address Values are represented as offsets from Address 0x10000. This Address
corresponds to the start of Program RAM in each DSP core.

Table 6-2. ADSP-2192 DSP Core FLAGS Register

Flag Bit Direction Name—Description

0 Output FLAG0_OUT—DSP-to-DSP Flag 0.

1 Output FLAG1_OUT—DSP-to-DSP Flag 1.

2 Output DSP_IRQ_OUT—DSP-to-DSP Interrupt.

3 Output Reserved

4 Output Reserved

5 Output Reserved

6 Output Reserved

7 Output BUSLK_REQ—I/O register bus lock request.

8 Input FLAG0_IN—DSP-to-DSP Flag 0.

9 Input FLAG1_IN—DSP-to-DSP Flag 1.

10 Input DSP_IRQ_IN—DSP-to-DSP Interrupt.

11 Input Reserved

12 Input AC97RG_STAT—AC’97 codec register, I/O register bus access status.

Table 6-1. Interrupt Vectors for an ADSP-2192 DSP Core (Continued)

IRPTL/IMASK
Bit

Interrupt
Priority

Interrupt Description Vector Address

Offset1
6-14 ADSP-219x/2192 DSP Hardware Reference

Dual DSP Cores
Figure 6-2 shows how the bits in the FLAGS register on one DSP core affect
the state of the FLAGS register on the other DSP core. Because the two
cores’ FLAGS are interconnected this way, programs can use interrupt
driven or polled techniques for DSP-to-DSP communications.

The following example illustrates a process in which DSP core P0 asserts
DSP-DSP Flag 0 (a semaphore) of DSP core P1.

/* assert DSP-to-DSP flag 0 */
ax0 = 0x0001;
reg(0x34) = ax0;

13 Input DSPRG_STAT—DSP I/O register bus status (pending write from DSP).

14 Input

15 Input BUSLK_STAT—Register Bus Lock Status.

Figure 6-2. DSP-to-DSP Core Flags, Interrupts, and Bus Lock

Table 6-2. ADSP-2192 DSP Core FLAGS Register (Continued)

Flag Bit Direction Name—Description

FLAGS (FLAG0_OUT=1)

FLAGS (FLAG1_OUT=0)

FLAGS (FLAG0_IN=0)

FLAGS (FLAG1_IN=0)

FLAGS (BUSLK_REQ=0)

FLAGS (BUSLK_STAT=0)

FLAGS (FLAG0_OUT=0)

FLAGS (FLAG1_OUT=0)

FLAGS (FLAG0_IN=1)

FLAGS (FLAG1_IN=0)

FLAGS (BUSLK_REQ=0)

FLAGS (BUSLK_STAT=0)

FLAGS (DSP_IRQ_OUT=0) FLAGS (DSP_IRQ_IN=0)

FLAGS (DSP_IRQ_IN=1) FLAGS (DSP_IRQ_OUT=1)

P0 DSP CORE P1 DSP CORE
ADSP-219x/2192 DSP Hardware Reference 6-15

Using Dual-DSP Interrupts and Flags
When a 1 is written to bit 0 of the core FLAGS register of DSP core P0, the
related core flag of DSP core P1, bit 8, is set. The DSP-to-DSP Flag1
works the same way.

The DSP-DSP interrupt lets DSP core P0 interrupt DSP core P1 if the
DSP-DSP interrupt is unmasked in the IMASK register of DSP core P1.
The DSP-DSP interrupts can either be nested with higher priority inter-
rupts taking precedence or they can be processed sequentially.

The following example illustrates how code could initialize the DSP-DSP
interrupt.

/* Initialize DSP-to-DSP Interrupt */
AY0=IMASK;
AY1=0x0100;
AR = AY0 or AY1;
/* Unmask DSP-DSP Interrupts */
IMASK=AR;
/* Enable global interrupts */
ENA INT;

The content of IMASK is OR'd with 0x0100 and written back to IMASK.
This unmasks DSP-DSP interrupt for that particular DSP core. The last
instruction globally enables interrupt servicing. If the above DSP-DSP
interrupt initialization executes on DSP core P1, DSP core P0 could ini-
tiate the DSP-DSP interrupt by asserting bit 2 of its FLAGS register.
6-16 ADSP-219x/2192 DSP Hardware Reference

Dual DSP Cores
Controlling I/O Register Bus Accesses
Looking at the ADSP-2192 as a multiprocessing system (dual DSP cores),
the ADSP-2192 must provide some means for the individual DSP cores to
perform uninterrupted sequences of register bus accesses. Although, this
may be an infrequently used feature, it is critical for certain cases. To sup-
port uninterrupted accesses for a DSP core, the ADSP-2192 provides a
bus lock feature for retaining mastership of the I/O memory-mapped reg-
isters bus.

As shown in Figure 6-2, to lock the I/O registers bus, a DSP core sets (=1)
the BUSLK_REQ bit in its FLAGS register. Setting this FLAGS output bit gener-
ates a continuous request on the I/O registers bus. After mastership of this
bus is granted to that DSP core, it remains granted until the bit is cleared.
A DSP core can check whether the bus has been granted by examining the
BUSLK_STAT it its FLAGS register. When set (=1), the BUSLK_STAT bit indi-
cates the DSP core has been granted the bus.

While the I/O registers bus is locked for a DSP core, that DSP core can
perform Read-Modify-Write operations without the danger of the other
DSP core or the PCI/USB interface changing the register.

! Programs should be careful to avoid locking the I/O register bus for
extended periods of time.

The I/O register bus is a shared resource that affects almost all aspects of
operation of an ADSP-2192. On this bus, either a DSP core or the exter-
nal bus interface (whether PCI, USB or sub-ISA) initiates transactions.
Transactions may be targeted at I/O registers for PCI, USB, system con-
trol, AC’97 codec, GPIO, and serial EEPROM functions. Only one
transaction may be in progress at a time, and all other initiators must wait
for the current transaction to complete.

While waiting for I/O register bus access, DSP execution halts at the I/O
register access instruction, and the DSP is unable to complete any other task.
ADSP-219x/2192 DSP Hardware Reference 6-17

Controlling I/O Register Bus Accesses
A DSP core in this halt state ignores interrupts, does not process DMA,
and does not execute other instruction. For example,

• DSP P1 is in the middle of an I/O register bus transaction, and every
initiator wants to launch a I/O register bus transaction.

• DSP P1 can not start a new transaction until the current I/O register
access instruction completes.

• DSP P0 will halt, waiting for the bus, until its transaction is granted
and completed. Alternately, DSP P0 may attempt to lock the bus
and then check for bus lock status. If the bus was not locked by DSP
P0, it knows a transaction is in progress and may choose to remove
the lock request and try again later.

• The PCI bus cannot initiate a transaction and receives a Retry
semantic.

• The USB bus cannot initiate a transaction and receives a Retry
semantic.

• The sub-ISA bus cannot initiate a transaction and does not receive
an ISA acknowledge until the transaction is granted and completed.

A zero wait state I/O register transaction consumes approximately 12 DSP
cycles. Most transactions are zero wait state, but some—such as transac-
tions that must be mapped through external interfaces—may be much
longer. For example, an access to AC97 codec registers must go through
the AC’97 interface.

Writes to AC’97 codec registers are posted, but only one may complete
per AC’97 frame. Up to two writes may be pending at any one time. The
first write will complete with zero I/O register bus wait states. A second
write launched immediately after the first incurs I/O register bus wait
states equivalent to a few AC’97 BITCLKs. A third write in a row blocks
for an entire AC’97 frame.
6-18 ADSP-219x/2192 DSP Hardware Reference

Dual DSP Cores
Programs should make use of the Frame interrupt to time AC’97 codec
writes out to one per frame, assuring that the writes all complete with zero
wait states.

Reads from AC’97 codec registers must always wait for the data to be
returned. A read must also wait for any pending AC’97 codec register
writes to complete before it can begin. In the best case, a read takes one
full AC’97 frame plus another three AC’97 slots (25.39 µs, or approxi-
mately 3,744 DSP cycles). This should also be the typical case if the
AC’97 Frame Interrupt is used to time the read.

The worst case AC’97 read time is 4 frames plus 3 slots (87.89 µs, or
approximately 12,960 DSP cycles). This occurs only if there were already
two AC’97 codec register writes pending just after the start of a frame.

! Most AC’97 codec registers may be shadowed and actual reads
should be rare.

In the worst case example,

• DSP P1 posts two AC’97 codec register writes just after the start of
a new Frame.

• DSP P0 immediately follows with a read to an AC’97 codec register.
DSP P0 is unable to compute, DMA, or interrupt for 87.89 µs.

• DSP P1 can compute with data in its own memory, but cannot
communicate with DSP P0 nor access any I/O register for 87.89 µs.

• The external bus interface can communicate with DSP P1, but can-
not communicate with DSP P0 nor access any I/O register for
87.89 µs.

In this state, the entire ADSP-2192 system is highly constrained.
ADSP-219x/2192 DSP Hardware Reference 6-19

Using DSP and PCI Mailbox Registers
Using DSP and PCI Mailbox Registers
The ADSP-2192 contains mailbox registers for passing data between the
host and DSP cores. These registers let the DSP cores and host pass data
back and forth with minimal intervention. Optionally, writes to a mailbox
can cause an interrupt for the mailbox’s owner. For example a DSP write
to an outgoing mailbox can cause a PCI interrupt, or a PCI write to an
incoming mailbox can cause a DSP interrupt. Because mailboxes are
read/writable by both DSP cores and the host, the DSPs also can use the
mailboxes to pass data to each other—there is not interrupt support for
this technique. The ADSP-2192 contains the following mailbox registers:

• Mailbox Status. (MBXSTAT) This register indicates the pending status
for mailbox I/O and interrupts.

• Mailbox Interrupt Control. (MBXCTL) This register disables or
enables interrupts for DSP and PCI mailbox I/O.

• Incoming Mailboxes (PCI/USB to DSP mailboxes). (MBX_IN0,
MBX_IN1) These registers contain mailbox I/O from the host to the
DSP. These registers are read-write for the host and both DSP cores.

• Outgoing Mailboxes (DSP to PCI/USB mailboxes). (MBX_OUT0,
MBX_OUT1) These registers contain mailbox I/O from the DSPs to
the host. These registers are read-write for the DSP cores and host.
6-20 ADSP-219x/2192 DSP Hardware Reference

Dual DSP Cores
Mailbox Status (MBXSTAT) Register

Note: All bits in this register are reset to zero.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

O
U

T
1

V
al

id

O
U

T
0

V
al

id

IN
1

V
al

id

IN
0

V
al

id

D
SP

2
O

U
T

1
PE

N
D

D
SP

2
O

U
T

0
PE

N
D

D
SP

2
IN

1
PE

N
D

D
SP

2
IN

0
PE

N
D

D
SP

1
O

U
T

1
PE

N
D

D
SP

1
O

U
T

0
PE

N
D

D
SP

1
IN

1
PE

N
D

D
SP

1
IN

0
PE

N
D

P
C

I
O

U
T

1
PE

N
D

P
C

I
O

U
T

0
PE

N
D

P
C

I
IN

1
P

E
N

D

P
C

I
IN

0
P

E
N

D

Table 6-3. MBXSTAT Register Bit Descriptions

Bit Position Bit Name Description

0 PCI IN0 PEND InBox0 PCI Interrupt Pending.

This bit is set when the DSP reads valid data from InBox0,
if enabled by the corresponding Mailbox Control Register bit.

1 PCI IN1 PEND InBox1 PCI Interrupt Pending.

This bit is set when the DSP reads valid data from InBox1,
if enabled by the corresponding Mailbox Control Register bit.

2 PCI OUT0
PEND

OutBox0 PCI Interrupt Pending.

This bit is set when the DSP writes valid data to OutBox0,
if enabled by the corresponding Mailbox Control Register bit.

3 PCI OUT1
PEND

OutBox1 PCI Interrupt Pending.

This bit is set when the DSP writes valid data to OutBox1,
if enabled by the corresponding Mailbox Control Register bit.

4 DSP1 IN0
PEND

InBox0 DSP 1 Interrupt Pending.

This bit is set when the PCI writes valid data to InBox0, if
enabled by the corresponding Mailbox Control Register bit.
ADSP-219x/2192 DSP Hardware Reference 6-21

Using DSP and PCI Mailbox Registers
5 DSP1 IN1
PEND

InBox1 DSP 1 Interrupt Pending.

This bit is set when the PCI writes valid data to InBox1, if
enabled by the corresponding Mailbox Control Register bit.

6 DSP1 OUT0
PEND

OutBox0 DSP 1 Interrupt Pending.

This bit is set when the PCI acknowledges reading data from
OutBox0 by writing a 1 to bit 14, if enabled by the corre-
sponding Mailbox Control Register bit.

7 DSP1 OUT1
PEND

OutBox1 DSP 1 Interrupt Pending.

This bit is set when the PCI acknowledges reading data from
OutBox1 by writing a 1 to bit 15, if enabled by the corre-
sponding Mailbox Control Reg bit.

8 DSP2 IN0
PEND

InBox0 DSP 2 Interrupt Pending.

This bit is set when the PCI writes valid data to InBox0, if
enabled by the corresponding Mailbox Control Register bit.

9 DSP2 IN1
PEND

InBox1 DSP 2 Interrupt Pending.

This bit is set when the PCI writes valid data to InBox1, if
enabled by the corresponding Mailbox Control Register bit.

10 DSP2 OUT0
PEND

OutBox0 DSP 2 Interrupt Pending.

This bit is set when the PCI acknowledges reading data from
OutBox0 by writing a 1 to bit 14, if enabled by the corre-
sponding Mailbox Control Register bit.

11 DSP2 OUT1
PEND

OutBox1 DSP 2 Interrupt Pending.

This bit is set when the PCI acknowledges reading data from
OutBox1 by writing a 1 to bit 15, if enabled by the corre-
sponding Mailbox Control Register bit.

12 IN0 Valid InBox0 Data Valid.

A one means valid data has been written into the InBox0
register. The bit is cleared when it is written with ones, or
when InBox0 is read.

Table 6-3. MBXSTAT Register Bit Descriptions (Continued)

Bit Position Bit Name Description
6-22 ADSP-219x/2192 DSP Hardware Reference

Dual DSP Cores
13 IN1 Valid InBox1 Data Valid.

A one means valid data has been written into the InBox1
register. The bit is cleared when it is written with ones, or
when InBox1 is read.

14 OUT0 Valid OutBox0 Data Valid.

A one means valid data has been written into the OutBox0
register. The bit is cleared when it is written with ones, or
when OutBox0 is read by the DSP. Reads by the PCI have
no side effects—the PCI must clear the valid status explicitly
by writing this bit with a 1 after reading OutBox0.

15 OUT1 Valid OutBox1 Data Valid.

A one means valid data has been written into the OutBox1
register. The bit is cleared when it is written with ones, or
when OutBox1 is read. Reads by the PCI have no side
effects: the PCI must clear the valid status explicitly by writ-
ing this bit with a 1 after reading OutBox1.

Table 6-3. MBXSTAT Register Bit Descriptions (Continued)

Bit Position Bit Name Description
ADSP-219x/2192 DSP Hardware Reference 6-23

Using DSP and PCI Mailbox Registers
Mailbox Interrupt Control (MBXCTL) Register

Note: All bits in this register are reset to zero.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
es

er
ve

d

D
SP

2
O

U
T

1
E

N
A

D
SP

2
O

U
T

0
E

N
A

D
SP

2
IN

1
E

N
A

D
SP

2
IN

0
E

N
A

D
SP

1
O

U
T

1
E

N
A

D
SP

1
O

U
T

0
E

N
A

D
SP

1
IN

1
E

N
A

D
SP

1
IN

0
E

N
A

P
C

I
O

U
T

1
E

N
A

P
C

I
O

U
T

0
E

N
A

P
C

I
IN

1
E

N
A

P
C

I
IN

0
E

N
A

Table 6-4. MBXCTL Register Bit Descriptions

Bit Position Bit Name Description

0 PCI IN0 ENA InBox0 PCI Interrupt Enable.

When asserted allows the corresponding Interrupt Pending
bit to be set.

1 PCI IN1 ENA InBox1 PCI Interrupt Enable.

When asserted allows the corresponding Interrupt Pending
bit to be set.

2 PCI OUT0
ENA

OutBox0 PCI Interrupt Enable.

When asserted allows the corresponding Interrupt Pending
bit to be set.

3 PCI OUT1
ENA

OutBox1 PCI Interrupt Enable.

When asserted allows the corresponding Interrupt Pending
bit to be set.

4 DSP1 IN0 ENA InBox0 DSP core P0 Interrupt Enable.

When asserted allows the corresponding Interrupt Pending
bit to be set.
6-24 ADSP-219x/2192 DSP Hardware Reference

Dual DSP Cores
5 DSP1 IN1 ENA InBox1 DSP core P0 Interrupt Enable.

When asserted allows the corresponding Interrupt Pending
bit to be set.

6 DSP1 OUT0
ENA

OutBox0 DSP core P0 Interrupt Enable.

When asserted allows the corresponding Interrupt Pending
bit to be set.

7 DSP1 OUT1
ENA

OutBox1 DSP core P0 Interrupt Enable.

When asserted allows the corresponding Interrupt Pending
bit to be set.

8 DSP2 IN0 ENA InBox0 DSP core P1 Interrupt Enable.

When asserted allows the corresponding Interrupt Pending
bit to be set.

9 DSP2 IN1 ENA InBox1 DSP core P1 Interrupt Enable.

When asserted allows the corresponding Interrupt Pending
bit to be set.

10 DSP2 OUT0
ENA

OutBox0 DSP core P1 Interrupt Enable.

When asserted allows the corresponding Interrupt Pending
bit to be set.

11 DSP2 OUT1
ENA

OutBox1 DSP core P1 Interrupt Enable.

When asserted allows the corresponding Interrupt Pending bit to
be set.

15:12 Reserved

Table 6-4. MBXCTL Register Bit Descriptions (Continued)

Bit Position Bit Name Description
ADSP-219x/2192 DSP Hardware Reference 6-25

Using DSP and PCI Mailbox Registers
InBox 0 - PCI/USB to DSP Mailbox 0
(MBX_IN0) Register

INBOX0, INBOX1, OUTBOX0, OUTBOX1 do not have individual bits. The whole
register is a 16-bit word.

InBox 1 - PCI/USB to DSP Mailbox 1
(MBX_IN1) Register

INBOX0, INBOX1, OUTBOX0, OUTBOX1 do not have individual bits. The entire
register is a 16-bit word.

OutBox 0 - DSP to PCI/USB Mailbox 0
(MBX_OUT0) Register

INBOX0, INBOX1, OUTBOX0, OUTBOX1 do not have individual bits. The entire
register is a 16-bit word.

Note: All bits in this register are reset to zero.

OutBox 1 - DSP to PCI/USB Mailbox 1
(MBX_OUT1) Register

INBOX0, INBOX1, OUTBOX0, OUTBOX1 do not have individual bits. The entire
register is a 16-bit word.
6-26 ADSP-219x/2192 DSP Hardware Reference

7 I/O PROCESSOR
Figure 7-0.

Table 7-0.

Listing 7-0.
Overview
The DSP’s I/O processor manages Direct Memory Accessing (DMA) of
DSP memory through the host (PCI) port and AC’97 codec port. Each
DMA operation transfers an entire block of data. By managing DMA, the
I/O processor lets programs move data as a background task while using
the processor core for other DSP operations. The I/O processor’s architec-
ture, which appears in Figure 7-1 on page 7-3, supports a number of
DMA operations. These operations include the following transfer types:

• Internal memory ↔ host (PCI)

• Internal memory ↔ AC’97 codec port I/O

! This chapter describes the I/O processor and how the I/O processor
controls host port and AC’97 port operations. For information on
connecting external devices to the Host port or AC’97 ports, see
“Host (PCI/USB) Port” on page 8-1 or “AC’97 Codec Port” on
page 9-1.

DMA transfers between internal memory and a host use the DSP’s host
port. For these types of transfers, a DSP program sets up the DSP core’s
DMA controller with the internal memory DMA address, DMA next
(process) address, DMA count, and DMA current count. These DMA set
up parameters are the Transfer Control Block (TCB) for the DMA
transfer.
ADSP-219x/2192 DSP Hardware Reference 7-1

Overview
A host program needs to set up the PCI interfaces’ DMA controller with
similar parameters for the host system to receive or transmit the DMA.
After setup, the DMA transfers begin when the DSP or host program
enables the channel and continue until the I/O processor transfers the
entire buffer to or from DSP memory.

Similarly, DMA transfers between internal memory and the AC’97 port
have DMA parameters (a TCB). When the I/O processor performs DMA
between internal memory and one of these ports, the DSP program sets up
the parameters and the I/O goes through the port.

The direction (receive or transmit) of the I/O port determines the direc-
tion of data transfer. When the port receives data, the I/O processor
automatically transfers the data to internal memory. When the port needs
to transmit a word, the I/O processor automatically fetches the data from
internal memory.

To further minimize loading on the processor core, the I/O processor sup-
ports chained DMA operations through the DMA next (process) address
feature. When using chained DMA, a program can set up a DMA transfer
to automatically start the next DMA transfer after the current one
completes.

Figure 7-1 on page 7-3 shows the DSP’s I/O processor, related ports, and
buses. Figure 7-2 on page 7-4 shows more detail on DMA channel data
paths.
7-2 ADSP-219x/2192 DSP Hardware Reference

I/O Processor
Figure 7-1. ADSP-2192 DMA Channels, Requests and Data Paths

DSP P0
DM A C O N TRO LLER

P0 RX 0 FIFO

P0 RX 1 FIFO

P0 TX 0 FIFO

P0 TX 1 FIFO

P1 RX 0 FIFO

P1 RX 1 FIFO

P1 TX 0 FIFO

P1 TX 1 FIFO

SLA VEM A STERC O DEC

PC I RX 0 FIFO

PC I RX 1 FIFO

PC I TX 0 FIFO

PC I TX 1 FIFO

PC I RX /TX

C O DEC

A C'97 IN TERFA C E PC I IN TERFA C E

DSP P1
DM A C O N TRO LLER

PC I DM A
C O N TR O LLER

DSP P0
PM DA TA B US

DSP P0
PM A DDR BUS DSP P1

PM DA TA BUS

DSP P1
PM A DDR B US

DSP P0
IN TER N A L M EM O RY

DSP P1
IN TERN A L M EM O R Y

X DM A C H A N N ELS:
 4 C O DEC
 1 M A STER PC I
 1 SLA VE PC I

S IX DM A C H A N N ELS:
 4 C O DEC
 1 M A STER PC I
 1 SLA VE PC I
ADSP-219x/2192 DSP Hardware Reference 7-3

Overview
Figure 7-2. ADSP-2192 DMA Control, Status and Buffer Registers

AC'97
PORT

PCI PORT
ADDRESS

PCI PORT
DATA

(NOT VISIBLE
AS

REGISTERS)

DSP P0
TX1-0, RX1-0

DSP P1
TX1-0, RX1-0

DSP P0
xxxADDR,

xxxNX TADDR,
xxxCNT,

xxxCURCNT

DSP P1
xxxADDR,

xxxNX TADDR,
xxxCNT,

xxxCURCNT

DSP P0
SRCTL1-0,
STCTL1-0

DSP P0
SRCTL1-0,
STCTL1-0

DMA
PARAMETER
REGISTERS

PORT, BUFFER, &
DM A CONTROL

REGISTERS

BUFFER
DATA

REGISTERS

TO DMA CONTROLLERS

PCI_RX0/1CTL,
PCI_TX0/1CTL,
PCI_DM AC0/1,
PCI_CFGCTL,
PCI_IRQSTAT,

PCI_RX0/1IRQCNTH/L,
PCI_TX0/1IRQCNTH/L,

PCI_RX0/1IRQBCNTH/L,
PCI_TX0/1IRQBCNTH/L

DM APAGE

PCI_RX0/1BADDRH/L ,
PCI_TX0/1BADDRH/L,

PCI_RX0/1CURADDRH/L,
PCI_TX0/1CURADDRH/L,

PCI_RX0/1CNTH/L,
PCI_TX0/1CNTH/L,

PCI_RX0/1CURCNTH/L,
PCI_TX0/1CURCNTH/L

EACH DSP CORE HAS 5 SETS OF DMA PARAM ETER REGISTERS
(4 FOR THE CODEC FIFOS, 1 FOR THE PCI MASTER CHANNEL)
7-4 ADSP-219x/2192 DSP Hardware Reference

I/O Processor
Each DSP core has four Codec DMA FIFOs (RX0/1, TX0/1). These FIFOs
can be connected to the AC’97 codec. These FIFOs are eight levels deep
and are located in system control register space (in the cores). These
FIFOs’ control registers are located in system control register space and
configure the codec connection and DMA enable (STCTL0/1, SRCTL0/1).

The codec DMA FIFOs’ DMA parameter registers are located in system
control register space and configure the DMA address (xxxADDR in DSP
memory), DMA next address (xxxNXTADDR in DSP memory), DMA count
(xxxCNT), and DMA current count (xxxCURCNT). These registers permit cir-
cular buffering (through the next address feature).

The PCI interface in the host port has four DMA FIFOs (two receive, two
transmit). These FIFOs are connected to the PCI master DMA channel.
These FIFO’s are four levels deep and are not visible as registers. These
FIFO’s control registers are located in shared I/O register space and con-
figure the DMA mode as plain or scatter-gather (PCI_Rx0/1CTL,
PCI_Tx0/1CTL) and control the PCI FIFOs and enable DMA
(PCI_DMAC0/1).

Because the PCI interface has more FIFO features than the core FIFOs,
the PCI FIFOs also have registers for control and status of PCI interrupts
(PCI_CFGCTL, PCI_IRQSTAT) and have registers for the DMA interrupt
count (PCI_Rx0/1IRQCNTH/L, PCI_Tx0/1IRQCNTH/L, PCI_Rx0/1IRQBCNTH/L,
PCI_Tx0/1IRQBCNTH/L).

The PCI FIFO’s DMA (host-side) parameter registers are located in
shared I/O register space and configure the DMA base address
(PCI_Rx0/1BADDRH/L, PCI_Tx0/1BADDRH/L), DMA current address
(PCI_Rx0/1CURADDRH/L, PCI_Tx0/1CURADDRH/L), DMA count
(PCI_Rx0/1CNTH/L, PCI_Tx0/1CNTH/L), and DMA current count
(PCI_Rx0/1CURCNTH/L, PCI_Tx0/1CURCNTH/L). The address and count
information in the PCI FIFO’s DMA parameter registers refers to
addresses on the PCI host.
ADSP-219x/2192 DSP Hardware Reference 7-5

Overview
Each DSP core has parameter registers for PCI master channel DMA
(DSP-side) located in the core’s system control register space. These
parameter registers configure the DMA address (MASTADDR in DSP mem-
ory), DMA next address (MASTNXTADDR in DSP memory), DMA count
(MASTCNT), and DMA current count (MASTCURCNT). These registers permit
circular buffering (through the next address feature). The address and
count information in the PCI master channel DMA parameter registers
refers to addresses in the DSP core’s internal memory. These master chan-
nel DMAs are controlled by the PCI FIFO’s control registers.

Although PCI slave transfers use a DMA channel, there are no DMA
parameters associated with these slave transfers.

Figure 7-3 on page 7-7 shows block diagrams of the I/O processor’s
address generator (DMA controller); Figure 7-4 on page 7-8 shows those
block diagrams for Host/PCI. Table 7-1 lists the parameter registers for
each DMA channel. The parameter registers are uninitialized following a
processor reset.

The I/O processor generates addresses for DMA channels much the same
way that the Data Address Generators (DAGs) generate addresses for data
memory accesses. Each channel has a set of parameter registers that the
I/O processor uses to address a data buffer in internal memory. The xxxA-
DDR register must be initialized with a starting address for the data buffer.
As part of the DMA operation, the I/O processor outputs the address on
the DSP’s DM address bus and applies the address to internal memory
during each DMA cycle—a clock cycle in which a DMA transfer is taking
place.
7-6 ADSP-219x/2192 DSP Hardware Reference

I/O Processor
Figure 7-3. DMA Address Generator (Internal
Addresses)

+

LOCAL BUS

xxxCNT

xxxCURCNT

M UX

DMA WORD COUNTER (INTERNAL ADDRESSES)

– 1

LOCAL BUS

DMA ADDRESS GENERATOR (INTERNAL ADDRESSES)

xxxN XTADDR

+

xxxADDR

M UX

IN TERN A L
M EM O R Y
ADDRESS

+1
ADSP-219x/2192 DSP Hardware Reference 7-7

Overview
Figure 7-4. DMA Address Generator (PCI)

+

L O C A L B U S

P C I_xxxB A S E C N TH /L *

P C I_xx xC U RC NT H /L*

M UX

D M A W O R D C O U N TE R (H O S T/P C I A D D R E SS E S)

– 1

L O C A L B U S

D M A A D D R E S S G E N E R A TO R (H O S T/P C I A D D R E S S E S)

P C I_xx xBA S E A D DR H /L *

+

P CI_x xxCU R A D D R H /L*

M U X

IN TE R N A L
M E M O R Y
A D D R E S S

+1

 * 32-b it reg ister (H /L = h ig h /lo w) do in g a 32-b it increm ent/decrem en t
7-8 ADSP-219x/2192 DSP Hardware Reference

I/O Processor
After transferring each data word to or from internal memory, the I/O
processor adds the modify value to the address register to generate the
address for the next DMA transfer and writes the modified address value
to the address register. The modify value is +1.

! If the I/O processor modifies the address register past the maximum
value for a memory page, the 16-bit address wraps around to zero,
and DMA continues from the start address of that Page in memory.

Each DMA channel has a count register (xxxCNT) that programs load with
a word count to be transferred. At the start of the DMA, the I/O processor
loads the xxxCURCNT register from the xxxCNT register. The I/O decrements
the count register after each DMA transfer on that channel. When the
count reaches zero, the I/O processor generates the interrupt for that
DMA channel.

" If a program loads the count (xxxCNT) register with zero, the I/O
processor does not disable DMA transfers on that channel. The I/O
processor interprets the zero as a request for 216 transfers. This
count occurs because the I/O processor starts the first transfer before
testing the count value. The only way to disable a DMA channel is
to clear its DMA enable bit.

Each DMA channel also has a chain pointer register (xxxNXTADDR).
Chained DMA sequences are a set of multiple DMA sequences, the next
starting when the previous one is complete. For more information, see
“Chaining DMA Processes” on page 7-22.

The host port DMA channels each contain additional parameter registers
that set up the host side DMA. The I/O processor generates 32-bit PCI
host memory addresses during DMA transfers between internal memory
and a PCI host.
ADSP-219x/2192 DSP Hardware Reference 7-9

Overview
When a particular I/O port needs to perform transfers to or from internal
memory, the channel asserts a request. The I/O processor prioritizes this
request with all other valid DMA requests. Table 7-1 lists the DMA chan-
nels in priority order. For more information, see “Managing DMA
Channel Priority” on page 7-21.

When a channel becomes the highest priority requester, the I/O processor
services the channel’s request. In the next clock cycle, the I/O processor
starts the DMA transfer.

! If a DMA channel is disabled, the I/O processor does not service
requests for that channel, whether or not the channel has data to
transfer.

Each DSP core’s six DMA channels are numbered as shown in Table 7-1.
This table also shows the control, parameter, and data buffer registers that
correspond to each channel.

Table 7-1. DMA Channel Registers For Each DSP Core:
Controls, Parameters, and Buffers

DMA
Chan#

Control
Registers

Parameter Registers Buffer
Register

Description

0 SRCTL0 Rx0ADDR, Rx0NXTADDR,
Rx0CNT, Rx0CURCNT

RX0 AC’97 Port
Receive

1 SRCTL1 Rx1ADDR, Rx1NXTADDR,
Rx1CNT, Rx1CURCNT

RX1 AC’97 Port
Receive

2 STCTL0 Tx0ADDR, Tx0NXTADDR,
Tx0CNT, Tx0CURCNT

TX0 AC’97 Port
Transmit

3 STCTL1 Tx1ADDR, Tx1NXTADDR,
Tx1CNT, Tx1CURCNT

TX1 AC’97 Port
Transmit
7-10 ADSP-219x/2192 DSP Hardware Reference

I/O Processor
The codec channel DMA control and parameter registers are system con-
trol registers in each DSP core, and the host channel DMA control and
parameter registers are I/O memory-mapped registers. For more informa-
tion on these registers, see “ADSP-2192 DSP Peripheral Registers” on
page B-1.

To set up DMA on the “DSP-side”, the DSP program must load the con-
trol and parameter registers. Because the I/O processor registers are
memory-mapped, the DSP and host have access to program the host side
of DMA operations. A processor sets up a DMA channel by writing the
transfer’s parameters to the DMA parameter registers. After these registers
are loaded, the DSP (or host) is ready to start the DMA.

The host port and AC’97 port each have a DMA enable bit (DEN or SDEN)
in their channel control register. Setting this bit for a DMA channel with
configured DMA parameters starts the DMA on that channel. If the
parameters configure the channel to receive, the I/O processor transfers
data words received at the buffer to the destination in internal memory. If
the parameters configure the channel to transmit, the I/O processor trans-
fers a word automatically from the source memory to the channel’s buffer
register. These transfers continue until the I/O processor transfers the
selected number of words (count parameter).

4 PCI_DMAC0/1 MSTRADDR, MSTRNX-
TADDR, MSTRCNT,
MSTRCURCNT

not visible Host Port
FIFO Buffer

5 PCI Slave Channel, no parameters or controls

Table 7-1. DMA Channel Registers For Each DSP Core:
Controls, Parameters, and Buffers (Continued)

DMA
Chan#

Control
Registers

Parameter Registers Buffer
Register

Description
ADSP-219x/2192 DSP Hardware Reference 7-11

Setting I/O Processor�Host Port Modes
! To start a new (non-chained) DMA sequence after the current one
is finished, programs must disable the channel (clear its DEN bit);
write new parameters to the registers; then enable the channel (set
its DEN bit). For looped or chained DMA operations, this dis-
able-enable process is not necessary. For more information, see
“Chaining DMA Processes” on page 7-22.

Setting I/O Processor�Host Port Modes
The PCI_Rx0-1CTL, PCI_Tx0-1CTL, and PCI_DMAC0-1 registers control the
host port operating mode for the I/O processor. See “ADSP-2192 DSP
Peripheral Registers” on page B-1 for more information about the bits in
these registers.

The following bits control host port I/O processor modes. Except for the
FLSH bit, the control bits in the PCI_DMACx registers have a one cycle effect
latency (take effect on the second cycle after change). The FLSH bit has a
two cycle effect latency. Programs should not modify an active DMA
channel’s PCI_Rx0-1CTL, PCI_Tx0-1CTL, or PCI_DMAC0-1 register; other
than to disable the channel by clearing the DEN bit.

• Scatter-gather DMA Enable. PCI_Rx0-1CTL and PCI_Tx0-1CTL Bit
0 (SGDEN) This bit disables (if =0) or enables (if =1) scatter-gather
DMA mode.

• Loop Enable. PCI_Rx0-1CTL and PCI_Tx0-1CTL Bit 1 (LPEN) This bit
disables (if =0) or enables (if =1) DMA looping mode.

• Interrupt Mode. PCI_Rx0-1CTL and PCI_Tx0-1CTL Bit 3–2 (INT-
MODE) These bits select the DMA interrupt mode as: 00 = interrupt
disabled, 01 = interrupt on count, 10 = interrupt on SGD flag, or
11 = interrupt on EOL.
7-12 ADSP-219x/2192 DSP Hardware Reference

I/O Processor
• Current Scatter-gather DMA Valid. PCI_Rx0-1CTL and
PCI_Tx0-1CTL Bit 5–4 (SGVL) These bits indicate the state of the cur-
rent scatter-gather DMA as: 00 = full SGD descriptor needed (soft-
ware must initialize this value), 01 = partial SGD descriptor fetched,
10 = SGD valid, or 11 = reserved (invalid status).

• Flag Bit Set in Current Scatter-gather DMA. PCI_Rx0-1CTL and
PCI_Tx0-1CTL Bit 6 (FLG) This bit indicates a flag is not (if =0) or is
(if =1) set in the current scatter-gather DMA.

• EOL Bit Set in Current Scatter-gather DMA. PCI_Rx0-1CTL and
PCI_Tx0-1CTL Bit 7 (EOL) This bit indicates an EOL is not (if =0) or
is (if =1) set in the current scatter-gather DMA.

• DMA Enable. PCI_DMAC0-1 Bit 0 (DEN) This bit enables (if set, =1)
or disables (if cleared, =0) DMA for the corresponding host port
FIFO buffer. The I/O processor will automatically clear this bit
when the DMA transfer is complete on the host interface.

• DMA Direction. PCI_DMAC0-1 Bit 1 (TRAN) This bit selects the
transfer direction (transmit if set, =1) (receive if cleared, =0) for the
host port DMA.

• Flush FIFO. PCI_DMAC0-1 Bit 2 (FLSH) This bit flushes the corre-
sponding FIFO when set (=1).

• DSP P0/P1 Select. PCI_DMAC0-1 Bit 3 (DSP) This bit selects the DSP
core for the DMA process as: 0 = P0 or 1 = P1.

• DMA Packing Disable (Double Word Mode). PCI_DMAC0-1 Bit 4
(DPD) This bit enables (if =0) or disables (if =1) PCI interface word
packing.

• Configuration Select 2, 1, or 0. PCI_DMAC0-1 Bits 7, 6, 5 (CFGx)
These bits select a PCI device configuration for the DMA; only one
of the three configurations may be active (=1) at a time.
ADSP-219x/2192 DSP Hardware Reference 7-13

Setting I/O Processor�Host Port Modes
• DMA FIFO Empty Status. PCI_DMAC0-1 Bit 8 (EMPTY) This bit indi-
cates the FIFO status as: 0 = not empty or 1 = empty. A one written
to this bit clears it. This bit is also cleared by writing the DEN bit to
initiate a DMA transaction.

• DMA Channel Halt Status. PCI_DMAC0-1 Bit 9 (HALT) This bit is set
to one when the master DMA channel is disabled by the PCI address
generation logic. This occurs if the host interface receives an error
signal for an attempted DMA transfer. A one written to this bit
clears it. This bit is also cleared by writing the DEN bit to initiate a
DMA transaction.

• DMA Channel Loop Status. PCI_DMAC0-1 Bit 10 (LOOP) This bit
indicates DMA loop status as: 0 = no looping occurred or 1 = loop-
ing occurred. A one written to this bit clears it. This bit is also
cleared by writing the DEN bit to initiate a DMA transaction.

Host Port Buffer Modes
The DPD bit in the PCI_DMAC0-1 registers select a buffer’s packing mode.
Packing is enabled when this bit is cleared, and each 32-bit transfer on the
PCI bus will contain two 16-bit words from DSP memory; this is the nor-
mal mode to use when transferring 16-bit data samples to and from DSP
memory while efficiently using host memory. The DPD bit should be set for
transferring 24-bit instructions into DSP memory; in this mode the 32-bit
transfer on the PCI bus contains a single 24-bit word with the upper 8 bits
of PCI unused.

Figure 7-5 on page 7-15 illustrates the DMA bus mastering formats for
packed and unpacked data.
7-14 ADSP-219x/2192 DSP Hardware Reference

I/O Processor
Figure 7-5. DMA Bus Mastering Formats (Packed and
Unpacked)

1
3
5
7

0
2
4
6

15 0

 N
N +1
N +2
N +3

D SP
A D D R

16-B IT D SP M E M O R Y

2
6

0
4

1
5

3
7

31 0

P A C K IN G EN A B LE D

 M
M +4
M +8

M +12

PC I B Y TE
A D D R

1
3
5
7

0
2
4
6

P A C K IN G D ISA B LE D

PC I
SP A C E

31 0

C
F
I
L

B
E
H
K

A
D
G
J

24-B IT D SP M E M O R Y

23 0

 N
N +1
N +2
N +3

D S P
A D D R

E
K

B
H

C
I

F
L

31 0

PA C K IN G EN A B LE D

 M
M +4
M +8

M +12

P C I B Y TE
A D D R

C
F
I
L

B
E
H
K

A
D
G
J

P A C K IN G D ISA B LE D

31 0

PC I
SP A C E

PA C K IN G M O D E
(Pack ing enab led/disa bled w ith D M A control bit in bus m aste ring)
ADSP-219x/2192 DSP Hardware Reference 7-15

Setting I/O Processor�Host Port Modes
Host Port Scatter-Gather DMA Mode
The SGDEN bit in the PCI_Rx0-1CTL and PCI_Tx0-1CTL registers enables
scatter-gather DMA mode.

Each bus master DMA channel includes 4 registers to specify a standard
circular buffer in system memory. The Base Address points to the start of
the circular buffer. The Current Address is a pointer to the current posi-
tion within that buffer. The Base Count specifies the size of the buffer in
bytes, while the Current Count keeps track of how many bytes need to be
transferred before the end of the buffer is reached. When the end of the
buffer is reached, the channel can be programmed to loop back to the
beginning and continue the transfers. When this looping occurs, a Status
bit is set in the DMA Control Register.

When transferring samples to and from DSP memory, the PCI DMA con-
troller can be programmed to perform scatter-gather DMA. This mode
allows the data to be split up in memory, and yet able to be transferred to
and from the ADSP-2192 without processor intervention. In scat-
ter-gather mode, the DMA controller can read the memory address and
word count from an array of buffer descriptors called the Scatter-Gather
Descriptor (SGD) table. This allows the DMA engine to sustain DMA
transfers until all buffers in the SGD table are transferred.

To initiate a scatter-gather transfer between memory and the ADSP-2192,
the following steps are involved:

1. Software driver prepares a SGD table in system memory.

Each descriptor is eight bytes long and consists of an address
pointer to the starting address and the transfer count of the mem-
ory buffer to be transferred. In any given SGD table, two
consecutive SGDs are offset by eight bytes and are aligned on a
4-byte boundary. Each SGD contains:

• Memory Address (Buffer Start) – 4 bytes

• Byte Count (Buffer Size) – 3 bytes
7-16 ADSP-219x/2192 DSP Hardware Reference

I/O Processor
• End of Linked List (EOL) – 1 bit (MSB)

• Flag – 1 bit (MSB – 1)

2. Initialize DMA control registers with transfer specific information
such as number of total bytes to transfer, direction of transfer, etc.

3. Software driver initializes the hardware pointer to the SGD table.

4. Engage scatter-gather DMA by writing the start value to the PCI
channel Control/Status register.

5. The ADSP-2192 pulls in samples as pointed to by the descriptors
as needed by the DMA engine.

6. When the EOL is reached, a status bit is set, and the DMA ends if
the data buffer is not to be looped. If looping is to occur, DMA
transfers continue from the beginning of the table until the channel
is turned off.

Bits in the PCI Control/Status register control whether or not an
interrupt occurs when the EOL is reached or when the FLAG bit is
set.

Scatter-gather DMA uses the same four registers as Normal Circular
Buffer mode but maps the function of each. In scatter-gather mode the
registers are mapped as shown in Table 7-2.

Table 7-2. Normal DMA Mode Versus Scatter-gather DMA Mode

Normal Circular Buffer Mode Scatter-Gather Mode Function

Base Address SGD Table Pointer

Current Address SGD Current Pointer Address

Base Count SGD Pointer

Current Count Current SGD Count
ADSP-219x/2192 DSP Hardware Reference 7-17

Setting I/O Processor�AC�97 Port Modes
In either mode of operation, interrupts can be generated based upon the
total number of bytes transferred. Each channel has two 24-bit registers to
count the bytes transferred and generate interrupts as appropriate. The
Interrupt Base Count register specifies the number of bytes to transfer
prior to generating an interrupt. The Interrupt Count register specifies the
current number left prior to generating the interrupt. When the Interrupt
Count register reaches zero, a PCI interrupt can be generated. Addition-
ally, the Interrupt Count register will be reloaded from the Interrupt Base
Count and continue counting down for the next interrupt.

Setting I/O Processor�AC�97 Port Modes
The SRCTLx and STCTLx registers in each DSP core’s system control regis-
ters control the AC’97 port operating mode for the I/O processor. See
“ADSP-2192 DSP Peripheral Registers” on page B-1 for more informa-
tion about the bits in these registers.

The following bits control AC’97 port I/O processor modes. The control
bits in the SRCTLx and STCTLx registers have a one cycle effect latency (take
effect on the second cycle after change). Programs should not modify an
active DMA channel’s bits in the SRCTLx or STCTLx registers; other than to
disable the channel by clearing the SDEN bit. To change an inactive AC’97
port’s operating mode, programs should clear a AC’97 port’s control regis-
ter before writing new settings to the control register.

• AC’97 FIFO Connection Enable. SRCTLx and STCTLx Bit 0 (SPEN)
These bits enable or disable the corresponding AC’97 port connec-
tion as follows: 00 = disabled, 01 = reserved (disabled), 10 = connect
to AC’97, or 11 = reserved (disabled).

• AC’97 Slot Select. SRCTLx and STCTLx Bits 7-4 (SSEL) These bits
select the AC’97 slot as: 0000–0010=Reserved, 0011=Slot 3,
0100=Slot 4, 0101=Slot 5, 0110=Slot 6, 0111= Slot 7, 1000=Slot 8,
1001=Slot 9, 1010=Slot 10, 1011=Slot 11, 1100=Slot 12, or 1101–
1111=Reserved.
7-18 ADSP-219x/2192 DSP Hardware Reference

I/O Processor
• AC’97 FIFO Interrupt Position. SRCTLx and STCTLx Bits 10–8
(FIP) These bits set the FIFO level for triggering an interrupt or
DMA request as: (#data in FIFO) <= FIP.

• AC’97 Port DMA Enable. SRCTLx and STCTLx Bit 18 (SDEN) This bit
enables (if set, =1) or disables (if cleared, =0) the AC’97 port’s
receive DMA.

Host Port DMA Status
The I/O processor monitors the status of data transfers on the host port.

When performing PCI Bus Master DMA transactions, the PCI transfer
count register is typically loaded with the same value that is loaded into
the MSTRCNT register. In this way, a DSP interrupt can be generated by the
MSTRCURCNT register counting to 0 when the entire block of data has been
transferred.

When the data is being transferred from the host into DSP memory, this
interrupt signals the end of the DMA block transfer. When the data is
being transferred from DSP memory into the host, this interrupt only sig-
nals that all DMA data has been read from DSP memory; the last few
words may still be in the PCI FIFO waiting to be transferred to the host.

 The DSP can check that the DMA is completing by checking the DEN bit
of the PCI_DMACx register. This bit is cleared by the I/O processor when all
words have been transferred to the host.
ADSP-219x/2192 DSP Hardware Reference 7-19

DMA Controller Operation
DMA Controller Operation
DMA sequences start in different ways depending on whether DMA
chaining is enabled. When chaining is not enabled, only the DMA enable
bit (DEN) allows DMA transfers to occur. A DMA sequence starts when
one of the following occurs:

• Chaining is disabled and the DMA enable bit (DEN) transitions from
low to high.

• Chaining is enabled, DMA is enabled (DEN=1), and the xxxNXTADDR
register address field is written with a non-zero value. In this case,
TCB chain loading of the channel parameter registers occurs first.

• Chaining is enabled, the xxxNXTADDR register address field is
non-zero, and the current DMA sequence finishes. Again, TCB
chain loading occurs.

A DMA sequence ends when one of the following occurs:

• The count register decrements to zero.

• Chaining is disabled and the channel’s DEN bit transitions from high
to low. If the DEN bit goes low (=0) and chaining is enabled, the
channel enters chain insertion mode and the DMA sequence con-
tinues.

! When a program sets the DEN bit (=1) after a single DMA finishes,
the DMA sequence continues from where it left off (for
non-chained operations only). To start a new DMA sequence after
the current one is finished, a program must first clear the DEN enable
bit, write new parameters to the registers, then set the DEN bit to
re-enable DMA. For chained DMA operations, these steps are not
necessary. For more information, see “Chaining DMA Processes”
on page 7-22.
7-20 ADSP-219x/2192 DSP Hardware Reference

I/O Processor
" If a DMA operation completes and the count register is rewritten
before the DMA enable bit is cleared, the DMA transfer will restart
at the new count.

Once a program starts a DMA process, the process is influenced by two
external controls: DMA channel priority and DMA chaining.

Managing DMA Channel Priority
The DMA channels for each of the DSP’s I/O ports negotiate channel pri-
ority with the I/O processor using an internal DMA request/grant
handshake. Each I/O port (AC’97 port and host port) has one or more
DMA channels, with each channel having a single request and a single
grant. When a particular channel needs to read or write data to internal
memory, the channel asserts an internal DMA request. The I/O processor
prioritizes the request with all other valid DMA requests. When a channel
becomes the highest priority requester, the I/O processor asserts the chan-
nel’s internal DMA grant. In the next clock cycle, the DMA transfer
starts. Figure 7-1 on page 7-3 shows the paths for internal DMA requests
within the I/O processor.

! If a DMA channel is disabled (DEN or SDEN bit =0), the I/O processor
does not issue internal DMA grants to that channel, whether or not
the channel has data to transfer.

Because more than one DMA channel can make a DMA request in a par-
ticular cycle, the I/O processor prioritizes DMA channel service. DMA
channel prioritization determines which channel can use the data bus to
access memory. DMA channel priority is fixed by DMA channel type
(AC’97 port, host port, DSP P0, DSP P1).
ADSP-219x/2192 DSP Hardware Reference 7-21

Host Port DMA
Chaining DMA Processes
DMA chaining lets the I/O processor automatically start the next DMA
when the current DMA finishes. This feature permits unlimited multiple
DMA transfers without processor core intervention. Using chaining, pro-
grams can set up multiple DMA operations, and each operation can have
different attributes.

To chain together multiple DMA operations, the I/O processor must load
the start address of the next DMA into the xxxNXTADDR register and the
count for the next DMA into the xxxCNT register before the current DMA
completes.

Host Port DMA
The DSP support a number of DMA modes for host port DMA.

The method for setting up and starting a host port DMA sequence varies
slightly with the selection of transfer and DMA handshake for the chan-
nel. For more detailed information on host port DMA features, see
“Setting I/O Processor—Host Port Modes” on page 7-12.

In general, the following sequence describes a typical host to internal
DMA operation where a host transfers a block of data into the DSP’s
internal memory:

1. The DSP writes the DMA channel’s (DSP-side) parameter registers
(MSTRADDR, MSTRCNT, and optionally MSTRNXTADDR).

2. The host (or DSP) writes the DMA channel’s (host-side) parameter
registers (PCI_xxxADDR and PCI_xxxCNT) and control registers
(PCI_DMACx and PCI_XXXCTL), initializing the channel for receive
(TRAN=0).

3. The host (or DSP) sets (=1) the channel’s DEN bit enabling the
DMA process.
7-22 ADSP-219x/2192 DSP Hardware Reference

I/O Processor
4. The host begins writing data to the PCI bus, which is buffered
through the host port.

5. The host port PCI buffer detects data is present and asserts an
internal DMA request to the I/O processor.

6. The I/O processor grants the request and performs the internal
DMA transfer, emptying the host port PCI buffer FIFO.

In general, the following sequence describes a typical internal to external
DMA operation where an external device transfers a block of data from
the DSP’s internal memory:

1. The DSP writes the DMA channel’s (DSP-side) parameter registers
(MSTRADDR, MSTRCNT, and optionally MSTRNXTADDR).

2. The host (or DSP) writes the DMA channel’s (host-side) parameter
registers (PCI_xxxADDR and PCI_xxxCNT) and control registers
(PCI_DMACx and PCI_XXXCTL), initializing the channel for transmit
(TRAN=1).

3. The host (or DSP) sets (=1) the channel’s DEN bit enabling the
DMA process.

Because this is a transmit, setting DEN automatically asserts an inter-
nal DMA request to the I/O processor.

4. The I/O processor grants the request and performs the internal
DMA transfer, filling the host port PCI buffer’s FIFO.

5. The host begins reading data from the PCI bus, which is buffered
through the host port.

6. The host port PCI buffer detects that there is room in the buffer (it
is now “partially empty”) and asserts another internal DMA
request to the I/O processor, continuing the process.
ADSP-219x/2192 DSP Hardware Reference 7-23

AC�97 Port DMA
AC�97 Port DMA
The DSP support a number of DMA modes for AC’97 port DMA. The
method for setting up and starting an AC’97 port DMA sequence varies
slightly with the transfer mode for the channel. For more detailed infor-
mation on AC’97 port DMA features, see “Setting I/O Processor—AC’97
Port Modes” on page 7-18.

In general, the following sequence describes a typical AC’97 codec to
internal DMA operation where a codec transfers a block of data into the
DSP’s internal memory using a AC’97 port:

1. The DSP enables the DMA channel’s AC’97 port, setting the
port’s SPEN bits in the port’s SRCTLx register.

2. The DSP writes the DMA channel’s parameter registers (RxxADDR,
RxxCNT, and optionally RxxNXTADDR) and SRCTLx control register,
initializing the channel for receive.

3. The DSP sets (=1) the channel’s SDEN bit enabling the DMA
process.

4. The codec begins writing data to the Rxx buffer through the AC’97
port.

5. The Rxx buffer detects data is present and asserts an internal DMA
request to the I/O processor.

6. The I/O processor grants the request and performs the internal
DMA transfer, emptying the Rxx buffer.
7-24 ADSP-219x/2192 DSP Hardware Reference

I/O Processor
In general, the following sequence describes a typical internal to AC’97
DMA operation where a codec transfers a block of data from the DSP’s
internal memory using a AC’97 port:

1. The DSP enables the DMA channel’s AC’97 port, setting the
port’s SPEN bits in the port’s STCTLx register.

2. The DSP writes the DMA channel’s parameter registers (TxxADDR,
TxxCNT, and optionally TxxNXTADDR) and STCTLx control register,
initializing the channel for transmit.

3. The DSP sets (=1) the channel’s SDEN bit enabling the DMA
process.

Because this is a transmit, setting SDEN automatically asserts an
internal DMA request to the I/O processor.

4. The I/O processor grants the request and performs the internal
DMA transfer, filling the Txx buffer.

5. The external device begins reading data from the Txx buffer
(through the AC’97 port).

6. The Txx buffer detects that there is room in the buffer (it is now
“partially empty”) and asserts another internal DMA request to the
I/O processor, continuing the process.
ADSP-219x/2192 DSP Hardware Reference 7-25

AC�97 Port DMA
7-26 ADSP-219x/2192 DSP Hardware Reference

8 HOST (PCI/USB) PORT
Figure 8-0.

Listing 8-0.

Table 8-0.
Overview
The ADSP-2192 can interface with a host computer through its USB port
or through its PCI port. Both ports provide access to the host computer
via the Peripheral Device Control (PDC) bus, which is connected directly
to the IDMA ports on each DSP. The USB port connects through the
internal USB interface to the PDC bus, and the PCI port connects
through the internal PCI interface to the PDC bus. This chapter describes
the PCI parallel interface, and then describes the USB serial interface. The
type of bus connection is determined by the BUSMODE[1:0] pins.

Host Port Selection
Four options, selected by the BUSMODE[1:0] pins, specify bus connection
to the host. The DSP can detect the BUSMODE configuration and hence the
system type by reading bits in the SCFG register (IO space address 0x000).

Table 8-1. BUSMODE Configuration

Bus Type BUS MODE1 Bus MODE0 SCFG:BUS(1:0) Register field (bits 11:10)

PCI or Mini-PCI GND GND 00

CardBus PC-Card GND Open 01

Sub-ISA Open GND 10

USB Serial Bus Open Open 11
ADSP-219x/2192 DSP Hardware Reference 8-1

PCI Parallel Interface
Mode Strap Pin Connections
The BUSMODE[1:0] pin status is sampled at Power-On-Reset. These pins
should either be left open or tied directly to GND; no external resistors are
necessary. The BUSMODE input pins have a weak internal pull-up resistor (to
2.5V Internal VDD), which is activated only during power-on. After
power-on, their state is latched, and then the input receiver and its pull-up
resistor are disabled. No DC current flows. Even if the pin voltage floats
to a mid-state level, no current is dissipated in the input receiver.

PCI Parallel Interface
The ADSP-2192 includes a 33-MHz, 32-bit PCI interface to provide con-
trol and data paths between the device and a host CPU. The PCI interface
complies with the PCI Local Bus Specification, Revision 2.2. The inter-
face supports bus mastering as well as bus target interfaces. PCI Bus Power
Management Interface Specification, Revision 1.1 is supported, and addi-
tional features needed by mini-PCI designs are included.

Configuration Spaces
The ADSP-2192 has three separate configuration spaces that can be
defined to support user functions by writing to the class code register for
that function during bootup. Additionally, during boot time, the DSP can
disable one or more of the functions. If only two functions are enabled,
they will be functions zero and one. If only one function is enabled, it will
be function 0.
8-2 ADSP-219x/2192 DSP Hardware Reference

Host (PCI/USB) Port
Each function contains a complete set of registers in the predefined header
region, as defined in PCI Local Bus Specification, Revision 2.2. In addi-
tion, each function contains optional registers to support PCI Bus Power
Management. Registers that are unimplemented or read-only in one func-
tion are similarly defined in the other functions. Table 8-2 describes a
typical configuration space.

Table 8-2. PCI Configuration Space

Address Name Reset Comments

0x01-0x00 Vendor ID 0x11D4 Writable from the DSP during
initialization

0x03-0x02 Device ID 0x2192 Writable from the DSP during
initialization

0x05-0x04 Command Register 0x0 Bus Master, Memory Space Capable,
I/O Space Capable

0x07-0x06 Status Register 0x0 Bits enabled: Capabilities List, Fast B2B,
Medium Decode

0x08 Revision ID 0x0 Writable from the DSP during initializa-
tion

0x0B-0x09 Class Code 0x078000 Writable from the DSP during initializa-
tion

0x0C Cache Line Size 0x0 Read-only

0x0D Latency Timer 0x0

0x0E Header Type 0x80 Multifunction bit set

0x0F BIST 0x0 Unimplemented

0x13-0x10 Base Address 1 0x08 Register Access for all ADSP-2192 Reg-
isters, Prefetchable Memory
ADSP-219x/2192 DSP Hardware Reference 8-3

PCI Parallel Interface
0x17-0x14 Base Address 2 0x08 24-bit DSP Memory Access

0x1B-0x18 Base Address 3 0x08 16-bit DSP Memory Access

0x1F-0x1C Base Address 4 0x01 I/O access for control registers and DSP
memory

0x23-0x20 Base Address 5 0x0 Unimplemented

0x27-0x24 Base Address 6 0x0 Unimplemented

0x2B-0x28 Cardbus CIS Pointer 0x1FF03 CIS RAM Pointer - Function 0 (Read
Only).

0x2D-0x2C Subsystem Vendor
ID

0x11D4 Writable from the DSP during initializa-
tion

0x2F-0x2E Subsystem Device
ID

0x2192 Writable from the DSP during initializa-
tion

0x33-0x30 Expansion ROM
Base Address

0x0 Unimplemented

0x34 Capabilities Pointer 0x40 Read-only

0x3C Interrupt Line 0x0

0x3D Interrupt Pin 0x1 Uses INTA# Pin

0x3E Min_Gnt 0x1 Read-only

0x3F Max_Lat 0x4 Read-only

0x40 Capability ID 0x1 Power Management Capability Identi-
fier

0x41 Next_Cap_Ptr 0x0 Read-only

Table 8-2. PCI Configuration Space (Continued)

Address Name Reset Comments
8-4 ADSP-219x/2192 DSP Hardware Reference

Host (PCI/USB) Port
Interactions Between Functions

Because all functions access and control a single set of resources, potential
conflicts may occur in the control specified by the configuration.
Table 8-3 on page 8-5 and Table 8-4 on page 8-10 identify the interac-
tions and suggest conflict resolutions. Table 8-3 on page 8-5 identifies the
registers in the predefined header space, and Table 8-4 on page 8-10 iden-
tifies the interactions in the Power Management registers.

0x43-0x42 Power Management
Capabilities

0x6C22 Writable from the DSP during initializa-
tion

0x45-0x44 Power Management
Control/ Status

0x0 Bits 15 and 8 initialized only on
Power-up

0x46 Power Management
Bridge

0x0 Unimplemented

0x47 Power Management
Data

0x0 Unimplemented

Table 8-3. Configuration Space—Function Interactions

Address Name Comments

Vendor ID Separate registers, no interaction

Device ID Separate registers, no interaction

Command Register
Bit 0

I/O Space Enable Enables are separate in each function, go
along with the function’s base addresses

Command Register
Bit 1

Memory Space Enable Enables are separate in each function, go
along with the function’s base addresses

Table 8-2. PCI Configuration Space (Continued)

Address Name Reset Comments
ADSP-219x/2192 DSP Hardware Reference 8-5

PCI Parallel Interface
Command Register
Bit 2

Bus Master Enable Enables are separate in each function, go
along with the function’s base addresses

Command Register
Bit 3

Special Cycles None of the functions support special
cycles, read-only

Command Register
Bit 4

Memory Write and
Invalidate

No function generates Memory Write and
Invalidate commands, read-only

Command Register
Bit 5

VGA Palette Snoop Not applicable, read-only

Command Register
Bit 6

Parity Error Response If any function has the bit set, PERR# may
be asserted

Command Register
Bit 7

Stepping Control No address stepping is done, read-only

Command Register
Bit 8

SERR# Enable If any function enables SERR# driver, then
SERR# may be asserted

Command Register
Bit 0

Fast Back-to-back
Enable

No function generates fast back-to-back
transactions

Status Register
Bit 4

Capabilities List Read-only.

Status Register
Bit 5

66 Mhz Capable Read-only.

Status Register
Bit 6

Reserved Read-only.

Status Register
Bit 7

Fast Back-to-back
Capable

Read-only.

Status Register
Bit 8

Master Data Parity
Error

Separate for each function, no interaction

Table 8-3. Configuration Space—Function Interactions (Continued)

Address Name Comments
8-6 ADSP-219x/2192 DSP Hardware Reference

Host (PCI/USB) Port
Status Register
Bit 10:9

DEVSEL Timing Read-only.

Status Register
Bit 11

Signaled Target Abort Separate for each function, no interaction

Status Register
Bit 12

Received Target Abort Separate for each function, no interaction

Status Register
Bit 13

Received Master Abort Separate for each function, no interaction

Status Register
Bit 14

Signaled System Error Separate for each function, set if SERR#
enabled and SERR# asserted

Status Register
Bit 15

Detected Parity Error Separate for each function, but set in all
functions simultaneously

Revision ID Read-only.

Class Code Separate registers, no interaction

Cache Line Size Read-only.

Latency Timer Separate for each function, no interaction

Header Type Read-only.

Base Address 1 In range signal ORed between functions,
any function can access memory

Base Address 2 In range signal ORed between functions,
any function can access memory

Base Address 3 In range signal ORed between functions,
any function can access memory

Table 8-3. Configuration Space—Function Interactions (Continued)

Address Name Comments
ADSP-219x/2192 DSP Hardware Reference 8-7

PCI Parallel Interface
Base Address Registers

Each function contains four base address registers used to access
ADSP-2192 control registers and DSP memory. Base Address Register 1
(BAR1) points to the control registers; the address specified for each of the
functions is an offset from BAR1. PCI memory-type accesses read and
write the registers. Byte-wide accesses to the control registers are sup-
ported only for those registers within the PCI interface itself.

DSP memory accesses use BAR2 or BAR3 of each function. BAR2 is used
to access 24-bit DSP memory, and BAR3 accesses 16-bit DSP memory.
The lower half of the allocated space pointed to by each DSP memory
BAR is the DSP memory for DSP #1. The upper half is the memory space
associated with DSP #2. PCI transactions to and from DSP memory use
the DMA function within the DSP core. Each word transferred to or from
PCI space uses a single DSP clock cycle to perform internal DSP data
transfer. Byte-wide accesses to DSP memory are not supported.

Base Address 4 In range signal ORed between functions,
any function can access memory

Subsystem Vendor ID Separate registers, no interaction

Subsystem Device ID Separate registers, no interaction

Capabilities Pointer Read-only.

Interrupt Line Separate registers, no interaction

Interrupt Pin Read-only.

Min_Gnt Read-only.

Max_Lat Read-only.

Table 8-3. Configuration Space—Function Interactions (Continued)

Address Name Comments
8-8 ADSP-219x/2192 DSP Hardware Reference

Host (PCI/USB) Port
I/O type accesses are supported via BAR4. Both the control registers
accessible via BAR1 and the DSP memory accessible via BAR2 and BAR3
can be accessed with I/O accesses. Indirect access is used to read and write
the control registers and the DSP memory. For control register accesses,
an address register points to the word to be accessed and a separate register
is used to transfer the data. Read/write control is part of the address regis-
ter. Only 16-bit accesses are possible via the I/O space. A separate set of
registers performs the same function for DSP memory access. Control for
these accesses includes a 24-bit/16-bit select as well as direction control.
The data register for DSP memory access is 24-bits wide. 16-bit accesses
are loaded into the lower 16 bits of the register.

Peripheral Device Control Registers

The Peripheral Device Control Register space is distributed throughout
the ADSP-2192 and connected through the Peripheral Device Control
Bus. The PCI bus can access the Peripheral Device Control Registers
directly. PCI Base Address Register 1 (BAR1) points to the Control Regis-
ters (including the Peripheral Device Control Registers). PCI register
accesses are byte wide. PCI register addresses are 24 bits long. Registers
can be accessed only in PCI Bus Target/Slave mode.

Power Management Interactions
Conflicts can occur with three functions. Table 8-4 on page 8-10 identi-
fies these potential conflicts and provides suggested resolutions.

Target accesses to registers and DSP memory can go through any func-
tion. If the Memory Space access enable bit is set in that function, PCI
memory accesses (whose address matches the locations programmed into
functions BAR[3:1]) can read or write any visible register or memory loca-
tion within the ADSP-2192. Similarly, if I/O Space access enable is set,
PCI I/O accesses can be performed via BAR4.
ADSP-219x/2192 DSP Hardware Reference 8-9

PCI Parallel Interface
There are interactions within the Power Management section of the con-
figuration blocks. The device stays in the highest power state of the three
functions. When one of the functions is in a low power state, it can
respond only to configuration accesses, regardless of the power state of the
other functions. Similarly, when a function transitions from power man-
agement state D3 to D0 (see Chapter 11 “System Design”), that
function’s configuration space is reinitialized. Each function has a separate
PME enable bit and PME status bit. When no determination is possible,
both PME status bits are set.

Table 8-4. Power Management—Function Interactions

Name Register Bits Comments

Capability ID Read-only.

Next_Cap_Ptr Read-only.

Version Power Management Capability
Bits 2:0

Read-only.

PME Clock Power Management Capability
Bit 3

Read-only.

Reserved Power Management Capability
Bit 4

Read-only.

Device Specific Ini-
tialization

Power Management Capability
Bit 5

Read-only.

Aux Current Power Management Capability
Bit 6

Read-only by PCI, writable by
DSP.

D1 Support Power Management Capability
Bit 9

Read-only.

D2 Support Power Management Capability
Bit 10

Read-only.
8-10 ADSP-219x/2192 DSP Hardware Reference

Host (PCI/USB) Port
PCI Clock Domain
Figure 8-1 on page 8-12 shows the relationship of the PCI clock to the
ADSP-2192 internal clocks.

This domain is driven from the PCI CLK input pin, with a nominal fre-
quency of 33 MHz. This frequency may vary from system to system.
There are no controls inside the ADSP-2192 to control this clock since it
is entirely under control of the Host operating system and BIOS. The PCI
Clock, under control of the CLKRUN signal, may stop when the PC bus seg-
ment is powered down. This clock domain is active in PCI and CardBus
modes. In Sub-ISA mode, the CLK input is not active (tied to GND). In USB
mode, the PCI clock domain is inactive.

PME Support Power Management Capability
Bits 15:11

Read-only by PCI, writable by
DSP.

Power State Power Management Control/Status
Bit 1:0

Part will be in highest power state
of the three functions

Reserved Power Management Control/Status
Bit 7:2

Read-only, no interaction

PME Enable Power Management Control/Status
Bit 8

Separate for each function, no
interaction

Data Select Power Management Control/Status
Bit 12:9

Read-only, no interaction

Data Scale Power Management Control/Status
Bit 14:13

Read-only, no interaction

PME Status Power Management Control/Status
Bit 15

Separate for each function, may be
set in all functions by a wakeup

Table 8-4. Power Management—Function Interactions (Continued)

Name Register Bits Comments
ADSP-219x/2192 DSP Hardware Reference 8-11

PCI Parallel Interface
Peripheral Device Control Register Access
Because each DSP may try to access the I/O registers simultaneously,
hardware has been added to control access to the register bus and elimi-
nate conflicts. The PCI interface and the USB interface access the same set
of registers and use the same internal register access bus. (The USB inter-
face cannot access registers in the PCI clock domain, and the PCI
interface cannot access registers within the USB clock domain.)

Prioritization between the different possible masters is fixed. The priori-
ties from highest to lowest are: DSP #1, DSP #2, Host (PCI/USB)
interface.

When employed in a multiprocessing system, the ADSP-2192 must per-
form uninterrupted sequences of register bus accesses. Although these
accesses may be required infrequently, they are essential in certain cases.
To this end, a Lock function is provided.

Figure 8-1. Clock Domains

DSP

CLOCK DO MAIN

X6

PLL

X4

PLL

USB

CLOC K

DOMAIN

24.576M HZ

XTALI

147.456MHZ

1/8.192 PLL &

CLOCK RECOVE RY

12.0MHZ

1/2

BITCLK

AC’97

CLOCK DO MAIN

USB PORT

1/2 PERIPHERAL DEVICE
CONTROL BUS
CLOCK DO MAIN

12.288M HZ

PCI

CLOC K

DOMAIN

33MHZ

PCI CLK

1/2
49.152M HZ

49.152M HZ

(SUB-ISA MODE)

(PROGRAM MABLE)
8-12 ADSP-219x/2192 DSP Hardware Reference

Host (PCI/USB) Port
To Lock the Bus, the DSP writes a “1” to Bit7 of the FLAGS register. This
Flag output bit is assigned to the Bus Lock Request functionality and gen-
erates a continuous request on the Peripheral Device Control Bus. Once
the Bus is granted to the DSP, it remains granted until the bit is cleared.
The DSP can check to see if the bus has been granted by examining Bit15
of the FLAGS register. A “1” in this bit indicates that the bus has been
granted to the DSP.

Once the Bus is Locked, the DSP can perform Read-Modify-Write opera-
tions without the danger of the other DSP or the PCI/USB interface
changing the register. Avoid locking the Bus for extended periods of time.

The PDC bus is a shared resource that affects almost all aspects of opera-
tion of an ADSP-2192 system. Transactions may be initiated by either
DSP or by the external bus interface (whether PCI, USB or sub-ISA).
Transactions may be targeted at registers for PCI, USB, system control,
AC’97, and GPIO functions. Only one transaction may be in progress at a
time; all other initiators must wait for the current transaction to complete.

Each DSP IO space transaction is translated into a PDC bus transaction in
hardware. The initiating DSP waits for its IO Acknowledge (IOACK) signal
until the transaction is granted and completed. While waiting, DSP execu-
tion is halted at the IO space access instruction, and the DSP cannot
complete any other task. In this state, interrupts are ignored, DMA cannot
take place, and no other instruction may execute.

Example

DSP#2 is in the middle of a PDC bus transaction, and every initiator
wants to launch a PDC bus transaction. DSP #2 cannot start a new trans-
action until the current IO space access instruction completes. DSP #1
halts, waiting for IOACK, until its transaction is granted and completed.
DSP #1 may attempt to lock the bus and check for bus lock status. If the
bus was not locked by DSP #1, it assumes that a transaction is in progress
and may remove the lock request and try again later.
ADSP-219x/2192 DSP Hardware Reference 8-13

PCI Parallel Interface
The PCI bus cannot initiate a transaction and is issued a Retry semantic.
The USB bus cannot initiate a transaction and is issued a Retry semantic.
The sub-ISA bus cannot initiate a transaction and does not receive an ISA
acknowledge until the transaction is granted and completed.

A zero wait state PDC transaction consumes approximately 12 DSP
cycles. Most transactions have zero wait states, but some transactions
(those that must be mapped through external interfaces, for example) may
be much longer.

Resets
In addition to power-on and system resets described in other chapters, the
ADSP-2192 can be reset by the PCI or USB bus. The Reset Handler that
gets executed is dictated by the CRST[1:0] bits in the Chip Mode/Status
Register (CMSR). For PCI or USB Reset, set the CRST bits to [1:0].

Interrupts
Table 8-5 on page 8-15 shows a variety of potential sources of interrupts
to the PCI host. The PCI Interrupt Register consolidates all of the possi-
ble interrupt sources and the bits of this register to a single interrupt pin,
INTA#, used to signal the interrupts back to the host. The register bits are
set by the various sources and can be cleared by writing a 1 to the bits to
be cleared.

Interrupts may be sensitive either to edges or levels, as indicated in
Table 8-5 on page 8-15. The PCI GPIO interrupt is level sensitive, and is
asserted when any of the GPIO’s individual sticky status bits is true. If an
interrupt service routine is in the process of acknowledging one GPIO
interrupt (by clearing its sticky status and then writing a 1 to PCI-
INT:GPIO) while an event occurs on another GPIO, it is possible for the
ISR to miss the second event, should it occur between the time the ISR
reads the GPIO’s status and when the ISR clears the PCIINT:GPIO bit.
8-14 ADSP-219x/2192 DSP Hardware Reference

Host (PCI/USB) Port
The GPIO interrupt is level sensitive to accommodate this case; the PCI-
INT:GPIO interrupt bit and the INTA# pin immediately reassert after
clearing. The ISR may be written in two ways to detect this case: it may
exit and be immediately retriggered, or it may read back the PCIINT regis-
ter after the clear to see if any bit has been set again, which indicates the
occurrence of some new interrupt.

