
a

ADSP-BF50x Blackfin® Processor
Hardware Reference

Revision 1.2, February 2013

Part Number
82-100101-01

Analog Devices, Inc.
One Technology Way
Norwood, Mass. 02062-9106

Copyright Information
© 2013 Analog Devices, Inc., ALL RIGHTS RESERVED. This docu-
ment may not be reproduced in any form without prior, express written
consent from Analog Devices, Inc.

Printed in the USA.

Disclaimer
Analog Devices, Inc. reserves the right to change this product without
prior notice. Information furnished by Analog Devices is believed to be
accurate and reliable. However, no responsibility is assumed by Analog
Devices for its use; nor for any infringement of patents or other rights of
third parties which may result from its use. No license is granted by impli-
cation or otherwise under the patent rights of Analog Devices, Inc.

Trademark and Service Mark Notice
The Analog Devices logo, Blackfin, CrossCore, EngineerZone, EZ-KIT
Lite, and VisualDSP++ are registered trademarks of Analog Devices, Inc.

All other brand and product names are trademarks or service marks of
their respective owners.

ADSP-BF50x Blackfin Processor Hardware Reference iii

 CONTENTS

PREFACE

Purpose of This Manual .. li

Intended Audience .. li

Manual Contents ... lii

What’s New in This Manual ... lv

Technical Support .. lvi

Supported Processors .. lviiii

Product Information .. lviiii

Analog Devices Web Site .. lviiii

EngineerZone .. lix

Notation Conventions .. lx

Register Diagram Conventions .. lxi

INTRODUCTION

General Description of Processor ... 1-1

Portable Low-Power Architecture ... 1-3

System Integration ... 1-3

Peripherals .. 1-4

Contents

iv ADSP-BF50x Blackfin Processor Hardware Reference

Memory Architecture .. 1-4

Internal Memory ... 1-6

External Memory .. 1-6

I/O Memory Space .. 1-7

DMA Support .. 1-8

General-Purpose I/O (GPIO) .. 1-9

Two-Wire Interface ... 1-10

RSI Interface .. 1-11

General-Purpose (GP) Counter ... 1-12

3-Phase PWM Unit .. 1-13

Parallel Peripheral Interface ... 1-14

SPORT Controllers .. 1-16

Serial Peripheral Interface (SPI) Ports .. 1-18

Timers .. 1-18

UART Ports ... 1-19

Controller Area Network (CAN) Interface 1-21

ACM Interface ... 1-22

Internal ADC ... 1-22

Watchdog Timer ... 1-23

Clock Signals .. 1-23

Dynamic Power Management .. 1-24

Full-On Operating Mode—Maximum Performance 1-24

Active Operating Mode—Moderate Dynamic Power Savings .. 1-24

Sleep Operating Mode—High Dynamic Power Savings 1-25

ADSP-BF50x Blackfin Processor Hardware Reference v

Contents

Deep Sleep Operating Mode—Maximum Dynamic Power
Savings ... 1-26

Hibernate State—Maximum Static Power Savings 1-26

Instruction Set Description ... 1-27

Development Tools ... 1-28

MEMORY

Memory Architecture .. 2-1

L1 Instruction SRAM .. 2-2

L1 Data SRAM ... 2-3

L1 Data Cache .. 2-4

Boot ROM ... 2-4

External Memory .. 2-4

Processor-Specific MMRs .. 2-5

DMEM_CONTROL Register ... 2-5

DTEST_COMMAND Register ... 2-6

CHIP BUS HIERARCHY

Chip Bus Hierarchy Overview ... 3-1

Interface Overview .. 3-2

Internal Clocks .. 3-2

Core Bus Overview .. 3-4

Peripheral Access Bus (PAB) ... 3-5

PAB Arbitration .. 3-6

PAB Agents (Masters, Slaves) ... 3-6

PAB Performance .. 3-7

Contents

vi ADSP-BF50x Blackfin Processor Hardware Reference

DMA Access Bus (DAB), DMA Core Bus (DCB), DMA
External Bus (DEB) .. 3-7

DAB, DCB, and DEB Arbitration 3-7

DAB Bus Agents (Masters) .. 3-9

DAB, DCB, and DEB Performance 3-9

External Access Bus (EAB) .. 3-10

Arbitration of the External Bus .. 3-10

DEB/EAB Performance ... 3-10

SYSTEM INTERRUPTS

Specific Information for the ADSP-BF50x 4-1

Overview .. 4-1

Features .. 4-2

Description of Operation .. 4-2

Events and Sequencing .. 4-2

System Peripheral Interrupts .. 4-4

Programming Model ... 4-7

System Interrupt Initialization ... 4-8

System Interrupt Processing Summary 4-8

System Interrupt Controller Registers .. 4-10

System Interrupt Assignment (SIC_IAR) Register 4-11

System Interrupt Mask (SIC_IMASK) Register 4-12

System Interrupt Status (SIC_ISR) Register 4-12

System Interrupt Wakeup-Enable (SIC_IWR) Register 4-12

ADSP-BF50x Blackfin Processor Hardware Reference vii

Contents

Programming Examples ... 4-13

Clearing Interrupt Requests ... 4-13

Unique Information for the ADSP-BF50x Processor 4-15

Interfaces .. 4-15

System Peripheral Interrupts .. 4-18

EXTERNAL BUS INTERFACE UNIT

EBIU Overview .. 5-1

Block Diagram .. 5-3

Internal Memory Interfaces .. 5-4

Registers .. 5-4

Error Detection ... 5-5

AMC Overview and Features ... 5-5

Features ... 5-6

Asynchronous Memory Interface .. 5-6

Asynchronous Memory Address Decode 5-6

AMC Description of Operation ... 5-6

Avoiding Bus Contention .. 5-6

AMC Programming Model .. 5-7

EBIU Registers ... 5-9

EBIU_AMGCTL Register ... 5-10

EBIU_AMBCTL Register .. 5-11

EBIU_MODECTL Register .. 5-12

EBIU_FCTL Register .. 5-12

Contents

viii ADSP-BF50x Blackfin Processor Hardware Reference

INTERNAL FLASH MEMORY

Overview .. 6-1

Command Interface to Internal Flash Memory 6-6

Command Interface – Standard Commands 6-7

Read Array Command ... 6-7

Read Status Register Command ... 6-8

Read Electronic Signature Command 6-8

Read CFI Query Command ... 6-9

Clear Status Register Command ... 6-9

Block Erase Command ... 6-10

Program Command ... 6-11

Program/Erase Suspend Command 6-11

Program/Erase Resume Command 6-12

Protection Register Program Command 6-13

The Set Configuration Register Command 6-14

Block Lock Command ... 6-14

Block Unlock Command ... 6-15

Block Lock-Down Command ... 6-15

Status Register ... 6-18

Program/Erase Controller Status Bit (SR7) 6-19

Erase Suspend Status Bit (SR6) .. 6-20

Erase Status Bit (SR5) .. 6-20

Program Status Bit (SR4) ... 6-21

VPP Status Bit (SR3) .. 6-21

ADSP-BF50x Blackfin Processor Hardware Reference ix

Contents

Program Suspend Status Bit (SR2) 6-22

Block Protection Status Bit (SR1) 6-22

Bank Write Status Bit (SR0) ... 6-22

Configuration Register ... 6-24

Read Select Bit (CR15) .. 6-24

X Latency Bits (CR13-CR11) ... 6-25

Wait Polarity Bit (CR10) .. 6-25

Data Output Configuration Bit (CR9) 6-26

Wait Configuration Bit (CR8) .. 6-27

Burst Type Bit (CR7) ... 6-27

Valid Clock Edge Bit (CR6) ... 6-27

Wrap Burst Bit (CR3) .. 6-27

Burst Length Bits (CR2-CR0) .. 6-27

Read Modes ... 6-33

Asynchronous Read Mode .. 6-33

Synchronous Burst Read Mode ... 6-33

Synchronous Burst Read Suspend 6-35

Single Synchronous Read Mode .. 6-36

Dual Operations and Multiple Bank Architecture 6-36

Contents

x ADSP-BF50x Blackfin Processor Hardware Reference

Block Locking .. 6-38

Reading a Block’s Lock Status .. 6-39

Locked State .. 6-39

Unlocked State .. 6-39

Lock-Down State ... 6-40

Locking Operations During Erase Suspend 6-40

Block Address Table .. 6-42

Common Flash Interface .. 6-45

Flowcharts and Pseudo Codes .. 6-56

Command Interface State Tables .. 6-68

Internal Flash Memory Programming Guidelines 6-77

Bringing Internal Flash Memory Out of Reset 6-78

Timing Configurations for Setting the Internal Flash Memory
in Asynchronous Read Mode .. 6-79

Timing Configurations for Setting the Internal Flash Memory
for Write Accesses ... 6-80

Enabling the Program or Erasure of Internal Flash Memory
Blocks .. 6-82

Configuring Internal Flash Memory for Synchronous Burst
Read Mode ... 6-83

Supported Configuration Register Combinations in
ADSP-BF50xF Processors .. 6-84

Configuring the EBIU for Synchronous Read Mode 6-85

Unsupported Programming Practices in Flash 6-87

ADSP-BF50x Blackfin Processor Hardware Reference xi

Contents

Internal Flash Memory Control Registers 6-88

Internal Flash Memory Control (FLASH_CONTROL)
Register .. 6-88

Internal Flash Memory Control Set
(FLASH_CONTROL_SET) Register 6-91

Internal Flash Memory Control Clear
(FLASH_CONTROL_CLEAR) Register 6-91

DIRECT MEMORY ACCESS

Specific Information for the ADSP-BF50x 7-1

Overview and Features .. 7-2

DMA Controller Overview .. 7-4

External Interfaces ... 7-4

Internal Interfaces .. 7-4

Peripheral DMA .. 7-5

Memory DMA .. 7-6

Handshaked Memory DMA (HMDMA) Mode 7-8

Modes of Operation .. 7-9

Register-Based DMA Operation ... 7-9

Stop Mode .. 7-11

Autobuffer Mode .. 7-11

Two-Dimensional DMA Operation .. 7-11

Examples of Two-Dimensional DMA 7-13

Descriptor-based DMA Operation ... 7-14

Descriptor List Mode .. 7-15

Descriptor Array Mode .. 7-15

Contents

xii ADSP-BF50x Blackfin Processor Hardware Reference

Variable Descriptor Size .. 7-15

Mixing Flow Modes .. 7-17

Functional Description ... 7-17

DMA Operation Flow ... 7-17

DMA Startup ... 7-17

DMA Refresh ... 7-23

Work Unit Transitions .. 7-25

DMA Transmit and MDMA Source 7-26

DMA Receive ... 7-27

Stopping DMA Transfers .. 7-29

DMA Errors (Aborts) .. 7-30

DMA Control Commands .. 7-32

Restrictions .. 7-35

Transmit Restart or Finish ... 7-35

Receive Restart or Finish ... 7-36

Handshaked Memory DMA Operation 7-37

Pipelining DMA Requests ... 7-38

HMDMA Interrupts ... 7-40

ADSP-BF50x Blackfin Processor Hardware Reference xiii

Contents

DMA Performance .. 7-41

DMA Throughput .. 7-42

Memory DMA Timing Details .. 7-45

Static Channel Prioritization ... 7-45

Temporary DMA Urgency ... 7-45

Memory DMA Priority and Scheduling 7-47

Traffic Control .. 7-49

Programming Model ... 7-51

Synchronization of Software and DMA 7-51

Single-Buffer DMA Transfers ... 7-53

Continuous Transfers Using Autobuffering 7-54

Descriptor Structures .. 7-56

Descriptor Queue Management ... 7-57

Descriptor Queue Using Interrupts on Every
Descriptor .. 7-58

Descriptor Queue Using Minimal Interrupts 7-59

Software-Triggered Descriptor Fetches 7-61

DMA Registers ... 7-63

DMA Channel Registers .. 7-64

DMA Peripheral Map Registers
(DMAx_PERIPHERAL_MAP/
MDMA_yy_PERIPHERAL_MAP) 7-67

DMA Configuration Registers
(DMAx_CONFIG/MDMA_yy_CONFIG) 7-68

DMA Interrupt Status Registers
(DMAx_IRQ_STATUS/MDMA_yy_IRQ_STATUS) 7-72

Contents

xiv ADSP-BF50x Blackfin Processor Hardware Reference

DMA Start Address Registers
(DMAx_START_ADDR/MDMA_yy_START_ADDR) . 7-75

DMA Current Address Registers
(DMAx_CURR_ADDR/MDMA_yy_CURR_ADDR) ... 7-76

DMA Inner Loop Count Registers
(DMAx_X_COUNT/MDMA_yy_X_COUNT) 7-76

DMA Current Inner Loop Count Registers
(DMAx_CURR_X_COUNT
/MDMA_yy_CURR_X_COUNT) 7-77

DMA Inner Loop Address Increment Registers
(DMAx_X_MODIFY/MDMA_yy_X_MODIFY) 7-78

DMA Outer Loop Count Registers
(DMAx_Y_COUNT/MDMA_yy_Y_COUNT) 7-79

DMA Current Outer Loop Count Registers
(DMAx_CURR_Y_COUNT/
MDMA_yy_CURR_Y_COUNT) 7-80

DMA Outer Loop Address Increment Registers
(DMAx_Y_MODIFY/MDMA_yy_Y_MODIFY) 7-80

DMA Next Descriptor Pointer Registers
(DMAx_NEXT_DESC_PTR/
MDMA_yy_NEXT_DESC_PTR) 7-81

DMA Current Descriptor Pointer Registers
(DMAx_CURR_DESC_PTR/
MDMA_yy_CURR_DESC_PTR) 7-82

HMDMA Registers ... 7-83

Handshake MDMA Control Registers
(HMDMAx_CONTROL) ... 7-83

Handshake MDMA Initial Block Count Registers
(HMDMAx_BCINIT) ... 7-86

ADSP-BF50x Blackfin Processor Hardware Reference xv

Contents

Handshake MDMA Current Block Count Registers
(HMDMAx_BCOUNT) .. 7-86

Handshake MDMA Current Edge Count Registers
(HMDMAx_ECOUNT) .. 7-87

Handshake MDMA Initial Edge Count Registers
(HMDMAx_ECINIT) ... 7-88

Handshake MDMA Edge Count Urgent Registers
(HMDMAx_ECURGENT) .. 7-88

Handshake MDMA Edge Count Overflow Interrupt
Registers (HMDMAx_ECOVERFLOW) 7-89

DMA Traffic Control Registers
(DMA_TC_PER and DMA_TC_CNT) 7-89

DMA_TC_PER Register ... 7-90

DMA_TC_CNT Register .. 7-90

Programming Examples ... 7-92

Register-Based 2-D Memory DMA .. 7-92

Initializing Descriptors in Memory .. 7-95

Software-Triggered Descriptor Fetch Example 7-98

Handshaked Memory DMA Example 7-101

Unique Information for the ADSP-BF50x Processor 7-103

Static Channel Prioritization .. 7-105

DYNAMIC POWER MANAGEMENT

Phase Locked Loop and Clock Control .. 8-1

PLL Overview ... 8-2

PLL Clock Multiplier Ratios .. 8-4

Core Clock/System Clock Ratio Control 8-5

Contents

xvi ADSP-BF50x Blackfin Processor Hardware Reference

Dynamic Power Management Controller 8-7

Operating Modes .. 8-8

Dynamic Power Management Controller States 8-8

Full-On Mode .. 8-8

Active Mode ... 8-9

Sleep Mode .. 8-9

Deep Sleep Mode ... 8-10

Hibernate State ... 8-11

Operating Mode Transitions .. 8-11

Programming Operating Mode Transitions 8-14

Dynamic Supply Voltage Control .. 8-16

Power Supply Management ... 8-16

Changing Voltage ... 8-16

Powering Down the Core (Hibernate State) 8-18

PLL and VR Registers ... 8-19

PLL_DIV Register .. 8-20

PLL_CTL Register .. 8-21

PLL_STAT Register .. 8-21

PLL_LOCKCNT Register ... 8-22

VR_CTL Register ... 8-22

System Control ROM Function .. 8-23

Programming Model ... 8-25

Accessing the System Control ROM Function in C/C++ 8-25

Accessing the System Control ROM Function in Assembly 8-26

ADSP-BF50x Blackfin Processor Hardware Reference xvii

Contents

Programming Examples ... 8-29

Full-on Mode to Active Mode and Back 8-31

Transition to Sleep Mode or Deep Sleep Mode 8-32

Set Wakeup Events and Enter Hibernate State 8-34

Perform a System Reset or Soft-Reset 8-36

In Full-on Mode, Change VCO Frequency, Core Clock
Frequency, and System Clock Frequency 8-37

Changing Voltage Levels .. 8-39

GENERAL-PURPOSE PORTS

Overview .. 9-1

Features .. 9-1

Interface Overview .. 9-3

External Interface .. 9-3

Port F Structure .. 9-3

Port G Structure ... 9-5

Port H Structure ... 9-6

Input Tap Considerations .. 9-6

PWM Unit Considerations .. 9-8

RSI Considerations ... 9-8

GP Counter Considerations .. 9-9

SPI Considerations .. 9-9

Contents

xviii ADSP-BF50x Blackfin Processor Hardware Reference

Internal Interfaces ... 9-9

GP Timer Interaction With Other Blocks 9-10

Buffered CLKIN (CLKBUF) ... 9-10

GP Counter .. 9-10

PPI ... 9-10

UART .. 9-10

SPORT .. 9-11

ACM .. 9-11

Performance/Throughput .. 9-12

Description of Operation .. 9-12

Operation ... 9-12

General-Purpose I/O Modules ... 9-13

GPIO Interrupt Processing .. 9-16

Programming Model ... 9-22

Hysteresis Control .. 9-24

PORTx Hysteresis (PORTx_HYSTERESIS) Register 9-24

Drive Strength Control ... 9-26

Memory-Mapped GPIO Registers ... 9-27

Port Multiplexer Control Registers (PORTx_MUX) 9-27

Function Enable Registers (PORTx_FER) 9-30

GPIO Direction Registers (PORTxIO_DIR) 9-30

GPIO Input Enable Registers (PORTxIO_INEN) 9-31

GPIO Data Registers (PORTxIO) ... 9-31

GPIO Set Registers (PORTxIO_SET) 9-32

ADSP-BF50x Blackfin Processor Hardware Reference xix

Contents

GPIO Clear Registers (PORTxIO_CLEAR) 9-32

GPIO Toggle Registers (PORTxIO_TOGGLE) 9-33

GPIO Polarity Registers (PORTxIO_POLAR) 9-33

Interrupt Sensitivity Registers (PORTxIO_EDGE) 9-34

GPIO Set on Both Edges Registers (PORTxIO_BOTH) 9-34

GPIO Mask Interrupt Registers (PORTxIO_MASKA/B) 9-35

GPIO Mask Interrupt Set Registers
(PORTxIO_MASKA/B_SET) ... 9-36

GPIO Mask Interrupt Clear Registers
(PORTxIO_MASKA/B_CLEAR) .. 9-38

GPIO Mask Interrupt Toggle Registers
(PORTxIO_MASKA/B_TOGGLE) 9-40

Programming Examples ... 9-41

GENERAL-PURPOSE TIMERS

Specific Information for the ADSP-BF50x 10-1

Overview .. 10-2

External Interface .. 10-3

Internal Interface ... 10-4

Description of Operation .. 10-4

Interrupt Processing ... 10-5

Illegal States .. 10-7

Modes of Operation .. 10-10

Pulse Width Modulation (PWM_OUT) Mode 10-10

Output Pad Disable .. 10-12

Single Pulse Generation ... 10-13

Contents

xx ADSP-BF50x Blackfin Processor Hardware Reference

Pulse Width Modulation Waveform Generation 10-14

PULSE_HI Toggle Mode .. 10-16

Externally Clocked PWM_OUT 10-21

Using PWM_OUT Mode With the PPI 10-21

Stopping the Timer in PWM_OUT Mode 10-22

Pulse Width Count and Capture (WDTH_CAP) Mode 10-24

Autobaud Mode .. 10-32

External Event (EXT_CLK) Mode 10-33

Programming Model ... 10-34

Timer Registers ... 10-35

Timer Enable Register (TIMER_ENABLE) 10-36

Timer Disable Register (TIMER_DISABLE) 10-37

Timer Status Register (TIMER_STATUS) 10-39

Timer Configuration Register (TIMER_CONFIG) 10-41

Timer Counter Register (TIMER_COUNTER) 10-42

Timer Period (TIMER_PERIOD) and Timer
Width (TIMER_WIDTH) Registers 10-43

Summary .. 10-46

Programming Examples .. 10-49

Unique Information for the ADSP-BF50x Processor 10-58

Interface Overview .. 10-58

External Interface ... 10-58

CORE TIMER

Specific Information for the ADSP-BF50x 11-1

ADSP-BF50x Blackfin Processor Hardware Reference xxi

Contents

Overview and Features .. 11-1

Timer Overview .. 11-2

External Interfaces ... 11-2

Internal Interfaces .. 11-3

Description of Operation .. 11-3

Interrupt Processing ... 11-3

Core Timer Registers ... 11-4

Core Timer Control Register (TCNTL) 11-5

Core Timer Count Register (TCOUNT) 11-5

Core Timer Period Register (TPERIOD) 11-6

Core Timer Scale Register (TSCALE) 11-7

Programming Examples ... 11-7

Unique Information for the ADSP-BF50x Processor 11-9

WATCHDOG TIMER

Specific Information for the ADSP-BF50x 12-1

Overview and Features .. 12-1

Interface Overview .. 12-3

External Interface .. 12-3

Internal Interface ... 12-3

Description of Operation .. 12-4

Register Definitions .. 12-5

Watchdog Count (WDOG_CNT) Register 12-5

Watchdog Status (WDOG_STAT) Register 12-6

Watchdog Control (WDOG_CTL) Register 12-7

Contents

xxii ADSP-BF50x Blackfin Processor Hardware Reference

Programming Examples .. 12-8

Unique Information for the ADSP-BF50x Processor 12-11

GENERAL-PURPOSE COUNTER

Specific Information for the ADSP-BF50x 13-1

Overview .. 13-2

Features .. 13-2

Interface Overview ... 13-3

Description of Operation .. 13-4

Quadrature Encoder Mode .. 13-4

Binary Encoder Mode ... 13-5

Up/Down Counter Mode .. 13-6

Direction Counter Mode ... 13-6

Timed Direction Mode ... 13-7

Functional Description ... 13-7

Input Noise Filtering (Debouncing) 13-7

Zero Marker (Push Button) Operation 13-9

Boundary Comparison Modes ... 13-10

Control and Signaling Events .. 13-11

Illegal Gray/Binary Code Events 13-12

Up/Down Count Events ... 13-12

Zero-Count Events ... 13-13

Overflow Events ... 13-13

Boundary Match Events .. 13-13

Zero Marker Events .. 13-14

ADSP-BF50x Blackfin Processor Hardware Reference xxiii

Contents

Capturing Timing Information .. 13-14

Capturing Time Interval Between
Successive Counter Events .. 13-14

Capturing Counter Interval and
CNT_COUNTER Read Timing 13-15

Programming Model ... 13-18

Registers ... 13-18

Counter Module Register Overview 13-18

Counter Configuration Register (CNT_CONFIG) 13-19

Counter Interrupt Mask Register (CNT_IMASK) 13-20

Counter Status Register (CNT_STATUS) 13-20

Counter Command Register (CNT_COMMAND) 13-21

Counter Debounce Register (CNT_DEBOUNCE) 13-23

Counter Count Value Register (CNT_COUNTER) 13-24

Counter Boundary Registers (CNT_MIN and CNT_MAX) . 13-25

Programming Examples ... 13-27

Unique Information for the ADSP-BF50x Processor 13-37

PWM CONTROLLER

Specific Information for the ADSP-BF50x 14-1

Overview .. 14-1

General Operation .. 14-8

Functional Description .. 14-9

Three-Phase PWM Timing Unit and Dead Time Control
Unit ... 14-10

PWM Switching Frequency (PWM_TM) Register 14-10

Contents

xxiv ADSP-BF50x Blackfin Processor Hardware Reference

PWM Switching Dead Time (PWM_DT) Register 14-12

PWM Operating Mode (PWM_CTRL and PWM_STAT)
Registers .. 14-13

PWM Duty Cycle
(PWM_CHA, PWM_CHB, and PWM_CHC) Registers ... 14-14

Special Consideration for PWM Operation in
Over-Modulation ... 14-20

Three-Phase PWM Timing Unit Operation 14-22

Effective PWM Accuracy ... 14-24

Switched Reluctance Mode .. 14-25

Output Control Unit .. 14-25

Crossover Feature ... 14-25

Mode Bits (POLARITY and SRMODE) 14-26

Output Enable Function ... 14-26

Brushless DC Motor (Electronically Commutated Motor)
Control ... 14-27

Gate Drive Unit .. 14-29

High-Frequency Chopping ... 14-29

PWM Polarity Control ... 14-30

Output Control Feature Precedence 14-31

Switched Reluctance (SR) Mode .. 14-31

PWM Sync Operation ... 14-34

Internal PWM SYNC Generation 14-35

External PWM SYNC Generation 14-35

PWM Shutdown and Interrupt Control Unit 14-36

ADSP-BF50x Blackfin Processor Hardware Reference xxv

Contents

PWM Registers ... 14-37

PWM Control (PWM_CTRL) Register 14-38

PWM Status (PWM_STAT) Register 14-40

PWM Period (PWM_TM) Register 14-41

PWM Dead Time (PWM_DT) Register 14-42

PWM Chopping Control (PWM_GATE) Register 14-42

PWM Channel A, B, C Duty Control
(PWM_CHA, PWM_CHB, PWM_CHC) Registers 14-43

PWM Crossover and Output Enable (PWM_SEG) Register . 14-45

PWM Sync Pulse Width Control (PWM_SYNCWT)
Register .. 14-47

PWM Channel AL, BL, CL Duty Control
(PWM_CHAL, PWM_CHBL, PWM_CHCL) Registers ... 14-47

PWM Low Side Invert (PWM_LSI) Register 14-49

PWM Simulation Status (PWM_STAT2) Register 14-49

Unique Information for the ADSP-BF50x Processor 14-50

UART PORT CONTROLLERS

Overview .. 15-1

Features ... 15-2

Interface Overview .. 15-3

External Interface .. 15-3

Internal Interface ... 15-5

Description of Operation .. 15-5

UART Transfer Protocol .. 15-6

UART Transmit Operation .. 15-7

Contents

xxvi ADSP-BF50x Blackfin Processor Hardware Reference

UART Receive Operation .. 15-8

Hardware Flow Control ... 15-10

IrDA Transmit Operation .. 15-13

IrDA Receive Operation .. 15-14

Interrupt Processing .. 15-16

Bit Rate Generation .. 15-18

Autobaud Detection .. 15-20

Programming Model ... 15-22

Non-DMA Mode .. 15-22

DMA Mode .. 15-24

Mixing Modes ... 15-25

UART Registers .. 15-26

UARTx_LCR Registers ... 15-28

UARTx_MCR Registers .. 15-31

UARTx_LSR Registers .. 15-33

UARTx_MSR Registers ... 15-36

UARTx_THR Registers ... 15-37

UARTx_RBR Registers ... 15-38

UARTx_DLL and UARTx_DLH Registers 15-43

UARTx_SCR Registers .. 15-44

UARTx_GCTL Registers .. 15-45

Programming Examples .. 15-46

TWO-WIRE INTERFACE CONTROLLER

Specific Information for the ADSP-BF50x 16-1

ADSP-BF50x Blackfin Processor Hardware Reference xxvii

Contents

Overview .. 16-2

Interface Overview .. 16-3

External Interface .. 16-3

Serial Clock Signal (SCL) .. 16-4

Serial Data Signal (SDA) ... 16-4

TWI Pins .. 16-5

Internal Interfaces .. 16-5

Description of Operation .. 16-6

TWI Transfer Protocols .. 16-6

Clock Generation and Synchronization 16-7

Bus Arbitration ... 16-8

Start and Stop Conditions ... 16-8

General Call Support .. 16-10

Fast Mode ... 16-10

Functional Description .. 16-11

General Setup .. 16-11

Slave Mode .. 16-11

Master Mode Clock Setup ... 16-12

Master Mode Transmit ... 16-13

Master Mode Receive ... 16-14

Repeated Start Condition .. 16-15

Transmit/Receive Repeated Start Sequence 16-15

Receive/Transmit Repeated Start Sequence 16-17

Contents

xxviii ADSP-BF50x Blackfin Processor Hardware Reference

Clock Stretching ... 16-18

Clock Stretching During FIFO Underflow 16-18

Clock Stretching During FIFO Overflow 16-20

Clock Stretching During Repeated Start Condition 16-21

Programming Model ... 16-23

Register Descriptions .. 16-25

TWI CONTROL Register (TWI_CONTROL) 16-25

SCL Clock Divider Register (TWI_CLKDIV) 16-26

TWI Slave Mode Control Register (TWI_SLAVE_CTL) 16-27

TWI Slave Mode Address Register (TWI_SLAVE_ADDR) .. 16-29

TWI Slave Mode Status Register (TWI_SLAVE_STAT) 16-29

TWI Master Mode Control Register
(TWI_MASTER_CTL) .. 16-31

TWI Master Mode Address Register
(TWI_MASTER_ADDR) .. 16-34

TWI Master Mode Status Register (TWI_MASTER_STAT) 16-35

TWI FIFO Control Register (TWI_FIFO_CTL) 16-38

TWI FIFO Status Register (TWI_FIFO_STAT) 16-40

TWI FIFO Status ... 16-40

TWI Interrupt Mask Register (TWI_INT_MASK) 16-42

TWI Interrupt Status Register (TWI_INT_STAT) 16-43

TWI FIFO Transmit Data Single Byte
Register (TWI_XMT_DATA8) ... 16-46

TWI FIFO Transmit Data Double Byte
Register (TWI_XMT_DATA16) 16-47

ADSP-BF50x Blackfin Processor Hardware Reference xxix

Contents

TWI FIFO Receive Data Single Byte
Register (TWI_RCV_DATA8) .. 16-48

TWI FIFO Receive Data Double Byte
Register (TWI_RCV_DATA16) .. 16-48

Programming Examples ... 16-50

Master Mode Setup ... 16-50

Slave Mode Setup .. 16-55

Electrical Specifications ... 16-61

Unique Information for the ADSP-BF50x Processor 16-61

CAN MODULE

Overview .. 17-1

Interface Overview .. 17-2

CAN Mailbox Area .. 17-4

CAN Mailbox Control ... 17-6

CAN Protocol Basics ... 17-7

CAN Operation .. 17-9

Bit Timing .. 17-10

Transmit Operation ... 17-12

Retransmission .. 17-13

Single Shot Transmission ... 17-14

Auto-Transmission .. 17-15

Contents

xxx ADSP-BF50x Blackfin Processor Hardware Reference

Receive Operation ... 17-15

Data Acceptance Filter .. 17-18

Remote Frame Handling ... 17-19

Watchdog Mode ... 17-19

Time Stamps ... 17-20

Temporarily Disabling Mailboxes ... 17-21

Functional Operation ... 17-22

CAN Interrupts .. 17-22

Mailbox Interrupts .. 17-23

Global CAN Status Interrupt .. 17-23

Event Counter .. 17-26

CAN Warnings and Errors ... 17-27

Programmable Warning Limits .. 17-28

CAN Error Handling .. 17-28

Error Frames ... 17-29

Error Levels .. 17-31

Debug and Test Modes .. 17-33

Low Power Features ... 17-37

CAN Built-In Suspend Mode .. 17-37

CAN Built-In Sleep Mode .. 17-38

CAN Wakeup From Hibernate State 17-38

ADSP-BF50x Blackfin Processor Hardware Reference xxxi

Contents

CAN Register Definitions ... 17-39

Global CAN Registers ... 17-43

CAN_CONTROL Register ... 17-43

CAN_STATUS Register .. 17-44

CAN_DEBUG Register .. 17-45

CAN_CLOCK Register ... 17-45

CAN_TIMING Register ... 17-46

CAN_INTR Register .. 17-46

CAN_GIM Register .. 17-47

CAN_GIS Register ... 17-47

CAN_GIF Register ... 17-48

Mailbox/Mask Registers ... 17-48

CAN_AMxx Registers ... 17-48

CAN_MBxx_ID1 Registers ... 17-52

CAN_MBxx_ID0 Registers ... 17-54

CAN_MBxx_TIMESTAMP Registers 17-56

CAN_MBxx_LENGTH Registers 17-58

CAN_MBxx_DATAx Registers .. 17-59

Mailbox Control Registers ... 17-68

CAN_MCx Registers .. 17-68

CAN_MDx Registers .. 17-69

CAN_RMPx Register .. 17-70

CAN_RMLx Register .. 17-71

CAN_OPSSx Register ... 17-72

Contents

xxxii ADSP-BF50x Blackfin Processor Hardware Reference

CAN_TRSx Registers ... 17-73

CAN_TRRx Registers ... 17-74

CAN_AAx Register ... 17-75

CAN_TAx Register ... 17-76

CAN_MBTD Register .. 17-77

CAN_RFHx Registers ... 17-77

CAN_MBIMx Registers .. 17-78

CAN_MBTIFx Registers ... 17-79

CAN_MBRIFx Registers ... 17-80

Universal Counter Registers ... 17-82

CAN_UCCNF Register .. 17-82

CAN_UCCNT Register ... 17-83

CAN_UCRC Register ... 17-83

Error Registers .. 17-84

CAN_CEC Register .. 17-84

CAN_ESR Register ... 17-84

CAN_EWR Register ... 17-84

Programming Examples .. 17-85

CAN Setup Code .. 17-85

Initializing and Enabling CAN Mailboxes 17-86

Initiating CAN Transfers and Processing Interrupts 17-88

SPI-COMPATIBLE PORT CONTROLLER

Specific Information for the ADSP-BF50x 18-1

Overview .. 18-2

ADSP-BF50x Blackfin Processor Hardware Reference xxxiii

Contents

Features .. 18-2

Interface Overview .. 18-3

External Interface .. 18-4

SPI Clock Signal (SCK) ... 18-5

Master-Out, Slave-In (MOSI) Signal 18-5

Master-In, Slave-Out (MISO) Signal 18-5

SPI Slave Select Input Signal (SPISS) 18-6

SPI Slave Select Enable Output Signals 18-7

Slave Select Inputs ... 18-8

Use of FLS Bits in SPI_FLG for Multiple Slave SPI
Systems .. 18-8

Internal Interfaces .. 18-11

DMA Functionality ... 18-11

Description of Operation .. 18-12

SPI Transfer Protocols .. 18-12

SPI General Operation .. 18-15

Clock Signals ... 18-16

Interrupt Output ... 18-17

Functional Description .. 18-17

Master Mode Operation (Non-DMA) 18-18

Transfer Initiation From Master (Transfer Modes) 18-19

Slave Mode Operation (Non-DMA) 18-20

Slave Ready for a Transfer .. 18-22

Contents

xxxiv ADSP-BF50x Blackfin Processor Hardware Reference

Programming Model ... 18-22

Beginning and Ending an SPI Transfer 18-22

Master Mode DMA Operation .. 18-24

Slave Mode DMA Operation ... 18-27

SPI Registers .. 18-34

SPI Baud Rate (SPI_BAUD) Register 18-35

SPI Control (SPI_CTL) Register ... 18-36

SPI Flag (SPI_FLG) Register ... 18-38

SPI Status (SPI_STAT) Register ... 18-40

Mode Fault Error (MODF) ... 18-41

Transmission Error (TXE) ... 18-42

Reception Error (RBSY) .. 18-42

Transmit Collision Error (TXCOL) 18-42

SPI Transmit Data Buffer (SPI_TDBR) Register 18-42

SPI Receive Data Buffer (SPI_RDBR) Register 18-43

SPI RDBR Shadow (SPI_SHADOW) Register 18-44

Programming Examples .. 18-45

Core-Generated Transfer ... 18-45

Initialization Sequence .. 18-45

Starting a Transfer ... 18-46

Post Transfer and Next Transfer 18-47

Stopping ... 18-48

ADSP-BF50x Blackfin Processor Hardware Reference xxxv

Contents

DMA-Based Transfer ... 18-48

DMA Initialization Sequence .. 18-49

SPI Initialization Sequence .. 18-50

Starting a Transfer ... 18-51

Stopping a Transfer ... 18-51

Unique Information for the ADSP-BF50x Processor 18-54

SPORT CONTROLLER

Specific Information for the ADSP-BF50x 19-1

Overview .. 19-2

Features ... 19-2

Interface Overview .. 19-4

SPORT Pin/Line Terminations .. 19-9

Description of Operation .. 19-10

SPORT Disable ... 19-10

Setting SPORT Modes ... 19-11

Stereo Serial Operation .. 19-11

Multichannel Operation .. 19-15

Multichannel Enable ... 19-18

Frame Syncs in Multichannel Mode 19-19

The Multichannel Frame ... 19-20

Multichannel Frame Delay .. 19-21

Window Size ... 19-21

Window Offset ... 19-22

Other Multichannel Fields in SPORT_MCMC2 19-22

Contents

xxxvi ADSP-BF50x Blackfin Processor Hardware Reference

Channel Selection Register .. 19-23

Multichannel DMA Data Packing 19-24

Support for H.100 Standard Protocol 19-25

2× Clock Recovery Control ... 19-25

Functional Description ... 19-26

Clock and Frame Sync Frequencies 19-26

Maximum Clock Rate Restrictions 19-27

Word Length .. 19-28

Bit Order .. 19-28

Data Type ... 19-28

Companding ... 19-29

Clock Signal Options .. 19-30

Frame Sync Options .. 19-31

Framed Versus Unframed .. 19-31

Internal Versus External Frame Syncs 19-32

Active Low Versus Active High Frame Syncs 19-33

Sampling Edge for Data and Frame Syncs 19-33

Early Versus Late Frame Syncs (Normal Versus
Alternate Timing) .. 19-35

Data Independent Transmit Frame Sync 19-37

Moving Data Between SPORTs and Memory 19-38

SPORT RX, TX, and Error Interrupts 19-38

Peripheral Bus Errors ... 19-39

Timing Examples .. 19-39

ADSP-BF50x Blackfin Processor Hardware Reference xxxvii

Contents

SPORT Registers .. 19-45

Register Writes and Effective Latency 19-46

SPORT Transmit Configuration
(SPORT_TCR1 and SPORT_TCR2) Registers 19-47

SPORT Receive Configuration
(SPORT_RCR1 and SPORT_RCR2) Registers 19-52

Data Word Formats ... 19-56

SPORT Transmit Data (SPORT_TX) Register 19-57

SPORT Receive Data (SPORT_RX) Register 19-59

SPORT Status (SPORT_STAT) Register 19-62

SPORT Transmit and Receive Serial Clock Divider
(SPORT_TCLKDIV and SPORT_RCLKDIV) Registers ... 19-63

SPORT Transmit and Receive Frame Sync Divider
(SPORT_TFSDIV and SPORT_RFSDIV) Registers 19-64

SPORT Multichannel Configuration
(SPORT_MCMC1 and SPORT_MCMC2) Registers 19-65

SPORT Current Channel (SPORT_CHNL) Register 19-66

SPORT Multichannel Receive Selection
(SPORT_MRCSn) Registers ... 19-67

SPORT Multichannel Transmit Selection
(SPORT_MTCSn) Registers ... 19-68

Programming Examples ... 19-69

SPORT Initialization Sequence .. 19-70

DMA Initialization Sequence ... 19-72

Interrupt Servicing .. 19-74

Starting a Transfer ... 19-75

Contents

xxxviii ADSP-BF50x Blackfin Processor Hardware Reference

Unique Information for the ADSP-BF50x Processor 19-76

PARALLEL PERIPHERAL INTERFACE

Specific Information for the ADSP-BF50x 20-1

Overview .. 20-2

Features .. 20-2

Interface Overview ... 20-3

Description of Operation .. 20-4

Functional Description ... 20-5

ITU-R 656 Modes .. 20-5

ITU-R 656 Background .. 20-5

ITU-R 656 Input Modes .. 20-9

Entire Field .. 20-9

Active Video Only .. 20-10

Vertical Blanking Interval (VBI) Only 20-10

ITU-R 656 Output Mode ... 20-11

Frame Synchronization in ITU-R 656 Modes 20-11

General-Purpose PPI Modes .. 20-12

Data Input (RX) Modes .. 20-14

No Frame Syncs .. 20-15

1, 2, or 3 External Frame Syncs 20-15

2 or 3 Internal Frame Syncs .. 20-16

ADSP-BF50x Blackfin Processor Hardware Reference xxxix

Contents

Data Output (TX) Modes ... 20-17

No Frame Syncs .. 20-17

1 or 2 External Frame Syncs .. 20-18

1, 2, or 3 Internal Frame Syncs 20-19

Frame Synchronization in GP Modes 20-19

Modes With Internal Frame Syncs 20-19

Modes With External Frame Syncs 20-21

Programming Model ... 20-22

DMA Operation .. 20-22

PPI Registers ... 20-25

PPI Control Register (PPI_CONTROL) 20-25

PPI Status Register (PPI_STATUS) 20-29

PPI Delay Count Register (PPI_DELAY) 20-32

PPI Transfer Count Register (PPI_COUNT) 20-32

PPI Lines Per Frame Register (PPI_FRAME) 20-33

Programming Examples ... 20-34

Unique Information for the ADSP-BF50x Processor 20-37

REMOVABLE STORAGE INTERFACE

Overview .. 21-1

Interface Overview .. 21-2

Description of Operation .. 21-6

Functional Description .. 21-9

RSI Clock Configuration ... 21-9

RSI Interface Configuration ... 21-10

Contents

xl ADSP-BF50x Blackfin Processor Hardware Reference

Card Detection ... 21-11

RSI Power Saving Configuration ... 21-14

RSI Commands and Responses .. 21-15

IDLE State ... 21-20

PEND State ... 21-20

SEND State .. 21-20

WAIT State .. 21-21

RECEIVE State .. 21-21

CEATA_INT_WAIT State .. 21-22

CEATA_INT_DIS State ... 21-22

RSI Command Path CRC ... 21-23

RSI Data ... 21-23

RSI Data Transmit Path ... 21-26

RSI Data Receive Path ... 21-27

RSI Data Path CRC .. 21-29

RSI Data FIFO ... 21-29

SDIO Interrupt and Read Wait Support 21-31

Programming Model ... 21-32

Card Identification .. 21-32

SD Card Identification Procedure 21-32

MMC Identification Procedure 21-34

Single Block Write Operations ... 21-35

Using Core ... 21-36

Using DMA ... 21-37

ADSP-BF50x Blackfin Processor Hardware Reference xli

Contents

Single Block Read Operation ... 21-39

Using Core ... 21-40

Using DMA .. 21-42

Multiple Block Write Operation ... 21-43

Using Core ... 21-44

Using DMA .. 21-46

Multiple Block Read Operation ... 21-48

Using Core ... 21-48

Using DMA .. 21-50

RSI Registers ... 21-52

RSI Power Control Register (RSI_PWR_CONTROL) 21-54

RSI Clock Control Register (RSI_CLK_CONTROL) 21-55

RSI Argument Register (RSI_ARGUMENT) 21-57

RSI Command Register (RSI_COMMAND) 21-57

RSI Response Command Register (RSI_RESP_CMD) 21-59

RSI Response Registers (RSI_RESPONSEx) 21-60

RSI Data Timer Register (RSI_DATA_TIMER) 21-61

RSI Data Length Register (RSI_DATA_LGTH) 21-62

RSI Data Control Register (RSI_DATA_CONTROL) 21-62

RSI Data Counter Register (RSI_DATA_CNT) 21-64

RSI Status Register (RSI_STATUS) 21-65

RSI Status Clear Register (RSI_STATUSCL) 21-68

RSI Interrupt Mask Registers (RSI_MASKx) 21-70

RSI FIFO Counter Register (RSI_FIFO_CNT) 21-73

Contents

xlii ADSP-BF50x Blackfin Processor Hardware Reference

RSI CE-ATA Control Register (RSI_CEATA_CONTROL) .. 21-74

RSI Data FIFO Register (RSI_FIFO) 21-75

RSI Exception Status Register (RSI_ESTAT) 21-75

RSI Exception Mask Register (RSI_EMASK) 21-77

RSI Configuration Register (RSI_CONFIG) 21-78

RSI Read Wait Enable Register (RSI_RD_WAIT_EN) 21-80

RSI Peripheral ID Registers (RSI_PIDx) 21-81

ADC CONTROL MODULE (ACM)

Interface Overview ... 22-3

Events ... 22-6

Timers .. 22-6

External Triggers ... 22-7

Event Register Pairs ... 22-9

Event Comparators .. 22-9

Timing Generation Unit ... 22-9

Interrupts ... 22-10

Description of Operation .. 22-10

ADC Power Down .. 22-11

Single-Shot Sequencing Mode Emulation 22-11

Continuous Sequencing Mode Emulation 22-12

Functional Description ... 22-15

ADC Sampling Latency ... 22-18

ADSP-BF50x Blackfin Processor Hardware Reference xliii

Contents

ACM External Pin Timing ... 22-20

Case 1—Chip Select Asserted During the High Phase of
ACLK .. 22-22

Case 2—Chip Select Asserted During the Low Phase of
ACLK .. 22-23

Case 3—Chip Select Asserted Right Before the Falling
Edge of ACLK .. 22-24

Case 4—Chip Select Asserted Right Before the Rising
Edge of ACLK .. 22-25

Case 5—ACLK Polarity Set to 1 (CLKPOL=1) 22-26

ACM Timing Specifications ... 22-26

Programming Model ... 22-27

ACM Registers .. 22-31

ACM Control (ACM_CTL) Register 22-32

ACM Status (ACM_STAT) Register 22-33

ACM Event Status (ACM_ES) Register 22-34

ACM Event Interrupt Mask (ACM_IMSK) Register 22-35

ACM Missed Event Status (ACM_MS) Register 22-36

ACM Event Missed Interrupt Mask (ACM_EMSK)
Register .. 22-37

ACM Event Control (ACM_ERx) Registers 22-38

ACM Event Time (ACM_ETx) Registers 22-39

ACM Timing Configuration (ACM_TCx) Registers 22-39

ACM Timing Configuration 0 (ACM_TC0) Register 22-40

ACM Timing Configuration 1 (ACM_TC1) Register 22-41

Programming Examples ... 22-41

Contents

xliv ADSP-BF50x Blackfin Processor Hardware Reference

ANALOG/DIGITAL CONVERTER (ADC)

ADC Architecture ... 23-1

Maximum ADC Sampling Rate ... 23-4

Interfacing the ADC With the ACM and the SPORT 23-4

Interfacing the ADC With the SPORT and With TMR Pins .. 23-6

SYSTEM RESET AND BOOTING

Overview .. 24-1

Reset and Power-up ... 24-3

Hardware Reset ... 24-5

Software Resets ... 24-5

Servicing Reset Interrupts .. 24-8

Basic Booting Process .. 24-9

Block Headers ... 24-11

Block Code .. 24-13

DMA Code Field .. 24-13

Block Flags Field ... 24-15

Header Checksum Field .. 24-16

Header Sign Field ... 24-17

Target Address .. 24-17

Byte Count ... 24-18

Argument ... 24-18

Boot Host Wait (HWAIT) Feedback Strobe 24-19

Using HWAIT as Reset Indicator 24-20

ADSP-BF50x Blackfin Processor Hardware Reference xlv

Contents

Boot Termination .. 24-20

Single Block Boot Streams ... 24-21

Direct Code Execution .. 24-22

Advanced Boot Techniques .. 24-23

Initialization Code ... 24-24

Quick Boot ... 24-28

Indirect Booting .. 24-29

Callback Routines .. 24-30

Error Handler .. 24-32

CRC Checksum Calculation .. 24-33

Load Functions ... 24-33

Calling the Boot Kernel at Runtime 24-34

Debugging the Boot Process ... 24-35

Boot Management ... 24-37

Booting a Different Application ... 24-38

Multi-DXE Boot Streams .. 24-39

Determining Boot Stream Start Addresses 24-43

Initialization Hook Routine ... 24-43

Specific Boot Modes .. 24-44

No Boot Mode .. 24-45

Flash Boot Modes .. 24-45

SPI Master Boot Modes ... 24-47

SPI Device Detection Routine ... 24-49

SPI Slave Boot Mode ... 24-51

Contents

xlvi ADSP-BF50x Blackfin Processor Hardware Reference

PPI Boot Mode ... 24-53

UART Slave Mode Boot .. 24-55

Reset and Booting Registers .. 24-59

Software Reset (SWRST) Register .. 24-59

System Reset Configuration (SYSCR) Register 24-61

Boot Code Revision Control (BK_REVISION) 24-63

Boot Code Date Code (BK_DATECODE) 24-64

Zero Word (BK_ZEROS) .. 24-65

Ones Word (BK_ONES) ... 24-66

Data Structures ... 24-66

ADI_BOOT_HEADER .. 24-67

ADI_BOOT_BUFFER ... 24-67

ADI_BOOT_DATA ... 24-67

dFlags Word ... 24-72

Callable ROM Functions for Booting .. 24-73

BFROM_FINALINIT .. 24-73

BFROM_PDMA .. 24-74

BFROM_MDMA .. 24-74

BFROM_MEMBOOT ... 24-75

BFROM_SPIBOOT ... 24-77

BFROM_BOOTKERNEL .. 24-79

BFROM_CRC32 .. 24-79

BFROM_CRC32POLY ... 24-80

ADSP-BF50x Blackfin Processor Hardware Reference xlvii

Contents

BFROM_CRC32CALLBACK ... 24-81

BFROM_CRC32INITCODE ... 24-81

Programming Examples ... 24-82

Example System Reset ... 24-82

Example Exiting Reset to User Mode 24-83

Example Exiting Reset to Supervisor Mode 24-83

Example Power Management with Initcode 24-84

Example XOR Checksum .. 24-86

Example Direct Code Execution .. 24-88

SYSTEM DESIGN

Pin Descriptions ... 25-1

Managing Clocks .. 25-1

Managing Core and System Clocks .. 25-2

Configuring and Servicing Interrupts ... 25-2

Semaphores ... 25-2

Example Code for Query Semaphore 25-3

Data Delays, Latencies and Throughput 25-4

Bus Priorities .. 25-4

High-Frequency Design Considerations 25-5

Signal Integrity .. 25-5

Decoupling Capacitors and Ground Planes 25-6

5 Volt Tolerance ... 25-8

Test Point Access ... 25-8

Contents

xlviii ADSP-BF50x Blackfin Processor Hardware Reference

Oscilloscope Probes ... 25-8

Recommended Reading ... 25-9

Resetting the Processor ... 25-10

Recommendations for Unused Pins ... 25-10

Programmable Outputs ... 25-11

Voltage Regulation Interface ... 25-11

SYSTEM MMR ASSIGNMENTS

Processor-Specific Memory Registers ... A-2

Core Timer Registers .. A-3

System Reset and Interrupt Control
Registers .. A-4

DMA/Memory DMA Control Registers .. A-5

Ports Registers .. A-8

Timer Registers ... A-11

Watchdog Timer Registers ... A-15

GP Counter Registers ... A-15

Dynamic Power Management Registers A-17

PPI Registers .. A-17

SPI Controller Registers .. A-18

SPORT Controller Registers ... A-19

UART Controller Registers ... A-23

TWI Registers .. A-25

CAN Registers .. A-26

ACM Registers ... A-42

ADSP-BF50x Blackfin Processor Hardware Reference xlix

PWM Registers .. A-44

RSI Registers .. A-46

ACM Registers ... A-47

TEST FEATURES

JTAG Standard .. B-1

Boundary-Scan Architecture ... B-2

Instruction Register .. B-4

Public Instructions ... B-6

EXTEST – Binary Code 00000 .. B-6

SAMPLE/PRELOAD – Binary Code 10000 B-6

BYPASS – Binary Code 11111 ... B-6

Boundary-Scan Register .. B-7

INDEX

Contents

l ADSP-BF50x Blackfin Processor Hardware Reference

ADSP-BF50x Blackfin Processor Hardware Reference li

 PREFACE

Thank you for purchasing and developing systems using an enhanced
Blackfin® processor from Analog Devices.

Purpose of This Manual
ADSP-BF50x Blackfin Processor Hardware Reference provides architectural
information about the ADSP-BF50x processors. This hardware reference
provides the main architectural information about these processors. The
architectural descriptions cover functional blocks, buses, and ports,
including all features and processes that they support. For programming
information, see Blackfin Processor Programming Reference. For timing,
electrical, and package specifications, see ADSP-BF504, ADSP-BF504F,
ADSP-BF506F Embedded Processor Data Sheet.

Intended Audience
The primary audience for this manual is a programmer who is familiar
with Analog Devices processors. The manual assumes the audience has a
working knowledge of the appropriate processor architecture and instruc-
tion set. Programmers who are unfamiliar with Analog Devices processors
can use this manual, but should supplement it with other texts, such as
hardware and programming reference manuals that describe their target
architecture.

Manual Contents

lii ADSP-BF50x Blackfin Processor Hardware Reference

Manual Contents
This manual contains:

• Chapter 1, “Introduction”
Provides a high level overview of the processor, including peripher-
als, power management, and development tools.

• Chapter 2, “Memory”
Describes processor-specific memory topics, including L1memories
and processor-specific memory MMRs.

• Chapter 3, “Chip Bus Hierarchy”
Describes on-chip buses, including how data moves through the
system.

• Chapter 4, “System Interrupts”
Describes the system peripheral interrupts, including setup and
clearing of interrupt requests.

• Chapter 5, “External Bus Interface Unit”
Describes the external bus interface unit of the processor and mem-
ory interface.

• Chapter 6, “Internal Flash Memory”
Describes the internal flash memory and programmable features.

• Chapter 7, “Direct Memory Access”
Describes the peripheral DMA and Memory DMA controllers.
Includes performance, software management of DMA, and DMA
errors.

• Chapter 8, “Dynamic Power Management”
Describes the clocking, including the PLL, and the dynamic power
management controller.

ADSP-BF50x Blackfin Processor Hardware Reference liii

Preface

• Chapter 9, “General-Purpose Ports”
Describes the general-purpose I/O ports, including the structure of
each port, multiplexing, configuring the pins, and generating
interrupts.

• Chapter 10, “General-Purpose Timers”
Describes the eight general-purpose timers.

• Chapter 11, “Core Timer”
Describes the core timer.

• Chapter 12, “Watchdog Timer”
Describes the watchdog timer.

• Chapter 13, “General-Purpose Counter”
Describes the Rotary (up/down) Counter. This counter provides
support for manually controlled rotary controllers, such as the vol-
ume wheel on a radio device. This unit also supports industrial or
motor-control type of wheels.

• Chapter 14, “PWM Controller”
Describes the The PWM controller—a flexible, programmable,
three-phase PWM waveform generator that can be programmed to
generate the required switching patterns to drive a three-phase volt-
age source inverter for ac induction motor (ACIM) or permanent
magnet synchronous motor (PMSM) control.

• Chapter 15, “UART Port Controllers”
Describes the Universal Asynchronous Receiver/Transmitter port
that converts data between serial and parallel formats. The UART
supports the half-duplex IrDA® SIR protocol as a mode-enabled
feature.

• Chapter 16, “Two-Wire Interface Controller”
Describes the Two-Wire Interface (TWI) controller, which allows
a device to interface to an Inter IC bus as specified by the Philips
I2C Bus Specification version 2.1 dated January 2000.

Manual Contents

liv ADSP-BF50x Blackfin Processor Hardware Reference

• Chapter 17, “CAN Module”
Describes the CAN module, a low bit rate serial interface intended
for use in applications where bit rates are typically up to 1Mbit/s.

• Chapter 18, “SPI-Compatible Port Controller”
Describes the Serial Peripheral Interface (SPI) port that provides an
I/O interface to a variety of SPI compatible peripheral devices.

• Chapter 19, “SPORT Controller”
Describes the independent, synchronous Serial Port Controller
which provides an I/O interface to a variety of serial peripheral
devices.

• Chapter 20, “Parallel Peripheral Interface”
Describes the Parallel Peripheral Interface (PPI) of the processor.
The PPI is a half-duplex, bidirectional port accommodating up to
16 bits of data and is used for digital video and data converter
applications.

• Chapter 21, “Removable Storage Interface”
Describes the RSI interface for multimedia cards (MMC), secure
digital memory cards (SD), secure digital input/output cards
(SDIO) and consumer electronic ATA devices (CE-ATA).

• Chapter 22, “ADC Control Module (ACM)”
Describes the ADC control module (ACM), which provides an
interface to synchronize the controls between the processor and the
internal analog-to-digital converter (ADC) module.

• Chapter 23, “Analog/Digital Converter (ADC)”
Describes the internal ADC, which is a dual, 12-bit, high speed,
low power, successive approximation ADC that operates from a
single 2.7 V to 5.25 V power supply and features throughput rates
up to 1.66 MSPS. The device contains two ADCs, each preceded
by a 3-channel multiplexer, and a low noise, wide bandwidth
track-and-hold amplifier that can handle input frequencies in
excess of 30 MHz.

ADSP-BF50x Blackfin Processor Hardware Reference lv

Preface

• Chapter 24, “System Reset and Booting”
Describes the booting methods, booting process and specific boot
modes for the processor.

• Chapter 25, “System Design”
Describes how to use the processor as part of an overall system. It
includes information about bus timing and latency numbers, sema-
phores, and a discussion of the treatment of unused pins.

• Appendix A, “System MMR Assignments”
Lists the memory-mapped registers included in this manual, their
addresses, and cross-references to text.

• Appendix B, “Test Features”
Describes test features for the processor, discusses the JTAG stan-
dard, boundary-scan architecture, instruction and boundary
registers, and public instructions.

 This hardware reference is a companion document to Blackfin Pro-
cessor Programming Reference.

What’s New in This Manual
This is Revision 1.2 of ADSP-BF50x Blackfin Processor Hardware Refer-
ence. This revision corrects minor typographical errors and the following
issues:

• Core priority over DMA when accessing L1 SRAM in Chapter 3,
“Chip Bus Hierarchy”

• Arithmetic operators in PLL block diagram, note on programming
the STOPCK bit, and extra pipe in the bfrom_SysControl code exam-
ple in Chapter 8, “Dynamic Power Management”

• Assignment of GPIO data registers in Chapter 9, “General-Purpose
Ports”

Technical Support

lvi ADSP-BF50x Blackfin Processor Hardware Reference

• UARTx_IER_ SET register functionality in Chapter 15, “UART Port
Controllers”

• Descriptions of the TWI_XMT_DATA8 register bit and RCVSERV, the
Receive FIFO service, in Chapter 16, “Two-Wire Interface
Controller”

• Note on CAN_GIS and CAN_GIF programming in Chapter 17, “CAN
Module”

• Termination of SPI TX DMA operations and comments on
SPI_CTL register functionality in Chapter 18, “SPI-Compatible
Port Controller”

• Receiver and transmitter enable bit names standardized on RSPEN

and TSPEN in Chapter 19, “SPORT Controller”

• ACM programming model updated in Chapter 22, “ADC Control
Module (ACM)”

• SYSCR register functionality, target address setting by the elfloader
utility, and MOSI pin latching information in Chapter 24, “System
Reset and Booting”

Technical Support
You can reach Analog Devices processors and DSP technical support in
the following ways:

• Post your questions in the processors and DSP support community
at EngineerZone®:
http://ez.analog.com/community/dsp

• Submit your questions to technical support directly at:
http://www.analog.com/support

http://ez.analog.com/community/dsp
http://www.analog.com/support

ADSP-BF50x Blackfin Processor Hardware Reference lvii

Preface

• E-mail your questions about processors, DSPs, and tools develop-
ment software from CrossCore® Embedded Studio or
VisualDSP++®:

Choose Help > Email Support. This creates an e-mail to
processor.tools.support@analog.com and automatically attaches
your CrossCore Embedded Studio or VisualDSP++ version infor-
mation and license.dat file.

• E-mail your questions about processors and processor applications
to:
processor.support@analog.com or
processor.china@analog.com (Greater China support)

• In the USA only, call 1-800-ANALOGD (1-800-262-5643)

• Contact your Analog Devices sales office or authorized distributor.
Locate one at:
www.analog.com/adi-sales

• Send questions by mail to:
Processors and DSP Technical Support
Analog Devices, Inc.
Three Technology Way
P.O. Box 9106
Norwood, MA 02062-9106
USA

mailto:processor.tools.support@analog.com
mailto:processor.support@analog.com
mailto:processor.china@analog.com
http://www.analog.com/adi-sales

Supported Processors

lviii ADSP-BF50x Blackfin Processor Hardware Reference

Supported Processors
The name “Blackfin” refers to a family of 16-bit, embedded processors.
Refer to the CCES or VisualDSP++ online help for a complete list of sup-
ported processors.

Product Information
Product information can be obtained from the Analog Devices Web site
and the CCES or VisualDSP++ online help.

Analog Devices Web Site
The Analog Devices Web site, www.analog.com, provides information
about a broad range of products—analog integrated circuits, amplifiers,
converters, and digital signal processors.

To access a complete technical library for each processor family, go to
http://www.analog.com/processors/technical_library. The manuals
selection opens a list of current manuals related to the product as well as a
link to the previous revisions of the manuals. When locating your manual
title, note a possible errata check mark next to the title that leads to the
current correction report against the manual.

Also note, myAnalog is a free feature of the Analog Devices Web site that
allows customization of a Web page to display only the latest information
about products you are interested in. You can choose to receive weekly
e-mail notifications containing updates to the Web pages that meet your
interests, including documentation errata against all manuals. myAnalog
provides access to books, application notes, data sheets, code examples,
and more.

Visit myAnalog to sign up. If you are a registered user, just log on. Your
user name is your e-mail address.

http://www.analog.com
http://www.analog.com/processors/technical_library/
http://www.analog.com/MyAnalog
http://www.analog.com/MyAnalog
http://www.analog.com/MyAnalog

ADSP-BF50x Blackfin Processor Hardware Reference lix

Preface

EngineerZone
EngineerZone is a technical support forum from Analog Devices, Inc. It
allows you direct access to ADI technical support engineers. You can
search FAQs and technical information to get quick answers to your
embedded processing and DSP design questions.

Use EngineerZone to connect with other DSP developers who face similar
design challenges. You can also use this open forum to share knowledge
and collaborate with the ADI support team and your peers. Visit
http://ez.analog.com to sign up.

http://ez.analog.com

Notation Conventions

lx ADSP-BF50x Blackfin Processor Hardware Reference

Notation Conventions
Text conventions in this manual are identified and described as follows.

Example Description

File > Close Titles in reference sections indicate the location of an item within the
IDE environment’s menu system (for example, the Close command
appears on the File menu).

{this | that} Alternative required items in syntax descriptions appear within curly
brackets and separated by vertical bars; read the example as this or
that. One or the other is required.

[this | that] Optional items in syntax descriptions appear within brackets and sepa-
rated by vertical bars; read the example as an optional this or that.

[this,…] Optional item lists in syntax descriptions appear within brackets delim-
ited by commas and terminated with an ellipsis; read the example as an
optional comma-separated list of this.

.SECTION Commands, directives, keywords, and feature names are in text with
letter gothic font.

filename Non-keyword placeholders appear in text with italic style format.

Note: For correct operation, ...
A Note provides supplementary information on a related topic. In the
online version of this book, the word Note appears instead of this

symbol.

Caution: Incorrect device operation may result if ...
Caution: Device damage may result if ...
A Caution identifies conditions or inappropriate usage of the product
that could lead to undesirable results or product damage. In the online
version of this book, the word Caution appears instead of this symbol.

Warning: Injury to device users may result if ...
A Warning identifies conditions or inappropriate usage of the product
that could lead to conditions that are potentially hazardous for devices
users. In the online version of this book, the word Warning appears
instead of this symbol.







ADSP-BF50x Blackfin Processor Hardware Reference lxi

Preface

Register Diagram Conventions
Register diagrams use the following conventions:

• The descriptive name of the register appears at the top, followed by
the short form of the name in parentheses.

• If the register is read-only (RO), write-1-to-set (W1S), or
write-1-to-clear (W1C), this information appears under the name.
Read/write is the default and is not noted. Additional descriptive
text may follow.

• If any bits in the register do not follow the overall read/write con-
vention, this is noted in the bit description after the bit name.

• If a bit has a short name, the short name appears first in the bit
description, followed by the long name in parentheses.

• The reset value appears in binary in the individual bits and in hexa-
decimal to the right of the register.

• Bits marked x have an unknown reset value. Consequently, the
reset value of registers that contain such bits is undefined or depen-
dent on pin values at reset.

• Shaded bits are reserved.

 To ensure upward compatibility with future implementations,
write back the value that is read for reserved bits in a register,
unless otherwise specified.

Register Diagram Conventions

lxii ADSP-BF50x Blackfin Processor Hardware Reference

The following figure shows an example of these conventions.

Figure 1. Register Diagram Example

00

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0

TMODE[1:0] (Timer Mode)

Reset = 0x00000

Timer Configuration Registers (TIMERx_CONFIG)

0 - Negative action pulse.
1 - Positive action pulse.

This bit must be set to 1, when operat-
ing the PPI in GP Output modes.
0 - Use system clock SCLK for counter.
1 - Use PWM_CLK to clock counter.

0 - The effective state of PULSE_HI
is the programmed state.
1 - The effective state of PULSE_HI
alternates each period.

00 - No error.
01 - Counter overflow error.
10 - Period register programming error.
11 - Pulse width register programming error.

00 - Reset state - unused.
01 - PWM_OUT mode.
10 - WDTH_CAP mode.
11 - EXT_CLK mode.

PULSE_HI

CLK_SEL (Timer Clock Select)

TOGGLE_HI (PWM_OUT PULSE_HI Toggle Mode)

ERR_TYP[1:0] (Error Type) - RO

PERIOD_CNT (Period
Count)

0 - Interrupt request
disable.
1 - Interrupt request enable

0 - Count to end of width.
1 - Count to end of period.

IRQ_ENA (Interrupt
Request Enable)

0 - Sample TMRx pin or
PF1 pin.
1 - Sample UART RX pin
or PPI_CLK pin.

TIN_SEL (Timer Input
Select)

0 - Enable pad in PWM_OUT mode.
1 - Disable pad in PWM_OUT mode.

OUT_DIS (Output Pad Disable)

0 - Timer counter stops during emulation.
1 - Timer counter runs during emulation.

EMU_RUN (Emulation Behavior Select)

ADSP-BF50x Blackfin Processor Hardware Reference 1-1

1 INTRODUCTION

The ADSP-BF50x processors are members of the Blackfin processor fam-
ily that offer significant high performance and low power features while
retaining their ease-of-use benefits. The ADSP-BF504, ADSP-BF504F,
and ADSP-BF506F processors have differing peripheral features. For
details, see Table 1-1. Note that the ADSP-BF504 and ADSP-BF504F are
pin-compatible.

 This hardware reference is a companion document to Blackfin Pro-
cessor Programming Reference.

General Description of Processor
The ADSP-BF50x processor is a member of the Blackfin® family of prod-
ucts, incorporating the Analog Devices/Intel Micro Signal Architecture
(MSA). Blackfin processors combine a dual-MAC state-of-the-art signal
processing engine, the advantages of a clean, orthogonal RISC-like micro-
processor instruction set, and single-instruction, multiple-data (SIMD)
multimedia capabilities into a single instruction-set architecture.

The ADSP-BF50x processor is completely code compatible with other
Blackfin processors. ADSP-BF50x processors offer performance up to
400 MHz and reduced static power consumption. The processor features
are shown in Table 1-1.

General Description of Processor

1-2 ADSP-BF50x Blackfin Processor Hardware Reference

By integrating a rich set of industry-leading system peripherals and mem-
ory, Blackfin processors are the platform of choice for next-generation
applications that require RISC-like programmability, multimedia support,
and leading-edge signal processing in one integrated package.

Table 1-1. Processor Comparison

Feature ADSP-BF504 ADSP-BF504F ADSP-BF506F

Up/Down/Rotary Counters 2 2 2

Timer/Counters with PWM 8 8 8

3-Phase PWM Units 2 2 2

SPORTs 2 2 2

SPIs 2 2 2

UARTs 2 2 2

Parallel Peripheral Interface 1 1 1

Removable Storage Interface 1 1 1

CAN 1 1 1

TWI 1 1 1

Internal 32M Bit Flash – 1 1

ADC Control Module (ACM) 1 1 1

Internal ADC – – 1

GPIOs 35 35 35

M
em

or
y

(b
yt

es
)

L1 Instruction SRAM 16K 16K 16K

L1 Instruction SRAM/Cache 16K 16K 16K

L1 Data SRAM 16K 16K 16K

L1 Data SRAM/Cache 16K 16K 16K

L1 Scratchpad 4K 4K 4K

L3 Boot ROM 4K 4K 4K

ADSP-BF50x Blackfin Processor Hardware Reference 1-3

Introduction

Portable Low-Power Architecture
Blackfin processors provide world-class power management and perfor-
mance. They are produced with a low-power and low-voltage design
methodology and feature on-chip dynamic power management, which
provides the ability to vary both the voltage and frequency of operation to
significantly lower overall power consumption. This capability can result
in a substantial reduction in power consumption, compared with just
varying the frequency of operation. This allows longer battery life for
portable appliances.

System Integration
The ADSP-BF50x processors are highly integrated system-on-a-chip solu-
tions for the next generation of embedded industrial, instrumentation,
and power/motion control applications. By combining industry-standard
interfaces with a high-performance signal processing core, cost-effective
applications can be developed quickly, without the need for costly external
components. The system peripherals include a watchdog timer; two 32-bit
up/down counters with rotary support; eight 32-bit timers/ counters with
PWM support; two pairs of three-phase 16-bit center-based PWM units;
two dual-channel, full-duplex synchronous serial ports (SPORTs); two
serial peripheral interface (SPI) compatible ports; two UARTs with IrDA
support; a parallel peripheral interface (PPI); a removable storage interface
(RSI) controller; an internal ADC with 12 channels, 12 bits, up to 2
MSPS, an ACM controller; a controller area network (CAN) controller; a
two-wire interface (TWI) controller; and an internal 32M bit flash.

Peripherals

1-4 ADSP-BF50x Blackfin Processor Hardware Reference

Peripherals
The ADSP-BF50x processors contain a rich set of peripherals connected
to the core via several high-bandwidth buses, providing flexibility in sys-
tem configuration as well as excellent overall system performance. (See
Figure 1-1.) Most of the peripherals are supported by a flexible DMA
structure. There are also two separate memory DMA channels dedicated
to data transfers between the processor’s memory spaces. Multiple on-chip
buses provide enough bandwidth to keep the processor core running even
when there is also activity on all of the on-chip and external peripherals.

Memory Architecture
The Blackfin processor architecture structures memory as a single, unified
4G byte address space using 32-bit addresses. All resources, including
internal memory, external memory, and I/O control registers, occupy sep-
arate sections of this common address space. The memory portions of this

Figure 1-1. ADSP-BF50x Processor Block Diagram

SPORT1–0

VOLTAGE REGULATOR INTERFACE

GPIO

PORT F

PORT G

PORT H

JTAG TEST AND EMULATION

PERIPHERAL

ACCESS BUS

PWM 1–0

WATCHDOG TIMER

SPI1–0

RSI

ACM

PPI

CAN

COUNTER1–0

TWI
BOOT
ROM

DMA
ACCESS

BUS

INTERRUPT
CONTROLLER

DMA
CONTROLLER

L1 DATA
MEMORY

L1 INSTRUCTION
MEMORY

16
DCB

EAB

MEMORY PORT
FLASH CONTROL

B
UART1–0

DEB

32M BIT
FLASH

TIMER7–0

ADC

ADSP-BF50x Blackfin Processor Hardware Reference 1-5

Introduction

address space are arranged in a hierarchical structure to provide a good
cost/performance balance of some very fast, low latency on-chip memory
as cache or SRAM, and larger, lower cost and lower performance off-chip
memory systems. Table 1-2 shows the memory for the ADSP-BF50x
processors.

The L1 memory system is the primary highest performance memory avail-
able to the core. The off-chip memory system, accessed through the
external bus interface unit (EBIU), provides expansion with flash memory
on the ADSP-BF504F and ADSP-BF506F processors.

The memory DMA controller provides high bandwidth data movement
capability. It can perform block transfers of code or data between the
internal memory and the external memory spaces.

Table 1-2. Memory Configurations

Type of Memory ADSP-BF50x

Instruction SRAM/cache, lockable by way or line 16K byte

Instruction SRAM 16K byte

Data SRAM/cache 16K byte

Data SRAM 16K byte

Data scratchpad SRAM 4K byte

L3 Boot ROM 4K byte

Total 72K byte

Memory Architecture

1-6 ADSP-BF50x Blackfin Processor Hardware Reference

Internal Memory
The processor has three blocks of on-chip memory that provide high
bandwidth access to the core:

• L1 instruction memory, consisting of SRAM and a 4-way set-asso-
ciative cache. This memory is accessed at full processor speed.

• L1 data memory, consisting of SRAM and/or a 2-way set-associa-
tive cache. This memory block is accessed at full processor speed.

• L1 scratchpad RAM, which runs at the same speed as the L1 mem-
ories but is only accessible as data SRAM and cannot be configured
as cache memory.

External Memory
External memory is accessed via the EBIU memory port. This 16-bit
interface provides a glue-less connection to the internal flash memory and
boot ROM. The EBIU on the processor interfaces with an internal flash
memory on the ADSP-BF504F and ADSP-BF506F devices. The internal
chip flash memory is a 32M bit (16, multiple bank, burst) memory. The
features of this memory include:

• Synchronous/asynchronous read

• Synchronous burst read mode: 50 MHz

• Asynchronous/synchronous read mode

• Random access times: 70 ns

• Synchronous burst read suspend

• Memory blocks

• Multiple bank memory array: 4 Mbit banks

ADSP-BF50x Blackfin Processor Hardware Reference 1-7

Introduction

• Parameter blocks (top location)

• Dual operations

• Program erase in one bank while read in others

• No delay between read and write operations

• Block locking

• All blocks locked at power-up

• Any combination of blocks can be locked or locked down

• Security

• 128-bit user programmable OTP cells

• 64-bit unique device number

• Common flash interface (CFI)

• 100 000 program/erase cycles per block

Flash memory ships from the factory in an erased state except for block 0
of the parameter bank. Block 0 of the flash memory parameter bank ships
from the factory in an unknown state. An erase operation should be per-
formed prior to programming this block.

I/O Memory Space
Blackfin processors do not define a separate I/O space. All resources are
mapped through the flat 32-bit address space. Control registers for
on-chip I/O devices are mapped into memory-mapped registers (MMRs)
at addresses near the top of the 4G byte address space. These are separated
into two smaller blocks: one contains the control MMRs for all core func-
tions and the other contains the registers needed for setup and control of
the on-chip peripherals outside of the core. The MMRs are accessible only
in supervisor mode. They appear as reserved space to on-chip peripherals.

DMA Support

1-8 ADSP-BF50x Blackfin Processor Hardware Reference

DMA Support
The processor has multiple, independent DMA channels that support
automated data transfers with minimal overhead for the processor core.
DMA transfers can occur between the processor’s internal memories and
any of its DMA-capable peripherals. Additionally, DMA transfers can be
accomplished between any of the DMA-capable peripherals and external
devices connected to the external memory interface. DMA-capable
peripherals include the SPORTs, SPI ports, UARTs, RSI, and PPI. Each
individual DMA-capable peripheral has at least one dedicated DMA
channel.

The processor DMA controller supports both one-dimensional (1-D) and
two-dimensional (2-D) DMA transfers. DMA transfer initialization can
be implemented from registers or from sets of parameters called descriptor
blocks.

The 2-D DMA capability supports arbitrary row and column sizes up to
64K elements by 64K elements, and arbitrary row and column step sizes
up to ±32K elements. Furthermore, the column step size can be less than
the row step size, allowing implementation of interleaved data streams.
This feature is especially useful in video applications where data can be
de-interleaved on the fly.

Examples of DMA types supported by the processor DMA controller
include:

• A single, linear buffer that stops upon completion

• A circular, auto-refreshing buffer that interrupts on each full or
fractionally full buffer

• 1-D or 2-D DMA using a linked list of descriptors

• 2-D DMA using an array of descriptors, specifying only the base
DMA address within a common page

ADSP-BF50x Blackfin Processor Hardware Reference 1-9

Introduction

In addition to the dedicated peripheral DMA channels, there are two
memory DMA channels, which are provided for transfers between the var-
ious memories of the processor system with minimal processor
intervention. Memory DMA transfers can be controlled by a very flexible
descriptor-based methodology or by a standard register-based autobuffer
mechanism.

General-Purpose I/O (GPIO)
Because of the rich set of peripherals, the processor groups the many
peripheral signals to three ports—Port F, Port G, and Port H. Most of the
associated pins are shared by multiple signals. The ports function as multi-
plexer controls.

The processor has 35 bidirectional, general-purpose I/O (GPIO) pins allo-
cated across three separate GPIO modules—PORTFIO, PORTGIO, and
PORTHIO, associated with Port F, Port G, and Port H, respectively.
Each GPIO-capable pin shares functionality with other processor periph-
erals via a multiplexing scheme; however, the GPIO functionality is the
default state of the device upon power-up. Neither GPIO output nor
input drivers are active by default. Each general-purpose port pin can be
individually controlled by manipulation of the port control, status, and
interrupt registers:

• GPIO direction control register – Specifies the direction of each
individual GPIO pin as input or output.

• GPIO control and status registers – The processor employs a “write
one to modify” mechanism that allows any combination of individ-
ual GPIO pins to be modified in a single instruction, without
affecting the level of any other GPIO pins. Four control registers
are provided. One register is written in order to set pin values, one
register is written in order to clear pin values, one register is written

Two-Wire Interface

1-10 ADSP-BF50x Blackfin Processor Hardware Reference

in order to toggle pin values, and one register is written in order to
specify a pin value. Reading the GPIO status register allows soft-
ware to interrogate the sense of the pins.

• GPIO interrupt mask registers – The two GPIO interrupt mask
registers allow each individual GPIO pin to function as an inter-
rupt to the processor. Similar to the two GPIO control registers
that are used to set and clear individual pin values, one GPIO
interrupt mask register sets bits to enable interrupt function, and
the other GPIO interrupt mask register clears bits to disable inter-
rupt function. GPIO pins defined as inputs can be configured to
generate hardware interrupts, while output pins can be triggered by
software interrupts.

• GPIO interrupt sensitivity registers – The two GPIO interrupt sen-
sitivity registers specify whether individual pins are level- or
edge-sensitive and specify—if edge-sensitive—whether just the ris-
ing edge or both the rising and falling edges of the signal are
significant. One register selects the type of sensitivity, and one reg-
ister selects which edges are significant for edge-sensitivity.

Two-Wire Interface
The Two-Wire Interface (TWI) is fully compatible with the widely used
I2C bus standard. It was designed with a high level of functionality and is
compatible with multi-master, multi-slave bus configurations. To preserve
processor bandwidth, the TWI controller can be set up and a transfer ini-
tiated with interrupts only to service FIFO buffer data reads and writes.
Protocol related interrupts are optional.

ADSP-BF50x Blackfin Processor Hardware Reference 1-11

Introduction

The TWI externally moves 8-bit data while maintaining compliance with
the I2C bus protocol. The Philips I2C Bus Specification version 2.1 covers
many variants of I2C. The TWI controller includes these features:

• Simultaneous master and slave operation on multiple device
systems

• Support for multi-master data arbitration

• 7-bit addressing

• 100K bits/second and 400K bit/second data rates

• General call address support

• Master clock synchronization and support for clock low extension

• Separate multiple-byte receive and transmit FIFOs

• Low interrupt rate

• Individual override control of data and clock lines in the event of
bus lock-up

• Input filter for spike suppression

• Serial camera control bus support as specified in OmniVision Serial
Camera Control Bus (SCCB) Functional Specification version 2.1

RSI Interface
The removable storage interface (RSI) controller acts as the host interface
for multi-media cards (MMC), secure digital memory cards (SD Card),
secure digital input/output cards (SDIO), and CE-ATA hard disk drives.

General-Purpose (GP) Counter

1-12 ADSP-BF50x Blackfin Processor Hardware Reference

The following list describes the main features of the RSI controller:

• Support for a single MMC, SD memory, SDIO card or CE-ATA
hard disk drive

• Support for 1-bit and 4-bit SD modes

• Support for 1-bit, 4-bit and 8-bit MMC modes

• Support for 4-bit and 8-bit CE-ATA hard disk drives

• A ten-signal external interface with clock, command, and up to
eight data lines

• Card detection using one of the data signals

• Card interface clock generation from SCLK

• SDIO interrupt and read wait features

• CE-ATA command completion signal recognition and disable

General-Purpose (GP) Counter
Two 32-bit GP counters are provided that can sense 2-bit quadrature or
binary codes as typically emitted by industrial drives or manual thumb
wheels. Each counter can also operate in general-purpose up/down count
modes. Then, count direction is either controlled by a level-sensitive input
signal or by two edge detectors. A third input can provide flexible zero
marker support and can alternatively be used to input the push-button sig-
nal of thumb wheels. All three signals have a programmable debouncing
circuit. An internal signal forwarded to the GP timer unit enables one
timer to measure the intervals between count events. Boundary registers
enable auto-zero operation or simple system warning by interrupts when
programmable count values are exceeded.

ADSP-BF50x Blackfin Processor Hardware Reference 1-13

Introduction

3-Phase PWM Unit
The processors integrate two flexible and programmable 3-phase PWM
waveform generators that can each be programmed to generate the
required switching patterns to drive a 3-phase voltage source inverter for
ac induction (ACIM) or permanent magnet synchronous (PMSM) motor
control. In addition, each PWM block contains special functions that con-
siderably simplify the generation of the required PWM switching patterns
for control of the electronically commutated motor (ECM) or brushless dc
motor (BDCM). Software can enable a special mode for switched reluc-
tance motors (SRM).

Features of each 3-phase PWM generation unit are:

• 16-bit center-based PWM generation unit

• Programmable PWM pulse width

• Single/double update modes

• Programmable dead time and switching frequency

• Twos-complement implementation which permits smooth transi-
tion to full ON and full OFF states

• Possibility to synchronize the PWM generation to an external
synchronization

• Special provisions for BDCM operation (crossover and output
enable functions)

• Wide variety of special switched reluctance (SR) operating modes

• Output polarity and clock gating control

• Dedicated asynchronous PWM shutdown signal

Parallel Peripheral Interface

1-14 ADSP-BF50x Blackfin Processor Hardware Reference

The six PWM output signals in each PWM controller consist of three
high-side drive signals (PWM_AH, PWM_BH, and PWM_CH) and three low-side
drive signals (PWM_AL, PWM_BL, and PWM_CL). The polarity of the generated
PWM signal can be set with software, so that either active high or active
low PWM patterns can be produced. The switching frequency of the gen-
erated PWM pattern is programmable. The PWM generator can operate
in single update mode or double update mode. In single update mode the
duty cycle values are programmable only once per PWM period, so that
the resultant PWM patterns are symmetrical about the midpoint of the
PWM period. In the double update mode, a second updating of the PWM
registers is implemented at the midpoint of the PWM period. In this
mode, it is possible to produce asymmetrical PWM patterns that produce
lower harmonic distortion in 3-phase PWM inverters.

Parallel Peripheral Interface
The processor provides a Parallel Peripheral Interface (PPI) that can con-
nect directly to parallel A/D and D/A converters, ITU-R 601/656 video
encoders and decoders, and other general-purpose peripherals. The PPI
consists of a dedicated input clock pin and three multiplexed frame sync
pins. The input clock supports parallel data rates up to half the system
clock rate.

In ITU-R 656 modes, the PPI receives and parses a data stream of 8-bit or
10-bit data elements. On-chip decode of embedded preamble control and
synchronization information is supported.

ADSP-BF50x Blackfin Processor Hardware Reference 1-15

Introduction

Three distinct ITU-R 656 modes are supported:

• Active video only - The PPI does not read in any data between the
End of Active Video (EAV) and Start of Active Video (SAV) pre-
amble symbols, or any data present during the vertical blanking
intervals. In this mode, the control byte sequences are not stored to
memory; they are filtered by the PPI.

• Vertical blanking only - The PPI only transfers Vertical Blanking
Interval (VBI) data, as well as horizontal blanking information and
control byte sequences on VBI lines.

• Entire field - The entire incoming bit stream is read in through the
PPI. This includes active video, control preamble sequences, and
ancillary data that may be embedded in horizontal and vertical
blanking intervals.

Though not explicitly supported, ITU-R 656 output functionality can be
achieved by setting up the entire frame structure (including active video,
blanking, and control information) in memory and streaming the data out
the PPI in a frame sync-less mode. The processor’s 2-D DMA features
facilitate this transfer by allowing the static frame buffer (blanking and
control codes) to be placed in memory once, and simply updating the
active video information on a per-frame basis.

The general-purpose modes of the PPI are intended to suit a wide variety
of data capture and transmission applications. The modes are divided into
four main categories, each allowing up to 16 bits of data transfer per
PPI_CLK cycle:

• Data receive with internally generated frame syncs

• Data receive with externally generated frame syncs

• Data transmit with internally generated frame syncs

• Data transmit with externally generated frame syncs

SPORT Controllers

1-16 ADSP-BF50x Blackfin Processor Hardware Reference

These modes support ADC/DAC connections, as well as video communi-
cation with hardware signalling. Many of the modes support more than
one level of frame synchronization. If desired, a programmable delay can
be inserted between assertion of a frame sync and reception/transmission
of data.

SPORT Controllers
The processor incorporates two dual-channel synchronous serial ports
(SPORT0 and SPORT1) for serial and multiprocessor communications.
The SPORTs support these features:

• Bidirectional, I2S capable operation

Each SPORT has two sets of independent transmit and receive
pins, which enable eight channels of I2S stereo audio.

• Buffered (eight-deep) transmit and receive ports

Each port has a data register for transferring data words to and
from other processor components and shift registers for shifting
data in and out of the data registers.

• Clocking

Each transmit and receive port can either use an external serial
clock or can generate its own in a wide range of frequencies.

• Word length

Each SPORT supports serial data words from 3 to 32 bits in
length, transferred in most significant bit first or least significant
bit first format.

ADSP-BF50x Blackfin Processor Hardware Reference 1-17

Introduction

• Framing

Each transmit and receive port can run with or without frame sync
signals for each data word. Frame sync signals can be generated
internally or externally, active high or low, and with either of two
pulse widths and early or late frame sync.

• Companding in hardware

Each SPORT can perform A-law or µ-law companding according
to ITU recommendation G.711. Companding can be selected on
the transmit and/or receive channel of the SPORT without addi-
tional latencies.

• DMA operations with single cycle overhead

Each SPORT can automatically receive and transmit multiple buf-
fers of memory data. The processor can link or chain sequences of
DMA transfers between a SPORT and memory.

• Interrupts

Each transmit and receive port generates an interrupt upon com-
pleting the transfer of a data word or after transferring an entire
data buffer or buffers through DMA.

• Multichannel capability

Each SPORT supports 128 channels out of a 1024-channel win-
dow and is compatible with the H.100, H.110, MVIP-90, and
HMVIP standards.

Serial Peripheral Interface (SPI) Ports

1-18 ADSP-BF50x Blackfin Processor Hardware Reference

Serial Peripheral Interface (SPI) Ports
The processor has two SPI-compatible ports that enable the processor to
communicate with multiple SPI-compatible devices.

Each SPI interface uses three pins for transferring data: two data pins and
a clock pin. An SPI chip select input pin lets other SPI devices select the
processor, and several SPI chip select output pins let the processor select
other SPI devices. The SPI select pins are reconfigured general-purpose
I/O pins. Using these pins, the SPI port provides a full-duplex, synchro-
nous serial interface, which supports both master and slave modes and
multimaster environments.

Each SPI port’s baud rate and clock phase/polarities are programmable,
and it has an integrated DMA controller, configurable to support either
transmit or receive data streams. The SPI’s DMA controller can only ser-
vice unidirectional accesses at any given time.

During transfers, the SPI port simultaneously transmits and receives by
serially shifting data in and out of its two serial data lines. The serial clock
line synchronizes the shifting and sampling of data on the two serial data
lines.

Timers
There are nine general-purpose programmable timer units in the proces-
sor. Eight timers have an external pin that can be configured either as a
Pulse Width Modulator (PWM) or timer output, as an input to clock the
timer, or as a mechanism for measuring pulse widths of external events.
These timer units can be synchronized to an external clock input con-
nected to the TMRCLK/PPI_CLK pin or to the internal SCLK.

The timer units can be used in conjunction with the UARTs to measure
the width of the pulses in the datastream to provide an autobaud detect
function for a serial channel.

ADSP-BF50x Blackfin Processor Hardware Reference 1-19

Introduction

The timers can generate interrupts to the processor core to provide peri-
odic events for synchronization, either to the processor clock or to a count
of external signals.

In addition to the eight general-purpose programmable timers, a 9th timer
is also provided. This extra timer is clocked by the internal processor clock
and is typically used as a system tick clock for generation of operating sys-
tem periodic interrupts.

UART Ports
The ADSP-BF50x Blackfin processors provide two full-duplex universal
asynchronous receiver/transmitter (UART) ports. Each UART port pro-
vides a simplified UART interface to other peripherals or hosts, enabling
full-duplex, DMA-supported, asynchronous transfers of serial data. A
UART port includes support for five to eight data bits, one or two stop
bits, and none, even, or odd parity. Each UART port supports two modes
of operation:

• PIO (programmed I/O). The processor sends or receives data by
writing or reading I/O-mapped UART registers. The data is dou-
ble-buffered on both transmit and receive.

• DMA (direct memory access). The DMA controller transfers both
transmit and receive data. This reduces the number and frequency
of interrupts required to transfer data to and from memory. Each
UART has two dedicated DMA channels, one for transmit and one
for receive. These DMA channels have lower default priority than
most DMA channels because of their relatively low service rates.
Flexible interrupt timing options are available on the transmit side.

UART Ports

1-20 ADSP-BF50x Blackfin Processor Hardware Reference

Each UART port’s baud rate, serial data format, error code generation and
status, and interrupts are programmable:

• Supporting bit rates ranging from (fSCLK/1,048,576) to (fSCLK)
bits per second.

• Supporting data formats from 7 to 12 bits per frame.

• Both transmit and receive operations can be configured to generate
maskable interrupts to the processor.

The UART port’s clock rate is calculated as:

Where the 16-bit UART divisor comes from the UARTx_DLH register (most
significant 8 bits) and UARTx_DLL register (least significant eight bits), and
the EDBO is a bit in the UARTx_GCTL register.

In conjunction with the general-purpose timer functions, autobaud detec-
tion is supported.

The UARTs feature a pair of UAx_RTS (request to send) and UAx_CTS (clear
to send) signals for hardware flow purposes. The transmitter hardware is
automatically prevented from sending further data when the UAx_CTS

input is deasserted. The receiver can automatically deassert its
UAx_RTS output when the enhanced receive FIFO exceeds a certain
high-water level. The capabilities of the UARTs are further extended with
support for the Infrared Data Association (IrDA®) Serial Infrared Physi-
cal Layer Link Specification (SIR) protocol.

UART Clock Rate
f SCLK

16 1 EDBO–  UART_Divisor
--=

ADSP-BF50x Blackfin Processor Hardware Reference 1-21

Introduction

Controller Area Network (CAN)
Interface

The ADSP-BF50x processors provide a CAN controller that is a commu-
nication controller implementing the Controller Area Network (CAN)
V2.0B protocol. This protocol is an asynchronous communications proto-
col used in both industrial and automotive control systems. CAN is well
suited for control applications due to its capability to communicate reli-
ably over a network since the protocol incorporates CRC checking,
message error tracking, and fault node confinement.

The CAN controller is based on a 32-entry mailbox RAM and supports
both the standard and extended identifier (ID) message formats specified
in the CAN protocol specification, revision 2.0, part B.

Each mailbox consists of eight 16-bit data words. The data is divided into
fields, which includes a message identifier, a time stamp, a byte count, up
to 8 bytes of data, and several control bits. Each node monitors the mes-
sages being passed on the network. If the identifier in the transmitted
message matches an identifier in one of its mailboxes, the module knows
that the message was meant for it, passes the data into its appropriate
mailbox, and signals the processor of message arrival with an interrupt.

The CAN controller can wake up the processor from sleep mode upon
generation of a wake-up event, such that the processor can be maintained
in a low-power mode during idle conditions. Additionally, a CAN
wake-up event can wake up the on-chip internal voltage regulator from
the powered-down hibernate state.

The electrical characteristics of each network connection are very strin-
gent. Therefore, the CAN interface is typically divided into two parts: a
controller and a transceiver. This allows a single controller to support dif-
ferent drivers and CAN networks. The ADSP-BF50x CAN module
represents the controller part of the interface. This module’s network I/O

ACM Interface

1-22 ADSP-BF50x Blackfin Processor Hardware Reference

is a single transmit output and a single receive input, which connect to a
line transceiver.

The CAN clock is derived from the processor system clock (SCLK)
through a programmable divider and therefore does not require an addi-
tional crystal.

ACM Interface
The ADC control module (ACM) provides an interface that synchronizes
the controls between the processor and analog-to-digital converter (ADC)
modules like the internal ADC of the ADSP-BF506F. The analog-to-digi-
tal conversions are initiated by the processor, based on external or internal
events.

The ACM allows for flexible scheduling of sampling instants and provides
precise sampling signals to the ADC. The ACM synchronizes the ADC
conversion process; generating the ADC controls, the ADC conversion
start signal, and other signals. The actual data acquisition from the ADC
is done by SPORT peripherals.

Internal ADC
The ADSP-BF506F processor includes an ADC. All internal ADC signals
are connected out to package pins to enable maximum flexibility in mixed
signal applications.

The internal ADC is a dual, 12-bit, high speed, low power, successive
approximation ADC that operates from a single 2.7 V to 5.25 V power
supply and features throughput rates up to 2 MSPS. The device contains
two ADCs, each preceded by a 3-channel multiplexer, and a low noise,
wide bandwidth track-and-hold amplifier that can handle input frequen-
cies in excess of 30 MHz.

ADSP-BF50x Blackfin Processor Hardware Reference 1-23

Introduction

Watchdog Timer
The processor includes a 32-bit timer that can be used to implement a
software watchdog function. A software watchdog can improve system
availability by forcing the processor to a known state through generation
of a hardware reset, nonmaskable interrupt (NMI), or general-purpose
interrupt, if the timer expires before being reset by software. The pro-
grammer initializes the count value of the timer, enables the appropriate
interrupt, then enables the timer. Thereafter, the software must reload the
counter before it counts to zero from the programmed value. This protects
the system from remaining in an unknown state where software that
would normally reset the timer has stopped running due to an external
noise condition or software error.

If configured to generate a hardware reset, the watchdog timer resets both
the CPU and the peripherals. After a reset, software can determine if the
watchdog was the source of the hardware reset by interrogating a status bit
in the watchdog control register.

The timer is clocked by the system clock (SCLK), at a maximum frequency
of fSCLK.

Clock Signals
The processor can be clocked by an external crystal, a sine wave input, or a
buffered, shaped clock derived from an external clock oscillator.

This external clock connects to the processor’s CLKIN pin. The CLKIN input
cannot be halted, changed, or operated below the specified frequency dur-
ing normal operation. This clock signal should be a TTL-compatible
signal.

The core clock (CCLK) and system peripheral clock (SCLK) are derived from
the input clock (CLKIN) signal. An on-chip Phase Locked Loop (PLL) is
capable of multiplying the CLKIN signal by a user-programmable (0.5× to

Dynamic Power Management

1-24 ADSP-BF50x Blackfin Processor Hardware Reference

64×) multiplication factor (bounded by specified minimum and maxi-
mum VCO frequencies). The default multiplier is 6×, but it can be modified
by a software instruction sequence. On-the-fly frequency changes can be
made by simply writing to the PLL_DIV register.

All on-chip peripherals are clocked by the system clock (SCLK). The system
clock frequency is programmable by means of the SSEL[3:0] bits of the
PLL_DIV register.

Dynamic Power Management
The processor provides five operating modes, each with a different perfor-
mance/power profile. In addition, dynamic power management provides
the control functions to dynamically alter the processor core supply volt-
age, further reducing power dissipation. When configured for a 0 volt core
supply voltage, the processor enters the hibernate state. Control of clock-
ing to each of the processor peripherals also reduces power consumption.
See Table 1-3 for a summary of the power settings for each mode.

Full-On Operating Mode—Maximum Performance
In the full-on mode, the PLL is enabled and is not bypassed, providing
capability for maximum operational frequency. This is the power-up
default execution state in which maximum performance can be achieved.
The processor core and all enabled peripherals run at full speed.

Active Operating Mode—Moderate Dynamic
Power Savings

In the active mode, the PLL is enabled but bypassed. Because the PLL is
bypassed, the processor’s core clock (CCLK) and system clock (SCLK) run
at the input clock (CLKIN) frequency. DMA access is available to appro-
priately configured L1 memories.

ADSP-BF50x Blackfin Processor Hardware Reference 1-25

Introduction

In the active mode, it is possible to disable the control input to the PLL by
setting the PLL_OFF bit in the PLL control register. This register can be
accessed with a user-callable routine in the on-chip ROM called
bfrom_SysControl(). If disabled, the PLL control input must be
re-enabled before transitioning to the full-on or sleep modes.

For more information about PLL controls, see the “Dynamic Power Man-
agement” on page 8-1.

Sleep Operating Mode—High Dynamic Power
Savings

The sleep mode reduces dynamic power dissipation by disabling the clock
to the processor core (CCLK). The PLL and system clock (SCLK), how-
ever, continue to operate in this mode. Typically, an external event wakes
up the processor. When in the sleep mode, asserting a wakeup enabled in
the SIC_IWRx registers causes the processor to sense the value of the BYPASS

bit in the PLL control register (PLL_CTL). If BYPASS is disabled, the proces-
sor transitions to the full on mode. If BYPASS is enabled, the processor
transitions to the active mode.

 DMA accesses to L1 memory are not supported in sleep mode.

Table 1-3. Power Settings

Mode/State PLL PLL Bypassed Core Clock
(CCLK)

System Clock
(SCLK)

Core Power

Full On Enabled No Enabled Enabled On

Active Enabled/Disabled Yes Enabled Enabled On

Sleep Enabled — Disabled Enabled On

Deep Sleep Disabled — Disabled Disabled On

Hibernate Disabled — Disabled Disabled Off

Dynamic Power Management

1-26 ADSP-BF50x Blackfin Processor Hardware Reference

Deep Sleep Operating Mode—Maximum Dynamic
Power Savings

The deep sleep mode maximizes dynamic power savings by disabling the
clocks to the processor core (CCLK) and to all synchronous peripherals
(SCLK). Asynchronous peripherals may still be running but cannot access
internal resources or external memory. Deep sleep mode can be exited
only by a hardware reset event, by a wakeup event on a programmable flag
pin (including PH0, PF8, or PF9), or by a wakeup event on the programma-
ble flag pin associated with the CAN_RX signal (PG1). A programmable flag
event causes the processor to transition to active mode, and execution
resumes at the program counter value at which the processor entered deep
sleep mode. Assertion of RESET while in deep sleep mode causes the pro-
cessor to transition to the full on mode.

Hibernate State—Maximum Static Power Savings
The hibernate state maximizes static power savings by disabling the volt-
age and clocks to the processor core (CCLK) and to all of the peripherals
(SCLK). This setting sets the internal power supply voltage (VDDINT) to
0 V to provide the lowest static power dissipation. Any critical informa-
tion stored internally (for example, memory contents, register contents,
and other information) must be written to a non-volatile storage device
prior to removing power if the processor state is to be preserved. Writing 0
to the HIBERNATEB bit causes EXT_WAKE to transition low, which can be
used to signal an external voltage regulator to shut down.

Since VDDEXT can still be supplied in this mode, all of the external pins
three-state, unless otherwise specified. This allows other devices that may
be connected to the processor to still have power applied without drawing
unwanted current.

The processor can be woken up by asserting the RESET pin. All hibernate
wakeup events initiate the hardware reset sequence. Individual sources are

ADSP-BF50x Blackfin Processor Hardware Reference 1-27

Introduction

enabled by the VR_CTL register. The EXT_WAKE signal indicates the occur-
rence of a wakeup event.

As long as VDDEXT is applied, the VR_CTL register maintains its state dur-
ing hibernation. All other internal registers and memories, however, lose
their content in the hibernate state.

Instruction Set Description
The Blackfin processor family assembly language instruction set employs
an algebraic syntax designed for ease of coding and readability. Refer to
Blackfin Processor Programming Reference for detailed information. The
instructions have been specifically tuned to provide a flexible, densely
encoded instruction set that compiles to a very small final memory size.
The instruction set also provides fully featured multifunction instructions
that allow the programmer to use many of the processor core resources in
a single instruction. Coupled with many features more often seen on
microcontrollers, this instruction set is very efficient when compiling C
and C++ source code. In addition, the architecture supports both user
(algorithm/application code) and supervisor (O/S kernel, device drivers,
debuggers, ISRs) modes of operation, allowing multiple levels of access to
core resources.

The assembly language, which takes advantage of the processor’s unique
architecture, offers these advantages:

• Embedded 16/32-bit microcontroller features, such as arbitrary bit
and bit field manipulation, insertion, and extraction; integer opera-
tions on 8-, 16-, and 32-bit data types; and separate user and
supervisor stack pointers

• Seamlessly integrated DSP/CPU features optimized for both 8-bit
and 16-bit operations

Development Tools

1-28 ADSP-BF50x Blackfin Processor Hardware Reference

• A multi-issue load/store modified Harvard architecture, which sup-
ports two 16-bit MAC or four 8-bit ALU + two load/store + two
pointer updates per cycle

• All registers, I/O, and memory mapped into a unified 4G byte
memory space, providing a simplified programming model

Code density enhancements include intermixing of 16- and 32-bit
instructions with no mode switching or code segregation. Frequently used
instructions are encoded in 16 bits.

Development Tools
The processor is supported by a complete set of software and hardware
development tools, including Analog Devices’ emulators and the Cross-
Core Embedded Studio or VisualDSP++ development environment. (The
emulator hardware that supports other Analog Devices processors also
emulates the processor.)

The development environments support advanced application code devel-
opment and debug with features such as:

• Create, compile, assemble, and link application programs written
in C++, C, and assembly

• Load, run, step, halt, and set breakpoints in application programs

• Read and write data and program memory

• Read and write core and peripheral registers

• Plot memory

Analog Devices DSP emulators use the IEEE 1149.1 JTAG test access
port to monitor and control the target board processor during emulation.
The emulator provides full speed emulation, allowing inspection and
modification of memory, registers, and processor stacks. Nonintrusive

ADSP-BF50x Blackfin Processor Hardware Reference 1-29

Introduction

in-circuit emulation is assured by the use of the processor JTAG inter-
face—the emulator does not affect target system loading or timing.

Software tools also include Board Support Packages (BSPs). Hardware
tools also include standalone evaluation systems (boards and extenders). In
addition to the software and hardware development tools available from
Analog Devices, third parties provide a wide range of tools supporting the
Blackfin processors. Third party software tools include DSP libraries,
real-time operating systems, and block diagram design tools.

Development Tools

1-30 ADSP-BF50x Blackfin Processor Hardware Reference

ADSP-BF50x Blackfin Processor Hardware Reference 2-1

2 MEMORY

This chapter discusses memory population specific to the ADSP-BF50x
processors. Functional memory architecture is described in Blackfin Pro-
cessor Programming Reference.

Memory Architecture
Figure 2-1 provides an overview of the ADSP-BF50x processor system
memory map. For a detailed discussion of how to use them, see Blackfin
Processor Programming Reference.

Note the architecture does not define a separate I/O space. All resources
are mapped through the flat 32-bit address space. The memory is
byte-addressable.

The upper portion of internal memory space is allocated to the core and
system MMRs. Accesses to this area are allowed only when the processor is
in supervisor or emulation mode (see the Operating Modes and States
chapter of Blackfin Processor Programming Reference).

L1 Instruction SRAM

2-2 ADSP-BF50x Blackfin Processor Hardware Reference

L1 Instruction SRAM
The processor core reads the instruction memory through the 64-bit wide
instruction fetch bus. All addresses from this bus are 64-bit aligned. Each
instruction fetch can return any combination of 16-, 32-, or 64-bit
instructions (for example, four 16-bit instructions, two 16-bit instructions
and one 32-bit instruction, or one 64-bit instruction).

Figure 2-1. ADSP-BF50x Memory Map

IN
TE

R
N

A
L

(C
O

R
E

-A
C

C
E

S
S

IB
LE

)
M

E
M

O
R

Y
 M

A
P

E
X

TE
R

N
A

L
(IN

TE
R

FA
C

E
-A

C
C

E
S

S
IB

LE
)

M
E

M
O

R
Y

 M
A

P

0x0000 0000

0x2000 0000

0x2040 0000

0xEF00 0000

0xEF00 1000

0xFF80 0000

0xFF80 4000

0xFF80 8000

0xFFA0 0000

0xFFA0 4000

0xFFA0 8000

0xFFA1 4000

0xFFB0 0000

0xFFB0 1000

0xFFC0 0000

0xFFE0 0000

0xFFFF FFFF

SYNC FLASH (32M BITS) *

RESERVED

RESERVED

BOOT ROM (4K BYTES)

L1 DATA BANK A SRAM (16K BYTES)

RESERVED

L1 DATA BANK A SRAM/CACHE (16K BYTES)

RESERVED

L1 INSTRUCTION SRAM/CACHE (16K BYTES)

RESERVED

L1 INSTRUCTION BANK A SRAM (16K BYTES)

RESERVED

INTERNAL SCRATCHPAD RAM (4K BYTES)

RESERVED

SYSTEM MEMORY MAPPED REGISTERS

CORE MEMORY MAPPED REGISTERS

* AVAILABLE ON PARTS WITH SYNC FLASH (F)

ADSP-BF50x Blackfin Processor Hardware Reference 2-3

Memory

Table 2-1 lists the memory start locations of the L1 instruction memory
subbanks.

L1 Data SRAM
Table 2-2 shows how the subbank organization is mapped into memory.

Table 2-1. L1 Instruction Memory Subbanks

Memory Subbank Memory Start Location for
ADSP-BF50x Processors

0 0xFFA0 0000

1 0xFFA0 1000

2 0xFFA0 2000

3 0xFFA0 3000

4 0xFFA0 4000

5 0xFFA0 5000

6 0xFFA0 6000

7 0xFFA0 7000

Table 2-2. L1 Data Memory SRAM Subbank Start Addresses

Memory Bank and Subbank ADSP-BF50x Processors

Data Bank A, Subbank 0 0xFF80 0000

Data Bank A, Subbank 1 0xFF80 1000

Data Bank A, Subbank 2 0xFF80 2000

Data Bank A, Subbank 3 0xFF80 3000

Data Bank A, Subbank 4 0xFF80 4000

Data Bank A, Subbank 5 0xFF80 5000

Data Bank A, Subbank 6 0xFF80 6000

Data Bank A, Subbank 7 0xFF80 7000

L1 Data Cache

2-4 ADSP-BF50x Blackfin Processor Hardware Reference

L1 Data Cache
When data cache is enabled (controlled by bits DMC[1:0] in the
DMEM_CONTROL register), 16K byte of data bank A can be set to serve as
cache.

Boot ROM
There are 4K bytes of memory space occupied by the boot ROM, starting
from address 0xEF00 0000. This 16-bit boot ROM is not part of the L1
memory module. Read accesses take one SCLK cycle and no wait states are
required. The read-only memory can be read by the core as well as by
DMA. It can be cached and protected by CPLB blocks like external mem-
ory. The boot ROM not only contains boot-strap loader code, it also
provides some subfunctions that are user-callable at runtime. For more
information, see “System Reset and Booting” in Chapter 24, System Reset
and Booting.

External Memory
External memory (shown in Figure 2-1) is accessed via the EBIU memory
port. This 16-bit interface provides a glue-less connection to the internal
flash memory (on ADSP-BF504F and ADSP-BF506F devices) and boot
ROM. Internal flash memory ships from the factory in an erased state
except for block 0 of the parameter bank.

 Block 0 of the flash memory parameter bank ships from the factory
in an unknown state. An erase operation should be performed prior
to programming this block.

ADSP-BF50x Blackfin Processor Hardware Reference 2-5

Memory

Processor-Specific MMRs
The complete set of memory-related MMRs is described in the Blackfin
Processor Programming Reference. Several MMRs have bit definitions spe-
cific to the processors described in this manual. These registers are
described in the following sections.

DMEM_CONTROL Register
The data memory control register (DMEM_CONTROL), shown in Figure 2-2,
contains control bits for the L1 data memory.

 Note that both DAG 0 and 1 use Port-A for non-cacheable fetches.

Figure 2-2. L1 Data Memory Control Register

0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 10 0 0 0 0 000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0

Reset = 0x0000 1001

ENDCPLB (Data Cacheability
Protection Lookaside Buffer
Enable)
0 - CPLBs disabled. Minimal

address checking only
1 - CPLBs enabled
DMC (L1 Data Memory
Configure)

DCBS (L1 Data Cache Bank Select)
Valid only when DMC = 1. Determines whether
Address bit A[14] or A[23] is used to select the L1
data cache bank.
0 - Address bit 14 is used to select Bank A

for cache access. If bit 14 of address is 1,
select L1 Data Memory Data Bank A; if bit 14
of address is 0, no bank selected.

1 - Address bit 23 is used to select Bank A for
cache access. If bit 23 of address is 1, select
L1 Data Memory Data Bank A; if bit 23 of
address is 0, no bank selected.

0xFFE0 0004

For ADSP-BF50x:
0 - Data Bank A is SRAM,

also invalidates all
cache lines if previously
configured as cache

1 - Data Bank A is lower
16K byte SRAM, upper
16K byte cache

Data Memory Control Register (DMEM_CONTROL)

Processor-Specific MMRs

2-6 ADSP-BF50x Blackfin Processor Hardware Reference

DTEST_COMMAND Register
When the data test command register (DTEST_COMMAND) is written to, the
L1 cache data or tag arrays are accessed, and the data is transferred
through the data test data registers (DTEST DATA[1:0]). This register is
shown in Figure 2-3.

The data/instruction access bit allows direct access via the DTEST_COMMAND

MMR to L1 instruction SRAM.

Note that ITEST_COMMAND must be used to access to L1 Instruction SRAM
from 0xFA00 4000 to 0xFFA0 7FFF.

Figure 2-3. Data Test Command Register

X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

X XX X X X X X X XX X X X X

Data Test Command Register (DTEST_COMMAND)

00 - Access subbank 0
01 - Access subbank 1
10 - Access subbank 2
11 - Access subbank 3

Subbank Access[1:0]
(SRAM ADDR[13:12])

Reset = Undefined

Read/Write Access

Access Way/Instruction
Address Bit 11
0 - Access Way0/Instruction bit 11 = 0
1 - Access Way1/Instruction bit 11 = 1

Data/Instruction Access
0 - Access Data
1 - Access Instruction

0 - Read access
1 - Write access
Array Access
0 - Access tag array
1 - Access data array

Double Word Index[1:0]
Selects one of four 64-bit
double words in a 256-bit line

Set Index[5:0]
Selects one of 64 sets

Data Cache Select/
Address Bit 14

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

0xFFE0 0300

0 - Reserved when bit 24=0
1 - Select Data Cache Bank when bit 24=1

ADSP-BF50x Blackfin Processor Hardware Reference 3-1

3 CHIP BUS HIERARCHY

This chapter discusses on-chip buses, how data moves through the system,
and other factors that determine the system organization. Following an
overview and a list of key features is a block diagram of the chip bus hier-
archy and a description of its operation. The chapter concludes with
details about the system interconnects and associated system buses.