Table 8-5. PCI Interrupt Register

Bit Name Comments1 Sensitivity

15 Reserved

14 PCI Target Abort Interrupt PCI Interface Target Abort
Detected

Edge

13 PCI Master Abort Interrupt PCI Interface Master Abort
Detected

Edge

12 AC’97 Wakeup Edge AC’97 Interface Initiated Edge

11 GPIO Wakeup I/O Pin Initiated Level Level

10 Reserved

 9 Reserved

 8 Outgoing Mailbox 1 PCI Interrupt DSP to PCI Mailbox 1
Transfer

Edge

 7 Outgoing Mailbox 0 PCI Interrupt DSP to PCI Mailbox 0
Transfer

Edge

 6 Incoming Mailbox 1 PCI Interrupt PCI to DSP Mailbox 1
Transfer

Edge

 5 Incoming Mailbox 0 PCI Interrupt PCI to DSP Mailbox 0
Transfer

Edge
ADSP-219x/2192 DSP Hardware Reference 8-15

PCI Parallel Interface
PCI Control Register
The PCI Control Register must be initialized by the DSP ROM code
prior to PCI enumeration. (It has no effect in ISA or USB mode.) Once
the Configuration Ready bit is set to 1, Bits[2:0] of the PCI Control Reg-
ister become read-only, and further write access by the DSP to
configuration space is disallowed.

 4 Tx1 DMA Channel Interrupt Transmit Channel 1 Bus
Master Transactions

Edge

 3 Tx0 DMA Channel Interrupt Transmit Channel 0 Bus
Master Transactions

Edge

 2 Rx1 DMA Channel Interrupt Receive Channel 1 Bus Mas-
ter Transactions

Edge

 1 Rx0 DMA Channel Interrupt Receive Channel 0 Bus Mas-
ter Transactions

Edge

 0 Reserved

1 The Interrupt Status is Latched even when the Interrupt Source is not enabled. Therefore, the
Interrupt should be cleared before being enabled unless previous Interrupt history is considered
important.

Table 8-6. PCI Control Register

Bit Name Comments

15 Reserved

14 TAbort IEN
PCI Target Abort Interrupt Enable.

PCI Interface Target Abort Detect Int.
Enabled.

Table 8-5. PCI Interrupt Register (Continued)

Bit Name Comments1 Sensitivity
8-16 ADSP-219x/2192 DSP Hardware Reference

Host (PCI/USB) Port
13 MAbort IEN
PCI Master Abort Interrupt Enable.

PCI Interface Master Abort Detect Int.
Enabled.

12 AC’97 IEN
AC’97 Interrupt Enable.

AC’97 Interface Initiated Interrupt
Enabled.

11 GPIO IEN
GPIO Interrupt Enable.

I/O Pin Initiated Interrupt Enabled.

10 Reserved

 9 Reserved

 8 D2PM1 IEN
Mailbox 1 PCI Interrupt Enable.

DSP to PCI Mailbox 1
Transfer Interrupt Enabled.

 7 D2PM0 IEN
Mailbox 0 PCI Interrupt Enable.

DSP to PCI Mailbox 0
Transfer Interrupt Enabled.

 6 P2DM1 IEN
Mailbox 1 PCI Interrupt Enable.

PCI to DSP Mailbox 1
Transfer Interrupt Enabled.

 5 P2DM0 IEN
Mailbox 0 PCI Interrupt Enable.

PCI to DSP Mailbox 0
Transfer Interrupt Enabled.

 4 Reserved

 3 Reserved

 2 Conf Rdy
Configuration Ready

When 0, disables PCI accesses to the
ADSP-2192 (terminated with Retry). Must
be set to 1 by DSP ROM code after initial-
izing configuration space. Once 1, cannot
be written to 0.

1-0 PCIF[1:0]
Number of PCI Functions Configured

00 = one PCI Function enabled, 01= two
functions, 10= three functions

Table 8-6. PCI Control Register (Continued)

Bit Name Comments
ADSP-219x/2192 DSP Hardware Reference 8-17

PCI Parallel Interface
PCI Port Priority on the PDC Bus

The PCI port shares use of the Peripheral Device Control (PDC) bus with
the two DSPs and with other I/O ports. Transactions may be initiated by
either DSP or by the external bus interface (whether PCI, USB, or
Sub-ISA). Transactions may be targeted at registers for PCI, USB, system
control, or serial port functions. Only one transaction may be in progress
at a time; all other initiators must wait for the current transaction to
complete.

The prioritization between the different possible masters is fixed. The pri-
orities from highest to lowest are: DSP #1, DSP #2, Host (PCI/USB)
interface.

The syntax for access to the PDC registers is described in “ADSP-2192
DSP Peripheral Registers” on page B-1.

DSP Mailbox Registers
The DSP Mailbox registers allow you to construct an efficient communi-
cations protocol between the PCI device driver and the DSP code. The
mailbox functions consist of InBox0, InBox1, OutBox0, OutBox1, a sta-
tus register, and a control register.

InBoxes

The incoming mailboxes (InBox0 and InBox1) are 16 bits wide. They may
be read or written by the PCI device or the DSP core. PCI writes to the
InBoxes may generate DSP interrupts. DSP reads of InBoxes may generate
PCI interrupts.
8-18 ADSP-219x/2192 DSP Hardware Reference

Host (PCI/USB) Port
OutBoxes

The outgoing mailboxes (OutBox0 and OutBox1) are 16 bits wide. They
may be read or written by the PCI device or the DSP core. DSP writes to
the OutBoxes may generate PCI interrupts.

PCI reads of OutBoxes may generate DSP interrupts with special han-
dling. The PC host must perform the following sequence when reading an
outbox:

1. Read OutBox

2. Write a 1 to the OutBox Valid bit to clear it

! PCI reads of OutBoxes cannot generate interrupts directly, as they
would be “read side-effects” which are prohibited in the PCI Speci-
fication.

Status

This register consists of read/write-one-clear status bits (denoted R/WC). A
read/write-one-clear bit is cleared when a one is written to it. Writing a
zero has no effect. See “ADSP-2192 DSP Peripheral Registers” on
page B-1 for the bit names of the MBXSTAT register.

Table 8-7. Mailbox Status Register

Bit Type Description

0 R/WC InBox0 PCI Interrupt Pending. This bit is set when the
DSP reads valid data from InBox0, if enabled by the corre-
sponding Mailbox Control Register bit.

1 R/WC InBox1 PCI Interrupt Pending. This bit is set when the
DSP reads valid data from InBox1, if enabled by the corre-
sponding Mailbox Control Register bit.
ADSP-219x/2192 DSP Hardware Reference 8-19

PCI Parallel Interface
2 R/WC OutBox0 PCI Interrupt Pending. This bit is set when the
DSP writes valid data to OutBox0, if enabled by the corre-
sponding Mailbox Control Register bit.

3 R/WC OutBox1 PCI Interrupt Pending. This bit is set when the
DSP writes valid data to OutBox1, if enabled by the corre-
sponding Mailbox Control Register bit.

4 R/WC InBox0 DSP 1 Interrupt Pending. This bit is set when the
PCI writes valid data to InBox0, if enabled by the corre-
sponding Mailbox Control Register bit.

5 R/WC InBox1 DSP 1 Interrupt Pending. This bit is set when the
PCI writes valid data to InBox1, if enabled by the corre-
sponding Mailbox Control Register bit.

6 R/WC OutBox0 DSP 1 Interrupt Pending. This bit is set when
the PCI acknowledges reading data from OutBox0 by writ-
ing a 1 to bit 14, if enabled by the corresponding Mailbox
Control Reg bit.

7 R/WC OutBox1 DSP 1 Interrupt Pending. This bit is set when
the PCI acknowledges reading data from OutBox1 by writ-
ing a 1 to bit 15, if enabled by the corresponding Mailbox
Control Reg bit.

 8 R/WC InBox0 DSP 2 Interrupt Pending. This bit is set when the
PCI writes valid data to InBox0, if enabled by the corre-
sponding Mailbox Control Register bit.

 9 R/WC InBox1 DSP 2 Interrupt Pending. This bit is set when the
PCI writes valid data to InBox1, if enabled by the corre-
sponding Mailbox Control Register bit.

Table 8-7. Mailbox Status Register (Continued)

Bit Type Description
8-20 ADSP-219x/2192 DSP Hardware Reference

Host (PCI/USB) Port
Control

This register consists of read/write interrupt enable control bits (denoted
R/W). See “ADSP-2192 DSP Peripheral Registers” on page B-1 for the bit
names of the MBXCTL register.

10 R/WC OutBox0 DSP 2 Interrupt Pending. This bit is set when
the PCI acknowledges reading data from OutBox0 by writ-
ing a 1 to bit 14, if enabled by the corresponding Mailbox
Control Reg bit.

11 R/WC OutBox1 DSP 2 Interrupt Pending. This bit is set when
the PCI acknowledges reading data from OutBox1 by writ-
ing a 1 to bit 15, if enabled by the corresponding Mailbox
Control Reg bit.

Table 8-8. Mailbox Control Register

Bit Type Description

0 R/W InBox0 PCI Interrupt Enable. When asserted allows the
corresponding Interrupt Pending bit to be set.

1 R/W InBox1 PCI Interrupt Enable. When asserted allows the
corresponding Interrupt Pending bit to be set.

2 R/W OutBox0 PCI Interrupt Enable. When asserted allows the
corresponding Interrupt Pending bit to be set.

3 R/W OutBox1 PCI Interrupt Enable. When asserted allows the
corresponding Interrupt Pending bit to be set.

4 R/W InBox0 DSP #1 Interrupt Enable. When asserted allows
the corresponding Interrupt Pending bit to be set.

Table 8-7. Mailbox Status Register (Continued)

Bit Type Description
ADSP-219x/2192 DSP Hardware Reference 8-21

PCI Parallel Interface
5 R/W InBox1 DSP #1 Interrupt Enable. When asserted allows
the corresponding Interrupt Pending bit to be set.

6 R/W OutBox0 DSP #1 Interrupt Enable. When asserted allows
the corresponding Interrupt Pending bit to be set.

7 R/W OutBox1 DSP #1 Interrupt Enable. When asserted allows
the corresponding Interrupt Pending bit to be set.

8 R/W InBox0 DSP #2 Interrupt Enable. When asserted allows
the corresponding Interrupt Pending bit to be set.

9 R/W InBox1 DSP #2 Interrupt Enable. When asserted allows
the corresponding Interrupt Pending bit to be set.

10 R/W OutBox0 DSP #2 Interrupt Enable. When asserted allows
the corresponding Interrupt Pending bit to be set.

11 R/W OutBox1 DSP #2 Interrupt Enable. When asserted allows
the corresponding Interrupt Pending bit to be set.

15:12 RO Reserved

Table 8-8. Mailbox Control Register (Continued)

Bit Type Description
8-22 ADSP-219x/2192 DSP Hardware Reference

Host (PCI/USB) Port
Indirect Access to I/O Space
PCI I/O access to the ADSP-2192 registers is supported via BAR4. The
registers listed in Table 8-9 are directly accessible from BAR4.

To access the PCI I/O space registers:

1. Write IOREGA with the register address, setting bit 14 for direction
control. If the access is a read, the register is prefetched into the
IOREGD register.

2. Read the IOREGD register for the appropriate data. The Ready status
is not necessary in PCI mode, since the IOREGD access is retried
until the data is ready.

3. For writes, the register transaction is initiated when the IOREGD reg-
ister is written.

Table 8-9. I/O Space Indirect Access Registers

Offset Name Reset Comments

0x03-0x00 IOREGA
Control Register
Address

0x0000 Address and direction control for reg-
isters access

0x07-0x04 IOREGD
Control Register Data

0x0000 Data for register access

0x0B-0x08 IOMEMA
DSP Memory Addresses

0x00000000 Address and direction control for
DSP memory access

0x0F-0x0C IOMEMD
DSP Memory Data

0x000000 Data for DSP memory access
ADSP-219x/2192 DSP Hardware Reference 8-23

PCI Parallel Interface
To access PCI Memory:

1. Write IOMEMA with the DSP Memory address, setting the read/write
control and the 16/24-bit control appropriately.

2. The data is prefetched for reads. The address automatically incre-
ments for memory accesses, allowing subsequent IOMEMD reads from
the subsequent locations.

3. Consecutive writes to IOMEMD are written to consecutive memory
locations.

Table 8-10. BIT Organization of PCI I/O Space Registers

Register Bits Function

IOREGA 15 Ready Status

14 Write/Read

13:0 PDC Address

IOREGD 15:0 IO Data

IOMEMA 23 Write/Read

22 16bit/24bit

17:0 DSP Memory Address

IOMEMD 23:0 Memory Data
8-24 ADSP-219x/2192 DSP Hardware Reference

Host (PCI/USB) Port
USB Interface

Overview
The USB port on the ADSP-2192 complies with the Universal Bus Speci-
fication, Version 1.1 and allows you to interface with a compatible host.
An 8051 compatible MCU is supported on board, which allows you to
soft download different configurations and support any number of class
specific commands.

In addition to the 8051 core, the interface includes USB accessible regis-
ters, an interrupt subsystem, configuration and clock control, and a data
path that allows USB Endpoint data transfer directly between the DSP
internal memory and a USB-host. The module interfaces with an on-chip
USB transceiver on the USB side and the DMA and PDC bus on the
ADSP-2192 system side.

USB Requirements
This section describes some features of the protocol upon which this USB
implementation has been based. A separate reference section lists the
resources that provide the detailed description of the USB.

USB is a master-slave bus, in which a single master generates data transfer
requests to the attached slaves and allocates bandwidth on the serial cable
according to a specific algorithm. The bus master is referred to as the USB
host, and the bus slaves are referred to as USB devices. Each USB device
implements one or more USB Endpoints which are akin to virtual data
channels. Each Endpoint on a USB device operates independently of all
others.

Data flows between the USB Host and attached devices in packets that are
8, 16, 32, or 64 bytes. The packets are grouped into larger units called
transfers.
ADSP-219x/2192 DSP Hardware Reference 8-25

USB Interface
The USB Host implements a traffic scheduling algorithm to allocate the
serial bus bandwidth fairly across all of the attached USB devices and End-
points. From the point of view of a USB device, this algorithm is not
deterministic. While the specific scheduling algorithm is standardized, the
bus dynamically reallocates bandwidth based on criteria such as packet
error conditions and flow control. As far as the device is concerned, it can
transfer requests for any Endpoint at any time. Depending upon the bus
loading at any given time, the USB Host may request packets
back-to-back, or it may request packet transfers to each Endpoint in a
round-robin fashion. The USB protocol also allows for detection and
retransmission of packets in cases of bit errors and flow-control.

Any USB device implementation must maintain state information for
each of its Endpoints which allow large data transfers to occur one packet
at a time and each packet to be retransmitted, if necessary.

Implementation
The USB module in ADSP-2192 has the following features:

• Control Endpoint for all USB control transactions including down-
loading application-specific MCU firmware

• 3 Endpoints dedicated to downloading DSP code

• 8 User-Programmable Endpoints for DSP data

• 4 registers per Data Endpoint to define a DSP memory buffer asso-
ciated with each Endpoint

• Support for all four USB transaction types (Bulk, Control, Inter-
rupt, and Isochronous)
8-26 ADSP-219x/2192 DSP Hardware Reference

Host (PCI/USB) Port
• 8051 compatible microcontroller (having 2K bytes of Program
Memory ROM, 4K bytes of Program Memory RAM, and 256 bytes
of Data Memory RAM) to support flexible descriptor definitions
and USB device requests. Application-specific MCU microcode
needs to be downloaded through the USB interface.

• A dedicated hardware block to stream the data into and out of the
data Endpoints from the host. This hardware block manages the
USB transactions to each data Endpoint and serves as a conduit for
the data as it moves from the memory buffers (FIFOs) in DSP mem-
ory space. No MCU involvement is required to manage these data
pipes.

• Interaction with the DSP using the DMA and PDC buses.

• 12MB/s (run at full speed)

• Support for OHCI and UHCI Hosts

Block Diagram of USB Module
Figure 8-2 on page 8-28 shows a block diagram of the USB module in the
ADSP-2192. Each element is described in this section.

USB-SIE

This block interfaces to the outside interface. All the USB data traffic goes
through it. Its two paths, I/P and O/P, support both control and data traf-
fic flow. On the Receive side, the clock employs recovery, error checking,
and bit stuffing as it decodes the NRZ data. On the transmit side, it does
the opposite: NRZ encodes it, appends the CRC, bit-stuffs it if necessary,
and transmits the data. It also sends out the sync header and end-of-packet
fields.
ADSP-219x/2192 DSP Hardware Reference 8-27

USB Interface
Endpoint 0 Control

This block manages all traffic duties for Endpoint 0, serving as the com-
munication link between the USB host and the MCU. For host-to-device
transfers, it notifies the MCU when valid SETUP commands or OUT
packet data arrives for processing by the MCU. In responding to
device-to-host transfers, it transmits the proper data packet or handshake
packet under MCU guidance.

MCU

The MCU is an 8-bit 8051 compatible MCU within the USB. It acts as
the controller for the USB block. It handles all the command and data
processing for the Endpoint 0. It also parameterizes the DSP code and
data Endpoints. There is no involvement in the actual data transfer for the
DSP code and data endpoints.

Figure 8-2. ADSP-2192 USB Block Diagram

USB SIE

Endpoint0
Control

DSP Code/Data
Endpoint Control

DSP
DMA
Interface

IDMA (24)

PDC (16)
8051
MCU

2kB
Program
ROM

4kB
Program
RAM

256B
Data
RAM

I/O
Register
Interface
8-28 ADSP-219x/2192 DSP Hardware Reference

Host (PCI/USB) Port
I/O REG Interface

This is the 16-bit interface to the internal PDC (Peripheral Device Con-
trol) bus. All the writing and reading to and from the I/O space is
performed through this interface. PDC is a multiplexed address and Data
bus.

DSP DMA Interface

This interface is the link between the USB and the internal IDMA bus,
which goes into the DSP memory. The serial data collected by the SIE
interface is converted into byte-wide packets and sent to DSP DMA inter-
face. Based upon the packet type, program, or Data, the DSP DMA
interface converts it into a 3-byte packet (24 bits) or a 2-byte packet
(upper 16-bits of the IDMA bus) and then dispatches it to the DSP mem-
ory. It also does the retrieval from the Internal Memory 16-bit-wide data,
splits it into byte-wide format, and sends it to the SIE. SIE then splits it in
serial format and sends it to the host over the serial bus.

DSP Code/Data Endpoint Control

This block manages all traffic duties for both DSP code (via Endpoints
1:3) and DSP data (via Endpoints 4:11). All USB data through this block
streams directly to and from DSP memory with no involvement from the
MCU. The only requirement from the MCU is to program the personali-
ties (transfer type, maximum packet size, direction, etc.) of all the
enumerated Endpoints prior to any USB transactions.
ADSP-219x/2192 DSP Hardware Reference 8-29

USB Interface
Features and Modes
The different functions supported by the USB module are as follows:

Endpoint Types

The USB supports four different transfer types: Bulk, Control, Interrupt,
and Isochronous. The Endpoint 0 (EP0) is configured for Control Type
transaction with a fixed packet size of 8. The other user specific Endpoints
(EP4-11) can be defined as Bulk, Interrupt, and Isochronous. Endpoints
1, 2, and 3 are reserved for downloading DSP code and are hard-wired to
be Bulk Out pipes with a maximum packet size of 64. They cannot be
used for data transfers for user-specific purpose.

Data Transfers

The USB supports four different data transfer types: Bulk, Control, Isoch-
ronous, and Interrupt. These types are described in the subsections that
follow.

Bulk

Bulk transactions guarantee error-free delivery of data between the host
and a function Endpoint. Bulk transactions start with the host issuing an
IN or an OUT token. For example, if the host is writing data, it issues an OUT
transaction followed by a DATA0 (PID) packet. Upon receiving the packet,
the function can respond by:

• Issuing an ACK to signify the proper receipt of data. The host can
then send the next data packet (if it has any) in the data sequence.

• Not acknowledging the transaction to force a timeout if there is a
CRC error or bit stuffing errors in the data packet. In this situation,
the host retransmits the data packet using the same PID as the failed
packet.
8-30 ADSP-219x/2192 DSP Hardware Reference

Host (PCI/USB) Port
Packet sizes for the Bulk data are limited to 8, 16, 32, and 64 bytes. Each
USB Endpoint is assigned one of these sizes and may not switch between
them. Large data transfers are broken down into units of these basic
packet sizes. For example, a 1044 byte file transfer across USB to a 64 byte
bulk Endpoint consists of 17 packet transfers as follows: 16 packets of 64
bytes each and 1 packet of 20 bytes. The USB Host assumes that the short
packet represents an end of transfer indicator.

Bulk Transactions do not have a guaranteed bandwidth associated with
them. They use whatever bandwidth that has been left over after all other
types of transactions have been serviced. They are the preferred transac-
tion type if guaranteed error free delivery of data is required.

Isochronous

The isochronous transaction is used when there is a requirement for guar-
anteed constant bandwidth for the data transfer. These transfers occur in
every frame and guarantee one packet transfer per USB frame. The maxi-
mum packet size (up to 1023 bytes) is specified in the Endpoint descriptor
table. These transfers are not acknowledged. The data in the Isochronous
transfers must be error tolerant. In the presence of CRC, an error may be
detected, but the data cannot be retransmitted.

Control

Control Transfers are used for short command/control messages between
a host and a function. Control transactions start with a setup stage. The
format and contents of the packet are defined in the USB specification. If
a data stage follows, the transfer is essentially similar to the bulk transfer.
The status stage completes the handshaking sequence.

During the setup stage, the USB Host sends an 8-byte setup packet to the
USB Device. The packet specifies information such as the types of com-
mand (standard-request, vendor-specific, device-class specific), direction
and size of the data phase (if any), and the specific command code.
ADSP-219x/2192 DSP Hardware Reference 8-31

USB Interface
After receiving the command, the device (function) can either process the
command and proceed through the data and status phase or ignore the
command. Functions cannot issue a NAK or STALL to ignore setup tokens.
If the setup token packet is corrupt, it is ignored and a timeout occurs.

Interrupt

In the USB system, only a host can initiate a USB transaction. The func-
tion can have the host make regularly scheduled polls of itself. The
frequency of the polling is specified by the function during the bus enu-
meration process. This process consists of a host sending out an IN token
packet to the function and the function responding with either a data
packet (if available) or a NAK or STALL (if a data packet is not available).
This is an Interrupt transaction. The maximum allowable data payload for
an interrupt transaction is 64 bytes.

References
The following are references that you might want to use:

• Universal Serial Bus Specification, Revision 1.1, USB Implementers
Forum, www.usb.org

• OHCI Specification, Revision 1.0 USB Implementers Forum,
www.usb.org

• Tools – Keil Software Developer’s Kit P.No. DK51
Keil Software Inc., 16990 Dallas Parkway, Suite 120, Dallas, TX

• USB Device Class Specifications, www.usb.org.Device Developers
can use this to make use of standardized device drivers on the USB
host

• USB System Architecture, Don Anderson, Mindshare Inc.
8-32 ADSP-219x/2192 DSP Hardware Reference

Host (PCI/USB) Port
MCU Register Definitions
MCU registers are defined in four memory spaces grouped by the follow-
ing address ranges:

0x0XXX This address range defines general-purpose USB status and control registers

0x1XXX This address range defines registers that are specific to Endpoint setup and control

0x2XXX This address range defines the registers used for REGIO accesses to the DSP register
space

0x3XXX This address range defines the MCU program memory write address space

Table 8-11. USB MCU Register Definitions

Address Name Comment

0x0000-0x0007 USB SETUP Token Cmd 8 bytes total

0x0008-0x000F USB SETUP Token Data 8 bytes total

0x0010-0x0011 USB SETUP Counter 16 bit counter

0x0012-0x0013 USB Control Misc control including re-attach

0x0014-0x0015 USB Address/Endpoint Address of device/active Endpoint

0x0016-0x0017 USB Frame Number Current frame number

0x1000-0x1001 USB EP4 Description Configures Endpoint

0x1002-0x1003 USB EP4 NAK Counter

0x1004-0x1005 USB EP5 Description Configures Endpoint
ADSP-219x/2192 DSP Hardware Reference 8-33

USB Interface
0x1006-0x1007 USB EP5 NAK Counter

0x1008-0x1009 USB EP6 Description Configures Endpoint

0x100A-0x100B USB EP6 NAK Counter

0x100C-0x100D USB EP7 Description Configures Endpoint

0x100E-0x100F USB EP7 NAK Counter

0x1010-0x1011 USB EP8 Description Configures Endpoint

0x1012-0x1013 USB EP8 NAK Counter

0x1014-0x1015 USB EP8 Description Configures Endpoint

0x1016-0x1017 USB EP9 NAK Counter

0x1018-0x1019 USB EP10 Description Configures Endpoint

0x101A-0x101B USB EP10 NAK Counter

0x101C-0x101D USB EP11 Description Configures Endpoint

0x101E-0x101F USB EP11 NAK Counter

0x1020-0x1021 USB EP STALL Policy

0x1040-0x1043 USB EP1 Code Download
Base Address

Starting address for code download on
Endpoint 1

0x1044-0x1047 USB EP2 Code Download
Base Address

Starting address for code download on
Endpoint 2

0x1048-0x104B USB EP3 Code Download
Base Address

Starting address for code download on
Endpoint 3

Table 8-11. USB MCU Register Definitions (Continued)

Address Name Comment
8-34 ADSP-219x/2192 DSP Hardware Reference

Host (PCI/USB) Port
0x1060-0x1063 USB EP1 Code Current
Write Pointer Offset

Current write pointer offset for code
download on Endpoint 1

0x1064-0x1067 USB EP2 Code Current
Write Pointer Offset

Current write pointer offset for code
download on Endpoint 2

0x1068-0x106B USB EP3 Code Current
Write Pointer Offset

Current write pointer offset for code
download on Endpoint 3

0x2000-0x2001 USB Register I/O Address

0x2002-0x2003 USB Register I/O Data

0x3000-0x3FFF USB MCU Program Mem

Table 8-11. USB MCU Register Definitions (Continued)

Address Name Comment
ADSP-219x/2192 DSP Hardware Reference 8-35

USB Interface
The USB Endpoint Description Register provides the USB core with
information about the Endpoint type, direction, and maximum packet
size. This register is read/write by the MCU only. This register is defined
for Endpoints[4:11].

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TB LT LT TY TY DR PS PS PS PS PS PS PS PS PS PS

Figure 8-3. USB Endpoint Description Register

Table 8-12. USB Endpoint Description Register

PS[9:0] Maximum packet size for Endpoint

LT[1:0] Last transaction handshake indicator bits sent by the ADSP-2192:
00 = Clear 01 = ACK 10 = NAK 11 = ERR

TY[1:0] Endpoint type bits:
00 = DISABLED 01 = ISO 10 = Bulk 11 = Interrupt

DR Endpoint direction bit:
1 = IN 0 = OUT

TB Toggle bit for Endpoint. Reflects the current state of the DATA toggle bit.
8-36 ADSP-219x/2192 DSP Hardware Reference

Host (PCI/USB) Port
The USB Endpoint NAK Counter Register contains the individual NAK
count, stall control, and NAK counter enable bits for Endpoints 4-11. This
register is read/write by the MCU only.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X X X X X NE ST NC NC NC NC

Figure 8-4. USB Endpoint NAK Counter Register

Table 8-13. USB Endpoint NAK Counter Register

NC[3:0] NAK counter. Number of sequential NAKs that have occurred on a given Endpoint.
When N[3:0] is equal to the base NAK counter NK[3:0] value in the Endpoint Stall
Policy register, a zero-length packet or packet less than maxpacketsize will be issued.

ST A value of 1 means: Endpoint is stalled

NE 1 = Enable NAK counter 0 = Disable NAK counter
ADSP-219x/2192 DSP Hardware Reference 8-37

USB Interface
The USB Endpoint Stall Policy Register contains the base NAK count and
FIFO error policy bits for Endpoints 4-11. The STALL status and Data tog-
gle bits for Endpoints 1-3 are included as well. This register is read/write
by the MCU only.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NK NK NK NK X X X X X TB3 TB2 TB1 ST3 ST2 ST1 FE

Figure 8-5. USB Endpoint Stall Policy Register

Table 8-14. USB Endpoint Stall Policy Register

ST[3:1] A value of 1 means the Endpoint is stalled. ST[1] maps to Endpoint 1, ST[2]
maps to Endpoint 2, etc.

TB[3:1] Toggle bit for Endpoint. Reflects the current state of the DATA toggle bit. ST[1]
maps to Endpoint 1, ST[2] maps to Endpoint 2, etc.

NK[3:0] Base NAK counter. Determines how many sequential NAKs are issued before
sending zero length packet, or a packet less than the maximum packet size, on any
given Endpoint.

FE FIFO error policy. A value of 1 means: Endpoint FIFO is overrun/underrun,
STALL Endpoint
8-38 ADSP-219x/2192 DSP Hardware Reference

Host (PCI/USB) Port
The USB Endpoint 1 Code Download Base Address Register contains an
18 bit address which corresponds to the starting location for DSP code
download on Endpoint 1. This register is read/write by the MCU only.
The most significant bit (DS bit) selects either DSP1 PM address space
(DS=0) or DSP2 PM address space (DS=1).

LSW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AD AD AD AD AD AD AD AD AD AD AD AD AD AD AD AD

MSW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X X X X X X X X X DS AD

Figure 8-6. USB Endpoint 1 Code Download Base Address Register
ADSP-219x/2192 DSP Hardware Reference 8-39

USB Interface
The USB Endpoint 2 Code Download Base Address Register contains an
18-bit address that corresponds to the starting location for DSP code
download on Endpoint 2. This register is read/write by the MCU only.
The most significant bit (DS bit) selects either DSP1 PM address space
(DS=0) or DSP2 PM address space (DS=1).

LSW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AD AD AD AD AD AD AD AD AD AD AD AD AD AD AD AD

MSW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X X X X X X X X X DS AD

Figure 8-7. USB Endpoint 2 Code Download Base Address Register
8-40 ADSP-219x/2192 DSP Hardware Reference

Host (PCI/USB) Port
The USB Endpoint 3 Code Download Base Address Register contains an
18-bit address that corresponds to the starting location for DSP code
download on Endpoint 3. This register is read/write by the MCU only.
The most significant bit (DS bit) selects either DSP1 PM address space
(DS=0) or DSP2 PM address space (DS=1).

LSW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AD AD AD AD AD AD AD AD AD AD AD AD AD AD AD AD

MSW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X X X X X X X X X DS AD

Figure 8-8. USB Endpoint 3 Code Download Base Address Register
ADSP-219x/2192 DSP Hardware Reference 8-41

USB Interface
The USB Endpoint 1 Code Download Current Write Pointer Offset Reg-
ister contains an 18-bit address that corresponds to the current write
pointer offset from the base address register for DSP code download on
Endpoint 1. The sum of this register and the EP1 code download base
address register represents the last DSP PM location written.

This register is read by the MCU only and is cleared to 3FFFF (-1) when
the Endpoint 1 Code Download Base Address Register is updated.

LSW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AD AD AD AD AD AD AD AD AD AD AD AD AD AD AD AD

MSW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X X X X X X X X X AD AD

Figure 8-9. USB Endpoint 1 Code Download Current Write Pointer
Offset Register
8-42 ADSP-219x/2192 DSP Hardware Reference

Host (PCI/USB) Port
The USB Endpoint 2 Code Download Current Write Pointer Offset Reg-
ister contains an 18-bit address that corresponds to the current write
pointer offset from the base address register for DSP code download on
Endpoint 2. The sum of this register and the EP2 code download base
address register represents the last DSP PM location written.

This register is read by the MCU only and is cleared to 3FFFF (-1) when
the Endpoint 2 Code Download Base Address Register is updated.

LSW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AD AD AD AD AD AD AD AD AD AD AD AD AD AD AD AD

MSW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X X X X X X X X X AD AD

Figure 8-10. USB Endpoint 2 Code Download Current Write Pointer
Offset Register
ADSP-219x/2192 DSP Hardware Reference 8-43

USB Interface
The USB Endpoint 3 Code Download Current Write Pointer Offset Reg-
ister contains an 18-bit address that corresponds to the current write
pointer offset from the base address register for DSP code download on
Endpoint 3. The sum of this register and the EP3 code download base
address register represents the last DSP PM location written.

This register is read by the MCU only and is cleared to 3FFFF (-1) when
the Endpoint 3 Code Download Base Address Register is updated.

The USB SETUP Token Command Register is defined as 8 bytes long
and contains the data sent on the USB from the most recent SETUP
transaction. This register is read by the MCU only.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AD AD AD AD AD AD AD AD AD AD AD AD AD AD AD AD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X X X X X X X X X AD AD

Figure 8-11. USB Endpoint 3 Code Download Current Write Pointer
Offset Register
8-44 ADSP-219x/2192 DSP Hardware Reference

Host (PCI/USB) Port

If the most recent SETUP transaction involves a data OUT stage, the USB
SETUP Token Data Register is defined as 8 bytes long and contains the
data sent on the USB during the data stage. This is also where the MCU
writes data to be sent in response to a SETUP transaction involving a data
IN stage. This register is read/write by the MCU only.

Table 8-15. USB SETUP Token Command Register

Byte 7 0

0 bmRequest

1 b Request

2 w Value (L)

3 w Value (H)

4 w Index (L)

5 w Index (H)

6 w Length (L)

7 w Length(H)
ADSP-219x/2192 DSP Hardware Reference 8-45

USB Interface

Table 8-16. USB SETUP Token Data Register

Byte 7 0

0 Data 0

1 Data 1

2 Data 2

3 Data 3

4 Data 4

5 Data 5

6 Data 6

7 Data 7
8-46 ADSP-219x/2192 DSP Hardware Reference

Host (PCI/USB) Port
The USB SETUP Counter Register provides information about the total
size of the SETUP transaction data stage. This register is read/write by the
MCU only.

The counter hardware is a modulo 4-bit down counter used for tallying
data bytes in both the IN and OUT data stages of SETUP transactions. As
such, the count value stored has different meanings.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X X X X X X X C3 C2 C1 C0

Figure 8-12. USB SETUP Counter Register

C[3:0] Counter bits.

IN Transfers: The MCU loads the counter with the number of bytes to transfer (must be 8
or less since the USB Setup Token Data Register file is 8 bytes maximum).
The USB interface then decrements the count value after each byte is trans-
ferred to the host.

OUT Transfers: Starting from a cleared value of 0, the counter is decremented with each byte
received from the host, including the two CRC bytes. For example, if 8 bytes
are received, the count value progresses from 15, 14, 13, etc. to a value of 6
(inclusive is the 2 CRC bytes). The MCU reads the value and subtracts it
from 14 to determine the actual number of data bytes in the USB Setup
Token Register file (14 - 6 = 8 bytes).
ADSP-219x/2192 DSP Hardware Reference 8-47

USB Interface
The USB Register I/O Address Register contains the address of the
ADSP-2192 register to be read/written. This register is read/write by the
MCU only.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

Figure 8-13. USB Register I/O Address Register

Table 8-17. USB Register I/O Address Register

A[15] MCU sets to 1 to notify the PDC Register Interface block to start ADSP-2192
read/write cycle. PDC Register Interface block clears to 0 to notify MCU the
read/write cycle has completed.

A[14] 1 = WRITE, 0 = READ

A[13:0] ADSP-2192 address to read/write
8-48 ADSP-219x/2192 DSP Hardware Reference

Host (PCI/USB) Port
The USB Register I/O Address Register contains the data of the
ADSP-2192 register that has been read or is to be written. This register is
read/write by the MCU only.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Figure 8-14. USB Register I/O Data Register

Table 8-18. USB Register I/O Data Register

D[15:0] During READ this register contains the data read from the ADSP-2192, during
WRITE this register is the data to be written to the ADSP-2192
ADSP-219x/2192 DSP Hardware Reference 8-49

USB Interface
The USB Control Register controls various USB functions. This register is
read/write by the MCU only.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

INT ISE IIN IOU BY X X ER X X X X RW MO BB DI

Figure 8-15. USB Control Register

Table 8-19. USB Control Register

MO A value of 1 means: MCU has completed boot sequence and is ready to respond to
USB commands

DI A value of 1 means: Disconnect CONFIG device and enumerate again using the
downloaded MCU configuration

BB A value of 1 means: After reset boot from MCU RAM, 0 = after reset boot from
MCU ROM

RW A value of 1 means: Enables remote wake-up capability, 0 = disables remote wake-up
capability

INT Active interrupt for the 8051 MCU

ISE Current interrupt is for a SETUP token

IIN Current interrupt is for an IN token sent with a non zero length data stage

IOU Current interrupt is for an OUT token received with a non zero length data stage

BY Busy bit. A value of 1 means: MCU is busy processing a command. USB interface
responds with NAK to further IN/OUT requests from the host until MCU clears this
bit.

ER Error in the current SETUP transaction. Generate STALL condition on EP0.
8-50 ADSP-219x/2192 DSP Hardware Reference

Host (PCI/USB) Port
The USB Address/Endpoint Register contains the USB address and active
Endpoint. This register is read/write by the MCU only.

The USB Frame Number Register contains the last USB frame number.
This register is read by the MCU only.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X EP3 EP2 EP1 EP0 A6 A5 A4 A3 A2 A1 A0

Figure 8-16. USB Address/Endpoint Register

Table 8-20. USB Address/Endpoint Register

A[6:0] USB address assigned to device

EP[3:0] USB last active Endpoint

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X FN1 FN9 FN8 FN7 FN6 FN5 FN4 FN3 FN2 FN1 FN1 FN0

Figure 8-17. USB Frame Number Register

Table 8-21. USB Frame Number Register

FN[10:0] USB frame number
ADSP-219x/2192 DSP Hardware Reference 8-51

USB Interface
Config USB Device Definitions and
Descriptor Tables

CONFIG DEVICE is the default USB device obtained when this function
is initially plugged into the HOST. It is a single configuration containing
only Endpoint 0. It allows the ADSP-2192 to be enumerated by the
HOST. Following are the tables that go with the device. These tables
reside in the MCU ROM memory space and are coded in the firmware,
which resides on the ROM. Please refer to the USB specification for a
description of these tables.

Table 8-22. CONFIG DEVICE Device Descriptor

Offset Field Description Value

0 bLength Length = 18 bytes 12H

1 bDescriptorType Type = DEVICE 01H

2 - 3 bcdUSB USB Specification 1.1 0110H

4 bDeviceClass Device class vendor specific FFH

5 bDeviceSubClass Device sub-class vendor specific FFH

6 bDeviceProtocol Device protocol vendor specific FFH

7 bMaxPacketSize Maximum packet size for EP0 = 8 bytes 08H

8 - 9 idVendor (L) Vendor ID (L) = 0456 ADI 0456H

10 - 11 idProduct (L) Product ID (L) = ADSP-2192 2192H

12 - 13 bcdDevice (L) Device release number = 1.00 0100H

14 iManufacturer Manufacturer index string 01H

15 iProduct Product index string 02H
8-52 ADSP-219x/2192 DSP Hardware Reference

Host (PCI/USB) Port
! Offset fields in bold can be overwritten by the Serial EEPROM

16 iSerialNumber Serial number index string 00H

17 bNumConfigurations Number of configurations = 1 01H

Table 8-23. CONFIG DEVICE Interface Descriptor

Offset Field Description Value

 0 bLength Descriptor Length = 9 bytes 09H

 1 bDescriptorType Descriptor Type = Interface 04H

 2 bInterfaceNumber Number of Interface = 0 00H

 3 bAlternateSetting Alternate Setting = 0 00H

 4 bNumEndpoints Number of Endpoints = 0 00H

 5 bInterfaceClass Interface class vendor specific FFH

 6 bInterfaceSubClass Interface sub-class vendor specific FFH

 7 bInterfaceProtocol Interface protocol vendor specific FFH

 8 iInterface Interface Index String 00H

Table 8-22. CONFIG DEVICE Device Descriptor (Continued)

Offset Field Description Value
ADSP-219x/2192 DSP Hardware Reference 8-53

USB Interface
Table 8-24. CONFIG DEVICE String Descriptor Index 0

Offset Field Description Value

 0 bLength Descriptor Length = 4 bytes 04H

 1 bDescriptorType Descriptor Type = String 03H

 2 wLANGID[0] LangID = 0409 (US English) 0409H

Table 8-25. CONFIG DEVICE String Descriptor Index 1 (Manufacturer)

Offset Field Description Value

 0 bLength Descriptor Length = 10 bytes 0AH

 1 bDescriptorType Descriptor Type = String 03H

 2-9 bString ADI

Table 8-26. CONFIG DEVICE String Descriptor Index 2 (Product)

Offset Field Description Value

 0 bLength Descriptor Length = 22 bytes 16H

 1 bDescriptorType Descriptor Type = String 03H

 2-21 bString USB DEVICE
8-54 ADSP-219x/2192 DSP Hardware Reference

Host (PCI/USB) Port
Vendor-Specific Commands
In addition to the normally defined USB standard device requests, the fol-
lowing vendor-specific device requests are supported with the use of EP0.
These requests are issued from the host driver via normal SETUP transac-
tions on the USB.

! Address <15:0> is the first address where code download begins; the
address is incremented automatically after each byte is written. USB
MCUCODE is a three-stage control transfer with an OUT data
stage. Stage 1 is the SETUP stage, stage 2 is the data stage involving
the OUT packet, and stage 3 is the status stage. The length of the
data stage is determined by the driver and is specified by the total
length of the MCU code to be downloaded.

Table 8-27. USB MCUCODE (Code Download)

Offset Field Size Value Description

0 bmRequest 1 0x40 Vendor Request, OUT

1 bRequest 1 0xA1 USB MCUCODE

2 wValue (L) 1 XXX Address <0:7>

3 wValue (H) 1 XXX Address <8:15>

4 wIndex (L) 1 0x00

5 wIndex (H) 1 0x00

6 wLength (L) 1 0xXX Length = xx bytes

7 wLength (H) 1 0xXX
ADSP-219x/2192 DSP Hardware Reference 8-55

USB Interface
! Address <15:15> = 1 indicates a write to the MCU register space,
and Address <15:15> = 0 indicates a write to the DSP register space.
When accessing DSP register space, the MCU must write the data
to be written into the USB Register I/O Data register and write the
address to be written to the USB Register I/O Address register. Bit
15 of the USB Register I/O Address register starts the transaction,
and bit 14 is set to one to indicate a WRITE. The MCU then polls
Bit 15 of the USB Register I/O Address Register looking for a value
of 0, which indicates that the write cycle has completed.

USB REGIO (register write) is a three stage control transfer with an OUT
data stage. Stage 1 is the SETUP stage, stage 2 is the data stage involving
the OUT packet, and stage 3 is the status stage.

Table 8-28. USB REGIO (Register Write)

Offset Field Size Value Description

0 bmRequest 1 0x40 Vendor Request, OUT

1 bRequest 1 0xA0 USB REGIO

2 wValue (L) 1 XXX Address <0:7>

3 wValue (H) 1 XXX Address <8:15>

4 wIndex (L) 1 0x00

5 wIndex (H) 1 0x00

6 wLength (L) 1 0x02 Length = 02 bytes

7 wLength (H) 1 0x00
8-56 ADSP-219x/2192 DSP Hardware Reference

Host (PCI/USB) Port
! Address <15:15> = 1 indicates a read from the MCU register space,
and Address <15:15> = 0 indicates a read from the DSP register
space. When accessing DSP register space, the MCU must write the
address to be read to the USB Register I/O Address register. Bit 15
of the USB Register I/O Address register starts the transaction and
bit 14 is set to zero to indicate a READ. The data read is placed into
the USB Register I/O Data register. The MCU polls Bit 15 of the
USB Register I/O Address Register, looking for a value of 0, which
indicates that the read cycle has completed.

USB REGIO (register read) is a three-stage control transfer with an IN
data stage. Stage 1 is the SETUP stage, stage 2 is the data stage involving
the IN packet, and stage 3 is the status stage.

Table 8-29. USB REGIO (Register Read)

Offset Field Size Value Description

0 bmRequest 1 0xC0 Vendor Request, IN

1 bRequest 1 0xA0 USB REGIO

2 wValue (L) 1 XXX Address <0:7>

3 wValue (H) 1 XXX Address <8:15>

4 wIndex (L) 1 0x00

5 wIndex (H) 1 0x00

6 wLength (L) 1 0x02 Length = 02 bytes

7 wLength (H) 1 0x00
ADSP-219x/2192 DSP Hardware Reference 8-57

USB Interface
DSP Register Definitions
For each Data Endpoint, four registers provide a memory buffer in the
DSP DM (Data Memory) space. These registers are defined for each End-
point shared by all interfaces for a total of 4x8 = 32 registers. These
registers are read/write by the DSP. The USB Data Pipe hardware block
also has access to them as part of its buffer management duties.

USB DSP Register Definitions

Table 8-30. USB DSP Register Definitions

Page Address Name

0x0C 0x00-0x03 DSP Memory Buffer Base Addr EP4

0x0C 0x04-0x05 DSP Memory Buffer Size EP4

0x0C 0x06-0x07 DSP Memory Buffer RD Offset EP4

0x0C 0x08-0x09 DSP Memory Buffer WR Offset EP4

0x0C 0x10-0x13 DSP Memory Buffer Base Addr EP5

0x0C 0x14-0x15 DSP Memory Buffer Size EP5

0x0C 0x16-0x17 DSP Memory Buffer RD Offset EP5

0x0C 0x18-0x19 DSP Memory Buffer WR Offset EP5

0x0C 0x20-0x23 DSP Memory Buffer Base Addr EP6

0x0C 0x24-0x25 DSP Memory Buffer Size EP6

0x0C 0x26-0x27 DSP Memory Buffer RD Offset EP6

0x0C 0x28-0x29 DSP Memory Buffer WR Offset EP6
8-58 ADSP-219x/2192 DSP Hardware Reference

Host (PCI/USB) Port
0x0C 0x30-0x33 DSP Memory Buffer Base Addr EP7

0x0C 0x34-0x35 DSP Memory Buffer Size EP7

0x0C 0x36-0x37 DSP Memory Buffer RD Offset EP7

0x0C 0x38-0x39 DSP Memory Buffer WR Offset EP7

0x0C 0x40-0x43 DSP Memory Buffer Base Addr EP8

0x0C 0x44-0x45 DSP Memory Buffer Size EP8

0x0C 0x46-0x47 DSP Memory Buffer RD Offset EP8

0x0C 0x48-0x49 DSP Memory Buffer WR Offset EP8

0x0C 0x50-0x53 DSP Memory Buffer Base Addr EP9

0x0C 0x54-0x55 DSP Memory Buffer Size EP9

0x0C 0x56-0x57 DSP Memory Buffer RD Offset EP9

0x0C 0x58-0x59 DSP Memory Buffer WR Offset EP9

0x0C 0x60-0x63 DSP Memory Buffer Base Addr EP10

0x0C 0x64-0x65 DSP Memory Buffer Size EP10

0x0C 0x66-0x67 DSP Memory Buffer RD Offset EP10

0x0C 0x68-0x69 DSP Memory Buffer WR Offset EP10

0x0C 0x70-0x73 DSP Memory Buffer Base Addr EP11

0x0C 0x74-0x75 DSP Memory Buffer Size EP11

0x0C 0x76-0x77 DSP Memory Buffer RD Offset EP11

Table 8-30. USB DSP Register Definitions (Continued)

Page Address Name
ADSP-219x/2192 DSP Hardware Reference 8-59

USB Interface
0x0C 0x78-0x79 DSP Memory Buffer WR Offset EP11

0x0C 0x80-0x81 USB Descriptor Vendor ID

0x0C 0x84-0x85 USB Descriptor Product ID

0x0C 0x86-0x87 USB Descriptor Release Number

0x0C 0x88-0x89 USB Descriptor Device Attributes

Table 8-30. USB DSP Register Definitions (Continued)

Page Address Name
8-60 ADSP-219x/2192 DSP Hardware Reference

Host (PCI/USB) Port
The DSP Memory Buffer Base Addr Register points to the base address for
the DSP memory buffer assigned to this Endpoint.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 X X X X X X X X X X X X X X DS BA

most significant word

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BA BA BA BA BA BA BA BA BA BA BA BA BA BA BA BA

least significant word

Figure 8-18. DSP Memory Buffer Base Addr Register

Table 8-31. DSP Memory Buffer Base Addr Register

[DS, BA16:0] Memory Buffer Base Address

DS DSP Memory select bit. 0 = DSP1 memory space, 1 = DSP2 memory space

BA[16:0] Lower 17 address bits
ADSP-219x/2192 DSP Hardware Reference 8-61

USB Interface
The DSP Memory Buffer Size Register indicates the size of the DSP mem-
ory buffer assigned to this Endpoint.

The DSP Memory Buffer RD Pointer Offset Register provides the offset
from the base address for the read pointer of the memory buffer assigned
to this Endpoint.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SZ SZ SZ SZ SZ SZ SZ SZ SZ SZ SZ SZ SZ SZ SZ SZ

Figure 8-19. DSP Memory Buffer Size Register

Table 8-32. DSP Memory Buffer Size Register

SZ[15:0] Memory Buffer Size

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RD RD RD RD RD RD RD RD RD RD RD RD RD RD RD RD

Figure 8-20. DSP Memory Buffer RD Pointer Offset Register

Table 8-33. DSP Memory Buffer RD Pointer Offset Register

RD[15:0] Memory Buffer RD Offset
8-62 ADSP-219x/2192 DSP Hardware Reference

Host (PCI/USB) Port
The DSP Memory Buffer WR Pointer Offset Register provides the offset
from the base address for the write pointer of the memory buffer assigned
to this Endpoint.

The Vendor ID returned by the GET DEVICE DESCRIPTOR command
is contained in the USB Descriptor Vendor ID Register. The DSP can
change the Vendor ID by writing to this register during the Serial
EEPROM initialization. The default Vendor ID, 0x0456, corresponds to
Analog Devices.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WR WR WR WR WR WR WR WR WR WR WR WR WR WR WR WR

Figure 8-21. DSP Memory Buffer WR Pointer Offset Register

Table 8-34. DSP Memory Buffer WR Pointer Offset Register

WR[15:0] Memory Buffer WR Offset

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

V15 V14 V13 V12 V11 V10 V9 V8 V7 V6 V5 V4 V3 V2 V1 V0

Figure 8-22. USB Descriptor Vendor ID

Table 8-35. USB Descriptor Vendor ID

V[15:0] Vendor ID (default = 0x0456)
ADSP-219x/2192 DSP Hardware Reference 8-63

USB Interface
The Product ID returned by the GET DEVICE DESCRIPTOR com-
mand is contained in the USB Descriptor Product ID Register. The DSP
can change the Product ID by writing to this register during the Serial
EEPROM initialization. The default Product ID is 0x2192.

The Release Number returned by the GET DEVICE DESCRIPTOR
command is contained in USB Descriptor Release Number Register. The
DSP can change the Release Number by writing to this register during the
Serial EEPROM initialization. The default Release Number is 0x0100
which corresponds to version 01.00

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

P15 P14 P13 P12 P11 P10 P9 P8 P7 P6 P5 P4 P3 P2 P1 P0

Figure 8-23. USB Descriptor Product ID

Table 8-36. USB Descriptor Product ID

P[15:0] Product ID (default = 0x2192)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R15 R14 R13 R12 R11 R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0

Figure 8-24. USB Descriptor Release Number

Table 8-37. USB Descriptor Release Number

R[15:0] Release Number (default = 0x0100)
8-64 ADSP-219x/2192 DSP Hardware Reference

Host (PCI/USB) Port
The device-specific attributes returned by the GET DEVICE DESCRIP-
TOR command are contained in this register. The DSP can change the
attributes by writing to this register during the Serial EEPROM initializa-
tion. The default attributes are 0xFA80, which corresponds to
bus-powered, no remote wake-up, and maximum power = 500mA.

DSP Code Download
Since EP0 has a maximum packet size of 8, downloading DSP code on
EP0 can be inefficient when operating on a UHCI controller, which per-
mits only a fixed number of control transactions per frame. Therefore to
gain better throughput for code download, downloading of DSP code
involves synchronizing a control SETUP command on EP0 with BULK
OUT commands on Endpoints 1, 2, or 3. Each Endpoint has an associ-
ated DSP download address that is set by using the following SETUP
command.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C7 C6 C5 C4 C3 C2 C1 C0 1 SP RW 0 0 0 0 0

Figure 8-25. USB Descriptor Device Attributes

Table 8-38. USB Descriptor Device Attributes

SP 1 = self-powered, 0 = bus-powered (default = 0)

RW 1 = have remote wake-up capability, 0 = no remote wake-up capability (default = 0)

C[7:0] Power consumption from bus expressed in 2mA units (default = 0xFA 500mA)
ADSP-219x/2192 DSP Hardware Reference 8-65

USB Interface
Since three possible interfaces are supported, each interface has its own
DSP download address and uses its own BULK pipe to download code.
The driver for each interface must set the download address before using
the BULK pipe to download DSP code. The download address increments
as each byte of data is sent on the BULK pipe to the DSP.

Since DSP instructions are 3 bytes long and USB BULK pipes have even
number packet sizes, the instructions to be downloaded must be formatted
into 4-byte groups with the least significant byte always zero. The USB
interface strips off the least significant bits and formats the DSP instruc-
tion before writing it into the program memory. For example, to write the
3-byte opcode, 0x400000, to DSP program memory, the driver sends
0x40000000 down the BULK pipe.

The following example illustrates the proper order of commands and syn-
chronizing that the driver must follow:

1. Device enumerates with two interfaces. Each interface has the capa-
bility to download DSP code and can initiate at any time.

2. The driver for Interface 1 begins code download by sending the
USB REGIO (write) command with the starting download
address. The driver must wait for this command to finish before
starting code download.

3. The driver for Interface 2 begins code download by sending the
USB REGIO (write) command with the starting download
address. The driver must wait for this command to finish before
starting code download.

4. Each driver now streams the code to be downloaded to the DSP:
Driver 1 onto BULK EP1 for Interface 1, and Driver 2 onto BULK
EP2 for Interface 2. The code is written to the DSP in three-byte
instructions starting at the location specified by the USB REGIO
(Write) command. The driver waits for each command to finish
before sending a new code download address.
8-66 ADSP-219x/2192 DSP Hardware Reference

Host (PCI/USB) Port
5. If there is more code to be downloaded at a different starting
address, the driver begins the entire sequence, again using steps
1-4.

General Comments

DSP code download is available only after the ADSP-2192 has re-enumer-
ated using application-specific, MCU RAM-based firmware. The DSP
code download functionality is not available in the MCU boot ROM for
the default CONFIG device.

After setting the download addresses using the USB REGIO (write) com-
mand, code download can be initiated for any length using normal BULK
traffic.

Starting DSP Code Execution

During the code download phase, both DSPs execute a command polling
loop out of DSP ROM. This command polling loop monitors 2 locations
of DSP DM, waiting for a Jump instruction to be inserted, which would
vector off the respective DSP to the user-application code. In order to
write to these locations in DSP DM, two of the 8 USB Data Endpoints
would have to be programmed as OUT pipes for downloading the jump
code patches; one endpoint is targeted for DSP 1, and the other endpoint
is targeted for DSP 2.

Table 8-39. DSP DM Memory Content of the Polled Locations

DSP 1
Address

DSP 2
Address

Contents

0x00000 0x20000 Write JUMP Opcode here

0x00001 0x20001 Write NOP Opcode here (a don’t care)

0x00002 0x20002 Write JUMP Address here
ADSP-219x/2192 DSP Hardware Reference 8-67

USB Interface
Some facts to keep in mind on the behavior of the USB Data Endpoints:

• DSP Data Endpoints follow a pre-increment addressing scheme.
The first address written is: Write Pointer + 1 + Base Address

• The Read and Write pointers control data movement in and out of
the DSP Memory Buffers and are not allowed to move past one
another. Therefore, to download instructions to DM, the Read
Pointer must be positioned so that it does not interfere with the
auto-incrementing/auto-rolling nature of the Write Pointer. Since
this example calls for 3 writes to DM, the Read Pointer must be
positioned at least 4 locations greater than the starting Write
Pointer value.

• The Size value indicates the length of the memory buffer and is used
as a trigger mechanism for both the Write and Read pointers to
automatically roll back to the top of the buffer as indicated by the
Base Address value.

The following is an outline of the steps involved using EndPoints 4 and 5
to download these Jump patches:

1. Program EndPoints 4 and 5 Data Memory Buffer Registers as
follows:

Base Address = 0x00000 for DSP 1, 0x20000 for DSP 2

Size Value = 0x0003 (Causes Write Pointer to roll back to top:
location 0x00000 for DSP 1, 0x20000 for DSP 2)

Read Pointer = 0x0010 (A non-essential value that allows the
Write Pointer to increment and roll properly.)

Write Pointer = 0x0000
8-68 ADSP-219x/2192 DSP Hardware Reference

Host (PCI/USB) Port
2. Program EndPoints 4 and 5 Pipe Traits:

Steps 1 and 2 can be performed only after MCU RAM-based firmware has
been downloaded and the device has been enumerated for a second time.
These steps could be programming steps executed as part of MCU startup
code. See the section on device initialization process for more details on
USB interface configuration.

3. Start USB OUT transaction of a 6-byte packet that contains the
NOP Opcode, the Jump Address and the Jump Opcode.

a. Data packet bytes 1 and 2 are the NOP Opcode and are written
to DM locations 0x00001 for DSP 1 or 0x20001 for DSP 2.

b. Data packet bytes 3 and 4 are the Jump Address and are written
to DM locations 0x00002 for DSP 1 or 0x20002 for DSP 2.

c. Data packet bytes 5 and 6 are the Jump Opcode and are written
to DM locations 0x00000 for DSP 1 or 0x20000 for DSP 2.

Once the Jump Opcode is loaded, the DSPs vector to the desired address
and begin executing user code. This code can re-program the DSP Mem-
ory Buffer Register values of Endpoints 4 and 5 for normal buffer use.

Be sure to load the Jump Address location before loading the Jump
Opcode to insure the DSP has a valid address for vectoring. The above
programming sequence of the endpoint memory buffer registers provides
for this behavior.

Type: BULK

Direction: OUT

Maxpacketsize: 64 (Could also be 8,16, or 32)
ADSP-219x/2192 DSP Hardware Reference 8-69

USB Interface
MCU ROM Firmware Structure

The MCU ROM firmware is structured into the following three main
sections:

• Device, Configuration, Interface, and String Descriptor tables for
the default USB config device that is enumerated during initial
attachment to the USB bus.

• Code to support all the standard USB commands except:

• Set Descriptor

• Sync Frame

• Get Descriptor support for Interface Descriptor

• Code to support the following vendor specific commands:

• USB REGIO – Write and Read of chip registers (both MCU
space and DSP space)

• USB MCUCODE – Download of MCU firmware into PM
RAM.

Upon initial startup from PM ROM, the MCU performs the following
functions prior to responding to any USB control traffic from the host:

1. Clears all 256 bytes of DM

2. Sets the USB interface in the device Default State. (See the USB
specification Chapter 9 for details on device states.)

3. Enables its external interrupt 0 which is used to handshake between
the USB Endpoint 0 hardware and the MCU.

4. Reads the Serial EEPROM registers and overwrites the changeable
fields in the USB descriptor tables for the default config device.
8-70 ADSP-219x/2192 DSP Hardware Reference

Host (PCI/USB) Port
5. Sets the least significant bit of DSP Mailbox register 0x24 as a sig-
nal to the DSP that the MCU has completed reading the Serial
EEPROM registers and updating the USB descriptor tables.

6. Writes the MCU OK bit (bit 2 of USB Control Register) to signal
the USB Endpoint 0 hardware that the MCU has completed ini-
tialization and is ready to respond to USB commands.

Once it has finished the above sequence, the MCU enters an idle loop,
waiting from an interrupt from the USB Endpoint 0 hardware. When the
MCU gets an interrupt, it jumps to its interrupt service routine in which
it decodes the USB command and calls the appropriate command service
routine.

As stated earlier, the MCU initially sets the USB interface into the device
Default State. As the enumeration process with the USB host takes place,
the MCU controls the movement of the USB interface from the Default
State to the Addressed State, and finally to the Configuration State.

Application-specific MCU RAM-based firmware should be based on the
structures used in the MCU ROM firmware for supporting the standard
USB commands and the two vendor-specific commands. Typical
RAM-based code should be designed as follows:

1. Additional Interface, Endpoint, and/or String Descriptor tables
which detail the characteristics of the DSP Code download and
Data Endpoints to be enumerated.

2. A copy of the ROM code which supports the standard USB com-
mands and the two vendor-specific commands.
ADSP-219x/2192 DSP Hardware Reference 8-71

USB Interface
3. Any USB class-specific commands that maybe necessary for this
application. These should follow the same programming models
used in the ROM for either the standard commands or the ven-
dor-specific commands.

4. Section of code that programs the personalities of all enumerated
DSP code and data Endpoints via the Endpoint Description, NAK
Counter, and Endpoint Stall Policy registers.

MCU Firmware Programmers Model (Endpoint 0)

The MCU and Endpoint 0 hardware block communicate with each other
by a series of signaling bits. For any command that meets the proper USB
protocol and contains the correct address, the Endpoint 0 hardware block
and MCU begin the following exchange:

1. Endpoint 0 hardware performs unconditional and conditional set-
ting of the following interrupt bits located in the high byte of the
USB Control Register:

a. Always sets INT and BY bits.

b. Sets ISE if Setup Token arrived indicating new USB command.

c. Sets IIN if Setup Token arrived or ACK received from a previous
device-to-host transfer of a non-zero length data packet in
response to an IN token from the host.

d. Sets IOU if Setup Token arrived or OUT with a non-zero length
Data Stage received from the host.
8-72 ADSP-219x/2192 DSP Hardware Reference

Host (PCI/USB) Port
2. MCU jumps to its interrupt service routine and performs the
following:

a. Clears the INT bit of USB Control Register.

b. Determines if the interrupt is for a new command or a command
in progress. If new command, clears its “command_complete”
status.

c. Reads the USB SETUP Token Command Register to determine
the command request and performs general error checking of the
command fields.

3. MCU vectors off to the appropriate command service routine. The
action taken depends on the command being serviced.

The firmware performs error checking on the command fields of the USB
SETUP Token Command Register. If it encounters an incorrect field, the
MCU instructs the Endpoint 0 hardware block to send the STALL com-
mand on the USB bus:

1. Clear USB SETUP Counter Register

2. Set ER bit in the USB Control Register

The structure of the MCU firmware for handling either the standard USB
commands (refer to USB Specification, Revision 1.1, Chapter 9) or the
two vendor-specific commands maps to one of the following categories:

• OUT type commands with no data stage (USB Specification, Revi-
sion 1.1, Chapter 9)

• IN type commands with a single data stage (USB Specification,
Revision 1.1, Chapter 9)

• IN type commands with variable-length data stages (USB Specifica-
tion, Revision 1.1, Chapter 9)
ADSP-219x/2192 DSP Hardware Reference 8-73

USB Interface
• IN or OUT type commands with a single data stage that are
non-Chapter 9 specific.

• MCU Firmware Download to RAM

As noted, the first three types are specific to the standard USB requests
outlined in Chapter 9 of the USB specification. Type 4 is for any ven-
dor-specific command or USB class-specific request and is used to access
device hardware either local to the USB block (MCU register space) or
chip-wide (DSP register space via the PDC bus). Type 5 is specific to
downloading MCU firmware to PM RAM.

Type 1: OUTS with No Data Stages (Chapter 9 Specific)

Commands of this type usually involve writes to certain registers or
changes to hardware states without the need of additional data stages in
the transaction. Once the appropriate task is completed, the MCU per-
forms the following housekeeping steps:

1. Clears the USB Setup Counter Register

2. Clears its internal ‘command_complete’ status variable

3. Clears the high byte of USB Control Register

MCU returns to its idle loop to await the next interrupt from the End-
point 0 hardware block. Examples in the MCU firmware that support
USB commands of this type:

Set Feature, Clear Feature, Set Address
8-74 ADSP-219x/2192 DSP Hardware Reference

Host (PCI/USB) Port
Type 2: INS with Single Data Stage (Chapter 9 Specific)

1. Read the USB Setup Token Command Register to check for com-
mand byte integrity. If any errors, instruct the Endpoint 0
hardware block to issue STALL command:

a. Clear the USB SETUP Counter Register

b. Set the ER bit in the USB Control Register

c. Return to the MCU idle loop

2. Load the appropriate data to be transmitted into the USB Setup
Token Data Register.

3. Load the USB Setup Counter Register with the number of bytes to
be transmitted.

4. Set the internal ‘command_complete’ status variable.

5. Clear the high byte of the USB Control Register

The MCU returns to its idle loop to await the next interrupt from the
Endpoint 0 hardware block.

Examples in the MCU firmware that support USB commands of this type:

Get Status, Get Configuration

Type 3: INS with Variable Length Data Stages (Chapter 9 Specific)

1. Read the upper byte of the USB Control Register to determine if
this is the first time entering this code segment. Initial entry is
indicated by bits ISE, IIN, IOU, and BY set to a 1.
ADSP-219x/2192 DSP Hardware Reference 8-75

USB Interface
2. If initial entry, read the USB Setup Token Command Register to
check for command byte integrity. If any errors, instruct the End-
point 0 hardware block to issue STALL command:

a. Clear the USB SETUP Counter Register

b. Set the ER bit in the USB Control Register

c. Return to the MCU idle loop

3. If no errors, read USB Setup Token Command Register bytes 6
and 7 to determine the number of bytes to transfer.

4. Begin a data transfer code segment. Re-entry into this segment
repeats until all the data is sent. Proper code structure is:

a. Load the appropriate data to be transmitted into the USB Setup
Token Data Register

b. Load the USB Setup Counter Register with the number of bytes
to be transmitted

c. Set the appropriate state of the internal ‘command_complete’
status variable. (If last transfer, ‘command_complete = 1. If more
data to transfer, ‘command_complete’ = 0).

5. Clear the high byte of the USB Control Register.

MCU returns to its idle loop to await the next interrupt from the End-
point 0 hardware block. Examples in the MCU firmware that support
USB commands of this type:

Get Descriptor
8-76 ADSP-219x/2192 DSP Hardware Reference

Host (PCI/USB) Port
Type 4: INS/OUTS with Single Data Stage for Non-Chapter 9 Specific
Commands

1. Read the upper byte of the USB Control Register to determine if
this is the first time entering this code segment. Initial entry is
indicated by bits ISE, IIN, IOU, and BY set to a 1.

2. Determine if the access is to MCU space versus DSP space by
interrogating the MSB.

3. USB Setup Token Command Register Byte 3 (1 = MCU, 0 =
DSP).

4. If MCU space, convert bytes 2 and 3 of the USB Setup Token
Command Register into the proper MCU address. If DSP space,
load bytes 2 and 3 directly into the USB Register I/O Address
Register.

5. Determine if the access is an OUT or IN by interrogating byte 0 of
the USB Setup Token Command Register.

6. If Read from MCU space (an IN transaction):

a. Load the appropriate data to be transmitted into the USB Setup
Token Data Register.

b. Load the USB Setup Counter Register with the number of bytes
to be transmitted.

c. Set ‘command_complete’ status variable = 1.

d. Clear the high byte of the USB Control Register.

e. Return to the MCU idle loop
ADSP-219x/2192 DSP Hardware Reference 8-77

USB Interface
7. If Read from DSP space (an IN transaction):

a. Set bit 15 = 1 and bit 14 = 0 of USB Register I/O Address Reg-
ister to start the read cycle.

b. Poll bit 15 of the USB Register I/O Address Register until a
value of 0 returns, indicating that the read cycle is complete.

c. Load the USB Setup Token Data Register with the data returned
in the USB Register I/O Data Register.

d. Load USB Setup Counter Register with the number of bytes to
be transmitted.

e. Set ‘command_complete’ status variable = 1.

f. Clear the high byte of the USB Control Register.

g. Return to the MCU idle loop

8. If Write to MCU space (an OUT transaction):

a. Load the appropriate register with the data from the USB Setup
Token Data Register.

b. Clear the USB Setup Counter Register

c. Clear its internal ‘command_complete’ status variable.

d. Clear the high byte of the USB Control Register

e. Return to the MCU idle loop.

9. If Write to DSP space (an OUT transaction):

a. Load the USB Register I/O Data Register with the data from the
USB Setup Token Data Register.

b. Set bit 15 = 1 and bit 14 = 1 of USB Register I/O Address Reg-
ister to start the write cycle.
8-78 ADSP-219x/2192 DSP Hardware Reference

Host (PCI/USB) Port
c. Poll bit 15 of the USB Register I/O Address Register until a
value of 0 returns indicating that the write cycle is complete.

d. Clear the USB Setup Counter Register

e. Clear its internal ‘command_complete’ status variable.

f. Clear the high byte of the USB Control Register

g. Return to the MCU idle loop.

The vendor specific command USB REGIO is the MCU firmware com-
mand that uses the above model. Use it for all non-Chapter 9 specific
requests that involve hardware accesses to either MCU space or DSP space
in which there is a single data stage.

Type 5: MCU Firmware Download (Variable Length OUT)

1. Read the upper byte of the USB Control Register to determine if
this is the first time entering this code segment. Initial entry is
indicated by bits ISE, IIN, IOU, and BY set to a 1.

2. If initial entry (processing the SETUP Token):

a. Read the USB Setup Token Command Register bytes 6 and 7 to
determine the total length of the code that is to be downloaded.

b. Read the USB Setup Token Command Register bytes 2 and 3 to
determine the starting address in PM memory space to place the
code.

c. Clear the USB Setup Counter Register.

d. Clear the high byte of the USB Control Register

e. Return to the MCU idle loop to await the next interrupt from
the Endpoint 0 hardware block, which indicates the data has
arrived from the host.
ADSP-219x/2192 DSP Hardware Reference 8-79

USB Interface
3. If not initial entry (processing the data from the OUT transaction):

a. Read the USB Setup Counter Register to determine how many
bytes arrived. (# of bytes transferred = 14 – count value. See USB
Setup Counter Register description).

b. Read the proper number of bytes from the USB Setup Token
Data Register and write them to MCU PM RAM.

c. Determine if the host is trying to send more bytes in the Data
Stage than what was told the MCU during the SETUP stage
(Length bytes 6 and 7 of the USB Setup Token Command Reg-
ister).

d. If true, instruct the Endpoint 0 block to send STALL condition:

(1.) Clear the USB SETUP Counter Register

(2.) Set ER bit in the USB Control Register

(3.) Return to the MCU idle loop

e. If not true, determine if additional data stages are needed.

If more data stages are expected:

(1.) Clear USB Setup Counter Register.

(2.) Clear the high byte of USB Control Register

(3.) Return to the MCU idle loop to await the next interrupt
from the Endpoint 0 hardware block, which indicates more
data has arrived.
8-80 ADSP-219x/2192 DSP Hardware Reference

Host (PCI/USB) Port
If this is the final data stage:

(1.) Clear the USB Setup Counter Register

(2.) Clear its internal ‘command_complete’ status variable.

(3.) Clear the high byte of the USB Control Register

(4.) Return to the MCU idle loop.

This is the structure found in the function called ‘usb_mcucode’ in the
MCU ROM firmware.

Example Initialization Process
After attachment to the USB bus, the ADSP-2192 identifies itself as a
CONFIG device with 1 Endpoint: one control EP0. This causes a generic
user CONFIG driver to load.

The CONFIG driver downloads appropriate MCU code to set up the
MCU. This code includes the specific device descriptors, interfaces, and
Endpoints.

The external Serial EEPROM is read by the DSP, and the changeable
USB descriptive fields are transferred to the MCU. The CONFIG driver,
through the control EP0 pipe, generates a register read to determine the
configuration value. Based on this configuration code, the host downloads
the proper USB configurations to the MCU.

The driver writes the USB Control Register, which causes the device to
disconnect and then reconnect so that the new downloaded configuration
is enumerated by the system. Each interface, upon enumeration, loads the
appropriate user device driver.
ADSP-219x/2192 DSP Hardware Reference 8-81

USB Interface
An example of this procedure is configuring the ADSP-2192 to be a
modem.

1. The ADSP-2192 is attached to USB bus. System enumerates the
CONFIG device in the ADSP-2192 first. A user-specific driver is
loaded.

2. The user driver reads the device descriptor, which identifies the
card as a user-specific device, such as a modem.

3. The user driver downloads USB configuration and MCU code to
the MCU for Interface 1, which is the modem. Configuration spec-
ifies which Endpoints are used and their definitions. A typical
configuration for a modem would be:

Table 8-40. Typical Configuration (Modem)

Endpoint Type Maximum
Packet Size

Comment

1 BULK OUT 64 DSP CODE

4 BULK IN 64 MODEM RCV

5 BULK OUT 64 MODEM XMT

6 INT IN 16 STATUS
8-82 ADSP-219x/2192 DSP Hardware Reference

Host (PCI/USB) Port
4. The user driver downloads USB configuration for Interface 2,
which is the FAX modem. Configuration specifies which End-
points are used and their definitions. A typical configuration for
FAX would be:

5. The user driver now writes the USB Config Register, causing the
device to disconnect and reconnect. The system enumerates all
interfaces and loads the appropriate drivers.

6. The modem driver downloads code to DSP for service. The DSP
also initializes the DSP Memory Buffer Base Addr Register, and
DSP Memory Buffer Size Register, DSP Memory Buffer RD
Pointer Offset, DSP Memory Buffer WR Pointer Offset registers
for each Endpoint. Endpoints can be used only when the above
registers have been written. Modem service is now available.

7. The FAX driver downloads code to DSP for FAX service. The DSP
also initializes the DSP Memory Buffer Base Addr Register, DSP
Memory Buffer Size Register, DSP Memory Buffer RD Pointer
Offset, DSP Memory Buffer WR Pointer Offset registers for each
Endpoint. Endpoints can be used only when the above registers
have been written. FAX service is now available.

Table 8-41. Typical Configuration (FAX)

Endpoint Type Maximum
Packet Size

Comment

2 BULK OUT 64 DSP CODE

7 BULK IN 64 FAX RCV

8 BULK OUT 64 FAX XMT

9 INT IN 16 STATUS
ADSP-219x/2192 DSP Hardware Reference 8-83

USB Interface
Figure 8-26. ADSP-2192 USB Enumeration

C
TL

 E
P

0

B
ul

k
O

ut
 E

P
1

G
en

er
ic

 E
P

4

G
en

e r
ic

 E
P

5

Interface 1

G
en

er
ic

 E
P

6

C
TL

 E
P

0

B
ul

k
O

ut
 E

P
2

G
e n

er
ic

 E
P

7

G
en

er
ic

 E
P

8

Interface 2

G
en

e r
ic

 E
P

9

C
T

L
E

P
0

CONFIG

Dev ice first enum erates as
CONFIG Device

Dev ice next enumerates
as user specific dev ice
(say ADSL/FAX) with
multiple interfaces
8-84 ADSP-219x/2192 DSP Hardware Reference

Host (PCI/USB) Port
Config Device Definition

Fixed Endpoints

Modem Device Definition

Fixed Endpoints

CONTROL Endpoint 0

Type: Control

Dir: Bidirectional

Maxpacketsize: 8

CONTROL Endpoint 0

Type: Control

Dir: Bidirectional

Maxpacketsize: 8

BULK OUT Endpoint 1, 2, 3 = Used for code download to DSP

Type: Bulk

Dir: OUT

Maxpacketsize: 64
ADSP-219x/2192 DSP Hardware Reference 8-85

USB Interface
Programmable Endpoints

! The generic Endpoints are shared between all interfaces.

Serial EEPROM Interface

The Serial EEPROM for the ADSP-2192 can overwrite the information
listed below, which is returned during the USB GET DEVICE
DESCRIPTOR command. The DSP is responsible during the Serial
EEPROM initialization procedure for writing the USB Descriptor Vendor
ID, USB Descriptor Product ID, USB Descriptor Release Number, and
USB Descriptor Device Attributes registers to change the default settings.

Serial EEPROM Changeable Fields for USB Descriptors

Vendor ID (0x0456 ADI)

Product ID (0x2192)

Device Release Number (0x0100)

Device Attributes (0xFA80)

Generic Endpoints 4, 5, 6, 7, 8, 9, 10, 11

Programmable by:

Type: via USB Endpoint Description Register

Direction: via USB Endpoint Description Register

Maxpacket size: via USB Endpoint Description Register

Memory Allocation: via DSP Memory Buffer Base Addr, DSP Memory Buffer Size,
DSP Memory Buffer RD Pointer Offset,
DSP Memory Buffer Write Pointer Offset Registers
8-86 ADSP-219x/2192 DSP Hardware Reference

Host (PCI/USB) Port
The string descriptors supported in the CONFIG DEVICE are the fol-
lowing and cannot be overwritten by the Serial EEPROM.

All descriptors can be changed when downloading the RAM based MCU
re-numeration code; however the above mentioned restrictions hold for
the CONFIG DEVICE.

ADSP-2192 USB Data Pipe Operations
All data transactions involving the generic Endpoints[4:11] stream data
into and out of the DSP memory via a dedicated USB hardware block.
This hardware block manages all the USB DMA transactions with the
DSP memory FIFOs for these Endpoints. While there is no MCU
involvement in the management of the data flow through these data pipes,
it is the job of the MCU firmware to program the characteristics of these
Endpoints via the Endpoint Description, NAK Counter, and Stall Policy
registers (MCU Addresses 0x1000-0x1021). Figure 8-27 on page 8-88 is a
diagram showing the overall architecture.

SP 1 = self-powered, 0 = bus-powered (default = 0)

RW 1 = have remote wake-up capability, 0 = no remote wake-up capability (default = 0)

C[7:0] Power consumption from bus expressed in 2mA units (default = 0xFA 500mA)

Manufacturer ADI

Product USB DEVICE
ADSP-219x/2192 DSP Hardware Reference 8-87

USB Interface
Figure 8-27. USB Data Pipe Architecture

The USB data FIFOs for these generic Endpoints exist in DSP memory
space. For each Endpoint, there exists the following memory buffer regis-
ters (IO Page 0x0C):

As part of initialization, the DSP code is responsible for setting up these
FIFOs before USB data transactions for these Endpoints can begin. As
noted in the ADSP-2192 product definition, DSP memory addresses can-
not exceed 18 bits (0x000000 - 0x03FFFF). When setting up these USB
FIFOs, Base + Size/Read Offset/Write Offset cannot be greater than 18
bits.

The DSP memory interface on the ADSP-2192 only allows reads/writes of
16 bit words. It cannot handle byte transactions. Therefore, a 64 byte
maxpacketsize means 32 DSP words. A single byte cannot be transferred
to/from the DSP. Endpoint 0 does not have this limitation.

Base
Address

(18 bits)

Size (16 bits) Offset from the Base Address

Read Offset (16 bits) Offset from the Base Address

Write Offset (16 bits) Offset from the Base Address

USB Bus USB Core
DSP Memory
FIFO'sSIE
8-88 ADSP-219x/2192 DSP Hardware Reference

Host (PCI/USB) Port
Since these FIFOs exist in DSP memory, the DSP is responsible for shar-
ing some of the pointer management duties with the USB core. For OUT
transactions, the write pointer is controlled by the USB core and the read
pointer is governed by the DSP. The opposite is true for IN transactions.
Both the write and read pointers for each memory buffer would start off as
0.

All USB buffers operate in a circular fashion. Once a pointer reaches the
end of the buffer, it needs to be set back to zero. The USB core handles
this automatically. You can use the DSP DAGS to control auto incre-
menting and wrapping of the pointers or you can write code to
manipulate them manually.

Below is a listing of Read/Write Pointer characteristics:

1. Both pointers reflect the value of the last memory location on
which action took place. The write offset pointer contains the value
of the last location written while the read offset pointer contains
the value of the last location read.

2. The USB core pre-increments the pointers before using their value.
The DSP code that governs pointer control should follow the same
model.

3. The USB core recognizes when a memory buffer FIFO is empty
when the Read pointer = Write pointer. This has certain ramifica-
tions, depending upon whether the USB core is handling an OUT
transaction or an IN transaction. This is explained in more detail
in the following sections concerning USB traffic direction. The
USB core recognizes when a memory buffer FIFO is full when the
Write pointer is 1 location behind the Read pointer. The DSP code
that governs pointer control needs to mimic this behavior.
ADSP-219x/2192 DSP Hardware Reference 8-89

USB Interface
4. IO accesses to registers cause DMA transfers to stall for the dura-
tion of the IO access. To minimize USB data traffic disturbances,
avoid DSP code that programs back-to-back IO accesses. The DSP
code that manages the read and write pointer updates must do so
via IO access instructions. When writing this code, simply avoid
back-to-back IO instructions.

5. Since the memory FIFOs are circular in behavior, the DSP code
that calculates either the amount of free space or the amount of
available data may need to take into account the Memory Buffer
Size value.

Example

DSP coding steps required to determine the amount of available
data in a memory buffer that has been set up for USB OUT trans-
actions (DSP governing the read pointer).

Result = Write pointer – Read pointer

a. If positive, the result directly indicates the amount of available
data to process.

b. If negative, add the buffer size to the result to determine the
amount of available data to process. The negative result indicates
that the write pointer must have looped back to the top of the
FIFO.
8-90 ADSP-219x/2192 DSP Hardware Reference

Host (PCI/USB) Port
In summary, before the USB host can send traffic to the data Endpoints,
they need to be programmed in 2 ways:

• MCU: Programs the traits of the Endpoints such as type, direction,
maxpacketsize, etc. This is accomplished via writes to the Endpoint
Description, NAK Counter, and Stall Policy registers. A convenient
method of doing this is to have the MCU firmware program these
registers prior to responding to USB control traffic for enumeration
on the USB bus.

• DSP: Programs the traits of the DSP DM memory buffers. This is
accomplished via IO writes to the Base/Size/Read Offset/Write Off-
set registers as part of some DSP initialization code.

OUT Transactions (Host to Device)

For OUT transactions, the write pointer is controlled by the USB core,
and the read pointer is governed by the DSP. The read and write pointers
both start with a value of zero.

When an OUT transaction arrives for a particular Endpoint, the USB core
calculates the difference between the write and read pointers to determine
how much room there is in the FIFO. If all the OUT data arrives and the
write pointer never catches up to the read pointer, that data will be
acknowledged (ACK) and the USB core will update the Memory Buffer
Write Offset register. If at any time during the transaction the two point-
ers collide, the USB block will respond with a NAK indicating that the
host must resend the same data packet. The write pointer will remain
unchanged.
ADSP-219x/2192 DSP Hardware Reference 8-91

USB Interface
If for some reason the host sends more data than the maxpacketsize, the
USB core will accept it as long as there is sufficient room in the FIFO.
The USB core will write data to the FIFO to all free locations until the
pointers collide. For example, if the FIFO has 32 free bytes and 64 bytes
are sent from the host, the USB core will write the first 32 bytes to the
FIFO and block the second 32 bytes. During the handshake, the USB core
will send a NAK handshake and rewind the write pointer back to its set-
ting prior to the start of the transaction. The USB core never allows the
write pointer to be equal to the read pointer as this indicates FIFO empty.
A full FIFO is indicated by the write pointer being one location behind
the read pointer.

Since the DSP is governing the read pointer, it must perform a similar cal-
culation to determine if there is sufficient data in the FIFO to begin
processing. Once it has consumed some amount of data, the DSP will
need to update the Memory Buffer Read Offset register. The DSP code
cannot program the read pointer to move beyond the write pointer. The
DSP can drain all the data from the FIFO, in which case it can program
the read pointer to equal the write pointer. Such a condition indicates to
the USB core that this FIFO is empty.

 IN Transactions (Device to Host)

For IN transactions, the write pointer is controlled by the DSP, and the
read pointer is governed by the USB core. The read and write pointers
both start with a value of zero.

When an IN transaction arrives for a particular Endpoint, the USB core
will again compute how much read data there is available in the FIFO. It
will also determine if the amount of read data is greater than or equal to
the maxpacketsize. If both conditions are met, the USB core will transfer
the data. Upon receiving ACK from the host, the USB core will update
the Memory Buffer Read Offset register. The USB core can drain all the
data from the FIFO, leaving it empty. It indicates this by setting the read
pointer equal to the write pointer.
8-92 ADSP-219x/2192 DSP Hardware Reference

Host (PCI/USB) Port
If the amount of read data is less than the maxpacketsize (a short packet),
the USB core will determine whether to send the data based upon a NAK
count limit. This is 4-bit field in the Endpoint Stall Policy register that
the user can program with a value indicating how many sequential NAKs
should be sent prior to transmitting a short packet. The individual end-
point NAK count (NC bits of the Endpoint NAK Counter Register) is
incremented each time a sequential NAK is sent on that particular end-
point. Once this value exceeds the base NAK count value, a short packet is
transmitted. The endpoint-specific NC bits are cleared to zero each time a
data stage is successfully transmitted for the particular endpoint. This
NAK counter system will allow flexibility in how IRPs get retired via short
packets.

Along with programming the NK field of the Endpoint Stall Policy Regis-
ter, the user must program the NE (NAK counter enable) bit to enable this
counter function. If this bit is set to zero, the USB core will continuously
respond with a NAK handshake to the IN token until the number of bytes
in the FIFO is greater than or equal to the maxpacketsize.

Since the DSP is governing the write pointer, it must determine if there is
sufficient room in the FIFO for placing new data. Once it has completed
writes to the FIFO, it needs to update the Memory Buffer Write Offset
register. The DSP can fill the FIFO up to the point where the write
pointer is one location behind the read pointer. This will be interpreted as
a FIFO full condition by the USB core.
ADSP-219x/2192 DSP Hardware Reference 8-93

Register and Bit #Defines File
Register and Bit #Defines File
The following example definitions file is for the ADSP-2192 DSP PCI.
For the most current definitions file, programs should use the version of
this file that comes with the software development tools. The version of
the file that appears here is included as a guide only.

/* ---
def2192_PCI.h - SYSTEM & IOP REGISTER BIT & ADDRESS DEFINITIONS FOR ADSP-2192

Created November 21, 2000. Copyright Analog Devices, Inc.

Note: This file is based on preliminary technical data and is subject to change.
Updates will be posted on the Analog Devices FTP site:

ftp.analog.com

---*/
#ifndef __DEF2192_PCI_H_
#define __DEF2192_PCI_H_

/*Chip Control Registers (DSP IOPAGE=0x00)*/

#define SYSCON 0x00 /* Chip Mode/Status Register */
#define PWRCFG0 0x02 /* Function 0 Power Management */
#define PWRCFG1 0x04 /* Function 1Power Management */
#define PWRCFG2 0x06 /* Function 2 Power Management */
#define PWRP0 0x08 /* DSP 0 Interrupt/Power down */
#define PWRP1 0x0A /* DSP 1 Interrupt/Power down */
#define PLLCTL 0x0C /* DSP PLL Control */
#define REVID 0x0E /* AD‘2 Revision ID (read only) */

/*GPIO Control Registers (DSP IOPAGE=0x00)*/

#define GPIOCFG 0x10 /* GPIO Config Direction Control */
/* 1 = in, 0 = out */

#define GPIOPOL 0x12 /* GPIO Polarity (Inputs: 0 = active hi, */
/* 1 = active lo; Outputs: 0 = CMOS, 1 = Open Drain) */

#define GPIOSTKY 0x14 /* GPIO Sticky: 1 = sticky, 0 = not sticky */
#define GPIOWAKECTL 0x16 /* GPIO Wake Control: 1 = wake-up enabled */
 /* requires sticky set */
#define GPIOSTAT 0x18 /* GPIO Status (Read = Pin state; */

/* Write: 0 = clear sticky status, 1 = no effect) */
#define GPIOCTL 0x1A /* GPIO Control(w), Init(r) (Read = Power-on state; */

/* Write : Set state of output pins) */
#define GPIOPUP 0x1C /* GPIO Pull-up Pull-up enable (if input): */

/* 1 = enable, 0 = hi-Z */
#define GPIOPDN 0x1E /* GPIO Pull-down Pull-down enable (if input): */
 /* 1 = enable, 0 = hiZ */

/*PCI/USB Mailbox Registers (DSP IOPAGE=0x00)*/
8-94 ADSP-219x/2192 DSP Hardware Reference

Host (PCI/USB) Port
#define MBXSTAT 0x20 /* Mailbox Status Mailbox Status */
#define MBXCTL 0x22 /* Mailbox Control Mailbox Interrupt Control */
#define MBX_IN0 0x24 /* Incoming Mailbox 0 PCI/USB to DSP mailbox */
#define MBX_IN1 0x26 /* Incoming Mailbox 1 PCI/USB to DSP mailbox */
#define MBX_OUT0 0x28 /* Outgoing Mailbox 0 DSP to PCI/USB mailbox */
#define MBX_OUT1 0x2A /* Outgoing Mailbox 0 DSP to PCI/USB mailbox */

/*SERIAL EEPROM Control Register (DSP IOPAGE=0x00)*/

#define SPROMCTL 0x30 /* Serial EEPROM I/O Control/Status Direction */
/* and status for SEN, SCK, SDA pins. */

/* AC'97 Control Registers (DSP IOPAGE=0x00)*/

#define AC97LCTL 0xC0 /* AC'97 Link Control */
#define AC97LSTAT 0xC2 /* AC'97 Link Status */
#define AC97SEN 0xC4 /* AC'97 Slot Enable */
#define AC97SVAL 0xC6 /* AC'97 Input Slot Valid */
#define AC97SREQ 0xC8 /* AC'97 Slot Request */
#define AC97GPIO 0xCA /* AC'97 External GPIO Register */

/* AC'97 External Codec IO Register Spaces */

#define AC97CODEC0 0x400 /* External Primary Codec 0 IO page space */
/* registers (0x00 - 0x7F) */

#define AC97CODEC1 0x500 /* External Secondary Codec 1 IO page space */
 /* registers (0x00 - 0x7F) */
#define AC97CODEC2 0x600 /* External Secondary Codec 2 IO page space */

/* registers (0x00 - 0x7F) */

/* CardBus Function Event Registers(DSP IOPAGE=0x01)*/

#define CB_EVENT0 0x100 /* Function 0 Event */
#define CB_EVENTMASK0 0x104 /* Function 0 Event Mask */
#define CB_PSTATE0 0x108 /* Function 0 Present State */
#define CB_EVENTFORCE0 0x10C /* Function 0 Event Force */

#define CB_EVENT1 0x110 /* Function 1 Event */
#define CB_EVENTMASK1 0x114 /* Function 1 Event Mask */
#define CB_PSTATE1 0x118 /* Function 1 Present State */
#define CB_EVENTFORCE1 0x11C /* Function 1 Event Force */

#define CB_EVENT2 0x120 /* Function 2 Event */
#define CB_EVENTMASK2 0x124 /* Function 2 Event Mask */
#define CB_PSTATE2 0x128 /* Function 2 Present State */
#define CB_EVENTFORCE2 0x12C /* Function 2 Event Force */

/* PCI DMA Address/Count Registers (DSP IOPAGE=0x08)*/

#define PCI_Rx0BADDRL 0x800 /* Rx0 DMA Base Address Bits 15:0 */
#define PCI_Rx0BADDRH 0x802 /* Rx0 DMA Base Address Bits 31:16 */
#define PCI_Rx0CURADDRL 0x804 /* Rx0 DMA Current Address Bits 15:0 */
#define PCI_Rx0CURADDRH 0x806 /* Rx0 DMA Current Address Bits 31:16 */
#define PCI_Rx0BCNTL 0x808 /* Rx0 DMA Base Count Bits 15:0 */
#define PCI_Rx0BCNTH 0x80A /* Rx0 DMA Base Count Bits 31:16 */
#define PCI_Rx0CURCNTL 0x80C /* Rx0 DMA Current Count Bits 15:0 */
#define PCI_Rx0CURCNTH 0x80E /* Rx0 DMA Current Count Bits 31:16 */
ADSP-219x/2192 DSP Hardware Reference 8-95

Register and Bit #Defines File
#define PCI_Tx0BADDRL 0x810 /* Tx0 DMA Base Address Bits 15:0 */
#define PCI_Tx0BADDRH 0x812 /* Tx0 DMA Base Address Bits 31:16 */
#define PCI_Tx0CURADDRL 0x814 /* Tx0 DMA Current Address Bits 15:0 */
#define PCI_Tx0CURADDRH 0x816 /* Tx0 DMA Current Address Bits 31:16 */
#define PCI_Tx0BCNTL 0x818 /* Tx0 DMA Base Count Bits 15:0 */
#define PCI_Tx0BCNTH 0x81A /* Tx0 DMA Base Count Bits 31:16 */
#define PCI_Tx0CURCNTL 0x81C /* Tx0 DMA Current Count Bits 15:0 */
#define PCI_Tx0CURCNTH 0x81E /* Tx0 DMA Current Count Bits 31:16 */

#define PCI_Rx1BADDRL 0x820 /* Rx1 DMA Base Address Bits 15:0 */
#define PCI_Rx1BADDRH 0x822 /* Rx1 DMA Base Address Bits 31:16 */
#define PCI_Rx1CURADDRL 0x824 /* Rx1 DMA Current Address Bits 15:0 */
#define PCI_Rx1CURADDRH 0x826 /* Rx1 DMA Current Address Bits 31:16 */
#define PCI_Rx1BCNTL 0x828 /* Rx1 DMA Base Count Bits 15:0 */
#define PCI_Rx1BCNTH 0x82A /* Rx1 DMA Base Count Bits 31:16 */
#define PCI_Rx1CURCNTL 0x82C /* Rx1 DMA Current Count Bits 15:0 */
#define PCI_Rx1CURCNTH 0x82E /* Rx1 DMA Current Count Bits 31:16 */

#define PCI_Tx1BADDRL 0x830 /* Tx1 DMA Base Address Bits 15:0 */
#define PCI_Tx1BADDRH 0x832 /* Tx1 DMA Base Address Bits 31:16 */
#define PCI_Tx1CURADDRL 0x834 /* Tx1 DMA Current Address Bits 15:0 */
#define PCI_Tx1CURADDRh 0x836 /* Tx1 DMA Current Address Bits 31:16

*/
#define PCI_Tx1BCNTL 0x838 /* Tx1 DMA Base Count Bits 15:0 */
#define PCI_Tx1BCNTH 0x83A /* Tx1 DMA Base Count Bits 31:16 */
#define PCI_Tx1CURCNTL 0x83C /* Tx1 DMA Current Count Bits 15:0 */
#define PCI_Tx1CURCNTH 0x83E /* Tx1 DMA Current Count Bits 31:16 */

#define PCI_Rx0IRQCNTL 0x840 /* Rx0 DMA Interrupt Count Bits 15:0 */
#define PCI_Rx0IRQCNTH 0x842 /* Rx0 DMA Interrupt Count Bits 23:16 */
#define PCI_Rx0IRQBCNTL 0x844 /* Rx0 DMA Interrupt Base Count Bits 15:0 */
#define PCI_Rx0IRQBCNTH 0x846 /* Rx0 DMA Interrupt Base Count Bits 23:16 */

#define PCI_Tx0IRQCNTL 0x848 /* Tx0 DMA Interrupt Count Bits 15:0 */
#define PCI_Tx0IRQCNTH 0x84A /* Tx0 DMA Interrupt Count Bits 23:16 */
#define PCI_Tx0IRQBCNTL 0x84C /* Tx0 DMA Interrupt Base Count Bits 15:0 */
#define PCI_Tx0IRQBCNTH 0x84E /* Tx0 DMA Interrupt Base Count Bits 23:16 */

#define PCI_Rx1IRQCNTL 0x850 /* Rx1 DMA Interrupt Count Bits 15:0 */
#define PCI_Rx1IRQCNTH 0x852 /* Rx1 DMA Interrupt Count Bits 23:16 */
#define PCI_Rx1IRQBCNTL 0x854 /* Rx1 DMA Interrupt Base Count Bits 15:0 */
#define PCI_Rx1IRQBCNTH 0x856 /* Rx1 DMA Interrupt Base Count Bits 23:16 */

#define PCI_Tx1IRQCNTL 0x858 /* Tx1 DMA Interrupt Count Bits 15:0 */
#define PCI_Tx1IRQCNTH 0x85A /* Tx1 DMA Interrupt Count Bits 23:16 */
#define PCI_Tx1IRQBCNTL 0x85C /* Tx1 DMA Interrupt Base Count Bits 15:0 */
#define PCI_Tx1IRQBCNTH 0x85E /* Tx1 DMA Interrupt Base Count Bits 23:16 */

#define PCI_Rx0CTL 0x860 /* Rx0 DMA PCI Control/Status */
#define PCI_Tx0CTL 0x868 /* Tx0 DMA PCI Control/Status */
#define PCI_Rx1CTL 0x870 /* Rx1 DMA PCI Control/Status */
#define PCI_Tx1CTL 0x878 /* Tx1 DMA PCI Control/Status */

/******* PCI_Rx0-1CTL and PCI_Tx0-1CTL Bit definitions ******/

#define SGDEN 0 /* Scatter-gather DMA Enable */
#define LPEN 1 /* Loop Enable */
#define INTMODE1 3 /* Interrupt Mode1 */
#define INTMODE0 2 /* Interrupt Mode0 */
8-96 ADSP-219x/2192 DSP Hardware Reference

Host (PCI/USB) Port
#define SGVL1 5 /* Current Scatter-gather DMA Valid 1 */
#define SGVL0 4 /* Current Scatter-gather DMA Valid 0 */
#define FLG 6 /* Flag Bit Set in Current Scatter-gather DMA */
#define EOL 7 /* EOL Bit Set in Current Scatter-gather DMA */
/**/

#define PCI_MSTRCNT0 0x880 /* DMA Transfer Count0 Bus master sample */
/* transfer count 0 */

#define PCI_MSTRCNT1 0x882 /* DMA Transfer Count1 Bus master sample */
/* transfer count 1 */

#define PCI_DMAC0 0x884/* DMA Control0 Bus master control and status 0 */
#define PCI_DMAC1 0x886/* DMA Control1 Bus master control and status 1 */
#define PCI_IRQSTAT 0x888 /* PCI Interrupt Reg Status bits for all PCI */

/* interrupt sources */
#define PCI_CFGCTL 0x88A /* PCI Control Includes config register */

/* read/write control */

/***************** PCI_DMAC0-1 Bit definitions ************/

#define DEN 0 /* DMA Enable */
#define TRAN 1 /* DMA Direction */
#define FLSH 2 /* Flush FIFO */
#define DSP 3 /* DSP P0/P1 Select */
#define DPD 4 /* DMA Packing Disable, Double Word Mode */
#define CFG2 7 /* Configuration Select 2, 1, or 0 */
#define CFG1 6 /* Configuration Select 2, 1, or 0 */
#define CFG0 5 /* Configuration Select 2, 1, or 0 */
#define EMPTY 8 /* DMA FIFO Empty Status */
#define HALT 9 /* DMA Channel Halt Status */
#define LOOP 10 /* DMA Channel Loop Status */
/**/

#endif

The following example definitions file is for the ADSP-2192 DSP USB.
For the most current definitions file, programs should use the version of
this file that comes with the software development tools. The version of
the file that appears here is included as a guide only.

/* ---
def2192_USB.h - SYSTEM & IOP REGISTER BIT & ADDRESS DEFINITIONS FOR ADSP-2192

Created November 21, 2000. Copyright Analog Devices, Inc.

Note: This file is based on preliminary technical data and is subject to change.
Updates will be posted on the Analog Devices FTP site:

 ftp.analog.com

---*/
ADSP-219x/2192 DSP Hardware Reference 8-97

Register and Bit #Defines File
#ifndef __DEF2192_USB_H_
#define __DEF2192_USB_H_

/*Chip Control Registers (DSP IOPAGE=0x00)*/

#define SYSCON 0x00 /* Chip Mode/Status Register */
#define PWRCFG0 0x02 /* Function 0 Power Management */
#define PWRCFG1 0x04 /* Function 1Power Management */
#define PWRCFG2 0x06 /* Function 2 Power Management */
#define PWRP0 0x08 /* DSP 0 Interrupt/Power down */
#define PWRP1 0x0A /* DSP 1 Interrupt/Power down */
#define PLLCTL 0x0C /* DSP PLL Control */
#define REVID 0x0E /* ADSP-2192 Revision ID (read only) */

/*GPIO Control Registers (DSP IOPAGE=0x00)*/

#define GPIOCFG 0x10 /* GPIO Config Direction Control (1 = in, 0 = out) */
#define GPIOPOL 0x12 /* GPIO Polarity Inputs: 0 = active hi, */

/* 1 = active lo; Outputs: 0 = CMOS, 1 = Open Drain*/
#define GPIOSTKY 0x14 /* GPIO Sticky: 1 = sticky, 0 = not sticky */
#define GPIOWAKECTL 0x16 /* GPIO Wake Control: 1 = wake-up enabled */

/* (requires sticky set) */
#define GPIOSTAT 0x18 /* GPIO Status (Read = Pin state; */
 /* Write: 0 = clear sticky status, 1 = no effect) */
#define GPIOCTL 0x1A /* GPIO Control(w), Init(r) (Read = Power-on state; */

/* Write : Set state of output pins) */
#define GPIOPUP 0x1C /* GPIO Pull-up Pull-up enable */

/* (if input): 1 = enable, 0 = hi-Z */
#define GPIOPDN 0x1E /* GPIO Pull-down Pull-down enable */

/* (if input): 1 = enable, 0 = hiZ */

/*PCI/USB Mailbox Registers (DSP IOPAGE=0x00)*/

#define MBXSTAT 0x20 /* Mailbox Status Mailbox Status */
#define MBXCTL 0x22 /* Mailbox Control Mailbox Interrupt Control */
#define MBX_IN0 0x24 /* Incoming Mailbox 0 PCI/USB to DSP mailbox */
#define MBX_IN1 0x26 /* Incoming Mailbox 1 PCI/USB to DSP mailbox */
#define MBX_OUT0 0x28 /* Outgoing Mailbox 0 DSP to PCI/USB mailbox */
#define MBX_OUT1 0x2A /* Outgoing Mailbox 0 DSP to PCI/USB mailbox */

/*SERIAL EEPROM Control Register (DSP IOPAGE=0x00)*/

#define SPROMCTL 0x30 /* Serial EEPROM I/O Control/Status Direction and */
/* status for SEN, SCK, SDA pins */

/* AC'97 Control Registers (DSP IOPAGE=0x00)*/

#define AC97LCTL 0xC0 /* AC'97 Link Control */
#define AC97LSTAT 0xC2 /* AC'97 Link Status */
#define AC97SEN 0xC4 /* AC'97 Slot Enable */
#define AC97SVAL 0xC6 /* AC'97 Input Slot Valid */
#define AC97SREQ 0xC8 /* AC'97 Slot Request */
#define AC97GPIO 0xCA /* AC'97 External GPIO Register */

/* AC'97 External Codec IO Register Spaces */

#define AC97CODEC0 0x400 /* External Primary Codec 0 IO page */
 /* space registers (0x00 - 0x7F) */
8-98 ADSP-219x/2192 DSP Hardware Reference

Host (PCI/USB) Port
#define AC97CODEC1 0x500 /* External Secondary Codec 1 IO page */
 /* space registers (0x00 - 0x7F) */
#define AC97CODEC2 0x600 /* External Secondary Codec 2 IO page */

/* space registers (0x00 - 0x7F) */

/* USB Endpoint DMA Control Registers (DSP IOPAGE=0x0C) */

#define USB_EP4_ADDR 0x0C00 /* Memory Buffer Base Addr. EP4 */
#define USB_EP4_SIZE 0x0C04 /* Memory Buffer Size EP4 */
#define USB_EP4_RD 0x0C06 /* Memory Buffer RD Offset EP4 */
#define USB_EP4_WR 0x0C08 /* Memory Buffer WR Offset EP4 */

#define USB_EP5_ADDR 0x0C10 /* Memory Buffer Base Addr. EP5 */
#define USB_EP5_SIZE 0x0C14 /* Memory Buffer Size EP5 */
#define USB_EP5_RD 0x0C16 /* Memory Buffer RD Offset EP5 */
#define USB_EP5_WR 0x0C18 /* Memory Buffer WR Offset EP5 */

#define USB_EP6_ADDR 0x0C20 /* Memory Buffer Base Addr. EP6 */
#define USB_EP6_SIZE 0x0C24 /* Memory Buffer Size EP6 */
#define USB_EP6_RD 0x0C26 /* Memory Buffer RD Offset EP6 */
#define USB_EP6_WR 0x0C28 /* Memory Buffer WR Offset EP6 */

#define USB_EP7_ADDR 0x0C30 /* Memory Buffer Base Addr. EP7 */
#define USB_EP7_SIZE 0x0C34 /* Memory Buffer Size EP7 */
#define USB_EP7_RD 0x0C36 /* Memory Buffer RD Offset EP7 */
#define USB_EP7_WR 0x0C38 /* Memory Buffer WR Offset EP7 */

#define USB_EP8_ADDR 0x0C40 /* Memory Buffer Base Addr. EP8 */
#define USB_EP8_SIZE 0x0C44 /* Memory Buffer Size EP8 */
#define USB_EP8_RD 0x0C46 /* Memory Buffer RD Offset EP8 */
#define USB_EP8_WR 0x0C48 /* Memory Buffer WR Offset EP8 */

#define USB_EP9_ADDR 0x0C50 /* Memory Buffer Base Addr. EP9 */
#define USB_EP9_SIZE 0x0C54 /* Memory Buffer Size EP9 */
#define USB_EP9_RD 0x0C56 /* Memory Buffer RD Offset EP9 */
#define USB_EP9_WR 0x0C58 /* Memory Buffer WR Offset EP9 */

#define USB_EP10_ADDR 0x0C60 /* Memory Buffer Base Addr. EP10 */
#define USB_EP10_SIZE 0x0C64 /* Memory Buffer Size EP10 */
#define USB_EP10_RD 0x0C66 /* Memory Buffer RD Offset EP10 */
#define USB_EP10_WR 0x0C68 /* Memory Buffer WR Offset EP10 */

#define USB_EP11_ADDR 0x0C70 /* Memory Buffer Base Addr. EP11 */
#define USB_EP11_SIZE 0x0C74 /* Memory Buffer Size EP11 */
#define USB_EP11_RD 0x0C76 /* Memory Buffer RD Offset EP11 */
#define USB_EP11_WR 0x0C78 /* Memory Buffer WR Offset EP11 */

#define USB_DescriptVendorID 0x0C80 /* USB Descriptor Vendor ID */
#define USB_DescriptProductID 0x0C84 /* USB Descriptor Product ID */
#define USB_DescriptReleaseNumber 0x0C86 /* USB Descriptor Release Number */
#define USB_DescriptDeviceAttributes 0x0C88 /* USB Descriptor Device Attrib */

/* USB MCU Register Definitions */

#define USB_MCU_SetupTokenCmd 0x0000 /* USB SETUP Token Cmd 8 bytestotal */
#define USB_MCU_SetupTokenData 0x0008 /* USB SETUP Token Data 8 bytes total */
#define USB_MCU_SetupCounter 0x0010 /* USB SETUP Counter 16 bit counter */
ADSP-219x/2192 DSP Hardware Reference 8-99

Register and Bit #Defines File
#define USB_MCU_CtlMiscCtl 0x0012 /* USB Control Misc including re-attach */
#define USB_MCU_EndPointAddress 0x0014 /* USB Address/Endpt Address of */
 /* device/active endpt */
#define USB_MCU_FrameNumber 0x0016 /* USB Frame Num. Current frame num. */
#define USB_MCU_EP4_DescriptConfig0x1000 /* USB EP4 Description Configs endpt */
#define USB_MCU_EP4_NAK_Counter 0x1002 /* USB EP4 NAK Counter */
#define USB_MCU_EP5_DescriptConfig 0x1004 /* USB EP5 Description Configs endpt */
#define USB_MCU_EP5_NAK_Counter 0x1006 /* USB EP5 NAK Counter */
#define USB_MCU_EP6_DescriptConfig 0x1008 * USB EP6 Description Configs endpt */
#define USB_MCU_EP6_NAK_Counter 0x100A /* USB EP6 NAK Counter */
#define USB_MCU_EP7_DescriptConfig0x100C /* USB EP7 Description Configs endpt */
#define USB_MCU_EP7_NAK_Counter 0x100E /* USB EP7 NAK Counter */
#define USB_MCU_EP8_DescriptConfig0x1010/* USB EP8 Description Configs endpt */
#define USB_MCU_EP8_NAK_Counter 0x1012 /* USB EP8 NAK Counter */
#define USB_MCU_EP9_DescriptConfig0x1014/* USB EP8 Description Configs endpt */
#define USB_MCU_EP9_NAK_Counter 0x1016 /* USB EP9 NAK Counter */
#define USB_MCU_EP10_DescriptConfig 0x1018/* USB EP10 Description Configs endpt */
#define USB_MCU_EP10_NAK_Counter 0x101A /* USB EP10 NAK Counter */
#define USB_MCU_EP11_DescriptConfig0x101C/* USB EP11 Description Configs endpt */
#define USB_MCU_EP11_NAK_Counter 0x101E /* USB EP11 NAK Counter */
#define USB_MCU_StallPolicy 0x1020 /* USB EP STALL Policy */

#define USB_MCU_EP1_DownloadStartAddress 0x1040
/* USB EP1 Code Download Start address for code download Base Address on endpt 1 */
#define USB_MCU_EP2_DownloadStartAddress 0x1044
/* USB EP2 Code Download Start address for code download Base Address on endpt 2 */
#define USB_MCU_EP3_DownloadStartAddress 0x1048
/* USB EP3 Code Download Start address for code download Base Address on endpt 3 */
#define USB_MCU_EP1_CurrentWrPtrOffset 0x1060

/* USB EP1 Current Write Pointer Offset */
#define USB_MCU_EP2_CurrentWrPtrOffset 0x1064

/* USB EP2 Current Write Pointer Offset */
#define USB_MCU_EP3_CurrentWrPtrOffset 0x1068

/* USB EP3 Current Write Pointer Offset */
#define USB_MCU_IO_RegisterAddress 0x2000 /* USB Register I/O Address */
#define USB_MCU_IO_RegisterData 0x2002 /* USB Register I/O Data */
#define USB_MCU_ProgramMemory 0x3000 /* USB MCU Program Mem */

#endif
8-100 ADSP-219x/2192 DSP Hardware Reference

9 AC�97 CODEC PORT
Figure 9-0.

Table 9-0.

Listing 9-0.
Overview
AC’97 is a digital interface for the transport of audio and modem samples
that was originally developed by Analog Devices, Creative Labs, Intel,
National Semiconductor, and Yamaha and documented in the AC’97
specification. For ADSP-2192, the AC’97 specification provides a high
audio architecture for the 1997 and 1998 volume platform segments.

The AC’97 interface, which complies with the AC’97 specification, con-
nects the host's Digital Controller (DC) chip set and one to four analog
audio (AC), modem (MC), or Audio/Modem (AMC) codecs.

ADSP-2192 Features and Functionality
The AC’97 interface has the following features and functionality:

• Each DSP core within the ADSP-2192 has four FIFOs, which pro-
vide data communication paths to the remainder of the chip

• TX0, RX0, TX1, and RX1 are the FIFO registers in the universal register
map of the DSP
ADSP-219x/2192 DSP Hardware Reference 9-1

ADSP-2192 Features and Functionality
• Each FIFO is eight words deep and 16 bits wide:

• Two FIFOs (RX0 and RX1) are inputs that receive data and
send it to the DSP core

• Two FIFOs (TX0 and TX1) are outputs that send data from
the DSP to the AC’97 interface

! The AC’97 interface read data is transmitted in a format of 20 bits
per slot; however, the ADSP-2192 stores data in a 16-bit format.
On slots 2 through 11, the AC’97 reads the 16 MSBs of the data and
ignores the 4 LSBs.

• Interrupts can be generated when some number of words have been
received in the receive FIFOs or when some number of words are
empty in the transmit FIFOs

• FIFOs 0(TX0 and RX0) and 1 (TX1 and RX1) in each DSP core can be
used to send and receive data to the AC'97 interface of the
ADSP-2192

• Each FIFO has a 16-bit control register (STCTL0/1 and SRCTL0/1)
associated with it:

• STCTL0/1 are the transmit FIFO control and status registers

• SRCTL0/1 are the receive FIFO control and status registers

Table 9-1. FIFO Receive and Control Status Registers

Address Register

0x10 STCTL0

0x20 STCTL1

0x11 SRCTL0
9-2 ADSP-219x/2192 DSP Hardware Reference

AC�97 Codec Port
FIFO Control and Status Register

FIFO Transmit Control and Status Register

! All bits in this register are reset to zero.

The following are the bit descriptions for the STCTL0/1 register:

0x21 SRCTL1

0x12 TX0

0x22 TX1

0x13 RX0

0x23 RX1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

T
U

T
FE

T
FF

R
es

er
ve

d

D
M

E

FI
P

[2
:0

]

SL
O

T
[3

:0
]

SM
SE

L

R
es

er
ve

d

C
E

[1
:0

]

Table 9-1. FIFO Receive and Control Status Registers

Address Register
ADSP-219x/2192 DSP Hardware Reference 9-3

FIFO Control and Status Register
Table 9-2. STCTL0/1Register Bit Description

Bit Position Bit Name Description

01:0 CE[1:0] Connection Enable
00 = Disable
01 = Reserved
10 = Connect to AC’97
11 = Reserved

2 Reserved

3 SMSEL Stereo / Monaural Select - AC’97 Mode.
0 = Monaural Stream
1 = Stereo Stream

7:4 SLOT[3:0] AC’97 Slot Select - AC’97 Mode

 Monaural Stereo
0000 -> 0010 = Reserved
0011 = Slot 3 Slots 3/4
0100 = Slot 4 Slots 4/5
0101 = Slot 5 Slots 5/6
0110 = Slot 6 Slots 6/7
0111 = Slot 7 Slots 7/8
1000 = Slot 8 Slots 8/9
1001 = Slot 9 Slots 9/10
1010 = Slot 10 Slots 10/11
1011 = Slot 11 Slots 11/12
1100 = Slot 12 Not Allowed
1101 -> 1111 = Reserved

10:8 FIP[2:0] FIFO Interrupt Position.

An interrupt is generated when FIP[2:0] +1 words are empty
in the FIFO. The Interrupt is Level Sensitive.

11 DME DMA Enable.

0 = DMA Disabled
1 = DMA Enabled
9-4 ADSP-219x/2192 DSP Hardware Reference

AC�97 Codec Port
FIFO Receive Control and Status Register
When communicating with AC’97 interface, the connection enable bits in
the control register are bits 1-0. Bit 3 selects stereo or monaural transfers
to and from the AC’97 interface. Bits 7-4 select the AC’97 slot associated
with this FIFO.

When stereo is selected, the slot identified and the next slot will be associ-
ated with the FIFO. Typically, stereo is selected for left and right data.
Both left and right must be associated with the same external AC’97
codec. It is important that these sample rates be locked together. In this
case, left and right data will alternate in the FIFO with the left data com-
ing first.

12 Reserved

13 TFF Transmit FIFO Full - Read Only.

0 = FIFO Not Full
1 = FIFO Full

14 TFE Transmit FIFO Empty - Read Only.

0 = FIFO Not Empty
1 = FIFO Empty

15 TU Transmit Underflow - Sticky, Write “1” Clear.

0 = FIFO Underflow has not occurred
1 = FIFO Underflow has occurred

Table 9-2. STCTL0/1Register Bit Description (Continued)

Bit Position Bit Name Description
ADSP-219x/2192 DSP Hardware Reference 9-5

FIFO Control and Status Register
If FIFO is enabled and a valid request for data comes that the FIFO can-
not fulfill, the transmitter underflow bit will be set. This indicates that an
invalid value was sent over the selected slot. Similarly, on the receive side,
if the FIFO is full and another valid word is received, the Overflow bit
will be set to indicate the loss of data.

! All bits in this register are reset to zero.

The following are the bit descriptions for the SRCTL0/1 register:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
O

R
FE

R
FF

R
es

er
ve

d

D
M

E

FI
P

[2
:0

]

SL
O

T
[3

:0
]

SM
SE

L

R
es

er
ve

d

C
E

[1
:0

]

Table 9-3. SRCTL0/1 Register Bit Descriptions

Bit Position Bit Name Description

01:0 CE[1:0] Connection Enable.

00 = Disable
01 = Reserved
10 = Connect to AC’97
11 = Reserved

2 Reserved

3 SMSel Stereo / Monaural Select - AC’97 Mode Only.

0 = Monaural Stream
1 = Stereo Stream
9-6 ADSP-219x/2192 DSP Hardware Reference

AC�97 Codec Port
7:4 SLOT[3:0] AC’97 Slot Select - AC’97 Mode Only.

Monaural Stereo

0000 -> 0010 = Reserved
0011 = Slot 3 Slots 3/4
0100 = Slot 4 Slots 4/5
0101 = Slot 5 Slots 5/6
0110 = Slot 6 Slots 6/7
0111 = Slot 7 Slots 7/8
1000 = Slot 8 Slots 8/9
1001 = Slot 9 Slots 9/10
1010 = Slot 10 Slots 10/11
1011 = Slot 11 Slots 11/12
1100 = Slot 12 Not Allowed
1101 -> 1111 = Reserved

10:8 FIP[2:0] FIFO Interrupt Position.

An interrupt is generated when FIP[2:0] + 1 words have been
Received in the FIFO. The interrupt is level sensitive.

11 DME DMA Enable.

0 = DMA Disabled
1 = DMA Enabled

12 Reserved

13 RFF Receive FIFO Empty - Read Only.

0 = FIFO Not Empty
1 = FIFO Empty

14 RFE Receive FIFO Empty - Read Only.

0 = FIFO Not Empty
1 = FIFO Empty

Table 9-3. SRCTL0/1 Register Bit Descriptions (Continued)

Bit Position Bit Name Description
ADSP-219x/2192 DSP Hardware Reference 9-7

FIFO Control and Status Register
FIFO DMA Address Registers
0x48 TX0ADDR
0x4C RX0ADDR
0x50 TX1ADDR
0x54 RX1ADDR

This is the 16-bit register specifying the current address of the DMA
channel. This will be the address used for the next DMA access. After each
access, the address will be incremented. The register will be loaded from
the channel’s NextAddress register when the count for the channel reaches
zero.

FIFO DMA Current Count Registers
0x4B TX0CURCNT
0x4F RX0CURCNT
0x53 TX1CURCNT
0x57 RX1CURCNT

This is the 16-bit register specifying the current count of the particular
DMA channel. The count is decremented after each DMA transfer for
that channel. When the count reaches zero, it is reloaded from the Count
register, the Address register is reloaded from the NextAddress register,
and an interrupt is generated.

15 RO Receive Overflow - Sticky, Write-One-Clear.

0 = FIFO Overflow has not occurred
1 = FIFO Overflow has occurred

Table 9-3. SRCTL0/1 Register Bit Descriptions (Continued)

Bit Position Bit Name Description
9-8 ADSP-219x/2192 DSP Hardware Reference

AC�97 Codec Port
FIFO DMA Count Registers
0x4A TX0CNT
0x4E RX0CNT
0x52 TX1CNT
0x56 RX1CNT

This 16-bit register specifies the number of DMA transfers for a channel
between interrupts and reloading of the address and current count regis-
ters. Count is loaded into Current Count when Current Count reaches
zero.

FIFO DMA Next Address Registers
0x49 TX0NXTADDR
0x4D RX0NXTADDR
0x51 TX1NXTADDR
0x55 RX1NXTADDR

This is the 16-bit register specifying the next start address to be loaded
into the Address register at the end of the current buffer.

0x12 TX0
0x22 TX1

16-bit Transmit Data Register

These are the destination registers when not using DMA to load data into
transmit FIFO. TX0 and TX1 are also in the directly addressable register
map of the DSP core.

0x13 RX0
0x23 RX1

16-bit Receive Data Register

These are the source registers when not using DMA to unload data from
receive FIFO. RX0 and RX1 are also in the directly addressable register map
of the DSP core.
ADSP-219x/2192 DSP Hardware Reference 9-9

FIFO Control and Status Register
AC-Link Digital Serial Interface Protocol
AC’97 incorporates a 5-pin digital serial interface that links it to the
AC’97 Controller. AC-link is a bidirectional, variable rate, serial PCM
digital stream. It handles multiple input and output audio streams, as well
as control register accesses employing a time division multiplexed (TDM)
scheme.

The AC-link architecture divides each audio frame into 12 outgoing and
12 incoming data streams, each with 20-bit sample resolution. With a
minimum required DAC and Analog/Digital Converter (ADC) resolution
of 16-bits, AC’97 could also be implemented with 18 or 20-bit
DAC/ADC resolution, given the space that the AC-link architecture pro-
vides. The protocol has the following characteristics:

• Each core has two independent connections to the synchronous
AC’97 (Revision 2.1) serial interface that supports external modem,
handset, and audio peripherals.

• The AC-link implements a bi-directional, variable rate, serial pulse
code modulated (PCM) digital stream.

• Handle multiple input and output audio streams as well as control
and status registers accesses using a time division-multiplexing
(TDM) scheme, as illustrated in Figure 9-1.
9-10 ADSP-219x/2192 DSP Hardware Reference

AC�97 Codec Port
Figure 9-1. Codec to ADSP-2192 Communication

• The beginning of all audio sample packets, or Audio Frames, trans-
ferred over AC-link is synchronized to the rising edge of the SYNC
signal. SYNC is driven by the ADSP-2192.

• SYNC, fixed at 48 kHz, is derived by dividing down the serial bit
clock (BITCLK). BITCLK, fixed at 12.288 MHz, providing the neces-
sary clocking granularity to support twelve 20-bit outgoing and
incoming time slots and one 16-bit slot.

• AC-link serial data is transitioned on each rising edge of BITCLK.
The receiver of AC-link data, AC’97 for outgoing data and
ADSP-2192 for incoming data, samples each serial bit on the falling
edges of BITCLK.

A C '97 C O D EC A D SP-2192

SYN C

BITC LK

SD I

SD O

A C RST
ADSP-219x/2192 DSP Hardware Reference 9-11

FIFO Control and Status Register
Resetting the AC�97

There are three types of AC’97 reset:

1. A cold reset where all AC’97 logic (registers included) is initialized
to its default state.

2. A warm reset where the contents of the AC’97 register set are left
unaltered.

3. A register reset which only initializes the AC’97 registers to their
default states.

After signaling a reset to AC’97, the ADSP-2192 AC’97 controller will
not attempt to play or capture audio data until it has sampled a “Codec
Ready” indication from AC’97 (the AC’97 controller polls the ACR bit of
the AC97STAT register).
9-12 ADSP-219x/2192 DSP Hardware Reference

AC�97 Codec Port
ADSP-2192 AC�97 Control Registers
The ADSP-2192 contains an AC '97 Digital Controller that consists of
dedicated hardware and customer provided DSP software. The
ADSP-2192 can communicate with one to three codecs using one to eight
sample transport channels (four separate monaural or stereo channels).

! At power-on reset, the AC'97 Link is stopped with ACRST#
asserted. When any other type of reset occurs, it may interrupt a
running AC '97 link. In general, the hardware will not reset the link
and the ADSP-2192 ROM code makes no attempt to return the AC
'97 link to a known state. The host must download and run DSP
code at reset time to stop (if desired) and restart the AC '97 link.

Refer to the Audio Hardware Developer section of Intel's web site
(www.intel.com).

Table 9-4. AC’97 Control Registers

PCI Address USB Address DSP IO
Page

DSP IO
Address

Register
Name

Description.

0x0C1-0x0
C0

0x00C1-0x00
C0

0x00 0xC0 AC97LC
TL

Setup control for AC’97
interface.

For more information, see
“AC’97 Link Control/Status
Register (AC97LCTL)” on
page 9-15.

0x0C3-0x0
C2

0x00C3-0x00
C2

0x00 0xC2 AC97ST
AT

Setup control for AC’97
interface.

For more information, see
“AC’97 Link Status Register
(AC97STAT)” on page 9-19.
ADSP-219x/2192 DSP Hardware Reference 9-13

ADSP-2192 AC�97 Control Registers
0x0C5-0x0
C4

0x00C5-0x00
C4

0x00 0xC4 AC97SE
N

Setup control for AC’97
interface

For more information, see
“AC’97 Slot Enable Register
(AC97SEN)” on page 9-21.

0x0C7-0x0
C6

0x00C7-0x00
C6

0x00 0xC6 AC97SV
AL

Current status of valid frame
from AC’97 link

For more information, see
“AC’97 Input Slot Valid Reg-
ister (AC97SVAL)” on
page 9-22.

0x0C9-0x0
C8

0x00C9-0x00
C8

0x00 0xC8 AC97SR
EQ

Current status of AC’97 slot
requests

For more information, see
“AC’97 Slot Request Register
(AC97SREQ)” on page 9-24.

0x0CB-0x0
CA

0x00CB-0x00
CA

0x00 0xCA AC97SI
F

GPIO slot 12 interface regis-
ter

For more information, see
“AC’97 GPIO Status Register
(AC97SIF)” on page 9-24.

Table 9-4. AC’97 Control Registers (Continued)

PCI Address USB Address DSP IO
Page

DSP IO
Address

Register
Name

Description.
9-14 ADSP-219x/2192 DSP Hardware Reference

AC�97 Codec Port
AC�97 Link Control/Status Register (AC97LCTL)
The following are bit descriptions for the AC97LCTL register.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
es

er
ve

d

A
R

P
D

A
G

PE

A
C

W
E

L
K

E
N

B
C

E
N

B
C

O
E

R
es

er
ve

d

A
FD

A
FS

A
FR

SY
E

N

Table 9-5. AC97LCTL Register Bit Definitions

Bit Name Description

0 SYEN AC’97 Sync Generator Enable.

This bit is automatically set to “1” upon link wakeup when
enabled by the AC97LCTL:ACWE bit, resulting in immedi-
ate SYNC pulse generation upon resumption of bit clock.

1= Generate SYNC pulses and send and receive

 data over the AC’97 Link.

0= SYNC pulses are not generated. (default)

1 AFR AC’97 Force Reset.

This bit must remain set during the host computer boot
sequence so that any attached audio codecs will enable the
passive pass-through of PC_BEEP for audible POST error
codes. The DSP must reset this bit before using the AC’97
Link the first time. To manually cold reset the AC’97 link,
the DSP must write this bit to a 1 and then write it back to 0
after at least 1 us (or about 148 DSP clocks). BITCLK starts
(BCEN is set) automatically on the Rising edge of ACRST# if
BCOE = “1”.

1= Forces ACRST# pin to “0”. (default)

0= Releases ACRST#.
ADSP-219x/2192 DSP Hardware Reference 9-15

ADSP-2192 AC�97 Control Registers
2 AFS AC’97 Force Sync.

To manually warm reset the AC’97 link, the DSP must write
this bit to a 1 and then write it back to 0 after at least 1 us (or
about 148 DSP clocks).

1= Forces SYNC pin to “1” (allows AC’97 Vendor

 Test Mode).

0= SYNC pin is high only during Slot 0. (default)

3 AFD AC’97 Force Data.

1= Forces SDO pin to “1” (allows AC’97 ATE

Test Mode.

0= SDO pin drives serial data out. (default)

4 Reserved Default value is 0.

5 BCOE Bit Clock Output Enable.

1= BITCLK pin is an output, driving out the

 internally generated bit clock.

0= BITCLK pin is an input, taking in bit clock

 from the primary codec. (default)

6 BCEN Bit Clock Generate Enable.

1= Internally generate a 12.288MHz bit clock

 from XTALI. Writing to “1” takes effect

 immediately.

0= Internally generated bit clock is “0” (default).

 Wait for two Frame Interrupts before writing to

 “0”. The “0” then takes effect on the next

 External Codec Write.

Table 9-5. AC97LCTL Register Bit Definitions (Continued)

Bit Name Description
9-16 ADSP-219x/2192 DSP Hardware Reference

AC�97 Codec Port
7 LKEN AC’97 Link Enable.

1= When written from 0 to 1, bring the AC’97

link to a running state (see text). This will set

the BCEN or SYEN bits and will clear the AFR

bit.

Writing to “1” takes effect immediately.

0= When written from 1 to 0, prepares to halt the

AC’97 link to a “Warm” Reset State. The effect

is delayed until the end of Slot 2 of the next

AC’97 control register write (which must write

either the PR4 or the MLNK bit to the
primary codec). When that occurs, the sync
generator is stopped (SYEN cleared) and, if
applicable, the BITCLK generator is halted (BCEN

cleared). Wait for two Frame Interrupts before

writing to “0”. The “0” then takes effect on the

next External Codec Write.

 8 ACWE AC’97 Link Wakeup Enable.

1= Enable automatic restart of a powered-down

AC’97 link on an AC’97 wake event (SDI=1).

AC97LCTL:LKEN is set when a Wake event is

detected, which will in turn de-assert ACRST#,

set SYEN, etc. as needed.

0= The AC’97 link is not powered up in hardware

on an AC’97 wake event. (default)

Table 9-5. AC97LCTL Register Bit Definitions (Continued)

Bit Name Description
ADSP-219x/2192 DSP Hardware Reference 9-17

ADSP-2192 AC�97 Control Registers
9 AGPE AC’97 GPIO Enable.

1= Sets slot 12 out valid and enables sending pin state
data to the AC’97 GPIO pins using slot 12 (must
write to the AC97SIF register first).

 Once enabled, GPIO Data is sent on every

frame. To save power, enable AGPE, write

AC97SIF, wait a frame and disable AGPE.

0= Slot 12 out is disabled. (default)

10 ARPD AC Link Reset upon DSP Powerdown Enable.

1= Assert ACRST# when both DSPs are powered

down. Do not set this Bit until the Link is in

“Warm” Reset State, i.e. BITCLK is Stopped.

0= Do not automatically assert ACRST#. (default)

Table 9-5. AC97LCTL Register Bit Definitions (Continued)

Bit Name Description
9-18 ADSP-219x/2192 DSP Hardware Reference

AC�97 Codec Port
AC�97 Link Status Register (AC97STAT)
Table 9-6. AC’97 Link Status Register Bit Definitions

Bit Name Description

2:0 VGS[3:1] Vendor-defined GPIO Status.

Reports the state of the Vendor Optional GPIO bits (SDI
Slot 12, bits 3-1) from the previous frame. Reflects data from
all three SDIs ORed together.

5:3 AGI[2:0] AC’97 Interrupt / Wakeup Detected.

Reports “1” when the codec attached to the corresponding
SDI[2:0] pin has signaled a wakeup or interrupt event. When
the AC’97 Link is running, reports the status of the
GPIO_INT bit (SDI Slot 12, Bit 0).

When the link is stopped, the AGI bit is set immediately by
an asynchronous HIGH state on the corresponding SDI pin.
Switching between the two forms of reporting is automatic,
based on the state of the AC’97 link.

AGI<n> is valid only when either ACR<2:0> = 000 or when
ACR<n> = 1. Between the time when the first codec reports
Ready (after the Link starts) and when a given codec reports
Ready, that codec's AGI bit may not be valid. Regardless, the
AC'97 specification requires you to wait for a codec to report
Ready before attempting to access its registers.

6 BCOK AC’97 BITCLK OK.

Reports “1” when the bit clock is running for both internally
and externally generated bit clocks. Reverts to “0” within two
bit clock periods after the clock stops.

7 LKOK AC’97 Link OK.

Reports “1” when the AC’97 Link is running. Reports “0”
when either ACRST# is asserted, BITCLK is stopped or
SYNCs are not Enabled.
ADSP-219x/2192 DSP Hardware Reference 9-19

ADSP-2192 AC�97 Control Registers
8 SYNC AC’97 SYNC Status.

Reports the current state of the AC’97 SYNC Signal, asserted
during Slot 0.

9 REG AC’97 Register Status.

Use of this bit allows a DSP to efficiently time its accesses to
controller and Codec registers. REG is asserted for exactly 20
BITCLKs, starting early in Slot 12 and ending early in Slot 0
of the next frame (after the rising edge of SYNC).

The rising edge of REG occurs at the same point in time as
the assertion of the AC’97 Frame Interrupt. Between then
and the start of the next AC’97 Frame, there is enough time
for at least four PDC transactions. This allows a DSP to
examine some ADSP-2192 registers and then post an AC’97
Codec Register read or write and have it go out in the next
Frame.

REG is high during the time when AC’97 controller status
registers update their values. You can inspect AC97STAT,
AC97SVAL, AC97SREQ and AC97SIF anytime REG is low
and get a synchronous snapshot of the previous Frame. A
1->0 transition on REG indicates that fresh status informa-
tion is now available.

For additional information, refer to “AC’97
AC97STAT:REG and Frame Interrupt Timing” on
page 9-22.

12:10 Reserved

15-13 ACR[2:0] AC’97 Codec Ready.

Reports “1” when the codec attached to the corresponding
SDI[2:0] pin has set its Codec Ready bit (SDI Slot 0, Bit 15)
in the previous frame. Always reports “0” when the AC’97
Link is disabled.

Table 9-6. AC’97 Link Status Register Bit Definitions (Continued)

Bit Name Description
9-20 ADSP-219x/2192 DSP Hardware Reference

AC�97 Codec Port
AC�97 Slot Enable Register (AC97SEN)
Table 9-7. AC’97 Slot Enable Register Bit Definitions

Bit Name Description

2:0 Reserved

12:3 ACSE Each bit enables the corresponding AC’97 slot to handle
data. Effectively, by setting the bit, the DSP FIFO(s) commit
to take RX data in every selected frame slot with an RX slot
valid bit asserted, and they commit to transmitting data in
every frame slot with a DAC request bit asserted. Overruns
and underruns are possible but must be detected and toler-
ated by the FIFOs. The controller needs the ASCE register to
process DAC request bits into TX Slot valid bits (like the
RQE[1:0] bits) and to know when to generate internal
SPORT framing signals as well.

Setting ACSE[12] is supported only when AC97LCTL:
AGPE=0.

Each ACSE bit enables sample transfers in both directions.
No independent control of transmit (SDO) and receive
(SDI) is possible.

15:13 Reserved
ADSP-219x/2192 DSP Hardware Reference 9-21

ADSP-2192 AC�97 Control Registers
AC�97 Input Slot Valid Register (AC97SVAL)

! The AC97SVAL and AC97SREQ registers are provided for diagnostic
and debugging purposes only. All necessary processing of Slot Valid
In/Out bits and Slot Request bits occurs automatically in dedicated
hardware.

AC�97 AC97STAT:REG and Frame Interrupt Timing

Figure 9-2. ASTST:REG and Frame Interrupt Timing

Table 9-8. AC’97 Slot Enable Register Bit Definitions

Bit Name Description

2:0 Reserved

14:3 ACSV

[1:12]

Each bit reports the state of the corresponding slot valid bit
from the previous frame (SDI Slot 0 data).

15 ACR AC’97 Codec Ready.

Reports “1” if any codec asserted its Codec Ready bit in the
previous frame.

AC97STAT:SYNC

AC97STAT:REG

AC�97 Frame Interrupt

F0 F1 F2 F3 F4

F1 F2 F3

F4

Reads of AC�97 Status Registers
return information corresponding F0/F1 F1/F2 F2/F3

Frame Number

to this Frame:-
9-22 ADSP-219x/2192 DSP Hardware Reference

AC�97 Codec Port
! For low latency, the recommended method for code to determine if
an AC’97 Frame Interrupt has occurred is for the Interrupt Service
Routine to write a flag in memory. The alternative approach
involves detecting a rising edge on AC97STAT:REG via PDC bus reads.
A drawback to using this method is that it would take longer.

AC�97 External Codec Register Spaces

Each external codec has a control/status register space, specified in the
AC’97 / AC’97 2.1 Codec Specification. In the ADSP-2192, these register
spaces are mapped into the DSP IO space. Each codec is placed in a sepa-
rate Page in I/O space. This permits code that supports more than one
codec to be shared, requiring simply a change of the IOPG register to
select the codec desired.

Table 9-9. AC’97 External Codec Register Spaces

IO Page Address Range Name

0x04 0-0x7E AC97 External Primary Codec 00 Registers

0x05 0-0x7E AC97 External Secondary Codec 01 Registers

0x06 0-0x7E AC97 External Secondary Codec 10 Registers

0x07 0-0x7E AC97 External Secondary Codec 11 Registers
ADSP-219x/2192 DSP Hardware Reference 9-23

ADSP-2192 AC�97 Control Registers
AC�97 Slot Request Register (AC97SREQ)

! The AC97SVAL and AC97SREQ registers are provided for diag-
nostic and debugging purposes only. All necessary processing of Slot
Valid In/Out bits and Slot Request bits occurs automatically in ded-
icated hardware.

AC�97 GPIO Status Register (AC97SIF)

Table 9-10. AC97SREQ Register Bit Definitions

Bit Name Description

2:0 Reserved

12:3 ACRQ

[3:12]

Each bit reports the state of the corresponding slot request
bit from the previous frame (SDI Slot 2 data). Bits are active
low when the corresponding DAC is enabled and always low
when the corresponding DAC is disabled.

15:13 Reserved

Table 9-11. AC’97 GPIO Control / Status Register Bit Definitions

Bit Name Description

15-0 AGS

[15:0]

Reads. Reports the state of the corresponding AC’97 GPIO
pin during the previous frame.

Writes. The AC97SIF register is sampled at the beginning of
Slot 12 to provide pin state data to AC’97 GPIO pins pro-
grammed as outputs (provided AC97LCTL:AGPE=1).
9-24 ADSP-219x/2192 DSP Hardware Reference

AC�97 Codec Port
ADSP-2192 AC�97 Audio Interface
The ADSP-2192 offers several features to support PC Audio require-
ments. The ADSP-2192 has an AC’97 2.1-compliant interface that
supports up to three external codecs. These can be any combination of
Audio or Modem/Handset Codecs.

External Audio Codec (AC�97) Subsystem

Resource Allocation

System design involves allocating the following resources among the sup-
ported devices:

• SDI pins. There are three SDI (Serial Data In) pins on the
ADSP-2192. One SDI pin must be connected to each added codec.

• AC’97 sample stream slots. There are ten bidirectional sample slots
per AC’97 frame (slots 3 through 12, although 12 is almost always
used for GPIO.) Monaural streams use one slot, while stereo streams
take two adjacent slots. While different streams may have different,
unsynchronized sample rates, the left and right streams in a stereo
pair are locked together. (The AC’97 2.1 specification suggests cer-
tain slot assignments for various functions. While external codecs
may require such specific slots, the ADSP-2192 AC’97/FIFO hard-
ware is general and may be programmed to any slot in the range 3
to 12).
ADSP-219x/2192 DSP Hardware Reference 9-25

ADSP-2192 AC�97 Audio Interface
• DSP DMA FIFOs. There are four FIFOs, two on each DSP. Each
is capable of handling one monaural or stereo sample stream when
assigned to AC’97 sample slots. (Rx and Tx may be assigned to dif-
ferent slots.)

This implies that a maximum of eight AC’97 sample slots may be
operated at any time.

• Computational resources (MIPS and DSP Memory), as appropri-
ate.

For most purposes, the AC’97 protocol describes SDI as a single input
stream rather than three distinct streams. This stream is derived by ORing
(combining by using the logical OR function) all three SDI pins. Unused
SDI pins must be tied to GND for proper operation of the other devices.

Table 9-12. AC’97 Pin Listing

Pin Name Function Description Connections

ACRST# O AC'97 Audio Reset. To all external codecs

SYNC O AC'97 Sync.

48 KHz frame rate

To all external codecs

SDO O AC'97 Serial Data Out. To all external codecs

SDI[2:0] I AC'97 Serial Data In
Pins.

One input from each external.
codec

BITCLK I/O

Output enabled if
AC97LCTL:BCO
E=1

AC'97 Bit Clock.

12.288 MHz

Connects to all external
codecs; may be driven by
ADSP-2192 or by one external
codec
9-26 ADSP-219x/2192 DSP Hardware Reference

AC�97 Codec Port
BITCLK: On the ADSP-2192, the BITCLK signal may be generated inter-
nally or externally, as selected by the BCOE bit of the AC97LCTL register. If
an external codec is configured as an AC’97 Primary codec, it is always (by
definition) the generator of BITCLK. If all the external codecs are config-
ured as secondary devices, the ADSP-2192 can generate the BITCLK signal.

! When powering down the link, ensure that an AC’97 control regis-
ter write be performed to the PR4 or MLNK bits of the nonexistent pri-
mary codec. The write function causes the external secondary
devices to search the link for this control register write in order to
time their own transition into powerdown properly.

AC�97 2.1 Protocol Summary
This is an introductory summary of the AC’97 2.1 serial interface proto-
col. For complete information, see the Audio Codec ’97 Specification,
from Intel Corporation.

The AC’97 Frame is structured as follows. Each frame is made up of one
16-bit tag slot (slot 0) and twelve 20-bit data slots (1 through 12), as
shown Figure 9-3, for a total of 256 bits. Slots are numbered in increasing
order (0 first), while bits are numbered in decreasing order (MSB first) See
also the ADSP-2192 AC’97 Interface Bitmap Table, for a cross-reference
between the ADSP-2192 register bits and the AC’97 serial data stream.)
ADSP-219x/2192 DSP Hardware Reference 9-27

AC�97 2.1 Protocol Summary
Figure 9-3. AC’97 frame structure

Access to AC�97 Codec Control/Status Registers
After a cold or warm restart of the AC’97 link, you must poll for the cor-
responding codec ready bit in AC97STAT to ensure that it has become
asserted before attempting to access any AC’97 registers in that codec. A
codec ready bit reads “1” only after the link begins to run (after
AC97STAT:LKOK becomes “1”) and after the corresponding codec asserts its
Codec Ready bit in SDI Slot 0, Bit 15. Unused SDI pins should be tied
low and their codec ready bits will always read “0”.

Codec registers are memory-mapped into PDC bus address space. Each
codec is assigned one IO page, so that Codec ID’s 0-3 map to IO pages
4-7. All address offsets match the addresses in the AC’97 spec. For exam-
ple, to write and read register 0x5E on codec ID 1 from a DSP, do:

IOPG = 0x5;// CID 1
io(0x5E) = ...// AC97 Register 0x5E
... = io(0x5E);

Note that, in addition to the DSPs, the PCI/USB/sub-ISA host may also
directly access AC’97 Codec registers, to aid in debugging.

TAG PCM
L

PCM
R

LINE2
DAC

PCM
CNTR

PCM
LSURR

PCM
SURR

LINE1
DAC

PCM
LFE

CMD
DATA

CMD
ADDR

HSET
DAC

I/O
CTRL

TAG PCM
L

PCM
R

LINE2
ADC

MIC
ADC

RSRVD

RSRVD

LINE1
ADC

RSRVD
DATA

STATUS
ADDR

HSET
ADC

I/O
STATUS

STATUS
SDI[2:0]

SDO

SYNC

Slot # 0 1 2 3 4 5 6 7 8 9 10 11 12

<-- AC’97 Frame @ 48kHz -->
9-28 ADSP-219x/2192 DSP Hardware Reference

AC�97 Codec Port
Reads and writes to AC’97 Codec Registers are automatically synchro-
nized by hardware to place the proper information in Slots 0, 1 and 2 of
the next available AC’97 Frame. Up to two AC'97 Codec Control/Status
Register (CSR) writes may be posted and pending at any given time. If a
third write is posted, PDC bus waitstates are inserted until the first can
complete. Every CSR read inserts PDC waitstates until the end of Slot 2
in the Frame in which the read data is returned. When a DSP is waiting
for completion of its PDC bus transaction, it is halted, unable to com-
pute, DMA or interrupt. Excessive PDC waitstates should be avoided.

In order to minimize PDC waitstates, the recommended procedure is to
time CSR accesses with the AC’97 Frame Interrupt. Wait for the interrupt
and then post one read or write per interrupt. This gives the minimum
latency until read data is returned. Writes may be posted with minimal
PDC wait states at any time, but will take effect in the codec with mini-
mum latency if posted following a Frame Interrupt. There is a DSP Flag
In signal that tells whether a CSR access launched now will incur signifi-
cant PDC waitstates.

Attempts to access an AC’97 Codec Register when the link is not running
(when AC97STAT:LKOK=0) are ignored. Attempting to write an unpopulated
Codec ID will send a write transaction over the AC’97 Link that is
ignored by all present codecs. Attempting to read an unpopulated Codec
ID will send a read request transaction over the AC’97 Link that is
ignored by all present codecs. In the next Frame, the AC’97 controller will
return all zeros to the PDC bus as long as no Codec sets Slot 2 Valid in.

There are three cases when you must synchronize state changes between
the AC’97 controller and an AC’97 Codec:

• Enabling or disabling slots (writing the AC97SEN register)

• Disabling the link (writing AC97LCTL:LKEN to “0”)

• Disabling the locally generated BITCLK (writing AC97LCTL:BCEN to
“0”)
ADSP-219x/2192 DSP Hardware Reference 9-29

AC�97 2.1 Protocol Summary
Each case involves changing one controller register and one Codec regis-
ter. The controller delays the effect in the controller register until the
Codec receives its serial register write. Before launching the Codec register
write, you must make sure that any previously posted Codec register
writes have completed. Therefore, you must wait through two frames (two
AC’97 Frame Interrupts) and then write the controller and Codec regis-
ters in close succession.

Changes to AC97SEN take effect at the next AC’97 Codec Control/Status
Register (CSR) write. The value read back from AC97SEN is updated imme-
diately after it is written by a DSP. This makes it possible, if timed
properly, for DSP #1 and then DSP #2 to each read-modify-write AC97SEN
to enable their respective allotted slots and have all the slot enable changes
take effect in the same frame. Unfortunately, in the standard AC’97 pro-
tocol you can not enable all the codecs at the same time, as it takes
multiple AC’97 writes-and therefore multiple Frames-to address them. It
is possible to enable multiple codecs in one Frame if using ADI Chaining
Mode.

AC�97 2.1 Link Powerdown States
As illustrated in Figure 9-4, the AC’97 2.1 interface may be powered
down when inactive to save power, either to a Cold or Warm state. In the
Cold state, ACRST# is asserted, and BITCLK and SYNC are halted. In the
Warm state, BITCLK and SYNC are halted but ACRST# is deasserted.

Note: On powerup, de-asserting ACRST# from the Cold state causes the
BITCLK master to start, but the controller does not necessarily start generating
SYNC pulses until it is enabled. This state in which BITCLK is running but
SYNC is halted is called IDLE.

When powered down, a wakeup protocol is defined using the SDI pins. A
high level on SDI asynchronously signals a wakeup condition to the con-
troller. If it is enabled to do so, the controller may then restart the link
upon receiving this wakeup signal.
9-30 ADSP-219x/2192 DSP Hardware Reference

AC�97 Codec Port
Figure 9-4. AC’97 Link Powerdown States, by Function

Cold
(ACRST#
asserted)

Warm
(BITCLK

halted)
(BITCLK on, Running

IDLE

SYNC halted)

De-assert

SYEN=1

LKEN=0, then
Assert
ACRST#

1us Pulse
SYNC

ACRST#

LKEN=1

SYEN=0

MLNK or PR4=1

“Cold Reset”

“Warm
Reset”

1
1

1 These two options should be avoided.
ADSP-219x/2192 DSP Hardware Reference 9-31

AC�97 2.1 Protocol Summary
Figure 9-5. Link powerdown states, by signal

Important attributes of the powerdown states are as follows:

• AC’97 Frames, sample data, GPIO state, and register accesses can
only be transferred in the Running state. The ADSP-2192
AC97STAT:LKOK (Link OK) bit reads 1 in this state only.

• The AC97STAT:BCOK (BITCLK OK) reads 1 in the Idle and Running
states.

• Wakeups/Interrupts are signalled using SDI Slot 12 Bit 0 during the
Running state.

• Wakeups are signalled using a high level on SDI during all other
states.

ACRST#
BITCLK
SYNC

SDO
SDI

Warm Reset

Wake
Event

Wake
Event

Cold Reset

Cold

Controller
Enabled

Controller
Enabled(SYNC pulse)

(ACRST#
deasserted)

Link Link
Reset ResetStopped

1

1BITCLK is stopped when ACRST#=0.
9-32 ADSP-219x/2192 DSP Hardware Reference

AC�97 Codec Port
State Transitions

The state transitions are: powerup and powerdown.

Power-Up Transitions

• The simplest way to power up the ADSP-2192 AC’97 link control-
ler from any power-down state is to write AC97LCTL:LKEN=1, and
then poll for AC97STAT:LKOK=1. The ADSP-2192 hardware will
make the appropriate transitions to bring the interface to a running
state.