This chapter provides

• “Chip Bus Hierarchy Overview”

• “Interface Overview” on page 3-2

Chip Bus Hierarchy Overview
ADSP-BF50x Blackfin processors feature a powerful chip bus hierarchy on
which all data movement between the processor core, internal memory,
external memory, and its rich set of peripherals occurs. The chip bus hier-
archy includes the controllers for system interrupts, test/emulation, and
clock and power management. Synchronous clock domain conversion is
provided to support clock domain transactions between the core and the
system.

Interface Overview

3-2 ADSP-BF50x Blackfin Processor Hardware Reference

The processor system includes:

• The peripheral set including GP timers and counters, ACM, TWI,
RSI, UARTs, SPORTs, SPIs, PPI, watchdog timer, and PWM
units. The ADSP-BF506F processor peripherals include an ADC
and a flash memory, and the ADSP-BF504F processor peripherals
include a flash memory (but does not include an ADC).

• The External Bus Interface Unit (EBIU)

• The Direct Memory Access (DMA) controller

• The interfaces between these, the system, and the optional external
(off-chip) resources

The following sections describe the on-chip interfaces between the system
and the peripherals via the:

• Peripheral Access Bus (PAB)

• DMA Access Bus (DAB)

• DMA Core Bus (DCB)

• DMA External Bus (DEB)

Interface Overview
Figure 3-1 shows the core processor and system boundaries as well as the
interfaces between them.

Internal Clocks
The core processor clock (CCLK) rate is highly programmable with respect
to CLKIN. The CCLK rate is divided down from the Phase Locked Loop
(PLL) output rate. This divider ratio is set using the CSEL parameter of the
PLL divide register.

ADSP-BF50x Blackfin Processor Hardware Reference 3-3

Chip Bus Hierarchy

Figure 3-1. Processor Bus Hierarchy

C
A

N

S
P

O
R

T
1–

0

P
W

M
 1

–0

S
P

I1
–0

R
S

I

A
C

M

P
P

I

T
W

I

C
O

U
N

T
E

R
1–

0

VOLTAGE
REGULATOR I/F

U
A

R
T

1–
0

P
O

R
T

 H

P
O

R
T

 G

P
O

R
T

 F

G
P

IO

JTAG TEST AND
EMULATION

PERIPHERAL
ACCESS BUS

WATCHDOG TIMER

BOOT
ROM

DMA
ACCESS BUS

IRQ
CTRL

DMA
CTRL

L1 DATA
MEMORY

L1 INSTR
MEMORY

16

DCB

EAB

MEMORY
PORT

FLASH
CONTROL

B

DEB

32M
BIT

FLASH

A
D

C

T
IM

E
R

7–
0

CORE CLOCK (CCLK) DOMAIN

SYSTEM CLOCK
(SCLK) DOMAIN

Interface Overview

3-4 ADSP-BF50x Blackfin Processor Hardware Reference

The PAB, the DAB, the EAB, the DCB, the DEB, the EPB, and the EBIU
run at system clock frequency (SCLK domain). This divider ratio is set
using the SSEL parameter of the PLL divide (PLL_DIV) register and must
be set so that these buses run as specified in the processor data sheet, and
slower than or equal to the core clock frequency.

These buses can also be cycled at a programmable frequency to reduce
power consumption, or to allow the core processor to run at an optimal
frequency. Note all synchronous peripherals derive their timing from the
SCLK. For example, the UART clock rate is determined by further divid-
ing this clock frequency.

Core Bus Overview
For the purposes of this discussion, level 1 memories (L1) are included in
the description of the core; they have full bandwidth access from the pro-
cessor core with a 64-bit instruction bus and two 32-bit data buses.

Figure 3-2 shows the core processor and its interfaces to the peripherals
and external memory resources.

The core can generate up to three simultaneous off-core accesses per cycle.

The core bus structure between the processor and L1 memory runs at the
full core frequency and has data paths up to 64 bits.

When the instruction request is filled, the 64-bit read can contain a single
64-bit instruction or any combination of 16-, 32-, or 64-bit (partial)
instructions.

When cache is enabled, four 64-bit read requests are issued to support
32-byte line fill burst operations. These requests are pipelined so that each
transfer after the first is filled in a single, consecutive cycle.

ADSP-BF50x Blackfin Processor Hardware Reference 3-5

Chip Bus Hierarchy

Peripheral Access Bus (PAB)
The processor has a dedicated low latency peripheral bus that keeps core
stalls to a minimum and allows for manageable interrupt latencies to
time-critical peripherals. All peripheral resources accessed through the
PAB are mapped into the system MMR space of the processor memory
map. The core accesses system MMR space through the PAB bus.

Figure 3-2. Core Block Diagram

INT

RESET
VECTOR

ACK

CORE TIMER

CORE
EVENT

CONTROLLER

DEBUG AND JTAG INTERFACE

JTAG DSP ID
(8 BITS)

SYSTEM CLOCK
AND POWER

MANAGEMENT

POWER AND
CLOCK

CONTROLLER

PERFORMANCE
MONITOR

MEMORY
MANAGEMENT

UNIT
L1 DATA L1 INSTRUCTION

LD
0

LD
1

SD D
A

0

D
A

1

IA
B

ID
B

CORE

EAB

PROCESSOR

DMA CORE BUS
(DCB)

PAB

32 32 32 32 32 32 64

Interface Overview

3-6 ADSP-BF50x Blackfin Processor Hardware Reference

The core processor has byte addressability, but the programming model is
restricted to only 32-bit (aligned) access to the system MMRs. Byte
accesses to this region are not supported.

PAB Arbitration

The core is the only master on this bus. No arbitration is necessary.

PAB Agents (Masters, Slaves)

The processor core can master bus operations on the PAB. All peripherals
have a peripheral bus slave interface which allows the core to access con-
trol and status state. These registers are mapped into the system MMR
space of the memory map. For the register addresses, see “System MMR
Assignments” on page A-1.

The slaves on the PAB bus are:

• System event controller

• Clock and power management controller

• Watchdog timer

• Counters

• Timer 0–7

• SPORT0–1

• SPI0–1

• Ports

• UART0–1

• PPI

• TWI

ADSP-BF50x Blackfin Processor Hardware Reference 3-7

Chip Bus Hierarchy

• ACM

• PWM

• RSI

• DMA controller

PAB Performance

For the PAB, the primary performance criteria is latency, not throughput.
Transfer latencies for both read and write transfers on the PAB are two
SCLK cycles.

For example, the core can transfer up to 32 bits per access to the PAB
slaves. With the core clock running at 2x the frequency of the system
clock, the first and subsequent system MMR read or write accesses take
four core clocks (CCLK) of latency.

The PAB has a maximum frequency of SCLK.

DMA Access Bus (DAB), DMA Core Bus (DCB), DMA
External Bus (DEB)

The DAB, DCB, and DEB buses provide a means for DMA-capable
peripherals to gain access to on-chip and off-chip memory with little or no
degradation in core bandwidth to memory.

DAB, DCB, and DEB Arbitration

Sixteen DMA channels and bus masters support the DMA-capable periph-
erals in the processor system. The twelve peripheral DMA channel
controllers can transfer data between peripherals and internal or external
memory. Both the read and write channels of the dual-stream memory
DMA controller access their descriptor lists through the DAB.

Interface Overview

3-8 ADSP-BF50x Blackfin Processor Hardware Reference

The DCB has priority over the core processor on arbitration into L1 con-
figured as data SRAM, whereas the core processor has priority over the
DCB on arbitration into L1 instruction SRAM. For external memory
(flash memory on ADSP-BF50xF processors), the core (by default) has
priority over the DEB for accesses to the EPB. The processor has a pro-
grammable priority arbitration policy on the DAB. Table 3-1 shows the
default arbitration priority. In addition, by setting the CDPRIO bit in the
EBIU_AMGCTL register, all DEB transactions to the EPB have priority over
core accesses to external memory. Use of this bit is application-dependent.
For example, if you are polling a peripheral mapped to asynchronous
memory with long access times, by default the core will “win” over DMA
requests. By setting the CDPRIO bit, the core would be held off until DMA
requests were serviced.

Table 3-1. DAB, DCB, and DEB Arbitration Priority

DAB, DCB, DEB Master Default Arbitration Priority

PPI receive or transmit 0 - highest

RSI receive or transmit 1

SPORT0 receive 2

SPORT0 transmit 3

SPORT1 receive 4

SPORT1 transmit 5

SPI0 receive or transmit 6

SPI1 receive or transmit 7

UART0 receive 8

UART0 transmit 9

UART1 receive 10

UART1 transmit 11

Mem DMA D0 has no peripheral mapping None

Mem DMA S0 has no peripheral mapping None

ADSP-BF50x Blackfin Processor Hardware Reference 3-9

Chip Bus Hierarchy

DAB Bus Agents (Masters)

All peripherals capable of sourcing a DMA access are masters on this bus,
as shown in Table 3-1. A single arbiter supports a programmable priority
arbitration policy for access to the DAB.

When two or more DMA master channels are actively requesting the
DAB, bus utilization is considerably higher due to the DAB’s pipelined
design. Bus arbitration cycles are concurrent with the previous DMA
access’s data cycles.

DAB, DCB, and DEB Performance

The processor DAB supports data transfers of 16 bits or 32 bits. The data
bus has a 16-bit width with a maximum frequency as specified in the pro-
cessor data sheet.

The DAB has a dedicated port into L1 memory. No stalls occur as long as
the core access and the DMA access are not to the same memory bank (4K
byte size for L1). If there is a conflict when accessing data memory, DMA
is the highest priority requester, followed by the core. If the conflict
occurs when accessing instruction memory, the core is the highest priority
requester, followed by DMA.

Note that a locked transfer by the core processor (for example, execution
of a TESTSET instruction) effectively disables arbitration for the addressed
memory bank or resource until the memory lock is deasserted. DMA con-
trollers cannot perform locked transfers.

Mem DMA D1 has no peripheral mapping None

Mem DMA S1 has no peripheral mapping None

Table 3-1. DAB, DCB, and DEB Arbitration Priority (Cont’d)

DAB, DCB, DEB Master Default Arbitration Priority

Interface Overview

3-10 ADSP-BF50x Blackfin Processor Hardware Reference

DMA access to L1 memory can only be stalled by an access already in
progress from another DMA channel. Latencies caused by these stalls are
in addition to any arbitration latencies.

 The core processor and the DAB must arbitrate for access to exter-
nal memory through the EBIU. This additional arbitration latency
added to the latency required to read off-chip memory devices can
significantly degrade DAB throughput, potentially causing periph-
eral data buffers to underflow or overflow. If you use DMA
peripherals other than the memory DMA controller, and you target
external memory for DMA accesses, you need to carefully analyze
your specific traffic patterns. Make sure that isochronous peripher-
als targeting internal memory have enough allocated bandwidth
and the appropriate maximum arbitration latencies.

External Access Bus (EAB)
The EAB provides a way for the processor core to directly access off-chip
memory.

Arbitration of the External Bus
Arbitration for use of external port bus interface resources is required
because of possible contention between the potential masters of this bus. A
fixed-priority arbitration scheme is used. That is, core accesses via the
EAB will be of higher priority than those from the DMA external bus
(DEB).

DEB/EAB Performance
The DEB and the EAB support single word accesses of either 8-bit or
16-bit data types. The DEB and the EAB operate at the same frequency as
the PAB and the DAB, up to the maximum SCLK frequency specified in
the processor data sheet.

ADSP-BF50x Blackfin Processor Hardware Reference 3-11

Chip Bus Hierarchy

Memory DMA transfers can result in repeated accesses to the same mem-
ory location. Because the memory DMA controller has the potential of
simultaneously accessing on-chip and off-chip memory, considerable
throughput can be achieved. The throughput rate for an on-chip/off-chip
memory access is limited by the slower of the two accesses.

In the case where the transfer is from on-chip to on-chip memory or from
off-chip to off-chip memory, the burst accesses cannot occur simultane-
ously. The transfer rate is then determined by adding each transfer plus an
additional cycle between each transfer.

Table 3-2 shows many types of 16-bit memory DMA transfers. In the
table, it is assumed that no other DMA activity is conflicting with ongoing
operations. The numbers in the table are theoretical values. These values
may be higher when they are measured on actual hardware due to a variety
of reasons relating to the device that is connected to the EBIU.

Table 3-2. Performance of DMA Access to External Memory

Source Destination Approximate SCLKs For n Words (from start of
DMA to interrupt at end)

16-bit internal burst

flash memory1

1 For ADSP-BF50xF (flash memory) products only.

L1 data memory (s * n + 2) + r * [(x + 1) * n + b * (n - 1)]
where:
• s is the number of setup/hold SCLK cycles

(minimum of 2)
• r is the ratio BCLK/SCLK (BCLK is the burst

clock frequency of the internal parallel burst
flash)

• x is the number of wait states cycles in
NORCLK

• b is the number of NORCLK cycles between
bursts

L1 data memory L1 data memory 2n + 12

Interface Overview

3-12 ADSP-BF50x Blackfin Processor Hardware Reference

ADSP-BF50x Blackfin Processor Hardware Reference 4-1

4 SYSTEM INTERRUPTS

This chapter discusses the system interrupt controller (SIC). While this
chapter does refer to features of the core event controller (CEC), it does
not cover all aspects of it. Refer to Blackfin Processor Programming Refer-
ence for more information on the CEC.

Specific Information for the ADSP-BF50x
For details regarding the number of system interrupts for the
ADSP-BF50x product, refer to ADSP-BF504, ADSP-BF504F,
ADSP-BF506F Embedded Processor Data Sheet.

To determine how each of the system interrupts is multiplexed with other
functional pins, refer to Table 9-1 on page 9-4 through Table 9-3 on
page 9-6 in Chapter 9, “General-Purpose Ports”.

For a list of MMR addresses for each DMA, refer to Chapter A, “System
MMR Assignments”.

System interrupt behavior for the ADSP-BF50x that differs from the gen-
eral information in this chapter can be found at the end of this chapter in
the section “Unique Information for the ADSP-BF50x Processor” on
page 4-15.

Overview
The processor system has numerous peripherals, which therefore require
many supporting interrupts.

Description of Operation

4-2 ADSP-BF50x Blackfin Processor Hardware Reference

Features
The Blackfin architecture provides a two-level interrupt processing
scheme:

• The core event controller (CEC) runs in the CCLK clock domain. It
interacts closely with the program sequencer and manages the event
vector table (EVT). The CEC processes not only core-related inter-
rupts such as exceptions, core errors, and emulation events; it also
supports software interrupts.

• The system interrupt controller (SIC) runs in the SCLK clock
domain. It masks, groups, and prioritizes interrupt requests sig-
nalled by on-chip or off-chip peripherals and forwards them to the
CEC.

Description of Operation
The following sections describe the operation of the system interrupts.

Events and Sequencing
The processor employs a two-level event control mechanism. The proces-
sor SIC works with the CEC to prioritize and control all system
interrupts. The SIC provides mapping between the many peripheral inter-
rupt sources and the prioritized general-purpose interrupt inputs of the
core. This mapping is programmable, and individual interrupt sources can
be masked in the SIC.

The CEC of the processor manages five types of activities or events:

• Emulation

• Reset

• Nonmaskable interrupts (NMI)

ADSP-BF50x Blackfin Processor Hardware Reference 4-3

System Interrupts

• Exceptions

• Interrupts

Note the word event describes all five types of activities. The CEC man-
ages fifteen different events in all: emulation, reset, NMI, exception, and
eleven interrupts.

An interrupt is an event that changes the normal processor instruction
flow and is asynchronous to program flow. In contrast, an exception is a
software initiated event whose effects are synchronous to program flow.

The event system is nested and prioritized. Consequently, several service
routines may be active at any time, and a low priority event may be
pre-empted by one of higher priority.

The CEC supports nine general-purpose interrupts (IVG7 – IVG15) in
addition to the dedicated interrupt and exception events that are described
in Table 4-1. It is common for applications to reserve the lowest or the
two lowest priority interrupts (IVG14 and IVG15) for software interrupts,
leaving eight or seven prioritized interrupt inputs (IVG7 – IVG13) for
peripheral purposes. Refer to Table 4-1.

Table 4-1. System and Core Event Mapping

Event Source Core Event
Name

Core events

Emulation (highest priority) EMU

Reset RST

NMI NMI

Exception EVX

Reserved –

Hardware error IVHW

Core timer IVTMR

Description of Operation

4-4 ADSP-BF50x Blackfin Processor Hardware Reference

System Peripheral Interrupts
To service the rich set of peripherals, the SIC has multiple interrupt
request inputs and outputs that go to the CEC. The primary function of
the SIC is to mask, group, and prioritize interrupt requests and to forward
them to the nine general-purpose interrupt inputs of the CEC (IVG7–
IVG15). Additionally, the SIC controller can enable individual peripheral
interrupts to wake up the processor from Idle or power-down state.

The nine general-purpose interrupt inputs (IVG7–IVG15) of the core event
controller have fixed priority. Of this group, the IVG7 channel has the
highest priority and IVG15 has the lowest priority. Therefore, the interrupt
assignment in the SIC_IAR registers not only groups peripheral interrupts;
it also programs their priority by assigning them to individual IVG chan-
nels. However, the relative priority of peripheral interrupts can be set by
mapping the peripheral interrupt to the appropriate general-purpose inter-
rupt level in the core. The mapping is controlled by the SIC_IAR register
settings shown in Figure 4-2 on page 4-11 and the tables in Chapter A,
“System MMR Assignments”. If more than one interrupt source is
mapped to the same interrupt, they are logically OR’ed, with no hardware
prioritization. Software can prioritize the interrupt processing as required
for a particular system application.

 For general-purpose interrupts with multiple peripheral interrupts
assigned to them, take special care to ensure that software correctly
processes all pending interrupts sharing that input. Software is
responsible for prioritizing the shared interrupts.

System interrupts IVG7–IVG13

Software interrupt 1 IVG14

Software interrupt 2 (lowest priority) IVG15

Table 4-1. System and Core Event Mapping (Cont’d)

Event Source Core Event
Name

ADSP-BF50x Blackfin Processor Hardware Reference 4-5

System Interrupts

The core timer has a dedicated input to the CEC controller. Its interrupt
is not routed through the SIC controller and always has higher priority
than requests from all peripherals.

The SIC_IMASK register allows software to mask any peripheral interrupt
source at the SIC level. This functionality is independent of whether the
particular interrupt is enabled at the peripheral itself. At reset, the con-
tents of the SIC_IMASK register are all 0s to mask off all peripheral
interrupts. Turning off a system interrupt mask and enabling the particu-
lar interrupt is performed by writing a 1 to a bit location in the SIC_IMASK

register.

The SIC includes one or more read-only SIC_ISR registers with individual
bits which correspond to the interrupt status of one of the peripheral
interrupt sources. When the SIC detects the interrupt, the bit is asserted.
When the SIC detects that the peripheral interrupt input has been deas-
serted, the respective bit in the system interrupt status register is cleared.
Note for some peripherals, such as general-purpose I/O asynchronous
input interrupts, many cycles of latency may pass from the time an inter-
rupt service routine initiates the clearing of the interrupt (usually by
writing a system MMR) to the time the SIC senses that the interrupt has
been deasserted.

Depending on how interrupt sources map to the general-purpose interrupt
inputs of the core, the interrupt service routine may have to interrogate
multiple interrupt status bits to determine the source of the interrupt.
One of the first instructions executed in an interrupt service routine
should read the SIC_ISR register to determine whether more than one of
the peripherals sharing the input has asserted its interrupt output. The ser-
vice routine should fully process all pending, shared interrupts before
executing the RTI, which enables further interrupt generation on that
interrupt input.

Description of Operation

4-6 ADSP-BF50x Blackfin Processor Hardware Reference

 When an interrupt’s service routine is finished, the RTI instruction
clears the appropriate bit in the IPEND register. However, the rele-
vant SIC_ISR bit is not cleared unless the service routine clears the
mechanism that generated the interrupt.

Many systems need relatively few interrupt-enabled peripherals, allowing
each peripheral to map to a unique core priority level. In these designs, the
SIC_ISR register will seldom, if ever, need to be interrogated.

The SIC_ISR register is not affected by the state of the SIC_IMASK register
and can be read at any time. Writes to the SIC_ISR register have no effect
on its contents.

Peripheral DMA channels are mapped in a fixed manner to the peripheral
interrupt IDs. However, the assignment between peripherals and DMA
channels is freely programmable with the DMA_PERIPHERAL_MAP registers.
Table 4-1 on page 4-3 and Table 4-2 on page 4-11 show the default DMA
assignment. Once a peripheral has been assigned to any other DMA chan-
nel it uses the new DMA channel’s interrupt ID regardless of whether
DMA is enabled or not. Therefore, clean DMA_PERIPHERAL_MAP manage-
ment is required even if the DMA is not used. The default setup should be
the best choice for all non-DMA applications.

For dynamic power management, any of the peripherals can be configured
to wake up the core from its idled state to process the interrupt, simply by
enabling the appropriate bit in the SIC_IWR register (refer to Table 4-1 on
page 4-3 and Table 4-2 on page 4-11). If a peripheral interrupt source is
enabled in SIC_IWR and the core is idled, the interrupt causes the DPMC
to initiate the core wakeup sequence in order to process the interrupt.
Note this mode of operation may add latency to interrupt processing,
depending on the power control state. For further discussion of power
modes and the idled state of the core, see the Dynamic Power Manage-
ment chapter.

The SIC_IWR register has no effect unless the core is idled. By default, all
interrupts generate a wakeup request to the core. However, for some

ADSP-BF50x Blackfin Processor Hardware Reference 4-7

System Interrupts

applications it may be desirable to disable this function for some peripher-
als, such as for a SPORT transmit interrupt. The SIC_IWR register can be
read from or written to at any time. To prevent spurious or lost interrupt
activity, this register should be written to only when all peripheral inter-
rupts are disabled.

 The wakeup function is independent of the interrupt mask func-
tion. If an interrupt source is enabled in the SIC_IWR but masked
off in the SIC_IMASK register, the core wakes up if it is idled, but it
does not generate an interrupt.

The peripheral interrupt structure of the processor is flexible. Upon reset,
multiple peripheral interrupts share a single, general-purpose interrupt in
the core by default, as shown in Table 4-2 on page 4-11.

An interrupt service routine that supports multiple interrupt sources must
interrogate the appropriate system memory mapped registers (MMRs) to
determine which peripheral generated the interrupt.

Programming Model
The programming model for the system interrupts is described in the fol-
lowing sections.

Programming Model

4-8 ADSP-BF50x Blackfin Processor Hardware Reference

System Interrupt Initialization
If the default peripheral-to-IVG assignments shown in Table 4-1 on
page 4-3 and Table 4-2 on page 4-11 are acceptable, then interrupt initial-
ization involves only:

• Initialization of the core event vector table (EVT) vector address
entries

• Initialization of the IMASK register

• Unmasking the specific peripheral interrupts that the system
requires in the SIC_IMASK register

System Interrupt Processing Summary
Referring to Figure 4-1 on page 4-10, note when an interrupt (interrupt
A) is generated by an interrupt-enabled peripheral:

1. SIC_ISR logs the request and keeps track of system interrupts that
are asserted but not yet serviced (that is, an interrupt service rou-
tine hasn’t yet cleared the interrupt).

2. SIC_IWR checks to see if it should wake up the core from an idled
state based on this interrupt request.

3. SIC_IMASK masks off or enables interrupts from peripherals at the
system level. If interrupt A is not masked, the request proceeds to
Step 4.

4. The SIC_IAR registers, which map the peripheral interrupts to a
smaller set of general-purpose core interrupts (IVG7 – IVG15),
determine the core priority of interrupt A.

5. ILAT adds interrupt A to its log of interrupts latched by the core
but not yet actively being serviced.

ADSP-BF50x Blackfin Processor Hardware Reference 4-9

System Interrupts

6. IMASK masks off or enables events of different core priorities. If the
IVGx event corresponding to interrupt A is not masked, the process
proceeds to Step 7.

7. The event vector table (EVT) is accessed to look up the appropriate
vector for interrupt A’s interrupt service routine (ISR).

8. When the event vector for interrupt A has entered the core pipe-
line, the appropriate IPEND bit is set, which clears the respective
ILAT bit. Thus, IPEND tracks all pending interrupts, as well as those
being presently serviced.

9. When the interrupt service routine (ISR) for interrupt A has been
executed, the RTI instruction clears the appropriate IPEND bit.
However, the relevant SIC_ISR bit is not cleared unless the inter-
rupt service routine clears the mechanism that generated interrupt
A, or if the process of servicing the interrupt clears this bit.

It should be noted that emulation, reset, NMI, and exception events, as
well as hardware error (IVHW) and core timer (IVTMR) interrupt requests,
enter the interrupt processing chain at the ILAT level and are not affected
by the system-level interrupt registers (SIC_IWR, SIC_ISR, SIC_IMASK,
SIC_IAR).

If multiple interrupt sources share a single core interrupt, then the inter-
rupt service routine (ISR) must identify the peripheral that generated the
interrupt. The ISR may then need to interrogate the peripheral to deter-
mine the appropriate action to take.

System Interrupt Controller Registers

4-10 ADSP-BF50x Blackfin Processor Hardware Reference

System Interrupt Controller Registers
The SIC registers are described in the following sections.

These registers can be read from or written to at any time in supervisor
mode. It is advisable, however, to configure them in the reset interrupt
service routine before enabling interrupts. To prevent spurious or lost
interrupt activity, these registers should be written to only when all
peripheral interrupts are disabled.

Figure 4-1. Interrupt Processing Block Diagram

"INTERRUPT
A"

SYSTEM
INTERRUPT

MASK
(SIC_IMASK)

ASSIGN
SYSTEM

PRIORITY
(SIC_IAR)

CORE EVENT CONTROLLERSYSTEM INTERRUPT CONTROLLER

NOTE: NAMES IN PARENTHESES ARE MEMORY-MAPPED REGISTERS.

EMU
RESET
NMI
EVX
IVTMR
IVHW

PERIPHERAL
INTERRUPT
REQUESTS

CORE
EVENT

VECTOR
TABLE

(EVT[15:0])

CORE
PENDING
(IPEND)

CORE
STATUS
(ILAT)

CORE
INTERRUPT

MASK
(IMASK)

SYSTEM
WAKEUP
(SIC_IWR)

SYSTEM
STATUS

(SIC_ISR)

TO DYNAMIC POWER
MANAGEMENT
CONTROLLER

ADSP-BF50x Blackfin Processor Hardware Reference 4-11

System Interrupts

System Interrupt Assignment (SIC_IAR) Register
The SIC_IAR register maps each peripheral interrupt ID to a correspond-
ing IVG priority level. This is accomplished with 4-bit groupings that
translate to IVG levels as shown in Table 4-2 and Figure 4-2. In other
words, Table 4-2 defines the value to write in a 4-bit field within SIC_IAR

in order to configure a peripheral interrupt ID for a particular IVG prior-
ity. Refer to Table 4-1 on page 4-3 for information on SIC_IAR
mappings for this specific processor.

Figure 4-2. System Interrupt Assignment Register

Table 4-2. IVG Select Definitions

General-Purpose Interrupt Value in SIC_IAR

IVG7 0

IVG8 1

IVG9 2

IVG10 3

IVG11 4

IVG12 5

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

System Interrupt Assignment Register (SIC_IAR)

ID Grouping 0

ID Grouping 2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ID Grouping 7
ID Grouping 4

ID Grouping 1

ID Grouping 5
ID Grouping 6

ID Grouping 3

System Interrupt Controller Registers

4-12 ADSP-BF50x Blackfin Processor Hardware Reference

System Interrupt Mask (SIC_IMASK) Register
The SIC_IMASK register masks or enables peripheral interrupts at the sys-
tem level. A “0” in a bit position masks off (disables) interrupts for that
particular peripheral interrupt ID. A “1” enables interrupts for that inter-
rupt ID. Refer to Table 4-1 on page 4-3 and Table 4-2 for information on
how peripheral interrupt IDs are mapped to the SIC_IMASK register(s) for
this particular processor.

System Interrupt Status (SIC_ISR) Register
The SIC_ISR register keeps track of system interrupts that are asserted but
not yet serviced. A “0” in a bit position indicates that a particular inter-
rupt is deasserted. A “1” indicates that it is asserted. Refer to Table 4-1 on
page 4-3 and Table 4-2 for information on how peripheral interrupt IDs
are mapped to the SIC_ISR register(s) for this particular processor.

System Interrupt Wakeup-Enable (SIC_IWR)
Register

The SIC_IWR register allows an interrupt request to wake up the processor
core from an idled state. A “0” in a bit position indicates that a particular
peripheral interrupt ID is not configured to wake the core (upon assertion
of the interrupt request). A “1” indicates that it is configured to do so.
Refer to Table 4-1 on page 4-3 and Table 4-2 for information on how

IVG13 6

IVG14 7

IVG15 8

Table 4-2. IVG Select Definitions (Cont’d)

General-Purpose Interrupt Value in SIC_IAR

ADSP-BF50x Blackfin Processor Hardware Reference 4-13

System Interrupts

peripheral interrupt IDs are mapped to the SIC_IWR register(s) for this par-
ticular processor.

Programming Examples
The following section provides an example for servicing interrupt
requests.

Clearing Interrupt Requests
When the processor services a core event it automatically clears the
requesting bit in the ILAT register and no further action is required by the
interrupt service routine. It is important to understand that the SIC con-
troller does not provide any interrupt acknowledgment feedback
mechanism from the CEC controller back to the peripherals. Although
the ILAT bits clear in the same way when a peripheral interrupt is serviced,
the signalling peripheral does not release its level-sensitive request until it
is explicitly instructed by software. If however, the peripheral keeps
requesting, the respective ILAT bit is set again immediately and the service
routine is invoked again as soon as its first run terminates by an RTI
instruction.

Every software routine that services peripheral interrupts must clear the
signalling interrupt request in the respective peripheral. The individual
peripherals provide customized mechanisms for how to clear interrupt
requests. Receive interrupts, for example, are cleared when received data is
read from the respective buffers. Transmit requests typically clear when
software (or DMA) writes new data into the transmit buffers. These
implicit acknowledge mechanisms avoid the need for cycle-consuming
software handshakes in streaming interfaces. Other peripherals such as
timers, GPIOs, and error requests require explicit acknowledge instruc-
tions, which are typically performed by efficient W1C (write-1-to-clear)
operations.

Programming Examples

4-14 ADSP-BF50x Blackfin Processor Hardware Reference

Listing 4-1 shows a representative example of how a GPIO interrupt
request might be serviced.

Listing 4-1. Servicing GPIO Interrupt Request

#include <defBF527.h>

/*ADSP-BF527 product is used as an example*/

.section program;

_portg_a_isr:

/* push used registers */

[--sp] = (r7:7, p5:5);

/* clear interrupt request on GPIO pin PG2 */

/* no matter whether used A or B channel */

p5.l = lo(PORTGIO_CLEAR);

p5.h = hi(PORTGIO_CLEAR);

r7 = PG2;

w[p5] = r7;

/* place user code here */

/* sync system, pop registers and exit */

ssync;

(r7:7, p5:5) = [sp++];

rti;

_portg_a_isr.end:

The W1C instruction shown in this example may require several SCLK
cycles to complete, depending on system load and instruction history. The
program sequencer does not wait until the instruction completes and con-
tinues program execution immediately. The SSYNC instruction ensures that
the W1C command indeed cleared the request in the GPIO peripheral
before the RTI instruction executes. However, the SSYNC instruction does
not guarantee that the release of interrupt request has also been recognized
by the CEC controller, which may require a few more CCLK cycles depend-
ing on the CCLK-to-SCLK ratio. In service routines consisting of a few

ADSP-BF50x Blackfin Processor Hardware Reference 4-15

System Interrupts

instructions only, two SSYNC instructions are recommended between the
clear command and the RTI instruction. However, one SSYNC instruction
is typically sufficient if the clear command performs in the very beginning
of the service routine, or the SSYNC instruction is followed by another set
of instructions before the service routine returns. Commonly, a pop-mul-
tiple instruction is used for this purpose as shown in Listing 4-1.

The level-sensitive nature of peripheral interrupts enables more than one
of them to share the same IVG channel and therefore the same interrupt
priority. This is programmable using the assignment registers. Then a
common service routine typically interrogates the SIC_ISR register to
determine the signalling interrupt source. If multiple peripherals are
requesting interrupts at the same time, it is up to the service routine to
either service all requests in a single pass or to service them one by one. If
only one request is serviced and the respective request is cleared by soft-
ware before the RTI instruction executes, the same service routine is
invoked another time because the second request is still pending. While
the first approach may require fewer cycles to service both requests, the
second approach enables higher priority requests to be serviced more
quickly in a non-nested interrupt system setup.

Unique Information for the ADSP-BF50x
Processor

This section describes Interfaces and System Peripheral Interrupts that are
unique to the ADSP-BF50x processor.

Interfaces
Figure 4-3 and Figure 4-4 provide an overview of how the individual
peripheral interrupt request lines connect to the SIC. These figures show
how the seven SIC_IAR registers control the assignment to the nine avail-
able peripheral request inputs of the CEC.

Unique Information for the ADSP-BF50x Processor

4-16 ADSP-BF50x Blackfin Processor Hardware Reference

 The memory-mapped ILAT, IMASK, and IPEND registers are part of
the CEC controller.

Figure 4-3. Interrupt Routing Overview (Part 1)

0

DMA2 (SPORT0 RX)
DMA3 (SPORT0 TX)
DMA4 (SPORT1 RX)
DMA5 (SPORT1 TX)

DMA7 (SPI1 RX or TX)
DMA8 (UART0 RX)
DMA9 (UART0 TX)

DMA10 (UART1 RX)
DMA11 (UART1 TX)

CAN RECEIVE
CAN TRANSMIT

1
2
3
4
5
6
7

PLL WAKEUP INTERRUPT

DMA0 (PPI RX or TX)
DMA1 (RSI RX or TX)

W
A

K
E

 U
P

C
O

R
E

 T
IM

E
R

H
A

R
D

W
A

R
E

 E
R

R
O

R

E
X

C
E

P
T

IO
N

S

N
M

I

S
IC

_I
A

R
3

S
IC

_I
A

R
2

S
IC

_I
A

R
1

S
IC

_I
A

R
0

8
9

10
11
12
13
14
15

16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31

S
IC

_I
S

R
0

S
IC

_I
W

R
0

S
IC

_I
M

A
S

K
0

R
E

S
E

T

E
M

U
L

A
T

IO
N

IMASK

IPEND

ILAT

IV
G

15

IV
G

14

IV
G

13

IV
G

12

IV
G

11

IV
G

10

IV
G

9

IV
G

8

IV
G

7

IV
G

6

IV
G

5

IV
G

3

IV
G

2

IV
G

1

IV
G

0
DMA6 (SPI0 RX or TX)

TWI
PORT F INTERRUPT A

RESERVED
PORT F INTERRUPT B

SPI0 STATUS

SPI1 STATUS
CAN STATUS

UART1 STATUS

RSI MASK 0 INTERRUPT
RESERVED

CNT0 INTERRUPT
CNT1 INTERRUPT

DMA ERROR (GENERIC)
PPI STATUS

SPORT0 STATUS
SPORT1 STATUS

UART0 STATUS

ADSP-BF50x Blackfin Processor Hardware Reference 4-17

System Interrupts

Figure 4-4. Interrupt Routing Overview (Part 2)

W
A

K
E

 U
P

C
O

R
E

 T
IM

E
R

H
A

R
D

W
A

R
E

 E
R

R
O

R

E
X

C
E

P
T

IO
N

S

N
M

I

S
IC

_I
A

R
4

S
IC

_I
A

R
5

S
IC

_I
A

R
6

S
IC

_I
A

R
7

0
1
2
3
4
5
6
7

8
9

10
11
12
13
14
15

16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31

S
IC

_I
S

R
1

S
IC

_I
W

R
1

S
IC

_I
M

A
S

K
1

R
E

S
E

T

E
M

U
L

A
T

IO
N

IMASK

IPEND

ILAT

IV
G

15

IV
G

14

IV
G

13

IV
G

12

IV
G

11

IV
G

10

IV
G

9

IV
G

8

IV
G

7

IV
G

6

IV
G

5

IV
G

3

IV
G

2

IV
G

1

IV
G

0

ACM STATUS INTERRUPT

RESERVED

RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED

TIMER0
TIMER1
TIMER2
TIMER3
TIMER4
TIMER5
TIMER6
TIMER7

MDMA STREAM 0
MDMA STREAM 1

PORT G INTERRUPT A
PORT G INTERRUPT B

PORT H INTERRUPT A
PORT H INTERRUPT B

SOFTWARE WATCHDOG TIMER

PWM0 TRIP INTERRUPT
PWM0 SYNC INTERRUPT

PWM1 TRIP INTERRUPT
PWM1 SYNC INTERRUPT
RSI MASK 1 INTERRUPT

ACM INTERRUPT
RESERVED

Unique Information for the ADSP-BF50x Processor

4-18 ADSP-BF50x Blackfin Processor Hardware Reference

System Peripheral Interrupts
Table 4-3 and Table 4-4 show the peripheral interrupt events, the default
mapping of each event, the peripheral interrupt ID used in the system
interrupt assignment registers (SIC_IAR), and the core interrupt ID.

Note that the system interrupt to core event mappings shown are the
default values at reset and can be changed by software. Where there is
more than one DMA interrupt source for a given interrupt ID number,
the default DMA source mapping is listed first in parentheses.

The peripheral interrupt structure of the processor is flexible. Upon reset,
multiple peripheral interrupts share a single, general-purpose interrupt in
the core by default, as shown in Table 4-3 and Table 4-4.

An interrupt service routine that supports multiple interrupt sources must
interrogate the appropriate system memory mapped registers (MMRs) to
determine which peripheral generated the interrupt.

ADSP-BF50x Blackfin Processor Hardware Reference 4-19

System Interrupts

Table 4-3. Peripheral Interrupt Events (Part 1)

Peripheral
ID Number

Bit Position for
SIC_ISR0,
SIC_IMASK0,
SIC_IWR0

SIC_IAR3-0 Interrupt Source Default
Mapping

31 Bit 31 SIC_IAR3[31:28] Reserved IVG11

30 Bit 30 SIC_IAR3[27:24] Port F Interrupt B IVG11

29 Bit 29 SIC_IAR3[23:20] Port F Interrupt A IVG11

28 Bit 28 SIC_IAR3[19:16] TWI IVG11

27 Bit 27 SIC_IAR3[15:12] CAN Transmit IVG11

26 Bit 26 SIC_IAR3[11:8] CAN Receive IVG11

25 Bit 25 SIC_IAR3[7:4] DMA11 (UART1 TX) IVG10

24 Bit 24 SIC_IAR3[3:0] DMA10 (UART1 RX) IVG10

23 Bit 23 SIC_IAR2[31:28] DMA9 (UART0 TX) IVG10

22 Bit 22 SIC_IAR2[27:24] DMA8 (UART0 RX) IVG10

21 Bit 21 SIC_IAR2[23:20] DMA7 (SPI1 RX or TX) IVG10

20 Bit 20 SIC_IAR2[19:16] DMA6 (SPI0 RX or TX) IVG10

19 Bit 19 SIC_IAR2[15:12] DMA5 (SPORT1 TX) IVG9

18 Bit 18 SIC_IAR2[11:8] DMA4 (SPORT1 RX) IVG9

17 Bit 17 SIC_IAR2[7:4] DMA3 (SPORT0 TX) IVG9

16 Bit 16 SIC_IAR2[3:0] DMA2 (SPORT0 RX) IVG9

15 Bit 15 SIC_IAR1[31:28] DMA1 (RSI RX or TX) IVG9

14 Bit 14 SIC_IAR1[27:24] DMA0 (PPI RX or TX) IVG9

13 Bit 13 SIC_IAR1[23:20] CNT1 Interrupt IVG8

12 Bit 12 SIC_IAR1[19:16] CNT0 Interrupt IVG8

11 Bit 11 SIC_IAR1[15:12] Reserved IVG8

10 Bit 10 SIC_IAR1[11:8] RSI Mask 0 Interrupt IVG7

9 Bit 9 SIC_IAR1[7:4] CAN Status IVG7

8 Bit 8 SIC_IAR1[3:0] SPI1 Status IVG7

Unique Information for the ADSP-BF50x Processor

4-20 ADSP-BF50x Blackfin Processor Hardware Reference

7 Bit 7 SIC_IAR0[31:28] SPI0 Status IVG7

6 Bit 6 SIC_IAR0[27:24] UART1 Status IVG7

5 Bit 5 SIC_IAR0[23:20] UART0 Status IVG7

4 Bit 4 SIC_IAR0[19:16] SPORT1 Status IVG7

3 Bit 3 SIC_IAR0[15:12] SPORT0 Status IVG7

2 Bit 2 SIC_IAR0[11:8] PPI Status IVG7

1 Bit 1 SIC_IAR0[7:4] DMA Error (generic) IVG7

0 Bit 0 SIC_IAR0[3:0] PLL Wakeup Interrupt IVG7

Table 4-4. Peripheral Interrupt Events (Part 2)

Peripheral
ID Number

Bit Position for
SIC_ISR1,
SIC_IMASK1,
SIC_IWR1

SIC_IAR7–4 Interrupt Source Default
Mapping

63 Bit 31 SIC_IAR7[31:28] Reserved IVG7

62 Bit 30 SIC_IAR7[27:24] Reserved IVG7

61 Bit 29 SIC_IAR7[23:20] Reserved IVG7

60 Bit 28 SIC_IAR7[19:16] Reserved IVG7

59 Bit 27 SIC_IAR7[15:12] Reserved IVG7

58 Bit 26 SIC_IAR7[11:8] Reserved IVG7

57 Bit 25 SIC_IAR7[7:4] Reserved IVG7

56 Bit 24 SIC_IAR7[3:0] Reserved IVG7

55 Bit 23 SIC_IAR6[31:28] RSI Mask 1 Interrupt IVG10

54 Bit 22 SIC_IAR6[27:24] PWM1 Sync Interrupt IVG10

53 Bit 21 SIC_IAR6[23:20] PWM1 Trip Interrupt IVG10

Table 4-3. Peripheral Interrupt Events (Part 1) (Cont’d)

Peripheral
ID Number

Bit Position for
SIC_ISR0,
SIC_IMASK0,
SIC_IWR0

SIC_IAR3-0 Interrupt Source Default
Mapping

ADSP-BF50x Blackfin Processor Hardware Reference 4-21

System Interrupts

52 Bit 20 SIC_IAR6[19:16] PWM0 Sync Interrupt IVG10

51 Bit 19 SIC_IAR6[15:12] PWM0 Trip Interrupt IVG10

50 Bit 18 SIC_IAR6[11:8] Reserved IVG7

49 Bit 17 SIC_IAR6[7:4] Reserved IVG7

48 Bit 16 SIC_IAR6[3:0] ACM Interrupt IVG10

47 Bit 15 SIC_IAR5[31:28] ACM Status Interrupt IVG7

46 Bit 14 SIC_IAR5[27:24] Port H Interrupt B IVG13

45 Bit 13 SIC_IAR5[23:20] Port H Interrupt A IVG13

44 Bit 12 SIC_IAR5[19:16] Software Watchdog Timer IVG13

43 Bit 11 SIC_IAR5[15:12] MDMA Stream 1 IVG13

42 Bit 10 SIC_IAR5[11:8] MDMA Stream 0 IVG13

41 Bit 9 SIC_IAR5[7:4] Port G Interrupt B IVG12

40 Bit 8 SIC_IAR5[3:0] Port G Interrupt A IVG12

39 Bit 7 SIC_IAR4[31:28] Timer 7 IVG12

38 Bit 6 SIC_IAR4[27:24] Timer 6 IVG12

37 Bit 5 SIC_IAR4[23:20] Timer 5 IVG12

36 Bit 4 SIC_IAR4[19:16] Timer 4 IVG12

35 Bit 3 SIC_IAR4[15:12] Timer 3 IVG12

34 Bit 2 SIC_IAR4[11:8] Timer 2 IVG12

33 Bit 1 SIC_IAR4[7:4] Timer 1 IVG12

32 Bit 0 SIC_IAR4[3:0] Timer 0 IVG12

Table 4-4. Peripheral Interrupt Events (Part 2) (Cont’d)

Peripheral
ID Number

Bit Position for
SIC_ISR1,
SIC_IMASK1,
SIC_IWR1

SIC_IAR7–4 Interrupt Source Default
Mapping

Unique Information for the ADSP-BF50x Processor

4-22 ADSP-BF50x Blackfin Processor Hardware Reference

ADSP-BF50x Blackfin Processor Hardware Reference 5-1

5 EXTERNAL BUS INTERFACE
UNIT

The external bus interface unit (EBIU) on the ADSP-BF50x Blackfin pro-
cessors provides glue-less interface to the internal parallel flash memory,
which is available on ADSP-BF504F and ADSP-BF506F Blackfin proces-
sors, and to the processor boot ROM.

 On the ADSP-BF50x Blackfin processors, the parallel synchronous
internal flash memory is internal to the product package, but this
memory is external to the processor. The interface to the internal
flash memory is referred to as the External Bus Interface Unit.
Despite the external in its name, the EBIU does not provide access
to off-chip memories.

EBIU Overview
The EBIU services requests for the optional parallel internal flash memory
and boot ROM memories from the core or from a DMA channel. The pri-
ority of the requests is determined by the external bus controller.

The DMA controller provides high-bandwidth data movement capability.
The Memory DMA (MDMA) channels can perform block transfers of
code or data between the internal L1 SRAM memories and the optional
internal parallel flash memory.

The EBIU is clocked by the system clock (SCLK). All synchronous memo-
ries interfaced to the processor operate at frequencies derived from SCLK.
The ratio between core clock frequency (CCLK) and SCLK frequency is pro-
grammable using a phase locked loop (PLL) system memory-mapped

EBIU Overview

5-2 ADSP-BF50x Blackfin Processor Hardware Reference

register (MMR). For more information, see “Core Clock/System Clock
Ratio Control” on page 8-5.

The external memory space is shown in Figure 5-1.

Figure 5-1. ADSP-BF50x External Memory Map

0x0000 0000

SYNCHRONOUS FLASH MEMORY
(4 MBYTES)*

0x2000 0000

EXTERNAL MEMORY MAP

0x2040 0000

0xEEFF FFFF

* THE SYNCHRONOUS FLASH MEMORY IS AVAILABLE
 ONLY ON THE ADSP-BF504F AND ADSP-BF506F PROCESSORS.

RESERVED

RESERVED

ADSP-BF50x Blackfin Processor Hardware Reference 5-3

External Bus Interface Unit

Note that, as shown in Figure 5-1, the region in external memory space
from address 0x0000 0000 up to address 0x2000 0000 is reserved.

On ADSP-BF50x Blackfin processors that feature internal parallel flash
memories (ADSP-BF504F and ADSP-BF506F), the region from
0x2000 0000 to 0x2040 0000 is dedicated to supporting the 4M Bytes
internal parallel synchronous flash memory.

The next region is reserved memory space. References to this region do
not generate external bus transactions. Writes have no effect on external
memory values, and reads return undefined values. The EBIU generates
an error response on the internal bus, which will generate a hardware
exception for a core access or will optionally generate an interrupt from a
DMA channel.

Block Diagram
Figure 5-2 is a conceptual block diagram of the EBIU and its interfaces.

The external bus interface unit (EBIU) interfaces to the processor busses
on one side and to the internal flash memory on the other side.

Figure 5-2. External Bus Interface Unit (EBIU)

EBIU

SYNCHRONOUS
FLASH MEMORY

CONTROLLER

E
X

T
E

R
N

A
L

 B
U

S
 C

O
N

T
R

O
L

L
E

R
(E

B
C

)

EAB

PAB

INTERNAL
PARALLEL SYNCHRONOUS

FLASH MEMORY

AVAILABLE ONLY ON
PROCESSORS
WITH FLASH (F)

DEB

EBIU Overview

5-4 ADSP-BF50x Blackfin Processor Hardware Reference

Note that—because the EBIU memory-interface signals do not come out
to package pins—no external memory devices can be supported by the
EBIU in ADSP-BF50x Blackfin processors.

Internal Memory Interfaces
The EBIU functions as a slave on three buses internal to the processor:

• External Access Bus (EAB), mastered by the core memory manage-
ment unit on behalf of external bus requests from the core

• DMA External Bus (DEB), mastered by the DMA controller on
behalf of external bus requests from any DMA channel

• Peripheral Access Bus (PAB), mastered by the core on behalf of sys-
tem MMR requests from the core

These are synchronous interfaces, clocked by SCLK, as is the EBIU. The
EAB provides access to external memory.

The peripheral access bus (PAB) is used only to access the mem-
ory-mapped control and status registers of the EBIU. It does not need to
arbitrate with, nor take access cycles from, the EAB bus.

The External Bus Controller (EBC) logic must arbitrate access requests for
external memory coming from the EAB and DEB buses. Transactions
from the core have priority over DMA accesses in most circumstances.
However, if the DMA controller detects an excessive backup of transac-
tions, it can request its priority to be temporarily raised above the core.

Registers
The EBIU has a number of control and status registers. They include:

• Asynchronous memory global control register (EBIU_AMGCTL)

• Asynchronous memory bank control register (EBIU_AMBCTL)

ADSP-BF50x Blackfin Processor Hardware Reference 5-5

External Bus Interface Unit

• Mode control register (EBIU_MODE)

• Parameter control register (EBIU_FCTL)

Each of these registers is described in detail in the later sections of this
chapter.

Error Detection
The EBIU responds to any bus operation which addresses the range of
0x0000 0000 – 0xEEFF FFFF, even if that bus operation addresses
reserved or disabled memory or functions. It responds by completing the
bus operation (asserting the appropriate number of acknowledges as speci-
fied by the bus master) and by asserting the bus error signal for the error
condition.

If the core requested the faulting bus operation, the bus error response
from the EBIU is gated into the hardware error interrupt (IVHW) internal
to the core (this interrupt can be masked off in the core). If a DMA master
requested the faulting bus operation, then the bus error is captured in that
controller and can optionally generate an interrupt to the core.

AMC Overview and Features
The following sections describe the features of the AMC. On
ADSP-BF50xF Blackfin processors that include an internal flash memory,
the asynchronous memory controller (AMC) provides a glue-less interface
to the internal flash memory device.

AMC Description of Operation

5-6 ADSP-BF50x Blackfin Processor Hardware Reference

Features
The EBIU AMC features include:

• 16-bit I/O width

• 3.3 V I/O supply

• Supports instruction fetch

• Allows booting

Asynchronous Memory Interface
The asynchronous memory interface allows a glue-less interface to internal
flash memory.

Asynchronous Memory Address Decode

The address range allocated per bank is fixed at 4M bytes.

 Accesses to unpopulated memory or partially populated AMC
banks do not result in a bus error and will alias to valid AMC
addresses.

AMC Description of Operation
The following sections describe the operation of the AMC.

Avoiding Bus Contention
Be careful to avoid contention. Contention causes excessive power dissipa-
tion and can lead to device failure.

ADSP-BF50x Blackfin Processor Hardware Reference 5-7

External Bus Interface Unit

One case where contention can occur is a read followed by a write to the
same memory space. In this case, the data bus drivers can potentially con-
tend with those of the memory device addressed by the read.

To avoid contention, program the turnaround time (bank transition time)
appropriately in the asynchronous memory bank control registers. This
feature allows software to set the number of clock cycles between these
types of accesses on a bank-by-bank basis. Minimally, the EBIU provides
one cycle for the transition to occur.

AMC Programming Model
The asynchronous memory global control register (EBIU_AMGCTL) config-
ures global aspects of the controller. It contains bank enables and other
information as described in this section. This register should not be
programmed while the AMC is in use. The EBIU_AMGCTL register should be
the last control register written to when configuring the processor to
access external memory-mapped asynchronous devices.

 The AMC interface is used to access the internal flash memory on
ADSP-BF50x processors containing a flash. For more information,
see “Internal Flash Memory” on page 6-1.

Additional information for the EBIU_AMGCTL register bits includes:

• Asynchronous memory clock enable (AMCKEN)

The external clock signal (CLKOUT), which is an inverted version of
the system clock signal SCLK, can be enabled by setting the AMCKEN

bit in the EBIU_AMGCTL register. In systems that do not use CLKOUT,
set the AMCKEN bit to 0.

AMC Programming Model

5-8 ADSP-BF50x Blackfin Processor Hardware Reference

• Asynchronous memory bank enable (AMBEN).

If a bus operation accesses a disabled asynchronous memory bank,
the EBIU responds by acknowledging the transfer and asserting the
error signal on the requesting bus. The error signal propagates back
to the requesting bus master. This generates a hardware exception
to the core, if it is the requester. For DMA mastered requests, the
error is captured in the respective status register. If a bank is not
fully populated with memory, then the memory likely aliases into
multiple address regions within the bank. This aliasing condition is
not detected by the EBIU, and no error response is asserted.

• Core/DMA priority (CDPRIO).

This bit configures the AMC to control the priority over requests
that occur simultaneously to the EBIU from either processor core
or the DMA controller. When this bit is set to 0, a request from the
core has priority over a request from the DMA controller to the
AMC, unless the DMA is urgent. When the CDPRIO bit is set, all
requests from the DMA controller, including the memory DMAs,
have priority over core accesses. For the purposes of this discussion,
core accesses include both data fetches and instruction fetches.

 The CDPRIO bit also applies to the SDC.

The EBIU asynchronous memory controller has an asynchronous memory
bank control registers (EBIU_AMBCTL). This register contains bits for coun-
ters for setup, access, and hold time; bits to determine memory type and
size; and bits to configure use of ARDY. This register should not be pro-
grammed while the AMC is in use.

ADSP-BF50x Blackfin Processor Hardware Reference 5-9

External Bus Interface Unit

The timing characteristics of the AMC can be programmed using these
four parameters:

• Setup: the time between the beginning of a memory cycle (AMS low)
and the read-enable assertion (ARE low) or write-enable assertion
(AWE low).

• Read access: the time between read-enable assertion (ARE low) and
deassertion (ARE high).

• Write access: the time between write-enable assertion (AWE low) and
deassertion (AWE high).

• Hold: the time between read-enable deassertion (ARE high) or
write-enable deassertion (AWE high) and the end of the memory
cycle (AMS high).

Each of these parameters can be programmed in terms of EBIU clock
cycles. In addition, there are minimum values for these parameters:

• Setup  1 cycle

• Read access  1 cycle

• Write access  1 cycle

• Hold  0 cycles

EBIU Registers
The following sections describe the EBIU registers.

EBIU Registers

5-10 ADSP-BF50x Blackfin Processor Hardware Reference

EBIU_AMGCTL Register
Figure 5-3 shows the asynchronous memory global control register
(EBIU_AMGCTL).

Figure 5-3. Asynchronous Memory Global Control Register

00 0

Asynchronous Memory Global Control Register (EBIU_AMGCTL)

AMBEN

AMCKEN

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 0 1 1 1 1 0 1

0 - Disable CLKOUT for
asynchronous memory
region accesses

1 - Enable CLKOUT for
asynchronous memory
region accesses

Enable Flash memory bank
0 - Flash bank disabled
1 - Flash bank enabled

Reset = 0x00F30xFFC0 0A00

CDPRIO
0 - Core has priority over DMA

for external accesses
1 - DMA has priority over core

for external accesses
For more information, please see
Chapter 3, “Chip Bus Hierarchy”.

ADSP-BF50x Blackfin Processor Hardware Reference 5-11

External Bus Interface Unit

EBIU_AMBCTL Register
Figure 5-4 shows the asynchronous memory bank control register
(EBIU_AMBCTL).

Figure 5-4. Asynchronous Memory Bank Control Register

Asynchronous Memory Bank Control Register (EBIU_AMBCTL)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000 FFC2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

01 1 1 1 1 1 1 1 1 1 0 0 0 0 1

B0RDYPOL

B0TT[1:0]

B0ST[1:0]

B0RDYEN

B0HT[1:0]

B0RAT[3:0]

B0WAT[3:0]
Bank 0 write access time (number of
cycles AWE is held asserted)
0000 - Not supported
0001 to 1111 - 1 to 15 cycles

Bank 0 read access time (number of
cycles ARE is held asserted)
0000 - Not supported
0001 to 1111 - 1 to 15 cycles

Bank 0 hold time (number of cycles between AWE or
ARE deasserted, and AOE deasserted)
00 - 0 cycles
01 - 1 cycle
10 - 2 cycles
11 - 3 cycles

Bank 0 setup time (number of cycles after AOE
asserted, before AWE or ARE asserted)
00 - 4 cycles
01 - 1 cycle
10 - 2 cycles
11 - 3 cycles

Bank 0 memory transition time
(number of cycles inserted after a
read access to this bank, and
before a write access to this bank
or a read access to another bank)
00 - 4 cycles for bank transition
01 - 1 cycle for bank transition
10 - 2 cycles for bank transition
11 - 3 cycles for bank transition

Bank 0 ARDY polarity
0 - Transaction completes if
ARDY sampled low
1 - Transaction completes if
ARDY sampled high

Bank 0 ARDY enable
0 - Ignore ARDY for accesses to

this memory bank
1 - After access time countdown,

use state of ARDY to deter-
mine completion of access

0xFFC0 0A04

EBIU Registers

5-12 ADSP-BF50x Blackfin Processor Hardware Reference

EBIU_MODECTL Register
Figure 5-5 shows the asynchronous memory mode control register
(EBIU_MODECTL).

EBIU_FCTL Register
Figure 5-6 shows the asynchronous internal flash memory parameter con-
trol register (EBIU_FCTL).

Figure 5-5. Asynchronous Memory Mode Control Register

Figure 5-6. Asynchronous Internal Flash Memory Parameter Control Reg-
ister

Asynchronous Memory Mode Control Register (EBIU_MODECTL)

Reset = 0x0001
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0

B0MODE[1:0]
Flash memory access mode
00 - Reserved
01 - Asynchronous flash mode
10 - Reserved
11 - Synchronous burst flash mode

0xFFC0 0A20

Asynchronous Flash Memory Parameter Control Register (EBIU_FCTL)

Reset = 0x0002
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 1

BCLK[1:0]
NOR_CLK frequency for
Sync Burst Flash
00 - Reserved
01 - SCLK/2
10 - SCLK/3
11 - SCLK/4

0xFFC0 0A24

ADSP-BF50x Blackfin Processor Hardware Reference 6-1

6 INTERNAL FLASH MEMORY

ADSP-BF50xF Blackfin processors interface to a 32M bit (2M x 16)
device.

The internal flash memory has an array of 71 blocks, and is divided into
4M bit banks. There are 7 banks each containing 8 main blocks of 32K
words, and one parameter bank containing 8 parameter blocks of 4K
words and 7 main blocks of 32K words.

 The AMC interface is used to access the internal flash memory on
ADSP-BF50x processors containing a flash. For more information,
see “External Bus Interface Unit” on page 5-1.

Overview
The internal flash memory related pins are shown in Table 6-1. Use this
information when referring to the read and write waveforms shown in
Figure 6-11 on page 6-82 and Figure 6-12 on page 6-87.

Overview

6-2 ADSP-BF50x Blackfin Processor Hardware Reference

The ADSP-BF50xF processors contain an internal flash memory. It is a
32M bit (2M bit × 16) non-volatile flash memory. The internal flash
memory can be erased electrically at block level and programmed in-sys-
tem on a word-by-word basis using a 1.7 V to 2 V VDDFLASH supply for
the circuitry and a 2.7 V to 3.3 V VDDFLASH supply for the input/output
pins. Figure 6-1 and Table 6-2 show the internal connections to the flash
memory.

Table 6-1. EBIU/Internal Flash Memory Internal Pin Connections

EBIU Pins Stacked Flash Pins Comment

A21-A1 A20-A0 Address pins

D15-D0 D15-D0 Data

AMS0 E Chip enable

ARE G Output enable

ADV L Latch enable (address valid)

NOR_CLK K Burst clock

ARDY WAIT Wait

AWE W Write enable

— WP Write protect (tied low)

RP1 RP Reset

VPP
1 VPP Global program/erase protect

1 These are controlled through the internal flash memory control register. See “Internal Flash
Memory Control (FLASH_CONTROL) Register” on page 6-88.

ADSP-BF50x Blackfin Processor Hardware Reference 6-3

Internal Flash Memory

Figure 6-1. Internal Flash Memory Connections

Table 6-2. Internal Flash Memory Signal Names

Signal Name Function Direction

A0-A20 Address inputs Inputs

D0-D15 Data input/outputs, command inputs I/O

E Chip Enable Input

G Output Enable Input

W Write Enable Input

RP Reset Input

WP Write Protect Input

K Clock Input

L Latch Enable Input

WAIT Wait Output

VDD Supply voltage Input

WAIT

A0-A20

K

RP

WP

G

E

L

INTERNAL
FLASH

MEMORY

W

V
SS

V
DD

V
DDQ

V
PP

DQ0-DQ15

16

Overview

6-4 ADSP-BF50x Blackfin Processor Hardware Reference

The internal flash memory features an asymmetrical block architecture.

The internal flash memory has an array of 71 blocks, and is divided into
4M bit banks. There are 7 banks each containing 8 main blocks of 32K
words, and one parameter bank containing 8 parameter blocks of 4K
words and 7 main blocks of 32K words.

The multiple bank architecture allows dual operations. While program-
ming or erasing in one bank, read operations are possible in other banks.
Only one bank at a time is allowed to be in program or erase mode. It is
possible to perform burst reads that cross bank boundaries. The bank
architectures are summarized in Table 6-3.

VDDFLASH Supply voltage for input/output buffers Input

VPP Global program/erase protect Input

VSS Ground

Table 6-3. Internal Flash Memory Bank Architecture

Number Bank Size Parameter Blocks Main Blocks

Parameter bank 4M bit 8 blocks of 4K word 7 blocks of 32K word

Bank 1 4M bit - 8 blocks of 32K word

Bank 2 4M bit - 8 blocks of 32K word

Bank 3 4M bit - 8 blocks of 32K word

Bank 4 4M bit - 8 blocks of 32K word

Bank 5 4M bit - 8 blocks of 32K word

Bank 6 4M bit - 8 blocks of 32K word

Bank 7 4M bit - 8 blocks of 32K word

Table 6-2. Internal Flash Memory Signal Names (Cont’d)

Signal Name Function Direction

ADSP-BF50x Blackfin Processor Hardware Reference 6-5

Internal Flash Memory

Each block can be erased separately. Erase can be suspended to perform
program in any other block, and then resumed. Program can be suspended
to read data in any other block and then resumed. Each block can be pro-
grammed and erased over 100,000 cycles.

Program and erase commands are written to the command interface of the
memory. An internal program/erase controller manages the timings neces-
sary for program and erase operations. The end of a program or erase
operation can be detected and any error conditions identified in the status
register. The command set required to control the memory is consistent
with JEDEC standards.

The device supports synchronous burst read and asynchronous read from
all blocks of the memory array; at power-up the device is configured for
asynchronous read. In synchronous burst mode, data is output on each
clock cycle at frequencies of up to 50 MHz. The synchronous burst read
operation can be suspended and resumed.

The device features an automatic standby mode. When the bus is inactive
during asynchronous read operations, the device automatically switches to
the automatic standby mode. In this condition the power consumption is
reduced to the standby value IDD4 and the outputs are still driven.

The internal flash memory features an instant, individual block locking
scheme that allows any block to be locked or unlocked with no latency,
enabling instant code and data protection. All blocks have three levels of
protection. They can be locked and locked-down individually preventing
any accidental programming or erasure. There is additional hardware pro-
tection against program and erase. When VPP  VPPLK, all blocks are
protected against program or erase. All blocks are locked at power-up.

Command Interface to Internal Flash Memory

6-6 ADSP-BF50x Blackfin Processor Hardware Reference

The device includes a protection register to increase the protection of a
system’s design. The protection register is divided into two segments: a
64-bit segment containing a unique device number and a 128-bit segment
one-time-programmable (OTP) by the user. The user programmable
segment can be permanently protected. Figure 6-2 on page 6-18 shows the
protection register memory map.

Command Interface to Internal Flash
Memory

All bus write operations to the internal flash memory device are inter-
preted by the command interface. Commands consist of one or more
sequential bus write operations. An internal program/erase controller
manages all timings and verifies the correct execution of the program and
erase commands. The program/erase controller provides a status register
whose output may be read at any time to monitor the progress or the
result of the operation.

The command interface is reset to read mode when power is first applied
or when exiting from reset. Command sequences must be followed
exactly. Any invalid combination of commands is ignored.

Refer to Table 6-4 and “Command Interface State Tables” on page 6-68
for a summary of the command interface.

Table 6-4. Command Codes

Hex Code Command

0x01 Block Lock Confirm

0x03 Set Configuration Register Confirm

0x10 Alternative Program Setup

0x20 Block Erase Setup

0x2F Block Lock-Down Confirm

ADSP-BF50x Blackfin Processor Hardware Reference 6-7

Internal Flash Memory

Command Interface – Standard Commands
The following commands are the basic commands used to read, write to,
and configure the device. Refer to Table 6-5 on page 6-16 in conjunction
with the following descriptions in this section.

Read Array Command

The read array command returns the addressed bank to read array mode.
One bus write cycle is required to issue the read array command and
return the addressed bank to read array mode. Subsequent read operations
read the addressed location and output the data. A read array command
can be issued in one bank while programming or erasing in another bank.
However, if a read array command is issued to a bank currently executing
a program or erase operation the command is executed but the output
data is not guaranteed.

0x40 Program Setup

0x50 Clear Status Register

0x60 Block Lock Setup, Block Unlock Setup, Block Lock Down Setup and Set
Configuration Register Setup

0x70 Read Status Register

0x90 Read Electronic Signature

0x98 Read CFI Query

0xB0 Program/Erase Suspend

0xC0 Protection Register Program

0xD0 Program/Erase Resume, Block Erase Confirm or Block Unlock Confirm

0xFF Read Array

Table 6-4. Command Codes (Cont’d)

Hex Code Command

Command Interface to Internal Flash Memory

6-8 ADSP-BF50x Blackfin Processor Hardware Reference

Read Status Register Command

The status register indicates when a program or erase operation is com-
plete and the success or failure of operation itself. Issue a read status
register command to read the status register content. The read status regis-
ter command can be issued at any time, even during program or erase
operations.

The following read operations output the content of the status register of
the addressed bank. The status register is latched on the falling edge of E
or G signals, and can be read until E or G returns to logic high. Either E or
G must be toggled to update the latched data. See Table 6-7 on page 6-23
for the description of the status register bits. This mode supports asyn-
chronous or single synchronous reads only.

Read Electronic Signature Command

The read electronic signature command reads the manufacturer and device
codes, the block locking status, the protection register, and the configura-
tion register.

The read electronic signature command consists of one write cycle to an
address within one of the banks. A subsequent read operation in the same
bank outputs the manufacturer code, the device code, the protection sta-
tus of the blocks in the targeted bank, the protection register, or the
configuration register (see Table 6-9 on page 6-28).

Dual operations between the parameter bank and the electronic signature
locations are not allowed (see Table 6-14 on page 6-38).

If a read electronic signature command is issued in a bank that is execut-
ing a program or erase operation, the bank goes into read electronic
signature mode, subsequent bus read cycles output the electronic signature
data, and the program/erase controller continues to program or erase in
the background. This mode supports asynchronous or single synchronous
reads only; it does not support synchronous burst reads.

ADSP-BF50x Blackfin Processor Hardware Reference 6-9

Internal Flash Memory

Read CFI Query Command

The read CFI query command reads data from the common flash interface
(CFI). The read CFI query command consists of one bus write cycle to an
address within one of the banks. Once the command is issued subsequent
bus read operations in the same bank read from the common flash
interface.

If a read CFI query command is issued in a bank that is executing a pro-
gram or erase operation, the bank goes into read CFI query mode,
subsequent bus read cycles output the CFI data, and the program/erase
controller continues to program or erase in the background. This mode
supports asynchronous or single synchronous reads only; it does not sup-
port page mode or synchronous burst reads.

The status of the other banks is not affected by the command (see
Table 6-12 on page 6-37). After issuing a read CFI query command, a
read array command should be issued to the addressed bank to return the
bank to read array mode.

Dual operations between the parameter bank and the CFI internal flash
memory space are not allowed (see Table 6-14 on page 6-38 for details).

See “Common Flash Interface” on page 6-45 for details on the informa-
tion contained in the common flash interface memory area.

Clear Status Register Command

The clear status register command resets (set to ‘0’) error bits SR1, SR3, SR4
and SR5 in the status register. One bus write cycle is required to issue the
clear status register command. The clear status register command does not
change the read mode of the bank.

The error bits in the status register do not automatically return to ‘0’ when
a new command is issued. The error bits in the status register should be
cleared before attempting a new program or erase command.

Command Interface to Internal Flash Memory

6-10 ADSP-BF50x Blackfin Processor Hardware Reference

Block Erase Command

The block erase command erases a block. It sets all the bits within the
selected block to ‘1’. All previous data in the block is lost. If the block is
protected then the erase operation aborts, the data in the block does not
change, and the status register outputs the error. The block erase com-
mand can be issued at any moment, regardless of whether the block has
been programmed or not.

Two bus write cycles are required to issue the command:

• The first bus cycle sets up the erase command

• The second latches the block address in the program/erase control-
ler and starts it

If the second bus cycle is not write erase confirm (0xD0), status register
bits SR4 and SR5 are set and the command aborts. Erase aborts if reset is
asserted (RP driven low). As data integrity cannot be guaranteed when the
erase operation is aborted, the block must be erased again.

Once the command is issued, the device outputs the status register data
when any address within the bank is read. At the end of the operation the
bank remains in read status register mode until a read array, read CFI
query, or read electronic signature command is issued.

During erase operations the bank containing the block being erased only
accepts the read array, read status register, read electronic signature, read
CFI query and the program/erase suspend commands; all other commands
are ignored. Refer to “Dual Operations and Multiple Bank Architecture”
on page 6-36 for detailed information about simultaneous operations
allowed in banks not being erased. Typical erase times are given in the
ADSP-BF504, ADSP-BF504F, ADSP-BF506F Embedded Processor Data
Sheet.

See Figure 6-7 on page 6-60 and Listing 6-3 on page 6-61 for a suggested
flowchart and pseudo code for using the block erase command.

ADSP-BF50x Blackfin Processor Hardware Reference 6-11

Internal Flash Memory

Program Command

The internal flash memory device array can be programmed word-by-
word. Only one word in one bank can be programmed at any one time. If
the block is protected, the program operation aborts, the data in the block
does not change, and the status register outputs the error.

Two bus write cycles are required to issue the program command:

• The first bus cycle sets up the program command

• The second latches the address and the data to be written and starts
the program/erase controller

After programming has started, read operations in the bank being pro-
grammed output the status register content.

During program operations the bank being programmed only accepts the
read array, read status register, read electronic signature, read CFI query
and the program/erase suspend commands. Refer to “Dual Operations
and Multiple Bank Architecture” on page 6-36 for detailed information
about simultaneous operations allowed in banks not being programmed.
Typical program times are given in the ADSP-BF504, ADSP-BF504F,
ADSP-BF506F Embedded Processor Data Sheet.

Programming aborts if reset is asserted (RP driven low). As data integrity
cannot be guaranteed when the program operation is aborted, the internal
flash memory device location must be reprogrammed.

See Figure 6-5 on page 6-56 and Listing 6-1 on page 6-57 for a flowchart
and pseudo code for using the program command.

Program/Erase Suspend Command

The program/erase suspend command pauses a program or block erase
operation.

Command Interface to Internal Flash Memory

6-12 ADSP-BF50x Blackfin Processor Hardware Reference

One bus write cycle is required to issue the program/erase suspend com-
mand. Once the program/erase controller has paused bits SR7, SR6 and/or
SR2 of the status register are set to ‘1’. The command can be addressed to
any bank.

During program/erase suspend the command interface accepts the pro-
gram/erase resume, read array (cannot read the erase-suspended block or
the program-suspended word), read status register, read electronic signa-
ture, clear status register, and read CFI query commands. In addition, if
the suspended operation is erase then the set configuration register, pro-
gram, block lock, block lock-down or block unlock commands are also
accepted. The block being erased may be protected by issuing the block
lock, or block lock-down commands. Only the blocks not being erased
may be read or programmed correctly. When the program/erase resume
command is issued the operation completes. Refer to “Dual Operations
and Multiple Bank Architecture” on page 6-36 for detailed information
about simultaneous operations allowed during program/erase suspend.

During a program/erase suspend, the device is placed in standby mode by
taking chip enable (E) to logic high. Program/erase is aborted if reset is
asserted (RP driven low).

See Figure 6-6 on page 6-58, Listing 6-2 on page 6-59, Figure 6-8 on
page 6-62, and Listing 6-4 on page 6-63 for flowcharts that illustrate
usage of the program/erase suspend command.

Program/Erase Resume Command

The program/erase resume command restarts the program/erase controller
after a program/erase suspend command has paused it. One bus write
cycle is required to issue the command. The command can be written to
any address.

ADSP-BF50x Blackfin Processor Hardware Reference 6-13

Internal Flash Memory

The program/erase resume command does not change the read mode of
the banks. If the suspended bank is in read status register, read electronic
signature or read CFI query mode the bank remains in that mode and
outputs the corresponding data. If the bank is in read array mode, subse-
quent read operations output invalid data.

If a program command is issued during a block erase suspend, the erase
cannot be resumed until the programming operation has completed. It is
possible to accumulate suspend operations. For example, it is possible to
suspend an erase operation, start a programming operation, suspend the
programming operation, and then read the array. See Figure 6-6 on
page 6-58, Listing 6-2 on page 6-59, Figure 6-8 on page 6-62, and
Listing 6-4 on page 6-63 for flowcharts that illustrate usage of the pro-
gram/erase suspend command.

Protection Register Program Command

The protection register program command programs the 128-bit user
OTP segment of the protection register and the protection register lock.
The segment is programmed 16 bits at a time. When shipped, all bits in
the segment are set to ‘1’. The user can only program the bits to ‘0’.

Two write cycles are required to issue the protection register program
command:

• The first bus cycle sets up the protection register program
command.

• The second latches the address and the data to be written to the
protection register and starts the program/erase controller.

Read operations output the status register content after the programming
has started.

The segment can be protected by programming bit 1 of the protection
lock register (see Figure 6-2 on page 6-18). Attempting to program a pre-
viously protected protection register results in a status register error. The

Command Interface to Internal Flash Memory

6-14 ADSP-BF50x Blackfin Processor Hardware Reference

protection of the protection register is not reversible. The protection regis-
ter program cannot be suspended. Dual operations between the parameter
bank and the protection register internal flash memory space are not
allowed (see Table 6-14 on page 6-38).

The Set Configuration Register Command

The set configuration register command writes a new value to the configu-
ration register, which defines the burst length, type, X latency,
synchronous/asynchronous read mode, and the valid clock edge
configuration.

Two bus write cycles are required to issue the set configuration register
command:

• The first cycle writes the setup command and the address corre-
sponding to the configuration register content.

• The second cycle writes the configuration register data and the
confirm command.

Read operations output the internal flash memory device array content
after the set configuration register command is issued.

The value for the configuration register is always presented on A0-A15. CR0
is on A0, CR1 on A1, and so on; the other address bits are ignored.

Block Lock Command

The block lock command locks a block and prevents program or erase
operations from changing the data in it. All blocks are locked at power-up
or reset.

Two bus write cycles are required to issue the block lock command:

• The first bus cycle sets up the block lock command.

• The second bus write cycle latches the block address.

ADSP-BF50x Blackfin Processor Hardware Reference 6-15

Internal Flash Memory

The lock status can be monitored for each block using the read electronic
signature command. Table 16 shows the lock status after issuing a block
lock command.

The block lock bits are volatile; once set they remain set until a hardware
reset or power-down/power-up. They are cleared by a block unlock com-
mand. Refer to “Block Locking” on page 6-38 for a detailed explanation.
See Figure 6-9 on page 6-64 for a flowchart for using the lock command.

Block Unlock Command

The block unlock command unlocks a block, allowing the block to be pro-
grammed or erased. Two bus write cycles are required to issue the block
unlock command:

• The first bus cycle sets up the block unlock command.

• The second bus write cycle latches the block address.

The lock status can be monitored for each block using the read electronic
signature command. Table 16 shows the protection status after issuing a
block unlock command. Refer to “Block Locking” on page 6-38 for a
detailed explanation, and Figure 6-9 on page 6-64 and Listing 6-5 on
page 6-64 for a flowchart and pseudo code for using the unlock command.

Block Lock-Down Command

A locked or unlocked block can be locked down by issuing the block lock-
down command. A locked-down block cannot be programmed or erased,
or have its protection status changed when WP is low, which is always the
case in ADSP-BF50xF processors. Refer to Table 6-1 on page 6-2
(EBIU/Internal Flash Memory Internal Pin Connections).

Command Interface to Internal Flash Memory

6-16 ADSP-BF50x Blackfin Processor Hardware Reference

Two bus write cycles are required to issue the block lock-down command:

• The first bus cycle sets up the block lock command.

• The second bus write cycle latches the block address.

The lock status can be monitored for each block using the read electronic
signature command. Locked-down blocks revert to the locked (and not
locked-down) state when the device is reset on power-down. Table 6-15
on page 6-41 shows the lock status after issuing a block lock-down com-
mand. Refer to “Block Locking” on page 6-38 for a detailed explanation,
and Figure 6-9 on page 6-64 and Listing 6-5 on page 6-64 for a flowchart
and pseudo code for using the lock-down command.

Table 6-5. Standard Commands

Commands Cycles Bus Operations1

1st Cycle 2nd Cycle

Op. Add Data Op. Add Data

Read Array 1+ Write BKA 0xFF Read WA RD

Read Status Register 1+ Write BKA 0x70 Read BKA2 SRD

Read Electronic Signature 1+ Write BKA 0x90 Read BKA2 ESD

Read CFI Query 1+ Write BKA 0x98 Read BKA2 QD

Clear Status Register 1 Write X 0x50

Block Erase 2 Write BKA or

BA3
0x20 Write BA 0xD0

Program 2 Write BKA or

WA3
0x40or
0x10

Write WA PD

Program/Erase Suspend 1 Write X 0xB0

Program/Erase Resume 1 Write X 0xD0

Protection Register Program 2 Write PRA 0xC0 Write PRA PRD

Set Configuration Register 2 Write CRD 0x60 Write CRD 0x03

ADSP-BF50x Blackfin Processor Hardware Reference 6-17

Internal Flash Memory

Block Lock 2 Write BKA or

BA3
0x60 Write BA 0x01

Block Unlock 2 Write BKA or

BA3
0x60 Write BA 0xD0

Block Lock-Down 2 Write BKA or

BA3
0x60 Write BA 0x2F

1 X = ‘don't care’, WA = Word Address in targeted bank, RD = Read Data, SRD = Status Register
Data, ESD = Electronic Signature Data, QD = Query Data, BA = Block Address, BKA = Bank
Address, PD = Program Data, PRA = Protection Register Address, PRD = Protection Register Da-
ta, CRD = Configuration Register Data.

2 Must be same bank as in the first cycle. The signature addresses are listed in Table 6-6.
3 Any address within the bank can be used.

Table 6-6. Electronic Signature Codes

Code Address (h) Data (h)

Manufacturer Code Bank address + 00 0020

Device Code Top Bank address + 01 8866

Block Protection Locked Block address + 02 0001

Unlocked 0000

Locked and locked-
down

0003

Unlocked and locked-
down

0002

Reserved Bank address + 03 Reserved

Configuration Register Bank address + 05 CR1

Table 6-5. Standard Commands (Cont’d)

Commands Cycles Bus Operations1

1st Cycle 2nd Cycle

Op. Add Data Op. Add Data

Command Interface to Internal Flash Memory

6-18 ADSP-BF50x Blackfin Processor Hardware Reference

Status Register
The status register provides information on the current or previous pro-
gram or erase operations. Issue a read status register command to read the
contents of the status register (refer to “Read Status Register Command”
on page 6-8 for more details). To output the contents, the status register is
latched and updated on the falling edge of the chip enable or output
enable signals and can be read until chip enable or output enable are

Protection Register
Lock

Factory default Bank address + 80 0002

OTP area perma-
nently locked

0000

Protection Register Bank address + 81
Bank address + 84

Unique device number

Bank address + 85
Bank address + 8C

OTP Area

1 CR = Configuration Register

Figure 6-2. Protection Register Internal Flash Memory Map

Table 6-6. Electronic Signature Codes (Cont’d)

Code Address (h) Data (h)

PROTECTION REGISTER LOCK

USER PROGRAMMABLE OTP

UNIQUE DEVICE NUMBER

PROTECTION REGISTER

1 0

0x8C

0x85

0x81

0x84

0x80

ADSP-BF50x Blackfin Processor Hardware Reference 6-19

Internal Flash Memory

deasserted. The status register can only be read using single asynchronous
or single synchronous reads. Bus read operations from any address within
the bank always read the status register during program and erase opera-
tions, as long as no read array command has been issued.

The various bits convey information about the status and any errors of the
operation. Bits SR7, SR6, SR2 and SR0 provide information on the status of
the device and are set and reset by the device. Bits SR5, SR4, SR3 and SR1

provide information on errors. They are set by the device but must be
reset by issuing a clear status register command or a hardware reset. If an
error bit is set to ‘1’ the status register should be reset before issuing
another command. SR7 to SR1 refer to the status of the device while SR0

refers to the status of the addressed bank.

The bits in the status register are summarized in Table 6-7 on page 6-23.
Refer to Table 6-7 in conjunction with the descriptions in the following
sections.

Program/Erase Controller Status Bit (SR7)

The program/erase controller status bit indicates whether the pro-
gram/erase controller is active or inactive in any bank. When the
program/erase controller status bit is low (set to ‘0’), the program/erase
controller is active; when the bit is high (set to ‘1’), the program/erase
controller is inactive, and the device is ready to process a new command.

The program/erase controller status is low immediately after a pro-
gram/erase suspend command is issued until the program/erase controller
pauses. After the program/erase controller pauses the bit is high.

During program and erase operations the program/erase controller status
bit can be polled to find the end of the operation. Other bits in the status
register should not be tested until the program/erase controller completes
the operation and the bit is high.

Command Interface to Internal Flash Memory

6-20 ADSP-BF50x Blackfin Processor Hardware Reference

After the program/erase controller completes its operation the erase status,
program status, VPP status and block lock status bits should be tested for
errors.

Erase Suspend Status Bit (SR6)

The erase suspend status bit indicates that an erase operation has been sus-
pended or is going to be suspended in the addressed block. When the erase
suspend status bit is high (set to ‘1’), a program/erase suspend command
has been issued and the internal flash memory is waiting for a pro-
gram/erase resume command.

The erase suspend status should only be considered valid when the pro-
gram/erase controller status bit is high (program/erase controller inactive).
SR7 is set within the erase suspend latency time of the program/erase
suspend command being issued, therefore, the internal flash memory may
still complete the operation rather than entering the suspend mode.

When a program/erase resume command is issued the erase suspend status
bit returns low.

Erase Status Bit (SR5)

The erase status bit identifies if the internal flash memory has failed to
verify that the block has erased correctly. When the erase status bit is high
(set to ‘1’), the program/erase controller has applied the maximum num-
ber of pulses to the block and still failed to verify that it has erased
correctly. The erase status bit should be read once the program/erase con-
troller status bit is high (program/erase controller inactive).

Once set high, the erase status bit can only be reset low by a clear status
register command or a hardware reset. If set high it should be reset before
a new program or erase command is issued, otherwise the new command
appears to fail.

ADSP-BF50x Blackfin Processor Hardware Reference 6-21

Internal Flash Memory

Program Status Bit (SR4)

The program status bit identifies a program failure.

When the program status bit is high (set to ‘1’), the program/erase con-
troller has applied the maximum number of pulses to the byte and still
failed to verify that it has programmed correctly.

The program status bit should be read once the program/erase controller
status bit is high (program/erase controller inactive).

Once set high, the program status bit can only be reset low by a clear sta-
tus register command or a hardware reset. If set high it should be reset
before a new command is issued, otherwise the new command appears to
fail.

VPP Status Bit (SR3)

The VPP status bit identifies an invalid voltage on the VPP pin during pro-
gram and erase operations. The VPP pin is only sampled at the beginning
of a program or erase operation. Indeterminate results can occur if VPP
becomes invalid during an operation.

When the VPP status bit is low (set to ‘0’), the voltage on the VPP pin was
sampled at a valid voltage. When the VPP status bit is high (set to ‘1’), the
VPP pin has a voltage that is below the VPP lockout voltage, VPPLK, the
internal flash memory is protected and program and erase operations can-
not be performed.

Once set high, the VPP status bit can only be reset low by a clear status reg-
ister command or a hardware reset. If set high it should be reset before a
new program or erase command is issued, otherwise the new command
appears to fail.

Command Interface to Internal Flash Memory

6-22 ADSP-BF50x Blackfin Processor Hardware Reference

Program Suspend Status Bit (SR2)

The program suspend status bit indicates that a program operation has
been suspended in the addressed block. When the program suspend status
bit is high (set to ‘1’), a program/erase suspend command has been issued
and the internal flash memory is waiting for a program/erase resume com-
mand. The program suspend status should only be considered valid when
the program/erase controller status bit is high (program/erase controller
inactive). SR2 is set within the program suspend latency time of the pro-
gram/erase suspend command being issued, therefore, the internal flash
memory may still complete the operation rather than entering the suspend
mode.

When a program/erase resume command is issued, the program suspend
status bit returns low.

Block Protection Status Bit (SR1)

The block protection status bit can be used to identify if a program or
block erase operation has tried to modify the contents of a locked or
locked-down block.

When the block protection status bit is high (set to ‘1’), a program or erase
operation has been attempted on a locked or locked-down block.

Once set high, the block protection status bit can only be reset low by a
clear status register command or a hardware reset. If set high it should be
reset before a new command is issued, otherwise the new command
appears to fail.

Bank Write Status Bit (SR0)

The bank write status bit indicates whether the addressed bank is pro-
gramming or erasing. The bank write status bit should only be considered
valid when the program/erase controller status SR7 is low (set to ‘0’).

ADSP-BF50x Blackfin Processor Hardware Reference 6-23

Internal Flash Memory

When both the program/erase controller status bit and the bank write sta-
tus bit are low (set to ‘0’), the addressed bank is executing a program or
erase operation. When the program/erase controller status bit is low (set to
‘0’) and the bank write status bit is high (set to ‘1’), a program or erase
operation is being executed in a bank other than the one being addressed.

Refer to “Flowcharts and Pseudo Codes” on page 6-56 for status register
usage.

Table 6-7. Status Register Bits

Bit Name Type Logic

level1
Definition

SR7 P/EC status Status '1' Ready

'0' Busy

SR6 Erase suspend
status

Status '1' Erase suspended

'0' Erase in progress or completed

SR5 Erase status Error '1' Erase error

'0' Erase success

SR4 Program status Error '1' Program error

'0' Program success

SR3 VPP status Error '1' VPP invalid, abort

'0' VPP OK

SR2 Program suspend
status

Status '1' Program suspended

'0' Program in progress or completed

SR1 Block protection
status

Error '1' Program/erase on protected block, abort

'0' No operation to protected blocks

Command Interface to Internal Flash Memory

6-24 ADSP-BF50x Blackfin Processor Hardware Reference

Configuration Register
The configuration register configures the type of bus access that the inter-
nal flash memory performs. Refer to “Read Modes” on page 6-33 for
details on read operations.

The configuration register is set through the command interface. After a
reset or power-up the device is configured for asynchronous page read
(CR15 = 1). The configuration register bits are described in Table 6-9 on
page 6-28. They specify the selection of the burst length, burst type, burst
X latency, and the read operation.

Since the internal flash device in ADSP-BF50xF processors can only be
connected to the external bus interface unit (EBIU), some combinations
of the flash configurations are not supported. Limitation on supported
combinations are described in the section “Supported Configuration Reg-
ister Combinations in ADSP-BF50xF Processors” on page 6-84.

Read Select Bit (CR15)

The read select bit, CR15, switches between asynchronous and synchronous
bus read operations. When the read select bit is set to ‘1’, read operations

SR0 Bank write status Status '1' SR7 = ‘1’ Not allowed

SR7 = ‘0’ Program or erase operation in a bank
other than the addressed bank

'0' SR7 = ‘1’ No program or erase operation in the
device

SR7 = ‘0’ Program or erase operation in
addressed bank

1 Logic level '1' is High, '0' is Low.

Table 6-7. Status Register Bits (Cont’d)

Bit Name Type Logic

level1
Definition

ADSP-BF50x Blackfin Processor Hardware Reference 6-25

Internal Flash Memory

are asynchronous; when the read select bit is set to ‘0’, read operations are
synchronous. Synchronous burst read is supported in both parameter and
main blocks and can be performed across banks.

On reset or power-up the read select bit is set to ‘1’ for asynchronous
access.

X Latency Bits (CR13-CR11)

The X latency bits are used during synchronous read operations to set the
number of clock cycles between the address being latched and the first
data becoming available. For correct operation the X latency bits can only
assume the values in Table 6-9 on page 6-28.

Table 6-8 shows how to set the X latency parameter, taking into account
the frequency used to read the internal flash memory in synchronous
mode.

Wait Polarity Bit (CR10)

In synchronous burst mode, the WAIT signal indicates whether the output
data are valid or a wait state must be inserted. The wait polarity bit is used
to set the polarity of the WAIT signal. When the wait polarity bit is set to
‘0’ the WAIT signal is active low. When the wait polarity bit is set to ‘1’ the
WAIT signal is active high.

Table 6-8. Latency Settings

fKmax tKmin X latency min

30 MHz 33 ns 2

40 MHz 25 ns 3

50 MHz 19 ns 4

Command Interface to Internal Flash Memory

6-26 ADSP-BF50x Blackfin Processor Hardware Reference

Data Output Configuration Bit (CR9)

The data output configuration bit determines whether the output remains
valid for one or two clock cycles. When the data output configuration bit
is ‘0’ the output data is valid for one clock cycle. When the data output
configuration bit is ‘1’ the output data is valid for two clock cycles.

The data output configuration depends on the condition:

where tK is the clock period, tQVK_CPU is the data setup time required by
the system that is accessing the flash (for example, the processor) and tKQV
is the clock to data valid time. If this condition is not satisfied, the data
output configuration bit should be set to ‘1’ (two clock cycles). Refer to
Figure 6-3.

Figure 6-3. X Latency and Data Output Configuration Example

tK tKQV tQVK_CPU+

1st CYCLE 2nd CYCLE 3rd CYCLE 4th CYCLE

K

A20-A0

L

E

VALID ADDRESS

VALID DATA

X LATENCY

t
QVK_CPU

t
K

t
KQV

VALID DATA

Note: The settings shown are X latency = 4, data output held for one clock cycle.

D15-D0

ADSP-BF50x Blackfin Processor Hardware Reference 6-27

Internal Flash Memory

Wait Configuration Bit (CR8)

In burst mode, the wait bit controls the timing of the wait output pin,
WAIT. When WAIT is asserted, data is not valid and when WAIT is deasserted,
data is valid. When the wait bit is ‘0’ the wait output pin is asserted during
the wait state. When the wait bit is ‘1’ the wait output pin is asserted one
clock cycle before the wait state.

Burst Type Bit (CR7)

The burst type bit configures the sequence of addresses read as sequential
or interleaved. When the burst type bit is ‘0’ the internal flash memory
outputs from interleaved addresses. When the burst type bit is ‘1’ the
internal flash memory outputs from sequential addresses. See Table 6-10
on page 6-30 and Table 6-11 on page 6-32 for the sequence of addresses
output from a given starting address in each mode.

Valid Clock Edge Bit (CR6)

The valid clock edge bit, CR6, configures the active edge of the clock, K,
during synchronous burst read operations. When the valid clock edge bit
is ‘0’ the falling edge of the clock is the active edge. When the valid clock
edge bit is ‘1’ the rising edge of the clock is active.

Wrap Burst Bit (CR3)

The burst reads can be confined inside the 4 or 8-word boundary (wrap)
or overcome the boundary (no wrap). The wrap burst bit selects between
wrap and no wrap. When the wrap burst bit is set to ‘0’ the burst read
wraps; when it is set to ‘1’ the burst read does not wrap.

Burst Length Bits (CR2-CR0)

The burst length bits set the number of words to be output during a syn-
chronous burst read operation as result of a single address latch cycle.

Command Interface to Internal Flash Memory

6-28 ADSP-BF50x Blackfin Processor Hardware Reference

They can be set for 4 words, 8 words, 16 words or continuous burst,
where all the words are read sequentially.

In continuous burst mode the burst sequence can cross bank boundaries.

In continuous burst mode or in 4, 8, 16 words no-wrap, depending on the
starting address, the device asserts the WAIT output to indicate that a delay
is necessary before the data is output.

If the starting address is aligned to a 4 word boundary no wait states are
needed and the WAIT output is not asserted.

If the starting address is shifted by 1, 2 or 3 positions from the 4-word
boundary, WAIT is asserted for 1, 2 or 3 clock cycles when the burst
sequence crosses the first 16 word boundary to indicate that the device
needs an internal delay to read the successive words in the array. WAIT is
asserted only once during a continuous burst access. See also Table 6-10
on page 6-30 and Table 6-11 on page 6-32.

CR14, CR5 and CR4 are reserved for future use.

Table 6-9. Configuration Register Bits

Bit Description Value Description

CR15 Read Select 0 Synchronous read

1 Asynchronous read (default at power-on)

CR14 Reserved

CR13-CR11 X Latency 010 2 clock latency

011 3 clock latency

100 4 clock latency

101 5 clock latency

111 Reserved (default)

Other configurations reserved

ADSP-BF50x Blackfin Processor Hardware Reference 6-29

Internal Flash Memory

CR10 Wait Polarity 0 WAIT is active low

1 WAIT is active high (default)

CR9 Data Output Configura-
tion

0 Data held for one clock cycle

1 Data held for two clock cycles (default)

CR8 Wait Configuration 0 WAIT is active during wait state

1 WAIT is active one data cycle before wait
state (default)

CR7 Burst Type 0 Interleaved

1 Sequential (default)

CR6 Valid Clock Edge 0 Falling clock edge

1 Rising clock edge (default)

CR5-CR4 Reserved

CR3 Wrap Burst 0 Wrap

1 No wrap (default)

CR2-CR0 Burst Length 001 4 words

010 8 words

011 16 words

111 Continuous (CR7 must be set to ‘1’)
(default)

Table 6-9. Configuration Register Bits (Cont’d)

Bit Description Value Description

Command Interface to Internal Flash Memory

6-30 ADSP-BF50x Blackfin Processor Hardware Reference

Figure 6-4. Wait Configuration Example

Table 6-10. Burst Type Definition (Wrap Mode)

Start
Add

4 Words 8 Words 16 Words Continuous
Burst

Sequential Interleaved Sequential Interleaved Sequential Interleaved

0 0-1-2-3 0-1-2-3 0-1-2-3-
4-5-6-7

0-1-2-3-4-
5-6-7

0-1-2-3-4-
5-6-7-8-9-
10-11-12-
13-14-15

0-1-2-3-4-
5-6-7-8-9-
10-11-12-
13-14-15

0-1-2-3-4-5-6...

1 1-2-3-0 1-0-3-2 1-2-3-4-
5-6-7-0

1-0-3-2-5-
4-7-6

1-2-3-4-5-
6-7-8-9-
10-11-12-
13-14-15-0

1-0-3-2-5-
4-7-6-9-8-
11-10-13-
12-15-14

1-2-3-4-5-6-7-
...15-WAIT-16-
17-18...

2 2-3-0-1 2-3-0-1 2-3-4-5-
6-7-0-1

2-3-0-1-6-
7-4-5

2-3-4-5-6-
7-8-9-10-
11-12-13-
14-15-0-1

2-3-0-1-6-
7-4-5-10-
11-8-9-14-
15-12-13

2-3-4-5-6-
7...15-WAIT-
WAIT-16-17-
18...

K

A20-A0

L

E

VALID ADDRESS

VALID DATA VALID DATAD15-D0 NOT VALID VALID DATA

WAIT
CR8 = 0

CR10 = 0

WAIT
CR8 = 1

CR10 = 0

WAIT
CR8 = 0

CR10 = 1

WAIT
CR8 = 1

CR10 = 1

ADSP-BF50x Blackfin Processor Hardware Reference 6-31

Internal Flash Memory

3 3-0-1-2 3-2-1-0 3-4-5-6-
7-0-1-2

3-2-1-0-7-
6-5-4

3-4-5-6-7-
8-9-10-11-
12-13-14-
15-0-1-2

3-2-1-0-7-
6-5-4-11-
10-9-8-15-
14-13-12

3-4-5-6-7...15-
WAIT-WAIT-
WAIT-16-17-
18...

...

7 7-4-5-6 7-6-5-4 7-0-1-2-
3-4-5-6

7-6-5-4-3-
2-1-0

7-8-9-10-
11-12-13-
14-15-0-1-
2-3-4-5-6

7-6-5-4-3-
2-1-0-15-
14-13-12-
11-10-9-8

7-8-9-10-11-
12-13-14-15-
WAIT-WAIT-
WAIT-16-17...

...

12 12-13-14-15-
16-17-18...

13 13-14-15-
WAIT-16-17-
18...

14 14-15-WAIT-
WAIT-16-17-
18....

15 15-WAIT-
WAIT-WAIT-
16-17-18...

Table 6-10. Burst Type Definition (Wrap Mode) (Cont’d)

Start
Add

4 Words 8 Words 16 Words Continuous
Burst

Sequential Interleaved Sequential Interleaved Sequential Interleaved

Command Interface to Internal Flash Memory

6-32 ADSP-BF50x Blackfin Processor Hardware Reference

Table 6-11. Burst Type Definition (No-Wrap Mode)

Start
Add

4 Words 8 Words 16 Words Continuous Burst

Sequential Sequential Sequential

0 0-1-2-3 0-1-2-3-4-5-6-7 0-1-2-3-4-5-6-7-8-9-10-
11-12-13-14-15

Same as for Wrap
(Wrap/No Wrap
has no effect on
Continuous Burst)1 1-2-3-4 1-2-3-4-5-6-7-8 1-2-3-4-5-6-7-8-9-10-

11-12-13-14-15-WAIT-
16

2 2-3-4-5 2-3-4-5-6-7-8-9... 2-3-4-5-6-7-8-9-10-11-
12-13-14-15-WAIT-
WAIT-16-17

3 3-4-5-6 3-4-5-6-7-8-9-10 3-4-5-6-7-8-9-10-11-12-
13-14-15-WAITWAIT-
WAIT-16-17-18

...

7 7-8-9-10 7-8-9-10-11-12-13-14 7-8-9-10-11-12-13-14-
15-WAIT-WAIT-WAIT-
16-17-18-19-20-21-22

...

12 12-13-14-15 12-13-14-15-16-17-
18-19

12-13-14-15-16-17-18-
19-20-21-22-23-24-25-
26-27

13 13-14-15-WAIT-
16

13-14-15-WAIT-16-
17-18-19-20

13-14-15-WAIT-16-17-
18-19-20-21-22-23-24-
25-26-27-28

14 14-15-WAIT-
WAIT-16-17

14-15-WAITWAIT-
16-17-18-19-20-21

14-15-WAIT-WAIT-16-
17-18-19-20-21-22-23-
24-25-26-27-28-29

15 15-WAIT-WAIT-
WAIT-16-17-18

15-WAIT-WAIT-
WAIT-16-17-18-19-
20-21-22

15-WAIT-WAIT-WAIT-
16-17-18-19-20-21-22-
23-24-25-26-27-28-29-
30

ADSP-BF50x Blackfin Processor Hardware Reference 6-33

Internal Flash Memory

Read Modes
Read operations can be performed in two different ways depending on the
settings in the configuration register. If the clock signal is ‘don’t care’ for
the data output, the read operation is asynchronous. If the data output is
synchronized with clock, the read operation is synchronous.

The read mode and data output format are determined by the configura-
tion register (see “Configuration Register” on page 6-24 for details). All
banks support both asynchronous and synchronous read operations. The
multiple bank architecture allows read operations in one bank, while write
operations are being executed in another (see Table 6-12 on page 6-37
and Table 6-13 on page 6-37).

Asynchronous Read Mode

In asynchronous read operations the clock signal is ‘don’t care’. The
device outputs the data corresponding to the address latched, that is the
internal flash memory array, status register, common flash interface or
electronic signature, depending on the command issued. CR15 in the con-
figuration register must be set to ‘1’ for asynchronous operations.

During asynchronous read operations, after a bus inactivity of 150 ns, the
device automatically switches to automatic standby mode. In this condi-
tion the power consumption is reduced to the standby value and the
outputs are still driven.

In asynchronous read mode, the WAIT signal is always asserted.

Synchronous Burst Read Mode

In synchronous burst read mode the data is output in bursts synchronized
with the clock. It is possible to perform burst reads across bank
boundaries.

Command Interface to Internal Flash Memory

6-34 ADSP-BF50x Blackfin Processor Hardware Reference

Synchronous burst read mode can only be used to read the internal flash
memory array. For other read operations, such as read status register, read
CFI, and read electronic signature, single synchronous read or asynchro-
nous random access read must be used.

In synchronous burst read mode the flow of the data output depends on
parameters that are configured in the configuration register.

A burst sequence is started at the first clock edge (rising or falling depend-
ing on valid clock edge bit CR6 in the configuration register) after the
falling edge of latch enable or chip enable, whichever occurs last.
Addresses are internally incremented and after a delay of 2 to 5 clock
cycles (X latency bits CR13-CR11) the corresponding data is output on each
clock cycle.

The number of words to be output during a synchronous burst read oper-
ation can be configured as 4, 8, 16 words, or continuous (burst length bits
CR2-CR0). The data can be configured to remain valid for one or two clock
cycles (data output configuration bit CR9).

The order of the data output can be modified through the burst type and
the wrap burst bits in the configuration register. The burst sequence may
be configured to be sequential or interleaved (CR7). The burst reads can be
confined inside the 4, 8 or 16 word boundary (wrap) or overcome the
boundary (no wrap). If the starting address is aligned to the burst length
(4, 8 or 16 words) the wrapped configuration has no impact on the output
sequence. Interleaved mode is not allowed in continuous burst read mode
or with no wrap sequences.

A WAIT signal may be asserted to indicate to the system that an output
delay occurs. This delay depends on the starting address of the burst
sequence. The worst case delay occurs when the sequence is crossing a 16-
word boundary and the starting address was at the end of a four word
boundary.

WAIT is asserted during X latency, the wait state, and at the end of 4-, 8- or
16-word burst. It is only deasserted when output data are valid. In

ADSP-BF50x Blackfin Processor Hardware Reference 6-35

Internal Flash Memory

continuous burst read mode a wait state occurs when crossing the first 16-
word boundary. If the burst starting address is aligned to a 4-word page,
the wait state does not occur.

The WAIT signal can be configured to be active low or active high by set-
ting CR10 in the configuration register. The WAIT signal is meaningful only
in synchronous burst read mode. In other modes, WAIT is always asserted
(except for read array mode).

Synchronous Burst Read Suspend

A synchronous burst read operation can be suspended, freeing the data bus
for other higher priority devices. It can be suspended during the initial
access latency time (before data is output), or after the device has output
data. When the synchronous burst read operation is suspended, internal
array sensing continues and any previously latched internal data is
retained. A burst sequence can be suspended and resumed as often as
required as long as the operating conditions of the device are met.

A synchronous burst read operation is suspended when E is low and the
current address has been latched (on a latch enable rising edge or on a
valid clock edge). The clock signal is then halted at VIH or at VIL, and G

goes high.

When G becomes low again and the clock signal restarts, the synchronous
burst read operation is resumed exactly where it stopped.

WAIT being gated by E remains active and does not revert to high-imped-
ance when G goes high. Therefore, if two or more devices are connected to
the system’s READY signal, to prevent bus contention the WAIT signal of the
internal flash memory should not be directly connected to the system’s
READY signal.

Command Interface to Internal Flash Memory

6-36 ADSP-BF50x Blackfin Processor Hardware Reference

Single Synchronous Read Mode

Single synchronous read operations are similar to synchronous burst read
operations except that only the first data output after the X latency is
valid. Synchronous single reads are used to read the electronic signature,
status register, CFI, block protection status, configuration register status
or protection register status. When the addressed bank is in read CFI, read
status register or read electronic signature mode, the WAIT signal is always
asserted.

Dual Operations and Multiple Bank Architecture
The multiple bank architecture of the internal flash device provides flexi-
bility for software developers by allowing code and data to be split with
4M bit granularity. The dual operations feature simplifies the software
management of the device and allows code to be executed from one bank
while another bank is being programmed or erased.

The dual operations feature means that while programming or erasing in
one bank, read operations are possible in another bank with zero latency
(only one bank at a time is allowed to be in program or erase mode). If a
read operation is required in a bank that is programming or erasing, the
program or erase operation can be suspended. Also, if the suspended oper-
ation is erase then a program command can be issued to another block.
This means the device can have one block in erase suspend mode, one pro-
gramming, and other banks in read mode. Bus read operations are allowed
in another bank between setup and confirm cycles of program or erase
operations. The combination of these features means that read operations
are possible at any moment.

Dual operations between the parameter bank and either the CFI, OTP, or
the electronic signature internal flash memory space are not allowed.
However, Table 6-14 on page 6-38 shows dual operations that are allowed
between the CFI, OTP, electronic signature locations, and the internal
flash memory array.

ADSP-BF50x Blackfin Processor Hardware Reference 6-37

Internal Flash Memory

Table 6-12 and Table 6-13 show the dual operations possible in other
banks and in the same bank. For a complete list of possible commands
refer to “Command Interface State Tables” on page 6-68.

Table 6-12. Dual Operations Allowed in Other Banks

Status of Bank Commands Allowed in Another Bank

Read
Array

Read
Status
Register

Read
CFI
Query

Read
Electronic
Signature

Program Block
Erase

Program/
Erase
Suspend

Program/
Erase
Resume

Idle Yes Yes Yes Yes Yes Yes Yes Yes

Programming Yes Yes Yes Yes – – Yes –

Erasing Yes Yes Yes Yes – – Yes –

Program suspended Yes Yes Yes Yes – – – Yes

Erase suspended Yes Yes Yes Yes Yes – – Yes

Table 6-13. Dual Operations Allowed in Same Bank

Status of Bank Commands Allowed in Same Bank

Read
Array

Read
Status
Register

Read
CFI
Query

Read
Electronic
Signature

Program Block
Erase

Program/
Erase
Suspend

Program/
Erase
Resume

Idle Yes Yes Yes Yes Yes Yes Yes Yes

Programming –1

1 The read array command is accepted but the data output is no guaranteed until the program or
erase has completed.

Yes Yes Yes – – Yes –

Erasing –1 Yes Yes Yes – – Yes –

Program suspended Yes2

2 Not allowed in the block or word that is being erased or programmed.

Yes Yes Yes – – – Yes

Erase suspended Yes2 Yes Yes Yes Yes2 – – Yes

Command Interface to Internal Flash Memory

6-38 ADSP-BF50x Blackfin Processor Hardware Reference

Block Locking
The flash device features an instant, individual block locking scheme that
enables any block to be locked or unlocked with no latency. This locking
scheme has three levels of protection.

• Lock/unlock – this first level allows software-only control of block
locking.

• Lock-down – this second level requires hardware interaction before
locking can be changed.

• VPP  VPPLK (for example, clearing the FLASH_UNPROTECT bit in the
FLASH_CONTROL register) – the third level offers a complete hard-
ware protection against program and erase on all blocks.

The protection status of each block can be set to locked, unlocked, and
lock-down. Table 6-15 on page 6-41 defines all of the possible protection
states (WP, D1, D0), and Figure 6-9 on page 6-64 shows a flowchart for the
locking operations.

Table 6-14. Dual Operation Limitations

Current Status Commands Allowed

Read CFI/OTP/
Electronic
Signature

Read
Parameter
Blocks

Read Main Blocks

Located in
Parameter Bank

Not located in
Parameter Bank

Programming/erasing
parameter blocks

No No No Yes

Programming/
erasing main
blocks

Located in
parameter bank

Yes No No Yes

Not located in
parameter bank

Yes Yes Yes In different
bank only

Programming OTP No No No No

ADSP-BF50x Blackfin Processor Hardware Reference 6-39

Internal Flash Memory

Reading a Block’s Lock Status

The lock status of every block can be read in the read electronic signature
mode of the device. To enter this mode write 0x90 to the device. Subse-
quent reads at the address specified in Table 6-6 on page 6-17 output the
protection status of that block. The lock status is represented by D0 and
D1. D0 indicates the block lock/unlock status and is set by the lock com-
mand and cleared by the unlock command. It is also automatically set
when entering lock-down. D1 indicates the lock-down status and is set by
the lock-down command. It cannot be cleared by software, only by a hard-
ware reset or power-down.

The following sections explain the operation of the locking system.

Locked State

The default status of all blocks on power-up or after a hardware reset is
locked (states (0,0,1) or (1,0,1)). Locked blocks are fully protected from
any program or erase. Any program or erase operations attempted on a
locked block returns an error in the status register. The status of a locked
block can be changed to unlocked or lock-down using the appropriate
software commands. An unlocked block can be locked by issuing the lock
command.

Unlocked State

Unlocked blocks (states (0,0,0), (1,0,0) (1,1,0)), can be programmed or
erased. All unlocked blocks return to the locked state after a hardware
reset or when the device is powered-down. The status of an unlocked
block can be changed to locked or locked-down using the appropriate
software commands. A locked block can be unlocked by issuing the
unlock command.

Command Interface to Internal Flash Memory

6-40 ADSP-BF50x Blackfin Processor Hardware Reference

Lock-Down State

Blocks that are locked-down (state (0,1,x)) are protected from program
and erase operations (as for locked blocks) but their protection status can-
not be changed using software commands alone. A locked or unlocked
block can be locked-down by issuing the lock-down command. Locked-
down blocks revert to the locked state when the device is reset or powered-
down.

The lock-down function is dependent on the WP input pin. When WP=0

(VIL), the blocks in the lock-down state (0,1,x) are protected from pro-
gram, erase and protection status changes. Device reset or power-down
resets all blocks, including those in lock-down, to the locked state.

Because the internal flash memory on the ADSP-BF50xF Blackfin proces-
sors has its WP signal connected to logic low, the lock-down function is
always enabled.

Locking Operations During Erase Suspend

Changes to block lock status can be performed during an erase suspend by
using the standard locking command sequences to unlock, lock or lock
down a block. This is useful in the case when another block needs to be
updated while an erase operation is in progress.

To change block locking during an erase operation, first write the erase
suspend command, then check the status register until it indicates that the
erase operation has been suspended. Next, write the desired lock com-
mand sequence to a block and the lock status changes. After completing
any desired lock, read, or program operations, resume the erase operation
with the erase resume command.

If a block is locked or locked down during an erase suspend of the same
block, the locking status bits change immediately. But when the erase is
resumed, the erase operation completes. Locking operations cannot be
performed during a program suspend.

ADSP-BF50x Blackfin Processor Hardware Reference 6-41

Internal Flash Memory

Refer to “Command Interface State Tables” on page 6-68 for detailed
information on which commands are valid during erase suspend.

Table 6-15. Lock Status

Current Protection Status1

(D1, D0)

1 The lock status is defined by the write protect pin and by D1 (‘1’ for a locked-down block) and
D0 (‘1’ for a locked block) as read in the read electronic signature command with A1 = VIH and
A0 = VIL.