• From the Cold state, de-assertion of ACRST# by the controller (for
example, clearing AC97LCTL:AFR) causes the BITCLK generator to
start, resulting in an IDLE state. Note that the BITCLK generator
may be either in an external Primary codec, or the ADSP-2192’s
internal BITCLK generator, as selected by the AC97LCTL:BCOE bit.

• From Warm, assertion of SYNC for the bus by the controller causes
the BITCLK to start (upon de-assertion of SYNC), resulting in the
IDLE state.

• From IDLE, writing the bit AC97LCTL:SYEN=1 starts the SYNC pulse
generator and places the link in a running state. Note that addi-
tional configuration is needed to power up devices, associate FIFOs
with AC’97 Slots, and to enable sample transmission (see below).

! The AC97LCTL:ACWE (AC’97 Wake Enable) bit enables automatically
restarting the link (setting LKEN=1) when a wake event is detected in
a non-Running (LKOK=0) state.
ADSP-219x/2192 DSP Hardware Reference 9-33

AC�97 2.1 Protocol Summary
Power-Down Transitions

• The link must be powered down to a Warm state in this sequence:

a. Power down all codec blocks by writing PRn bits to 1, except for
the primary codec’s PR4 or MLNK bit.

b. Wait for two AC’97 Frame Interrupts.

c. Write AC97LCTL:LKEN=0. This tells the controller that the link is
about to be stopped.

d. Write the primary codec’s PR4 bit (if audio) or MLNK bit (if
modem) to 1. At the end of slot 2 of this access, the primary
codec will stop BITCLK; if BITCLK is internally generated
(AC97LCTL:BCOE=1), the generator will also stop at this point
(AC97LCTL:BCEN is cleared). External codecs will snoop the link
watching for this register write, and will fully power down at this
point. The controller’s SYEN bit should now be cleared (it will be
cleared automatically if the LKEN bit was used to power down the
link).

• The link may then be brought from a Warm to a Cold state by
asserting ACRST#, which is done by either writing AC97LCTL:AFR to
1, powering down the DSPs with the AC97LCTL:ARPD bit set to 1, or
asserting the interface RST# pin while SCFG:RDIS is 0 (the power-on
default).

The recommended way to enable and disable the link is through use
of the LKEN bit.

When LKEN is written to 1 (from 0):

• If the link was already running (LKOK=1), there is no effect.

• If the link was in Cold reset, ACRST# is deasserted (clearing
AC97LCTL:AFR if necessary).
9-34 ADSP-219x/2192 DSP Hardware Reference

AC�97 Codec Port
• If the link was in Warm reset, SYNC is asserted for 1 us and
then deasserted.

• If BITCLK is internal, the BITCLK generator starts
(AC97LCTL:BCEN set to 1) when ACRST# deasserts (cold) or
when SYNC deasserts (warm). If BITCLK is external, the exter-
nal primary codec must start BITCLK in a similar manner.

• When BITCLK restarts (AC97STAT:BCOK reads 1), the sync
pulse generator is automatically enabled (AC97LCTL:SYEN set
to 1). At this point, LKOK reads 1.

When LKEN is written to 0 (from 1):

The controller will wait for the end of Slot 2 of the next control reg-
ister write (which must set PR4 or MLNK) and then disable the
BITCLK generator (clear AC97LCTL:BCEN) and SYNC generation (Clear
AC97LCTL:SYEN). At this point, LKOK will read 0.

When LKEN is written with the same value (0==>0 or 1==>1), there
is no effect. The safest way to restart the Link when it is in an
unknown state (such as at a reset other than power on) is to write
LKEN to a zero (0) and then to one (1).
ADSP-219x/2192 DSP Hardware Reference 9-35

Configuring AC�97 Sample Data Streams
Configuring AC�97 Sample Data Streams
DAC and ADC sample streams are conveyed to external AC’97 codec
devices by assigning DSP FIFOs to AC’97 Data Slots.

In order to enable an AC’97 sample stream, follow this sequence:

1. Set up the DMA channel for the correct DSP FIFO.

2. Program the Transmit and/or Receive FIFO Control Register
(STCTL/SRCTL) in the correct DSP FIFO. Program the desired
slot number into the AC’97 Slot Select field, set the Stereo/Mon-
aural select bit as required and set the Connection Enable field to
10 for AC’97. See the DSP FIFO section for more details.

3. Pre-fill the TX FIFO, if needed.

4. Enable RX/TX interrupts in the corresponding DSP, if needed.

5. Wait for two AC’97 Frame interrupts in order to flush out any
pending CSR writes.

6. Write the appropriate AC’97 Codec Control/Status Register to
enable the DAC/ADC.

7. Set the bit or adjacent pair of bits in the AC97SEN register corre-
sponding to the slot(s) to be enabled.

In order to disable an AC’97 sample stream, follow this sequence:

1. Wait for two AC’97 Frame Interrupts in order to flush out any
pending CSR writes.

2. Write the appropriate AC’97 Codec Control/Status Register to dis-
able the DAC/ADC.

3. Clear the bit or adjacent pair of bits in the AC97SEN register corre-
sponding to the slot(s) to be disabled.
9-36 ADSP-219x/2192 DSP Hardware Reference

AC�97 Codec Port
4. Wait for one AC’97 Frame Interrupt in order to let the CSR write
complete.

5. Disable RX/TX interrupts in the corresponding DSP, if needed.

6. Drain the RX FIFO, if needed.

7. Clear the Connection Enable bits in the Transmit and/or Receive
FIFO Control Register (STCTL/SRCTL) in the correct DSP FIFO to
00.
ADSP-219x/2192 DSP Hardware Reference 9-37

Configuring AC�97 Sample Data Streams
9-38 ADSP-219x/2192 DSP Hardware Reference

10 JTAG TEST-EMULATION PORT
Figure 10-0.

Table 10-0.

Listing 10-0.

The ADSP-2192 contains a JTAG test access port. The emulator uses

JTAG logic for ADSP-2192 communications and control. This JTAG
logic consists of a state machine, a five pin Test Access Port (TAP), and
shift registers. Note that the ADSP-2192 JTAG does not support bound-
ary scan.

The TAP pins appear in Table 10-1.

For more information about JTAG, see application note EE-68. Engineer-
ing application notes are available at www.analog.com.

Table 10-1. JTAG Test Access Port (TAP) Pins

Pin Function

TCK (input) Test Clock: pin used to clock the TAP state machine.1

1 Asynchronous with XTALI

TMS (input) Test Mode Select: pin used to control the TAP state machine sequence.1

TDI (input) Test Data In: serial shift data input pin.

TDO (output) Test Data Out: serial shift data output pin.

TRST (input) Test Logic Reset: resets the TAP state machine
ADSP-219x/2192 DSP Hardware Reference 10-1

10-2 ADSP-219x/2192 DSP Hardware Reference

11 SYSTEM DESIGN
Figure 11-0.

Table 11-0.

Listing 11-0.
Overview
This chapter describes the basic system interface features of the
ADSP-219x family processors, including the ADSP-2192. The system
interface includes various hardware and software features used to control
the DSP processor. Processor control pins include a PORST (power on reset)
signal, clock signals, flag inputs and outputs, and interrupt requests. This
chapter describes only the logical relationships of control signals; consult
individual processor data sheets (including the data sheet for the
ADSP-2192) for actual timing specifications.

Sources for Additional Information
Some ADSP-2192 system interfaces are documented in other chapters in
this book, as follows:

• “Host (PCI/USB) Port” on page 8-1 discusses the PCI, CardBus,
and Sub-ISA interfaces, and includes information about how these
applications use the Serial EEPROM port and the DMA (Direct
Memory Access) controller. That chapter also discusses the USB
interface and includes information about how USB applications use
the Serial EEPROM port and the DMA controller.

• “AC’97 Codec Port” on page 9-1 discusses the AC’97 interface.

• “JTAG Test-Emulation Port” on page 10-1 discusses the JTAG
Test Access Port and how it is used during emulation.
ADSP-219x/2192 DSP Hardware Reference 11-1

Sources for Additional Information
In addition, the Analog Devices web site contains a series of engineering
application notes. These documents describe topics related to the
ADSP-2192, including:

• Hints for porting code from ADSP-218x chips to ADSP-219x chips
(described in application note EE-121)

• Tips for maximizing performance on the ADSP-219x family of pro-
cessors (described in application note EE-122)

• An overview of the ADSP-219x pipeline (described in application
note EE-123),

• Mechanism for booting on the ADSP-2192 (described in applica-
tion note EE-124).

Engineering application notes, including any new ones that may have
been added since this manual was published, are available at
www.analog.com.
11-2 ADSP-219x/2192 DSP Hardware Reference

System Design
Pin Descriptions
The ADSP-2192 processor comes in a 144-LQFP package configuration.
This section provides functional descriptions of the ADSP-2192 pins.

Table 11-1 through Table 11-7 provide ADSP-2192 processor pin
descriptions.

Table 11-1. PCI/USB Bus Interface Pin Descriptions

Pin Name(s)
Number
of Pins

I/O Description

AD0 - AD31 32 I/O Address and Data Bus

CBE0 - CBE3 4 I/O PCI Command/Byte Enable

CLK 1 I PCI Clock

CLKRUN 1 O Clock Run

DEVSEL 1 I/O PCI Target Device Select

FRAME 1 I/O PCI Frame Select

GNT 1 I PCI Grant

IDSEL 1 I PCI Initiator Device Select

INTAB 1 O PCI / ISA Interrupt

IRDY 1 I/O PCI Initiator Ready

PAR 1 I/O PCI Bus Parity/

PCIGND 7 I PCI Ground

PCIVDD 7 I PCI VDD supply

PERR 1 I/O PCI Parity Error/USB- (Inverting input)
ADSP-219x/2192 DSP Hardware Reference 11-3

Pin Descriptions
PME 1 O PCI Power Management Event

REQ 1 O PCI Request

RST 1 I PCI Reset

SERR 1 O PCI System Error/USB+ (Non-inverting input)

STOP 1 I/O PCI Target Stop

TRDY 1 I/O PCI Target Ready

Table 11-2. Crystal/Configuration Pin Descriptions

Pin Name(s)
Number
of Pins

I/O Description

BUS0 - BUS1 2 I PCI/ Sub-ISA/CardBus Select pins

CLKSEL 1 I/O Clock Select

IGND 1 I IGND

NC 1 O No Connect

PORST 1 I Power On Reset

XTALI 1 I Crystal Input Pin (24.576 MHz)

XTALO 1 O Crystal Output Pin

Table 11-1. PCI/USB Bus Interface Pin Descriptions (Continued)

Pin Name(s)
Number
of Pins

I/O Description
11-4 ADSP-219x/2192 DSP Hardware Reference

System Design
Table 11-3. AC’97 Interface Pin Descriptions

Pin Name(s)
Number
of Pins

I/O Description

ACRST 1 O AC’97 Reset

ACVAUX 1 I AC’97 Vaux Input

ACVDD 1 I AC’97 VDD Input

BITCLK 1 O AC’97 Bit Clock

SDI0 - SDI2 3 I AC’97 Serial Data Input

SDO 1 O AC’97 Serial Data Output

SYNC 1 O AC’97 Sync

Table 11-4. Serial EEPROM Pin Descriptions

Pin Name(s)
Number
of Pins

I/O Description

SCK 1 I Serial EEPROM Clock

SDA 1 I Serial EEPROM Data

SEN 1 I Serial EEPROM Enable

Table 11-5. Emulator Pin Descriptions

Pin Name(s)
Number
of Pins

I/O Description

EMU 1 O Emulator Event Pin

TCK 1 I Emulator Clock Input

TDI 1 I Emulator Data Input
ADSP-219x/2192 DSP Hardware Reference 11-5

Pin Descriptions
TDO 1 O Emulator Data Output

TMS 1 I Emulator Mode Select

TRST 1 I Emulator Logic Reset

Table 11-6. I/O Pin Descriptions

Pin Name(s)
Number
of Pins

I/O Description

AIOGND 2 IO Ground

IO0 - IO7 8 I/O IO Pin, Bits 0-7

IOVDD 2 IO Vdd

Table 11-7. Power Supply Pin Descriptions

Pin Name(s)
Number
of Pins

I/O Description

ACVAUX 1 AC’97 VAUX Input

AIOGND 1 IO Ground

AVDD 1 Analog VDD Supply

CTRLAUX 1 AUX Control

CTRLVDD 1 Control VDD

IGND 9 Digital Ground

Table 11-5. Emulator Pin Descriptions (Continued)

Pin Name(s)
Number
of Pins

I/O Description
11-6 ADSP-219x/2192 DSP Hardware Reference

System Design
Clock Signals
The ADSP-2192 can be clocked by a crystal oscillator. If a crystal oscilla-
tor is used, the crystal should be connected across the XTALI/O pins, with
two capacitors connected as shown in Figure 11-1 on page 11-8. Capaci-
tor values are dependent on crystal type and should be specified by the
crystal manufacturer. A parallel-resonant, fundamental frequency, micro-
processor-grade 24.576 MHz crystal should be used for this configuration.

The ADSP-2192 processor can also be operated with an external fre-
quency generator or integrated oscillator supplying the clock signal. If an
external clock is used, the input should be connected to the XTALI pin, and
the XTALO pin must be left unconnected. If the input waveform exceeds a
2.5V signal level, the CLKSEL pin should be tied to VBYP (2.5V) to protect
the internal oscillator. The XTALI signal may not be halted, changed, or
operated below the specified frequency during normal operation.

The internal phase locked loop (PLL) of the processors generates an inter-
nal clock that is, by default, six times the input frequency. This clock rate
is configurable, and the multiplier’s default value of six can be changed,
according to the bit settings of DPLLN, DPLLK, and DPLLM in the DSP’s PLL
control register.

IVDD 9 Digital VDD

RVAUX 1 AUX supply

RVDD 1 Analog VDD Supply

Table 11-7. Power Supply Pin Descriptions (Continued)

Pin Name(s)
Number
of Pins

I/O Description
ADSP-219x/2192 DSP Hardware Reference 11-7

Clock Signals
For more information about the programmable PLL, see “Setting Dual
DSP Core Features” on page 6-3.

The ADSP-2192 defines the following clock domains: PCI, USB, AC’97,
DSP clock, and the Peripheral Device Control (PDC) bus. Figure 11-2 on
page 11-9 shows these clock domains and their relationships to each other.

XTALI XTALO

ADSP-2192

CLKRUN

PORST

BUS0

BUS1

CLKSEL

BITCLK

24.576 MHz

CLK

RST

BUS SELECT

POWER ON RESET
(NO CONNECT)

PCI CLOCK RUN

PCI CLOCK

PCI RESET

AC'97 BIT CLOCK

Figure 11-1. External Crystal Connections
11-8 ADSP-219x/2192 DSP Hardware Reference

System Design
Figure 11-2. ADSP-2192 Clock Domains

Synchronization Delay
Each peripheral has several asynchronous inputs (interrupt requests, for
example), which can be asserted in arbitrary phase to the processor clock.
The processor synchronizes such signals before recognizing them. The
delay associated with signal recognition is called synchronization delay.

Different asynchronous inputs are recognized at different points in the
processor cycle. Any asynchronous input must be valid prior to the recog-
nition point to be recognized in a particular cycle. If an input does not
meet the setup time on a given cycle, it is recognized either in the current
cycle or during the next cycle if it remains valid.

USB

CLOCK

DOMAIN

DSP

CLOCK DO M AIN

X6

PLL

X4

PLL

24.576M HZ

XTALI

147.456MHZ

1/8.192 PLL &

CLOCK RECOVE RY

12.0M HZ

1/2

BITCLK

AC’97

CLOCK DO M AIN

USB PORT

1/2 PERIPHERAL DEVICE
CONTROL BUS
CLOCK DO MAIN

12.288M HZ

PCI

CLOCK

DOMAIN

33MHZ

PCI CLK

49.152M HZ

(SUB-ISA MODE)1/2

49.152M HZ(PROGRAM MABLE)
ADSP-219x/2192 DSP Hardware Reference 11-9

Clock Signals
Edge-sensitive interrupt requests are latched internally so that the request
signal only has to meet the pulse width requirement. To ensure the recog-
nition of any asynchronous input, however, the input must be asserted for
at least one full processor cycle plus setup and hold time. Setup and hold
times are specified in the data sheet for the ADSP-2192 or data sheets for
other products in the ADSP-219x family.

Configurable Clock Multiplier Considerations
The processors on the ADSP-2192 use an on-chip phase-locked loop
(PLL) to generate the internal clock signals. Because these clocks are gen-
erated based on the rising edge of XTALI, there is no ambiguity about the
phase relationship of two processors sharing the same input clock. Multi-
ple processor synchronization is simplified as a result.

Using an input clock with more than one possible frequency (with the
phase-locked loop generating the internal clock cycles, based on the con-
figurable value of the clock multiplier) imposes certain restrictions. The
XTALI signal must be valid long enough to achieve phase lock before PORST
can be deasserted. Also, the clock input frequency cannot be changed
unless the processor is in PORST.

The PLLCTL register controls clock multiplier modes for the ADSP-2192.
See “ADSP-2192 DSP Peripheral Registers” on page B-1 for more infor-
mation about the bits in PLLCTL. These modes affect operations for both
DSP cores. See “Clock Multiplier Mode Control” on page 6-10 for more
instructions on how to change the clock multiplier.
11-10 ADSP-219x/2192 DSP Hardware Reference

System Design
Maximizing Performance of DSP
Algorithms

When writing DSP algorithms, you can significantly improve perfor-
mance by executing many instructions in parallel, or within the same
clock cycle. This is called parallel operation, and the instructions that exe-
cute multiple operations within a single cycle are called multifunction
instructions.

Multifunction operations available on the ADSP-2192 include:

• ALU/MAC with DM and PM dual read using DAGS 1and2
post-modify

• Multifunction ALU/MAC with DM/PM read or write using DAG
post-modify

• ALU/MAC/Shift and any DREG-to-DREG transfer

• Conditional ALU/MAC/Shift

• Unconditional Register File ALU/MAC
ADSP-219x/2192 DSP Hardware Reference 11-11

Maximizing Performance of DSP Algorithms
Table 11-8 lists the registers available for multifunction instructions.

For more information about these performance enhancements and
instructions for optimizing the code in your DSP algorithms, see Applica-
tion Note EE-122, available from the ADSP-2192 product page on the
www.analog.com web site.

Table 11-8. Available Registers for Multifunction Instructions

Operation Available XOPs Available YOPs

ALU AX0, AX1,
AR,
MR0, MR1, MR2,
SR0, SR1

AY0, AY1,
AF,
the value zero

MAC MX0, MX1,
AR,
MR0, MR1, MR2,
SR0, SR1

MY0, MY1,
SR1,
the value zero

Shifts SI, SR0, SR1, SR2,
AR, AX0, AX1,
AY0, AY1,
MX0, MX1
MY0, MY1,
MR0, MR1, MR2

N/A
11-12 ADSP-219x/2192 DSP Hardware Reference

System Design
Resetting the Processor
The ADSP-2192 supports booting via either the PCI interface or the USB
interface. The boot loader kernel, located in the DSP ROM, determines
how the DSP boots (PCI or USB). The kernel then sets up and initializes
appropriate DSP registers to facilitate the booting.

Three methods for resetting the processor on the ADSP-2192 are dis-
cussed in this section: Power On Reset, Forced Reset Via PCI/USB, and
Software Reset. The reset type is specified by bits 8 and 9 (CRST<1:0>) of
the Chip Mode/Status Register (CMSR), as follows:

• CRST<1:0>=00—Power On Reset

• CRST<1:0>=01—(Reserved)

• CRST<1:0>=10—PCI/USB Hard Reset

• CRST<1:0>=11—Soft Reset from CMSR RST bit.

For information about resetting the AC’97 link, refer to “Resetting the
AC’97” on page 9-12.

Power On Reset
The ADSP-2192 has an internal Power On Reset circuit that resets the
DSP when power is applied. A Power On Reset (PORST) signal can also ini-
tiate this master reset. When the Power On Reset is invoked, program
flow jumps to the first location of the loader kernel at address 0x14000 and
begins execution.
ADSP-219x/2192 DSP Hardware Reference 11-13

Resetting the Processor
Forced Reset Via PCI/USB
In addition to the Power On Reset (PORST), the ADSP-2192 can also be
reset by the PCI or USB interfaces. These interfaces reset the DSP under
their control as needed. A reset via the PCI or USB device causes program
flow to jump to the command monitor that is part of the loader kernel,
bypassing the serial EEPROM detection/reading subroutines.

For more information about resets via PCI or USB, see “Resets” on
page 8-14.

Software Reset
The DSP can generate a software reset by using the RSTD bit in the DSP
Interrupt/Powerdown Registers. (See “ADSP-2192 DSP Peripheral Regis-
ters” on page B-1 for more information about the RSTD bit.) Generally,
reset conditions are handled by forcing the DSPs to execute ROM- or
RAM-based Reset Handler code. The Reset Handler to be executed can be
dictated by the Reset Source as defined by the CRST[1:0] bits in the Chip
Mode/Status Register (CMSR). If not otherwise defined, the loader kernel
jumps to the first location of internal PM memory at address 0x10000 and
commences execution.

The exact Reset Functionality is therefore defined by the ROM and RAM
Reset Handler Code and as such is programmable.

Reset Progression
Once a reset has occurred and the loader kernel begins running, it does the
following:

• Determines the type of reset (Power On Reset, PCI/USB Reset, or
Software Reset),

• Configures interrupts
11-14 ADSP-219x/2192 DSP Hardware Reference

System Design
• Reads data from the serial EEPROM if appropriate

• Sets up bus configurations

• Transfers control to PCI or USB

At this point the loader kernel enters into an infinite loop, waiting for
instructions. Once the PCI or USB device has completed booting the
DSP, the device can write an instruction to a pre-defined location
(0x000000 in Data Memory), at which point the DSP will execute any one
of a list of supported commands. These supported commands include the
following:

• Jump to program memory without returning (to leave the loader
kernel and begin user code)

• Read a word from EEPROM

• Enable write mode on EEPROM

• Write a word to EEPROM

• Re-read patch block from EEPROM (if bus configuration may have
overwritten locations)

• Enter power-down state

You can also write code to perform these operations during runtime by
writing the appropriate value into the pre-defined memory address and
then by performing a CALL to address 0x014F00 (a location in the ROM).
The loader kernel performs the requested command and then returns con-
trol to the user code.
ADSP-219x/2192 DSP Hardware Reference 11-15

Resetting the Processor
Table 11-9 shows the values and descriptions for the supported functions.
For commands that require multiple arguments, the arguments are placed
in Data Memory addresses 0x0001, 0x0002, and 0x0003 respectively.

Resets and Software-Forced Rebooting
Table 11-10 on page 11-17 shows the state of the processor registers after
a reset or a software-forced reboot. The values of any registers not listed
are unchanged by a reset or a reboot. The contents of on-chip memory are
unchanged after PORST, except for the data-memory-mapped control/status
registers, as shown in Table 11-10.

Table 11-9. User-Defined Loader Kernel Function Values

0x0001 0x0002 0x0003

Value Description Argument 1 Argument 2 Argument 3

0x0000 nop N/A N/A N/A

0x0004 jump_to_code N/A dest. address N/A

0x0006 eeprom_write_enable N/A N/A N/A

0x0002 eeprom_write_word eeprom address source address source page

0x0005 eeprom_write_imm_data eeprom address imm. value N/A

0x0001 eeprom_read_word eeprom address dest. address dest. page

0x0003 read_patch_block eeprom address N/A N/A

0x0007 powerdown_dsp N/A N/A N/A
11-16 ADSP-219x/2192 DSP Hardware Reference

System Design
During booting (and rebooting), all interrupts are masked, and auto-
buffering is disabled. The timers run during a reboot. If a timer interrupt
occurs during the reboot, it is masked. Thus, if more than one timer inter-
rupt occurs during the reboot, the processor latches only the first, and a
timer overrun can occur.

Table 11-10. ADSP-2192 Register State after Reset or Software Reboot

Register Name Value Changed after Reset or
Software Reboot?

New Value

AX0 no unchanged

AX1 no unchanged

MX0 no unchanged

MX1 no unchanged

AY0 no unchanged

AY1 no unchanged

MY0 no unchanged

MY1 no unchanged

MR2 no unchanged

SR2 no unchanged

AR no unchanged

SI no unchanged

MR1 no unchanged

SR1 no unchanged

MR0 no unchanged
ADSP-219x/2192 DSP Hardware Reference 11-17

Resetting the Processor
SR0 no unchanged

I0 no unchanged

I1 no unchanged

I2 no unchanged

I3 no unchanged

M0 no unchanged

M1 no unchanged

M2 no unchanged

M3 no unchanged

L0 no unchanged

L1 no unchanged

L2 no unchanged

L3 no unchanged

IMASK yes 0

IRPTL yes 0

ICNTL yes 0

STACKA no unchanged

I4 no unchanged

Table 11-10. ADSP-2192 Register State after Reset or Software Reboot

Register Name Value Changed after Reset or
Software Reboot?

New Value
11-18 ADSP-219x/2192 DSP Hardware Reference

System Design
I5 no unchanged

I6 no unchanged

I7 no unchanged

M4 no unchanged

M5 no unchanged

M6 no unchanged

M7 no unchanged

L4 no unchanged

L5 no unchanged

L6 no unchanged

L7 no unchanged

TX0 no unchanged

TX1 no unchanged

CNTR no unchanged

LPSTCKA no unchanged

ASTAT yes 0

MSTAT yes 0

SSTAT yes 0x55

Table 11-10. ADSP-2192 Register State after Reset or Software Reboot

Register Name Value Changed after Reset or
Software Reboot?

New Value
ADSP-219x/2192 DSP Hardware Reference 11-19

Resetting the Processor
LPSTCKP no unchanged

CCODE yes 0x8

SE no unchanged

SB no unchanged

PX no unchanged

DMPG1 yes 0

DMPG2 yes 0

IOPG yes 0

IJPG yes 0

RX0 no unchanged

RX1 no unchanged

STACKP no unchanged

AF no unchanged

B0 no unchanged

B1 no unchanged

B2 no unchanged

B3 no unchanged

B4 no unchanged

Table 11-10. ADSP-2192 Register State after Reset or Software Reboot

Register Name Value Changed after Reset or
Software Reboot?

New Value
11-20 ADSP-219x/2192 DSP Hardware Reference

System Design
B5 no unchanged

B6 no unchanged

B7 no unchanged

SYSCTL no unchanged

DMAPAGE no unchanged

CACTL yes 0

STCTL0 no unchanged

SRCTL0 no unchanged

TX0 no unchanged

RX0 no unchanged

STCTL1 no unchanged

SRCTL1 no unchanged

TX1 no unchanged

RX1 no unchanged

TPERIOD no unchanged

TCOUNT no unchanged

TSCALE no unchanged

Table 11-10. ADSP-2192 Register State after Reset or Software Reboot

Register Name Value Changed after Reset or
Software Reboot?

New Value
ADSP-219x/2192 DSP Hardware Reference 11-21

Interrupts
Interrupts
See “ADSP-2192 Interrupts” on page E-1 for information about inter-
rupts on the ADSP-2192.

Flag Pins
The ADSP-2192 processor has eight dedicated general-purpose flag pins,
IO0-7. These flags can be programmed as either inputs or outputs; they
default to inputs following reset. The IOx pins are programmed with the
use of two memory-mapped registers. The value of the GPIO configura-
tion register determines the flag direction: 0=output and 1=input. The
Programmable Flag Data register is used to read and write the values on
the pins. (Refer to “ADSP-2192 DSP Peripheral Registers” on page B-1
and “Setting Dual DSP Core Features” on page 6-3 for more information
about these registers.)

Data being read from a pin configured as an input is synchronized to the
processor’s clock. Pins configured as outputs drive the appropriate output
value. When the GPIO status register is read, any pins configured as out-
puts will read back the value being driven out; the status is “sticky”;
writing a zero clears it, but writing a one has no effect.

TSCALECNT no unchanged

FLAGS yes 0

Table 11-10. ADSP-2192 Register State after Reset or Software Reboot

Register Name Value Changed after Reset or
Software Reboot?

New Value
11-22 ADSP-219x/2192 DSP Hardware Reference

System Design
Powerup and Powerdown
This section discusses all possible power states on the ADSP-2192, includ-
ing the PCI, USB, and AC’97 peripheral interfaces.

The power states of the two DSPs are independent of each other. Each
DSP can be in one of the following states: running, in idle with memory
clocks running, in idle with memory clocks stopped, or completely pow-
ered down.

Each AC’97 codec can be powered up, powered down, or in one of several
power levels in between (including DACs only powered down, ADCs only
powered down, or the entire link powered down). See “AC’97 Codec
Port” on page 9-1 for more information about AC’97 and its power states.

The PCI interface supports the following PCI power management states:
D0, D1, D2, D3hot, and D3cold. See “Host (PCI/USB) Port” on page 8-1 for
more information about PCI and its power management states.

The USB interface supports the following power management states: run-
ning, reset, or suspended. See “Host (PCI/USB) Port” on page 8-1 for
more information about USB and its power management sates.

If everything else on the ADSP-2192 is powered down, the clock crystal
can either be running or stopped.

See “Power Management Description” on page 11-28 for more informa-
tion about power issues on the ADSP-2192.
ADSP-219x/2192 DSP Hardware Reference 11-23

Powerup Issues
Powerup Issues
The ADSP-219x dual-voltage processor (ADSP-2192) has special issues
related to powerup. These issues include the powerup sequence and the
dual-voltage power supplies. This section discusses both of these issues. It
also gives information about reset generators, which provide a reliable
active reset once the power supplies and internal clock circuits have
stabilized.

Powerup Sequence
Each of the DSPs on the ADSP-2192 has a register to control powerup
and powerdown functions. These registers are PWRP0 (the DSP1 Inter-
rupt/Powerdown Register) and PWRP1 (the DSP2 Interrupt/Powerdown
Register).

To power up one of the DSPs, write a 1 to the PU (power up) control bit of
that DSP’s Interrupt/Powerdown Register. Writing this value causes the
DSP to exit the IDLE within its powerdown handler, effectively powering
up. The same process can also be used to abort a powerdown; if the DSP is
in the powerdown handler prior to the IDLE, writing a 1 causes execution
to immediately continue through the IDLE without stopping the clocks.

To power down one of the DSPs, write a 1 to the PD (power down) control
bit of that DSP’s Interrupt/Powerdown Register. Writing this value causes
the DSP to enter its powerdown handler. The same process can be used to
abort a powerup. If the DSP is in the powerdown handler after executing
an IDLE, writing a 1 causes the DSP to immediately re-enter the power-
down handler after executing the RTI.
11-24 ADSP-219x/2192 DSP Hardware Reference

System Design
The current value of the PD and PU control bits indicate the current state of
the DSP. If PD=1, this DSP is powered down; either it is in the powerdown
handler and has executed an IDLE instruction, or the DSP Clock Genera-
tor (PLL) is not running and stable. If PU=1, this DSP is in the powerdown
interrupt handler, whether or not it has executed the powerdown IDLE.

If both DSPs are powered down, the DSP clock generator is also powered
down. The DSP clock generator restarts automatically when either DSP
wakes up. DSP memory cannot be accessed via PCI when the DSP clock
generator is powered down, and memory reads must not be performed
while the DSPs are powering up.

! The following recommendations should be observed when power-
ing up dual-voltage DSPs. Ideally, the two supplies, VDDEXT and
VDDINT, should be powered up together. If they cannot be powered
up together, the internal (core) supply should be powered up first to
reduce the risk of latchup events.

As shown in Figure 11-3 on page 11-26, a network of protection diodes,
isolates the internal supplies and provides ESD protection for the IO pins.
When applying power separately to the VDDINT or VDDEXT pins, limit the
maximum supply current and duration that would be conducted through
the isolation diodes if the unpowered pins are at ground potential.

If an external master clock is used, it should not be driving the XTALI pin
when the DSP is unpowered. The clock must be driven immediately after
powerup; otherwise, internal gates stay in an undefined (hot) state and can
draw excess current. After powerup, there should be sufficient time for the
internal PLL to stabilize (2000 clock cycles) before the reset is released.
ADSP-219x/2192 DSP Hardware Reference 11-25

Powerup Issues

Power Regulators
The ADSP-2192 is intended to operate in a variety of different systems.
These include PCI, CardBus, USB and embedded (Sub-ISA) applications.
The PCI and USB specifications define power consumption limits that
constrain the ADSP-2192 design; see “Host (PCI/USB) Port” on page 8-1
for more information.

VDD EXT VDDINT

(3.3-5.0V) (2.5V)

IO Pin

200-300

ADSP-219X Series DSP

Internal Logic

Figure 11-3. Protection Diodes and IO Pin ESD Protection
11-26 ADSP-219x/2192 DSP Hardware Reference

System Design
2.5V Regulator Options

In 5V and 3.3V PCI applications the ADSP-2192 2.5V IVDD supply will
be generated by an on-chip regulator. The internal 2.5V supply (IVDD)
can be generated by the on-chip regulator combined with an external
power transistor as shown in Figure 11-4 on page 11-27. To support the
PCI specification’s power down modes, the two transistors control the pri-
mary and auxiliary supply. If the reference voltage on RVDD (typically
the same as PCIVDD) drops out, the VCTRLAUX will switch on the
device connected to PCIVAUX and VCTRLVDD will switch off the pri-
mary supply. USB applications may require an external high-efficiency
switching regulator to generate the 2.5V supply for the ADSP-2192.

Figure 11-4. ADSP-2192 2.5V Regulator Options

+

-

VREF

IVDD

VCTRLVDD

VCTRLAUX

PCI VDD

DSP
INTERNAL

CIRCUIT

EXTERNAL
COMPONENTS

2.5V @ 500MA 3.0V -> 5.5V

3.0V -> 3.6V
PCI VAUX

ZETEX
FZT951

ZETEX
FZT951

TANTALUM
OR

ELECTROLYTIC

CERAMIC

10 µ F .1 µF
ADSP-219x/2192 DSP Hardware Reference 11-27

Powerup Issues
Power Management Description
The ADSP-2192 supports several hardware and software states with dis-
tinct power management and functionality capabilities.

The driver and DSP code take responsibility for detailed power manage-
ment of the modem, so minimum power levels are achieved regardless of
OS or BIOS. The driver and DSPs manage power by changing platform
states as necessary in response to events.

Each DSP can be in one of several power management states. A DSP can
be running, in idle mode with memory clocks running, in idle mode with
memory clocks stopped, or powered down. If everything else on the chip
is powered down, the crystal can be running or not running.

In addition to the power management states of each DSP, the ADSP-2192
interfaces each have their own power management states. These states are
not totally dependent on the hardware but are controlled by the driver
software and can be changed to reduce overall power on the chip. The PCI
interface supports the following power management states: D0, D1, D2,
D3hot, and D3cold. The USB can be running, reset, or suspended. The
AC’97 codecs can be powered up or powered down. Additionally, they
have power management options to power down only DACs or ADCs, or
to power down the link.
11-28 ADSP-219x/2192 DSP Hardware Reference

System Design
Powerdown
In addition to supporting powerdown modes for the PCI, USB, and
AC’97 standards, the ADSP-2192 supports additional powerdown modes
for the DSP cores and peripheral buses. The powerdown modes are con-
trolled by the DSP1 and DSP2 Interrupt/Powerdown registers.

The ADSP-2192 processor provides a powerdown feature that allows the
processor to enter a very low power dormant state through hardware or
software control. (Refer to the processor data sheet for exact power con-
sumption specifications.)

The powerdown feature is useful for applications where power conserva-
tion is necessary (for example in battery-powered operation).

The powerdown feature has the following effects:

• Internal clocks are disabled

• Processor registers and memory contents are maintained

• The chip can recover from powerdown in less than 100 XTALI cycles

• The chip can disable internal oscillator when using crystal

• Processor does not need to shut down clock for lowest power when
using external oscillator

• Interrupt support enables “housekeeping” code to execute before
entering powerdown and after recovering from powerdown

• User-selectable powerup context is provided
ADSP-219x/2192 DSP Hardware Reference 11-29

Powerdown
Even though the processor is put into the powerdown mode, the lowest
level of power consumption still might not be achieved if certain guide-
lines are not followed. Lowest possible power consumption requires no
additional current flow through processor output pins and no switching
activity on active input pins. Therefore, a careful analysis of pin loading in
the circuit is required.

The following sections detail the proper powerdown procedure and pro-
vide guidelines for clock and output pin connections required for
optimum low-power performance. Refer to “AC’97 Codec Port” on
page 9-1 for more information about powering the ADSP-2192 up or
down through the AC’97 interface, or to “Host (PCI/USB) Port” on
page 8-1 for more information about doing this through the USB or PCI
interfaces.

Powerdown Control
The ADSP-2192 supports two states with distinct power management and
functionality capabilities. These states are referred to as Platform States
and are denoted PS0 and PS1.

These platform states encompass both hardware and software states. The
driver and DSP code take responsibility for detailed power management,
and minimum power levels are achieved regardless of OS or BIOS. The
driver and DSPs manage power by changing platform states as necessary in
response to events. Such events may include changes in the function’s
PCI/USB power management D-state or PME_Enable state (set via the
external PME pin), or external wakeup events detected on the external ded-
icated general-purpose flag pins (IO0-7). See Table B-5 on page B-18 for
more information about the PME bit.

The PS0 platform state indicates that the platform is running and is opera-
tional. The power state is D0 and the chip is at full power.
11-30 ADSP-219x/2192 DSP Hardware Reference

System Design
The PS1 platform state indicates that the platform is shut down and is in
the lowest power state. The power state may be D0, D3, or D3cold. The
DSPs are powered down, the AC’97 is shut down, and XTAL and the clocks
to the DSPs are stopped. No wakeup is enabled, and any enabled wake
events signal PME directly without DSP intervention.

Entering and Exiting Powerdown
Each of the DSPs on the ADSP-2192 has a register to control powerdown
and powerup functions. These registers are PWRP1 (the DSP1 Inter-
rupt/Powerdown Register) and PWRP2 (the DSP2 Interrupt/Powerdown
Register).

To power down one of the DSPs, write a 1 to the PD (power down) control
bit of that DSP’s Interrupt/Powerdown Register. Writing a 1 causes the
DSP to enter its powerdown handler. The same process can be used to
abort a powerup; if the DSP is in the powerdown handler after executing
an IDLE, writing a 1 causes the DSP to re-enter the powerdown handler
immediately after executing the RTI.

To power up one of the DSPs, write a 1 to the PU (power up) control bit of
that DSP’s Interrupt/Powerdown Register. Writing a 1 causes the DSP to
exit the IDLE within its powerdown handler, effectively powering up. The
same process can also be used to abort a powerdown. If the DSP is in the
powerdown handler prior to the IDLE, writing a 1 causes execution to con-
tinue immediately through the IDLE without stopping the clocks.

The current value of the PD and PU control bits indicate the current state of
the DSP. If PD=1, this DSP is powered down; either it is in the powerdown
handler and has executed an IDLE instruction, or the DSP Clock Genera-
tor (PLL) is not running and stable. If PU=1, this DSP is in the powerdown
interrupt handler, whether or not it has executed the powerdown IDLE.
ADSP-219x/2192 DSP Hardware Reference 11-31

Powerdown
If both DSPs are powered down, the DSP clock generator is also powered
down; the DSP clock generator restarts automatically when either DSP
wakes up. DSP memory cannot be accessed via PCI when the DSP clock
generator is powered down, and memory reads must not be performed
while the DSPs are powering up.

While the processor is in the powerdown mode, the processor is in CMOS
standby. This feature allows the lowest level of power consumption where
most input pins are ignored. Active inputs need to be held at CMOS levels
to achieve lowest power. More information can be found in the section
“Processor Operation During Powerdown” on page 11-36.

Powering Down the USB
The ADSP-2192 can be powered down through the USB interface. To do
this, the software driver sends USB REGWR commands. The USB REGWR com-
mand comes down on the control pipe (Endpoint 0) and writes the
appropriate bits to registers PWRP1 (DSP 1 Interrupt/Powerdown Register
at Page 0x00, Address 0x08) and PWRP2 (DSP 2 Interrupt/Powerdown Reg-
ister at Page 0x00, Address 0x0A).

Once these bits have been written to the PWRP1 and PWRP2 registers, the
DSPs park in their idle states. If a full USB powerdown is desired, the
USB host then signals the SUSPEND state to the ADSP-2192. When the
SUSPEND state is signaled, the USB interface sees this bus state and notifies
the ADSP-2192, causing the internal USB clocks to stop, at which time
the device enters its lowest power state.

Powering Down the PCI
Refer to“Power Management Functions” on page B-18 for information about
powering down the PCI.
11-32 ADSP-219x/2192 DSP Hardware Reference

System Design
Powering Down the AC�97 Link
The recommended way to enable and disable the link is through use of the
LKEN bit. When LKEN is set to 1, the following results can occur:

• If the link was already running (LKOK=1), there is no effect.

• If the link was in cold reset, ACRST is deasserted (clearing ACTL:AFR
if necessary).

• If the link was in warm reset, SYNC is asserted for 1 µs and is then
deasserted.

• If BITCLK is internal, the BITCLK generator starts (ACTL:BCEN set to 1)
when ACRST deasserts (cold) or when SYNC deasserts (warm). If BIT-
CLK is external, the external primary codec must start BITCLK in a
similar manner.

• When BITCLK restarts (ASTAT:BCOK reads 1), the sync pulse generator
is automatically enabled (ATL:SYEN set to 1). At this point, LKOK
reads 1.

For more information about AC’97 power modes, refer to “AC’97 Codec
Port” on page 9-1.
ADSP-219x/2192 DSP Hardware Reference 11-33

Powerdown
Entering Powerdown
The powerdown sequence is defined as follows:

1. Initiate the powerdown sequence by writing a 1 to the PD bits of the
PWRP1 and PWRP2 registers.

2. The processor vectors to the non-maskable powerdown interrupt
vector at address 0x0004.

! The powerdown interrupt is never masked. You must be careful not
to cause multiple powerdown interrupts to occur, or stack overflow
may result. Multiple powerdown interrupts can occur if the PWD
input is pulsed while the processor is already servicing the power-
down interrupt.)

3. Any number of housekeeping instructions, starting at location
0x002C, can be executed prior to the processor entering the power-
down mode. Typically, this section of code is used to configure the
powerdown state, disable on-chip peripherals, and clear pending
interrupts.

4. The processor enters powerdown mode when it executes an IDLE
instruction (while the PD bit is set). The processor may take either
one or two cycles to power down, depending on internal clock
states during the execution of the IDLE instruction. All register and
memory contents are maintained while in powerdown. Also, all
active outputs are held in whatever state they were in before going
into powerdown.

Similarly, the powerdown sequence can be aborted by writing a 1 to the PU
bits of the PWRP1 and PWRP2 registers. If an RTI is executed before the IDLE
instruction, then the processor returns from the powerdown interrupt and
the powerdown sequence is aborted.
11-34 ADSP-219x/2192 DSP Hardware Reference

System Design
Exiting Powerdown
The powerdown mode can be exited with the use of the PU bit of the PWRP1
and PWRP2 registers. Writing a 1 to that bit causes the powerdown
sequence to be aborted. There are also several user-selectable modes for
start-up from powerdown which specify a start-up delay and also specify
the program flow after start-up. This feature allows the program to resume
from where it left off before powerdown, or the program context to be
cleared.

Ending Powerdown

Applying a low-to-high transition to the PU bits of the PWRP1 and PWRP2
registers takes the processor out of powerdown mode. The processor auto-
matically selects the amount of time to wait before coming out of the
powerdown mode. The PLL waits until it is stable before starting the
clocks to the rest of the system; it stabilizes more quickly when the XON bit
(the Xtal Force On bit in the CMSR register) is set because the crystal oscil-
lator remains active. For more information, see “Using an External
TTL/CMOS Clock” on page 11-36.

Ending Powerdown with the PORST Pin

If PORST (power on reset) is asserted while the processor is in the power-
down mode, the processor is reset and instructions are executed from
address 0x10000. A boot is performed if the boot mode is set. If the PORST
pin is used to exit powerdown, it must be held low for the appropriate
number of cycles. If the clock is stopped at powerup or is operating at a
different frequency at powerup than it was before powerdown, PORST must
be held long enough for the oscillator to stabilize, plus an additional
1000 XTALI cycles for the phase locked loop (PLL) to lock. The time
required for the oscillator to stabilize depends upon the type of crystal
used and capacitance of the external crystal circuit. Typically 2000 XTALI
cycles is adequate for clock stabilization time.
ADSP-219x/2192 DSP Hardware Reference 11-35

Powerdown
If the clock was not stopped at powerup and is at a stable frequency at
powerup (same as before powerdown), only 5 cycles of PORST are required.

Startup Time after Powerdown
The time required to exit the powerdown state depends on whether an
internal or external oscillator is used, and the method used to exit
powerdown.

Using an External TTL/CMOS Clock

When in PCI or CardBus mode, the external clock signal is ignored if
both DSPs and the AC’97 link are powered down and the XON (Xtal Force
On) bit in the CMSR register has not been set. When in USB mode, the
USB interface must also be suspended for the clock to be ignored. In
Sub-ISA mode, the clock must remain running.

The external clock is ignored internally; you do not need to stop it, since
no power is wasted while it is running. Since the PCI and USB interfaces
can restart the ADSP-2192 without warning, we recommend that the
external clock remain running as long as there is power in the system.

Processor Operation During Powerdown
Some processor circuitry may still be active during powerdown mode.
Also, some output pins remain active. A good understanding of these
states will allow you to determine the best low-power configuration for
your system. By keeping output loading and input switching to a mini-
mum, the lowest possible power consumption can be achieved.
11-36 ADSP-219x/2192 DSP Hardware Reference

System Design
Interrupts And Flags

DSP interrupts are latched and will be serviced when the processor exits
powerdown. Any activity on the flag input pins during a low power state
may increase the power consumption. There should also be no resistive
load on the flag output pins (as with any active output pin) if lowest
power is desired.

Conditions for Lowest Power Consumption
All pins on the ADSP-2192 remain active as long as power is maintained
to the chip. This chip does not have a specifically-defined powerdown
state; at any time either or both of the two processors can be in a low
power state, and any or all of the interfaces can be in a low power state.
Because of this wide variety of power state options, each interface (and its
associated pins) must follow a bus standard power state specific to that
interface. Each interface is maintained in a power state as defined by the
standard for that interface.

To assure the lowest power consumption, all active input pins should be
held at a CMOS level (to ground level, if possible). All active output pins
should be free of resistive load, since load current increases power dissipa-
tion. You must perform a careful analysis of each input and output pin in
order to ensure the lowest power dissipation.

Some inputs are active but are ignored. The state of these inputs does not
matter as long as they are at a CMOS level.

Additionally, each peripheral interface (USB, PCI, and AC’97) can be put
into a low power mode, as described in the following sections.
ADSP-219x/2192 DSP Hardware Reference 11-37

Powerdown
AC�97 Low Power Mode

The AC’97 link is powered down or is put into a low power state by com-
mands issued to the external AC’97 codec. The AC’97 link can be in a
cold powerdown state or a warm powerdown state. In the cold powerdown
state, ACRST is asserted, and BITCLK and SYNC are halted. In the warm pow-
erdown state, BITCLK and SYNC are also halted, but ACRST is deasserted.

At powerup, deasserting ACRST from the cold state causes the BITCLK mas-
ter to start, but the controller does not necessarily start generating SYNC
pulses until it is enabled. The state in which BITCLK is running but SYNC is
halted is called IDLE.

When powered down, a wakeup protocol is defined using the SDI pins.
Wakeups are signalled using SDI Slot 12 Bit 0 during the running state;
wakeups are signalled using a high level on SDI during all other states. If it
is enabled to do so, the controller can restart the link upon receiving this
wakeup signal.

For more information about AC’97 power modes, refer to “AC’97 Codec
Port” on page 9-1.
11-38 ADSP-219x/2192 DSP Hardware Reference

System Design
Using Powerdown as A Non-Maskable Interrupt
The powerdown interrupt is never masked, although it can be disabled
with the DIS INTS instruction. It is possible to use this interrupt for other
purposes if desired. The processor does not go into powerdown until an
IDLE instruction is executed. If an RTI is executed before the IDLE instruc-
tion, then the processor returns from the powerdown interrupt and the
powerdown sequence is aborted.

It is possible to place a series of instructions at the powerdown interrupt
vector location 0x002C. This routine should end with an RTI instruction
and should not contain an IDLE instruction if the interrupt is to be used
for purposes other than powerdown.

Emulation
Analog Devices DSP emulators use the JTAG test access port of the
ADSP-2192 processor to monitor and control the target board processor
during emulation. The emulator provides full-speed emulation, allowing
inspection and modification of memory, registers, and processor stacks.
Non-intrusive in-circuit emulation is assured by the use of the processor’s
JTAG interface; the emulator does not affect target system loading or
timing.

Note that the ADSP-2192 JTAG port does not support boundary scan.

For more information about JTAG emulation, see the “JTAG Test-Emu-
lation Port” on page 10-1.
ADSP-219x/2192 DSP Hardware Reference 11-39

EZ-KIT Lite
EZ-KIT Lite
To make it easier to evaluate the ADSP-219x DSP family for your applica-
tion, Analog Devices sells the ADSP-2192 EZ-KIT Lite™. This kit
provides developers with a cost-effective method for evaluating of the
ADSP-219x family of DSPs.

The EZ-KIT Lite includes an ADSP-2192 DSP evaluation board and fun-
damental debugging software. The evaluation board in this kit contains an
ADSP-2192 digital signal processor, Audio type Codec, breadboard area,
Flag LED, Reset/Interrupt/Flag push buttons, and ADSP-2192 peripheral
port connectors. The peripheral connectors include a JTAG test and emu-
lation port connector that supports the Analog Devices emulators and PCI
and USB connections.

The ADSP-2192 EZ-KIT Lite comes with an evaluation suite of the Visu-
alDSP++ integrated development environment with the C/C++ compiler,
assembler, and linker that supports typical debug functions, including
memory/register read and write, halt, run, and single step. The use of all
software tools is limited to the EZ-KIT Lite product.

For more information, refer to the documentation shipped with the
EZ-KIT Lite.
11-40 ADSP-219x/2192 DSP Hardware Reference

System Design
Recommended Reading
The text High-Speed Digital Design: A Handbook of Black Magic is recom-
mended for further reading. This book is a technical reference that covers
the problems encountered in state-of-the-art, high-frequency digital cir-
cuit design, and is an excellent source of information and practical ideas.
Topics covered in the book include:

• High-Speed Properties of Logic Gates

• Measurement Techniques

• Transmission Lines

• Ground Planes and Layer Stacking

• Terminations

• Vias

• Power Systems

• Connectors

• Ribbon Cables

• Clock Distribution

• Clock Oscillators

Reference: Johnson and Graham, High-Speed Digital Design: A Handbook
of Black Magic, Prentice Hall, Inc., ISBN 0-13-395724-1
ADSP-219x/2192 DSP Hardware Reference 11-41

Recommended Reading
11-42 ADSP-219x/2192 DSP Hardware Reference

A ADSP-219X DSP CORE
REGISTERS

Figure A-0.

Table A-0.

Listing A-0.
Overview
The DSP core has general-purpose and dedicated registers in each of its
functional blocks. The register reference information for each functional
block includes bit definitions, initialization values, and (for system control
registers) memory-mapped addresses. Information on each type of register
is available at the following locations:

• “Core Status Registers” on page A-8

• “Computational Unit Registers” on page A-15

• “Program Sequencer Registers” on page A-18

• “Data Address Generator Registers” on page A-24

• “Memory Interface Registers” on page A-26

Outside of the DSP core, a set of registers control I/O peripherals. For
information on these product-specific registers, see “ADSP-2192 DSP
Peripheral Registers” on page B-1.

When writing DSP programs, it is often necessary to set, clear, or test bits
in the DSP’s registers. While these bit operations can all be done by refer-
ring to the bit’s location within a register or (for some operations) the
register’s address with a hexadecimal number, it is much easier to use sym-
bols that correspond to the names of bits or registers.
ADSP-219x/2192 DSP Hardware Reference A-1

Overview
For convenience and consistency, Analog Devices provides a header file
that provides bit and register symbols and their corresponding names (bit
and register definitions). For core register definitions, see the “Register
and Bit #Defines File” on page A-27. For off-core register definitions, see
the “Register and Bit #Defines File” on page B-95.

! Many registers have reserved bits. When writing to a register, pro-
grams may only clear (write zero to) the register’s reserved bits.

Core Registers Summary
The DSP has three categories of registers: core registers, system control
registers, and I/O registers. Table A-1 lists and describes the DSP’s core
registers. The DSP core registers divide into register group (DREG,
REG1, REG2, and REG3) based on their opcode identifiers and func-
tions. Table A-2 shows these groups. For more information on how
registers may be used within instructions, see the ADSP-219x DSP
Instruction Set Reference.

Table A-1. Core Registers

Type Registers Function

Status ASTAT
MSTAT
SSTAT (read-only)

Arithmetic status flags
Mode control and status flags
System status

Computational
Units

AX0, AX1, AY0, AY1, AR,
AF, MX0, MX1, MY0,
MY1, MR0, MR1, MR2,
SI, SE, SB, SR0, SR1, SR2

Data register file registers provide Xop and Yop
inputs for computations. AR, SR, and MR
receive results. In this text, the word Dreg
denotes unrestricted use of data registers as a data
register file, while the words XOP and YOP
denote restricted use. The data registers (except
AF, SE, and SB) serve as a register file, for uncon-
ditional, single-function instructions.

Shifter SE
SB

Shifter exponent register
Shifter block exponent register
A-2 ADSP-219x/2192 DSP Hardware Reference

ADSP-219x DSP Core Registers
Program flow CCODE
LPSTACKA
LPSTACKP
STACKA
STACKP

Software condition register
Loop stack address register, 16 address LSBs
Loop stack page register, 8 address MSBs
PC stack address register, 16 address LSBs
PC stack page register, 8 address MSBs

Interrupt ICNTL
IMASK
IRPTL

Interrupt control register
Interrupt mask register
Interrupt latch register

DAG address I0, I1, I2, I3

I4, I5, I6, I7

DAG1 index registers

DAG2 index registers

M0, M1, M2, M3

M4, M5, M6, M7

DAG1 modify registers

DAG2 modify registers

L0, L1, L2, L3

L4, L5, L6, L7

DAG1 length registers

DAG2 length registers

System control B0, B1, B2, B3, B4, B5, B6,
B7, CACTL

DAG1 base address registers (B0-3), DAG2 base
address registers (B4-7), Cache control

Page DMPG1
DMPG2
IJPG
IOPG

DAG1 page register, 8 address MSBs
DAG2 page register, 8 address MSBs
Indirect jump page register, 8 address MSBs
I/O page register, 8 address MSBs

Bus exchange PX Holds eight LSBs of 24-bit memory data for
transfers between memory and data registers only

Table A-1. Core Registers (Continued)

Type Registers Function
ADSP-219x/2192 DSP Hardware Reference A-3

Overview
Table A-2. ADSP-219x DSP Core Registers

RGP/Address Register Groups (RGP)

Address 00 (DREG) 01 (REG1) 10 (REG2) 11 (REG3)

0000 AX0 I0 I4 ASTAT

0001 AX1 I1 I5 MSTAT

0010 MX0 I2 I6 SSTAT

0011 MX1 I3 I7 LPSTACKP

0100 AY0 M0 M4 CCODE

0101 AY1 M1 M5 SE

0110 MY0 M2 M6 SB

0111 MY1 M3 M7 PX

1000 MR2 L0 L4 DMPG1

1001 SR2 L1 L5 DMPG2

1010 AR L2 L6 IOPG

1011 SI L3 L7 IJPG

1100 MR1 IMASK Reserved Reserved

1101 SR1 IRPTL Reserved Reserved

1110 MR0 ICNTL CNTR Reserved

1111 SR0 STACKA LPCSTACKA STACKP
A-4 ADSP-219x/2192 DSP Hardware Reference

ADSP-219x DSP Core Registers
Register Load Latencies
An effect latency occurs when some instructions write or load a value into
a register, which changes the value of one or more bits in the register.
Effect latency refers to the time it takes after the write or load instruction
for the effect of the new value to become available for other instructions to
use.

Effect latency values are given in terms of instruction cycles. A 0 latency
means that the effect of the new value is available on the next instruction
following the write or load instruction. For register changes that have an
effect latency greater than 0, you should try not to use the register imme-
diately after writing or loading a new value; you may end up using the old
value rather than the new value. Table A-3 gives the effect latencies for
writes or loads of various interrupt and status registers.

Table A-3. Effect Latencies for Register Changes

Register Bits REG = value ENA/DIS mode POP STS SET/CLR INT

ASTAT All 1 cycle NA 0 cycles NA

CCODE All 1 cycle NA NA NA

CNTR All 1 cycle1 NA NA NA

ICNTL All 1 cycle NA NA 0 cycles

IMASK All 1 cycle NA 0 cycles NA
ADSP-219x/2192 DSP Hardware Reference A-5

Overview
! A PUSH or POP PC has one cycle of latency for all SSTAT register bits,
but a PUSH or POP LOOP or STS has one cycle of latency only for the
STKOVERFLOW bit in the SSTAT register.

When loading some Group 2 and 3 registers (see Table A-3 on page A-5),
the effect of the new value is not immediately available to subsequent
instructions that might use it. For interlocked registers (DAG address and
page registers, IOPG, IJPG), the DSP automatically inserts stall cycles as
needed. However, for non-interlocked registers (to accommodate the
required latency), programs must insert either the necessary number of
NOP instructions or other instructions that are not dependent upon the
effect of the new value.

MSTAT SEC_REG 1 cycle 0 cycles 1 cycle NA

BIT_REV 3 cycles 0 cycles 3 cycles NA

AV_LATCH 0 cycles 0 cycles 0 cycles NA

AR_SAT 1 cycle 0 cycles 1 cycle NA

M_MODE 1 cycle 0 cycles 1 cycle NA

TIMER 1 cycle 0 cycles 1 cycle NA

SEC_DAG 3 cycles 0 cycles 3 cycles NA

CACTL CPE 5 cycles NA NA NA

CDE 5 cycles NA NA NA

CFZ 4 cycles NA NA NA

1 This latency applies only to IF COND instructions, not to the DO UNTIL instruction. Loading the
CNTR register has 0 effect latency for the DO UNTIL instruction.

Table A-3. Effect Latencies for Register Changes (Continued)

Register Bits REG = value ENA/DIS mode POP STS SET/CLR INT
A-6 ADSP-219x/2192 DSP Hardware Reference

ADSP-219x DSP Core Registers
The non-interlocked registers are:

• Status registers ASTAT and MSTAT

• Condition code register CCODE

• Interrupt control register ICNTL

The number of NOP instructions to insert is specific to the register and the
load instruction, as shown in Table A-3. A zero (0) latency indicates that
the new value is effective on the next cycle after the load instruction exe-
cutes. An n latency indicates that the effect of the new value is available up
to n cycles after the load instruction executes. When using a modified reg-
ister before the required latency, the DSP provides the register’s old value.

Since unscheduled or unexpected events (interrupts, DMA operations,
etc.) often interrupt normal program flow, do not rely on these load laten-
cies when structuring program flow. A delay in executing a subsequent
instruction based on a newly loaded register could result in erroneous
results—whether the subsequent instruction is based on the effect of the
register’s new or old value.

! Load latency applies only to the time it takes the loaded value to
effect the change in operation, not to the number of cycles required
to load the new value. A loaded value is always available to a read
access on the next instruction cycle.
ADSP-219x/2192 DSP Hardware Reference A-7

Core Status Registers
Core Status Registers
The DSP’s control and status system registers configure how the processor
core operates and indicate the status of many processor core operations.
Table A-4 lists the processor core’s control and status registers with their
initialization values. Descriptions of each register follow.

Table A-4. Core Status Registers

Register Name and Page Reference Initialization After Reset

“Arithmetic Status (ASTAT) Register” on page A-9 b#0 0000 0000

“Mode Status (MSTAT) Register” on page A-11 b#000 000

“System Status (SSTAT) Register” on page A-14 b#0101 0101
A-8 ADSP-219x/2192 DSP Hardware Reference

ADSP-219x DSP Core Registers
Arithmetic Status (ASTAT) Register
The ASTAT register is a non-memory-mapped, register group 3 register
(REG3). The reset value for this register is b#0 0000 0000. The DSP
updates the status bits in ASTAT, indicating the status of the most recent
ALU, multiplier, or shifter operation.

Table A-5. ASTAT Register Bit Definitions

Bit Name Description

0 AZ ALU result zero. Logical NOR of all bits written to the ALU result register
(AR) or ALU feedback register (AF).

0 = ALU output ≠ 0

1 = ALU output = 0

1 AN ALU result negative. Sign of the value written to the ALU result register
(AR) or ALU feedback register (AF).

0 = ALU output positive (+)

1 = ALU output negative (−)

2 AV ALU result overflow.

0 = No overflow

1 = Overflow

3 AC ALU result carry.

0 = No carry

1 = Carry

4 AS ALU x input sign. Sign bit of the ALU x-input operand; set by the ABS
instruction only.

0 = Positive (+)

1 = Negative (−)
ADSP-219x/2192 DSP Hardware Reference A-9

Core Status Registers
5 AQ ALU quotient. Sign of the resulting quotient; set by the DIVS or DIVQ
instructions.

0 = Positive (+)

1 = Negative (−)

6 MV Multiplier overflow. Records overflow/underflow condition for MR result
register.

0 = No overflow or underflow

1 = Overflow or underflow

7 SS Shifter input sign. Sign of the shifter input operand.

0 = Positive (+)

1 = Negative (−)

8 SV Shifter overflow. Records overflow/underflow condition for SR result reg-
ister.

0 = No overflow or underflow

1 = Overflow or underflow

Table A-5. ASTAT Register Bit Definitions (Continued)

Bit Name Description
A-10 ADSP-219x/2192 DSP Hardware Reference

ADSP-219x DSP Core Registers
Mode Status (MSTAT) Register
The MSTAT register is a non-memory-mapped, register group 3 register
(REG3). The reset value for this register is b#000 0000.

Table A-6. MSTAT Register Bit Definitions

Bit Name Description

0 SEC_REG Secondary data registers.

Determines which set of data registers is currently active.

0 = Deactivate secondary set of data registers (default).

Primary register set (set that is active at reset) enabled and
used for normal operation; secondary register set disabled.

1 = Activate secondary set of data registers.

Secondary register set enabled and used for alternate DSP
context (for example, interrupt servicing); primary register
set disabled, current contents preserved.

For details, see “Switching Contexts” in the ADSP-219x DSP
Instruction Set Reference.

1 BIT_REV Bit-reversed address output.

Enables and disables bit-reversed addressing on DAG1 index regis-
ters only.

0 = Disable

1 = Enable

For details, see “Bit-Reversed Addressing” in the ADSP-219x DSP
Instruction Set Reference.
ADSP-219x/2192 DSP Hardware Reference A-11

Core Status Registers
2 AV_LATCH ALU overflow latch mode. Determines how the ALU overflow flag,
AV, gets cleared.

0 = Disable

Once an ALU overflow occurs and sets the AV bit in the
ASTAT register, the AV bit remains set until explicitly
cleared or is cleared by a subsequent ALU operation that does
not generate an overflow.

1 = Enable

Once an ALU overflow occurs and sets the AV bit in the
ASTAT register, the AV bit remains set until the application
explicitly clears it. For details on clearing the AV bit, see “Bit
Manipulation: TSTBIT, SETBIT, CLRBIT, TGLBIT” and
“Register to Register Move” in the ADSP-219x DSP
Instruction Set Reference.

3 AR_SAT ALU saturation mode.

For signed values, determines whether ALU AR results that over-
flowed or underflowed are saturated or not. Enables or disables sat-
uration for all subsequent ALU operations.

0 = Disable

AR results remain unsaturated and return as is.

1 = Enable

AR results saturated according to the state of the AV and AC
status flags in ASTAT.

AV AC AR register
0 0 ALU output
0 1 ALU output
1 0 0x7FFF
1 1 0x8000

Only the results written to the AR register are saturated. If results
are written to the AF register, wraparound occurs, but the AV and
AC flags reflect the saturated result.

Table A-6. MSTAT Register Bit Definitions (Continued)

Bit Name Description
A-12 ADSP-219x/2192 DSP Hardware Reference

ADSP-219x DSP Core Registers
4 M_MODE MAC result mode.

Determines the numeric format of multiplier operands. For all
MAC operations, the multiplier adjusts the format of the result
according to the selected mode.

0 = Fractional mode, 1.15 format.

1 = Integer mode, 16.0 format.

For details, see “Data Format Options” in the ADSP-219x DSP
Instruction Set Reference.

5 TIMER Timer enable.

Starts and stops the timer counter.

0 = Stops the timer count.

1 = Starts the timer count.

For details on timer operation, see the “ADSP-2192 Timer” on
page D-1.

6 SEC_DAG Secondary DAG registers.

Determines which set of DAG address registers is currently active.

0 = Primary registers.

1 = Secondary registers.

For details, see “Secondary DAG Registers” and “Switching Con-
texts” in the ADSP-219x DSP Instruction Set Reference.

Table A-6. MSTAT Register Bit Definitions (Continued)

Bit Name Description
ADSP-219x/2192 DSP Hardware Reference A-13

Core Status Registers
System Status (SSTAT) Register
The SSTAT register is a non-memory-mapped, register group 3 register
(REG3). The reset value for this register is b#0000 0000.

Table A-7. SSTAT Register Bit Definitions

Bit Name Description

0 PCSTKEMPTY

or

PCE

PC stack empty.

0 = PC stack contains at least one pushed address.

1 = PC stack is empty.

1 PCSTKFULL

or

PCF

PC stack full.

0 = PC stack contains at least one empty location.

1 = PC stack is full.

2 PCSTKLVL

or

PCL

PC stack level.

0 = PC stack contains between 3 and 28 pushed addresses.

1 = PC stack is at or above the high-water mark (28 pushed
addresses), or it is at or below the low-water mark (3
pushed addresses).

3 Reserved

4 LPSTKEMPTY

or

LSE

Loop stack empty.

0 = Loop stack contains at least one pushed address.

1 = Loop stack is empty.

5 LPSTKFULL

or

LSF

Loop stack full.

0 = Loop stack contains at least one empty location.

1 = Loop stack is full.
A-14 ADSP-219x/2192 DSP Hardware Reference

ADSP-219x DSP Core Registers
Computational Unit Registers
The DSP’s computational registers store data and results for the ALU,
multiplier, and shifter. The inputs and outputs for processing element
operations go through these registers.

! The PX register lets programs transfer data between the data buses,
but the data cannot be an input or output in a calculation.

6 STSSTKEMPTY

or

SSE

Status stack empty.

0 = Status stack contains at least one pushed status.

1 = Status stack is empty.

7 STKOVERFLOW

or

SOV

Stacks overflowed.

0 = Overflow/underflow has not occurred.

1 = At least one of the stacks (PC, loop, counter, status) has
overflowed, or the PC or status stack has underflowed.

This bit cleared only on reset. Loop stack underflow is
not detected because it occurs only as a result of a POP
LOOP operation.

Table A-8. Computational Unit Registers

Register Initialization After Reset

“Data Register File (DREG) Registers” on page A-16 Undefined

“ALU X- and Y-Input (AX0, AX1, AY0, AY1) Registers” on
page A-16

Undefined

“ALU Results (AR) Register” on page A-17 Undefined

Table A-7. SSTAT Register Bit Definitions (Continued)

Bit Name Description
ADSP-219x/2192 DSP Hardware Reference A-15

Computational Unit Registers
Data Register File (DREG) Registers
The DREG registers are non-memory-mapped, register group 0 registers.
For unconditional, single-function instructions, the DSP has a data regis-
ter file—a set of 16-bit data registers that transfer data between the data
buses and the computation units. These registers also provides local stor-
age for operands and results. For more information on how to use these
registers, see “Data Register File” on page 2-57. The registers in the data
register file include: AX0, AX1, MX0, MX1, AY0, AY1, MY0, MY1, MR2, SR2, AR, SI,
MR1, SR1, MR0, and SR0.

ALU X- and Y-Input (AX0, AX1, AY0, AY1) Registers
The AX0, AX1, AY0, AY1 registers are non-memory-mapped, register group 0
registers. For conditional and/or multifunction instructions, some restric-
tions apply to data register usage. The registers that may provide Xop and
Yop input to the ALU for conditional and/or multifunction instructions
include: AX0, AX1, AY0, and AY1. For more information on how to use these
registers, see “Multifunction Computations” on page 2-60.

“Multiplier X- and Y-Input (MX0, MX1, MY0, MY1) Reg-
isters” on page A-17

Undefined

“Multiplier Results (MR2, MR1, MR0) Registers” on
page A-17

Undefined

“Shifter Input (SI) Register” on page A-17 Undefined

“Shifter Exponent (SE) and Block Exponent (SB) Registers”
on page A-18

Undefined

Table A-8. Computational Unit Registers (Continued)

Register Initialization After Reset
A-16 ADSP-219x/2192 DSP Hardware Reference

ADSP-219x DSP Core Registers
ALU Results (AR) Register
The AR register is a non-memory-mapped, register group 0 register.The
ALU places its results in the 16-bit AR register. For more information on
how to use this registers, see “Arithmetic Logic Unit (ALU)” on
page 2-17.

Multiplier X- and Y-Input (MX0, MX1, MY0, MY1)
Registers

The MX0, MX1, MY0, and MY1 registers are non-memory-mapped, register
group 0 registers. For conditional and/or multifunction instructions, some
restrictions apply to data register usage.

The registers that may provide Xop and Yop input to the multiplier for
conditional and/or multifunction instructions include: MX0, MX1, MY0, and
MY1. For more information on how to use these registers, see “Multifunc-
tion Computations” on page 2-60.

Multiplier Results (MR2, MR1, MR0) Registers
The MR2, MR1, and MR0 registers are non-memory-mapped, register group 0
registers. The multiplier places results in the combined multiplier result
register, MR. For more information on result register fields, see
“Multiply—Accumulator (Multiplier)” on page 2-28.

Shifter Input (SI) Register
The SI register is a non-memory-mapped, register group 0 registers. For
conditional and/or multifunction instructions, some restrictions apply to
data register usage. The only registers that may provide input to the shifter
for conditional and/or multifunction instructions is SI. For more infor-
mation on how to use this registers, see “Multifunction Computations” on
page 2-60.
ADSP-219x/2192 DSP Hardware Reference A-17

Program Sequencer Registers
Shifter Exponent (SE) and Block Exponent (SB)
Registers

The SE and SB registers are non-memory-mapped, register group 3 regis-
ters. These register hold exponent information for the shifter. For more
information on how to use these registers, see “Barrel-Shifter (Shifter)” on
page 2-37.

The SB and SE registers are 16 bits in length, but all shifter instructions
that use these registers as operands or update these registers with result
values do not use the full width of these registers. Shifter instructions treat
SB as being a 5 bit 2’s complement register and treat SE as being an 8 bit
2’s complement register.

Program Sequencer Registers
The DSP’s Program Sequencer registers hold page addresses, stack
addresses, and other information for determining program execution.

Table A-9. Program Sequencer Registers

Register Initialization After Reset

“Interrupt Mask (IMASK) and Interrupt Latch (IRPTL)
Registers” on page A-19

0x0000

“Interrupt Control (ICNTL) Register” on page A-20 0x0000

“Indirect Jump Page (IJPG) Register” on page A-21 0x00

“PC Stack Page (STACKP) and PC Stack Address
(STACKA) Registers” on page A-21

Undefined

“Loop Stack Page (LPSTACKP) and Loop Stack Address
(LPSTACKA) Register” on page A-22

Undefined
A-18 ADSP-219x/2192 DSP Hardware Reference

ADSP-219x DSP Core Registers
Interrupt Mask (IMASK) and Interrupt
Latch (IRPTL) Registers

The IMASK and IRPTL registers are non-memory-mapped, register group 1
registers (REG1). The reset value for these registers is 0x0000.

“Counter (CNTR) Register” on page A-22 Undefined

“Condition Code (CCODE) Register” on page A-23 Undefined

“Cache Control (CACTL) Register” on page A-23 b#101n nnnn

Table A-10. IMASK and IRPTL Register Bit Definitions

Bit Name Description

0 EMU Emulator. Nonmaskable. Highest priority

1 PWDN Powerdown. Maskable only with GIE bit in ICNTL.

2 SSTEP Single-step (during emulation)

3 STACK Stack interrupt. Generated from any of the following stack status
states: (if PCSTKE enabled) PC stack is pushed or popped and hits
high-water mark, any stack overflows, or the status or PC stacks under-
flow.

4–14 User-defined

15 User-defined Lowest priority

Table A-9. Program Sequencer Registers (Continued)

Register Initialization After Reset
ADSP-219x/2192 DSP Hardware Reference A-19

Program Sequencer Registers
Interrupt Control (ICNTL) Register
The ICNTL register is a non-memory-mapped, register group 1 register
(REG1). The reset value for this register is 0x0000.

Table A-11. ICNTL Register Bit Definitions

Bit Name Description

0 reserved write 0

1 reserved write 0

2 reserved write 0

3 reserved write 0

4 INE Interrupt nesting mode enable.

0 = Disabled

1 = Enabled

5 GIE Global interrupt enable.

0 = Disabled

1 = Enabled

6 reserved write 0

7 BIASRND MAC biased rounding mode.

0 = Disabled

1 = Enabled

8–9 reserved write 0

10 PCSTKE PC stack interrupt enable.

0 = Disabled

1 = Enabled
A-20 ADSP-219x/2192 DSP Hardware Reference

ADSP-219x DSP Core Registers
Indirect Jump Page (IJPG) Register
The IJPG register is a non-memory-mapped, register group 3 register
(REG3). The reset value for this register is 0x00. For information on using
this register, see “Indirect Jump Page (IJPG) Register” on page 3-15.

PC Stack Page (STACKP) and
PC Stack Address (STACKA) Registers

The STACKP and STACKPA are non-memory-mapped, register group 1 and
3 registers (REG1, REG3). The PC Stack Page (STACKP) and PC Stack
Address (STACKA) registers hold the top entry in the Program Counter (PC)
address stack. The upper 8 bits of the address go into STACKP, and the
lower 16 bits go into STACKA. The PC stack is 33 levels deep.