Next Protection Status1

(D1, D0)

Current State Program/Erase
Allowed

After Block Lock
Command

After Block
Unlock
Command

After Block
Lock-Down
Command

0,0 yes 0,1 0,0 1,1

0,12

2 All blocks are locked at power-up, so the default configuration is 01.

no 0,1 0,0 1,1

1,1 no 1,1 1,1 1,1

Block Address Table

6-42 ADSP-BF50x Blackfin Processor Hardware Reference

Block Address Table
Table 6-16 lists the top boot block addresses

Table 6-16. Top Boot Block Addresses

Bank1 # Size
(K word)

Address Range

Parameter Bank 0 4 0x203FE000 - 0x203FFFFE

1 4 0x203FC000 - 0x203FDFFE

2 4 0x203FA000 - 0x203FBFFE

3 4 0x203F8000 - 0x203F9FFE

4 4 0x203F6000 - 0x203F7FFE

5 4 0x203F4000 - 0x203F5FFE

6 4 0x203F2000 - 0x203F3FFE

7 4 0x203F0000 - 0x203F1FFE

8 32 0x203E0000 - 0x203EFFFE

9 32 0x203D0000 - 0x203DFFFE

10 32 0x203C0000 - 0x203CFFFE

11 32 0x203B0000 - 0x203BFFFE

12 32 0x203A0000 - 0x203AFFFE

13 32 0x20390000 - 0x2039FFFE

14 32 0x20380000 - 0x2038FFFE

ADSP-BF50x Blackfin Processor Hardware Reference 6-43

Internal Flash Memory

Bank 1 15 32 0x20370000 - 0x2037FFFE

16 32 0x20360000 - 0x2036FFFE

17 32 0x20350000 - 0x2035FFFE

18 32 0x20340000 - 0x2034FFFE

19 32 0x20330000 - 0x2033FFFE

20 32 0x20320000 - 0x2032FFFE

21 32 0x20310000 - 0x2031FFFE

22 32 0x20300000 - 0x2030FFFE

Bank 2 23 32 0x202F0000 - 0x202FFFFE

24 32 0x202E0000 - 0x202EFFFE

25 32 0x202D0000 - 0x202DFFFE

26 32 0x202C0000 - 0x202CFFFE

27 32 0x202B0000 - 0x202BFFFE

28 32 0x202A0000 - 0x202AFFFE

29 32 0x20290000 - 0x2029FFFE

30 32 0x20280000 - 0x2028FFFE

Bank 3 31 32 0x20270000 - 0x2027FFFE

32 32 0x20260000 - 0x2026FFFE

33 32 0x20250000 - 0x2025FFFE

34 32 0x20240000 - 0x2024FFFE

35 32 0x20230000 - 0x2023FFFE

36 32 0x20220000 - 0x2022FFFE

37 32 0x20210000 - 0x2021FFFE

38 32 0x20200000 - 0x2020FFFE

Table 6-16. Top Boot Block Addresses (Cont’d)

Bank1 # Size
(K word)

Address Range

Block Address Table

6-44 ADSP-BF50x Blackfin Processor Hardware Reference

Bank 4 39 32 0x201F0000 - 0x201FFFFE

40 32 0x201E0000 - 0x201EFFFE

41 32 0x201D0000 - 0x201DFFFE

42 32 0x201C0000 - 0x201CFFFE

43 32 0x201B0000 - 0x201BFFFE

44 32 0x201A0000 - 0x201AFFFE

45 32 0x20190000 - 0x2019FFFE

46 32 0x20180000 - 0x2018FFFE

Bank 5 47 32 0x20170000 - 0x2017FFFE

48 32 0x20160000 - 0x2016FFFE

49 32 0x20150000 - 0x2015FFFE

50 32 0x20140000 - 0x2014FFFE

51 32 0x20130000 - 0x2013FFFE

52 32 0x20120000 - 0x2012FFFE

53 32 0x20110000 - 0x2011FFFE

54 32 0x20100000 - 0x2010FFFE

Bank 6 55 32 0x200F0000 - 0x200FFFFE

56 32 0x200E0000 - 0x200EFFFE

57 32 0x200D0000 - 0x200DFFFE

58 32 0x200C0000 - 0x200CFFFE

59 32 0x200B0000 - 0x200BFFFE

60 32 0x200A0000 - 0x200AFFFE

61 32 0x20090000 - 0x2009FFFE

62 32 0x20080000 - 0x2008FFFE

Table 6-16. Top Boot Block Addresses (Cont’d)

Bank1 # Size
(K word)

Address Range

ADSP-BF50x Blackfin Processor Hardware Reference 6-45

Internal Flash Memory

Common Flash Interface
The common flash interface is a JEDEC approved, standardized data
structure that can be read from the flash memory device. It allows a system
software to query the device to determine various electrical and timing
parameters, density information and functions supported by the memory.
The system can interface easily with the device, enabling the software to
upgrade itself when necessary.

When the read CFI query command is issued the device enters CFI query
mode and the data structure is read from the memory. Table 6-17 through
Table 6-26 show the addresses used to retrieve the data. The query data is
always presented on the lowest order data outputs (D0-D7), the other out-
puts (D8-D15) are set to 0.

The CFI data structure also contains a security area where a 64-bit unique
security number is written (see Figure 6-2 on page 6-18). This area can be

Bank 7 63 32 0x20070000 - 0x2007FFFE

64 32 0x20060000 - 0x2006FFFE

65 32 0x20050000 - 0x2005FFFE

66 32 0x20040000 - 0x2004FFFE

67 32 0x20030000 - 0x2003FFFE

68 32 0x20020000 - 0x2002FFFE

69 32 0x20010000 - 0x2001FFFE

70 32 0x20000000 - 0x2000FFFE

1 There are two bank regions: bank region 1 contains all the banks that are made up of main blocks
only; bank region 2 contains the banks that are made up of the parameter and main blocks (pa-
rameter bank).

Table 6-16. Top Boot Block Addresses (Cont’d)

Bank1 # Size
(K word)

Address Range

Common Flash Interface

6-46 ADSP-BF50x Blackfin Processor Hardware Reference

accessed only in read mode by the final user. It is impossible to change the
security number after it has been written by the factory. Issue a read array
command to return to read mode.

Table 6-17. Query Structure Overview1

1 The flash memory display the CFI data structure when CFI query command is issued. In this
table are listed the main sub-sections detailed in Table 6-18, Table 6-19, Table 6-20, and
Table 6-21. Query data is always presented on the lowest order data outputs.

Offset Sub-Section Name Description

0x00 Reserved Reserved for algorithm-specific
information

0x10 CFI Query Identification String Command set ID and algorithm data
offset

0x1B System Interface Information Device timing and voltage information

0x27 Device Geometry Definition Flash device layout

P Primary Algorithm-Specific Extended
Query table

Additional information specific to the
primary algorithm (optional)

A Alternate Algorithm-Specific Extended
Query Table

Additional information specific to the
alternate algorithm (optional)

0x80 Security Code Area Lock protection register unique device
number and user programmable OTP

Table 6-18. CFI Query Identification String

Offset Sub-Section Name Description Value

0x00 0x0020 Manufacturer code

0x01 0x8866 Device code

0x02 Reserved Reserved

0x03 Reserved Reserved

0x04-0x0F Reserved Reserved

0x10 0x11
0x12

0x0051
0x0052
0x0059

Query unique ASCII string "QRY" "Q"
"R"
"Y"

ADSP-BF50x Blackfin Processor Hardware Reference 6-47

Internal Flash Memory

0x13 0x14 0x0003
0x0000

Primary algorithm command set and
control interface ID code 16 bit ID code
defining a specific algorithm

0x15 0x16 offset = P = 0x0039
0x0000

Address for primary algorithm extended
query table (see Table 6-21 on
page 6-49)

p = 0x39

0x17 0x18 0x0000
0x0000

Alternate vendor command set and
control interface ID code second
vendor-specified algorithm supported

N/A

0x19 0x1A value = A = 0x0000
0x0000

Address for alternate algorithm extended
query table

N/A

Table 6-19. CFI Query System Interface Information

Offset Data Description Value

0x1B 0x0017 VDD logic supply minimum program/erase or write voltage

bit 7 to 4 BCD value in volts
bit 3 to 0 BCD value in 100 millivolts

1.7 V

0x1C 0x0020 VDD logic supply maximum program/erase or write voltage

bit 7 to 4 BCD value in volts
bit 3 to 0 BCD value in 100 millivolts

2 V

0x1D 0x0085 VPP [programming] supply minimum program/erase voltage

bit 7 to 4 HEX value in volts
bit 3 to 0 BCD value in 100 millivolts

8.5 V

0x1E 0x0095 VPP [programming] supply maximum program/erase voltage

bit 7 to 4 HEX value in volts
bit 3 to 0 BCD value in 100 millivolts

9.5 V

0x1F 0x0004 Typical time-out per single byte/word program = 2n µs 16 µs

0x20 0x0000 Typical time-out for multi-byte programming = 2n µs N/A

0x21 0x000A Typical time-out per individual block erase = 2n ms 1 s

0x22 0x0000 Typical time-out for full chip erase = 2n ms N/A

Table 6-18. CFI Query Identification String (Cont’d)

Offset Sub-Section Name Description Value

Common Flash Interface

6-48 ADSP-BF50x Blackfin Processor Hardware Reference

0x23 0x0003 Maximum time-out for word program = 2n times typical 128 µs

0x24 0x0000 Maximum time-out for multi-byte programming = 2n times
typical

NA

0x25 0x0002 Maximum time-out per individual block erase = 2n times typical 4 s

0x26 0x0000 Maximum time-out for chip erase = 2n times typical N/A

Table 6-20. Device Geometry Definition

Offset
Word
Mode

Data Description Value

0x27 0x0016 Device size = 2n in number of bytes 4M bytes

0x28
0x29

0x0001
0x0000

Flash device interface code description x16
Async.

0x2A
0x2B

0x0000
0x0000

Maximum number of bytes in multi-byte program or page = 2n N/A

0x2C 0x0002 Number of identical sized erase block regions within the device
bit 7 to 0 = x = number of erase block regions

2

To
p

D
ev

ic
es

0x2D
0x2E

0x003E
0x0000

Internal flash region 1 information
Number of identical-size erase blocks = 0x003E+1

63

0x007E
0x0000

Internal flash region 1 information
Number of identical-size erase blocks = 0x007E+1

127

0x2F
0x30

0x0000
0x0001

Region 1 information
Block size in region 1 = 0x0100 * 256 byte

64K byte

0x31
0x32

0x0007
0x0000

Region 2 information
Number of identical-size erase blocks = 0x0007+1

8

0x33
0x34

0x0020
0x0000

Region 2 information
Block size in region 2 = 0x0020 * 256 byte

8K byte

0x35
0x38

Reserved for future erase block region information N/A

Table 6-19. CFI Query System Interface Information (Cont’d)

Offset Data Description Value

ADSP-BF50x Blackfin Processor Hardware Reference 6-49

Internal Flash Memory

Table 6-21. Primary Algorithm-Specific Extended Query

Table1

Offset Data Description Value

0x(P) = 0x39 0x0050
0x0052
0x0049

Primary algorithm extended query table unique ASCII
string “PRI”

"P"
"R"
"I"

0x(P+3) = 0x3C 0x0031 Major version number, ASCII "1"

0x(P+4) = 0x3D 0x0033 Minor version number, ASCII "3"

0x(P+5) = 0x3E 0x00E6 Extended query table contents for primary algorithm.
Address 0x(P+5) contains less significant byte.

0x0003

0x(P+7) = 0x40 0x0000 Bit 0 chip erase supported (1 = Yes, 0 = No)

Bit 1 erase suspend supported (1 = Yes, 0 = No) No

Bit 2 program suspend supported (1 = Yes, 0 = No) Yes

Bit 3 legacy lock/unlock supported (1 = Yes, 0 = No) Yes

Bit 4 queued erase supported (1 = Yes, 0 = No) No

Bit 5 instant individual block locking supported
(1 = Yes, 0 = No)

No

0x(P+8) = 0x41 0x0000 Bit 6 protection bits supported (1 = Yes, 0 = No) Yes

Bit 7 page mode read supported (1 = Yes, 0 = No) Yes

Bit 8 synchronous read supported (1 = Yes, 0 = No) Yes

Bit 9 simultaneous operation supported (1 = Yes, 0 = No) Yes

Bit 10 to 31 reserved; undefined bits are "0". If bit 31 is
"1", then another 31-bit field of optional features follows at
the end of the bit-30 field.

Yes

Supported functions after suspend
Read array, read status register and CFI query

0x(P+9) = 0x42 0x0001 Bit 0 program supported after erase suspend
(1 = Yes, 0 = No)

Yes

Bit 7 to 1 reserved; undefined bits are "0"

Common Flash Interface

6-50 ADSP-BF50x Blackfin Processor Hardware Reference

0x(P+A) = 0x43 0x0003 Block protect status
Defines which bits in the block status register section of the
query are implemented.

0x(P+B) = 0x44 0x0000 Bit 0 block protect status register lock/unlock bit active
(1 = Yes, 0 = No

Bit 1 block lock status register lock-down bit active
(1 = Yes, 0 = No)

Yes

Bit 15 to 2 reserved for future use; undefined bits are "0" Yes

VDD logic supply optimum program/erase voltage

(highest performance)

0x(P+C) = 0x45 0x0018 Bit 7 to 4 HEX value in volts 1.8 V

Bit 3 to 0 BCD value in 100 mV

VPP supply optimum program/erase voltage

0x(P+D) = 0x46 0x0090 Bit 7 to 4 HEX value in volts 9 V

Bit 3 to 0 BCD value in 100 mV

1 The variable P is a pointer that is defined at CFI offset 0x15.

Table 6-22. Protection Register Information1

Offset Data Description Value

0x(P+E) = 0x47 0x0001 Number of protection register fields in JEDEC ID space.
0x0000 indicates that 256 fields are available.

1

0x(P+F) = 0x48 0x0080 Protection Field 1: protection description
Bits 0-7 lower byte of protection register address
Bits 8-15 upper byte of protection register address

Bits 16-23 2n bytes in factory pre-programmed region

Bits 24-31 2n bytes in user programmable region

0x0080

0x(P+10) = 0x49 0x0000

0x(P+11) = 0x4A 0x0003 8 bytes

0x(P+12) = 0x4B 0x0004 16 bytes

1 The variable P is a pointer that is defined at CFI offset 0x15.

Table 6-21. Primary Algorithm-Specific Extended Query

Table1 (Cont’d)

Offset Data Description Value

ADSP-BF50x Blackfin Processor Hardware Reference 6-51

Internal Flash Memory

Table 6-23. Burst Read Information1

Offset Data Description Value

0x(P+13) = 0x4C 0x0003 Page-mode read capability

Bits 0-7 ‘n’ such that 2n HEX value represents the number
of read-page bytes. See offset 0x28 for device word width to
determine page-mode data output width.

8 bytes

0x(P+14) = 0x4D 0x0004 Number of synchronous mode read configuration fields
that follow.

4

0x(P+15) = 0x4E 0x0001 Synchronous mode read capability configuration 1
Bit 3-7 Reserved

Bit 0-2 ‘n’ such that 2n+1 HEX value represents the maxi-
mum number of continuous synchronous reads when the
device is configured for its maximum word width. A value
of 0x07 indicates that the device is capable of continuous
linear bursts that will output data until the internal burst
counter reaches the end of the device’s burstable address
space. This field’s 3-bit value can be written directly to the
read configuration register bit 0-2 if the device is config-
ured for its maximum word width. See offset 0x28 for word
width to determine the burst data output width.

4

0x(P+16) = 0x4F 0x0002 Synchronous mode read capability configuration 2 8

0x(P+17) = 0x50 0x0003 Synchronous mode read capability configuration 3 16

0x(P+18) = 0x51 0x0007 Synchronous mode read capability configuration 4 Cont.

1 The variable P is a pointer that is defined at CFI offset 0x15.

Table 6-24. Bank and Erase Block Region Information 1,2

Internal Flash Memory Description

Offset Data

0x(P+19) = 0x52 0x02 Number of bank regions within the device

1 The variable P is a pointer that is defined at CFI offset 0x15.
2 Bank regions. There are two bank regions, see Table 6-16 on page 6-42.

Common Flash Interface

6-52 ADSP-BF50x Blackfin Processor Hardware Reference

Table 6-25. Bank and Erase Block Region 1 Information1

Internal Flash Region 1 Description

Offset Data

0x(P+1A) = 0x53 0x07
Number of identical banks within bank region 1

0x(P+1B) = 0x54 0x00

0x(P+1C) = 0x55 0x11 Number of program or erase operations allowed in bank region 1:
Bits 0-3: number of simultaneous program operations
Bits 4-7: number of simultaneous erase operations

0x(P+1D) = 0x56 0x00 Number of program or erase operations allowed in other banks
while a bank in same region is programming
Bits 0-3: number of simultaneous program operations
Bits 4-7: number of simultaneous erase operations

0x(P+1E) = 0x57 0x00 Number of program or erase operations allowed in other banks
while a bank in this region is erasing
Bits 0-3: number of simultaneous program operations
Bits 4-7: number of simultaneous erase operations

0x(P+1F) = 0x58 0x01 Types of erase block regions in bank region 1
n = number of erase block regions with contiguous same-size erase
blocks.

Symmetrically blocked banks have one blocking region.2

0x(P+20) = 0x59 0x07
Bank region 1 erase block type 1 information
Bits 0-15: n + 1 = number of identical-sized erase blocks
Bits 16-31: n × 256 = number of bytes in erase block region

0x(P+21) = 0x5A 0x00

0x(P+22) = 0x5B 0x00

0x(P+23) = 0x5C 0x01

0x(P+24) = 0x5D 0x64 Bank region 1 (erase block type 1)
Minimum block erase cycles × 1000

0x(P+25) = 0x5E 0x00

ADSP-BF50x Blackfin Processor Hardware Reference 6-53

Internal Flash Memory

0x(P+26) = 0x5F 0x01 Bank region 1 (erase block type 1): bits per cell, internal ECC
Bits 0-3: bits per cell in erase region
Bit 4: reserved for “internal ECC used”
Bits 5-7: reserved 0x5E 01 0x5E 01

0x(P+27) = 0x60 0x03 Bank region 1 (erase block type 1): page mode and synchronous
mode capabilities
Bit 0: page-mode reads permitted
Bit 1: synchronous reads permitted
Bit 2: synchronous writes permitted
Bits 3-7: reserved

1 The variable P is a pointer which is defined at CFI offset 0x15.
2 Bank regions. There are two bank regions, see Table 6-16 on page 6-42.

Table 6-26. Bank and Erase Block Region 2 Information1

Internal Flash Region 2 Description

Offset Data

0x(P+28) = 0x61 0x01
Number of identical banks within bank region 2

0x(P+29) = 0x62 0x00

0x(P+2A) = 0x63 0x11 Number of program or erase operations allowed in bank region 2

Bits 0-3: number of simultaneous program operations
Bits 4-7: number of simultaneous erase operations

0x(P+2B) = 0x64 0x00 Number of program or erase operations allowed in other banks
while a bank in this region is programming

Bits 0-3: number of simultaneous program operations
Bits 4-7: number of simultaneous erase operations

0x(P+2C) = 0x65 0x00 Number of program or erase operations allowed in other banks
while a bank in this region is erasing

Bits 0-3: number of simultaneous program operations
Bits 4-7: number of simultaneous erase operations

Table 6-25. Bank and Erase Block Region 1 Information1 (Cont’d)

Internal Flash Region 1 Description

Offset Data

Common Flash Interface

6-54 ADSP-BF50x Blackfin Processor Hardware Reference

0x(P+2D) = 0x66 0x02 Types of erase block regions in bank region 2

n = number of erase block regions with contiguous same-size erase
blocks

Symmetrically blocked banks have one blocking region.2

0x(P+2E) = 0x67 0x06
Bank region 2 erase block type 1 information

Bits 0-15: n + 1 = number of identical-sized erase blocks
Bits 16-31: n × 256 = number of bytes in erase block region

0x(P+2F) = 0x68 0x00

0x(P+30) = 0x69 0x00

0x(P+31) = 0x6A 0x01

0x(P+32) = 0x6B 0x64 Bank region 2 (erase block type 1)
Minimum block erase cycles × 1000

0x(P+33) = 0x6C 0x00

0x(P+34) = 0x6D 0x01 Bank region 2 (erase block type 1): bits per cell, internal ECC
Bits 0-3: bits per cell in erase region
Bit 4: reserved for “internal ECC used”
Bits 5-7: reserved

0x(P+35) = 0x6E 0x03 Bank region 2 (erase block type 1): page mode and synchronous
mode capabilities (defined in Table 6-23 on page 6-51)
Bit 0: page-mode reads permitted
Bit 1: synchronous reads permitted
Bit 2: synchronous writes permitted
Bits 3-7: reserved

0x(P+36) = 0x6F 0x07
Bank region 2 erase block type 2 information
Bits 0-15: n + 1 = number of identical-sized erase blocks
Bits 16-31: n × 256 = number of bytes in erase block region

0x(P+37) = 0x70 0x00

0x(P+38) = 0x71 0x20

0x(P+39) = 0x72 0x00

0x(P+3A) = 0x73 0x64 Bank region 2 (erase block type 2)
Minimum block erase cycles × 1000

0x(P+3B) = 0x74 0x00

Table 6-26. Bank and Erase Block Region 2 Information1 (Cont’d)

Internal Flash Region 2 Description

Offset Data

ADSP-BF50x Blackfin Processor Hardware Reference 6-55

Internal Flash Memory

0x(P+3C) = 0x75 0x01 Bank region 2 (erase block type 2): bits per cell, internal ECC
Bits 0-3: bits per cell in erase region
Bit 4: reserved for “internal ECC used”
Bits 5-7: reserved

0x(P+3D) = 0x76 0x03 Bank region 2 (erase block type 2): page mode and synchronous
mode capabilities (defined in Table 6-23 on page 6-51)
Bit 0: page-mode reads permitted
Bit 1: synchronous reads permitted
Bit 2: synchronous writes permitted
Bits 3-7: reserved

0x(P+3E) = 0x77 Feature space definitions

0x(P+3F) = 0x78 Reserved

1 The variable P is a pointer which is defined at CFI offset 0x15.
2 Bank regions. There are two bank regions, see Table 6-16 on page 6-42.

Table 6-26. Bank and Erase Block Region 2 Information1 (Cont’d)

Internal Flash Region 2 Description

Offset Data

Flowcharts and Pseudo Codes

6-56 ADSP-BF50x Blackfin Processor Hardware Reference

Flowcharts and Pseudo Codes

Figure 6-5. Program Flowchart1,2,3

1 Status check of SR1 (protected block), SR3 (VPP invalid) and SR4 (program error) can be made after
each program operation or after a sequence.

2 If an error is found, the status register must be cleared before further program/erase controller oper-
ations.

3 Any address within the bank can equally be used.

START

YES

WRITE 0x40 or 0x103

WRITE ADDRESS AND DATA

READ STATUS REGISTER3

SR7 = 1

SR3 = 0

SR4 = 0

SR1 = 0

YES

YES

YES

V
PP

 INVALID ERROR1,2

PROGRAM ERROR1,2

PROGRAM TO PROTECTED
BLOCK ERROR1,2

NO

NO

NO

END

NO

ADSP-BF50x Blackfin Processor Hardware Reference 6-57

Internal Flash Memory

Listing 6-1. Program Pseudo Code

program_command (addressToProgram, dataToProgram) {:

"

writeToFlash (addressToProgram, 0x40);

/*writeToFlash (addressToProgram, 0x10);*/

/*see note (3)*/

"

writeToFlash (addressToProgram, dataToProgram) ;

/*Memory enters read status state after

the Program Command*/

do {

status_register=readFlash (addressToProgram);

"see note (3)";

/* E or G must be toggled*/

} while (status_register.SR7== 0) ;

if (status_register.SR3==1) /*VPP invalid error */

error_handler () ;

if (status_register.SR4==1) /*program error */

error_handler () ;

if (status_register.SR1==1) /*program to protect block error */

error_handler () ;

}

Flowcharts and Pseudo Codes

6-58 ADSP-BF50x Blackfin Processor Hardware Reference

Figure 6-6. Program Suspend and Resume Flowchart1

1 The read status register command (write 0x70) can be issued just before or just after the program re-
sume command.

START

YES

WRITE 0xB0

READ STATUS REGISTER

SR7 = 1

SR2 = 1

YES

PROGRAM COMPLETE

PROGRAM CONTINUES WITH
BANK IN READ STATUS

REGISTER MODE

NO

WRITE 0x70

WRITE 0xFF

NO

READ DATA
WRITE 0xFF

WRITE 0xD0

READ DATA FROM ANOTHER
ADDRESS

WRITE 0x701

ADSP-BF50x Blackfin Processor Hardware Reference 6-59

Internal Flash Memory

Listing 6-2. Program Suspend and Resume Pseudo Code

program_suspend_command () {

writeToFlash (any_address, 0xB0) ;

writeToFlash (bank_address, 0x70) ;

/* read status register to check if

program has already completed */

do {

status_register=readFlash (bank_address) ;

/* E or G must be toggled*/

} while (status_register.SR7== 0) ;

if (status_register.SR2==0) /*program completed */

{ writeToFlash (bank_address, 0xFF) ;

read_data () ;

/*The device returns to Read Array

(as if program/erase suspend was not issued).*/

}

else

{ writeToFlash (bank_address, 0xFF) ;

read_data (); /*read data from another address*/

writeToFlash (any_address, 0xD0) ;

/*write 0xD0 to resume program*/

writeToFlash (bank_address, 0x70) ;

/*read status register to check

if program has completed */

Flowcharts and Pseudo Codes

6-60 ADSP-BF50x Blackfin Processor Hardware Reference

}

}

Figure 6-7. Block Erase Flowchart1,2

1 If an error is found, the status register must be cleared before further program/erase operations.
2 Any address within the bank can be used also.

START

YES

WRITE 0x202

WRITE BLOCK ADDRESS
AND 0xD0

READ STATUS REGISTER2

SR7 = 1

SR3 = 0

SR4, SR5 = 1

SR5 = 0

YES

YES

YES

V
PP

 INVALID ERROR1

COMMAND SEQUENCE
ERROR1

ERASE ERROR1
NO

NO

NO

END

NO

SR1 = 0 ERASE TO PROTECTED
BLOCK ERROR1

NO

YES

ADSP-BF50x Blackfin Processor Hardware Reference 6-61

Internal Flash Memory

Listing 6-3. Block Erase Pseudo Code

erase_command (blockToErase) {

writeToFlash (blockToErase, 0x20) ;

/*see note (2) */

writeToFlash (blockToErase, 0xD0) ;

/* only A12-A20 are significant */

/* Memory enters read status state after

the Erase Command */

do {

status_register=readFlash (blockToErase) ;

/* see note (2) */

/* E or G must be toggled*/

} while (status_register.SR7== 0) ;

if (status_register.SR3==1) /*VPP invalid error */

error_handler () ;

if ((status_register.SR4==1) && (status_register.SR5==1))

/* command sequence error */

error_handler () ;

if ((status_register.SR5==1))

/* erase error */

error_handler () ;

if (status_register.SR1==1) /*program to protect block error */

error_handler () ;

}

Flowcharts and Pseudo Codes

6-62 ADSP-BF50x Blackfin Processor Hardware Reference

Figure 6-8. Erase Suspend and Resume Flowchart1

1 The read status register command (write 0x70) can be issued just before or just after the erase resume
command.

START

YES

WRITE 0xB0

READ STATUS REGISTER

SR7 = 1

SR6 = 1

YES

ERASE CONTINUES WITH
BANK IN READ STATUS

REGISTER MODE

NO

WRITE 0x70

WRITE 0xFF

ERASE COMPLETE
NO

READ DATAWRITE 0xFF

WRITE 0xD0

WRITE 0x701

Read data from another block,
Program, Set Configuration Register

or Block Lock/Unlock/Lock-Down

ADSP-BF50x Blackfin Processor Hardware Reference 6-63

Internal Flash Memory

Listing 6-4. Erase Suspend and Resume Pseudo Code

erase_suspend_command () {

writeToFlash (bank_address, 0xB0) ;

writeToFlash (bank_address, 0x70) ;

/* read status register to check if

erase has already completed */

do {

status_register=readFlash (bank_address) ;

/* E or G must be toggled*/

} while (status_register.SR7== 0) ;

if (status_register.SR6==0) /*erase completed */

{ writeToFlash (bank_address, 0xFF) ;

read_data () ;

/*The device returns to Read Array

(as if program/erase suspend was not issued).*/

}

else

{ writeToFlash (bank_address, 0xFF) ;

read_program_data ();

/*read or program data from another block*/

writeToFlash (bank_address, 0xD0) ;

/*write 0xD0 to resume erase*/

writeToFlash (bank_address, 0x70) ;

Flowcharts and Pseudo Codes

6-64 ADSP-BF50x Blackfin Processor Hardware Reference

/*read status register to check if erase has completed */

}

}

Listing 6-5. Locking Operations Pseudo Code

locking_operation_command (address, lock_operation) {

writeToFlash (address, 0x60) ; /*configuration setup*/

/* see note (1) */

Figure 6-9. Locking Operations Flowchart1

1 Any address within the bank can equally be used.

START

WRITE 0x601

WRITE 0x01, 0xD0, or 0x2F

LOCKING
CHANGE

CONFIRMED?

YES

END

NO

WRITE 0x901

READ BLOCK LOCK STATES

WRITE 0xFF1

ADSP-BF50x Blackfin Processor Hardware Reference 6-65

Internal Flash Memory

if (lock_operation==LOCK) /*to protect the block*/

writeToFlash (address, 0x01) ;

else if (lock_operation==UNLOCK) /*to unprotect the block*/

writeToFlash (address, 0xD0) ;

else if (lock_operation==LOCK-DOWN) /*to lock the block*/

writeToFlash (address, 0x2F) ;

writeToFlash (address, 0x90) ;

/*see note (1) */

if (readFlash (address) ! = locking_state_expected)

error_handler () ;

/*Check the locking state

(see Read Block Signature table)*/

writeToFlash (address, 0xFF) ; /*Reset to Read Array mode*/

/*see note (1) */

}

Flowcharts and Pseudo Codes

6-66 ADSP-BF50x Blackfin Processor Hardware Reference

Figure 6-10. Protection Register Program Flowchart1,2,3

1 Status check of SR1 (protected block), SR3 (VPP invalid) and SR4 (program error) can be made after
each program operation or after a sequence.

2 If an error is found, the status register must be cleared before further program/erase controller oper-
ations.

3 Any address within the bank can equally be used.

START

YES

WRITE 0xC03

WRITE ADDRESS AND DATA

READ STATUS REGISTER3

SR7 = 1

SR3 = 0

SR4 = 0

YES

YES

V
PP

 INVALID ERROR1,2

PROGRAM ERROR1,2
NO

NO

END

NO

SR1 = 0 PROGRAM TO PROTECTED
BLOCK ERROR1,2

NO

YES

ADSP-BF50x Blackfin Processor Hardware Reference 6-67

Internal Flash Memory

Listing 6-6. Protection Register Program Pseudo Code

protection_register_program_command (addressToProgram,

dataToProgram) {:

writeToFlash (addressToProgram, 0xC0) ;

/*see note (3) */

writeToFlash (addressToProgram, dataToProgram) ;

/*Memory enters read status state after

the Program Command*/

do {

status_register=readFlash (addressToProgram) ;

/* see note (3) */

/* E or G must be toggled*/

} while (status_register.SR7== 0) ;

if (status_register.SR3==1) /*VPP invalid error */

error_handler () ;

if (status_register.SR4==1) /*program error */

error_handler () ;

if (status_register.SR1==1) /*program to protect block

error */

error_handler () ;

Command Interface State Tables

6-68 ADSP-BF50x Blackfin Processor Hardware Reference

Command Interface State Tables
Table 6-27. Command Interface States – Modify Table,
Next State

Current CI

State1

Command Input

R
ea

d
A

rr
ay

2

(0
xF

F)

W
P

se
tu

p3 ,4

(1
0/

0x
40

)

B
lo

ck
E

ra
se

Se
tu

p3 ,4

(0
x2

0)

E
ra

se
C

on
fi

rm
,

P
/E

R
es

um
e,

B
lo

ck
U

nl
oc

k
C

on
fi

rm
(0

xD
0)

P
ro

gr
am

/
E

ra
se

Su
sp

en
d

(0
xB

0)

R
ea

d
St

at
us

R
eg

is
te

r
(0

x7
0)

C
le

ar
St

at
us

R
eg

is
te

r5

(0
x5

0)

R
ea

d
E

le
ct

ro
ni

c
Si

gn
at

ur
e,

R
ea

d
C

FI
Q

ue
ry

(0
x9

0,
0x

98
)

Ready Ready Program
Setup

Erase
Setup

Ready

Lock/CR Setup Ready (Lock Error) Ready Ready (Lock Error)

OTP

Setup OTP Busy

Busy OTP
Busy

IS in OTP Busy OTP Busy

IS in
OTP
Busy

OTP Busy

Prog.

Setup Program Busy

Busy Prog.
Busy

IS in Program
Busy

Prog. Busy PS Program Busy

IS in
Prog.
Busy

Program Busy

Suspend PS IS in Program
Suspend

Prog. Busy Program Suspend

IS in PS Program Suspend

ADSP-BF50x Blackfin Processor Hardware Reference 6-69

Internal Flash Memory

Erase

Setup Ready (Error) Erase Busy Ready (error)

Busy Erase
Busy

IS in Erase Busy Erase Busy ES Erase Busy

IS in
Erase
Busy

Erase Busy

Suspend ES Prog. in
ES

IS in
Erase
Sus-
pend

Erase Busy Erase Suspend

IS in ES Erase Suspend

Table 6-27. Command Interface States – Modify Table,
Next State (Cont’d)

Current CI

State1

Command Input
R

ea
d

A
rr

ay
2

(0
xF

F)

W
P

se
tu

p3 ,4

(1
0/

0x
40

)

B
lo

ck
E

ra
se

Se
tu

p3 ,4

(0
x2

0)

E
ra

se
C

on
fi

rm
,

P
/E

R
es

um
e,

B
lo

ck
U

nl
oc

k
C

on
fi

rm
(0

xD
0)

P
ro

gr
am

/
E

ra
se

Su
sp

en
d

(0
xB

0)

R
ea

d
St

at
us

R
eg

is
te

r
(0

x7
0)

C
le

ar
St

at
us

R
eg

is
te

r5

(0
x5

0)

R
ea

d
E

le
ct

ro
ni

c
Si

gn
at

ur
e,

R
ea

d
C

FI
Q

ue
ry

(0
x9

0,
0x

98
)

Command Interface State Tables

6-70 ADSP-BF50x Blackfin Processor Hardware Reference

Prog.
in ES

Setup Program Busy in Erase Suspend

Busy
Prog.

Busy in
ES

IS in Program
Busy in Erase

Suspend

Prog. Busy
in ES

PS in
ES Program Busy in Erase Suspend

IS in
Prog.

Busy in
ES

Program Busy in Erase Suspend

Suspend PS in
ES

IS in Program
Suspend in ES

Prog. Busy
in ES

Program Suspend in Erase Suspend

IS in PS
in ES Program Suspend in Erase Suspend

Lock/CR Setup
in ES

Erase Suspend
(Lock Error)

ES Erase Suspend
(Lock Error)

1 CI = command interface, CR = configuration register, P/E. C. = program/erase controller,
PS = program suspend, ES = erase suspend, IS = illegal state.

2 At power-up, all banks are in read array mode. A read array command issued to a busy bank, results
in undetermined data output.

3 The two cycle command should be issued to the same bank address.
4 If the P/EC is active, both cycles are ignored.
5 The clear status register command clears the status register error bits except when the P/EC is busy or

suspended.

Table 6-27. Command Interface States – Modify Table,
Next State (Cont’d)

Current CI

State1

Command Input
R

ea
d

A
rr

ay
2

(0
xF

F)

W
P

se
tu

p3 ,4

(1
0/

0x
40

)

B
lo

ck
E

ra
se

Se
tu

p3 ,4

(0
x2

0)

E
ra

se
C

on
fi

rm
,

P
/E

R
es

um
e,

B
lo

ck
U

nl
oc

k
C

on
fi

rm
(0

xD
0)

P
ro

gr
am

/
E

ra
se

Su
sp

en
d

(0
xB

0)

R
ea

d
St

at
us

R
eg

is
te

r
(0

x7
0)

C
le

ar
St

at
us

R
eg

is
te

r5

(0
x5

0)

R
ea

d
E

le
ct

ro
ni

c
Si

gn
at

ur
e,

R
ea

d
C

FI
Q

ue
ry

(0
x9

0,
0x

98
)

ADSP-BF50x Blackfin Processor Hardware Reference 6-71

Internal Flash Memory

Table 6-28. Command Interface States – Modify Table,
Next Output

Current CI

State1,2

Command Input

R
ea

d
A

rr
ay

3

(0
xF

F)

B
lo

ck
E

ra
se

Se
tu

p4 ,5

(0
x2

0)
E

ra
se

C
on

fi
rm

P
/ E

R
es

um
e,

B
lo

ck
U

nl
oc

k
C

on
fi

rm
(0

xD
0)

P
ro

gr
am

/
E

ra
se

Su
sp

en
d

(0
xB

0)

R
ea

d
St

at
us

R
eg

is
te

r
(0

x7
0)

C
le

ar
St

at
us

R
eg

is
te

r6

(0
x5

0)

R
ea

d
E

le
ct

ro
ni

c
Si

gn
at

ur
e,

R
ea

d
C

FI
Q

ue
ry

(0
x9

0,
0x

98
)

Program
Setup

Status Register

Erase Setup

OTP Setup

Program
Setup in
Erase
Suspend

Lock/CR
Setup

Lock/CR
Setup in
Erase
Suspend

Command Interface State Tables

6-72 ADSP-BF50x Blackfin Processor Hardware Reference

OTP Busy

Array Status
Register

Output
Unchanged

Status
Register

Output
Unchanged

Status
Register

Ready

Electronic
Signature /

CFI

Program
Busy

Erase Busy

Program
/Erase
Suspend

Program
Busy in Erase
Suspend

Program
Suspend in
Erase
Suspend

Illegal State Output Unchanged

1 CI = command interface, CR = configuration register, P/E. C. = program/erase controller,
IS = illegal state, ES = erase suspend, PS = program suspend.

2 The output state shows the type of data that appears at the outputs if the bank address is the same
as the command address. A bank can be placed in read array, read status register, read electronic
signature or read CFI query mode, depending on the command issued. Each bank remains in its
last output state until a new command is issued. The next state does not depend on the bank’s out-
put state.

3 At power-up, all banks are in read array mode. A read array command issued to a busy bank, results
in undetermined data output.

4 The two cycle command should be issued to the same bank address.

Table 6-28. Command Interface States – Modify Table,
Next Output (Cont’d)

Current CI

State1,2

Command Input
R

ea
d

A
rr

ay
3

(0
xF

F)

B
lo

ck
E

ra
se

Se
tu

p4 ,5

(0
x2

0)
E

ra
se

C
on

fi
rm

P
/ E

R
es

um
e,

B
lo

ck
U

nl
oc

k
C

on
fi

rm
(0

xD
0)

P
ro

gr
am

/
E

ra
se

Su
sp

en
d

(0
xB

0)

R
ea

d
St

at
us

R
eg

is
te

r
(0

x7
0)

C
le

ar
St

at
us

R
eg

is
te

r6

(0
x5

0)

R
ea

d
E

le
ct

ro
ni

c
Si

gn
at

ur
e,

R
ea

d
C

FI
Q

ue
ry

(0
x9

0,
0x

98
)

ADSP-BF50x Blackfin Processor Hardware Reference 6-73

Internal Flash Memory

5 If the P/EC is active, both cycles are ignored.
6 The clear status register command clears the status register error bits except when the P/EC is busy

or suspended.

Table 6-29. Command Interface States – Lock Table, Next State

Current CI State1

Command Input

Lock/CR

Setup2

(0x60)

OTP

Setup2

(0xC0)

Block
Lock
Confirm
(0x01)

Block
Lock-
Down
Confirm
(0x2F)

Set CR
Confirm
(0x03)

Illegal Command3 P/E. C.
Operation
Completed

Ready Lock/CR
Setup

OTP
Setup

Ready N/A

Lock/CR Setup Ready (Lock error) Ready Ready (Lock error) N/A

OTP
Setup OTP Busy

Busy IS in OTP busy OTP Busy Ready

IS in OTP busy OTP Busy IS Ready

Program

Setup Program Busy N/A

Busy IS in Program busy Program Busy Ready

IS in Program
busy

Program busy IS Ready

Suspend IS in PS Program Suspend N/A

IS in PS Program Suspend N/A

Erase

Setup Ready (error) N/A

Busy IS in Erase Busy Erase Busy Ready

IS in Erase
Busy

Erase Busy IS Ready

Suspend Lock/CR
Setup in

ES

IS in
Erase

Suspend

Erase Suspend N/A

IS in ES Erase Suspend N/A

Command Interface State Tables

6-74 ADSP-BF50x Blackfin Processor Hardware Reference

Program
in Erase
Suspend

Setup Program Busy in Erase Suspend

Busy IS in Program busy
in ES

Program Busy in Erase Suspend ES

IS in Program
busy in ES

Program busy in ES IS in ES

Suspend IS in PS in ES Program Suspend in Erase Suspend N/A

IS in PS in ES Program Suspend in Erase Suspend

Lock/CR Setup in ES Erase Suspend
(Lock error)

Erase Suspend Erase Suspend
(Lock error)

N/A

1 CI = command interface, CR = configuration register, enhanced factory program,
P/E. C. = program/erase controller, IS = illegal state, ES = erase suspend, PS = program suspend

2 If the P/EC is active, both cycles are ignored.
3 Illegal commands are those not defined in the command set.

Table 6-29. Command Interface States – Lock Table, Next State (Cont’d)

Current CI State1

Command Input

Lock/CR

Setup2

(0x60)

OTP

Setup2

(0xC0)

Block
Lock
Confirm
(0x01)

Block
Lock-
Down
Confirm
(0x2F)

Set CR
Confirm
(0x03)

Illegal Command3 P/E. C.
Operation
Completed

ADSP-BF50x Blackfin Processor Hardware Reference 6-75

Internal Flash Memory

Table 6-30. Command Interface States – Lock Table, Next
Output

Current CI

State1
Command Input

Lock/CR

Setup2

(0x60)

OTP

Setup2

(0xC0)

Block
Lock
Confirm
(0x01)

Block
Lock-
Down
Confirm
(0x2F)

Set CR
Confirm
(0x03)

Illegal

Command3
P/E. C.
Operation
Completed

Program Setup

Status Register Output
Unchanged

Erase Setup

OTP Setup

Program Setup
in Erase
Suspend

EFP Setup

EFP Busy

EFP Verify

Quad EFP
Setup

Quad EFP
Busy

Lock/CR
Setup

Status Register Array Status Register
Lock/CR
Setup in Erase
Suspend

Command Interface State Tables

6-76 ADSP-BF50x Blackfin Processor Hardware Reference

OTP Busy

Status Register Output Unchanged

Ready

Program Busy

Erase Busy

Program/ Erase
Suspend

Program
Busy in Erase
Suspend

Program
Suspend in
Erase Suspend

Illegal State Output Unchanged

1 CI = command interface, CR = configuration register, P/E. C = program/erase controller
2 If the P/EC is active, both cycles are ignored.
3 Illegal commands are those not defined in the command set.

Table 6-30. Command Interface States – Lock Table, Next
Output (Cont’d)

Current CI

State1
Command Input

Lock/CR

Setup2

(0x60)

OTP

Setup2

(0xC0)

Block
Lock
Confirm
(0x01)

Block
Lock-
Down
Confirm
(0x2F)

Set CR
Confirm
(0x03)

Illegal

Command3
P/E. C.
Operation
Completed

ADSP-BF50x Blackfin Processor Hardware Reference 6-77

Internal Flash Memory

Internal Flash Memory Programming
Guidelines

The following sections describe programming guidelines for the internal
flash memory:

• “Bringing Internal Flash Memory Out of Reset” on page 6-78

• “Timing Configurations for Setting the Internal Flash Memory in
Asynchronous Read Mode” on page 6-79

• “Timing Configurations for Setting the Internal Flash Memory for
Write Accesses” on page 6-80

• “Enabling the Program or Erasure of Internal Flash Memory
Blocks” on page 6-82

• “Configuring Internal Flash Memory for Synchronous Burst Read
Mode” on page 6-83

• “Configuring the EBIU for Synchronous Read Mode” on
page 6-85

• “Unsupported Programming Practices in Flash” on page 6-87

In these sections, references are made to the following parameters that
describe the timing characteristics of the EBIU:

• Setup (ST): the time between the beginning of a memory cycle
(AMS0) and the read-enable assertion (ARE) or write-enable assertion
(AWE)

• Read Access (RAT): the time between read-enable assertion (ARE)
and deassertion (ARE)

• Write Access (WAT): the time between write-enable assertion (AWE)
and deassertion (AWE)

Internal Flash Memory Programming Guidelines

6-78 ADSP-BF50x Blackfin Processor Hardware Reference

• Hold (HT): the time between read-enable deassertion (ARE) or
write-enable deassertion (AWE) and the end of the memory cycle
(AMS0)

• Transition (TT): the time between a read access in the current
bank and a write access to the current bank or a read access to a dif-
ferent bank.

Each of these parameters can be programmed in terms of EBIU clock
cycles. In addition, there are minimum values for these parameters:

• ST  1 cycle

• RAT  1 cycle

• WAT  1 cycle

• HT  0 cycle

• TT  1 cycle

Bringing Internal Flash Memory Out of Reset
The RP pin of the internal flash memory device is controlled by bit 0 of the
FLASH_CONTROL register. Setting bit 0 of the FLASH_CONTROL register to 1
enables the flash by bringing it out of reset.

Refer to ADSP-BF504, ADSP-BF504F, ADSP-BF506F Embedded Proces-
sor Data Sheet for the timing requirements needed to bring the internal
flash memory out of reset. A minimum time (listed in the data sheet)
should elapse before the signals W, E, G, and L are asserted, and a minimum
time should elapse before the RP signal is toggled again. These timing
requirements may be met by inserting an appropriate number of delay

ADSP-BF50x Blackfin Processor Hardware Reference 6-79

Internal Flash Memory

instructions. For example, the code below uses a number of NOP assembly
instructions in order to achieve the desired delay:

void flash_reset(void)

{

/* Reset the flash */

*pFLASH_CONTROL_CLEAR = FLASH_ENABLE;

asm("ssync;nop;nop;nop;nop;nop;nop;nop;");

asm("ssync;nop;nop;nop;nop;nop;nop;nop;");

asm("ssync;nop;nop;nop;nop;nop;nop;nop;");

asm("ssync;nop;nop;nop;nop;nop;nop;nop;");

/* Release flash from reset state */

*pFLASH_CONTROL_SET = FLASH_ENABLE;

asm("ssync;nop;nop;nop;nop;nop;nop;nop;");

}

Timing Configurations for Setting the Internal Flash
Memory in Asynchronous Read Mode

Once out of reset, the internal flash memory is configured in asynchro-
nous mode. Therefore, the EBIU should be configured in asynchronous
mode as well by programming the B0MODE field in the EBIU_MODECTL regis-
ter to the value b#01.

The internal flash device’s WAIT signal is not meaningful in asynchronous
mode. Therefore, the B0RDYEN field in the EBIU_AMBCTL register should be
programmed with a value of 0 in asynchronous mode.

Based on the timing requirements of the internal flash memory device,
which call for:

• ST > 10 ns

• ST + RAT > 70 ns

Internal Flash Memory Programming Guidelines

6-80 ADSP-BF50x Blackfin Processor Hardware Reference

• RAT > 30 ns

• HT (for consecutive reads) = 0 ns

The recommended timing values to be programmed in the EBIU_AMBCTL

register for asynchronous read accesses are:

• B0ST = ceiling (20 ns / tSCLK)

• B0RAT = ceiling (60 ns / tSCLK)

• B0TT = b#01

• B0HT = b#00 (see Note)

where ceiling (x) is the smallest integer not less than x.

 There is no hold time requirement for read accesses. Therefore, if
the flash access pattern is such that only read accesses are per-
formed with no write accesses performed, then B0HT may be
programmed to the value b#00. However, if there were any write
accesses interspersed with the read accesses, then the B0HT field
should be programmed according to the recommendation for write
accesses. (See “Timing Configurations for Setting the Internal
Flash Memory for Write Accesses” on page 6-80.)

Timing Configurations for Setting the Internal Flash
Memory for Write Accesses

Based on the timing requirements of the internal flash memory device,
which call for:

• ST > 10 ns

• WAT > 45 ns

• ST + HT (for consecutive writes) > 25 ns

ADSP-BF50x Blackfin Processor Hardware Reference 6-81

Internal Flash Memory

The recommended timing values to be programmed in the EBIU_AMBCTL

register for asynchronous write accesses are:

• B0ST = ceiling (20 ns / tSCLK)

• B0WAT = ceiling (45 ns / tSCLK)

• B0HT = ceiling (10 ns / tSCLK)

In addition to the above timing requirements, a minimum of 25 ns should
elapse between completing a write access and starting a read access in the
targeted bank or between reading following a Set Configuration Register
command. System designers should take this into account and may insert
software NOP instructions to delay the first read in the same bank after
issuing any command and to delay the first read to any address after issu-
ing a Set Configuration Register command. If the first read after the
command is a read array operation in a different bank and no changes to
the configuration register have been issued, then the 25 ns delay is not
necessary.

Example calculation for asynchronous mode, assuming that
fSCLK = 100 MHz or tSCLK = 10 ns:

• WAT  ceiling (45 ns / 10 ns) = ceiling (4.5) = 5

• RAT  ceiling (60 ns / 10 ns) = ceiling (6) = 6

• ST  ceiling (20 ns / 10 ns) = ceiling (2) = 2

• HT = 1

• TT = 1

Internal Flash Memory Programming Guidelines

6-82 ADSP-BF50x Blackfin Processor Hardware Reference

Figure 6-11 shows example asynchronous read and write waveforms for
the internal flash. The signal names referenced in the figure are explained
in Table 6-1 on page 6-2.

Enabling the Program or Erasure of Internal Flash
Memory Blocks

In order to enable program or erase operations in the internal flash mem-
ory device, the FLASH_UNPROTECT bit in the FLASH_CONTROL register has to
be set to 1. Doing so disables the hardware flash protection mechanism by
driving the flash’s VPP signal with logic high.

In addition, since the default status of all blocks on flash power-up or after
a flash hardware reset is locked, further block unlock commands are neces-
sary in order to allow for software programming or erasure of flash. Refer
to “Block Locking” on page 6-38 for further details on block locking and
unlocking and to “Command Interface – Standard Commands” on

Figure 6-11. Example Asynchronous Read and Write Waveforms

SETUP
2 CYCLES

READ ACCESS
6 CYCLES

HOLD
1 CYCLE

SETUP
2 CYCLES

WRITE ACCESS
5 CYCLES

HOLD
1 CYCLE

CLKOUT

ADDR[21:1]

L

E

G

W

WAIT

DQ[15:0]
HIGH-ZHIGH-Z

HIGH-Z

WRITE DATA

ADSP-BF50x Blackfin Processor Hardware Reference 6-83

Internal Flash Memory

page 6-7 for information on flash commands including the block unlock
command.

Configuring Internal Flash Memory for
Synchronous Burst Read Mode

In order to operate the internal flash device in synchronous burst mode,
both the internal flash device and the EBIU have to be set in synchronous
mode. The internal flash device is set in synchronous burst mode through
the use of the Set Configuration Register command. The EBIU is set in
synchronous mode by programming the B0MODE field in the EBIU_MODECTL

register to the value b#11 and by programming the timing configurations
in the EBIU registers as shown in section “Configuring the EBIU for Syn-
chronous Read Mode” on page 6-85.

As shown in Table 6-5 (Standard Commands), two write cycles are
required to issue the Set Configuration Register command.

The first cycle writes the setup command to the address corresponding to
the value that is to be programmed into the configuration register. The
second cycle writes the confirm command to the address corresponding to
the value that is to be programmed into the configuration register.

For both cycles, the address corresponding to the value that is to be pro-
grammed into the configuration register is:

FLASH_BASE_ADDRESS + (configuration_register_value << 1)

where:

FLASH_BASE_ADDRESS is the base address of the flash device. On ADSP-
BF50x devices, this address is 0x20000000 and configuration_register_

value is the value to be programmed into the flash’s configuration
register.

Internal Flash Memory Programming Guidelines

6-84 ADSP-BF50x Blackfin Processor Hardware Reference

 Because the flash device is 2-bytes addressable while the Blackfin
processor is 1-byte addressable, the value to be programmed into
the flash’s configuration register has to be shifted up by one so it
will appear on the Blackfin processor’s address bits [16:1] thus
appearing on the flash device’s address bits [15:0].

Supported Configuration Register Combinations in
ADSP-BF50xF Processors

Since the internal flash device in ADSP-BF50xF processors can only be
connected to the external bus interface unit (EBIU), some combinations
of the flash configurations are not supported. Some of the restrictions on
the values to be programmed in the flash configuration register are as
follows:

• The programming of bit CR10 determines the programming of bit 1
(B0RDYPOL) of the EBIU_AMBCTL0 register. When CR10 is set to 1,
B0RDYPOL has to be programmed to 0. When CR10 is programmed
to 0, B0RDYPOL has to be set to 1.

• CR9 has to be programmed to 0.

• CR8 has to be programmed to 1.

• CR7 has to be programmed to 1.

• CR6 has to be programmed to 1.

• CR3 has to be programmed to 0.

ADSP-BF50x Blackfin Processor Hardware Reference 6-85

Internal Flash Memory

• CR2 through CR0 have to be programmed to b#011.

• The value to be programmed in the X latency bit field (CR13
through CR11) depends on the NOR_CLK frequency, as shown in
Table 6-31.

Configuring the EBIU for Synchronous Read Mode

In order to support internal flash operation in synchronous burst mode,
the EBIU has to be configured in synchronous burst mode by program-
ming the B0MODE field in the EBIU_MODECTL register to the value b#11,
selecting the appropriate NOR_CLK frequency in the BCLK bit field of the
EBIU_FCTL register, and configuring the EBIU_AMBCTL register as follows:

• B0RDYEN must be programmed to 1 for synchronous burst read
mode.

• B0RDYPOL must be set to 1 if bit 10 of the flash configuration regis-
ter (CR10) is programmed to 0 and programmed to 0 if bit 10 of the
flash configuration register (CR10) is set to 1.

• BOTT must be set to b#11.

Table 6-31. X Latency Setting Depends on Frequency

NOR_CLK Frequency X Latency (in Terms of NOR_CLK Cycles)

 30 MHz 2

40 MHz 3

50 MHz 4

Internal Flash Memory Programming Guidelines

6-86 ADSP-BF50x Blackfin Processor Hardware Reference

• B0ST must be programmed depending on the NOR_CLK frequency
selected in the EBIU_FCTL register as shown in the following table:

• BOHT may be programmed to any supported value, but should be
programmed to the recommended value of b#00.

• B0RAT must be programmed, depending on the NOR_CLK frequency
selected in the EBIU_FCTL register and on the X latency setting
selected in the flash configuration register (CR13-CR11) according to
the following table:

Example synchronous read and write waveforms using the internal flash
memory pins from Table 6-1 on page 6-2 appear in Figure 6-12.

SCLK:NOR_CLK Min Setup Time B0ST Values
Supported

B0ST Value
Recommended

2 : 1 2 SCLK cycles 10,11,00 10

3 : 1 3 SCLK cycles 11,00 11

4 : 1 4 SCLK cycles 00 00

SCLK:NOR_CLK B0RAT Value

2 : 1 2 * X latency

3 : 1 (3 * X latency) -1

4 : 1 (4 * X latency) -1

ADSP-BF50x Blackfin Processor Hardware Reference 6-87

Internal Flash Memory

Unsupported Programming Practices in Flash
The following programming practices are unsupported by the internal
flash memory:

• Writes to flash are not supported when the flash is configured in
synchronous burst mode. Writes to flash can only be performed
when the flash is configured in asynchronous mode.

• The flash is only addressable and programmed at 2-bytes granular-
ity. Therefore, any byte write instructions with the destination
address residing in flash shall be avoided.

Figure 6-12. Example Sync Read and Write Waveforms

SETUP
2 CYCLES

X-LATENCY
3 BURST CLOCK CYCLES

HOLD
0 CYCLE

CLKOUT

ADDR[21:1]

L

E

G

W

WAIT

DQ[15:0]
HIGH-Z HIGH-Z

HIGH-Z

WAIT
SAMPLED
1 CYLCE
BEFORE

HIGH-Z

1ST
DATA

SAMPLED

2ND
DATA

SAMPLED

15TH
DATA

SAMPLED

16TH
DATA

SAMPLED

Internal Flash Memory Control Registers

6-88 ADSP-BF50x Blackfin Processor Hardware Reference

• The TESTSET assembly instruction of the Blackfin processor cannot
be used with a variable that resides in the internal flash memory.

• DMA writes to internal flash memory shall be avoided.

• While the internal flash memory is supported by the Blackfin pro-
cessor cache, no writes from cache to flash are supported.
Therefore, cache may only be used to support code and/or read-
only data in flash. For the same reason, the FLUSH and FLUSHINV

data cache flush instructions cannot be used when the flash mem-
ory is the destination of the data in cache.

Internal Flash Memory Control Registers
In addition to the EBIU registers (see “EBIU Registers” on page 5-9), the
internal flash memory usage is controlled by the following registers:

• “Internal Flash Memory Control (FLASH_CONTROL) Register”

• “Internal Flash Memory Control Set (FLASH_CONTROL_SET)
Register” on page 6-91

• “Internal Flash Memory Control Clear
(FLASH_CONTROL_CLEAR) Register” on page 6-91

Internal Flash Memory Control (FLASH_CONTROL)
Register

The FLASH_CONTROL register address and reset value are:

Address Register Name Size Reset Value

0xFFC0 328C FLASH_CONTROL 16 0x8000

ADSP-BF50x Blackfin Processor Hardware Reference 6-89

Internal Flash Memory

Using the bits in the FLASH_CONTROL register (see Table 6-32) permits con-
trol of the internal flash memory.

Bits 14 to 0 of the FLASH_CONTROL register reset at hardware reset (RESET
pin), system reset, watchdog reset, or core double-fault reset. Bit 15 only
resets to a 1 at hardware reset (RESET pin) or when going into hibernate.

The FLASH_ENABLE bit controls the RP pin of the internal flash memory
device. Since the reset value of the FLASH_ENABLE bit is 0, the default state
of the internal flash memory device is the reset state. However, upon
Blackfin processor boot, the boot firmware brings the flash out of reset
state by programming the FLASH_ENABLE bit to 1.

Table 6-32. Internal Flash Memory Control Register
(FLASH_CONTROL)

Register Field Name Offset Access Description

FLASH_ENABLE 0 RO Enable internal flash memory for
read/write
0 – internal flash memory is in reset state
1 – internal flash memory is out of reset
state

RESERVED 7:1 RO

FLASH_UNPROTECT 8 RO 0 – Protect the entire internal flash mem-
ory from any program/erase by controlling
VPP

1 – Unprotect the internal flash memory –
internal flash memory is available for pro-
gram/erase

RESERVED 14:9 RO

UNLOCK_HIGHBYTE 15 RO 0 – Bits 15:8 of the FLASH_CONTROL
register cannot be set to 1. They can only
be cleared (programmed to 0).
1 – No restrictions on the programming of
bits 15:8 of the FLASH_CONTROL register.
They can both be set to 1 or cleared to 0.

Internal Flash Memory Control Registers

6-90 ADSP-BF50x Blackfin Processor Hardware Reference

When the Blackfin processor is in hibernate state, the internal flash mem-
ory device is placed in reset state by driving the RP signal with a logic-low.

Refer to “Bringing Internal Flash Memory Out of Reset” on page 6-78 for
more information on using the FLASH_ENABLE bit to reset the internal flash
memory device.

Since the reset value of the UNLOCK_HIBYTE bit is 1, bit [15:8] of the
FLASH_CONTROL register can be programmed after reset to either 1 or 0.
However, once the UNLOCK_HIBYTE bit is programmed to 0, bits [15:8] in
the FLASH_CONTROL register can no longer be set to 1; they can only be
cleared (programmed to 0).

This UNLOCK_HIBYTE feature may be used to provide a level of protection
against inadvertent programming/erasure of the flash. Since the reset value
of the FLASH_UNPROTECT bit (bit 8 in the FLASH_CONTROL register) is 0, the
internal flash memory device is protected by default against programming
and erasure. If the user chose to ensure the continued protection of flash,
then he/she can program the UNLOCK_HIBYTE and the FLASH_UNPROTECT bits
to 0 to prevent the ability to further set the FLASH_UNPROTECT bit to 1, thus
effectively locking the current flash image.

When the Blackfin processor is in hibernate state, all internal flash mem-
ory signals, except RP, are three-stated. This is the lowest power
consumption mode. After the Blackfin processor exits hibernate state, the
FLASH_CONTROL register is programmed again to its reset value.

ADSP-BF50x Blackfin Processor Hardware Reference 6-91

Internal Flash Memory

Internal Flash Memory Control Set
(FLASH_CONTROL_SET) Register

Writing to a bit in the FLASH_CONTROL_SET register sets the corresponding
bit in the internal flash memory control register. Reads return the internal
flash memory control register value.

Internal Flash Memory Control Clear
(FLASH_CONTROL_CLEAR) Register

Writing to a bit in the FLASH_CONTROL_CLEAR register clears the corre-
sponding bit in the internal flash memory control register. Reads return
the internal flash memory control register value.

Address Register Name Size Reset Value

0xFFC0 3290 FLASH_CONTROL_SET 16 0x8000

Address Register Name Size Reset Value

0xFFC0 3294 FLASH_CONTROL_CLEAR 16 0x8000

Internal Flash Memory Control Registers

6-92 ADSP-BF50x Blackfin Processor Hardware Reference

ADSP-BF50x Blackfin Processor Hardware Reference 7-1

7 DIRECT MEMORY ACCESS

This chapter describes the direct memory access (DMA) controller. Fol-
lowing an overview and list of key features is a description of operation
and functional modes of operation. The chapter concludes with a pro-
gramming model, consolidated register definitions, and programming
examples.

This chapter describes the features common to all the DMA channels, as
well as how DMA operations are set up. For specific peripheral features,
see the appropriate peripheral chapter for additional information. Perfor-
mance and bus arbitration for DMA operations can be found in
Chapter 3, “Chip Bus Hierarchy”.

Specific Information for the ADSP-BF50x
For details regarding the number of DMA controllers for the
ADSP-BF50x product, refer to ADSP-BF504, ADSP-BF504F,
ADSP-BF506F Embedded Processor Data Sheet.

For DMA interrupt vector assignments, refer to Table 4-3 on page 4-19 in
Chapter 4, “System Interrupts”.

To determine how each of the DMAs is multiplexed with other functional
pins, refer to Table 9-1 on page 9-4 through Table 9-3 on page 9-6 in
Chapter 9, “General-Purpose Ports”.

For a list of MMR addresses for each DMA, refer to Chapter A, “System
MMR Assignments”.

Overview and Features

7-2 ADSP-BF50x Blackfin Processor Hardware Reference

DMA controller behavior for the ADSP-BF50x that differs from the gen-
eral information in this chapter can be found in the section “Unique
Information for the ADSP-BF50x Processor” on page 7-103.

Overview and Features
The processor uses DMA to transfer data between memory spaces or
between a memory space and a peripheral. The processor can specify data
transfer operations and return to normal processing while the fully inte-
grated DMA controller carries out the data transfers independent of
processor activity.

The DMA controller can perform several types of data transfers:

• Peripheral DMA transfers data between memory and on-chip
peripherals.

• Memory DMA (MDMA) transfers data between memory and
memory. The processor has two MDMA modules, each consisting
of independent memory read and memory write channels.

• Handshaking memory DMA (HMDMA) transfers data between
off-chip peripherals and memory. This enhancement of the
MDMA channels enables external hardware to control the timing
of individual data transfers or block transfers.

 The HMDMA feature is not available for all products. Refer to
“Unique Information for the ADSP-BF50x Processor” on
page 7-103 to determine whether it applies to this product.

All DMAs can transport data to and from on-chip and off-chip memories,
including L1 and SDRAM. The L1 scratchpad memory cannot be
accessed by DMA.

ADSP-BF50x Blackfin Processor Hardware Reference 7-3

Direct Memory Access

 SDRAM and SRAM are not available on all products. Refer to
“Unique Information for the ADSP-BF50x Processor” on
page 7-103 to determine whether it applies to this product.

DMA transfers on the processor can be descriptor-based or register-based.

Register-based DMA allows the processor to directly program DMA con-
trol registers to initiate a DMA transfer. On completion, the control
registers may be automatically updated with their original setup values for
continuous transfer, if needed.

Descriptor-based DMA transfers require a set of parameters stored within
memory to initiate a DMA sequence. This sort of transfer allows the
chaining together of multiple DMA sequences. In descriptor-based DMA
operations, a DMA channel can be programmed to automatically set up
and start another DMA transfer after the current sequence completes.

Examples of DMA styles supported by flex descriptors include:

• A single linear buffer that stops on completion (FLOW = stop mode)

• A linear buffer with byte strides of any integer value, including
negative values (DMAx_X_MODIFY register)

• A circular, auto-refreshing buffer that interrupts on each full buffer

• A similar buffer that interrupts on fractional buffers (for example,
½, ¼) (2-D DMA)

• 1-D DMA, using a set of identical ping-pong buffers defined by a
linked ring of 3-word descriptors, each containing a link pointer
and a 32-bit address

• 1-D DMA, using a linked list of 5-word descriptors containing a
link pointer, a 32-bit address, the buffer length, and a
configuration

DMA Controller Overview

7-4 ADSP-BF50x Blackfin Processor Hardware Reference

• 2-D DMA, using an array of 1-word descriptors, specifying only
the base DMA address within a common data page

• 2-D DMA, using a linked list of 9-word descriptors specifying
everything

DMA Controller Overview
A block diagram of the DMA controller can be found in the “Unique
Information for the ADSP-BF50x Processor” on page 7-103.

External Interfaces
The DMA does not connect external memories and devices directly.
Rather, data is passed through the EBIU port. Any kind of device that is
supported by the EBIU can also be accessed by peripheral DMA or mem-
ory DMA operation. This is typically flash memory, SRAM, SDRAM,
FIFOs, or memory-mapped peripheral devices.

For products with handshaking MDMA (HMDMA), the operation is sup-
ported by two MDMA request input pins, DMAR0 and DMAR1. The DMAR0

pin controls transfer timing on the MDMA0 destination channel. The DMAR1

pin controls the destination channel of MDMA1. With these pins, external
FIFO devices, ADC or DAC converters, or other streaming or block-pro-
cessing devices can use the MDMA channels to exchange their data or
data buffers with the Blackfin processor memory.

Internal Interfaces
Figure 3-1 on page 3-3 shows the dedicated DMA buses used by the DMA
controller to interconnect L1 memory, the on-chip peripherals, and the
EBIU port.

ADSP-BF50x Blackfin Processor Hardware Reference 7-5

Direct Memory Access

The 16-bit DMA core bus (DCB) connects the DMA controller to a dedi-
cated port of L1 memory. L1 memory has dedicated DMA ports featuring
special DMA buffers to decouple DMA operation. See Blackfin Processor
Programming Reference for a description of the L1 memory architecture.
The DCB bus operates at core clock (CCLK) frequency. It is the DMA con-
troller’s responsibility to translate DCB transfers to the system clock
(SCLK) domain.

The 16-bit DMA access bus (DAB) connects the DMA controller to the
on-chip peripherals. This bus operates at SCLK frequency.

The 16-bit DMA external bus (DEB) connects the DMA controller to the
EBIU port. This bus is used for all peripheral and memory DMA transfers
to and from external memories and devices. It operates at SCLK frequency.

Transferred data can be 8-, 16-, or 32-bits wide. The DMA controller,
however, connects only to 16-bit buses.

Memory DMA can pass data every SCLK cycle between L1 memory and
the EBIU. Transfers from L1 memory to L1 memory require two cycles, as
the DCB bus is used for both source and destination transfers. Similarly,
transfers between two off-chip devices require EBIU and DEB resources
twice. Peripheral DMA transfers can be performed every other SCLK
cycle.

For more details on DMA performance see “DMA Performance” on
page 7-41.

Peripheral DMA
The DMA controller features 12 channels that perform transfers between
peripherals and on-chip or off-chip memories. The user has full control
over the mapping of DMA channels and peripherals. The default DMA
channel priority and mapping, shown in Table 7-7 on page 7-105, can be
changed by altering the 4-bit PMAP field in the DMAx_PERIPHERAL_MAP regis-
ters for the peripheral DMA channels.

DMA Controller Overview

7-6 ADSP-BF50x Blackfin Processor Hardware Reference

The default configuration should suffice in most cases, but there are some
cases where remapping the assignment can be helpful because of the DMA
channel priorities. When competing for any of the system buses, DMA0
has higher priority than DMA1, and so on. DMA11 has the lowest prior-
ity of the peripheral DMA channels.

 A 1:1 mapping should exist between DMA channels and peripher-
als. The user is responsible for ensuring that multiple DMA
channels are not mapped to the same peripheral and that multiple
peripherals are not mapped to the same DMA port. If multiple
channels are mapped to the same peripheral, only one channel is
connected (the lowest priority channel). If a nonexistent peripheral
(for example, 0xF in the PMAP field) is mapped to a channel, that
channel is disabled—DMA requests are ignored, and no DMA
grants are issued. The DMA requests are also not forwarded from
the peripheral to the interrupt controller.

All peripheral DMA channels work completely independently from each
other. The transfer timing is controlled by the mapped peripheral.

Every DMA channel features its own 4-deep FIFO that decouples DAB
activity from DCB and DEB availability. DMA interrupt and descriptor
fetch timing is aligned with the memory side (DCB/DEB side) of the
FIFO. The user does, however, have an option to align interrupts with the
peripheral side (DAB side) of the FIFO for transmit operations. Refer to
the SYNC bit in the DMAx_CONFIG register for details.

Memory DMA
This section describes the two pairs of MDMA channels, which provide
memory-to-memory DMA transfers among the various memory spaces.
These include L1 memory and external synchronous/asynchronous
memories.

Each MDMA channel contains a DMA FIFO, an 8-word by 16-bit FIFO
block used to transfer data to and from either L1 or the DCB and DEB

ADSP-BF50x Blackfin Processor Hardware Reference 7-7

Direct Memory Access

buses. Typically, it is used to transfer data between external memory and
internal memory. It will also support DMA from the boot ROM on the
DEB bus. The FIFO can be used to hold DMA data transferred between
two L1 memory locations or between two external memory locations.

Each page of MDMA channels consists of:

• A source channel (for reading from memory)

• A destination channel (for writing to memory)

A memory-to-memory transfer always requires both the source and the
destination channel to be enabled. Each source/destination channel forms
a “stream,” and these two streams are hardwired for DMA priorities 12
through 15.

• Priority 12: MDMA0 destination

• Priority 13: MDMA0 source

• Priority 14: MDMA1 destination

• Priority 15: MDMA1 source

MDMA0 takes precedence over MDMA1, unless round-robin scheduling
is used or priorities become urgent, as programmed by the DRQ bit field in
the HMDMA_CONTROL register.

 It is illegal to program a source channel for memory write or a des-
tination channel for memory read.

The channels support 8-, 16-, and 32-bit memory DMA transfers, but
both ends of the MDMA connect to 16-bit buses. Source and destination
channels must be programmed to the same word size. In other words, the
MDMA transfer does not perform packing or unpacking of data; each
read results in one write. Both ends of the MDMA FIFO for a given
stream are granted priority at the same time. Each pair shares an 8-word
deep 16-bit FIFO. The source DMA engine fills the FIFO, while the

DMA Controller Overview

7-8 ADSP-BF50x Blackfin Processor Hardware Reference

destination DMA engine empties it. The FIFO depth allows the burst
transfers of the external access bus (EAB) and DMA access bus (DAB) to
overlap, significantly improving throughput on block transfers between
internal and external memory. Two separate descriptor blocks are required
to supply the operating parameters for each MDMA pair, one for the
source channel and one for the destination channel.

Because the source and destination DMA engines share a single FIFO buf-
fer, the descriptor blocks must be configured to have the same data size. It
is possible to have a different mix of descriptors on both ends as long as
the total transfer count is the same.

To start a MDMA transfer operation, the MMRs for the source and desti-
nation channels are written, each in a manner similar to peripheral DMA.

 The DMAx_CONFIG register for the source channel must be written
before the DMAx_CONFIG register for the destination channel.

Handshaked Memory DMA (HMDMA) Mode

This feature is not available for all products. Refer to “Unique Informa-
tion for the ADSP-BF50x Processor” on page 7-103 to determine whether
it applies to this product.

Handshaked operation applies only to memory DMA channels.

Normally, memory DMA transfers are performed at maximum speed.
Once started, data is transferred in a continuous manner until either the
data count expires or the MDMA is stopped. In handshake mode, the
MDMA does not transfer data automatically when enabled; it waits for an
external trigger on the MDMA request input signals. The DMAR0 input is
associated with MDMA0 and the DMAR1 input with MDMA1. Once a trig-
ger event is detected, a programmable portion of data is transferred and
then the MDMA stalls again and waits for the next trigger.

Handshake operation is not only useful for controlling the timing of
memory-to-memory transfers, it also enables the MDMA to operate with

ADSP-BF50x Blackfin Processor Hardware Reference 7-9

Direct Memory Access

asynchronous FIFO-style devices connected to the EBIU port. The Black-
fin processor acknowledges a DMA request by a proper number of read or
write operations. It is up to the device connected to any of the AMSx

strobes to deassert or pulse the request signal and to decrement the num-
ber of pending requests accordingly.

Depending on HMDMA operating mode, an external DMA request may
trigger individual data word transfers or block transfers. A block can con-
sist of up to 65535 data words. For best throughput, DMA requests can
be pipelined. The HMDMA controllers feature a request counter to
decouple request timing from the data transfers.

See “Handshaked Memory DMA Operation” on page 7-37 for a func-
tional description.

Modes of Operation
The following sections describe the DMA operation.

Register-Based DMA Operation
Register-based DMA is the traditional kind of DMA operation. Software
configures the source or destination address and the length of the data to
be transferred to memory-mapped registers and then starts DMA
operation.

For basic operation, the software performs these steps:

• Write the source or destination address to the 32-bit
DMAx_START_ADDR register.

• Write the number of data words to be transferred to the 16-bit
DMAx_X_COUNT register.

Modes of Operation

7-10 ADSP-BF50x Blackfin Processor Hardware Reference

• Write the address modifier to the 16-bit DMAx_X_MODIFY register.
This is the two’s-complement value added to the address pointer
after every transfer. This value must always be initialized as there is
no default value. Typically, this register is set to 0x0004 for 32-bit
DMA transfers, to 0x0002 for 16-bit transfers, and to 0x0001 for
byte transfers.

• Write the operation mode to the DMAx_CONFIG register. These bits
in particular need to be changed as needed:

• The DMAEN bit enables the DMA channel.

• The WNR bit controls the DMA direction. DMAs that read
from memory (peripheral transmit DMAs and source chan-
nel MDMAs) keep this bit cleared. Peripheral receive
DMAs and destination channel MDMAs set this bit because
they write to memory.

• The WDSIZE bit controls the data word width for the trans-
fer. It can be 8-, 16-, or 32-bits wide.

• The DI_EN bit enables an interrupt when the DMA opera-
tion has finished.

• Set the FLOW field to 0x0 for stop mode or 0x1 for autobuffer
mode.

Once the DMAEN bit is set, the DMA channel starts its operation. While
running, the DMAx_CURR_ADDR and the DMAx_CURR_X_COUNT registers can be
monitored to determine the current progress of the DMA operation.
However they should not be used to synchronize software and hardware.

The DMAx_IRQ_STATUS register signals whether the DMA has finished
(DMA_DONE bit), whether a DMA error has occurred (DMA_ERR bit), and
whether the DMA is currently running (DMA_RUN bit). The DMA_DONE and
the DMA_ERR bits also function as interrupt latch bits. They must be cleared
by write-one-to-clear (W1C) operations by the interrupt service routine.

ADSP-BF50x Blackfin Processor Hardware Reference 7-11

Direct Memory Access

Stop Mode

In stop mode, the DMA operation is executed only once. When started,
the DMA channel transfers the desired number of data words and stops
itself when the transfer is complete. If the DMA channel is no longer used,
software should clear the DMAEN enable bit to disable the otherwise paused
channel. Stop mode is entered if the FLOW bit field in the DMA channel’s
DMAx_CONFIG register is 0. The NDSIZE field must always be 0 in this mode.

For receive (memory write) operation, the DMA_RUN bit functions almost
the same as the inverted DMA_DONE bit. For transmit (memory read) opera-
tion, however, the two bits have different timing. Refer to the description
of the SYNC bit in the DMAx_CONFIG register for details.

Autobuffer Mode

In autobuffer mode, the DMA operates repeatedly in a circular manner. If
all data words have been transferred, the address pointer DMAx_CURR_ADDR
is reloaded automatically by the DMAx_START_ADDR value. An interrupt may
also be generated.

Autobuffer mode is entered if the FLOW field in the DMAx_CONFIG register
is 1. The NDSIZE bit must be 0 in autobuffer mode.

Two-Dimensional DMA Operation
Register-based and descriptor-based DMA can operate in one-dimensional
mode or two-dimensional mode.

In two-dimensional (2-D) mode, the DMAx_X_COUNT register is
accompanied by the DMAx_Y_COUNT register, supporting arbitrary
row and column sizes up to 64K × 64K elements, as well as arbitrary
DMAx_X_MODIFY and DMAx_Y_MODIFY values up to ±32K bytes.
Furthermore, DMAx_Y_MODIFY can be negative, allowing implementa-
tion of interleaved datastreams. The DMAx_X_COUNT and

Modes of Operation

7-12 ADSP-BF50x Blackfin Processor Hardware Reference

DMAx_Y_COUNT values specify the row and column sizes, where
DMAx_X_COUNT must be 2 or greater.

The start address and modify values are in bytes, and they must be aligned
to a multiple of the DMA transfer word size (WDSIZE[1:0] in
DMAx_CONFIG). Misalignment causes a DMA error.

The DMAx_X_MODIFY value is the byte-address increment that is applied
after each transfer that decrements the DMAx_CURR_X_COUNT register. The
DMAx_X_MODIFY value is not applied when the inner loop count is ended by
decrementing DMAx_CURR_X_COUNT from 1 to 0, except that it is applied on
the final transfer when DMAx_CURR_Y_COUNT is 1 and DMAx_CURR_X_COUNT

decrements from 1 to 0.

The DMAx_Y_MODIFY value is the byte-address increment that is applied
after each decrement of the DMAx_CURR_Y_COUNT register. However, the
DMAx_Y_MODIFY value is not applied to the last item in the array on which
the outer loop count (DMAx_CURR_Y_COUNT) also expires by decrementing
from 1 to 0.

After the last transfer completes, DMAx_CURR_Y_COUNT = 1,
DMAx_CURR_X_COUNT = 0, and DMAx_CURR_ADDR is equal to the last item’s
address plus DMAx_X_MODIFY.

 If the DMA channel is programmed to refresh automatically (auto-
buffer mode), then these registers will be loaded from
DMAx_X_COUNT, DMAx_Y_COUNT, and DMAx_START_ADDR upon the first
data transfer.

The DI_SEL configuration bit enables DMA interrupt requests every time
the inner loop rolls over. If DI_SEL is cleared, but DI_EN is still set, only
one interrupt is generated after the outer loop completes.

ADSP-BF50x Blackfin Processor Hardware Reference 7-13

Direct Memory Access

Examples of Two-Dimensional DMA

Example 1: Retrieve a 16 × 8 block of bytes from a video frame buffer of
size (N × M) pixels:

DMAx_X_MODIFY = 1

DMAx_X_COUNT = 16

DMAx_Y_MODIFY = N–15 (offset from the end of one row to the start of
another)
DMAx_Y_COUNT = 8

This produces the following address offsets from the start address:

0,1,2,...15,

N,N + 1, ... N + 15,

2N, 2N + 1,... 2N + 15, ...

7N, 7N + 1,... 7N + 15,

Example 2: Receive a video datastream of bytes,
(R,G,B pixels) × (N × M image size):

DMAx_X_MODIFY = (N * M)

DMAx_X_COUNT = 3

DMAx_Y_MODIFY = 1 – 2(N * M) (negative)

DMAx_Y_COUNT = (N * M)

This produces the following address offsets from the start address:

0, (N * M), 2(N * M),

1, (N * M) + 1, 2(N * M) + 1,

2, (N * M) + 2, 2(N * M) + 2,

...

(N * M) – 1, 2(N * M) – 1, 3(N * M) – 1,

Modes of Operation

7-14 ADSP-BF50x Blackfin Processor Hardware Reference

Descriptor-based DMA Operation
In descriptor-based DMA operation, software does not set up DMA
sequences by writing directly into DMA controller registers. Rather, soft-
ware keeps DMA configurations, called descriptors, in memory. On
demand, the DMA controller loads the descriptor from memory and over-
writes the affected DMA registers by its own control. Descriptors can be
fetched from L1 memory using the DCB bus or from external memory
using the DEB bus.

A descriptor describes what kind of operation should be performed next
by the DMA channel. This includes the DMA configuration word as well
as data source/destination address, transfer count, and address modify val-
ues. A DMA sequence controlled by one descriptor is called a work unit.

Optionally, an interrupt can be requested at the end of any work unit by
setting the DI_EN bit in the configuration word of the respective
descriptor.

A DMA channel is started in descriptor-based mode by first writing the
32-bit address of the first descriptor into the DMAx_NEXT_DESC_PTR register
(or the DMAx_CURR_DESC_PTR in case of descriptor array mode) and then
performing a write to the DMAx_CONFIG register that sets the FLOW field to
either 0x4, 0x6, or 0x7 and enables the DMAEN bit. This causes the DMA
controller to immediately fetch the descriptor from the address pointed to
by the DMAx_NEXT_DESC_PTR register. The fetch overwrites the DMAx_CONFIG

register again. If the DMAEN bit is still set, the channel starts DMA
processing.

The DFETCH bit in the DMAx_IRQ_STATUS register tells whether a descriptor
fetch is ongoing on the respective DMA channel. The
DMAx_CURR_DESC_PTR points to the descriptor value that is to be fetched
next.

ADSP-BF50x Blackfin Processor Hardware Reference 7-15

Direct Memory Access

Descriptor List Mode

Descriptor list mode is selected by setting the FLOW bit field in the DMA
channel’s DMAx_CONFIG register to either 0x6 (small descriptor mode)
or 0x7 (large descriptor mode). In either of these modes multiple descrip-
tors form a chained list. Every descriptor contains a pointer to the next
descriptor. When the descriptor is fetched, this pointer value is loaded
into the DMAx_NEXT_DESC_PTR register of the DMA channel. In
large descriptor mode this pointer is 32 bits wide. Therefore, the next
descriptor may reside in any address space accessible through the DCB
and DEB buses. In small descriptor mode this pointer is just 16 bits wide.
For this reason, the next descriptor must reside in the same 64K byte
address space as the first one because the upper 16 bits of the
DMAx_NEXT_DESC_PTR register are not updated.

Descriptor list modes are started by writing first to the
DMAx_NEXT_DESC_PTR register and then to the DMAx_CONFIG register.

Descriptor Array Mode

Descriptor array mode is selected by setting the FLOW bit field in the
DMA channel’s DMAx_CONFIG register to 0x4. In this mode, the
descriptors do not contain further descriptor pointers. The initial
DMAx_CURR_DESC_PTR value is written by software. It points to an
array of descriptors. The individual descriptors are assumed to reside next
to each other and, therefore, their addresses are known.

Variable Descriptor Size

In any descriptor-based mode the NDSIZE field in the configuration word
specifies how many 16-bit words of the next descriptor need to be loaded
on the next fetch. In descriptor-based operation, NDSIZE must be
non-zero. The descriptor size can be any value from one entry (the lower
16 bits of DMAx_START_ADDR only) to nine entries (all the DMA parame-
ters). Table 7-1 illustrates how a descriptor must be structured in

Modes of Operation

7-16 ADSP-BF50x Blackfin Processor Hardware Reference

memory. The values have the same order as the corresponding MMR
addresses.

If, for example, a descriptor is fetched in array mode with NDSIZE = 0x5,
the DMA controller fetches the 32-bit start address, the DMA configura-
tion word, and the XCNT and XMOD values. However, it does not load YCNT

and YMOD. This might be the case if the DMA operates in one-dimensional
mode or if the DMA is in two-dimensional mode, but the YCNT and YMOD

values do not need to change.

All the other registers not loaded from the descriptor retain their prior val-
ues, although the DMAx_CURR_ADDR, DMAx_CURR_X_COUNT, and
DMAx_CURR_Y_COUNT registers are reloaded between the descriptor fetch and
the start of DMA operation.

Table 7-1 shows the offsets for descriptor elements in the three modes
described above. Note the names in the table describe the descriptor ele-
ments in memory, not the actual MMRs into which they are eventually
loaded. For more information regarding descriptor element acronyms, see
Table 7-4 on page 7-64.

Table 7-1. Parameter Registers and Descriptor Offsets

Descriptor Offset Descriptor Array Mode Small Descriptor List Mode Large Descriptor List Mode

0x0 SAL NDPL NDPL

0x2 SAH SAL NDPH

0x4 DMACFG SAH SAL

0x6 XCNT DMACFG SAH

0x8 XMOD XCNT DMACFG

0xA YCNT XMOD XCNT

0xC YMOD YCNT XMOD

0xE YMOD YCNT

0x10 YMOD

ADSP-BF50x Blackfin Processor Hardware Reference 7-17

Direct Memory Access

Note that every descriptor fetch consumes bandwidth from either the
DCB bus or the DEB bus and the external memory interface, so it is best
to keep the size of descriptors as small as possible.

Mixing Flow Modes

The FLOW mode of a DMA is not a global setting. If the DMA configura-
tion word is reloaded with a descriptor fetch, the FLOW and NDSIZE bit
fields can also be altered. A small descriptor might be used to loop back to
the first descriptor if a descriptor array is used in an endless manner. If the
descriptor chain is not endless and the DMA is required to stop after a
certain descriptor has been processed, the last descriptor is typically pro-
cessed in stop mode. That is, its FLOW and NDSIZE fields are 0, but its DMAEN
bit is still set.

Functional Description
The following sections provide a functional description of DMA.

DMA Operation Flow
Figure 7-1 and Figure 7-2 describe the DMA flow.

DMA Startup

This section discusses starting DMA “from scratch.” This is similar to
starting it after it has been paused by the FLOW = 0 mode.

Before initiating DMA for the first time on a given channel, all parameter
registers must be initialized. Be sure to initialize the upper 16 bits of the
DMAx_NEXT_DESC_PTR (or DMAx_CURR_DESC_PTR register in FLOW = 4 mode)
and DMAx_START_ADDR registers, because they might not otherwise be
accessed, depending upon the flow mode. Also note that the

Functional Description

7-18 ADSP-BF50x Blackfin Processor Hardware Reference

DMAx_X_MODIFY and DMAx_Y_MODIFY registers are not preset to a default
value at reset.

The user may wish to write other DMA registers that might be static dur-
ing DMA activity (for example, DMAx_X_MODIFY, DMAx_Y_MODIFY). The
contents of NDSIZE and FLOW in DMAx_CONFIG indicate which registers, if
any, are fetched from descriptor elements in memory. After the descriptor
fetch, if any, is completed, DMA operation begins, initiated by writing
DMAx_CONFIG with DMAEN = 1.

ADSP-BF50x Blackfin Processor Hardware Reference 7-19

Direct Memory Access

Figure 7-1. DMA Flow, From DMA Controller’s Point of View (1 of 2)

COPY FLOW, NDSIZE FROM DMA_CONFIG
INTO TEMPORARY DESCRIPTOR FETCH COUNTERS

B

COPY NEXT DESCRIPTOR POINTER
TO CURRENT DESCRIPTOR POINTER

USER WRITES SOME OR ALL DMA PARAMETER
REGISTERS, AND THEN WRITES DMA_CONFIG

SET DFETCH IN IRQ_STATUS

SET DMA_RUN IN IRQ_STATUS

BAD DMA_CONFIG?

TEST DMAEN

TEST FLOW

TEST FLOW

Y

N

DMA ERROR

DMAEN = 1

DMAEN = 0

FLOW = 4, 6, OR 7

DMA STOPPED.
CLEAR DMA_RUN IN

IRQ_STATUS

FLOW = 0 OR 1
A

C

DI_EN = 0 OR
(DI_EN = 1 AND
DMA_DONE_IRQ = 1)

FLOW = 4

FLOW = 6 OR 7

D

Functional Description

7-20 ADSP-BF50x Blackfin Processor Hardware Reference

Figure 7-2. DMA Flow, From DMA Controller’s Point of View (2 of 2)

B

A

C

TEST NDSIZE
DMA

ABORT
OCCURS

READ NDSIZE ELEMENTS
OF DESCRIPTOR INTO

PARAMETER REGISTERS
VIA CURRENT

DESCRIPTOR POINTER
FLOW = 0 OR 1

FLOW = 1

CLEAR DFETCH IN
IRQ_STATUS

DMA TRANSFER
BEGINS AND

CONTINUES UNTIL
COUNTS EXPIRE

TEST DI_EN

TEST FLOW

TEST SYNC, WNR

DMA STOPPED.
CLEAR DMA_RUN IN

IRQ_STATUS.

MEMORY WRITE (DESTINATION)

SYNC = 0 &
MEMORY READ

FLOW = 0

DI_EN = 0

DI_EN = 1 SIGNAL AN
INTERRUPT

TO THE CORE

SET DMA_DONE
IN IRQ_STATUS

TRANSFER
DATA FROM

FIFO TO
PERIPHERAL
UNTIL EMPTY

*MAX SIZE DEPENDS ON FLOW
 IF FLOW = 4, MAX_SIZE = 7
 IF FLOW = 6, MAX_SIZE = 8
 IF FLOW = 7, MAX_SIZE = 9

NDSIZE = 0 OR
NDSIZE > MAX_SIZE*

NDSIZE > 0 AND
NDSIZE <= MAX_SIZE*

TEST SYNC, WNR

TRANSFER
DATA FROM

FIFO TO
PERIPHERAL
UNTIL EMPTY

SYNC = 1 &
MEMORY READ

SYNC = 0 OR
MEMORY WRITE

D
FLOW = 4, 6, 7

SYNC = 1 OR
MEMORY WRITE

ADSP-BF50x Blackfin Processor Hardware Reference 7-21

Direct Memory Access

When DMAx_CONFIG is written directly by software, the DMA controller
recognizes this as the special startup condition that occurs when starting
DMA for the first time on this channel or after the engine has been
stopped (FLOW = 0).

When the descriptor fetch is complete and DMAEN = 1, the DMACFG descrip-
tor element that was read into DMAx_CONFIG assumes control. Before this
point, the direct write to DMAx_CONFIG had control. In other words, the
WDSIZE, DI_EN, DI_SEL, SYNC, and DMA2D fields will be taken from the
DMACFG value in the descriptor read from memory, while these field values
initially written to the DMAx_CONFIG register are ignored.

As Figure 7-1 and Figure 7-2 show, at startup the FLOW and NDSIZE bits in
DMAx_CONFIG determine the course of the DMA setup process. The FLOW

value determines whether to load more current registers from descriptor
elements in memory, while the NDSIZE bits detail how many descriptor
elements to fetch before starting DMA. DMA registers not included in the
descriptor are not modified from their prior values.

If the FLOW value specifies small or large descriptor list modes, the
DMAx_NEXT_DESC_PTR is copied into DMAx_CURR_DESC_PTR. Then, fetches of
new descriptor elements from memory are performed, indexed by
DMAx_CURR_DESC_PTR, which is incremented after each fetch. If NDPL
and/or NDPH is part of the descriptor, then these values are loaded into
DMAx_NEXT_DESC_PTR, but the fetch of the current descriptor continues
using DMAx_CURR_DESC_PTR. After completion of the descriptor fetch,
DMAx_CURR_DESC_PTR points to the next 16-bit word in memory past the
end of the descriptor.

If neither NDPH nor NDPL are part of the descriptor (that is, in descriptor
array mode, FLOW = 4), then the transfer from NDPH/NDPL into
DMAx_CURR_DESC_PTR does not occur. Instead, descriptor fetch indexing
begins with the value in DMAx_CURR_DESC_PTR.

If DMACFG is not part of the descriptor, the previous DMAx_CONFIG settings
(as written by MMR access at startup) control the work unit operation. If

Functional Description

7-22 ADSP-BF50x Blackfin Processor Hardware Reference

DMACFG is part of the descriptor, then the DMAx_CONFIG value programmed
by the MMR access controls only the loading of the first descriptor from
memory. The subsequent DMA work operation is controlled by the low
byte of the descriptor’s DMACFG and by the parameter registers loaded from
the descriptor. The bits DI_EN, DI_SEL, DMA2D, WDSIZE, and WNR in the value
programmed by the MMR access are disregarded.

The DMA_RUN and DFETCH status bits in the DMAx_IRQ_STATUS register indi-
cate the state of the DMA channel. After a write to DMAx_CONFIG, the
DMA_RUN and DFETCH bits can be automatically set to 1. No data interrupts
are signaled as a result of loading the first descriptor from memory.

After the above steps, DMA data transfer operation begins. The DMA
channel immediately attempts to fill its FIFO, subject to channel prior-
ity—a memory write (RX) DMA channel begins accepting data from its
peripheral, and a memory read (TX) DMA channel begins memory reads,
provided the channel wins the grant for bus access.

When the DMA channel performs its first data memory access, its address
and count computations take their input operands from the start registers
(DMAx_START_ADDR, DMAx_X_COUNT, DMAx_Y_COUNT), and write results back
to the current registers (DMAx_CURR_ADDR, DMAx_CURR_X_COUNT,
DMAx_CURR_Y_COUNT). Note also that the current registers are not valid
until the first memory access is performed, which may be some time after
the channel is started by the write to the DMA_CONFIG register. The current
registers are loaded automatically from the appropriate descriptor ele-
ments, overwriting their previous contents, as follows.

• DMAx_START_ADDR is copied to DMAx_CURR_ADDR

• DMAx_X_COUNT is copied to DMAx_CURR_X_COUNT

• DMAx_Y_COUNT is copied to DMAx_CURR_Y_COUNT

Then DMA data transfer operation begins, as shown in Figure 7-2 on
page 7-20.

ADSP-BF50x Blackfin Processor Hardware Reference 7-23

Direct Memory Access

DMA Refresh

On completion of a work unit:

• The DMA controller completes the transfer of all data between
memory and the DMA unit.

• If SYNC = 1 and WNR = 0 (memory read), the DMA controller selects
a synchronized transition and transfers all data to the peripheral
before continuing.

• If enabled by DI_EN, the DMA controller signals an interrupt to the
core and sets the DMA_DONE bit in the channel’s DMAx_IRQ_STATUS
register.

• If FLOW = 0 the DMA controller stops operation by clearing the
DMA_RUN bit in DMAx_IRQ_STATUS register after all data in the chan-
nel’s DMA FIFO has been transferred to the peripheral.

• During the fetch in FLOW modes 4, 6, and 7, the DMA controller
sets the DFETCH bit in DMAx_IRQ_STATUS register to 1. At this point,
the DMA operation depends on whether FLOW = 4, 6, or 7, as fol-
lows:

If FLOW = 4 (descriptor array) the DMA controller loads a new
descriptor from memory into the DMA registers using the contents
of DMAx_CURR_DESC_PTR, and increments DMAx_CURR_DESC_PTR. The
descriptor size comes from the NDSIZE field of the DMAx_CONFIG reg-
ister prior to the beginning of the fetch.

If FLOW = 6 (small descriptor list) the DMA controller copies the
32-bit DMAx_NEXT_DESC_PTR into DMAx_CURR_DESC_PTR. Next, the
DMA controller fetches a descriptor from memory into the DMA
registers using the new contents of DMAx_CURR_DESC_PTR, and incre-
ments DMAx_CURR_DESC_PTR. The first descriptor element that is
loaded is a new 16-bit value for the lower 16 bits of
DMAx_NEXT_DESC_PTR, followed by the rest of the descriptor

Functional Description

7-24 ADSP-BF50x Blackfin Processor Hardware Reference

elements. The high 16 bits of DMAx_NEXT_DESC_PTR will retain their
former value. This supports a shorter, more efficient descriptor
than the large descriptor list model, which is suitable whenever the
application can place the channel’s descriptors in the same 64K
byte range of memory.

If FLOW = 7 (large descriptor list) the DMA controller copies the
32-bit DMAx_NEXT_DESC_PTR into DMAx_CURR_DESC_PTR. Next, the
DMA controller fetches a descriptor from memory into the DMA
registers using the new contents of DMAx_CURR_DESC_PTR, and incre-
ments DMAx_CURR_DESC_PTR. The first descriptor element that is
loaded is a new 32-bit value for the full DMAx_NEXT_DESC_PTR, fol-
lowed by the rest of the descriptor elements. The high 16 bits of
DMAx_NEXT_DESC_PTR may differ from their former value. This sup-
ports a fully flexible descriptor list which can be located anywhere
in internal memory or external memory.

• If it is necessary to link from a descriptor chain whose descriptors
are in one 64K byte area to another chain whose descriptors are
outside that area, only the descriptor containing the link to the new
64K byte range needs to use FLOW = 7. All descriptors that reference
the same 64K byte area may use FLOW = 6.

• If FLOW = 4, 6, or 7 (descriptor array, small descriptor list, or large
descriptor list, respectively), the DMA controller clears the DFETCH

bit in the DMAx_IRQ_STATUS register.

ADSP-BF50x Blackfin Processor Hardware Reference 7-25

Direct Memory Access

• If FLOW = any value but 0 (Stop), the DMA controller begins the
next work unit for that channel, which must contend with other
channels for priority on the memory buses. On the first memory
transfer of the new work unit, the DMA controller updates the cur-
rent registers from the start registers:

DMAx_CURR_ADDR loaded from DMAx_START_ADDR

DMAx_CURR_X_COUNT loaded from DMAx_X_COUNT

DMAx_CURR_Y_COUNT loaded from DMAx_Y_COUNT

The DFETCH bit in the DMAx_IRQ_STATUS register is then cleared,
after which the DMA transfer begins again, as shown in Figure 7-2
on page 7-20.

Work Unit Transitions

Transitions from one work unit to the next are controlled by the SYNC bit
in the DMAx_CONFIG register of the work units. In general, continuous tran-
sitions have lower latency at the cost of restrictions on changes of data
format or addressed memory space in the two work units. These latency
gains and data restrictions arise from the way the DMA FIFO pipeline is
handled while the next descriptor is fetched. In continuous transitions
(SYNC = 0), the DMA FIFO pipeline continues to transfer data to and
from the peripheral or destination memory during the descriptor fetch
and/or when the DMA channel is paused between descriptor chains.

Synchronized transitions (SYNC = 1), on the other hand, provide better
real-time synchronization of interrupts with peripheral state and greater
flexibility in the data formats and memory spaces of the two work units, at
the cost of higher latency in the transition. In synchronized transitions,
the DMA FIFO pipeline is drained to the destination or flushed (RX data
discarded) between work units.

 Work unit transitions for MDMA streams are controlled by the
SYNC bit of the MDMA source channel’s DMAx_CONFIG register. The
SYNC bit of the MDMA destination channel is reserved and must be

Functional Description

7-26 ADSP-BF50x Blackfin Processor Hardware Reference

0. In transmit (memory read) channels, the SYNC bit of the last
descriptor prior to the transition controls the transition behavior.
In contrast, in receive channels, the SYNC bit of the first descriptor
of the next descriptor chain controls the transition.

DMA Transmit and MDMA Source

In DMA transmit (memory read) and MDMA source channels, the SYNC

bit controls the interrupt timing at the end of the work unit and the han-
dling of the DMA FIFO between the current and next work units.

If SYNC = 0, a continuous transition is selected. In a continuous transition,
just after the last data item is read from memory, the following operations
start in parallel:

• The interrupt (if any) is signalled.

• The DMA_DONE bit in the DMAx_IRQ_STATUS register is set.

• The next descriptor begins to be fetched.

• The final data items are delivered from the DMA FIFO to the des-
tination memory or peripheral.

This allows the DMA to provide data from the FIFO to the peripheral
“continuously” during the descriptor fetch latency period.

When SYNC = 0, the final interrupt (if enabled) occurs when the last data is
read from memory. This interrupt is at the earliest time that the output
memory buffer may safely be modified without affecting the previous data
transmission. Up to four data items may still be in the DMA FIFO,
however, and not yet at the peripheral, so the DMA interrupt should not
be used as the sole means of synchronizing the shutdown or reconfigura-
tion of the peripheral following a transmission.

ADSP-BF50x Blackfin Processor Hardware Reference 7-27

Direct Memory Access

 If SYNC = 0 (continuous transition) on a transmit (memory read)
descriptor, the next descriptor must have the same data word size,
read/write direction, and source memory (internal vs. external) as
the current descriptor.

SYNC = 0 selects continuous transition on a work unit in FLOW = 0 mode
with interrupt enabled. The interrupt service routine may begin execution
while the final data is still draining from the FIFO to the peripheral. This
is indicated by the DMA_RUN bit in the DMAx_IRQ_STATUS register; if it is 1,
the FIFO is not empty yet. Do not start a new work unit with different
word size or direction while DMA_RUN = 1. Further, if the channel is dis-
abled (by writing DMAEN = 0), the data in the FIFO is lost.

SYNC = 1 selects a synchronized transition in which the DMA FIFO is first
drained to the destination memory or peripheral before any interrupt is
signalled and before any subsequent descriptor or data is fetched. This
incurs greater latency, but provides direct synchronization between the
DMA interrupt and the state of the data at the peripheral.

For example, if SYNC = 1 and DI_EN = 1 on the last descriptor in a work
unit, the interrupt occurs when the final data has been transferred to the
peripheral, allowing the service routine to properly switch to non-DMA
transmit operation. When the interrupt service routine is invoked, the
DMA_DONE bit is set and the DMA_RUN bit is cleared.

A synchronized transition also allows greater flexibility in the format of
the DMA descriptor chain. If SYNC = 1, the next descriptor may have any
word size or read/write direction supported by the peripheral and may
come from either memory space (internal or external). This can be useful
in managing MDMA work unit queues, since it is no longer necessary to
interrupt the queue between dissimilar work units.

DMA Receive

In DMA receive (memory write) channels, the SYNC bit controls the han-
dling of the DMA FIFO between descriptor chains (not individual

Functional Description

7-28 ADSP-BF50x Blackfin Processor Hardware Reference

descriptors), when the DMA channel is paused. The DMA channel pauses
after descriptors with FLOW = 0 mode, and may be restarted (for example,
after an interrupt) by writing the channel’s DMAx_CONFIG register with
DMAEN = 1.

If the SYNC bit is 0 in the new work unit’s DMAx_CONFIG value, a continuous
transition is selected. In this mode, any data items received into the DMA
FIFO while the channel was paused are retained, and they are the first
items written to memory in the new work unit. This mode of operation
provides lower latency at work unit transitions and ensures that no data
items are dropped during a DMA pause, at the cost of certain restrictions
on the DMA descriptors.

 If the SYNC bit is 0 on the first descriptor of a descriptor chain after
a DMA pause, the DMA word size of the new chain must not
change from the word size of the previous descriptor chain active
before the pause, unless the DMA channel is reset between chains
by writing the DMAEN bit to 0 and then to 1 again.

If the SYNC bit is 1 in the new work unit’s DMAx_CONFIG value, a synchro-
nized transition is selected. In this mode, only the data received from the
peripheral by the DMA channel after the write to the DMAx_CONFIG register
are delivered to memory. Any prior data items transferred from the
peripheral to the DMA FIFO before this register write are discarded. This
provides direct synchronization between the data stream received from the
peripheral and the timing of the channel restart (when the DMAx_CONFIG

register is written).

For receive DMAs, the SYNC bit has no effect in transitions between work
units in the same descriptor chain (that is, when the previous descriptor’s
FLOW mode was not 0, so that DMA channel did not pause.)

If a descriptor chain begins with a SYNC bit of 1, there is no restriction on
DMA word size of the new chain in comparison to the previous chain.

ADSP-BF50x Blackfin Processor Hardware Reference 7-29

Direct Memory Access

 The DMA word size must not change between one descriptor and
the next in any DMA receive (memory write) channel within a sin-
gle descriptor chain, regardless of the SYNC bit setting. In other
words, if a descriptor has WNR = 1 and FLOW = 4, 6, or 7, then the
next descriptor must have the same word size. For any DMA
receive (memory write) channel, there is no restriction on changes
of memory space (internal vs. external) between descriptors or
descriptor chains. DMA transmit (memory read) channels may
have such restrictions (see “DMA Transmit and MDMA Source”
on page 7-26).

Stopping DMA Transfers

In FLOW = 0 mode, DMA stops automatically after the work unit is
complete.

If a list or array of descriptors is used to control DMA, and if every
descriptor contains a DMACFG element, then the final DMACFG element
should have a FLOW = 0 setting to gracefully stop the channel.

In autobuffer (FLOW = 1) mode, or if a list or array of descriptors without
DMACFG elements is used, then the DMA transfer process must be termi-
nated by an MMR write to the DMAx_CONFIG register with a value whose
DMAEN bit is 0. A write of 0 to the entire register will always terminate
DMA gracefully (without DMA abort).

 If a channel has been stopped abruptly by writing DMAx_CONFIG to 0
(or any value with DMAEN = 0), the user must ensure that any mem-
ory read or write accesses in the pipelines have completed before
enabling the channel again. If the channel is enabled again before
an “orphan” access from a previous work unit completes, the state
of the DMA interrupt and FIFO is unspecified. This can generally
be handled by ensuring that the core allocates several consecutive
idle cycles in its usage of the relevant memory space to allow up to
three pending DMA accesses to issue, plus allowing enough mem-
ory access time for the accesses themselves to complete.

Functional Description

7-30 ADSP-BF50x Blackfin Processor Hardware Reference

DMA Errors (Aborts)
The DMA controller flags conditions that cause the DMA process to end
abnormally (abort). This functionality is provided as a tool for system
development and debug to detect DMA-related programming errors.
DMA errors (aborts) are detected by the DMA channel module in the
cases listed below. When a DMA error occurs, the channel is immediately
stopped (DMA_RUN goes to 0) and any prefetched data is discarded. In addi-
tion, a DMA_ERROR interrupt is asserted.

There is only one DMA_ERROR interrupt for the whole DMA controller,
which is asserted whenever any of the channels has detected an error
condition.

The DMA_ERROR interrupt handler must:

• Read each channel’s DMAx_IRQ_STATUS register to look for a channel
with the DMA_ERR bit set (bit 1).

• Clear the problem with that channel (for example, fix register
values).

• Clear the DMA_ERR bit (write DMAx_IRQ_STATUS with bit 1 set).

The following error conditions are detected by the DMA hardware and
result in a DMA abort interrupt.

• The configuration register contains invalid values:

• Incorrect WDSIZE value (WDSIZE = b#11)

• Bit 15 not set to 0

• Incorrect FLOW value (FLOW = 2, 3, or 5)

• NDSIZE value does not agree with FLOW. See Table 7-2 on
page 7-32.

ADSP-BF50x Blackfin Processor Hardware Reference 7-31

Direct Memory Access

• A disallowed register write occurred while the channel was run-
ning. Only the DMAx_CONFIG and DMAx_IRQ_STATUS registers can be
written when DMA_RUN = 1.

• An address alignment error occurred during any memory access.
For example, when DMAx_CONFIG register WDSIZE = 1 (16-bit) but
the least significant bit (LSB) of the address is not equal to b#0, or
when WDSIZE = 2 (32-bit) but the two LSBs of the address are not
equal to b#00.

• A memory space transition was attempted (internal-to-external or
vice versa). For example, the value in the DMAx_CURR_ADDR register
or DMAx_CURR_DESC_PTR register crossed a memory boundary.

• A memory access error occurred. Either an access attempt was
made to an internal address not populated or defined as cache, or
an external access caused an error (signaled by the external memory
interface).

Some prohibited situations are not detected by the DMA hardware. No
DMA abort is signaled for these situations:

• DMAx_CONFIG direction bit (WNR) does not agree with the direction
of the mapped peripheral.

• DMAx_CONFIG direction bit does not agree with the direction of the
MDMA channel.

• DMAx_CONFIG word size (WDSIZE) is not supported by the mapped
peripheral. See Table 7-2.

• DMAx_CONFIG word size in source and destination of the MDMA
stream are not equal.

• Descriptor chain indicates data buffers that are not in the same
internal/external memory space.

• In 2-D DMA, X_COUNT = 1

Functional Description

7-32 ADSP-BF50x Blackfin Processor Hardware Reference

DMA Control Commands
Advanced peripherals, such as an Ethernet MAC module, are capable of
managing some of their own DMA operations, thus dramatically improv-
ing real-time performance and relieving control and interrupt demands on
the Blackfin processor core. These peripherals may communicate to the
DMA controller using DMA control commands, which are transmitted
from the peripheral to the associated DMA channel over internal DMA
request buses. Refer to “Unique Information for the ADSP-BF50x Proces-
sor” on page 7-103 to determine if DMA control commands are
applicable to a particular product.

The request buses consist of three wires per DMA-management-capable
peripheral. The DMA control commands extend the set of operations
available to the peripheral beyond the simple “request data” command
used by peripherals in general.

While these DMA control commands are not visible to or controllable by
the user, their use by a peripheral has implications for the structure of the
DMA transfers which that peripheral can support. It is important that
application software be written to comply with certain restrictions regard-
ing work units and descriptor chains (described later in this section) so
that the peripheral operates properly whenever it issues DMA control
commands.

Table 7-2. Legal NDSIZE Values

FLOW NDSIZE Note

0 0

1 0

4 0 < NDSIZE  7 Descriptor array, no descriptor pointer fetched

6 0 < NDSIZE  8 Descriptor list, small descriptor pointer fetched

7 0 < NDSIZE  9 Descriptor list, large descriptor pointer fetched

ADSP-BF50x Blackfin Processor Hardware Reference 7-33

Direct Memory Access

MDMA channels do not service peripherals and therefore do not support
DMA control commands. The DMA control commands are shown in
Table 7-3.

Additional information for the control commands includes:

• Restart

The Restart command causes the current work unit to interrupt
processing and start over, using the addresses and counts from
DMAx_START_ADDR, DMAx_X_COUNT, and
DMAx_Y_COUNT. No interrupt is signalled.

If a channel programmed for transmit (memory read) receives a
Restart command, the channel momentarily pauses while any
pending memory reads initiated prior to the Restart command are
completed.

During this period of time, the channel does not grant DMA
requests. Once all pending reads have been flushed from the chan-
nel’s pipelines, the channel resets its counters and FIFO and starts
prefetch reads from memory. DMA data requests from the

Table 7-3. DMA Control Commands

Code Name Description

000 NOP No operation

001 Restart Restarts the current work unit from the beginning

010 Finish Finishes the current work unit and starts the next

011 - Reserved

100 Req Data Typical DMA data request

101 Req Data
Urgent

Urgent DMA data request

110 - Reserved

111 - Reserved

Functional Description

7-34 ADSP-BF50x Blackfin Processor Hardware Reference

peripheral are granted as soon as new prefetched data is available in
the DMA FIFO. The peripheral can thus use the Restart command
to re-attempt a failed transmission of a work unit.

If a channel programmed for receive (memory write) receives a
Restart command, the channel stops writing to memory, discards
any data held in its DMA FIFO, and resets its counters and FIFO.
As soon as this initialization is complete, the channel again grants
DMA write requests from the peripheral. The peripheral can thus
use the Restart command to abort transfer of received data into a
work unit and re-use the memory buffer for a later data transfer.

• Finish

The Finish command causes the current work unit to terminate
and move on to the next work unit. An interrupt is signalled as
usual, if selected by the DI_EN bit. The peripheral can thus use the
Finish command to partition the DMA stream into work units on
its own, perhaps as a result of parsing the data currently passing
though its supported communication channel, without direct
real-time control by the processor.

If a channel programmed for transmit (memory read) receives a
Finish command, the channel momentarily pauses while any pend-
ing memory reads initiated prior to the Finish command are
completed. During this period of time, the channel does not grant
DMA requests. Once all pending reads have been flushed from the
channel’s pipelines, the channel signals an interrupt (if enabled),
and begins fetching the next descriptor (if any). DMA data requests
from the peripheral are granted as soon as new prefetched data is
available in the DMA FIFO.

If a channel programmed for receive (memory write) receives a Fin-
ish command, the channel stops granting new DMA requests while
it drains its FIFO. Any DMA data received by the DMA controller
prior to the Finish command is written to memory. When the

ADSP-BF50x Blackfin Processor Hardware Reference 7-35

Direct Memory Access

FIFO reaches an empty state, the channel signals an interrupt (if
enabled) and begins fetching the next descriptor (if any). Once the
next descriptor has been fetched, the channel initializes its FIFO
and then resumes granting DMA requests from the peripheral.

• Request Data

The Request Data command is identical to the DMA request oper-
ation of peripherals that are not DMA-management-capable.

• Request Data Urgent

The Request Data Urgent command behaves identically to the
DMA Request command, except that the DMA channel performs
its memory accesses with urgent priority while it is asserted. This
includes both data and descriptor-fetch memory accesses. A
DMA-management-capable peripheral might use this command if
an internal FIFO is approaching a critical condition.

Restrictions

The proper operation of the 4-location DMA channel FIFO leads to cer-
tain restrictions in the sequence of DMA control commands.

Transmit Restart or Finish

No Restart or Finish command may be issued by a peripheral to a chan-
nel configured for memory read unless the peripheral has already
performed at least one DMA transfer in the current work unit and the cur-
rent work unit has more than four items remaining in
DMAx_CURR_X_COUNT/ DMAx_CURR_Y_COUNT (thus not yet read from mem-
ory). Otherwise, the current work unit may already have completed
memory operations and can no longer be restarted or finished properly.

If the DMAx_CURR_X_COUNT/ DMAx_CURR_Y_COUNT value of the current work
unit is sufficiently large that it is always at least five more than the
maximum data count prior to any Restart or Finish command, the above

Functional Description

7-36 ADSP-BF50x Blackfin Processor Hardware Reference

restriction is satisfied. This implies that any work unit which might be
managed by Restart or Finish commands must have DMAx_CURR_X_COUNT/
DMAx_CURR_Y_COUNT values representing at least five data items.

Particularly if the DMAx_CURR_X_COUNT/ DMAx_CURR_Y_COUNT registers are
programmed to 0 (representing 65,536 transfers, the maximum value) the
channel will operate properly for 1-D work units up to 65,531 data items
or 2-D work units up to 4,294,967,291 data items.

Receive Restart or Finish

No Restart or Finish command may be issued by a peripheral to a chan-
nel configured for memory write unless either the peripheral has already
performed at least five DMA transfers in the current work unit or the pre-
vious work unit was terminated by a Finish command and the peripheral
has performed at least one DMA transfer in the current work unit. If five
data transfers have been performed, then at least one data item has been
written to memory in the current work unit, which implies that the cur-
rent work unit’s descriptor fetch completed before the data grant of the
fifth item. Otherwise, if less than five data items have been transferred, it
is possible that all of them are still in the DMA FIFO and the previous
work unit is still in the process of completion and transition between work
units.

Similarly, if a Finish command ended the previous work unit and at least
one subsequent DMA data transfer has occurred, then the fact that the
DMA channel issued the grant guarantees that the previous work unit has
already completed the process of draining its data to memory and transi-
tioning to the new work unit.

If a peripheral terminates all work units with the Finish opcode (effec-
tively assuming responsibility for all work unit boundaries for the DMA
channel), then the peripheral need only ensure that it performs a single
transfer in each work unit before any restart or finish. This requires, how-
ever, that the user programs the descriptors for all work units managed by
the channel with DMAx_CURR_X_COUNT/ DMAx_CURR_Y_COUNT values repre-

ADSP-BF50x Blackfin Processor Hardware Reference 7-37

Direct Memory Access

senting more data items than the maximum work unit size that the
peripheral will encounter. For example, DMAx_CURR_X_COUNT/
DMAx_CURR_Y_COUNT values of 0 allow the channel to operate properly on
1-D work units up to 65,535 data items and 2-D work units up to
4,294,967,295 data items.

Handshaked Memory DMA Operation
Handshaked memory DMA operation is not available for all products.
Refer to “Unique Information for the ADSP-BF50x Processor” on
page 7-103 to determine whether this feature applies to this product.

Each DMARx input has its own set of control and status registers. Hand-
shake operation for MDMA0 is enabled by the HMDMAEN bit in the
HMDMA0_CONTROL register. Similarly, the HMDMAEN bit in the HMDMA1_CONTROL

register enables handshake mode for MDMA1.

It is important to understand that the handshake hardware works com-
pletely independently from the descriptor and autobuffer capabilities of
the MDMA, allowing most flexible combinations of logical data organiza-
tion vs. data portioning as required by FIFO depths, for example. If,
however, the connected device requires certain behavior of the address
lines, these must be controlled by traditional DMA setup.

 The HMDMA unit controls only the destination (memory write)
channel of the memory DMA. The source channel (memory-read
side) fills the 8-deep DMA buffers immediately after the receive
side is enabled and issues eight read commands.

The HMDMAx_BCINIT registers control how many data transfers are per-
formed upon every DMA request. If set to one, the peripheral can time
every individual data transfer. If greater than one, the peripheral must
have sufficient buffer size to provide or consume the number of words
programmed. Once the transfer has been requested, no further handshake
can hold off the DMA from transferring the entire block, except by
stalling the EBIU accesses by the ARDY signal. Nevertheless, the peripheral

Functional Description

7-38 ADSP-BF50x Blackfin Processor Hardware Reference

may request a block transfer before the entire buffer is available by simply
taking the minimum transfer time based on wait-state settings into
consideration.

 The block count defines how many data transfers are performed by
the MDMA engine. A single DMA transfer can cause two read or
write operations on the EBIU port if the transfer word size is set to
32-bit in the MDMA_yy_CONFIG register (WDSIZE = b#10).

Since the block count registers are 16 bits wide, blocks can group up to
65,535 transfers.

Once a block transfer has been started, the HMDMAx_BCOUNT registers return
the remaining number of transfers to complete the current block. When
the complete block has been processed, the HMDMAx_BCOUNT register returns
zero. Software can force a reload of the HMDMAx_BCOUNT from the
HMDMAx_BCINIT register even during normal operation by setting the RBC

bit in the HMDMAx_CONTROL register. Set RBC when the HMDMA module is
already active, but only when the MDMA is not enabled.

Pipelining DMA Requests

The device mastering the DMA request lines is allowed to request addi-
tional transfers even before the former transfer has completed. As long as
the device can provide or consume sufficient data it is permitted to pulse
the DMARx inputs multiple times.

The HMDMAx_ECOUNT registers are incremented every time a significant edge
is detected on the respective DMARx input, and they are decremented when
the MDMA completes the block transfer. These read-only registers use a
16-bit twos-complement data representation: if they return zero, all
requested block transfers have been performed. A positive value signals up
to 32767 requests that haven’t been served yet and indicates that the
MDMA is currently processing. Negative values indicate the number of
DMA requests that will be ignored by the engine. This feature restrains
initial pulses on the DMARx inputs at startup.

ADSP-BF50x Blackfin Processor Hardware Reference 7-39

Direct Memory Access

The HMDMAx_ECINIT registers reload the HMDMAx_ECOUNT registers every time
the handshake mode is enabled (when the HMDMAEN bit changes from
0 to 1). If the initial edge count value is 0, the handshake operation starts
with a settled request budget. If positive, the engine starts immediately
transferring the programmed number (up to 32767) of blocks once
enabled, even without detecting any activity on the DMARx pins. If nega-
tive, the engine will disregard the programmed number (up to 32768)
significant edges on the DMARx inputs before starting normal operation.

Figure 7-3 illustrates how an asynchronous FIFO could be connected. In
such a scenario the REP bit should be cleared to let the DMARx request pin
listen to falling edges. The Blackfin processor does not evaluate the full
flag such FIFOs usually provide because asynchronous polling of that sig-
nal would reduce the system throughput drastically. Moreover, the
processor first fills the FIFO by initializing the HMDMAx_ECINIT register to
1024, which equals the depth of the FIFO. Once enabled, the MDMA
automatically transmits 1024 data words. Afterward it continues to trans-
mit only if the FIFO is emptied by its read strobe again. Most likely, the
HMDMAx_BCINIT register is programmed to 1 in this case.

In the receive example shown in Figure 7-4, the Blackfin processor again
does not use the FIFO’s internal control mechanism. Rather than testing
the empty flag, the processor counts the number of data words available in
the FIFO in its own HMDMAx_ECOUNT register. Theoretically, the MDMA
could immediately process data as soon as it is written into the FIFO by

Figure 7-3. Transmit DMA Example Connection

WR
AMSx

1024K x 16 FIFOBLACKFIN

FF

D0 .. D15

DMARx

RD

I0 .. I15 O0 .. O15

AWE

Functional Description

7-40 ADSP-BF50x Blackfin Processor Hardware Reference

the write strobe, but the fast MDMA engine would read out the FIFO
quickly and stall soon if the FIFO was not promptly filled with new data.
Streaming applications can balance the FIFO so that the producer is never
held off by a full FIFO and the consumer is never held by an empty FIFO.
This is accomplished by filling the FIFO halfway and then letting both
consumer and producer run at the same speed. In this case the
HMDMAx_ECINIT register can be written with a negative value, which corre-
sponds to half the FIFO depth. Then, the MDMA does not start
consuming data as long as the FIFO is not half-filled.

On internal system buses, memory DMA channels have lower priority
than other DMAs. In busy systems, the memory DMAs may tend to
starve. As this is not acceptable when transferring data through high-speed
FIFOs, the handshake mode provides a high-water functionality to
increase the MDMA’s priority. With the UTE bit in the HMDMAx_CONTROL

register set, the MDMA gets higher priority as soon as a (positive) value in
the HMDMAx_ECOUNT register becomes higher than the threshold held by the
HMDMAx_ECURGENT register.

HMDMA Interrupts

In addition to the normal MDMA interrupt channels, the handshake
hardware provides two new interrupt sources for each DMARx input. The
HMDMAx_CONTROL registers provide interrupt enable and status bits. The

Figure 7-4. Receive DMA Example Connection

WR
AMSx

1024K x 16 FIFOBLACKFIN

FF

D0 .. D15

DMARx

RD

I0 .. I15 O0 .. O15

AWE

ADSP-BF50x Blackfin Processor Hardware Reference 7-41

Direct Memory Access

interrupt status bits require a write-1-to-clear operation to cancel the
interrupt request.

The block done interrupt signals that a complete MDMA block, as
defined by the HMDMAx_BCINIT register, has been transferred (when the
HMDMAx_BCOUNT register decrements to zero). While the BDIE bit enables
this interrupt, the MBDI bit can gate it until the edge count also becomes
zero, meaning that all requested MDMA transfers have been completed.

The overflow interrupt is generated when the HMDMA_ECOUNT regis-
ter overflows. Since it can count up to 32767, which is much more than
most peripheral devices can support, the Blackfin processor has another
threshold register called HMDMA_ECOVERFLOW. It resets to 0xFFFF
and should be written with any positive value by the user before enabling
the function by the OIE bit. Then, the overflow interrupt is issued when
the value of the HMDMA_ECOUNT register exceeds the threshold in
the HMDMA_ECOVERFLOW register.

DMA Performance
The DMA system is designed to provide maximum throughput per chan-
nel and maximum utilization of the internal buses, while accommodating
the inherent latencies of memory accesses.

The Blackfin architecture features several mechanisms to customize system
behavior for best performance. This includes DMA channel prioritization,
traffic control, and priority treatment of bursted transfers. Nevertheless,
the resulting performance of a DMA transfer often depends on applica-
tion-level circumstances. For best performance consider the following
system software architecture questions:

• What is the required DMA bandwidth?

• Which DMA transfers have real-time requirements and which do
not?

Functional Description

7-42 ADSP-BF50x Blackfin Processor Hardware Reference

• How heavily is the DMA controller competing with the core for
on-chip and off-chip resources?

• How often do competing DMA channels require the bus systems to
alter direction?

• How often do competing DMA or core accesses cause the SDRAM
to open different pages?

• Is there a way to distribute DMA requests nicely over time?

A key feature of the DMA architecture is the separation of the activity on
the DMA access bus (DAB) used by the peripherals from the activity on
the buses between the DMA and memory. For DMA to/from on-chip
memory the DMA core bus (DCB) is used, and the DMA external bus
(DEB) is used for DMA transfers with off-chip memory. Chapter 3,
“Chip Bus Hierarchy” explains the bus architecture.

Each peripheral DMA channel has its own data FIFO which lies between
the DAB bus and the memory buses. These FIFOs automatically prefetch
data from memory for transmission and buffer received data for later
memory writes. This allows the peripheral to be granted a DMA transfer
with very low latency compared to the total latency of a pipelined memory
access, permitting the repeat rate (bandwidth) of each DMA channel to be
as fast as possible.

DMA Throughput

Each peripheral DMA channel has a maximum transfer rate of one 16-bit
word per two system clocks in either direction. Like the DAB and DEB
buses, the DMA controller resides in the SCLK domain. The controller syn-
chronizes accesses to and from the DCB bus, which runs at the CCLK rate.

Each memory DMA channel has a maximum transfer rate of one 16-bit
word per system clock (SCLK) cycle.

ADSP-BF50x Blackfin Processor Hardware Reference 7-43

Direct Memory Access

When the traffic on all DMA channels is taken in the aggregate:

• Transfers between the peripherals and the DMA unit have a maxi-
mum rate of one 16-bit transfer per system clock.

• Transfers between the DMA unit and internal memory (L1) have a
maximum rate of one 16-bit transfer per system clock.

• Transfers between the DMA unit and external memory have a
maximum rate of one 16-bit transfer per system clock.

Some considerations which limit the actual performance include:

• Accesses to internal or external memory which conflict with core
accesses to the same memory. This can cause delays, for example
when both the core and the DMA access the same L1 bank, when
SDRAM pages need to be opened/closed, or when cache lines are
filled.

• Direction changes from RX to TX on the DAB bus impose a one
SCLK cycle delay.

• Direction changes on the DCB bus (for example, write followed by
read) to the same bank of internal memory can impose delays.

• Direction changes (for example, read followed by write) on the
DEB bus to external memory can each impose a several-cycle delay.

• MMR accesses to DMA registers other than DMAx_CONFIG,
DMAx_IRQ_STATUS, or DMAx_PERIPHERAL_MAP stall all DMA activity
for one cycle per 16-bit word transferred. In contrast, MMR
accesses to the control/status registers do not cause stalls or wait
states.

• Reads from DMA registers other than control/status registers use
one PAB bus wait state, delaying the core for several core clocks.

Functional Description

7-44 ADSP-BF50x Blackfin Processor Hardware Reference

• Descriptor fetches consume one DMA memory cycle per 16-bit
word read from memory, but do not delay transfers on the DAB
bus.

• Initialization of a DMA channel stalls DMA activity for one cycle.
This occurs when DMAEN changes from 0 to 1 or when the SYNC bit
is set in the DMAx_CONFIG register.

Several of these factors may be minimized by proper design of the applica-
tion software. It is often possible to structure the software to avoid
internal and external memory conflicts by careful allocation of data buffers
within banks and pages, and by planning for low cache activity during
critical DMA operations. Furthermore, unnecessary MMR accesses can be
minimized, especially by using descriptors or autobuffering.

Efficiency loss caused by excessive direction changes (thrashing) can be
minimized by the processor’s traffic control features, described in the next
section.

The MDMA channels are clocked by SCLK. If the source and destination
are in different memory spaces (one internal and one external), the inter-
nal and external memory transfers are typically simultaneous and
continuous, maintaining 100% bus utilization of the internal and external
memory interfaces. This performance is affected by core-to-system clock
frequency ratios. At ratios below about 2.5:1, synchronization and pipe-
line latencies result in lower bus utilization in the system clock domain.
For example DMA typically runs at 2/3 of the system clock rate when the
core-to-system clock ratio is 2:1. At higher clock ratios, full bandwidth is
maintained.

If the source and destination are in the same memory space (both internal
or both external), the MDMA stream typically prefetches a burst of source
data into the FIFO, and then automatically turns around and delivers all
available data from the FIFO to the destination buffer. The burst length is
dependent on traffic, and is equal to three plus the memory latency at the

ADSP-BF50x Blackfin Processor Hardware Reference 7-45

Direct Memory Access

DMA in SCLKs (which is typically seven for internal transfers and six for
external transfers).

Memory DMA Timing Details

When the destination DMAx_CONFIG register is written, MDMA operation
starts after a latency of three SCLK cycles.

If either MDMA channel has been selected to use descriptors, the descrip-
tors are fetched from memory. The destination channel descriptors are
fetched first. Then the source MDMA channel begins fetching data from
the source buffer, after a latency of four SCLK cycles after the last descrip-
tor word is returned from memory. Due to memory pipelining, this is
typically eight SCLK cycles after the fetch of the last descriptor word. The
resulting data is deposited in the MDMA channel’s 8-location FIFO.
After a latency of two SCLK cycles, the destination MDMA channel begins
writing data to the destination memory buffer.

Static Channel Prioritization

DMA channels are ordinarily granted service strictly according to their
priority. The priority of a channel is simply its channel number, where
lower priority numbers are granted first. Thus, peripherals with high data
rates or low latency requirements should be assigned to lower numbered
(higher priority) channels using the PMAP field in the
DMAx_PERIPHERAL_MAP registers. The memory DMA streams are always
lower static priority than the peripherals, but as they request service con-
tinuously, they ensure that any time slots unused by peripheral DMA are
applied to MDMA transfers.

Temporary DMA Urgency

Typically, DMA transfers for a given peripheral occur at regular intervals.
Generally, the shorter the interval, the higher the priority that should be
assigned to the peripheral. If the average bandwidth of all the peripherals

Functional Description

7-46 ADSP-BF50x Blackfin Processor Hardware Reference

is not too large a fraction of the total, then all peripherals’ requests should
be granted as required.

Occasionally, instantaneous DMA traffic might exceed the available band-
width, causing congestion. This may occur if L1 or external memory is
temporarily stalled, perhaps for an SDRAM page swap or a cache line fill.
Congestion might also occur if one or more DMA channels initiates a
flurry of requests, perhaps for descriptor fetches or to fill a FIFO in the
DMA or in the peripheral.

If congestion persists, lower priority DMA peripherals may become
starved for data. Even though the peripheral’s priority is low, if the neces-
sary data transfer does not take place before the end of the peripheral’s
regular interval, system failure may result. To minimize this possibility,
the DMA unit detects peripherals whose need for data has become urgent,
and preferentially grants them service at the highest priority.

A DMA channel’s request for memory service is defined as urgent if both:

• The channel’s FIFO is not ready for a DAB bus transfer (that is, a
transmit FIFO is empty or a receive FIFO is full), and

• The peripheral is asserting its DMA request line.

Descriptor fetches may be urgent if they are necessary to initiate or con-
tinue a DMA work unit chain for a starving peripheral.

DMA requests from an MDMA channel become urgent when handshaked
operation is enabled and the DMARx edge count exceeds the value stored in
the HMDMAx_ECURGENT register. If handshaked operation is disabled, soft-
ware can control urgency of requests directly by altering the DRQ bit field
in the HMDMAx_CONTROL register.

ADSP-BF50x Blackfin Processor Hardware Reference 7-47

Direct Memory Access

When one or more DMA channels express an urgent memory request, two
events occur:

• All non-urgent memory requests are decreased in priority by 32,
guaranteeing that only an urgent request will be granted. The
urgent requests compete with each other, if there is more than one,
and directional preference among urgent requests is observed.

• The resulting memory transfer is marked for expedited processing
in the targeted memory system (L1 or external). All prior incom-
plete memory transfers ahead of it in that memory system are also
marked for expedited processing. This may cause a series of exter-
nal memory core accesses to be delayed for a few cycles so that a
peripheral’s urgent request may be accommodated.

The preferential handling of urgent DMA transfers is completely auto-
matic. No user controls are required for this function to operate.

Memory DMA Priority and Scheduling

All MDMA operations have lower precedence than any peripheral DMA
operations. MDMA thus makes effective use of any memory bandwidth
unused by peripheral DMA traffic.

By default, when more than one MDMA stream is enabled and ready,
only the highest priority MDMA stream is granted. If it is desirable for the
MDMA streams to share the available bandwidth, the
MDMA_ROUND_ROBIN_PERIOD may be programmed to select each stream in
turn for a fixed number of transfers.

If two MDMA streams are used (S0-D0 and S1-D1), the user may choose
to allocate bandwidth either by fixed stream priority or by a round-robin
scheme. This is selected by programming the MDMA_ROUND_ROBIN_PERIOD

field in the DMA_TC_PER register (see “Static Channel Prioritization” on
page 7-45).

Functional Description

7-48 ADSP-BF50x Blackfin Processor Hardware Reference

If this field is set to 0, then MDMA is scheduled by fixed priority.
MDMA stream 0 takes precedence over MDMA stream 1 whenever
stream 0 is ready to perform transfers. Since an MDMA stream is typically
capable of transferring data on every available cycle, this could cause
MDMA stream 1 traffic to be delayed for an indefinite time until any and
all MDMA stream 0 operations are completed. This scheme could be
appropriate in systems where low duration but latency-sensitive data buf-
fers need to be moved immediately, interrupting long duration, low
priority background transfers.

If the MDMA_ROUND_ROBIN_PERIOD field is set to some nonzero value in the
range 1  P  31, then a round-robin scheduling method is used. The two
MDMA streams are granted bus access in alternation in bursts of up to P
data transfers. This could be used in systems where two transfer processes
need to coexist, each with a guaranteed fraction of the available band-
width. For example, one stream might be programmed for
internal-to-external moves while the other is programmed for exter-
nal-to-internal moves, and each would be allocated approximately equal
data bandwidth.

In round-robin operation, the MDMA stream selection at any time is
either “free” or “locked.” Initially, the selection is free. On any free cycle
available to MDMA (when no peripheral DMA accesses take precedence),
if either or both MDMA streams request access, the higher precedence
stream will be granted (stream 0 in case of conflict), and that stream’s
selection is then “locked.” The MDMA_ROUND_ROBIN_COUNT counter field in
the DMA_TC_CNT register is loaded with the period P from
MDMA_ROUND_ROBIN_PERIOD, and MDMA transfers begin. The counter is
decremented on every data transfer (as each data word is written to mem-
ory). After the transfer corresponding to a count of one, the MDMA
stream selection is passed automatically to the other stream with zero over-
head, and the MDMA_ROUND_ROBIN_COUNT counter is reloaded with the
period value P from MDMA_ROUND_ROBIN_PERIOD. In this cycle, if the other
MDMA stream is ready to perform a transfer, the stream selection is
locked on the new MDMA stream. If the other MDMA stream is not

ADSP-BF50x Blackfin Processor Hardware Reference 7-49

Direct Memory Access

ready to perform a transfer, then no transfer is performed, and the stream
selection unlocks and becomes free again on the next cycle.

If round-robin operation is used when only one MDMA stream is active,
one idle cycle will occur for each P MDMA data cycles, slightly lowering
the bandwidth by a factor of 1/(P+1). However if both MDMA streams
are used, memory DMA can operate continuously with zero additional
overhead for alternation of streams. (Other than overhead cycles normally
associated with reversal of read/write direction to memory). By selection
of various round-robin period values P, which limit how often the
MDMA streams alternate, maximal transfer efficiency can be maintained.

Traffic Control

In the Blackfin DMA architecture, there are two completely separate but
simultaneous prioritization processes—the DAB bus prioritization and the
memory bus (DCB and DEB) prioritization. Peripherals that are request-
ing DMA via the DAB bus, and whose data FIFOs are ready to handle the
transfer, compete with each other for DAB bus cycles. Similarly but sepa-
rately, channels whose FIFOs need memory service (prefetch or
post-write) compete together for access to the memory buses. MDMA
streams compete for memory access as a unit, and source and destination
may be granted together if their memory transfers do not conflict. In this
way, internal-to-external or external-to-internal memory transfers may
occur at the full system clock rate (SCLK). Examples of memory conflict
include simultaneous access to the same memory space and simultaneous
attempts to fetch descriptors. Special processing may occur if a peripheral
is requesting DMA but its FIFO is not ready (for example, an empty
transmit FIFO or full receive FIFO). For more information, see “Tempo-
rary DMA Urgency” on page 7-45.

Traffic control is an important consideration in optimizing use of DMA
resources. Traffic control is a way to influence how often the transfer
direction on the data buses may change, by automatically grouping same
direction transfers together. The DMA block provides a traffic control

Functional Description

7-50 ADSP-BF50x Blackfin Processor Hardware Reference

mechanism controlled by the DMA_TC_PER and DMA_TC_CNT registers. This
mechanism performs the optimization without real-time processor inter-
vention and without the need to program transfer bursts into the DMA
work unit streams. Traffic can be independently controlled for each of the
three buses (DAB, DCB, and DEB) with simple counters. In addition,
alternation of transfers among MDMA streams can be controlled with the
MDMA_ROUND_ROBIN_COUNT field of the DMA_TC_CNT register. See “Memory
DMA Priority and Scheduling” on page 7-47.

Using the traffic control features, the DMA system preferentially grants
data transfers on the DAB or memory buses which are going in the same
read/write direction as the previous transfer, until either the traffic control
counter times out or traffic stops or changes direction on its own. When
the traffic counter reaches zero, the preference is changed to the opposite
flow direction. These directional preferences work as if the priority of the
opposite direction channels were decreased by 16.

For example, if channels 3 and 5 were requesting DAB access, but lower
priority channel 5 is going with traffic and higher priority channel 3 is
going against traffic, then channel 3’s effective priority becomes 19, and
channel 5 would be granted instead. If, on the next cycle, only channels 3
and 6 were requesting DAB transfers, and these transfer requests were
both against traffic, then their effective priorities would become 19 and
22, respectively. One of the channels (channel 3) is granted, even though
its direction is opposite to the current flow. No bus cycles are wasted,
other than any necessary delay required for the bus turnaround.

This type of traffic control represents a trade-off of latency to improve uti-
lization (efficiency). Higher traffic timeouts might increase the length of
time each request waits for its grant, but it often dramatically improves the
maximum attainable bandwidth in congested systems, often to above
90%.

To disable preferential DMA prioritization, program the DMA_TC_PER reg-
ister to 0x0000.

ADSP-BF50x Blackfin Processor Hardware Reference 7-51

Direct Memory Access

Programming Model
Several synchronization and control methods are available for use in devel-
opment of software tasks which manage peripheral DMA and memory
DMA (see also “Memory DMA” on page 7-6). Such software needs to be
able to accept requests for new DMA transfers from other software tasks,
integrate these transfers into existing transfer queues, and reliably notify
other tasks when the transfers are complete.

In the processor, it is possible for each peripheral DMA and memory
DMA stream to be managed by a separate task or to be managed together
with any other stream. Each DMA channel has independent, orthogonal
control registers, resources, and interrupts, so that the selection of the
control scheme for one channel does not affect the choice of control
scheme on other channels. For example, one peripheral can use a
linked-descriptor-list, interrupt-driven scheme while another peripheral
can simultaneously use a demand-driven, buffer-at-a-time scheme syn-
chronized by polling of the DMAx_IRQ_STATUS register.

Synchronization of Software and DMA
A critical element of software DMA management is synchronization of
DMA buffer completion with the software. This can best be done using
interrupts, polling of DMAx_IRQ_STATUS, or a combination of both. Polling
for address or count can only provide synchronization within loose toler-
ances comparable to pipeline lengths.

Interrupt-based synchronization methods must avoid interrupt overrun,
or the failure to invoke a DMA channel’s interrupt handler for every inter-
rupt event due to excessive latency in processing of interrupts. Generally,
the system design must either ensure that only one interrupt per channel is
scheduled (for example, at the end of a descriptor list), or that interrupts
are spaced sufficiently far apart in time that system processing budgets can
guarantee every interrupt is serviced. Note, since every interrupt channel

Programming Model

7-52 ADSP-BF50x Blackfin Processor Hardware Reference

has its own distinct interrupt, interaction among the interrupts of differ-
ent peripherals is much simpler to manage.

Due to DMA FIFOs and DMA/memory pipelining, polling of the
DMAx_CURR_ADDR, DMAx_CURR_DESC_PTR, or DMAx_CURR_X_COUNT/
DMAx_CURR_Y_COUNT registers is not recommended for precisely synchroniz-
ing DMA with data processing. The current address, pointer, and count
registers change several cycles in advance of the completion of the corre-
sponding memory operation, as measured by the time at which the results
of the operation would first be visible to the core by memory read or write
instructions. For example, in a DMA memory write operation to external
memory, assume a DMA write by channel A is initiated that causes the
SDRAM to perform a page open operation which takes many system clock
cycles. The DMA engine may then move on to another DMA operation
by channel B which does not in itself incur latency, but will be stalled
behind the slow operation of channel A. Software monitoring of
channel B, based on examination of the DMAx_CURR_ADDR register contents,
would not safely conclude whether the memory location pointed to by
channel B’s DMAx_CURR_ADDR register has or has not been written.

If allowances are made for the lengths of the DMA/memory pipeline, poll-
ing of the current address, pointer, and count registers can permit loose
synchronization of DMA with software. The depth of the DMA FIFO is
four locations (either four 8- or 16-bit data elements, or two 32-bit data
elements) for a peripheral DMA channel, and eight locations (four 32-bit
data elements) for an MDMA FIFO. The DMA will not advance current
address/pointer/count registers if these FIFOs are filled with incomplete
work (including reads that have been started but not yet finished).

Additionally, the length of the combined DMA and L1 pipelines to inter-
nal memory is approximately six 8- or 16-bit data elements. The length of
the DMA and external bus interface unit (EBIU) pipelines is approxi-
mately three data elements, when measured from the point where a DMA
register update is visible to an MMR read to the point where DMA and
core accesses to memory become strictly ordered. If the DMA FIFO

ADSP-BF50x Blackfin Processor Hardware Reference 7-53

Direct Memory Access

length and the DMA/memory pipeline length are added, an estimate can
be made of the maximum number of incomplete memory operations in
progress at one time. This value is a maximum because the DMA/memory
pipeline may include traffic from other DMA channels.

For example, assume a peripheral DMA channel is transferring a work
unit of 100 data elements into internal memory and its
DMAx_CURR_X_COUNT register reads a value of 60 remaining elements, so
that processing of the first 40 elements has at least been started. Since the
total pipeline length is no greater than the sum of four (for the peripheral
DMA FIFO) plus six (for the DMA/memory pipeline) or ten data ele-
ments, it is safe to conclude that the DMA transfer of the first 30 (40-10)
data elements is complete.

For precise synchronization, software should either wait for an interrupt
or consult the channel’s DMAx_IRQ_STATUS register to confirm completion
of DMA, rather than polling current address/pointer/count registers.
When the DMA system issues an interrupt or changes a DMAx_IRQ_STATUS

bit, it guarantees that the last memory operation of the work unit has been
completed and will definitely be visible to processor code. For memory
read DMA, the final memory read data will have been safely received in
the DMA’s FIFO. For memory write DMA, the DMA unit will have
received an acknowledgement from L1 memory, or the EBIU, that the
data has been written.

The following examples show methods of synchronizing software with
several different styles of DMA.

Single-Buffer DMA Transfers

Synchronization is simple if a peripheral’s DMA activity consists of iso-
lated transfers of single buffers. DMA activity is initiated by software
writes to the channel’s control registers. The user may choose to use a sin-
gle descriptor in memory, in which case the software only needs to write
the DMAx_CONFIG and the DMAx_NEXT_DESC_PTR registers. Alternatively, the

Programming Model

7-54 ADSP-BF50x Blackfin Processor Hardware Reference

user may choose to write all the MMR registers directly from software,
ending with the write to the DMAx_CONFIG register.

The simplest way to signal completion of DMA is by an interrupt. This is
selected by the DI_EN bit in the DMAx_CONFIG register, and by the necessary
setup of the system interrupt controller. If no interrupt is desired, the soft-
ware can poll for completion by reading the DMAx_IRQ_STATUS register and
testing the DMA_RUN bit. If this bit is zero, the buffer transfer has
completed.

Continuous Transfers Using Autobuffering

If a peripheral’s DMA data consists of a steady, periodic stream of signal
data, DMA autobuffering (FLOW = 1) may be an effective option. Here,
DMA is transferred from or to a memory buffer with a circular addressing
scheme, using either one- or two-dimensional indexing with zero proces-
sor and DMA overhead for looping. Synchronization options include:

• 1-D interrupt-driven—software is interrupted at the conclusion of
each buffer. The critical design consideration is that the software
must deal with the first items in the buffer before the next DMA
transfer, which might overwrite or re-read the first buffer location
before it is processed by software. This scheme may be workable if
the system design guarantees that the data repeat period is longer
than the interrupt latency under all circumstances.

• 2-D interrupt-driven (double buffering)—the DMA buffer is parti-
tioned into two or more sub-buffers, and interrupts are selected
(set DI_SEL = 1 in DMAx_CONFIG) to be signaled at the completion of
each DMA inner loop. In this way, a traditional double buffer or
“ping-pong” scheme can be implemented.

ADSP-BF50x Blackfin Processor Hardware Reference 7-55

Direct Memory Access

For example, two 512-word sub-buffers inside a 1K-word buffer
could be used to receive 16-bit peripheral data with these settings:

DMAx_START_ADDR = buffer base address

DMAx_CONFIG = 0x10D7 (FLOW = 1, DI_EN = 1, DI_SEL = 1,
DMA2D = 1, WDSIZE = b#01, WNR = 1, DMAEN = 1)

DMAx_X_COUNT = 512

DMAx_X_MODIFY = 2 for 16-bit data

DMAx_Y_COUNT = 2 for two sub-buffers

DMAx_Y_MODIFY = 2 same as DMAx_X_MODIFY for contiguous
sub-buffers

• 2-D polled—if interrupt overhead is unacceptable but the loose
synchronization of address/count register polling is acceptable, a
2-D multibuffer synchronization scheme may be used. For exam-
ple, assume receive data needs to be processed in packets of sixteen
32-bit elements. A four-part 2-D DMA buffer can be allocated
where each of the four sub-buffers can hold one packet with these
settings:

DMAx_START_ADDR = buffer base address

DMAx_CONFIG = 0x101B (FLOW = 1, DI_EN = 0, DMA2D = 1,
WDSIZE = b#10, WNR = 1, DMAEN = 1)

DMAx_X_COUNT = 16

DMAx_X_MODIFY = 4 for 32-bit data

DMAx_Y_COUNT = 4 for four sub-buffers

DMAx_Y_MODIFY = 4 same as DMAx_X_MODIFY for contiguous
sub-buffers

Programming Model

7-56 ADSP-BF50x Blackfin Processor Hardware Reference

The synchronization core might read DMAx_Y_COUNT to determine
which sub-buffer is currently being transferred, and then allow one
full sub-buffer to account for pipelining. For example, if a read of
DMAx_Y_COUNT shows a value of 3, then the software should assume
that sub-buffer 3 is being transferred, but some portion of sub-buf-
fer 2 may not yet be received. The software could, however, safely
proceed with processing sub-buffers 1 or 0.

• 1-D unsynchronized FIFO—if a system’s design guarantees that
the processing of a peripheral’s data and the DMA rate of the data
will remain correlated in the steady state, but that short-term
latency variations must be tolerated, it may be appropriate to build
a simple FIFO. Here, the DMA channel may be programmed using
1-D autobuffer mode addressing without any interrupts or polling.

Descriptor Structures

DMA descriptors may be used to transfer data to or from memory data
structures that are not simple 1-D or 2-D arrays. For example, if a packet
of data is to be transmitted from several different locations in memory (a
header from one location, a payload from a list of several blocks of mem-
ory managed by a memory pool allocator, and a small trailer containing a
checksum), a separate DMA descriptor can be prepared for each memory
area, and the descriptors can be grouped in either an array or list by select-
ing the appropriate FLOW setting in DMAx_CONFIG.

The software can synchronize with the progress of the structure’s transfer
by selecting interrupt notification for one or more of the descriptors. For
example, the software might select interrupt notification for the header’s
descriptor and for the trailer’s descriptor, but not for the payload blocks’
descriptors.

ADSP-BF50x Blackfin Processor Hardware Reference 7-57

Direct Memory Access

It is important to remember the meaning of the various fields in the
DMAx_CONFIG descriptor elements when building a list or array of DMA
descriptors. In particular:

• The lower byte of DMAx_CONFIG specifies the DMA transfer to be
performed by the current descriptor (for example 2-D inter-
rupt-enable mode)

• The upper byte of DMAx_CONFIG specifies the format of the next
descriptor in the chain. The NDSIZE and FLOW fields in a given
descriptor do not correspond to the format of the descriptor itself;
they specify the link to the next descriptor, if any.

On the other hand, when the DMA unit is being restarted, both bytes of
the DMAx_CONFIG value written to the DMA channel’s DMAx_CONFIG register
should correspond to the current descriptor. At a minimum, the FLOW,
NDSIZE, WNR, and DMAEN fields must all agree with the current descriptor.
The WDSIZE, DI_EN, DI_SEL, SYNC, and DMA2D fields will be taken from the
DMAx_CONFIG value in the descriptor read from memory. The field values
initially written to the register are ignored. See “Initializing Descriptors in
Memory” on page 7-95 in the “Programming Examples” section for infor-
mation on how descriptors can be set up.

Descriptor Queue Management

A system designer might want to write a DMA manager facility which
accepts DMA requests from other software. The DMA manager software
does not know in advance when new work requests will be received or
what these requests might contain. The software could manage these
transfers using a circular linked list of DMA descriptors, where each
descriptor’s NDPH and NDPL members point to the next descriptor, and
the last descriptor points back to the first.

The code that writes into this descriptor list could use the processor’s cir-
cular addressing modes (Ix, Lx, Mx, and Bx registers), so that it does not
need to use comparison and conditional instructions to manage the

Programming Model

7-58 ADSP-BF50x Blackfin Processor Hardware Reference

circular structure. In this case, the NDPH and NDPL members of each
descriptor could even be written once at startup and skipped over as each
descriptor’s new contents are written.

The recommended method for synchronization of a descriptor queue is
through the use of an interrupt. The descriptor queue is structured so that
at least the final valid descriptor is always programmed to generate an
interrupt.

There are two general methods for managing a descriptor queue using
interrupts:

• Interrupt on every descriptor

• Interrupt minimally – only on the last descriptor

Descriptor Queue Using Interrupts on Every Descriptor

In this system, the DMA manager software synchronizes with the DMA
unit by enabling an interrupt on every descriptor. This method should
only be used if system design can guarantee that each interrupt event will
be serviced separately (no interrupt overrun).

To maintain synchronization of the descriptor queue, the non-interrupt
software maintains a count of descriptors added to the queue, while the
interrupt handler maintains a count of completed descriptors removed
from the queue. The counts are equal only when the DMA channel is
paused after having processed all the descriptors.

When each new work request is received, the DMA manager software ini-
tializes a new descriptor, taking care to write a DMAx_CONFIG value with a
FLOW value of 0. Next, the software compares the descriptor counts to
determine if the DMA channel is running or not. If the DMA channel is
paused (counts are equal), the software increments its count and then
starts the DMA unit by writing the new descriptor’s DMAx_CONFIG value to
the DMA channel’s DMAx_CONFIG register.

ADSP-BF50x Blackfin Processor Hardware Reference 7-59

Direct Memory Access

If the counts are unequal, the software instead modifies the next-to-last
descriptor’s DMAx_CONFIG value so that its upper half (FLOW and NDSIZE)
now describes the newly queued descriptor. This operation does not dis-
rupt the DMA channel, provided the rest of the descriptor data structure
is initialized in advance. It is necessary, however, to synchronize the soft-
ware to the DMA to correctly determine whether the new or the old
DMAx_CONFIG value was read by the DMA channel.

This synchronization operation should be performed in the interrupt
handler. First, upon interrupt, the handler should read the channel’s
DMAx_IRQ_STATUS register. If the DMA_RUN status bit is set, then the channel
has moved on to processing another descriptor, and the interrupt handler
may increment its count and exit. If the DMA_RUN status bit is not set, how-
ever, then the channel has paused, either because there are no more
descriptors to process, or because the last descriptor was queued too late
(the modification of the next-to-last descriptor’s DMAx_CONFIG element
occurred after that element was read into the DMA unit). In this case, the
interrupt handler should write the DMAx_CONFIG value appropriate for the
last descriptor to the DMA channel’s DMAx_CONFIG register, increment the
completed descriptor count, and exit.

Again, this system can fail if the system’s interrupt latencies are large
enough to cause any of the channel’s DMA interrupts to be dropped. An
interrupt handler capable of safely synchronizing multiple descriptors’
interrupts would need to be complex, performing several MMR accesses to
ensure robust operation. In such a system environment, a minimal inter-
rupt synchronization method is preferred.

Descriptor Queue Using Minimal Interrupts

In this system, only one DMA interrupt event is possible in the queue at
any time. The DMA interrupt handler for this system can also be
extremely short. Here, the descriptor queue is organized into an “active”
and a “waiting” portion, where interrupts are enabled only on the last
descriptor in each portion.

Programming Model

7-60 ADSP-BF50x Blackfin Processor Hardware Reference

When each new DMA request is processed, the software’s non-interrupt
code fills in a new descriptor’s contents and adds it to the waiting portion
of the queue. The descriptor’s DMAx_CONFIG word should have a FLOW value
of zero. If more than one request is received before the DMA queue com-
pletion interrupt occurs, the non-interrupt code should queue later
descriptors, forming a waiting portion of the queue that is disconnected
from the active portion of the queue being processed by the DMA unit. In
other words, all but the last active descriptors contain FLOW values  4 and
have no interrupt enable set, while the last active descriptor contains a
FLOW of 0 and an interrupt enable bit DI_EN set to 1. Also, all but the last
waiting descriptors contain FLOW values  4 and no interrupt enables set,
while the last waiting descriptor contains a FLOW of 0 and an interrupt
enable bit set. This ensures that the DMA unit can automatically process
the whole active queue and then issue one interrupt. Also, this arrange-
ment makes it easy to start the waiting queue within the interrupt handler
with a single DMAx_CONFIG register write.

After queuing a new waiting descriptor, the non-interrupt software should
leave a message for its interrupt handler in a memory mailbox location
containing the desired DMAx_CONFIG value to use to start the first waiting
descriptor in the waiting queue (or 0 to indicate no descriptors are
waiting).

Once processing by the DMA unit has started, it is critical that the soft-
ware not directly modify the contents of the active descriptor queue unless
careful synchronization measures are taken. In the most straightforward
implementation of a descriptor queue, the DMA manager software would
never modify descriptors on the active queue; instead, the DMA manager
waits until the DMA queue completion interrupt indicates the processing
of the entire active queue is complete.

When a DMA queue completion interrupt is received, the interrupt han-
dler reads the mailbox from the non-interrupt software and writes the
value in it to the DMA channel’s DMAx_CONFIG register. This single register
write restarts the queue, effectively transforming the waiting queue to an

ADSP-BF50x Blackfin Processor Hardware Reference 7-61

Direct Memory Access

active queue. The interrupt handler should then pass a message back to
the non-interrupt software indicating the location of the last descriptor
accepted into the active queue. If, on the other hand, the interrupt han-
dler reads its mailbox and finds a DMAx_CONFIG value of zero, indicating
there is no more work to perform, then it should pass an appropriate mes-
sage (for example zero) back to the non-interrupt software indicating that
the queue has stopped. This simple handler should be able to be coded in
a very small number of instructions.

The non-interrupt software which accepts new DMA work requests needs
to synchronize the activation of new work with the interrupt handler. If
the queue has stopped (the mailbox from the interrupt software is zero),
the non-interrupt software is responsible for starting the queue (writing
the first descriptor’s DMAx_CONFIG value to the channel’s DMAx_CONFIG reg-
ister). If the queue is not stopped, the non-interrupt software must not
write to the DMAx_CONFIG register (which would cause a DMA error).
Instead the descriptor should queue to the waiting queue, and update its
mailbox directed to the interrupt handler.

Software-Triggered Descriptor Fetches

If a DMA has been stopped in FLOW = 0 mode, the DMA_RUN bit in the
DMAx_IRQ_STATUS register remains set until the content of the internal
DMA FIFOs has been completely processed. Once the DMA_RUN bit clears,
it is safe to restart the DMA by simply writing again to the DMAx_CONFIG

register. The DMA sequence is repeated with the previous settings.

Similarly, a descriptor-based DMA sequence that has been stopped tem-
porarily with a FLOW = 0 descriptor can be continued with a new write to
the configuration register. When the DMA controller detects the FLOW = 0
condition by loading the DMACFG field from memory, it has already
updated the next descriptor pointer, regardless of whether operating in
descriptor array mode or descriptor list mode.

The next descriptor pointer remains valid if the DMA halts and is
restarted. As soon as the DMA_RUN bit clears, software can restart the DMA

Programming Model

7-62 ADSP-BF50x Blackfin Processor Hardware Reference

and force the DMA controller to fetch the next descriptor. To accomplish
this, the software writes a value with the DMAEN bit set and with proper val-
ues in the FLOW and NDSIZE fields into the configuration register. The next
descriptor is fetched if FLOW equals 0x4, 0x6, or 0x7. In this mode of oper-
ation, the NDSIZE field should at least span up to the DMACFG field to
overwrite the configuration register immediately.

One possible procedure is:

1. Write to DMAx_NEXT_DESC_PTR

2. Write to DMAx_CONFIG with

FLOW = 0x8

NDSIZE  0xA

DI_EN = 0

DMAEN = 1

3. Automatically fetched DMACFG has

FLOW = 0x0

NDSIZE = 0x0

SYNC = 1 (for transmitting DMAs only)

DI_EN = 1

DMAEN = 1

4. In the interrupt routine, repeat step 2. The DMAx_NEXT_DESC_PTR is
updated by the descriptor fetch.

 To avoid polling of the DMA_RUN bit, set the SYNC bit in case of
memory read DMAs (DMA transmit or MDMA source).

ADSP-BF50x Blackfin Processor Hardware Reference 7-63

Direct Memory Access

If all DMACFG fields in a descriptor chain have the FLOW and NDSIZE fields set
to zero, the individual DMA sequences do not start until triggered by soft-
ware. This is useful when the DMAs need to be synchronized with other
events in the system, and it is typically performed by interrupt service rou-
tines. A single MMR write is required to trigger the next DMA sequence.

Especially when applied to MDMA channels, such scenarios play an
important role. Usually, the timing of MDMAs cannot be controlled (see
“Handshaked Memory DMA Operation” on page 7-37). By halting
descriptor chains or rings this way, the whole DMA transaction can be
broken into pieces that are individually triggered by software.

 Source and destination channels of a MDMA may differ in descrip-
tor structure. However, the total work count must match when the
DMA stops. Whenever a MDMA is stopped, destination and
source channels should both provide the same FLOW = 0 mode after
exactly the same number of words. Accordingly, both channels
need to be started afterward.

Software-triggered descriptor fetches are illustrated in Listing 7-7 on
page 7-98. MDMA channels can be paused by software at any time by
writing a 0 to the DRQ bit field in the HMDMAx_CONTROL register. This simply
disables the self-generated DMA requests, whether or not the HMDMA is
enabled.

DMA Registers
DMA registers fall into three categories:

• DMA channel registers

• Handshaked MDMA registers

• Global DMA traffic control registers

DMA Registers

7-64 ADSP-BF50x Blackfin Processor Hardware Reference

DMA Channel Registers
A processor features up to twelve peripheral DMA channels and two chan-
nel pairs for memory DMA. All channels have an identical set of registers
as summarized in Table 7-4.

Table 7-4 lists the generic names of the DMA registers. For each register,
the table also shows the MMR offset, a brief description of the register,
the register category, and where applicable, the corresponding name for
the data element in a DMA descriptor.

Table 7-4. Generic Names of the DMA Memory-Mapped
Registers

MMR
Offset

Generic MMR
Name

MMR Description Register
Category

Name of
Corresponding
Descriptor Element in
Memory

0x00 NEXT_DESC_PTR Link pointer to next descrip-
tor

Parame-
ter

NDPH (upper 16 bits),
NDPL (lower 16 bits)

0x04 START_ADDR Start address of current buffer Parame-
ter

SAH (upper 16 bits),
SAL (lower 16 bits)

0x08 CONFIG DMA Configuration register,
including enable bit

Parame-
ter

DMACFG

0x0C Reserved Reserved

0x10 X_COUNT Inner loop count Parame-
ter

XCNT

0x14 X_MODIFY Inner loop address increment,
in bytes

Parame-
ter

XMOD

0x18 Y_COUNT Outer loop count (2-D only) Parame-
ter

YCNT

0x1C Y_MODIFY Outer loop address incre-
ment, in bytes

Parame-
ter

YMOD

0x20 CURR_DESC_PTR Current descriptor pointer Current N/A

0x24 CURR_ADDR Current DMA address Current N/A

ADSP-BF50x Blackfin Processor Hardware Reference 7-65

Direct Memory Access

Channel-specific register names are composed of a prefix and the generic
MMR name shown in Table 7-4. For peripheral DMA channels the prefix
“DMAx_” is used, where “x” stands for a channel number between 0 and
11. For memory DMA channels, the prefix is “MDMA_yy_”, where “yy”
stands for either “D0”, “S0”, “D1”, or “S1” to indicate destination and
source channel registers of MDMA0 and MDMA1. For example the
peripheral DMA channel 6 configuration register is called DMA6_CONFIG.
The register for the MDMA1 source channel is called MDMA_S1_CONFIG.

0x28 IRQ_STATUS Interrupt status register con-
tains completion and DMA
error interrupt status and
channel state
(run/fetch/paused)

Control/
Status

N/A

0x2C PERIPHERAL_MAP Peripheral to DMA channel
mapping contains a 4-bit
value specifying the periph-
eral associated with this DMA
channel (read-only for
MDMA channels)

Control/
Status

N/A

0x30 CURR_X_COUNT Current count (1-D) or
intra-row X count (2-D);
counts down from
X_COUNT

Current N/A

0x34 Reserved Reserved

0x38 CURR_Y_COUNT Current row count (2-D
only); counts down from
Y_COUNT

Current N/A

0x3C Reserved Reserved

Table 7-4. Generic Names of the DMA Memory-Mapped
Registers (Cont’d)

MMR
Offset

Generic MMR
Name

MMR Description Register
Category

Name of
Corresponding
Descriptor Element in
Memory

DMA Registers

7-66 ADSP-BF50x Blackfin Processor Hardware Reference

 The generic MMR names shown in Table 7-4 are not actually
mapped to resources in the processor.

For convenience, discussions in this chapter use generic
(non-peripheral specific) DMA and memory DMA register names.

DMA channel registers fall into three categories.

• Parameter registers such as DMAx_CONFIG and DMAx_X_COUNT that can
be loaded directly from descriptor elements as shown in Table 7-4

• Current registers such as DMAx_CURR_ADDR and DMAx_CURR_X_COUNT

• Control/status registers such as DMAx_IRQ_STATUS and
DMAx_PERIPHERAL_MAP

All DMA registers can be accessed as 16-bit entities. However, the follow-
ing registers may also be accessed as 32-bit registers.

• DMAx_NEXT_DESC_PTR

• DMAx_START_ADDR

• DMAx_CURR_DESC_PTR

• DMAx_CURR_ADDR

 When these four registers are accessed as 16-bit entities, only the
lower 16 bits can be accessed.

Because confusion might arise between descriptor element names and
generic DMA register names, this chapter uses different naming conven-
tions for physical registers and their corresponding elements in descriptors
that reside in memory. Table 7-4 shows the relation.

ADSP-BF50x Blackfin Processor Hardware Reference 7-67

Direct Memory Access

DMA Peripheral Map Registers (DMAx_PERIPHERAL_MAP/
MDMA_yy_PERIPHERAL_MAP)

Each DMA channel’s DMAx_PERIPHERAL_MAP register contains bits
that:

• Map the channel to a specific peripheral

• Identify whether the channel is a peripheral DMA channel or a
memory DMA channel

Follow these steps to swap the DMA channel priorities of two channels.
Assume that channels 6 and 7 are involved.

1. Make sure DMA is disabled on channels 6 and 7.

2. Write DMA6_PERIPHERAL_MAP with 0x7000 and
DMA7_PERIPHERAL_MAP with 0x6000.

3. Enable DMA on channels 6 and/or 7.

Figure 7-5. DMA Peripheral Map Registers

PMAP[3:0]
(Peripheral is mapped to this channel)

X XXX

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X X X X X X X

DMA Peripheral Map Registers
(DMAx_PERIPHERAL_MAP/MDMA_yy_PERIPHERAL_MAP)

CTYPE (DMA Channel Type) - RO
0 - Peripheral DMA
1 - Memory DMA

R/W prior to enabling channel; RO after enabling channel

Default peripheral mappings are provided in Table 7-7 on page 7-105.

DMA Registers

7-68 ADSP-BF50x Blackfin Processor Hardware Reference

DMA Configuration Registers
(DMAx_CONFIG/MDMA_yy_CONFIG)

The DMAx_CONFIG register, shown in Figure 7-6, is used to set up
DMA parameters and operating modes. Writing the DMAx_CONFIG
register while DMA is already running will cause a DMA error unless writ-
ing with the DMAEN bit set to 0.

Figure 7-6. DMA Configuration Registers

0 00

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0

DI_EN (Data Interrupt Enable)
0 - Do not allow completion of

work unit to generate an interrupt
1 - Allow completion of work unit

to generate a data interrupt

FLOW[2:0] (Next
Operation)
0x0 - Stop
0x1 - Autobuffer mode
0x4 - Descriptor array
0x6 - Descriptor list (small model)
0x7 - Descriptor list (large model)

DMA Configuration Registers (DMAx_CONFIG/MDMA_yy_CONFIG)

NDSIZE[3:0] (Flex Descriptor Size)
Size of next descriptor
0000 - Required if in Stop or Autobuffer mode
0001 - 1001 - Descriptor size
1010 - 1111 - Reserved

DMAEN (DMA
Channel Enable)
0 - Disable DMA channel
1 - Enable DMA channel
WNR (DMA Direction)
0 - DMA is a memory read

(source) operation
1 - DMA is a memory write

(destination) operation

WDSIZE[1:0] (Transfer
Word Size)
00 - 8-bit transfers
01 - 16-bit transfers
10 - 32-bit transfers
11 - Reserved

DMA2D (DMA Mode)

0 - Linear (One-dimensional)
1 - Two-dimensional (2-D)

Reset = 0x0000

DI_SEL (Data Interrupt Timing Select)

Applies only when DMA2D = 1
0 - Interrupt after completing

whole buffer (outer loop)
1 - Interrupt after completing

each row (inner loop)

R/W prior to enabling channel; RO after enabling channel

SYNC (Work Unit
Transitions)
0 - Continuous transition
1 - Synchronized transition

ADSP-BF50x Blackfin Processor Hardware Reference 7-69

Direct Memory Access

The fields of the DMAx_CONFIG register are used to set up DMA parameters
and operating modes.

• FLOW[2:0] (next operation). This field specifies the type of DMA
transfer to follow the present one. The flow options are:

0x0 - stop. When the current work unit completes, the DMA chan-
nel stops automatically, after signaling an interrupt (if selected).
The DMA_RUN status bit in the DMAx_IRQ_STATUS register changes
from 1 to 0, while the DMAEN bit in the DMAx_CONFIG register is
unchanged. In this state, the channel is paused. Peripheral
interrupts are still filtered out by the DMA unit. The channel may
be restarted simply by another write to the DMAx_CONFIG register
specifying the next work unit, in which the DMAEN bit is set to 1.

0x1 - autobuffer mode. In this mode, no descriptors in memory are
used. Instead, DMA is performed in a continuous circular buffer
fashion based on user-programmed DMA MMR settings. Upon
completion of the work unit, the parameter registers are reloaded
into the current registers, and DMA resumes immediately with
zero overhead. Autobuffer mode is stopped by a user write of 0 to
the DMAEN bit in the DMAx_CONFIG register.

0x4 - descriptor array mode. This mode fetches a descriptor from
memory that does not include the NDPH or NDPL elements. Because
the descriptor does not contain a next descriptor pointer entry, the
DMA engine defaults to using the DMAx_CURR_DESC_PTR register to
step through descriptors, thus allowing a group of descriptors to
follow one another in memory like an array.

0x6 - descriptor list (small model) mode. This mode fetches a
descriptor from memory that includes NDPL, but not NDPH. There-
fore, the high 16 bits of the next descriptor pointer field are taken
from the upper 16 bits of the DMAx_NEXT_DESC_PTR register, thus
confining all descriptors to a specific 64K page in memory.

DMA Registers

7-70 ADSP-BF50x Blackfin Processor Hardware Reference

0x7 - descriptor list (large model) mode. This mode fetches a
descriptor from memory that includes NDPH and NDPL, thus allowing
maximum flexibility in locating descriptors in memory.

• NDSIZE[3:0] (flex descriptor size). This field specifies the number
of descriptor elements in memory to load. This field must be 0 if in
stop or autobuffer mode. If NDSIZE and FLOW specify a descriptor
that extends beyond YMOD, a DMA error results.

• DI_EN (data interrupt enable). This bit specifies whether to allow
completion of a work unit to generate a data interrupt.

• DI_SEL (data interrupt timing select). This bit specifies the timing
of a data interrupt—after completing the whole buffer or after
completing each row of the inner loop. This bit is used only in 2-D
DMA operation.

• SYNC (work unit transitions). This bit specifies whether the DMA
channel performs a continuous transition (SYNC = 0) or a synchro-
nized transition (SYNC = 1) between work units. For more
information, see “Work Unit Transitions” on page 7-25.

In DMA transmit (memory read) and MDMA source channels, the
SYNC bit controls the interrupt timing at the end of the work unit
and the handling of the DMA FIFO between the current and next
work unit.

 Work unit transitions for MDMA streams are controlled by the
SYNC bit of the MDMA source channel’s DMAx_CONFIG register. The
SYNC bit of the MDMA destination channel is reserved and must be
0.

ADSP-BF50x Blackfin Processor Hardware Reference 7-71

Direct Memory Access

• DMA2D (DMA mode). This bit specifies whether DMA mode
involves only DMAx_X_COUNT and DMAx_X_MODIFY (one-dimensional
DMA) or also involves DMAx_Y_COUNT and DMAx_Y_MODIFY

(two-dimensional DMA).

• WDSIZE[1:0] (transfer word size). The DMA engine supports trans-
fers of 8-, 16-, or 32-bit items. Each request/grant results in a
single memory access (although two cycles are required to transfer
32-bit data through a 16-bit memory port or through the 16-bit
DMA access bus). The increment sizes (strides) of the DMA
address pointer registers must be a multiple of the transfer unit
size—one for 8-bit, two for 16-bit, four for 32-bit.

Only SPORT DMA and Memory DMA can operate with a transfer
size of 32 bits. All other peripherals have a maximum DMA trans-
fer size of 16 bits.

• WNR (DMA direction). This bit specifies DMA direction—mem-
ory read (0) or memory write (1).

• DMAEN (DMA channel enable). This bit specifies whether to enable
a given DMA channel.

 When a peripheral DMA channel is enabled, interrupts from the
peripheral denote DMA requests. When a channel is disabled, the
DMA unit ignores the peripheral interrupt and passes it directly to
the interrupt controller. To avoid unexpected results, take care to
enable the DMA channel before enabling the peripheral, and to
disable the peripheral before disabling the DMA channel.

DMA Registers

7-72 ADSP-BF50x Blackfin Processor Hardware Reference

DMA Interrupt Status Registers
(DMAx_IRQ_STATUS/MDMA_yy_IRQ_STATUS)

The DMAx_IRQ_STATUS register, shown in Figure 7-7, contains bits
that record whether the DMA channel:

• Is enabled and operating, enabled but stopped, or disabled.

• Is fetching data or a DMA descriptor.

• Has detected that a global DMA interrupt or a channel interrupt is
being asserted.

• Has logged occurrence of a DMA error.

Note the DMA_DONE interrupt is asserted when the last memory access (read
or write) has completed.

 For a memory transfer to a peripheral, there may be up to four data
words in the channel’s DMA FIFO when the interrupt occurs. At
this point, it is normal to immediately start the next work unit. If,
however, the application needs to know when the final data item is
actually transferred to the peripheral, the application can test or
poll the DMA_RUN bit. As long as there is undelivered transmit data
in the FIFO, the DMA_RUN bit is 1.

 For a memory write DMA channel, the state of the DMA_RUN bit has
no meaning after the last DMA_DONE event has been signaled. It does
not indicate the status of the DMA FIFO.

For MDMA transfers where an interrupt is not desired to notify
when the DMA operation has ended, software should poll the
DMA_DONE bit, rather than the DMA_RUN bit to determine when the
transaction has completed.

ADSP-BF50x Blackfin Processor Hardware Reference 7-73

Direct Memory Access

The processor supports a flexible interrupt control structure with three
interrupt sources:

• Data driven interrupts (see Table 7-5)

• Peripheral error interrupts

• DMA error interrupts (for example, bad descriptor or bus error)

Separate interrupt request (IRQ) levels are allocated for data, peripheral
error, and DMA error interrupts.

DMA Registers

7-74 ADSP-BF50x Blackfin Processor Hardware Reference

The DMA error conditions for all DMA channels are OR’ed together into
one system-level DMA error interrupt. The individual IRQ_STATUS words

Figure 7-7. DMA Interrupt Status Registers

Table 7-5. Data Driven Interrupts

Interrupt Name Description

No Interrupt Interrupts can be disabled for a given work unit.

Peripheral Inter-
rupt

These are peripheral (non-DMA) interrupts.

Row Completion DMA Interrupts can occur on the completion of a row (CURR_X_COUNT
expiration).

Buffer Completion DMA Interrupts can occur on the completion of an entire buffer (when
CURR_X_COUNT and CURR_Y_COUNT expire).

00

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0

This bit is set to 1 automatically when
the DMAx_CONFIG register is written
0 - This DMA channel is disabled, or it

is enabled but paused (FLOW
mode 0)

1 - This DMA channel is enabled and
operating, either transferring data
or fetching a DMA descriptor

DMA Interrupt Status Registers (DMAx_IRQ_STATUS/MDMA_yy_IRQ_STATUS)

DFETCH (DMA Descriptor Fetch) - RO

DMA_RUN (DMA Channel Running) - RO DMA_DONE (DMA Comple-
tion Interrupt Status) - W1C
0 - No interrupt is being

asserted for this channel
1 - DMA work unit has

completed, and this DMA
channel’s interrupt is being
asserted

DMA_ERR (DMA Error Inter-
rupt Status) - W1C
0 - No DMA error has

occurred
1 - A DMA error has occurred,

and the global DMA Error
interrupt is being asserted.
After this error occurs,
the contents of the DMA
Current registers are
unspecified. Control/
Status and Parameter
registers are unchanged.

Reset = 0x0000

This bit is set to 1 automatically when
the DMAx_CONFIG register is written
with FLOW modes 4–7
0 - This DMA channel is disabled, or it

is enabled but stopped (FLOW
mode 0)

1 - This DMA channel is enabled and
presently fetching a DMA descriptor

ADSP-BF50x Blackfin Processor Hardware Reference 7-75

Direct Memory Access

of each channel can be read to identify the channel that caused the DMA
error interrupt.

 Note the DMA_DONE and DMA_ERR interrupt indicators are
write-one-to-clear (W1C).

 When switching a peripheral from DMA to non-DMA mode, the
peripheral’s interrupts should be disabled during the mode switch
(via the appropriate peripheral register or SIC_IMASK register) so
that no unintended interrupt is generated on the shared
DMA/interrupt request line.

DMA Start Address Registers
(DMAx_START_ADDR/MDMA_yy_START_ADDR)

The DMAx_START_ADDR register, shown in Figure 7-8, contains the
start address of the data buffer currently targeted for DMA.

Figure 7-8. DMA Start Address Registers

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

X

DMA Start

Address[31:16]

X X X X X X X X X X X X X X X

DMA Start Address Registers (DMAx_START_ADDR/ MDMA_yy_START_ADDR)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X

DMA Start
Address[15:0]

X X X X X X X X X X X X X X X

Reset = Undefined

R/W prior to enabling channel; RO after enabling channel

DMA Registers

7-76 ADSP-BF50x Blackfin Processor Hardware Reference

DMA Current Address Registers
(DMAx_CURR_ADDR/MDMA_yy_CURR_ADDR)

The 32-bit DMAx_CURR_ADDR register shown in Figure 7-9, contains the
present DMA transfer address for a given DMA session. On the first mem-
ory transfer of a DMA work unit, the DMAx_CURR_ADDR register is loaded
from the DMAx_START_ADDR register, and it is incremented as each transfer
occurs.

DMA Inner Loop Count Registers
(DMAx_X_COUNT/MDMA_yy_X_COUNT)

For 2-D DMA, the DMAx_X_COUNT register, shown in Figure 7-10, contains
the inner loop count. For 1-D DMA, it specifies the number of elements
to transfer. For details, see “Two-Dimensional DMA Operation” on
page 7-11. A value of 0 in DMAx_X_COUNT corresponds to 65,536 elements.

Figure 7-9. DMA Current Address Registers

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

X

Current Address[31:16]

X X X X X X X X X X X X X X X

DMA Current Address Registers (DMAx_CURR_ADDR/MDMA_yy_CURR_ADDR)
R/W prior to enabling channel; RO after enabling channel

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X

Current Address[15:0]

X X X X X X X X X X X X X X X

Reset = Undefined

Upper 16 bits of present
DMA transfer address for
a given DMA session

Lower 16 bits of present
DMA transfer address for
a given DMA session

ADSP-BF50x Blackfin Processor Hardware Reference 7-77

Direct Memory Access

DMA Current Inner Loop Count Registers
(DMAx_CURR_X_COUNT
/MDMA_yy_CURR_X_COUNT)

The DMAx_CURR_X_COUNT register, shown in Figure 7-11, holds the number
of transfers remaining in the current DMA row (inner loop). On the first
memory transfer of each DMA work unit, it is loaded with the value in the
DMAx_X_COUNT register and then decremented. For 2-D DMA, on the last
memory transfer in each row except the last row, it is reloaded with the
value in the DMAx_X_COUNT register; this occurs at the same time that the
value in the DMAx_CURR_Y_COUNT register is decremented. Otherwise it is
decremented each time an element is transferred. Expiration of the count
in this register signifies that DMA is complete. In 2-D DMA, the
DMAx_CURR_X_COUNT register value is 0 only when the entire transfer is
complete. Between rows it is equal to the value of the DMAx_X_COUNT

register.

Figure 7-10. DMA Inner Loop Count Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X

X_COUNT[15:0] (Inner
Loop Count)

X X X X X X X X X X X X X X X

DMA Inner Loop Count Registers (DMAx_X_COUNT/MDMA_yy_X_COUNT)
R/W prior to enabling channel; RO after enabling channel

Reset = Undefined

The number of elements to
transfer (1-D); the number of
rows in the inner loop (2-D)

DMA Registers

7-78 ADSP-BF50x Blackfin Processor Hardware Reference

DMA Inner Loop Address Increment Registers
(DMAx_X_MODIFY/MDMA_yy_X_MODIFY)

The DMAx_X_MODIFY register, shown in Figure 7-12, contains a signed,
two’s-complement byte-address increment. In 1-D DMA, this increment
is the stride that is applied after transferring each element.

 DMAx_X_MODIFY is specified in bytes, regardless of the DMA transfer
size.

In 2-D DMA, this increment is applied after transferring each element in
the inner loop, up to but not including the last element in each inner
loop. After the last element in each inner loop, the DMAx_Y_MODIFY register
is applied instead, except on the very last transfer of each work unit. The
DMAx_X_MODIFY register is always applied to the last transfer of a work unit.

The DMAx_X_MODIFY field may be set to 0. In this case, DMA is performed
repeatedly to or from the same address. This is useful, for example, in
transferring data between a data register and an external memory-mapped
peripheral.

Figure 7-11. DMA Current Inner Loop Count Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X

CURR_X_COUNT[15:0]
(Current Inner Loop
Count)

X X X X X X X X X X X X X X X

DMA Current Inner Loop Count Registers (DMAx_CURR_X_COUNT/

MDMA_yy_CURR_X_COUNT)

R/W prior to enabling channel; RO after enabling channel

Reset = Undefined

Loaded by X_COUNT
at the beginning of each
DMA session (1-D DMA),
or at the beginning of
each row (2-D DMA)

ADSP-BF50x Blackfin Processor Hardware Reference 7-79

Direct Memory Access

DMA Outer Loop Count Registers
(DMAx_Y_COUNT/MDMA_yy_Y_COUNT)

For 2-D DMA, the DMAx_Y_COUNT register, shown in Figure 7-13, contains
the outer loop count. It is not used in 1-D DMA mode. This register con-
tains the number of rows in the outer loop of a 2-D DMA sequence. For
details, see “Two-Dimensional DMA Operation” on page 7-11.

Figure 7-12. DMA Inner Loop Address Increment Registers

Figure 7-13. DMA Outer Loop Count Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X

X_MODIFY[15:0] (Inner
Loop Address Increment)

X X X X X X X X X X X X X X X

DMA Inner Loop Address Increment Registers (DMAx_X_MODIFY/MDMA_yy_X_MODIFY)
R/W prior to enabling channel; RO after enabling channel

Reset = Undefined

Stride (in bytes) to take after
each decrement of
CURR_X_COUNT

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X

Y_COUNT[15:0]
(Outer Loop Count)

X X X X X X X X X X X X X X X

DMA Outer Loop Count Registers (DMAx_Y_COUNT/MDMA_yy_Y_COUNT)
R/W prior to enabling channel; RO after enabling channel

Reset = Undefined

The number of rows in
the outer loop of a 2-D
DMA sequence

DMA Registers

7-80 ADSP-BF50x Blackfin Processor Hardware Reference

DMA Current Outer Loop Count Registers
(DMAx_CURR_Y_COUNT/
MDMA_yy_CURR_Y_COUNT)

The DMAx_CURR_Y_COUNT register, used only in 2-D mode, holds the num-
ber of full or partial rows (outer loops) remaining in the current work
unit. See Figure 7-14. On the first memory transfer of each DMA work
unit, it is loaded with the value of the DMAx_Y_COUNT register. The register
is decremented each time the DMAx_CURR_X_COUNT register expires during
2-D DMA operation (1 to DMAx_X_COUNT or 1 to 0 transition), signifying
completion of an entire row transfer. After a 2-D DMA session is com-
plete, DMAx_CURR_Y_COUNT = 1 and DMAx_CURR_X_COUNT = 0.

DMA Outer Loop Address Increment Registers
(DMAx_Y_MODIFY/MDMA_yy_Y_MODIFY)

The DMAx_Y_MODIFY register contains a signed, two’s-complement value.
See Figure 7-15. This byte-address increment is applied after each decre-
ment of the DMAx_CURR_Y_COUNT register except for the last item in the 2-D
array where the DMAx_CURR_Y_COUNT also expires. The value is the offset
between the last word of one row and the first word of the next row. For
details, see “Two-Dimensional DMA Operation” on page 7-11.

Figure 7-14. DMA Current Outer Loop Count Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X

CURR_Y_COUNT[15:0]
(Current Outer Loop
Count)

X X X X X X X X X X X X X X X

DMA Current Outer Loop Count Registers
(DMAx_CURR_Y_COUNT/MDMA_yy_CURR_Y_COUNT)

R/W prior to enabling channel; RO after enabling channel

Reset = Undefined

Loaded by Y_COUNT
at the beginning of each
2-D DMA session; not
used for 1-D DMA

ADSP-BF50x Blackfin Processor Hardware Reference 7-81

Direct Memory Access

 DMAx_Y_MODIFY is specified in bytes, regardless of the DMA transfer
size.

DMA Next Descriptor Pointer Registers
(DMAx_NEXT_DESC_PTR/
MDMA_yy_NEXT_DESC_PTR)

The 32-bit DMAx_NEXT_DESC_PTR register, shown in Figure 7-16, specifies
where to look for the start of the next descriptor block when the DMA
activity specified by the current descriptor block finishes. This register is
used in small and large descriptor list modes. At the start of a descriptor
fetch in either of these modes, this register is copied into the
DMAx_CURR_DESC_PTR register. Then, during the descriptor fetch, the
DMAx_CURR_DESC_PTR register increments after each element of the descrip-
tor is read in.

 In small and large descriptor list modes, the DMAx_NEXT_DESC_PTR

register, and not the DMAx_CURR_DESC_PTR register, must be pro-
grammed directly via MMR access before starting DMA operation.

Figure 7-15. DMA Outer Loop Address Increment Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X

Y_MODIFY[15:0]
(Outer Loop Address
Increment)

X X X X X X X X X X X X X X X

DMA Outer Loop Address Increment Registers (DMAx_Y_MODIFY/ MDMA_yy_Y_MODIFY)
R/W prior to enabling channel; RO after enabling channel

Reset = Undefined

Stride to take after each
decrement of
CURR_Y_COUNT

DMA Registers

7-82 ADSP-BF50x Blackfin Processor Hardware Reference

In descriptor array mode, the next descriptor pointer register is disre-
garded, and fetching is controlled only by the DMAx_CURR_DESC_PTR

register.

DMA Current Descriptor Pointer Registers
(DMAx_CURR_DESC_PTR/
MDMA_yy_CURR_DESC_PTR)

The 32-bit DMAx_CURR_DESC_PTR register, shown in Figure 7-17, contains
the memory address for the next descriptor element to be loaded. For FLOW
mode settings that involve descriptors (FLOW = 4, 6, or 7), this register is
used to read descriptor elements into appropriate MMRs before a DMA
work block begins. For descriptor list modes (FLOW = 6 or 7), this register
is initialized from the DMAx_NEXT_DESC_PTR register before loading each
descriptor. Then, the address in the DMAx_CURR_DESC_PTR register incre-
ments as each descriptor element is read in.

When the entire descriptor has been read, the DMAx_CURR_DESC_PTR regis-
ter contains this value:

Descriptor Start Address + (2x Descriptor Size) (# of elements)

Figure 7-16. DMA Next Descriptor Pointer Registers

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

X

Next Descriptor
Pointer[31:16]

X X X X X X X X X X X X X X X

DMA Next Descriptor Pointer Registers
(DMAx_NEXT_DESC_PTR/MDMA_yy_NEXT_DESC_PTR)

R/W prior to enabling channel; RO after enabling channel

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X

Next Descriptor
Pointer[15:0]

X X X X X X X X X X X X X X X

Reset = Undefined

ADSP-BF50x Blackfin Processor Hardware Reference 7-83

Direct Memory Access

 For descriptor array mode (FLOW = 4), this register, and not the
DMAx_NEXT_DESC_PTR register, must be programmed by MMR
access before starting DMA operation.

HMDMA Registers
Some processors have two HMDMA blocks, while others have none. See
the “Unique Information for the ADSP-BF50x Processor” on page 7-103
to determine whether this feature is applicable to your product.
HMDMA0 is associated with MDMA0, and HMDMA1 is associated with
MDMA1.

Handshake MDMA Control Registers (HMDMAx_CONTROL)

The HMDMAx_CONTROL register, shown in Figure 7-18, is used to set up
HMDMA parameters and operating modes.

Figure 7-17. DMA Current Descriptor Pointer Registers

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

X

Next Descriptor
Pointer[31:16]

X X X X X X X X X X X X X X X

DMA Next Descriptor Pointer Registers
(DMAx_NEXT_DESC_PTR/MDMA_yy_NEXT_DESC_PTR)

R/W prior to enabling channel; RO after enabling channel

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X

Next Descriptor
Pointer[15:0]

X X X X X X X X X X X X X X X

Reset = Undefined

DMA Registers

7-84 ADSP-BF50x Blackfin Processor Hardware Reference

The DRQ[1:0] field is used to control the priority of the MDMA channel
when the HMDMA is disabled, that is, when handshake control is not
being used (see Table 7-6).

The RBC bit forces the BCOUNT register to be reloaded with the BCINIT value
while the module is already active. Do not set this bit in the same write
that sets the HMDMAEN bit to active.

Table 7-6. DRQ[1:0] Values

DRQ[1:0] Priority Description

00 Disabled The MDMA request is disabled.

01 Enabled/S Normal MDMA channel priority. The channel in this mode is limited to
single memory transfers separated by one idle system clock. Request sin-
gle transfer from MDMA channel.

10 Enabled/
M

Normal MDMA channel functionality and priority. Request multiple
transfers from MDMA channel (default).

11 Urgent The MDMA channel priority is elevated to urgent. In this state, it has
higher priority for memory access than non-urgent channels. If two chan-
nels are both urgent, the lower-numbered channel has priority.

ADSP-BF50x Blackfin Processor Hardware Reference 7-85

Direct Memory Access

Figure 7-18. Handshake MDMA Control Registers

00 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 1 0 0 0 0 0

PS (Pin Status) - RO
0 - Request pin is 0
1 - Request pin is 1

0 - Block done interrupt
not generated

1 - Block done interrupt
generated

Handshake MDMA Control Registers (HMDMAx_CONTROL)

DRQ[1:0] (Default MDMA Request
When Handshake DMA is Disabled
EN=0)
00 - No request
01 - Request single transfer from MDMA channel
10 - Request multiple transfers from MDMA channel (default)
11 - Request urgent multiple transfers from MDMA channel

BDI (Block Done
Interrupt Generated)
- W1C

HMDMAEN (Handshake MDMA
Enable)
0 - Disable handshake

Operation
1 - Enable handshake

Operation
REP (HMDMA Request Polarity)
0 - Increment ECOUNT on

falling edges of DMARx
input

1 - Increment ECOUNT on
rising edges of DMARx
input

UTE (Urgency Threshold
Enable)
0 - Disable urgency threshold
1 - Enable urgency threshold
OIE (Overflow Interrupt
Enable)
0 - Disable overflow interrupt
1 - Enable overflow interrupt

Reset = 0x0200

BDIE (Block Done Interrupt
Enable)
0 - Disable block done interrupt
1 - Enable block done interrupt
MBDI (Mask Block Done
Interrupt)
BDIE must = 1
0 - Interrupt generated when

BCOUNT decrements to 0
1 - Interrupt generated when

BCOUNT decrements to 0
and ECOUNT = 0

0 - Overflow interrupt
not generated

1 - Overflow interrupt
generated

OI (Overflow Interrupt
Generated) - W1C

RBC (Force Reload of
BCOUNT) - WO
0 - Reload not active
1 - Force reload of BCOUNT with BCINIT.
Write 1 to activate

DMA Registers

7-86 ADSP-BF50x Blackfin Processor Hardware Reference

Handshake MDMA Initial Block Count Registers
(HMDMAx_BCINIT)

The HMDMAx_BCINIT register, shown in Figure 7-19, holds the number of
transfers to do per edge of the DMARx control signal.

Handshake MDMA Current Block Count Registers
(HMDMAx_BCOUNT)

The HMDMAx_BCOUNT register, shown in Figure 7-20, holds the number of
transfers remaining for the current edge. MDMA requests are generated if
this count is greater than 0.

Examples:

• 0000 = 0 transfers remaining

• FFFF = 65535 transfers remaining

The BCOUNT field is loaded with BCINIT when ECOUNT is greater than 0 and
BCOUNT is expired (0). Also, if the RBC bit in the HMDMAx_CONTROL register is
written to 1, BCOUNT is loaded with BCINIT. The BCOUNT field is decre-
mented with each MDMA grant. It is cleared when HMDMA is disabled.

A block done interrupt is generated when BCOUNT decrements to 0. If the
MBDI bit in the HMDMAx_CONTROL register is set, the interrupt is suppressed
until ECOUNT is 0. If BCINIT is 0, no block done interrupt is generated,
since no DMA requests were generated or grants received.

Figure 7-19. Handshake MDMA Initial Block Count Registers

00 0 00 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0

Handshake MDMA Initial Block Count Registers (HMDMAx_BCINIT)

BCINIT[15:0] (Initial Block
Count)

Reset = 0x0000

ADSP-BF50x Blackfin Processor Hardware Reference 7-87

Direct Memory Access

Handshake MDMA Current Edge Count Registers
(HMDMAx_ECOUNT)

The HMDMAx_ECOUNT register, shown in Figure 7-21, holds a signed number
of edges remaining to be serviced. This number is in a signed two’s com-
plement representation. When an edge is detected on the respective DMARx

input, requests occur if this count is greater than or equal to 0 and BCOUNT

is greater than 0.

When the handshake mode is enabled, ECOUNT is loaded and the resulting
number of requests is:

Number of edges + N

where N is the number loaded from ECINIT. The number N can be posi-
tive or negative. Examples:

• 0x7FFF = 32,767 edges remaining

• 0x0000 = 0 edges remaining

• 0x8000 = –32,768: ignore the next 32,768 edges

Each time that BCOUNT expires, ECOUNT is decremented and BCOUNT is
reloaded from BCINIT. When a handshake request edge is detected, ECOUNT
is incremented. The ECOUNT field is cleared when HMDMA is disabled.

Figure 7-20. Handshake MDMA Current Block Count Registers

00 0 00 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0

Handshake MDMA Current Block Count Register (HMDMAx_BCOUNT)

BCOUNT[15:0] (Transfers
Remaining for Current Edge)

Reset = 0x0000

DMA Registers

7-88 ADSP-BF50x Blackfin Processor Hardware Reference

Handshake MDMA Initial Edge Count Registers
(HMDMAx_ECINIT)

The HMDMAx_ECINIT register, shown in Figure 7-22, holds a signed number
that is loaded into HMDMAx_ECOUNT when handshake DMA is enabled. This
number is in a signed two’s complement representation.

Handshake MDMA Edge Count Urgent Registers
(HMDMAx_ECURGENT)

The HMDMAx_ECURGENT register, shown in Figure 7-23, holds the urgent
threshold. If the ECOUNT field in the HMDMAx_ECOUNT register is greater than
this threshold, the MDMA request is urgent and might get higher
priority.

Figure 7-21. Handshake MDMA Current Edge Count Registers

Figure 7-22. Handshake MDMA Initial Edge Count Registers

00 0 00 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0

Handshake MDMA Current Edge Count Register (HMDMAx_ECOUNT)

ECOUNT[15:0] (Edges
Remaining to be Serviced)

Reset = 0x0000

00 0 00 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0

Handshake MDMA Initial Edge Count Registers (HMDMAx_ECINIT)

ECINIT[15:0] (Initial Edge
Count)

Reset = 0x0000

ADSP-BF50x Blackfin Processor Hardware Reference 7-89

Direct Memory Access

Handshake MDMA Edge Count Overflow Interrupt
Registers (HMDMAx_ECOVERFLOW)

The HMDMAx_ECOVERFLOW register, shown in Figure 7-24, holds the inter-
rupt threshold. If the ECOUNT field in the HMDMAx_ECOUNT register is greater
than this threshold, an overflow interrupt is generated.

DMA Traffic Control Registers
(DMA_TC_PER and DMA_TC_CNT)

The DMA_TC_PER register (see Figure 7-25) and the DMA_TC_CNT register (see
Figure 7-26) work with other DMA registers to define traffic control.

Figure 7-23. Handshake MDMA Edge Count Urgent Registers

Figure 7-24. Handshake MDMA Edge Count Overflow Interrupt
Registers

11 1 11 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 1 1 1 1 1 1 1 1

Handshake MDMA Edge Count Urgent Registers (HMDMAx_ECURGENT)

UTHE[15:0] (Urgent
Threshold)

Reset = 0xFFFF

11 1 11 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 1 1 1 1 1 1 1 1

Handshake MDMA Edge Count Overflow Interrupt Registers (HMDMAx_ECOVERFLOW)

ITHR[15:0] (Interrupt
Threshold)

Reset = 0xFFFF

DMA Registers

7-90 ADSP-BF50x Blackfin Processor Hardware Reference

DMA_TC_PER Register

DMA_TC_CNT Register

Figure 7-25. DMA Traffic Control Counter Period Register

Figure 7-26. DMA Traffic Control Counter Register

0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0

Maximum length of MDMA round
robin bursts. If not zero, any MDMA
stream which receives a grant is
allowed up to that number of DMA
transfers, to the exclusion of the other
MDMA streams.

DMA Traffic Control Counter Period Register (DMA_TC_PER)

DAB_TRAFFIC_PERIOD[2:0]
000 - No DAB bus transfer grouping performed
Other - Preferred length of unidirectional bursts
on the DAB bus between the DMA and the
peripherals

MDMA_ROUND_ROBIN_PERIOD[4:0] DCB_TRAFFIC_PERIOD[3:0]

DEB_TRAFFIC_PERIOD[3:0]

Reset = 0x0000

0000 - No DCB bus transfer
grouping performed

Other - Preferred length of unidi-
rectional bursts on the DCB bus
between the DMA and internal L1
memory

0000 - No DEB bus transfer
grouping performed

Other - Preferred length of unidi-
rectional bursts on the DEB bus
between the DMA and external
memory

RO

0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0

Current transfer count remaining in
the MDMA round-robin period

DMA Traffic Control Counter Register (DMA_TC_CNT)

DAB_TRAFFIC_COUNT[2:0]

Current cycle count remaining in the
DAB traffic period

MDMA_ROUND_ROBIN_COUNT[4:0] DCB_TRAFFIC_COUNT[3:0]

DEB_TRAFFIC_COUNT[3:0]

Reset = 0x0000

Current cycle count remaining
in the DCB traffic period

Current cycle count remaining
in the DEB traffic period

ADSP-BF50x Blackfin Processor Hardware Reference 7-91

Direct Memory Access

The MDMA_ROUND_ROBIN_COUNT field shows the current transfer count
remaining in the MDMA round-robin period. It initializes to
MDMA_ROUND_ROBIN_PERIOD whenever DMA_TC_PER is written, whenever a
different MDMA stream is granted, or whenever every MDMA stream is
idle. It then counts down to 0 with each MDMA transfer. When this
count decrements from 1 to 0, the next available MDMA stream is
selected.

The DAB_TRAFFIC_COUNT field shows the current cycle count remaining in
the DAB traffic period. It initializes to DAB_TRAFFIC_PERIOD whenever
DMA_TC_PER is written, or whenever the DAB bus changes direction or
becomes idle. It then counts down from DAB_TRAFFIC_PERIOD to 0 on each
system clock (except for DMA stalls). While this count is nonzero, same
direction DAB accesses are treated preferentially. When this count decre-
ments from 1 to 0, the opposite direction DAB access is treated
preferentially, which may result in a direction change. When this count is
0 and a DAB bus access occurs, the count is reloaded from
DAB_TRAFFIC_PERIOD to begin a new burst.

The DEB_TRAFFIC_COUNT field shows the current cycle count remaining in
the DEB traffic period. It initializes to DEB_TRAFFIC_PERIOD whenever
DMA_TC_PER is written or whenever the DEB bus changes direction or
becomes idle. It then counts down from DEB_TRAFFIC_PERIOD to 0 on each
system clock (except for DMA stalls). While this count is nonzero, same
direction DEB accesses are treated preferentially. When this count decre-
ments from 1 to 0, the opposite direction DEB access is treated
preferentially, which may result in a direction change. When this count is
0 and a DEB bus access occurs, the count is reloaded from
DEB_TRAFFIC_PERIOD to begin a new burst.

The DCB_TRAFFIC_COUNT field shows the current cycle count remaining in
the DCB traffic period. It initializes to DCB_TRAFFIC_PERIOD whenever
DMA_TC_PER is written or whenever the DCB bus changes direction or
becomes idle. It then counts down from DCB_TRAFFIC_PERIOD to 0 on each
system clock (except for DMA stalls). While this count is nonzero, same

Programming Examples

7-92 ADSP-BF50x Blackfin Processor Hardware Reference

direction DCB accesses are treated preferentially. When this count decre-
ments from 1 to 0, the opposite direction DCB access is treated
preferentially, which may result in a direction change. When this count is
0 and a DCB bus access occurs, the count is reloaded from
DCB_TRAFFIC_PERIOD to begin a new burst.

Programming Examples
The following examples illustrate memory DMA and handshaked memory
DMA basics. Examples for peripheral DMAs can be found in the respec-
tive peripheral chapters.

Register-Based 2-D Memory DMA
Listing 7-1 shows a register-based, two-dimensional MDMA. While the
source channel processes linearly, the destination channel re-sorts ele-
ments by transposing the two-dimensional data array. See Figure 7-27.

The two arrays reside in two different L1 data memory blocks. However,
the arrays could reside in any internal or external memory, including L1
instruction memory and SDRAM. For the case where the destination
array resided in SDRAM, it is a good idea to let the source channel re-sort
elements and to let the destination buffer store linearly.

Figure 7-27. DMA Example, 2-D Array

1

2

3

4

5

6

8

7

9

10

11

12

19

18

17

16

15

14

13

20

21

22

23

24

26

27

28

29

25

30

1 2 3 4 5 6

87 9 10 11 12

19

181716151413

20 21 22 23 24

26 27 28 2925 30

ADSP-BF50x Blackfin Processor Hardware Reference 7-93

Direct Memory Access

Listing 7-1. Register-Based 2-D Memory DMA

#include <defBF527.h>/*For ADSP-BF527 product, as an example.*/

#define X 5

#define Y 6

.section L1_data_a;

.byte2 aSource[X*Y] =

1, 7, 13, 19, 25,

2, 8, 14, 20, 26,

3, 9, 15, 21, 27,

4, 10, 16, 22, 28,

5, 11, 17, 23, 29,

6, 12, 18, 24, 30;

.section L1_data_b;

.byte2 aDestination[X*Y];

.section L1_code;

.global _main;

_main:

p0.l = lo(MDMA_S0_CONFIG);

p0.h = hi(MDMA_S0_CONFIG);

call memdma_setup;

call memdma_wait;

_main.forever:

jump _main.forever;

_main.end:

The setup routine shown in Listing 7-2 initializes either MDMA0 or
MDMA1, depending on whether the MMR address of MDMA_S0_CONFIG or
MDMA_S1_CONFIG is passed in the P0 register. Note that the source channel
is enabled before the destination channel. Also, it is common to synchro-
nize interrupts with the destination channel because only those interrupts
indicate completion of both DMA read and write operations.

Programming Examples

7-94 ADSP-BF50x Blackfin Processor Hardware Reference

Listing 7-2. Two-Dimensional Memory DMA Setup Example

memdma_setup:

[--sp] = r7;

/* setup 1D source DMA for 16-bit transfers */

r7.l = lo(aSource);

r7.h = hi(aSource);

[p0 + MDMA_S0_START_ADDR - MDMA_S0_CONFIG] = r7;

r7.l = 2;

w[p0 + MDMA_S0_X_MODIFY - MDMA_S0_CONFIG] = r7;

r7.l = X * Y;

w[p0 + MDMA_S0_X_COUNT - MDMA_S0_CONFIG] = r7;

r7.l = WDSIZE_16 | DMAEN;

w[p0] = r7;

/* setup 2D destination DMA for 16-bit transfers */

r7.l = lo(aDestination);

r7.h = hi(aDestination);

[p0 + MDMA_D0_START_ADDR - MDMA_S0_CONFIG] = r7;

r7.l = 2*Y;

w[p0 + MDMA_D0_X_MODIFY - MDMA_S0_CONFIG] = r7;

r7.l = Y;

w[p0 + MDMA_D0_Y_COUNT - MDMA_S0_CONFIG] = r7;

r7.l = X;

w[p0 + MDMA_D0_X_COUNT - MDMA_S0_CONFIG] = r7;

r7.l = -2 * (Y * (X-1) - 1);

w[p0 + MDMA_D0_Y_MODIFY - MDMA_S0_CONFIG] = r7;

r7.l = DMA2D | DI_EN | WDSIZE_16 | WNR | DMAEN;

w[p0 + MDMA_D0_CONFIG - MDMA_S0_CONFIG] = r7;

r7 = [sp++];

rts;

memdma_setup.end:

For simplicity the example shown in Listing 7-3 polls the DMA status
rather than using interrupts, which is the normal case in a real application.

ADSP-BF50x Blackfin Processor Hardware Reference 7-95

Direct Memory Access

Listing 7-3. Polling DMA Status

memdma_wait:

[--sp] = r7;

memdma_wait.test:

r7 = w[p0 + MDMA_D0_IRQ_STATUS - MDMA_S0_CONFIG] (z);

CC = bittst (r7, bitpos(DMA_DONE));

if !CC jump memdma_wait.test;

r7 = DMA_DONE (z);

w[p0 + MDMA_D0_IRQ_STATUS - MDMA_S0_CONFIG] = r7;

r7 = [sp++];

rts;

memdma_wait.end:

Initializing Descriptors in Memory
Descriptor-based DMAs expect the descriptor data to be available in
memory by the time the DMA is enabled. Often, the descriptors are pro-
grammed by software at run-time. Many times, however, the
descriptors—or at least large portions of them—can be static and there-
fore initialized at boot time. How to set up descriptors in global memory
depends heavily on the programming language and the tool set used. The
following examples show how this is best performed in assembly language.

Listing 7-4 uses multiple variables of either 16-bit or 32-bit size to
describe DMA descriptors. This example has two descriptors in small list
flow mode that point to each other. At the end of the second work unit,
an interrupt is generated without discontinuing the DMA processing. The
trailing .end label is required to let the linker know that a descriptor forms
a logical unit. It prevents the linker from removing variables when
optimizing.

Programming Examples

7-96 ADSP-BF50x Blackfin Processor Hardware Reference

Listing 7-4. Two Descriptors in Small List Flow Mode

.section sdram;

.byte2 arrBlock1[0x400];

.byte2 arrBlock2[0x800];

.section L1_data_a;

.byte2 descBlock1 = lo(descBlock2);

.var descBlock1.addr = arrBlock1;

.byte2 descBlock1.cfg = FLOW_SMALL|NDSIZE_5|WDSIZE_16|DMAEN;

.byte2 descBlock1.len = length(arrBlock1);

descBlock1.end:

.byte2 descBlock2 = lo(descBlock1);

.var descBlock2.addr = arrBlock2;

.byte2 descBlock2.cfg =

FLOW_SMALL|NDSIZE_5|DI_EN|WDSIZE_16|DMAEN;

.byte2 descBlock2.len = length(arrBlock2);

descBlock2.end:

Another method takes advantage of C-style structures in global header
files. The header file descriptors.h could look like Listing 7-5.

Listing 7-5. Header File to Define Descriptor Structures

#ifndef __INCLUDE_DESCRIPTORS__

#define __INCLUDE_DESCRIPTORS__

#ifdef _LANGUAGE_C

typedef struct {

void *pStart;

short dConfig;

short dXCount;

short dXModify;

short dYCount;

short dYModify;

ADSP-BF50x Blackfin Processor Hardware Reference 7-97

Direct Memory Access

} dma_desc_arr;

typedef struct {

void *pNext;

void *pStart;

short dConfig;

short dXCount;

short dXModify;

short dYCount;

short dYModify;

} dma_desc_list;

#endif // _LANGUAGE_C

#endif // __INCLUDE_DESCRIPTORS__

Note that near pointers are not natively supported by the C language and,
thus, pointers are always 32 bits wide. Therefore, the scheme above cannot
be used directly for small list mode without giving up pointer syntax. The
variable definition file is required to import the C-style header file and can
finally take advantage of the structures. See Listing 7-6.

Listing 7-6. Using Descriptor Structures

#include "descriptors.h"

.import "descriptors.h";

.section L1_data_a;

.align 4;

.var arrBlock3[N];

.var arrBlock4[N];

.struct dma_desc_list descBlock3 = {

descBlock4, arrBlock3,

FLOW_LARGE | NDSIZE_7 | WDSIZE_32 | DMAEN,

length(arrBlock3), 4,

Programming Examples

7-98 ADSP-BF50x Blackfin Processor Hardware Reference

0, 0 /* unused values */

};

.struct dma_desc_list descBlock4 = {

descBlock3, arrBlock4,

FLOW_LARGE | NDSIZE_7 | DI_EN | WDSIZE_32 | DMAEN,

length(arrBlock4), 4,

0, 0 /* unused values */

};

Software-Triggered Descriptor Fetch Example
Listing 7-7 demonstrates a large list of descriptors that provide FLOW = 0
(stop mode) configuration. Consequently, the DMA stops by itself as soon
as the work unit has finished. Software triggers the next work unit by sim-
ply writing the proper value into the DMA configuration registers. Since
these values instruct the DMA controller to fetch descriptors in large list
mode, the DMA immediately fetches the descriptor, thus overwriting the
configuration value again with the new settings when it is started.

Note the requirement that source and destination channels stop after the
same number of transfers. Between stops, the two channels can have com-
pletely individual structures.

Listing 7-7. Software-Triggered Descriptor Fetch

.import "descriptors.h";

#define N 4

.section L1_data_a;

.byte2 arrSource1[N] = { 0x1001, 0x1002, 0x1003, 0x1004 };

.byte2 arrSource2[N] = { 0x2001, 0x2002, 0x2003, 0x2004 };

.byte2 arrSource3[N] = { 0x3001, 0x3002, 0x3003, 0x3004 };

.byte2 arrDest1[N];

ADSP-BF50x Blackfin Processor Hardware Reference 7-99

Direct Memory Access

.byte2 arrDest2[2*N];

.struct dma_desc_list descSource1 = {

descSource2, arrSource1,

WDSIZE_16 | DMAEN,

length(arrSource1), 2,

0, 0 /* unused values */

};

.struct dma_desc_list descSource2 = {

descSource3, arrSource2,

FLOW_LARGE | NDSIZE_7 | WDSIZE_16 | DMAEN,

length(arrSource2), 2,

0, 0 /* unused values */

};

.struct dma_desc_list descSource3 = {

descSource1, arrSource3,

WDSIZE_16 | DMAEN,

length(arrSource3), 2,

0, 0 /* unused values */

};

.struct dma_desc_list descDest1 = {

descDest2, arrDest1,

DI_EN | WDSIZE_16 | WNR | DMAEN,

length(arrDest1), 2,

0, 0 /* unused values */

};

.struct dma_desc_list descDest2 = {

descDest1, arrDest2,

DI_EN | WDSIZE_16 | WNR | DMAEN,

length(arrDest2), 2,

0, 0 /* unused values */

};

.section L1_code;

Programming Examples

7-100 ADSP-BF50x Blackfin Processor Hardware Reference

_main:

/* write descriptor address to next descriptor pointer */

p0.h = hi(MDMA_S0_CONFIG);

p0.l = lo(MDMA_S0_CONFIG);

r0.h = hi(descDest1);

r0.l = lo(descDest1);

[p0 + MDMA_D0_NEXT_DESC_PTR - MDMA_S0_CONFIG] = r0;

r0.h = hi(descSource1);

r0.l = lo(descSource1);

[p0 + MDMA_S0_NEXT_DESC_PTR - MDMA_S0_CONFIG] = r0;

/* start first work unit */

r6.l = FLOW_LARGE|NDSIZE_7|WDSIZE_16|DMAEN;

w[p0 + MDMA_S0_CONFIG - MDMA_S0_CONFIG] = r6;

r7.l = FLOW_LARGE|NDSIZE_7|WDSIZE_16|WNR|DMAEN;

w[p0 + MDMA_D0_CONFIG - MDMA_S0_CONFIG] = r7;

/* wait until destination channel has finished and W1C latch */

_main.wait:

r0 = w[p0 + MDMA_D0_IRQ_STATUS - MDMA_S0_CONFIG] (z);

CC = bittst (r0, bitpos(DMA_DONE));

if !CC jump _main.wait;

r0.l = DMA_DONE;

w[p0 + MDMA_D0_IRQ_STATUS - MDMA_S0_CONFIG] = r0;

/* wait for any software or hardware event here */

/* start next work unit */

w[p0 + MDMA_S0_CONFIG - MDMA_S0_CONFIG] = r6;

w[p0 + MDMA_D0_CONFIG - MDMA_S0_CONFIG] = r7;

jump _main.wait;

_main.end:

ADSP-BF50x Blackfin Processor Hardware Reference 7-101

Direct Memory Access

Handshaked Memory DMA Example
The functional block for the handshaked MDMA operation can be con-
sidered completely separately from the MDMA channels themselves.
Therefore the following HMDMA setup routine can be combined with
any of the MDMA examples discussed above. Be sure that the HMDMA
module is enabled before the MDMA channels.

Listing 7-8 enables the HMDMA1 block, which is controlled by the DMAR1

pin and is associated with the MDMA1 channel pair.

Listing 7-8. HMDMA1 Block Enable

/* optionally, enable all four bank select strobes */

p1.l = lo(EBIU_AMGCTL);

p1.h = hi(EBIU_AMGCTL);

r0.l = 0x0009;

w[p1] = r0;

/* function enable for DMAR1 */

p1.l = lo(PORTG_FER);

r0.l = PG12;

w[p1] = r0;

p1.l = lo(PORTG_MUX);

r0.l = 0x0000;

w[p1] = r0;

/* every single transfer requires one DMAR1 event */

p1.l = lo(HMDMA1_BCINIT);

r0.l = 1;

w[p1] = r0;

/* start with balanced request counter */

p1.l = lo(HMDMA1_ECINIT);

r0.l = 0;

Programming Examples

7-102 ADSP-BF50x Blackfin Processor Hardware Reference

w[p1] = r0;

/* enable for rising edges */

p1.l = lo(HMDMA1_CONTROL);

r2.l = REP | HMDMAEN;

w[p1] = r2;

If the HMDMA is intended to copy from internal memory to external
devices, the above setup is sufficient. If, however, the data flow is from
outside the processor to internal memory, then this small issue must be
considered—the HMDMA only controls the destination channel of the
memory DMA. It does not gate requests to the source channel at all.
Thus, as soon as the source channel is enabled, it starts filling the DMA
FIFO immediately. In 16-bit DMA mode, this results in eight read strobes
on the EBIU even before the first DMAR1 event has been detected. In
other words, the transferred data and the DMAR1 strobes are eight posi-
tions off. The example in Listing 7-9 delays processing until eight
DMAR1 requests have been received. By doing so, the transmitter is
required to add eight trailing dummy writes after all data words have been
sent. This is because the transmit channel still has to drain the DMA
FIFO.

Listing 7-9. HMDMA With Delayed Processing

/* wait for eight requests */

p1.l = lo(HMDMA1_ECOUNT);

r0 = 7 (z);

initial_requests:

r1 = w[p1] (z);

CC = r1 < r0;

if CC jump initial_requests;

/* disable and reenable to clear edge count */

p1.l = lo(HMDMA1_CONTROL);

r0.l = 0;

ADSP-BF50x Blackfin Processor Hardware Reference 7-103

Direct Memory Access

w[p1] = r0;

w[p1] = r2;

If the polling operation shown in Listing 7-9 is too expensive, an interrupt
version of it can be implemented by using the HMDMA overflow feature.
Temporarily set the HMDMAx_OVERFLOW register to eight.

Unique Information for the ADSP-BF50x
Processor

Figure 7-28 provides a block diagram of the ADSP-BF50x DMA
controller.

 The ADSP-BF50x processors do not contain an SDRAM interface
or an HMDMA controller. Therefore, any discussion or examples
above regarding SDRAM and HMDMA do not apply to the
ADSP-BF50x processors.

Unique Information for the ADSP-BF50x Processor

7-104 ADSP-BF50x Blackfin Processor Hardware Reference

Figure 7-28. ADSP-BF50x DMA Controller Block Diagram

DMA 0 CONTROLPMAPFIFO

DMA 1 CONTROLPMAPFIFO

DMA 2 CONTROLPMAPFIFO

DMA 3 CONTROLPMAPFIFO

DMA 4 CONTROLPMAPFIFO

DMA 5 CONTROLPMAPFIFO

DMA 6 CONTROLPMAPFIFO

DMA 7 CONTROLPMAPFIFO

DMA 8 CONTROLPMAPFIFO

DMA 9 CONTROLPMAPFIFO

DMA 10 CONTROLPMAPFIFO

DMA 11 CONTROLPMAPFIFO

MDMA 1 DESTINATION CONTROL
FIFO

MDMA 1 SOURCE CONTROL

MDMA 0 DESTINATION CONTROL
FIFO

MDMA 0 SOURCE CONTROL

DMA TRAFFIC CONTROL

IRQ 14

IRQ 15

IRQ 16

IRQ 17

IRQ 18

IRQ 19

IRQ 20

IRQ 21

IRQ 22

IRQ 23

IRQ 24

IRQ 25

IRQ 43

IRQ 42

IRQ 1

CCLK SCLK

DCB DEB DAB DGT DRQ PAB

16 16 16 12 3 x 12 16

ADSP-BF50x Blackfin Processor Hardware Reference 7-105

Direct Memory Access

Static Channel Prioritization
The default DMA channel priority and mapping shown in Table 7-7 can
be changed by altering the 4-bit PMAP field in the DMAx_PERIPHERAL_MAP

registers for the peripheral DMA channels.

Table 7-7. Priority and Default Mapping of Peripheral to DMA

Priority DMA Channel PMAP Default Value Peripheral Mapped by Default

Highest DMA 0 0x0 PPI receive or transmit

DMA 1 0x1 RSI receive or transmit

DMA 2 0x2 SPORT0 receive

DMA 3 0x3 SPORT0 transmit

DMA 4 0x4 SPORT1 receive

DMA 5 0x5 SPORT1 transmit

DMA 6 0x6 SPI0 receive or transmit

DMA 7 0x7 SPI1 receive or transmit

DMA 8 0x8 UART0 receive

DMA 9 0x9 UART0 transmit

DMA 10 0xA UART1 receive

DMA 11 0xB UART1 transmit

MDMA D0 None Mem DMA has no peripheral mapping.

MDMA S0 None Mem DMA has no peripheral mapping.

MDMA D1 None Mem DMA has no peripheral mapping.

Lowest MDMA S1 None Mem DMA has no peripheral mapping.

Unique Information for the ADSP-BF50x Processor

7-106 ADSP-BF50x Blackfin Processor Hardware Reference

ADSP-BF50x Blackfin Processor Hardware Reference 8-1

8 DYNAMIC POWER
MANAGEMENT

This chapter describes the dynamic power management functionality of
the Blackfin processor and includes the following sections:

• “Phase Locked Loop and Clock Control”

• “Dynamic Power Management Controller” on page 8-7

• “Operating Modes” on page 8-8

• “Dynamic Supply Voltage Control” on page 8-16

• “System Control ROM Function” on page 8-23

• “PLL and VR Registers” on page 8-19

• “Programming Examples” on page 8-29

Phase Locked Loop and Clock Control
The input clock into the processor, CLKIN, provides the necessary clock
frequency, duty cycle, and stability to allow accurate internal clock multi-
plication by means of an on-chip PLL module. During normal operation,
the user programs the PLL with a multiplication factor for CLKIN. The
resulting, multiplied signal is the voltage controlled oscillator (VCO)
clock. A user-programmable value then divides the VCO clock signal to
generate the core clock (CCLK).

A user-programmable value divides the VCO signal to generate the system
clock (SCLK). The SCLK signal clocks the Peripheral Access Bus (PAB),

Phase Locked Loop and Clock Control

8-2 ADSP-BF50x Blackfin Processor Hardware Reference

DMA Access Bus (DAB), External Access Bus (EAB), and the external bus
interface unit (EBIU).

 These buses run at the PLL frequency divided by 1–15 (SCLK
domain). Using the SSEL parameter of the PLL divide register,
select a divider value that allows these buses to run at or below the
maximum SCLK rate specified in the processor data sheet.

To optimize performance and power dissipation, the processor allows the
core and system clock frequencies to be changed dynamically in a “coarse
adjustment.” For a “fine adjustment,” the PLL clock frequency can also be
varied.

PLL Overview
To provide the clock generation for the core and system, the processor
uses an analog PLL with programmable state machine control.

The PLL design serves a wide range of applications. It emphasizes embed-
ded and portable applications and low cost, general-purpose processors, in
which performance, flexibility, and control of power dissipation are key
features. This broad range of applications requires a wide range of fre-
quencies for the clock generation circuitry. The input clock may be a
crystal, a crystal oscillator, or a buffered, shaped clock derived from an
external system clock oscillator.

The PLL interacts with the Dynamic Power Management Controller
(DPMC) block to provide power management functions for the processor.
For information about the DPMC, see “Dynamic Power Management
Controller” on page 8-7.

Subject to the maximum VCO frequency specified in the processor data
sheet, the PLL supports a wide range of multiplier ratios and achieves
multiplication of the input clock, CLKIN. To achieve this wide multiplica-
tion range, the processor uses a combination of programmable dividers in
the PLL feedback circuit and output configuration blocks.

ADSP-BF50x Blackfin Processor Hardware Reference 8-3

Dynamic Power Management

Figure 8-1 illustrates a conceptual model of the PLL circuitry, configura-
tion inputs, and resulting outputs. In the figure, the VCO is an

Figure 8-1. PLL Block Diagram

OUTPUT CLOCK
GENERATOR (CLOCK
DIVIDE AND MUX)

÷1 OR ÷2 LOOP
FILTER

VCO

×1,..., ×64 ÷1, ÷2, ÷4,
 OR ÷8

÷1,..., ÷15
+

-

SSEL [3:0}

MSEL [5:0]

CSEL [1:0]

DF

SCLK

GATE

GATE SCLK

CCLK

PDWN
DEEP SLEEP
POWERDOWN
(CCLK AND
SCLK OFF)

STOPCK
(SLEEP MODE)
STOP CLOCK
CCLK OFF

BYPASS
(ACTIVE
MODE)
CCLK = SCLK = CLKIN

PHASE LOCKED LOOP

fCLKIN

fCLKIN

fVCO

PLL_OFF DISABLE
CONTROL INPUT TO PLL.
CAN ADDITIONALLY BE
USED WITH BYPASS

CLKIN

CLKOUT (SCLK)

XTAL

SELECT

CLKBUF

TO PLL CIRCUITRY

FOR OVERTONE
OPERATION ONLY:

NOTE: VALUES MARKED WITH * MUST BE CUSTOMIZED, DEPENDING
ON THE CRYSTAL AND LAYOUT. SEE PRODUCT DATA SHEET.

C1 *

EN

C2 *

R1*

560 �

EXTCLK

EN

Phase Locked Loop and Clock Control

8-4 ADSP-BF50x Blackfin Processor Hardware Reference

intermediate clock from which the core clock (CCLK) and system clock
(SCLK) are derived.

PLL Clock Multiplier Ratios
The PLL control register (PLL_CTL) governs the operation of the PLL. For
details about the PLL_CTL register, see “PLL_CTL Register” on page 8-21.

The divide frequency (DF) bit and multiplier select (MSEL[5:0]) field con-
figure the various PLL clock dividers:

• DF enables the input divider

• MSEL[5:0] controls the feedback dividers

The reset value of MSEL is 0x6. This value can be reprogrammed at startup
in the boot code.

Table 8-1 illustrates the VCO multiplication factors for the various MSEL
and DF settings.

As shown in the table, different combinations of MSEL[5:0] and DF can
generate the same VCO frequencies. For a given application, one combi-
nation may provide lower power or satisfy the VCO maximum frequency.
Under normal conditions, setting DF to 1 typically results in lower power
dissipation. See the processor data sheet for maximum and minimum fre-
quencies for CLKIN, CCLK, and VCO.

Table 8-1. MSEL Encodings

Signal name VCO Frequency

MSEL[5:0] DF = 0 DF = 1

5 5x 1.5x

6 6x 3x

N = 7–62 Nx 0.5Nx

ADSP-BF50x Blackfin Processor Hardware Reference 8-5

Dynamic Power Management

The PLL control (PLL_CTL) register controls operation of the PLL (see
Figure 8-4 on page 8-21). Note that changes to the PLL_CTL register do
not take effect immediately. In general, the PLL_CTL register is first pro-
grammed with a new value, and then a specific PLL programming
sequence must be executed to implement the changes. This is handled
automatically by the system control ROM function (bfrom_SysControl())
as described in “System Control ROM Function” on page 8-23.