On JUMP, CALL, DO…UNTIL (loop), and PUSH PC instructions, the DSP pushes
the PC address onto this stack, loading the STACKP and STACKA registers. On
RTS/I (return) and POP PC instructions, the DSP pops the STACKP:STACKA
address off of this stack, loading the PC register.

For information on using these registers, see “Stacks and Sequencing” on
page 3-34.

11 EMUCNTE Emulator cycle counter interrupt enable.

0 = Disabled

1 = Enabled

12–15 reserved write 0

Table A-11. ICNTL Register Bit Definitions (Continued)

Bit Name Description
ADSP-219x/2192 DSP Hardware Reference A-21

Program Sequencer Registers
Loop Stack Page (LPSTACKP) and
Loop Stack Address (LPSTACKA) Register

The LPSTACKP and LPSTACKA registers are non-memory-mapped, register
group 2 and 3 registers (REG2, REG3). The Loop Stack Page (LPSTACKP)
and Loop Stack Address (LPSTACKA) registers hold the top entry in the
loop stack. The upper 8 bits of the address go into LPSTACKP, and the
lower 16 bits go into LPSTACKA. The loop stack is 8 levels deep.

On DO…UNTIL (loop) instructions, the DSP pushes the end of loop address
onto this stack, loading the LPSTACKP and LPSTACKA registers. On
PUSH LOOP instructions, the DSP pushes the (explicitly loaded) contents of
the LPSTACKP and LPSTACKA registers onto this stack.

At the end of a loop (counter decrements to zero), the DSP pops the
LPSTACKP:LPSTACKA address off of this stack, loading the PC register with
the next address after the end of the loop. On POP LOOP instructions, the
DSP pops the contents of the LPSTACKP and LPSTACKA registers off of this
stack.

At the start of a loop the PC (start of loop address) is pushed onto the loop
begin stack (STACKP:STACKA registers) and the end of loop address is
pushed onto the loop end stack (LPSTACKP:LPSTACKA registers). If it is a
counter-based loop (DO…UNTIL CE), the loop count (CNTR register) is
pushed onto the counter stack.

For information on using these registers, see “Stacks and Sequencing” on
page 3-34.

Counter (CNTR) Register
The CNTR register is a non-memory-mapped, register group 2 register
(REG2). The DSP loads the loop counter stack from CNTR on Do/Until or
Push Loop instructions. For information on using this register, see “Loops
and Sequencing” on page 3-20 and “Stacks and Sequencing” on
page 3-34.
A-22 ADSP-219x/2192 DSP Hardware Reference

ADSP-219x DSP Core Registers
Condition Code (CCODE) Register
The CCODE register is a non-memory-mapped, register group 3 register
(REG3). Using the CCODE register, conditional instructions may base exe-
cution on a comparison of the CCODE value (user-selected) and the SWCOND
condition (DSP status). The CCODE register holds a value between 0x0 and
0xF, which the instruction tests against when the conditional instruction
uses SWCOND or NOT SWCOND. Note that the CCODE register has a one cycle
effect latency. The CCODE register bits hold the following data:

CCODE[7:0] holds the same value as FLAGS[15:8]
CCODE[15:8] is RESERVED

Refer to Table 6-2 on page 6-14 for more information regarding the FLAGS
register.

Cache Control (CACTL) Register
The CACTL register is a register-memory-mapped register at address 0x0F.
The reset value for this register is b#101n nnnn.

Table A-12. CACTL Registers Bit Definitions

Bit Name Description

4-0 Reserved Reserved

5 CDE Enable caching of instructions that conflict with DMDAs (=1, enabled
on reset)

6 CFZ Cache freeze (fills disabled while set)

7 CPE Cache enable (=1, enabled on reset)
ADSP-219x/2192 DSP Hardware Reference A-23

Data Address Generator Registers
Data Address Generator Registers
The DSP’s Data Address Generator (DAG) registers hold data addresses,
modify values, and circular buffer configurations. Using these registers,
the DAGs can automatically increment addressing for ranges of data loca-
tions (a buffer).

Index Registers (Ix)
The Ix register are non-memory-mapped, Register Group 1 and 2 regis-
ters (REG1 and REG2). The Data Address Generators store addresses in
Index registers (I0-I3 for DAG1 and I4-I7 for DAG2). An Index register
holds an address and acts as a pointer to memory. For more information,
see “DAG Operations” on page 4-9.

Modify Registers (Mx)
The Mx registers are non-memory-mapped, Register Group 1 and 2 regis-
ters (REG1 and REG2). The Data Address Generators update stored
addresses using Modify registers (M0-M3 for DAG1 and M4-M7 for DAG2).
A Modify register provides the increment or step size by which an Index
register is pre- or post-modified during a register move. For more informa-
tion, see “DAG Operations” on page 4-9.

Table A-13. Data Address Generator Registers

Register Initialization After Reset

“Index Registers (Ix)” on page A-24 Undefined

“Modify Registers (Mx)” on page A-24 Undefined

“Length and Base (Lx,Bx) Registers” on page A-25 Undefined

“Data Memory Page (DMPGx) Register” on page A-25 0x00
A-24 ADSP-219x/2192 DSP Hardware Reference

ADSP-219x DSP Core Registers
Length and Base (Lx,Bx) Registers
The Length registers are non-memory-mapped, Register Group 1 and 2
registers (REG1 and REG2). The Base registers are memory-mapped in
register-memory at addresses: B0=0x00 through B7=0x07.

The Data Address Generators control circular buffering operations with
Length and Base registers (L0-L3 and B0-B3 for DAG1 and L4-L7 and B4-B7
for DAG2). Length and Base registers setup the range of addresses and the
starting address for a circular buffer. For more information, see “DAG
Operations” on page 4-9.

Data Memory Page (DMPGx) Register
The DMPGx registers are a non-memory-mapped, register group 3 registers
(REG3). The reset value for these registers is 0x00. For information on
using this registers, see “DAG Page Registers (DMPGx)” on page 4-6.
ADSP-219x/2192 DSP Hardware Reference A-25

Memory Interface Registers
Memory Interface Registers
The DSP’s memory interface registers set up page access to I/O memory
and provide an interface between the 24-bit and 16-bit data buses.

PM Bus Exchange (PX) Register
This is a non-memory-mapped, register group 3 register (REG3). The PM
Bus Exchange (PX) register permits data to flow between the PM and DM
data buses. For more information on PX register usage, see “Internal Data
Bus Exchange” on page 5-5.

I/O Memory Page (IOPG) Register
This is a non-memory-mapped, register group 3 register (REG3). The
reset value for this register is 0x00.

Table A-14. Memory Interface Registers

Register Initialization After Reset

“PM Bus Exchange (PX) Register” on page A-26 Undefined

“I/O Memory Page (IOPG) Register” on page A-26 0x00
A-26 ADSP-219x/2192 DSP Hardware Reference

ADSP-219x DSP Core Registers
Register and Bit #Defines File
The following example definitions file is for the items that are common to
all ADSP-219x DSPs. For the most current definitions file, programs
should use the version of this file that comes with the software develop-
ment tools. The version of the file that appears here is included as a guide
only.

/* ---
def2192_core.h - SYSTEM REGISTER BIT & ADDRESS DEFINITIONS FOR ADSP-219x DSPs

Created November 21, 2000. Copyright Analog Devices, Inc.

 Changes: Added ADSP-219x common items to def2192_core.h file

The def2192_core.h file defines ADSP-219x DSP family common symbolic names; for
names that are unique to particular ADSP-219x family DSPs, see that DSP's
definitions file (such as the def2191.h file) instead. This include file
(def2192_core.h) contains a list of macro "defines" that let programs use symbolic
names for the following ADSP-219x facilities:

- system register bit definitions
- system register map

These registers use the REG() command.

Here is an example use:

ax0 = 0x0800;
REG(B0) = ax0; >>> this uses the define for the B0 register's address

---*/
#ifndef __DEF2192_core_H_
#define __DEF2192_core_H_
/*---*/

#define B0 0x00 /* Base Register0 */
#define B1 0x01 /* Base Register1 */
#define B2 0x02 /* Base Register2 */
#define B3 0x03 /* Base Register3 */
#define B4 0x04 /* Base Register4 */
#define B5 0x05 /* Base Register5 */
#define B6 0x06 /* Base Register6 */
#define B7 0x07 /* Base Register7 */
#define DMAPAGE 0x0C /* DMA Page Register */
#define CACTL 0x0F /* Cache Control Register */
#define STCTL0 0x10 /* FIFO0 Transmit Control Register */
#define SRCTL0 0x11 /* FIFO0 Receive Control Register */
#define TX0 0x12 /* FIFO0 Transmit Data (TX) register */
#define RX0 0x13 /* FIFO0 Receive Data (RX) register */
#define STCTL1 0x20 /* FIFO1 Transmit Control Register */
#define SRCTL1 0x21 /* FIFO1 Receive Control Register */
#define TX1 0x22 /* FIFO1 Transmit Data (TX) register */
ADSP-219x/2192 DSP Hardware Reference A-27

Register and Bit #Defines File
#define RX1 0x23 /* FIFO1 Receive Data (RX) register */
#define TPERIOD 0x30 /* Timer Period Register */
#define TCOUNT 0x31 /* Timer Counter Register */
#define TSCALE 0x32 /* Timer Scaling Register */
#define TSCALECNT 0x33 /* Timer Scale Count Register */
#define FLAGS 0x34 /* Flags Register */
#define MASTADDR 0x44 /* DMA Address, DSP Master DMA */
#define MASTNXTADDR 0x45 /* DMA Next Address, DSP Master DMA */
#define MASTCNT 0x46 /* DMA Count, DSP Master DMA */
#define MASTCURCNT 0x47 /* DMA Current Count, DSP Master DMA */
#define TX0ADDR 0x48 /* DMA Address, Fifo0 Transmit */
#define TX0NXTADDR 0x49 /* DMA Next Address, Fifo0 Transmit */
#define TX0CNT 0x4A /* DMA Count, Fifo0 Transmit */
#define TX0CURCNT 0x4B /* DMA Current Count, Fifo0 Transmit */
#define RX0ADDR 0x4C /* DMA Address, Fifo0 Receive */
#define RX0NXTADDR 0x4D /* DMA Next Address, Fifo0 Receive */
#define RX0CNT 0x4E /* DMA Count, Fifo0 Receive */
#define RX0CURCNT 0x4F /* DMA Current Count, Fifo0 Receive */
#define TX1ADDR 0x50 /* DMA Address, Fifo1 Transmit */
#define TX1NXTADDR 0x51 /* DMA Next Address, Fifo1 Transmit */
#define TX1CNT 0x52 /* DMA Count, Fifo1 Transmit */
#define TX1CURCNT 0x53 /* DMA Current Count, Fifo1 Transmit */
#define RX1ADDR 0x54 /* DMA Address, Fifo1 Receive */
#define RX1NXTADDR 0x55 /* DMA Next Address, Fifo1 Receive */
#define RX1CNT 0x56 /* DMA Count, Fifo1 Receive */
#define RX1CURCNT 0x57 /* DMA Current Count, Fifo1 Receive */
#define DBGCTRL 0x60 /* Test and Emulation Debug Control Register */
#define DBGSTAT 0x61 /* Test and Emulation Debug Status Register */
#define CNT0 0x62 /* Cycle Counter 0 Register (lsb) */
#define CNT1 0x63 /* Cycle Counter 1 Register */
#define CNT2 0x64 /* Cycle Counter 2 Register */
#define CNT3 0x65 /* Cycle Counter 3 Register (msb) */

/************* SRCTLx and STCTLx Bit definitions ************/

#define SPEN 0 /* AC'97 FIFO Connection Enable */
#define SSEL3 7 /* AC'97 Slot Select */
#define SSEL2 6 /* AC'97 Slot Select */
#define SSEL1 5 /* AC'97 Slot Select */
#define SSEL0 4 /* AC'97 Slot Select */
#define FIP2 10 /* AC'97 FIFO Interrupt Position */
#define FIP1 9 /* AC'97 FIFO Interrupt Position */
#define FIP0 8 /* AC'97 FIFO Interrupt Position */
#define SDEN 11 /* AC'97 Port DMA Enable */
#define FULL 13 /* FIFO Full, read-only) */
#define EMPTY 14 /* FIFO Empty, read-only) */
#define FLOW 15 /* FIFO Over/Underflow, sticky, write-one-clear) */
/**/

#endif
A-28 ADSP-219x/2192 DSP Hardware Reference

B ADSP-2192 DSP PERIPHERAL
REGISTERS

Figure B-0.

Table B-0.

Listing B-0.
Overview
The DSP has general-purpose and dedicated registers in each of its func-
tional blocks. The register reference information for each functional block
includes bit definitions, initialization values, and (for I/O processor regis-
ters) memory-mapped addresses. Information on each type of register is
available at the following locations:

• “Core Status Registers” on page A-8

• “Computational Unit Registers” on page A-16

• “Program Sequencer Registers” on page A-19

• “Data Address Generator Registers” on page A-26

• “Peripheral Registers” on page B-2

When writing DSP programs, it is often necessary to set, clear, or test bits
in the DSP’s registers. While these bit operations can be done by referring
to the bit’s location within a register or (for some operations) the register’s
address with a hexadecimal number, it is much easier to use symbols that
correspond to the bit’s or register’s name.

For convenience and consistency, Analog Devices provides header files
that define these bit and register definitions (def2192_IO.h,
def2192_PCI.h, def2192_USB.h, def2192-12.h, and def219x.h). Note
that the def2192-12.h file also contains the definitions from the IO, PCI,
and USB header files.
ADSP-219x/2192 DSP Hardware Reference B-1

Peripheral Registers
A sample of def219x.h is shown in “Register and Bit #Defines File” on
page A-27, and a sample of def2192-12.h is shown in “Register and Bit
#Defines File” on page B-95.

! Many registers have reserved bits. When writing to a register, pro-
grams may clear (write zero to) the register’s reserved bits only.

Peripheral Registers
There are three groups of registers for the ADSP-2192:

• “ADSP-219x DSP Core Registers” on page A-1

• “ADSP-2192 System Control Registers” on page B-6

• “ADSP-2192 Peripheral Device Control Registers” on page B-11

This appendix describes system control registers and peripheral device
control registers. A general description of DSP peripheral architecture,
which follows, provides an overview of peripheral registers.
B-2 ADSP-219x/2192 DSP Hardware Reference

ADSP-2192 DSP Peripheral Registers
DSP Peripherals Architecture
Figure B-1 shows the DSP’s on-chip peripherals, which include the Host
port (PCI or USB), AC’97 port, JTAG test and emulation port, flags, and
interrupt controller.

Figure B-1. ADSP-2192 Dual-Core DSP Block Diagram

The ADSP-2192 can respond to up to fourteen interrupts at any given
time. A list of these interrupts can be found in the table “Interrupt Vectors
for an ADSP-2192 DSP Core” on page 6-13.

The AC’97 codec port on the ADSP-2192 provides a complete synchro-
nous, full-duplex serial interface. This interface completely supports the
AC’97 standard.

The ADSP-2192 provides up to eight general-purpose I/O pins, which are
programmable as either inputs or outputs. These pins are dedicated gen-
eral-purpose programmable flag pins.

INTERRUPT CONTROLLER/
TI MER/FLAGS

CACHE
64 X 24-

BI T

PM ADDRESS BUS

DM ADDRESS BUS

PM DATA BUS

DM DATA BUS

2 4

1 6

ADSP- 219X
DSP CORE

DATA
REGISTER

FI LE

MULT BARREL
SHI FTER

AL U

I NPUT
REGI STERS

RESULT
REGI STERS

16 X 16-BIT

CORE
INTERFACE

2 4

2 4

BUS
CONNECT

(PX)

PROGRAM
SEQUENCER

DAG1
4X4X16

DAG2
4X4X16

PROCESSOR P0 PROCESSOR P1

SHARED
MEMORY

4K�16 DM

ADDR DATA

P 0
MEMORY

16K�24 PM
64K�16 DM
BOOT ROM

P 1
MEMORY

16K�24 PM
32K�16 DM
BOOT ROM

ADDR DATA ADDR DATA

P0 DMA
CONTROLLER

FIFOS

SHARED DSP
I/O MAPPED
REGISTERS

P1 DMA
CONTROLLER

FIFOS

ADDR DATA

HOST PORT

PCI 2.2
O R

USB 1. 1

SERIAL PORT

AC'97
COMPLIANT

GP I/O PINS

(& OPTIONAL
SERIAL

EEPROM)

JTAG
EMULATI ON

PORT

ADDR DATAADDR DATA
ADSP-219x/2192 DSP Hardware Reference B-3

Peripheral Device Register Groups
Peripheral Device Register Groups
The registers that control FIFO DMA transfers are accessible only from
within the DSP. They are defined as part of the Core Register Space.

Summary
Each of the DSPs integrated within the ADSP-2192 and the interfaces
(PCI, USB Sub-ISA, Cardbus) needs to be capable of controlling and
monitoring a variety of registers external to the DSP core. This section
describes how the DSPs access these Peripheral Device Control (PDC)
registers. The operation of the Peripheral Device Control (PDC) Bus that
connects the DSPs and Interfaces to the PDC Registers is also described in
this section.

Writes to AC’97 codec registers are posted, but only one may complete
per AC’97 frame. Up to two writes may be pending at any one time. The
first write completes with zero PDC wait states. A second write launched
immediately after the first incurs PDC wait states equivalent to a few
AC’97 BITCLKs. A third write in a row blocks for an entire AC’97 frame.
Use the Frame interrupt to time AC’97 codec writes out to one per frame,
assuring that they will all complete with zero wait states.

Reads from AC’97 codec registers must always wait for the data to be
returned. A read must also wait for any pending AC’97 codec register
writes to complete before it can begin. In the best case, a read takes one
full AC’97 frame plus another three AC’97 slots (25.39 µs, or approxi-
mately 3,744 DSP cycles). This is also the typical case when the AC’97
Frame Interrupt is used to time the Read.

The worst case AC’97 read time is four frames plus three slots (87.89 µs,
or approximately 12,960 DSP cycles). This occurs only when there are
already two AC’97 codec register writes pending just after the start of a
frame.
B-4 ADSP-219x/2192 DSP Hardware Reference

ADSP-2192 DSP Peripheral Registers
Most AC’97 codec registers may be shadowed, and actual reads should be
rare.

Example

In the worst case, DSP core P1 posts two AC’97 codec register writes just
after the start of a new Frame. DSP core P0 immediately follows with a
read to an AC’97 codec register. DSP core P0 will be unable to compute,
DMA, or interrupt for 87.89 µs. DSP core P1 can compute with data in
its own memory, but cannot communicate with DSP core P0 or access any
PDC bus register for 87.89 µs. The external bus interface can communi-
cate with DSP core P1, but cannot communicate with DSP core P0 or
access any PDC bus register for 87.89 µs. In the state, the entire
ADSP-2192 system is highly constrained.
ADSP-219x/2192 DSP Hardware Reference B-5

ADSP-2192 System Control Registers
ADSP-2192 System Control Registers
The following tables show the System Control Registers in each DSP core.

Table B-1. ADSP-2192 System Control Registers

Address Register Function

00 B0 Base Register0

01 B1 Base Register1

02 B2 Base Register2

03 B3 Base Register3

04 B4 Base Register4

05 B5 Base Register5

06 B6 Base Register6

07 B7 Base Register7

08 - 0B Reserved

0C DMAPAGE DMA Page Register

0D - 0E Reserved

0F CACTL Cache Control Register

10 STCTL0 FIFO0 Transmit Control Register

11 SRCTL0 FIFO0 Receive Control Register

12 TX0 FIFO0 Transmit Data (TX) register

13 RX0 FIFO0 Receive Data (RX) register
B-6 ADSP-219x/2192 DSP Hardware Reference

ADSP-2192 DSP Peripheral Registers
14 - 1F Reserved

20 STCTL1 FIFO1 Transmit Control Register

21 SRCTL1 FIFO1 Receive Control Register

22 TX1 FIFO1 Transmit Data (TX) register

23 RX1 FIFO1 Receive Data (RX) register

24 - 2F Reserved

30 TPERIOD Timer Period Register

31 TCOUNT Timer Counter Register

32 TSCALE Timer Scaling Register

33 TSCALECNT Timer Scale Count Register

34 FLAGS Flags Register

35 - 3F Reserved

40 - 43 Reserved

44 MASTADDR DMA Address, DSP Master DMA

45 MASTNXTADDR DMA Next Address, DSP Master DMA

46 MASTCNT DMA Count, DSP Master DMA

47 MASTCURCNT DMA Current Count, DSP Master DMA

48 TX0ADDR DMA Address, FIFO0 Transmit

49 TX0NXTADDR DMA Next Address, FIFO0 Transmit

Table B-1. ADSP-2192 System Control Registers (Continued)

Address Register Function
ADSP-219x/2192 DSP Hardware Reference B-7

ADSP-2192 System Control Registers
4A TX0CNT DMA Count, FIFO0 Transmit

4B TX0CURCNT DMA Current Count, FIFO0 Transmit

4C RX0ADDR DMA Address, FIFO0 Receive

4D RX0NXTADDR DMA Next Address, FIFO0 Receive

4E RX0CNT DMA Count, FIFO0 Receive

4F RX0CURCNT DMA Current Count, FIFO0 Receive

50 TX1ADDR DMA Address, FIFO1 Transmit

51 TX1NXTADDR DMA Next Address, FIFO1 Transmit

52 TX1CNT DMA Count, FIFO1 Transmit

53 TX1CURCNT DMA Current Count, FIFO1 Transmit

54 RX1ADDR DMA Address, FIFO1 Receive

55 RX1NXTADDR DMA Next Address, FIFO1 Receive

56 RX1CNT DMA Count, FIFO1 Receive

57 RX1CURCNT DMA Current Count, FIFO1 Receive

58-5F Reserved

60 DBGCTRL Test and Emulation Debug Control Register

61 DBGSTAT Test and Emulation Debug Status Register

62 CNT0 Cycle Counter 0 Register (LSB)

63 CNT1 Cycle Counter 1 Register

Table B-1. ADSP-2192 System Control Registers (Continued)

Address Register Function
B-8 ADSP-219x/2192 DSP Hardware Reference

ADSP-2192 DSP Peripheral Registers
STCTLx FIFO Transmit Control Register

These include the STCTL0 and STCTL1 registers in each DSP core.

SRCTLx FIFO Receive Control Register

These include the SRCTL0 and SRCTL1 registers in each DSP core.

64 CNT2 Cycle Counter 2 Register

65 CNT3 Cycle Counter 3 Register (MSB)

66-FF Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FL
O

W

E
M

P
T

Y

FU
L

L

LO
O

P

SD
E

N

FI
P

2

FI
P

1

FI
P

0

SS
E

L
3

SS
E

L
2

SS
E

L
1

SS
E

L
0

D
SP

FL
SH

SD
E

N

SP
E

N

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FL
O

W

E
M

P
T

Y

FU
L

L

LO
O

P

SD
E

N

FI
P

2

FI
P

1

FI
P

0

SS
E

L
3

SS
E

L
2

SS
E

L
1

SS
E

L
0

D
SP

F
L

SH

SD
E

N

SP
E

N

Table B-1. ADSP-2192 System Control Registers (Continued)

Address Register Function
ADSP-219x/2192 DSP Hardware Reference B-9

ADSP-2192 System Control Registers
xxxADDR DMA Address Register

This group of registers include Rx0ADDR, Rx1ADDR, Tx0ADDR, Tx1ADDR, and
MASTADDR registers for each DSP core. Each register is a 16-bit register con-
taining a 16-bit word.

xxxNXTADDR DMA Next Address Register

This group of registers include Rx0NXTADDR, Rx1NXTADDR, Tx0NXTADDR,
Tx1NXTADDR, and MASTNXTADDR for each DSP core. Each register is a 16-bit
register containing a 16-bit word.

xxxCNT DMA Count Register

This group of registers include Rx0CNT, Rx1CNT, Tx0CNT, Tx1CNT, and MAS-
TCNT for each DSP core. Each register is a 16-bit register containing a
16-bit word.

xxxCURCNT DMA Current Count Register

This group of registers include Rx0CURCNT, Rx1CURCNT, Tx0CURCNT,
Tx1CURCNT, and MASTCURCNT for each DSP core. Each register is a 16-bit
register containing a 16-bit word.
B-10 ADSP-219x/2192 DSP Hardware Reference

ADSP-2192 DSP Peripheral Registers
ADSP-2192 Peripheral Device Control
Registers

The following tables show the Peripheral Device Control Registers accessi-
ble by both DSP cores and the PCI and USB interfaces.

The following is a summary of the various classes of I/O registers and their
organization within DSP I/O pages.

! Addresses are 8-bit values. The Page is also an 8-bit value.

Table B-2. Register Group Descriptions

Page Addresses Descriptions Access
permitted by

Refer to

0x00 0x00-0x0F ADSP-2192 Chip Control
Registers

DSP / PCI / USB page B-13

0x10-0x1F General-purpose I/O
(GPIO) Control Registers

DSP / PCI / USB page B-24

0x20-0x2F Host Mailbox Registers DSP / PCI / USB page B-30

0x30 EEPROM Register DSP / PCI / USB page B-28

0xA0-0xBF JTAG ID Registers DSP Only page B-32

0xC0-0xFF AC’97 Controller Registers DSP / PCI / USB page B-41

0x01 0x00-0x2D CardBus Function Event
Registers

DSP / PCI page B-32

0x02-0x03 Reserved

0x04 0x00-0x7E AC’97 Codec Register
Space,
Primary Codec 0

DSP / PCI / USB page B-45
ADSP-219x/2192 DSP Hardware Reference B-11

ADSP-2192 Peripheral Device Control Registers
0x05 0x00-0x7E AC’97 Codec Register
Space,
Secondary Codec 1

DSP / PCI / USB page B-45

0x06 0x00-0x7E AC’97 Codec Register
Space,
Secondary Codec 2

DSP / PCI / USB page B-46

0x07 Reserved

0x08 0x00-0x7F DMA Address, Count
Registers

DSP / PCI page B-46

0x80-0x87 DMA Control Registers DSP / PCI page B-46

0x88-0x8A PCI Interrupt, Control
Registers

DSP / PCI page B-47

0x09 0x00-0xFF PCI Configuration
Register Space, Function 0

DSP1 / PCI page B-56

0x0A 0x00-0xFF PCI Configuration
Register Space, Function 1

DSP1 / PCI page B-58

0x0B 0x00-0xFF PCI Configuration
Register Space, Function 2

DSP1 / PCI page B-59

0x0C 0x00-0x4F USB DSP Registers DSP / USB page B-71

0x0D-0xFF Reserved

1 PCI configuration spaces should be accessed only by the DSP, and only during the boot process.
After the PCI interface has been configured, bit 2 (ConfRdy) of the PCI_CFGCTL register
should be set by the DSP. This allows the PCI interface access to these registers while at the same
time denying the DSP access.

Table B-2. Register Group Descriptions (Continued)

Page Addresses Descriptions Access
permitted by

Refer to
B-12 ADSP-219x/2192 DSP Hardware Reference

ADSP-2192 DSP Peripheral Registers
ADSP-2192 Chip Control Registers
The chip control registers provide support for the following:

• General status for the chip as a whole

• Power-down operations

• Other control functions

The following table lists the PDC register space. The register addresses
from PCI space, USB space, and DSP I/O space are listed.

Table B-3. ADSP-2192 Chip Control Registers

Register
Name

Description PCI
Address

USB
Address

DSP
I/O
Page

DSP
I/O
Address

SYSCON Chip Mode/Status 0x01-0x00 0x01-0x00 0x00 0x00

PWRCFG0 Function 0 Power
Management

0x03-0x02 0x03-0x02 0x00 0x02

PWRCFG1 Function 1 Power
Management

0x05-0x04 0x05-0x04 0x00 0x04

PWRCFG2 Function 2 Power
Management

0x07-0x06 0x07-0x06 0x00 0x06

PWRP0 DSP 0 Interrupt/Pow-
erdown

0x09-0x08 0x09-0x08 0x00 0x08

PWRP1 DSP 1 Interrupt/Pow-
erdown

0x0B-0x0A 0x0B-0x0A 0x00 0x0A

PLLCTL DSP PLL Control 0x0D-0x0C 0x0D-0x0C 0x00 0x0C
ADSP-219x/2192 DSP Hardware Reference B-13

ADSP-2192 Peripheral Device Control Registers
Chip Control (SYSCON) Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

P
C

I
R

ST

V
A

U
X

P
C

I_
5V

B
5V

B
U

S<
1:

0>

C
R

ST
<1

:0
>

R
E

G
D

V
X

P
D

V
X

P
W

A
C

V
X

X
O

N

R
D

IS

R
es

er
ve

d

R
ST

Table B-4. SYSCON Register Bit Descriptions

Bit Position Bit Name Description

0 RST Soft Chip Reset.

A write of 1 causes a soft reset to the ADSP-2192. A write of
0 has no effect. Always reads 0. Soft Reset affects the DSPs
and the GPIOs. Soft Reset does not affect the PCI, USB,
Mailboxes, AC’97, or EEPROM.

Note that the DSP memory pipeline (last 2 writes per bank) is
lost upon reset. If desired, it may be flushed by three writes
in a row to the same location.

Note: This bit resets to zero.

1 Reserved
B-14 ADSP-219x/2192 DSP Hardware Reference

ADSP-2192 DSP Peripheral Registers
2 RDIS Reset Disable.

When 1, disables a PCI/ISA/CBUS bus reset from affecting
any portions of the ADSP-2192 except the bus interface
itself. When 0 (default), a bus reset causes the DSPs and
AC’97 subsystem to be reset.

Note: If RDIS is set, the DSP can detect that the bus is in
reset by the PCIRST bit in the CMSR register. Un-masked
Bus Reset affects the DSPs, the GPIOs, the AC’97, and the
PCI/USB interface.

Un-masked Bus Reset does not affect the Mailboxes or
EEPROM.

Note that the DSP memory pipeline (last 2 writes per bank) is
lost upon reset. If desired, it may be flushed by three writes
in a row to the same location.

Note: This bit resets to zero.

3 XON XTAL Force On.

When 1, causes the XTAL oscillator to run even if all other
subsystems are powered down. This permits access to the
on-chip control registers when the part is powered down. If
the chip and the XTAL oscillator are powered off, attempting
to write PDC registers including this one will result in power-
ing up the XTAL and setting the XON bit. The write will suc-
ceed, after a delay for the oscillator to stabilize. Subsequent
writes or reads should not be attempted until the oscillator
has stabilized, about 8K clocks or 333us.

When 0, the XTAL oscillator stops whenever it is not needed
by any on-chip subsystem.

Note: This bit resets to zero.

Table B-4. SYSCON Register Bit Descriptions (Continued)

Bit Position Bit Name Description
ADSP-219x/2192 DSP Hardware Reference B-15

ADSP-2192 Peripheral Device Control Registers
4 ACVX AC’97 External Devices Vaux Powered.

Controls the AC’97 interface during D3cold (RST
asserted).

0 = Disable the interface (drive 0, disable all inputs). This is
used if external AC’97 devices are NOT powered

 during d3cold, and protects the ADSP-2192 from
 floating inputs and from outputs driving input clamps
 on an external device. (default)

1 = Interface enabled during RST.

Note: This bit resets to zero.

5 Reserved Reserved

6 Reserved Reserved

7 REGD 2.5V Regulator Control Disable.

Disables the on-chip 2.5V Regulator controller when the
2.5V (IVDD) supply is derived from an external regulator
(e.g. in USB and Mini-PCI applications).

0 = On-Chip 2.5V Regulator Control Enabled. (default)

1 = On-Chip 2.5V Regulator Control Disabled.

Note: This bit resets to zero.

9:8 CRST<1:0> Chip Reset Source.

Indicates the source of the last reset to the chip (Read-Only)

00 = Power-On Reset

01 = Reserved.

10 = PCI/ISA/CBUS/USB bus interface hard reset

11 = Soft Reset from the CMSR:RST bit
Note: the fifth possible reset source, DIP Soft Reset, is
indicated by DIP1/2:RD = 1. Each DSP must check

its
DIP<n>:RD bit and clear it to zero upon reset.

Table B-4. SYSCON Register Bit Descriptions (Continued)

Bit Position Bit Name Description
B-16 ADSP-219x/2192 DSP Hardware Reference

ADSP-2192 DSP Peripheral Registers
11:10 BUS<1:0> Bus Mode.

Mode Pin status. Sampled at Power-On Reset (Read-Only).

00= PCI

01= CardBus

10= USB

11= Sub-ISA

12 B5V AC’97 5V level.
1= If the AC’97 interface is powered

from nominal 5V; 0 if nominal 3.3V.

13 PCI 5V PCI 5V level.

1= If the PCI/ISA/CBUS interface is powered from
nominal 5V; 0 if nominal 3.3V. Monitors the level
of the PCIVDD pins (Read Only).

14 Vaux Vaux Present.

1= If Vaux is currently powered (Read-Only).

15 PCIRST PCI Reset.

0= If PCI/CBUS/ISA RST is asserted (which may indi-

cate D3Cold powerdown state).

Note: This bit resets to one.

Table B-4. SYSCON Register Bit Descriptions (Continued)

Bit Position Bit Name Description
ADSP-219x/2192 DSP Hardware Reference B-17

ADSP-2192 Peripheral Device Control Registers
Power Management Functions

Power management registers share the same bit specifications. Each regis-
ter corresponds to one of the PCI functions:

! All bits in this register reset to zero.

15 14 13:9 8 7 6 5 4 3 2 1 0

P
M

E

SP
M

E

R
es

er
ve

d

P
M

E
 E

N

R

es
er

ve
d

G
P

M
E

A
P

M
E

R
es

er
ve

d

P
W

R
ST

[1
:0

]

Table B-5. Bit Descriptions for PWRCFG0, PWRCFG1, and PWRCFG2
Registers

Bit Position Bit Name Description

1:0 PWRST<1:0> PCI Function Power State.
Reports this function’s PCI Power Management state from its
PMCSR register in PCI Configuration Space. (Read Only)

4:2 Reserved

5 APME AC’97 Power Management Event Enable.
1= Enables setting this function’s PME bit upon

an AC’97 interrupt/wake event. (Read/Write)

6 GPME GPIO Power Management Event Enable.
1= Enables setting this function’s PME bit upon a

GPIO Wakeup event. (Read/Write)

7 Reserved Reserved

8 PME_EN Power Management Event Enable.
1= PME_EN bit is set in this function’s PMCSR

register in PCI Configuration space.

13:9 Reserved
B-18 ADSP-219x/2192 DSP Hardware Reference

ADSP-2192 DSP Peripheral Registers
DSP Powerdown (PWRPx) Registers

These two registers share the following bit layout. One register corre-
sponds to each DSP.

! All bits in this register reset to zero.

14 SPME Power Management Event (Set).
A write of 1 to this bit sets the PME bit for this
function. A write of 0 has no effect. Always
reads 0.

15 PME Power Management Event (Status/Clear).
1= A power management event has been detected for this

function. This is an alias of the PME bit in the Power
Management Control/Status Register in PCI Configura-
tion Space for this function. A write of 1 to this bit
clears PME.

0= A write of 0 has no effect.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
IN

T

G
IN

T

A
IN

T

P
M

IN
T

R
IE

N

G
IE

N

A
IE

N

P
M

IE
N

R
W

E

G
W

E

AW
E

P
M

W
E

F
IE

N

R
ST

D

P
U

P
D

Table B-5. Bit Descriptions for PWRCFG0, PWRCFG1, and PWRCFG2
Registers (Continued)

Bit Position Bit Name Description
ADSP-219x/2192 DSP Hardware Reference B-19

ADSP-2192 Peripheral Device Control Registers

Table B-6. DSP Interrupt/Powerdown (PWRPx) Register Bit Descriptions

Bit Position Bit Name Description

0 PD DSP PowerDown.

When written to a 1, causes the DSP to power down (enter its
power-down handler). Can also be used to abort a power-up:
if the DSP is in the power-down handler after executing an
IDLE, writing a 1 will cause the DSP to immediately re-enter
the PowerDown interrupt handler after it executes the RTI.

When read, PD=1 indicates that this DSP is powered down:
either (a) it is in the powerdown handler and has executed an
IDLE instruction), and/or (b) the DSP Clock Generator
(PLL) is not running and stable. When both DSPs are pow-
ered down, the DSP Clock Generator is powered down, and
automatically restarts when either DSP wakes up.

Note: DSP memory cannot be accessed via PCI or USB when
the DSP is powered down. There is a delay after powering up
the DSPs with the PU bit during which memory reads must
not be performed, because the XTAL or the DSP PLL is not
yet running and stable. After powering up by writing a 1 to
the PU bit, the PD bit must be polled until it becomes 0, after
which the clock generator will be running and it is safe to
access DSP memory again.

1 PU DSP PowerUp.

When written to a 1, causes the DSP to power up (exit the
IDLE within its power-down handler). Can also be used to
abort a powerdown: when written to 1 while the DSP is
within its powerdown handler prior to the IDLE, writing a 1
will cause execution to immediately continue through the
IDLE without stopping clocks.

When read, PU=1 indicates that this DSP is in the power-
down interrupt handler, whether or not it has executed the
powerdown IDLE.
B-20 ADSP-219x/2192 DSP Hardware Reference

ADSP-2192 DSP Peripheral Registers
2 RSTD DSP Soft Reset

When written to a 1, causes a soft reset to this DSP. Retains a
1 until cleared by writing to a 0.

If the DSP core is powered down, it must be powered up first
(DSP:PU bit written to 1) before resetting.

3 FIEN DSP Interrupt Enable: AC’97 Frame

When 1, enables an AC’97 Frame interrupt (IMASK bit 15)
to this DSP from the AC’97 Interface. If 0, no interrupt is
signalled (Read/Write). The actual interrupt occurs once per
AC’97 Frame, at the second bit of Slot 12.

4 PMWE Power Management Wakeup Enable.

When 1, enables waking the respective DSP on a Power Man-
agement State Change event (Read/Write).

5 AWE DSP Wakeup Enable: GPIO Interrupt, AC’97 Interrupt.

When 1, enables this DSP to wake from powerdown upon an
event from the indicated source. (Read/Write).

6 GWE DSP Wakeup Enable: GPIO Interrupt, AC’97 Interrupt.

When 1, enables this DSP to wake from powerdown upon an
event from the indicated source. (Read/Write).

7 RWE DSP Wakeup Enable: GPIO Interrupt, AC’97 Interrupt.

When 1, enables this DSP to wake from powerdown upon an
event from the indicated source. (Read/Write).

8 PMIEN Power Management Interrupt Enable.

When 1, enables interrupting the respective DSP on a Power
Management State Change event. (The interrupt level is the
same as used for GPIO and AC’97 interrupt) (Read / Write).

Table B-6. DSP Interrupt/Powerdown (PWRPx) Register Bit Descriptions
(Continued)

Bit Position Bit Name Description
ADSP-219x/2192 DSP Hardware Reference B-21

ADSP-2192 Peripheral Device Control Registers
9 AIEN DSP Interrupt Enable: AC’97 Interrupt.

When 1, enables an IO interrupt to this DSP from the AC’97
port. If 0, no interrupt will be signalled and the correspond-
ing Interrupt Pending bit will not be set upon an event.
(Read/Write).

10 GIEN DSP Interrupt Enable: GPIO Interrupt.

When 1, enables an IO interrupt to this DSP from the GPIO.
If 0, no interrupt will be signalled and the corresponding
Interrupt Pending bit will not be set upon an event.
(Read/Write).

11 Reserved

12 PMINT Power Management Interrupt Pending.

When 1, indicates an interrupt is pending for the respective
DSP from a Power Management State Change event. A write
of 1 clears this interrupt flag. A write of 0 has no effect.

13 AINT When 1, an IO interrupt (IMASK bit 6) to this DSP is pend-
ing from the AC’97 port. A write of 1 clears this interrupt
flag. A write of 0 has no effect. The AC’97 port should be
cleared prior to clearing this interrupt flag, or it may be
re-triggered. Similarly, this interrupt flag must be cleared
prior to executing an RTI from the DSP interrupt handler
routine, or the DSP may immediately take another interrupt.

14 GINT When 1, an IO interrupt (IMASK bit 6) to this DSP is pend-
ing from the GPIO. A write of 1 clears this interrupt flag. A
write of 0 has no effect. The GPIO should be cleared first
(e.g., clearing a GPIO Status Bit) prior to clearing this inter-
rupt flag, or it may be re-triggered. Similarly, this interrupt
flag must be cleared prior to executing an RTI from the DSP
interrupt handler routine, or the DSP may immediately take
another interrupt.

15 Reserved

Table B-6. DSP Interrupt/Powerdown (PWRPx) Register Bit Descriptions
(Continued)

Bit Position Bit Name Description
B-22 ADSP-219x/2192 DSP Hardware Reference

ADSP-2192 DSP Peripheral Registers
DSP PLL Control (PLLCTL) Register

The DSP PLL control register controls the frequencies of the PLL (Phase
Locked Loop) clock generator. Do not write to this register unless the PLL
is powered down.

The register is controlled by an Adjust bit. When the Adjust bit is zero,
default values for the settings in that segment are used by the PLL. These
default values are also returned upon a register read. The default values are
subject to change.

Writing this register to 0 resets the register to its factory defaults.

Fout =6*Fin = 98.304 MHz

6*Fin = 147.456 MHz

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C
se

lR

C
se

lC

C
bo

os
t

C
A

dj

D
P

L
L

K

D
P

L
L

N

D
P

L
L

M

D
se

lR

D
se

lC

D
bo

os
t

D
A

dj
ADSP-219x/2192 DSP Hardware Reference B-23

ADSP-2192 Peripheral Device Control Registers
General-purpose I/O (GPIO) Control Registers
Eight pins support general-purpose I/O to registers that control them.

Table B-7 lists the Peripheral Device Control Register Space for GPIO
Control registers:

Table B-7. GPIO Control Registers

Register
Name

Description PCI
Address

USB
Address

DSP
I/O
Page

DSP
I/O
Address

GPIOCFG GPIO Configuration
Direction Control (1 =
input, 0 = output)

0x010 0x0010 0x00 0x10

GPIOPOL GPIO Polarity
Inputs:
0 = active high
1 = active low.
Outputs:
0 = CMOS
1 = Open Drain

0x012 0x0012 0x12

GPIOSTKY GPIO Sticky:
1 = sticky, 0 = not sticky

0x014 0x0014 0x00 0x14

GPIOWCTL GPIO Wake Control
1 = wake-up enabled
(requires sticky set)

0x016 0x0016 0x00 0x16

GPIOSTAT GPIO Status
Read = Pin state
Write: 0 = clear sticky
status, 1 = no effect

0x018 0x0018 0x00 0x18

GPIOCTL GPIO Control (w), Init (r)
Read = Power-on state;
Write: Set state of out-
put pins

0x01A 0x001A 0x00 0x1A
B-24 ADSP-219x/2192 DSP Hardware Reference

ADSP-2192 DSP Peripheral Registers
GPIO Configuration (GPIOCFG) Register

! This register resets to 0x7F.

GPIO Polarity (GPIOPOL) Register

! This register resets to 0xFF.

GPIOPUP GPIO Pullup
Pull-up enable (if input):
1 = enable, 0 = Hi-Z

0x01C 0x001C 0x00 0x1C

GPIOPDN GPIO Pulldown
Pull-down enable (if
input): 1 = enable, 0 =
Hi-Z

0x01E 0x001E 0x00 0x1E

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
es

er
ve

d

G
C

FG
[7

:0
]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
es

er
ve

d

G
P

O
L

[7
:0

]

Table B-7. GPIO Control Registers (Continued)

Register
Name

Description PCI
Address

USB
Address

DSP
I/O
Page

DSP
I/O
Address
ADSP-219x/2192 DSP Hardware Reference B-25

ADSP-2192 Peripheral Device Control Registers
GPIO Sticky (GPIOSTKY) Register

! This register resets to zero.

GPIO Wakeup Control (GPIOWAKECTL) Register

! This register resets to zero.

GPIO Status (GPIOSTAT) Register

! This register resets to 0xFF.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
es

er
ve

d

G
ST

K
Y

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
es

er
ve

d

G
W

A
K

[7
:0

]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
es

er
ve

d

G
ST

A
T

[7
:0

]

B-26 ADSP-219x/2192 DSP Hardware Reference

ADSP-2192 DSP Peripheral Registers
GPIO Control (GPIOCTL) Register

! This register resets to 0x7F.

GPIO Pullup (GPIOPUP) Register

! This register resets to 0xFF.

GPIO Pulldown (GPIOPDN) Register

! This register resets to zero.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
es

er
ve

d

G
C

T
L

[7
:0

]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
es

er
ve

d

G
P

U
[7

:0
]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
es

er
ve

d

G
P

D
[7

:0
]

ADSP-219x/2192 DSP Hardware Reference B-27

ADSP-2192 Peripheral Device Control Registers
EEPROM I/O Control/Status (SPROMCTL) Register
The EEPROM register controls access to the serial EEPROM. Table B-8 lists
the Peripheral Device Control Register Space for EEPROM Control
Register.

This register is reset by any of the following:

• Power-On Reset

• SYSRST asserted

• Soft Reset using the PCC:RST bit

• PCI RST asserted when the AC97LCTL:DSPR bit is 0

Table B-8. SPROMCTL Control Register

Register Name Description PCI
Address

USB
Address

DSP
I/O
Page

DSP
I/O
Address

SPROMCTL EEPROM I/O
Control/Status
Controls the
direction and sta-
tus for SEN, SCK,
SDA pins.

0x30 0x30 0x00 0x30

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SC
K

I

SE
N

I

SD
A

I

R
es

er
ve

d

SC
K

SE
N

SD
A

R
es

er
ve

d

B-28 ADSP-219x/2192 DSP Hardware Reference

ADSP-2192 DSP Peripheral Registers
Table B-9. SPROMCTL Register Bit Descriptions

Bit Position Bit Name Description

4:0 Reserved

5 SDA SDA pin status.

Default = 0.
Note: This bit resets to zero.

6 SEN SEN pin status.

Default = 0 (output driving 0).
Note: This bit resets to zero.

7 SCK SCK pin status.

Default = 0 (output driving 0)
Note: This bit resets to zero.

12:8 Reserved

13 SDAI SDA pin input enable.

1=input Default=1 (input)
0=output.

Note: This bit resets to one.

14 SENI SEN pin input enable.

1=input
0=output (default)

Note: This bit resets to zero.

15 SCKI SCK pin input enable.
1=input
0=output (default)

Note: This bit resets to zero.
ADSP-219x/2192 DSP Hardware Reference B-29

ADSP-2192 Peripheral Device Control Registers
Host Mailbox Registers
The Host Mailbox registers control communication between the DSP and
host (PCI host or USB Host), depending on which one is turned on. Only
one can be active at time.

Overview

DSP Mailbox registers allow you to construct an efficient communications
protocol between the PCI device driver and the DSP code. The mailbox
functions consist of an InBox0, InBox1, OutBox0, OutBox1, a control
register, and a status register.

InBoxes. The incoming mailboxes (InBox0 and InBox1) are 16 bits wide.
They may be read or written by the PCI device or the DSP core. PCI
writes to the InBoxes may generate DSP interrupts. DSP reads of InBoxes
may generate PCI interrupts.

OutBoxes. The outgoing mailboxes (OutBox0 and OutBox1) are 16 bits
wide. They may be read or written by the PCI device or the DSP core.
DSP writes to the OutBoxes may generate PCI interrupts.

PCI reads of OutBoxes may generate DSP interrupts with special han-
dling. The PC host must perform the following sequence when reading an
OutBox: (1) read OutBox, (2) write a 1 to the OutBox Valid bit to clear
it. (PCI reads of OutBoxes cannot generate interrupts directly, as they
would be “read side-effects” which are prohibited by system design consid-
erations in the PCI Specification.)

Control. This register consists of read/write interrupt enable control bits.
(denoted R/W).

Status. This register consists of read/write-one-clear status bits (denoted
R/WC). A read/write-one-clear bit is cleared when a one is written to it.
Writing a zero has no effect.
B-30 ADSP-219x/2192 DSP Hardware Reference

ADSP-2192 DSP Peripheral Registers
Table B-10 lists the Peripheral Device Control Register Space for
PCI/USB Mailbox registers. For register bit names and descriptions for
each register, see the topic “Using DSP and PCI Mailbox Registers” in
Chapter 6 Dual DSP Cores.

Table B-10. PCI / USB Mailbox Registers

Register
Name

Description PCI
Address

USB Address DSP
I/O
Page

DSP
I/O
Address

MBXSTAT Mailbox Status 0x021-0x020 0x0021-0x0020 0x00 0x20

MBXCTL Mailbox Control 0x023-0x022 0x0023-0x0022 0x00 0x22

MBX_IN0 Incoming Mail-
box 0

PCI/USB to DSP
mailbox

0x025-0x024 0x0025-0x0024 0x00 0x24

MBX_IN1 Incoming Mail-
box 1

PCI/USB to DSP
mailbox

0x027-0x026 0x0027-0x0026 0x00 0x26

MBX_OUT0 Outgoing Mail-
box 0
DSP to PCI/USB
mailbox

0x029-0x028 0x0029-0x0028 0x00 0x28

MBX_OUT1 Outgoing Mail-
box 0
DSP to PCI/USB
mailbox

0x02B-0x02A 0x002B-0x002A 0x00 0x2A
ADSP-219x/2192 DSP Hardware Reference B-31

ADSP-2192 Peripheral Device Control Registers
CardBus Function Event Registers
Of the four function modes, PCI, USB, sub-ISA, and Cardbus, these
function event registers are used only in CardBus mode to provide status
registers for power management.

In a CardBus system (specified by BUSMODE=01), the operating system han-
dles Power Management in one of two ways. If the O/S is
ACPI-compliant, the OS uses the Power Management registers in PCI
Configuration space in the normal fashion. If the O/S is an older legacy
system, it looks for a set of four 32-bit Function Event registers, one set
per card function. (The upper 16 bits of each register are reserved and are
implemented as read-only with 0s.) These registers are used only in Card-
Bus systems, and have no effect on operation when the ADSP-2192 is not
in CardBus mode (BUSMODE=01). The registers for each of the three func-
tions are largely independent.

The CardBus Function Event registers contain bits similar to those in the
PCI Power Management registers:

• Function Event Register GWAKE-E == PCI PME_Status

• Function Event Mask register GWAKE-M == PCI PME_Enable

In addition, the CardBus registers define the following:

• Interrupt Mask INTR M - global mask bit for both interrupt and
wakeup (PME) signalling

• Wakeup Mask WKUPM - additional PCI PME_Enable

• Event Force bits for interrupt (INTRF) and wakeup (GWAKEF) for soft-
ware development
B-32 ADSP-219x/2192 DSP Hardware Reference

ADSP-2192 DSP Peripheral Registers
The CardBus Function Event registers are defined to inter-operate with
the PCI Power Management Control/Status (SYSCON) register as follows:

• PCI updates PME_EN bit.

CardBus GWAKM and WKUPM take the new value.

• PCI clears PME_Status (writes 1).

CardBus GWAKE is cleared.

• CardBus updates GWAKM or WKUP.

No effect in PCI PMCSR.

• CardBus clears GWAKE_E (writes 1).

PCI PME_Status bit is cleared.

• Power Management event occurs.

Both GWAKE and PME_Status are set; PME may assert.

• Host Interrupt occurs.

INTRE is set, INTA may assert.

CSTSCHG Signal

In CardBus systems, power management events are signaled to the host by
an active-high signal called CSTSCHG. An external FET or inverter is used
with the ADSP-2192’s active-low PME signal to create CSTSCHG. In CardBus
mode, PME is asserted under the following conditions:

• The function’s INTRM master interrupt/wakeup mask bit is 1

• The function’s WKUPM master wakeup mask bit is 1
ADSP-219x/2192 DSP Hardware Reference B-33

ADSP-2192 Peripheral Device Control Registers
• The function’s GWAKEM general wakeup bit is 1

• The function’s GWAKEE general-wake event pending bit is 1

GWAKE is an alias of the function’s SYSCON:PME_Status latch. GWAKEE is set
to 1 when any of the conditions occurs which would set PME_Status for
that function, according to the masks in the function’s Function Power
Management register (PWRCFG0/1/2). In addition, writing a 1 to the
GWAKE_F bit in the function’s Function Event Force register sets the GWAKEE
bit (and PME_Status bit) for that function to 1.

INTA Signal

In CardBus systems, assertion of the INTA pin is controlled by the INTRM
master interrupt mask bit, in addition to the other interrupt control regis-
ters on the ADSP-2192. The INTR_E bit indicates if an interrupt is
pending. The INTA pin is asserted under the following conditions:

• The function’s INTRM master interrupt/wakeup mask bit is 1

• The function’s INTRE interrupt pending bit is 1

INTRE is set when any of the conditions occurs which would cause INTA to
be asserted in PCI systems, according to the settings in the PCI Interrupt
Register. All three functions are controlled by the same interrupt-detect
signal. Additionally, writing a 1 to the INTRF bit in a function’s Function
Event Force register sets that function’s INTRE bit and, if the correspond-
ing INTRM bit is set, the INTA pin is asserted. Writing INTRF directly is the
only way for an individual function to set its INTRE bit and hence signal an
interrupt independently of the other functions.
B-34 ADSP-219x/2192 DSP Hardware Reference

ADSP-2192 DSP Peripheral Registers
CIS Tuple Requirements

! The four Function Event Registers for each function are pointed to
by a data structure in CIS (Card Information Services) RAM, which
must be initialized by the DSP from ROM at power-up. A
CISTPL_CONFIG_CB CIS tuple must be provided for each function to
point to the function event registers in BAR1 at the appropriate off-
set:

Table B-11. CIS Tuple Requirements

Function Value of TPCC_ADDR in
CISTPL_CONFIG_CB

Meaning

0 0x0000_0101 Offset 0x0000_0100 within BAR 1

1 10x0000_0111 Offset 0x0000_0110 within BAR 1

2 0x0000_0121 Offset 0x0000_0120 within BAR 1
ADSP-219x/2192 DSP Hardware Reference B-35

ADSP-2192 Peripheral Device Control Registers
CardBus Function Event (CB_FE0) Register

! All bits in this register are reset to zero.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IN
T

E

R
es

er
ve

d

G
W

K
E

R
es

er
ve

d

Table B-12. CB_FE0 Register Bit Description

Bit Position Bit Name Description

3:0 Reserved

4 GWKE General Wakeup Event Pending.

This bit is equivalent to the PME_Status bit. It reads 1 if
CB_FPS0:GWAKE has been set by either a wakeup event on
AC’97 as enabled by APME, or by a wakeup event on GPIOs
enabled by GPME.

A write of a 1 clears this bit. This nonvolatile bit is reset by
power-on reset only, and is not affected by PCI RST,
SYSRST or Soft Reset.

14:5 Reserved

15 INTE Interrupt Event Pending.

Reads 1 if CB_FPS0:INTR is set and CB_FEM0:INTRM is
1. Default=0.

A write of 1 clears all of the interrupts DSPI, WKI, GPI, and
TABI corresponding to bits 15:12 of the PCS register. This
bit is cleared by power-on reset and PCI RST. It is not
affected by SYSRST or the Soft Reset bit PCC:RST.
B-36 ADSP-219x/2192 DSP Hardware Reference

ADSP-2192 DSP Peripheral Registers
CardBus Function Event Mask (CB_FEM0) Register

! All bits in this register are reset to zero.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IN
T

M

W
K

U
P

R
es

er
ve

d

P
W

M

B
A

M

R
es

er
ve

d

Table B-13. CB_FEM0 Register Bit Descriptions

Bit Position Bit Name Description

3:0 Reserved

4 GWKM General Wakeup Mask.

This bit is equivalent to PME_Enable. Enables assertion of
CSTSCHG in Cardbus mode (see above).

5 Reserved

6 Reserved

13:7 Reserved

14 WKUP Wakeup Enable.

Master wakeup enable for assertion of CSTSCHG/PME when
in CardBus mode. When not in CardBus mode, this has no
effect. This nonvolatile bit is reset by power-on reset only,
and is not affected by PCI RST, SYSRST or Soft Reset.
ADSP-219x/2192 DSP Hardware Reference B-37

ADSP-2192 Peripheral Device Control Registers
CardBus Function Event Present State (CB_FPS0) Register

! All bits in this register are reset to zero.

15 INTM Interrupt / Wakeup Mask.

Enables assertion of INTA and PME//CSTSCHG when in
CardBus mode (CBUS = low). Has no effect upon INTA or
PME/CSTSCHG when not in CardBus mode.

In CardBus mode: INTA is asserted when:
CB_FEM0:INTM=1 and CB_FE0:INTR=1.

CSTSCHG is asserted high when: CB_FEM0:INTRM=1 and
CB_FEM0:WKUP=1 and CB_FEM0:GWKM=1 and
CB_FE0:GWKE=1. This bit is cleared by power-on reset
and PCI RST. It is not affected by SYSRST or Soft Reset.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IN
T

R

R
es

er
ve

d

G
W

A
K

E

R
es

er
ve

d

Table B-14. CB_FPS0 Register Bit Descriptions

Bit Position Bit Name Description

3:0 Reserved

4 GWAKE Current wakeup state.

This bit reflects the current state of the wakeup condition
from either AC’97 or the local GPIOs, if enabled by ACPU or
GPU.

14:5 Reserved

Table B-13. CB_FEM0 Register Bit Descriptions (Continued)

Bit Position Bit Name Description
B-38 ADSP-219x/2192 DSP Hardware Reference

ADSP-2192 DSP Peripheral Registers

15 INTR Current Interrupt State.

This bit reflects the combined state of the current interrupt
inputs to DSPI, WKI, GPI, and TABI.

Table B-15. CardBus Function Event Registers

Register Name Description PCI
Address

USB
Address

DSP
I/O
Page

DSP
I/O
Address

CBEVENT0 Function 0 Event 0x103-0x100 n/a 0x01 0x00

CBEVENT_MSK0 Function 0 Event
Mask

0x107-0x104 n/a 0x01 0x04

CBPRES_STATE0 Function 0 Present
State

0x10B-0x108 n/a 0x01 0x08

CBEVENT_FORCE0 Function 0 Event
Force

0x10F-0x10C n/a 0x01 0x0C

CBEVENT1 Function 1 Event 0x113-0x110 n/a 0x01 0x10

CBEVENT_MSK1 Function 1 Event
Mask

0x117-0x114 n/a 0x01 0x14

CBPRES_STATE1 Function 1 Present
State

0x11B-0x118 n/a 0x01 0x18

CBEVENT_FORCE1 Function 1 Event
Force

0x11F-0x11C n/a 0x01 0x1C

CBEVENT2 Function 2 Event 0x123-0x120 n/a 0x01 0x20

CBEVENT_MSK2 Function 2 Event
Mask

0x127-0x124 n/a 0x01 0x24

Table B-14. CB_FPS0 Register Bit Descriptions (Continued)

Bit Position Bit Name Description
ADSP-219x/2192 DSP Hardware Reference B-39

ADSP-2192 Peripheral Device Control Registers
CardBus Function Event Force (CB_FEFx) Register

CBPRES_STATE2 Function 2 Present
State

0x12B-0x128 n/a 0x01 0x28

CBEVENT_FORCE2 Function 2 Event
Force

0x12F-0x12C n/a 0x01 0x2C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IN
T

F

R
es

er
ve

d

G
W

K
F

R
es

er
ve

d
Table B-16. CB_FEFx Register Bit Descriptions

Bit Position Bit Name Description

3:0 Reserved

4 GWKF Wakeup Force.

Sets the CB_FE0:GWAKE bit in the Function Event register
(equivalent to PME_Status). Does not affect the state of
CB_FPS0:GWAKE in the Function Present State register.

14:5 Reserved

15 INTF Interrupt Force.

Sets the CB_FE0:INTRE bit in the Function Event register.
Does not affect the CB_FPS0:INTR bit in the Function
Present State register.

Table B-15. CardBus Function Event Registers

Register Name Description PCI
Address

USB
Address

DSP
I/O
Page

DSP
I/O
Address
B-40 ADSP-219x/2192 DSP Hardware Reference

ADSP-2192 DSP Peripheral Registers
AC�97 Controller Registers
These control registers for the serial port are used for audio (sound) and
modem, specifically V.90 modems under codec control.

Table B-17. AC’97 Control Registers

Register
Name

Description PCI
Address

USB Address DSP
I/O
Page

DSP
I/O
Address

AC97LCTL AC’97 Link
Control
Setup control for
AC’97 interface

0x0C1-0x0C0 0x00C1-0x00C0 0x00 0xC0

AC97STAT AC’97 Link
Status
Setup control for
AC’97 interface

0x0C3-0x0C2 0x00C3-0x00C2 0x00 0xC2

AC97SEN AC’97 Slot
Enable Register
Setup control for
AC’97 interface

0x0C5-0x0C4 0x00C5-0x00C4 0x00 0xC4

AC97SVAL AC’97 Input Slot
Valid
Current status of
valid frame from
AC’97 link

0x0C7-0x0C6 0x00C7-0x00C6 0x00 0xC6

AC97SREQ AC’97 Slot
Request
Current status of
AC’97 slot
requests

0x0C9-0x0C8 0x00C9-0x00C8 0x00 0xC8
ADSP-219x/2192 DSP Hardware Reference B-41

ADSP-2192 Peripheral Device Control Registers
AC�97 Link Control/Status Register (AC97LCTL)

AC�97 Link Status Register (AC97STAT)

The following illustration shows the AC’97 Link Status Register Bit
Definitions

! All the bits in this register reset to zero.

AC97SIF AC’97 External
GPIO Status
Register
GPIO slot 12
interface register

0x0CB-0x0CA 0x00CB-0x00CA 0x00 0xCA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
es

er
ve

d

A
R

P
D

A
G

PE

A
C

W
E

L
K

E
N

B
C

E
N

B
C

O
E

E
Y

E
- B

O
X

A
F

D

A
F

S

A
F

R

SY
E

N

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A
C

R
[2

:0
]

R
es

er
ve

d

R
E

G

SY
N

C

L
C

O
K

B
C

O
K

A
G

I[
2:

0]

B
G

S[
3:

1]

Table B-17. AC’97 Control Registers (Continued)

Register
Name

Description PCI
Address

USB Address DSP
I/O
Page

DSP
I/O
Address
B-42 ADSP-219x/2192 DSP Hardware Reference

ADSP-2192 DSP Peripheral Registers
AC�97 Slot Enable Register (AC97SEN)

The numbers indicated after the bit name (ACSE12, for example) indicate
the relative slot number. Slots are numbered in increasing order (0 first),
while bits are numbered in decreasing order (MSB first).

! The bits in the ACSE register reset to zero.

AC�97 Input Slot Valid Register (AC97SVAL)

The numbers indicated after the bit name (ACSV12, for example) indicate
the relative slot number. Slots are numbered in increasing order (0 first),
and bits are numbered in decreasing order (MSB first).

! The bits in the AC97SVAL register reset to zero.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
es

er
ve

d

A
C

SE
3

A
C

SE
4

A
C

SE
5

A
C

SE
6

A
C

SE
7

A
C

SE
8

A
C

SE
9

A
C

SE
10

A
C

SE
11

A
C

SE
12

R
es

er
ve

d
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A
C

R

A
C

SV
1

A
C

SV
2

A
C

SV
3

A
C

SV
4

A
C

SV
5

A
C

SV
6

A
C

SV
7

A
C

SV
8

A
C

SV
9

A
C

SV
10

A
C

SV
11

A
C

SV
12

R
es

er
ve

d

ADSP-219x/2192 DSP Hardware Reference B-43

ADSP-2192 Peripheral Device Control Registers
AC�97 Slot Request Register (AC97SREQ)

The numbers indicated after the bit name (ACRQ12, for example) indicate
the relative slot number. Slots are numbered in increasing order (0 first),
and bits are numbered in decreasing order (MSB first).

! The bits in the AC97SREQ register reset to zero.

AC�97 GPIO Status Register (AC97SIF)

! The bits in the AC97SIF register reset to zero.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
es

er
ve

d

A
C

R
Q

3

A
C

R
Q

4

A
C

R
Q

5

A
C

R
Q

6

A
C

R
Q

7

A
C

R
Q

8

A
C

R
Q

9

A
C

R
Q

10

A
C

R
Q

11

A
C

R
Q

12

R
es

er
ve

d

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A
G

S1
5

A
G

S1
4

A
G

S1
3

A
G

S1
2

A
G

S1
1

A
G

S1
0

A
G

S9

A
G

S8

A
G

S7

A
G

S6

A
G

S5

A
G

S4

A
G

S3

A
G

S2

A
G

S1

A
G

S0
B-44 ADSP-219x/2192 DSP Hardware Reference

ADSP-2192 DSP Peripheral Registers
 AC�97 Codec Registers
These register spaces are used to access registers in external codecs that are
connected to the AC’97 port. Refer to the standard list provided in docu-
mentation for your codec. The IDs associated with primary, secondary,
and tertiary registers report addressing information available for accessing
the codecs.

AC�97 Codec Register Space-Primary Codec 0
(AC97EXT0) Register

AC�97 Codec Register Space, Secondary Codec 1
(AC97EXT1) Register

Table B-18. AC’97 External Codec Space 0 Registers

Register
Name

Description PCI
Address

USB Address DSP
I/O
Page

DSP I/O
Address

AC97EXT0 AC’97 External
Codec Space 0.

External Primary
Codec 0 Register

0x47F-0x400 0x047F-0x0400 0x04 0x7F-0x00

Table B-19. AC’97 External Codec Space 1 Registers

Register
Name

Description PCI
Address

USB Address DSP
I/O
Page

DSP
I/O
Address

AC97EXT1 AC’97 External
Codec Space 1.

External Second-
ary Codec 1 Reg-
ister

0x57F-0x500 0x057F-0x0500 0x05 0x7F-0x00
ADSP-219x/2192 DSP Hardware Reference B-45

ADSP-2192 Peripheral Device Control Registers
AC�97 Codec Register Space, Secondary Codec 2
(AC97EXT2) Register

PCI DMA Address, Count Registers
The PCI DMA registers described in the following sections refer to the
Address generator block (shown in Figure B-1 on page B-3) for PCI Bus
Mastering. Use these registers to specify general addressing information.

DMA Control Registers

These registers control bus mastering transactions.

PCI DMA Control Registers

All four PCI DMA control registers, listed below, share the same bit struc-
ture and bit descriptions. Refer to “Setting I/O Processor—Host Port
Modes” on page 7-12 for descriptions of the bits in these registers.

• DMA PCI Control/Status - PCI DMA Channel Control (Rx0) Reg-
ister

• DMA PCI Control/Status-Transmit (Tx0)

Table B-20. AC’97 External Codec Space 2 Registers

Register
Name

Description PCI
Address

USB Address DSP
I/O
Page

DSP
I/O
Address

AC97EXT2 AC’97 External
Codec Space 2.

External Second-
ary Codec 2 Reg-
ister

0x67F-0x600 0x067F-0x0600 0x06 0x7F-0x00
B-46 ADSP-219x/2192 DSP Hardware Reference

ADSP-2192 DSP Peripheral Registers
• DMA PCI Control/Status (Rx1)

• DMA PCI Control/Status (Tx1)

! None of the PCI DMA control registers can be reset.

PCI Interrupt, Control Registers
Use the PCI registers to access the PCI DSP interface.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
es

er
ve

d

E
O

L

F
LG

SG
V

L

IN
T

M
O

D
E

L
P

 E
N

SG
D

E
N

Table B-21. PCI Interrupt Control Registers

Register Name Description PCI
Address

USB
Address

DSP
I/O
Page

DSP
I/O
Address

PCI_MSTRCNT0 DMA Transfer
Count0
Bus master sample
transfer count 0.

0x881-0x880 No Access. 0x08 0x80

PCI_MSTRCNT1 DMA Transfer
Count1
Bus master sample
transfer count 1.

0x883-0x882 No Access. 0x08 0x82

PCI_MSTRCTL0 DMA Control0
Bus master control
and status 0.

0x885-0x884 No Access. 0x08 0x84

PCI_MSTRCTL1 DMA Control1
Bus master control
and status 1.

0x887-0x886 No Access. 0x08 0x86
ADSP-219x/2192 DSP Hardware Reference B-47

ADSP-2192 Peripheral Device Control Registers
DMA Transfer Count 0 - Bus Master Sample Transfer
Count (PCI_MSTRCNT0) Register

This 16-bit register contains a count of the number of words to be trans-
ferred between PCI address space and the DSP internal memory.

! All bits in this register reset to 0.

DMA Transfer Count 1 - Bus Master Sample Transfer
Count (PCI_MSTRCNT1) Register

This 16-bit register contains a count of the number of words to be trans-
ferred between PCI address space and the DSP internal memory.

! All bits in this register reset to 0.

PCI_IRQSTAT Interrupt Register
Status bits for all PCI
interrupt sources.

0x889-0x888 No Access. 0x08 0x88

PCI_CFGCTL PCI Control
Includes configura-
tion register
read/write control.

0x88A No Access. 0x08 0x8A

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

W
or

d
C

ou
nt

Table B-21. PCI Interrupt Control Registers (Continued)

Register Name Description PCI
Address

USB
Address

DSP
I/O
Page

DSP
I/O
Address
B-48 ADSP-219x/2192 DSP Hardware Reference

ADSP-2192 DSP Peripheral Registers
DMA Control X - Bus Master Control and Status
(PCI_DMACx) Register

! All bits in this register reset to 0.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

W
or

d
C

ou
nt

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
es

er
ve

d

LO
O

P

H
A

LT

E
M

P
T

Y

FU
N

C
T

IO
N

<2
:0

>

PA
C

K
 D

IS

D
SP

2/
D

SP
1

Fl
us

h
FI

FO

W
R

/R
D

D
M

A
 E

N

Table B-22. PCI_DMACx Register Bit Descriptions

Bit
position

Bit name Description

0 DMA EN DMA Enable.

1 WR/RD DMA Write / Read.

2 Flush FIFO Flush Master FIFO.

3 DSP2/DSP1 Select DSP2 / DSP1.

4 PACK DIS DMA Packing Disable (DWORD Mode).

7:5 FUNCTION
<2:0>

Function Select (0, 1, and 2).
ADSP-219x/2192 DSP Hardware Reference B-49

ADSP-2192 Peripheral Device Control Registers
PCI Interrupt (PCI_IRQSTAT) Register

There are a variety of potential sources of interrupts to the PCI host
besides the bus master DMA interrupts. A single interrupt pin, INTA, is
signals these interrupts back to the host. The PCI Interrupt Register con-
solidates all of the possible interrupt sources; the bits of this register are
shown in Table B-28 on page B-60. The register bits are set by the various
sources and can be cleared by writing a 1 to the bits to be cleared.

Interrupts may be sensitive either to edges or levels, as indicated in
Table B-28. In particular, the PCI GPIO interrupt is level sensitive, and is
asserted when any of the GPIO’s individual sticky status bits is true. If an
interrupt service routine is in the process of acknowledging one GPIO
interrupt (by clearing its sticky status and then writing a 1 to
PCI_IRQSTAT:GPIO) while an event occurs on another GPIO, it is possible
for the ISR to miss the second event, should it occur between the time the
ISR reads the GPIOs’ status and when the ISR clears the
PCI_IRQSTAT:GPIO bit. The GPIO interrupt is level sensitive to accommo-
date this case; the PCI_IRQSTAT:GPIO interrupt bit and the INTA pin
immediately reassert after clearing. The ISR may be written in two ways to
detect this case: it may either exit and be immediately re-triggered, or it
may read back the PCI_IRQSTAT register after the clear to see if any bit has
been set again indicating the occurrence of some new interrupt.

Status bits for all possible PCI interrupt sources (read/write-1-clear).

8 EMPTY DMA FIFO Empty Status (1 = Empty).

9 HALT DMA Channel Halt Status (1 = Halted).

10 LOOP DMA Channel Loop Status (1 = Looping Occurred).

15:11 Reserved

Table B-22. PCI_DMACx Register Bit Descriptions (Continued)

Bit
position

Bit name Description
B-50 ADSP-219x/2192 DSP Hardware Reference

ADSP-2192 DSP Peripheral Registers
! All bits in this register reset to 0.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
es

er
ve

d

T
ar

ge
t

A
bo

rt

M
as

te
r

A
bo

rt

A
C

’9
7

G
P

IO

R
es

er
ve

d

R
es

er
ve

d

M
B

ox
 1

 O
U

T

M
B

ox
 0

 O
U

T

M
B

ox
 1

 I
N

M
B

ox
 0

 I
N

T
X

1
D

M
A

T
X

0
D

M
A

R
X

1
D

M
A

R
X

0
D

M
A

R
es

er
ve

d

Table B-23. PCI_IRQSTAT Register Bit Descriptions

Bit
position

Bit name Description

0 Reserved

1 RX0 DMA Rx0 DMA Channel Interrupt.

Receive Channel 0 Bus Master Transactions

Sensitivity: Edge

2 RX1 DMA Rx1 DMA Channel Interrupt.

Receive Channel 1 Bus Master Transactions

Sensitivity: Edge

3 TX0 DMA Tx0 DMA Channel Interrupt.

Transmit Channel 0 Bus Master Transactions

Sensitivity: Edge

4 Tx1 DMA Tx1 DMA Channel Interrupt.

Transmit Channel 1 Bus Master Transactions

Sensitivity: Edge
ADSP-219x/2192 DSP Hardware Reference B-51

ADSP-2192 Peripheral Device Control Registers
5 MBox 0 IN Incoming Mailbox 0 PCI Interrupt.

PCI to DSP Mailbox 0 Transfer

Sensitivity: Edge

6 MBox 1 IN Incoming Mailbox 1 PCI Interrupt.

PCI to DSP Mailbox 1 Transfer

Sensitivity: Edge

7 MBox 0 OUT Outgoing Mailbox 0 PCI Interrupt.

DSP to PCI Mailbox 0 Transfer

Sensitivity: Edge

8 MBox 1 OUT Outgoing Mailbox 1 PCI Interrupt.

DSP to PCI Mailbox 1 Transfer

Sensitivity: Edge

9 Reserved

10 Reserved Reserved

11 GPIO General-purpose I/O Pin Initiated.

Sensitivity: Level

12 AC’97 AC’97 Interface Initiated.

Sensitivity: Edge

13 Master
Abort

PCI Interface Master Abort Detected.

Sensitivity: Edge

14 Target
Abort

PCI Interface Target Abort Detected.

Sensitivity: Edge

15 Reserved

Table B-23. PCI_IRQSTAT Register Bit Descriptions (Continued)

Bit
position

Bit name Description
B-52 ADSP-219x/2192 DSP Hardware Reference

ADSP-2192 DSP Peripheral Registers
PCI Control (PCI_CFGCTL) Register

! All bits in this register reset to 0.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
es

er
ve

d

T
A

bo
rt

 I
E

N

M
A

bo
rt

 I
E

N

A
C

’9
7

IE
N

G
P

IO
 I

N
E

R
es

er
ve

d

R
es

er
ve

d

D
2P

M
1

IE
N

E

D
2P

M
0

IE
N

P
2D

M
1

IE
N

P
2D

M
0

IE
N

R
es

er
ve

d

C
on

f
R

dy

P
C

IF
1

P
C

IF
0

Table B-24. PCI_CFGCTL Register Bit Descriptions

Bit
position

Bit name Description

1-0 PCIF[1:0] PCI Functions Configured.

00 = One PCI Function enabled

01= Two functions

10= Three functions

2 Conf Rdy Configuration Ready.

When 0, disables PCI accesses to the ADSP-2192 (terminated
with Retry). Must be set to 1 by DSP ROM code after initializing
configuration space.

Once 1, cannot be written to 0.

4:3 Reserved

5 P2DM0 IEN PCI to DSP Mailbox 0 Transfer Interrupt Enabled.

6 P2DM1 IEN PCI to DSP Mailbox 1 Transfer Interrupt Enabled.

7 D2PM0 IEN DSP to PCI Mailbox 0 Transfer Interrupt Enabled.

8 D2PM1 IEN DSP to PCI Mailbox 1 Transfer Interrupt Enabled.
ADSP-219x/2192 DSP Hardware Reference B-53

ADSP-2192 Peripheral Device Control Registers
PCI Configuration Register Space
The ADSP-2192 PCI Interface requires separate configuration space for
each function due to operating system requirements. This section
describes the registers in each function, their reset conditions, and interac-
tion between the functions to access and control the ADSP-2192
hardware.

Commonalities Between the Three Functions

Each function contains a complete set of registers in the predefined header
region, as defined in PCI Local Bus Specification, Revision 2.2. In addi-
tion, each function contains optional registers to support PCI Bus Power
Management. Registers that are unimplemented or read-only in one func-
tion are similarly defined in the other functions.

9 Reserved

10 Reserved Reserved

11 GPIO IEN General-purpose I/O Pin Initiated Interrupt Enabled.

12 AC’97 IEN AC’97 Interface Initiated Interrupt Enabled.

13 MAbort IEN PCI Interface Master Abort Detect Interrupt Enabled.

14 TAbort IEN PCI Interface Target Abort Detect Interrupt Enabled.

15 Reserved

Table B-24. PCI_CFGCTL Register Bit Descriptions (Continued)

Bit
position

Bit name Description
B-54 ADSP-219x/2192 DSP Hardware Reference

ADSP-2192 DSP Peripheral Registers
Each function contains four base address registers that access ADSP-2192
control registers and DSP memory. Base address register (BAR1) accesses
the ADSP-2192 control registers. Accesses to the control registers via
BAR1 use PCI memory accesses. BAR1 requests a memory allocation of
1024 bytes. Access to DSP memory occurs via BAR2 and BAR3. BAR2 is
accesses 24-bit DSP memory (i.e. for DSP program downloading) and
BAR3 accesses 16-bit DSP memory. BAR4 provides I/O space access to
both the control registers and the DSP memory.

The configuration space headers are defined by Function 0 (register infor-
mation shown in Table B-28 on page B-60), Function 1 (register
information shown in Table B-29 on page B-63), and Function 2 (register
information shown in Table B-30 on page B-65).

Each function is defined by writing to the class code register of that func-
tion during bootup. Additionally, during boot time, the DSP will have the
possibility of disabling one or more of the functions. If only two functions
are enabled, they will be functions zero and one. If only one function is
enabled, it will be function zero.

Interactions Between the Three Functions

Because all functions access and control a single set of resources, potential
conflicts occur in the control specified by the configuration. For each of
the potential conflicts, a resolution is proposed. Table B-31 on page B-67
and Table B-32 on page B-70 identify the proposed resolutions (interac-
tions). Table B-31 covers the registers in the predefined header space and
Table B-32 covers the Power Management registers.

Target accesses to registers and DSP memory can go through any func-
tion. As long as the Memory Space access enable bit is set in that function,
then PCI memory accesses whose address matches the locations pro-
grammed into a function’s BARs 1-3 will be able to read or write any
visible register or memory location within the ADSP-2192. Similarly, if
I/O Space access enable is set, then PCI I/O accesses can be performed via
BAR4.
ADSP-219x/2192 DSP Hardware Reference B-55

ADSP-2192 Peripheral Device Control Registers
Within the Power Management section of the configuration blocks, there
are a few interactions. The part will stay in the highest power state
between the three functions. Thus if a modem is requested to be powered
down to state D2, but Function 0 is set for power state D0, the overall chip
will remain in state D0. When one or the other of the functions is in a low
power state, they can only respond to configuration accesses, regardless of
the power state of the other functions. Similarly, when a function transi-
tions from D3hot to D0, that function’s configuration space will be
re-initialized. Each function has a separate PME enable and PME status
bit. Whenever possible, the hardware will identify Function 0 wakeup
from wakeup and set the appropriate PME status. When no determination
is possible, both PME status bits will be set.

PCI Configuration Register Space, Function 0

PCI Configuration Spaces should only be accessed by the DSP, and only
during the boot process. After the PCI interface has been configured, bit 2
of the PCI_CFGCTL register (ConfRdy) should be set by the DSP. This allows
the PCI interface access to these registers while at the same time denying
the DSP access.

! Access to these registers is controlled by the PCI RDY bit in the
Chip Mode/Status Register (Page 0x00, Address 0x00).

Table B-25. Function 0 Registers

Register Name Description PCI
Address

USB
Address

DSP
I/O
Page

DSP
I/O
Address

PCI_CFG0_VID Config0 Vendor
ID

0x01-0x00 n/a 0x09 0x00

PCI_CFG0_DID Config0 Device
ID

0x03-0x02 n/a 0x09 0x02
B-56 ADSP-219x/2192 DSP Hardware Reference

ADSP-2192 DSP Peripheral Registers
PCI_CFG0_CCODEL Config0 Class
Code[7:0],Rev
ID

0x08 n/a 0x09 0x08

PCI_CFG0_CCODEH Config0 Class
Code[23:8]

0x0B-0x0A n/a 0x09 0x0A

PCI_CFG0_SVID Config0 Sub-
system
Vendor ID

0x2D-0x2C n/a 0x09 0x2C

PCI_CFG0_SDID Config0 Sub-
system Device
ID

0x2F-0x2E n/a 0x09 0x2E

PCI_CFG0_PWRMT Config0 Power
Mgt Capabili-
ties.
Bit 15 set if Vaux
is sensed valid.

0x45-0x44 n/a 0x09 0x44

Table B-25. Function 0 Registers (Continued)

Register Name Description PCI
Address

USB
Address

DSP
I/O
Page

DSP
I/O
Address
ADSP-219x/2192 DSP Hardware Reference B-57

ADSP-2192 Peripheral Device Control Registers
PCI Configuration Register Space, Function 1

PCI Configuration Spaces should be accessed only by the DSP, and only
during the boot process. After the PCI interface has been configured, bit 2
of the PCI_CFGCTL register (ConfRdy) should be set by the DSP. This allows
the PCI interface access to these registers while at the same time denying
the DSP access.

! Access to these registers is controlled by the PCI RDY bit in the
Chip Mode/Status Register (Page 0x00, Address 0x00). See
“ADSP-2192 Chip Control Registers” on page B-13.

Table B-26. Function 1 Registers

Register Name Description PCI
Address

USB
Address

DSP
I/O
Page

DSP
I/O
Address

PCI_CFG1_VID Config1 Vendor
ID

0x01-0x00 n/a 0x0A 0x00

PCI_CFG1_DID Config1 Device
ID

0x03-0x02 n/a 0x0A 0x02

PCI_CFG1_CCODEL Config1 Class
Code[7:0], Rev
ID

0x08 n/a 0x0A 0x08

PCI_CFG1_CCODEH Config1 Class
Code[23:8]

0x0B-0x0A n/a 0x0A 0x0A

PCI_CFG1_SVID Config1 Sub-
system Vendor
ID

0x2D-0x2C n/a 0x0A 0x2C

PCI_CFG1_SDID Config1 Sub-
system Device ID

0x2F-0x2E n/a 0x0A 0x2E
B-58 ADSP-219x/2192 DSP Hardware Reference

ADSP-2192 DSP Peripheral Registers
PCI Configuration Register Space, Function 2

PCI Configuration Spaces should be accessed only by the DSP, and only
during the boot process. After the PCI interface has been configured, bit 2
of the PCI_CFGCTL register (ConfRdy) should be set by the DSP. This allows
the PCI interface access to these registers while at the same time denying
the DSP access.

! Access to these registers is controlled by the PCI RDY bit in the PCI
Interrupt Control Register (Page 0x08, Address 0xA2). See
“General-purpose I/O (GPIO) Control Registers” on page B-24.

PCI_CFG1_PWRMT Config1 Power
Mgt Capabilities
Bit 15 set, if
Vaux is sensed
valid.

0x45-0x44 n/a 0x0A 0x44

Table B-27. Function 2 Registers

Register Name Description PCI
Address

USB
Address

DSP
I/O
Page

DSP I/O
Address

PCI_CFG2_VID Config2 Vendor
ID

0x01-0x00 n/a 0x0B 0x00

PCI_CFG2_DID Config2 Device
ID

0x03-0x02 n/a 0x0B 0x02

PCI_CFG2_CCODEL Config2 Class
Code[7:0],Rev
ID

0x08 n/a 0x0B 0x08

Table B-26. Function 1 Registers (Continued)

Register Name Description PCI
Address

USB
Address

DSP
I/O
Page

DSP
I/O
Address
ADSP-219x/2192 DSP Hardware Reference B-59

ADSP-2192 Peripheral Device Control Registers
PCI Configuration Space

Table B-28 on page B-60, Table B-29 on page B-63, and Table B-30 on
page B-65 show the PCI Configuration Space definitions for functions 0,
1, and 2.

PCI_CFG2_CCODEH Config2 Class
Code[23:8]

0x0B-0x0A n/a 0x0B 0x0A

PCI_CFG2_SVID Config2 Sub-
system Vendor
ID

0x2D-0x2C n/a 0x0B 0x2C

PCI_CFG2_SDID Config2 Sub-
system Device
ID

0x2F-0x2E n/a 0x0B 0x2E

PCI_CFG2_PWRMT Config2 Power
Mgt Capabili-
ties.
Bit 15 set if Vaux
is sensed valid.

0x45-0x44 n/a 0x0B 0x44

Table B-28. PCI CONFIG SPACE for Function 0

Address Name Reset Comments

0x01-0x00 Vendor ID 0x11D4 Writable from the DSP during initial-
ization

0x03-0x02 Device ID 0x2192 Writable from the DSP during initial-
ization

Table B-27. Function 2 Registers (Continued)

Register Name Description PCI
Address

USB
Address

DSP
I/O
Page

DSP I/O
Address
B-60 ADSP-219x/2192 DSP Hardware Reference

ADSP-2192 DSP Peripheral Registers
0x05-0x04 Command Register 0x0 Bus Master, Memory Space Capable,
I/O Space Capable

0x07-0x06 Status Register 0x0 Bits enabled: Capabilities List, Fast
B2B, Medium Decode

0x08 Revision ID 0x0 Writable from the DSP during initial-
ization

0x0B-0x09 Class Code 0x078000 Writable from the DSP during initial-
ization

0x0C Cache Line Size 0x0 Read-only

0x0D Latency Timer 0x0

0x0E Header Type 0x80 Multifunction bit set

0x0F BIST 0x0 Unimplemented

0x13-0x10 Base Address 1 0x08 Register Access for all ADSP-2192 Reg-
isters, Prefetchable Memory

0x17-0x14 Base Address 2 0x08 24-bit DSP Memory Access

0x1B-0x18 Base Address 3 0x08 16-bit DSP Memory Access

0x1F-0x1C Base Address 4 0x01 I/O access for control registers and DSP
memory

0x23-0x20 Base Address 5 0x0 Unimplemented

0x27-0x24 Base Address 6 0x0 Unimplemented

0x2B-0x28 Cardbus CIS Pointer 0x1FF03 CIS RAM Pointer - Function 0 (Read
Only).

Table B-28. PCI CONFIG SPACE for Function 0 (Continued)

Address Name Reset Comments
ADSP-219x/2192 DSP Hardware Reference B-61

ADSP-2192 Peripheral Device Control Registers
0x2D-0x2C Subsystem Vendor ID 0x11D4 Writable from the DSP during initial-
ization

0x2F-0x2E Subsystem Device ID 0x2192 Writable from the DSP during initial-
ization

0x33-0x30 Expansion ROM Base
Address

0x0 Unimplemented

0x34 Capabilities Pointer 0x40 Read-only

0x3C Interrupt Line 0x0

0x3D Interrupt Pin 0x1 Uses INTA Pin

0x3E Min_Gnt 0x1 Read-only

0x3F Max_Lat 0x4 Read-only

0x40 Capability ID 0x1 Power Management Capability Identi-
fier

0x41 Next_Cap_Ptr 0x0 Read-only

0x43-0x42 Power Management
Capabilities

0x6C22 Writable from the DSP during initial-
ization

0x45-0x44 Power Management
Control/Status

0x0 Bits 15 and 8 initialized only on
Power-up

Table B-28. PCI CONFIG SPACE for Function 0 (Continued)

Address Name Reset Comments
B-62 ADSP-219x/2192 DSP Hardware Reference

ADSP-2192 DSP Peripheral Registers
Table B-29. PCI Configuration Space for Function 1

Address Name Reset Comments

0x01-0x00 Vendor ID 0x11D4 Writable from the DSP during initial-
ization

0x03-0x02 Device ID 0x219A Writable from the DSP during initial-
ization

0x05-0x04 Command Register 0x0 Bus Master, Memory Space Capable,
I/O Space Capable

0x07-0x06 Status Register 0x0 Bits enabled: Capabilities List, Fast
B2B, Medium Decode

0x08 Revision ID 0x0 Writable from the DSP during initial-
ization

0x0B-0x09 Class Code 0x078000 Writable from the DSP during initial-
ization

0x0C Cache Line Size 0x0 Read-only

0x0D Latency Timer 0x0 Read-only

0x0E Header Type 0x80 Multifunction bit set

0x0F BIST 0x0 Unimplemented

0x13-0x10 Base Address 1 0x08 Register Access for all ADSP-2192 Reg-
isters, Prefetchable Memory

0x17-0x14 Base Address 2 0x08 24-bit DSP Memory Access

0x1B-0x18 Base Address 3 0x08 16-bit DSP Memory Access

0x1F-0x1C Base Address 4 0x01 I/O access for control registers and DSP
memory
ADSP-219x/2192 DSP Hardware Reference B-63

ADSP-2192 Peripheral Device Control Registers
0x23-0x20 Base Address5 0x0 Unimplemented

0x27-0x24 Base Address 6 0x0 Unimplemented

0x2B-0x28 Cardbus CIS Pointer 0x1FE03 CIS RAM Pointer - Function 1 (Read
Only).

0x2D-0x2C Subsystem Vendor ID 0x11D4 Writable from the DSP during
initialization

0x2F-0x2E Subsystem Device ID 0x219A Writable from the DSP during
initialization

0x33-0x30 Expansion ROM Base
Address

0x0 Unimplemented

0x34 Capabilities Pointer 0x40 Read-only

0x3C Interrupt Line 0x0

0x3D Interrupt Pin 0x1 Uses INTA Pin

0x3E Min_Gnt 0x1 Read-only

0x3F Max_Lat 0x4 Read-only

0x40 Capability ID 0x1 Power Management Capability Identi-
fier

0x41 Next_Cap_Ptr 0x0 Read-only

0x43-0x42 Power Management
Capabilities

0x6C22 Writable from the DSP during initial-
ization

0x45-0x44 Power Management
Control/Status

0x0 Bits 15 and 8 initialized only on
power-up.

Table B-29. PCI Configuration Space for Function 1 (Continued)

Address Name Reset Comments
B-64 ADSP-219x/2192 DSP Hardware Reference

ADSP-2192 DSP Peripheral Registers
Table B-30. PCI Configuration Space for Function 2

Address Name Reset Comments

0x01-0x00 Vendor ID 0x11D4 Writable from the DSP during initial-
ization

0x03-0x02 Device ID 0x219E Writable from the DSP during initial-
ization

0x05-0x04 Command Register 0x0 Bus Master, Memory Space Capable,
I/O Space Capable

0x07-0x06 Status Register 0x0 Bits enabled: Capabilities List, Fast
B2B, Medium Decode

0x08 Revision ID 0x0 Writable from the DSP during initial-
ization

0x0B-0x09 Class Code 0x040100 Writable from the DSP during initial-
ization

0x0C Cache Line Size 0x0 Read-only

0x0D Latency Timer 0x0 Read-only

0x0E Header Type 0x80 Multifunction bit set

0x0F BIST 0x0 Unimplemented

0x13-0x10 Base Address 1 0x08 Register Access for all ADSP-2192 Reg-
isters, Prefetchable Memory

0x17-0x14 Base Address 2 0x08 24-bit DSP Memory Access

0x1B-0x18 Base Address 3 0x08 16-bit DSP Memory Access

0x1F-0x1C Base Address 4 0x01 I/O access for control registers and DSP
memory
ADSP-219x/2192 DSP Hardware Reference B-65

ADSP-2192 Peripheral Device Control Registers
0x23-0x20 Base Address 5 0x0 Unimplemented

0x27-0x24 Base Address 5 0x0 Unimplemented

0x2B-0x28 Cardbus CIS Pointer 0x1FD03 CIS RAM Pointer - Function 2 (Read
Only).

0x2D-0x2C Subsystem Vendor ID 0x11D4 Writable from the DSP during initial-
ization

0x2F-0x2E Subsystem Device ID 0x219E Writable from the DSP during initial-
ization

0x33-0x30 Expansion ROM Base
Address

0x0 Unimplemented

0x34 Capabilities Pointer 0x40 Read-only

0x3C Interrupt Line 0x0

0x3D Interrupt Pin 0x1 Uses INTA Pin

0x3E Min_Gnt 0x1 Read-only

0x3F Max_Lat 0x4 Read-only

0x40 Capability ID 0x1 Power Management Capability Identi-
fier

0x41 Next_Cap_Ptr 0x0 Read-only

0x43-0x42 Power Management
Capabilities

0x6C22 Writable from the DSP during initial-
ization

0x45-0x44 Power Management
Control/Status

0x0 Bits 15 and 8 initialized only on
power-up.

Table B-30. PCI Configuration Space for Function 2 (Continued)

Address Name Reset Comments
B-66 ADSP-219x/2192 DSP Hardware Reference

ADSP-2192 DSP Peripheral Registers
Interaction Between Registers

Table B-31 on page B-67 and Table B-32 on page B-70 show the register
interactions between functions.

Table B-31. Configuration Space Register Interactions Between Functions

Name Comments

Vendor ID Separate registers, no interaction

Device ID Separate registers, no interaction

GROUP Description Bit Bit Function

Command
Register Bits

I/O Space Enable 0 Enables are separate in each function
and go along with the function’s base
addresses

Memory Space
Enable

1 Enables are separate in each function
and go along with the function’s base
addresses

Bus Master Enable 2 Enables are separate in each function
and go along with the function’s base
addresses

Special Cycles 3 None of the functions support special
cycles, read-only

Memory Write and
Invalidate

4 No function generates Memory Write
and Invalidate commands, read-only

VGA Palette Snoop 5 Not applicable, read-only

Parity Error Response 6 If any function has the bit set, PERR
may be asserted

Stepping Control 7 No address stepping is done, read-only
ADSP-219x/2192 DSP Hardware Reference B-67

ADSP-2192 Peripheral Device Control Registers
SERR# Enable 8 If any function enables SERR driver,
then SERR may be asserted

Fast Back-to-back
Enable

9 No function generates fast back-to-back
transactions

Status Register
Bits

Capabilities List 4 Read-only

66 MHz Capable 5 Read-only

Reserved 6 Read-only

Fast Back-to-back
Capable

7 Read-only

Master Data Parity
Error

8 Separate for each function, no interac-
tion

DEVSEL Timing 10-9 Read-only

Signaled Target Abort 11 Separate for each function, no interac-
tion

Received Target
Abort

12 Separate for each function, no interac-
tion

Received Master
Abort

13 Separate for each function, no interac-
tion

Signaled System Error 14 Separate for each function, set if SERR
enabled and SERR asserted

Detected Parity Error 15 Separate for each function, but set in all
functions simultaneously

Table B-31. Configuration Space Register Interactions Between Functions
(Continued)

Name Comments
B-68 ADSP-219x/2192 DSP Hardware Reference

ADSP-2192 DSP Peripheral Registers
Revision ID Read-only

Class Code Separate registers, no interaction

Cache Line Size Read-only

Latency Timer Separate for each function, no
interaction

Header Type Read-only

Base Address 1 In range signal ORed between func-
tions, any function can access memory

Base Address 2 In range signal ORed between func-
tions, any function can access memory

Base Address 3 In range signal ORed between func-
tions, any function can access memory

Base Address 4 In range signal ORed between func-
tions, any function can access memory

Subsystem Vendor ID Separate registers, no interaction

Subsystem Device ID Separate registers, no interaction

Capabilities Pointer Read-only

Interrupt Line Separate registers, no interaction

Interrupt Pin Read-only

Min_Gnt Read-only

Max_Lat Read-only

Table B-31. Configuration Space Register Interactions Between Functions
(Continued)

Name Comments
ADSP-219x/2192 DSP Hardware Reference B-69

ADSP-2192 Peripheral Device Control Registers
Table B-32. Power Management Register Interactions Between Functions

Name Comments

Capability ID Read-only

Next_Cap_Ptr Read-only

Power
Management
Capabilities
Bits

Version 2-0 Read-only

PME Clock 3 Read-only

Reserved 4 Read-only

Device Specific Ini-
tialization

5 Read-only

Aux Current 8-6 Read-only by PCI, writable by DSP

D1 Support 9 Read-only

D2 Support 10 Read-only

PME Support 15-11 Read-only by PCI, writable by DSP

Power Manage-
ment Control/
Status Bits

Power State 1-0 Part will be in highest power state of the
three functions

Reserved 7-2 Read-only, no interaction

PME Enable 8 Separate for each function, no interac-
tion

Data Select 12-9 Read-only, no interaction
B-70 ADSP-219x/2192 DSP Hardware Reference

ADSP-2192 DSP Peripheral Registers
USB DSP Registers

Overview

The USB registers control the USB interface, specifically the operation
and configuration of the USB Interface. Most of these registers are accessi-
ble only via the USB Bus, although a subset is accessible to the DSP.

The ADSP-2192 USB allows you to configure and attach a single device
with multiple interfaces and various endpoint configurations. The advan-
tages to this design are:

• Programmable descriptors and class specific command interpreter.
An MCU is supported on board, which allows you to soft download
different configurations and support any number of standard or
class specific commands.

• Eight user defined endpoints are provided. Endpoints can be con-
figured as either BULK, ISO, or INT and can be grouped and assigned
to any interface.

Data Scale 14-13 Read-only, no interaction

PME Status 15 Separate for each function, may be set in
all functions by a wakeup

Table B-32. Power Management Register Interactions Between Functions
 (Continued)

Name Comments
ADSP-219x/2192 DSP Hardware Reference B-71

ADSP-2192 Peripheral Device Control Registers
DSP Register Definitions
For each endpoint, four registers are defined in order to provide a memory
buffer in the DSP. These registers are defined for each endpoint shared by
all interfaces that are defined for a total of 4x8 = 32 registers. These regis-
ters are read/write by the DSP only.

Table B-33. USB DSP Register Definitions

Page Address Name

0x0C 0x00-0x03 DSP Memory Buffer Base Addr EP4

0x0C 0x04-0x05 DSP Memory Buffer Size EP4

0x0C 0x06-0x07 DSP Memory Buffer RD Offset EP4

0x0C 0x08-0x09 DSP Memory Buffer WR Offset EP4

0x0C 0x10-0x13 DSP Memory Buffer Base Addr EP5

0x0C 0x14-0x15 DSP Memory Buffer Size EP5

0x0C 0x16-0x17 DSP Memory Buffer RD Offset EP5

0x0C 0x18-0x19 DSP Memory Buffer WR Offset EP5

0x0C 0x20-0x23 DSP Memory Buffer Base Addr EP6

0x0C 0x24-0x25 DSP Memory Buffer Size EP6

0x0C 0x26-0x27 DSP Memory Buffer RD Offset EP6

0x0C 0x28-0x29 DSP Memory Buffer WR Offset EP6

0x0C 0x30-0x33 DSP Memory Buffer Base Addr EP7

0x0C 0x34-0x35 DSP Memory Buffer Size EP7

0x0C 0x36-0x37 DSP Memory Buffer RD Offset EP7

0x0C 0x38-0x39 DSP Memory Buffer WR Offset EP7

0x0C 0x40-0x43 DSP Memory Buffer Base Addr EP8
B-72 ADSP-219x/2192 DSP Hardware Reference

ADSP-2192 DSP Peripheral Registers
0x0C 0x44-0x45 DSP Memory Buffer Size EP8

0x0C 0x46-0x47 DSP Memory Buffer RD Offset EP8

0x0C 0x48-0x49 DSP Memory Buffer WR Offset EP8

0x0C 0x50-0x53 DSP Memory Buffer Base Addr EP9

0x0C 0x54-0x55 DSP Memory Buffer Size EP9

0x0C 0x56-0x57 DSP Memory Buffer RD Offset EP9

0x0C 0x58-0x59 DSP Memory Buffer WR Offset EP9

0x0C 0x60-0x63 DSP Memory Buffer Base Addr EP10

0x0C 0x64-0x65 DSP Memory Buffer Size EP10

0x0C 0x66-0x67 DSP Memory Buffer RD Offset EP10

0x0C 0x68-0x69 DSP Memory Buffer WR Offset EP10

0x0C 0x70-0x73 DSP Memory Buffer Base Addr EP11

0x0C 0x74-0x75 DSP Memory Buffer Size EP11

0x0C 0x76-0x77 DSP Memory Buffer RD Offset EP11

0x0C 0x78-0x79 DSP Memory Buffer WR Offset EP11

0x0C 0x80-0x81 USB Descriptor Vendor ID

0x0C 0x84-0x85 USB Descriptor Product ID

0x0C 0x86-0x87 USB Descriptor Release Number

0x0C 0x88-0x89 USB Descriptor Device Attributes

Table B-33. USB DSP Register Definitions (Continued)

Page Address Name
ADSP-219x/2192 DSP Hardware Reference B-73

ADSP-2192 Peripheral Device Control Registers
DSP Memory Buffer Base Addr Register

Points to the base address for the DSP memory buffer assigned to this
Endpoint.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 X X X X X X X X X X X X X X DS BA

most significant word

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BA BA BA BA BA BA BA BA BA BA BA BA BA BA BA BA

least significant word

Figure B-2. DSP Memory Buffer Base Addr Register

Table B-34. DSP Memory Buffer Base Addr Register

[DS, BA16:0] Memory Buffer Base Address

DS DSP Memory select bit. 0 = DSP1 memory space, 1 = DSP2 memory space

BA[16:0] Lower 17 address bits
B-74 ADSP-219x/2192 DSP Hardware Reference

ADSP-2192 DSP Peripheral Registers
DSP Memory Buffer Size Register

Indicates the size of the DSP memory buffer assigned to this Endpoint.

DSP Memory Buffer RD Pointer Offset Register

The offset from the base address for the read pointer of the memory buffer
assigned to this Endpoint.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SZ SZ SZ SZ SZ SZ SZ SZ SZ SZ SZ SZ SZ SZ SZ SZ

Figure B-3. DSP Memory Buffer Size Register

Table B-35. DSP Memory Buffer Size Register

SZ[15:0] Memory Buffer Size

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RD RD RD RD RD RD RD RD RD RD RD RD RD RD RD RD

Figure B-4. DSP Memory Buffer RD Pointer Offset Register

Table B-36. DSP Memory Buffer RD Pointer Offset Register

RD[15:0] Memory Buffer RD Offset
ADSP-219x/2192 DSP Hardware Reference B-75

ADSP-2192 Peripheral Device Control Registers
DSP Memory Buffer WR Pointer Offset Register

The offset from the base address for the write pointer of the memory
buffer assigned to this Endpoint.

MCU Register Definitions
MCU registers are defined in four memory spaces that are grouped by the
following address ranges:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WR WR WR WR WR WR WR WR WR WR WR WR WR WR WR WR

Figure B-5. DSP Memory Buffer WR Pointer Offset Register

Table B-37. DSP Memory Buffer WR Pointer Offset Register

WR[15:0] Memory Buffer WR Offset

0x0XXX Defines general-purpose USB status and control registers

0x1XXX Defines registers that are specific to Endpoint setup and control

0x2XXX Defines the registers used for REGIO accesses to the DSP register space

0x3XXX Defines the MCU program memory write address space

Table B-38. USB MCU Register Definitions

Address Name Comment

0x0000-0x0007 USB SETUP Token Cmd 8 bytes total

0x0008-0x000F USB SETUP Token Data 8 bytes total
B-76 ADSP-219x/2192 DSP Hardware Reference

ADSP-2192 DSP Peripheral Registers
0x0010-0x0011 USB SETUP Counter 16 bit counter

0x0012-0x0013 USB Control Misc control including re-attach

0x0014-0x0015 USB Address/Endpoint Address of device/active Endpoint

0x0016-0x0017 USB Frame Number Current frame number

0x1000-0x1001 USB EP4 Description Configures Endpoint

0x1002-0x1003 USB EP4 NAK Counter

0x1004-0x1005 USB EP5 Description Configures Endpoint

0x1006-0x1007 USB EP5 NAK Counter

0x1008-0x1009 USB EP6 Description Configures Endpoint

0x100A-0x100B USB EP6 NAK Counter

0x100C-0x100D USB EP7 Description Configures Endpoint

0x100E-0x100F USB EP7 NAK Counter

0x1010-0x1011 USB EP8 Description Configures Endpoint

0x1012-0x1013 USB EP8 NAK Counter

0x1014-0x1015 USB EP8 Description Configures Endpoint

0x1016-0x1017 USB EP9 NAK Counter

0x1018-0x1019 USB EP10 Description Configures Endpoint

0x101A-0x101B USB EP10 NAK Counter

Table B-38. USB MCU Register Definitions (Continued)

Address Name Comment
ADSP-219x/2192 DSP Hardware Reference B-77

ADSP-2192 Peripheral Device Control Registers
0x101C-0x101D USB EP11 Description Configures Endpoint

0x101E-0x101F USB EP11 NAK Counter

0x1020-0x1021 USB EP STALL Policy

0x1040-0x1043 USB EP1 Code Download
Base Address

Starting address for code download on End-
point 1

0x1044-0x1047 USB EP2 Code Download
Base Address

Starting address for code download on End-
point 2

0x1048-0x104B USB EP3 Code Download
Base Address

Starting address for code download on End-
point 3

0x1060-0x1063 USB EP1 Code Current
Write Pointer Offset

Current write pointer offset for code down-
load on Endpoint 1

0x1064-0x1067 USB EP2 Code Current
Write Pointer Offset

Current write pointer offset for code down-
load on Endpoint 2

0x1068-0x106B USB EP3 Code Current
Write Pointer Offset

Current write pointer offset for code down-
load on Endpoint 3

0x2000-0x2001 USB Register I/O Address

0x2002-0x2003 USB Register I/O Data

0x3000-0x3FFF USB MCU Program Mem

Table B-38. USB MCU Register Definitions (Continued)

Address Name Comment
B-78 ADSP-219x/2192 DSP Hardware Reference

ADSP-2192 DSP Peripheral Registers
USB Endpoint Description Register

Provides the USB core with information about the Endpoint type, direc-
tion, and maximum packet size. This register is read/write by the MCU
only. This register is defined for Endpoints[4:11].

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TB LT LT TY TY DR PS PS PS PS PS PS PS PS PS PS

Figure B-6. USB Endpoint Description Register

Table B-39. USB Endpoint Description Register

PS[9:0] Maximum packet size for Endpoint

LT[1:0] Last transaction handshake indicator bits sent by the ADSP-2192:
00 = Clear 01 = ACK 10 = NAK 11 = ERR

TY[1:0] Endpoint type bits:
00 = DISABLED 01 = ISO 10 = Bulk 11 = Interrupt

DR Endpoint direction bit:
1 = IN 0 = OUT

TB Toggle bit for Endpoint. Reflects the current state of the DATA toggle bit.
ADSP-219x/2192 DSP Hardware Reference B-79

ADSP-2192 Peripheral Device Control Registers
USB Endpoint NAK Counter Register

Contains the individual NAK count, stall control, and NAK counter enable
bits for Endpoints 4-11. This register is read/write by the MCU only.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X X X X X NE ST NC NC NC NC

Figure B-7. USB Endpoint NAK Counter Register

Table B-40. USB Endpoint NAK Counter Register

NC[3:0] NAK counter. Number of sequential NAKs that have occurred on a given Endpoint.
When N[3:0] is equal to the base NAK counter NK[3:0] value in the Endpoint Stall
Policy register, a zero-length packet or packet less than maxpacketsize will be issued.

ST A value of 1 means: Endpoint is stalled

NE 1 = Enable NAK counter 0 = Disable NAK counter
B-80 ADSP-219x/2192 DSP Hardware Reference

ADSP-2192 DSP Peripheral Registers
USB Endpoint Stall Policy Register

Contains the base NAK count and FIFO error policy bits for Endpoints
4-11. The STALL status and Data toggle bits for Endpoints 1-3 are
included as well. This register is read/write by the MCU only.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NK NK NK NK X X X X X TB3 TB2 TB1 ST3 ST2 ST1 FE

Figure B-8. USB Endpoint Stall Policy Register

Table B-41. USB Endpoint Stall Policy Register

ST[3:1] A value of 1 means the Endpoint is stalled. ST[1] maps to Endpoint 1, ST[2] maps
to Endpoint 2, etc.

TB[3:1] Toggle bit for Endpoint. Reflects the current state of the DATA toggle bit. ST[1]
maps to Endpoint 1, ST[2] maps to Endpoint 2, etc.

NK[3:0] Base NAK counter. Determines how many sequential NAKs are issued before send-
ing zero length packet, or a packet less than the maximum packet size, on any given
Endpoint.

FE FIFO error policy. A value of 1 means: Endpoint FIFO is overrun/underrun, STALL
Endpoint
ADSP-219x/2192 DSP Hardware Reference B-81

ADSP-2192 Peripheral Device Control Registers
USB Endpoint 1 Code Download Base Address
Register

Contains an 18 bit address which corresponds to the starting location for
DSP code download on Endpoint 1. This register is read/write by the
MCU only. The most significant bit (DS bit) selects either DSP1 PM
address space (DS=0) or DSP2 PM address space (DS=1).

LSW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AD AD AD AD AD AD AD AD AD AD AD AD AD AD AD AD

MSW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X X X X X X X X X DS AD

Figure B-9. USB Endpoint 1 Code Download Base Address Register
B-82 ADSP-219x/2192 DSP Hardware Reference

ADSP-2192 DSP Peripheral Registers
USB Endpoint 2 Code Download Base Address
Register

Contains an 18 bit address which corresponds to the starting location for
DSP code download on Endpoint 2. This register is read/write by the
MCU only. The most significant bit (DS bit) selects either DSP1 PM
address space (DS=0) or DSP2 PM address space (DS=1).

LSW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AD AD AD AD AD AD AD AD AD AD AD AD AD AD AD AD

MSW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X X X X X X X X X DS AD

Figure B-10. USB Endpoint 2 Code Download Base Address Register
ADSP-219x/2192 DSP Hardware Reference B-83

ADSP-2192 Peripheral Device Control Registers
USB Endpoint 3 Code Download Base Address
Register

Contains an 18 bit address which corresponds to the starting location for
DSP code download on Endpoint 3. This register is read/write by the
MCU only. The most significant bit (DS bit) selects either DSP1 PM
address space (DS=0) or DSP2 PM address space (DS=1).

LSW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AD AD AD AD AD AD AD AD AD AD AD AD AD AD AD AD

MSW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X X X X X X X X X DS AD

Figure B-11. USB Endpoint 3 Code Download Base Address Register
B-84 ADSP-219x/2192 DSP Hardware Reference

ADSP-2192 DSP Peripheral Registers
USB Endpoint 1 Code Download Current Write
Pointer Offset Register

Contains an 18 bit address which corresponds to the current write pointer
offset from the base address register for DSP code download on Endpoint
1. The sum of this register and the EP1 code download base address regis-
ter represents the last DSP PM location written.

This register is read by the MCU only and is cleared to 3FFFF (-1) when
the Endpoint 1 Code Download Base Address Register is updated.

LSW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AD AD AD AD AD AD AD AD AD AD AD AD AD AD AD AD

MSW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X X X X X X X X X AD AD

Figure B-12. USB Endpoint 1 Code Download Current Write Pointer
Offset Register
ADSP-219x/2192 DSP Hardware Reference B-85

ADSP-2192 Peripheral Device Control Registers
USB Endpoint 2 Code Download Current Write
Pointer Offset Register

Contains an 18 bit address which corresponds to the current write pointer
offset from the base address register for DSP code download on Endpoint
2. The sum of this register and the EP2 code download base address regis-
ter represents the last DSP PM location written.

This register is read by the MCU only and is cleared to 3FFFF (-1) when
the Endpoint 2 Code Download Base Address Register is updated.

LSW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AD AD AD AD AD AD AD AD AD AD AD AD AD AD AD AD

MSW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X X X X X X X X X AD AD

Figure B-13. USB Endpoint 2 Code Download Current Write Pointer
Offset Register
B-86 ADSP-219x/2192 DSP Hardware Reference

ADSP-2192 DSP Peripheral Registers
USB Endpoint 3 Code Download Current Write
Pointer Offset Register

Contains an 18 bit address which corresponds to the current write pointer
offset from the base address register for DSP code download on Endpoint
3. The sum of this register and the EP3 code download base address regis-
ter represents the last DSP PM location written.

This register is read by the MCU only and is cleared to 3FFFF (-1) when
the Endpoint 3 Code Download Base Address Register is updated.

LSW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AD AD AD AD AD AD AD AD AD AD AD AD AD AD AD AD

MSW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X X X X X X X X X AD AD

Figure B-14. USB Endpoint 3 Code Download Current Write Pointer
Offset Register
ADSP-219x/2192 DSP Hardware Reference B-87

ADSP-2192 Peripheral Device Control Registers
USB SETUP Token Command Register
This register is defined as eight bytes long and contains the data sent on
the USB from the most recent SETUP transaction. This register is read by
the MCU only.

Table B-42. USB SETUP Token Command Register

Byte 7 0

0 bmRequest

1 b Request

2 w Value (L)

3 w Value (H)

4 w Index (L)

5 w Index (H)

6 w Length (L)

7 w Length(H)
B-88 ADSP-219x/2192 DSP Hardware Reference

ADSP-2192 DSP Peripheral Registers
USB SETUP Token Data Register
If the most recent SETUP transaction involves a data OUT stage, the USB
SETUP Token Data Register is defined as eight bytes long and contains
the data sent on the USB during the data stage. This is also where the
MCU will write data to be sent in response to a SETUP transaction involv-
ing a data IN stage. This register is read/write by the MCU only.

Table B-43. USB SETUP Token Data Register

Byte 7 0

0 Data 0

1 Data 1

2 Data 2

3 Data 3

4 Data 4

5 Data 5

6 Data 6

7 Data 7
ADSP-219x/2192 DSP Hardware Reference B-89

ADSP-2192 Peripheral Device Control Registers
USB SETUP Counter Register

Provides information as to the total size of the SETUP transaction data
stage. This register is read/write by the MCU only.

The counter hardware is a modulo 4 bit down counter used for tallying
data bytes in both the IN and OUT data stages of SETUP transactions. As
such, the count value stored has different meanings.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X X X X X X X C3 C2 C1 C0

Figure B-15. USB SETUP Counter Register

C[3:0] Counter bits.

IN Transfers: The MCU loads the counter with the number of bytes to transfer (must be 8
or less since the USB Setup Token Data Register file is 8 bytes maximum).
The USB interface then decrements the count value after each byte is trans-
ferred to the host.

OUT Transfers: Starting from a cleared value of 0, the counter is decremented with each byte
received from the host, including the two CRC bytes. For example, if 8 bytes
are received, the count value progresses from 15, 14, 13, etc. to a value of 6
(inclusive is the 2 CRC bytes). The MCU reads the value and subtracts it
from 14 to determine the actual number of data bytes in the USB Setup
Token Register file (14 - 6 = 8 bytes).
B-90 ADSP-219x/2192 DSP Hardware Reference

ADSP-2192 DSP Peripheral Registers
USB Register I/O Address Register

Contains the address of the ADSP-2192 register that is to be read/written.
This register is read/write by the MCU only.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

Figure B-16. USB Register I/O Address Register

Table B-44. USB Register I/O Address Register

A[15] MCU sets to 1 to notify the PDC Register Interface block to start ADSP-2192
read/write cycle. PDC Register Interface block clears to 0 to notify MCU the
read/write cycle has completed.

A[14] 1 = WRITE, 0 = READ

A[13:0] ADSP-2192 address to read/write
ADSP-219x/2192 DSP Hardware Reference B-91

ADSP-2192 Peripheral Device Control Registers
USB Register I/O Data Register

Contains the data of the ADSP-2192 register which has been read or is to
be written. This register is read/write by the MCU only.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Figure B-17. USB Register I/O Data Register

Table B-45. USB Register I/O Data Register

D[15:0] During READ this register contains the data read from the ADSP-2192, during
WRITE this register is the data to be written to the ADSP-2192
B-92 ADSP-219x/2192 DSP Hardware Reference

ADSP-2192 DSP Peripheral Registers
USB Control Register

Controls various USB functions. This register is read/write by the MCU
only.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

INT ISE IIN IOU BY X X ER X X X X RW MO BB DI

Figure B-18. USB Control Register

Table B-46. USB Control Register

MO A value of 1 means: MCU has completed boot sequence and is ready to respond to
USB commands

DI A value of 1 means: Disconnect CONFIG device and enumerate again using the
downloaded MCU configuration

BB A value of 1 means: After reset boot from MCU RAM, 0 = after reset boot from
MCU ROM

RW A value of 1 means: Enables remote wake-up capability, 0 = disables remote wake-up
capability

INT Active interrupt for the 8051 MCU

ISE Current interrupt is for a SETUP token

IIN Current interrupt is for an IN token sent with a non zero length data stage

IOU Current interrupt is for an OUT token received with a non zero length data stage

BY Busy bit. A value of 1 means: MCU is busy processing a command. USB interface
responds with NAK to further IN/OUT requests from the host until MCU clears this
bit.

ER Error in the current SETUP transaction. Generate STALL condition on EP0.
ADSP-219x/2192 DSP Hardware Reference B-93

ADSP-2192 Peripheral Device Control Registers
USB Address/Endpoint Register

Contains the USB address and active Endpoint. This register is read/write
by the MCU only.

USB Frame Number Register

Contains the last USB frame number. This register is read by the MCU
only.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X EP3 EP2 EP1 EP0 A6 A5 A4 A3 A2 A1 A0

Figure B-19. USB Address/Endpoint Register

Table B-47. USB Address/Endpoint Register

A[6:0] USB address assigned to device

EP[3:0] USB last active Endpoint

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X FN1 FN9 FN8 FN7 FN6 FN5 FN4 FN3 FN2 FN1 FN1 FN0

Figure B-20. USB Frame Number Register

Table B-48. USB Frame Number Register

FN[10:0] USB frame number
B-94 ADSP-219x/2192 DSP Hardware Reference

ADSP-2192 DSP Peripheral Registers
Register and Bit #Defines File
The following example definitions file is for the ADSP-2192 DSP. For the
most current definitions file, programs should use the version of this file
that comes with the software development tools. The version of the file
that appears here is included as a guide only.

/*

def2192-12.h - SYSTEM REGISTER BIT & ADDRESS DEFINITIONS FOR
ADSP-2192-12 DSP

Copyright (c) 2001 Analog Devices, Inc., All rights reserved

The def2192-12.h file defines ALL ADSP-2192-12 DSP symbolic
names.

*/
#ifndef __DEF2192_12_H_
#define __DEF2192_12_H_

// Begin with a 219x CORE
#include <def219x.h>

//---
// System Register bit definitions
//---

//**
// IRPTL and IMASK registers
//**

// Bit Positions
#define INT_MAILBXI_P 4 // Bit 4: Offset: 10: Mailbox
#define INT_TMZHI_P 5 // Bit 5: Offset: 14: Timer (High
Priority)
#define INT_INT6_P 6 // Bit 6: Offset: 18: Unused
#define INT_PCIBMI_P 7 // Bit 7: Offset: 1c: PCI
#define INT_DSPDSPI_P 8 // Bit 8: Offset: 20: DSP
#define INT_FIFO0TXI_P 9 // Bit 9: Offset: 24: FIFO 0 Transmit
Empty
ADSP-219x/2192 DSP Hardware Reference B-95

Register and Bit #Defines File
#define INT_FIFO0RXI_P 10 // Bit 10: Offset: 28: FIFO 0 Receive
Full
#define INT_FIFO1TXI_P 11 // Bit 11: Offset: 2c: FIFO 1
Transmit Empty
#define INT_FIFO1RXI_P 12 // Bit 12: Offset: 30: FIFO 1 Receive
Full
#define INT_INT13_P 13 // Bit 13: Offset: 34: Unused
#define INT_INT14_P 14 // Bit 14: Offset: 38: Unused
#define INT_AC97FR_P 15 // Bit 15: Offset: 3c: AC97 serial port

// Bit Masks
#define INT_MAILBXI MK_BMSK_(INT_MAILBXI_P) // Offset: 10:
Mailbox
#define INT_TMZHI MK_BMSK_(INT_TMZHI_P) // Offset: 14: Timer
 // (High Priority)
#define INT_INT6 MK_BMSK_(INT_INT6_P) // Offset: 18: Unused
#define INT_PCIBMI MK_BMSK_(INT_PCIBMI_P) // Offset: 1c: PCI
#define INT_DSPDSPI MK_BMSK_(INT_DSPDSPI_P) // Offset: 20: DSP
#define INT_FIFO0TXI MK_BMSK_(INT_FIFO0TXI_P) // Offset: 24:
 // FIFO 0 Transmit Empty
#define INT_FIFO0RXI MK_BMSK_(INT_FIFO0RXI_P) // Offset: 28:
 // FIFO 0 Receive Full
#define INT_FIFO1TXI MK_BMSK_(INT_FIFO1TXI_P) // Offset: 2c:
 // FIFO 1 Transmit Empty
#define INT_FIFO1RXI MK_BMSK_(INT_FIFO1RXI_P) // Offset: 30:
 // FIFO 1 Receive Full
#define INT_INT13 MK_BMSK_(INT_INT13_P) // Offset: 34: Unused
#define INT_INT14 MK_BMSK_(INT_INT14_P) // Offset: 38: Unused
#define INT_AC97FR MK_BMSK_(INT_AC97FR_P) // Offset: 3c: AC97
serial port

//**
// SRCTLx and STCTLx registers
//**

// Bit Positions
#define SCTL_SPEN_P 0 // AC'97 FIFO
Connection Enable
#define SCTL_SSEL3_P 7 // AC'97 Slot Select
#define SCTL_SSEL2_P 6 // AC'97 Slot Select
#define SCTL_SSEL1_P 5 // AC'97 Slot Select
#define SCTL_SSEL0_P 4 // AC'97 Slot Select
#define SCTL_FIP2_P 10 // AC'97 FIFO
Interrupt Position
B-96 ADSP-219x/2192 DSP Hardware Reference

ADSP-2192 DSP Peripheral Registers
#define SCTL_FIP1_P 9 // AC'97 FIFO
Interrupt Position
#define SCTL_FIP0_P 8 // AC'97 FIFO
Interrupt Position
#define SCTL_SDEN_P 11 // AC'97 Port
DMA Enable
#define SCTL_FULL_P 13 // FIFO Full,
(read-only)
#define SCTL_EMPTY_P 14 // FIFO Empty,
(read-only)
#define SCTL_FLOW_P 15 // FIFO
Over/Underflow, sticky, write-one-clear)

// Bit Masks
#define SCTL_SPEN MK_BMSK_(SCTL_SPEN_P) // AC'97 FIFO
Connection Enable
#define SCTL_SSEL3 MK_BMSK_(SCTL_SSEL3_P) // AC'97 Slot Select
#define SCTL_SSEL2 MK_BMSK_(SCTL_SSEL2_P) // AC'97 Slot Select
#define SCTL_SSEL1 MK_BMSK_(SCTL_SSEL1_P) // AC'97 Slot Select
#define SCTL_SSEL0 MK_BMSK_(SCTL_SSEL0_P) // AC'97 Slot Select
#define SCTL_FIP2 MK_BMSK_(SCTL_FIP2_P) // AC'97 FIFO
Interrupt Position
#define SCTL_FIP1 MK_BMSK_(SCTL_FIP1_P) // AC'97 FIFO
Interrupt Position
#define SCTL_FIP0 MK_BMSK_(SCTL_FIP0_P) // AC'97 FIFO
Interrupt Position
#define SCTL_SDEN MK_BMSK_(SCTL_SDEN_P) // AC'97 Port DMA
Enable
#define SCTL_FULL MK_BMSK_(SCTL_FULL_P) // FIFO Full,
read-only
#define SCTL_EMPTY MK_BMSK_(SCTL_EMPTY_P) // FIFO Empty,
read-only
#define SCTL_FLOW MK_BMSK_(SCTL_FLOW_P) // FIFO
Over/Underflow, sticky,
 // write-one-clear

//---

// I/O Processor Register Map
//---

// Chip Control Registers (DSP IOPAGE=0x00)
ADSP-219x/2192 DSP Hardware Reference B-97

Register and Bit #Defines File
#define SYSCON 0x00 // Chip Mode/Status Register
#define PWRCFG0 0x02 // Function 0 Power Management
#define PWRCFG1 0x04 // Function 1 Power Management
#define PWRCFG2 0x06 // Function 2 Power Management
#define PWRP0 0x08 // DSP 0 Interrupt/Power down
#define PWRP1 0x0A // DSP 1 Interrupt/Power down
#define PLLCTL 0x0C // DSP PLL Control
#define REVID 0x0E // ADSP-2192 Revision ID (read only)

//**
// SYSCON register
//**

// Bit Positions
#define SCON_PCIRST_P 15 // PCI Reset
#define SCON_VAUX_P 14 // Vaux Present
#define SCON_PCI_5V_P 13 // PCI 5V level
#define SCON_BUS1_P 11 // Bus Mode
#define SCON_BUS0_P 10 // Bus Mode
#define SCON_CRST1_P 9 // Chip Reset Source
#define SCON_CRST0_P 8 // Chip Reset Source
#define SCON_REGD_P 7 // 2.5V Regulator Control Disable
#define SCON_VXPD_P 6 // Vaux Policy for AC'97 Pad Drivers
#define SCON_VXPW_P 5 // Vaux Policy for AC'97 Pad Well Bias
#define SCON_ACVX_P 4 // AC'97 External Devices Vaux Powered
#define SCON_XON_P 3 // XTAL Force On
#define SCON_RDIS_P 2 // Reset Disable
#define SCON_RST_P 0 // Soft Chip Reset

// Bit Masks
#define SCON_PCIRST MK_BMSK_(SCON_PCIRST_P) // PCI Reset
#define SCON_VAUX MK_BMSK_(SCON_VAUX_P) // Vaux Present
#define SCON_PCI_5V MK_BMSK_(SCON_PCI_5V_P) // PCI 5V level
#define SCON_BUS1 MK_BMSK_(SCON_BUS1_P) // Bus Mode
#define SCON_BUS0 MK_BMSK_(SCON_BUS0_P) // Bus Mode
#define SCON_CRST1 MK_BMSK_(SCON_CRST1_P) // Chip Reset
Source
#define SCON_CRST0 MK_BMSK_(SCON_CRST0_P) // Chip Reset
Source
#define SCON_REGD MK_BMSK_(SCON_REGD_P) // 2.5V Regulator
 // Control Disable
#define SCON_VXPD MK_BMSK_(SCON_VXPD_P) // Vaux Policy for
AC'97
 // Pad Drivers
B-98 ADSP-219x/2192 DSP Hardware Reference

ADSP-2192 DSP Peripheral Registers
#define SCON_VXPW MK_BMSK_(SCON_VXPW_P) // Vaux Policy for
AC'97
 // Pad Well Bias
#define SCON_ACVX MK_BMSK_(SCON_ACVX_P) // AC'97 External
Devices
 // Vaux Powered
#define SCON_XON MK_BMSK_(SCON_XON_P) // XTAL Force On
#define SCON_RDIS MK_BMSK_(SCON_RDIS_P) // Reset Disable
#define SCON_RST MK_BMSK_(SCON_RST_P) // Soft Chip Reset

//**
// PWRPx register
//**

// Bit Positions
#define PWRP_AINT_P 13 // DSP Interrupt Pending from AC'97
Input
#define PWRP_PMINT_P 12 // Power Management Interrupt Pending
#define PWRP_GIEN_P 10 // DSP Interrupt Enable for GPIO Input
#define PWRP_GWE_P 6 // DSP Wake up on GPIO Input Enable
#define PWRP_PMWE_P 4 // Power Management Wake up Enable
#define PWRP_RSTD_P 2 // DSP Soft Reset
#define PWRP_PU_P 1 // DSP Power Up
#define PWRP_PD_P 0 // DSP Power Down

// Bit Masks
#define PWRP_AINT MK_BMSK_(PWRP_AINT_P) // DSP Interrupt
Pending
 // from AC'97 Input
#define PWRP_PMINT MK_BMSK_(PWRP_PMINT_P) // Power
Management
 // Interrupt Pending
#define PWRP_GIEN MK_BMSK_(PWRP_GIEN_P) // DSP Interrupt
Enable
 // for GPIO Input
#define PWRP_GWE MK_BMSK_(PWRP_GWE_P) // DSP Wake up
on GPIO
 // Input Enable
#define PWRP_PMWE MK_BMSK_(PWRP_PMWE_P) // Power
Management
 // Wake up Enable
#define PWRP_RSTD MK_BMSK_(PWRP_RSTD_P) // DSP Soft Reset
#define PWRP_PU MK_BMSK_(PWRP_PU_P) // DSP Power Up
#define PWRP_PD MK_BMSK_(PWRP_PD_P) // DSP Power Down
ADSP-219x/2192 DSP Hardware Reference B-99

Register and Bit #Defines File
//**
// PLLCTL register
//**

// Bit Positions
#define PLLC_DPLLN1_P 11 // DSP PLL N
Divisor Selects
#define PLLC_DPLLN0_P 10 // DSP PLL N
Divisor Selects
#define PLLC_DPLLK1_P 9 // DSP PLL K
Divisor Selects
#define PLLC_DPLLK0_P 8 // DSP PLL K
Divisor Selects
#define PLLC_DPLLM3_P 7 // DSP PLL M
Divisor Selects
#define PLLC_DPLLM2_P 6 // DSP PLL M
Divisor Selects
#define PLLC_DPLLM1_P 5 // DSP PLL M
Divisor Selects
#define PLLC_DPLLM0_P 4 // DSP PLL M
Divisor Selects
#define PLLC_DADJ_P 0 // DSP PLL Adjust

// Bit Masks
#define PLLC_DPLLN1 MK_BMSK_(PLLC_DPLLN1_P) // DSP PLL N
Divisor Selects
#define PLLC_DPLLN0 MK_BMSK_(PLLC_DPLLN0_P) // DSP PLL N
Divisor Selects
#define PLLC_DPLLK1 MK_BMSK_(PLLC_DPLLK1_P) // DSP PLL K
Divisor Selects
#define PLLC_DPLLK0 MK_BMSK_(PLLC_DPLLK0_P) // DSP PLL K
Divisor Selects
#define PLLC_DPLLM3 MK_BMSK_(PLLC_DPLLM3_P) // DSP PLL M
Divisor Selects
#define PLLC_DPLLM2 MK_BMSK_(PLLC_DPLLM2_P) // DSP PLL M
Divisor Selects
#define PLLC_DPLLM1 MK_BMSK_(PLLC_DPLLM1_P) // DSP PLL M
Divisor Selects
#define PLLC_DPLLM0 MK_BMSK_(PLLC_DPLLM0_P) // DSP PLL M
Divisor Selects
#define PLLC_DADJ MK_BMSK_(PLLC_DADJ_P) // DSP PLL Adjust

//**
B-100 ADSP-219x/2192 DSP Hardware Reference

ADSP-2192 DSP Peripheral Registers
// PWRCFGx register
//**

// Bit Positions
#define PWRC_SPME_P 14 // Power Management Event Set
#define PWRC_GPME_P 6 // GPIO Power Management Event Enable
#define PWRC_PWRST1_P 1 // PCI Function Power State
#define PWRC_PWRST0_P 0 // PCI Function Power State

// Bit Masks
#define PWRC_SPME MK_BMSK_(PWRC_SPME_P) // DSP PLL N Divisor
Selects
#define PWRC_GPME MK_BMSK_(PWRC_GPME_P) // DSP PLL N Divisor
Selects
#define PWRC_PWRST1 MK_BMSK_(PWRC_PWRST1_P) // DSP PLL K
Divisor Selects
#define PWRC_PWRST0 MK_BMSK_(PWRC_PWRST0_P) // DSP PLL K
Divisor Selects

//---

// System Register address definitions
//---

#define DMAPAGE 0x0C // DMA Page Register

#define STCTL0 0x10 // FIFO0 Transmit Control Register
#define SRCTL0 0x11 // FIFO0 Receive Control Register
#define TX0 0x12 // FIFO0 Transmit Data (TX) register
#define RX0 0x13 // FIFO0 Receive Data (RX) register

#define STCTL1 0x20 // FIFO1 Transmit Control Register
#define SRCTL1 0x21 // FIFO1 Receive Control Register
#define TX1 0x22 // FIFO1 Transmit Data (TX) register
#define RX1 0x23 // FIFO1 Receive Data (RX) register

#define TPERIOD 0x30 // Timer Period Register
#define TCOUNT 0x31 // Timer Counter Register
#define TSCALE 0x32 // Timer Scaling Register
#define TSCALECNT 0x33 // Timer Scale Count Register

#define FLAGS 0x34 // Flags Register
ADSP-219x/2192 DSP Hardware Reference B-101

Register and Bit #Defines File
#define MASTADDR 0x44 // DMA Address, DSP Master DMA
#define MASTNXTADDR 0x45 // DMA Next Address, DSP Master DMA
#define MASTCNT 0x46 // DMA Count, DSP Master DMA
#define MASTCURCNT 0x47 // DMA Current Count, DSP Master DMA

#define TX0ADDR 0x48 // DMA Address, Fifo0 Transmit
#define TX0NXTADDR 0x49 // DMA Next Address, Fifo0 Transmit
#define TX0CNT 0x4A // DMA Count, Fifo0 Transmit
#define TX0CURCNT 0x4B // DMA Current Count, Fifo0 Transmit

#define RX0ADDR 0x4C // DMA Address, Fifo0 Receive
#define RX0NXTADDR 0x4D // DMA Next Address, Fifo0 Receive
#define RX0CNT 0x4E // DMA Count, Fifo0 Receive
#define RX0CURCNT 0x4F // DMA Current Count, Fifo0 Receive

#define TX1ADDR 0x50 // DMA Address, Fifo1 Transmit
#define TX1NXTADDR 0x51 // DMA Next Address, Fifo1 Transmit
#define TX1CNT 0x52 // DMA Count, Fifo1 Transmit
#define TX1CURCNT 0x53 // DMA Current Count, Fifo1 Transmit

#define RX1ADDR 0x54 // DMA Address, Fifo1 Receive
#define RX1NXTADDR 0x55 // DMA Next Address, Fifo1 Receive
#define RX1CNT 0x56 // DMA Count, Fifo1 Receive
#define RX1CURCNT 0x57 // DMA Current Count, Fifo1 Receive

// GPIO Control Registers (DSP IOPAGE=0x00)
#define GPIOCFG 0x10 // PIO Config Direction Control (1 = in,
0 = out)
#define GPIOPOL 0x12 // GPIO Polarity
 //(Inputs: 0 = active hi, 1 = active lo;
 //Outputs: 0 = CMOS, 1 = Open Drain)
#define GPIOSTKY 0x14 // GPIO Sticky: 1 = sticky, 0 = not sticky
#define GPIOWAKECTL 0x16 // GPIO Wake Control
 // 1 = wake-up enabled (requires sticky set)
#define GPIOSTAT 0x18 //GPIO Status (Read = Pin state;
 // Write: 0 = clear sticky status, 1 = no effect)
#define GPIOCTL 0x1A // GPIO Control(w), Init(r)
 //(Read = Power-on state; Write : Set state of output pins)
#define GPIOPUP 0x1C // GPIO Pull-up Pull-up enable (if
input):
 // 1 = enable, 0 = hi-Z
#define GPIOPDN 0x1E // GPIO Pull-down Pull-down enable (if
input):
 //1 = enable, 0 = hiZ
B-102 ADSP-219x/2192 DSP Hardware Reference

ADSP-2192 DSP Peripheral Registers
// PCI/USB Mailbox Registers (DSP IOPAGE=0x00)
#define MBXSTAT 0x20 // Mailbox Status Mailbox Status
#define MBXCTL 0x22 // Mailbox Control Mailbox
Interrupt Control
#define MBX_IN0 0x24 // Incoming Mailbox 0 PCI/USB
to DSP mailbox
#define MBX_IN1 0x26 // Incoming Mailbox 1 PCI/USB
to DSP mailbox
#define MBX_OUT0 0x28 // Outgoing Mailbox 0 DSP to
PCI/USB mailbox
#define MBX_OUT1 0x2A // Outgoing Mailbox 0 DSP to
PCI/USB mailbox

// SERIAL EEPROM Control Register (DSP IOPAGE=0x00)
#define SPROMCTL 0x30 // Serial EEPROM I/O Control/Status
 // Direction and status for SEN, SCK, SDA pins.

// JTAG ID Registers(DSP IOPAGE=0x00)
#define JTAGIDL 0xA0 // IDCODE[15:0] JTAG ID0 :
 // Value = 0xA1CB (Read Only).
#define JTAGIDH 0xA2 // IDCODE[31:16] JTAG ID1 :
 // Value = 0x0278 (Read Only).

// AC'97 Control Registers (DSP IOPAGE=0x00)
#define AC97LCTL 0xC0 // AC'97 Link Control
#define AC97LSTAT 0xC2 // AC'97 Link Status
#define AC97SEN 0xC4 // AC'97 Slot Enable
#define AC97SVAL 0xC6 // AC'97 Input Slot Valid
#define AC97SREQ 0xC8 // AC'97 Slot Request
#define AC97GPIO 0xCA // AC'97 External GPIO Register

// AC'97 External Codec IO Register Spaces

#define AC97CODEC0 0x04 // External Primary Codec 0
 // IOPAGE space registers (0x00 - 0x7F)
#define AC97CODEC1 0x05 // External Secondary Codec 1
 // IOPAGE space registers (0x00 - 0x7F)
#define AC97CODEC2 0x06 // External Secondary Codec 2
 // IOPAGE space registers (0x00 - 0x7F)

// CardBus Function Event Registers (DSP IOPAGE=0x01)

#define CB_EVENT0 0x00 // Function 0 Event
ADSP-219x/2192 DSP Hardware Reference B-103

Register and Bit #Defines File
#define CB_EVENTMASK0 0x04 // Function 0 Event Mask
#define CB_PSTATE0 0x08 // Function 0 Present State
#define CB_EVENTFORCE0 0x0C // Function 0 Event Force

#define CB_EVENT1 0x10 // Function 1 Event
#define CB_EVENTMASK1 0x14 // Function 1 Event Mask
#define CB_PSTATE1 0x18 // Function 1 Present State
#define CB_EVENTFORCE1 0x1C // Function 1 Event Force

#define CB_EVENT2 0x20 // Function 2 Event
#define CB_EVENTMASK2 0x24 // Function 2 Event Mask
#define CB_PSTATE2 0x28 // Function 2 Present State
#define CB_EVENTFORCE2 0x2C // Function 2 Event Force

// PCI DMA Address/Count Registers (DSP IOPAGE=0x08)

#define PCI_Rx0BADDRL 0x00 // Rx0 DMA Base Address
Bits 15:0
#define PCI_Rx0BADDRH 0x02 // Rx0 DMA Base Address
Bits 31:16
#define PCI_Rx0CURADDRL 0x04 // Rx0 DMA Current Address
Bits 15:0
#define PCI_Rx0CURADDRH 0x06 // Rx0 DMA Current Address
Bits 31:16
#define PCI_Rx0BCNTL 0x08 // Rx0 DMA Base Count
Bits 15:0
#define PCI_Rx0BCNTH 0x0A // Rx0 DMA Base Count
Bits 31:16
#define PCI_Rx0CURCNTL 0x0C // Rx0 DMA Current Count
Bits 15:0
#define PCI_Rx0CURCNTH 0x0E // Rx0 DMA Current Count
Bits 31:16

#define PCI_Tx0BADDRL 0x10 // Tx0 DMA Base Address
Bits 15:0
#define PCI_Tx0BADDRH 0x12 // Tx0 DMA Base Address
Bits 31:16
#define PCI_Tx0CURADDRL 0x14 // Tx0 DMA Current Address
Bits 15:0
#define PCI_Tx0CURADDRH 0x16 // Tx0 DMA Current Address
Bits 31:16
#define PCI_Tx0BCNTL 0x18 // Tx0 DMA Base Count
Bits 15:0
B-104 ADSP-219x/2192 DSP Hardware Reference

ADSP-2192 DSP Peripheral Registers
#define PCI_Tx0BCNTH 0x1A // Tx0 DMA Base Count
Bits 31:16
#define PCI_Tx0CURCNTL 0x1C // Tx0 DMA Current Count
Bits 15:0
#define PCI_Tx0CURCNTH 0x1E // Tx0 DMA Current Count
Bits 31:16

#define PCI_Rx1BADDRL 0x20 // Rx1 DMA Base Address
Bits 15:0
#define PCI_Rx1BADDRH 0x22 // Rx1 DMA Base Address
Bits 31:16
#define PCI_Rx1CURADDRL 0x24 // Rx1 DMA Current Address
Bits 15:0
#define PCI_Rx1CURADDRH 0x26 // Rx1 DMA Current Address
Bits 31:16
#define PCI_Rx1BCNTL 0x28 // Rx1 DMA Base Count
Bits 15:0
#define PCI_Rx1BCNTH 0x2A // Rx1 DMA Base Count
Bits 31:16
#define PCI_Rx1CURCNTL 0x2C // Rx1 DMA Current Count
Bits 15:0
#define PCI_Rx1CURCNTH 0x2E // Rx1 DMA Current Count
Bits 31:16

#define PCI_Tx1BADDRL 0x30 // Tx1 DMA Base Address
Bits 15:0
#define PCI_Tx1BADDRH 0x32 // Tx1 DMA Base Address
Bits 31:16
#define PCI_Tx1CURADDRL 0x34 // Tx1 DMA Current Address
Bits 15:0
#define PCI_Tx1CURADDRh 0x36 // Tx1 DMA Current Address
Bits 31:16
#define PCI_Tx1BCNTL 0x38 // Tx1 DMA Base Count
Bits 15:0
#define PCI_Tx1BCNTH 0x3A // Tx1 DMA Base Count
Bits 31:16
#define PCI_Tx1CURCNTL 0x3C // Tx1 DMA Current Count
Bits 15:0
#define PCI_Tx1CURCNTH 0x3E // Tx1 DMA Current Count
Bits 31:16

#define PCI_Rx0IRQCNTL 0x40 // Rx0 DMA Interrupt Count
Bits 15:0
ADSP-219x/2192 DSP Hardware Reference B-105

Register and Bit #Defines File
#define PCI_Rx0IRQCNTH 0x42 // Rx0 DMA Interrupt Count
Bits 23:16
#define PCI_Rx0IRQBCNTL 0x44 // Rx0 DMA Interrupt Base Count
Bits 15:0
#define PCI_Rx0IRQBCNTH 0x46 // Rx0 DMA Interrupt Base Count
Bits 23:16

#define PCI_Tx0IRQCNTL 0x48 // Tx0 DMA Interrupt Count
Bits 15:0
#define PCI_Tx0IRQCNTH 0x4A // Tx0 DMA Interrupt Count
Bits 23:16
#define PCI_Tx0IRQBCNTL 0x4C // Tx0 DMA Interrupt Base Count
Bits 15:0
#define PCI_Tx0IRQBCNTH 0x4E // Tx0 DMA Interrupt Base Count
Bits 23:16

#define PCI_Rx1IRQCNTL 0x50 // Rx1 DMA Interrupt Count
Bits 15:0
#define PCI_Rx1IRQCNTH 0x52 // Rx1 DMA Interrupt Count
Bits 23:16
#define PCI_Rx1IRQBCNTL 0x54 // Rx1 DMA Interrupt Base Count
Bits 15:0
#define PCI_Rx1IRQBCNTH 0x56 // Rx1 DMA Interrupt Base Count
Bits 23:16

#define PCI_Tx1IRQCNTL 0x58 // Tx1 DMA Interrupt Count
Bits 15:0
#define PCI_Tx1IRQCNTH 0x5A // Tx1 DMA Interrupt Count
Bits 23:16
#define PCI_Tx1IRQBCNTL 0x5C // Tx1 DMA Interrupt Base Count
Bits 15:0
#define PCI_Tx1IRQBCNTH 0x5E // Tx1 DMA Interrupt Base Count
Bits 23:16

#define PCI_Rx0CTL 0x60 // Rx0 DMA PCI Control/Status
#define PCI_Tx0CTL 0x68 // Tx0 DMA PCI Control/Status
#define PCI_Rx1CTL 0x70 // Rx1 DMA PCI Control/Status
#define PCI_Tx1CTL 0x78 // Tx1 DMA PCI Control/Status

#define PCI_MSTRCNT0 0x80 // DMA Transfer Count0 Bus
master
 // sample transfer count 0.
#define PCI_MSTRCNT1 0x82 // DMA Transfer Count1 Bus
master
B-106 ADSP-219x/2192 DSP Hardware Reference

ADSP-2192 DSP Peripheral Registers
 // sample transfer count 1.
#define PCI_DMAC0 0x84 // DMA Control0 Bus master
control
 // and status 0.
#define PCI_DMAC1 0x86 // DMA Control1 Bus master
control
 // and status 1.
#define PCI_IRQSTAT 0x88 // PCI Interrupt Register Status
bits
 for all PCI interrupt sources.
#define PCI_CFGCTL 0x8A // PCI Control Includes config
 // register read/write control.

// PCI FUNCTION 0 Configuration Space Registers (DSP
IOPAGE=0x09)

// Note: Access to these registers is controlled by the PCI RDY
bit in the
// Chip Mode/Status Register (Page 0x00, Address 0x00).

#define PCI_VendorID0 0x00 // Configuration 0 Vendor ID
#define PCI_DeviceID0 0x02 // Configuration 0 Device ID
#define PCI_ClassCODE0L 0x08 // Configuration 0 Class
Code[7:0],Rev ID
#define PCI_ClassCODE0H 0x0A // Configuration 0 Class
Code[23:8]
#define PCI_SVendorID0 0x2C // Configuration 0 Subsystem
Vendor ID
#define PCI_SDeviceID0 0x2E // Configuration 0 Subsystem
Device ID
#define PCI_PWRMT0 0x44 // Configuration 0
 // Power Mgt Capabilities Bit 15 set if Vaux is sensed valid.

// PCI FUNCTION 1 Configuration Space Registers (DSP
IOPAGE=0x0A)

// Note: Access to these registers is controlled by the PCI RDY
bit in the
// Chip Mode/Status Register (Page 0x00, Address 0x00).

#define PCI_VendorID1 0x00 // Configuration 1 Vendor ID
#define PCI_DeviceID1 0x02 // Configuration 1 Device ID
#define PCI_ClassCODE1L 0x08 // Configuration 1 Class
Code[7:0], Rev ID
ADSP-219x/2192 DSP Hardware Reference B-107

Register and Bit #Defines File
#define PCI_ClassCODE1H 0x0A // Configuration 1 Class
Code[23:8]
#define PCI_SvendorID1 0x2C // Configuration 1 Subsystem
Vendor ID
#define PCI_SdeviceID1 0x2E // Configuration 1 Subsystem
Device ID
#define PCI_PWRMT1 0x44 // Configuration 1
 // Power Mgt Capabilities Bit 15 set if Vaux is sensed valid.

// PCI FUNCTION 2 Configuration Space Registers (DSP
IOPAGE=0x0B)

// Note: Access to these registers is controlled by the PCI RDY
bit in the
// PCI Interrupt Control Register (Page 0x08, Address 0xA2).

#define PCI_VendorID2 0x00 // Configuration 2 Vendor ID
#define PCI_DeviceID2 0x02 // Configuration 2 Device ID
#define PCI_ClassCODE2L 0x08 // Configuration 2 Class
Code[7:0],Rev ID
#define PCI_ClassCODE2H 0x0A // Configuration 2 Class
Code[23:8]
#define PCI_SvendorID2 0x2C // Configuration 2 Subsystem
Vendor ID
#define PCI_SdeviceID2 0x2E // Configuration 2 Subsystem
Device ID
#define PCI_PWRMT2 0x44 // Configuration 2 Power Mgt
 // Capabilities Bit 15 set if Vaux is sensed valid.