Core Clock/System Clock Ratio Control

Table 8-2 describes the programmable relationship between the VCO fre-
quency and the core clock. Table 8-3 shows the relationship of the VCO
frequency to the system clock. Note the divider ratio must be chosen to
limit the SCLK to a frequency specified in the processor data sheet. The
SCLK drives all synchronous, system-level logic.

The divider ratio control bits, CSEL and SSEL, are in the PLL divide
(PLL_DIV) register. For information about this register, see “PLL_DIV
Register” on page 8-20.

The reset value of CSEL[1:0] is 0x0, and the reset value of SSEL[3:0] is
0x4. These values can be reprogrammed at startup by the boot code.

By updating PLL_DIV with an appropriate value, you can change the CSEL

and SSEL value dynamically. Note the divider ratio of the core clock can
never be greater than the divider ratio of the system clock. If the PLL_DIV

register is programmed to illegal values, the SCLK divider is automatically
increased to be greater than or equal to the core clock divider.

63 63x 31.5x

0 64x 32x

Table 8-1. MSEL Encodings (Cont’d)

Signal name VCO Frequency

MSEL[5:0] DF = 0 DF = 1

Phase Locked Loop and Clock Control

8-6 ADSP-BF50x Blackfin Processor Hardware Reference

Unlike writing the PLL_CTL register, the PLL_DIV register can be pro-
grammed at any time to change the CCLK and SCLK divide values without
entering the PLL programing sequence.

As long as the MSEL and DF control bits in the PLL control (PLL_CTL) regis-
ter remain constant, the PLL is locked.

 If changing the clock ratio via writing a new SSEL value into
PLL_DIV, take care that the enabled peripherals do not suffer data
loss due to SCLK frequency changes.

Table 8-2. Core Clock Ratio

Signal Name
CSEL[1:0]

Divider Ratio
VCO/CCLK

Example Frequency Ratios (MHz)
VCO CCLK

00 1 300 300

01 2 300 150

10 4 400 100

11 8 400 50

Table 8-3. System Clock Ratio

Signal Name
SSEL[3:0]

Divider Ratio
VCO/SCLK

Example Frequency Ratios (MHz)
VCO SCLK

0000 Reserved N/A N/A

0001 1:1 50 50

0010 2:1 150 75

0011 3:1 150 50

0100 4:1 200 50

0101 5:1 300 60

0110 6:1 360 60

N = 7–15 N:1 400 400/N

ADSP-BF50x Blackfin Processor Hardware Reference 8-7

Dynamic Power Management

When changing clock frequencies in the PLL, the PLL requires time to
stabilize and lock to the new frequency. The PLL lock count
(PLL_LOCKCNT) register defines the number of CLKIN cycles that occur
before the processor sets the PLL_LOCKED bit in the PLL_STAT register.
When executing the PLL programming sequence, the internal PLL lock
counter begins incrementing upon execution of the IDLE instruction. The
lock counter increments by 1 each CLKIN cycle. When the lock counter has
incremented to the value defined in the PLL_LOCKCNT register, the
PLL_LOCKED bit is set.

See the processor data sheet for more information about PLL stabilization
time and programmed values for this register. For more information about
operating modes, see “Operating Modes” on page 8-8.

Dynamic Power Management Controller
The Dynamic Power Management Controller (DPMC) works in conjunc-
tion with the PLL, allowing the user to control the processor’s
performance characteristics and power dissipation dynamically. The
DPMC provides these features that allow the user to control performance
and power:

• Multiple operating modes – The processor works in four operating
modes, each with different performance characteristics and power
dissipation profiles. See “Operating Modes” on page 8-8.

• Peripheral clocks – Clocks to each peripheral are disabled automat-
ically when the peripheral is disabled.

• Voltage control – The VDDINT domain must be powered by an
external voltage regulator. For more information see “Voltage Reg-
ulation Interface” on page 25-11.

Dynamic Power Management Controller

8-8 ADSP-BF50x Blackfin Processor Hardware Reference

Operating Modes
The processor works in four operating modes, each with unique perfor-
mance and power saving benefits. Table 8-4 summarizes the operational
characteristics of each mode.

Dynamic Power Management Controller States
Power management states are synonymous with the PLL control state.
The active and full-on states of the DPMC/PLL can be determined by
reading the PLL status register (see “PLL_STAT Register” on page 8-21).
In these modes, the core can either execute instructions or be in the IDLE

core state. If the core is in the IDLE state, it can be awakened by several
sources (see Chapter 4, “System Interrupts” for details).

The following sections describe the DPMC/PLL states in more detail, as
they relate to the power management controller functions.

Full-On Mode

Full-on mode is the maximum performance mode. In this mode, the PLL
is enabled and not bypassed. Full-on mode is the normal execution state of
the processor, with the processor and all enabled peripherals running at

Table 8-4. Operational Characteristics

Operating
Mode

Power
Savings

PLL
Status Bypassed

CCLK SCLK Allowed
DMA
Access

Full On None Enabled No Enabled Enabled L1

Active Medium Enabled 1

1 PLL can also be disabled in this mode.

Yes Enabled Enabled L1

Sleep High Enabled No Disabled Enabled –

Deep Sleep Maximum Disabled – Disabled Disabled –

ADSP-BF50x Blackfin Processor Hardware Reference 8-9

Dynamic Power Management

full speed. The system clock (SCLK) frequency is determined by the SSEL

specified ratio to VCO. DMA access is available to L1 and external mem-
ories. From full-on mode, the processor can transition directly to active,
sleep, or deep sleep modes, as shown in Figure 8-2 on page 8-12.

Active Mode

In active mode, the PLL is enabled but bypassed. Because the PLL is
bypassed, the processor’s core clock (CCLK) and system clock (SCLK) run at
the input clock (CLKIN) frequency. DMA access is available to appropri-
ately configured L1 and external memories.

In active mode, it is possible not only to bypass, but also to disable the
PLL. If disabled, the PLL must be re-enabled before transitioning to full-
on or sleep modes.

From active mode, the processor can transition directly to full-on, sleep,
or deep sleep modes.

 In this mode or in the transition phase to other modes, changes to
MSEL are not latched by the PLL.

Sleep Mode

Sleep mode significantly reduces power dissipation by idling the processor
core. The CCLK is disabled in this mode; however, SCLK continues to run at
the speed configured by MSEL and SSEL bit settings. Since CCLK is disabled,
DMA access is available only to external memory in sleep mode. From
sleep mode, a wakeup event causes the processor to transition to one of
these modes:

• Active mode if the BYPASS bit in the PLL_CTL register is set

• Full-on mode if the BYPASS bit is cleared

The processor resumes execution from the program counter value present
immediately prior to entering sleep mode.

Dynamic Power Management Controller

8-10 ADSP-BF50x Blackfin Processor Hardware Reference

 The STOPCK bit is not a status bit and is therefore unmodified by
hardware when the wakeup occurs. Software must explicitly clear
STOPCK in the next write to PLL_CTL to avoid going back into sleep
mode.

Deep Sleep Mode

Deep sleep mode maximizes power savings by disabling the PLL, CCLK,
and SCLK. In this mode, the processor core and all peripherals (except
those enabled as wakeup sources) are disabled. DMA is not supported in
this mode.

Deep sleep mode can be exited only by a hardware reset event, by a
wakeup event on a programmable flag pin (including PH0, PF8, or PF9), or
by a wakeup event on the programmable flag pin associated with the
CAN_RX signal (PG1). A hardware reset begins the hardware reset sequence.
For more information about hardware reset, see Chapter 4, “System Inter-
rupts”. A programmable flag event causes the processor to transition to
active mode, and execution resumes at the program counter value at which
the processor entered deep sleep mode. If an interrupt is also enabled in
SIC_IMASK, the interrupt is vectored immediately after exit of deep sleep,
and the related ISR executed.

Note that a programmable flag event in deep sleep mode automatically
resets some fields in the PLL control (PLL_CTL) register. See Table 8-5.

Table 8-5. PLL_CTL Values after Programmable Flag Event

Field Value

PLL_OFF 0

STOPCK 0

PDWN 0

BYPASS 1

ADSP-BF50x Blackfin Processor Hardware Reference 8-11

Dynamic Power Management

Hibernate State

For lowest possible power dissipation, this state allows the internal supply
(VDDINT) to be powered down by the external regulator, while keeping
the I/O supply (VDDEXT) running. Although not strictly an operating
mode like the four modes detailed above, it is illustrative to view it as such
in the diagram of Figure 8-2. This feature is discussed in detail in “Power-
ing Down the Core (Hibernate State)” on page 8-18.

Operating Mode Transitions
Figure 8-2 graphically illustrates the operating modes and transitions. In
the diagram, ellipses represent operating modes and rectangles represent
processor states. Arrows show the allowed transitions into and out of each
mode or state.

For mode transitions, the text next to each transition arrow shows the
fields in the PLL control (PLL_CTL) register that must be changed for the
transition to occur. For example, the transition from full-on mode to sleep
mode indicates that the STOPCK bit must be set to 1 and the PDWN bit must
be set to 0.

For transitions to processor states, the text next to each transition arrow
shows either a processor event (hardware reset or wakeup event) or the
fields in the voltage regulator control register (VR_CTL) that must be
changed for the transition to occur.

For information about how to effect mode transitions, see “Programming
Operating Mode Transitions” on page 8-14.

Dynamic Power Management Controller

8-12 ADSP-BF50x Blackfin Processor Hardware Reference

Figure 8-2. Operating Mode Transitions

Sleep

Full OnActive

Deep
Sleep

Reset

WAKEUP &
BYPASS = 0

STOPCK = 1 &
PDWN = 0

PDWN = 1

PDWN = 1

STOPCK = 1 &
PDWN = 0

HARDWARE
RESET

BYPASS = 0 & PLL_OFF = 0 &
STOPCK = 0 & PDWN = 0

BYPASS = 1 & STOPCK = 0 &
PDWN = 0

WAKEUP &
BYPASS = 1

Hibernate

HARDWARE RESET

HIBERNATEB = 0

HIBERNATEB = 0

MSEL = new value
& PLL_OFF = 0
& BYPASS = 0

GPIO ASSERTION &
GPIO WAKEUP ENABLED

CAN RX ACTIVITY
& CAMWE = 1

GPIO
ASSERTION

&
GPIO

WAKEUP
ENABLED

CAN RX ACTIVITY &
CAMWE = 1

ADSP-BF50x Blackfin Processor Hardware Reference 8-13

Dynamic Power Management

In addition to the mode transitions shown in Figure 8-2, the PLL can be
modified while in active operating mode. Changes to the PLL do not take
effect immediately. As with operating mode transitions, the PLL program-
ming sequence must be executed for these changes to take effect (see
“Programming Operating Mode Transitions” on page 8-14).

• PLL disabled: In addition to being bypassed in the active mode, the
PLL can be disabled.

When the PLL is disabled, additional power savings are achieved
although they are relatively small. To disable the PLL, set the
PLL_OFF bit in the PLL_CTL register, and then execute the PLL pro-
gramming sequence.

• PLL enabled: When the PLL is disabled, it can be re-enabled later
when additional performance is required.

The PLL must be re-enabled before transitioning to the full-on or
sleep operating modes. To re-enable the PLL, clear the PLL_OFF bit
in the PLL_CTL register, and then execute the PLL programming
sequence.

• New multiplier ratio: The multiplier ratio can also be changed
while in full-on mode.

The PLL state automatically transitions to active mode while the
PLL is locking. After locking, the PLL returns to full-on mode. To
program a new CLKIN to VCO multiplier, write the new MSEL[5:0]

and/or DF values to the PLL_CTL register; then execute the PLL pro-
gramming sequence (on page 8-14).

Table 8-6 summarizes the allowed operating mode transitions.

Dynamic Power Management Controller

8-14 ADSP-BF50x Blackfin Processor Hardware Reference

 Attempting to cause mode transitions other than those shown in
Table 8-6 causes unpredictable behavior.

Programming Operating Mode Transitions
The operating mode is defined by the state of the PLL_OFF, BYPASS,
STOPCK, and PDWN bits of the PLL control (PLL_CTL) register. Merely modi-
fying the bits of the PLL_CTL register does not change the operating mode
or behavior of the PLL. Changes to the PLL_CTL register are realized only
after a specific code sequence is executed. This sequence is managed by a
user-callable routine in the on-chip ROM called bfrom_SysControl().
When calling this function, no further precautions have to be taken. See
“System Control ROM Function” on page 8-23 for more information.

If the PLL_CTL register changes include a new CLKIN to VCO multiplier or
power is reapplied to the PLL, the PLL needs to relock. To relock, the
PLL lock counter is cleared first, then starts incrementing once per SCLK
cycle. After the PLL lock counter reaches the value programmed in the
PLL lock count (PLL_LOCKCNT) register, the PLL sets the PLL_LOCKED bit in
the PLL status (PLL_STAT) register, and the PLL asserts the PLL wake-up
interrupt.

When the bfrom_SysControl() routine reprograms the PLL_CTL register
with a new value, the bfrom_SysControl() routine executes a subsequent
IDLE instruction and prevents all other system interrupt sources, other

Table 8-6. Allowed Operating Mode Transitions

New Mode

Current Mode

Full-On Active Sleep Deep Sleep

Full On – Allowed Allowed Allowed

Active Allowed – Allowed Allowed

Sleep Allowed Allowed – –

Deep Sleep Allowed Allowed – –

ADSP-BF50x Blackfin Processor Hardware Reference 8-15

Dynamic Power Management

than the DPMC, from waking up the core from the IDLE state. If the lock
counter expires, the PLL issues an interrupt, and the code execution con-
tinues the instruction after the IDLE instruction. Therefore, the system is
in the new state by the time the bfrom_SysControl() routine returns.

 If the new value written to the PLL_CTL or VR_CTL register is the
same as the previous value, the PLL wake-up occurs immediately
(PLL is already locked), but the core and system clock are bypassed
for the PLL_LOCKCNT duration. For this interval, code executes at
the CLKIN rate instead of the expected CCLK rate. Software guards
against this condition by comparing the current value to the new
value before writing the new value.

• When the wake-up signal is asserted, the code execution continues
the instruction after the IDLE instruction, causing a transition to:

• Active mode if BYPASS in the PLL_CTL register is set

• Full-on mode if the BYPASS bit is cleared

• If the PLL_CTL register is programmed to enter the sleep operating
mode, the processor transitions immediately to sleep mode and
waits for a wake-up signal before continuing code execution. If the
PLL_CTL register is programmed to enter the deep sleep operating
mode, the processor immediately transitions to deep sleep mode
and waits for a hardware reset signal, GPIO wakeup, or CAN
wakeup:

• A hardware reset causes the processor to execute the reset
sequence. For more information, see “System Reset and
Booting” on page 24-1.

• A GPIO or CAN wakeup event causes the processor
to enter active operating mode and return from the
bfrom_SysControl() routine.

Dynamic Power Management Controller

8-16 ADSP-BF50x Blackfin Processor Hardware Reference

If no operating mode transition is programmed, the PLL generates a
wake-up signal, and the bfrom_SysControl() routine returns.

Dynamic Supply Voltage Control
In addition to clock frequency control, the processor's core is capable of
running at different voltage levels. As power dissipation is proportional to
the voltage squared, significant power reductions can be accomplished
when lower voltages are used.

The processor uses multiple power domains. Each power domain has a
separate VDD supply. Note that the internal logic of the processor and
much of the processor I/O can be run over a range of voltages. See the
product data sheet for details on the allowed voltage ranges for each power
domain and power dissipation data.

Power Supply Management
VDDINT is supplied by an external regulator and pin PG is used to accept
an active-low power-good indicator from the regulator. Note that the
external regulator must comply with the VDDINT specifications defined in
the processor data sheet.

Changing Voltage

When changing the voltage using an external regulator, a specific pro-
gramming sequence must be followed.

Unlike other Blackfin derivatives that feature an internal voltage regulator;
the voltage level for the ADSP-BF50x cannot be changed by programming
the VR_CTL register. With an internal voltage regulator, the PLL would
automatically enter the active mode when the processor enters the IDLE

state. At that point the voltage level would change and the PLL would
re-lock to the new voltage. After the PLL_LOCKCNT has expired, the part
returns to the full-on state.

ADSP-BF50x Blackfin Processor Hardware Reference 8-17

Dynamic Power Management

With an external voltage regulator, this sequence must be reproduced in
the program code by the user. The PLL_LOCKCNT register cannot be used in
this case, but the value is still needed for calculating the required delay. A
larger PLL_LOCKCNT value may be necessary for changing voltages than
when changing just the PLL frequency. See the processor data sheet for
details.

The processor must enter active mode before the user can access the exter-
nal voltage regulator and program a new voltage level. See the data sheet of
external voltage regulator for information on changing voltage levels. See
the processor data sheet for more information about voltage tolerances
and allowed rates of change.

 Reducing the processor’s operating voltage to greatly conserve
power or raising the operating voltage to greatly increase perfor-
mance will probably require significant changes to the operating
voltage level. To ensure predictable behavior the recommended
procedure is to bring the processor to the sleep operating mode
before substantially varying the voltage.

The user must ensure a stable voltage and give the PLL time to re-lock at
the new voltage level. This can be done by running the core in a loop for a
certain amount of time before leaving active mode.

After the voltage has been changed to the new level, the processor can
safely return to any operational mode—so long as the operating parame-
ters, such as core clock frequency (CCLK), are within the limits specified
in the processor data sheet for the new operating voltage level.

Please see “Changing Voltage Levels” on page 8-39 for more details on
mode transitions and changing voltage levels.

The VSTAT bit in the PLL_STAT register can be used to indicate whether
VDDINT is stable and ready to use. The VSTAT bit works in conjunction
with the PG (Power Good) input signal of the ADSP-BF50x. The inverted
version of a “power good” signal from the external regulator is fed to the
ADSP-BF50x to indicate that the voltage has reached its programmed

Dynamic Power Management Controller

8-18 ADSP-BF50x Blackfin Processor Hardware Reference

value. That in turn will set the VSAT bit, which should be considered the
end of your “wait” state for the voltage regulator to settle.

Powering Down the Core (Hibernate State)

The external regulator can be signaled to shut off VDDINT using the
EXT_WAKE signal. Writing 0 to the HIBERNATEB bit of the VR_CTL register,
which disables CCLK and SCLK, will also make EXT_WAKE go low. EXT_WAKE
will transition high if any wakeup sources occur, which will signal the
external voltage regulator to turn VDDINT on again. The wakeup sources
are several user-selectable events, all of which are controlled in the VR_CTL

register:

• Assertion of the RESET pin always exits hibernate state and requires
no modification to VR_CTL.

• External GPIO event. Set a GPIO wakeup enable control bit
(PH0WE, PF8WE, PF9WE) to enable wakeup on assertion of a signal on
the corresponding pin.

• External CAN RX event. Set the CAN RX wakeup enable control
(CANWE) bit to enable wakeup on the occurrence of a CAN RX
event.

• Pin EXT_WAKE is provided to indicate the occurrence of wakeup.
EXT_WAKE is an output pin, which is a logical OR of the above
wakeup sources, except hardware reset. The pin follows the wakeup
signal of the various wakeup sources.

 When the core is powered down, VDDINT is set to 0 V, and the
internal state of the processor is not maintained, with the exception
of the VR_CTL register. Therefore, any critical information stored
internally (memory contents, register contents, and so on) must be
written to a non-volatile storage device prior to removing power.

ADSP-BF50x Blackfin Processor Hardware Reference 8-19

Dynamic Power Management

Powering down VDDINT does not affect VDDEXT. While VDDEXT is still
applied to the processor, external pins are maintained at a three-state level
unless specified otherwise.

To signal the external regulator to power down VDDINT:

1. Write 0 to the appropriate bits in the SIC_IWRx registers to prevent
enabled peripheral resources from interrupting the hibernate
process.

2. Call the bfrom_SysControl() routine; ensure that the HIBERNATEB

bit in the VR_CTL register is set to 0, and the appropriate wakeup
enable bit or bits (PH0WE, PF8WE, PF9WE, or CANWE) are set to 1.

3. The bfrom_SysControl() routine executes until VDDINT transi-
tions to 0 V. The bfrom_SysControl() routine never returns.

4. When the processor is woken up, the PLL relocks and the boot
sequence defined by the BMODE[2:0] pin settings takes effect.

The WURESET bit in the SYSCTRL register is set and stays set until the next
hardware reset. The WURESET bit may control a conditional boot process.

PLL and VR Registers
The user interface to the PLL and VR registers is through the system control
ROM function (bfrom_SysControl()) described in “System Control
ROM Function” on page 8-23. The memory-mapped registers (MMRs)
are shown in Table 8-7 and illustrated in Figure 8-3 through Figure 8-7.

PLL and VR Registers

8-20 ADSP-BF50x Blackfin Processor Hardware Reference

Table 8-7 shows the functions of the PLL/VR registers.

PLL_DIV Register

Table 8-7. PLL/VR Register Mapping

Register Name Function Notes For More Information See:

PLL_CTL PLL control register Requires reprogram-
ming sequence when
written

Figure 8-4 on page 8-21

PLL_DIV PLL divisor register Can be written freely Figure 8-3 on page 8-20

PLL_STAT PLL status register Monitors active modes
of operation

Figure 8-5 on page 8-21

PLL_LOCKCNT PLL lock count register Number of SCLKs
allowed for PLL to
relock

Figure 8-6 on page 8-22

VR_CTL Voltage regulator
control register

Requires PLL repro-
gramming sequence
when written

Figure 8-7 on page 8-22

Figure 8-3. PLL Divide Register

PLL Divide Register (PLL_DIV)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0

0 - Reserved
1-15 - SCLK = VCO / X

CSEL[1:0] (Core Select)

0 0 0 0 0 0 0 0 0 0 0 0 1 0

00 - CCLK = VCO / 1
01 - CCLK = VCO / 2
10 - CCLK = VCO / 4
11 - CCLK = VCO / 8

SSEL[3:0] (System Select)

Reset = 0x000400xFFC0 0004

ADSP-BF50x Blackfin Processor Hardware Reference 8-21

Dynamic Power Management

PLL_CTL Register

PLL_STAT Register

For CLKIN/VCO multiplication factors, see Table 8-1 on page 8-4.

Figure 8-4. PLL Control Register

Figure 8-5. PLL Status Register

10

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 1 1 0 0 0 0 0 0 0 0

See CLKIN/VCO multiplication
factors

PLL Control Register (PLL_CTL)

BYPASS
0 - Do not bypass PLL
1 - Bypass PLL

MSEL[5:0]
(Multiplier Select)

DF (Divide Frequency)
0 - Pass CLKIN to PLL
1 - Pass CLKIN/2 to PLL
PLL_OFF
0 - Enable control of PLL
1 - Disable control of PLL

STOPCK (Stop Clock)
0 - CCLK on
1 - CCLK off

PDWN (Power Down)
0 - All internal clocks on
1 - All internal clocks off

Reset = 0x0C800xFFC0 0000

0 00 000 0 0 0 0

PLL Status Register (PLL_STAT)
Read only. Unless otherwise noted, 1 - Processor operating in this mode. For more infor-
mation, see “Operating Modes” on page 8-8.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 1 0 1 Reset = 0x00A2

ACTIVE_PLLENABLED

FULL_ON

ACTIVE_PLLDISABLED
PLL_LOCKED

0xFFC0 000C

VSTAT
0: Voltage regulator is not stable.
1: Voltage regulator is stable.

1

PLL and VR Registers

8-22 ADSP-BF50x Blackfin Processor Hardware Reference

PLL_LOCKCNT Register

VR_CTL Register

Figure 8-6. PLL Lock Count Register

Figure 8-7. Voltage Regulator Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0

LOCKCNT[15:0]
Number of SCLK cycles
before PLL Lock Count
timer expires.

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 Reset = 0x0200

PLL Lock Count Register (PLL_LOCKCNT)

0xFFC0 0010

0 00

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 0 1 1

Voltage Regulator Control Register (VR_CTL)

00xFFC0 0008

POLARITY
0 - Active Low level

initiates wakeup
1 - Active High Level

initiates wakeup

EXTCLK_OE
0 = disable EXTCLK pin
1 = enable EXTCLK pin

Reserved

HIBERNATEB
0 - Deassert EXT_WAKE pin

and enter hibernate state.
1- Writing 1 has no effect.

Reset = 0x30B001 0 0

EXTCLK_SEL
0 - EXTCLK pin drives

CLKBUF signal
1 = EXTCLK pin drives

CLKOUT signal

PH0WE
0 - PH0 event wakeup disabled
1 - PH0 GPIO wakeup enabled

PF8WE
0 - PF8 event wakeup disabled
1 - PF8 event wakeup enabled

CANWE
0 = CAN RX event wakeup disabled
1 = CAN RX event wakeup enabled

PF9WE
0 - PF9 event wakeup disabled
1 - PF9 event wakeup enabled

ADSP-BF50x Blackfin Processor Hardware Reference 8-23

Dynamic Power Management

The external clock select (EXTCLK_SEL) control bit configures the EXTCLK

pin to output either the SCLK frequency (called CLKOUT) or to output an
input buffered CLKIN frequency (called CLKBUF). When configured to
output SCLK (CLKOUT), the EXTCLK pin acts as a reference signal in many
timing specifications. While CLKOUT is active by default, it can be dis-
abled using the EBIU_AMGCTL register. When configured to output CLKIN
(CLKBUF), the EXTCLK pin allows another device and the Blackfin processor
to run from a single crystal oscillator.

The external clock output enable (EXTCLK_OE) control bit configures the
EXTCLK pin to either enable (when set, =1) or disable (when cleared, =0) the
output of the clock signal selected by EXTCLK_SEL. When EXTCLK_OE is
cleared, the EXTCLK pin is three-stated.

The POLARITY control bit configure the active level of the wakeup event on
the programmable flags. Note that the CAN RX wakeup event is always
active low and is not affected by the POLARITY bit.

System Control ROM Function
The PLL and voltage regulator registers should not be accessed directly.
Instead, use the bfrom_SysControl() function to alter or read the register
values. The function resides in the on-chip ROM and can be called by the
user following C-language style calling conventions.

Entry address: 0xEF00 0038

Arguments:

• dActionFlags word in R0

• pSysCtrlSettings pointer in R1

• zero value in R2

System Control ROM Function

8-24 ADSP-BF50x Blackfin Processor Hardware Reference

 The system control ROM function does not verify the correctness
of the forwarded arguments. Therefore, it is up to the programmer
to choose the correct values.

C prototype: u32 bfrom_SysControl(u32 dActionFlags,

ADI_SYSCTRL_VALUES *pSysCtrlSettings, void *reserved);

The first argument (u32 dActionFlags) to the system control ROM func-
tion holds the instruction flags. The following flags are supported.

#define SYSCTRL_READ 0x00000000

#define SYSCTRL_WRITE 0x00000001

#define SYSCTRL_SYSRESET 0x00000002

#define SYSCTRL_SOFTRESET 0x00000004

#define SYSCTRL_VRCTL 0x00000010

#define SYSCTRL_EXTVOLTAGE 0x00000020

#define SYSCTRL_PLLCTL 0x00000100

#define SYSCTRL_PLLDIV 0x00000200

#define SYSCTRL_LOCKCNT 0x00000400

#define SYSCTRL_PLLSTAT 0x00000800

With SYSCTRL_READ and SYSCTRL_WRITE, a read or a write operation is ini-
tialized. The SYSCTRL_SYSRESET flag performs a system reset, while the
SYSCTRL_SOFTRESET flag combines a core and system reset. The
SYSCTRL_EXTVOLTAGE flag indicates that VDDINT is supplied externally.
Five of the flags (_VRCTL, _PLLCTL, _PLLDIV, _LOCKCNT, _PLLSTAT) tell the
system control ROM function which registers to be written to or read
from. Note that SYSCTRL_PLLSTAT flag is read-only.

The second argument (ADI_SYSCTRL_VALUES *pSysCtrlSettings) to the
system control ROM function passes a pointer to a special structure,
which has entries for all PLL and voltage regulator registers. It is pre-
defined in the bfrom.h header file as follows.

ADSP-BF50x Blackfin Processor Hardware Reference 8-25

Dynamic Power Management

typedef struct

{

u16 uwVrCtl;

u16 uwPllCtl;

u16 uwPllDiv;

u16 uwPllLockCnt;

u16 uwPllStat;

} ADI_SYSCTRL_VALUES;

The third argument to the system control ROM function is reserved and
should be kept zero (NULL pointer).

 The system control ROM function executes the correct steps and
programming sequence for the Dynamic Power Management Sys-
tem of the Blackfin processor.

Programming Model
The programming model for the system control ROM function in C/C++
and Assembly is described in the following sections.

Accessing the System Control ROM Function in
C/C++

To read the PLL_DIV and PLL_CTL register values, for example, specify the
SYSCTRL_READ instruction flag along with the SYSCTRL_PLLCTL and
SYSCTRL_PLLDIV register flags:

ADI_SYSCTRL_VALUES read;

bfrom_SysControl (SYSCTRL_READ | SYSCTRL_PLLCTL | SYSCTRL_PLLDIV,

&read, NULL);

The read.uwPllCtl and read.uwPllDiv variables access the PLL_CTL and
PLL_DIV register values, respectively. To update the register values, specify
the SYSCTRL_WRITE instruction flag along with the register flags of those

System Control ROM Function

8-26 ADSP-BF50x Blackfin Processor Hardware Reference

registers that should be modified and have valid data in the respective
ADI_SYSCTRL_VALUES variables:

ADI_SYSCTRL_VALUES write;

write.uwPllCtl = 0x1480;

write.uwPllDiv = 0x0004;

bfrom_SysControl (SYSCTRL_WRITE | SYSCTRL_PLLCTL |SYSCTRL_PLLDIV,

&write, NULL);

Accessing the System Control ROM Function in
Assembly

The assembler supports C structs, which is required to import the file
bfrom.h:

#include <bfrom.h>

.IMPORT "bfrom.h";

.STRUCT ADI_SYSCTRL_VALUES dpm;

You can pre-load the struct:

.STRUCT ADI_SYSCTRL_VALUES dpm = { 0x70B0, 0x1480, 0x0004,

0x0200, 0x00A2 };

or load the values dynamically inside the code:

P5.H = hi(dpm);

P5.L = lo(dpm->uwVrCtl);

R7 = 0x70B0 (z);

w[P5] = R7;

P5.L = lo(dpm->uwPllCtl);

R7 = 0x1480 (z);

w[P5] = R7;

ADSP-BF50x Blackfin Processor Hardware Reference 8-27

Dynamic Power Management

P5.L = lo(dpm->uwPllDiv);

R7 = 0x0004 (z);

w[P5] = R7;

P5.L = lo(dpm->uwPllLockCnt);

R7 = 0x0200 (z);

w[P5] = R0;

The function u32 bfrom_SysControl(u32 dActionFlags,

ADI_SYSCTRL_VALUES *pSysCtrlSettings, void *reserved); can be
accessed by BFROM_SYSCONTROL. Following the C/C++ run-time environ-
ment conventions, the parameters passed are hold by the data registers R0,
R1, and R2.

/* 10 = sizeof(ADI_SYSCTRL_VALUES). uimm18m4: 18-bit unsigned

field that must be a multiple of 4, with a range of 8 through

262,152 bytes (0x00000 through 0x3FFFC) */

link sizeof(ADI_SYSCTRL_VALUES)+2;

[--SP] = (R7:0,P5:0);

/* Allocate at least 12 bytes on the stack for outgoing argu-

ments, even if the function being called requires less than this.

*/

SP += -12;

R0 = SYSCTRL_WRITE |

SYSCTRL_VRCTL |

SYSCTRL_EXTVOLTAGE |

SYSCTRL_PLLCTL |

SYSCTRL_PLLDIV ;

R1.H = hi(dpm);

R1.L = lo(dpm);

R2 = 0 (z);

P5.H = hi(BFROM_SYSCONTROL);

System Control ROM Function

8-28 ADSP-BF50x Blackfin Processor Hardware Reference

P5.L = lo(BFROM_SYSCONTROL);

call(P5);

SP += 12;

(R7:0,P5:0) = [SP++];

unlink;

rts;

The processor’s internal scratchpad memory can be used as an alternative
for taking a C struct. Therefore, the stack/frame pointer must be loaded
and passed.

/* 10 = sizeof(ADI_SYSCTRL_VALUES). uimm18m4: 18-bit unsigned

field that must be a multiple of 4, with a range of 8 through

262,152 bytes (0x00000 through 0x3FFFC) */

link sizeof(ADI_SYSCTRL_VALUES)+2;

[--SP] = (R7:0,P5:0);

/* Allocate at least 12 bytes on the stack for outgoing argu-

ments, even if the function being called requires less than this.

*/

SP += -12;

R7 = 0;

R7.L = 0x70B0;

w[FP+-sizeof(ADI_SYSCTRL_VALUES)+offse-

tof(ADI_SYSCTRL_VALUES,uwVrCtl)] = R7;

R7.L = 0x1480;

w[FP+-sizeof(ADI_SYSCTRL_VALUES)+offse-

tof(ADI_SYSCTRL_VALUES,uwPllCtl)] = R7;

R7.L = 0x0004;

w[FP+-sizeof(ADI_SYSCTRL_VALUES)+offse-

tof(ADI_SYSCTRL_VALUES,uwPllDiv)] = R7;

R7.L = 0x0200;

ADSP-BF50x Blackfin Processor Hardware Reference 8-29

Dynamic Power Management

w[FP+-sizeof(ADI_SYSCTRL_VALUES)+offse-

tof(ADI_SYSCTRL_VALUES,uwPllLockCnt)] = R7;

R0 = SYSCTRL_WRITE |

SYSCTRL_VRCTL |

SYSCTRL_EXTVOLTAGE |

SYSCTRL_PLLCTL |

SYSCTRL_PLLDIV ;

R1 = FP;

R1 += -sizeof(ADI_SYSCTRL_VALUES);

R2 = 0;

P5.H = hi(BFROM_SYSCONTROL);

P5.L = lo(BFROM_SYSCONTROL);

call(P5);

SP += 12;

(R7:0,P5:0) = [SP++];

unlink;

rts;

Programming Examples
The following code examples illustrate how to use the system control
ROM function to effect various operating mode transitions.

 The following examples are only meant to demonstrate how to pro-
gram the PLL registers. Do not assume that the voltages and
frequencies shown in the examples are supported by your proces-
sor. Instead, check your product's data sheet for supported voltages
and frequencies.

Programming Examples

8-30 ADSP-BF50x Blackfin Processor Hardware Reference

Some setup code has been removed for clarity, and the following assump-
tions are made.

• PLL control (PLL_CTL) register setting: 0x0A80

• PLL divider (PLL_DIV) register setting: 0x0004

• PLL lock count (PLL_LOCKCNT) register setting: 0x0200

• Clock in (CLKIN) frequency: 25 MHz

VCO frequency is 125 MHz, core clock frequency is 125 MHz, and sys-
tem clock frequency is 31.25 MHz.

• Voltage regulator control (VR_CTL) register setting: 0x70B0

• Logical voltage level (VDDINT) is at 1.20 V

For operating mode transition and voltage regulator examples:

• C

• #include <blackfin.h>

• #include <bfrom.h>

• Assembly

• #include <blackfin.h>

• #include <bfrom.h>

• .IMPORT "bfrom.h";

• #define IMM32(reg,val) reg##.H=hi(val);

• reg##.L=lo(val);

ADSP-BF50x Blackfin Processor Hardware Reference 8-31

Dynamic Power Management

Full-on Mode to Active Mode and Back
Listing 8-1 and Listing 8-2 provide code for transitioning from the full-on
operating mode to active mode in C and Blackfin assembly code,
respectively.

Listing 8-1. Transitioning from Full-on Mode to Active Mode (C)

void active(void)

{

ADI_SYSCTRL_VALUES active;

bfrom_SysControl(SYSCTRL_READ | SYSCTRL_EXTVOLTAGE |

SYSCTRL_PLLCTL, &active, NULL);

active.uwPllCtl |= (BYPASS | PLL_OFF); /* PLL_OFF bit optional */

bfrom_SysControl(SYSCTRL_WRITE | SYSCTRL_EXTVOLTAGE |

SYSCTRL_PLLCTL, &active, NULL);

return;

}

Listing 8-2. Transitioning from Full-on Mode to Active Mode (ASM)

__active:

link sizeof(ADI_SYSCTRL_VALUES)+2;

[--SP] = (R7:0,P5:0);

SP += -12;

R0 = (SYSCTRL_READ | SYSCTRL_EXTVOLTAGE | SYSCTRL_PLLCTL);

R1 = FP;

R1 += -sizeof(ADI_SYSCTRL_VALUES);

R2 = 0 (z);

IMM32(P4,BFROM_SYSCONTROL);

call(P4);

Programming Examples

8-32 ADSP-BF50x Blackfin Processor Hardware Reference

R0 = w[FP+-sizeof(ADI_SYSCTRL_VALUES)+offse-

tof(ADI_SYSCTRL_VALUES,uwPllCtl)];

bitset(R0,bitpos(BYPASS));

bitset(R0,bitpos(PLL_OFF)); /* optional */

w[FP+-sizeof(ADI_SYSCTRL_VALUES)+offse-

tof(ADI_SYSCTRL_VALUES,uwPllCtl)] = R0;

R0 = (SYSCTRL_WRITE | SYSCTRL_EXTVOLTAGE | SYSCTRL_PLLCTL);

R1 = FP;

R1 += -sizeof(ADI_SYSCTRL_VALUES);

R2 = 0 (z);

IMM32(P4,BFROM_SYSCONTROL);

call(P4);

SP += 12;

(R7:0,P5:0) = [SP++];

unlink;

rts;

__active.end:

To return from active mode (go back to full-on mode), the BYPASS bit and
the PLL_OFF bit must be cleared again, respectively.

Transition to Sleep Mode or Deep Sleep Mode
Listing 8-3 and Listing 8-4 provide code for transitioning from the full-on
operating mode to sleep or deep sleep mode in C and Blackfin assembly
code, respectively.

ADSP-BF50x Blackfin Processor Hardware Reference 8-33

Dynamic Power Management

Listing 8-3. Transitioning to Sleep Mode or Deep Sleep Mode (C)

void sleep(void)

{

ADI_SYSCTRL_VALUES sleep;

bfrom_SysControl(SYSCTRL_EXTVOLTAGE | SYSCTRL_PLLCTL |

SYSCTRL_READ, &sleep, NULL);

sleep.uwPllCtl |= STOPCK; /* either: Sleep Mode */

sleep.uwPllCtl |= PDWN; /* or: Deep Sleep Mode */

bfrom_SysControl(SYSCTRL_WRITE | SYSCTRL_EXTVOLTAGE |

SYSCTRL_PLLCTL, &sleep, NULL);

return;

}

Listing 8-4. Transitioning to Sleep Mode or Deep Sleep Mode (ASM)

__sleep:

link sizeof(ADI_SYSCTRL_VALUES)+2;

[--SP] = (R7:0,P5:0);

SP += -12;

R0 = (SYSCTRL_READ | SYSCTRL_EXTVOLTAGE |

SYSCTRL_PLLCTL);

R1 = FP;

R1 += -sizeof(ADI_SYSCTRL_VALUES);

R2 = 0 (z);

IMM32(P4,BFROM_SYSCONTROL);

call(P4);

R0 = w[FP+-sizeof(ADI_SYSCTRL_VALUES)+offse-

tof(ADI_SYSCTRL_VALUES,uwPllCtl)];

bitset(R0,bitpos(STOPCK)); /* either: Sleep Mode */

bitset(R0,bitpos(PDWN)); /* or: Deep Sleep Mode */

Programming Examples

8-34 ADSP-BF50x Blackfin Processor Hardware Reference

w[FP+-sizeof(ADI_SYSCTRL_VALUES)+offse-

tof(ADI_SYSCTRL_VALUES,uwPllCtl)] = R0;

R0 = (SYSCTRL_WRITE | SYSCTRL_EXTVOLTAGE | SYSCTRL_PLLCTL);

R1 = FP;

R1 += -sizeof(ADI_SYSCTRL_VALUES);

R2 = 0 (z);

IMM32(P4,BFROM_SYSCONTROL);

call(P4);

SP += 12;

(R7:0,P5:0) = [SP++];

unlink;

rts;

__sleep.end:

Set Wakeup Events and Enter Hibernate State
Listing 8-5 and Listing 8-6 provide code for configuring the regulator
wakeups (PH0, PF8, PF9, and CAN_RX) and placing the regulator in the
hibernate state in C and Blackfin processor assembly code, respectively.

Listing 8-5. Configuring Regulator Wakeups and Entering Hibernate
State (C)

void hibernate(void)

{

ADI_SYSCTRL_VALUES hibernate;

hibernate.uwVrCtl=WAKE_EN0 | /* PH0 Wake-Up Enable */

WAKE_EN1 | /* PF8 Wake-Up Enable */

WAKE_EN2 | /* PF9 Wake-Up Enable */

CANWE | /* CAN Rx Wake-Up Enable */

HIBERNATE; / *Powerdown */

ADSP-BF50x Blackfin Processor Hardware Reference 8-35

Dynamic Power Management

bfrom_SysControl(SYSCTRL_WRITE | SYSCTRL_VRCTL |

SYSCTRL_EXTVOLTAGE, &hibernate, NULL);

/* Hibernate State: no code executes until wakeup triggers

reset */

}

Listing 8-6. Configuring Regulator Wakeups and Entering Hibernate
State (ASM)

__hibernate:

link sizeof(ADI_SYSCTRL_VALUES)+2;

[--SP] = (R7:0,P5:0);

SP += -12;

cli R6; /* disable interrupts, copy IMASK to R6 */

R0.L = WAKE_EN0 | /* PH0 Wake-Up Enable */

WAKE_EN1 | /* PF8 Wake-Up Enable */

WAKE_EN2 | /* PF9 Wake-Up Enable */

CANWE | /* CAN Rx Wake-Up Enable */

HIBERNATE; / *Powerdown */

w[FP+-sizeof(ADI_SYSCTRL_VALUES)+

offsetof(ADI_SYSCTRL_VALUES,uwVrCtl)] = R0;

R0 = (SYSCTRL_WRITE | SYSCTRL_VRCTL | SYSCTRL_EXTVOLTAGE);

R1 = FP;

R1 += -sizeof(ADI_SYSCTRL_VALUES);

R2 = 0 (z);

IMM32(P4,BFROM_SYSCONTROL);

call(P4);

/* Hibernate State: no code executes until wakeup triggers

reset */

__hibernate.end:

Note that there may be a need to call bfrom_SysControl() twice, once to
setup the polarity and the wakeup sources and once to enter hibernate.

Programming Examples

8-36 ADSP-BF50x Blackfin Processor Hardware Reference

Perform a System Reset or Soft-Reset
Listing 8-7 and Listing 8-8 provide code for executing a system reset or a
soft-reset (system and core reset) in C and Blackfin assembly code,
respectively.

Listing 8-7. Execute a System Reset or a Soft-Reset (C)

void reset(void)

{

bfrom_SysControl(SYSCTRL_SYSRESET, NULL, NULL); /* either */

bfrom_SysControl(SYSCTRL_SOFTRESET, NULL, NULL); /* or */

return;

}

Listing 8-8. Execute a System Reset or a Soft-Reset (ASM)

__reset:

link sizeof(ADI_SYSCTRL_VALUES)+2;

[--SP] = (R7:0,P5:0);

SP += -12;

R0 = SYSCTRL_SYSRESET; /* either */

R0 = SYSCTRL_SOFTRESET; /* or */

R1 = 0 (z);

R2 = 0 (z);

IMM32(P4,BFROM_SYSCONTROL);

call(P4);

SP += 12;

(R7:0,P5:0) = [SP++];

unlink;

rts;

ADSP-BF50x Blackfin Processor Hardware Reference 8-37

Dynamic Power Management

__reset.end:

In Full-on Mode, Change VCO Frequency, Core
Clock Frequency, and System Clock Frequency

Listing 8-9 and Listing 8-10 provide C and Blackfin assembly code for
changing the CLKIN to VCO multiplier (from 10x to 21x), keeping the
CSEL divider at 1, and changing the SSEL divider (from 5 to 4) in the
full-on operating mode.

Listing 8-9. Transition of Frequencies (C)

void frequency(void)

{

ADI_SYSCTRL_VALUES frequency;

/* Set MSEL = 5-63 --> VCO = CLKIN*MSEL */

frequency.uwPllCtl = SET_MSEL(21) ;

/* Set SSEL = 1-15 --> SCLK = VCO/SSEL */

/* CCLK = VCO / 1 */

frequency.uwPllDiv = SET_SSEL(4) |

CSEL_DIV1 ;

frequency.uwPllLockCnt = 0x0200;

bfrom_SysControl(SYSCTRL_WRITE | SYSCTRL_EXTVOLTAGE |

SYSCTRL_PLLCTL | SYSCTRL_PLLDIV | SYSCTRL_LOCKCNT, &frequency,

NULL);

return;

}

Programming Examples

8-38 ADSP-BF50x Blackfin Processor Hardware Reference

Listing 8-10. Transition of Frequencies (ASM)

__frequency:

link sizeof(ADI_SYSCTRL_VALUES)+2;

[--SP] = (R7:0,P5:0);

SP += -12;

/* write the struct */

R0 = 0;

R0.L = SET_MSEL(21) ; /* Set MSEL = 5-63 --> VCO = CLKIN*MSEL */

w[FP+-sizeof(ADI_SYSCTRL_VALUES)+

offsetof(ADI_SYSCTRL_VALUES,uwPllCtl)] = R0;

R0.L = SET_SSEL(4) | /* Set SSEL = 1-15 --> SCLK = VCO/SSEL */

CSEL_DIV1 ; /* CCLK = VCO / 1 */

w[FP+-sizeof(ADI_SYSCTRL_VALUES)+

offsetof(ADI_SYSCTRL_VALUES,uwPllDiv)] = R0;

R0.L = 0x0200;

w[FP+-sizeof(ADI_SYSCTRL_VALUES)+

offsetof(ADI_SYSCTRL_VALUES,uwPllLockCnt)] = R0;

/* argument 1 in R0 */

R0 = (SYSCTRL_WRITE | SYSCTRL_EXTVOLTAGE | SYSCTRL_PLLCTL |

SYSCTRL_PLLDIV);

/* argument 2 in R1: structure lays on local stack */

R1 = FP;

R1 += -sizeof(ADI_SYSCTRL_VALUES);

/* argument 3 must always be NULL */

R2 = 0;

ADSP-BF50x Blackfin Processor Hardware Reference 8-39

Dynamic Power Management

/* call of SysControl function */

IMM32(P4,BFROM_SYSCONTROL);

call (P4); /* R0 contains the result from SysControl */

SP += 12;

(R7:0,P5:0) = [SP++];

unlink;

rts;

__frequency.end:

Changing Voltage Levels
Listing 8-11 provides C code for changing the voltage level dynamically.
The User must include his own code for accessing the external voltage
regulator.

Listing 8-11. Changing Core Voltage (C)

void voltage(void)

{

ADI_SYSCTRL_VALUES voltage;

u32 ulCnt = 0;

bfrom_SysControl(SYSCTRL_EXTVOLTAGE | SYSCTRL_PLLCTL |

SYSCTRL_READ, &init, NULL);

init.uwPllCtl |= BYPASS;

init.uwPllLockCnt = 0x0200;

bfrom_SysControl(SYSCTRL_WRITE | SYSCTRL_PLLCTL | SYSCTRL_LOCKCNT

| SYSCTRL_EXTVOLTAGE, &voltage, NULL);

/* Put your code for accessing the external voltage regulator

here */

Programming Examples

8-40 ADSP-BF50x Blackfin Processor Hardware Reference

/* A delay loop is required to ensure VDDint is stable and the

PLL has re-locked. As this is depending on the external voltage

regulator circuitry the user must ensure timings are kept. The

compiler (no optimization enabled) will create a loop that takes

about 10 cycles. Time base is CLKIN as the PLL is bypassed. We

need 0x0200 CLKIN cycles that represent PLL_LOCKCNT and addition-

ally the time required by the circuitry */

ulCnt = 0x0200 + 0x0200;

while (ulCnt != 0) {ulCnt--;}

init.uwPllCtl &= ~BYPASS;

bfrom_SysControl(SYSCTRL_WRITE | SYSCTRL_PLLCTL |

SYSCTRL_EXTVOLTAGE, &voltage, NULL);

return;

}

ADSP-BF50x Blackfin Processor Hardware Reference 9-1

9 GENERAL-PURPOSE PORTS

This chapter describes the general-purpose ports. Following an overview
and a list of key features is a block diagram of the interface and a descrip-
tion of operation. The chapter concludes with a programming model,
consolidated register definitions, and programming examples.

Overview
The ADSP-BF50x Blackfin processors feature a rich set of peripherals,
which, through a powerful pin multiplexing scheme, provides great flexi-
bility to the external application space.

Features
The peripheral pins are functionally organized into general-purpose ports
designated port F, port G, and port H.

Port F provides 16 pins:

• PPI data signals

• UART0 and UART1 signals

• SPORT0 signals

• SPI0 signals

• CNT0 (GP Counter 0) signals

Features

9-2 ADSP-BF50x Blackfin Processor Hardware Reference

• PWM0 signals

• GP Timer signals

• Additional SPI0 and SPI1 slave selects

• GPIOs

Port G provides 16 pins:

• SPORT1 signals

• CAN signals

• ACM signals

• PPI signals

• GP Timer signals

• PWM1 signals

• CNT1 (GP Counter 1) signals

• SPI1 signals

• UART0 signals

• RSI signals

• GPIOs

Port H provides 3 pins:

• SPORT1 signals

• ACM signals

• SPI0 and SPI1 slave select signals

ADSP-BF50x Blackfin Processor Hardware Reference 9-3

General-Purpose Ports

• GP Timer signals

• GPIOs

Additionally, the TWI signals are provided on separate pins, independent
of the ports.

Interface Overview
By default, all port F, port G, and port H pins are in general-purpose I/O
(GPIO) mode. In this mode, a pin can function as a digital input, digital
output, or interrupt input. See “General-Purpose I/O Modules” on
page 9-13 for details. Peripheral functionality must be explicitly enabled
by the function enable registers (PORTF_FER, PORTG_FER, and PORTH_FER).
The competing peripherals on port F, port G, and port H are controlled
by the respective multiplexer control register (PORTF_MUX, PORTG_MUX,
PORTH_MUX).

 In this chapter, the naming convention for registers and bits uses a
lowercase x to represent F, G, or H. For example, the name
PORTx_FER represents PORTF_FER, PORTG_FER, and PORTH_FER. The
bit name Px0 represents PF0, PG0, and PH0. This convention is used
to discuss registers common to these three ports.

External Interface
The external interface of the general-purpose ports are described in the
following sections.

Port F Structure

Table 9-1 shows the multiplexer scheme for port F. Port F is controlled by
the PORTF_MUX and the PORTF_FER registers.

Interface Overview

9-4 ADSP-BF50x Blackfin Processor Hardware Reference

Port F consists of 16 pins, referred to as PF0 to PF15, as shown in
Table 9-1. All the input signals in the “Additional Use” column are
enabled by their module only, regardless of the state of the PORTx_MUX and
PORTx_FER registers.

Any GPIO can be enabled individually and overrides the peripheral func-
tion if the respective bit in PORTF_FER is cleared.

Table 9-1. Port F Multiplexing Scheme

PORTF_
MUX

00 01 10

1st Function 2nd Function 3rd Function Additional Use GPIO

Bit[1:0] TSCLK0 UA0_RX TMR6 RW0_CUD PF0

Bit[3:2] RSCLK0 UA0_TX TMR5 RW0_CGD PF1

Bit[5:4] DT0PRI PWM0_BH PPI_DATA8 RW0_CZM PF2

TFS0 PWM0_BL PPI_DATA9 RW0_CGD PF3

RFS0 PWM0_CH PPI_DATA10 TACLK0 PF4

DR0PRI PWM0_CL PPI_DATA11 TACLK1 PF5

Bit[7:6] UA1_TX PWM0_TRIP PPI_DATA12 PF6

UA1_RX PWM0_SYNC PPI_DATA13 TACI3 PF7

Bit[9:8] UA1_RTS DT0SEC PPI_DATA7 PF8

UA1_CTS DR0SEC PPI_DATA6 RW0_CZM/WAKEUP PF9

Bit[11:10] SPI0_SCK TMR2 PPI_DATA5 PF10

SPI0_MISO PWM0_TRIP PPI_DATA4 TACLK2 PF11

SPI0_MOSI PWM0_SYNC PPI_DATA3 PF12

Bit[13:12] SPI0_SSEL1 TMR3 PPI_DATA2 SPI0_SS PF13

Bit[15:14] SPI0_SSEL2 PWM0_AH PPI_DATA1 PF14

SPI0_SSEL3 PWM0_AL PPI_DATA0 PF15

ADSP-BF50x Blackfin Processor Hardware Reference 9-5

General-Purpose Ports

Port G Structure

Table 9-2 shows the multiplexer scheme for port G. Port G is controlled
by the PORTG_MUX and PORTG_FER registers.

Port G consists of 16 pins, referred to as PG0 to PG15, as shown in
Table 9-2.

Any GPIO can be enabled individually and overrides the peripheral func-
tion if the respective bit in the PORTG_FER register is cleared.

Table 9-2. Port G Multiplexing Scheme

PORTG_
MUX

00 01 10

1st Function 2nd Function 3rd Function Additional Use GPIO

Bit[1:0] SPI1_SSEL3 TMRCLK/PPICLK UA1_RX TACI4 PG0

Bit[3:2] SPI1_SSEL2 PPI_FS3 CAN_RX TACI5/WAKEUP PG1

Bit[5:4] SPI1_SSEL1 TMR4 CAN_TX SPI1_SS PG2

Bit[7:6] SPI1_SCK DT1SEC UA1_TX PG3/HWAIT

SPI1_MOSI DR1SEC PWM1_SYNC TACLK6 PG4

SPI1_MISO TMR7 PWM1_TRIP PG5

Bit[9:8] ACM_SE_DIFF SD_DATA3 PWM1_AH PG6

ACM_RANGE SD_DATA2 PWM1_AL PG7

DR1SEC SD_DATA1 PWM1_BH PG8

Bit[11:10] DR1PRI SD_DATA0 PWM1_BL PG9

RFS1 SD_CMD PWM1_CH TACI6 PG10

RSCLK1 SD_CLK PWM1_CL TACLK7 PG11

Bit[13:12] UA0_RX SD_DATA4 PPI_DATA15 TACI2 PG12

UA0_TX SD_DATA5 PPI_DATA14 RW1_CZM PG13

Bit[15:14] UA0_RTS SD_DATA6 TMR0/PPIFS1 RW1_CUD PG14

UA0_CTS SD_DATA7 TMR1/PPIFS2 RW1_CGD PG15

Interface Overview

9-6 ADSP-BF50x Blackfin Processor Hardware Reference

Port H Structure

Table 9-3 shows the multiplexer scheme for port H. Port H is controlled
by the PORTH_MUX and PORTH_FER registers.

Port H consists of 3 pins. PH0 to PH2 (shown in Table 9-3) are GPIO capa-
ble and operate in the same fashion as the Port F and Port G pins.

Any GPIO can be enabled individually and overrides the peripheral func-
tion if the respective bit in the PORTH_FER register is cleared.

 Bits 6-15 in the PORTH_MUX register are reserved.

Input Tap Considerations

Input taps are shown in Table 9-1, Table 9-2, and Table 9-3 under the
“Additional Use” column. When input taps (as well as GPIO based taps)
are used with other functionality enabled on the GPIO pins, the signals
seen by the input tap modules might be different from what is seen on the
pins. This is because different pin functions have different signal require-
ments with respect to when the signal is latched, if at all. Because of this,
input taps multiplexed on certain pins may behave differently than those

Table 9-3. Port H Multiplexing Scheme

PORTH_
MUX

00 01 10

1st function 2nd function 3rd function Additional Use GPIO

Bit[1:0] ACM_A2 DT1PRI SPI0_SSEL3 WAKEUP PH0

Bit[3:2] ACM_A1 TFS1 SPI1_SSEL3 TACLK3 PH1

Bit[5:4] ACM_A0 TSCLK1 SPI1_SSEL2 TACI7 PH2

ADSP-BF50x Blackfin Processor Hardware Reference 9-7

General-Purpose Ports

on other pins, depending on which pin function is selected. The input
taps will see different signals than at the pins in the following cases:

• All GPIO inputs except PF0, PF1, PG0, PG2, PG6, PG7, PG11, and PH2

when GPIO is tapped with the respective PORTx_FER set to 1.

• CZM0 if PORTF_FER[2] = 1 and PORTF_MUX[5:4] = b#00 or b#10

• CDG0 if PORTF_FER[3]= 1 and PORTF_MUX[5:4] = b#00 or b#10

• TACLK0 if PORTF_FER[4] = 1 and PORTF_MUX[5:4] = b#00 or b#10

• TACLK1 if PORTF_FER[5] = 1 and PORTF_MUX[5:4] = b#00 or b#10

• TACI3 if PORTF_FER[7] = 1 and PORTF_MUX[7:6] = b#10

• CZM0 if PORTF_FER[9] = 1 and PORTF_MUX[9:8] = b#01 or b#10

• TACLK2 if PORTF_FER[11] = 1 and PORTF_MUX[11:10] = b#00 or b#10

• SPI0_SS if PORTF_FER[13] = 1 and PORTF_MUX[13:12] = b#10

• TACI5 if PORTG_FER[1] = 1 and PORTG_MUX[3:2] = b#01

• TACLK6 if PORTG_FER[4] = 1 and PORTG_MUX[7:6] = b#00 or b#01

• TACI6 if PORTG_FER[10] = 1 and PORTG_MUX[11:10] = b#00

• TACI2 if PORTG_FER[12] = 1 and PORTG_MUX[13:12] = b#10

• CZM1 if PORTG_FER[13] = 1 and PORTG_MUX[13:12] = b#10

• CUD1 if PORTG_FER[14] = 1 and PORTG_MUX[15:14] = b#10

• CDG1 if PORTG_FER[15] = 1 and PORTG_MUX[15:14] = b#10

• TACLK3 if PORTH_FER[1] = 1 and PORTH_MUX[3:2] = b#01

Interface Overview

9-8 ADSP-BF50x Blackfin Processor Hardware Reference

PWM Unit Considerations

The PWM0_SYNC signal appears twice within Port F: on PF7 and PF12. If
both are configured as PWM0_SYNC and selected, inputs will only be enabled
on PF7.

The PWM0_TRIP signal appears twice within Port F: on PF6 and PF11. If
both are configured as PWM0_TRIP and selected, inputs will only be enabled
on PF6.

If PWM0_TRIP is not selected on either PF6 or PF11, then the internal
PWM0_TRIP signal to the PWM module will be driven low. That is, the
PWM unit will be tripped if neither of these signals is selected via the
PORTF_MUX register.

The same principle holds true for the PWM1_TRIP signal on PG5, in the
PORTG_MUX register.

RSI Considerations

Pull up/pull down enabling for RSI:

• Pull down for SD_DATA[3] will be enabled only if SD_DATA[3] is
selected on PG6 (that is, PORTG_MUX[9:8] == b#01) and the PD_Dat3

bit is set in the RSI_CONFIG register.

• Pull up for SD_DATA[3] will be enabled only if SD_DATA[3] is
selected on PG6 (that is, PORTG_MUX[9:8] == b#01) and the PU_Dat3

bit is set in the RSI_CONFIG register.

• Pull up for SD_DATA[0] will be enabled only if SD_DATA[0] is
selected on PG9 (that is, PORTG_MUX[11:10] == b#01) and the PU_Dat

bit is set in the RSI_CONFIG register.

• Pull up for SD_DATA[1] will be enabled only if SD_DATA[1] is
selected on PG8 (that is, PORTG_MUX[9:8] == b#01) and the PU_Dat

bit is set in the RSI_CONFIG register.

ADSP-BF50x Blackfin Processor Hardware Reference 9-9

General-Purpose Ports

• Pull up for SD_DATA[2] will be enabled only if RSI is selected on
PG7 (that is, PORTG_MUX[9:8] == b#01) and the PU_Dat bit is set in
the RSI_CONFIG register.

• Pull up for SD_DATA[7:4] will be enabled only if SD_DATA[7:4] is
selected on PG[15:12] (that is, PORTG_MUX[13:12]==b#01 and
PORTG_MUX[15:14]==b#01)) and the PU_Dat bit is set in the
RSI_CONFIG register.

If SD_DATA[3] is not selected on PG6 (that is, PG_MUX[9:8]  b#01) then the
SD_DATA[3] signal to the RSI module will be driven low. This is to prevent
a spurious card detect interrupt generated by the RSI due to data toggling
on the PG6 pin when it is selected for alternate function operation.

GP Counter Considerations

If SPORT0 TX operation is not enabled, RW0 is an input tap on pins PF0,
PF2, and PF3. Otherwise, RW0 is an input tap on PF0, PF1, and PF9.

SPI Considerations

If SPI0 or SPI1 is operating in master mode and the PSSE bit in the respec-
tive SPI_CTL register is set to 1, the SPIx_SSEL1 signal for that SPI
interface can not be used as a slave select line. This restriction occurs
because (in master mode) the SPIx_SS input tap becomes an error detec-
tion input when PSSE=1.

Internal Interfaces
Port control and GPIO registers are part of the system memory-mapped
registers (MMRs). The addresses of the GPIO module MMRs appear in
“System MMR Assignments” on page A-1. Core access to the GPIO con-
figuration registers is through the system bus.

The PORTx_MUX registers control the muxing schemes of port F, port G,
and port H.

Interface Overview

9-10 ADSP-BF50x Blackfin Processor Hardware Reference

The function enable registers (PORTF_FER, PORTG_FER, PORTH_FER) enable
the peripheral functionality for each individual pin of a port.

GP Timer Interaction With Other Blocks

The TACLKx and TACIx inputs of the GP Timers connect to several differ-
ent subsystems of the ADSP-BF50x processor. Following are the details of
these connections.

Buffered CLKIN (CLKBUF)

TACLK5 and TACLK4 connect internally to the CLKBUF signal.

GP Counter

TACI0 connects to the COUNTER0 TO output internally. TACI1 connects to
the COUNTER1 TO output internally.

PPI

TMR0 is internally looped back to PPI_FS1 (to be used as internally gener-
ated frame sync). In this case, PPI_CLK is the clock input for the Timer0
module.

TMR1 is internally looped back to PPI_FS2 (to be used as internally gener-
ated frame sync) In this case, PPI_CLK is the clock input for the Timer1
module.

PPI_CLK/TMRCLK can be used as a clock input for any of the timers.

UART

TACI2 or TMR6 can be used for autobaud detection of UA0_RX.

TACI3 or TACI4 can be used for autobaud detection of UA1_RX.

UART0 signals that appear in multiple ports, if selected on both, will have
inputs and outputs enabled only on PG12-PG13.

ADSP-BF50x Blackfin Processor Hardware Reference 9-11

General-Purpose Ports

UART1 signals that appear in multiple ports, if selected on both, will have
inputs and outputs enabled only on PF6-PF7.

SPORT

If TMR5 is configured as an output and PORTF_MUX[3:2] == b#10 and
SPORT0’s RSCLK0 input enable is active, then TMR5 is the clock input for
RSCLK0.

If TMR6 is configured as an output and PORTF_MUX[1:0] == b#10, and
SPORT0’s TSCLK0 input enable is active, then TMR6 is the clock input for
TSCLK0.

If SPORT0’s RSCLK0 is configured as an output and PORTF_MUX[3:2] ==
b#00 and TMR5 input enable is active, then RSCLK0 is the clock input for
TMR5.

If SPORT0’s TSCLK0 is configured as an output and PORTF_MUX[1:0] ==
b#00 and TMR6 input enable is active, then TSCLK0 is the clock input for
TMR6.

If TACI7 is selected in the TMR7 module, then the signal from the PH2 pin is
fed to both SPORT1’s TSCLK1 and TACI7.

If SPORT1’s DR1SEC is selected on both PG4 and PG8, it will only be
enabled on PG8.

ACM

When the ACM is enabled, TMR2 and TMR7 are internally routed into the
ACM block.

Description of Operation

9-12 ADSP-BF50x Blackfin Processor Hardware Reference

Performance/Throughput
The PFx, PGx, and PHx pins are synchronized to the system clock (SCLK).
When configured as outputs, the GPIOs can transition once every system
clock cycle.

When configured as inputs, the overall system design should take into
account the potential latency between the core and system clocks. Changes
in the state of port pins have a latency of 3 SCLK cycles before being detect-
able by the processor. When configured for level-sensitive interrupt
generation, there is a minimum latency of 4 SCLK cycles between the time
the signal is asserted on the pin and the time that program flow is inter-
rupted. When configured for edge-sensitive interrupt generation, an
additional SCLK cycle of latency is introduced, giving a total latency of 5
SCLK cycles between the time the edge is asserted and the time that the
core program flow is interrupted.

Description of Operation
The operation of the general-purpose ports is described in the following
sections.

Operation
The GPIO pins on port F, port G, and port H can be controlled individu-
ally by the function enable registers (PORTx_FER). With a control bit in
these registers cleared, the peripheral function is fully decoupled from the
pin. It functions as a GPIO pin only. To drive the pin in GPIO output
mode, set the respective direction bit in the PORTxIO_DIR register. To
make the pin a digital input or interrupt input, enable its input driver in
the PORTxIO_INEN register.

ADSP-BF50x Blackfin Processor Hardware Reference 9-13

General-Purpose Ports

 By default all peripheral pins are configured as inputs after reset.
port F, port G, and port H pins are in GPIO mode. However,
GPIO input drivers are disabled to minimize power consumption
and any need of external pulling resistors.

When the control bit in the function enable registers (PORTx_FER) is set,
the pin is set to its peripheral functionality and is no longer controlled by
the GPIO module. However, the GPIO module can still sense the state of
the pin. When using a particular peripheral interface, pins required for the
peripheral must be individually enabled. Keep the related function enable
bit cleared if a signal provided by the peripheral is not required by your
application. This allows it to be used in GPIO mode.

General-Purpose I/O Modules
The processor supports 35 bidirectional or general-purpose I/O (GPIO)
signals. These 35 GPIOs are managed by three different GPIO modules,
which are functionally identical. One is associated with port F, one with
port G, and one with port H. Port F and port G each consist of 16 GPIOs
(PF15–0 and PG15–0), respectively. Port H consists of three GPIOs
(PH7-0).

Each GPIO can be individually configured as either an input or an output
by using the GPIO direction registers (PORTxIO_DIR).

When configured as output, the GPIO data registers (PORTFIO, PORTGIO,
and PORTHIO) can be directly written to specify the state of the GPIOs.

The GPIO direction registers are read-write registers with each bit posi-
tion corresponding to a particular GPIO. A logic 1 configures a GPIO as
an output, driving the state contained in the GPIO data register if the
peripheral function is not enabled by the function enable registers. A logic
0 configures a GPIO as an input.

Description of Operation

9-14 ADSP-BF50x Blackfin Processor Hardware Reference

 Note when using the GPIO as an input, the corresponding bit
should also be set in the GPIO input enable register. Otherwise,
changes at the input pins will not be recognized by the processor.

The GPIO input enable registers (PORTFIO_INEN, PORTGIO_INEN, and
PORTHIO_INEN) are used to enable the input buffers on any GPIO that is
being used as an input. Leaving the input buffer disabled eliminates the
need for pull-ups and pull-downs when a particular PFx, PGx, or PHx pin is
not used in the system. By default, the input buffers are disabled.

 Once the input driver of a GPIO pin is enabled, the GPIO is not
allowed to operate as an output anymore. Never enable the input
driver (by setting PORTxIO_INEN bits) and the output driver (by set-
ting PORTxIO_DIR bits) for the same GPIO.

A write operation to any of the GPIO data registers sets the value of all
GPIOs in this port that are configured as outputs. GPIOs configured as
inputs ignore the written value. A read operation returns the state of the
GPIOs defined as outputs and the sense of the inputs, based on the polar-
ity and sensitivity settings, if their input buffers are enabled. Table 9-4
helps to interpret read values in GPIO mode, based on the settings of the
PORTxIO_POLAR, PORTxIO_EDGE, and PORTxIO_BOTH registers.

Table 9-4. GPIO Value Register Pin Interpretation

POLAR EDGE BOTH Effect of MMR Settings

0 0 X Pin that is high reads as 1; pin that is low
reads as 0

0 1 0 If rising edge occurred, pin reads as 1;
otherwise, pin reads as 0

1 0 X Pin that is low reads as 1; pin that is high
reads as 0

1 1 0 If falling edge occurred, pin reads as 1;
otherwise, pin reads as 0

X 1 1 If any edge occurred, pin reads as 1; oth-
erwise, pin reads as 0

ADSP-BF50x Blackfin Processor Hardware Reference 9-15

General-Purpose Ports

 For GPIOs configured as edge-sensitive, a readback of 1 from one
of these registers is sticky. That is, once it is set it remains set until
cleared by user code. For level-sensitive GPIOs, the pin state is
checked every cycle, so the readback value will change when the
original level on the pin changes.

The state of the output is reflected on the associated pin only if the func-
tion enable bit in the PORTx_FER register is cleared.

Write operations to the GPIO data registers modify the state of all GPIOs
of a port. In cases where only one or a few GPIOs need to be changed, the
user may write to the GPIO set registers, PORTxIO_SET, the GPIO clear
registers, PORTxIO_CLEAR, or to the GPIO toggle registers, PORTxIO_TOGGLE
instead.

While a direct write to a GPIO data register alters all bits in the register,
writes to a GPIO set register can be used to set a single or a few bits only.
No read-modify-write operations are required. The GPIO set registers are
write-1-to-set registers. All 1s contained in the value written to a GPIO set
register sets the respective bits in the GPIO data register. The 0s have no
effect. For example, assume that PF0 is configured as an output. Writing
0x0001 to the GPIO set register drives a logic 1 on the PF0 pin without
affecting the state of any other PFx pins. The GPIO set registers are typi-
cally also used to generate GPIO interrupts by software. Read operations
from the GPIO set registers return the content of the GPIO data registers.

The GPIO clear registers provide an alternative port to manipulate the
GPIO data registers. While a direct write to a GPIO data register alters all
bits in the register, writes to a GPIO clear register can be used to clear
individual bits only. No read-modify-write operations are required. The
clear registers are write-1-to-clear registers. All 1s contained in the value
written to the GPIO clear register clears the respective bits in the GPIO
data register. The 0s have no effect. For example, assume that PF4 and PF5

are configured as outputs. Writing 0x0030 to the PORTFIO_CLEAR register
drives a logic 0 on the PF4 and PF5 pins without affecting the state of any
other PFx pins.

Description of Operation

9-16 ADSP-BF50x Blackfin Processor Hardware Reference

 If an edge-sensitive pin generates an interrupt request, the service
routine must acknowledge the request by clearing the respective
GPIO latch. This is usually performed through the clear registers.

Read operations from the GPIO clear registers return the content of the
GPIO data registers.

The GPIO toggle registers provide an alternative port to manipulate the
GPIO data registers. While a direct write to a GPIO data register alters all
bits in the register, writes to a toggle register can be used to toggle individ-
ual bits. No read-modify-write operations are required. The GPIO toggle
registers are write-1-to-toggle registers. All 1s contained in the value writ-
ten to a GPIO toggle register toggle the respective bits in the GPIO data
register. The 0s have no effect. For example, assume that PG1 is configured
as an output. Writing 0x0002 to the PORTGIO_TOGGLE register changes the
pin state (from logic 0 to logic 1, or from logic 1 to logic 0) on the PG1 pin
without affecting the state of any other PGx pins. Read operations from the
GPIO toggle registers return the content of the GPIO data registers.

The state of the GPIOs can be read through any of these data, set, clear, or
toggle registers. However, the returned value reflects the state of the input
pin only if the proper input enable bit in the PORTxIO_INEN register is set.
Note that GPIOs can still sense the state of the pin when the function
enable bits in the PORTx_FER registers are set.

Since function enable registers and GPIO input enable registers reset to
zero, no external pull-ups or pull-downs are required on the unused pins
of port F, port G, and port H.

GPIO Interrupt Processing
Each GPIO can be configured to generate an interrupt. The processor can
sense up to 35 asynchronous off-chip signals, requesting interrupts
through six interrupt channels. To make a pin function as an interrupt
pin, the associated input enable bit in the PORTxIO_INEN register must be
set. The function enable bit in the PORTx_FER register is typically cleared.

ADSP-BF50x Blackfin Processor Hardware Reference 9-17

General-Purpose Ports

Then, an interrupt request can be generated according to the state of the
pin (either high or low), an edge transition (low to high or high to low), or
on both edge transitions (low to high and high to low). Input sensitivity is
defined on a per-bit basis by the GPIO polarity registers (PORTFIO_POLAR,
PORTGIO_POLAR, and PORTHIO_POLAR), and the GPIO interrupt sensitivity
registers (PORTFIO_EDGE, PORTGIO_EDGE, and PORTHIO_EDGE). If configured
for edge sensitivity, the GPIO set on both edges registers (PORTFIO_BOTH,
PORTGIO_BOTH, and PORTHIO_BOTH) let the interrupt request generate on
both edges.

The GPIO polarity registers are used to configure the polarity of the
GPIO input source. To select active high or rising edge, set the bits in the
GPIO polarity register to 0. To select active low or falling edge, set the
bits in the GPIO polarity register to 1. This register has no effect on
GPIOs that are defined as outputs. The contents of the GPIO polarity
registers are cleared at reset, defaulting to active high polarity.

The GPIO interrupt sensitivity registers are used to configure each of the
inputs as either a level-sensitive or an edge-sensitive source. When using
an edge-sensitive mode, an edge detection circuit is used to prevent a situ-
ation where a short event is missed because of the system clock rate. The
GPIO interrupt sensitivity register has no effect on GPIOs that are
defined as outputs. The contents of the GPIO interrupt sensitivity regis-
ters are cleared at reset, defaulting to level sensitivity.

The GPIO set on both edges registers are used to enable interrupt genera-
tion on both rising and falling edges. When a given GPIO has been set to
edge-sensitive in the GPIO interrupt sensitivity register, setting the
respective bit in the GPIO set on both edges register to both edges results
in an interrupt being generated on both the rising and falling edges. This
register has no effect on GPIOs that are defined as level-sensitive or as
outputs. See Table 9-4 on page 9-14 for information on how the GPIO
set on both edges register interacts with the GPIO polarity and GPIO
interrupt sensitivity registers.

Description of Operation

9-18 ADSP-BF50x Blackfin Processor Hardware Reference

When the GPIO’s input drivers are enabled while the GPIO direction reg-
isters configure it as an output, software can trigger a GPIO interrupt by
writing to the data/set/toggle registers. The interrupt service routine
should clear the GPIO to acknowledge the request.

Each of the three GPIO modules provides two independent interrupt
channels. Identical in functionality, these are called interrupt A and inter-
rupt B. Both interrupt channels have their own mask register which lets
you assign the individual GPIOs to none, either, or both interrupt
channels.

Since all mask registers reset to zero, none of the GPIOs is assigned any
interrupt by default. Each GPIO represents a bit in each of these registers.
Setting a bit means enabling the interrupt on this channel.

Interrupt A and interrupt B operate independently. For example, writing
1 to a bit in the mask interrupt A register does not affect interrupt channel
B. This facility allows GPIOs to generate GPIO interrupt A, GPIO inter-
rupt B, both GPIO interrupts A and B, or neither.

A GPIO interrupt is generated by a logical OR of all unmasked GPIOs for
that interrupt. For example, if PF0 and PF1 are both unmasked for GPIO
interrupt channel A, GPIO interrupt A will be generated when triggered
by PF0 or PF1. The interrupt service routine must evaluate the GPIO data
register to determine the signaling interrupt source. Figure 9-1 illustrates
the interrupt flow of any GPIO module's interrupt A channel.

 When using either rising or falling edge-triggered interrupts, the
interrupt condition must be cleared each time a corresponding
interrupt is serviced by writing 1 to the appropriate bit in the
GPIO clear register.

At reset, all interrupts are masked and disabled.

ADSP-BF50x Blackfin Processor Hardware Reference 9-19

General-Purpose Ports

Similarly to the GPIOs themselves, the mask register can either be written
through the GPIO mask data registers (PORTxIO_MASKA, PORTxIO_MASKB) or
be controlled by the mask A/mask B set, clear and toggle registers.

Figure 9-1. GPIO Interrupt Generation Flow for Interrupt Channel A

NO
(INPUT)

YES

YES

YES

YES

GENERATE INTERRUPT A

START

IS THE GPIO SET
AS AN OUTPUT IN

PORTxIO_DIR?

IS THE GPIO
EDGE-SENSITIVE

AS DEFINED IN
PORTxIO_EDGE?

IS THE INPUT
AN ACTIVE LEVEL

AS DEFINED IN
PORTxIO_POLAR?

IS THE GPIO
SET TO ONE?

YES

IS EDGE
DETECTED

AS DEFINED IN
PORTxIO_POLAR &

PORTxIO_BOTH?

IS THE INPUT
DRIVER ENABLED IN

PORTxIO_INEN?

IS THE
GPIO ENABLED IN

PORTxIO_MASKA_D?

NO
(LEVEL SENSITIVE)

YES
(OUTPUT)

YES
(EDGE SENSITIVE)

Description of Operation

9-20 ADSP-BF50x Blackfin Processor Hardware Reference

The GPIO mask interrupt set registers (PORTxIO_MASKA_SET,
PORTxIO_MASKB_SET) provide an alternative port to manipulate the GPIO
mask interrupt registers. While a direct write to a mask interrupt register
alters all bits in the register, writes to a mask interrupt set register can be
used to set a single or a few bits only. No read-modify-write operations are
required.

The mask interrupt set registers are write-1-to-set registers. All ones con-
tained in the value written to the mask interrupt set register set the
respective bits in the mask interrupt register. The zeroes have no effect.
Writing a one to any bit enables the interrupt for the respective GPIO.

The GPIO mask interrupt clear registers (PORTxIO_MASKA_CLEAR,
PORTxIO_MASKB_CLEAR) provide an alternative port to manipulate the
GPIO mask interrupt registers. While a direct write to a mask interrupt
register alters all bits in the register, writes to the mask interrupt clear reg-
ister can be used to clear a single bit or a few bits only. No
read-modify-write operations are required.

The mask interrupt clear registers are write-1-to-clear registers. All ones
contained in the value written to the mask interrupt clear register clear the
respective bits in the mask interrupt register. The zeroes have no effect.
Writing a one to any bit disables the interrupt for the respective GPIO.

The GPIO mask interrupt toggle registers (PORTxIO_MASKA_TOGGLE,
PORTxIO_MASKB_TOGGLE) provide an alternative port to manipulate the
GPIO mask interrupt registers. While a direct write to a mask interrupt
register alters all bits in the register, writes to a mask interrupt toggle reg-
ister can be used to toggle a single bit or a few bits only. No
read-modify-write operations are required.

The mask interrupt toggle registers are write-1-to-clear registers. All ones
contained in the value written to the mask interrupt toggle register toggle
the respective bits in the mask interrupt register. The zeroes have no
effect. Writing a one to any bit toggles the interrupt for the respective
GPIO.

ADSP-BF50x Blackfin Processor Hardware Reference 9-21

General-Purpose Ports

Figure 9-1 illustrates the interrupt flow of any GPIO module’s interrupt A
channel. The interrupt B channel behaves identically.

All GPIOs assigned to the same interrupt channel are OR’ed. (See
Figure 9-2.) If multiple GPIOs are assigned to the same interrupt channel,
it is up to the interrupt service routine to evaluate the GPIO data registers
to determine the signaling interrupt source.

Figure 9-2. GPIO Interrupt Channels

IRQ40

P
F

0

PORTFIO_MASKA_D

P
F

1

P
F

2

P
F

3

P
F

4

P
F

5

P
F

6

P
F

7

P
F

8

P
F

9

P
F

10

P
F

11

P
F

12

P
F

13

P
F

14

P
F

15

PORTFIO_MASKB_D

P
G

0

PORTGIO_MASKA_D

P
G

1

P
G

2

P
G

3

P
G

4

P
G

5

P
G

6

P
G

7

P
G

8

P
G

9

P
G

10

P
G

11

P
G

12

P
G

13

P
G

14

P
G

15

PORTGIO_MASKB_D

P
H

0

PORTHIO_MASKA_D

P
H

1

P
H

2

PORTHIO_MASKB_D

IRQ29

IRQ30

IRQ41

IRQ45

IRQ46

Programming Model

9-22 ADSP-BF50x Blackfin Processor Hardware Reference

Programming Model
Figure 9-3 and Figure 9-4 show the programming model for the gen-
eral-purpose ports.

Figure 9-3. GPIO Flow Chart (Part 1 of 2)

WRITE PORTx_MUX, WRITE PORTx_FER
TO SET APPROPRIATE PERIPHERAL BITS

PERIPHERAL

GPIO

GPIO OR
PERIPHERAL?

WRITE PORTx_FER TO CLEAR
APPROPRIATE PFx, PGx, AND PHx BITS

SEE PERIPHERAL FOR MORE DETAILS

OUTPUT

INPUT

GPIO OUTPUT
OR INPUT?

WRITE PORTxIO_DIR TO CLEAR
APPROPRIATE BITS FOR INPUT DIRECTION

WRITE PORTxIO_INEN TO SET APPROPRIATE
BITS TO ENABLE INPUT DRIVERS DIRECTION

A

WRITE PORTxIO_DIR TO SET
APPROPRIATE BITS FOR OUTPUT DIRECTION

SET

CLEAR

SET OR CLEAR
GPIO?

WRITE PORTxIO_CLEAR TO SET
APPROPRIATE BITS TO LOWER INDIVIDUAL GPIO

WRITE PORTxIO_SET TO SET
APPROPRIATE BITS TO RAISE INDIVIDUAL GPIO

ADSP-BF50x Blackfin Processor Hardware Reference 9-23

General-Purpose Ports

Figure 9-4. GPIO Flow Chart (Part 2 of 2)

WRITE PORTxIO_EDGE TO SET
APPROPRIATE BITS FOR EDGE SENSITIVITY

EDGE

LEVEL

EDGE OR LEVEL
SENSITIVE?

WRITE PORTxIO_EDGE TO CLEAR
APPROPRIATE BITS FOR LEVEL SENSITIVITY

LOW

LEVEL HIGH
 OR LOW?

WRITE PORTxIO_POLAR TO SET
APPROPRIATE BITS FOR LOW LEVEL SENSITIVITY

WRITE PORTxIO_POLAR TO CLEAR APPROPRIATE
BITS FOR HIGH LEVEL SENSITIVITY

A

NO

YES

INTERRUPT
ABILITY?

SOFTWARE CAN INTERROGATE
PORTx_DATA BITS TO
DETERMINE EVENTS

RISING OR FALLING

BOTH

EDGE RISING/
FALLING OR BOTH?

WRITE PORTxIO_BOTH TO SET
APPROPRIATE BITS FOR BOTH EDGE SENSITIVITY

WRITE PORTxIO_BOTH TO CLEAR APPROPRIATE
BITS FOR EDGE SENSITIVITY

RISING

FALLING

EDGE RISING
OR FALLING?

WRITE PORTxIO_POLAR TO SET
APPROPRIATE BITS FOR FALLING EDGE SENSITIVITY

WRITE PORTxIO_POLAR TO CLEAR APPROPRIATE
BITS FOR RISING EDGE SENSITIVITY

HIGH

WRITE EITHER PORTxIO_MASKA, PORTxIO_MASKB, PORTxIO_MASKA_SET,
PORTxIO_MASKB_SET, PORTxIO_MASKA_TOGGLE, OR PORTxIO_MASKB_TOGGLE

TO SET APPROPRIATE BITS ON WHICH TO GENERATE AN INTERRUPT

INTERRUPTS MUST THEN BE CONFIGURED AT THE
SYSTEM INTERRUPT CONTROLLER AND

CORE EVENT CONTROLLER

Hysteresis Control

9-24 ADSP-BF50x Blackfin Processor Hardware Reference

Hysteresis Control
The ADSP-BF50x contains additional registers controlling the hysteresis
(via Schmitt triggering) for Port F, Port G, and Port H. These are also
included for pins other than GPIOs. Figure 9-5 to Figure 9-7 show the bit
descriptions of these registers.

PORTx Hysteresis (PORTx_HYSTERESIS) Register
This register configures Schmitt triggering (SE) for the PORTx inputs.
The Schmitt trigger can be set only for pin groups, classified by the pin
muxing controls. For each controlled group of pins, b#00 will disable
Schmitt triggering, while b#01 will enable it. Combinations of b#1x are
reserved.

Figure 9-5. Port F Hysteresis Register

0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 1 0 1 0 1 1 0 1 0 1 0 1 0 Reset = 0x5555

Port F Hysteresis Register (PORTF_HYSTERESIS)

PF12to10SE

PF0_SE

PF1_SE

PF9to8_SE PF7to6_SE

PF5to2_SE

PF15to14_SE

PF13_SE

ADSP-BF50x Blackfin Processor Hardware Reference 9-25

General-Purpose Ports

Figure 9-6. Port G Hysteresis Register

Figure 9-7. Port H Hysteresis Register

0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 1 0 1 0 1 1 0 1 0 1 0 1 0 Reset = 0x5555

Port G Hysteresis Register (PORTG_HYSTERESIS)

PG13o12_SE

PG8to6_SE

PG1_SE

PG11to9_SE

PG5to3_SE

PG2_SE

PG0_SEPG15to14_SE

0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 0 0 0 0 0 1 0 1 0 Reset = 0x0015

Port H Hysteresis Register (PORTH_HYSTERESIS)

Reserved PH0_SE

PH1_SEPH2_SE

Drive Strength Control

9-26 ADSP-BF50x Blackfin Processor Hardware Reference

The NONGPIO_HYSTERESIS register sets the Schmitt trigger (SE) for various
ADSP-BF50x signals.

Drive Strength Control
The NONGPIO_DRIVE register sets the drive strength and tolerance for the
TWI signals on the ADSP-BF50x as specified in the diagram.

Figure 9-8. Non-GPIO Hysteresis Register

Figure 9-9. Non-GPIO Drive Strength Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 0 0 0 0 0 0 1 0 1 0

Non-GPIO Hysteresis Register (NONGPIO_HYSTERESIS)

Reset = 0x0015

Reserved ARDY_SE

JTAG_SE

NMI_RST_BMODE_SE

00 - Disable hysteresis for
JTAG input signals

01 - Enable hysteresis for
JTAG input signals

1x - Reserved
00 - Enable hysteresis for NMI,

RESET, and BMODE signals
01 - Disable hysteresis for NMI,

RESET, and BMODE signals
1x - Reserved

00 - Enable hysteresis for
ARDY pin input from Flash

01 - Disable hysteresis for
ARDY pin input from Flash

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Non-GPIO Drive Strength Control Register (NONGPIO_DRIVE)

Reset = 0x0551

Reserved

TWI_DT
Reserved

Drive/tolerate for TWI pins SCL and SDA
000: 3.3V Vddext 3.3V Vbustwi
001: 1.8 V Vddext 1.8V Vbustwi
010: 2.5 V Vddext 3.3V Vbustwi
011: 1.8V Vddext 3.3V Vbustwi
100: 3.3V Vddext 5 V Vbustwi
101: 1.8V Vddext 2.5V Vbustwi
110: 2.5 V Vddext 2.5V Vbustwi
111: Reserved

0 10 0 0 0 0 1 1 0 1 0 1 0 0 0

ADSP-BF50x Blackfin Processor Hardware Reference 9-27

General-Purpose Ports

Memory-Mapped GPIO Registers
The GPIO registers are part of the system memory-mapped registers
(MMRs). Figure 9-10 through Figure 9-30 on page 9-41 illustrate the
GPIO registers. The addresses of the programmable flag MMRs appear in
Appendix B.

 In Figure 9-10 through Figure 9-30, bits 3-15 are reserved for
Port H register descriptions.

Port Multiplexer Control Registers (PORTx_MUX)
Figure 9-10 shows the Port F Multiplexer Control register. Refer to
Table 9-1 on page 9-4 for more information on multiplexed configura-
tions within Port F.

Figure 9-10. Port F Multiplexer Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Port F Multiplexer Control Register (PORTF_MUX)

PF0_MUX

Reset = 0x0000

PF1_MUX

PF5to2_MUX

PF7to6_MUX

PF15to14_MUX

PF13_MUX

PF12to10_MUX

PF9to8_MUX

For all bit fields:
00 = 1st Peripheral function
01 = 1st alternate peripheral function
10 = 2nd alternate peripheral function
11 = Reserved

Memory-Mapped GPIO Registers

9-28 ADSP-BF50x Blackfin Processor Hardware Reference

Figure 9-11 shows the Port G Multiplexer Control register. Refer to
Table 9-2 on page 9-5 for more information on multiplexed configura-
tions within Port G.

Figure 9-11. Port G Multiplexer Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Port G Multiplexer Control Register (PORTG_MUX)

PG0_MUX

Reset = 0x0000

PG1_MUX

PG2_MUX

PG5to3_MUX

PG15to14_MUX

PG13to12_MUX

PG11to9_MUX

PG8to6_MUX

For all bit fields:
00 = 1st Peripheral function
01 = 1st alternate peripheral function
10 = 2nd alternate peripheral function
11 = Reserved

ADSP-BF50x Blackfin Processor Hardware Reference 9-29

General-Purpose Ports

Figure 9-12 shows the Port H Multiplexer Control register. Refer to
Table 9-3 on page 9-6 for more information on multiplexed configura-
tions within Port H.

Figure 9-12. Port H Multiplexer Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Port H Multiplexer Control Register (PORTH_MUX)

PH0_MUX

Reset = 0x0000

PH1_MUX

PH2_MUX

Reserved

For all bit fields:
00 = 1st Peripheral function
01 = 1st alternate peripheral function
10 = 2nd alternate peripheral function
11 = Reserved

Memory-Mapped GPIO Registers

9-30 ADSP-BF50x Blackfin Processor Hardware Reference

Function Enable Registers (PORTx_FER)

GPIO Direction Registers (PORTxIO_DIR)

Figure 9-13. Function Enable Registers

Figure 9-14. GPIO Direction Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Function Enable Registers (PORTx_FER)

Px0

Px12

Px13

Px14

Px15

Px1

Px2

Px3

Px4

Px5

For all bits, 0 - GPIO mode, 1 - Enable peripheral function

Px6

Px7
Px11

Px10 Px9

Px8

Reset = 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GPIO Direction Registers (PORTxIO_DIR)

Px0 Direction

Px12 Direction

Px13 Direction

Px14 Direction

Px15 Direction

Px1 Direction

Px2 Direction

Px3 Direction

Px4 Direction

Px5 Direction

For all bits, 0 - Input, 1 - Output

Px6 Direction

Px7 Direction
Px11 Direction

Px10 Direction Px9 Direction
Px8 Direction

Reset = 0x0000

ADSP-BF50x Blackfin Processor Hardware Reference 9-31

General-Purpose Ports

GPIO Input Enable Registers (PORTxIO_INEN)

GPIO Data Registers (PORTxIO)

Figure 9-15. GPIO Input Enable Registers

Figure 9-16. GPIO Data Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GPIO Input Enable Registers (PORTxIO_INEN)

Px0 Input Enable

Px12 Input Enable

Px13 Input Enable

Px14 Input Enable

Px15 Input Enable

Px1 Input Enable

Px2 Input Enable

Px3 Input Enable

Px4 Input Enable

Px5 Input Enable

For all bits, 0 - Input Buffer Disabled, 1 - Input Buffer Enabled

Px6 Input Enable

Px7 Input Enable
Px11 Input Enable

Px10 Input Enable Px9 Input Enable
Px8 Input Enable

Reset = 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GPIO Data Registers (PORTxIO)

Program Px0

Program Px12

Program Px13

Program Px14

Program Px15

Program Px1

Program Px2

Program Px3

Program Px4

Program Px5

1 - Set, 0 - Clear

Program Px6

Program Px7
Program Px11

Program Px10 Program Px9
Program Px8

Reset = 0x0000

Memory-Mapped GPIO Registers

9-32 ADSP-BF50x Blackfin Processor Hardware Reference

GPIO Set Registers (PORTxIO_SET)

GPIO Clear Registers (PORTxIO_CLEAR)

Figure 9-17. GPIO Set Registers

Figure 9-18. GPIO Clear Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GPIO Set Registers (PORTxIO_SET)

Set Px0

Set Px12

Set Px13

Set Px14

Set Px15

Set Px1

Set Px2

Set Px3

Set Px4

Set Px5

Write-1-to-set

Set Px6

Set Px7
Set Px11
Set Px10 Set Px9

Set Px8

Reset = 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GPIO Clear Registers (PORTxIO_CLEAR)

Clear Px0

Clear Px12

Clear Px13

Clear Px14

Clear Px15

Clear Px1

Clear Px2

Clear Px3

Clear Px4

Clear Px5

Write-1-to-clear

Clear Px6

Clear Px7
Clear Px11

Clear Px10 Clear Px9
Clear Px8

Reset = 0x0000

ADSP-BF50x Blackfin Processor Hardware Reference 9-33

General-Purpose Ports

GPIO Toggle Registers (PORTxIO_TOGGLE)

GPIO Polarity Registers (PORTxIO_POLAR)

Figure 9-19. GPIO Toggle Registers

Figure 9-20. GPIO Polarity Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GPIO Toggle Registers (PORTxIO_TOGGLE)

Toggle Px0

Toggle Px12

Toggle Px13

Toggle Px14

Toggle Px15

Toggle Px1

Toggle Px2

Toggle Px3

Toggle Px4

Toggle Px5

Write-1-to-toggle

Toggle Px6

Toggle Px7
Toggle Px11

Toggle Px10 Toggle Px9
Toggle Px8

Reset = 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GPIO Polarity Registers (PORTxIO_POLAR)

Px0 Polarity

Px12 Polarity

Px13 Polarity

Px14 Polarity

Px15 Polarity

Px1 Polarity

Px2 Polarity

Px3 Polarity

Px4 Polarity

Px5 Polarity

For all bits, 0 - Active high or rising edge, 1 - Active low or falling edge

Px6 Polarity

Px7 Polarity
Px11 Polarity

Px10 Polarity Px9 Polarity
Px8 Polarity

Reset = 0x0000

Memory-Mapped GPIO Registers

9-34 ADSP-BF50x Blackfin Processor Hardware Reference

Interrupt Sensitivity Registers (PORTxIO_EDGE)

GPIO Set on Both Edges Registers (PORTxIO_BOTH)

Figure 9-21. Interrupt Sensitivity Registers

Figure 9-22. GPIO Set on Both Edges Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Interrupt Sensitivity Registers (PORTxIO_EDGE)

Px0 Sensitivity

Px12 Sensitivity

Px13 Sensitivity

Px14 Sensitivity

Px15 Sensitivity

Px1 Sensitivity

Px2 Sensitivity

Px3 Sensitivity

Px4 Sensitivity

Px5 Sensitivity

For all bits, 0 - Level, 1 - Edge

Px6 Sensitivity

Px7 Sensitivity
Px11 Sensitivity

Px10 Sensitivity Px9 Sensitivity
Px8 Sensitivity

Reset = 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GPIO Set on Both Edges Registers (PORTxIO_BOTH)

Px0 Both Edges

Px12 Both Edges

Px13 Both Edges

Px14 Both Edges

Px15 Both Edges

Px1 Both Edges

Px2 Both Edges

Px3 Both Edges

Px4 Both Edges

Px5 Both Edges

For all bits when enabled for edge-sensitivity, 0 - Single edge, 1 - Both edges

Px6 Both Edges

Px7 Both Edges
Px11 Both Edges

Px10 Both Edges Px9 Both Edges
Px8 Both Edges

Reset = 0x0000

ADSP-BF50x Blackfin Processor Hardware Reference 9-35

General-Purpose Ports

GPIO Mask Interrupt Registers (PORTxIO_MASKA/B)

Figure 9-23. GPIO Mask Interrupt A Registers

Figure 9-24. GPIO Mask Interrupt B Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GPIO Mask Interrupt A Registers (PORTxIO_MASKA)

Enable Px0 Interrupt A

Enable Px12 Interrupt A

Enable Px13 Interrupt A

Enable Px14 Interrupt A

Enable Px15 Interrupt
A

Enable Px1 Interrupt A

Enable Px2 Interrupt A

Enable Px3 Interrupt A

Enable Px4 Interrupt A

Enable Px5 Interrupt A

For all bits, 1 - Enable, 0 - Disable

Enable Px6 Interrupt A

Enable Px7 Interrupt A
Enable Px11 Interrupt A

Enable Px10 Interrupt A Enable Px9 Interrupt A

Enable Px8 Interrupt A

Reset = 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GPIO Mask Interrupt B Registers (PORTxIO_MASKB)

Enable Px0 Interrupt B

Enable Px12 Interrupt B

Enable Px13 Interrupt B
Enable Px14 Interrupt B

Enable Px15
Interrupt B

Enable Px1 Interrupt B

Enable Px2 Interrupt B

Enable Px3 Interrupt B

Enable Px4 Interrupt B

Enable Px5 Interrupt B

For all bits, 1 - Enable

Enable Px6 Interrupt B

Enable Px7 Interrupt B
Enable Px11 Interrupt B

Enable Px10 Interrupt B Enable Px9 Interrupt B
Enable Px8 Interrupt B

Reset = 0x0000

Memory-Mapped GPIO Registers

9-36 ADSP-BF50x Blackfin Processor Hardware Reference

GPIO Mask Interrupt Set Registers
(PORTxIO_MASKA/B_SET)

Figure 9-25. GPIO Mask Interrupt A Set Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GPIO Mask Interrupt A Set Registers (PORTxIO_MASKA_SET)

Set Px0 Interrupt A
Enable

Set Px12 Interrupt A
Enable

Set Px13 Interrupt A
Enable

Set Px14 Interrupt A
Enable

Set Px15 Interrupt A
Enable

Set Px1 Interrupt A
Enable

Set Px2 Interrupt A
Enable

Set Px3 Interrupt A
Enable

Set Px4 Interrupt A
Enable

Set Px5 Interrupt A
Enable

For all bits, 1 - Set

Set Px6 Interrupt A
Enable

Set Px7 Interrupt A
Enable

Set Px11 Interrupt A
Enable
Set Px10 Interrupt A
Enable

Set Px9 Interrupt A
Enable

Set Px8 Interrupt A
Enable

Reset = 0x0000

ADSP-BF50x Blackfin Processor Hardware Reference 9-37

General-Purpose Ports

Figure 9-26. GPIO Mask Interrupt B Set Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GPIO Mask Interrupt B Set Registers (PORTxIO_MASKB_SET)
For all bits, 1 - Set

Reset = 0x0000

Set Px0 Interrupt B
Enable
Set Px1 Interrupt B
Enable

Set Px2 Interrupt B
Enable

Set Px3 Interrupt B
Enable

Set Px4 Interrupt B
Enable

Set Px5 Interrupt B
Enable
Set Px6 Interrupt B
Enable

Set Px7 Interrupt B
Enable

Set Px9 Interrupt B
Enable

Set Px8 Interrupt B
Enable

Set Px12 Interrupt B
Enable

Set Px13 Interrupt B
Enable

Set Px14 Interrupt B
Enable

Set Px15 Interrupt B
Enable

Set Px11 Interrupt B
Enable
Set Px10 Interrupt B
Enable

Memory-Mapped GPIO Registers

9-38 ADSP-BF50x Blackfin Processor Hardware Reference

GPIO Mask Interrupt Clear Registers
(PORTxIO_MASKA/B_CLEAR)

Figure 9-27. GPIO Mask Interrupt A Clear Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GPIO Mask Interrupt A Clear Registers (PORTxIO_MASKA_CLEAR)

Clear Px0 Interrupt A
Enable

Clear Px12 Interrupt A
Enable

Clear Px13 Interrupt A
Enable

Clear Px14 Interrupt A
Enable

Clear Px15 Interrupt A
Enable

Clear Px1 Interrupt A
Enable

Clear Px2 Interrupt A
Enable

Clear Px3 Interrupt A
Enable
Clear Px4 Interrupt A
Enable
Clear Px5 Interrupt A
Enable

For all bits, 1 - Clear

Clear Px6 Interrupt A
Enable
Clear Px7 Interrupt A
Enable

Clear Px11 Interrupt A
Enable
Clear Px10 Interrupt A
Enable

Clear Px9 Interrupt A
Enable

Clear Px8 Interrupt A
Enable

Reset = 0x0000

ADSP-BF50x Blackfin Processor Hardware Reference 9-39

General-Purpose Ports

Figure 9-28. GPIO Mask Interrupt B Clear Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GPIO Mask Interrupt B Clear Registers (PORTxIO_MASKB_CLEAR)
For all bits, 1 - Clear

Reset = 0x0000

Clear Px0 Interrupt B
Enable
Clear Px1 Interrupt B
Enable

Clear Px2 Interrupt B
Enable

Clear Px3 Interrupt B
Enable
Clear Px4 Interrupt B
Enable
Clear Px5 Interrupt B
Enable
Clear Px6 Interrupt B
Enable
Clear Px7 Interrupt B
Enable

Clear Px9 Interrupt B
Enable

Clear Px8 Interrupt B
Enable

Clear Px12 Interrupt B
Enable

Clear Px13 Interrupt B
Enable

Clear Px14 Interrupt B
Enable

Clear Px15 Interrupt B
Enable

Clear Px11 Interrupt B
Enable
Clear Px10 Interrupt B
Enable

Memory-Mapped GPIO Registers

9-40 ADSP-BF50x Blackfin Processor Hardware Reference

GPIO Mask Interrupt Toggle Registers
(PORTxIO_MASKA/B_TOGGLE)

Figure 9-29. GPIO Mask Interrupt A Toggle Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GPIO Mask Interrupt A Toggle Registers (PORTxIO_MASKA_TOGGLE)

Toggle Px0 Interrupt A
Enable

Toggle Px12 Interrupt A
Enable

Toggle Px13 Interrupt A
Enable

Toggle Px14
Interrupt A Enable

Toggle Px15
Interrupt A Enable

Toggle Px1 Interrupt A
Enable

Toggle Px2 Interrupt A
Enable

Toggle Px3 Interrupt A
Enable
Toggle Px4 Interrupt A
Enable
Toggle Px5 Interrupt A
Enable

For all bits, 1 - Toggle

Toggle Px6 Interrupt A
Enable
Toggle Px7 Interrupt A
Enable

Toggle Px11 Interrupt A
Enable
Toggle Px10 Interrupt A
Enable

Toggle Px9 Interrupt A
Enable

Toggle Px8 Interrupt A
Enable

Reset = 0x0000

ADSP-BF50x Blackfin Processor Hardware Reference 9-41

General-Purpose Ports

Programming Examples
Listing 9-1 provides examples for using the general-purpose ports.

Listing 9-1. General-Purpose Ports

/* set port f function enable register to GPIO (not peripheral)

*/

p0.l = lo(PORTF_FER);

p0.h = hi(PORTF_FER);

R0.h = 0x0000;

r0.l = 0x0000;

Figure 9-30. GPIO Mask Interrupt B Toggle Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GPIO Mask Interrupt B Toggle Registers (PORTxIO_MASKB_TOGGLE)
For all bits, 1 - Toggle

Reset = 0x0000

Toggle Px0 Interrupt B
Enable
Toggle Px1 Interrupt B
Enable

Toggle Px2 Interrupt B
Enable

Toggle Px3 Interrupt B
Enable
Toggle Px4 Interrupt B
Enable
Toggle Px5 Interrupt B
Enable
Toggle Px6 Interrupt B
Enable
Toggle Px7 Interrupt B
Enable

Toggle Px9 Interrupt B
Enable

Toggle Px8 Interrupt B
Enable

Toggle Px12 Interrupt B
Enable

Toggle Px13 Interrupt B
Enable

Toggle Px14
Interrupt B Enable

Toggle Px15
Interrupt B Enable

Toggle Px11 Interrupt B
Enable
Toggle Px10 Interrupt B
Enable

Programming Examples

9-42 ADSP-BF50x Blackfin Processor Hardware Reference

w[p0] = r0;

/* set port f direction register to enable some GPIO as output,

remaining are input */

p0.l = lo(PORTFIO_DIR);

p0.h = hi(PORTFIO_DIR);

r0.h = 0x0000;

r0.l = 0x0FC0;

w[p0] = r0;

ssync;

/* set port f clear register */

p0.l = lo(PORTFIO_CLEAR);

p0.h = hi(PORTFIO_CLEAR);

r0.l = 0xFC0;

w[p0] = r0;

ssync;

/* set port f input enable register to enable input drivers of

some GPIOs */

p0.l = lo(PORTFIO_INEN);

p0.h = hi(PORTFIO_INEN);

r0.h = 0x0000;

r0.l = 0x003C;

w[p0] = r0;

ssync;

/* set port f polarity register */

p0.l = lo(PORTFIO_POLAR);

p0.h = hi(PORTFIO_POLAR);

r0 = 0x00000;

w[p0] = r0;

ssync;

ADSP-BF50x Blackfin Processor Hardware Reference 10-1

10 GENERAL-PURPOSE TIMERS

This chapter describes the general-purpose (GP) timer module. Following
an overview and a list of key features is a description of operation and
functional modes of operation. The chapter concludes with a program-
ming model, consolidated register definitions, and programming
examples.

Specific Information for the ADSP-BF50x
For details regarding the number of GP timers for the ADSP-BF50x prod-
uct, refer to ADSP-BF504, ADSP-BF504F, ADSP-BF506F Embedded
Processor Data Sheet.

For GP Timer interrupt vector assignments, refer to Table 4-3 on
page 4-19 in Chapter 4, “System Interrupts”.

To determine how each of the GP Timers is multiplexed with other func-
tional pins, refer to Table 9-1 on page 9-4 through Table 4-3 on
page 4-19 in Chapter 9, “General-Purpose Ports”.

For a list of MMR addresses for each GP Timer, refer to Chapter A, “Sys-
tem MMR Assignments”.

GP timer behavior for the ADSP-BF50x that differs from the general
information in this chapter can be found at the end of this chapter in the
section “Unique Information for the ADSP-BF50x Processor” on
page 10-58.

Overview

10-2 ADSP-BF50x Blackfin Processor Hardware Reference

Overview
The general-purpose timers support the following operating modes:

• Single-shot mode for interval timing and single pulse generation

• Pulse width modulation (PWM) generation with consistent update
of period and pulse width values

• External signal capture mode with consistent update of period and
pulse width values

• External event counter mode

Feature highlights are:

• Synchronous operation

• Consistent management of period and pulse width values

• Interaction with PPI module for video frame sync operation

• Autobaud detection for UART module

• Graceful bit pattern termination when stopping

• Support for center-aligned PWM patterns

• Error detection on implausible pattern values

• All read and write accesses to 32-bit registers are atomic

• Every timer has its dedicated interrupt request output

• Unused timers can function as edge-sensitive pin interrupts

The internal structure of the individual timers is illustrated by
Figure 10-1, which shows the details of timer 0 as a representative exam-
ple. The other timers have identical structure.

ADSP-BF50x Blackfin Processor Hardware Reference 10-3

General-Purpose Timers

External Interface
Every timer has a dedicated TMR pin. If enabled, the TMR pins output the
single-pulse or PWM signals generated by the timer. The TMR pins func-
tion as input in capture and counter modes. Polarity of the signals is
programmable.

When clocked internally, the clock source is the processor’s peripheral
clock (SCLK). Assuming the peripheral clock is running at 133 MHz, the
maximum period for the timer count is ((232-1) / 133 MHz) =
32.2 seconds.

Figure 10-1. Internal Timer Structure

TIMER0_CONFIG

PERIOD
MATCH

SCLK

ENABLE
LATCH

32

TMRCLK
TACLK0

TMR0

TIMER0_PERIOD (WRITE)

TIMER0_PERIOD (READ)

COMPARATOR

TIMER0_COUNTER

COMPARATOR

TIMER0_WIDTH (READ)

TIMER0_WIDTH (WRITE)

32

32

32

32

32 INTERRUPT
CONTROL

PIN
CONTROL

EDGE
DETECTOR

32

TRAILING EDGE

LEADING EDGE

OVERFLOW

WIDTH MATCH

PAB

16

TIMEN0

TIMDIS0

TRUN0

TOVF_ERR0

TIMIL0

TMR0

TACI0

TIMER 0

Description of Operation

10-4 ADSP-BF50x Blackfin Processor Hardware Reference

Clock and capture input pins are sampled every SCLK cycle. The duration
of every low or high state must be at least one SCLK. Therefore, the maxi-
mum allowed frequency of timer input signals is SCLK/2.

Internal Interface
Timer registers are always accessed by the core through the 16-bit PAB
bus. Hardware ensures that all read and write operations from and to
32-bit timer registers are atomic.

Every timer has a dedicated interrupt request output that connects to the
system interrupt controller (SIC).

Description of Operation
The core of every timer is a 32-bit counter, that can be interrogated
through the read-only TIMER_COUNTER register. Depending on the mode of
operation, the counter is reset to either 0x0000 0000 or 0x0000 0001
when the timer is enabled. The counter always counts upward. Usually, it
is clocked by SCLK. In PWM mode it can be clocked by the alternate clock
input TACLK or, alternatively, the common timer clock input TMRCLK. In
counter mode, the counter is clocked by edges on the TMR input pin. The
significant edge is programmable.

After 232-1 clocks, the counter overflows. This is reported by the over-
flow/error bit TOVF_ERR in the TIMER_STATUS register. In PWM and
counter mode, the counter is reset by hardware when its content reaches
the values stored in the TIMER_PERIOD register. In capture mode, the coun-
ter is reset by leading edges on the TMR or TACI input pin. If enabled, these
events cause the interrupt latch TIMIL in the TIMER_STATUS register to be
set and issue a system interrupt request. The TOVF_ERR and TIMIL latches
are sticky and should be cleared by software using W1C (write-1-to-clear)
operations to clear the interrupt request. The global TIMER_STATUS register

ADSP-BF50x Blackfin Processor Hardware Reference 10-5

General-Purpose Timers

is 32-bits wide. A single atomic 32-bit read can report the status of all cor-
responding timers.

Before a timer can be enabled, its mode of operation is programmed in the
individual timer-specific TIMER_CONFIG register. Then, the timers are
started by writing a “1” to the representative bits in the global
TIMER_ENABLE register.

The TIMER_ENABLE register can be used to enable all timers simultaneously.
The register contains W1S (write-1-to-set) control bits, one for each
timer. Correspondingly, the TIMER_DISABLE register contains W1C con-
trol bits to allow simultaneous or independent disabling of the timers.
Either register can be read to check the enable status of the timers. A “1”
indicates that the corresponding timer is enabled. The timer starts count-
ing three SCLK cycles after the TIMEN bit is set.

While the PWM mode is used to generate PWM patterns, the capture
mode (WDTH_CAP) is designed to “receive” PWM signals. A PWM pattern is
represented by a pulse width and a signal period. This is described by the
TIMER_WIDTH and TIMER_PERIOD register pair. In capture mode these regis-
ters are read only. Hardware always captures both values. Regardless of
whether in PWM or capture mode, shadow buffers always ensure consis-
tency between the TIMER_WIDTH and TIMER_PERIOD values. In PWM mode,
hardware performs a plausibility check by the time the timer is enabled. If
there is an error, the type is reported by the TIMER_CONFIG register and sig-
nalled by the TOVF_ERR bit.

Interrupt Processing
Each timer can generate a single interrupt. The resulting interrupt signals
are routed to the system interrupt controller block for prioritization and
masking. The timer status (TIMER_STATUS) register latches the timer inter-
rupts to provide a means for software to determine the interrupt source.