// USB Endpoint DMA Control Registers (DSP IOPAGE=0x0C)

#define USB_EP4_ADDR 0x00 // Memory Buffer Base Addr. EP4
#define USB_EP4_SIZE 0x04 // Memory Buffer Size EP4
#define USB_EP4_RD 0x06 // Memory Buffer RD Offset EP4
#define USB_EP4_WR 0x08 // Memory Buffer WR Offset EP4

#define USB_EP5_ADDR 0x10 // Memory Buffer Base Addr. EP5
#define USB_EP5_SIZE 0x14 // Memory Buffer Size EP5
#define USB_EP5_RD 0x16 // Memory Buffer RD Offset EP5
#define USB_EP5_WR 0x18 // Memory Buffer WR Offset EP5

#define USB_EP6_ADDR 0x20 // Memory Buffer Base Addr. EP6
#define USB_EP6_SIZE 0x24 // Memory Buffer Size EP6
#define USB_EP6_RD 0x26 // Memory Buffer RD Offset EP6
B-108 ADSP-219x/2192 DSP Hardware Reference

ADSP-2192 DSP Peripheral Registers
#define USB_EP6_WR 0x28 // Memory Buffer WR Offset EP6

#define USB_EP7_ADDR 0x30 // Memory Buffer Base Addr. EP7
#define USB_EP7_SIZE 0x34 // Memory Buffer Size EP7
#define USB_EP7_RD 0x36 // Memory Buffer RD Offset EP7
#define USB_EP7_WR 0x38 // Memory Buffer WR Offset EP7

#define USB_EP8_ADDR 0x40 // Memory Buffer Base Addr. EP8
#define USB_EP8_SIZE 0x44 // Memory Buffer Size EP8
#define USB_EP8_RD 0x46 // Memory Buffer RD Offset EP8
#define USB_EP8_WR 0x48 // Memory Buffer WR Offset EP8

#define USB_EP9_ADDR 0x50 // Memory Buffer Base Addr. EP9
#define USB_EP9_SIZE 0x54 // Memory Buffer Size EP9
#define USB_EP9_RD 0x56 // Memory Buffer RD Offset EP9
#define USB_EP9_WR 0x58 // Memory Buffer WR Offset EP9

#define USB_EP10_ADDR 0x60 // Memory Buffer Base Addr. EP10
#define USB_EP10_SIZE 0x64 // Memory Buffer Size EP10
#define USB_EP10_RD 0x66 // Memory Buffer RD Offset EP10
#define USB_EP10_WR 0x68 // Memory Buffer WR Offset EP10

#define USB_EP11_ADDR 0x70 // Memory Buffer Base Addr. EP11
#define USB_EP11_SIZE 0x74 // Memory Buffer Size EP11
#define USB_EP11_RD 0x76 // Memory Buffer RD Offset EP11
#define USB_EP11_WR 0x78 // Memory Buffer WR Offset EP11

#endif
ADSP-219x/2192 DSP Hardware Reference B-109

Register and Bit #Defines File
B-110 ADSP-219x/2192 DSP Hardware Reference

C NUMERIC FORMATS
Figure C-0.

Table C-0.

Listing C-0.
Overview
ADSP-219x family processors support 16-bit fixed-point data in hard-
ware. Special features in the computation units allow you to support other
formats in software. This appendix describes various aspects of the 16-bit
data format. It also describes how to implement a block floating-point
format in software.

Un/Signed: Twos-Complement Format
Unsigned binary numbers may be thought of as positive, having nearly
twice the magnitude of a signed number of the same length. The least sig-
nificant words of multiple precision numbers are treated as unsigned
numbers.

Signed numbers supported by the ADSP-219x family are in twos-comple-
ment format. Signed-magnitude, ones-complement, BCD or excess-n
formats are not supported.

Integer or Fractional
The ADSP-219x family supports both fractional and integer data formats.
In an integer, the radix point is assumed to lie to the right of the LSB, so
that all magnitude bits have a weight of 1 or greater. This format is shown
in Figure C-1, which can be found on the following page. Note that in
twos-complement format, the sign bit has a negative weight.
ADSP-219x/2192 DSP Hardware Reference C-1

Integer or Fractional
In a fractional format, the assumed radix point lies within the number, so
that some or all of the magnitude bits have a weight of less than 1. In the
format shown in Figure C-2 on page C-3, the assumed radix point lies to
the left of the 3 LSBs, and the bits have the weights indicated.

The notation used to describe a format consists of two numbers separated
by a period (.); the first number is the number of bits to the left of radix
point, the second is the number of bits to the right of the radix point. For
example, 16.0 format is an integer format; all bits lie to the left of the
radix point. The format in Figure C-2 is 13.3.

15 14 13

• • •

2 1 0

–(2) 2 2 2 2 2
15 14 13 2 1 0

Sign
Bit

Weight

Bit

Signed Integer

15 14 13

• • •

2 1 0

2 2 2 2 2 2
15 14 13 2 1 0

Weight

Bit

Unsigned Integer

Radix
Point

Radix
Point

Figure C-1. Integer Format
C-2 ADSP-219x/2192 DSP Hardware Reference

Numeric Formats
15 14 13

• • •

2 1 0

–(2) 2 2 2 2 2
12 11 10 –1 –2 –3

Sign
Bit

Weight

Bit

Signed Fractional (13.3)

15 14 13

• • •

2 1 0

2 2 2 2 2 2
12 11 10 –1 –2 –3

Weight

Bit

Unsigned Fractional (13.3)

4 3

2 2
1 0

4 3

2 2
1 0

Radix
Point

Radix
Point

Figure C-2. Example Of Fractional Format
ADSP-219x/2192 DSP Hardware Reference C-3

Integer or Fractional
Table C-1 shows the ranges of numbers representable in the fractional for-
mats that are possible with 16 bits.

Table C-1. Fractional Formats And Their Ranges

Format # of
Integer
Bits

of
Fractional
Bits

Max Positive Value
(0x7FFF) In Decimal

Max Negative
Value (0x8000)
In Decimal

Value of 1 LSB
(0x0001) In Decimal

1.15 1 15 0.999969482421875 –1.0 0.000030517578125

2.14 2 14 1.999938964843750 –2.0 0.000061035156250

3.13 3 13 3.999877929687500 –4.0 0.000122070312500

4.12 4 12 7.999755859375000 –8.0 0.000244140625000

5.11 5 11 15.999511718750000 –16.0 0.000488281250000

6.10 6 10 31.999023437500000 –32.0 0.000976562500000

7.9 7 9 63.998046875000000 –64.0 0.001953125000000

8.8 8 8 127.996093750000000 –128.0 0.003906250000000

9.7 9 7 255.992187500000000 –256.0 0.007812500000000

10.6 10 6 511.984375000000000 –512.0 0.015625000000000

11.5 11 5 1023.968750000000000 –1024.0 0.031250000000000

12.4 12 4 2047.937500000000000 –2048.0 0.062500000000000

13.3 13 3 4095.875000000000000 –4096.0 0.125000000000000

14.2 14 2 8191.750000000000000 –8192.0 0.250000000000000

15.1 15 1 16383.500000000000000 –16384.0 0.500000000000000

16.0 16 0 32767.000000000000000 –32768.0 1.000000000000000
C-4 ADSP-219x/2192 DSP Hardware Reference

Numeric Formats
Binary Multiplication
In addition and subtraction, both operands must be in the same format
(signed or unsigned, radix point in the same location) and the result for-
mat must be the same as the input format. Addition and subtraction are
performed the same way whether the inputs are signed or unsigned.

In multiplication, however, the inputs can have different formats, and the
result depends on their formats. The ADSP-219x family assembly lan-
guage allows you to specify whether the inputs are both signed, both
unsigned, or one of each (mixed-mode). The location of the radix point in
the result can be derived from its location in each of the inputs.
Figure C-3 illustrates this point. The product of two 16-bit numbers is a
32-bit number. If the inputs’ formats are M.N and P.Q, the product has
the format (M+P).(N+Q). For example, the product of two 13.3 numbers
is a 26.6 number. The product of two 1.15 numbers is a 2.30 number.

16-Bit Examples:

5.3

5.3

10.6

1.15

1.15

2.30

1.111

11.11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0.0 111 001

1.3 format

2.2 format

3.5 format = (1+2) . (2+3)

4-Bit Example:

M.N

P.Q

(M+P) . (N+Q)

General Rule:

Figure C-3. Format of Multiplier Result
ADSP-219x/2192 DSP Hardware Reference C-5

Binary Multiplication
Fractional Mode And Integer Mode
A product of 2 twos-complement numbers has two sign bits. Since one of
these bits is redundant, you can shift the entire result left one bit. Addi-
tionally, if one of the inputs was a 1.15 number, the left shift causes the
result to have the same format as the other input (with 16 bits of addi-
tional precision). For example, multiplying a 1.15 number by a 5.11
number yields a 6.26 number. When shifted left one bit, the result is a
5.27 number, or a 5.11 number plus 16 LSBs.

The ADSP-219x family provides a mode (called the fractional mode) in
which the multiplier result is always shifted left one bit before being writ-
ten to the result register. This left shift eliminates the extra sign bit when
both operands are signed, yielding a correctly formatted result.

When both operands are in 1.15 format, the result is 2.30 (30 fractional
bits). A left shift causes the multiplier result to be 1.31, which can be
rounded to 1.15. Thus, if you use a fractional data format, it is most con-
venient to use the 1.15 format.

In the integer mode, the left shift does not occur. This is the mode to use
if both operands are integers (in the 16.0 format). The 32-bit multiplier
result is in 32.0 format, which is also an integer.

In all ADSP-219x DSPs, fractional and integer modes are controlled by a
bit in the MSTAT register. At reset, these processors default to the fractional
mode.
C-6 ADSP-219x/2192 DSP Hardware Reference

Numeric Formats
Block Floating-Point Format
A block floating-point format enables a fixed-point processor to gain some
of the increased dynamic range of a floating-point format without the
overhead needed to do floating-point arithmetic. Some additional pro-
gramming is required to maintain a block floating-point format, however.

A floating-point number has an exponent that indicates the position of the
radix point in the actual value. In block floating-point format, a set
(block) of data values share a common exponent. To convert a block of
fixed-point values to block floating-point format, you would shift each
value left by the same amount and store the shift value as the block expo-
nent. Typically, block floating-point format allows you to shift out
non-significant MSBs, increasing the precision available in each value.

You can also use block floating-point format to eliminate the possibility of
a data value overflowing. Figure C-4 shows an example. The three data
samples each have at least two non-significant, redundant sign bits. Each
data value can grow by these two bits (two orders of magnitude) before
overflowing; thus, these bits are called guard bits. If it is known that a pro-
cess will not cause any value to grow by more than these two bits, then the
process can be run without loss of data. Afterward, however, the block
must be adjusted to replace the guard bits before the next process.

0x0FFF

0x1FFF

0x07FF

=

=

=

0000

0001

0000

1111

1111

0111

1111

1111

1111

1111

1111

1111

2 Guard Bits

Sign Bit

To detect bit growth into 2 guard bits, set SB=–2

Figure C-4. Data With Guard Bits
ADSP-219x/2192 DSP Hardware Reference C-7

Block Floating-Point Format
Figure C-5 on page C-8 shows the data after processing but before adjust-
ment. The block floating-point adjustment is performed as follows.
Initially, the value of SB is –2, corresponding to the two guard bits. Dur-
ing processing, each resulting data value is inspected by the EXPADJ
instruction, which counts the number of redundant sign bits and adjusts
SB as if the number of redundant sign bits is less than 2. In this example,
SB=–1 after processing, which indicates that the block of data must be
shifted right one bit to maintain the two guard bits. If SB were 0 after pro-
cessing, the block would have to be shifted two bits right. In either case,
the block exponent is updated to reflect the shift.

0x1FFF

0x3FFF

0x07FF

=

=

=

0001

0011

0000

1111

1111

0111

1111

1111

1111

1111

1111

1111

1 Guard Bit

Sign Bit

EXPADJ instruction checks
exponent, adjusts SB

Exponent = –2

Exponent = –1

Exponent = –4

SB = –2

SB = –1

SB = –1

0x0FFF

0x1FFF

0x03FF

=

=

=

0000

0001

0000

1111

1111

0011

1111

1111

1111

1111

1111

1111

2 Guard Bits

Sign Bit

1. Check for Bit Growth

2. Shift Right to Restore Guard Bits

Figure C-5. Block Floating-Point Adjustment
C-8 ADSP-219x/2192 DSP Hardware Reference

D ADSP-2192 TIMER
Figure D-0.

Table D-0.

Listing D-0.
Overview
The programmable interval timer can generate periodic interrupts based
on multiples of the processor’s cycle time. When enabled, a 16-bit count
register is decremented every n cycles, where n-1 is a scaling value stored
in a 16-bit register. When the value of the count register reaches zero, an
interrupt is generated and the count register is reloaded from a 16-bit
period register (TPERIOD).

The scaling feature of the timer allows the 16-bit counter to generate peri-
odic interrupts over a wide range of periods. Given a processor cycle time
of 6.25 ns, the timer can generate interrupts with periods of 6.25 ns up to
0.4 ms with a zero scale value. When scaling is used, time periods can
range up to 26.875 seconds.

Timer interrupts can be masked, cleared and forced in software if desired.
For additional information, refer to “Interrupts and Sequencing” on
page 3-24.
ADSP-219x/2192 DSP Hardware Reference D-1

Timer Architecture
Timer Architecture
The timer includes four 16-bit registers: TCOUNT, TPERIOD, TSCALE, and
TSCLCNT. The extended Mode Control instruction enables and disables the
timer by setting and clearing bit 5 in the Mode Status register, MSTAT. For
a description of the Mode Control instructions, refer to the ADSP-219x
DSP Instruction Set Reference. The timer registers, which reside in the core
register space of each core, are shown in Figure D-1.

TCOUNT is the count register. When the timer is enabled, it is decremented
as often as once every instruction cycle. When the counter reaches zero, an
interrupt is generated. TCOUNT is then reloaded from the TPERIOD register
and the count begins again. TSCALE stores a scaling value that is one less
than the number of cycles between decrements of TCOUNT. For example, if
the value in TSCALE register is 0, the counter register decrements once
every instruction cycle. If the value in TSCALE is 1, the counter decrements
once every two cycles. TSCLCNT holds the current scale count. An interrupt
request is generated when both (TCOUNT-1) and (TSCLCNT-1) require bor-
rows (that is, they would have a value of 0000-1).

Figure D-1. Timer Registers

0x30TPERIOD Period Register

TCOUNT Counter Register

1 5 1 4 1 3 1 2 1 1 1 0 9 8 7 6 5 4 3 2 1 0

TSCALE Scaling Register 0x32

0x31

TSCLCNT Scaling Count Register 0x33
D-2 ADSP-219x/2192 DSP Hardware Reference

ADSP-2192 Timer
Figure D-2 shows the timer block diagram.

Figure D-2. Timer Block Diagram

TPERIOD

16

TCOUNTDecrem ent Zero

Count Register Load Logic

Timer
Interrupt

1
6

16DMD Bus

TSCALE

16

TSCLCNTDecrement Zero

Count Register Load Logic

16

DSP
CLOCK
ADSP-219x/2192 DSP Hardware Reference D-3

Resolution
Resolution
TSCALE provides the capability to program longer time intervals between
interrupts, extending the range of the 16-bit TCOUNT register. Table D-1
shows the range and the relationship between period length and resolution
for TPERIOD = maximum (65536).

Timer Operation
Table D-2 shows the effect of operating the timer with TPERIOD=5,
TSCALE=1 and TCOUNT=5. After the timer is enabled (cycle n–1) the counter
begins. Because TSCALE is 1, TCOUNT is decremented on every other cycle.
The reloading of TCOUNT and continuation of the counting occurs, as
shown, during the interrupt service routine.

Table D-1. Timer Range and Resolution

Cycle Time = 6.25 nsec

TSCALE Interrupt Every… Resolution

0x0000 0.41 msec 6.25 nsec

0xFFFF 26.87 sec 0.41 µsec

Table D-2. Example Of Timer Operation

Cycle TCOUNT Action

n–4 TPERIOD loaded with 5

n–3 TSCALE loaded with 1

n–2 TCOUNT loaded with 5

n–1 5 ENA TIMER executed
D-4 ADSP-219x/2192 DSP Hardware Reference

ADSP-2192 Timer
n 5 Since TSCALE = 1, no decrement

n+1 5 Decrement TCOUNT

n+2 4 No decrement

n+3 4 Decrement TCOUNT

n+4 3 No decrement

n+5 3 Decrement TCOUNT

n+6 2 No decrement

n+7 2 Decrement TCOUNT

n+8 1 No decrement

n+9 1 Decrement TCOUNT

n+10 0 No decrement

n+11 0 Zero reached, interrupt occurs
load TCOUNT from TPERIOD

n+12 5 No decrement

n+13 5 Decrement TCOUNT

n+14 4 No decrement

n+15 4 Decrement TCOUNT, etc.

Table D-2. Example Of Timer Operation (Cont’d)

Cycle TCOUNT Action
ADSP-219x/2192 DSP Hardware Reference D-5

Enabling the Timer
One interrupt occurs every (TSCALE+1) * (TPERIOD+1) clock cycles. To set
the first interrupt at a different time interval from subsequent interrupts,
load TCOUNT with a different value from TPERIOD. The formula for the first
interrupt is (TSCLCNT+1) * (TSCALE+1) * (TCOUNT).

If you write a new value to TSCALE or TCOUNT, the change is effective imme-
diately. If you write a new value to TPERIOD, the change does not take
effect until after TCOUNT is reloaded.

Enabling the Timer
This section tells you how to enable the timer and generate interrupts. It
lists the steps you need to use and provides sample code (see Listing D-1).

To enable the timer:

1. Set values for TCOUNT, TPERIOD, TSCALE, and TSCLCNT.

2. Set bit 0 in IMASK to enable interrupt.

3. Execute ENA TIMER instruction to start counting down (bit 5 in
MSTAT register).

Listing D-1. Code for Enabling the Timer and Generating Interrupts

// init timer
ay0 = 0xf000;
ay1 = 0x0200;
reg(0x30) = ay0; // set tperiod
reg(0x32) = ay1; // set tscale

// enable global interrupts and kernel, mailbox, and
// timer interrupts specifically, and enable nesting
ar = icntl;
ar = setbit 4 of ar;
icntl = ar;
ena int;
imask = 0x0034;
ena ti;
D-6 ADSP-219x/2192 DSP Hardware Reference

E ADSP-2192 INTERRUPTS
Figure E-0.

Table E-0.

Listing E-0.
Overview
The DSP has two core-to-core flags to control interrupts between the two
DSPs. The interrupt controller lets the DSP respond to thirteen interrupts
with minimum overhead. The controller implements an interrupt priority
scheme as shown in Table E-1 on page E-1. Applications can use the unas-
signed slots for software and peripheral interrupts. The DSP’s Interrupt
Control (ICNTL) register (shown in Table E-2 on page E-3) provides con-
trols for global interrupt enable, stack interrupt configuration, and
interrupt nesting.

Peripheral Interrupts
Table E-1 shows the interrupt vector and DSP-DSP semaphores of each of
the peripheral interrupts at reset. (For information about DSP-DSP sema-
phores, see “Using Dual-DSP Interrupts and Flags” on page 6-13.) The
peripheral interrupt’s position in the IMASK and IRPTL register and its vec-
tor address depend on its priority level, as shown in Table E-1.

Table E-1. Interrupt Vector Table

Bit Priority Interrupt Vector Address

Offset1

0 1 Reset (non-maskable) 0x00

1 2 Powerdown (non-maskable) 0x04
ADSP-219x/2192 DSP Hardware Reference E-1

Peripheral Interrupts
2 3 Kernel interrupt
(single step)

0x08

3 4 Stack Status 0x0C

4 5 Mailbox 0x10

5 6 Timer 0x14

6 7 System Interrupt 0x18

7 8 PCI Bus Master 0x1C

8 9 DSP-DSP 0x20

9 10 FIFO0 Transmit 0x24

10 11 FIFO0 Receive 0x28

11 12 FIFO1 Transmit 0x2C

12 13 FIFO1 Receive 0x30

13 14 Reserved 0x34

14 15 Reserved 0x38

15 16 AC’97 Frame 0x3C

1 The interrupt vector address values are represented as offsets from address
0x01 0000. This address corresponds to the start of Program Memory in DSP
P0 and P1.

Table E-1. Interrupt Vector Table (Continued)

Bit Priority Interrupt Vector Address

Offset1
E-2 ADSP-219x/2192 DSP Hardware Reference

ADSP-2192 Interrupts
Interrupt routines can either be nested with higher priority interrupts tak-
ing precedence or they can be processed sequentially. Interrupts can be
masked or unmasked with the IMASK register. Individual interrupt requests
are logically ANDed with the bits in IMASK; the highest priority unmasked
interrupt is then selected. The emulation, power down, and reset inter-
rupts are nonmaskable with the IMASK register, but software can use the
DIS INT instruction to mask the power down interrupt.

Table E-2. Interrupt Control (ICNTL) Register Bits

Bit Description

0–3 Reserved

4 Interrupt nesting enable

5 Global interrupt enable

6 Reserved

7 MAC biased rounding enable

8–9 Reserved

10 PC stack interrupt enable

11 Loop stack interrupt enable

12 Low power idle enable

13–15 Reserved
ADSP-219x/2192 DSP Hardware Reference E-3

Other Interrupt Types
The IRPTL register is used to force and clear interrupts. On-chip stacks
preserve the processor status and are automatically maintained during
interrupt handling. To support interrupt, loop, and subroutine nesting,
the PC stack is 33 levels deep, the loop stack is eight-levels deep, and the
status stack is 16 levels deep. To prevent stack overflow, the PC stack can
generate a stack level interrupt if the PC stack falls below 3 locations full
or rises above 28 locations full.

The following instructions globally enable or disable interrupt servicing,
regardless of the state of IMASK.

Ena Int;
Dis Int;

At reset, interrupt servicing is disabled.

For quick servicing of interrupts, a secondary set of DAG and computa-
tional registers exist. Switching between the primary and secondary
registers lets programs quickly service interrupts while preserving the
DSP’s state.

For more information about interrupts, refer to “Using Dual-DSP Inter-
rupts and Flags” on page 6-13 and “ADSP-2192 Interrupts” on page E-1.

Other Interrupt Types
The programmable interval timer generates periodic interrupts. See
“ADSP-2192 Timer” on page D-1 for more information about the pro-
grammable interval timer and its four registers (TCOUNT, TSCALE, TPERIOD,
and TSCLCNT).

Bits in the PCI Control/Status register control whether an interrupt
occurs when the EOL is reached or when the FLAG bit is set. See
“ADSP-2192 DSP Peripheral Registers” on page B-1 for more informa-
tion about these bits.
E-4 ADSP-219x/2192 DSP Hardware Reference

ADSP-2192 Interrupts
Interrupts to the DSP can also be generated by DMA (in regular or scat-
ter-gather modes), by PCI, when some words have been received in the
input FIFOs, or when the Transmit FIFOs are empty. Internal interrupts,
including serial EEPROM port, PCI, USB, AC’97, Sub-ISA, timer, and
DMA interrupts, are discussed elsewhere in this book. (“Host (PCI/USB)
Port” on page 8-1 discusses USB, PCI, Sub-ISA, serial EEPROM, and
DMA; “AC’97 Codec Port” on page 9-1 discusses the AC’97 interface.)
Additional information about interrupt masking, set up, and operation
can be found in “Interrupts and Sequencing” on page 3-24.
ADSP-219x/2192 DSP Hardware Reference E-5

Other Interrupt Types
E-6 ADSP-219x/2192 DSP Hardware Reference

G GLOSSARY
Figure G-0.

Table G-0.

Listing G-0.
Terms
Arithmetic Logic Unit (ALU). This part of a processing element performs
arithmetic and logic operations on fixed-point data.

Asynchronous transfers. Asynchronous host accesses of the DSP. After
acquiring control of the DSP's external bus, the host must assert the CS
pin of the DSP it wants to access.

Base address. The starting address of a circular buffer to which the DAG
wraps around. This address is stored in a DAG Bx register.

Base registers. A base (Bx) register is a Data Address Generator (DAG)
register that sets up the starting address for a circular buffer.

Bit-reverse addressing. The Data Address Generator (DAG) provides a
bit-reversed address during a data move without reversing the stored
address.

Circular buffer addressing. The DAG uses the Ix, Mx, Lx, and Bx register
settings to constrain addressing to a range of addresses. This range con-
tains data that the DAG steps through repeatedly, “wrapping around” to
repeat stepping through the range of addresses in a circular pattern.

Companding (compressing/expanding). This is the process of logarithmi-
cally encoding and decoding data to minimize the number of bits that
must be sent.

Conditional branches. These are Jump or Call/return instructions whose
execution is based on testing an If condition.
ADSP-219x/2192 DSP Hardware Reference G-1

Terms
Data Address Generators. The data address generators (DAGs) provide
memory addresses when data is transferred between memory and registers.

Data register file. This is the set of data registers that transfer data
between the data buses and the computation units. These registers also
provide local storage for operands.

Data registers (Dregs). These are registers in the computational units.
These registers are hold operands for multiplier, ALU, or shifter
operations.

Delayed branches. These are Jumps and Call/return instructions with the
delayed branches (DB) modifier. In delayed branches, two (instead of four)
instruction cycles are lost in the pipeline, because the DSP executes the
two instructions after the branch while the pipeline fills with instructions
from the new branch.

Direct branches. These are Jump or Call/return instructions that use an
absolute—not changing at runtime—address (such as a program label) or
use a PC-relative address.

DMA (Direct Memory Accessing). The DSP’s I/O processor supports
DMA of data between DSP memory and peripherals through the host port
or AC’97 serial port. Each DMA operation transfers an entire block of
data.

DMA chaining. The DSP supports chaining together multiple DMA
sequences. In chained DMA, the I/O processor loads the next Transfer
Control Block (DMA parameters) into the DMA parameter registers when
the current DMA finishes and auto-initializes the next DMA sequence.

DMA Parameter Registers. These registers function similarly to data
address generator registers, setting up a memory access process.

DMA TCB chain loading. This is the process that the I/O processor uses
for loading the TCB of the next DMA sequence into the parameter regis-
ters during chained DMA.
G-2 ADSP-219x/2192 DSP Hardware Reference

Glossary
Edge-sensitive interrupt. The DSP detects this type of interrupt if the
input signal is high (inactive) on one cycle and low (active) on the next
cycle when sampled on the rising edge of XTALI.

Endian Format, Little Versus Big. The DSP uses big-endian format—
moves data starting with the most-significant-bit and finishing with the
least-significant-bit—in almost all instances. The two exceptions are bit
order for data transfer through the serial port and word order for packing
through the external port. For compatibility with little-endian (least-sig-
nificant-first) peripherals, the DSP supports both big- and little-endian bit
order data transfers. Also for compatibile little endian hosts, the DSP sup-
ports both big- and little-endian word order data transfers.

Flag update. The DSP’s update to status flags occurs at the end of the
cycle in which the status is generated and is available on the next cycle.

Harvard architecture. DSPs use memory architectures that have separate
buses for program and data storage. The two buses let the DSP get a data
word and an instruction simultaneously.

I/O processor register. One of the control, status, or data buffer registers
of the DSP's on-chip I/O processor.

Idle. An instruction that causes the processor to cease operations, holding
its current state until an interrupt occurs. Then, the processor services the
interrupt and continues normal execution.

Index registers. An index register is a Data Address Generator (DAG) reg-
ister that holds an address and acts as a pointer to memory.

Indirect branches. These are Jump or Call/return instructions that use a
dynamic—changes at runtime—address that comes from the PM data
address generator.

Interrupts. Subroutines in which a runtime event (not an instruction)
triggers the execution of the routine.
ADSP-219x/2192 DSP Hardware Reference G-3

Terms
JTAG port. This port supports the IEEE standard Joint Test Action
Group (JTAG) standard for system test. This standard defines a method
for serially scanning the I/O status of each component in a system. Note
that the ADSP-2192 does not support boundary scan.

Jumps. Program flow transfers permanently to another part of program
memory.

Length registers. A length register is a Data Address Generator (DAG)
register that sets up the range of addresses a circular buffer.

Level-sensitive interrupts. The DSP detects this type of interrupt if the
signal input is low (active) when sampled on the rising edge of XTALI.

Loops. One sequence of instructions executes several times with zero
overhead.

Memory blocks. The DSP’s internal memory is divided into blocks that
are each associated with different data address generators.

Modified addressing. The DAG generates an address that is incremented
by a value or a register.

Modify address. The Data Address Generator (DAG) increments the
stored address without performing a data move.

Modify registers. A modify register is a Data Address Generator (DAG)
register that provides the increment or step size by which an index register
is pre- or post-modified during a register move.

Multifunction computations. Using the many parallel data paths within
its computational units, the DSP supports parallel execution of multiple
computational instructions. These instructions complete in a single cycle,
and they combine parallel operation of the computational units and mem-
ory accesses. The multiple operations perform the same as if they were in
corresponding single-function computations.
G-4 ADSP-219x/2192 DSP Hardware Reference

Glossary
Multiplier. This computational unit does fixed-point multiplication and
executes fixed-point multiply/add and multiply/subtract operations.

Peripherals. This refers to everything outside the processor core. The
ADSP-2192’s peripherals include internal memory, I/O processor, JTAG
port, and external devices that connect to the DSP.

Precision. The precision of a fixed-point number is the number of digits
to the right of the decimal point. The ADSP-219x family arithmetic is
optimized for numerical values in a fractional binary format denoted by
1.15 ("one dot fifteen"). The 1.15 format uses one sign bit (MSB) and fif-
teen fractional bits, representing values from -1 up to one LSB less
than +1.

Post-modify addressing. The Data Address Generator (DAG) provides an
address during a data move and auto-increments the stored address for the
next move.

Pre-modify addressing. The Data Address Generator (DAG) provides a
modified address during a data move without incrementing the stored
address.

Saturation (ALU saturation mode). In this mode, all positive fixed-point
overflows return the maximum positive fixed-point number, and all nega-
tive overflows return the maximum negative number.

Shifter. This computational unit completes logical shifts and arithmetic
shifts on 16-bit operands.

Subroutines. The processor temporarily interrupts sequential flow to exe-
cute instructions from another part of program memory.

TCB chain loading. The process in which the DSP's DMA controller
downloads a Transfer Control Block (TCB) from memory and autoinitial-
izes the DMA parameter registers.
ADSP-219x/2192 DSP Hardware Reference G-5

Terms
Transfer control block (TCB). A set of DMA parameter register values
stored in memory that are downloaded by the DSP's DMA controller for
chained DMA operations.

Tristate Versus Three-state. Analog Devices documentation uses the term
“three-state” instead of “tristate” because Tristate™ is a trademarked
term, which is owned by National Semiconductor.

Von Neumann architecture. This is the architecture used by most
(non-DSP) microprocessors. This architecture uses a single address and
data bus for memory access.
G-6 ADSP-219x/2192 DSP Hardware Reference

I INDEX

Numerics AC ’97 frame

Bits

CE 9-6
CE 9-6
1/2X clock 11-10
16-bit receive data register 9-9
16-bit transmit data register 9-9
1X clock 11-10
Bits

ACR 9-20
FIP 9-4, 9-7

FIP 9-4
Pins

SDI 9-19, 9-26
SDI 9-19, 9-26
Bits

SLOT 9-4
VGS 9-19

SLOT 9-4

A
Aborting a powerdown 11-24, 11-31
Aborting a powerup 11-24, 11-31
Abs function 2-17
Absolute address 3-15, G-2
AC ’97 digital interface

Defined 9-1

Structure 9-27
AC ’97 GPIO control / status register

bit definitions 9-24
AC ’97 GPIO status register (AC97SIF)

9-24
AC ’97 input slot valid (AC97SVAL)

register 9-22
AC ’97 interface 9-1…9-37
AC ’97 Interface Initiated (AC97) bit

B-52
AC ’97 Interface Initiated Interrupt

Enabled (AC97 IEN) bit B-54
AC ’97 link 9-13

Stopping and restarting 9-13
AC ’97 link control/status register

(AC97LCTL) 9-15
AC ’97 link status register (AC97STAT)

9-19
AC ’97 link status register bit definitions

9-19
AC ’97 pin listing 9-26
AC ’97 protocol summary 9-27
AC ’97 slot enable register (ACSE) 9-21
AC ’97 slot enable register bit

definitions 9-22
ADSP-219x/2192 DSP Hardware Reference I-1

INDEX
AC ’97 slot request register (ACRQ)
9-24

AC codec 9-1
AC’97 codec control/status (CSR)

register 9-29
AC’97 codec control/status register

(CSR) write 9-30
AC’97 Codec Register Space,

Secondary Codec 1 register
(AC97EXT1) B-45

AC’97 Codec Register Space,
Secondary Codec 2 register
(AC97EXT2) B-46

AC’97 Codec Register
Space-Primary Codec 0 register
(AC97EXT0) B-45

AC’97 cold power down state 11-38
AC’97 Controller Registers B-41
AC’97 data slots 9-36
AC’97 digital controller 9-13
AC’97 frame structure 9-28
AC’97 GPIO Status Register

(AC97SIF) B-44
AC’97 Input Slot Valid register

(AC97SVAL) B-43
AC’97 Link Control/Status register

(AC97LCTL) B-42
AC’97 link control/status register

(AC97LCTL) B-42
AC’97 link powerdown states 9-30
AC’97 Link Status register

(AC97STAT) B-42
AC’97 low power mode 11-38

AC’97 power management states
11-28

AC’97 Slot Enable register
(AC97SEN) B-43

AC’97 Slot Request register
(AC97SREQ) B-44

AC’97 standard B-3
AC’97 warm power down state

11-38
AC’97, powering down 11-33
AC97 bit B-52
AC97 IEN bit B-54
AC97LCTL

AFR bit 9-33
LKEN=1 bit 9-33

AC97LCTL register 9-15, B-42
AC97LCTL register bit definitions

9-15
AC97SEN register 9-21, B-43

Writing to 9-29
AC97SEN register bit definitions

9-21
AC97SIF register 9-24, B-44
AC97SIF register bit definitions

AC ’97 GPIO control / status
9-24

AC97SREQ register B-44
AC97SREQ register bit definitions

9-24
AC97STAT

LKOK=1 bit 9-33
AC97STAT register 9-12, 9-19,

B-42
AC97SVAL register 9-22, B-43
I-2 ADSP-219x/2192 DSP Hardware Reference

INDEX
Access to AC’97 codec
control/status registers 9-28

Accumulator, dual 1-18
Accumulators, dual 2-2
AC-link digital serial interface

protocol 9-10
Characteristics 9-10

ACR bit 9-12, 9-22
ACR bits 9-20
ACRQ bit 9-24
ACRQ register 9-24
ACRST#

De-asserting 9-30
ACRST# bit 9-33
ACRST# pin 9-26
ACSE bit 9-21
ACSE register 9-36
ACSV bit 9-22
ACTL register 9-27
ACVX bit B-16
ACWE bit 9-17, 9-33
ADC 9-10
Add instruction 2-20
Add with carry 2-17
Add/multiply G-5
Address decode (AD) stage 3-8
Address register 9-8, 9-9
Addressing

(See also DAGs and broadcast load)
(See post-modify, pre-modify,

modify, bit-reverse, or circular
buffer)

ADI chaining mode 9-30
Adjust bit B-23

ADSP-2192 AC ’97 control
registers 9-13

ADSP-2192 AC97 audio interface
9-25

ADSP-2192 Chip Control Registers
B-13

ADSP-2192 DSP Peripheral
Registers B-1

ADSP-2192 Dual-Core DSP Block
Diagram B-3

ADSP-2192 Peripheral Device
Control Register B-6, B-11

ADSP-2192 register bits 9-27
ADSP-2192 USB Data Pipe

Operations 8-87
ADSP-21xx Family DSPs

(See Differences from previous DSPs
and Porting from previous DSPs)

AFD bit 9-16
AFR bit 9-15, 9-34
AFS bit 9-16
AGI bit 9-19
AGIx bit 9-19
AGPE bit 9-18
AGS bit 9-24
AIEN bit B-22
AINT bit B-22
Alternate registers (See Secondary

registers)
ALU 2-1

Arithmetic 2-6
Arithmetic formats 2-8
Data Flow Details 2-21
Data registers A-2
ADSP-219x/2192 DSP Hardware Reference I-3

INDEX
Data Types 2-5
Division Support Features 2-23
Instruction Summary 2-19
Instructions 2-17, 2-19
Operations 2-17
Saturated results 2-11
Saturation mode 2-23
Status 2-16, 2-18
Status latching 2-10

ALU carry (AC) bit 2-6, 2-11, 2-18,
2-20, 2-21, 2-23, 2-45, 2-55,
A-9, A-12

ALU carry (AC) condition 1-19,
3-40

ALU Feedback (AF) register 2-22
ALU feedback (AF) register

Saturated results 2-11
ALU input (AX/AY) registers 1-17
ALU negative (AN) bit 2-5, 2-18,

2-20, 2-21, A-9
ALU negative result (Neg)

condition 1-20
ALU overflow (AV) bit 2-5, 2-6,

2-10, 2-11, 2-18, 2-20, 2-21,
2-38, 2-45, 2-51, 2-55, A-9,
A-12

ALU overflow (AV) condition 1-19,
3-40

ALU overflow latch enable
(AV_LATCH) bit 2-10, A-6,
A-12

ALU overflow latch mode (OL)
enable/disable 3-43

ALU positive result (Pos) condition
1-20

ALU quotient (AQ) bit 2-18, 2-20,
2-21, 2-24, A-10

ALU result (AR) register 2-11, 2-45,
2-53, A-2, A-4, A-6, A-12,
A-16, A-17

ALU saturation mode enable
(AR_SAT) bit 2-10, 2-11, A-6,
A-12

ALU sign (AS) bit 2-18, 2-20, 2-21,
A-9

ALU signed (AS) condition 1-19
ALU x- and y-input (AX AY)

registers A-2, A-4, A-16
ALU zero (AZ) bit 2-18, 2-20, 2-21,

A-9
AMC codec 9-1
Analog audio codec (AC) 9-1
Analog Devices’ products 1-24
Analog/digital converter (ADC)

9-10
AND operator 2-17, 2-20
APME bit B-18
AR saturation mode (AS)

enable/disable 3-43
Arithmetic

Formats Summary 2-8
Operations 2-17
Shifts 2-1

Arithmetic Logic Unit (See ALU)
Arithmetic operations 1-5
Arithmetic shift (Ashift) instruction

2-7, 2-37, 2-38, 2-41, 2-51
I-4 ADSP-219x/2192 DSP Hardware Reference

INDEX
Arithmetic shifts G-5
Arithmetic status (ASTAT) register

1-19, 2-10, 2-11, 2-24, 2-31,
2-45, 2-55, 2-57, A-2, A-4, A-5,
A-7, A-9, A-12

Effect latency 3-6
Latency 2-19

Arithmetic status bits A-9, A-10
ARPD bit 9-18
Assembler 1-16
Assembly language 2-1
Assigning DSP FIFOs 9-36

AC’97 data slots 9-36
Asynchronous transfers G-1
Attributes of the powerdown states

9-32
Audience (intended) 1-1
Audio/modem (AMC) codec 9-1
Autobuffering 11-17
AWE bit B-21

B
B5V bit B-17
Background registers (See Secondary

registers)
Barrel-shifter (See Shifter)
Base (Bx) registers 4-2, 4-15, A-3,

A-25, G-1
Base Address Registers 8-8
Battery-powered operation 11-29
BCEN bit 9-16, 9-35
BCOE bit 9-16, 9-27, 9-33
BCOK bit 9-19
Begin loop address 3-21

Bias rounding enable (BIASRND)
bit 2-10, A-20

Biased rounding 2-15
Binary coded decimal (BCD)

format 2-4
Binary string 2-4
Bit

AFR 9-15
Bit descriptions for FPM0, FPM1,

and FPM2 registers B-18
Bit manipulation 2-1, G-5
BIT Organization of PCI I/O Space

Registers 8-24
BIT_CLK bit 9-11
BITCLK

Disabling 9-29
BITCLK bit 9-34
BITCLK pin 9-26
BITCLK signal 9-27
Bit-reverse addressing G-1
Bit-reverse addressing (BIT_REV)

bit A-6, A-11
Bit-reversed addressing 4-1, 4-4,

4-6, 4-15
Bit-reversed addressing (BIT_REV)

bit 4-4, 4-6, 4-15
Bit-reversed addressing mode (BR)

enable/disable 3-43
Bits

AC97 B-52
AC97 IEN B-54
ACR 9-12, 9-22
ACRQ 9-24
ACRST# 9-33
ADSP-219x/2192 DSP Hardware Reference I-5

INDEX
ACSE 9-21
ACSV 9-22
ACVX B-16
ACWE 9-17, 9-33
Adjust B-23
ADSP-2192 register 9-27
AFD 9-16
AFR 9-33, 9-34
AFS 9-16
AGI 9-19
AGIx 9-19
AGPE 9-18
AGS 9-24
AIEN B-22
AINT B-22
APME B-18
ARPD 9-18
AWE B-21
B5V B-17
BCEN 9-16, 9-35
BCOE 9-16, 9-27, 9-33
BCOK 9-19
BIT_CLK 9-11
BITCLK 9-34
BUS B-17
CE 9-4
Conf Rdy B-53
CRST B-16
D2PM1 IEN B-53
DMA EN B-49
DME 9-4, 9-7
DPLLK 11-7
DPLLM 11-7
DPLLN 11-7

DSP1 IN0 ENA 6-24
DSP1 IN0 PEND 6-21
DSP1 IN1 ENA 6-25
DSP1 IN1 PEND 6-22
DSP1 OUT0 ENA 6-25
DSP1 OUT0 PEND 6-22
DSP1 OUT1 ENA 6-25
DSP1 OUT1 PEND 6-22
DSP2 IN0 ENA 6-25
DSP2 IN0 PEND 6-22
DSP2 IN1 ENA 6-25
DSP2 IN1 PEND 6-22
DSP2 OUT0 PEND 6-22
DSP2 OUT1 PEND 6-22
DSP2/DSP1 B-49
Empty B-50
FIEN B-21
Flush FIfo B-49
FUNCTION B-49
GIEN B-22
GINT B-22
GPIO B-52
GPIO IEN B-54
GPIO_INT 9-19
GPME B-18
GWAKE B-38
GWE B-21
GWKE B-36
GWKF B-40
GWKM B-37
HALT B-50
IN0 valid 6-22
IN1 valid 6-23
INTE B-36
I-6 ADSP-219x/2192 DSP Hardware Reference

INDEX
INTF B-40
INTM B-38
INTR B-39
LKEN 9-17, 9-33, 9-34
LKOK 9-19, 9-33, 9-34
LOOP B-50
MAbort IEN B-54
Master Abort B-52
MBox 0 IN B-52
MBox 0 OUT B-52
MBox 1 IN B-52
MBox 1 OUT B-52
MLNK 9-27, 9-34, 9-35
OUT0 valid 6-23
OUT1 valid 6-23
P2DM0 IEN B-53
P2DM1 IEN B-53
PACK DIS B-49
PCI IN0 ENA 6-24
PCI IN0 PEND 6-21
PCI IN1 ENA 6-24
PCI IN1 PEND 6-21
PCI OUT0 ENA 6-24
PCI OUT0 PEND 6-21
PCI OUT1 ENA 6-24
PCI OUT1 PEND 6-21
PCI RDY B-56, B-58, B-59
PCI5V B-17
PCIF B-53
PCIRST B-17
PD 11-24, 11-25, 11-31, 11-34,

B-20
PME B-19
PME_EN B-18

PMIEN B-21
PMINT B-22
PMWE B-21
PR4 9-27, 9-34, 9-35
PRn 9-34
PU 11-24, 11-25, 11-31, 11-34,

11-35, B-20
PWRST B-18
RDIS B-15
REG 9-20
REGD B-16
RFE 9-7
RO 9-8
RST B-14
RSTD B-21
RWE B-21
RX0 DMA B-51
RX1 DMA B-51
SCK B-29
SCKI B-29
SDA B-29
SDAI B-29
SEN B-29
SLOT 9-7
SMSEL 9-4, 9-6
SPME B-19
SYEN 9-15, 9-33, 9-34
SYNC 9-20
TAbort IEN B-54
Target Abort B-52
TFE 9-5
TFF 9-5
TU 9-5
TX0 DMA B-51
ADSP-219x/2192 DSP Hardware Reference I-7

INDEX
TX1 DMA B-51
Vaux B-17
WKUP B-37
WR/RD B-49
XON B-15

bits 9-4, 9-6
BitsDSP2 OUT0 ENA 6-25
BitsDSP2 OUT1 ENA 6-25
Block exponent 2-57
Blocks of memory 5-1, 5-2, 5-4,

G-4
Books to read 11-41
Branching execution 3-14

Delayed branch 3-14
Direct and indirect branches 3-15
Immediate branches 3-17
Indirect branches 3-15

Buffer overflow 4-14
Buffer overflow, circular 4-11
BUS bit B-17
Bus exchange (See Program memory

bus Exchange (PX) register)
Bus exchange, program memory

(PX) register A-3
Buses

Arbitration 5-3
BUSMODE Configuration 8-1

C
Cable for information 1-25
Cache control (CACTL) register

3-11, A-6, A-23
Effect latency 3-6

Cache DM access enable (CDE) bit
3-11, A-6

Cache efficiency 3-12
Cache Freeze (CFZ) bit A-6
Cache freeze (CFZ) bit 3-11
Cache hit/miss (See Cache efficiency)
Cache PM access enable (CPE) bit

3-11, A-6
Cache usage, optimizing 3-12
Call instruction 1-22
Call instructions 3-14, 3-43

Conditional branch 3-14
Delayed branch 3-14
Restrictions 3-19

CardBus function event (CB_FE0)
register B-36

CardBus Function Event Force
(CB_FEF0) Register B-40

CardBus Function Event Mask
(FEM) Register B-37

CardBus Function Event Present
State (CB_FPS0) Register B-38

CardBus Function Event Registers
B-32

CardBus mode
external clock 11-36

Carry (See ALU carry (AC) bit)
Carry output 2-18
CB_FEF0 register B-40
CB_FPS0 register B-38
CE bit 9-4
CE bits 9-6
Chain Pointer (CPx) registers 7-9,

7-22
I-8 ADSP-219x/2192 DSP Hardware Reference

INDEX
Chained DMA sequences 7-22
Chaining mode

ADI 9-30
Chip Control (SYSCON) Registers

B-14
Chipset

Digital controller 9-1
Circuit, digital, design of 11-41
Circular buffer addressing 4-11,

A-25, G-1
Registers 4-14
Restrictions 4-12
Setup 4-12
Wrap around 4-14

CIS Tuple Requirements B-35
Clear bit (CLRBIT) instruction

2-20
Clear interrupt (Clrint) instruction

3-43
Clearing results 2-30
CLKSEL pin 11-7
Clock

1/2X 11-10
1X 11-10

Clock distribution 11-41
Clock domains 11-8, 11-9
Clock generator 11-25, 11-32
Clock generator, DSP 11-25, 11-32
Clock oscillator 11-35
Clock rate, internal, changing

default multiplier 11-7
Clock signals 11-7
Clock, external 11-7, 11-36
CMOS level 11-37

CMOS standby state 11-32
Codec ID

Reading unpopulated 9-29
Codecs

External 9-25
Codec-to-ADSP-2192

communication 9-11
Cold or warm states 9-30
Cold power down state, AC’97

11-38
Commands executed after boot

11-15
Commonalities Between the Three

Functions B-54
Companding

(compressing/expanding) G-1
Compiler 1-16
Computational

Instructions 2-1
Mode, setting 2-10
Status, using 2-16

Computational resources 9-26
Computational units 2-1
Condition Code (CCODE)

condition 3-41
Condition code (CCODE) register

1-19, A-3, A-4, A-5, A-7, A-23
Effect latency 3-6

Conditional
Branches 3-14, 3-16, G-1
Instructions 2-16, 3-5, 3-39
Test in loops 3-21

Conditional instructions 1-22
Register usage 2-62
ADSP-219x/2192 DSP Hardware Reference I-9

INDEX
Conf Rdy bit B-53
CONFIG DEVICE DEFINITION

8-85
Configuration Ready (Conf Rdy)

bit B-53
Configuration Space Interactions

between Functions 8-5
Configuration Spaces 8-2
Configuring AC’97 sample data

streams 9-36
Connections, external crystal 11-8
Connectors 11-41
Contact information 1-25
Context switching 2-23, 2-36, 2-54,

2-59
Control 8-21
Control registers

STCTLx 9-2
Control status (CSR) register 9-29
Conventions 1-27
Core registers A-2
Core-to-core flags E-1
Count (Cx) registers 7-9
Count register 9-8
Counter (CNTR) register 3-20,

3-38, A-4, A-5, A-22
Effect latency 3-6

Counter expired (CE) condition
1-22, 3-20, 3-41

CRST bit B-16
Crystal connections, external 11-8
Crystal oscillator 11-7
Crystal type 11-7
CSR writes 9-30, 9-37

Current Interrupt State (INTR) bit
B-39

Current wakeup state (GWAKE) bit
B-38

Customer support 1-25

D
D0 power management state 11-28
D1 power management state 11-28
D2 power management state 11-28
D2PM1 IEN bit B-53
D3cold power management state

11-28
D3hot power management state

11-28
DAG

Addressing Modes 1-21
Features 1-5
Instructions 4-21

DAG secondary registers mode
(BSR) enable/disable 3-43

DAGs 4-3
Data move restrictions 4-20
Data moves 4-20
Instructions 4-21
Operations 4-9
Setting Modes 4-4
Status 4-8
Support for branches 3-3, 3-15

Data (Dreg) registers G-2
Data access

(See also Data moves)
Conflicts 5-3
Dual-data access restrictions 5-2
I-10 ADSP-219x/2192 DSP Hardware Reference

INDEX
Dual-data accesses 5-2
Data Address Generators (DAGs)

G-2
Instructions 5-14

Data Address Generators (See
DAGs)

Data alignment 5-5
Data Buffers 7-10
Data flow 2-1
Data formats 2-2
Data Memory (DM) bus 2-53
Data memory page (DMPGx)

registers 1-11, 1-20, 4-2, 4-6,
4-7, A-3, A-4, A-25

Effect latency 3-6
Data move

Instructions 5-14
Data register file 2-1, 2-57
Data registers 2-57, A-16, G-2
Data slots 9-36
De-asserting ACRST# 9-30
Delay, synchronization 11-9
Delayed branch (DB) Jump or Call

3-14, 3-16, 3-18, G-2
Restrictions 3-19

Delayed branch (DB) operator 3-16
Delayed branch slots 3-18
Denormalize operation 2-42, 2-53
Derive block exponent 2-37, 2-39,

2-57
Destination registers 9-9
Development tools 1-15
Differences from previous DSPs

1-17…1-24

Shifting data into SR2 2-41
Digital circuit design 11-41
Digital controller (DC) chipset 9-1
Diodes, protection 11-25, 11-26
Direct branch 3-15, G-2
Disable mode (Dis) instruction

3-43
Disabling an AC’97 sample stream

9-36
Disabling the link 9-29
Disabling the locally generated

BITCLK 9-29
Divide primitive (DIVS/DIVQ)

instructions 2-5, 2-20, 2-23,
2-24, 2-26

Division
Signed 2-24
Unsigned 2-24

DMA
External port 7-22
Serial port 7-24

DMA (Direct Memory Accessing)
G-2

DMA chaining G-2
DMA channel

Channels, parameters, and buffers
7-10

Current count 9-8
Priority 7-21

DMA Channel Halt Status (HALT)
bit B-50

DMA Channel Loop Status
(LOOP) bit B-50

DMA channels 7-10
ADSP-219x/2192 DSP Hardware Reference I-11

INDEX
DMA Control (DMACx) registers
7-12

DMA Control 0 - Bus master
control and status B-49

DMA Control Registers B-46
DMA controller 1-4

Operation 7-20
DMA EN bit B-49
DMA Enable (DMA EN) bit B-49
DMA enable (DME) bit 9-7
DMA Enable, external port (DEN)

bit 7-11, 7-13
DMA FIFO Empty Status (Empty)

bit B-50
DMA Packing Disable (PACK DIS)

bit B-49
DMA parameter registers G-2
DMA sequences

Chaining sequences 7-22
Sequence end 7-20
Sequence start 7-20
TCB loading G-2

DMA Transfer Count 0 - Bus
master Sample transfer count
B-48

DMA Transfer Count 1 - Bus
master Sample transfer count
B-48

DMA transfers
Number specified 9-9

DMA Write / Read (WR/RD) bit
B-49

DME bit 9-4, 9-7
Do Until instruction A-6

Do/Until instruction 1-22, 3-22,
3-23, 3-43

(See also Loop)
Restrictions 3-19

Dormant state 11-29
DPLLK bit 11-7
DPLLM bit 11-7
DPLLN bit 11-7
DSP

Background information 1-17
Core architecture 1-7
Defined 1-1
Peripherals architecture 1-9
Serial ports (SPORTs) 1-13

DSP clock generator 11-25, 11-32
DSP Code Download 8-65
DSP core

Register map 9-9
DSP DMA FIFOs 9-26
DSP Mailbox Registers 8-18, B-30
DSP peripherals architecture B-3
DSP PLL Control Register B-23
DSP power management states

11-28
DSP Powerdown Registers B-19
DSP Register Definitions 8-58
DSP to PCI Mailbox 1 Transfer

Interrupt Enabled (D2PM1
IEN) bit B-53

DSP1 IN0 ENA bit 6-24
DSP1 IN0 PEND bit 6-21
DSP1 IN1 ENA bit 6-25
DSP1 IN1 PEND bit 6-22
DSP1 OUT0 ENA bit 6-25
I-12 ADSP-219x/2192 DSP Hardware Reference

INDEX
DSP1 OUT0 PEND bit 6-22
DSP1 OUT1 ENA bit 6-25
DSP1 OUT1 PEND bit 6-22
DSP2 IN0 ENA bit 6-25
DSP2 IN0 PEND bit 6-22
DSP2 IN1 ENA bit 6-25
DSP2 IN1 PEND bit 6-22
DSP2 OUT0 ENA bit 6-25
DSP2 OUT0 PEND bit 6-22
DSP2 OUT1 ENA bit 6-25
DSP2 OUT1 PEND bit 6-22
DSP2/DSP1 bit B-49
D-state 11-30
Dual accumulator 1-18
Dual accumulators 2-2
Dual-voltage processor 11-24,

11-25

E
Edge-sensitive interrupts 11-10,

G-3
EEPROMI/O control/status

(SPROMCTL) register B-28
Effect latency (See Latency)
E-mail for information 1-25
Empty bit B-50
Emulation 11-39
Emulation, JTAG port 1-4
Emulator cycle counter interrupt

enable (EMUCNTE) bit A-21
Emulator interrupt mask (EMU) bit

A-19
Enable mode (Ena) instruction

2-60, 3-43

Enable/Disable mode (Ena/Dis)
instruction 4-6

Enabling an AC’97 sample stream
9-36

Endian Format, Little Versus Big
G-3

End-of-loop 3-24
Equal zero (EQ) condition 3-40
Equals zero (EQ) condition 1-19
ESD protection 11-25, 11-26
Example Initialization Process 8-81
Excess-n formats 2-4
Execute (PC) stage 3-8
Explicit stack operations 3-39
Exponent adjust (EXPADJ)

instruction 2-38, 2-39, 2-51
Exponent compare logic 2-52
Exponent derivation 2-1

Double-precision number 2-38
Exponent derive (EXP) instruction

2-38, 2-44, 2-51
Exponent detector 2-53, 2-55, 2-57
Exponent, shifter (SE) register A-2
Exponent, shifter block (SB) register

A-2
External audio codec (AC ’97)

subsystem 9-25
External clock 11-7
External codec 9-27
External codecs 9-25
External port DMA

DMA setup 7-22
EZ-KIT Lite 11-40
ADSP-219x/2192 DSP Hardware Reference I-13

INDEX
F
FAX for information 1-24
Feedback, input 2-1
Fetch address 3-2, 3-3
Fetch address (FA) stage 3-8
FFT calculations 4-15
Field deposition/extraction G-5
FIEN bit B-21
FIFO

Size for AC’97 interface 9-2
FIFO control and status register 9-3
FIFO DMA address registers 9-8
FIFO DMA count registers 9-9
FIFO DMA current count registers

9-8
FIFO DMA next address registers

9-9
FIFO interrupt position (FIP) bit

9-7
FIFO receive control and status

register 9-5
FIFO receive control and status

registers 9-2
FIFO registers 9-1
FIFO transmit control and status

register 9-3
FIFOs E-5
File Transfer Protocol (FTP) site

1-24
FIP bit 9-7
FIP bits 9-4
Fixed-point DSP (why?) 1-2
Flag In (FI) 11-1

Flag Input 1-22
Flag input pins during low power

state 11-37
Flag Out (FO) 11-1
Flag pins 11-22
Flag update 2-18, 2-31, 2-50, G-3
Flags 11-37
Flags, core-to-core E-1
Flush Cache instruction 3-11, 3-43
Flush DMA buffers/status (FLSH)

bit 7-12
Flush FIfo bit B-49
Flush Master FIFO (Flush FIfo) bit

B-49
Forced rebooting, by software 11-16
Forever condition 3-41
Fractional mode 2-5, 2-6, 2-10,

A-13
Results format 2-12

Fractional mode (See also Multiplier
results mode)

Fractional Representation (1.15)
2-5

Fractional/integer mode (MM)
enable/disable 3-43

FUNCTION bit B-49
Function Select (FUNCTION) bit

B-49

G
Gates, logic 11-41
General Purpose I/O Pin Initiated

(GPIO) bit B-52
I-14 ADSP-219x/2192 DSP Hardware Reference

INDEX
General Purpose I/O Pin Initiated
Interrupt Enabled (GPIO IEN)
bit B-54

General Purpose IO (GPIO)
Control Registers B-24

General USB Device Definitions
and Descriptor Tables 8-52

General Wakeup Event Pending
(GWKE) bit B-36

General Wakeup Mask (GWKM)
bit B-37

GIEN bit B-22
GINT bit B-22
Global interrupt enable (GIE) bit

3-37, A-20
Global interrupt mode (INT)

enable/disable 3-43
GND

Used with SDI pins 9-26
GPIO bit B-52
GPIO configuration (CPIOCFG)

register B-25
GPIO control (GPIOCTL) register

B-27
GPIO IEN bit B-54
GPIO polarity (GPIOPOL) register

B-25
GPIO pulldown (GPIOPDN)

register B-27
GPIO pullup (GPIOPUP) register

B-27
GPIO status (GPIOSTAT) register

B-26

GPIO sticky (GPIOSTKY) register
B-26

GPIO wakeup control
(GPIOWCTL) register B-26

GPIO_INT bit 9-19
GPIOCFG register B-24
GPIOCTL register B-24
GPIOPDN register B-25
GPIOPOL register B-24
GPIOPUP register B-25
GPIOSTAT register B-24
GPIOSTKY register B-24
GPIOWCTL register B-24
GPME bit B-18
Greater than or equal to zero (GE)

condition 1-19
Greater than or equal zero (GE)

condition 3-40
Greater than zero (GT) condition

1-19, 3-40
Ground planes 11-41
GSM speech compression routines

2-15
GWAKE bit B-38
GWE bit B-21
GWKE bit B-36
GWKF bit B-40
GWKM bit B-37

H
HALT bit B-50
Harvard architecture 5-1, G-3
High shift (HI) option 2-37, 2-38,

2-53, 2-54
ADSP-219x/2192 DSP Hardware Reference I-15

INDEX
High shift, except overflow (HIX)
option 2-37, 2-38, 2-45, 2-55

High watermark, stack 3-36, 3-37
Host Mailbox Registers B-30
Host port 1-12
Host Port Selection 8-1
Hypertext links 1-28

I
I/O memory page (IOPG) register

A-3, A-4, A-6, A-26
Effect latency 3-6

I/O memory space 5-9, 5-13
I/O pins B-3
I/O processor 1-4, 7-1, 7-6, 7-18

DMA channel priority 7-21
External port modes 7-12
Registers G-3
Serial port modes 7-18

I/O Space Indirect Access Registers
8-23

IDLE instruction 11-34, 11-39
Idle instruction 3-34, 3-43, G-3

Defined 3-1
Restrictions 3-19

IEEE 1149.1 JTAG specification
G-4

IF conditional operator 3-43
If conditional operator 2-20
IMASK register E-1
Immediate addressing

Memory page selection 4-7
Immediate branch 3-17
Immediate shifts 2-40

Implicit stack operations 3-38
IN Transactions (Host 8-92
IN0 valid bit 6-22
IN1 valid bit 6-23
InBox 8-18
InBox 0 - PCI/USB to DSP

Mailbox 0 (MBX_IN0) register
6-26

InBox 1 - PCI/USB to DSP
Mailbox 1 (MBX_IN1) register
6-26

InBox0 Data Valid (IN0 valid) bit
6-22

InBox0 DSP #1Interrupt Enable
(DSP1 IN0 ENA) bit 6-24

InBox0 DSP 1 Interrupt Pending
(DSP1 IN0 PEND) bit 6-21

InBox0 DSP 2 Interrupt Pending
(DSP2 IN0 PEND) bit 6-22

InBox0 PCI Interrupt Enable (PCI
IN0 ENA) bit 6-24

InBox0 PCI Interrupt Enable (PCI
OUT0 ENA) bit 6-24

InBox0 PCI Interrupt Pending
(PCI IN0 PEND) bit 6-21

InBox1 Data Valid (IN1 valid) bit
6-23

InBox1 DSP #1 Interrupt Enable
(DSP1 IN1 ENA) bit 6-25

InBox1 DSP #2 Interrupt Enable
(DSP2 IN0) bit 6-25

InBox1 DSP #2 Interrupt Enable
(DSP2 IN1 ENA) bit 6-25
I-16 ADSP-219x/2192 DSP Hardware Reference

INDEX
InBox1 DSP 1 Interrupt Pending
(DSP1 IN1 PEND) 6-22

InBox1 DSP 2 Interrupt Pending
(DSP2 IN1 PEND) bit 6-22

InBox1 PCI Interrupt Enable (PCI
IN1 ENA) bit 6-24

InBox1 PCI Interrupt Enable (PCI
OUT1 ENA) bit 6-24

InBox1 PCI Interrupt Pending
(PCI IN1 PEND) bit 6-21

Incoming Mailbox 0 PCI Interrupt
(MBox 0 IN) bit B-52

Incoming Mailbox 1 PCI Interrupt
(MBox 1 IN) bit B-52

Index (Ix) registers 4-2, 4-7, 4-14,
4-15, A-3, A-4, A-24, G-3

Indirect Access to I/O Space 8-23
Indirect branch 3-15, G-3
Indirect jump memory page (IJPG)

register A-3, A-4, A-6, A-21
Indirect Jump Page (IJPG) Register

3-15
Indirect jump page (IJPG) register

1-11, 3-15
Effect latency 3-6

Infinite loops 3-20
Infinite loops (Forever) condition

1-22
Instruction cache 3-9, 3-10, 5-2
Instruction decode (ID) stage 3-8
Instruction pipeline 3-3, 3-7, 3-16
Instruction set 1-1, 1-27

ALU instructions 2-20
DAG instructions 4-22

Enhancements 1-24
Multifunction instructions 2-63,

4-22
Multiplier instructions 2-33
Program Sequencer instructions

3-43
Shifter instructions 2-51

Instructions
Registers for

conditional/multifunction 2-62
INTE bit B-36
Integer mode 2-7, 2-10, A-13

Results format 2-13
Integer mode (See also Multiplier

results mode)
Integer/fractional mode (MM)

enable/disable 3-43
Interactions Between Functions 8-5
Interactions Between the Three

Functions B-55
Interleaved data 5-13
Internal clock rate, changing default

multiplier 11-7
Internal I/O Bus Arbitration

(Request and Grant) 7-21
Internal memory 5-1, 5-9, 5-10,

5-11
Interrupt control (ICNTL) register

A-3, A-4, A-5, A-7, A-20
Effect latency 3-6

Interrupt controller 3-3
Interrupt Event Pending (INTE) bit

B-36
Interrupt Force (INTF) bit B-40
ADSP-219x/2192 DSP Hardware Reference I-17

INDEX
Interrupt latch (IRPTL) register
3-33, A-3, A-4, A-19

Effect latency 3-6
Interrupt latency 3-26

Cache miss 3-28
Delayed branch 3-29
Single-cycle instruction 3-27
Writes to IRPTL 3-26

Interrupt mask (IMASK) register
3-31, A-3, A-4, A-5, A-19

Effect latency 3-6
Interrupt mask pointer (IMASKP)

register 3-33
Interrupt masking E-5
Interrupt mode (INT)

enable/disable 3-43
Interrupt nesting enable (INE) bit

3-32, A-20
Interrupt request 11-1
Interrupt requests, edge-sensitive

11-10
Interrupt vector, defined 3-24
Interrupt, non-maskable 11-39
Interrupt, peripheral E-1
Interrupt/ Wakeup Mask (INTM)

bit B-38
Interrupt/Powerdown Registers

11-24, 11-31
Interrupting Idle 3-34
Interrupts 1-12, 3-24, 8-14, 11-22,

11-37, E-4, E-5, G-3
Delayed branch 3-20
Hold off 3-30
Idle instructions 3-34

Inputs 3-25
Interrupt nesting 3-32
Interrupt sensitivity G-4
IRPTL write timing 3-26
Latency (See Interrupt latency)
Masking and latching 3-31
Nesting and processing 3-30
Processing delays 3-30
Response 3-25
Software 3-26

Interrupts, defined 3-1
Interrupts, global enable (GIE) bit

3-31, 3-37, A-20
INTF bit B-40
INTM bit B-38
INTR bit B-39
IO pin ESD protection 11-26
IOPG register

Selecting a codec 9-23
IRPTL register E-1

J
JTAG ID registers B-32
JTAG port 1-4, 1-15, 10-1, G-4
Jump instruction 1-22, 3-14, 3-43

Conditional 3-14
Delayed branch 3-14
Restrictions 3-19

Jump instructions G-4
Jumps, defined 3-1

L
Latching Interrupts 3-31
Latchup events 11-25
I-18 ADSP-219x/2192 DSP Hardware Reference

INDEX
Latency 2-19, 3-11, 3-26, 7-12,
7-18

Enabling modes 2-60
Jump instructions 1-23
Program sequencer registers 3-5
Registers A-5

Layer stacking 11-41
Length (Lx) registers 4-2, 4-15, A-3,

A-4, A-25, G-4
Initialization requirements 4-2

Less than or equal zero (LE)
condition 3-40

Less than zero (LE) condition 1-19
Less than zero (LT) condition 1-19,

3-40
Level, stack interrupt 3-37
Level-sensitive interrupts G-4
Link

Disabling 9-29
Restarting 9-35

Link buffer DMA Enable (LxDEN)
bit 7-11

Link powerdown states
Illustrated 9-31

Link powerdown states for AC’97
9-30

Link powerdown states, by function
9-31

Link powerdown states, by signal
9-32

Linker 1-17
LKEN bit 9-17, 9-33, 9-34
LKOK bit 9-19, 9-33, 9-34

Loader 1-17
Logic gates 11-41
Logical (AND, OR, XOR, NOT)

operators 2-20
Logical shift (Lshift) instruction

2-7, 2-37, 2-38, 2-41, 2-51
Logical shifts G-5
Long call (Lcall) instruction 3-7,

3-15, 3-43
Long jump (Ljump) instruction 3-7,

3-15, 3-43
Long word

Data access 5-5
Look ahead address (LA) stage 3-8
Loop G-4

Address stack 3-5
Begin address 3-21
Conditional loops 3-20
Conditional test 3-21
Defined 3-1
Do/Until example 3-20
End restrictions 3-24
Infinite 3-20, 3-41
Nesting restrictions 3-24
Stack management 3-24
Termination 3-5, 3-23

LOOP bit B-50
Loop counter expired (CE)

condition 3-20
Loop stack address (LPSTACKA)

register A-3, A-4, A-22
Loop stack empty (LPSTKEMPTY)

condition 3-43
ADSP-219x/2192 DSP Hardware Reference I-19

INDEX
Loop stack empty status
(LPSTKEMPTY) bit 3-36,
A-14

Loop stack full (LPSTKFULL)
condition 3-43

Loop stack full status
(LPSTKFULL) bit 3-36, A-14

Loop stack page (LPSTACKP)
register A-3, A-4, A-22

Low latency
Recommendation 9-23

Low power 11-29
Low power configuration 11-36
Low power consumption 11-32
Low power mode

AC’97 11-38
Low power operation 1-13
Low shift (LO) option 2-37, 2-38,

2-53, 2-54
Low watermark, stack 3-36, 3-37
Lowest power consumption 11-30,

11-36, 11-37
Lowest power dissipation 11-37
LQFP 11-3

M
MAbort IEN bit B-54
MAC overflow (MV) condition

3-40
Mailbox Control Register 8-21
Mailbox interrupt control

(MBXCTL) register 6-24

Mailbox status (MBXSTAT)
register 6-21

Mailbox Status Register 8-19
Mailing address for information

1-25
Masking interrupts 3-31, E-5
Master Abort bit B-52
MBox 0 IN bit B-52
MBox 0 OUT bit B-52
MBox 1 IN bit B-52
MBox 1 OUT bit B-52
MBXCTL register 6-24
MBXCTL register bit descriptions

6-24
MC codec 9-1
MCU Register Definitions 8-33
Measurement techniques 11-41
Memory 1-4, 5-1, 5-4, 5-9, 5-10,

5-11
Access priority 5-2, 5-3
Architecture 1-9
Blocks of memory 5-1, 5-2, 5-4,

G-4
External memory (off-chip) 1-12
Internal memory (on-chip) 1-11
Memory map 5-8
MIPS and DSP 9-26

Memory page selection 4-7
Memory, unified 1-20
MIPS and DSP memory 9-26
MLNK bit 9-27, 9-34, 9-35
Mnemonics (See Instructions)
Mode

Biased rounding 2-10
I-20 ADSP-219x/2192 DSP Hardware Reference

INDEX
Mode status (MSTAT) register
2-13, 4-5, 4-15, A-2, A-4, A-6,
A-7, A-11

Effect latency 3-6
Mode Strap Pin Connections 8-2
Modem codec (MC) 9-1
MODEM/AUDIO DEVICE

DEFINITION 8-85
Modes

ALU overflow latch 2-10
ALU saturation 2-10
Chaining 9-30

Modified addressing 4-9, G-4
Modify (Mx) registers 4-2, 4-14,

A-3, A-4, A-24, G-4
Modify address 4-1, G-4
Modify instruction 4-19, 4-22
Multifunction computations G-4
Multifunction instruction

Register usage 2-62
Registers 11-12

Multifunction instructions 2-60,
11-11

DAG restrictions 4-11
Definition 11-11
Delimiting and terminating 2-61,

2-63
Multiplier 2-1, 2-36, G-5

Arithmetic formats 2-8
Clear operation 2-30
Data types 2-6
Input operators 2-29, 2-33
Instructions 2-33, 2-63
Operations 2-28, 2-31

Result (MR) register 2-28
Result mode 2-10
Results 2-30
Rounding 2-30
Saturation 2-30
Status 2-16, 2-31

Multiplier data registers A-2
Multiplier dual accumulator 1-18
Multiplier feedback (MF) register

1-18, 2-36
Multiplier input (MX/MY) registers

1-17
Multiplier integer mode (MM)

enable/disable 3-43
Multiplier mode (M_MODE) bit

2-10
Multiplier of internal clock rate

11-7
Multiplier overflow (MV) bit 2-31,

2-32, 2-34, A-10
Multiplier overflow (MV) condition

1-19
Multiplier result (MR) register

2-13, 2-14, 2-29, 2-32, 2-34,
2-53

Multiplier result (MR0-2) registers
A-2, A-4, A-16, A-17

Multiplier results (MR) register
1-18, 2-2

Multiplier results mode selection
(M_MODE) bit A-6, A-13

Multiplier results overflow (MV) bit
2-33
ADSP-219x/2192 DSP Hardware Reference I-21

INDEX
Multiplier status bits 2-10, 2-31,
A-10, A-20

Multiplier x- and y-input (MX MY)
registers A-4, A-16, A-17

Multiply instruction 2-33
Multiply—accumulator (See

Multiplier)
Multiprecision operations 2-23

N
Negative, ALU (AN) bit A-9
Nested interrupts 3-32
NextAddress register 9-8
No operation (Nop) instruction

3-43
Non-maskable interrupt 11-39
Normalize

ALU result overflow 2-45
Double precision input 2-47
Operations 2-37, 2-49
Single precision input 2-44

Normalize (NORM) instruction
2-38, 2-51

Execution difference 2-46
Normalize operation 2-53
Not equal to zero (NE) condition

1-19
Not equal zero (NE) condition 3-40
NOT operator 2-20
NOVRAM Changeable Fields for

USB Descriptors 8-86
NOVRAM Interface 8-86
NxtAddress register 9-9

O
One’s complement 2-4
Operands 2-17, 2-28, 2-57, G-2
OR function 9-26
OR operator 2-20
Oscillator stabilization 11-35
Oscillator, clock 11-35
Oscillator, crystal 11-7
OUT Transactions (Host ->

Device) 8-91
OUT0 valid bit 6-23
OUT1 valid bit 6-23
OutBox 8-19
OutBox 0 - DSP to PCI/USB

Mailbox 0 (MBX_OUT0)
register 6-26

OutBox 1 - DSP to PCI/USB
Mailbox 1 6-26

OutBox0 Data Valid (OUT0 valid)
bit 6-23

OutBox0 DSP #1 Interrupt Enable
(DSP1 OUT0 ENA) bit 6-25

OutBox0 DSP #2 Interrupt Enable
(DSP2 OUT0 ENA) bit 6-25

OutBox0 DSP 1 Interrupt Pending
(DSP1 OUT0 PEND) bit 6-22

OutBox0 DSP 2 Interrupt Pending
(DSP2 OUT0 PEND) bit 6-22

OutBox0 PCI Interrupt Pending
(PCI OUT0 PEND) bit 6-21

OutBox1 Data Valid (OUT1 valid)
bit 6-23

OutBox1 DSP #1 Interrupt Enable
(DSP1 OUT1 ENA) bit 6-25
I-22 ADSP-219x/2192 DSP Hardware Reference

INDEX
OutBox1 DSP #2 Interrupt Enable
(DSP2 OUT1 ENA) bit 6-25

OutBox1 DSP 1 Interrupt Pending
(DSP1 OUT1 PEND) 6-22

OutBox1 DSP 2 Interrupt Pending
(DSP2 OUT1 PEND) bit 6-22

OutBox1 PCI Interrupt Pending
(PCI OUT1 PEND) bit 6-21

Outgoing Mailbox 0 PCI Interrupt
(MBox 0 Out) bit B-52

Outgoing Mailbox 1 PCI Interrupt
(MBox 1 Out) bit B-52

Overflow A-9, A-10
ALU (see ALU overflow (AV) bit)
Multiplier (see Multiplier overflow

(MV) bit)
Shifter (see Shifter overflow (MV)

bit)
Overflow latch mode (OL)

enable/disable 3-43
Overflow, ALU 2-11
Overflow, ALU latch mode 2-10
Overflow, stack 3-36, 3-37
Overrun, timer 11-17
Overview 8-1, 8-25, B-1
Overview—Why Fixed-Point DSP?