Description of Operation

10-6 ADSP-BF50x Blackfin Processor Hardware Reference

Figure 10-2 shows the interrupt structure of the timers.

To enable interrupt generation, set the IRQ_ENA bit and unmask the inter-
rupt source in the IMASK and SIC_IMASK registers. To poll the TIMIL bit

Figure 10-2. Timers Interrupt Structure

TIMIL

TIMER
IRQ PROCESSOR

CORE
TOVF_ERR

RST RST

SET SET

RESET

TOVF_ERR WRITE DATA

MMR WRITE TO
TIMER_STATUS

1 0 1 0

SYSTEM
INTERRUPT

CONTROLLER

ILLEGAL
TIMER_WIDTH COUNT = WIDTH

COUNT = PERIOD

ILLEGAL
TIMER _PERIOD

COUNTER
OVERFLOW

TRAILING
EDGE

LEADING
EDGE

PERIOD_CNT

EXT_CLKWDTH_CAP

PWM_OUT

PWM_OUT
TMODE

EXT_CLKWDTH_CAPPWM_OUT
TMODE

ERROR EVENT
INTERRUPT
EVENT

IRQ_ENA

TIMIL WRITE DATA

ADSP-BF50x Blackfin Processor Hardware Reference 10-7

General-Purpose Timers

without interrupt generation, set IRQ_ENA but leave the interrupt masked
at the system level. If enabled by IRQ_ENA, interrupt requests are also gen-
erated by error conditions as reported by the TOVF_ERR bits.

The system interrupt controller enables flexible interrupt handling. All
timers may or may not share the same CEC interrupt channel, so that a
single interrupt routine services more than one timer. In PWM mode,
multiple timers may run with the same period settings and issue their
interrupt requests simultaneously. In this case, the service routine might
clear all TIMIL latch bits at once by writing 0x000F 000F to the
TIMER_STATUS register.

If interrupts are enabled, make sure that the interrupt service routine
(ISR) clears the TIMIL bit in the TIMER_STATUS register before the RTI
instruction executes. This ensures that the interrupt is not reissued.
Remember that writes to system registers are delayed. If only a few
instructions separate the TIMIL clear command from the RTI instruction,
an extra SSYNC instruction may be inserted. In EXT_CLK mode, reset the
TIMIL bit in the TIMER_STATUS register at the very beginning of the inter-
rupt service routine to avoid missing any timer events.

Illegal States
Every timer features an error detection circuit. It handles overflow situa-
tions but also performs pulse width vs. period plausibility checks. Errors
are reported by the TOVF_ERR bits in the TIMER_STATUS register and the
ERR_TYP bit field in the individual TIMER_CONFIG registers. Table 10-1 pro-
vides a summary of error conditions, using these terms:

• Startup. The first clock period during which the timer counter is
running after the timer is enabled by writing TIMER_ENABLE.

• Rollover. The time when the current count matches the value in
TIMER_PERIOD and the counter is reloaded with the value “1”.

Description of Operation

10-8 ADSP-BF50x Blackfin Processor Hardware Reference

• Overflow. The timer counter was incremented instead of doing a
rollover when it was holding the maximum possible count value of
0xFFFF FFFF. The counter does not have a large enough range to
express the next greater value and so erroneously loads a new value
of 0x0000 0000.

• Unchanged. No new error.

• When ERR_TYP is unchanged, it displays the previously
reported error code or 00 if there has been no error since
this timer was enabled.

• When TOVF_ERR is unchanged, it reads “0” if there has been
no error since this timer was enabled, or if software has per-
formed a W1C to clear any previous error. If a previous
error has not been acknowledged by software, TOVF_ERR
reads “1”.

Software should read TOVF_ERR to check for an error. If TOVF_ERR is set,
software can then read ERR_TYP for more information. Once detected,
software should write “1” to clear TOVF_ERR to acknowledge the error.

The following table can be read as: “In mode __ at event __, if
TIMER_PERIOD is __ and TIMER_WIDTH is __, then ERR_TYP is __ and
TOVF_ERR is __.”

 Startup error conditions do not prevent the timer from starting.
Similarly, overflow and rollover error conditions do not stop the
timer. Illegal cases may cause unwanted behavior of the TMR pin.

ADSP-BF50x Blackfin Processor Hardware Reference 10-9

General-Purpose Timers

Table 10-1. Overview of Illegal States
M

od
e

E
ve

nt

TI
ME

R_
PE

RI
OD

TI
ME

R_
WI

DT
H

ER
R_

TY
P

TO
VF

_E
RR

PWM_OUT,
PERIOD_CNT =
1

Startup
(No boundary condition
tests performed on
TIMER_WIDTH)

== 0 Anything b#10 Set

== 1 Anything b#10 Set

 2 Anything No
change

No
change

Rollover == 0 Anything b#10 Set

== 1 Anything b#11 Set

 2 == 0 b#11 Set

 2 < TIMER_PERIOD No
change

No
change

 2  TIMER_PERIOD b#11 Set

Overflow, not possible
unless there is also
another error, such as
TIMER_PERIOD == 0

Anything Anything b#01 Set

PWM_OUT,
PERIOD_CNT =
0

Startup Anything == 0 b#01 Set

This case is not detected at startup, but results in an
overflow error once the counter counts through its
entire range.

Anything  1 No
change

No
change

Rollover Rollover is not possible in this mode.

Overflow, not possible
unless there is also
another error, such as
TIMER_WIDTH == 0

Anything Anything b#01 Set

Modes of Operation

10-10 ADSP-BF50x Blackfin Processor Hardware Reference

Modes of Operation
The following sections provide a functional description of the gen-
eral-purpose timers in various operating modes.

Pulse Width Modulation (PWM_OUT) Mode
Use the PWM_OUT mode for PWM signal or single-pulse generation,
for interval timing or for periodic interrupt generation. Figure 10-3 illus-
trates PWM_OUT mode.

WDTH_CAP Startup TIMER_PERIOD and TIMER_WIDTH are
read-only in this mode, no error possible.

Rollover TIMER_PERIOD and TIMER_WIDTH are
read-only in this mode, no error possible.

Overflow Anything Anything b#01 Set

EXT_CLK Startup == 0 Anything b#10 Set

 1 Anything No
change

No
change

Rollover == 0 Anything b#10 Set

 1 Anything No
change

No
change

Overflow, not possible
unless there is also
another error, such as
TIMER_PERIOD == 0

Anything Anything b#01 Set

Table 10-1. Overview of Illegal States (Cont’d)
M

od
e

E
ve

nt

TI
ME

R_
PE

RI
OD

TI
ME

R_
WI

DT
H

ER
R_

TY
P

TO
VF

_E
RR

ADSP-BF50x Blackfin Processor Hardware Reference 10-11

General-Purpose Timers

Setting the TMODE field to b#01 in the TIMER_CONFIG register enables
PWM_OUT mode. Here, the TMR pin is an output, but it can be disabled by
setting the OUT_DIS bit in the TIMER_CONFIG register.

In PWM_OUT mode, the bits PULSE_HI, PERIOD_CNT, IRQ_ENA, OUT_DIS,
CLK_SEL, EMU_RUN, and TOGGLE_HI enable orthogonal functionality. They
may be set individually or in any combination, although some combina-
tions are not useful (such as TOGGLE_HI = 1 with OUT_DIS = 1 or
PERIOD_CNT = 0).

Figure 10-3. Timer Flow Diagram, PWM_OUT Mode

TIN_SEL

DATA BUS

0

1 PWM_CLK

SCLK

CLK_SEL
EQUAL?

TIMER_ENABLE

EQUAL?

1

1

0

0

YES

CLOCK RESET

ASSERT DEASSERT

INTERRUPT

PERIOD_CNT

TMR
pin

PWMOUT
LOGIC

PULSE_HI
TOGGLE_HI
OUT_DIS

YES

TACLK

TMRCLK

TIMER_COUNTER

TIMER_PERIOD TIMER_WIDTH

Modes of Operation

10-12 ADSP-BF50x Blackfin Processor Hardware Reference

Once a timer has been enabled, the timer counter register is loaded with a
starting value. If CLK_SEL = 0, the timer counter starts at 0x1. If
CLK_SEL = 1, it is reset to 0x0 as in EXT_CLK mode. The timer counts
upward to the value of the timer period register. For either setting of
CLK_SEL, when the timer counter equals the timer period, the timer coun-
ter is reset to 0x1 on the next clock.

In PWM_OUT mode, the PERIOD_CNT bit controls whether the timer generates
one pulse or many pulses. When PERIOD_CNT is cleared (PWM_OUT single
pulse mode), the timer uses the TIMER_WIDTH register, generates one assert-
ing and one deasserting edge, then generates an interrupt (if enabled) and
stops. When PERIOD_CNT is set (PWM_OUT continuous pulse mode), the
timer uses both the TIMER_PERIOD and TIMER_WIDTH registers and generates
a repeating (and possibly modulated) waveform. It generates an interrupt
(if enabled) at the end of each period and stops only after it is disabled. A
setting of PERIOD_CNT = 0 counts to the end of the width; a setting of
PERIOD_CNT = 1 counts to the end of the period.

 The TIMER_PERIOD and TIMER_WIDTH registers are read-only in some
operation modes. Be sure to set the TMODE field in the TIMER_CONFIG

register to b#01 before writing to these registers.

Output Pad Disable

The output pin can be disabled in PWM_OUT mode by setting the OUT_DIS

bit in the TIMER_CONFIG register. The TMR pin is then three-stated regard-
less of the setting of PULSE_HI and TOGGLE_HI. This can reduce power
consumption when the output signal is not being used. The TMR pin can
also be disabled by the function enable and the multiplexer control
registers.

ADSP-BF50x Blackfin Processor Hardware Reference 10-13

General-Purpose Timers

Single Pulse Generation

If the PERIOD_CNT bit is cleared, the PWM_OUT mode generates a single pulse
on the TMR pin. This mode can also be used to implement a precise delay.
The pulse width is defined by the TIMER_WIDTH register, and the
TIMER_PERIOD register is not used. See Figure 10-4.

At the end of the pulse, the timer interrupt latch bit TIMIL is set, and the
timer is stopped automatically. No writes to the TIMER_DISABLE register
are required in this mode. If the PULSE_HI bit is set, an active high pulse is
generated on the TMR pin. If PULSE_HI is not set, the pulse is active low.

The pulse width may be programmed to any value from 1 to (232-1),
inclusive.

Figure 10-4. Timer Enable and Automatic Disable Timing

EXAMPLE TIMER ENABLE AND AUTOMATIC DISABLE TIMING
(PWM_OUT MODE, PERIOD_CNT = 0)

3

21X 3

SCLK

TIMER_WIDTH

TIMER_COUNTER

TIMEN

TRUN

TMR, PULSE_HI = 0

TMR, PULSE_HI = 1

W1S TO
TIMER_ENABLE

Modes of Operation

10-14 ADSP-BF50x Blackfin Processor Hardware Reference

Pulse Width Modulation Waveform Generation

If the PERIOD_CNT bit is set, the internally clocked timer generates rectan-
gular signals with well-defined period and duty cycle (PWM patterns).
This mode also generates periodic interrupts for real-time signal
processing.

The 32-bit TIMER_PERIOD and TIMER_WIDTH registers are programmed with
the values required by the PWM signal.

When the timer is enabled in this mode, the TMR pin is pulled to a deas-
serted state each time the counter equals the value of the pulse width
register, and the pin is asserted again when the period expires (or when the
timer gets started).

To control the assertion sense of the TMR pin, the PULSE_HI bit in the cor-
responding TIMER_CONFIG register is used. For a low assertion level, clear
this bit. For a high assertion level, set this bit. When the timer is disabled
in PWM_OUT mode, the TMR pin is driven to the deasserted level.

ADSP-BF50x Blackfin Processor Hardware Reference 10-15

General-Purpose Timers

Figure 10-5 shows timing details.

If enabled, a timer interrupt is generated at the end of each period. An
interrupt service routine must clear the interrupt latch bit (TIMIL) and
might alter period and/or width values. In PWM applications, the soft-
ware needs to update period and pulse width values while the timer is
running. When software updates either the TIMER_PERIOD or TIMER_WIDTH
registers, the new values are held by special buffer registers until the period
expires. Then the new period and pulse width values become active simul-
taneously. Reads from TIMER_PERIOD and TIMER_WIDTH registers return the
old values until the period expires.

The TOVF_ERR status bit signifies an error condition in PWM_OUT mode. The
TOVF_ERR bit is set if TIMER_PERIOD = 0 or TIMER_PERIOD = 1 at startup, or
when the timer counter register rolls over. It is also set if the timer pulse
width register is greater than or equal to the timer period register by the
time the counter rolls over. The ERR_TYP bits are set when the TOVF_ERR bit
is set.

Figure 10-5. Timer Enable Timing

SCLK

TIMER_PERIOD 4 4 4

EXAMPLE TIMER ENABLE TIMING (PWM_OUT MODE, PERIOD_CNT = 1)

1 1 1

X 41 2 3 1 2 3

TIMER_WIDTH

TIMER_COUNTER

TIMEN

TRUN

TMR pin, PULSE_HI = 0

TMR pin, PULSE_HI = 1

W1S TO
TIMER_ENABLE

Modes of Operation

10-16 ADSP-BF50x Blackfin Processor Hardware Reference

Although the hardware reports an error if the TIMER_WIDTH value equals
the TIMER_PERIOD value, this is still a valid operation to implement PWM
patterns with 100% duty cycle. If doing so, software must generally ignore
the TOVL_ERR flags. Pulse width values greater than the period value are
not recommended. Similarly, TIMER_WIDTH = 0 is not a valid operation.
Duty cycles of 0% are not supported.

To generate the maximum frequency on the TMR output pin, set the period
value to “2” and the pulse width to “1”. This makes the pin toggle each
SCLK clock, producing a duty cycle of 50%. The period may be pro-
grammed to any value from 2 to (232 – 1), inclusive. The pulse width may
be programmed to any value from 1 to (period – 1), inclusive.

PULSE_HI Toggle Mode

The waveform produced in PWM_OUT mode with PERIOD_CNT = 1 normally
has a fixed assertion time and a programmable deassertion time (via the
TIMER_WIDTH register). When two or more timers are running synchro-
nously by the same period settings, the pulses are aligned to the asserting
edge as shown in Figure 10-6.

ADSP-BF50x Blackfin Processor Hardware Reference 10-17

General-Purpose Timers

The TOGGLE_HI mode enables control of the timing of both the asserting
and deasserting edges of the output waveform produced. The phase
between the asserting edges of two timer outputs is programmable. The
effective state of the PULSE_HI bit alternates every period. The adjacent
active low and active high pulses, taken together, create two halves of a
symmetrical rectangular waveform. The effective waveform is active high
when PULSE_HI is set and active low when PULSE_HI is cleared. The value
of the TOGGLE_HI bit has no effect unless the mode is PWM_OUT and
PERIOD_CNT = 1.

In TOGGLE_HI mode, when PULSE_HI is set, an active low pulse is generated
in the first, third, and all odd-numbered periods, and an active high pulse
is generated in the second, fourth, and all even-numbered periods. When
PULSE_HI is cleared, an active high pulse is generated in the first, third,
and all odd-numbered periods, and an active low pulse is generated in the
second, fourth, and all even-numbered periods.

The deasserted state at the end of one period matches the asserted state at
the beginning of the next period, so the output waveform only transitions
when Count = Pulse Width. The net result is an output waveform pulse
that repeats every two counter periods and is centered around the end of
the first period (or the start of the second period).

Figure 10-6. Example of Timers With Pulses Aligned to Asserting Edge

TMR0

TMR1

PERIOD 1

TMR2

TOGGLE_HI = 0
PULSE_HI = 1

TOGGLE_HI = 0
PULSE_HI = 1

TOGGLE_HI = 0
PULSE_HI = 1

TIMER
ENABLE

ACTIVE
HIGH

ACTIVE
HIGH

ACTIVE
HIGH

Modes of Operation

10-18 ADSP-BF50x Blackfin Processor Hardware Reference

Figure 10-7 shows an example with three timers running with the same
period settings. When software does not alter the PWM settings at
run-time, the duty cycle is 50%. The values of the TIMER_WIDTH registers
control the phase between the signals.

Similarly, two timers can generate non-overlapping clocks, by cen-
ter-aligning the pulses while inverting the signal polarity for one of the
timers (see Figure 10-8).

When TOGGLE_HI = 0, software updates the TIMER_PERIOD and
TIMER_WIDTH registers once per waveform period. When TOGGLE_HI = 1,
software updates the TIMER_PERIOD and TIMER_WIDTH registers twice per
waveform. Period values are half as large. In odd-numbered periods, write
(Period – Width) instead of Width to the TIMER_WIDTH register in order to
obtain center-aligned pulses.

Figure 10-7. Three Timers With Same Period Settings

TMR0

TMR1

TMR2

TIMER
PERIOD 1

TIMER
PERIOD 2

TIMER
PERIOD 3

TIMER
PERIOD 4

WAVEFORM
PERIOD 1

WAVEFORM
PERIOD 2

TIMER
ENABLE

ACTIVE
LOW

ACTIVE
HIGH

ACTIVE
HIGH

ACTIVE
HIGH

ACTIVE
HIGH

ACTIVE
HIGH

ACTIVE
HIGH

ACTIVE
LOW

ACTIVE
LOW

ACTIVE
LOW

ACTIVE
LOW

ACTIVE
LOW

TOGGLE_HI = 1
PULSE_HI = 1

TOGGLE_HI = 1
PULSE_HI = 1

TOGGLE_HI = 1
PULSE_HI = 1

ADSP-BF50x Blackfin Processor Hardware Reference 10-19

General-Purpose Timers

For example, if the pseudo-code when TOGGLE_HI = 0 is:

int period, width;

for (;;) {

period = generate_period(...) ;

width = generate_width(...) ;

waitfor (interrupt) ;

write (TIMER_PERIOD, period) ;

write (TIMER_WIDTH, width) ;

}

Then when TOGGLE_HI = 1, the pseudo-code would be:

int period, width ;

int per1, per2, wid1, wid2 ;

for (;;) {

period = generate_period(...) ;

width = generate_width(...) ;

Figure 10-8. Two Timers With Non-Overlapping Clocks

TMR0

TMR1

WAVEFORM
PERIOD 1

WAVEFORM
PERIOD 2

TIMER
ENABLE

ACTIVE
LOW

ACTIVE
HIGH

ACTIVE
HIGH

ACTIVE
LOW

ACTIVE
LOW

ACTIVE
HIGH

ACTIVE
HIGH

ACTIVE
LOW

TOGGLE_HI = 1
PULSE_HI = 0

TOGGLE_HI = 1
PULSE_HI = 1

TIMER
PERIOD 1

TIMER
PERIOD 2

TIMER
PERIOD 3

TIMER
PERIOD 4

Modes of Operation

10-20 ADSP-BF50x Blackfin Processor Hardware Reference

per1 = period/2 ;

wid1 = width/2 ;

per2 = period/2 ;

wid2 = width/2 ;

waitfor (interrupt) ;

write (TIMER_PERIOD, per1) ;

write (TIMER_WIDTH, per1 - wid1) ;

waitfor (interrupt) ;

write (TIMER_PERIOD, per2) ;

write (TIMER_WIDTH, wid2) ;

}

As shown in this example, the pulses produced do not need to be symmet-
ric (wid1 does not need to equal wid2). The period can be offset to adjust
the phase of the pulses produced (per1 does not need to equal per2).

The TRUN bit in the TIMER_STATUS register is updated only at the end of
even-numbered periods in TOGGLE_HI mode. When TIMER_DISABLE is writ-
ten to “1”, the current pair of counter periods (one waveform period)
completes before the timer is disabled.

As when TOGGLE_HI = 0, errors are reported if the TIMER_PERIOD register is
either set to “0” or “1”, or when the width value is greater than or equal to
the period value.

ADSP-BF50x Blackfin Processor Hardware Reference 10-21

General-Purpose Timers

Externally Clocked PWM_OUT

By default, the timer is clocked internally by SCLK. Alternatively, if the
CLK_SEL bit in the TIMER_CONFIG register is set, the timer is clocked by
PWM_CLK. The PWM_CLK is normally input from the TACLK pin, but may be
taken from the common TMRCLK pin regardless of whether the timers are
configured to work with the PPI. Different timers may receive different
signals on their PWM_CLK inputs, depending on configuration. As selected
by the PERIOD_CNT bit, the PWM_OUT mode either generates pulse width
modulation waveforms or generates a single pulse with pulse width
defined by the TIMER_WIDTH register.

When CLK_SEL is set, the counter resets to 0x0 at startup and increments
on each rising edge of PWM_CLK. The TMR pin transitions on rising edges of
PWM_CLK. There is no way to select the falling edges of PWM_CLK. In this
mode, the PULSE_HI bit controls only the polarity of the pulses produced.
The timer interrupt may occur slightly before the corresponding edge on
the TMR pin (the interrupt occurs on an SCLK edge, the pin transitions on a
later PWM_CLK edge). It is still safe to program new period and pulse width
values as soon as the interrupt occurs. After a period expires, the counter
rolls over to a value of 0x1.

The PWM_CLK clock waveform is not required to have a 50% duty cycle, but
the minimum PWM_CLK clock low time is one SCLK period, and the mini-
mum PWM_CLK clock high time is one SCLK period. This implies the
maximum PWM_CLK clock frequency is SCLK/2.

The alternate timer clock inputs (TACLK) are enabled when a timer is in
PWM_OUT mode with CLK_SEL = 1 and TIN_SEL = 0, without regard to the
content of the multiplexer control and function enable registers.

Using PWM_OUT Mode With the PPI

Some timers may be used to generate frame sync signals for certain PPI
modes. For detailed instructions on how to configure the timers for use

Modes of Operation

10-22 ADSP-BF50x Blackfin Processor Hardware Reference

with the PPI, refer to “Frame Synchronization in GP Modes” in
Chapter 20, Parallel Peripheral Interface.

Stopping the Timer in PWM_OUT Mode

In all PWM_OUT mode variants, the timer treats a disable operation (W1C to
TIMER_DISABLE) as a “stop is pending” condition. When disabled, it auto-
matically completes the current waveform and then stops cleanly. This
prevents truncation of the current pulse and unwanted PWM patterns at
the TMR pin. The processor can determine when the timer stops running by
polling for the corresponding TRUN bit in the TIMER_STATUS register to read
“0” or by waiting for the last interrupt (if enabled). Note the timer cannot
be reconfigured (TIMER_CONFIG cannot be written to a new value) until
after the timer stops and TRUN reads “0”.

In PWM_OUT single pulse mode (PERIOD_CNT = 0), it is not necessary to write
TIMER_DISABLE to stop the timer. At the end of the pulse, the timer stops
automatically, the corresponding bit in TIMER_ENABLE (and
TIMER_DISABLE) is cleared, and the corresponding TRUN bit is cleared. See
Figure 10-4 on page 10-13. To generate multiple pulses, write a “1” to
TIMER_ENABLE, wait for the timer to stop, then write another “1” to
TIMER_ENABLE.

In continuous PWM generation mode (PWM_OUT, PERIOD_CNT = 1) software
can stop the timer by writing to the TIMER_DISABLE register. To prevent
the ongoing PWM pattern from being stopped in an unpredictable way,
the timer does not stop immediately when the corresponding “1” has been
written to the TIMER_DISABLE register. Rather, the write simply clears the
enable latch and the timer still completes the ongoing PWM patterns
gracefully. It stops cleanly at the end of the first period when the enable
latch is cleared. During this final period the TIMEN bit returns “0”, but the
TRUN bit still reads as a “1”.

If the TRUN bit is not cleared explicitly, and the enable latch can be cleared
and re-enabled all before the end of the current period will continue to

ADSP-BF50x Blackfin Processor Hardware Reference 10-23

General-Purpose Timers

run as if nothing happened. Typically, software should disable a PWM_OUT

timer and then wait for it to stop itself.

Figure 10-9 shows detailed timing.

If necessary, the processor can force a timer in PWM_OUT mode to abort
immediately. Do this by first writing a “1” to the corresponding bit in
TIMER_DISABLE, and then writing a “1” to the corresponding TRUN bit in
TIMER_STATUS. This stops the timer whether the pending stop was waiting
for the end of the current period (PERIOD_CNT = 1) or the end of the cur-
rent pulse width (PERIOD_CNT = 0). This feature may be used to regain
immediate control of a timer during an error recovery sequence.

 Use this feature carefully, because it may corrupt the PWM pattern
generated at the TMR pin.

When a timer is disabled, the TIMER_COUNTER register retains its state;
when a timer is re-enabled, the timer counter is reinitialized based on the
operating mode. The TIMER_COUNTER register is read-only. Software cannot
overwrite or preset the timer counter value directly.

Figure 10-9. Timer Disable Timing

7

EXAMPLE TIMER DISABLE TIMING (PWM_OUT MODE, PERIOD_CNT = 1)

5

7

5

7

5

7 1 2 3 5 6 74

W1C TO
TIMER_DISABLE

SCLK

TIMER_PERIOD

TIMER_WIDTH

TIMER_COUNTER

TIMEN

TRUN

TMR PIN, PULSE_HI = 0

TMR PIN, PULSE_HI = 1

Modes of Operation

10-24 ADSP-BF50x Blackfin Processor Hardware Reference

Pulse Width Count and Capture (WDTH_CAP) Mode
Use the WDTH_CAP mode, often simply called “capture mode,” to mea-
sure pulse widths on the TMR or TACI input pins, or to “receive” PWM
signals. Figure 10-10 shows a flow diagram for WDTH_CAP mode.

In WDTH_CAP mode, the TMR pin is an input pin. The internally clocked
timer is used to determine the period and pulse width of externally applied
rectangular waveforms. Setting the TMODE field to b#10 in the
TIMER_CONFIG register enables this mode.

Figure 10-10. Timer Flow Diagram, WDTH_CAP Mode

SCLK

TIMER_ENABLE

RESET

INTERRUPT

PERIOD_CNT

TMR
PIN

INTERRUPT
LOGIC

PULSE_HI

TOVF_ERR

TMR
PIN

PULSE_HI

TRAILING
EDGE

DETECT

DATA BUS

LEADING
EDGE

DETECT

TIMER_COUNTER

TIMER_WIDTHTIMER_PERIOD

ADSP-BF50x Blackfin Processor Hardware Reference 10-25

General-Purpose Timers

When enabled in this mode, the timer resets the count in the
TIMER_COUNTER register to 0x0000 0001 and does not start counting until
it detects a leading edge on the TMR pin.

When the timer detects the first leading edge, it starts incrementing.
When it detects a trailing edge of a waveform, the timer captures the cur-
rent 32-bit value of the TIMER_COUNTER register into the width buffer. At
the next leading edge, the timer transfers the current 32-bit value of the
TIMER_COUNTER register into the period buffer. The count register is reset
to 0x0000 0001 again, and the timer continues counting and capturing
until it is disabled.

In this mode, software can measure both the pulse width and the pulse
period of a waveform. To control the definition of leading edge and trail-
ing edge of the TMR pin, the PULSE_HI bit in the TIMER_CONFIG register is
set or cleared. If the PULSE_HI bit is cleared, the measurement is initiated
by a falling edge, the content of the counter register is captured to the
pulse width buffer on the rising edge, and to the period buffer on the next
falling edge. When the PULSE_HI bit is set, the measurement is initiated by
a rising edge, the counter value is captured to the pulse width buffer on
the falling edge, and to the period buffer on the next rising edge.

In WDTH_CAP mode, these three events always occur at the same time:

1. The TIMER_PERIOD register is updated from the period buffer.

2. The TIMER_WIDTH register is updated from the width buffer.

3. The TIMIL bit gets set (if enabled) but does not generate an error.

The PERIOD_CNT bit in the TIMER_CONFIG register controls the point in
time at which this set of transactions is executed. Taken together, these
three events are called a measurement report. The TOVF_ERR bit does not
get set at a measurement report. A measurement report occurs, at most,
once per input signal period.

Modes of Operation

10-26 ADSP-BF50x Blackfin Processor Hardware Reference

The current timer counter value is always copied to the width buffer and
period buffer registers at the trailing and leading edges of the input signal,
respectively, but these values are not visible to software. A measurement
report event samples the captured values into visible registers and sets the
timer interrupt to signal that TIMER_PERIOD and TIMER_WIDTH are ready to
be read. When the PERIOD_CNT bit is set, the measurement report occurs
just after the period buffer captures its value (at a leading edge). When the
PERIOD_CNT bit is cleared, the measurement report occurs just after the
width buffer captures its value (at a trailing edge).

If the PERIOD_CNT bit is set and a leading edge occurred (see Figure 10-11),
then the TIMER_PERIOD and TIMER_WIDTH registers report the pulse period
and pulse width measured in the period that just ended. If the PERIOD_CNT

bit is cleared and a trailing edge occurred (see Figure 10-12), then the
TIMER_WIDTH register reports the pulse width measured in the pulse that
just ended, but the TIMER_PERIOD register reports the pulse period mea-
sured at the end of the previous period.

If the PERIOD_CNT bit is cleared and the first trailing edge occurred, then
the first period value has not yet been measured at the first measurement
report, so the period value is not valid. Reading the TIMER_PERIOD value in
this case returns “0”, as shown in Figure 10-12. To measure the pulse
width of a waveform that has only one leading edge and one trailing edge,
set PERIOD_CNT = 0. If PERIOD_CNT = 1 for this case, no period value is cap-
tured in the period buffer. Instead, an error report interrupt is generated
(if enabled) when the counter range is exceeded and the counter wraps
around. In this case, both TIMER_WIDTH and TIMER_PERIOD read “0”
(because no measurement report occurred to copy the value captured in
the width buffer to TIMER_WIDTH). See the first interrupt in Figure 10-13.

ADSP-BF50x Blackfin Processor Hardware Reference 10-27

General-Purpose Timers

Figure 10-11. Example of Period Capture Measurement Report Timing
(WDTH_CAP mode, PERIOD_CNT = 1)

STARTS
COUNTING

NOTE: FOR SIMPLICITY, THE SYNCHRONIZATION DELAY BETWEEN TMR PIN EDGES

AND BUFFER REGISTER UPDATES IS NOT SHOWN.

SCLK

1 3 1 2 3 4 6 7 8

TMR PIN, PULSE_HI = 0

TMR PIN, PULSE_HI = 1

2 4 5 1XTIMER_COUNTER

4TIMER_PERIOD BUFFER

2 3TIMER_WIDTH BUFFER

4TIMER_PERIOD

2

8

8

3TIMER_WIDTH

TIMIL

TOVF_ERR

TIMEN

X 0

X 0

X 0

X 0

MEASUREMENT
REPORT

MEASUREMENT
REPORT

Modes of Operation

10-28 ADSP-BF50x Blackfin Processor Hardware Reference

Figure 10-12. Example of Width Capture Measurement Report Timing
(WDTH_CAP mode, PERIOD_CNT = 0)

SCLK

1

TMR PIN, PULSE_HI = 0

TMR PIN, PULSE_HI = 1

2 3 5 6 8 3 4 34 7 1 2 1XTIMER_COUNTER

8 4

TIMER_PERIOD BUFFER

3

TIMER_WIDTH BUFFER

TIMER_PERIOD

TIMER_WIDTH

TIMIL

TOVF_ERR

TIMEN

2

1 2

0 4

3

8

1 2

X 0

X 0

X 0

X 0

STARTS
COUNTING

MEASUREMENT
REPORT

MEASUREMENT
REPORT

MEASUREMENT
REPORT

NOTE: FOR SIMPLICITY, THE SYNCHRONIZATION DELAY BETWEEN TMR PIN EDGES AND BUFFER

REGISTER UPDATES IS NOT SHOWN.

ADSP-BF50x Blackfin Processor Hardware Reference 10-29

General-Purpose Timers

 When using the PERIOD_CNT = 0 mode described above to measure
the width of a single pulse, it is recommended to disable the timer
after taking the interrupt that ends the measurement interval. If
desired, the timer can then be reenabled as appropriate in
preparation for another measurement. This procedure prevents the
timer from free-running after the width measurement, and from
logging errors generated by the timer count overflowing.

A timer interrupt (if enabled) is generated if the TIMER_COUNTER register
wraps around from 0xFFFF FFFF to “0” in the absence of a leading edge.
At that point, the TOVF_ERR bit in the TIMER_STATUS register and the
ERR_TYP bits in the TIMER_CONFIG register are set, indicating a count over-
flow due to a period greater than the counter’s range. This is called an
error report. When a timer generates an interrupt in WDTH_CAP mode,
either an error has occurred (an error report) or a new measurement is
ready to be read (a measurement report), but never both at the same time.
The TIMER_PERIOD and TIMER_WIDTH registers are never updated at the
time an error is signaled.

Refer to Figure 10-13 and Figure 10-14 for more information.

Modes of Operation

10-30 ADSP-BF50x Blackfin Processor Hardware Reference

Figure 10-13. Example Timing for Period Overflow Followed by Period
Capture (WDTH_CAP mode, PERIOD_CNT = 1)

STARTS
COUNTING

SCLK

1

TMR PIN, PULSE_HI = 0

TMR PIN, PULSE_HI = 1

2 3 1 2 3 40XTIMER_COUNTER

4TIMER_PERIOD BUFFER

2TIMER_WIDTH BUFFER

TIMER_PERIOD

TIMER_WIDTH

TIMIL

TOVF_ERR

TIMEN

4

5

2

ERROR
REPORT

MEASUREMENT
REPORT

0xFFFF
FFFC

0xFFFF
FFFD

0xFFFF
FFFE

0xFFFF
FFFF

X 0

X 0

X 0

X 0

0

2

0

0

NOTE: FOR SIMPLICITY, THE SYNCHRONIZATION DELAY BETWEEN TMR PIN EDGES AND BUFFER

REGISTER UPDATES IS NOT SHOWN.

ADSP-BF50x Blackfin Processor Hardware Reference 10-31

General-Purpose Timers

Figure 10-14. Example Timing for Width Capture Followed by Period
Overflow (WDTH_CAP mode, PERIOD_CNT = 0)

SCLK

1

TMR pin, PULSE_HI = 0

TMR pin, PULSE_HI = 1

2 1 2 3 40XTIMER_COUNTER

4X

TIMER_PERIOD BUFFER

3

TIMER_WIDTH BUFFER

TIMER_PERIOD

TIMER_WIDTH

TIMIL

TOVF_ERR

TIMEN

1 2

0

3

0

X 0

X 0

X 0

0

3

0

3

NOTE: FOR SIMPLICITY, THE SYNCHRONIZATION DELAY BETWEEN TMR PIN EDGES AND BUFFER

REGISTER UPDATES IS NOT SHOWN.

STARTS
COUNTING

ERROR
REPORT

MEASUREMENT
REPORT

0xFFFF
FFFC

0xFFFF
FFFD

0xFFFF
FFFE

0xFFFF
FFFF

3

Modes of Operation

10-32 ADSP-BF50x Blackfin Processor Hardware Reference

Both TIMIL and TOVF_ERR are sticky bits, and software must explicitly clear
them. If the timer overflowed and PERIOD_CNT = 1, neither the
TIMER_PERIOD nor the TIMER_WIDTH register were updated. If the timer
overflowed and PERIOD_CNT = 0, the TIMER_PERIOD and TIMER_WIDTH regis-
ters were updated only if a trailing edge was detected at a previous
measurement report.

Software can count the number of error report interrupts between mea-
surement report interrupts to measure input signal periods longer than
0xFFFF FFFF. Each error report interrupt adds a full 232 SCLK counts to
the total for the period, but the width is ambiguous. For example, in
Figure 10-13 the period is 0x1 0000 0004 but the pulse width could be
either 0x0 0000 0002 or 0x1 0000 0002.

The waveform applied to the TMR pin is not required to have a 50% duty
cycle, but the minimum TMR pin low time is one SCLK period and the min-
imum TMR pin high time is one SCLK period. This implies the maximum
TMR pin input frequency is SCLK/2 with a 50% duty cycle. Under these
conditions, the WDTH_CAP mode timer would measure Period = 2 and
Pulse Width = 1.

Autobaud Mode

On some devices, in WDTH_CAP mode, some of the timers can provide
autobaud detection for the Universal Asynchronous Receiver/Transmitter
(UART) interface(s). The TIN_SEL bit in the TIMER_CONFIG register
causes the timer to sample the TACI pin instead of the TMR pin when
enabled for WDTH_CAP mode. Autobaud detection can be used for ini-
tial bit rate negotiations as well as for detection of bit rate drifts while the
interface is in operation.

ADSP-BF50x Blackfin Processor Hardware Reference 10-33

General-Purpose Timers

External Event (EXT_CLK) Mode
Use the EXT_CLK mode (sometimes referred to as the counter mode) to
count external events—that is, signal edges on the TMR pin (which is an
input in this mode). Figure 10-15 shows a flow diagram for EXT_CLK
mode.

The timer works as a counter clocked by an external source, which can
also be asynchronous to the system clock. The current count in
TIMER_COUNTER represents the number of leading edge events detected.
Setting the TMODE field to b#11 in the TIMER_CONFIG register enables this
mode. The TIMER_PERIOD register is programmed with the value of the
maximum timer external count.

The waveform applied to the TMR pin is not required to have a 50% duty
cycle, but the minimum TMR low time is one SCLK period, and the mini-
mum TMR high time is one SCLK period. This implies the maximum TMR

pin input frequency is SCLK/2.

Period may be programmed to any value from 1 to (232 – 1), inclusive.

After the timer has been enabled, it resets the TIMER_COUNTER register to
0x0 and then waits for the first leading edge on the TMR pin. This edge
causes the TIMER_COUNTER register to be incremented to the value 0x1.
Every subsequent leading edge increments the count register. After reach-
ing the period value, the TIMIL bit is set, and an interrupt is generated.
The next leading edge reloads the TIMER_COUNTER register again with 0x1.
The timer continues counting until it is disabled. The PULSE_HI bit deter-
mines whether the leading edge is rising (PULSE_HI set) or falling
(PULSE_HI cleared).

The configuration bits TIN_SEL and PERIOD_CNT have no effect in this
mode. The TOVF_ERR and ERR_TYP bits are set if the TIMER_COUNTER register
wraps around from 0xFFFF FFFF to “0” or if Period = “0” at startup or
when the TIMER_COUNTER register rolls over (from Count = Period to
Count = 0x1). The TIMER_WIDTH register is unused.

Programming Model

10-34 ADSP-BF50x Blackfin Processor Hardware Reference

Programming Model
The architecture of the timer block enables any of the timers within this
block to work individually or synchronously along with others as a group
of timers. Regardless of the operating mode, the programming model is
always straightforward. Because of the error checking mechanism, always
follow this order when enabling timers:

1. Set timer mode.

2. Write TIMER_WIDTH and TIMER_PERIOD registers as applicable.

3. Enable timer.

If this order is not followed, the plausibility check may fail because of
undefined width and period values, or writes to TIMER_WIDTH and
TIMER_PERIOD may result in an error condition, because the registers are
read-only in some modes. The timer may not start as expected.

Figure 10-15. Timer Flow Diagram, EXT_CLK Mode

CLOCKRESET

LEADING
EDGE

DETECT

TIMER_COUNTER

TIMER_PERIOD

TIMER_ENABLE

INTERRUPT

EQUAL?

Y

PULSE_HI TMR pin

DATA BUS

ADSP-BF50x Blackfin Processor Hardware Reference 10-35

General-Purpose Timers

If in PWM_OUT mode the PWM patterns of the second period differ from
the patterns of the first one, the initialization sequence above might
become:

1. Set timer mode to PWM_OUT.

2. Write first TIMER_WIDTH and TIMER_PERIOD value pair.

3. Enable timer.

4. Immediately write second TIMER_WIDTH and TIMER_PERIOD value
pair.

Hardware ensures that the buffered width and period values become active
when the first period expires.

Once started, timers require minimal interaction with software, which is
usually performed by an interrupt service routine. In PWM_OUT mode soft-
ware must update the pulse width and/or settings as required. In WDTH_CAP

mode it must store captured values for further processing. In any case, the
service routine should clear the TIMIL bits of the timers it controls.

Timer Registers
The timer peripheral module provides general-purpose timer functional-
ity. It consists of multiple identical timer units.

Each timer provides four registers:

• TIMER_CONFIG[15:0] – timer configuration register

• TIMER_WIDTH[31:0] – timer pulse width register

• TIMER_PERIOD[31:0] – timer period register

• TIMER_COUNTER[31:0] – timer counter register

Timer Registers

10-36 ADSP-BF50x Blackfin Processor Hardware Reference

Additionally, three registers are shared between the timers within a block:

• TIMER_ENABLE[15:0] – timer enable register

• TIMER_DISABLE[15:0] – timer disable register

• TIMER_STATUS[31:0] – timer status register

The size of accesses is enforced. A 32-bit access to a TIMER_CONFIG register
or a 16-bit access to a TIMER_WIDTH, TIMER_PERIOD, or TIMER_COUNTER reg-
ister results in a memory-mapped register (MMR) error. Both 16- and
32-bit accesses are allowed for the TIMER_ENABLE, TIMER_DISABLE, and
TIMER_STATUS registers. On a 32-bit read of one of the 16-bit registers, the
upper word returns all 0s.

Timer Enable Register (TIMER_ENABLE)
Figure 10-16 shows an example of the TIMER_ENABLE register for a product
with eight timers. The register allows simultaneous enabling of multiple
timers so that they can run synchronously. For each timer there is a single
W1S control bit. Writing a “1” enables the corresponding timer; writing a
“0” has no effect. The bits can be set individually or in any combination.
A read of the TIMER_ENABLE register shows the status of the enable for the
corresponding timer. A “1” indicates that the timer is enabled. All unused
bits return “0” when read.

ADSP-BF50x Blackfin Processor Hardware Reference 10-37

General-Purpose Timers

Timer Disable Register (TIMER_DISABLE)
Figure 10-17 shows an example of the TIMER_DISABLE register for a prod-
uct with eight timers. The register allows simultaneous disabling of
multiple timers. For each timer there is a single W1C control bit. Writing
a “1” disables the corresponding timer; writing a “0” has no effect. The
bits can be cleared individually or in any combination. A read of the
TIMER_DISABLE register returns a value identical to a read of the
TIMER_ENABLE register. A “1” indicates that the timer is enabled. All
unused bits return “0” when read.

Figure 10-16. Timer Enable Register

0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 Reset = 0x00000

Timer Enable Register (TIMER_ENABLE)

TIMEN0 (Timer0 Enable)

TIMEN1 (Timer1 Enable)

1 - Enable timer
Read as 1 when enabled

1 - Enable timer
Read as 1 when enabled

TIMEN2 (Timer2 Enable)
1 - Enable timer
Read as 1 when enabled

TIMEN3 (Timer3 Enable)
1 - Enable timer
Read as 1 when enabled

TIMEN7 (Timer7 Enable)

TIMEN6 (Timer6 Enable)

1 - Enable timer
Read as 1 when enabled

1 - Enable timer
Read as 1 when enabled

TIMEN5 (Timer5 Enable)
1 - Enable timer
Read as 1 when enabled

TIMEN4 (Timer4 Enable)
1 - Enable timer
Read as 1 when enabled

This diagram shows an example configuration for eight timers. Different products
have different numbers of timers.

Timer Registers

10-38 ADSP-BF50x Blackfin Processor Hardware Reference

In PWM_OUT mode, a write of a “1” to TIMER_DISABLE does not stop the cor-
responding timer immediately. Rather, the timer continues running and
stops cleanly at the end of the current period (if PERIOD_CNT = 1) or pulse
(if PERIOD_CNT = 0). If necessary, the processor can force a timer in
PWM_OUT mode to stop immediately by first writing a “1” to the corre-
sponding bit in TIMER_DISABLE, and then writing a “1” to the
corresponding TRUN bit in TIMER_STATUS. See “Stopping the Timer in
PWM_OUT Mode” on page 10-22.

In WDTH_CAP and EXT_CLK modes, a write of a “1” to TIMER_DISABLE stops
the corresponding timer immediately.

Figure 10-17. Timer Disable Register

0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 Reset = 0x00000

Timer Disable Register (TIMER_DISABLE)

TIMDIS0 (Timer0 Disable)

TIMDIS1 (Timer1 Disable)

1 - Disable timer
Read as 1 if this timer is enabled

1 - Disable timer
Read as 1 if this timer is enabled

TIMDIS2 (Timer2 Disable)
1 - Disable timer
Read as 1 if this timer is enabled
TIMDIS3 (Timer3 Disable)
1 - Disable timer
Read as 1 if this timer is enabled

TIMDIS7 (Timer7 Disable)

TIMDIS6 (Timer6 Disable)

1 - Disable timer
Read as 1 if this timer is enabled

1 - Disable timer
Read as 1 if this timer is enabled

TIMDIS5 (Timer5 Disable)
1 - Disable timer
Read as 1 if this timer is enabled
TIMDIS4 (Timer4 Disable)
1 - Disable timer
Read as 1 if this timer is enabled

This diagram shows an example configuration for eight timers. Differ-
ent products have different numbers of timers.

ADSP-BF50x Blackfin Processor Hardware Reference 10-39

General-Purpose Timers

Timer Status Register (TIMER_STATUS)
The TIMER_STATUS register indicates the status of the timers and is used to
check the status of multiple timers with a single read. Status bits are sticky
and W1C. The TRUN bits can clear themselves, which they do when a
PWM_OUT mode timer stops at the end of a period. During a TIMER_STATUS

register read access, all reserved or unused bits return a “0”. Figure 10-18
on page 10-40 shows an example of the TIMER_STATUS register for a prod-
uct with eight timers.

For detailed behavior and usage of the TRUN bit see “Stopping the Timer in
PWM_OUT Mode” on page 10-22. Writing the TRUN bits has no effect in
other modes or when a timer has not been enabled. Writing the TRUN bits
to “1” in PWM_OUT mode has no effect on a timer that has not first been
disabled.

Error conditions are explained in “Illegal States” on page 10-7.

Timer Registers

10-40 ADSP-BF50x Blackfin Processor Hardware Reference

Figure 10-18. Timer Status Register

0

0 0 00 00

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0

TIMIL4 (Timer4 Interrupt)

Reset = 0x0000 00000

Timer Status Register (TIMER_STATUS)

Read as 1 if timer running, W1C to
abort in PWM_OUT mode

Indicates an interrupt request
when IRQ_ENA is set
TIMIL5 (Timer5 Interrupt)

TRUN6 (Timer6 Slave
Enable Status)

TIMIL6 (Timer6 Interrupt)

Indicates that an error or an
overflow occurred

TOVF_ERR4 (Timer4
Counter Overflow)

Read as 1 if timer running, W1C
to abort in PWM_OUT mode

TRUN5 (Timer5 Slave
Enable Status)

Read as 1 if timer running, W1C to abort
in PWM_OUT mode

TRUN4 (Timer4 Slave Enable
Status)

TOVF_ERR5 (Timer5
Counter Overflow)

TOVF_ERR7 (Timer7 Counter Overflow)

Indicates an interrupt request
when IRQ_ENA is set

Indicates an interrupt request
when IRQ_ENA is set

Indicates that an error or an
overflow occurred

Indicates that an error or an overflow occurred

TIMIL7 (Timer7 Interrupt)
Indicates an interrupt request
when IRQ_ENA is set

Read as 1 if timer
running, W1C to abort in
PWM_OUT mode

TRUN7 (Timer7
Slave Enable Status)

TOVF_ERR6 (Timer6 Counter Overflow)

Indicates that an error or an overflow occurred

All bits are W1C

0 0 00 00

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0

TIMIL0 (Timer0 Interrupt)

0

Read as 1 if timer running, W1C to
abort in PWM_OUT mode

Indicates an interrupt request
when IRQ_ENA is set
TIMIL1 (Timer1 Interrupt)TRUN2 (Timer2 Slave Enable

Status)

TIMIL2 (Timer2 Interrupt)

Indicates that an error or an overflow occurred
TOVF_ERR0 (Timer0 Counter Overflow)

Read as 1 if timer running, W1C to abort
in PWM_OUT mode

TRUN1 (Timer1 Slave Enable Status)

Read as 1 if timer running, W1C to abort in
PWM_OUT mode

TRUN0 (Timer0 Slave Enable Status)

TOVF_ERR1 (Timer1 Counter Overflow)
TOVF_ERR3 (Timer3 Counter Overflow)

Indicates an interrupt request
when IRQ_ENA is set

Indicates an interrupt request when
IRQ_ENA is set

Indicates that an error or an overflow occurredIndicates that an error or an overflow occurred

TIMIL3 (Timer3 Interrupt)
Indicates an interrupt request when
IRQ_ENA is set

Read as 1 if timer running, W1C
to abort in PWM_OUT mode

TRUN3 (Timer3
Slave Enable Status)

TOVF_ERR2 (Timer2 Counter Overflow)
Indicates that an error or an overflow occurred

This diagram shows an example configuration for eight timers. Different products have differ-
ent numbers of timers, therefore some of the bits may not be applicable to your device.

ADSP-BF50x Blackfin Processor Hardware Reference 10-41

General-Purpose Timers

Timer Configuration Register (TIMER_CONFIG)
The operating mode for each timer is specified by its TIMER_CONFIG regis-
ter. The TIMER_CONFIG register, shown in Figure 10-19, may be written
only when the timer is not running. After disabling the timer in PWM_OUT

mode, make sure the timer has stopped running by checking its TRUN bit in
TIMER_STATUS before attempting to reprogram TIMER_CONFIG. The
TIMER_CONFIG registers may be read at any time. The ERR_TYP field is
read-only. It is cleared at reset and when the timer is enabled.

Each time TOVF_ERR is set, ERR_TYP[1:0] is loaded with a code that identi-
fies the type of error that was detected. This value is held until the next
error or timer enable occurs. For an overview of error conditions, see
Table 10-1 on page 10-9. The TIMER_CONFIG register also controls the
behavior of the TMR pin, which becomes an output in PWM_OUT mode
(TMODE = 01) when the OUT_DIS bit is cleared.

 When operating the PPI in GP output modes with internal frame
syncs, the CLK_SEL and the TIN_SEL bits for the timers involved
must be set to “1”.

Timer Registers

10-42 ADSP-BF50x Blackfin Processor Hardware Reference

Timer Counter Register (TIMER_COUNTER)
This read-only register retains its state when disabled. When enabled, the
TIMER_COUNTER register is reinitialized by hardware based on configuration
and mode. The TIMER_COUNTER register, shown in Figure 10-20, may be
read at any time (whether the timer is running or stopped), and it returns
an atomic 32-bit value. Depending on the operating mode, the increment-
ing counter can be clocked by four different sources: SCLK, the TMR pin, the
alternative timer clock pin TACLK, or the common TMRCLK pin, which is
most likely used as the PPI clock (PPI_CLK).

Figure 10-19. Timer Configuration Register

0 00

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0

TMODE[1:0] (Timer Mode)

Reset = 0x00000

Timer Configuration Register (TIMER_CONFIG)

0 - Negative action pulse
1 - Positive action pulse

0 - Use system clock SCLK for counter
1 - Use PWM_CLK to clock counter

0 - The effective state of PULSE_HI
is the programmed state

1 - The effective state of PULSE_HI
alternates each period

00 - No error
01 - Counter overflow error
10 - Period register programming error
11 - Pulse width register programming error

00 - Reset state - unused
01 - PWM_OUT mode
10 - WDTH_CAP mode
11 - EXT_CLK mode

PULSE_HI

CLK_SEL (Timer Clock Select)

TOGGLE_HI (PWM_OUT PULSE_HI
Toggle Mode)

ERR_TYP[1:0] (Error
Type) - RO

PERIOD_CNT (Period
Count)

0 - Interrupt request disable
1 - Interrupt request enable

0 - Count to end of width
1 - Count to end of period
IRQ_ENA (Interrupt
Request Enable)

PWM_OUT Mode
0 - Clock from TACLK

input if CLK_SEL = 1
1 - Clock from TMRCLK

input if CLK_SEL = 1
WDTH_CAP Mode
0 - Sample TMR pin input
1 - Sample TACI input

TIN_SEL (Timer Input
Select)

0 - Enable TMR pad in PWM_OUT mode
1 - Disable pad in PWM_OUT mode

OUT_DIS (Output Pad Disable)

0 - Timer counter stops during emulation
1 - Timer counter runs during emulation

EMU_RUN (Emulation Behavior Select)

ADSP-BF50x Blackfin Processor Hardware Reference 10-43

General-Purpose Timers

While the processor core is being accessed by an external emulator debug-
ger, all code execution stops. By default, the TIMER_COUNTER register also
halts its counting during an emulation access in order to remain synchro-
nized with the software. While stopped, the count does not advance—in
PWM_OUT mode, the TMR pin waveform is “stretched”; in WDTH_CAP mode,
measured values are incorrect; in EXT_CLK mode, input events on the TMR

pin may be missed. All other timer functions such as register reads and
writes, interrupts previously asserted (unless cleared), and the loading of
TIMER_PERIOD and TIMER_WIDTH in WDTH_CAP mode remain active during an
emulation stop.

Some applications may require the timer to continue counting asynchro-
nously to the emulation-halted processor core. Set the EMU_RUN bit in
TIMER_CONFIG to enable this behavior.

Timer Period (TIMER_PERIOD) and Timer
Width (TIMER_WIDTH) Registers

 When a timer is enabled and running, and the software writes new
values to the TIMER_PERIOD register and the TIMER_WIDTH register,
the writes are buffered and do not update the registers until the end
of the current period (when TIMER_COUNTER equals TIMER_WIDTH).

Figure 10-20. Timer Counter Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Timer Counter[15:0]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Timer Counter[31:16]

Reset = 0x0000 0001

Timer Counter Register (TIMER_COUNTER)

Timer Registers

10-44 ADSP-BF50x Blackfin Processor Hardware Reference

Usage of the TIMER_PERIOD register, shown in Figure 10-21, and the
TIMER_WIDTH register, shown in Figure 10-22, varies depending on the
mode of the timer:

• In PWM_OUT mode, both the TIMER_PERIOD and
TIMER_WIDTH register values can be updated “on-the-fly” since
the values change simultaneously.

• In WDTH_CAP mode, the timer period and timer pulse width
buffer values are captured at the appropriate time. The
TIMER_PERIOD and TIMER_WIDTH registers are then
updated simultaneously from their respective buffers. Both regis-
ters are read-only in this mode.

• In EXT_CLK mode, the TIMER_PERIOD register is writable and
can be updated “on-the-fly.” The TIMER_WIDTH register is not
used.

If new values are not written to the TIMER_PERIOD register or the
TIMER_WIDTH register, the value from the previous period is reused. Writes
to the 32-bit TIMER_PERIOD register and TIMER_WIDTH register are atomic; it
is not possible for the high word to be written without the low word also
being written.

Values written to the TIMER_PERIOD registers or TIMER_WIDTH registers are
always stored in the buffer registers. Reads from the TIMER_PERIOD or
TIMER_WIDTH registers always return the current, active value of period or
pulse width. Written values are not read back until they become active.
When the timer is enabled, they do not become active until after the
TIMER_PERIOD and TIMER_WIDTH registers are updated from their respective
buffers at the end of the current period. See Figure 10-1 on page 10-3.

When the timer is disabled, writes to the buffer registers are immediately
copied through to the TIMER_PERIOD or TIMER_WIDTH register so that they
will be ready for use in the first timer period. For example, to change the
values for the TIMER_PERIOD and/or TIMER_WIDTH registers in order to use a

ADSP-BF50x Blackfin Processor Hardware Reference 10-45

General-Purpose Timers

different setting for each of the first three timer periods after the timer is
enabled, the procedure to follow is:

1. Program the first set of register values.

2. Enable the timer.

3. Immediately program the second set of register values.

4. Wait for the first timer interrupt.

5. Program the third set of register values.

Each new setting is then programmed when a timer interrupt is received.

 In PWM_OUT mode with very small periods (less than 10 counts),
there may not be enough time between updates from the buffer
registers to write both the TIMER_PERIOD register and the
TIMER_WIDTH register. The next period may use one old value and
one new value. In order to prevent “pulse width  period” errors,
write the TIMER_WIDTH register before the TIMER_PERIOD register
when decreasing the values, and write the TIMER_PERIOD register
before the TIMER_WIDTH register when increasing the value.

Figure 10-21. Timer Period Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Timer Period[15:0]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Timer Period[31:16]

Reset = 0x0000 0000

Timer Period Register (TIMER_PERIOD)

Timer Registers

10-46 ADSP-BF50x Blackfin Processor Hardware Reference

Summary
Table 10-2 summarizes control bit and register usage in each timer mode.

Figure 10-22. Timer Width Register

Table 10-2. Control Bit and Register Usage Chart

Bit / Register PWM_OUT Mode WDTH_CAP Mode EXT_CLK Mode

TIMER_ENABLE 1 - Enable timer
0 - No effect

1 - Enable timer
0 - No effect

1 - Enable timer
0 - No effect

TIMER_DISABLE 1 - Disable timer at end
of period
0 - No effect

1 - Disable timer
0 - No effect

1 - Disable timer
0 - No effect

TMODE b#01 b#10 b#11

PULSE_HI 1 - Generate high width
0 - Generate low width

1 - Measure high width
0 - Measure low width

1 - Count rising edges
0 - Count falling edges

PERIOD_CNT 1 - Generate PWM
0 - Single width pulse

1 - Interrupt after mea-
suring period
0 - Interrupt after mea-
suring width

Unused

IRQ_ENA 1 - Enable interrupt
0 - Disable interrupt

1 - Enable interrupt
0 - Disable interrupt

1 - Enable interrupt
0 - Disable interrupt

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Timer Width[15:0]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Timer Width[31:16]

Reset = 0x0000 0000

Timer Width Register (TIMER_WIDTH)

ADSP-BF50x Blackfin Processor Hardware Reference 10-47

General-Purpose Timers

TIN_SEL Depends on CLK_SEL:

If CLK_SEL = 1,
1 - Count TMRCLK
clocks
0 - Count TACLK
clocks

If CLK_SEL = 0,
Unused

1 - Select TACI input
0 - Select TMR pin
input

Unused

OUT_DIS 1 - Disable TMR pin
0 - Enable TMR pin

Unused Unused

CLK_SEL 1 - PWM_CLK clocks
timer
0 - SCLK clocks timer

Unused Unused

TOGGLE_HI 1 - One waveform
period every two coun-
ter periods
0 - One waveform
period every one coun-
ter period

Unused Unused

ERR_TYP Reports b#00, b#01,
b#10, or b#11, as
appropriate

Reports b#00 or b#01,
as appropriate

Reports b#00, b#01, or
b#10, as appropriate

EMU_RUN 0 - Halt during
emulation
1 - Count during
emulation

0 - Halt during
emulation
1 - Count during
emulation

0 - Halt during
emulation
1 - Count during
emulation

TMR Pin Depends on
OUT_DIS:
1 - Three-state
0 - Output

Depends on TIN_SEL:
1 - Unused
0 - Input

Input

Period R/W: Period value RO: Period value R/W: Period value

Width R/W: Width value RO: Width value Unused

Table 10-2. Control Bit and Register Usage Chart (Cont’d)

Bit / Register PWM_OUT Mode WDTH_CAP Mode EXT_CLK Mode

Timer Registers

10-48 ADSP-BF50x Blackfin Processor Hardware Reference

Counter RO: Counts up on
SCLK or PWM_CLK

RO: Counts up on
SCLK

RO: Counts up on
TMR pin event

TRUN Read: Timer slave
enable status
Write:
1 - Stop timer if dis-
abled
0 - No effect

Read: Timer slave
enable status
Write:
1 - No effect
0 - No effect

Read: Timer slave
enable status
Write:
1 - No effect
0 - No effect

TOVF_ERR Set at startup or roll-
over if period = 0 or 1
Set at rollover if width
>= Period
Set if counter wraps

Set if counter wraps Set if counter wraps or
set at startup or roll-
over if period = 0

IRQ Depends on
IRQ_ENA:
1 - Set when
TOVF_ERR set or
when counter equals
period and
PERIOD_CNT = 1 or
when counter equals
width and
PERIOD_CNT = 0
0 - Not set

Depends on
IRQ_ENA:
1 - Set when
TOVF_ERR set or
when counter captures
period and
PERIOD_CNT = 1 or
when counter captures
width and
PERIOD_CNT = 0
0 - Not set

Depends on
IRQ_ENA:
1 - Set when counter
equals period or
TOVF_ERR set
0 - Not set

Table 10-2. Control Bit and Register Usage Chart (Cont’d)

Bit / Register PWM_OUT Mode WDTH_CAP Mode EXT_CLK Mode

ADSP-BF50x Blackfin Processor Hardware Reference 10-49

General-Purpose Timers

Programming Examples
Listing 10-1 configures the port control registers in a way that enables TMR
pins associated with Port G. This example assumes TMR1-7 are connected
to Port G bits 5–11.

Listing 10-1. Port Setup

timer_port_setup:

[--sp] = (r7:7, p5:5);

p5.h = hi(PORTG_FER);

p5.l = lo(PORTG_FER);

r7.l = PG5|PG6|PG7|PG8|PG9|PG10|PG11;

w[p5] = r7;

p5.l = lo(PORTG_MUX);

r7.l = PFTE;

w[p5] = r7;

(r7:7, p5:5) = [sp++];

rts;

timer_port_setup.end:

Listing 10-2 generates signals on the TMR4 and TMR5 outputs. By default,
timer 5 generates a continuous PWM signal with a duty cycle of 50%
(period = 0x40 SCLKs, width = 0x20 SCLKs) while the PWM signal gen-
erated by timer 4 has the same period but 25% duty cycle (width = 0x10
SCLKs).

If the preprocessor constant SINGLE_PULSE is defined, every TMR pin out-
puts only a single high pulse of 0x20 (timer 4) and 0x10 SCLKs (timer 5)
duration.

In any case the timers are started synchronously and the rising edges are
aligned. That is, the pulses are left aligned.

Programming Examples

10-50 ADSP-BF50x Blackfin Processor Hardware Reference

Listing 10-2. Signal Generation

// #define SINGLE_PULSE

timer45_signal_generation:

[--sp] = (r7:7, p5:5);

p5.h = hi(TIMER_ENABLE);

p5.l = lo(TIMER_ENABLE);

#ifdef SINGLE_PULSE

r7.l = PULSE_HI | PWM_OUT;

#else

r7.l = PERIOD_CNT | PULSE_HI | PWM_OUT;

#endif

w[p5 + TIMER5_CONFIG - TIMER_ENABLE] = r7;

w[p5 + TIMER4_CONFIG - TIMER_ENABLE] = r7;

r7 = 0x10 (z);

[p5 + TIMER5_WIDTH - TIMER_ENABLE] = r7;

r7 = 0x20 (z);

[p5 + TIMER4_WIDTH - TIMER_ENABLE] = r7;

#ifndef SINGLE_PULSE

r7 = 0x40 (z);

[p5 + TIMER5_PERIOD - TIMER_ENABLE] = r7;

[p5 + TIMER4_PERIOD - TIMER_ENABLE] = r7;

#endif

r7.l = TIMEN5 | TIMEN4;

w[p5] = r7;

(r7:7, p5:5) = [sp++];

rts;

timer45_signal_generation.end:

All subsequent examples use interrupts. Thus, Listing 10-3 illustrates how
interrupts are generated and how interrupt service routines can be regis-
tered. In this example, the timer 5 interrupt is assigned to the IVG12
interrupt channel of the CEC controller.

ADSP-BF50x Blackfin Processor Hardware Reference 10-51

General-Purpose Timers

Listing 10-3. Interrupt Setup

timer5_interrupt_setup:

[--sp] = (r7:7, p5:5);

p5.h = hi(IMASK);

p5.l = lo(IMASK);

/* register interrupt service routine */

r7.h = hi(isr_timer5);

r7.l = lo(isr_timer5);

[p5 + EVT12 - IMASK] = r7;

/* unmask IVG12 in CEC */

r7 = [p5];

bitset(r7, bitpos(EVT_IVG12));

[p5] = r7;

/* assign timer 5 IRQ (= IRQ37 in this example) to IVG12 */

p5.h = hi(SIC_IAR4);

p5.l = lo(SIC_IAR4);

/*SIC_IAR register mapping is processor dependent*/

r7.h = 0xFF5F;

r7.l = 0xFFFF;

[p5] = r7;

/* enable timer 5 IRQ */

p5.h = hi(SIC_IMASK1);

p5.l = lo(SIC_IMASK1);

/*SIC_IMASK register mapping is processor dependent*/

r7 = [p5];

bitset(r7, 5);

[p5] = r7;

/* enable interrupt nesting */

(r7:7, p5:5) = [sp++];

[--sp] = reti;

rts;

timer5_interrupt_setup.end:

Programming Examples

10-52 ADSP-BF50x Blackfin Processor Hardware Reference

The example shown in Listing 10-4 does not drive the TMR pin. It gener-
ates periodic interrupt requests every 0x1000 SCLK cycles. If the
preprocessor constant SINGLE_PULSE was defined, timer 5 requests an
interrupt only once. Unlike in a real application, the purpose of the inter-
rupt service routine shown in this example is just the clearing of the
interrupt request and counting interrupt occurrences.

Listing 10-4. Periodic Interrupt Requests

// #define SINGLE_PULSE

timer5_interrupt_generation:

[--sp] = (r7:7, p5:5);

p5.h = hi(TIMER_ENABLE);

p5.l = lo(TIMER_ENABLE);

#ifdef SINGLE_PULSE

r7.l = EMU_RUN | IRQ_ENA | OUT_DIS | PWM_OUT;

#else

r7.l = EMU_RUN | IRQ_ENA | PERIOD_CNT | OUT_DIS | PWM_OUT;

#endif

w[p5 + TIMER5_CONFIG - TIMER_ENABLE] = r7;

r7 = 0x1000 (z);

#ifndef SINGLE_PULSE

[p5 + TIMER5_PERIOD - TIMER_ENABLE] = r7;

r7 = 0x1 (z);

#endif

[p5 + TIMER5_WIDTH - TIMER_ENABLE] = r7;

r7.l = TIMEN5;

w[p5] = r7;

(r7:7, p5:5) = [sp++];

r0 = 0 (z);

rts;

timer5_interrupt_generation.end:

isr_timer5:

[--sp] = astat;

ADSP-BF50x Blackfin Processor Hardware Reference 10-53

General-Purpose Timers

[--sp] = (r7:7, p5:5);

p5.h = hi(TIMER_STATUS);

p5.l = lo(TIMER_STATUS);

r7.h = hi(TIMIL5);

r7.l = lo(TIMIL5);

[p5] = r7;

r0+= 1;

ssync;

(r7:7, p5:5) = [sp++];

astat = [sp++];

rti;

isr_timer5.end:

Listing 10-5 illustrates how two timers can generate two non-overlapping
clock pulses as typically required for break-before-make scenarios. Both
timers are running in PWM_OUT mode with PERIOD_CNT = 1 and
PULSE_HI = 1.

Figure 10-23 explains how the signal waveform represented by the period
P and the pulse width W translates to timer period and width values.
Table 10-3 summarizes the register writes.

Since hardware only updates the written period and width values at the
end of periods, software can write new values immediately after the timers
have been enabled. Note that both timers’ period expires at exactly the

Table 10-3. Register Writes for Non-Overlapping Clock Pulses

Register Before Enable After
Enable

At IRQ1 At IRQ2

TIMER5_PERIOD P/2

TIMER5_WIDTH P/2 - W/2 W/2 P/2 - W/2 W/2

TIMER4_PERIOD P P/2

TIMER4_WIDTH P - W/2 W/2 P/2 - W-2

Programming Examples

10-54 ADSP-BF50x Blackfin Processor Hardware Reference

same times with the exception of the first timer 5 interrupt (at IRQ1)
which is not visible to timer 4.

Listing 10-5. Non-Overlapping Clock Pulses

#define P 0x1000 /* signal period */

#define W 0x0600 /* signal pulse width */

#define N 4 /* number of pulses before disable */

timer45_toggle_hi:

[--sp] = (r7:1, p5:5);

p5.h = hi(TIMER_ENABLE);

p5.l = lo(TIMER_ENABLE);

/* config timers */

r7.l = IRQ_ENA | PERIOD_CNT | TOGGLE_HI | PULSE_HI | PWM_OUT;

w[p5 + TIMER5_CONFIG - TIMER_ENABLE] = r7;

r7.l = PERIOD_CNT | TOGGLE_HI | PULSE_HI | PWM_OUT;

w[p5 + TIMER4_CONFIG - TIMER_ENABLE] = r7;

/* calculate timers widths and period */

r0.l = lo(P);

Figure 10-23. Non-Overlapping Clock Pulses

TMR5

ENABLE IRQ1 IRQ2

P/2 - W/2

TMR4

IRQ3

W/2 W/2 W/2 W/2

P/2 P/2 P/2 P/2

P - W/2

P W

ADSP-BF50x Blackfin Processor Hardware Reference 10-55

General-Purpose Timers

r0.h = hi(P);

r1.l = lo(W);

r1.h = hi(W);

r2 = r1 >> 1; /* W/2 */

r3 = r0 >> 1; /* P/2 */

r4 = r3 - r2; /* P/2 - W/2 */

r5 = r0 - r2; /* P - W/2 */

/* write values for initial period */

[p5 + TIMER4_PERIOD - TIMER_ENABLE] = r0;

[p5 + TIMER4_WIDTH - TIMER_ENABLE] = r5;

[p5 + TIMER5_PERIOD - TIMER_ENABLE] = r3;

[p5 + TIMER5_WIDTH - TIMER_ENABLE] = r4;

/* start timers */

r7.l = TIMEN5 | TIMEN4 ;

w[p5 + TIMER_ENABLE - TIMER_ENABLE] = r7;

/* write values for second period */

[p5 + TIMER4_PERIOD - TIMER_ENABLE] = r3;

[p5 + TIMER5_WIDTH - TIMER_ENABLE] = r2;

/* r0 functions as signal period counter */

r0.h = hi(N * 2 - 1);

r0.l = lo(N * 2 - 1);

(r7:1, p5:5) = [sp++];

rts;

timer45_toggle_hi.end:

isr_timer5:

[--sp] = astat;

[--sp] = (r7:5, p5:5);

p5.h = hi(TIMER_ENABLE);

p5.l = lo(TIMER_ENABLE);

/* clear interrupt request */

r7.h = hi(TIMIL5);

r7.l = lo(TIMIL5);

[p5 + TIMER_STATUS - TIMER_ENABLE] = r7;

/* toggle width values (width = period - width) */

Programming Examples

10-56 ADSP-BF50x Blackfin Processor Hardware Reference

r7 = [p5 + TIMER5_PERIOD - TIMER_ENABLE];

r6 = [p5 + TIMER5_WIDTH - TIMER_ENABLE];

r5 = r7 - r6;

[p5 + TIMER5_WIDTH - TIMER_ENABLE] = r5;

r5 = [p5 + TIMER4_WIDTH - TIMER_ENABLE];

r7 = r7 - r5;

CC = r7 < 0;

if CC r7 = r6;

[p5 + TIMER4_WIDTH - TIMER_ENABLE] = r7;

/* disable after a certain number of periods */

r0+= -1;

CC = r0 == 0;

r5.l = 0;

r7.l = TIMDIS5 | TIMDIS4;

if !CC r7 = r5;

w[p5 + TIMER_DISABLE - TIMER_ENABLE] = r7;

(r7:5, p5:5) = [sp++];

astat = [sp++];

rti;

isr_timer5.end:

Listing 10-5 generates N pulses on both timer output pins. Disabling the
timers does not corrupt the generated pulse pattern anyhow.

Listing 10-6 configures timer 5 in WDTH_CAP mode. If looped back exter-
nally, this code might be used to receive N PWM patterns generated by
one of the other timers. Ensure that the PWM generator and consumer
both use the same PERIOD_CNT and PULSE_HI settings.

Listing 10-6. Timer Configured in WDTH_CAP Mode

.section L1_data_a;

.align 4;

#define N 1024

.var buffReceive[N*2];

ADSP-BF50x Blackfin Processor Hardware Reference 10-57

General-Purpose Timers

.section L1_code;

timer5_capture:

[--sp] = (r7:7, p5:5);

/* setup DAG2 */

r7.h = hi(buffReceive);

r7.l = lo(buffReceive);

i2 = r7;

b2 = r7;

l2 = length(buffReceive)*4;

/* config timer for high pulses capture */

p5.h = hi(TIMER_ENABLE);

p5.l = lo(TIMER_ENABLE);

r7.l = EMU_RUN|IRQ_ENA|PERIOD_CNT|PULSE_HI|WDTH_CAP;

w[p5 + TIMER5_CONFIG - TIMER_ENABLE] = r7;

r7.l = TIMEN5;

w[p5 + TIMER_ENABLE - TIMER_ ENABLE] = r7;

(r7:7, p5:5) = [sp++];

rts;

timer5_capture.end:

isr_timer5:

[--sp] = astat;

[--sp] = (r7:7, p5:5);

/* clear interrupt request first */

p5.h = hi(TIMER_STATUS);

p5.l = lo(TIMER_STATUS);

r7.h = hi(TIMIL5);

r7.l = lo(TIMIL5);

[p5] = r7;

r7 = [p5 + TIMER5_PERIOD - TIMER_STATUS];

[i2++] = r7;

r7 = [p5 + TIMER5_WIDTH - TIMER_STATUS];

[i2++] = r7;

ssync;

(r7:7, p5:5) = [sp++];

Unique Information for the ADSP-BF50x Processor

10-58 ADSP-BF50x Blackfin Processor Hardware Reference

astat = [sp++];

rti;

isr_timer5.end:

Unique Information for the ADSP-BF50x
Processor

The ADSP-BF50x processor features one general-purpose timer module
that contains eight identical 32-bit timers. Each timer can be individually
configured to operate in various modes. Although the timers operate com-
pletely independently of each other, all of them can be started and stopped
simultaneously for synchronous operation.

Interface Overview
Figure 10-24 shows the ADSP-BF50x specific block diagram of the gen-
eral-purpose timer module.

External Interface

The TMRCLK input is common to all eight timers. The PPI unit is clocked
by the same pin; therefore any of the timers can be clocked by PPI_CLK.
Since timer 0 and timer 1 are often used in conjunction with the PPI, they
are internally looped back to the PPI module for frame sync generation.

The timer signals TMR0 and TMR1 are multiplexed with the PPI frame syncs
when the frame syncs are applied externally. PPI modes requiring only one
frame sync free up TMR1. For details, see Chapter 20, “Parallel Peripheral
Interface”.

ADSP-BF50x Blackfin Processor Hardware Reference 10-59

General-Purpose Timers

 If the PPI frame syncs are applied externally, timer 0 and timer 1
are still fully functional and can be used for other purposes not
involving the TMRx pins. Timer 0 and timer 1 must not drive their
TMR0 and TMR1 pins. If operating in PWM_OUT mode, the OUT_DIS bit
in the TIMER0_CONFIG and TIMER1_CONFIG registers must be set.

Figure 10-24. Timer Block Diagram

T
IM

E
R

 7

SIC CONTROLLER

PAB

T
IM

E
R

 6

T
IM

E
R

 5

T
IM

E
R

 4

T
IM

E
R

 3

T
IM

E
R

 2

T
IM

E
R

 1

T
IM

E
R

 0

TIMER_DISABLE

TIMER_ENABLE

TIMER_STATUS

IR
Q

 3
9

IR
Q

 3
8

IR
Q

 3
7

IR
Q

 3
6

IR
Q

 3
5

IR
Q

 3
4

IR
Q

 3
3

IR
Q

 3
2

P
G

5

P
G

11

P
G

4

P
F

13

P
F

7
(U

A
R

T
1

R
X

)

P
F

1

C
N

T
1

TO
 O

u
tp

u
t

P
F

10
P

G
12

 (
U

A
R

T
0

R
X

)

P
G

2

P
G

0
(U

A
R

T
1

R
X

)

P
G

15

P
F

0

P
H

1

P
F

11

P
G

14
C

N
T

0
TO

 O
u

tp
u

t

P
F

5

P
F

4

T
M

R
7

TA
C

L
K

7

TA
C

L
K

6

T
M

R
6

TA
C

I6

TA
C

I5
T

M
R

5

T
M

R
4

T
M

R
3

T
M

R
2

T
M

R
1

T
M

R
0

TA
C

L
K

3

TA
C

L
K

2

TA
C

L
K

1

TA
C

I0

TA
C

I1

TA
C

L
K

0

TA
C

I4

TA
C

I3

TA
C

I2

P
G

0
(P

P
IC

L
K

)

GP TIMERS

BLACKFIN

C
L

K
B

U
F

TA
C

L
K

5

C
L

K
B

U
F

TA
C

L
K

4

PORT CONTROL

TA
C

I7
P

H
2

P
G

10

P
G

1

Unique Information for the ADSP-BF50x Processor

10-60 ADSP-BF50x Blackfin Processor Hardware Reference

ADSP-BF50x Blackfin Processor Hardware Reference 11-1

11 CORE TIMER

This chapter describes the core timer. Following an overview, functional
description, and consolidated register definitions, the chapter concludes
with a programming example.

Specific Information for the ADSP-BF50x
For details regarding the number of core timers for the ADSP-BF50x
product, refer to ADSP-BF504, ADSP-BF504F, ADSP-BF506F Embedded
Processor Data Sheet.

For Core Timer interrupt vector assignments, refer to Table 4-3 on
page 4-19 in Chapter 4, “System Interrupts”.

For a list of MMR addresses for each Core Timer, refer to Chapter A,
“System MMR Assignments”.

Core timer behavior for the ADSP-BF50x that differs from the general
information in this chapter can be found at the end of this chapter in the
section “Unique Information for the ADSP-BF50x Processor” on
page 11-9.

Overview and Features
The core timer is a programmable 32-bit interval timer which can gener-
ate periodic interrupts. Unlike other peripherals, the core timer resides

Timer Overview

11-2 ADSP-BF50x Blackfin Processor Hardware Reference

inside the Blackfin core and runs at the core clock (CCLK) rate. Core timer
features include:

• 32-bit timer with 8-bit prescaler

• Operates at core clock (CCLK) rate

• Dedicated high-priority interrupt channel

• Single-shot or continuous operation

Timer Overview
Figure 11-1 provides a block diagram of the core timer.

External Interfaces
The core timer does not directly interact with any pins of the chip.

Figure 11-1. Core Timer Block Diagram

DEC

TSCALE

CCLK TIMER ENABLE
AND PRESCALE

LOGIC
ZEROTCOUNT

TCNTL TPERIOD

COUNT REGISTER
LOAD LOGIC

TIMER
INTERRUPT

T
IN

T

T
M

R
E

N

CORE REGISTER ACCESS BUS (RAB)

32

ADSP-BF50x Blackfin Processor Hardware Reference 11-3

Core Timer

Internal Interfaces
The core timer is accessed through the 32-bit register access bus (RAB).
The module is clocked by the core clock CCLK. The timer’s dedicated inter-
rupt request is a higher priority than requests from all other peripherals.

Description of Operation
The software should initialize the TCOUNT register before the timer is
enabled. The TCOUNT register can be written directly, but writes to the
TPERIOD register are also passed through to TCOUNT.

When the timer is enabled by setting the TMREN bit in the core timer
control register (TCNTL), the TCOUNT register is decremented once
every time the prescaler TSCALE expires, that is, every TSCALE + 1
number of CCLK clock cycles. When the value of the TCOUNT register
reaches 0, an interrupt is generated and the TINT bit is set in the TCNTL
register.

If the TAUTORLD bit in the TCNTL register is set, then the TCOUNT register is
reloaded with the contents of the TPERIOD register and the count begins
again. If the TAUTORLD bit is not set, the timer stops operation.

The core timer can be put into low power mode by clearing the TMPWR bit
in the TCNTL register. Before using the timer, set the TMPWR bit. This
restores clocks to the timer unit. When TMPWR is set, the core timer may
then be enabled by setting the TMREN bit in the TCNTL register.

 Hardware behavior is undefined if TMREN is set when TMPWR = 0.

Interrupt Processing
The timer’s dedicated interrupt request is a higher priority than requests
from all other peripherals. The request goes directly to the core event con-
troller (CEC) and does not pass through the system interrupt controller

Core Timer Registers

11-4 ADSP-BF50x Blackfin Processor Hardware Reference

(SIC). Therefore, the interrupt processing is also completely in the CCLK

domain.

 The core timer interrupt request is edge-sensitive and cleared by
hardware automatically as soon as the interrupt is serviced.

The TINT bit in the TCNTL register indicates that an interrupt has been gen-
erated. Note that this is not a W1C bit. Write a 0 to clear it. However, the
write is optional. It is not required to clear interrupt requests. The core
time module doesn’t provide any further interrupt enable bit. When the
timer is enabled, interrupts can be masked in the CEC controller.

Core Timer Registers
The core timer includes four core memory-mapped registers, the timer
control register (TCNTL), the timer count register (TCOUNT), the timer
period register (TPERIOD), and the timer scale register (TSCALE). As with all
core MMRs, these registers are always accessed by 32-bit read and write
operations.

ADSP-BF50x Blackfin Processor Hardware Reference 11-5

Core Timer

Core Timer Control Register (TCNTL)
The TCNTL register, shown in Figure 11-2, functions as control and status
register.

Core Timer Count Register (TCOUNT)
The TCOUNT register, shown in Figure 11-3, decrements once every
TSCALE + 1 clock cycles. When the value of TCOUNT reaches 0, an
interrupt is generated and the TINT bit of the TCNTL register is set.

Values written to the TPERIOD register are automatically copied to the
TCOUNT register. Nevertheless, the TCOUNT register can be written directly.
In auto reload mode the value written to TCOUNT may differ from the
TPERIOD value to let the initial period be shorter or longer than following
periods. To do this, write to TPERIOD first and overwrite TCOUNT afterward.

Figure 11-2. Core Timer Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0X X X X X X X X X X X X 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

TMPWR

Core Timer Control Register (TCNTL)

Reset = Undefined

TMREN

0 - Puts the timer in low
power mode

1 - Active state. Timer can be
enabled using the TMREN
bit

Meaningful only when
TMPWR = 1
0 - Disable timer
1 - Enable timer

TINT

TAUTORLD

Sticky status bit
0 - Timer has not generated an interrupt
1 - Timer has generated an interrupt

0 - Disable auto-reload feature. When TCOUNT
reaches zero, the timer generates an interrupt and halts

1 - Enable auto-reload feature. When TCOUNT reaches zero
and the timer generates an interrupt, TCOUNT is
automatically reloaded with the contents of TPERIOD
and the timer continues to count

Core Timer Registers

11-6 ADSP-BF50x Blackfin Processor Hardware Reference

Writes to TCOUNT are ignored once the timer is running.

Core Timer Period Register (TPERIOD)
The TPERIOD register is shown in Figure 11-4. When auto-reload is
enabled, the TCOUNT register is reloaded with the value of the TPERIOD reg-
ister whenever TCOUNT reaches 0. Writes to TPERIOD are ignored when the
timer is running.

Figure 11-3. Core Timer Count Register

Figure 11-4. Core Timer Period Register

Core Timer Count Register (TCOUNT)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X Reset = Undefined

Count Value[31:16]

Count Value[15:0]

Core Timer Period Register (TPERIOD)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X Reset = Undefined

Period Value[31:16]

Period Value[15:0]

ADSP-BF50x Blackfin Processor Hardware Reference 11-7

Core Timer

Core Timer Scale Register (TSCALE)
The TSCALE register is shown in Figure 11-5. The register stores the scal-
ing value that is one less than the number of cycles between decrements of
TCOUNT. For example, if the value in the TSCALE register is 0, the
counter register decrements once every CCLK clock cycle. If TSCALE is
1, the counter decrements once every two cycles.

Programming Examples
Listing 11-1 configures the core timer in auto-reload mode. Assuming a
CCLK of 500 MHz, the resulting period is 1 second. The initial period is
twice as long as the others.

Listing 11-1. Core Timer Configuration

#include <defBF527.h>/*ADSP-BF527 product is used as an example*/

.section L1_code;

.global _main;

_main:

/* Register service routine at EVT6 and unmask interrupt */

p1.l = lo(IMASK);

p1.h = hi(IMASK);

Figure 11-5. Core Timer Scale Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

Core Timer Scale Register (TSCALE)

Reset = Undefined

Scale Value[7:0]

Programming Examples

11-8 ADSP-BF50x Blackfin Processor Hardware Reference

r0.l = lo(isr_core_timer);

r0.h = hi(isr_core_timer);

[p1 + EVT6 - IMASK] = r0;

r0 = [p1];

bitset(r0, bitpos(EVT_IVTMR));

[p1] = r0;

/* Prescaler = 50, Period = 10,000,000, First Period = 20,000,000

*/

p1.l = lo(TCNTL);

p1.h = hi(TCNTL);

r0 = 50 (z);

[p1 + TSCALE - TCNTL] = r0;

r0.l = lo(10000000);

r0.h = hi(10000000);

[p1 + TPERIOD - TCNTL] = r0;

r0 <<= 1;

[p1 + TCOUNT - TCNTL] = r0;

/* R6 counts interrupts */

r6 = 0 (z);

/* start in auto-reload mode */

r0 = TAUTORLD | TMPWR | TMREN (z);

[p1] = r0;

_main.forever:

jump _main.forever;

_main.end:

/* interrupt service routine simple increments R6 */

isr_core_timer:

[--sp] = astat;

r6+= 1;

astat = [sp++];

rti;

isr_core_timer.end:

ADSP-BF50x Blackfin Processor Hardware Reference 11-9

Core Timer

Unique Information for the ADSP-BF50x
Processor

None.

Unique Information for the ADSP-BF50x Processor

11-10 ADSP-BF50x Blackfin Processor Hardware Reference

ADSP-BF50x Blackfin Processor Hardware Reference 12-1

12 WATCHDOG TIMER

This chapter describes the watchdog timer. Following an overview, func-
tional description, and consolidated register definitions, the chapter
concludes with programming examples.

Specific Information for the ADSP-BF50x
For details regarding the number of watchdog timers for the ADSP-BF50x
product, refer to ADSP-BF504, ADSP-BF504F, ADSP-BF506F Embedded
Processor Data Sheet.

For Watchdog Timer interrupt vector assignments, refer to Table 4-3 on
page 4-19 in Chapter 4, “System Interrupts”.

For a list of MMR addresses for each Watchdog Timer, refer to
Chapter A, “System MMR Assignments”.

Watchdog timer behavior for the ADSP-BF50x that differs from the gen-
eral information in this chapter can be found at the end of this chapter in
the section “Unique Information for the ADSP-BF50x Processor” on
page 12-11.

Overview and Features
The processor includes a 32-bit timer that can be used to implement a
software watchdog function. A software watchdog can improve system
reliability by generating an event to the processor core if the watchdog
expires before being updated by software.

Overview and Features

12-2 ADSP-BF50x Blackfin Processor Hardware Reference

Watchdog timer key features include:

• 32-bit watchdog timer

• 8-bit disable bit pattern

• System reset on expire option

• NMI on expire option

• General-purpose interrupt option

Typically, the watchdog timer is used to supervise stability of the system
software. When used in this way, software reloads the watchdog timer in a
regular manner so that the downward counting timer never expires (never
becomes 0). An expiring timer then indicates that system software might
be out of control. At this point a special error handler may recover the sys-
tem. For safety, however, it is often better to reset and reboot the system
directly by hardware control.

Especially in slave boot configurations, a processor reset cannot automati-
cally force the Blackfin device to be rebooted. In this case, the processor
may reset without booting again and may negotiate with the host device
by the time program execution starts. Alternatively, a watchdog event can
cause an NMI event. The NMI service routine may request the host device
reset and/or reboot the Blackfin processor.

The watchdog timer is often programmed to let the processor wake up
from sleep mode after a programmable period of time.

 For easier debugging, the watchdog timer does not decrement
(even if enabled) when the processor is in emulation mode.

ADSP-BF50x Blackfin Processor Hardware Reference 12-3

Watchdog Timer

Interface Overview
Figure 12-1 provides a block diagram of the watchdog timer.

External Interface
The watchdog timer does not directly interact with any pins of the chip.

Internal Interface
The watchdog timer is clocked by the system clock SCLK. Its registers are
accessed through the 16-bit peripheral access bus (PAB). The 32-bit regis-
ters WDOG_CNT and WDOG_STAT must always be accessed by 32-bit read/write
operations. Hardware ensures that those accesses are atomic.

Figure 12-1. Watchdog Timer Block Diagram

EVENT
CONTROL

WRITE

SCLK

WDOG_CNT

32

PAB

READ

RELOAD

RESET
WDOG_STAT

WDOG_CTL

WDEV

WDEN

16

EXPIRE

WDRO

NMI

IRQ

Description of Operation

12-4 ADSP-BF50x Blackfin Processor Hardware Reference

When the counter expires, one of three event requests can be generated.
Either a reset or an NMI request is issued to the core event controller
(CEC) or a general-purpose interrupt request is passed to the system inter-
rupt controller (SIC).

Description of Operation
If enabled, the 32-bit watchdog timer counts downward every SCLK cycle.
If it becomes 0, one of three event requests can be issued to either the
CEC or the SIC. Depending on how the WDEV bit field in the WDOG_CTL

register is programmed, the event that is generated may be a reset, a
non-maskable interrupt, or a general-purpose interrupt.

The counter value can be read through the 32-bit WDOG_STAT register. The
WDOG_STAT register cannot, however, be written directly. Rather, software
writes the watchdog period value into the 32-bit WDOG_CNT register before
the watchdog is enabled. Once the watchdog is started, the period value
cannot be altered.

To start the watchdog timer:

1. Set the count value for the watchdog timer by writing the count
value into the watchdog count register (WDOG_CNT). Since the
watchdog timer is not enabled yet, the write to the WDOG_CNT regis-
ters automatically pre-loads the WDOG_STAT register as well.

2. In the watchdog control register (WDOG_CTL), select the event to be
generated upon timeout.

3. Enable the watchdog timer in WDOG_CTL. The watchdog timer then
begins counting down, decrementing the value in the WDOG_STAT

register.

If software does not service the watchdog in time, WDOG_STAT continues
decrementing until it reaches 0. Then, the programmed event is gener-
ated. The counter stops decrementing and remains at zero. Additionally,

ADSP-BF50x Blackfin Processor Hardware Reference 12-5

Watchdog Timer

the WDRO latch bit in the WDOG_CTL register is set and can be interrogated by
software in case event generation is not enabled.

When the watchdog is programmed to generate a reset, it resets the pro-
cessor core and peripherals. If the NOBOOT bit in the SYSCR register was set
by the time the watchdog resets the part, the chip is not rebooted. This is
recommended behavior in slave boot configurations. The reset handler
may evaluate the RESET_WDOG bit in the software reset register SWRST to
detect a reset caused by the watchdog. For details, see “System Reset and
Booting” on page 24-1.

To prevent the watchdog from expiring, software services the watchdog by
performing dummy writes to the WDOG_STAT register. The values written
are ignored, but the write commands cause the WDOG_STAT register to be
reloaded from the WDOG_CNT register.

If the watchdog is enabled with a zero value loaded to the counter and the
WDRO bit was cleared, the WDRO bit of the watchdog control register is set
immediately and the counter remains at zero without further decrements.
If, however, the WDRO bit was set by the time the watchdog is enabled, the
counter decrements to 0xFFFF FFFF and continues operation.

Software can disable the watchdog timer only by writing a 0xAD value to
the WDEN field in the WDOG_CTL register.

Register Definitions
The watchdog timer is controlled by three registers.

Watchdog Count (WDOG_CNT) Register
The WDOG_CNT register, shown in Figure 12-2, holds the 32-bit
unsigned count value. The WDOG_CNT register must always be
accessed with 32-bit read/writes.

Register Definitions

12-6 ADSP-BF50x Blackfin Processor Hardware Reference

A valid write to the WDOG_CNT register also preloads the watchdog counter.
For added safety, the WDOG_CNT register can be updated only when the
watchdog timer is disabled. A write to the WDOG_CNT register while the
timer is enabled does not modify the contents of this register.

Watchdog Status (WDOG_STAT) Register
The 32-bit WDOG_STAT register, shown in Figure 12-3, contains the
current count value of the watchdog timer. Reads to WDOG_STAT
return the current count value. Values cannot be stored directly in
WDOG_STAT, but are instead copied from WDOG_CNT. This can
happen in two ways.

• While the watchdog timer is disabled, writing the WDOG_CNT register
pre-loads the WDOG_STAT register.

• While the watchdog timer is enabled, but not rolled over yet,
writes to the WDOG_STAT register load it with the value in WDOG_CNT.

 Enabling the watchdog timer does not automatically reload
WDOG_STAT from WDOG_CNT.

Figure 12-2. Watchdog Count Register

Watchdog Count Register (WDOG_CNT)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000 0000

Watchdog Count[31:16]

Watchdog Count[15:0]

ADSP-BF50x Blackfin Processor Hardware Reference 12-7

Watchdog Timer

The WDOG_STAT register is a 32-bit unsigned system MMR that must be
accessed with 32-bit reads and writes.

Watchdog Control (WDOG_CTL) Register
The WDOG_CTL register, shown in Figure 12-4, is a 16-bit system
MMR used to control the watchdog timer.

The watchdog event (WDEV[1:0]) bit field is used to select the event that is
generated when the watchdog timer expires. Note that if the general-pur-
pose interrupt option is selected, the SIC_IMASK register that holds the
watchdog timer mask bit should be appropriately configured to unmask
that interrupt. If the generation of watchdog events is disabled, the watch-
dog timer operates as described, except that no event is generated when
the watchdog timer expires.

The watchdog enable (WDEN[7:0]) bit field is used to enable and disable
the watchdog timer. Writing any value other than the disable key (0xAD)
into this field enables the watchdog timer. This multibit disable key mini-
mizes the chance of inadvertently disabling the watchdog timer.

Software can determine whether the watchdog has expired by interrogat-
ing the WDRO status bit of the WDOG_CTL register. This is a sticky bit that is

Figure 12-3. Watchdog Status Register

Watchdog Status Register (WDOG_STAT)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reset = 0x0000 0000

Watchdog Status[31:16]

Watchdog Status[15:0]

Programming Examples

12-8 ADSP-BF50x Blackfin Processor Hardware Reference

set whenever the watchdog timer count reaches 0. It can be cleared only by
writing a “1” to the bit when the watchdog has been disabled first.

Programming Examples
Listing 12-1 shows how to configure the watchdog timer so that it resets
the chip when it expires. At startup, the code evaluates whether the recent
reset event has been caused by the watchdog. Additionally, the example
sets the NOBOOT bit to prevent the memory from being rebooted.

Listing 12-1. Watchdog Timer Configuration

#include <defBF527.h>/*ADSP-BF527 product is used as an example*/

#define WDOGPERIOD 0x00200000

.section L1_code;

.global _reset;

_reset:

...

/* optionally, test whether reset was caused by watchdog */

Figure 12-4. Watchdog Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 1 0 1 0 1 1 0 1 0 0 0

Watchdog Control Register (WDOG_CTL)

WDEV[1:0]
00 - Generate reset event
01 - Generate NMI
10 - Generate GP interrupt
11 - Disable event

generation

WDEN[7:0]
0xAD - Counter disabled
All other values - Counter
enabled

WDRO - W1C
0 - Watchdog timer has not expired
1 - Watchdog timer has expired

Reset = 0x0AD0

ADSP-BF50x Blackfin Processor Hardware Reference 12-9

Watchdog Timer

p0.h=hi(SWRST);

p0.l=lo(SWRST);

r6 = w[p0] (z);

CC = bittst(r6, bitpos(RESET_WDOG));

if !CC jump _reset.no_watchdog_reset;

/* optionally, warn at system level or host device here */

_reset.no_watchdog_reset:

/* optionally, set NOBOOT bit to avoid reboot in case */

p0.h=hi(SYSCR);

p0.l=lo(SYSCR);

r0 = w[p0](z);

bitset(r0,bitpos(NOBOOT));

w[p0] = r0;

/* start watchdog timer, reset if expires */

p0.h = hi(WDOG_CNT);

p0.l = lo(WDOG_CNT);

r0.h = hi(WDOGPERIOD);

r0.l = lo(WDOGPERIOD);

[p0] = r0;

p0.l = lo(WDOG_CTL);

r0.l = WDEN | WDEV_RESET;

w[p0] = r0;

...

jump _main;

_reset.end:

The subroutine shown in Listing 12-2 can be called by software to service
the watchdog. Note that the value written to the WDOG_STAT register does
not matter.

Programming Examples

12-10 ADSP-BF50x Blackfin Processor Hardware Reference

Listing 12-2. Service Watchdog

service_watchdog:

[--sp] = p5;

p5.h = hi(WDOG_STAT);

p5.l = lo(WDOG_STAT);

[p5] = r0;

p5 = [sp++];

rts;

service_watchdog.end:

Listing 12-3 is an interrupt service routine that restarts the watchdog.
Note that the watchdog must be disabled first.

Listing 12-3. Watchdog Restarted by Interrupt Service Routine

isr_watchdog:

[--sp] = astat;

[--sp] = (p5:5, r7:7);

p5.h = hi(WDOG_CTL);

p5.l = lo(WDOG_CTL);

r7.l = WDDIS;

w[p5] = r7;

bitset(r7, bitpos(WDRO));

w[p5] = r7;

r7 = [p5 + WDOG_CNT - WDOG_CTL];

[p5 + WDOG_CNT - WDOG_CTL] = r7;

r7.l = WDEN | WDEV_GPI;

w[p5] = r7;

(p5:5, r7:7) = [sp++];

astat = [sp++];

rti;

isr_watchdog.end:

ADSP-BF50x Blackfin Processor Hardware Reference 12-11

Watchdog Timer

Unique Information for the ADSP-BF50x
Processor

None.

Unique Information for the ADSP-BF50x Processor

12-12 ADSP-BF50x Blackfin Processor Hardware Reference

ADSP-BF50x Blackfin Processor Hardware Reference 13-1

13 GENERAL-PURPOSE
COUNTER

This chapter describes the general-purpose up/down counter. The counter
provides support for manually controlled rotary controllers, such as the
volume wheel on a radio device. This unit also supports industrial encod-
ers. Following the overview and list of key features is a description of the
operating modes.

This chapter concludes with a programming model, consolidated register
definitions, and programming examples.

Specific Information for the ADSP-BF50x
For details regarding the number of GP counters for the ADSP-BF50x
product, refer to ADSP-BF504, ADSP-BF504F, ADSP-BF506F Embedded
Processor Data Sheet.

For GP counter interrupt vector assignments, refer to Table 4-3 on
page 4-19 in Chapter 4, “System Interrupts”.

To determine how each of the GP counters is multiplexed with other
functional pins, refer to Table 9-1 on page 9-4 through Table 9-3 on
page 9-6 in Chapter 9, “General-Purpose Ports”.

For a list of MMR addresses for each GP counter, refer to Chapter A,
“System MMR Assignments”.

Overview

13-2 ADSP-BF50x Blackfin Processor Hardware Reference

GP counter behavior for the ADSP-BF50x that differs from the general
information in this chapter can be found at the end of this chapter in the
section “Unique Information for the ADSP-BF50x Processor” on
page 13-37.

Overview
The purpose of this interface is to convert pulses from incremental posi-
tion encoders into data that is representative of the actual position. This is
done by integrating (counting) pulses on one or two inputs. Since integra-
tion provides relative position, some devices also feature a zero position
input (zero marker) that can be used to establish a reference point to verify
that the acquired position does not drift over time.

In addition, the incremental position information can be used to deter-
mine speed, if the time intervals are measured.

The GP counter provides flexible ways to establish position information.
When used in conjunction with the GP timer block, the GP counter
allows for the acquisition of coherent position/time-stamp information
that enables speed calculation.

Features
The GP counter includes the following features:

• 32-bit up/down counter

• Quadrature encoder mode (Gray code)

• Binary encoder mode

• Alternative frequency-direction mode

• Timed direction and up/down counting modes

ADSP-BF50x Blackfin Processor Hardware Reference 13-3

General-Purpose Counter

• Zero marker/push button support

• Capture event timing in association with general purpose timer

• Boundary comparison and boundary setting features

• Input pin noise filtering (debouncing)

• Flexible error detection/signaling

Interface Overview
A block diagram of the GP counter is shown in Figure 13-1. There are
two input pins, the count up and direction (CUD) pin and the count down
and gate (CDG) pin, that accept various forms of incremental inputs and are
processed by the 32-bit counter. The third input, count zero marker (CZM),
is the zero marker input. The module interfaces to the processor by way of
the peripheral access bus (PAB) and can optionally generate an interrupt
request through the IRQ line. There is also an output that can be used by
the timer module to generate time-stamps on certain events.

Figure 13-1. Block Diagram of the GP Counter Interface

 QUADRATURE
 32-BIT

NOISE FILTERING
PROGRAMMABLE

 AND
 CONTROL BLOCK

 PROCESSOR
 LOGIC AND EVENT
 BOUNDARY DETECTION

 GENERATION

CUD

CDG

CZM

IRQ

TO GP TIMER
OUTPUT

 COUNTER

 INTERFACE

PAB BUS

Description of Operation

13-4 ADSP-BF50x Blackfin Processor Hardware Reference

Description of Operation
The GP counter has five modes of operation that are described in this
section.

With the exception of the timed direction mode, the GP counter can
operate with the GP timer block to capture additional timing information
(time-stamps) associated with events detected by this block.

The third input (CZM) may be used as a zero marker or to sense the press-
ing of a push button. Refer to “Zero Marker (Push Button) Operation” on
page 13-9 for more details.

The three input pins may be filtered (debounced) before being evaluated
by the GP counter. Refer to “Input Noise Filtering (Debouncing)” on
page 13-7 for more details.

The GP counter also features a flexible boundary comparison. In all of the
operating modes, the counter can be compared to an upper and lower
limit. A variety of actions can be taken when these limits are reached.
Refer to “Boundary Comparison Modes” on page 13-10 for more details.

Quadrature Encoder Mode
In this mode, the CUD:CDG inputs expect a quadrature-encoded signal that
is interpreted as a 2-bit Gray code. The order of transitions of the CUD and
CDG inputs determines whether the counter increments or decrements. The
CNT_COUNTER register contains the number of transitions that have
occurred. Refer to Table 13-1 for more details.

Optionally, an interrupt is generated if both inputs change within one
SCLK cycle. Such transitions are not allowed by Gray coding. Therefore,
the CNT_COUNTER register remains unchanged and an error condition is
signaled.

ADSP-BF50x Blackfin Processor Hardware Reference 13-5

General-Purpose Counter

It is possible to reverse the count direction of the Gray coded signal. This
can be achieved by enabling the polarity inverter of either the CUD pin or
the CDG pin. Inverting both pins will not alter the behavior. This feature
can be enabled with the CDGINV and CUDINV bits in the CNT_CONFIG register.

As an example, if the CDG:CUD inputs are 00 respectively and the next tran-
sition is to 01, this would normally increment the counter as is shown in
Table 13-1. If the CUD polarity is inverted this generates a received input of
01 followed by 00. This will result in a decrement of the counter, altering
the behavior of the connected hardware.

Binary Encoder Mode
This mode is almost identical to the previous mode, with the exception
that the CUD:CDG inputs expect a binary-encoded signal. The order of tran-
sitions of the CUD and CDG inputs determines whether the counter
increments or decrements. The CNT_COUNTER register contains the number
of transitions that have occurred. Refer to Table 13-2.

Optionally, an interrupt is generated if the detected code steps by more
than 1 (in binary arithmetic) within one SCLK cycle. Such transitions are
considered erroneous. Therefore, the CNT_COUNTER register remains
unchanged and an error condition is signaled.

Table 13-1. Quadrature Events and Counting Mechanism

CNT_COUNTER Register Value –4 –3 –2 –1 0 +1 +2 +3 +4

CDG:CUD Inputs 00 01 11 10 00 01 11 10 00

Table 13-2. Binary Events and Counting Mechanism

CNT_COUNTER Register Value –4 –3 –2 –1 0 +1 +2 +3 +4

CDG:CUD Inputs 00 01 10 11 00 01 10 11 00

Description of Operation

13-6 ADSP-BF50x Blackfin Processor Hardware Reference

Reversing the CUD and CDG pin polarity has a different effect for the binary
encoder mode than for the quadrature encoder mode. Inverting the polar-
ity of the CUD pin only, or inverting both the CUD and CDG pins, will result
in reversing the count direction.

Up/Down Counter Mode
In this mode, the counter is incremented or decremented at every active
edge of the input pins.

If an active edge is detected at the CUD input, the counter increments. The
active edge can be selected by the CUDINV bit in the CNT_CONFIG register. If
this bit is cleared, a rising edge will increment the counter. If this bit is set,
a falling edge will increment the counter.

If an active edge is detected at the CDG input, the counter decrements. The
active edge can be selected by the CDGINV bit in the CNT_CONFIG register. If
this bit is cleared, a rising edge will decrement the counter. If this bit is
set, a falling edge will decrement the counter.

If simultaneous edges occur on pin CDG and pin CUD, the counter remains
unchanged and both up-count and down-count events are signaled in the
CNT_STATUS register.

Direction Counter Mode
In this mode, the counter is incremented or decremented at every active
edge of the CDG input pin.

The state of the CUD input determines whether the counter increments or
decrements. The polarity can be selected by the CUDINV bit in the
CNT_CONFIG register. If this bit is cleared, a high CUD input will increment,
a low input will decrement. If this bit is set, the polarity is inverted.

If an active edge is detected at the CDG input, the counter value changes by
one in the selected direction. The active edge can be selected by the

ADSP-BF50x Blackfin Processor Hardware Reference 13-7

General-Purpose Counter

CDGINV bit in the CNT_CONFIG register. If this bit is cleared, a rising edge
will decrement the counter. If this bit is set, a falling edge will decrement
the counter.

Timed Direction Mode
In this mode, the counter is incremented or decremented at each SCLK

cycle.

The state of the CUD input determines whether the counter increments or
decrements. The polarity can be selected by the CUDINV bit in the
CNT_CONFIG register. If this bit is cleared, a high CUD input will increment
the counter, a low input will decrement it. If this bit is set, the polarity is
inverted.

The CDG pin can be used to gate the clock. The polarity can be selected by
the CDGINV bit in the CNT_CONFIG register. If this bit is cleared, a high CDG

input will enable the counter, a low input will stop it. If this bit is set, the
polarity is inverted.

Functional Description
The following sections describe the various functions in more detail.

Input Noise Filtering (Debouncing)
In all modes, the three input pins can be filtered to present clean signals to
the GP counter logic. This filtering can be enabled or disabled by the DEBE

bit in the CNT_CONFIG register. Figure 13-2 shows the filtering operation
for the CUD pin.

Functional Description

13-8 ADSP-BF50x Blackfin Processor Hardware Reference

The filtering mechanism is implemented using counters for each pin. The
counter for each pin is initialized from the DPRESCALE field of the
CNT_DEBOUNCE register. When a transition is detected on a pin, the corre-
sponding counter starts counting up to the programmed number of SCLK
cycles. The state of the pin is latched after time tfilter and passed on to the
GP counter logic.

The 5-bit DPRESCALE field in the CNT_DEBOUNCE register programs the
desired number of cycles and therefore the debouncing time. The number
of SCLK cycles for each pin can be selected in 18 steps ranging from 1 ×
128 SCLK periods to 131072 × 128 SCLK periods (see Figure 13-9 on
page 13-24).

The time tfilter is determined, given SCLK and the DPRESCALE value con-
tained in the CNT_DEBOUNCE register, by the following formula:

where DPRESCALE can contain values from 0 (minimum filtering) to 17
(maximum filtering).

Assuming an SCLK frequency of 133 MHz, the filter time range is shown
by the following equations:

DPRESCALE = 0b0000

Figure 13-2. Programmable Noise Filtering

NOISY EDGES

CUD FILTERED

CUD

tfilter

t filter 128 2DPRESCALE SCLK =

t filter 128*1*7.5ns 960ns (approx.) 1s===

ADSP-BF50x Blackfin Processor Hardware Reference 13-9

General-Purpose Counter

DPRESCALE = 0b10001

Zero Marker (Push Button) Operation
The CZM input pin can be used to sense the zero marker output of a rotary
device or to detect the pressing of a push button. There are four program-
ming schemes which are functional in all counter modes:

• Push button mode–This mode is enabled by setting the CZMIE bit
in the CNT_IMASK register. An active edge at the CZM input will set
the CZMII bit in the CNT_STATUS register. If enabled at the
system interrupt controller, this will generate an interrupt request.
The active edge is selected by the CZMINV bit in the CNT_CONFIG reg-
ister (rising edge if cleared, falling edge if set to one).

• Zero-marker-zeros-counter mode–This mode is enabled by setting
the ZMZC bit in the CNT_CONFIG register. An active level at the CZM

input clears the CNT_COUNTER register and holds it until the CZM pin
is deactivated. In addition, if enabled by the CZMZIE bit in the
CNT_IMASK register, it will set the CZMZII bit in the CNT_STATUS reg-
ister. If enabled by the peripheral interrupt controller, this will
generate an interrupt request. The active level is selected by the
CZMINV bit in the CNT_CONFIG register (active high if cleared, active
low if set to one).

• Zero-marker-error mode–This mode is used to detect discrepan-
cies between counter value and the zero marker output of certain
rotary encoder devices. It is enabled by setting the CZMEIE bit in the
CNT_IMASK register. When an active edge is detected at the CZM

input pin, the four LSBs of the CNT_COUNTER register are compared
to zero. If they are not zero, a mismatch is signaled by way of the
CZMEII bit in the CNT_STATUS register. If enabled by the peripheral

t filter 128 131072 *7.5ns 125829s (approx.) 126ms===

Functional Description

13-10 ADSP-BF50x Blackfin Processor Hardware Reference

interrupt controller, this will generate an interrupt request. The
active edge is selected by the CZMINV bit in the CNT_CONFIG register:
(rising edge if cleared, falling edge if set to one).

• Zero-once mode–This mode is used to perform an initial reset of
the counter value when an active zero marker is detected. After
that, the zero marker is ignored (the counter is not reset anymore).
This mode is enabled by setting the W1ZMONCE bit in the
CNT_COMMAND register. The CNT_COUNTER register and the W1ZMONCE

bit are cleared on the next active edge on the CZM pin. Thus, the
W1ZMONCE bit can be read to check whether the event has already
occurred, if desired. The active edge of the CZM pin is selected by
the CZMINV bit in the CNT_CONFIG register (rising edge if cleared,
falling edge if set to one).

Boundary Comparison Modes
The GP counter includes two boundary registers, CNT_MIN (lower) and
CNT_MAX (upper). The counter value is compared to the lower and upper
boundary. Depending on which mode is selected, different actions are
taken if the count value reaches either of the boundary values.

There are four boundary modes:

• Boundary-compare mode–The two boundary registers are simply
compared to the CNT_COUNTER register. If, after incrementing,
CNT_COUNTER equals CNT_MAX then the MAXCII bit in the CNT_STATUS

register is set. If the MAXCIE bit in the CNT_IMASK register is set, an
interrupt request is generated. Similarly if, after decrementing,
CNT_COUNTER equals CNT_MIN then the MINCII status bit is set. If the
MINCIE bit in the CNT_IMASK register is set, an interrupt request is
generated. The MAXCII and MINCII bits are not set if the CNT_MAX

and CNT_MIN registers are updated by software.

ADSP-BF50x Blackfin Processor Hardware Reference 13-11

General-Purpose Counter

• Boundary-zero mode–This mode is similar to the boundary-com-
pare mode. In addition to setting the status bits and requesting
interrupts, the counter value in the CNT_COUNTER register is also set
to zero.

• Boundary auto-extend mode–In this mode, the boundary registers
are modified by hardware whenever the counter value reaches
either of them. The CNT_MAX register is loaded with the current
CNT_COUNTER value if the latter increments beyond the CNT_MAX

value. Similarly, the CNT_MIN register is loaded with the
CNT_COUNTER value if the latter decrements below the CNT_MIN

value. This mode may be used to keep track of the widest angle the
wheel ever reported, even if the software did not serve interrupts.
At startup, the application software should set both boundary regis-
ters to the initial CNT_COUNTER value. The MAXCII and MINCII status
bits are still set when the counter value matches the boundary
register.