1-2

P
P2DM0 IEN bit B-53
P2DM1 IEN bit B-53
PACK DIS bit B-49
Package configuration 11-3
Page

DAG page (DMPGx) registers
A-3

I/O memory page (IOPG) register
A-3

Indirect jump page (IJPG) register
A-3

Parallel assembly code (See
Multifunction computation)

Parallel operation to improve
performance 11-11

Parallel operations 2-60, G-4
Pass instruction 2-20
PC stack address (STACKA)

register 3-5, A-3
PC stack empty (PCSTKEMPTY)

condition 3-43
PC stack empty status

(PCSTKEMPTY) bit 3-36,
A-14

PC stack full (PCSTKFULL)
condition 3-43

PC stack full status (PCSTKFULL)
bit 3-36, A-14

PC stack interrupt enable
(PCSTKE) bit 3-37, A-20

PC stack level (PCSTKLVL)
condition 3-43

PC stack level status (PCSTKLVL)
bit 3-36, 3-37, A-14

PC stack page (STACKP) register
3-5, A-3

PCI Clock Domain 8-11
PCI Configuration Register Space

B-54
ADSP-219x/2192 DSP Hardware Reference I-23

INDEX
PCI Configuration Register Space,
Function 0 B-56

PCI Configuration Register Space,
Function 1 B-58

PCI Configuration Register Space,
Function 2 B-59

PCI Configuration Space 8-3
PCI Control Register 8-16, B-53
PCI DMA address, count registers

B-46
PCI DMA Control Registers B-46
PCI functions B-18
PCI Functions Configured (PCIF)

bit B-53
PCI IN0 ENA bit 6-24
PCI IN0 PEND bit 6-21
PCI IN1 ENA bit 6-24
PCI IN1 PEND bit 6-21
PCI Interface Master Abort Detect

Interrupt Enabled (MAbort
IEN) bit B-54

PCI Interface Master Abort
Detected (Master Abort) bit
B-52

PCI Interface Target Abort Detect
Interrupt Enabled (TAbort
IEN) bit B-54

PCI Interface Target Abort
Detected (Target Abort) bit
B-52

PCI Interrupt Register 8-15, B-50
PCI Interrupt, Control Registers

B-47
PCI mode

external clock 11-36
PCI OUT0 ENA bit 6-24
PCI OUT0 PEND bit 6-21
PCI OUT1 ENA bit 6-24
PCI OUT1 PEND bit 6-21
PCI Parallel Interface 8-2
PCI Port Priority on PDC Bus 8-18
PCI power management

control/status (SYSCON)
register B-33

PCI power management states
11-28

PCI RDY bit B-56, B-58, B-59
PCI reset 11-14
PCI to DSP Mailbox 0 Transfer

Interrupt Enabled P2DM0
IEN) bit B-53

PCI to DSP Mailbox 1 Transfer
Interrupt Enabled (P2DM1
IEN) bit B-53

PCI, powering down 11-32
PCI5V bit B-17
PCIF bit B-53
PCIRST bit B-17
PCM digital stream 9-10
PD (power down) bit 11-24, 11-25,

11-31
PD bit B-20
PD bit, in PWRP1 and PWRP2

registers 11-34
PD bit, using to power down DSP

11-24, 11-31
PDC registers B-4
PDC waitstates 9-29
I-24 ADSP-219x/2192 DSP Hardware Reference

INDEX
Performance, maximizing, of DSP
algorithms 11-11, 11-12

Peripheral device control (PDC)
registers B-4

Peripheral Device Control Register
Access 8-12

Peripheral Device Control Registers
8-9

Peripheral Device Register Groups
B-4

Peripheral interrupt E-1
Peripheral Registers B-2
Peripherals G-5
Peripherals supported by the serial

interface 9-10
Phase locked loop (PLL) 11-10
Phase locked loop (PLL), internal

11-7
Phase locked loop clock generators

B-23
Pin descriptions 11-3

AC’97 11-5
crystal/configuration 11-4
emulator 11-5
I/O 11-6
PCI/USB 11-3
power supply 11-6
Serial EEPROM 11-5

Pin listing for AC ’97 9-26
Pin loading 11-30
Pin names 1-27
Pins

AC’97, descriptions 11-5
ACRST# 9-26

BITCLK 9-26
CLKSEL 11-7
Crystal, descriptions 11-4
Definitions 11-3
Emulator, descriptions 11-5
Flag 11-22
I/O, descriptions 11-6
low power state 11-37
PCI/USB, descriptions 11-3
Power Supply, descriptions 11-6
Processor 11-3
Processor control 11-1
Programmable flag B-3
SDI 9-25
SDO 9-26
Serial EEPROM, descriptions

11-5
SYNC 9-26

pins 9-19, 9-26
Pipeline (See Instruction pipeline)
Platform States 11-30
PLL 11-10
PLL (Phase Locked Loop) clock

generators B-23
PLL, internal 11-7
PME bit B-19
PME_EN bit B-18
PME_Enable state 11-30
PMIEN bit B-21
PMINT bit B-22
PMWE bit B-21
Pop/Push instruction 3-14
Pop/Push instructions 3-43
PORST 11-1, 11-13, 11-35
ADSP-219x/2192 DSP Hardware Reference I-25

INDEX
PORST signal 11-13
Porting from previous DSPs

ALU sign (AS) status 2-18
Circular buffer addressing 4-15
DAG instruction syntax 4-11
DAG registers 4-3
Data register file 2-35
Multiplier dual accumulators

2-28
Multiplier feedback support 2-36
Normalize operation 2-46
Secondary DAG registers 4-6
Shifter results (SR) register 2-50

Post-modify addressing 4-1, 4-22,
G-5

Instruction syntax 4-9
Power conservation 11-29
Power consumption limits 11-26
Power consumption, lowest 11-30,

11-36, 11-37
Power down modes 11-29
Power management 11-28
Power Management Functions

B-18
Power Management Interactions

8-9
Power Management Register

Interactions between
Functions 8-10

Power management states 11-28
AC’97 11-28
PCI 11-28
software-controlled 11-28
USB 11-28

Power On Reset 11-13
Power regulators 11-26, 11-27
Power states 11-23

AC’97 11-23
Clock crystal 11-23
PCI 11-23
USB 11-23

Power supplies 11-25
Power systems 11-41
Power, AC’97 low power mode

11-38
Power, low 11-29
Powerdown 11-29, 11-30, 11-31,

11-35, 11-36, 11-39
Powerdown interrupt 11-39
Powerdown interrupt instructions

11-39
Powerdown interrupt mask

(PWDN) bit A-19
Powerdown mode 11-35, 11-36
Powerdown states

Attributes 9-32
Power-down transitions 9-34
Powerdown, aborting 11-24, 11-31
Powerdown, exiting 11-35, 11-36
Powered down, both DSPs 11-25,

11-32
Powering down DSP 11-24, 11-31
Powering down the AC’97 11-33
Powering down the link

Cautions 9-27
Powering down the PCI 11-32
Powering down the USB 11-32
Powering up DSP 11-24, 11-31
I-26 ADSP-219x/2192 DSP Hardware Reference

INDEX
Powerup 11-24
Power-up transitions 9-33
Powerup, aborting 11-24, 11-31
PR4 bit 9-27, 9-34, 9-35
Precision 1-5, G-5
Prefetch address (PA) stage 3-8
Pre-modify addressing 4-1, 4-22,

G-5
Instruction syntax 4-9

Primary codec 9-27
Primary registers 2-23, 2-36, 2-57
PRn bits 9-34
Processor control pins 11-1
Processor, resetting 11-13
Program Control Interrupt (PCI)

bit 7-22
Program counter (PC) register 1-11,

3-3
Program Counter (PC) relative

address G-2
Program counter (PC) relative

address 3-15
Program counter (PC) stack 3-5
Program flow 3-2, 3-7, 11-35
Program memory bus Exchange

(PX) register 5-5, 5-6
Program memory bus exchange

(PX) register A-3, A-4, A-26
Program sequencer 1-3, 1-5, 3-1

Instructions 3-42
Programmable Flag Data register

11-22
Programmable flag pins B-3
Programming information 1-1

Protection diodes 11-25, 11-26
Protocol summary for AC ’97 9-27
PS0 platform state 11-30
PS1 platform state 11-31
PU bit 11-24, 11-25, 11-31, B-20
PU bit, in PWRP1 and PWRP2

registers 11-34, 11-35
PU bit, using to power up DSP

11-24, 11-31
Purpose (of text) 1-1
Push/Pop instructions

Restrictions 3-19
PWRP1 register 11-24, 11-31

PD bit 11-34
PU bit 11-34, 11-35

PWRP2 register 11-24, 11-31
PD bit 11-34
PU bit 11-34, 11-35

PWRST bit B-18

Q
Quotient bit 2-18
Quotient, ALU (AQ) bit A-10

R
RDIS bit B-15
Reading unpopulated codec IDs

9-29
Reading, recommended 11-41
Rebooting, software-forced 11-16
Receive FIFO empty (RFE) bit 9-7
Receive overflow (RO) bit 9-8
Recommended reading 11-41
REG bit 9-20
ADSP-219x/2192 DSP Hardware Reference I-27

INDEX
REGD bit B-16
Register

SRCTL 9-37
Register and Bit #Defines File 8-94
Register and Bit #Defines File

(def2192.h) 8-94, B-95
Register bit definitions

AC ’97 link status 9-19
AC ’97 slot enable 9-22

Register files G-2
Register files (See Data register files)
Register Group Descriptions B-11
Register map for DSP core 9-9
Register names 1-27
Registers

AC’97 codec control/status 9-29
AC’97 control 9-13
AC97LCTL 9-15, 9-27, B-42
AC97SEN B-43
AC97SIF 9-24, B-44
AC97SREQ B-44
AC97STAT 9-12, 9-19, B-42
AC97SVAL 9-22, B-43
AC98TLCTL B-42
Access to AC’97 codec

control/status 9-28
ACRQ 9-24
ACSE 9-21, 9-36
Address 9-8, 9-9
CB_FE0 B-36
CB_FPS0 B-38
Count 9-8
CPIOCFG B-24
Destination 9-9

DSP core A-2
FEM B-37
FIFO 9-1
FIFO control and status 9-3
FIFO DMA address 9-8
FIFO DMA count 9-9
FIFO DMA current count 9-8
FIFO DMA next address 9-9
FIFO receive control and status

9-5
FIFO transmit control and status

9-3
GPIOCTL B-24
GPIOPDN B-25
GPIOPOL B-24
GPIOPUP B-25
GPIOSTAT B-24
GPIOSTKY B-24
GPIOWCTL B-24
IMASK E-1
Interrupt/Powerdown 11-24,

11-31
IRPTL E-1
Load latencies A-5
MBXCTL 6-24
multifunction instructions 11-12
NextAddress 9-8
NxtAddress 9-9
Programmable Flag Data 11-22
PWRP1 11-24, 11-31, 11-34,

11-35
PWRP2 11-24, 11-31, 11-34,

11-35
Source 9-9
I-28 ADSP-219x/2192 DSP Hardware Reference

INDEX
SPROMCTL B-28
STCTL 9-37
STCTLx 9-2
SYSCON B-14, B-33
TCOUNT D-2, D-3, D-6
timer

period D-1
TCOUNT D-2…D-6
TPERIOD D-2…D-6
TSCALE D-2…D-6

TPERIOD D-2, D-3, D-6
TSCALE D-2, D-3, D-6
TSCLCNT D-2, D-3, D-6

RegistersPWRP2 11-34
Regulators, power 11-26, 11-27
Related documents 1-25
Relative address (See Indirect

address)
Reset

commands executed after boot
11-15

PORST 11-13
Power On 11-13
Software 11-14
user code execution 11-15, 11-16

Reset Handler code 11-14
Reset progression 11-14, 11-15,

11-16
Resets 8-14, 11-16
Resetting AC’97 9-12
Resetting the processor 11-13
Resource allocation 9-25
Restart the link

Recommended method 9-35

Restrictions
Loop endings 3-24

Result registers A-2
Result, multiplier mode 2-10
Results

Placement 2-29
Results, clearing, rounding, and

saturating 2-30
Return (Rti/Rts) instruction

Restrictions 3-19
Return (Rti/Rts) instructions 3-14,

3-26, 3-43
RFE bit 9-7
Ribbon cables 11-41
RO bit 9-8
Round (RND) operator 2-33
Rounding mode 2-2
Rounding results 2-30
RST bit B-14
RSTD bit B-21
RTI instruction 11-39
RWE bit B-21
RX0 9-2
RX0 DMA bit B-51
Rx0 DMA Channel Interrupt (RX0

DMA) bit B-51
RX1 9-2
RX1 DMA bit B-51
Rx1 DMA Channel Interrupt (RX1

DMA) bit B-51

S
Sample streams

Disabling 9-36
ADSP-219x/2192 DSP Hardware Reference I-29

INDEX
Enabling 9-36
Saturate (SAT) instruction 2-34
Saturating results 2-30
Saturation (ALU saturation mode)

G-5
Saturation, ALU 2-11
Saturation, ALU mode 2-10
SCK bit B-29
SCK pin input enable (SCKI) bit

B-29
SCK pin status (SCK) bit B-29
SCKI bit B-29
SDA bit B-29
SDA pin input enable (SDAI) bit

B-29
SDA pin status (SDA) bit B-29
SDAI bit B-29
SDI (serial data in) pins 9-25
SDI pins 9-26

Used to define the wakeup
protocol
Wakeup protocol

SDI pins 9-30
Using with GND 9-26

SDO pin 9-26
Secondary DAG registers enable

(SEC_DAG) bit 4-4, 4-5, A-6,
A-13

Secondary registers 2-23, 2-36,
2-54, 2-59, 4-4, 4-5, A-11

Swapping to 2-60
Secondary registers enable

(SEC_REG) bit 2-59, A-6

Secondary registers for DAGs mode
(BSR) enable/disable 3-43

Secondary registers mode (SR)
enable/disable 3-43

Select DSP2 / DSP1 bit B-49
SEN bit B-29
SEN pin input enable (SENI) bit

B-29
SEN pin status (SEN) bit B-29
SENI bit

Bits
SENI B-29

Sequencer (See Program sequencer)
Serial bit clock (BIT_CLK) 9-11
Serial interface

Support for peripherals 9-10
Serial port (SPORT)

DMA 7-24
Serial port DMA Enable (SDEN)

bit 7-11, 7-19
Serial port Receive Control

(SRCTLx) registers 7-18
Serial port Transmit Control

(STCTLx) registers 7-18
Serial pulse code modulated (PCM)

digital stream 9-10
Set bit (Setbit) instruction 2-20
Set interrupt (Setint) instruction

3-43
Shared memory 5-8
Shared memory space 5-9
Shift, immediate 2-40
Shifter 2-1, 2-37, G-5

Arithmetic formats 2-9
I-30 ADSP-219x/2192 DSP Hardware Reference

INDEX
Data types 2-7
Input 2-53
Instructions 2-50
Operations 2-50
Options 2-37, 2-38
Status flags 2-50

Shifter bitwise OR (Or) option 2-55
Shifter block exponent (SB) register

2-38, 2-39, 2-53, A-2, A-4,
A-18

Shifter data register A-2
Shifter exponent (SE) register 1-18,

2-38, 2-40, 2-42, 2-44, 2-47,
2-53, 2-54, 2-57, A-2, A-4,
A-18

Shifter input (SI) register 1-17,
2-53, 2-54, A-4, A-16, A-17

Shifter overflow (SV) bit 2-31, 2-32,
2-50, 2-51, A-10

Shifter result (SR) register 2-29,
2-32, 2-53, 2-54

SR2 usage 2-41
Shifter result (SR0-2) registers A-2,

A-4, A-16
Shifter results (SR) register 1-18,

2-2
Shifter results overflow (SV) bit

2-33
Shifter sign (SS) bit 2-51, 2-55,

A-10
Shifter status bits 2-31, A-10
SI 9-14
Sign bit 2-18

Loss through overflow 2-32

Sign extension 2-2, 2-6, 2-41, 2-53,
2-54

Signals
BITCLK 9-27
SYNC 9-11

Signals, clock 11-7
Signed inputs (SS) operator 2-33
Signed magnitude 2-4
Signed multiplier inputs (SS)

operator 2-29
Signed Numbers

Two’s Complement 2-5
Signed numbers 2-4
Signed, ALU (AS) bit A-9
Signed, shifter (SS) bit A-10
Signed/unsigned inputs (SU)

operator 2-33
Signed/unsigned multiplier inputs

(SU) operator 2-29
Single cycle operation 2-22, 2-29,

2-36, 2-54, 2-59
Single-step interrupt mask (SSTEP)

bit A-19
SLOT bit 9-7
SMSEL bit 9-4
SMSel bit 9-6
Software condition (SWCOND)

condition 1-19, 3-41
Software condition (SWCOND)

operator 1-19
Software reset 11-14
Software-forced rebooting 11-16
Source registers 9-9
Spill-fill mode 3-37
ADSP-219x/2192 DSP Hardware Reference I-31

INDEX
SPME bit B-19
SPROMCTL register B-28
SRAM (memory) 1-4
SRCTL register 9-37
Stabilization, of oscillator 11-35
Stack

Explicit operations 3-39
Implicit operations 3-38
PC high/low-watermark 3-36
Registers 3-35

Stack address, PC (STACKA)
register A-3, A-4, A-21

Stack interrupt 3-37
Stack interrupt mask (STACK) bit

A-19
Stack management

Implicit/explicit operations 3-37
Stack over/underflow status 3-36
Stack overflow status

(STKOVERFLOW) bit 3-36,
3-37, A-15

Stack page, PC (STACKP) register
A-3, A-4, A-21

Stack, PC interrupt enable
(PCSTKE) bit 3-37, A-20

Stacking, layer 11-41
Start-up delay 11-35
State transitions 9-33
States

Cold or warm 9-30
Status 8-19
Status stack empty

(STSSTKEMPTY) condition
3-43

Status stack empty status
(STSSTKEMPTY) bit 3-36,
A-15

Status stack overflow
(STKOVERFLOW) condition
3-43

Status, arithmetic (ASTAT) register
A-2

Status, conditional 3-40
Status, mode (MSTAT) register A-2
STCTL register 9-37
STCTLx register 9-2
Stereo/monaural select (SMSel) bit

9-6
Stopping and restarting the AC ’97

link 9-13
Sub-ISA mode

external clock 11-36
Subroutines G-5
Subroutines, defined 3-1
Subtract instruction 2-17, 2-20,

2-23
Subtract/multiply G-5
Summary B-4
Support (technical or customer)

1-25
SYEN bit 9-15, 9-33, 9-34
SYNC bit 9-20
SYNC pin 9-26
SYNC pulse generator

Starting 9-33
SYNC signal 9-11
Synchronization delay 11-9
SYSCON register B-33
I-32 ADSP-219x/2192 DSP Hardware Reference

INDEX
SYSCON registers B-14
System control registers 5-9, 5-13
System interface 11-1
System status (SSTAT) register A-2,

A-4, A-6, A-14
Effect latency 3-6
Latency A-6

T
TAbort IEN bit B-54
Target Abort bit B-52
TCB chain loading G-5
TCOUNT register D-2, D-3, D-6
TDM scheme 9-10
Technical support 1-25
Telex for information 1-25
Terminating a loop 3-21
Terminations 11-41
Test bit (Tstbit) instruction 2-20,

3-40
Test clock (TCK) pin 10-1
Test data input (TDI) pin 10-1
Test logic reset (TRST) pin 10-1
Test mode select (TMS) pin 10-1
TFE bit 9-5
TFF bit 9-5
The CSTSCHG Signal B-33
The INTA# Signal B-34
Time division-multiplexing (TDM)

scheme 9-10
Time slot

Support of 9-11
Timer 11-17

architecture D-2

enabling D-6
operation D-4
period register D-1
registers

TCOUNT D-2…D-6
TPERIOD D-2…D-6
TSCALE D-2…D-6

resolution D-4
Timer (TI) enable/disable 3-43
Timer block diagram D-3
Timer enable (TIMER) bit A-6,

A-13
Timer overrun 11-17
Timer registers D-2, D-3, D-6
Timing specifications 11-1
Toggle bit (Tglbit) instruction 2-20
Top-of-loop address 3-21
TPERIOD register D-2, D-3, D-6
Transfer Control Block (TCB) G-6
Transmission lines 11-41
Tristate versus three-state G-6
True (Forever) condition 1-22
True condition 3-41
TSCALE register D-2, D-3, D-6
TSCLCNT register D-2, D-3, D-6
TTL/CMOS clock, external 11-36
TU bit 9-5
Two’s complement 2-5, 2-44
TX0 9-2
TX0 DMA bit B-51
Tx0 DMA Channel Interrupt (TX0

DMA) bit B-51
TX1 9-2
TX1 DMA bit B-51
ADSP-219x/2192 DSP Hardware Reference I-33

INDEX
TX1 DMA Channel Interrupt (TX1
DMA) bit B-51

U
Unbiased rounding 2-14
Underflow, ALU 2-11
Underflow, stack status 3-36
Unsigned 2-4
Unsigned inputs (UU) operator

2-33
Unsigned multiplier inputs (UU)

operator 2-29
Unsigned/signed inputs (US)

operator 2-33
Unsigned/signed multipler inputs

(US) operator 2-29
USB Data Pipe Operations 8-89
USB DSP Register Definitions 8-58
USB DSP Registers B-71
USB Interface 8-25
USB mode

external clock 11-36
USB power management states

11-28
USB reset 11-14
USB, powering down 11-32
Using the logical OR function 9-26

V
Vaux bit B-17

VGS bits 9-19
Vias 11-41
VisualDSP 1-15
Von Neumann architecture 5-1,

G-6

W
Waitstates

PDC 9-29
Wakeup Enable (WKUP) bit B-37
Wakeup Force (GWKF) bit B-40
Warm power down state, AC’97

11-38
Web site 1-24
WKUP bit B-37
WR/RD bit B-49
Wrap around, buffer 4-11, 4-14

X
X-input operand (XOP) A-2
XON bit B-15
XOR operator 2-20
XTALI 11-10

Y
Y operand (YOP) A-2

Z
Zero, ALU (AZ) bit A-9
I-34 ADSP-219x/2192 DSP Hardware Reference

INDEX
ADSP-219x/2192 DSP Hardware Reference I-35

I-36 ADSP-219x/2192 DSP Hardware Reference

	Introduction
	Purpose 1�1
	Audience 1�1
	Overview—Why Fixed-Point DSP? 1�2
	ADSP-219x Design Advantages 1�2
	ADSP-219x Architecture Overview 1�5
	DSP Core Architecture 1�7
	DSP Peripherals Architecture 1�9
	Memory Architecture 1�9
	Internal (On-Chip) Memory 1�11

	Interrupts 1�12
	DMA Controller 1�12
	PCI Port 1�12
	USB Port 1�13
	AC’97 Interface 1�13
	Low Power Operation 1�13
	Clock Signals 1�13
	Reset Modes 1�14
	JTAG Port 1�15

	Development Tools 1�15
	Differences from Previous DSPs 1�17
	Computational Units and Data Register File 1�17
	Shifter Result (SR) Register as Multiplier Dual Accumulator 1�18
	Shifter Exponent (SE) Register is not Memory Accessible 1�18
	Conditions (SWCOND) and Condition Code (CCODE) Register 1�19
	Unified Memory Space 1�20
	Data Memory Page (DMPG1 and DMPG2) Registers 1�20
	Data Address Generator (DAG) Addressing Modes 1�21
	Base Registers for Circular Buffers. 1�21
	Program Sequencer, Instruction Pipeline, and Stacks 1�22
	Conditional Execution (Difference in Flag Input Support) 1�22
	Execution Latencies (Different for JUMP Instructions) 1�23
	Instruction Set Enhancements 1�24

	For More Information About Analog Products 1�24
	For Technical or Customer Support 1�25
	What’s New in This Manual 1�25
	Related Documents 1�25
	Conventions 1�27

	Computational Units
	Overview 2�1
	Using Data Formats 2�4
	Binary String 2�4
	Unsigned 2�4
	Signed Numbers: Two’s Complement 2�5
	Fractional Representation: 1.15 2�5
	ALU Data Types 2�5
	Multiplier Data Types 2�6
	Shifter Data Types 2�7
	Arithmetic Formats Summary 2�8

	Setting Computational Modes 2�10
	Latching ALU Result Overflow Status 2�10
	Saturating ALU Results on Overflow 2�11
	Using Multiplier Integer and Fractional Formats 2�12
	Rounding Multiplier Results 2�14
	Unbiased Rounding 2�14
	Biased Rounding 2�15

	Using Computational Status 2�16
	Arithmetic Logic Unit (ALU) 2�17
	ALU Operation 2�17
	ALU Status Flags 2�18
	ALU Instruction Summary 2�19
	ALU Data Flow Details 2�21
	ALU Division Support Features 2�23

	Multiply—Accumulator (Multiplier) 2�28
	Multiplier Operation 2�28
	Placing Multiplier Results in MR or SR Registers 2�29
	Clearing, Rounding, or Saturating Multiplier Results 2�30

	Multiplier Status Flags 2�31
	Saturating Multiplier Results on Overflow 2�31
	Multiplier Instruction Summary 2�33
	Multiplier Data Flow Details 2�34

	Barrel�Shifter (Shifter) 2�37
	Shifter Operations 2�37
	Derive Block Exponent 2�39
	Immediate Shifts 2�40
	Denormalize 2�42
	Normalize, Single Precision Input 2�44
	Normalize, ALU Result Overflow 2�45
	Normalize, Double Precision Input 2�47

	Shifter Status Flags 2�50
	Shifter Instruction Summary 2�50
	Shifter Data Flow Details 2�52

	Data Register File 2�57
	Secondary (Alternate) Data Registers 2�59
	Multifunction Computations 2�60

	Program Sequencer
	Overview 3�1
	Instruction Pipeline 3�7
	Instruction Cache 3�9
	Using The Cache 3�11
	Optimizing Cache Usage 3�12

	Branches and Sequencing 3�14
	Indirect Jump Page (IJPG) Register 3�15
	Conditional Branches 3�16
	Delayed Branches 3�16

	Loops and Sequencing 3�20
	Managing Loop Stacks 3�24
	Restrictions On Ending Loops 3�24

	Interrupts and Sequencing 3�24
	Sensing Interrupts 3�30
	Masking Interrupts 3�31
	Latching Interrupts 3�31
	Stacking Status During Interrupts 3�32
	Nesting Interrupts 3�32
	Interrupting Idle 3�34

	Stacks and Sequencing 3�34
	Conditional Sequencing 3�39
	Sequencer Instruction Summary 3�42

	Data Address Generators
	Overview 4�1
	Setting DAG Modes 4�4
	Secondary (Alternate) DAG Registers 4�4
	Bit-Reverse Addressing Mode 4�6
	DAG Page Registers (DMPGx) 4�6

	Using DAG Status 4�8
	DAG Operations 4�9
	Addressing with DAGs 4�9
	Addressing Circular Buffers 4�11
	Addressing With Bit-Reversed Addresses 4�15
	Modifying DAG Registers 4�19

	DAG Register Transfer Restrictions 4�20
	DAG Instruction Summary 4�21

	Memory
	Overview 5�1
	Internal Address and Data Buses 5�3
	Internal Data Bus Exchange 5�5

	ADSP-2192 Memory Map 5�8
	P0 DSP Core Internal Memory Space 5�10
	P1 DSP Core Internal Memory Space 5�11
	Shared Memory 5�11
	Host (PCI/USB) and DSP Internal Memory Space 5�12
	System Control Registers 5�13
	Shared I/O Memory-mapped Registers 5�13

	Arranging Data in Memory 5�13
	Data Move Instruction Summary 5�14

	Dual DSP Cores
	Overview 6�1
	Shared Dual DSP Core Settings 6�1
	Unique DSP Core Settings 6�2

	Setting Dual DSP Core Features 6�3
	System Control 6�3
	Power Down Mode Control 6�5
	Clock Multiplier Mode Control 6�10
	GPIO and Serial EEPROM Mode Control 6�11

	Using Dual-DSP Interrupts and Flags 6�13
	Controlling I/O Register Bus Accesses 6�17
	Using DSP and PCI Mailbox Registers 6�20
	Mailbox Status (MBXSTAT) Register 6�21
	Mailbox Interrupt Control (MBXCTL) Register 6�24
	InBox 0 - PCI/USB to DSP Mailbox 0 (MBX_IN0) Register 6�26
	InBox 1 - PCI/USB to DSP Mailbox 1 (MBX_IN1) Register 6�26
	OutBox 0 - DSP to PCI/USB Mailbox 0 (MBX_OUT0) Register 6�26
	OutBox 1 - DSP to PCI/USB Mailbox 1 (MBX_OUT1) Register 6�26

	I/O Processor
	Overview 7�1
	Setting I/O Processor—Host Port Modes 7�12
	Host Port Buffer Modes 7�14
	Host Port Scatter-Gather DMA Mode 7�16

	Setting I/O Processor—AC’97 Port Modes 7�18
	Host Port DMA Status 7�19
	DMA Controller Operation 7�20
	Managing DMA Channel Priority 7�21
	Chaining DMA Processes 7�22

	Host Port DMA 7�22
	AC’97 Port DMA 7�24

	Host (PCI/USB) Port
	Overview 8�1
	Host Port Selection 8�1
	Mode Strap Pin Connections 8�2

	PCI Parallel Interface 8�2
	Configuration Spaces 8�2
	Interactions Between Functions 8�5
	Base Address Registers 8�8
	Peripheral Device Control Registers 8�9

	Power Management Interactions 8�9
	PCI Clock Domain 8�11
	Peripheral Device Control Register Access 8�12
	Resets 8�14
	Interrupts 8�14
	PCI Control Register 8�16
	PCI Port Priority on the PDC Bus 8�18

	DSP Mailbox Registers 8�18
	InBoxes 8�18
	OutBoxes 8�19
	Status 8�19
	Control 8�21

	Indirect Access to I/O Space 8�23

	USB Interface 8�25
	Overview 8�25
	USB Requirements 8�25
	Implementation 8�26
	Block Diagram of USB Module 8�27
	USB-SIE 8�27
	Endpoint 0 Control 8�28
	MCU 8�28
	I/O REG Interface 8�29
	DSP DMA Interface 8�29
	DSP Code/Data Endpoint Control 8�29

	Features and Modes 8�30
	Endpoint Types 8�30
	Data Transfers 8�30

	References 8�32
	MCU Register Definitions 8�33
	Config USB Device Definitions and Descriptor Tables 8�52
	Vendor-Specific Commands 8�55
	DSP Register Definitions 8�58
	USB DSP Register Definitions 8�58
	DSP Code Download 8�65
	General Comments 8�67
	Starting DSP Code Execution 8�67
	MCU ROM Firmware Structure 8�70
	MCU Firmware Programmers Model (Endpoint 0) 8�72

	Example Initialization Process 8�81
	Config Device Definition 8�85
	Modem Device Definition 8�85
	Serial EEPROM Interface 8�86
	Serial EEPROM Changeable Fields for USB Descriptors 8�86

	ADSP-2192 USB Data Pipe Operations 8�87
	OUT Transactions (Host to Device) 8�91
	IN Transactions (Device to Host) 8�92

	Register and Bit #Defines File 8�94

	AC’97 Codec Port
	Overview 9�1
	ADSP-2192 Features and Functionality 9�1
	FIFO Control and Status Register 9�3
	FIFO Transmit Control and Status Register 9�3
	FIFO Receive Control and Status Register 9�5
	FIFO DMA Address Registers 9�8
	FIFO DMA Current Count Registers 9�8
	FIFO DMA Count Registers 9�9
	FIFO DMA Next Address Registers 9�9
	16-bit Transmit Data Register 9�9
	16-bit Receive Data Register 9�9

	AC-Link Digital Serial Interface Protocol 9�10
	Resetting the AC’97 9�12

	ADSP-2192 AC’97 Control Registers 9�13
	AC’97 Link Control/Status Register (AC97LCTL) 9�15
	AC’97 Link Status Register (AC97STAT) 9�19
	AC’97 Slot Enable Register (AC97SEN) 9�21
	AC’97 Input Slot Valid Register (AC97SVAL) 9�22
	AC’97 AC97STAT:REG and Frame Interrupt Timing 9�22
	AC’97 External Codec Register Spaces 9�23

	AC’97 Slot Request Register (AC97SREQ) 9�24
	AC’97 GPIO Status Register (AC97SIF) 9�24

	ADSP-2192 AC’97 Audio Interface 9�25
	External Audio Codec (AC’97) Subsystem 9�25
	Resource Allocation 9�25

	AC’97 2.1 Protocol Summary 9�27
	Access to AC’97 Codec Control/Status Registers 9�28
	AC’97 2.1 Link Powerdown States 9�30
	State Transitions 9�33

	Configuring AC’97 Sample Data Streams 9�36

	JTAG Test-Emulation Port
	System Design
	Overview 11�1
	Sources for Additional Information 11�1
	Pin Descriptions 11�3
	Clock Signals 11�7
	Synchronization Delay 11�9
	Configurable Clock Multiplier Considerations 11�10

	Maximizing Performance of DSP Algorithms 11�11
	Resetting the Processor 11�13
	Power On Reset 11�13
	Forced Reset Via PCI/USB 11�14
	Software Reset 11�14
	Reset Progression 11�14
	Resets and Software-Forced Rebooting 11�16

	Interrupts 11�22
	Flag Pins 11�22
	Powerup and Powerdown 11�23
	Powerup Issues 11�24
	Powerup Sequence 11�24
	Power Regulators 11�26
	2.5V Regulator Options 11�27

	Power Management Description 11�28

	Powerdown 11�29
	Powerdown Control 11�30
	Entering and Exiting Powerdown 11�31
	Powering Down the USB 11�32
	Powering Down the PCI 11�32
	Powering Down the AC’97 Link 11�33
	Entering Powerdown 11�34
	Exiting Powerdown 11�35
	Ending Powerdown 11�35
	Ending Powerdown with the PORST Pin 11�35

	Startup Time after Powerdown 11�36
	Using an External TTL/CMOS Clock 11�36

	Processor Operation During Powerdown 11�36
	Interrupts And Flags 11�37

	Conditions for Lowest Power Consumption 11�37
	AC’97 Low Power Mode 11�38

	Using Powerdown as A Non-Maskable Interrupt 11�39

	Emulation 11�39
	EZ-KIT Lite 11�40
	Recommended Reading 11�41

	ADSP-219x DSP Core Registers
	Overview A�1
	Core Registers Summary A�2
	Register Load Latencies A�5

	Core Status Registers A�8
	Arithmetic Status (ASTAT) Register A�9
	Mode Status (MSTAT) Register A�11
	System Status (SSTAT) Register A�14

	Computational Unit Registers A�15
	Data Register File (DREG) Registers A�16
	ALU X- and Y-Input (AX0, AX1, AY0, AY1) Registers A�16
	ALU Results (AR) Register A�17
	Multiplier X- and Y-Input (MX0, MX1, MY0, MY1) Registers A�17
	Multiplier Results (MR2, MR1, MR0) Registers A�17
	Shifter Input (SI) Register A�17
	Shifter Exponent (SE) and Block Exponent (SB) Registers A�18

	Program Sequencer Registers A�18
	Interrupt Mask (IMASK) and Interrupt Latch (IRPTL) Registers A�19
	Interrupt Control (ICNTL) Register A�20
	Indirect Jump Page (IJPG) Register A�21
	PC Stack Page (STACKP) and PC Stack Address (STACKA) Registers A�21
	Loop Stack Page (LPSTACKP) and Loop Stack Address (LPSTACKA) Register A�22
	Counter (CNTR) Register A�22
	Condition Code (CCODE) Register A�23
	Cache Control (CACTL) Register A�23

	Data Address Generator Registers A�24
	Index Registers (Ix) A�24
	Modify Registers (Mx) A�24
	Length and Base (Lx,Bx) Registers A�25
	Data Memory Page (DMPGx) Register A�25

	Memory Interface Registers A�26
	PM Bus Exchange (PX) Register A�26
	I/O Memory Page (IOPG) Register A�26

	Register and Bit #Defines File A�27

	ADSP-2192 DSP Peripheral Registers
	Overview B�1
	Peripheral Registers B�2
	DSP Peripherals Architecture B�3

	Peripheral Device Register Groups B�4
	Summary B�4

	ADSP-2192 System Control Registers B�6
	STCTLx FIFO Transmit Control Register B�9
	SRCTLx FIFO Receive Control Register B�9
	xxxADDR DMA Address Register B�10
	xxxNXTADDR DMA Next Address Register B�10
	xxxCNT DMA Count Register B�10
	xxxCURCNT DMA Current Count Register B�10

	ADSP-2192 Peripheral Device Control Registers B�11
	ADSP-2192 Chip Control Registers B�13
	Chip Control (SYSCON) Registers B�14
	Power Management Functions B�18
	DSP Powerdown (PWRPx) Registers B�19
	DSP PLL Control (PLLCTL) Register B�23

	General-purpose I/O (GPIO) Control Registers B�24
	GPIO Configuration (GPIOCFG) Register B�25
	GPIO Polarity (GPIOPOL) Register B�25
	GPIO Sticky (GPIOSTKY) Register B�26
	GPIO Wakeup Control (GPIOWAKECTL) Register B�26
	GPIO Status (GPIOSTAT) Register B�26
	GPIO Control (GPIOCTL) Register B�27
	GPIO Pullup (GPIOPUP) Register B�27
	GPIO Pulldown (GPIOPDN) Register B�27

	EEPROM I/O Control/Status (SPROMCTL) Register B�28
	Host Mailbox Registers B�30
	Overview B�30

	CardBus Function Event Registers B�32
	CSTSCHG Signal B�33
	INTA Signal B�34
	CIS Tuple Requirements B�35

	AC’97 Controller Registers B�41
	AC’97 Link Control/Status Register (AC97LCTL) B�42
	AC’97 Link Status Register (AC97STAT) B�42
	AC’97 Slot Enable Register (AC97SEN) B�43
	AC’97 Input Slot Valid Register (AC97SVAL) B�43
	AC’97 Slot Request Register (AC97SREQ) B�44
	AC’97 GPIO Status Register (AC97SIF) B�44

	AC’97 Codec Registers B�45
	AC’97 Codec Register Space-Primary Codec 0 (AC97EXT0) Register B�45
	AC’97 Codec Register Space, Secondary Codec 1 (AC97EXT1) Register B�45
	AC’97 Codec Register Space, Secondary Codec 2 (AC97EXT2) Register B�46

	PCI DMA Address, Count Registers B�46
	DMA Control Registers B�46
	PCI DMA Control Registers B�46

	PCI Interrupt, Control Registers B�47
	DMA Transfer Count 0 - Bus Master Sample Transfer Count (PCI_MSTRCNT0) Register B�48
	DMA Transfer Count 1 - Bus Master Sample Transfer Count (PCI_MSTRCNT1) Register B�48
	DMA Control X - Bus Master Control and Status (PCI_DMACx) Register B�49
	PCI Interrupt (PCI_IRQSTAT) Register B�50
	PCI Control (PCI_CFGCTL) Register B�53

	PCI Configuration Register Space B�54
	Commonalities Between the Three Functions B�54
	Interactions Between the Three Functions B�55
	PCI Configuration Register Space, Function 0 B�56
	PCI Configuration Register Space, Function 1 B�58
	PCI Configuration Register Space, Function 2 B�59
	PCI Configuration Space B�60
	Interaction Between Registers B�67

	USB DSP Registers B�71
	Overview B�71

	DSP Register Definitions B�72
	DSP Memory Buffer Base Addr Register B�74
	DSP Memory Buffer Size Register B�75

	DSP Memory Buffer RD Pointer Offset Register B�75
	DSP Memory Buffer WR Pointer Offset Register B�76
	MCU Register Definitions B�76
	USB Endpoint Description Register B�79
	USB Endpoint NAK Counter Register B�80
	USB Endpoint Stall Policy Register B�81
	USB Endpoint 1 Code Download Base Address Register B�82
	USB Endpoint 2 Code Download Base Address Register B�83
	USB Endpoint 3 Code Download Base Address Register B�84
	USB Endpoint 1 Code Download Current Write Pointer Offset Register B�85
	USB Endpoint 2 Code Download Current Write Pointer Offset Register B�86
	USB Endpoint 3 Code Download Current Write Pointer Offset Register B�87
	USB SETUP Token Command Register B�88
	USB SETUP Token Data Register B�89
	USB SETUP Counter Register B�90
	USB Register I/O Address Register B�91
	USB Register I/O Data Register B�92
	USB Control Register B�93
	USB Address/Endpoint Register B�94
	USB Frame Number Register B�94

	Register and Bit #Defines File B�95

	Numeric Formats
	Overview C�1
	Un/Signed: Twos-Complement Format C�1
	Integer or Fractional C�1
	Binary Multiplication C�5
	Fractional Mode And Integer Mode C�6

	Block Floating-Point Format C�7

	ADSP-2192 Timer
	Overview D�1
	Timer Architecture D�2
	Resolution D�4
	Timer Operation D�4
	Enabling the Timer D�6

	ADSP-2192 Interrupts
	Overview E�1
	Peripheral Interrupts E�1
	Other Interrupt Types E�4

	Glossary
	Terms G�1

	Index
	1 Introduction
	Purpose
	Audience
	Overview—Why Fixed-Point DSP?
	ADSP-219x Design Advantages
	Figure 1-1. ADSP-2192 Block Diagram

	ADSP-219x Architecture Overview
	DSP Core Architecture
	DSP Peripherals Architecture
	Memory Architecture
	Figure 1-2. ADSP-2192 Memory Maps
	Internal (On-Chip) Memory

	Interrupts
	DMA Controller
	PCI Port
	USB Port
	AC’97 Interface
	Low Power Operation
	Clock Signals
	Figure 1-3. ADSP-2192 External Crystal Connections

	Reset Modes
	JTAG Port

	Development Tools
	Differences from Previous DSPs
	Computational Units and Data Register File
	Shifter Result (SR) Register as Multiplier Dual Accumulator
	Shifter Exponent (SE) Register is not Memory Accessible
	Conditions (SWCOND) and Condition Code (CCODE) Register
	Unified Memory Space
	Data Memory Page (DMPG1 and DMPG2) Registers
	Data Address Generator (DAG) Addressing Modes
	Base Registers for Circular Buffers.
	Program Sequencer, Instruction Pipeline, and Stacks
	Conditional Execution (Difference in Flag Input Support)
	Execution Latencies (Different for JUMP Instructions)
	Instruction Set Enhancements

	For More Information About Analog Products
	For Technical or Customer Support
	What’s New in This Manual
	Related Documents
	Conventions
	Table 1-1. Notation Conventions

	2 Computational Units
	Overview
	Figure 2-1. Register Access—Unconditional, Single-Function Instructions

	Using Data Formats
	Binary String
	Unsigned
	Signed Numbers: Two’s Complement
	Fractional Representation: 1.15
	Figure 2-2. Bit Weighting for 1.15 Numbers

	ALU Data Types
	Multiplier Data Types
	Shifter Data Types
	Arithmetic Formats Summary
	Table 2-1. ALU Arithmetic Formats�
	Table 2-2. Multiplier Arithmetic Formats (Cont’d)
	Table 2-3. Shifter Arithmetic Formats�

	Setting Computational Modes
	Latching ALU Result Overflow Status
	Saturating ALU Results on Overflow
	Table 2-4. ALU Result Saturation With AR_SAT Enabled

	Using Multiplier Integer and Fractional Formats
	Figure 2-3. Fractional Multiplier Results Format
	Figure 2-4. Integer Multiplier Results Format

	Rounding Multiplier Results
	Unbiased Rounding
	Figure 2-5. Typical Unbiased Multiplier Rounding Operation
	Figure 2-6. Avoiding Net Bias in Unbiased Multiplier Rounding Operation

	Biased Rounding
	Figure 2-7. Bias Rounding in Multiplier Operation

	Using Computational Status
	Arithmetic Logic Unit (ALU)
	ALU Operation
	ALU Status Flags
	Table 2-5. ALU Status Bits in the ASTAT Register�

	ALU Instruction Summary
	Table 2-6. ALU Instruction Summary�

	ALU Data Flow Details
	Figure 2-8. ALU Block Diagram

	ALU Division Support Features
	Figure 2-9. DIVS Operation
	Figure 2-10. DIVQ Operation
	Figure 2-11. Quotient Format

	Multiply—Accumulator (Multiplier)
	Multiplier Operation
	Placing Multiplier Results in MR or SR Registers
	Figure 2-12. Placing Multiplier Results

	Clearing, Rounding, or Saturating Multiplier Results

	Multiplier Status Flags
	Saturating Multiplier Results on Overflow
	Table 2-7. Saturation Status Bits and Result Registers

	Multiplier Instruction Summary
	Table 2-8. Multiplier Instruction Summary (Cont’d)

	Multiplier Data Flow Details
	Figure 2-13. Multiplier Block Diagram

	Barrel�Shifter (Shifter)
	Shifter Operations
	Derive Block Exponent
	Immediate Shifts
	Denormalize
	Normalize, Single Precision Input
	Normalize, ALU Result Overflow
	Normalize, Double Precision Input

	Shifter Status Flags
	Shifter Instruction Summary
	Table 2-9. Shifter Instruction Summary�

	Shifter Data Flow Details
	Figure 2-14. Shifter Block Diagram
	Figure 2-15. Shifter Array Output Placement
	Figure 2-16. Exponent Detector Characteristics

	Data Register File
	Secondary (Alternate) Data Registers
	Multifunction Computations
	Figure 2-17. Register Access for Conditional/Multifunction Instructions
	Table 2-10. ADSP-219x Multifunction Instruction Summary�

	3 Program Sequencer
	Overview
	Figure 3-1. Program Flow Variations
	Figure 3-2. Program Sequencer Block Diagram
	Table 3-1. Program Sequencer Registers
	Table 3-2. System Registers �

	Instruction Pipeline
	Table 3-3. Pipelined Execution Cycles

	Instruction Cache
	Figure 3-3. Instruction Cache Architecture
	Using The Cache
	Optimizing Cache Usage
	Table 3-4. Cache-Inefficient Code�

	Branches and Sequencing
	Indirect Jump Page (IJPG) Register
	Conditional Branches
	Delayed Branches
	Table 3-5. Pipelined Execution Cycles For Immediate Branch (Jump/Call)
	Table 3-6. Pipelined Execution Cycles For Immediate Branch (Return)
	Table 3-7. Pipelined Execution Cycles For Delayed Branch (Jump/Call)
	Table 3-8. Pipelined Execution Cycles For Delayed Branch (Return)

	Loops and Sequencing
	Table 3-9. Pipelined Execution Cycles For Loop Back (Iteration)
	Table 3-10. Pipelined Execution Cycles For Loop Termination
	Managing Loop Stacks
	Restrictions On Ending Loops

	Interrupts and Sequencing
	Table 3-11. Pipelined Execution Cycles For Interrupt During Single-cycle Instruction
	Table 3-12. Pipelined Execution Cycles For Interrupt During Instruction With Conflicting PM Data ...
	Table 3-13. Pipelined Execution Cycles For Interrupt During Delayed Branch Instruction
	Sensing Interrupts
	Masking Interrupts
	Latching Interrupts
	Stacking Status During Interrupts
	Nesting Interrupts
	Interrupting Idle

	Stacks and Sequencing
	Figure 3-4. Program Sequencer Stacks

	Conditional Sequencing
	Table 3-14. If Condition and Do/Until Termination Condition Logic (Cont’d)

	Sequencer Instruction Summary
	Table 3-15. Sequencer Instruction Summary�

	4 Data Address Generators
	Overview
	Figure 4-1. Data Address Generator (DAG) Block Diagram

	Setting DAG Modes
	Secondary (Alternate) DAG Registers
	Figure 4-2. Data Address Generator Primary and Alternate Registers

	Bit-Reverse Addressing Mode
	DAG Page Registers (DMPGx)

	Using DAG Status
	DAG Operations
	Addressing with DAGs
	Figure 4-3. Pre-Modify and Post-Modify Operations

	Addressing Circular Buffers
	Figure 4-4. Circular Data Buffers

	Addressing With Bit-Reversed Addresses
	Table 4-1. 8-point array sequence before and after bit reversal �
	Listing 4-1. Bit-reversed addressing, 8 LSBs

	Modifying DAG Registers

	DAG Register Transfer Restrictions
	DAG Instruction Summary
	Table 4-2. DAG Instruction Summary �

	5 Memory
	Overview
	Figure 5-1. ADSP-2192 Memory and Internal Buses Block Diagram
	Internal Address and Data Buses
	Internal Data Bus Exchange
	Figure 5-2. PM Bus Exchange (PX) Registers

	ADSP-2192 Memory Map
	Figure 5-3. ADSP-2192 Memory Map
	P0 DSP Core Internal Memory Space
	P1 DSP Core Internal Memory Space
	Shared Memory
	Host (PCI/USB) and DSP Internal Memory Space
	System Control Registers
	Shared I/O Memory-mapped Registers

	Arranging Data in Memory
	Data Move Instruction Summary
	Table 5-1. Data/Register Move Instruction Summary

	6 Dual DSP Cores
	Overview
	Shared Dual DSP Core Settings
	Unique DSP Core Settings

	Setting Dual DSP Core Features
	System Control
	Power Down Mode Control
	Clock Multiplier Mode Control
	Figure 6-1. PLL FOUT Formula (DSP PLL Divisor)

	GPIO and Serial EEPROM Mode Control

	Using Dual-DSP Interrupts and Flags
	Table 6-1. Interrupt Vectors for an ADSP-2192 DSP Core (Continued)
	Table 6-2. ADSP-2192 DSP Core FLAGS Register (Continued)
	Figure 6-2. DSP-to-DSP Core Flags, Interrupts, and Bus Lock

	Controlling I/O Register Bus Accesses
	Using DSP and PCI Mailbox Registers
	Mailbox Status (MBXSTAT) Register
	Table 6-3. MBXSTAT Register Bit Descriptions (Continued)

	Mailbox Interrupt Control (MBXCTL) Register
	Table 6-4. MBXCTL Register Bit Descriptions (Continued)

	InBox 0 - PCI/USB to DSP Mailbox 0 (MBX_IN0) Register
	InBox 1 - PCI/USB to DSP Mailbox 1 (MBX_IN1) Register
	OutBox 0 - DSP to PCI/USB Mailbox 0 (MBX_OUT0) Register
	OutBox 1 - DSP to PCI/USB Mailbox 1 (MBX_OUT1) Register

	7 I/O Processor
	Overview
	Figure 7-1. ADSP-2192 DMA Channels, Requests and Data Paths
	Figure 7-2. ADSP-2192 DMA Control, Status and Buffer Registers
	Figure 7-3. DMA Address Generator (Internal Addresses)
	Figure 7-4. DMA Address Generator (PCI)
	Table 7-1. DMA Channel Registers For Each DSP Core: Controls, Parameters, and Buffers (Continued)

	Setting I/O Processor—Host Port Modes
	Host Port Buffer Modes
	Figure 7-5. DMA Bus Mastering Formats (Packed and Unpacked)

	Host Port Scatter-Gather DMA Mode
	Table 7-2. Normal DMA Mode Versus Scatter-gather DMA Mode

	Setting I/O Processor—AC’97 Port Modes
	Host Port DMA Status
	DMA Controller Operation
	Managing DMA Channel Priority
	Chaining DMA Processes

	Host Port DMA
	AC’97 Port DMA

	8 Host (PCI/USB) Port
	Overview
	Host Port Selection
	Table 8-1. BUSMODE Configuration�

	Mode Strap Pin Connections

	PCI Parallel Interface
	Configuration Spaces
	Table 8-2. PCI Configuration Space (Continued)
	Interactions Between Functions
	Table 8-3. Configuration Space—Function Interactions (Continued)

	Base Address Registers
	Peripheral Device Control Registers

	Power Management Interactions
	Table 8-4. Power Management—Function Interactions (Continued)

	PCI Clock Domain
	Figure 8-1. Clock Domains

	Peripheral Device Control Register Access
	Resets
	Interrupts
	Table 8-5. PCI Interrupt Register (Continued)

	PCI Control Register
	Table 8-6. PCI Control Register (Continued)
	PCI Port Priority on the PDC Bus

	DSP Mailbox Registers
	InBoxes
	OutBoxes
	Status
	Table 8-7. Mailbox Status Register (Continued)

	Control
	Table 8-8. Mailbox Control Register (Continued)

	Indirect Access to I/O Space
	Table 8-9. I/O Space Indirect Access Registers�
	Table 8-10. BIT Organization of PCI I/O Space Registers

	USB Interface
	Overview
	USB Requirements
	Implementation
	Block Diagram of USB Module
	Figure 8-2. ADSP-2192 USB Block Diagram
	USB-SIE
	Endpoint 0 Control
	MCU
	I/O REG Interface
	DSP DMA Interface
	DSP Code/Data Endpoint Control

	Features and Modes
	Endpoint Types
	Data Transfers

	References
	MCU Register Definitions
	Table 8-11. USB MCU Register Definitions (Continued)
	Figure 8-3. USB Endpoint Description Register
	Table 8-12. USB Endpoint Description Register
	Figure 8-4. USB Endpoint NAK Counter Register
	Table 8-13. USB Endpoint NAK Counter Register
	Figure 8-5. USB Endpoint Stall Policy Register
	Table 8-14. USB Endpoint Stall Policy Register
	Figure 8-6. USB Endpoint 1 Code Download Base Address Register
	Figure 8-7. USB Endpoint 2 Code Download Base Address Register
	Figure 8-8. USB Endpoint 3 Code Download Base Address Register
	Figure 8-9. USB Endpoint 1 Code Download Current Write Pointer Offset Register
	Figure 8-10. USB Endpoint 2 Code Download Current Write Pointer Offset Register
	Figure 8-11. USB Endpoint 3 Code Download Current Write Pointer Offset Register
	Table 8-15. USB SETUP Token Command Register
	Table 8-16. USB SETUP Token Data Register�
	Figure 8-12. USB SETUP Counter Register
	Figure 8-13. USB Register I/O Address Register
	Table 8-17. USB Register I/O Address Register
	Figure 8-14. USB Register I/O Data Register
	Table 8-18. USB Register I/O Data Register
	Figure 8-15. USB Control Register
	Table 8-19. USB Control Register�
	Figure 8-16. USB Address/Endpoint Register
	Table 8-20. USB Address/Endpoint Register
	Figure 8-17. USB Frame Number Register
	Table 8-21. USB Frame Number Register

	Config USB Device Definitions and Descriptor Tables
	Table 8-22. CONFIG DEVICE Device Descriptor (Continued)
	Table 8-23. CONFIG DEVICE Interface Descriptor�
	Table 8-24. CONFIG DEVICE String Descriptor Index 0
	Table 8-25. CONFIG DEVICE String Descriptor Index 1 (Manufacturer)
	Table 8-26. CONFIG DEVICE String Descriptor Index 2 (Product)

	Vendor-Specific Commands
	Table 8-27. USB MCUCODE (Code Download)
	Table 8-28. USB REGIO (Register Write)
	Table 8-29. USB REGIO (Register Read)

	DSP Register Definitions
	USB DSP Register Definitions
	Table 8-30. USB DSP Register Definitions (Continued)
	Figure 8-18. DSP Memory Buffer Base Addr Register
	Table 8-31. DSP Memory Buffer Base Addr Register
	Figure 8-19. DSP Memory Buffer Size Register
	Table 8-32. DSP Memory Buffer Size Register
	Figure 8-20. DSP Memory Buffer RD Pointer Offset Register
	Table 8-33. DSP Memory Buffer RD Pointer Offset Register
	Figure 8-21. DSP Memory Buffer WR Pointer Offset Register
	Table 8-34. DSP Memory Buffer WR Pointer Offset Register
	Figure 8-22. USB Descriptor Vendor ID
	Table 8-35. USB Descriptor Vendor ID
	Figure 8-23. USB Descriptor Product ID
	Table 8-36. USB Descriptor Product ID
	Figure 8-24. USB Descriptor Release Number
	Table 8-37. USB Descriptor Release Number
	Figure 8-25. USB Descriptor Device Attributes
	Table 8-38. USB Descriptor Device Attributes

	DSP Code Download
	General Comments
	Starting DSP Code Execution
	Table 8-39. DSP DM Memory Content of the Polled Locations

	MCU ROM Firmware Structure
	MCU Firmware Programmers Model (Endpoint 0)

	Example Initialization Process
	Table 8-40. Typical Configuration (Modem)
	Table 8-41. Typical Configuration (FAX)
	Figure 8-26. ADSP-2192 USB Enumeration
	Config Device Definition
	Modem Device Definition
	Serial EEPROM Interface
	Serial EEPROM Changeable Fields for USB Descriptors

	ADSP-2192 USB Data Pipe Operations
	Figure 8-27. USB Data Pipe Architecture
	OUT Transactions (Host to Device)
	IN Transactions (Device to Host)

	Register and Bit #Defines File

	9 AC’97 Codec Port
	Overview
	ADSP-2192 Features and Functionality
	Table 9-1. FIFO Receive and Control Status Registers

	FIFO Control and Status Register
	FIFO Transmit Control and Status Register
	Table 9-2. STCTL0/1Register Bit Description (Continued)

	FIFO Receive Control and Status Register
	Table 9-3. SRCTL0/1 Register Bit Descriptions (Continued)

	FIFO DMA Address Registers
	FIFO DMA Current Count Registers
	FIFO DMA Count Registers
	FIFO DMA Next Address Registers
	16-bit Transmit Data Register
	16-bit Receive Data Register

	AC-Link Digital Serial Interface Protocol
	Figure 9-1. Codec to ADSP-2192 Communication
	Resetting the AC’97

	ADSP-2192 AC’97 Control Registers
	Table 9-4. AC’97 Control Registers (Continued)
	AC’97 Link Control/Status Register (AC97LCTL)
	Table 9-5. AC97LCTL Register Bit Definitions (Continued)

	AC’97 Link Status Register (AC97STAT)
	Table 9-6. AC’97 Link Status Register Bit Definitions (Continued)

	AC’97 Slot Enable Register (AC97SEN)
	Table 9-7. AC’97 Slot Enable Register Bit Definitions

	AC’97 Input Slot Valid Register (AC97SVAL)
	Table 9-8. AC’97 Slot Enable Register Bit Definitions
	AC’97 AC97STAT:REG and Frame Interrupt Timing
	Figure 9-2. ASTST:REG and Frame Interrupt Timing

	AC’97 External Codec Register Spaces
	Table 9-9. AC’97 External Codec Register Spaces

	AC’97 Slot Request Register (AC97SREQ)
	Table 9-10. AC97SREQ Register Bit Definitions

	AC’97 GPIO Status Register (AC97SIF)
	Table 9-11. AC’97 GPIO Control / Status Register Bit Definitions

	ADSP-2192 AC’97 Audio Interface
	External Audio Codec (AC’97) Subsystem
	Resource Allocation
	Table 9-12. AC’97 Pin Listing

	AC’97 2.1 Protocol Summary
	Figure 9-3. AC’97 frame structure
	Access to AC’97 Codec Control/Status Registers
	AC’97 2.1 Link Powerdown States
	Figure 9-4. AC’97 Link Powerdown States, by Function
	Figure 9-5. Link powerdown states, by signal
	State Transitions

	Configuring AC’97 Sample Data Streams

	10 JTAG Test-Emulation Port
	Table 10-1. JTAG Test Access Port (TAP) Pins

	11 System Design
	Overview
	Sources for Additional Information
	Pin Descriptions
	Table 11-1. PCI/USB Bus Interface Pin Descriptions (Continued)
	Table 11-2. Crystal/Configuration Pin Descriptions�
	Table 11-3. AC’97 Interface Pin Descriptions�
	Table 11-4. Serial EEPROM Pin Descriptions�
	Table 11-5. Emulator Pin Descriptions (Continued)
	Table 11-6. I/O Pin Descriptions�
	Table 11-7. Power Supply Pin Descriptions (Continued)

	Clock Signals
	Figure 11-1. External Crystal Connections
	Figure 11-2. ADSP-2192 Clock Domains
	Synchronization Delay
	Configurable Clock Multiplier Considerations

	Maximizing Performance of DSP Algorithms
	Table 11-8. Available Registers for Multifunction Instructions�

	Resetting the Processor
	Power On Reset
	Forced Reset Via PCI/USB
	Software Reset
	Reset Progression
	Table 11-9. User-Defined Loader Kernel Function Values�

	Resets and Software-Forced Rebooting
	Table 11-10. ADSP-2192 Register State after Reset or Software Reboot (Continued)

	Interrupts
	Flag Pins
	Powerup and Powerdown
	Powerup Issues
	Powerup Sequence
	Figure 11-3. Protection Diodes and IO Pin ESD Protection

	Power Regulators
	2.5V Regulator Options
	Figure 11-4. ADSP-2192 2.5V Regulator Options

	Power Management Description

	Powerdown
	Powerdown Control
	Entering and Exiting Powerdown
	Powering Down the USB
	Powering Down the PCI
	Powering Down the AC’97 Link
	Entering Powerdown
	Exiting Powerdown
	Ending Powerdown
	Ending Powerdown with the PORST Pin

	Startup Time after Powerdown
	Using an External TTL/CMOS Clock

	Processor Operation During Powerdown
	Interrupts And Flags

	Conditions for Lowest Power Consumption
	AC’97 Low Power Mode

	Using Powerdown as A Non-Maskable Interrupt

	Emulation
	EZ-KIT Lite
	Recommended Reading

	A ADSP-219x DSP Core Registers
	Overview
	Core Registers Summary
	Table A-1. Core Registers (Continued)
	Table A-2. ADSP-219x DSP Core Registers�

	Register Load Latencies
	Table A-3. Effect Latencies for Register Changes (Continued)

	Core Status Registers
	Table A-4. Core Status Registers�
	Arithmetic Status (ASTAT) Register
	Table A-5. ASTAT Register Bit Definitions (Continued)

	Mode Status (MSTAT) Register
	Table A-6. MSTAT Register Bit Definitions (Continued)

	System Status (SSTAT) Register
	Table A-7. SSTAT Register Bit Definitions (Continued)

	Computational Unit Registers
	Table A-8. Computational Unit Registers (Continued)
	Data Register File (DREG) Registers
	ALU X- and Y-Input (AX0, AX1, AY0, AY1) Registers
	ALU Results (AR) Register
	Multiplier X- and Y-Input (MX0, MX1, MY0, MY1) Registers
	Multiplier Results (MR2, MR1, MR0) Registers
	Shifter Input (SI) Register
	Shifter Exponent (SE) and Block Exponent (SB) Registers

	Program Sequencer Registers
	Table A-9. Program Sequencer Registers (Continued)
	Interrupt Mask (IMASK) and Interrupt Latch (IRPTL) Registers
	Table A-10. IMASK and IRPTL Register Bit Definitions�

	Interrupt Control (ICNTL) Register
	Table A-11. ICNTL Register Bit Definitions (Continued)

	Indirect Jump Page (IJPG) Register
	PC Stack Page (STACKP) and PC Stack Address (STACKA) Registers
	Loop Stack Page (LPSTACKP) and Loop Stack Address (LPSTACKA) Register
	Counter (CNTR) Register
	Condition Code (CCODE) Register
	Cache Control (CACTL) Register
	Table A-12. CACTL Registers Bit Definitions �

	Data Address Generator Registers
	Table A-13. Data Address Generator Registers�
	Index Registers (Ix)
	Modify Registers (Mx)
	Length and Base (Lx,Bx) Registers
	Data Memory Page (DMPGx) Register

	Memory Interface Registers
	Table A-14. Memory Interface Registers�
	PM Bus Exchange (PX) Register
	I/O Memory Page (IOPG) Register

	Register and Bit #Defines File

	B ADSP-2192 DSP Peripheral Registers
	Overview
	Peripheral Registers
	DSP Peripherals Architecture
	Figure B-1. ADSP-2192 Dual-Core DSP Block Diagram

	Peripheral Device Register Groups
	Summary

	ADSP-2192 System Control Registers
	Table B-1. ADSP-2192 System Control Registers (Continued)
	STCTLx FIFO Transmit Control Register
	SRCTLx FIFO Receive Control Register
	xxxADDR DMA Address Register
	xxxNXTADDR DMA Next Address Register
	xxxCNT DMA Count Register
	xxxCURCNT DMA Current Count Register

	ADSP-2192 Peripheral Device Control Registers
	Table B-2. Register Group Descriptions (Continued)
	ADSP-2192 Chip Control Registers
	Table B-3. ADSP-2192 Chip Control Registers�
	Chip Control (SYSCON) Registers
	Table B-4. SYSCON Register Bit Descriptions (Continued)

	Power Management Functions
	Table B-5. Bit Descriptions for PWRCFG0, PWRCFG1, and PWRCFG2 Registers (Continued)

	DSP Powerdown (PWRPx) Registers
	Table B-6. DSP Interrupt/Powerdown (PWRPx) Register Bit Descriptions (Continued)

	DSP PLL Control (PLLCTL) Register

	General-purpose I/O (GPIO) Control Registers
	Table B-7. GPIO Control Registers (Continued)
	GPIO Configuration (GPIOCFG) Register
	GPIO Polarity (GPIOPOL) Register
	GPIO Sticky (GPIOSTKY) Register
	GPIO Wakeup Control (GPIOWAKECTL) Register
	GPIO Status (GPIOSTAT) Register
	GPIO Control (GPIOCTL) Register
	GPIO Pullup (GPIOPUP) Register
	GPIO Pulldown (GPIOPDN) Register

	EEPROM I/O Control/Status (SPROMCTL) Register
	Table B-8. SPROMCTL Control Register
	Table B-9. SPROMCTL Register Bit Descriptions �

	Host Mailbox Registers
	Overview
	Table B-10. PCI / USB Mailbox Registers �

	CardBus Function Event Registers
	CSTSCHG Signal
	INTA Signal
	CIS Tuple Requirements
	Table B-11. CIS Tuple Requirements
	Table B-12. CB_FE0 Register Bit Description �
	Table B-13. CB_FEM0 Register Bit Descriptions (Continued)
	Table B-14. CB_FPS0 Register Bit Descriptions (Continued)
	Table B-15. CardBus Function Event Registers
	Table B-16. CB_FEFx Register Bit Descriptions

	AC’97 Controller Registers
	Table B-17. AC’97 Control Registers (Continued)
	AC’97 Link Control/Status Register (AC97LCTL)
	AC’97 Link Status Register (AC97STAT)
	AC’97 Slot Enable Register (AC97SEN)
	AC’97 Input Slot Valid Register (AC97SVAL)
	AC’97 Slot Request Register (AC97SREQ)
	AC’97 GPIO Status Register (AC97SIF)

	AC’97 Codec Registers
	AC’97 Codec Register Space-Primary Codec 0 (AC97EXT0) Register
	Table B-18. AC’97 External Codec Space 0 Registers �

	AC’97 Codec Register Space, Secondary Codec 1 (AC97EXT1) Register
	Table B-19. AC’97 External Codec Space 1 Registers

	AC’97 Codec Register Space, Secondary Codec 2 (AC97EXT2) Register
	Table B-20. AC’97 External Codec Space 2 Registers

	PCI DMA Address, Count Registers
	DMA Control Registers
	PCI DMA Control Registers

	PCI Interrupt, Control Registers
	Table B-21. PCI Interrupt Control Registers (Continued)
	DMA Transfer Count 0 - Bus Master Sample Transfer Count (PCI_MSTRCNT0) Register
	DMA Transfer Count 1 - Bus Master Sample Transfer Count (PCI_MSTRCNT1) Register
	DMA Control X - Bus Master Control and Status (PCI_DMACx) Register
	Table B-22. PCI_DMACx Register Bit Descriptions (Continued)

	PCI Interrupt (PCI_IRQSTAT) Register
	Table B-23. PCI_IRQSTAT Register Bit Descriptions (Continued)

	PCI Control (PCI_CFGCTL) Register
	Table B-24. PCI_CFGCTL Register Bit Descriptions (Continued)

	PCI Configuration Register Space
	Commonalities Between the Three Functions
	Interactions Between the Three Functions
	PCI Configuration Register Space, Function 0
	Table B-25. Function 0 Registers (Continued)

	PCI Configuration Register Space, Function 1
	Table B-26. Function 1 Registers (Continued)

	PCI Configuration Register Space, Function 2
	Table B-27. Function 2 Registers (Continued)

	PCI Configuration Space
	Table B-28. PCI CONFIG SPACE for Function 0 (Continued)
	Table B-29. PCI Configuration Space for Function 1 (Continued)
	Table B-30. PCI Configuration Space for Function 2 (Continued)

	Interaction Between Registers
	Table B-31. Configuration Space Register Interactions Between Functions (Continued)
	Table B-32. Power Management Register Interactions Between Functions (Continued)

	USB DSP Registers
	Overview

	DSP Register Definitions
	Table B-33. USB DSP Register Definitions (Continued)

	DSP Memory Buffer Base Addr Register
	Figure B-2. DSP Memory Buffer Base Addr Register
	Table B-34. DSP Memory Buffer Base Addr Register
	DSP Memory Buffer Size Register
	Figure B-3. DSP Memory Buffer Size Register
	Table B-35. DSP Memory Buffer Size Register

	DSP Memory Buffer RD Pointer Offset Register
	Figure B-4. DSP Memory Buffer RD Pointer Offset Register
	Table B-36. DSP Memory Buffer RD Pointer Offset Register

	DSP Memory Buffer WR Pointer Offset Register
	Figure B-5. DSP Memory Buffer WR Pointer Offset Register
	Table B-37. DSP Memory Buffer WR Pointer Offset Register

	MCU Register Definitions
	Table B-38. USB MCU Register Definitions (Continued)

	USB Endpoint Description Register
	Figure B-6. USB Endpoint Description Register

	USB Endpoint NAK Counter Register
	Figure B-7. USB Endpoint NAK Counter Register

	USB Endpoint Stall Policy Register
	Figure B-8. USB Endpoint Stall Policy Register

	USB Endpoint 1 Code Download Base Address Register
	Figure B-9. USB Endpoint 1 Code Download Base Address Register

	USB Endpoint 2 Code Download Base Address Register
	Figure B-10. USB Endpoint 2 Code Download Base Address Register

	USB Endpoint 3 Code Download Base Address Register
	Figure B-11. USB Endpoint 3 Code Download Base Address Register

	USB Endpoint 1 Code Download Current Write Pointer Offset Register
	Figure B-12. USB Endpoint 1 Code Download Current Write Pointer Offset Register

	USB Endpoint 2 Code Download Current Write Pointer Offset Register
	Figure B-13. USB Endpoint 2 Code Download Current Write Pointer Offset Register

	USB Endpoint 3 Code Download Current Write Pointer Offset Register
	Figure B-14. USB Endpoint 3 Code Download Current Write Pointer Offset Register

	USB SETUP Token Command Register
	Table B-42. USB SETUP Token Command Register

	USB SETUP Token Data Register
	Table B-43. USB SETUP Token Data Register

	USB SETUP Counter Register
	Figure B-15. USB SETUP Counter Register

	USB Register I/O Address Register
	Figure B-16. USB Register I/O Address Register
	Table B-44. USB Register I/O Address Register

	USB Register I/O Data Register
	Figure B-17. USB Register I/O Data Register
	Table B-45. USB Register I/O Data Register

	USB Control Register
	Figure B-18. USB Control Register
	Table B-46. USB Control Register

	USB Address/Endpoint Register
	Figure B-19. USB Address/Endpoint Register
	Table B-47. USB Address/Endpoint Register

	USB Frame Number Register
	Figure B-20. USB Frame Number Register
	Table B-48. USB Frame Number Register

	Register and Bit #Defines File

	C Numeric Formats
	Overview
	Un/Signed: Twos-Complement Format
	Integer or Fractional
	Figure C-1. Integer Format
	Figure C-2. Example Of Fractional Format
	Table C-1. Fractional Formats And Their Ranges�

	Binary Multiplication
	Figure C-3. Format of Multiplier Result
	Fractional Mode And Integer Mode

	Block Floating-Point Format
	Figure C-4. Data With Guard Bits
	Figure C-5. Block Floating-Point Adjustment

	D ADSP-2192 Timer
	Overview
	Timer Architecture
	Figure D-1. Timer Registers
	Figure D-2. Timer Block Diagram

	Resolution
	Table D-1. Timer Range and Resolution

	Timer Operation
	Table D-2. Example Of Timer Operation (Cont’d)

	Enabling the Timer
	Listing D-1. Code for Enabling the Timer and Generating Interrupts

	E ADSP-2192 Interrupts
	Overview
	Peripheral Interrupts
	Table E-1. Interrupt Vector Table (Continued)
	Table E-2. Interrupt Control (ICNTL) Register Bits�

	Other Interrupt Types

	G Glossary
	Terms

	I Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