• Boundary-capture mode–In this mode, the CNT_COUNTER value is
latched into the CNT_MIN register at one detected edge of the CZM

input pin, and latched into CNT_MAX at the opposite edge. If the
CZMINV bit in the CNT_CONFIG register is cleared, a rising edge cap-
tures into CNT_MIN and a falling edge into CNT_MAX. If the CZMINV bit
is set, the edges are inverted. The MAXCII and MINCII status bits
report the capture event.

The comparison is performed with signed arithmetic. The boundary regis-
ters and the counter value are all treated as signed integer values.

Control and Signaling Events
Eleven events can be signaled to the processor using status information
and optional interrupt requests. The interrupts are enabled by the respec-
tive bits in the CNT_IMASK register. Dedicated bits in the CNT_STATUS

register report events. When an interrupt from the GP counter is

Functional Description

13-12 ADSP-BF50x Blackfin Processor Hardware Reference

acknowledged, the application software is responsible for correct interpre-
tation of the events. It is recommended to logically AND the content of the
CNT_IMASK and CNT_STATUS registers to identify pending interrupts. Inter-
rupt requests are cleared by write-one-to-clear (W1C) operations to the
CNT_STATUS register. Hardware does not clear the status bits automatically,
unless the counter module is disabled.

Illegal Gray/Binary Code Events

When the illegal transitions described in “Quadrature Encoder Mode” on
page 13-4 or “Binary Encoder Mode” on page 13-5 occur, the ICII bit in
the CNT_STATUS register is set. If enabled by the ICIE bit in the CNT_IMASK

register, an interrupt request is generated. The ICIE bit should only be set
in the quadrature encoder or binary encoder modes.

Up/Down Count Events

The UCII bit in the CNT_STATUS register indicates whether the counter has
been incremented. Similarly, the DCII bit reports decrements. The two
events are independent. For instance, if the counter first increments by
one and then decrements by two, both bits remain set, even though the
resulting counter value shows a decrement by one. In up/down counter
mode, hardware may detect simultaneous active edges on the CUD and CDG

inputs. In that case, the CNT_COUNTER remains unchanged, but both the
UCII and DCII bits are set.

Interrupt requests for these events may be enabled through the UCIE and
DCIE bits. This feature should be used carefully when the counter is
clocked at high rates. This is especially critical when the counter operates
in DIR_TMR mode, as interrupts would be generated every SCLK cycle.

These events can also be used for additional push buttons, if GP counter
features are not needed. When up/down counter mode is enabled, these
count events can be used to report interrupts from push buttons that con-
nect to the CUD and CDG inputs.

ADSP-BF50x Blackfin Processor Hardware Reference 13-13

General-Purpose Counter

Zero-Count Events

The CZEROII status bit indicates that the CNT_COUNTER has reached a value
equal to 0x0000 0000 after an increment or decrement. This bit is not set
when the counter value is set to zero by a write to CNT_COUNTER or by set-
ting the W1LCNT_ZERO bit in the CNT_COMMAND register. If enabled by the
CZEROIE bit, an interrupt request is generated.

Overflow Events

There are two status bits that indicate whether the signed counter register
has overflowed from a positive to a negative value or vice versa.

The COV31II bit reports that the 32-bit CNT_COUNT register has either incre-
mented from 0x7FFF FFFF to 0x8000 0000, or decremented from
0x8000 0000 to 0x7FFF FFFF. If enabled by the COV31IE bit, an interrupt
request is generated.

Similarly, in applications where only the lower 16 bits of the counter are
of interest, the COV15II status bit reports counter transitions from
0xXXXX 7FFF to 0xXXXX 8000, or from 0xXXXX 8000 to
0xXXXX 7FFF. If enabled by the COV15IE bit, an interrupt request is
generated.

Boundary Match Events

The MINCII and MAXCII status bits report boundary events as described in
“Boundary Comparison Modes” on page 13-10. These bits are not set if
the CNT_COUNTER, CNT_MAX or CNT_MIN registers are updated by software or
the CNT_COMMAND register is written to.

The MINCIE and MAXCIE bits in the CNT_IMASK register enable interrupt
generation on boundary events.

Functional Description

13-14 ADSP-BF50x Blackfin Processor Hardware Reference

Zero Marker Events

There are three status bits CZMII, CZMEII and CZMZII associated with zero
marker events, as described in “Zero Marker (Push Button) Operation” on
page 13-9. Each of these events can optionally generate an interrupt
request, if enabled by the corresponding CZMIE, CZMEIE and CZMZIE bits in
the CNT_IMASK register.

Capturing Timing Information
To calculate speed, many applications may wish to measure the time
between two count events—in addition to accurately counting encoder
pulses. For more accuracy, particularly at very low speeds, it is also neces-
sary to obtain the time that has elapsed since the last count event. This
additional information allows for estimating how much the GP counter
has advanced since the last counter event.

For this purpose, the GP counter has an internal signal that connects to
the alternate capture input (TACIx) of one of the GP timers. It is func-
tional in all modes, with the exception of the timed direction mode. Refer
to “Internal Interfaces” in Chapter 9, “General-Purpose Ports” for infor-
mation regarding which GP timer(s) are associated with which GP
counter module(s) for your device.

In order to use the timing measurements, the associated GP timer must be
used in the WDTH_CAP mode. The alternate capture input is selected by set-
ting the TIN_SEL bit in the GP timer's TIMER_CONFIG register. For more
information about the GP timers and their operating modes, refer to the
General-Purpose Timer chapter.

Capturing Time Interval Between
Successive Counter Events

When the only timing information of interest is the interval between suc-
cessive count events, the associated timer should be programmed in
WDTH_CAP mode with PULSE_HI = 1, PERIOD_CNT = 1 and TIN_SEL = 1.

ADSP-BF50x Blackfin Processor Hardware Reference 13-15

General-Purpose Counter

Typically, this information is sufficient if the speed of GP counter events
is known not to reach very low values. Figure 13-3 shows the operation of
the GP counter and the GP timer in this mode. TO generates a pulse
every time a count event occurs. The GP timer will update its
TIMER_PERIOD register with the period (measured from rising edge to rising
edge) of the TO signal. The TIMER_PERIOD register is updated at every ris-
ing edge of the TO signal and contains the number of system clock (SCLK)
cycles that have elapsed since the previous rising edge.

Incidentally, the TIMER_WIDTH register is also updated at the same time,
but is generally of no interest in this mode of operation. If no reads of the
CNT_COUNTER register occur between counter events, the TIMER_WIDTH regis-
ter only contains the width of the TO pulse. If a read of CNT_COUNTER has
occurred between events, the TIMER_WIDTH register will contain the time
between the read of CNT_COUNTER and the next event.

This mode can also be used with PULSE_HI = 0. In this case, the period of
TO is measured between falling edges. It will result in the same values as
in the previous case, only the latching occurs one SCLK cycle later.

Capturing Counter Interval and
CNT_COUNTER Read Timing

It is possible to also capture the time elapsed since the last count event. In
this mode, the associated timer should be programmed in WDTH_CAP mode
with PULSE_HI = 0, PERIOD_CNT = 0 and TIN_SEL = 1. Typically, this addi-
tional information is used to estimate the advancement of the GP counter
since the last count event, when the speed is very low. Figure 13-4 shows
the operation of the GP counter module and the GP timer module in this
mode. TO generates a pulse every time a count event occurs. In addition,
when the processor reads the CNT_COUNTER register, the TO signal presents
a pulse which is extended (high) until the next count event. The GP timer
will update its TIMER_PERIOD register with the period (measured from fall-
ing edge to falling edge, because PULSE_HI = 0) of the TO signal. The
TIMER_WIDTH register is updated with the pulse width (the portion where

Functional Description

13-16 ADSP-BF50x Blackfin Processor Hardware Reference

TO is low, again because PULSE_HI = 0). Both registers are updated at
every rising edge of the TO signal (because PERIOD_CNT = 0). Therefore,
the TIMER_PERIOD register contains the period between the last two count
events and the TIMER_WIDTH register contains the time since the last count
event and the read of the CNT_COUNTER register, both measured in number
of SCLK cycles.

The result is that when reading the CNT_COUNTER register, the two time
measurements are also latched and the user has a coherent triplet of infor-
mation to calculate speed and position.

Figure 13-3. Operation With GP Timer Module

SCLK

CUD

CDG

TO

CNT_COUNTER

TIMER_COUNTER

TIMER_PERIOD BUFFER

TIMER_WIDTH BUFFER

TIMER_PERIOD

TIMER_PERIOD

TIMER_WIDTH

Measurement
reports available

1 2 3 4 5

10 3 7 3 4

11111

10 3 7 3 4

11111

1 2 3 1 2 3 4 5 6 7 1 2 3 1 2 3 4 1 2

ADSP-BF50x Blackfin Processor Hardware Reference 13-17

General-Purpose Counter

 Restrictions apply to the use of the TO signal in terms of speed.
Therefore, the user must take care to not operate at very high count
events. For instance, if CNT_COUNTER is incremented/decremented
every SCLK cycle (timed direction mode), the TO signal is
incorrect.

Figure 13-4. Capturing Counter Interval

SCLK

CUD

CDG

TO

CNT_COUNTER

CNT_COUNTER READ

TIMER_COUNTER

TIMER_PERIOD BUFFER

TIMER_WIDTH BUFFER

TIMER_PERIOD

TIMER_PERIOD

TIMER_WIDTH

Measurement
report of interest
due to read of
CNT_COUNTER

1 2 3 4 5 6

12 3 3 8

142211

x 2 3 3 8

142211

12 1 2 1 2 3 1 2 3 1 2 3 4 5 6 7 8 1 2

X 2

1

12

1

Programming Model

13-18 ADSP-BF50x Blackfin Processor Hardware Reference

Programming Model
In a typical application, the user will initialize the GP counter for the
desired mode, without enabling it. Normally the events of interest will be
processed using interrupts rather than polling the status bit. In that case,
clear all status bits and activate the generation of interrupt requests with
the CNT_IMASK register. Set up the system interrupt controller and core
interrupts. If timing information is required, set up the relevant GP timer
in WDTH_CAP mode with the settings described in the “Capturing Timing
Information” on page 13-14. Then, enable the interrupts and the periph-
eral itself.

Registers
The GP counter interface has eight memory-mapped registers (MMRs)
that regulate its operation. Descriptions and bit diagrams for MMRs is
provided in the sections that follow.

Counter Module Register Overview
Refer to Table 13-3 for an overview of all MMRs associated with the GP
counter interface.

Table 13-3. Counter Module Register Overview

Register Name Width PAB Operation Reset Value

CNT_CONFIG 16 bits R/W 0x0000

CNT_IMASK 16 bits R/W 0x0000

CNT_STATUS 16 bits R/W1C 0x0000

CNT_COMMAND 16 bits R/W1A 0x0000

CNT_DEBOUNCE 16 bits R/W 0x0000

CNT_COUNTER 32 bits R/W (16/32 bits) 0x0000 0000

ADSP-BF50x Blackfin Processor Hardware Reference 13-19

General-Purpose Counter

Counter Configuration Register (CNT_CONFIG)
This register (Figure 13-5) is used to configure counter modes and input
pins, as well as to enable the peripheral. It can be accessed at any time with
16-bit read and write operations.

CNT_MAX 32 bits R/W (16/32 bits) 0x0000 0000

CNT_MIN 32 bits R/W (16/32 bits) 0x0000 0000

Figure 13-5. Counter Configuration Register

Table 13-3. Counter Module Register Overview (Cont’d)

Register Name Width PAB Operation Reset Value

Counter Configuration (CNT_CONFIG) Register

Reset = 0x0000
14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00

15

0

CNTE (Counter
Enable)
0 = Disabled
1 = Enabled

0 = Disabled
1 = Enabled

CDGINV (CDG Pin
Polarity Invert)
0 = Active high, rising

edge
1 = Active low, falling

edge

CUDINV (CUD Pin
Polarity Invert)
0 = Active high, rising

edge
1 = Active low, falling

edge

CNTMODE (Counter Operating Mode)
000: QUAD_ENC - quadrature encoder mode
001: BIN_ENC - binary encoder mode
010: UD_CNT - up/down counter mode
011: Reserved
100: DIR_CNT - direction counter mode
101: DIR_TMR - direction timer mode
110: Reserved
111: Reserved

ZMZC (CZM Zeroes Counter
Enable)

BNDMODE
(Boundary Register Mode)
00: BND_COMP
01: BIN_ENC
10: BND_CAPT
11: BND_AEXT

INPDIS (CUD and
CDG Input
Disable)

DEBE (Debounce
Enable)

0 = Enabled
1 = Disabled

Level sensitive - active CZM
pin zeroes CNT_COUNTER

CZMINV (CZM Pin
Polarity Invert)
0 = Active high, rising

edge
1 = Active low, falling

edge

Registers

13-20 ADSP-BF50x Blackfin Processor Hardware Reference

Counter Interrupt Mask Register (CNT_IMASK)
This register (Figure 13-6) is used to enable interrupt request generation
from each of the eleven events. It can be accessed at any time with 16-bit
read and write operations. For explanations of the register bits, refer to
“Control and Signaling Events” on page 13-11.

Counter Status Register (CNT_STATUS)
This register (Figure 13-7) provides status information for each of the
eleven events where 0 = no interrupt pending and 1 = interrupt pending.
When an event is detected, the corresponding bit in this register is set. It
remains set until either software writes a “1” to the bit (write-1-to-clear)
or the GP counter is disabled. For explanations of the register bits, refer to
“Control and Signaling Events” on page 13-11.

Figure 13-6. Counter Interrupt Mask Register

Counter Interrupt Mask (CNT_IMASK) Register

Reset = 0x0000
14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00

15

0

ICIE
(Illegal Gray/binary code inter-

rupt enable)

UCIE
(Upcount interrupt enable)

DCIE
(Downcount interrupt enable)

MINCIE
(Min count interrupt enable)

MAXCIE
(Max count interrupt enable)

COV31IE
(Bit 31 overflow interrupt enable)

COV15IE
(Bit 15 overflow interrupt enable)

CZMZIE
(Counter zeroed by zero marker
interrupt enable)

CZMEIE
(Zero marker error interrupt
enable)

CZMIE
(CZM pin interrupt enable/push-button
interrupt)

CZEROIE
(CNT_COUNTER counts to zero interrupt
enable

For all bits:
0 = Interrupt disabled
1 = Interrupt enabled

ADSP-BF50x Blackfin Processor Hardware Reference 13-21

General-Purpose Counter

Counter Command Register (CNT_COMMAND)
The CNT_COMMAND register (shown in Figure 13-8 on page 13-23) config-
ures the GP counter, enabling operations such as zeroing a counter register
and copying or swapping boundary registers. These actions are taken by
writing a “one” to the appropriate bit.

Read operations from this register will not return meaningful values, with
the exception of the W1ZONCE bit, where a “1” indicates that the bit has
been set by software before, but no zero marker event has been detected on
the CZM pin yet. Refer to “Zero Marker (Push Button) Operation” on
page 13-9 for more details.

The CNT_COUNTER, CNT_MIN and CNT_MAX registers can be initialized to zero
by writing a “one” to the W1LCNT_ZERO, W1LMIN_ZERO and W1LMAX_ZERO

fields. In addition to clearing registers, CNT_COMMAND allows the boundary
registers to be modified in a number of ways. The current counter value in
CNT_COUNT can be captured and loaded into either of the two boundary

Figure 13-7. Counter Status Register

Counter Status (CNT_STATUS) Register

Reset = 0x0000
14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00

15

0

COV31II
(Bit 31 overflow
interrupt) (W1C)

COV15II
(Bit 15 overflow interrupt) (W1C)

CZMZIE
(Counter zeroed by zero marker) (W1C)

CZMEII
(Zero marker error interrupt) (W1C)

CZMII
(CZM pin interrupt/ Push-button interrupt) (W1C)

CZEROII
(CNT_COUNTER counts to zero interrupt) (W1C)

ICII
(Illegal Gray/binary code
interrupt) (W1C)
UCII
(Upcount interrupt)
DCII
(Downcount interrupt) (W1C)
MINCII
(Min interrupt) (W1C)
MAXCII
(Max interrupt) (W1C)

For all bits:
0 = No Interrupt pending
1 = Interrupt pending

Registers

13-22 ADSP-BF50x Blackfin Processor Hardware Reference

registers CNT_MAX and CNT_MIN to create new boundary limits. This is per-
formed by setting the W1LMAX_CNT and W1LMIN_CNT bits. Alternatively, the
counter can be loaded from CNT_MAX or CNT_MIN via the W1LCNT_MAX and
W1LCNT_MIN bits. It is also possible to transfer the current CNT_MAX value
into CNT_MIN (or vice versa) through the W1LMIN_MAX and W1LMAX_MIN bits.
The final supported operation is the ability to only have the zero marker
clear the CNT_COUNT register once, as described in “Zero Marker (Push But-
ton) Operation” on page 13-9.

It is possible for multiple actions to be performed simultaneously by set-
ting multiple bits in the CNT_COMMAND register. However, there are
restrictions. The bits associated with each command have been grouped
together such that all bits that involve a write to the CNT_COUNTER register
are located within bits 3:0 of the CNT_COMMAND register. All commands that
involve a write to the CNT_MIN register are located within bits 7:4 of the
CNT_COMMAND register, and all commands that involve a write to the
CNT_MAX register are located within bits 11:8 of the CNT_COMMAND register.

 A maximum of three commands can be issued at any one time,
excluding the W1ZMONCE command. Note that (W1LCNT_MIN,
W1LCNT_MAX and W1LCNT_ZERO) have to be used exclusively. Never
set more than one of them at the same time. The same rule applies
for (W1LMAX_MIN, W1LMAX_CNT and W1LMAX_ZERO) and for
(W1LMIN_MAX, W1LMIN_CNT, and W1LMIN_ZERO).

ADSP-BF50x Blackfin Processor Hardware Reference 13-23

General-Purpose Counter

Counter Debounce Register (CNT_DEBOUNCE)
This register (Figure 13-9) is used to select the noise filtering characteris-
tic of the three input pins (see “Input Noise Filtering (Debouncing)” on
page 13-7). Bits [4:0] determine the filter time. The register can be
accessed at any time with 16-bit read and write operations.

Figure 13-8. Counter Command Register

Counter Command (CNT_COMMAND) Register

Reset = 0x0000
14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00

15

0

W1LCNT_ZERO
(Write one to zero
CNT_COUNTER) (W1A)
W1LCNT_MIN
(Write 1 to load CNT_COUNTER
from CNT_MIN) (W1A)
W1LCNT_MAX
(Write one to load
CNT_COUNTER
from CNT_MAX) (W1A)
W1LMIN_ZERO
(Write one to zero CNT_MIN
Register) (W1A)
W1LMIN_CNT
(Write one to capture
CNT_COUNTER to CNT_MIN
Register) (W1A)

W1LMIN_MAX
(Write one to copy former CNT_MAX
to new CNT_MIN) (W1A)

W1LMAX_ZERO
(Write one to zero CNT_MAX Register) (W1A)

W1LMAX_CNT
(Write one to capture CNT_COUNTER to
CNT_MAX Register) (W1A)

W1LMAX_MIN
(Write one to copy former CNT_MIN to new
CNT_MAX) (W1A)

W1ZMONCE
(Write one to enable single Zero marker
clear CNT_COUNT action) (W1A/R)

t filter 128 2DPRESCALE SCLK =

Registers

13-24 ADSP-BF50x Blackfin Processor Hardware Reference

Counter Count Value Register (CNT_COUNTER)
This register (Figure 13-10) holds the 32-bit, twos-complement, count
value. It can be read and written at any time. Hardware ensures that reads
and write are atomic, by providing respective shadow registers. This
register can be accessed with either 32-bit or 16-bit operations. This
allows use of the GP counter as a 16-bit counter if sufficient for the
application.

Figure 13-9. Counter Debounce Register

00

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 00

15

0

Counter Debounce (CNT_DEBOUNCE) Register

Reset = 0x0000

DPRESCALE (DEBOUNCE DELAY)
00000: 1 x 128 SCLK cycles
00001: 2 x 128 SCLK cycles
00010: 4 x 128 SCLK cycles
00011: 8 x 128 SCLK cycles
00100: 16 x 128 SCLK cycles
00101: 32 x 128 SCLK cycles
00110: 64 x 128 SCLK cycles
00111: 128 x 128 SCLK cycles
01000: 256 x 128 SCLK cycles
01001: 512 x 128 SCLK cycles
01010: 1024 x 128 SCLK cycles
01011: 2048 x 128 SCLK cycles
01100: 4096 x 128 SCLK cycles
01101: 8192 x 128 SCLK cycles
01110: 16384 x 128 SCLK cycles
01111: 32768 x 128 SCLK cycles
10000: 65536 x 128 SCLK cycles
10001: 131072 x 128 SCLK cycles
Others: Reserved

ADSP-BF50x Blackfin Processor Hardware Reference 13-25

General-Purpose Counter

Counter Boundary Registers (CNT_MIN and
CNT_MAX)

These registers (Figure 13-11 and Figure 13-12) hold the 32-bit,
twos-complement, lower and upper boundary values. They can be read
and written at any time. Hardware ensures that reads and write are atomic,
by providing respective shadow registers. This register can be accessed
with either 32-bit or 16-bit operations. This allows for using the GP
counter as a 16-bit counter if sufficient for the application.

Figure 13-10. Counter Count Value Register

Counter Count Value (CNT_COUNTER) Register

Count Value

Reset = 0x0000 0000

31 30 29 28 27 26

00 0 0 0 0 0 0 0 0 0 0 0 00

16171819202122232425

0

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00

15

0

Count Value

Registers

13-26 ADSP-BF50x Blackfin Processor Hardware Reference

Figure 13-11. Counter Maximal Count Register

Figure 13-12. Counter Minimal Count Register

Counter Maximal Count (CNT_MAX) Register

Reset = 0x0000 0000

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00

15

0

CNT_MAX
(Counter Max)

31 30 29 28 27 26

00 0 0 0 0 0 0 0 0 0 0 0 00

16171819202122232425

0

CNT_MAX
(Counter Max)

Counter Minimal Count (CNT_MIN) Register

Reset = 0x0000 0000

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00

15

0

31 30 29 28 27 26

00 0 0 0 0 0 0 0 0 0 0 0 00

16171819202122232425

0

CNT_MIN[31:16]
(Counter Min)

CNT_MIN[15:0]
(Counter Min)

ADSP-BF50x Blackfin Processor Hardware Reference 13-27

General-Purpose Counter

Programming Examples
Listing 13-1 illustrates how to initialize the GP counter for various modes.
The required interrupts are first unmasked. The GP counter is then con-
figured for the required mode of operation. Note that at this point we do
not yet enable the counter. Finally, some GP counter MMRs are cleared,
as well as any interrupts that may be pending in the CNT_STATUS register.

Listing 13-1. Initializing the GP Counter

/* Setup Counter Interrupts */

P5.H = hi(CNT_IMASK);

P5.L = lo(CNT_IMASK);

R5 = nCZMZIE /* Counter zeroed by zero marker interrupt */

| CZMEIE /* Zero marker error interrupt */

| CZMIE /* CZM pin interrupt (push-button) */

| CZEROIE /* Counts to zero interrupt */

| nCOV15IE /* Counter bit 15 overflow interrupt */

| nCOV31IE /* Counter bit 31 overflow interrupt */

| MAXCIE /* Max count interrupt */

| MINCIE /* Min count interrupt */

| DCIE /* Downcount interrupt */

| UCIE /* Upcount interrupt */

| ICIE (z); /* Illegal gray/binary code interrupt */

w[P5] = R5;

/* Configure the GP Counter mode of operation */

P5.H = hi(CNT_CONFIG);

P5.L = lo(CNT_CONFIG);

R5 = nINPDIS /* Enable CUD and CDG inputs */

| BNDMODE_COMP /* Boundary compare mode */

| nZMZC /* Disable Zero Counter Enable */

| CNTMODE_QUADENC /* Quadrature Encoder Mode */

| CZMINV /* Polarity of CZM pin */

Programming Examples

13-28 ADSP-BF50x Blackfin Processor Hardware Reference

| nCUDINV /* Polarity of CUD pin */

| nCDGINV /* Polarity of CDG Pin */

| nDEBE /* Disable the debounce */

| nCNTE (z); /* Disable the counter */

w[P5] = R5;

/* Zero the CNT_COUNT, CNT_MIN and CNT_MAX registers

This is optional as after reset they are default to zero */

P5.H = hi(CNT_COMMAND);

P5.L = lo(CNT_COMMAND);

R5 = W1LCNT_ZERO | W1LMIN_ZERO | W1LMAX_ZERO (z);

w[P5] = R5;

/* Clear any identified interrupts */

P5.H = hi(CNT_STATUS);

P5.L = lo(CNT_STATUS);

R5.L = ICII /* Illegal Gray/Binary Code Interrupt Identifier

*/

| UCII /* Up count Interrupt Identifier */

| DCII /* Down count Interrupt Identifier */

| MINCII /* Min Count Interrupt Identifier */

| MAXCII /* Max Count Interrupt Identifier */

| COV31II /* Bit 31 Overflow Interrupt Identifier */

| COV15II /* Bit 15 Overflow Interrupt Identifier */

| CZEROII /* Count to Zero Interrupt Identifier */

| CZMII /* CZM Pin Interrupt Identifier */

| CZMEII /* CZM Error Interrupt Identifier */

| CZMZII; /* CZM Zeroes Counter Interrupt Identifier */

w[P5] = R5;

Listing 13-2 illustrates how to set up the peripheral and core interrupts for
the GP counter. This example assumes the counter interrupts are gener-
ated on IRQ27, which is assumed to be mapped to the IVG11 interrupt.
Finally, the system and peripheral interrupts are unmasked, and then the

ADSP-BF50x Blackfin Processor Hardware Reference 13-29

General-Purpose Counter

GP counter is enabled. This example can be easily tailored to processors
with different SIC register mappings.

Listing 13-2. Setting Up the Interrupts for the GP Counter

/* Assign the CNT interrupt to IVG11 */

P5.H = hi(SIC_IAR3);

P5.L = lo(SIC_IAR3);

R6.H = hi(0xFFFF4FFF);

R6.L = lo(0xFFFF4FFF);

R7.H = hi(0x00000000);

R7.L = lo(0x00000000);

R5 = [P5];

R5 = R5 & R6; /* zero the counter interrupt field */

R5 = R5 | R7; /* set Counter interrupt to required priority */

[P5] = R5;

/* Set up the interrupt vector for the counter */

R5.H = hi(_IVG11_handler);

R5.L = lo(_IVG11_handler);

P5.H = hi(EVT11);

P5.L = lo(EVT11);

[P5] = R5;

/* Unmask IVG11 interrupt in the IMASK register */

P5.H = hi(IMASK);

P5.L = lo(IMASK);

R5 = [P5];

bitset(R5, bitpos(EVT_IVG11));

[P5] = R5;

/* Unmask interrupt 27 generated by the counter */

P5.H = hi(SIC_IMASK0);

P5.L = lo(SIC_IMASK0);

Programming Examples

13-30 ADSP-BF50x Blackfin Processor Hardware Reference

R5 = [P5];

bitset(R5, bitpos(IRQ_CNT));

[P5] = R5;

/* Enable the counter */

P5.H = hi(CNT_CONFIG);

P5.L = lo(CNT_CONFIG);

R5 = w[P5](z);

bitset(R5, bitpos(CNTE));

w[P5] = R5.L;

Using the same assumptions from the previous example, Listing 13-3
illustrates a sample interrupt handler that is responsible for servicing the
GP counter interrupts. On entry to the handler, the SIC_ISR0 register is
interrogated to determine if the counter is waiting for an interrupt to be
serviced. If so, the handler responsible for processing all counter interrupts
is called.

Listing 13-3. Sample Interrupt Handler for GP Counter Interrupts

_IVG11_handler:

/* Stack management */

[--SP] = RETS;

[--SP] = ASTAT;

[--SP] = (R7:0, P5:0);

/* Was it a counter interrupt? */

P5.H = hi(SIC_ISR0);

P5.L = lo(SIC_ISR0);

R5 = [P5];

CC = bittst(R5, bitpos(IRQ_CNT));

IF !CC JUMP _IVG11_handler.completed;

CALL _IVG11_handler.counter;

_IVG11_handler.completed:

ADSP-BF50x Blackfin Processor Hardware Reference 13-31

General-Purpose Counter

SSYNC;

/* Restore from stack */

(R7:0, P5:0) = [SP++];

ASTAT = [SP++];

RETS = [SP++];

RTI; /* Exit the interrupt service routine */

_IVG11_handler.end:

_IVG11_handler.counter:

/* Stack management */

[--SP] = RETS;

[--SP] = (R7:0, P5:0);

/* Determine what counter interrupts we wish to service */

R5 = w[P5](z);

P5.H = hi(CNT_IMASK);

P5.L = lo(CNT_IMASK);

R5 = w[P5](z);

P5.H = hi(CNT_STATUS);

P5.L = lo(CNT_STATUS);

R6 = w[P5](z);

R5 = R5 & R6;

/* Interrupt handlers for all GP counter interrupts */

_IVG11_handler.counter.illegal_code:

CC = bittst(R5, bitpos(ICII));

IF !CC JUMP _IVG11_handler.counter.up_count;

/* Clear the serviced request */

R6 = ICII (z);

w[P5] = R6;

Programming Examples

13-32 ADSP-BF50x Blackfin Processor Hardware Reference

/* insert illegal code handler here */

_IVG11_handler.counter.illegal_code.end:

_IVG11_handler.counter.up_count:

CC = bittst(R5, bitpos(UCII));

IF !CC JUMP _IVG11_handler.counter.down_count;

/* Clear the serviced request */

R6 = UCII (z);

w[P5] = R6;

/* insert up count handler here */

_IVG11_handler.counter.up_count.end:

_IVG11_handler.counter.down_count:

CC = bittst(R5, bitpos(DCII));

IF !CC JUMP _IVG11_handler.counter.min_count;

/* Clear the serviced request */

R6 = DCII (z);

w[P5] = R6;

/* insert down count handler here */

_IVG11_handler.counter.down_count.end:

_IVG11_handler.counter.min_count:

CC = bittst(R5, bitpos(MINCII));

IF !CC JUMP _IVG11_handler.counter.max_count;

/* Clear the serviced request */

ADSP-BF50x Blackfin Processor Hardware Reference 13-33

General-Purpose Counter

R6 = MINCII (z);

w[P5] = R6;

/* insert min count handler here */

_IVG11_handler.counter.min_count.end:

_IVG11_handler.counter.max_count:

CC = bittst(R5, bitpos(MAXCII));

IF !CC JUMP _IVG11_handler.counter.b31_overflow;

/* Clear the serviced request */

R6 = MAXCII (z);

w[P5] = R6;

/* insert max count handler here */

_IVG11_handler.counter.max_count.end:

_IVG11_handler.counter.b31_overflow:

CC = bittst(R5, bitpos(COV31II));

IF !CC JUMP _IVG11_handler.counter.b15_overflow;

/* Clear the serviced request */

R6 = COV31II (z);

w[P5] = R6;

/* insert bit 31 overflow handler here */

_IVG11_handler.counter.b31_overflow.end:

_IVG11_handler.counter.b15_overflow:

CC = bittst(R5, bitpos(COV15II));

Programming Examples

13-34 ADSP-BF50x Blackfin Processor Hardware Reference

IF !CC JUMP _IVG11_handler.counter.count_to_zero;

/* Clear the serviced request */

R6 = COV15II (z);

w[P5] = R6;

/* insert bit 15 overflow handler here */

_IVG11_handler.counter.b15_overflow.end:

_IVG11_handler.counter.count_to_zero:

CC = bittst(R5, bitpos(CZEROII));

IF !CC JUMP _IVG11_handler.counter.czm;

/* Clear the serviced request */

R6 = CZEROII (z);

w[P5] = R6;

/* insert count to zero handler here */

_IVG11_handler.counter.count_to_zero.end:

_IVG11_handler.counter.czm:

CC = bittst(R5, bitpos(CZMII));

IF !CC JUMP _IVG11_handler.counter.czm_error;

/* Clear the serviced request */

R6 = CZMII (z);

w[P5] = R6;

/* insert czm handler here */

_IVG11_handler.counter.czm.end:

ADSP-BF50x Blackfin Processor Hardware Reference 13-35

General-Purpose Counter

_IVG11_handler.counter.czm_error:

CC = bittst(R5, bitpos(CZMEII));

IF !CC JUMP _IVG11_handler.counter.czm_zeroes_counter;

/* Clear the serviced request */

R6 = CZMEII (z);

w[P5] = R6;

/* insert czm error handler here */

_IVG11_handler.counter.czm_error.end:

_IVG11_handler.counter.czm_zeroes_counter:

CC = bittst(R5, bitpos(CZMZII));

IF !CC JUMP _IVG11_handler.counter.all_serviced;

/* Clear the serviced request */

R6 = CZMZII (z);

w[P5] = R6;

/* insert czm zeroes counter handler here */

_IVG11_handler.counter.czm_zeroes_counter.end:

_IVG11_handler.counter.all_serviced:

/* Restore from stack */

(R7:0, P5:0) = [SP++];

RETS = [SP++];
RTS;

_IVG11_handler.counter.end:

Listing 13-4 shows how to set up timer 7 (as an example) to capture the
period of counter events. Refer to “Internal Interfaces” in Chapter 9,

Programming Examples

13-36 ADSP-BF50x Blackfin Processor Hardware Reference

“General-Purpose Ports” for information regarding which GP timer(s) are
associated with which GP counter module(s) for your device. The timer is
configured for WDTH_CAP mode, and the period between the last two suc-
cessive counter events is read from within the up count interrupt handler
that was provided in Listing 13-3 on page 13-30.

Listing 13-4. Setting Up Timer 7 for Counter Event Period Capture

/* configure the timer for WDTH_CAP mode */

P5.H = hi(TIMER7_CONFIG);

P5.l = lo(TIMER7_CONFIG);

R5 = PULSE_HI | PERIOD_CNT | TIN_SEL | WDTH_CAP (z);

w[P5] = R5.l;

/* Enable Timer 7

P5.H = hi(TIMER_ENABLE0);

P5.L = lo(TIMER_ENABLE0);

R5 = TIMEN7 (z);

w[P5] = R5.L;

...

_IVG11_handler.counter.up_count:

CC = bittst(R5, bitpos(UCII));

IF !CC JUMP _IVG11_handler.counter.down_count;

/* Clear the serviced request */

R6 = UCII (z);

w[P5] = R6;

/* insert up count handler here */

/* Read the period between the last two successive events */

P5.H = hi(TIMER7_PERIOD);

ADSP-BF50x Blackfin Processor Hardware Reference 13-37

General-Purpose Counter

P5.L = lo(TIMER7_PERIOD);

R5 = [P5];

P5.H = hi(_event_period);

P5.L = lo(_event_period);

[P5] = R5;

_IVG11_handler.counter.up_count.end:

Unique Information for the ADSP-BF50x
Processor

None.

Unique Information for the ADSP-BF50x Processor

13-38 ADSP-BF50x Blackfin Processor Hardware Reference

ADSP-BF50x Blackfin Processor Hardware Reference 14-1

14 PWM CONTROLLER

This chapter describes the PWM controller module. Following an over-
view and a list of key features is a description of operation and functional
modes of operation. The chapter concludes with a programming model
discussion and consolidated register definitions.

Specific Information for the ADSP-BF50x
For details regarding the number of PWMs for the ADSP-BF50x product,
refer to ADSP-BF504, ADSP-BF504F, ADSP-BF506F Embedded Processor
Data Sheet.

For PWM Controller interrupt vector assignments, refer to Table 4-3 on
page 4-19 in Chapter 4, “System Interrupts”.

To determine how the PWM Controller is multiplexed with other func-
tional pins, refer to Table 9-1 on page 9-4 through Table 9-3 on page 9-6
in Chapter 9, “General-Purpose Ports”.

For a list of MMR addresses for the PWM Controller, refer to Chapter A,
“System MMR Assignments”.

Overview
The PWM controller is a flexible, programmable, three-phase PWM
waveform generator that can be programmed to generate the required
switching patterns to drive a three-phase voltage source inverter for ac

Overview

14-2 ADSP-BF50x Blackfin Processor Hardware Reference

induction motor (ACIM) or permanent magnet synchronous motor
(PMSM) control.

In addition, the PWM block contains functions that considerably simplify
the generation of the required PWM switching patterns for control of
electronically commutated motors (ECMs) or brushless dc motors
(BDCMs).

Programming the PWM_SRMODE bit of the PWM_CTRL register to 0 enables a
special mode used for switched reluctance motors (SRMs). Figure 14-1
shows a block diagram that represents the main functional blocks of the
PWM Controller.

The following six blocks control the generation of the six output PWM
signals (PWM_AH, PWM_AL, PWM_BH, PWM_BL, PWM_CH, and PWM_CL):

• Three-Phase PWM Timing Unit. As the core of the PWM
Controller, this block generates three pairs of complemented,
center-based PWM signals and PWM_SYNC coordination.

• Dead Time Control Unit. This block inserts emergency dead time
after the “ideal” PWM output pair, including crossover, is
generated.

• Output Control Unit. This block permits the redirection of the
outputs of the Three-Phase Timing Unit for each channel to the
high-side or the low-side output. In addition, the Output Control
Unit allows individual enabling/disabling of each of the six PWM
output signals.

• Gate Drive Unit. This block provides the correct polarity output
PWM signals, based on the state of the PWM_POLARITY bit of the
PWM_CTRL register. The Gate Drive Unit also permits the generation
of the high-frequency chopping waveform and its subsequent mix-
ing with the PWM output signals.

ADSP-BF50x Blackfin Processor Hardware Reference 14-3

PWM Controller

• PWM Shutdown & Interrupt Control Unit. This block takes care
of the various PWM shutdown modes (via the PWM_TRIP pin and
the PWM_CTRL register). This unit generates the correct reset signal
for the Three-Phase PWM Timing Unit and interrupt signals for
the Interrupt Control Unit

• PWM Sync Pulse Control Unit. This block generates the internal
PWM synchronization pulse and also controls whether an external
PWM_SYNC pulse is used.

Figure 14-1. PWM Controller Block Diagram

PWM
CONFIGURATION
REGISTERS

PWM DUTY
CYCLE
REGISTERS

PWM_STAT2

PWM_CTRL

PWM_TM PWM_CHA
PWM_CHB
PWM_CHC

PWM_DT

PWM_SEG[8:6]
PWM_SEG[5:0] PWM_GATE

THREE-PHASE
PWM TIMING
UNIT

DEAD
TIME
CONTROL
UNIT

OUTPUT
CONTROL
UNIT

GATE
DRIVE
UNIT

PWM
SYNC PULSE
CONTROL
UNIT

PWM
SHUTDOWN
AND INTERRUPT
CONTROL
UNIT

PWM_SYNCWT

PAB BUS

CLKSYNC SR RESET

SYNC CLKSR POL

PWM_AH

PWM_AL

PWM_BH

PWM_BL

PWM_CH

PWM_CL

PWM_TRIPB

PWM_TRIP_IRQ

PWM_SYNC_IRQ

RESETB

FIO_COMP_TRIPB

CLK

PWM_POLARITY

PWM_SRMODE

Overview

14-4 ADSP-BF50x Blackfin Processor Hardware Reference

The PWM Controller is driven by a clock, whose period is tSCLK. The
PWM generator produces three pairs (PWM_AH, PWM_AL, PWM_BH, PWM_BL,
PWM_CH, and PWM_CL) of PWM signals on the six PWM output pins. There
are three high-side drive signals (PWM_AH, PWM_BH, and PWM_CH) and three
low-side drive signals (PWM_AL, PWM_BL, and PWM_CL). The polarity of the
generated PWM signals may be programmed by the PWM_POLARITY bit of
the PWM_CTRL register to generate active high or active low PWM patterns.
The switching frequency and dead time of the generated PWM patterns
are programmable via the PWM_TM and PWM_DT registers. In addition, three
duty-cycle control registers (PWM_CHA, PWM_CHB, and PWM_CHC) directly con-
trol the duty cycles of the three pairs of PWM signals.

Each of the six PWM output signals can be enabled or disabled via sepa-
rate output enable bits of the PWM_SEG register. In addition, three control
bits of the PWM_SEG register permit independent crossover of the two sig-
nals of a PWM pair for easy control of ECMs or BDCMs. In crossover
mode, the PWM signal destined for the high-side switch is diverted to the
complementary low-side output, and the signal destined for the low-side
switch is diverted to the corresponding high-side output signal for ECM
or BDCM modes of operation. A typical configuration for these types of
motors is shown in Figure 14-2.

In common three-phase inverters, it is necessary to insert a so-called “dead
time” between turning off one switch and turning on the other switch in
the same leg, to prevent shoot-through. This dead time is inserted by an
emergency dead-time insertion circuit, which enforces a dead time defined
by the PWM_DT register between the high- and low-side drive signals of each
PWM channel. This ensures that the correct dead time occurs at the
power inverter.

In many applications, there is a need to provide an isolation barrier in the
gate-drive circuits that turn on the power devices of the inverter. In gen-
eral, there are two common isolation techniques: optical isolation using
opto-isolators, and transformer isolation using pulse transformers. The
PWM Controller permits the mixing of the output PWM signals with a

ADSP-BF50x Blackfin Processor Hardware Reference 14-5

PWM Controller

high-frequency chopping signal, which provides an simple interface to
pulse transformers. The features of gate-drive-chopping mode are con-
trolled by the PWM_GATE register. An 8-bit value (GDCLK) within the
PWM_GATE register directly controls the chopping frequency. In addition,
high-frequency chopping can be independently enabled for the high- and
low-side outputs using separate control bits in the PWM_GATE register. In
addition, all PWM outputs require sufficient sink and source capability to
directly drive most opto-isolators.

Figure 14-2. Active Low PWM Signals for ECM Control

PWMCHA=PWMCHB PWMCHA=PWMCHB

2*PWMDT

PWM_AH

PWM_AL

PWM_BH

PWM_BL

PWM_CH

PWM_CL

+PWMTM/2 +PWMTM/2-PWMTM/2

COUNT

0 0

Overview

14-6 ADSP-BF50x Blackfin Processor Hardware Reference

The PWM generator is capable of operating in two distinct modes:

• Single-Update Mode. In single-update mode, duty cycle values are
programmable only once per PWM period; resultant PWM pat-
terns are symmetrical about the mid-point of the PWM period.

• Double-Update Mode. In double-update mode, a second updating
of the PWM registers is implemented at the midpoint of the PWM
period. In double-update mode, it is possible to produce asymmet-
rical PWM patterns that produce lower harmonic distortion in
three-phase PWM inverters. This technique also permits
closed-loop controllers to change the average voltage applied to the
machine windings at a faster rate, thus permitting faster
closed-loop bandwidths to be achieved.

The operating mode of the PWM block (single- or double-update mode)
is selected by the PWM_DBL bit in the PWM_CTRL register. Setting PWM_DBL

to 1 selects double-update mode, and 0 selects single-update mode.

The PWM generator can provide an internal synchronization pulse on the
PWM_SYNC pin that is synchronized to the PWM switching frequency. In
single-update mode, a PWM_SYNC pulse is produced at the start of each
PWM period. In double-update mode, an additional PWM_SYNC pulse is
also produced at the midpoint of each PWM period. The width of the
PWM_SYNC pulse is programmable through the PWM_SYNCWT register.

The PWM generator can also accept an external synchronization pulse on
the PWM_SYNC pin. External synchronization is selected by setting the
PWM_EXTSYNC bit in the PWM_CTRL register. The PWM_SYNC input timing can
be synchronized to the internal system clock, which is selected by setting
the PWM_SYNCSEL bit of the PWM_CTRL register. If the external synchroniza-
tion pulse from the chip pin is asynchronous to the internal system clock
(typical case), the external PWM_SYNC is considered asynchronous and
should be synchronized. If the PWM_SYNC is actually received from another
PWM on the same chip controlled by the same system clock, the PWM_SYNC

can usually be considered synchronous. Synchronization logic will add

ADSP-BF50x Blackfin Processor Hardware Reference 14-7

PWM Controller

latency and jitter from the external sync pulse to the actual PWM outputs.
If the same asynchronous external sync pulse is received by two indepen-
dent PWM Controllers, synchronization of PWM_SYNC is also done
independently and the jitter between the PWM Controllers will not be in
unison. The size of the sync pulse on PWM_SYNC must be greater than two
system clock periods.

The produced PWM output signals can be shut off via:

• Hardware. A dedicated asynchronous PWM shutdown pin
(PWM_TRIP) that when brought low (provided it is not disabled by
the PWMTRIP_DSBL bit of the PWM_CTRL register) instantaneously
places all six PWM outputs in the “off” state (as determined by the
state of the PWM_POLARITY bit of the PWM_CTRL register). This hard-
ware shutdown mechanism is asynchronous so that the associated
PWM disable circuitry does not go through any clocked logic,
thereby ensuring correct PWM shutdown even in the event of a
loss of the processor system clock. A trip shutdown in hardware
resets the PWM_EN bit in the PWM_CTRL register, but all the other pro-
grammable registers maintain their current state.

• Software. The PWM system may be shut down in software by
disabling the PWM_ENABLE bit in the PWM_CTRL register.

 On many processors, the PWM pins are multiplexed with other
functionality. Because they can be in a high-impedance state before
the PORTx_MUX registers are programmed to select the PWM func-
tionality, there should be external pull-down logic for the PWM_TRIP

pin in these cases. For these and other questions about pin multi-
plexing, see ADSP-BF504, ADSP-BF504F, ADSP-BF506F
Embedded Processor Data Sheet.

The PWM unit is capable of generating two different interrupt types. One
interrupt (PWM_SYNCINT) is generated on the occurrence of a rising edge on
the PWM_SYNC pulse, which is internally generated. The other interrupt
(PWM_TRIPINT) is generated on the occurrence of PWM_TRIP, the PWM

General Operation

14-8 ADSP-BF50x Blackfin Processor Hardware Reference

shut-down action. Both interrupts are generated only when the corre-
sponding enable bits (PWMSYNCINT_EN and PWMTRIPINT_EN) are set in the
PWM_CTRL register.

The PWM_STAT register provides status information about the PWM sys-
tem. In particular, the state of the PWM_TRIP pin (PWM_TRIP bit),
PWM_POLARITY (PWM_POL bit), and PWM_SRMODE (PWM_SR bit) are available, as
well as a status bit (PWM_PHASE) that indicates whether operation is in the
first half or the second half of the PWM period. The PWM_STAT register
also reflects the status of the PWM_SYNCINT and PWM_TRIPINT interrupts,
which are set if enabled in the PWM_CTRL register. The latter two bits are
sticky; hence, the interrupt service routine must write-1-to-clear (W1C)
these bits.

General Operation
Typically, the PWM_SYNCINT interrupt is used to periodically execute an
interrupt service routine (ISR) to update the three PWM channel duties,
according to a control algorithm based on expected motor operation and
sampled data of the existing motor operation. PWM_SYNC can also trigger
the ADC to sample data for use during the ISR. During processor boot,
the PWM Controller is initialized and program flow enters a wait loop.
When a PWM_SYNCINT interrupt occurs, the ADC samples data, the data is
algorithmically interpreted, and then the new PWM channel duties are
calculated and written to the PWM registers. More sophisticated imple-
mentations include different start-up, run-time, and shut-down
algorithms to determine PWM channel duties, based on expected behavior
and further features.

During initialization, the PWM_TM register is written to define the PWM
period, and the PWM_CHA, PWM_CHB and PWM_CHC registers are written to
define the initial channel pulse widths. The PWM_SYNCWT, PWM_GATE,
PWM_SEG, PWM_CHAL, PWM_CHBL and PWM_CHCL registers are written, depend-
ing on the system configuration and modes. The PWM_STAT register can be

ADSP-BF50x Blackfin Processor Hardware Reference 14-9

PWM Controller

read to determine polarity, and whether switched reluctance (SR) mode
(PWM_SR bit) is enabled, and whether an external trip situation is prevent-
ing the correct start-up of the PWM Controller. An active external trip
event must be resolved prior to PWM startup. The PWM_CTRL register is
then written to define the major operating mode and to enable the PWM
outputs and PWM sync pulse.

During the PWM_SYNCINT interrupt-driven control loop, only the PWM_CHx

duty values are updated typically. The PWM_SEG register may also be
updated for other system implementations requiring output crossover.

During an external trip event (if not disabled), the PWM outputs will be
turned off (that is, set to the opposite of the “on” polarity configured by
the PWM_POLARITY bit of the PWM_CTRL register), and the PWM sync pulse
will continue to operate if already enabled. A PWM_TRIPINT interrupt will
occur if unmasked, notifying the software of this event. To handle cases
where clock signal integrity is an issue, external trips will turn off the
PWM outputs, with or without clocks.

Functional Description
This section describes the function of the following PWM features:

• “Three-Phase PWM Timing Unit and Dead Time Control Unit”
on page 14-10

• “PWM Switching Frequency (PWM_TM) Register” on
page 14-10

• “PWM Switching Dead Time (PWM_DT) Register” on
page 14-12

• “PWM Operating Mode (PWM_CTRL and PWM_STAT) Regis-
ters” on page 14-13

Functional Description

14-10 ADSP-BF50x Blackfin Processor Hardware Reference

• “PWM Duty Cycle (PWM_CHA, PWM_CHB, and PWM_CHC)
Registers” on page 14-14

• “Special Consideration for PWM Operation in Over-Modulation”
on page 14-20

• “Three-Phase PWM Timing Unit Operation” on page 14-22

• “Effective PWM Accuracy” on page 14-24

• “Switched Reluctance Mode” on page 14-25

• “Output Control Unit” on page 14-25

• “Switched Reluctance (SR) Mode” on page 14-31

• “PWM Sync Operation” on page 14-34

• “PWM Shutdown and Interrupt Control Unit” on page 14-36

Three-Phase PWM Timing Unit and Dead Time
Control Unit

The 16-bit Three-Phase PWM Timing Unit is the core of the PWM Con-
troller and produces three pairs of pulse-width modulated signals with
high resolution and minimal processor overhead. The outputs of this unit
are such that a low level is interpreted as a command to turn on
(active-low) the associated power device. Three configuration registers
(PWM_CTRL, PWM_TM, and PWM_DT) determine the fundamental characteristics
of the PWM outputs. These registers, in conjunction with the three 16-bit
duty cycle registers (PWM_CHA, PWM_CHB, and PWM_CHC), control the output
of the Three-Phase PWM Timing Unit.

PWM Switching Frequency (PWM_TM) Register
The 16-bit read/write PWM period register (PWM_TM) controls the PWM
switching frequency. The fundamental timing unit of the PWM

ADSP-BF50x Blackfin Processor Hardware Reference 14-11

PWM Controller

Controller is tSCLK. Therefore, for a 100 MHz system clock (SCLK), fSCLK,
the fundamental time increment (tSCLK) is 10 ns. The value written to the
PWM_TM register is effectively the number of tSCLK clock increments in half
a PWM period. The required PWM_TM value as a function of the desired
PWM switching frequency (fPWM) is given by:

Therefore, the PWM switching period (Ts) can be written as:

For example, for an fSCLK of 100 MHz and a desired PWM switching fre-
quency (fPWM) of 10 kHz (Ts = 100 s), the correct value to load into the
PWM_TM register is:

The largest value that can be written to the 16-bit PWM_TM register is
0xFFFF = 65,535, which, at an fSCLK of 100 MHz, corresponds to a min-
imum PWM switching frequency of:

 PWM_TM values of 0 and 1 are not defined and should not be used
when the PWM outputs or PWM sync is enabled.

PWM_TM
f SCLK

2 f PWM
------------------------=

T S 2 PWM_TM t SCLK=

PWM_TM 100 106

2 10 103
------------------------------ 5000= =

f PWM min 
100 106
2 65535
------------------------ 762Hz= =

Functional Description

14-12 ADSP-BF50x Blackfin Processor Hardware Reference

PWM Switching Dead Time (PWM_DT) Register
The second important parameter that must be set up in the initial config-
uration of the PWM Controller is the switching dead time. This is a short
delay introduced between turning off one PWM signal (for example, AH)
and turning on the complementary signal (for example, AL). This short
time delay permits the power switch being turned off (AH in this case) to
completely recover its blocking capability before the complementary
switch is turned on. This time delay prevents a potentially destructive
short-circuit condition from developing across the dc link capacitor of a
typical voltage source inverter.

The 10-bit, read/write PWM_DT register controls the dead time. This register
controls the dead time inserted into the three pairs of PWM output sig-
nals. Dead time (Td) is related to the value in the PWM_DT register by:

Therefore, a PWM_DT value of 0x00A introduces a 200 ns delay (for a SCLK

of 100 MHz) between turning off any PWM signal (for example, AH) and
then turning on its complementary signal (for example, AL). The length of
the dead time can therefore be programmed in increments of 2tSCLK
(or 20 ns for an SCLK of 100 MHz). The PWM_DT register is a 10-bit register
whose maximum value of 0x3FF (1023 decimal) corresponds to a maxi-
mum programmed dead time of:

for an fSCLK rate of 100 MHz. The dead time can be programmed to be
zero by writing 0 to the PWM_DT register.

T d PWM_DT 2 t SCLK=

T d max  1023 2 t SCLK 1023 2 10 10 9– 20.5s= = =

ADSP-BF50x Blackfin Processor Hardware Reference 14-13

PWM Controller

PWM Operating Mode (PWM_CTRL and PWM_STAT)
Registers

The PWM Controller can operate in two distinct modes: single-update
mode and double-update mode. The mode is determined by the state of
PWM_DBL bit of the PWM_CTRL register. When this bit is cleared, the PWM
Controller operates in single-update mode. Setting the PWM_DBL bit places
the PWM Controller in double-update mode. Following a peripheral reset
or power on, the PWM_DBL bit is cleared; thus, PWM Controller operation
defaults to single-update mode.

In single-update mode, a PWM_SYNC pulse is produced during each PWM
period. The rising edge of this signal marks the start of a new PWM cycle
and is used to latch new values from the PWM configuration registers
(PWM_TM, PWM_DT, and PWM_SYNCWT), and the PWM duty cycle registers
(PWM_CHA, PWM_CHB, PWM_CHC, PWM_CHAL, PWM_CHBL, and PWM_CHCL) into the
Three-Phase PWM Timing Unit. In addition, the PWM_SEG register is also
latched into the Output Control Unit on the rising edge of the PWM_SYNC

pulse. In effect, this means that the characteristics and resultant duty
cycles of the PWM signals can be updated only once per PWM period at
the start of each cycle. This results in PWM patterns that are symmetrical
about the midpoint of the switching period.

In double-update mode, an additional PWM_SYNC pulse is produced at the
midpoint of each PWM period. The rising edge of this second PWM_SYNC

pulse is again used to latch new values of the PWM configuration regis-
ters, duty cycle registers, and the PWM_SEG register. As a result, it is possible
to alter both the characteristics (switching frequency, dead time, and
PWM_SYNC pulse width) and the output duty cycles at the midpoint of each
PWM cycle. Consequently, it is possible to produce PWM switching pat-
terns that are no longer symmetrical about the midpoint of the period
(asymmetrical PWM patterns).

In double-update mode, it may be necessary to know whether operation at
any point in time is in the first or second half of the PWM cycle. This

Functional Description

14-14 ADSP-BF50x Blackfin Processor Hardware Reference

information is provided by the PWM_PHASE bit of the PWM_STAT register,
which is cleared during operation in the first half of each PWM period
(between the rising edge of the original PWM_SYNC pulse and the rising edge
of the second PWM_SYNC pulse introduced in double-update mode). The
PWM_PHASE bit is set during operation in the second half of each PWM
period. This status bit allows determination of the particular half-cycle
during implementation of the PWM_SYNC interrupt service routine.

The advantage of double-update mode is that the PWM process can pro-
duce lower harmonic voltages, and faster control bandwidths are possible.
However, for a given PWM switching frequency, PWM_SYNC pulses occur at
twice the rate in double-update mode. Since new duty cycle values are
computed in each PWM_SYNCINT interrupt service routine, double-update
mode places a larger computational burden on the processor.
Alternatively, the same PWM update rate may be maintained at half the
switching frequency, yielding lower switching losses.

The PWM_STAT2 status register is provided for software simulation. This
register contains the output values of all the three pairs of PWM signals
(PWM_AH, PWM_AL, PWM_BH, PWM_BL, PWM_CH, and PWM_CL).

PWM Duty Cycle (PWM_CHA, PWM_CHB, and
PWM_CHC) Registers

Three 16-bit read/write duty cycle registers (PWM_CHA, PWM_CHB, and
PWM_CHC) control the duty cycles of the six PWM output signals on the
PWM_AH, PWM_AL, PWM_BH, PWM_BL, PWM_CH, and PWM_CL pins when not in
switched reluctance mode. The two’s complement integer value in the
PWM_CHA register controls the duty cycle of the signals on the PWM_AH and
PWM_AL outputs; in PWM_CHB, it controls the duty cycle of the signals on
PWM_BH and PWM_BL; in PWM_CHC, it controls the duty cycle of the signals on
PWM_CH and PWM_CL. The duty cycle registers are programmed in two’s
complement integer counts of the fundamental time unit (tSCLK) and
define the desired on-time of the high-side PWM signal produced by the
Three-Phase PWM Timing Unit over half the PWM period.

ADSP-BF50x Blackfin Processor Hardware Reference 14-15

PWM Controller

Each duty cycle register range is from (–PWMTM/2 – PWMDT) to
(+PWMTM/2 + PWMDT), which, by definition, is scaled such that a
value of 0 represents a 50% PWM duty cycle.

The switching signals produced by the Three-Phase PWM Timing Unit
are also adjusted to incorporate the programmed dead time value in the
PWM_DT register by programming active low polarity in PWM_CTRL. The
Three-Phase PWM Timing Unit produces active-low signals to turn on
the associated power device.

Figure 14-3 shows a typical pair of PWM outputs (in this case, for PWM_AH
and PWM_AL) from the Three-Phase PWM Timing Unit for operation in
single-update mode. All illustrated time values indicate the integer value
in the associated register and can be converted to time by multiplying by
the fundamental time increment (tSCLK) and comparing to the two’s com-
plement counter.

Notice that the switching patterns are perfectly symmetrical about the
midpoint of the switching period in single-update mode, since the same
values of PWM_CHA, PWM_TM, and PWM_DT are used to define the signals in
both half cycles of the period.

As implied by Figure 14-3, the programmed duty cycles are adjusted to
incorporate the desired dead time into the resultant pair of PWM signals
by moving the switching instants of both PWM signals (PWM_AH and
PWM_AL) away from the instant set by the PWM_CHA register. Both switching
edges are moved by an equal amount (PWMDT * tSCLK) to preserve the sym-
metrical output patterns. Figure 14-3 shows the PWM_SYNC pulse whose
rising edge denotes the beginning of the switching period and whose
width is set by the PWM_SYNCWT register. Also shown is the PWM_PHASE bit of
the PWM_STAT register, which indicates whether operation is in the first half
cycle or second half cycle of the PWM period.

Functional Description

14-16 ADSP-BF50x Blackfin Processor Hardware Reference

The resultant on-times (active low) of the PWM signals over the full
PWM period (two half periods) produced by the Three-Phase PWM Tim-
ing Unit and illustrated in Figure 14-3, may be written as:

Figure 14-3. Typical PWM Outputs of Three-Phase Timing Unit
in Single-Update Mode (Active-Low Waveforms)

PWMCHA PWMCHA

2*PWMDT

PWM_AH

PWM_AL

+PWMTM/2 +PWMTM/2-PWMTM/2

COUNT

0 0

2*PWMDT

PWMTM PWMTM

PWM_PHASE

PWMSYNC_OUT

T AH PWMTM 2 PWMCHA PWMDT– +  t SCLK=

Range of TAH 0 2 PWMTM t SCLK[,]=

ADSP-BF50x Blackfin Processor Hardware Reference 14-17

PWM Controller

and the corresponding duty cycles are:

Obviously, negative values of TAH and TAL are not permitted, and the
minimal permissible value is zero (corresponding to a 0% duty cycle). In a
similar fashion, the maximal value is Ts, which is the PWM switching
period that corresponds to a 100% duty cycle.

Figure 14-4 shows the output signals from the Three-Phase PWM Timing
Unit in double-update mode. This figure illustrates a completely general
case in which the switching frequency, dead time, and duty cycle are
changed in the second half of the PWM period. Of course, the same value
for any or all of these quantities may be used in both halves of the PWM
cycle. However, it can be seen that there is no guarantee that a symmetri-
cal PWM signal will be produced by the Three-Phase PWM Timing Unit
in double-update mode. Additionally, it is seen that the dead time is
inserted into the PWM signals similarly to single-update mode.

T AL PWMTM 2 PWMCHA PWMDT+ –  t SCLK=

Range of TAL 0 2 PWMTM t SCLK[,]=

d AH
T AH

T S
------------ 1

2
--- PWMCHA PWMDT–

PWMTM
--+= =

d AL
T AL

T S
---------- 1

2
--- PWMCHA PWMDT+

PWMTM
--–= =

Functional Description

14-18 ADSP-BF50x Blackfin Processor Hardware Reference

In general, the on-times (active low) of the PWM signals over the full
PWM period in double-update mode can be defined as:

Figure 14-4. Typical PWM Outputs of Three-Phase Timing Unit
in Double-Update Mode (Active Low Waveforms)

PWMCHA1
PWMCHA2

2*PWMDT1

PWM_AH

PWM_AL

+PWMTM1/2 +PWMTM2/2

-PWMTM1/2

COUNT

0 0

2*PWMDT2

PWMTM1 PWMTM2

PWM_PHASE

PWMSYNC_OUT

-PWMTM2/2

T AH
PWMTM 1

2

PWMTM 2

2
--------------------------- PWMCHA1 PWMCHA2 PWMDT 1– PWMDT 2–+ + + 

  t SCLK=

T AL
PWMTM 1

2

PWMTM 2

2
--------------------------- PWMCHA1– PWMCHA2– PWMDT 1– PWMDT 2–+ 

  t SCLK=

ADSP-BF50x Blackfin Processor Hardware Reference 14-19

PWM Controller

where subscript 1 refers to the value of that register during the first half
cycle and subscript 2 refers to the value during the second half cycle. The
corresponding duty cycles are:

since for the completely general case in double-update mode, the switch-
ing period is given by:

Again, the values of TAH and TAL are constrained to lie between zero
and Ts. Similar PWM signals to those illustrated in Figure 14-2 on
page 14-5 and in Figure 14-3 on page 14-16 can be produced on the BH,
BL, CH, and CL outputs by programming the PWM_CHB and PWM_CHC registers
in a manner identical to that described for PWM_CHA.

T S PWMTM 1 PWMTM 2+  t SCLK=

d AH
T AH

T S
------------ 1

2

PWMCHA1 PWMCHA2 PWMDT 1– PWMDT 2–+ 
PWMTM 1 PWMTM 2+ 

---+= =

L
T AL

T S
---------- 1

2

PWMCHA1 PWMCHA2 PWMDT 1 PWMDT+ + +
PWMTM 1 PWMTM 2+ 

--–= =

T S PWMTM 1 PWMTM 2+  t SCLK=

Functional Description

14-20 ADSP-BF50x Blackfin Processor Hardware Reference

Special Consideration for PWM Operation in
Over-Modulation

The Three-Phase PWM Timing Unit can produce PWM signals with
variable duty-cycle values at the PWM output pins. At the extremities of
the modulation process, both 0% and 100% modulation (termed
full off mode and full on mode, respectively) are possible. In between, for
other duty cycle values, the operation is termed normal modulation.

• Full On Mode. The PWM for any pair of PWM signals is said to
operate in full on mode when the desired high side output of the
Three-Phase PWM Timing Unit is in the “on” state (low or high as
specified by PWM_POLARITY bit of the PWM_CTRL register) between
successive PWM_SYNC rising edges. This state may be entered by vir-
tue of the commanded duty cycle values (in conjunction with the
PWM_DT register).

• Full Off Mode. The PWM for any pair of PWM signals is said to
operate in full off mode when the desired high side output of the
Three-Phase PWM Timing Unit is in the “off” state (high or low as
specified by the PWM_POLARITY bit of the PWM_CTRL register) between
successive PWM_SYNC pulses. This state may be entered by virtue of
the commanded duty cycle values (in conjunction with the PWM_DT

register).

• Normal Modulation. The PWM for any pair of PWM signals is
said to operate in normal modulation when the desired output duty
cycle is other than 0% or 100% between successive PWM_SYNC

pulses.

Certain situations exist whereby it is necessary to transition into or out of
full on mode or full off mode in order to insert additional “emergency
dead time” delays to prevent potential shoot-through conditions in the
inverter. Crossover usage also can potentially cause outputs to violate
shoot-through condition criteria, as described in “Crossover Feature” on
page 14-25. These transitions are detected automatically and, if

ADSP-BF50x Blackfin Processor Hardware Reference 14-21

PWM Controller

appropriate for safety, emergency dead-time is inserted to prevent
shoot-through conditions.

The insertion of additional emergency dead time into one of the PWM
signals of a given pair during these transitions is necessary only when both
PWM signals are required to toggle within a dead time of each other.
The additional emergency dead time delay is inserted into the PWM sig-
nal that is toggling into the “on” state. In effect, the turn on (if turning on
during this dead time region) of this signal is delayed by an amount
(2*PWM_DT*tSCLK) from the rising edge of the opposite output. After this
delay, the PWM signal is allowed to turn on, provided the desired output
is still scheduled to be in the on state after the emergency dead time delay.

Figure 14-5 illustrates two examples of such transitions. In the top half
(marked A) of Figure 14-5, no special action (dead time) is needed when
transitioning from normal modulation to full on mode at the half cycle
boundary in double-update mode. However, in the bottom half
(marked B) of Figure 14-5, when transitioning from normal modulation
into full off mode at the same boundary, it can be seen that an additional
emergency dead time is necessary (inserted by the PWM Controller).
Clearly, this inserted dead time is different from the normal dead time as
it is impossible to move one of the switching events back in time, because
this would take it into the previous modulation cycle. Therefore, the
entire emergency dead time is inserted by delaying the turn on of the
appropriate signal by the full amount.

Functional Description

14-22 ADSP-BF50x Blackfin Processor Hardware Reference

Three-Phase PWM Timing Unit Operation
The internal operation of the PWM Controller is controlled by the
Three-Phase PWM Timing Unit, which is clocked at the system clock rate
with period tSCLK. The operation of the Three-Phase PWM Timing Unit
over one full PWM period is illustrated in Figure 14-6.

During the first half cycle (when the PWM_PHASE bit of the PWM_STAT

register is cleared), the Three-Phase PWM Timing Unit decrements from
+PWMTM/2 to -PWMTM/2 using a two’s complement count. Then the

Figure 14-5. Examples of Transitioning from Normal Modulation to
Full On Mode (A) or Full Off Mode (B)

PWMCHA1

2*PWMDT

PWM_AH

PWM_AL

+PWMTM/2 +PWMTM/2-PWMTM/2

COUNT

0 0

2*PWMDT

PWM_AL

PWM_AH

DEADTIME INSERTED HERE

A

B

ADSP-BF50x Blackfin Processor Hardware Reference 14-23

PWM Controller

count direction changes, and the unit increments from -PWMTM/2 to
the +PWMTM/2 value.

Figure 14-6 also shows the PWM SYNC pulses during single-update
mode and double-update mode. Clearly, an additional PWM SYNC pulse
is generated at the midpoint of the PWM cycle in double-update mode. If
the value of the PWM_TM register is altered at the midpoint in double-update
mode, the duration of the second half period (when the PWM_PHASE bit of
the PWM_STAT register is set) may differ from that of the first half cycle.
PWM_TM is double-buffered; a change in one half of the PWM switching
period will only take effect in the next half period.

Figure 14-6. Operation of Internal PWM Timer

PWM TIMER DECREMENTS FROM
PWMTM÷2 TO –PWMTM÷2

PWM TIMER INCREMENTS FROM
–PWMTM÷2 TO PWMTM÷2

PWMTM÷2

–PWMTM÷2

1

tCK

PWM_SYNC_OUT
DOUBLE_UPDATE MODE

PWM_SYNC_OUT
SINGLE-UPDATE MODE

PWM_PHASE

Functional Description

14-24 ADSP-BF50x Blackfin Processor Hardware Reference

Effective PWM Accuracy
The PWM Controller has 16-bit resolution, but accuracy depends on the
PWM period. In single-update mode, the same values of PWM_CHA,
PWM_CHB, and PWM_CHC define the on-times in both half cycles of the PWM
period. As a result, the effective accuracy of the PWM generation process
is 2  tSCLK (20 ns for a 100 MHz fSCLK). Incrementing one of the duty
cycle registers by 1 changes the resultant on-time of the associated PWM
signals by tSCLK in each half period (2  tSCLK for the full period). In dou-
ble-update mode, improved accuracy is possible since different values of
the duty cycles registers are used to specify the on-times in both the first
half and second half of the PWM period. As a result, it is possible to
adjust the on-time over the entire period in increments of tSCLK. This cor-
responds to an effective PWM accuracy of tSCLK in double-update mode
(10 ns for a 100 MHz fSCLK). The minimum achievable PWM switching
frequency at a given PWM accuracy is shown in Table 14-1 for
SCLK = 100 MHz.

Table 14-1. Minimum Achievable PWM Frequency versus
Bit Resolution for SCLK = 100 MHz

Resolution (bits) PWM Frequency (kHz) in
Single-Update Mode

PWM Frequency (kHz) in
Double-Update Mode

8 195.3 390.6

9 97.7 195.3

10 48.8 97.7

11 24.4 48.8

12 12.2 24.4

13 6.1 12.2

14 3.05 6.1

ADSP-BF50x Blackfin Processor Hardware Reference 14-25

PWM Controller

Switched Reluctance Mode
A general-purpose mode utilizing independent edge placement of upper
and lower signals of each of the three PWM channels is incorporated into
the Three-Phase PWM Timing Unit. This mode is provided for SR motor
operation and is described in detail in “Switched Reluctance (SR) Mode”
on page 14-31.

Output Control Unit
The operation of the Output Control Unit is controlled by the 9-bit
read/write PWM_SEG register (on page 14-45) that controls two distinct
features that are useful in the control of ECMs or BDCMs.

Crossover Feature

The PWM_SEG register contains three crossover bits—one for each pair of
PWM outputs. Setting the AHAL_XOVR bit of the PWM_SEG register enables
crossover mode for the AH/AL pair of PWM signals, setting BHBL_XOVR

enables crossover on the BH/BL pair, and setting CHCL_XOVR enables cross-
over on the CH/CL pair. If crossover mode is enabled for any pair of PWM
signals, the high-side PWM signal (for example, AH) from the Three-Phase
PWM Timing Unit is diverted to the associated low-side output of the
Output Control Unit so that the signal ultimately appears at the AL pin.
The corresponding low-side output of the Three-Phase PWM Timing
Unit is also diverted to the complementary high-side output of the Out-
put Control Unit so that the signal appears at the AH pin. Following a
reset, the three crossover bits are cleared, disabling crossover mode on all
three pairs of PWM signals. Even though crossover is considered an out-
put control feature, dead time insertion occurs after crossover transitions
(as necessary to eliminate shoot-through safety issues).

Functional Description

14-26 ADSP-BF50x Blackfin Processor Hardware Reference

Mode Bits (POLARITY and SRMODE)

PWM_POLARITY and PWM_SRMODE are programmable bits of the PWM_CTRL

register.

 The incorrect programming of these two mode-select signals can
have destructive consequences on the external power inverter con-
nected to the PWM unit. Since PWM_POLARITY and PWM_SRMODE are
software programmable bits, accidental power inverter
shoot-through current may occur from incorrect programming.

Output Enable Function

The PWM_SEG register also contains six bits (bits 0 to 5) that can be used to
individually enable or disable each of the six PWM outputs. The PWM
signal of the AL pin is enabled by clearing the AL_EN bit of the PWM_SEG reg-
ister, the AH_EN bit controls AH, the BL_EN bit controls BL, the BH_EN bit
controls BH, the CL_EN bit controls CL, and the CH_EN bit controls the CH

output. If the associated bit of the PWM_SEG register is set, the correspond-
ing PWM output is disabled irrespective of the value of the corresponding
duty cycle register. This PWM output signal will remain in the off state as
long as the corresponding enable/disable bit of the PWM_SEG register is set.
This output enable function is implemented after the crossover function.
Following a reset, all six enable bits of the PWM_SEG register are cleared so
that all PWM outputs are enabled by default. In a manner identical to the
duty cycle registers, the PWM_SEG register is latched on the rising edge of
the PWM_SYNC signal so that changes to this register only become effective
at the start of each PWM cycle in single-update mode. In double-update
mode, the PWM_SEG register can also be updated at the midpoint of the
PWM cycle.

ADSP-BF50x Blackfin Processor Hardware Reference 14-27

PWM Controller

Brushless DC Motor (Electronically Commutated Motor)
Control

In the control of an electronically commutated motor (ECM), only two
inverter legs are switched at any time. Often, the high-side device in one
leg must be switched on at the same time as the low-side driver in a second
leg. Therefore, by programming identical duty cycles values for two PWM
channels (for example, PWM_CHA = PWM_CHB) and setting the BHBL_XOVR bit
of the PWM_SEG register to crossover the BH/BL pair if PWM signals, it is
possible to turn on the high-side switch of phase A and the low-side
switch of phase B at the same time.

In ECM control, usually the third inverter leg (phase C in this example) is
disabled for a number of PWM cycles. This is implemented by disabling
the CH and CL outputs by setting the CH_EN and CL_EN bits of the PWM_SEG

register.

This is illustrated in Figure 14-7 where it can be seen that both the AH and
BL signals are identical (since PWM_CHA = PWM_CHB and the crossover bit for
phase B is set). In addition, the other four signals (AL, BH, CH, and CL) are
disabled by setting the appropriate enable/disable bits of the PWM_SEG

register.

Functional Description

14-28 ADSP-BF50x Blackfin Processor Hardware Reference

For the situation illustrated in Figure 14-7, an appropriate value for the
PWM_SEG register is 0x00A7. In normal ECM operation, each inverter leg is
disabled for certain lengths of time, such that the PWM_SEG register is
changed, based upon the position of the rotor shaft (motor commutation).

Figure 14-7. Example of Active Low Signals for ECM Control

PWMCHA=PWMCHB PWMCHA=PWMCHB

2*PWMDT

PWM_AH

PWM_AL

PWM_BH

PWM_BL

PWM_CH

PWM_CL

+PWMTM/2 +PWMTM/2-PWMTM/2

COUNT

0 0

ADSP-BF50x Blackfin Processor Hardware Reference 14-29

PWM Controller

Gate Drive Unit
The Gate Drive Unit is described in the following sections:

• “High-Frequency Chopping”

• “PWM Polarity Control” on page 14-30

High-Frequency Chopping

The Gate Drive Unit of the PWM Controller simplifies the design of
isolated gate drive circuits for PWM inverters. If a transformer-coupled
power device gate drive amplifier is used, the active PWM signal must be
chopped at a high frequency. The 10-bit read/write PWM_GATE register
allows you to specify this high-frequency chopping mode.

Chopped active PWM signals may be required for high-side drivers only,
for low-side drivers only, or for both high-side and low-side switches.
Therefore, independent control of this mode for both high- and low-side
switches is included with two separate control bits (CHOPHI and CHOPLO) in
the PWM_GATE register.

Typical PWM output signals with high-frequency chopping enabled on
both high- and low-side signals are shown in Figure 14-8. Chopping the
high-side PWM outputs (AH, BH, and CH) is enabled by setting the CHOPHI

bit of the PWM_GATE register; chopping the low-side PWM outputs (AL, BL,
and CL) is enabled by setting the CHOPLO bit of the PWMGATE register. The
high-frequency chopping frequency is controlled by the 8-bit word placed
in bits 0 to 7 (GDCLK) of the PWM_GATE register. The period of this high-fre-
quency carrier is:

T chop 4 GDCLK 1+   t SCLK=

Functional Description

14-30 ADSP-BF50x Blackfin Processor Hardware Reference

and the chopping frequency is therefore an integral subdivision of the
system clock frequency:

The GDCLK value may range from 0 to 255, which corresponds to a pro-
grammable chopping frequency rate from 97.7 kHz to 25 MHz for a
100 MHz fSCLK rate. The gate drive features must be programmed before
operation of the PWM Controller and typically are not changed during
normal operation of the PWM Controller. Following a reset, all bits of the
PWM_GATE register are cleared so that high-frequency chopping is disabled,
by default.

PWM Polarity Control

The polarity of the PWM signals produced at output pins AH to CL can be
programmed via the PWM_POLARITY bit of the PWM_CTRL register. Setting

Figure 14-8. Example of Active Low PWM Signals for Gate Chopping

f chop
f SCLK

4 GDCLK 1+  
--=

PWMCHA PWMCHA

2*PWMDT

PWM_AH

PWM_AL

+PWMTM/2 +PWMTM/2-PWMTM/2

COUNT

0 0

2*PWMDT

ADSP-BF50x Blackfin Processor Hardware Reference 14-31

PWM Controller

this bit to 0 selects active low PWM outputs, such that a low level is inter-
preted as a command to turn on the associated power device. Conversely,
setting the PWM_POLARITY bit to 1 selects active high PWM outputs, such
that a high level at the PWM outputs turns on the associated power
devices. The status of the polarity may be read from the PWM_POL bit of the
PWM_STAT register, where a zero indicates a measured low level at the
PWM_POLARITY bit.

Output Control Feature Precedence
It is important to understand the order in which output control features
are applied to the PWM signal. The following hierarchy indicates the
order (from most important to least important) in which signal features
are applied to the PWM output signal.

1. Channel duty generation

2. Channel crossover

3. Low-side invert

4. Output enable

5. Emergency dead time insertion

6. Active signal chopping

7. Polarity

Switched Reluctance (SR) Mode
The PWM Controller provides a switched reluctance (SR) mode that is
enabled by setting the PWM_SRMODE bit in the PWM_CTRL register to 0. This
mode is not enabled by default. The state of this switched reluctance mode
may be read from the PWM_SR bit of the PWM_STAT register. If the
PWM_SRMODE bit is high (such that SR mode is disabled) the PWM_SR bit of
the PWM_STAT register is set (indicating that the mode is disabled).

Functional Description

14-32 ADSP-BF50x Blackfin Processor Hardware Reference

Conversely, if the PWM_SRMODE bit is low and SR mode is enabled, the
PWM_SR bit of PWM_STAT register is cleared.

 Since this is a software programmable bit, be careful not to write it
to an active state in a non-SR mode system and cause
shoot-through at the power inverters, possibly leading to an unsafe
situation.

In the typical power converter configuration for switched or variable
reluctance motors, the motor winding is connected between the two
power switches of a given inverter leg. Therefore, to allow for a complete
circuit in the motor winding, it is necessary to turn on both switches at
the same time.

SR mode provides four mode types: hard chop, alternate chop, soft
chop-bottom on, and soft chop-top on (see Table 14-2). Three registers
(PWM_CHAL, PWM_CHBL, and PWM_CHCL) are used to define edge placement of
the low side of the channel. The PWM_DT register, which is not used, is
internally forced to 0 by hardware when SR mode is active. The four
switched reluctance (SR) chop modes are specified via three bits
(PWM_SR_LSI_A, PWM_SR_LSI_B, and PWM_SR_LSI_C) of the PWM_LSI register,
full on mode, and full off mode.

The PWM_CHA and PWM_CHAL registers are programmed independently;
PWM_CHA specifies edge placement for the high side of the channel, and
PWM_CHAL specifies edge placement for the low side of the channel.
Similarly, the PWM_CHB and PWM_CHBL pair, and the PWM_CHC and PWM_CHCL

pair, respectively, specify high-side and low-side edge placement.

ADSP-BF50x Blackfin Processor Hardware Reference 14-33

PWM Controller

Figure 14-9 shows the four SR mode types as active-high PWM output
signals, and Table 14-2 describes the four mode types.

Figure 14-9. Four SR Mode Types

SOFT
CHOP-
TOP
ON

SOFT
CHOP-
BOTTOM
ON

HARD
CHOP

ALTER-
NATE
CHOP

PWMCHA1
PWMCHA2

PWMCHAL1

PWM_AL

PWM_AH

PWM_AL

PWM_AH

PWM_AL

PWM_AH

PWM_AL

PWMCHA1

PWMCHAL1

PWMCHA1

PWMCHAL1

PWMCHAL2

PWMCHA2

PWMCHA2

PWMCHAL2

PWMCHAL2

PWMTM1
PWMTM2

+PWMTM/2 +PWMTM/2-PWMTM/2

PWM_AH

COUNT

0 0

Functional Description

14-34 ADSP-BF50x Blackfin Processor Hardware Reference

PWM Sync Operation
The PWM sync can be internally generated as a function of the PWM_TM

and PWM_SYNCWT register values, or the PWM sync can be input externally.
Multiple PWM configurations can be established, each of which can oper-
ate with its own independent PWM sync (or from its own external PWM
sync signal or a shared external PWM sync signal). The external PWM
sync can be synchronous to the internal clock, as in the case of a primary
PWM Controller generating an internal PWM_SYNC signal that drives a
secondary PWM Controller's PWM_SYNC pin. The external PWM sync can
also be asynchronous to the internal clock, as is typically the case of an
off-chip PWM_SYNC signal used to drive each PWM Controller’s PWM_SYNC
pin.

Table 14-2. Switched Reduction Mode (SR Mode) Types

Mode Description

Hard
chop

Contains independently programmed rising edges of channels’ high and low signals
in the same PWM half cycle, and both contain independently programmed falling
edges in the next PWM half cycle. The PWM_CHA duty register is used for the high
channel, and the PWM_CHAL duty register is used for the low channel. A similar
structure is present for the B and C channels.

Alternate
chop

Similar to normal PWM operation, but the PWM channel high and low signal
edges are opposite and are independently programmed. The PWM_CHA duty register
is used for the high channel, and the PWM_CHAL duty register is used for the low
channel. A similar structure is present for the B and C channels. The PWM_CTRL
and PWM_LSI registers are used to independently invert the low side of each PWM
channel. The low-side invert is the only difference between hard chop mode and
alternate chop mode

Soft chop-
bottom on

Utilizes a 100% duty on the low side of the channel. Similar to hard chop mode,
the PWM_CHA duty register is used for the high channel and the PWM_CHAL duty reg-
ister is used for the low channel. A similar structure is present for the B and C
channels.

Soft chop-
top on

Utilizes a 100% duty on the high side of the channel. Similar to hard chop mode,
the PWM_CHA duty register is used for the high channel and the PWM_CHAL duty reg-
ister is used for the low channel. A similar structure is present for the B and C
channels.

ADSP-BF50x Blackfin Processor Hardware Reference 14-35

PWM Controller

Internal PWM SYNC Generation

The PWM Controller produces an output PWM synchronization pulse at
a rate equal to the PWM switching frequency in single-update mode and
at twice the PWM frequency in double-update mode. This pulse is avail-
able for external use at the PWM_SYNC pin. The width of this PWM SYNC
pulse is programmable by the 10-bit read/write PWM_SYNCWT register. The
width of the PWM SYNC pulse (TPWM_SYNC) is given by:

so that the width of the pulse is programmable from tSCLK to 1024*tSCLK
(corresponding to 10 ns to 10.24 s for an fSCLK rate of 100 MHz).
Following a reset, the PWM_SYNCWT register contains 0x3FF (1023 decimal)
so that the default PWM_SYNC width is 10.24 s, again for an fSCLK of
100 MHz.

External PWM SYNC Generation

By setting the PWM_EXTSYNC bit of the PWM_CTRL register, the PWM is set up
in a mode to expect an external PWM SYNC on the PWM_SYNC pin. The
external sync should be synchronized by setting the PWM_SYNCSEL bit of the
PWM_CTRL register to 0, which assumes the selected external PWM SYNC is
asynchronous.

The external PWM SYNC period is expected to be an integer multiple of
the internal PWM SYNC period. When the rising edge of the external
PWM_SYNC is detected, the PWM Controller is restarted at the beginning of
the PWM cycle. If the external PWM SYNC period is not an integer mul-
tiple of the internal PWM SYNC, the behavior of the PWM channel
outputs will be clipping. Note that a small amount of jitter inherent in the
synchronization logic cannot be avoided when the external PWM SYNC
is synchronized.

T PWMSYNC tSCLK PWMSYNCWT 1+ =

Functional Description

14-36 ADSP-BF50x Blackfin Processor Hardware Reference

The latency from PWM_SYNC to the effect in PWM outputs is 3 SCLK cycles
in synchronous mode and 5 SCLK cycles in asynchronous mode.

 In external sync pulse mode, do not allow changes in PWM_SYNCSEL

(which selects between asynchronous/synchronous external sync
pulse) ± 10 SCLK cycles of the toggling of an external sync pulse. If
this rule is not followed, unexpected behavior may occur.

PWM Shutdown and Interrupt Control Unit
In the event of an external fault condition, it is essential that the PWM
Controller be shut down instantaneously in a safe fashion. A falling edge
on the PWM_TRIP pin (assuming it is not disabled by the PWM_TRIP_DSBL bit
of the PWM_CTRL register) provides an instantaneous, asynchronous (inde-
pendent of the processor clock) shutdown of the PWM controller. All six
PWM outputs are placed in the off state (as defined by the PWM_POLARITY

bit of the PWM_CTRL register). However, the PWM_SYNC pulse occurs if it was
previously enabled, and the associated interrupt is also not stopped.

 The processor’s PWM_TRIP signal should have an external pull-down
resistor; if the pin becomes disconnected, the PWM Controller will
be disabled. The state of the PWM_TRIP pin can be read from the
PWM_TRIP bit of the PWMSTAT register.

On the occurrence of a PWM shutdown command (or from a signal on
the PWM_TRIP pin), a PWM_TRIP interrupt will be generated if enabled.
In addition, if PWM_SYNC_EN is enabled in the PWM_CTRL register, the
PWM_SYNC pulse will continue to appear at the output pin. Following a
PWM shutdown, the PWM can be re-enabled (by a PWM_TRIP interrupt
service routine, for example) by writing to the PWM_EN bit of the PWM_CTRL

register. The PWM Controller will restart in a manner identical to that
prior to the PWM shutdown, provided that the external fault has been
cleared and PWM_TRIP returned to a high level. That is, except for the
PWM_EN bit in the PWM_CTRL register, all PWM registers retain their values
during the PWM shutdown.

ADSP-BF50x Blackfin Processor Hardware Reference 14-37

PWM Controller

 The dead time counters will be reset when a trip occurs, and the
user is expected to restart the PWM only after waiting the required
dead time. If restarting a PWM immediately after trip, for high
dead time period cases, the dead time will not be met.

 Do not allow changes in the PWM_TRIP_DSBL bit of the PWM_CTRL

register (which is to select between trip enable and disable) ± 10
SCLK cycles of the toggling of an external trip pulse. If this rule is
not followed, unexpected behavior may occur.

Between the time that the PWM_EN bit is written to 0 and the time the
waveforms are disabled, the latency is 2 SCLK cycles. After enabling the
PWM_EN bit, output waveforms will begin to appear from the next PWM
pulse.

PWM Registers
Descriptions and bit diagrams for each of the PWM memory-mapped
registers (MMRs) are provided in the following sections.

Table 14-3. PWM Registers

Name Description

PWM_CTRL PWM control register on page 14-38

PWM_STAT PWM status register on page 14-40

PWM_TM PWM period register on page 14-41

PWM_DT PWM dead time register on page 14-42

PWM_GATE PWM chopping control on page 14-42

PWM_CHA PWM channel A duty control on page 14-43

PWM_CHB PWM channel B duty control on page 14-43

PWM_CHC PWM channel C duty control on page 14-43

PWM_SEG PWM crossover and output enable on page 14-45

PWM Registers

14-38 ADSP-BF50x Blackfin Processor Hardware Reference

PWM Control (PWM_CTRL) Register
The PWM_CTRL register is used for configuration of the PWM block. Bit
diagrams and descriptions are provided in Figure 14-10 and Table 14-4.

PWM_SYNCWT PWM sync pulse width control on page 14-47

PWM_CHAL PWM channel AL duty control (SR mode only) on page 14-47

PWM_CHBL PWM channel BL duty control (SR mode only) on page 14-47

PWM_CHCL PWM channel CL duty control (SR mode only) on page 14-47

PWM_LSI PWM low side invert (SR mode only) on page 14-49

PWM_STAT2 PWM simulation status register on page 14-49

Figure 14-10. PWM Control Register

Table 14-3. PWM Registers (Cont’d)

Name Description

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 1 1 1 0 0 0

PWM Control Register (PWM_CTRL)

PWM_EN

PWM_SYNC_EN

PWM_DBL

PWM_EXTSYNC

PWM_SYNCSEL

PWM_POLARITY

PWM_SRMODE

PWMTRIPINT_EN
PWMSYNCINT_EN

Reset = 0x0070

Reserved

PWMTRIP_DSBL

ADSP-BF50x Blackfin Processor Hardware Reference 14-39

PWM Controller

Table 14-4. PWM_CTRL Register

Bit Name Function Type Default

0 PWM_EN
Hardware modifiable bit.

PWM enable
0 = disabled
1 = enabled
reset by PWM_TRIP

RW 0

1 PWM_SYNC_EN PWM sync enable
0 = disabled
1 = enabled

RW 0

2 PWM_DBL Double-update mode
0 = single-update mode
1 = double-update mode

RW 0

3 PWM_EXTSYNC External sync
0 = internal sync
1 = external sync

RW 0

4 PWM_SYNCSEL External sync select
0 = asynchronous
1 = synchronous

RW 1

5 PWM_POLARITY PWM output polarity
1 = active high
0 = active low

RW 1

6 PWM_SRMODE PWM SR Mode
0 = enabled
1 = disabled

RW 1

7 PWMTRIPINT_EN Interrupt enable for trip
1 = enabled
0 = disabled

RW 0

8 PWMSYNCINT_EN Interrupt enable for sync
1 = enabled
0 = disabled

RW 0

9 PWMTRIP_DSBL Disable for trip input
1 = disabled
0 = enabled

RW 0

15:10 Reserved 0

PWM Registers

14-40 ADSP-BF50x Blackfin Processor Hardware Reference

PWM Status (PWM_STAT) Register
The PWM_STAT register provides status information regarding PWM opera-
tion. Bit diagrams and descriptions are provided in Figure 14-11 and
Table 14-5.

Figure 14-11. PWM Status Register

Table 14-5. PWM_STAT Register

Bit Name Function Type Default

0 PWM_PHASE PWM phase
0 = first half
1 = second half

RO 0

1 PWM_POL PWM polarity
1 = active high
0 = active low

RO 1

2 PWM_SR PWM SR mode
0 = active
1 = inactive

RO 1

3 PWM_TRIP PWM trip RO 0

7:4 Reserved 0

8 PWM_TRIPINT PWM trip interrupt
(via hardware pin or software)

R/W1C 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 1 1

PWM Status Register (PWM_STAT)

PWM_PHASE

PWM_POL

PWM_SR

PWM_TRIP

Reserved

Reset = 0x0006

Reserved

PWM_TRIPINT

PWM_SYNCINT

ADSP-BF50x Blackfin Processor Hardware Reference 14-41

PWM Controller

PWM Period (PWM_TM) Register
The PWM_TM register controls the switching frequency of the generated
PWM patterns. Bit diagrams and descriptions are provided in
Figure 14-12 and Table 14-6.

9 PWM_SYNCINT PWM sync interrupt R/W1C 0

15:10 Reserved 0

Figure 14-12. PWM Period Register

Table 14-6. PWM_TM Register

Bit Name Function Type Default

15:0 PWM_TM PWM period (unsigned) RW 0

Table 14-5. PWM_STAT Register (Cont’d)

Bit Name Function Type Default

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PWM Period Register (PWM_TM)

PWM_TM

Reset = 0x0000

PWM Registers

14-42 ADSP-BF50x Blackfin Processor Hardware Reference

PWM Dead Time (PWM_DT) Register
The PWM_DT register controls the dead time interval of the generated PWM
patterns. Bit diagrams and descriptions are provided in Figure 14-13 and
Table 14-7.

PWM Chopping Control (PWM_GATE) Register
The PWM controller permits the mixing of the output PWM signals with
a high-frequency chopping signal. The features of gate-drive-chopping
mode are controlled

by the PWM_GATE register. Bit diagrams and descriptions are provided in
Figure 14-14 and Table 14-8.

Figure 14-13. PWM Dead Time Register

Table 14-7. PWM_DT Register

Bit Name Function Type Default

9:0 PWM_DT PWM dead time (unsigned) RW 0

15:10 Reserved 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PWM Dead Time Register (PWM_DT)

Reserved

Reset = 0x0000

PWM_DT

ADSP-BF50x Blackfin Processor Hardware Reference 14-43

PWM Controller

PWM Channel A, B, C Duty Control
(PWM_CHA, PWM_CHB, PWM_CHC) Registers

The three duty-cycle control registers (PWM_CHA, PWM_CHB, and PWM_CHC)
directly control the duty cycles of the three pairs of PWM signals. Bit dia-
grams and descriptions for each are provided in Figure 14-15 through
Figure 14-17, and Table 14-9 through Table 14-11.

Figure 14-14. PWM Chopping Control Register

Table 14-8. PWM_GATE Register

Bit Name Function Type Default

7:0 GDCLK PWM gate chopping period (unsigned) RW 0

8 CHOPHI Gate chopping enable high side RW 0

9 CHOPLO Gate chopping enable low side RW 0

15:10 Reserved 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PWM Chopping Control Register (PWM_GATE)

Reset = 0x0000

Reserved GDCLK

CHOPLO
CHOPHI

PWM Registers

14-44 ADSP-BF50x Blackfin Processor Hardware Reference

Figure 14-15. PWM Channel A Duty Control Register

Table 14-9. PWM_CHA Register

Bit Name Function Type Default

15:0 PWMCHA Channel A duty (two’s complement) RW 0

Figure 14-16. PWM Channel B Duty Control Register

Table 14-10. PWM_CHB Register

Bit Name Function Type Default

15:0 PWMCHB Channel B duty (two’s complement) RW 0

Figure 14-17. PWM Channel C Duty Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PWM Channel A Duty Control Register (PWM_CHA)

PWMCHA

Reset = 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PWM Channel B Duty Control Register (PWM_CHB)

PWMCHB

Reset = 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PWM Channel C Duty Control Register (PWM_CHC)

PWMCHC

Reset = 0x0000

ADSP-BF50x Blackfin Processor Hardware Reference 14-45

PWM Controller

PWM Crossover and Output Enable (PWM_SEG)
Register

The PWM_SEG register controls output enabling of the high-side and
low-side PWM outputs, and it also permits configuration of crossover
mode for each output pair. Bit diagrams and descriptions are provided in
Figure 14-18 and Table 14-12.

Table 14-11. PWM_CHC Register

Bit Name Function Type Default

15:0 PWMCHC Channel C duty (two’s complement) RW 0

Figure 14-18. PWM Crossover and Output Enable Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PWM Crossover and Output Enable Register (PWM_SEG)

CH_EN

CL_EN

BH_EN

BL_EN

AH_EN

AL_EN

CHCL_XOVR

BHBL_XOVR
AHAL_XOVR

Reset = 0x0000

Reserved

PWM Registers

14-46 ADSP-BF50x Blackfin Processor Hardware Reference

Table 14-12. PWM_SEG Register

Bit Name Function Type Default

0 CH_EN CH output enable
1 = disabled
0 = enabled

RW 0

1 CL_EN CL output enable
1 = disabled
0 = enabled

RW 0

2 BH_EN BH output enable
1 = disabled
0 = enabled

RW 0

3 BL_EN BL output enable
1 = disabled
0 = enabled

RW 0

4 AH_EN AH output enable
1 = disabled
0 = enabled

RW 0

5 AL_EN AL output enable
1 = disabled
0 = enabled

RW 0

6 CHCL_XOVR Channel C output crossover
1 = XOVR
0 = not XOVR

RW 0

7 BHBL_XOVR Channel B output crossover
1 = XOVR
0 = not XOVR

RW 0

8 AHAL_XOVR Channel A output crossover
1 = XOVR
0 = not XOVR

RW 0

15:9 Reserved 0

ADSP-BF50x Blackfin Processor Hardware Reference 14-47

PWM Controller

PWM Sync Pulse Width Control (PWM_SYNCWT)
Register

The PWM_SYNCWT register allows programming of the PWM_SYNC pulse
width. Bit diagrams and descriptions are provided in Figure 14-19 and
Table 14-13.

PWM Channel AL, BL, CL Duty Control
(PWM_CHAL, PWM_CHBL, PWM_CHCL) Registers

These registers are used to program duty cycle for a low-side channel in
SR (switched reluctance) mode only. Bit diagrams and descriptions for
each register are provided in Figure 14-20 through Figure 14-22, and
Table 14-14 through Table 14-16.

Figure 14-19. PWM Sync Pulse Width Control Register

Table 14-13. PWM_SYNCWT Register

Bit Name Function Type Default

9:0 PWMSYNCWT PWM sync pulse width (unsigned) RW 0x03FF

15:10 Reserved 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 0 1 1 1 1 1 1 1 1 1

PWM Sync Pulse Width Control Register (PWM_SYNCWT)

Reserved

Reset = 0x03FF

PWMSYNCWT

PWM Registers

14-48 ADSP-BF50x Blackfin Processor Hardware Reference

Figure 14-20. PWM Channel AL Duty Control Register

Table 14-14. PWM_CHAL Register

Bit Name Function Type Default

15:0 PWMCHAL Channel A duty (two’s complement) RW 0

Figure 14-21. PWM Channel BL Duty Control Register

Table 14-15. PWM_CHBL Register

Bit Name Function Type Default

15:0 PWMCHBL Channel B duty (two’s complement) RW 0

Figure 14-22. PWM Channel CL Duty Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PWM Channel AL Duty Control Register (PWM_CHAL)

PWM_CHAL

Reset = 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PWM Channel BL Duty Control Register (PWM_CHBL)

PWM_CHBL

Reset = 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PWM Channel CL Duty Control Register (PWM_CHCL)

PWM_CHCL

Reset = 0x0000

ADSP-BF50x Blackfin Processor Hardware Reference 14-49

PWM Controller

PWM Low Side Invert (PWM_LSI) Register
The PWM_LSI register is used for specifying switched reluctance (SR) chop
modes. Bit diagrams and descriptions are provided in Figure 14-23 and
Table 14-17.

PWM Simulation Status (PWM_STAT2) Register
The PWM_STAT2 register provides a way to observe the status of the PWM
high-side and low-side output channels via software. This can be useful for

Table 14-16. PWM_CHCL Register

Bit Name Function Type Default

15:0 PWM_CHCL Channel C duty (two’s complement) RW 0

Figure 14-23. PWM Low Side Invert Register

Table 14-17. PWM_LSI Register

Bit Name Function Type Default

0 PWM_SR_LSI_A PWM SR mode low side invert channel A RW 0

1 PWM_SR_LSI_B PWM SR mode low side invert channel B RW 0

2 PWM_SR_LSI_C PWM SR mode low side invert channel C RW 0

15:3 Reserved 0

0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0

PWM Low Side Invert Register (PWM_LSI)

Reserved

PWM_SR_LSI_B

PWM_SR_LSI_C

Reset = 0x0000

PWM_SR_LSI_A

Unique Information for the ADSP-BF50x Processor

14-50 ADSP-BF50x Blackfin Processor Hardware Reference

debug operation. Bit diagrams and descriptions are provided in
Figure 14-24 and Table 14-18.

Unique Information for the ADSP-BF50x
Processor

None.

Figure 14-24. PWM Simulation Status Register

Table 14-18. PWM_STAT2 Register

Bit Name Function Type Default

0 PWM_AL PWM_AL output signal for S/W observation RO 0

1 PWM_AH PWM_AH output signal for S/W observation RO 0

2 PWM_BL PWM_BL output signal for S/W observation RO 0

3 PWM_BH PWM_BH output signal for S/W observation RO 0

4 PWM_CL PWM_CL output signal for S/W observation RO 0

5 PWM_CH PWM_CH output signal for S/W observation RO 0

15:6 Reserved 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PWM Simulation Status Register (PWM_STAT2)

Reserved

PWM_AH

PWM_BL

PWM_BH

PWM_CL

PWM_CH

Reset = 0x0000

PWM_AL

ADSP-BF50x Blackfin Processor Hardware Reference 15-1

15 UART PORT CONTROLLERS

This chapter describes the universal asynchronous receiver/transmitter
(UART) modules and includes the following sections:

• “Overview”

• “Interface Overview” on page 15-3

• “Description of Operation” on page 15-5

• “Programming Model” on page 15-22

• “UART Registers” on page 15-26

• “Programming Examples” on page 15-46

Overview
The ADSP-BF50x Blackfin processors feature multiple separate and iden-
tical UART modules.

ADSP-BF50x processors feature two UARTs, referred to as UART0 and
UART1.

The UART modules are full-duplex peripherals compatible with PC-style
industry-standard UARTs, sometimes called Serial Controller Interfaces
(SCI). The UARTs convert data between serial and parallel formats. The
serial communication follows an asynchronous protocol that supports var-
ious word length, stop bits, bit rate, and parity generation options.

Overview

15-2 ADSP-BF50x Blackfin Processor Hardware Reference

Features
Each UART includes these features:

• 5 – 8 data bits

• 1 or 2 stop bits (1 1/2 in 5-bit mode)

• Even, odd, and sticky parity bit options

• Additional 4-stage receive FIFO with programmable threshold
interrupt

• Flexible transmit and receive interrupt timings

• 3 interrupt outputs for reception, transmission, and status

• Independent DMA operation for receive and transmit

• Programmable automatic RTS/CTS hardware flow control on
UART1

• False start bit detection

• SIR IrDA operation mode

• Internal loop back

• Improved bit rate granularity

The UARTs are logically compliant to EIA-232E, EIA-422, EIA-485 and
LIN standards, but usually require external transceiver devices to meet
electrical requirements. In IrDA® (Infrared Data Association) mode, the
UARTs meet the half-duplex IrDA SIR (9.6/115.2 Kbps rate) protocol.

ADSP-BF50x Blackfin Processor Hardware Reference 15-3

UART Port Controllers

Interface Overview
Figure 15-1 shows a simplified block diagram of one UARTx module and
how it interconnects to the Blackfin architecture and to the outside world.

External Interface
Each UART features an RX and a TX pin available through general-pur-
pose ports. These two pins usually connect to an external transceiver
device that meets the electrical requirements of full duplex (for example,

Figure 15-1. UART Block Diagram

UARTx_LSR

UARTx_MSR

UARTx_THR

UARTx_RBR

UARTx_IER

UARTx_MCR

SIC CONTROLLER

UARTx_DLL

UARTx_DLH

DMA CONTROLLER

UARTx_SCR

UARTx_GCTL

TSR

P
O

R
T

S

UARTxR
X

R
E

Q

T
X

R
E

Q

PA
B

D
A

B
x

S
TA

T
R

E
Q

8 8

++

BLACKFIN

UARTxRX

UARTxTX

UARTx_LCR

SET

CLEAR

T
R

A
N

S
C

E
IV

E
R

TO
 T

IM
E

R
x
UARTxCTS

UARTxRTS

NOTE PULLING RESISTORS
ARE FOR THE RESET STATE
ONLY.

FIFO RSR

++

16 16/32

Interface Overview

15-4 ADSP-BF50x Blackfin Processor Hardware Reference

EIA-232, EIA-422, 4-wire EIA-485) or half duplex (for example, 2-wire
EIA-485, LIN) standards. Additionally, each UART features a pair of
UARTxCTS (clear to send, input) and UARTxRTS (request to send, output) sig-
nals for hardware flow control.

All UART signals are multiplexed and compete with other functions at
pin level. Table 15-1 shows where the signal can be found and how they
are enabled in the port control.

Table 15-1. UART Signals

Signal Pin Port Control Autobaud Timer

UART0 TX PF1
(or PG13)

PORTF_MUX[3:2] = b#01
PORTF_FER[1] = 1
(or PORTG_MUX[13:12] = b#00
PORTG_FER[13] = 1)

-

UART0 RX PF0
(or PG12)

PORTF_MUX[1:0] = b#01
PORTF_FER[0] = 1
(or PORTG_MUX[13:12] = b#00
PORTG_FER[12] = 1)

Timer 6 (TMR6)
(or Timer 2 (TACI2))

UART0 RTS PG14 PORTG_MUX[15:14] = b#00
PORTG_FER[14] = 1

-

UART0 CTS PG15 PORTG_MUX[15:14] = b#00
PORTG_FER[15] = 1

-

UART1 TX PF6
(or PG3)

PORTF_MUX[7:6] = b#00
PORTF_FER[6] = 1
(or PORTG_MUX[7:6] = b#10
PORTG_FER[3] = 1)

-

UART1 RX PF7
(or PG0)

PORTF_MUX[7:6] = b#00
PORTF_FER[7] = 1
(or PORTG_MUX[1:0] = b#10
PORTG_FER[0] = 1)

Timer 3 (TACI3)
(or Timer 4 (TACI4))

UART1 RTS PF8 PORTF_MUX[9:8] = b#00
PORTF_FER[8] = 1

-

UART1 CTS PF9 PORTF_MUX[9:8] = b#00
PORTF_FER[9] = 1

-

ADSP-BF50x Blackfin Processor Hardware Reference 15-5

UART Port Controllers

Internal Interface
The UARTs are DMA-capable peripherals with support for separate TX
and RX DMA master channels. They can be used in either DMA or pro-
grammed non-DMA mode of operation. The non-DMA mode requires
software management of the data flow using either interrupts or polling.
The DMA method requires minimal software intervention as the DMA
engine itself moves the data. For more information on DMA, see the
Direct Memory Access chapter.

All UART registers are 8 bits wide. They connect to the PAB bus. The
UARTx_RBR and UARTx_THR registers also connect to one of the DABx bus-
ses. While UART0 and UART1 connect to the DAB16 bus.

Each UART has three interrupt outputs. The transmit request and receive
request outputs can function as DMA requests and connect to the DMA
controller. Therefore, if the DMA is not enabled, the DMA controller
simply forwards the request to the SIC controller. The status interrupt
output connects directly to the SIC controller.

 When no DMA channel is assigned, a UART has only one inter-
rupt output. To modify, set the EGLSI bit in the UARTx_GCTL

register to redirect transmit and receive requests to the status inter-
rupt output.

Every UART’s RX pin is also sensed by the alternative capture input
(TACIx) of one of the general-purpose timers. Table 15-1 shows the assign-
ment. In capture mode, the timers can be used to detect the bit rate of the
received signal. See “Autobaud Detection” on page 15-20.

Description of Operation
The sections that follow describe the operation of the UART.

Description of Operation

15-6 ADSP-BF50x Blackfin Processor Hardware Reference

UART Transfer Protocol
UART communication follows an asynchronous serial protocol, consisting
of individual data words. A word has 5 to 8 data bits.

All data words require a start bit and at least one stop bit. With the
optional parity bit, this creates a 7- to 12-bit range for each word. The for-
mat of received and transmitted character frames is controlled by the line
control register (UARTx_LCR). Data is always transmitted and received with
the least significant bit (LSB) first.

Figure 15-2 shows a typical physical bitstream measured on one of the TX
pins.

Aside from the standard UART functionality, the UART also supports
serial data communication by way of infrared signals, according to the rec-
ommendations of the Infrared Data Association (IrDA). The physical
layer known as IrDA SIR (9.6/115.2 Kbps rate) is based on
return-to-zero-inverted (RZI) modulation. Pulse position modulation is
not supported.

Using the 16x data rate clock, RZI modulation is achieved by inverting
and modulating the non-return-to-zero (NRZ) code normally transmitted
by the UART. On the receive side, the 16x clock is used to determine an
IrDA pulse sample window, from which the RZI-modulated NRZ code is
recovered.

Figure 15-2. Bitstream on a TX Pin Transmitting an “S” Character (0x53)

DATA BITS STOP BIT(S)

START BIT LSB PARITY BIT (OPTIONAL, ODD OR EVEN)

D0 D1 D2 D3 D4 D5 D6 D7

ADSP-BF50x Blackfin Processor Hardware Reference 15-7

UART Port Controllers

IrDA support is enabled by setting the IREN bit in the UARTx_GCTL register.
The IrDA application requires external transceivers.

UART Transmit Operation
Receive and transmit paths operate completely independently except that
the bit rate and the frame format are identical for both transfer directions.

Transmission is initiated by writes to the UARTx_THR register. If no for-
mer operation is pending, the data is immediately passed from the
UARTx_THR register to the internal TSR register where it is shifted out
at a bit rate characterized by the formula that follows with start, stop, and
parity bits appended as defined by the UARTx_LCR register:

The least significant bit (LSB) is always transmitted first. This is bit 0 of
the value written to UARTx_THR.

Writes to the UARTx_THR register clear the THRE flag. Transfers of data from
UARTx_THR to the transmit shift registers (TSR) set this status flag in UARTx_

LSR again.

When enabled by the ETBEI bit in the UARTx_IER register, the THRE flag
requests an interrupt on the dedicated TXREQ output. This signal is routed
through the DMA controller. If the associated DMA channel is enabled,
the TXREQ signal functions as a DMA request, otherwise the DMA control-
ler simply forwards it to the SIC interrupt controller. If no DMA channel
is assigned to the UART, the EGLSI bit in the UARTx_GCTL register can redi-
rect the receive and transmit interrupts to the UART status interrupt
alternatively.

The UARTx_THR register and the internal TSR register can be seen as a
two-stage transmit buffer. When data is pending in either one of these reg-
isters, the TEMT flag is low. As soon as all data has left the TSR register, the

BIT RATE SCLK
16 1 EDB0–  Divisor
---=

Description of Operation

15-8 ADSP-BF50x Blackfin Processor Hardware Reference

TEMT bit goes high again and indicates that all pending transmit operation
has finished. At that time it is safe to disable the UCEN bit or to three-state
off-chip line drivers. An interrupt can be generated by that time either
through the status interrupt channel when the ETFI bit is set.

UART Receive Operation
The receive operation uses the same data format as the transmit configura-
tion, except that one valid stop bit is always sufficient, that is, the STB bit
has no impact to the receiver.

The UART receiver is sensing the falling edges of the RX input. When an
edge is detected, the receiver starts sampling the RX input according to
the bit rate and the EDBO bit settings. The start bit is sampled close to its
midpoint. If sampled low, a valid start condition is assumed. Otherwise,
the detected falling edge is discarded.

After detection of the start bit, the received word is shifted into the inter-
nal shift register (RSR) at a bit rate characterized by the following formula:

After the corresponding stop bit is received, the content of the RSR register
is transferred through the 4-deep receive FIFO to the UARTx_RBR register,
shown in Figure 15-13. Finally, the data ready (DR) bit and the status flags
are updated in the UARTx_LSR register, to signal data reception, parity, and
also error conditions, if required.

The receive FIFOs and the UARTx_RBR registers can be seen as a five-stage
receive buffer. If the stop bit of the 6th word is received before software
reads the UARTx_RBR register, an overrun error is reported. The overrun
case protects data in the UARTx_RBR and receive FIFO from being overwrit-
ten by further data until the OE bit is cleared by software. The data in the
RSR register, however, is immediately destroyed as soon as the overrun
occurs.

BIT RATE SCLK
16 1 EDB0–  Divisor
---=

ADSP-BF50x Blackfin Processor Hardware Reference 15-9

UART Port Controllers

If enabled by the ERBFI bit in the UARTx_IER register, the DR flag requests
an interrupt on the dedicated RXREQ output. This signal is routed through
the DMA controller. If the associated DMA channel is enabled, the RXREQ

signal functions as a DMA request, otherwise the DMA controller simply
forwards it to the SIC interrupt controller. If no DMA channel is assigned
to the UART, the EGLSI bit in the UARTx_GCTL register can redirect the
receive and transmit interrupts to the UART status interrupt alternatively.

The state of the five-deep receiver buffer (including UARTx_RBR) can be
monitored by the receiver FIFO count status (RFCS) bit in the UARTx_MSR

register. The buffer’s behavior is controlled by the receive FIFO interrupt
threshold (RFIT) bit in the UARTx_MCR register. If RFIT is zero, the RFCS bit
is set when the receive buffer holds two or more words. If RFIT is set, the
RFCS bit is set when the receive buffer holds four or more words. The RFCS

bit is cleared by hardware when core or DMA read the UARTx_RBR register
and when the buffer is flushed below the level of two (RFIT=0) or four
(RFIT=4). If the associated interrupt bit ERFCI is enabled, status interrupt
is reported when the RFCS bit is set.

If errors are detected during reception, an interrupt can be requested to a
the status interrupt output. This status interrupt request goes directly to
the SIC interrupt controller. Status interrupt requests are enabled by the
ELSI bit in the UARTx_IER_SET register. The following error situations are
detected. Every error has an indicating bit in the UARTx_LSR register.

• Overrun error (OE bit)

• Parity error (PE bit)

• Framing error/Invalid stop bit (FE bit)

• Break indicator (BI bit)

The sampling clock is 16 times faster than the bit clock. The receiver over
samples every bit 16 times and does a majority decision based on the mid
three samples. This improves immunity against noise and hazards on the

Description of Operation

15-10 ADSP-BF50x Blackfin Processor Hardware Reference

line. Spurious pulses of less than two times the sampling clock period are
disregarded.

Normally, every incoming bit is sampled at exactly the 7th, 8th and 9th
sample clock. If, however, the EDBO bit is set to 1 to achieve better bit
rate granularity and accuracy as required at high operation speeds, the bits
are one roughly sampled at 7/16th, 8/16th and 9/16th of their period.
Hardware design should ensure that the incoming signal is stable between
6/16th and 10/16th of the nominal bit period.

Reception is started when a falling edge is detected on the UARTxRX input
pin. The receiver attempts to see a start bit. The data is shifted into the
internal RSR register. After the 9th sample of the first stop bit is processed,
the received data is copied to the 5-stage receive buffer and the RSR recov-
ers for further data.

The receiver samples data bits close to their midpoint. Because the receiver
clock is usually asynchronous to the transmitter’s data rate, the sampling
point may drift relative to the center of the data bits. The sampling point
is synchronized again with each start bit, so the error accumulates only
over the length of a single word.

Hardware Flow Control
To prevent the UART transmitter from sending data while the receiving
counterpart is not ready, a RTS/CTS hardware flow control mechanism is
supported. The UARTxRTS (request to send) signal is an output that con-
nects to the communication’s partner UARTxCTS (clear to send) input. If

ADSP-BF50x Blackfin Processor Hardware Reference 15-11

UART Port Controllers

data transfer is bidirectional, the handshake is as shown in Figure 15-3.

Regardless of whether working in DMA or non-DMA mode, the receiver
can deassert the UARTxRTS signal to indicate that its receive buffer is getting
full. Further data may cause an overrun error. Consequently, the transmit-
ter pauses transmission when the UARTxCTS input is in deasserted state. On
ADSP-BF50x processors, UART1 features a pair of RTS/CTS pins each.
Automatic hardware flow control can be enabled individually for receiver
and transmitter by the UARTx_MCR register’s ARTS and ACTS bits.

The signals are usually active low, that is, transmission is halted when the
pin state is high. The polarity of the UARTxCTS and UARTxRTS pins can be
inverted by setting the FCPOL bit in the UARTx_MCR register. If ACTS is
enabled, the UARTxCTS bit in the UARTx_MSR register holds the complement
value (FCPOL=0) or the value (FCPOL=1) of the UARTxCTS input pin. In
either case the UARTxCTS bit reads 1 when the external device is ready to
receive data. The delta CTS (DCTS) bit is a sticky version of the UARTxCTS

bit that is set high when the UARTxCTS bit transitions from 0 to 1. It can
request a status interrupt and is cleared by software with a W1C opera-
tion. If the TX handshaking protocol is enabled (bit ACTS=1), the UART

Figure 15-3. UART Hardware Flow

BLACKFIN

UARTxCTS

UARTxRTS

UARTx

UARTxRX

UARTxTX

CTS

RTS

OTHER UART
DEVICE

RX

TX

Description of Operation

15-12 ADSP-BF50x Blackfin Processor Hardware Reference

hardware pauses transmission if the UARTxCTS bit is zero. If the UARTxCTS

input is deasserted, the transmitter still completes transmission of the data
work currently held in the internal TSRx register, but does not continue
with the data in UARTx_THR. If the UARTxCTS is asserted again, the transmit-
ter resumes and loads the content of UARTx_THR into TSRx.

If the RX handshaking protocol is enabled (bit ARTS=1 in the UARTx_MCR

register), the UARTxRTS output pin is toggled automatically by the
receiver's hardware. The pin’s assertion and deassertion timing is con-
trolled by the receive FIFO RTS threshold (RFRT) bit in the UARTx_MCR

register. If RFRT is cleared, the UARTxRTS pin is deasserted when the receive
buffer already holds two words and a third start bit is detected. The
UARTxRTS pin is asserted again when the buffer does not contain any more
data than the word in the UARTx_RBR register. If RFRT is set, the UARTxRTS

pin is deasserted when the receive buffer already holds four words and a
fifth start bit is detected. The UARTxRTS is re-asserted when the buffer con-
tains less than four words. Hardware guarantees minimal UARTxRTS
deassertion pulse width of at least the number of data bits as defined by
the WLS bit field in the UARTx_LCR register.

If ACTS=0, the TX handshaking protocol is disabled, and the UART trans-
mits data as long as there is data to transmit, regardless of the value of
UARTxCTS. With ACTS=0 software can pause on-going transmission by set-
ting the XOFF bit in the UARTx_MCR register.

If ARTS=0, the UARTxRTS pin is not generated automatically by hardware.
The UARTxRTS output can then still be manually controlled by the MRTS bit
in the UARTx_MCR register.

 On reset, when the UART is not yet enabled and the port multi-
plexing has not been programmed, the UARTxRTS pin is not driven.
Some applications may require the UARTxRTS signal to be pulled to
either state by a resistor during reset.

ADSP-BF50x Blackfin Processor Hardware Reference 15-13

UART Port Controllers

IrDA Transmit Operation
To generate the IrDA pulse transmitted by the UART, the normal NRZ
output of the transmitter is first inverted if the TPOLC bit is cleared, so a 0
is transmitted as a high pulse of 16 UART clock periods and a 1 is trans-
mitted as a low pulse for 16 UART clock periods. The leading edge of the
pulse is then delayed by six UART clock periods. Similarly, the trailing
edge of the pulse is truncated by eight UART clock periods. This results in
the final representation of the original 0 as a high pulse of only 3/16 clock
periods in a 16-cycle UART clock period. The pulse is centered around
the middle of the bit time, as shown in Figure 15-4. The final IrDA pulse
is fed to the off-chip infrared driver.

This modulation approach ensures a pulse width output from the UART
of three cycles high out of every 16 UART clock cycles. As shown in
Table 15-2 on page 15-19, the error terms associated with the bit rate gen-
erator are very small and well within the tolerance of most infrared
transceiver specifications.

Figure 15-4. IrDA Transmit Pulse

 0 1 0

8/16

9/167/16

16/16

NRZ

INVERTED

FINAL
IrDA

8/16

9/167/16

16/16

Description of Operation

15-14 ADSP-BF50x Blackfin Processor Hardware Reference

IrDA Receive Operation
The IrDA receiver function is more complex than the transmit function.
The receiver must discriminate the IrDA pulse and reject noise. To do
this, the receiver looks for the IrDA pulse in a narrow window centered
around the middle of the expected pulse.

Glitch filtering is accomplished by counting 16 system clocks from the
time an initial pulse is seen. If the pulse is absent when the counter
expires, it is considered a glitch. Otherwise, it is interpreted as a 0. This is
acceptable because glitches originating from on-chip capacitive cross-cou-
pling typically do not last for more than a fraction of the system clock
period. Sources outside of the chip and not part of the transmitter can be
avoided by appropriate shielding. The only other source of a glitch is the
transmitter itself. The processor relies on the transmitter to perform
within specification. If the transmitter violates the specification, unpre-
dictable results may occur. The 4-bit counter adds an extra level of
protection at a minimal cost. Note because the system clock can change
across systems, the longest glitch tolerated is inversely proportional to the
system clock frequency.

The receive sampling window is determined by a counter that is clocked at
the 16x bit-time sample clock. The sampling window is re-synchronized
with each start bit by centering the sampling window around the start bit.

ADSP-BF50x Blackfin Processor Hardware Reference 15-15

UART Port Controllers

The polarity of receive data is selectable, using the IRPOL bit. Figure 15-5
gives examples of each polarity type.

• IRPOL = 0 assumes that the receive data input idles 0 and each
active 1 transition corresponds to a UART NRZ value of 0.

• IRPOL = 1 assumes that the receive data input idles 1 and each
active 0 transition corresponds to a UART NRZ value of 0.

 In the IrDA mode the EDB0 bit is ignored. The sample frequency is
always exactly 16 times the bit rate.

Figure 15-5. IrDA Receiver Pulse Detection

 0 1

16/16

PULSE
DETECT

OR
OUTPUT

SAMPLING
WINDOWN

8/16 16/16

RECOVERED
NRZ INPUT 1 0

8/16

 0 1

RECEIVED
IrDA

PULSE
IR POL = 1

RECEIVED
IrDA

PULSE
IR POL = 0

Description of Operation

15-16 ADSP-BF50x Blackfin Processor Hardware Reference

Interrupt Processing
Each UART module has three interrupt outputs. One is dedicated for
transmission, one for reception, and the third is used to report status
events. As shown in Figure 15-1 on page 15-3, the transmit and receive
requests are routed through the DMA controller. The status request goes
directly to the SIC controller.

If the associated DMA channel is enabled, the request functions as a DMA
request. If the DMA channel is disabled, it simply forwards the request to
the SIC interrupt controller. Note that a DMA channel must be associated
with the UART module to enable TX and RX interrupts. Otherwise, the
transmit and receive requests cannot be forwarded. Refer to the descrip-
tion of the peripheral map registers in the “Direct Memory Access”
chapter in ADSP-BF50x Blackfin Processor Hardware Reference (Volume 1
of 2).

 On ADSP-BF50x processors not all UARTs have a DMA channel
assigned by default. Even if disabled, a DMA channel is still
required to forward the DMA requests to the SIC controller as
interrupt requests (see Figure 15-1 on page 15-3). Also, if no DMA
channel is assigned, the UART loses its normal receive and trans-
mit interrupt functionality.

To operate in interrupt mode without assigned DMA channels, set
the EGLSI bit in the UARTx_GCTL register. This setup redirects
receive and transmit requests to the status interrupt output. The
status interrupt goes directly to the SIC controller without being
routed through the DMA controller.

Transmit interrupts are enabled by the ETBEI bit in the UARTx_IER_SET

register. If set, the transmit request is asserted along with the THRE bit in
the UART_LSR, indicating that the TX buffer is ready for new data.

Note that the THRE bit resets to 1. When the ETBEI bit is set in the UARTx_

IER_SET register, the UART module immediately issues an interrupt or

ADSP-BF50x Blackfin Processor Hardware Reference 15-17

UART Port Controllers

DMA request. This way, no special handling of the first character is
required when transmission of a string is initiated. Simply set the ETBEI

bit and let the interrupt service routine load the first character from mem-
ory and write it to the UARTx_THR register in the normal manner.
Accordingly, the ETBEI bit can be cleared in the UARTx_IER_CLEAR register
if the string transmission has completed. For more information, see
“DMA Mode” on page 15-24.

The THRE bit is cleared by hardware when new data is written to the
UARTx_THR register. These writes also clear the TX interrupt request. How-
ever, they also initiate further transmission. If software doesn’t want to
continue transmission, the TX request can alternatively be cleared by
clearing the ETBEI bit in the UARTx_IER_CLEAR register.

Receive interrupts are enabled by the ERBFI bit in the UARTx_IER_SET reg-
ister. If set, the receive request is asserted along with the DR bit in the
UART_LSR register, indicating that new data is available in the UARTx_RBR

register. When software reads the UARTx_RBR, hardware clears the DR bit
again which in turn clears the receive interrupt request.

The UART status interrupt channels are used for multiple purposes:

• Line Status Interrupts

• Flow Control Interrupts

• Receive FIFO Threshold Interrupts

• Transmission Finished Interrupt

Line status interrupts are enabled by the ELSI bit in the UARTx_IER_SET

register. If set, the status interrupt request is asserted with any of the BI,
FE, PE or OE receive errors bits in the UART_LSR register. Refer to “UARTx_
LSR Registers” on page 15-33 for details. The error bits in the UARTx_LSR

register are cleared by W1C operation. Once all error conditions are
cleared the interrupt request deasserts.

Description of Operation

15-18 ADSP-BF50x Blackfin Processor Hardware Reference

The receive FIFO count interrupt is enabled by the ERFCI bit in the
UARTx_IER_SET register. If set, a status interrupt is generated when the
RFCS is active. The RFCS bit indicates a receive buffer threshold level. If the
RFIT bit in the UARTx_MCR register is cleared, software can safely read two
words out of the UARTx_RBR register by the time the RFCS interrupt occurs.
If the RFIT bit is set, software can safely read four words. The interrupt
and the RFCS bit clear when the UARTx_RBR is read sufficient times, so that
the receive buffer drains below the threshold of two (RFIT=0) or four
(RFIT=1). Because in DMA mode a status service routine may not be per-
mitted to read UARTx_RBR, this interrupt is only recommended in
non-DMA mode. In DMA mode, use this functionality for error recovery
only.

The UARTxCTS interrupts are enabled by the EDSSI bit in the UARTx_IER_

SET register. If active, a status interrupt is generated when the sticky SCTS

bit in the UARTx_MSR register is set, indicating that the transmitter's UARTx-
CTS input been re-asserted. A W1C operation to the SCTS bit clears the
interrupt request.

A transmission finished interrupt is enabled by the ETFI bit in the UARTx_

IER_SET register. If active, a status interrupt request is asserted when the
TFI bit in the UARTx_LSR register is set. TFI is the sticky version of the TEMT

bit, indicating that a byte that started transmission has completely fin-
ished. The interrupt request is cleared by a W1C operation to the TFI bit.

Bit Rate Generation
The UART clock is enabled by the UCEN bit in the UARTx_GCTL register.

The sample clock is characterized by the system clock (SCLK) and the
16-bit divisor. The divisor is split into the 8-bit UARTx_DLL and the UARTx_

DLH registers. These registers form a 16-bit divisor.

By default every serial bit is over sampled 16 times. The bit clock is 1/16th
of the sample clock. If not in IrDA mode the bit clock can equal the sam-

ADSP-BF50x Blackfin Processor Hardware Reference 15-19

UART Port Controllers

ple clock if the EDBO bit in the UARTx_GCTL register is set, so that the
following applies:

Divisor = 65,536 when UARTx_DLL = UARTx_DLH = 0

Table 15-2 provides example divide factors required to support most stan-
dard baud rates.

 Careful selection of SCLK frequencies, that is, even multiples of
desired bit rates, can result in lower error percentages.

Setting the bit clock equal to the sample clock (EDBO=1) improves
bit rate granularity and enables the Blackfin bit clock to more
closely match the bit rate of the communication partner. There is,

Table 15-2. UART Bit Rate Examples With 133 MHz SCLK

Bit Rate Dfactor = 16
DL Actual % Error

Dfactor = 1
DL Actual % Error

2400 3464 2399.68 0.013 55417 2399.99 0.001

4800 1732 4799.36 0.013 27708 4800.06 0.001

9600 866 9598.73 0.013 13854 9600.12 0.001

19200 433 19197.46 0.013 6927 19200.23 0.001

38400 216 38483.80 0.218 3464 38394.92 0.013

57600 144 57725.69 0.218 2309 57600.69 0.001

115200 72 115451.39 0.218 1155 115151.52 0.042

921600 9 923611.11 0.218 144 923611.11 0.218

1500000 6 1385416.67 7.639 89 1494382.02 0.375

3000000 3 2770833.33 7.639 44 3022727.27 0.758

6250000 1 8312500.00 33.000 21 6333333.33 1.333

BIT RATE SCLK
16 1 EDB0–  Divisor
---=

Description of Operation

15-20 ADSP-BF50x Blackfin Processor Hardware Reference

however, a disadvantage—the power dissipation is higher. Also the
sample points may not be that accurate. It is recommended to use
EDBO=1 mode only when bit rate accuracy is not acceptable in
EDBO=0 mode.

The EDBO=1 mode is not intended to increase operation speed
beyond the electrical limitations of the asynchronous UART trans-
fer protocol.

Autobaud Detection
At the chip level, the UART RX pins are routed to the alternate capture
inputs (TACIx) of the general purpose timers. When working in WDTH_CAP

mode these timers can be used to automatically detect the bit rate applied
to the UARTxRX pin by an external device. For more information, see “Gen-
eral-Purpose Timers” on page 10-1.

The capture capabilities of the timers are often used to supervise the bit
rate at runtime. If the Blackfin UART was talking to any device supplied
by a weak clock oscillator that drifts over time, the Blackfin can re-adjust
its UART bit rate dynamically as required.

Often, autobaud detection is used for initial bit rate negotiations. There,
the Blackfin processor is most likely a slave device waiting for the host to
send a predefined autobaud character as discussed below. This is exactly
the scenario used for UART booting. In this scenario, it is recommended
that the UART clock enable bit UCEN is not enabled while autobaud
detection is performed to prevent the UART from starting reception with
incorrect bit rate matching. Alternatively, the UART can be disconnected
from the UARTxRX pin by setting the LOOP_ENA bit.

A software routine can detect the pulse widths of serial stream bit cells.
Because the sample base of the timers is synchronous with the UART

ADSP-BF50x Blackfin Processor Hardware Reference 15-21

UART Port Controllers

operation—all derived from SCLK—the pulse widths can be used to calcu-
late the bit rate divider for the UART by using the following formula:

In order to increase the number of timer counts and therefore the resolu-
tion of the captured signal, it is recommended not to measure just the
pulse width of a single bit, but to enlarge the pulse of interest over more
bits. Traditionally, a NULL character (ASCII 0x00) was used in autobaud
detection, as shown in Figure 15-6.

Because the example frame in Figure 15-6 encloses 8 data bits and 1 start
bit, apply the following formula:

Real UARTxRX signals often have asymmetrical falling and rising edges,
and the sampling logic level is not exactly in the middle of the signal volt-
age range. At higher bit rates, such pulse width-based autobaud detection
might not return adequate results without additional analog signal condi-
tioning. Measuring signal periods works around this issue and is strongly
recommended.

For example, predefine ASCII character “@” (0x40) as the autobaud
detection character and measure the period between two subsequent fall-
ing edges. As shown in Figure 15-7, measure the period between the

Figure 15-6. Autobaud Detection Character 0x00

DIVISOR TIMERx_WIDTH

16 1 EDB0–  Number of captured UART bits

·
=

FRAME WIDTH

S 1 2 3 4 5 6 7 STOP0

DIVISOR TIMERx_WIDTH

16 1 EDB0–  9
---=

Programming Model

15-22 ADSP-BF50x Blackfin Processor Hardware Reference

falling edge of the start bit and the falling edge after bit 6. Since this
period encloses 8 bits, apply the following:

• Divisor = TIMERx_PERIOD >> 7 if EDB0 = 0

• Divisor = TIMERx_PERIOD >> 3 if EDB0 = 1

An example is provided in Listing 15-2 on page 15-48.

Programming Model
The following sections describe a programming model for the UARTs.

Non-DMA Mode
In non-DMA mode, data is moved to and from the UART by the proces-
sor core. To transmit a character, load it into UARTx_THR. Received data
can be read from UARTx_RBR. The processor must write and read a limited
number of characters at a time.

To prevent any loss of data and misalignments of the serial data stream,
the UARTx_LSR register provides two status flags for handshaking—THRE

and DR.

The THRE flag is set when UARTx_THR is ready for new data and cleared
when the processor loads new data into UARTx_THR. Writing UARTx_THR

Figure 15-7. Autobaud Detection Character 0x40

PERIOD

STOPS 1 2 3 4 5 6 70

ADSP-BF50x Blackfin Processor Hardware Reference 15-23

UART Port Controllers

when it is not empty overwrites the register with the new value and the
previous character is never transmitted.

The DR flag signals when new data is available in UARTx_RBR. This flag is
cleared automatically when the processor reads from UARTx_RBR. Reading
UARTx_RBR when it is not full returns the previously received value. When
UARTx_RBR is not read in time, an overrun condition protects the already
received data from being overwritten by new data until the OE bit is
cleared by software. Only the content of the RSR register can be overwrit-
ten in the overrun case.

The TEMT bit can be interrogated to see whether any transmission is ongo-
ing. The TEMT bit’s sticky counterpart TFI tells whether the transmit buffer
has drained and can trigger a status interrupt, if required.

With interrupts disabled, these status flags can be polled to determine
when data is ready to move. Note that because polling is processor inten-
sive, it is not typically used in real-time signal processing environments.
Since read operations from UARTx_LSR registers have no side effects, differ-
ent software threads can interrogate these registers without mutual
impacts. Polling the SIC_ISRx register without enabling the interrupts by
SIC_MASKx is an alternate method of operation to consider. Software can
write up to two words into the UARTx_THR register before enabling the
UART clock. As soon as the UCEN bit is set, those two words are sent.

Alternatively, UART writes and reads can be accomplished by interrupt
service routines (ISRs). Separate interrupt lines are provided for UART
TX, UARTxRX, and UART status. The independent interrupts can be
enabled individually by the UARTx_IER_SET and UARTx_IER_CLEAR register
pair. The UCEN bit must be set to enable UART transmit interrupts.

The ISRs can evaluate the status bits in the UARTx_LSR and UARTx_MSR reg-
isters to determine the signalling interrupt source. Interrupts also must be
assigned and unmasked by the processor’s interrupt controller. The ISRs
must clear the interrupt latches explicitly. See Figure 15-15 on
page 15-41.

Programming Model

15-24 ADSP-BF50x Blackfin Processor Hardware Reference

To reduce interrupt frequency on the receive side in non-DMA mode, the
ERFCI status interrupt may be used as an alternative to the regular ERBFI
receive interrupt. Hardware ensure that at least two (if RFIT=0) or four (if
RFIT=1) words are available in the receive buffer by the time the interrupt
is requested.

DMA Mode
In this mode, separate receive (UARTxRX) and transmit (UARTxTX)
DMA channels move data between the UART and memory. The software
does not have to move data, it just has to set up the appropriate transfers
either through the descriptor mechanism or through autobuffer mode.

DMA channels provide a 4-deep FIFO, resulting in total buffer capabili-
ties of 6 words at the transmit and 9 words at the receive side receive sides.
In DMA mode, the latency is determined by the bus activity and arbitra-
tion mechanism and not by the processor loading and interrupt priorities.
For more information, see “Direct Memory Access” on page 7-1.

DMA interrupt routines must explicitly write 1s to the corresponding
DMAx_IRQ_STATUS registers to clear the latched request of the pending
interrupt.

The UART’s DMA is enabled by first setting up the system DMA control
registers and then enabling the UART ERBFI and/or ETBEI interrupts in
the UARTx_IER_SET register. This is because the interrupt request lines
double as DMA request lines. Depending on whether DMA is enabled or
not, upon receiving these requests, the DMA control unit either generates
a direct memory access or passes the UART interrupt on to the system
interrupt handling unit. The UART’s status interrupt goes directly to the
system interrupt handling unit, bypassing the DMA unit completely.

For transmit DMA, it is recommended to set the SYNC bit in the DMAx_

CONFIG register. With this bit set, the interrupt generation is delayed until
the entire DMA FIFO is drained to the UART module. The UART TX
DMA interrupt service routine is allowed to disable the DMA or to clear

ADSP-BF50x Blackfin Processor Hardware Reference 15-25

UART Port Controllers

the ETBEI control bit only when the SYNC bit is set, otherwise up to four
data bytes might be lost.

When the ETBEI bit is set in the UARTx_IER_SET register, an initial transmit
DMA request is issued immediately. It is common practice to clear the
ETBEI bit by the DMA’s service routine.

In DMA transmit mode, the ETBEI bit enables the peripheral request to
the DMA FIFO. The strobe on the memory side is still enabled by the
DMAEN bit. If the DMA count is less than the DMA FIFO depth, which is
4, then the DMA interrupt might be requested already before the ETBEI

bit is set. If this is not wanted, set the SYNC bit in the DMAx_CONFIG register.

Regardless of the SYNC setting, the DMA stream has not left the UART
transmitter completely at the time the interrupt is generated. Transmis-
sion may abort in the middle of the stream, causing data loss, if the UART
clock was disabled without additional synchronization with the TEMT bit.

The UART’s DMA supports 8-bit and 16-bit operation, but not 32-bit
operation. Sign extension is not supported.

Mixing Modes
Especially on the transmit side, switching from DMA mode to non-DMA
operation on the fly requires some thought. By default, the interrupt tim-
ing of the DMA is synchronized with the memory side of the DMA
FIFOs. Normally, the UARTxTX DMA completion interrupt is generated
after the last byte is copied from the memory into the DMA FIFO. The
UARTxTX DMA interrupt service routine is not yet permitted to disable
the DMA enable bit DMAEN. The interrupt is requested by the time the
DMA_DONE bit is set. The DMA_RUN bit, however, remains set until the data
has completely left the UARTxTX DMA FIFO.

Therefore, when planning to switch from DMA to non-DMA of opera-
tion, always set the SYNC bit in the DMAx_CONFIG word of the last descriptor
or work unit before handing over control to non-DMA mode. Then, after

UART Registers

15-26 ADSP-BF50x Blackfin Processor Hardware Reference

the interrupt occurs, software can write new data into the UARTx_THR regis-
ter as soon as the THRE bit permits. If the SYNC bit cannot be set, software
can poll the DMA_RUN bit instead.

When switching from non-DMA to DMA operation, take care that the
very first DMA request is issued properly. If the DMA is enabled while the
UART is still transmitting, no precaution is required. If, however, the
DMA is enabled after the TEMT bit became high, the ETBEI bit should be
pulsed to initiate DMA transmission.

UART Registers
The processor provides a set of PC-style industry-standard control and
status registers for each UART. These memory-mapped registers (MMRs)
are byte-wide registers that are mapped as half words with the most signif-
icant byte zero filled. Table 15-3 provides an overview of the UART
registers.

Unlike on ADSP-BF52x processors, register addresses are not shared on
ADSP-BF50x processors. Each register has its own MMR address. Conse-
quently, the DLAB bit is not present on ADSP-BF50x processors’ UARTx_
LSR registers. Software must use 16-bit word load/store instructions to
access these registers.

Furthermore, the interrupt processing differs from ADSP-BF52x proces-
sors. Error bits in status registers do not clear on register reads implicitly,
rather they are cleared by write-1-to-clear (W1C) operations. The UARTx_

IIR register is not present at all. The interrupt enable register has separate
set and clear ports, so that separate receive, transmit, and status interrupt
service routines can enable or set masks individually.

Transmit and receive channels are both buffered. The UARTx_THR registers
buffer the transmit shift registers (TSR). The UARTx_RBR registers and an

ADSP-BF50x Blackfin Processor Hardware Reference 15-27

UART Port Controllers

additional 4-stage receive FIFO buffer the receive shift register (RSR). The
shift registers are not directly accessible by software.

Table 15-3. ADSP-BF50x versus ADSP-BF52x UART Register

Name ADSP-BF50x
Address Offset

ADSP-BF52x
Address Offset

Register Name

UARTx_DLL 0x00 0x00, DLAB=1 UART divisor latch low byte registers
on page 15-43

UARTx_DLH 0x04 0x00, DLAB=1 UART divisor latch high byte registers
on page 15-43

UARTx_GCTL 0x08 0x24 UART global control register
on page 15-45

UARTx_LCR 0x0C 0x0C UART line control registers
on page 15-28

UARTx_MCR 0x10 0x10 UART modem control registers
on page 15-31

UARTx_LSR 0x14 0x14 UART line status registers
on page 15-33

UARTx_MSR 0x18 N/A UART modem status registers
on page 15-36

UARTx_SCR 0x1C 0x1C UART scratch registers
on page 15-44

UARTx_IER_SET 0x20 N/A UART interrupt enable set registers
on page 15-39

UARTx_IER_CLEAR 0x24 N/A UART interrupt enable clear registers
on page 15-39

UARTx_IER N/A 0x04, DLAB=0 Interrupt Enable R/W register
on page 15-28

UARTx_THR 0x28 0x00, DLAB=0 UART transmit hold registers
on page 15-37

UARTx_RBR 0x2C 0x00, DLAB=0 UART receive buffer registers
on page 15-38

UARTx_IIR N/A 0x08 Interrupt Enable register
on page 15-28

UART Registers

15-28 ADSP-BF50x Blackfin Processor Hardware Reference

UARTx_LCR Registers
The line control (UARTx_LCR) registers, shown in Figure 15-8, control the
format of received and transmitted character frames.

The 2-bit WLS field determines whether the transmitted and received
UART word consists of 5, 6, 7 or 8 data bits.

Figure 15-8. UART Line Control Registers

Table 15-4. UART Line Control Register Memory-Mapped Addresses

Register Name Memory-Mapped Address

UART0_LCR 0xFFC0 040C

UART1_LCR 0xFFC0 200C

SB (Set Break)
0 - No force
1 - Force TX pin to 0

STP (Stick Parity)
Forces parity to defined value if set and PEN = 1
EPS = 0, parity transmitted and checked as 1
EPS = 1, parity transmitted and checked as 0

EPS (Even Parity Select)
0 - Odd parity when PEN = 1 and STP = 0
1 - Even parity

WLS[1:0] (Word Length
Select)
00 - 5-bit word
01 - 6-bit word
10 - 7-bit word
11 - 8-bit word

STB (Stop Bits)
0 - 1 stop bit
1 - 2 stop bits for non-5-bit

word length or 1 1/2 stop
bits for 5-bit word length

PEN (Parity Enable)
0 - Parity not transmitted or

checked
1 - Transmit and check

parity

UART Line Control Registers (UARTx_LCR)

Reset = 0x0000For memory-
mapped
addresses,
see

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

ADSP-BF50x Blackfin Processor Hardware Reference 15-29

UART Port Controllers

The STB bit controls how many stop bits are appended to transmitted
data. When STB=0, one stop bit is transmitted. If WLS is non zero, STB=1
instructs the transmitter to add one additional stop bit, two stop bits in
total. If WLS=0 and 5-bit operation is chosen, STB=1 forces the transmitter
to append one additional half bit, 1 1/2 stop bits in total. Note that this
bit does not impact data reception—the receiver is always satisfied with
one stop bit.

The PEN bit inserts one additional bit between the most significant data bit
and the first stop bit. The polarity of this so-called parity bit depends on
data and the STP and EPS control bits. Both transmitter and receiver calcu-
late the parity value. The receiver compares the received parity bit with
the expected value and issues a parity error if they don’t match. If PEN is
cleared, the STP and the EPS bits are ignored.

The STP bit controls whether the parity is generated by hardware based on
the data bits or whether it is set to a fixed value. If STP=0 the hardware cal-
culates the parity bit value based on the data bits. Then, the EPS bit
determines whether odd or even parity mode is chosen. If EPS=0, odd par-
ity is used. That means that the total count of logical–1 data bits
including the parity bit must be an odd value. Even parity is chosen by
STP=0 and EPS=1. Then, the count of logical–1 bits must be a even value.
If the STP bit is set, then hardware parity calculation is disabled. In this
case, the sent and received parity equals the inverted EPS bit. The example
in Table 15-5 summarizes polarity behavior assuming 8-bit data words
(WLS=3).

Table 15-5. UART Parity

PEN STP EPS Data (hex) Data (binary, LSB
first)

Parity

0 x x x x None

1 0 0 0x60 0000 0110 1

1 0 0 0x57 1110 1010 0

1 0 1 0x60 0000 0110 0

UART Registers

15-30 ADSP-BF50x Blackfin Processor Hardware Reference

If set, the SB bit forces the UARTxTX pin to low asynchronously, regardless
of whether or not data is currently transmitted. It functions even when the
UART clock is disabled. Since the UARTxTX pin normally drives high, it
can be used as a flag output pin, if the UART is not used.

1 0 1 0x57 1110 1010 1

1 1 0 x x 1

1 1 0 x x 1

1 1 1 x x 0

1 1 1 x x 0

Table 15-5. UART Parity (Cont’d)

PEN STP EPS Data (hex) Data (binary, LSB
first)

Parity

ADSP-BF50x Blackfin Processor Hardware Reference 15-31

UART Port Controllers

UARTx_MCR Registers
The modem control (UARTx_MCR) registers control the UART port, as
shown in Figure 15-9. Partial modem functionality is supported to allow
for hardware flow control and loopback mode.

Figure 15-9. UART Modem Control Registers

UART Modem Control Registers (UARTx_MCR)

Reset = 0x0000

0 - Forces pin UARTxRTS
to deassertive state

1 - Forces pin UARTxRTS
to its assertive state

ARTS (Auto UARTxRTS gen-
eration for RX handshake)

MRTS (Manual Request to
Send)

LOOP_ENA (Loopback Mode Enable)

ACTS (Auto CTS operation
for TX handshake)

0 - Pins CTS, UARTxRTS are negative
assertive

1 - Pins CTS, RTS are positive assertive

Disconnects RX from RSR, TX remains active
Internally redirects TX to RSR
Deasserts pin UARTxRTS
Disconnects pin CTS
Internally redirects bit MRTS of UARTx_MCR to
bit CTS of UART_MSR
Enable transmit/receive by setting MRTS bit.

FCPOL (Flow Control Pin
Polarity)

For memory-
mapped
addresses,
see Table 15-6.

0 - Set RFCS=1 if RX buffer
count >= 2

1 - Set RFCS=1 if RX buffer
count >= 4

RFIT (Receive FIFO IRQ
Threshold)

(ignored if ARTS=0)
0 - Deassert RTS pin if

RX buffer count >=2
and detect another
start bit; assert RTS pin
after an UARTx_RBR
read and the RX buffer
count < 2.

1 - Deassert RTS pin if
RX buffer count >=4
and detect another
start bit; assert RTS pin
after an UARTx_RBR
read and the RX buffer
count < 4.

RFRT (Receive FIFO RTS
Threshold)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

XOFF (Transmitter off)
(ignored if ACTS=1)
0 - Enable transmission
1 - Prevent content of

UARTx_THR to be
continued to TSR if
ACTS=0

UART Registers

15-32 ADSP-BF50x Blackfin Processor Hardware Reference

The receive FIFO interrupt threshold (RFIT) bit controls the timing of the
RFCS status bit. If RFIT=0, the receive threshold is two. If RFIT=1, the
threshold is four words in the receive buffer.

The manual request to send (MRTS) bit controls the state of the UARTxRTS

output pin only if ARTS=0. A value of MRTS=0 forces the UARTxRTS pin to its
deassertive state, signaling to the external device that the UART is not
ready to receive. A value of MRTS=1 forces the UARTxRTS pin to its assertive
state, signaling to the external device that the UART is ready to receive.

The automatic RTS (ARTS) bit enables the receive buffer to control the
RTS output depending on the threshold programmed by the RFTR bit. If
RFRT=0, the RTS signal is deasserted when already two words are held by
the receive buffer and a third start bit is detected. It is re-asserted if the
buffer contains less than two words. If RFRT=1, the RTS signal is deasserted
when already four words are held by the receive buffer and a fifth start bit
is detected. The RTS signal is re-asserted if the buffer contains less than
four words.

Similarly, the automatic CTS (ACTS) bit must be set to enable the CTS

input pin for UARTxTX handshaking. If enabled, the CTS status bit in the
UARTx_MSR register holds the value (if FCPOL=1) or complement value (if
FCPOL=0) of the CTS input pin. The CTS status bit can be used to determine
if the external device is ready to receive data (CTS=1) or if it is busy
(CTS=0). If ACTS=0, the UARTxTX handshaking protocol is disabled, and
the UARTxTX line transmits data whenever there is data to send, regard-
less of the value of CTS. The transmitter off (XOFF) bit can be used to pause
an on-going transmission by software when ACTS=0. Similarly to auto-
matic CTS mode, the XOFF bit prevents the data in the UARTx_THR register

Table 15-6. UART Modem Control Register Memory-Mapped Addresses

Register Name Memory-Mapped Address

UART0_MCR 0xFFC0 0410

UART1_MCR 0xFFC0 2010

ADSP-BF50x Blackfin Processor Hardware Reference 15-33

UART Port Controllers

from being continued to the TSR shift register. When ACTS=1, the XOFF

bit is ignored. When ACTS=0, the state of the CTS input signal is ignored.

The polarities of the UARTxCTS and UARTxRTS pins can be programmed
using the FCPOL bit. If FCPOL=0, the pins are negative asserted. If FCPOL=1,
the pins are positive asserted.

Loopback mode (LOOP_ENA=1) disconnects the receiver’s input from the
UARTxRX pin, and internally redirects the transmit output to the receiver.
The UARTxTX pin remains active and continues to transmit data externally
as well. Loopback mode also forces the UARTxRTS pin to its deassertive
state, disconnects the UARTxCTS bit from the UARTxCTS input pin, and
directly connects bit MRTS to bit UARTxCTS of the modem status register
(UARTx_MSR). In loopback mode, writing a 1 to the MRTS bit sets bit UARTx-
CTS, DCTS and enable the UART’s transmitter. Writing a 0 to the MRTS bit
clears bit UARTxCTS and disable the UART’s transmitter.

UARTx_LSR Registers
The line status (UARTx_LSR) registers contain UART status information as
shown in Figure 15-10. Unlike the industrial standard, the ADSP-BF50x
processor’s UARTx_LSR register is not read only. Writes to this register can
perform write-one-to-clear (W1C) operations on most status bits. Reading
this register has no side effects.

The DR (data ready) bit indicates that data is available in the receiver and
can be read from the UARTx_RBR register. The bit is set by hardware when
the receiver detects the first valid stop bit. It is cleared by hardware when
the UARTx_RBR register is read.

The OE (overrun error) bit indicates that further data is received while the
internal receive buffer was full. It is set when sampling the stop bit of the
6th data word. To avoid overruns, read the UARTx_RBR register in time. In
DMA receive mode overruns are very unlikely to happen ever. Once an
overrun occurs, the UARTx_RBR and receive FIFO are protected from being
overwritten by new data until the OE bit is cleared by software. The

UART Registers

15-34 ADSP-BF50x Blackfin Processor Hardware Reference

content of receive shift register RSR, however, is lost as soon as the overrun
occurs. The OE bit is sticky and can be cleared by W1C operations.

The PE (parity error) bit indicates that the received parity bit does not
match the expected value. The PE bit is updated simultaneously with the
DR bit, that is, by the time the first stop bit is received or when data is
loaded from the receive FIFO to the UARTx_RBR register. The bit is sticky
and can be cleared by W1C operations. Invalid parity bits can be simu-
lated by setting the FPE bit in the UARTx_GCTL register.

Figure 15-10. UART Line Status Registers

Table 15-7. UART Line Status Register Memory-Mapped Addresses

Register Name Memory-Mapped Address

UART0_LSR 0xFFC0 0414

UART1_LSR 0xFFC0 2014

DR (Data Ready) - RO

TEMT (TSR and UARTx_THR Empty) - RO

UART Line Status Registers (UARTx_LSR)

0 - Full
1 - Both empty

0 - THR not empty
1 - THR empty

0 - No break interrupt
1 - Break interrupt; this

indicates UARTxRX was
held low for more than the max-
imum word length

BI (Break Interrupt) - W1C

THRE (THR Empty) - RO

FE (Framing Error) - W1C

0 - No new data
1 - UARTx_RBR holds

new data
OE (Overrun Error) - W1C
0 - No overrun
1 - Overrun error. Read

buffers not overwritten.

PE (Parity Error) - W1C
0 - No parity error
1 - Parity error

0 - No error
1 - Invalid stop bit error

Reset = 0x0060

TFI (Transmission Finished Indicator) - W1C
0 - TEMT did not transition from 0 to 1
1 - TEMT transition from 0 to 1

For memory-
mapped
addresses,
see Table 15-7.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

ADSP-BF50x Blackfin Processor Hardware Reference 15-35

UART Port Controllers

The FE (framing error) bit indicates that the first stop bit is sampled. The
FE bit is updated simultaneously with the DR bit, that is, by the time the
first stop bit is received or when data is loaded from the receive FIFO to
the UARTx_RBR register. The bit is sticky and can be cleared by W1C oper-
ations. Invalid stop bits can be simulated by setting the FFE bit in the
UARTx_GCTL register.

The BI (break indicator) bit indicates that the first stop bit is sampled low
and the entire data word, including parity bit, consists of low bits only.
The BI bit is updated simultaneously with the DR bit, that is, by the time
the first stop bit is received or when data is loaded from the receive FIFO
to the UARTx_RBR register. The bit is sticky and can be cleared by W1C
operations.

The THRE (transmit hold register empty) bit indicates that the UART
transmit channel is ready for new data and software can write to UARTx_

THR. Writes to UARTx_THR clear the THRE bit. It is set again when data is
passed from UARTx_THR to the internal TSR register.

The TEMT (transmitter empty) bit indicates that both the UARTx_THR regis-
ter and the internal TSR register are empty. In this case the program is
permitted to write to the UARTx_THR register twice without losing data.
The TEMT bit can also be used as indicator that pending UART transmis-
sion is completed. At that time it is safe to disable the UCEN bit or to
three-state the off-chip line driver.

The TFI (transmission finished indicator) bit is a sticky version of the TEMT

bit. While TEMT is automatically cleared by hardware when new data is
written to the UARTx_THR register, the sticky TFI bit remains set until it is
cleared by software (W1C). The TFI bit enables more flexible transmit
interrupt timing.

UART Registers

15-36 ADSP-BF50x Blackfin Processor Hardware Reference

UARTx_MSR Registers
The modem status (UARTx_MSR) registers, shown in Figure 15-11, contains
current states of the UART’s external UARTxCTS pin and current status of
the UART's internal receive buffers.

The UARTxCTS bit holds the value (if FCPOL = 1) or the complement value
(if FCPOL = 0) of the UARTxCTS input pin. The ACTS bit in the UARTx_MCR

register must be set to enable this feature. The core can read the value of
UARTxCTS to determine if the external device is ready to receive (UARTxCTS
= 1) or if it is busy (UARTxCTS = 0). If ACTS = 0, the UARTxTX handshak-
ing protocol is disabled, and the UART transmits data as long as there is
data to transmit, regardless of the value of UARTxCTS. When ACTS=0, the
software can pause transmission temporarily by setting the XOFF bit.

Figure 15-11. UART Modem Status Registers

Table 15-8. UART Modem Status Register Memory-Mapped Addresses

Register Name Memory-Mapped Address

UART0_MSR 0xFFC0 0418

UART1_MSR 0xFFC0 2018

SCTS (Sticky CTS) - W1C

UART Modem Status Registers (UARTx_MSR)

Reset = 0x0000

Holds value of input pin CTS (if FCPOL bit of UART_MCR=1)
Holds complement value of input pin CTS (if FCPOL=0)

CTS (Clear to Send) - RO

Set when CTS transitions
from 0 to 1.
Clear with a W1C operation.

For memory-
mapped
addresses,
see Table 15-8.

When RFIT=0:
0: receive buffer < 2 entries
1: receive buffer >= 2 entries

When RFIT=1:
0: receive buffer < 4 entries
1: receive buffer >= 4 entries

RFCS (Receive FIFO Count Status) - RO

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

ADSP-BF50x Blackfin Processor Hardware Reference 15-37

UART Port Controllers

The SCTS bit is a sticky bit that is set high when UARTxCTS transitions from
0 to 1, and is cleared by software with a W1C operation. The SCTS bit can
trigger a line status interrupt if enabled by the EDSSI bit in the UARTx_IER_

SET register.

The receiver FIFO count status (RFCS) bit is set when the receive buffer
holds more or equal entries than a certain threshold. The threshold is con-
trolled by the RFIT bit in the UARTx_MCR register. If RFIT=0, the threshold
is two entries. If RFIT=1, the threshold is four entries. The RFCS bit cleared
when the UARTx_RBR register is read sufficient times until the buffer is
drained below the threshold. The RFCS bit can trigger a status interrupt if
enabled by the ERFCI bit in the UARTx_IER_SET register.

In loopback mode (LOOP_ENA=1), the UARTxCTS bit is disconnected from
the UARTxCTS input pin. Instead, it is directly connected to the MRTS bit of
the UARTx_MCR register.

 Previous implementations of the UART did not have this register.
It is implemented to allow for hardware flow control between the
UART and an external device.

UARTx_THR Registers
The write-only transmit hold (UARTx_THR) registers, shown in
Figure 15-12, is the UART’s transmit buffer. The THRE bit in the UARTx_

LSR registers indicate whether UARTx_THR is ready for new data. Writes to
UARTx_THR automatically propagate to the internal TSR register as soon as
TSR is ready. Then transmit operation is initiated immediately.

UART Registers

15-38 ADSP-BF50x Blackfin Processor Hardware Reference

UARTx_RBR Registers
The read-only UARTx_RBR registers, shown in Figure 15-13, is the UART’s
receive buffer. It is updated by the internal RSR register when a complete
data word is received or when there is pending data in the receive FIFO.
Newly available data is signalled by the DR bit in the UARTx_LSR register.

Figure 15-12. UART Transmit Holding Registers

Table 15-9. UART Transmit Holding Register Memory-Mapped
Addresses

Register Name Memory-Mapped Address

UART0_THR 0xFFC0 0428

UART1_THR 0xFFC0 2028

Figure 15-13. UART Receive Buffer Registers

Transmit Hold[7:0]

UART Transmit Holding Registers (UARTx_THR)
W

Reset = 0x0000For memory-
mapped
addresses,
see Table 15-9.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

Receive Buffer[7:0]

UART Receive Buffer Registers (UARTx_RBR)
RO

Reset = 0x0000For memory-
mapped
addresses,
see Table 15-10.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

ADSP-BF50x Blackfin Processor Hardware Reference 15-39

UART Port Controllers

UARTx_IER_SET and UARTx_IER_CLEAR Registers
The interrupt enable register is not implemented as a data register. Instead
it is controlled by the UARTx_IER_SET and UARTx_IER_CLEAR register pair.
Writing ones to UARTx_IER_SET enables interrupts, writing UARTx_IER_

CLEAR disables them. Reads from either register return the enabled bits.
This way, different interrupt service routines can control transmit, receive,
and status interrupts independently and gracefully.

The UARTx_IER registers, shown in Figure 15-14 and Figure 15-15, are
used to enable requests for system handling of empty or full states of
UART data registers. Unless polling is used as a means of action, the
ERBFI and/or ETBEI bits in this register are normally set.

Setting this register without enabling system DMA causes the UART to
notify the processor of data inventory state by means of interrupts. For
proper operation in this mode, system interrupts must be enabled, and
appropriate interrupt handling routines must be present.

 Each UART features three separate interrupt channels to handle
data transmit, data receive, and line status events independently,
regardless whether DMA is enabled or not. If no DMA channels
are assigned to the UART, set the EGLSI bit in the UARTx_GCTL

register to reroute transmit and receive interrupts to the status
interrupt output.

With system DMA enabled, the UART uses DMA to transfer data to or
from the processor. Dedicated DMA channels are available to receive and
transmit operation. Line error handling can be configured completely
independently from the receive/transmit setup.

Table 15-10. UART Receive Buffer Register Memory-Mapped Addresses

Register Name Memory-Mapped Address

UART0_RBR 0xFFC0 042C

UART1_RBR 0xFFC0 202C

UART Registers

15-40 ADSP-BF50x Blackfin Processor Hardware Reference

Figure 15-14. UART Interrupt Enable Set Registers

Table 15-11. UART Interrupt Enable Set Register Memory-Mapped
Addresses

Register Name Memory-Mapped Address

UART0_IER_SET 0xFFC0 0420

UART1_IER_SET 0xFFC0 2020

ERBFI (Enable Receive Buf-
fer Full Interrupt)

UART Interrupt Enable Set Registers (UARTx_IER_SET)

ETBEI (Enable Transmit
Buffer Empty Interrupt)

ELSI (Enable RX Status
Interrupt)

0 - No interrupt
1 - Generate RX interrupt if

DR bit in UARTx_LSR is
set

0 - No interrupt
1 - Generate TX interrupt if

THRE bit in UARTx_LSR is
set

0 - No interrupt
1 - Generate status interrupt

if any of UARTx_LSR[4:1] is
set

Reset = 0x0000

ETFI (Enable Transmission Finished Interrupt)

Unused

EDSSI (Enable Modem Status Interrupt)

0 - No interrupt
1 - Generate status interrupt if

TFI bit in UARTx_LSR is set

0 - No interrupt
1 - Generate status interrupt

if SCTS bit in UARTx_MSR is set

For memory-
mapped
addresses,
see Table 15-11.

ERFCI (Enable Receive FIFO Count Interrupt)
0 - No interrupt
1 - Generate status interrupt if RFCS

bit in UARTx_MSR is set

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

ADSP-BF50x Blackfin Processor Hardware Reference 15-41

UART Port Controllers

The UART’s DMA is enabled by first setting up the system DMA control
registers and then enabling the UART ERBFI and/or ETBEI interrupts in
the UARTx_IER register. This is because the interrupt request lines double
as DMA request lines. Depending on whether DMA is enabled or not,
upon receiving these requests, the DMA control unit either generates a
direct memory access or passes the UART interrupt on to the system inter-
rupt handling unit. However, UART’s error interrupt goes directly to the
system interrupt handling unit, bypassing the DMA unit completely.

Figure 15-15. UART Interrupt Enable Clear Registers

Table 15-12. UART Interrupt Enable Clear Register Memory-Mapped
Addresses

Register Name Memory-Mapped Address

UART0_IER_CLEAR 0xFFC0 0424

UART1_IER_CLEAR 0xFFC0 2024

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

ERBFI (Enable Receive Buf-
fer Full Interrupt)

UART Interrupt Enable Clear Registers (UARTx_IER_CLEAR)

ETBEI (Enable Transmit
Buffer Empty Interrupt)

ELSI (Enable RX Status
Interrupt)

0 - No interrupt
1 - Generate RX interrupt if

DR bit in UARTx_LSR is
set

0 - No interrupt
1 - Generate TX interrupt if

THRE bit in UARTx_LSR is
set

0 - No interrupt
1 - Generate status interrupt

if any of UARTx_LSR[4:1]
is set

Reset = 0x0000

ETFI (Enable Transmission Finished Interrupt)

Unused

EDSSI (Enable Modem Status Interrupt)

0 - No interrupt
1 - Generate status interrupt if

TFI bit in UARTx_LSR is set

0 - No interrupt
1 - Generate status interrupt

if SCTS bit in UARTx_MSR is set

For memory-
mapped
addresses,
see Table 15-12.

ERFCI (Enable Receive FIFO Count Interrupt)
0 - No interrupt
1 - Generate status interrupt if RFCS

bit in UARTx_MSR is set

UART Registers

15-42 ADSP-BF50x Blackfin Processor Hardware Reference

The ELSI bit enables interrupt generation on an independent interrupt
channel when any of the following conditions are raised by the respective
bit in the UARTx_LSR register:

• Receive overrun error (OE)

• Receive parity error (PE)

• Receive framing error (FE)

• Break interrupt (BI)

The EDSSI bit enables a modem status interrupt on the same status inter-
rupt channel when the SCTS bit in the UARTx_MSR register is set. This
indicates CTS re-assertion. Write-1-to-clear (W1C) the SCTS bit to clear
the interrupt request.

The ERFCI bit enables the receive buffer threshold interrupt if signalled by
the RFCS bit. Read the UARTx_RBR register sufficient times to clear the
interrupt request.

The ETFI bit enables interrupt generation on the status interrupt channel
when both the transmit buffer register and transmit shift register are
empty as indicated by the TFI bit in the UARTx_LSR register. The ETFI

interrupt can be used to avoid expensive polling of the TEMT bit, when the
UART clock or line drivers should be disabled after transmission has com-
pleted. W1C the TFI bit to clear the interrupt request. In DMA operation,
the ETDPTI bit’s functionality might be preferred.

The ETDPTI bit is required for DMA transmit operation only. It enables
the DMA completion interrupt to be delayed until the data has left the
UART completely. If set, it can generate a DMA interrupt by the time the
TEMT bit goes high after the last DMA data word is transmitted.

If the ETDPTI bit is cleared, the DMA completion interrupt is generated
when either the last data word is transferred from memory to the DMA
FIFO (DMA’s SYNC bit cleared) or when the last word has left the DMA
FIFO (SYNC bit set). If ETDPTI is set, usually the DMA’s DI_EN is not set in

ADSP-BF50x Blackfin Processor Hardware Reference 15-43

UART Port Controllers

a STOP mode DMA. Thus, the normal completion interrupt is sup-
pressed. Rather, the TEMT event is signalled through the DMA controller
and triggers the DMA interrupt. If both, DI_EN and ETDPTI are set, two
interrupts are requested at the end of a STOP mode DMA.

 The UARTx_IIR registers are not present on this implementation.
Signalling interrupt sources can be identified by interrogating
UARTx_LSR and UARTx_MSR status registers.

UARTx_DLL and UARTx_DLH Registers
The two 8-bit clock divisor latch registers (UARTx_DLH and UARTx_DLL)
build a 16-bit clock divisor value. They divide the system clock SCLK down
to the bit clock. These registers are shown in Figure 15-16.

Figure 15-16. UART Divisor Latch Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

Divisor Latch Low Byte[7:0]

Divisor Latch High Byte[15:8]

UART Divisor Latch Low Byte Registers (UARTx_DLL)

UART Divisor Latch High Byte Registers (UARTx_DLH)

Reset = 0x0001

Reset = 0x0000

For memory-
mapped
addresses,
see Table 15-13.

For memory-
mapped
addresses,
see Table 15-14.

UART Registers

15-44 ADSP-BF50x Blackfin Processor Hardware Reference

 Note the 16-bit divisor formed by UARTx_DLH and UARTx_DLL resets
to 0x0001, resulting in high clock frequency by default. If the
UART is not used, disabling the UART clock saves power.

Note that the bit rate depends also on the EDBO bit in the UARTx_GCTL reg-
ister. Refer to “Bit Rate Generation” on page 15-18.

UARTx_SCR Registers
The contents of the 8-bit scratch (UARTx_SCR) registers, shown in
Figure 15-17, are reset to 0x00. They are used for general-purpose data
storage and do not control the UART hardware in any way.

Table 15-13. UART Divisor Latch Low Byte Register Memory-Mapped
Addresses

Register Name Memory-Mapped Address

UART0_DLL 0xFFC0 0400

UART1_DLL 0xFFC0 2000

Table 15-14. UART Divisor Latch High Byte Register Memory-Mapped
Addresses

Register Name Memory-Mapped Address

UART0_DLH 0xFFC0 0404

UART1_DLH 0xFFC0 2004

Figure 15-17. UART Scratch Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

Scratch[7:0]

UART Scratch Registers (UARTx_SCR)

Reset = 0x0000For memory-
mapped
addresses,
see Table 15-15.

ADSP-BF50x Blackfin Processor Hardware Reference 15-45

UART Port Controllers

UARTx_GCTL Registers
The global control (UARTx_GCTL) registers, shown in Figure 15-18, contain
the enable bit for internal UART clocks and for the IrDA mode of opera-
tion of the UARTs.

Table 15-15. UART Scratch Register Memory-Mapped Addresses

Register Name Memory-Mapped Address

UART0_SCR 0xFFC0 041C

UART1_SCR 0xFFC0 201C

Figure 15-18. UART Global Control Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

UCEN (Enable UART Clocks)
0 - Disable UART clocks
1 - Enable UART clocks

Reset = 0x0000

IREN (Enable IrDA Mode)
0 - Disable IrDA
1 - Enable IrDA

FPE (Force Parity Error on Transmit)
0 - Normal operation
1 - Force error

FFE (Force Framing Error on Transmit)
0 - Normal operation
1 - Force error

UART Global Control Registers (UARTx_GCTL)

TPOLC (IrDA TX Polarity
Change)
0 - Serial line idles low
1 - Serial line idles high

RPOLC (IrDA RX Polarity Change)
0 - Serial line idles low
1 - Serial line idles high

EDBO (Enable Divide-by-One)
0 - Bit clock prescaler = 16
1 - Bit clock prescaler = 1

For memory-
mapped
addresses,
see Table 15-16.

EGLSI (Enable Global LS Interrupt)
0 - TX and RX interrupts routed to

normal interrupt outputs
1 - TX and RX interrupts redirected to

status interrupt output

Programming Examples

15-46 ADSP-BF50x Blackfin Processor Hardware Reference

The UCEN bit enables the UART clocks. It also resets the state machine and
control registers when cleared. Note that the UCEN bit was not present in
previous UART implementations. It is introduced to save power if the
UART is not used. When porting code, be sure to enable this bit.

The IrDA TX polarity change bit and the IrDA RX polarity change bit are
effective only in IrDA mode. The two force error bits, FPE and FFE, are
intended for test purposes. They are useful for debugging software, espe-
cially in loopback mode.

The EDBO bit enables bypassing of the divide-by-16 prescaler in bit clock
generation. This improves bit rate granularity, especially at high bit rates.
See “Bit Rate Generation” on page 15-18. Do not set this bit in IrDA
mode.

The EGLSI bit redirects TX and RX interrupt requests to the status inter-
rupt output of the UART by ORing them with all other kinds of UART
status interrupt requests. Set this bit when no DMA channel is associated
with the UART.

Programming Examples
The following programming examples show how to use the UART.

The subroutine in Listing 15-1 shows a typical UART initialization
sequence.

Table 15-16. UART Global Control Register Memory-Mapped Addresses

Register Name Memory-Mapped Address

UART0_GCTL 0xFFC0 0408

UART1_GCTL 0xFFC0 2008

ADSP-BF50x Blackfin Processor Hardware Reference 15-47

UART Port Controllers

Listing 15-1. UART Initialization

/**

* Configures UART in 8 data bits, no parity, 1 stop bit mode.

* Input parameters: r0 holds divisor latch value to be

* written into

* DLH:DLL registers.

* p0 contains the UARTx_GCTL register address

* Return values: none

***/

uart_init:

[--sp] = r7;

r7 = UCEN (z); /* First of all, enable UART clock */

w[p0+UART0_GCTL-UART0_GCTL] = r7;

w[p0+UART0_DLL-UART0_GCTL] = r0; /* write lower byte to DLL

*/

r7 = r0 >> 8;

w[p0+UART0_DLH-UART0_GCTL] = r7; /* write upper byte to DLH

*/

r7 = STB | WLS(8) (z); /* config to */

w[p0+UART0_LCR-UART0_GCTL] = r7; /* 8 bits, no parity, 2

stop bits */

r7 = [sp++];

rts;

uart_init.end:

Programming Examples

15-48 ADSP-BF50x Blackfin Processor Hardware Reference

The subroutine in Listing 15-2 performs autobaud detection similarly to
UART boot.

Listing 15-2. UART Autobaud Detection Subroutine

/***

* Assuming 8 data bits, this functions expects a '@'

* (ASCII 0x40) character

* on the UARTx RX pin. A Timer performs the autobaud detection.

* Input parameters: p0 contains the UARTx_GCTL register address

* p1 contains the TIMERx_CONFIG register

* address

* Return values: r0 holds timer period value (equals 8 bits)

***/

uart_autobaud:

[--sp] = (r7:5,p5:5);

r5.h = hi(TIMER0_CONFIG); /* for generic timer use calculate

*/

r5.l = lo(TIMER0_CONFIG); /* specific bits first */

r7 = p1;

r7 = r7 - r5;

r7 >>= 4; /* r7 holds the 'x' of TIMERx_CONFIG now */

r5 = TIMEN0 (z);

r5 <<= r7; /* r5 holds TIMENx/TIMDISx now */

r6 = TRUN0 | TOVL_ERR0 | TIMIL0 (z);

r6 <<= r7;

CC = r7 <= 3;

r7 = r6 << 12;

if !CC r6 = r7; /* r6 holds TRUNx | TOVL_ERRx | TIMILx */

p5.h = hi(TIMER_STATUS);

p5.l = lo(TIMER_STATUS);

w[p5 + TIMER_DISABLE - TIMER_STATUS] = r5; /* disable Timer x

*/

ADSP-BF50x Blackfin Processor Hardware Reference 15-49

UART Port Controllers

[p5 + TIMER_STATUS - TIMER_STATUS] = r6; /* clear pending

latches */

/* period capture, falling edge to falling edge */

r7 = TIN_SEL | IRQ_ENA | PERIOD_CNT | WDTH_CAP (z);

w[p1 + TIMER0_CONFIG - TIMER0_CONFIG] = r7;

w[p5+TIMER_ENABLE-TIMER_STATUS] = r5;

uart_autobaud.wait: /* wait for timer event */

r7 = w[p5 + TIMER_STATUS - TIMER_STATUS] (z);

r7 = r7 & r5;

CC = r7 == 0;

if CC jump uart_autobaud.wait;

w[p5 + TIMER_DISABLE - TIMER_STATUS] = r5; /* disable Timer x

*/

[p5 + TIMER_STATUS - TIMER_STATUS] = r6; /* clear pending

latches */

/* Save period value to R0 */

r0 = [p1 + TIMER0_PERIOD - TIMER0_CONFIG];

/* delay processing as autobaud character is still ongoing */

r7 = OUT_DIS | IRQ_ENA | PERIOD_CNT | PWM_OUT (z);

w[p1 + TIMER0_CONFIG - TIMER0_CONFIG] = r7;

w[p5 + TIMER_ENABLE - TIMER_STATUS] = r5;

uart_autobaud.delay:

r7 = w[p5 + TIMER_STATUS - TIMER_STATUS] (z);

r7 = r7 & r5;

CC = r7 == 0;

if CC jump uart_autobaud.delay;

w[p5 + TIMER_DISABLE - TIMER_STATUS] = r5;

[p5 + TIMER_STATUS - TIMER_STATUS] = r6;

(r7:5,p5:5) = [sp++];

rts;

uart_autobaud.end:

Programming Examples

15-50 ADSP-BF50x Blackfin Processor Hardware Reference

The parent routine in Listing 15-3 performs autobaud detection using
UART0 and TIMER2.

Listing 15-3. UART Autobaud Detection Parent Routine

p0.l = lo(PORTG_FER); /* function enable on UART0 pins PG12

and PG13 */

p0.h = hi(PORTG_FER); /* by default PORTG_MUX register is all

set */

r0 = PG12 | PG13 (z)

w[p0] = r0;

p0.l = lo(UART0_GCTL); /* select UART 0 */

p0.h = hi(UART0_GCTL);

p1.l = lo(TIMER2_CONFIG); /* select TIMER 2 */

p1.h = hi(TIMER2_CONFIG);

call uart_autobaud;

r0 >>= 7; /* divide PERIOD value by (16 x 8) */

call uart_init;

...

The subroutine in Listing 15-4 transmits a character by polling operation.

Listing 15-4. UART Character Transmission

/***

* Transmit a single byte by polling the THRE bit.

* Input parameters: r0 holds the character to be transmitted

* p0 contains UARTx_GCTL register address

* Return values: none

***/

uart_putc:

[--sp] = r7;

uart_putc.wait:

r7 = w[p0+UART0_LSR-UART0_GCTL] (z);

ADSP-BF50x Blackfin Processor Hardware Reference 15-51

UART Port Controllers

CC = bittst(r7, bitpos(THRE));

if !CC jump uart_putc.wait;

w[p0+UART0_THR-UART0_GCTL] = r0; /* write initiates transfer

*/

r7 = [sp++];

rts;

uart_putc.end:

Use the routine shown in Listing 15-5 to transmit a C-style string that is
terminated by a null character.

Listing 15-5. UART String Transmission

/**

* Transmit a null-terminated string.

* Input parameters: p1 points to the string

* p0 contains UARTx_GCTL register address

* Return values: none

***/

uart_puts:

[--sp] = rets;

[--sp] = r0;

uart_puts.loop:

r0 = b[p1++] (z);

CC = r0 == 0;

if CC jump uart_puts.exit;

call uart_putc;

jump uart_puts.loop;

uart_puts.exit:

r0 = [sp++];

rets = [sp++];

rts;

uart_puts.end:

Programming Examples

15-52 ADSP-BF50x Blackfin Processor Hardware Reference

Note that polling the UART0_LSR register for transmit purposes does not
cause side effects on receive status bits as on former implementations.

In non-DMA interrupt operation, the three UART interrupt request lines
may or may not be ORed together in the SIC controller or by the EGLSI

control bit. If they had three different service routines, they may look as
shown in Listing 15-6.

Listing 15-6. UART Non-DMA Interrupt Operation

isr_uart_rx:

[--sp] = astat;

[--sp] = r7;

r7 = w[p0+UART0_RBR-UART0_GCTL] (z);

b[p4++] = r7;

ssync;

r7 = [sp++];

astat = [sp++];

rti;

isr_uart_rx.end:

isr_uart_tx:

[--sp] = astat;

[--sp] = r7;

r7 = b[p3++] (z);

CC = r7 == 0;

if CC jump isr_uart_tx.final;

w[p0+UART0_THR-UART0_GCTL] = r7;

r7 = [sp++];

astat = [sp++];

ssync;

rti;

isr_uart_tx.final:

r7 = ETBEI (z) ;

w[p0+UART0_IER_CLR] = r7; /* clear TX interrupt enable */

ADSP-BF50x Blackfin Processor Hardware Reference 15-53

UART Port Controllers

ssync;

r7 = [sp++];

astat = [sp++];

rti;

isr_uart_tx.end:

isr_uart_error:

[--sp] = astat;

[--sp] = (r7:6);

r7 = w[p0+UART0_LSR-UART0_GCTL] (z);

r6 = OE | BI | FE | PE (z);

w[p0+UART0_LSR-UART0_GCTL] = r6;

/* do something with the error */

(r7:6) = [sp++];

astat = [sp++];

ssync;

rti;

isr_uart_error.end:

Listing 15-7 transmits a string by DMA operation, waits until DMA com-
pletes and sends an additional string by polling. Note the importance of
the SYNC bit.

Listing 15-7. UART Transmission SYNC Bit Use

.section data;

.byte sHello[] = 'Hello Blackfin User',13,10,0;

.byte sWorld[] = 'How is life?',13,10,0;

.section program;

...

p1.l = lo(IMASK);

p1.h = hi(IMASK);

r0.l = lo(isr_uart_tx); /* register service routine */

r0.h = hi(isr_uart_tx); /* UART0 TX defaults to IVG10 */

Programming Examples

15-54 ADSP-BF50x Blackfin Processor Hardware Reference

r0 = [p1 + IMASK - IMASK]; /* unmask interrupt in CEC */

bitset(r0, bitpos(EVT_IVG10));

[p1] = r0;

p1.l = lo(SIC_IMASK0);

p1.h = hi(SIC_IMASK0); /* unmask interrupt in SIC */

r0.l = 0x8000;

r0.h = 0x0000;

[p1] = r0;

[--sp] = reti; /* enable nesting of interrupts */

p5.l = lo(DMA7_CONFIG); /* setup DMA in STOP mode */

p5.h = hi(DMA7_CONFIG);

r7.l = lo(sHello);

r7.h = hi(sHello);

[p5+DMA7_START_ADDR-DMA7_CONFIG] = r7;

r7 = length(sHello) (z);

r7+= -1; /* don't send trailing null character */

w[p5+DMA7_X_COUNT-DMA7_CONFIG] = r7;

r7 = 1;

w[p5+DMA7_X_MODIFY-DMA7_CONFIG] = r7;

r7 = FLOW_STOP | WDSIZE_8 | DI_EN | SYNC | DMAEN (z);

w[p5] = r7;

p0.l = lo(UART0_GCTL); /* select UART 0 */

p0.h = hi(UART0_GCTL);

r0 = ETBEI (z); /* enable and issue first request */

w[p0+UART0_IER-UART0_GCTL] = r0;

wait4dma: /* just one way to synchronize with the service routine

*/

r0 = w[p5+DMA7_IRQ_STATUS-DMA7_CONFIG] (z);

CC = bittst(r0,bitpos(DMA_RUN));

if CC jump wait4dma;

p1.l=lo(sWorld);

ADSP-BF50x Blackfin Processor Hardware Reference 15-55

UART Port Controllers

p1.h=hi(sWorld);

call uart_puts;

forever: jump forever;

isr_uart_tx:

[--sp] = astat;

[--sp] = r7;

r7 = DMA_DONE (z); /* W1C interrupt request */

w[p5+DMA7_IRQ_STATUS-DMA7_CONFIG] = r7;

r7 = ETBEI (z);

w[p0+UART0_IER_CLEAR-UART0_GCTL] = r7;

ssync;

r7 = [sp++];

astat = [sp++];

rti;

isr_uart_tx.end:

Programming Examples

15-56 ADSP-BF50x Blackfin Processor Hardware Reference

ADSP-BF50x Blackfin Processor Hardware Reference 16-1

16 TWO-WIRE INTERFACE
CONTROLLER

This chapter describes the two-wire interface (TWI) port. Following an
overview and a list of key features is a description of operation and func-
tional modes of operation. The chapter concludes with a programming
model, consolidated register definitions, and programming examples.

Specific Information for the ADSP-BF50x
For details regarding the number of TWIs for the ADSP-BF50x product,
refer to ADSP-BF504, ADSP-BF504F, ADSP-BF506F Embedded Processor
Data Sheet.

For TWI interrupt vector assignments, refer to Table 4-3 on page 4-19 in
Chapter 4, “System Interrupts”.

To determine how each of the TWIs is multiplexed with other functional
pins, refer to Table 9-1 on page 9-4 through Table 9-3 on page 9-6 in
Chapter 9, “General-Purpose Ports”.

For a list of MMR addresses for each TWI, refer to Chapter A, “System
MMR Assignments”.

TWI behavior for the ADSP-BF50x that differs from the general informa-
tion in this chapter can be found at the end of this chapter in the section
“Unique Information for the ADSP-BF50x Processor” on page 16-61.

Overview

16-2 ADSP-BF50x Blackfin Processor Hardware Reference

Overview
The TWI controller allows a device to interface to an inter IC bus as spec-
ified by the Philips I2C Bus Specification version 2.1 dated January 2000.

The TWI is fully compatible with the widely used I2C bus standard. It
was designed with a high level of functionality and is compatible with
multi-master, multi-slave bus configurations. To preserve processor band-
width the TWI controller can be set up with transfer initiated interrupts
only to service FIFO buffer data reads and writes. Protocol related inter-
rupts are optional.

The TWI externally moves 8-bit data while maintaining compliance with
the I2C bus protocol. The TWI controller includes these features:

• Simultaneous master and slave operation on multiple device
systems

• Support for multi-master bus arbitration

• 7-bit addressing

• 100K bits/second and 400K bits/second data rates

• General call address support

• Master clock synchronization and support for clock low extension

• Separate multiple-byte receive and transmit FIFOs

• Low interrupt rate

• Individual override control of data and clock lines in the event of
bus lock-up

• Input filter for spike suppression

• Serial camera control bus support as specified in OmniVision Serial
Camera Control Bus (SCCB) Functional Specification version 2.1.

ADSP-BF50x Blackfin Processor Hardware Reference 16-3

Two-Wire Interface Controller

Interface Overview
Figure 16-1 provides a block diagram of the TWI controller. The interface
is essentially a shift register that serially transmits and receives data bits,
one bit at a time at the SCL rate, to and from other TWI devices. The SCL

signal synchronizes the shifting and sampling of the data on the serial data
pin.

External Interface
The SDA (serial data) and SCL (serial clock) signals are open drain and as
such require pull-up resistors.

Figure 16-1. TWI Block Diagram

PAB

TWI INTERFACE LOGIC

CLOCK
GENERATION

Tx REG

2-DEEP FIFO 2-DEEP FIFO

Rx REG

Tx SHIFT REG Rx SHIFT REG

ARBITRATIONPRESCALERADDRESS
COMPARE

SCLSDA

Interface Overview

16-4 ADSP-BF50x Blackfin Processor Hardware Reference

Serial Clock Signal (SCL)

In slave mode this signal is an input and an external master is responsible
for providing the clock.

In master mode the TWI controller must set this signal to the desired fre-
quency. The TWI controller supports the standard mode of operation (up
to 100 KHz) or fast mode (up to 400 KHz).

The TWI control register (TWI_CONTROL) is used to set the PRESCALE value
which gives the relationship between the system clock (SCLK) and the TWI
controller’s internally timed events. The internal time reference is derived
from SCLK using a prescaled value.

PRESCALE = fSCLK/10MHz

The PRESCALE value is the number of system clock (SCLK) periods used in
the generation of one internal time reference. The value of PRESCALE must
be set to create an internal time reference with a period of 10 MHz. It is
represented as a 7-bit binary value.

 It is not always possible to achieve 10 MHz accuracy. In such cases,
it is safe to round up the PRESCALE value to the next highest integer.
For example, if SCLK is 133 MHz, the PRESCALE value is calculated
as 133 MHz/10 MHz = 13.3. In this case, a PRESCALE value of 14
ensures that all timing requirements are met.

Serial Data Signal (SDA)

This is a bidirectional signal on which serial data is transmitted or received
depending on the direction of the transfer.

ADSP-BF50x Blackfin Processor Hardware Reference 16-5

Two-Wire Interface Controller

TWI Pins

Table 16-1 shows the pins for the TWI. Two bidirectional pins externally
interface the TWI controller to the I2C bus. The interface is simple and
no other external connections or logic are required.

Internal Interfaces
The peripheral bus interface supports the transfer of 16-bit wide data and
is used by the processor in the support of register and FIFO buffer reads
and writes.

The register block contains all control and status bits and reflects what can
be written or read as outlined by the programmer’s model. Status bits can
be updated by their respective functional blocks.

The FIFO buffer is configured as a1-byte-wide 2-deep transmit FIFO buf-
fer and a 1-byte-wide 2-deep receive FIFO buffer.

The transmit shift register serially shifts its data out externally off chip.
The output can be controlled for generation of acknowledgements or it
can be manually overwritten.

The receive shift register receives its data serially from off chip. The
receive shift register is 1 byte wide and data received can either be trans-
ferred to the FIFO buffer or used in an address comparison.

The address compare block supports address comparison in the event the
TWI controller module is accessed as a slave.

Table 16-1. TWI Pins

Pin Description

SDA In/Out TWI serial data, high impedance reset value.

SCL In/Out TWI serial clock, high impedance reset value.

Description of Operation

16-6 ADSP-BF50x Blackfin Processor Hardware Reference

The prescaler block must be programmed to generate a 10 MHz time ref-
erence relative to the system clock. This time base is used for filtering of
data and timing events specified by the electrical data sheet (See the Phil-
ips Specification), as well as for SCL clock generation.

The clock generation module is used to generate an external SCL clock
when in master mode. It includes the logic necessary for synchronization
in a multi-master clock configuration and clock stretching when config-
ured in slave mode.

Description of Operation
The following sections describe the operation of the TWI interface.

TWI Transfer Protocols
The TWI controller follows the transfer protocol of the Philips I2C Bus
Specification version 2.1 dated January 2000. A simple complete transfer is
diagrammed in Figure 16-2.

To better understand the mapping of TWI controller register contents to
a basic transfer, Figure 16-3 details the same transfer as above noting the
corresponding TWI controller bit names. In this illustration, the TWI
controller successfully transmits one byte of data. The slave has acknowl-
edged both address and data.

Figure 16-2. Basic Data Transfer

ACKR/W

ACK = ACKNOWLEDGE

S P8-BIT DATA ACK7-BIT ADDRESS

P = STOP
S = START

ADSP-BF50x Blackfin Processor Hardware Reference 16-7

Two-Wire Interface Controller

Clock Generation and Synchronization

The TWI controller implementation only issues a clock during master
mode operation and only at the time a transfer has been initiated. If arbi-
tration for the bus is lost, the serial clock output immediately three-states.
If multiple clocks attempt to drive the serial clock line, the TWI controller
synchronizes its clock with the other remaining clocks. This is shown in
Figure 16-4.

The TWI controller’s serial clock (SCL) output follows these rules:

• Once the clock high (CLKHI) count is complete, the serial clock out-
put is driven low and the clock low (CLKLOW) count begins.

• Once the clock low count is complete, the serial clock line is
three-stated and the clock synchronization logic enters into a delay
mode (shaded area) until the SCL line is detected at a logic 1 level.
At this time the clock high count begins.

Figure 16-3. Data Transfer With Bit Illustration

Figure 16-4. TWI Clock Synchronization

ACKMDIR

ACK = ACKNOWLEDGE

S PXMITDATA8[7:0] ACKMADDR[6:0]

P = STOP
S = START

HIGH
COUNT

LOW
COUNT

TWI CONTROLLER
CLOCK

SECOND MASTER
CLOCK

SCL
RESULT

Description of Operation

16-8 ADSP-BF50x Blackfin Processor Hardware Reference

Bus Arbitration

The TWI controller initiates a master mode transmission (MEN) only when
the bus is idle. If the bus is idle and two masters initiate a transfer, arbitra-
tion for the bus begins. This is shown in Figure 16-5.

The TWI controller monitors the serial data bus (SDA) while SCL is high
and if SDA is determined to be an active logic 0 level while the TWI con-
troller’s data is a logic 1 level, the TWI controller has lost arbitration and
ends generation of clock and data. Note arbitration is not performed only
at serial clock edges, but also during the entire time SCL is high.

Start and Stop Conditions

Start and stop conditions involve serial data transitions while the serial
clock is a logic 1 level. The TWI controller generates and recognizes these
transitions. Typically start and stop conditions occur at the beginning and
at the conclusion of a transmission with the exception repeated start
“combined” transfers, as shown in Figure 16-6.

Figure 16-5. TWI Bus Arbitration

START

SCL (BUS)

TWI CONTROLLER
DATA

SECOND MASTER
DATA

SDA (BUS)
ARBITRATION
LOST

ADSP-BF50x Blackfin Processor Hardware Reference 16-9

Two-Wire Interface Controller

The TWI controller’s special case start and stop conditions include:

• TWI controller addressed as a slave-receiver

If the master asserts a stop condition during the data phase of a
transfer, the TWI controller concludes the transfer (SCOMP).

• TWI controller addressed as a slave-transmitter

If the master asserts a stop condition during the data phase of a
transfer, the TWI controller concludes the transfer (SCOMP) and
indicates a slave transfer error (SERR).

• TWI controller as a master-transmitter or master-receiver

If the stop bit is set during an active master transfer, the TWI con-
troller issues a stop condition as soon as possible avoiding any error
conditions (as if data transfer count had been reached).

Figure 16-6. TWI Start and Stop Conditions

START

SCL (BUS)

SDA (BUS)

STOP

Description of Operation

16-10 ADSP-BF50x Blackfin Processor Hardware Reference

General Call Support

The TWI controller always decodes and acknowledges a general call
address if it is enabled as a slave (SEN) and if general call is enabled (GEN).
general call addressing (0x00) is indicated by the GCALL bit being set and
by nature of the transfer the TWI controller is a slave-receiver. If the data
associated with the transfer is to be NAK’ed, the NAK bit can be set.

If the TWI controller is to issue a general call as a master-transmitter the
appropriate address and transfer direction can be set along with loading
transmit FIFO data.

 The byte following the general call address usually defines what
action needs to be taken by the slaves in response to the call. The
command in the second byte is interpreted based on the value of its
LSB. For a TWI slave device, this is not applicable, and the bytes
received after the general call address are considered data.

Fast Mode

Fast mode essentially uses the same mechanics as standard mode of opera-
tion. It is the electrical specifications and timing that are most affected.
When fast mode is enabled (FAST) the following timings are modified to
meet the electrical requirements.

• Serial data rise times before arbitration evaluation (tr)

• Stop condition set-up time from serial clock to serial data
(tSU;STO)

• Bus free time between a stop and start condition (tBUF)

ADSP-BF50x Blackfin Processor Hardware Reference 16-11

Two-Wire Interface Controller

Functional Description
The following sections describe the functional operation of the TWI.

General Setup
General setup refers to register writes that are required for both slave
mode operation and master mode operation. General setup should be per-
formed before either the master or slave enable bits are set.

• Program the TWI_CONTROL register to enable the TWI controller
and set the prescale value. Program the prescale value to the binary
representation of fSCLK/10MHz

All values should be rounded up to the next whole number. The TWI_ENA

bit enable must be set. Note once the TWI controller is enabled a bus
busy condition may be detected. This condition should clear after tBUF
has expired assuming no additional bus activity has been detected.

Slave Mode
When enabled, slave mode operation supports both receive and transmit
data transfers. It is not possible to enable only one data transfer direction
and not acknowledge (NAK) the other. This is reflected in the following
setup.

1. Program TWI_SLAVE_ADDR. The appropriate 7 bits are used in deter-
mining a match during the address phase of the transfer.

2. Program TWI_XMT_DATA8 or TWI_XMT_DATA16. These are the initial
data values to be transmitted in the event the slave is addressed and
a transmit is required. This is an optional step. If no data is written
and the slave is addressed and a transmit is required, the serial
clock (SCL) is stretched and an interrupt is generated until data is
written to the transmit FIFO.

Functional Description

16-12 ADSP-BF50x Blackfin Processor Hardware Reference

3. Program TWI_INT_MASK. Enable bits are associated with the desired
interrupt sources. As an example, programming the value 0x000F
results in an interrupt output to the processor in the event that a
valid address match is detected, a valid slave transfer completes, a
slave transfer has an error, a subsequent transfer has begun yet the
previous transfer has not been serviced.

4. Program TWI_SLAVE_CTL. Ultimately this prepares and enables slave
mode operation. As an example, programming the value 0x0005
enables slave mode operation, requires 7-bit addressing, and indi-
cates that data in the transmit FIFO buffer is intended for slave
mode transmission.

Table 16-2 shows what the interaction between the TWI controller and
the processor might look like using this example.

Master Mode Clock Setup
Master mode operation is set up and executed on a per-transfer basis. An
example of programming steps for a receive and for a transmit are given
separately in following sections. The clock setup programming step listed
here is common to both transfer types.

• Program TWI_CLKDIV. This defines the clock high duration and
clock low duration.

Table 16-2. Slave Mode Setup Interaction

TWI Controller Master Processor

Interrupt: SINIT – Slave transfer in progress. Acknowledge: Clear interrupt source bits.

Interrupt: RCVFULL – Receive buffer is full. Read receive FIFO buffer.
Acknowledge: Clear interrupt source bits.

... ...

Interrupt: SCOMP – Slave transfer complete. Read receive FIFO buffer.
Acknowledge: Clear interrupt source bits.

ADSP-BF50x Blackfin Processor Hardware Reference 16-13

Two-Wire Interface Controller

Master Mode Transmit
Follow these programming steps for a single master mode transmit:

1. Program TWI_MASTER_ADDR. This defines the address transmitted
during the address phase of the transfer.

2. Program TWI_XMT_DATA8 or TWI_XMT_DATA16. This is the initial data
transmitted. It is considered an error to complete the address phase
of the transfer and not have data available in the transmit FIFO
buffer.

3. Program TWI_FIFO_CTL. Indicate if transmit FIFO buffer interrupts
should occur with each byte transmitted (8-bits) or with each two
bytes transmitted (16-bits).

4. Program TWI_INT_MASK. Enable bits associated with the desired
interrupt sources. As an example, programming the value 0x0030
results in an interrupt output to the processor in the event that the
master transfer completes, and the master transfer has an error.

5. Program TWI_MASTER_CTL. Ultimately this prepares and enables
master mode operation. As an example, programming the value
0x0201 enables master mode operation, generates a 7-bit address,
sets the direction to master-transmit, uses standard mode timing,
and transmits 8 data bytes before generating a Stop condition.

Table 16-3 shows what the interaction between the TWI controller and
the processor might look like using this example.

Table 16-3. Master Mode Transmit Setup Interaction

TWI Controller Master Processor

Interrupt: XMTEMPTY – Transmit buffer is
empty.

Write transmit FIFO buffer.
Acknowledge: Clear interrupt source bits.

Functional Description

16-14 ADSP-BF50x Blackfin Processor Hardware Reference

Master Mode Receive
Follow these programming steps for a single master mode receive:

1. Program TWI_MASTER_ADDR. This defines the address transmitted
during the address phase of the transfer.

2. Program TWI_FIFO_CTL. Indicate if receive FIFO buffer interrupts
should occur with each byte received (8-bits) or with each two
bytes received (16-bits).

3. Program TWI_INT_MASK. Enable bits associated with the desired
interrupt sources. For example, programming the value 0x0030
results in an interrupt output to the processor in the event that the
master transfer completes, and the master transfer has an error.

4. Program TWI_MASTER_CTL. Ultimately this prepares and enables
master mode operation. As an example, programming the value
0x0205 enables master mode operation, generates a 7-bit address,
sets the direction to master-receive, uses standard mode timing,
and receives 8 data bytes before generating a Stop condition.

 After the TWI_DCNT bit is decremented to zero, the TWI master
device sends a NAK to indicate to the slave transmitter that the bus
should be released. This allows the master to send the STOP signal
to terminate the transfer.

... ...

Interrupt: MCOMP – Master transfer com-
plete.

Acknowledge: Clear interrupt source bits.

Table 16-3. Master Mode Transmit Setup Interaction (Cont’d)

TWI Controller Master Processor

ADSP-BF50x Blackfin Processor Hardware Reference 16-15

Two-Wire Interface Controller

Table 16-4 shows what the interaction between the TWI controller and
the processor might look like using this example.

Repeated Start Condition

In general, a repeated start condition is the absence of a stop condition
between two transfers. The two transfers can be of any direction type.
Examples include a transmit followed by a receive, or a receive followed by
a transmit. The following sections guide the programmer in developing a
service routine.

Transmit/Receive Repeated Start Sequence

Figure 16-7 shows a repeated start data transmit followed by a data receive
sequence.

Table 16-4. Master Mode Receive Setup Interaction

TWI Controller Master Processor

Interrupt: RCVFULL – Receive buffer is full. Read receive FIFO buffer.
Acknowledge: Clear interrupt source bits.

... ...

Interrupt: MCOMP – Master transfer com-
plete.

Acknowledge: Clear interrupt source bits.
Read receive FIFO buffer.

Figure 16-7. Transmit/Receive Data Repeated Start

ACKACKS S8-BIT DATA

SHADING INDICATES SLAVE HAS THE BUS

7-BIT ADDRESS ACK P8-BIT DATA ACK7-BIT ADDRESS

MCOMP INTERRUPT

XMTSERV INTERRUPT RCVSERV INTERRUPT

MCOMP INTERRUPT

R/W R/W

Functional Description

16-16 ADSP-BF50x Blackfin Processor Hardware Reference

The following tasks are performed at each interrupt.

• XMTSERV interrupt

This interrupt was generated due to a FIFO access. Since this is the
last byte of this transfer, FIFO_STATUS indicates the transmit FIFO
is empty. When read, DCNT would be zero. Set the RSTART bit to
indicate a repeated start and set the MDIR bit if the following trans-
fer is a data receive.

• MCOMP interrupt

This interrupt was generated because all data has been transferred
(DCNT = 0). If no errors were generated, a start condition is initi-
ated. Clear the RSTART bit and program the DCNT with the desired
number of bytes to receive.

• RCVSERV interrupt

This interrupt is generated due to the arrival of a byte in the receive
FIFO. Simple data handling is all that is required.

• MCOMP interrupt

The transfer is complete.

ADSP-BF50x Blackfin Processor Hardware Reference 16-17

Two-Wire Interface Controller

Receive/Transmit Repeated Start Sequence

Figure 16-8 illustrates a repeated start data receive followed by a data
transmit sequence.

The tasks performed at each interrupt are:

• RCVSERV interrupt

This interrupt is generated due to the arrival of a data byte in the
receive FIFO. Set the RSTART bit to indicate a repeated start and
clear the MDIR bit if the following transfer is a data transmit.

• MCOMP interrupt

This interrupt has occurred due to the completion of the data
receive transfer. If no errors were generated, a start condition is ini-
tiated. Clear the RSTART bit and program the DCNT with the desired
number of bytes to transmit.

• XMTSERV interrupt

This interrupt is generated due to a FIFO access. Simple data han-
dling is all that is required.

• MCOMP interrupt

The transfer is complete.

Figure 16-8. Receive/Transmit Data Repeated Start

NACKACKS S8-BIT DATA

SHADING INDICATES SLAVE HAS THE BUS

7-BIT ADDRESS ACK P8-BIT DATA ACK7-BIT ADDRESS

MCOMP INTERRUPT

RCVSERV INTERRUPT XMTSERV INTERRUPT

MCOMP INTERRUPT

R/W R/W

Functional Description

16-18 ADSP-BF50x Blackfin Processor Hardware Reference

 There is no timing constraint to meet the above conditions—the
user can program the bits as required. Refer to “Clock Stretching
During Repeated Start Condition” on page 16-21 for more on how
the controller stretches the clock during repeated start transfers.

Clock Stretching

Clock stretching is an added functionality of the TWI controller in master
mode operation. This new behavior utilizes self-induced stretching of the
I2C clock while waiting on servicing interrupts. Stretching is done auto-
matically by the hardware and no programming is required for this. The
TWI Controller as master supports three modes of clock stretching:

• “Clock Stretching During FIFO Underflow”

• “Clock Stretching During FIFO Overflow” on page 16-20

• “Clock Stretching During Repeated Start Condition” on
page 16-21

Clock Stretching During FIFO Underflow

During a master mode transmit, an interrupt is generated at the instant
the transmit FIFO becomes empty. At this time, the most recent byte
begins transmission. If the XMTSERV interrupt is not serviced, the con-
cluding acknowledge phase of the transfer is stretched. Stretching of the
clock continues until new data bytes are written to the transmit FIFO
(TWI_XMT_DATA8 or TWI_XMT_DATA16). No other action is required to release
the clock and continue the transmission. This behavior continues until the
transmission is complete (DCNT = 0) at which time the transmission is con-
cluded (MCOMP) as shown in Figure 16-9 and described in Table 16-5.

ADSP-BF50x Blackfin Processor Hardware Reference 16-19

Two-Wire Interface Controller

Figure 16-9. Clock Stretching During FIFO Underflow

Table 16-5. FIFO Underflow Case

TWI Controller Processor

Interrupt: XMTSERV – Transmit FIFO buffer
is empty.

Acknowledge: Clear interrupt source bits.
Write transmit FIFO buffer.

... ...

Interrupt: MCOMP – Master transmit com-
plete (DCNT= 0x00).

Acknowledge: Clear interrupt source bits.

S ADDRESS DATA
ACK WITH
STRETCH

ACKR/W DATA ACK DATA

11 01 00

XMTSTAT[1:0]

TWI_XMT_DATA IS READ AT THIS TIME AND
CLOCK STRETCHING IS RELEASED.

ACKNOWLEDGE WITH STRETCH

01

SCL

ACKNOWLEDGE "STRETCH" BEGINS SOON AFTER SCL FALL.

Functional Description

16-20 ADSP-BF50x Blackfin Processor Hardware Reference

Clock Stretching During FIFO Overflow

During a master mode receive, an interrupt is generated at the instant the
receive FIFO becomes full. It is during the acknowledge phase of this
received byte that clock stretching begins. No attempt is made to initiate
the reception of an additional byte. Stretching of the clock continues until
the data bytes previously received are read from the receive FIFO buffer
(TWI_RCV_DATA8, TWI_RCV_DATA16). No other action is required to release
the clock and continue the reception of data. This behavior continues
until the reception is complete (DCNT = 0x00) at which time the reception
is concluded (MCOMP) as shown in Figure 16-10 and described in
Table 16-6.

Figure 16-10. Clock Stretching During FIFO Overflow

S ADDRESS DATA
ACK WITH
STRETCH

ACKR/W DATA ACK DATA

00 01 11

RCVSTAT[1:0]

TWI_RCV_DATA IS READ AT THIS TIME AND
CLOCK STRETCHING IS RELEASED.

ACKNOWLEDGE WITH STRETCH

00

SCL

ACKNOWLEDGE "STRETCH" BEGINS SOON AFTER SCL FALL.

ADSP-BF50x Blackfin Processor Hardware Reference 16-21

Two-Wire Interface Controller

Clock Stretching During Repeated Start Condition

The repeated start feature in I2C protocol requires transitioning between
two subsequent transfers. With the use of clock stretching, the task of
managing transitions becomes simpler, and common to all transfer types.

Once an initial TWI master transfer has completed (transmit or receive)
the clock initiates a stretch during the repeated start phase between trans-
fers. Concurrent with this event the initial transfer will generate a transfer
complete interrupt (MCOMP) to signify the initial transfer has completed
(DCNT = 0). This initial transfer is handled without any special bit setting
sequences or timings. The clock stretching logic described above applies
here. With no system related timing constraints the subsequent transfer
(receive or transmit) is setup and activated. This sequence can be repeated
as many times as required to string a series of repeated start transfers
together. This is shown in Figure 16-11 and described in Table 16-7.

Table 16-6. FIFO Overflow Case

TWI Controller Processor

Interrupt: RCVSERV – Receive FIFO buffer is
full.

Acknowledge: Clear interrupt source bits.
Read receive FIFO buffer.

... ...

Interrupt: MCOMP – Master receive complete. Acknowledge: Clear interrupt source bits.

Functional Description

16-22 ADSP-BF50x Blackfin Processor Hardware Reference

Figure 16-11. Clock Stretching During Repeated Start Condition

Table 16-7. Repeated Start Case

TWI Controller Processor

Interrupt: MCOMP – Initial transmit has com-
pleted and DCNT = 0x00.

Note: transfer in progress, RSTART previously
set.

Acknowledge: Clear interrupt source bits.

Write TWI_MASTER_CTL, setting MDIR
(receive), clearing RSTART, and setting new
DCNT value (nonzero).

Interrupt: RCVSERV – Receive FIFO is full. Acknowledge: Clear interrupt source bits.
Read receive FIFO buffer.

... ...

Interrupt: MCOMP – Master receive complete. Acknowledge: Clear interrupt source bits.

S ADDRESS RSTART/
STRETCH

ADDRESSACKR/W DATA ACK DATA

0x01 0x00 0x80

DCNT[7:0]

MDIR (DIRECTION) AND DCNT ARE
WRITTEN AT THIS TIME.
CLOCK STRETCHING

IS RELEASED.

REPEATED START WITH STRETCH

0x7F

SCL

REPEATED START "STRETCH" BEGINS SOON AFTER SCL FALL
DUE TO DCNT=0X00 AND RSTART.

MCOMP IS SET AT THIS TIME INDICATING
INITIAL TRANSFER HAS COMPLETED.

ACK ACK

ADSP-BF50x Blackfin Processor Hardware Reference 16-23

Two-Wire Interface Controller

Programming Model
Figure 16-12 and Figure 16-13 illustrate the programming model for the
TWI.

Figure 16-12. TWI Slave Mode

WRITE TO TWI_CONTROL TO SET
 PRESCALE AND ENABLE THE TWI

WRITE TO TWI_SLAVE_ADDR

DONE

WRITE DATA INTO
TWI_XMT_DATA

 REGISTER

INTERRUPT
SOURCE

SCOMP

XMTSERV

WRITE TO TWI_XMT_DATA REGISTER
TO PRE-LOAD THE TX FIFO

WRITE TO TWI_FIFO_CTL TO SELECT WHETHER
 1 OR 2 BYTES GENERATE INTERRUPTS

WRITE TO TWI_INT_MASK TO UNMASK
TWI EVENTS TO GENERATE INTERRUPTS

WRITE TO TWI_SLAVE_CTL TO
ENABLE SLAVE FUNCTIONALITY

WAIT FOR INTERRUPTS

WRITE TWI_INT_STAT
TO CLEAR INTERRUPT

READ DATA FROM
TWI_RCV_DATA

REGISTER

RCVSERV

WRITE TWI_INT_STAT
TO CLEAR INTERRUPT

WRITE TWI_INT_STAT TO CLEAR INTERRUPT

Programming Model

16-24 ADSP-BF50x Blackfin Processor Hardware Reference

Figure 16-13. TWI Master Mode

WRITE TO TWI_CONTROL TO SET
 PRESCALE AND ENABLE THE TWI

WRITE TO TWI_CLK_DIV

DONE

WRITE DATA INTO
TWI_XMT_DATA

 REGISTER

TRANSFER
DIRECTION

MERR

TRANSMIT

WRITE TO TWI_MASTER_ADDR WITH THE
ADDRESS OF THE TARGETED DEVICE

WRITE TO TWI_FIFO_CTL TO SELECT WHETHER
 1 OR 2 BYTES GENERATE INTERRUPTS

WRITE TO TWI_INT_MASK TO UNMASK
TWI EVENTS TO GENERATE INTERRUPTS

WAIT FOR INTERRUPTS

WRITE TWI_MASTER_CTL WITH COUNT,
MDIR CLEARED, AND MEN SET. THIS

STARTS THE TRANSFER

RECEIVE

WRITE TWI_INT_STAT
TO CLEAR INTERRUPT

INTERRUPT
SOURCE

XMTSERV
MCOMP

WRITE TWI_MASTER_CTL WITH COUNT,
MDIR SET, AND MEN SET. THIS

STARTS THE TRANSFER

WAIT FOR INTERRUPTS

INTERRUPT
SOURCE

MCOMP
RCVSERV

WRITE TWI_INT_STAT
TO CLEAR INTERRUPT

READ DATA FROM
TWI_RCV_DATA

 REGISTER

WRITE TWI_INT_STAT
TO CLEAR INTERRUPT

MERR

READ TWI_MASTER_STAT TO GET ERROR CAUSE

HANDLE ERROR AS APPROPRIATE AND W1C THE
CORRESPONDING BIT IN TWI_MASTER_STAT

WRITE TWI_INT_STAT TO CLEAR MERR BIT

WAIT FOR INTERRUPTS

ADSP-BF50x Blackfin Processor Hardware Reference 16-25

Two-Wire Interface Controller

Register Descriptions
The TWI controller has 16 registers described in the following sections.
Figure 16-14 through Figure 16-31 on page 16-49 illustrate the registers.

TWI CONTROL Register (TWI_CONTROL)
The TWI_CONTROL register is used to enable the TWI module as well as to
establish a relationship between the system clock (SCLK) and the TWI con-
troller’s internally timed events. The internal time reference is derived
from SCLK using a prescaled value.

PRESCALE = fSCLK/10MHz

SCCB compatibility is an optional feature and should not be used in an
I2C bus system. This feature is turned on by setting the SCCB bit in the
TWI_CONTROL register. When this feature is set all slave asserted acknowl-
edgement bits are ignored by this master. This feature is valid only during
transfers where the TWI is mastering an SCCB bus. Slave mode transfers
should be avoided when this feature is enabled because the TWI controller
always generates an acknowledge in slave mode.

For either master and/or slave mode of operation, the TWI controller is
enabled by setting the TWI_ENA bit in the TWI_CONTROL register. It is recom-
mended that this bit be set at the time PRESCALE is initialized and remain
set. This guarantees accurate operation of bus busy detection logic.

The PRESCALE field of the TWI_CONTROL register specifies the number of
system clock (SCLK) periods used in the generation of one internal time
reference. The value of PRESCALE must be set to create an internal time ref-
erence with a period of 10 MHz. It is represented as a 7-bit binary value.

Register Descriptions

16-26 ADSP-BF50x Blackfin Processor Hardware Reference

SCL Clock Divider Register (TWI_CLKDIV)
The clock signal SCL is an output in master mode and an input in slave
mode.

During master mode operation, the TWI_CLKDIV register values are used to
create the high and low durations of the serial clock (SCL). Serial clock fre-
quencies can vary from 400 KHz to less than 20 KHz. The resolution of
the clock generated is 1/10 MHz or 100 ns.

CLKDIV = TWI SCL period / 10 MHz time reference

For example, for an SCL of 400 KHz (period = 1/400 KHz = 2500 ns) and
an internal time reference of 10 MHz (period = 100 ns):

CLKDIV = 2500 ns / 100 ns = 25

For an SCL with a 30% duty cycle, then CLKLOW = 17 and CLKHI = 8. Note
that CLKLOW and CLKHI add up to CLKDIV.

The CLKHI field of the TWI_CLKDIV register specifies the number of 10
MHz time reference periods the serial clock (SCL) waits before a new clock

Figure 16-14. TWI Control Register

TWI Control Register (TWI_CONTROL)

Reset = 0x0000

PRESCALE[6:0]
(SCLK Prescale Value)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SCCB (SCCB Compatibility)
0 - Master transfers are not SCCB
compatible
1 - Master transfers are SCCB compati-
ble. All slave-asserted acknowledgement
bits are ignored by this master.

TWI_ENA (TWI Enable)
0 - TWI is disabled
1 - TWI is enabled

ADSP-BF50x Blackfin Processor Hardware Reference 16-27

Two-Wire Interface Controller

low period begins, assuming a single master. It is represented as an 8-bit
binary value.

The CLKLOW field of the TWI_CLKDIV register specifies the number of inter-
nal time reference periods the serial clock (SCL) is held low. It is
represented as an 8-bit binary value.

TWI Slave Mode Control Register (TWI_SLAVE_CTL)
The TWI_SLAVE_CTL register controls the logic associated with slave mode
operation. Settings in this register do not affect master mode operation
and should not be modified to control master mode functionality.

Figure 16-15. SCL Clock Divider Register

Figure 16-16. TWI Slave Mode Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SCL Clock Divider Register (TWI_CLKDIV)

CLKLOW[7:0]

Reset = 0x0000

CLKHI[7:0]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWI Slave Mode Control Register (TWI_SLAVE_CTL)

Reset = 0x0000

SEN (Slave Enable)
STDVAL (Slave Transmit
Data Valid)

NAK
GEN (General Call Enable)

Register Descriptions

16-28 ADSP-BF50x Blackfin Processor Hardware Reference

Additional information for the TWI_SLAVE_CTL register bits includes:

• General call enable (GEN)

General call address detection is available only when slave mode is
enabled.

[0] General call address matching is not enabled.

[1] General call address matching is enabled. A general call slave
receive transfer is accepted. All status and interrupt source bits
associated with transfers are updated.

• NAK (NAK)

[0] Slave receive transfers generate an ACK at the conclusion of a
data transfer.

[1] Slave receive transfers generate a data NAK (not acknowledge)
at the conclusion of a data transfer. The slave is still considered to
be addressed.

• Slave transmit data valid (STDVAL)

[0] Data in the transmit FIFO is for master mode transmits and is
not allowed to be used during a slave transmit, and the transmit
FIFO is treated as if it is empty.

[1] Data in the transmit FIFO is available for a slave transmission.

• Slave enable (SEN)

[0] The slave is not enabled. No attempt is made to identify a valid
address. If cleared during a valid transfer, clock stretching ceases,
the serial data line is released, and the current byte is not
acknowledged.

[1] The slave is enabled. Enabling slave and master modes of oper-
ation concurrently is allowed.

ADSP-BF50x Blackfin Processor Hardware Reference 16-29

Two-Wire Interface Controller

TWI Slave Mode Address Register
(TWI_SLAVE_ADDR)

The TWI_SLAVE_ADDR register holds the slave mode address, which is the
valid address that the slave-enabled TWI controller responds to. The TWI
controller compares this value with the received address during the
addressing phase of a transfer.

TWI Slave Mode Status Register (TWI_SLAVE_STAT)

Figure 16-17. TWI Slave Mode Address Register

Figure 16-18. TWI Slave Mode Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWI Slave Mode Address Register (TWI_SLAVE_ADDR)

SADDR[6:0] (Slave Mode
Address)

Reset = 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWI Slave Mode Status Register (TWI_SLAVE_STAT)

Reset = 0x0000

SDIR (Slave Transfer
Direction) - RO

GCALL (General Call) - RO

Register Descriptions

16-30 ADSP-BF50x Blackfin Processor Hardware Reference

During and at the conclusion of register slave mode transfers, the
TWI_SLAVE_STAT register holds information on the current transfer. Gener-
ally slave mode status bits are not associated with the generation of
interrupts. Master mode operation does not affect slave mode status bits.

• General call (GCALL)

This bit self clears if slave mode is disabled (SEN = 0).

[0] At the time of addressing, the address was not determined to be
a general call.

[1] At the time of addressing, the address was determined to be a
general call.

• Slave transfer direction (SDIR)

This bit self clears if slave mode is disabled (SEN = 0).

[0] At the time of addressing, the transfer direction was determined
to be slave receive.

[1] At the time of addressing, the transfer direction was determined
to be slave transmit.

ADSP-BF50x Blackfin Processor Hardware Reference 16-31

Two-Wire Interface Controller

TWI Master Mode Control Register
(TWI_MASTER_CTL)

The TWI_MASTER_CTL register controls the logic associated with master
mode operation. Bits in this register do not affect slave mode operation
and should not be modified to control slave mode functionality.

Additional information for the TWI_MASTER_CTL register bits includes:

• Serial clock override (SCLOVR)

This bit can be used when direct control of the serial clock line is
required. Normal master and slave mode operation should not
require override operation.

[0] Normal serial clock operation under the control of master
mode clock generation and slave mode clock stretching logic.

[1] Serial clock output is driven to an active 0 level overriding all
other logic. This state is held until this bit is cleared.

Figure 16-19. TWI Master Mode Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWI Master Mode Control Register (TWI_MASTER_CTL)

Reset = 0x0000

MEN (Master Mode Enable)
MDIR (Master Transfer
Direction)SDAOVR (Serial

Data Override)

SCLOVR (Serial
Clock Override)

DCNT[7:0] (Data
Transfer Count)

FAST (Fast Mode)
STOP (Issue Stop
Condition)
RSTART (Repeat Start)

Register Descriptions

16-32 ADSP-BF50x Blackfin Processor Hardware Reference

• Serial data (SDA) override (SDAOVR)

This bit can be used when direct control of the serial data line is
required. Normal master and slave mode operation should not
require override operation.

[0] Normal serial data operation under the control of the transmit
shift register and acknowledge logic.

[1] Serial data output is driven to an active 0 level overriding all
other logic. This state is held until this bit is cleared.

• Data transfer count (DCNT[7:0])

Indicates the number of data bytes to transfer. As each data word is
transferred, DCNT is decremented. When DCNT is 0, a stop condition
is generated. Setting DCNT to 0xFF disables the counter. In this
transfer mode, data continues to be transferred until it is concluded
by setting the STOP bit.

• Repeat start (RSTART)

[0] Transfer concludes with a stop condition.

[1] Issue a repeat start condition at the conclusion of the current
transfer (DCNT = 0) and begin the next transfer. The current transfer
concludes with updates to the appropriate status and interrupt bits.
If errors occurred during the previous transfer, a repeat start does
not occur. In the absence of any errors, master enable (MEN) does
not self clear on a repeat start.

ADSP-BF50x Blackfin Processor Hardware Reference 16-33

Two-Wire Interface Controller

• Issue stop condition (STOP)

[0] Normal transfer operation.

[1] The transfer concludes as soon as possible avoiding any error
conditions (as if data transfer count had been reached) and at that
time the TWI interrupt mask register (TWI_INT_MASK) is updated
along with any associated status bits.

• Fast mode (FAST)

[0] Standard mode (up to 100K bits/s) timing specifications in use.

[1] Fast mode (up to 400K bits/s) timing specifications in use.

• Master transfer direction (MDIR)

[0] The initiated transfer is master transmit.

[1] The initiated transfer is master receive.

• Master mode enable (MEN)

This bit self clears at the completion of a transfer (after the DCNT bit
decrements to zero), including transfers terminated due to errors.

[0] Master mode functionality is disabled. If this bit is cleared dur-
ing operation, the transfer is aborted and all logic associated with
master mode transfers are reset. Serial data and serial clock (SDA,
SCL) are no longer driven. Write-1-to-clear status bits are not
affected.

[1] Master mode functionality is enabled. A start condition is gen-
erated if the bus is idle.

Register Descriptions

16-34 ADSP-BF50x Blackfin Processor Hardware Reference

TWI Master Mode Address Register
(TWI_MASTER_ADDR)

During the addressing phase of a transfer, the TWI controller, with its
master enabled, transmits the contents of the TWI_MASTER_ADDR register.
When programming this register, omit the read/write bit. That is, only the
upper 7 bits that make up the slave address should be written to this regis-
ter. For example, if the slave address is b#1010000X, where X is the
read/write bit, then TWI_MASTER_ADDR is programmed with b#1010000,
which corresponds to 0x50. When sending out the address on the bus, the
TWI controller appends the read/write bit as appropriate based on the
state of the MDIR bit in the master mode control register.

Figure 16-20. TWI Master Mode Address Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWI Master Mode Address Register (TWI_MASTER_ADDR)

Reset = 0x0000

MADDR[6:0] (Master
Mode Address)

ADSP-BF50x Blackfin Processor Hardware Reference 16-35

Two-Wire Interface Controller

TWI Master Mode Status Register
(TWI_MASTER_STAT)

The TWI_MASTER_STAT register holds information during master mode
transfers and at their conclusion. Generally, master mode status bits are
not directly associated with the generation of interrupts but offer informa-
tion on the current transfer. Slave mode operation does not affect master
mode status bits.

Note that—while the SCLSEN bit is set (this could be due to having no
pull-up resistor on SCL or another agent is driving SCL low)—the acknowl-
edge bits (ANAK and DNAK) do not update. This result occurs because the
acknowledge conditions are sampled during the high phase of SCL.

Figure 16-21. TWI Master Mode Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWI Master Mode Status Register (TWI_MASTER_STAT)

Reset = 0x0000

MPROG (Master Transfer
in Progress) - RO
LOSTARB (Lost Arbitration) -
W1C

SCLSEN (Serial Clock Sense) - RO
BUSBUSY (Bus Busy) - RO

SDASEN (Serial Data Sense) - RO

ANAK (Address Not
Acknowledged) - W1C
DNAK (Data Not
Acknowledged) - W1C

BUFWRERR (Buffer Write Error) - W1C
BUFRDERR (Buffer Read Error) - W1C

Register Descriptions

16-36 ADSP-BF50x Blackfin Processor Hardware Reference

• Bus busy (BUSBUSY)

Indicates whether the bus is currently busy or free. This indication
is not limited to only this device but is for all devices. Upon a start
condition, the setting of the register value is delayed due to the
input filtering. Upon a stop condition the clearing of the register
value occurs after tBUF.

[0] The bus is free. The clock and data bus signals have been inac-
tive for the appropriate bus free time.

[1] The bus is busy. Clock or data activity has been detected.

• Serial clock sense (SCLSEN)

This status bit can be used when direct sensing of the serial clock
line is required. The register value is delayed due to the input filter
(nominally 50 ns). Normal master and slave mode operation
should not require this feature.

[0] An inactive “one” is currently being sensed on the serial clock.

[1] An active “zero” is currently being sensed on the serial clock.
The source of the active driver is not known and can be internal or
external.

• Serial data sense (SDASEN)

This status bit can be used when direct sensing of the serial data
line is required. The register value is delayed due to the input filter
(nominally 50 ns). Normal master and slave mode operation
should not require this feature.

[0] An inactive “one” is currently being sensed on the serial data
line.

ADSP-BF50x Blackfin Processor Hardware Reference 16-37

Two-Wire Interface Controller

[1] An active “zero” is currently being sensed on the serial data line.
The source of the active driver is not known and can be internal or
external.

• Buffer write error (BUFWRERR)

[0] The current master receive has not detected a receive buffer
write error.

[1] The current master transfer was aborted due to a receive buffer
write error. The receive buffer and receive shift register were both
full at the same time. This bit is W1C.

• Buffer read error (BUFRDERR)

[0] The current master transmit has not detected a buffer read
error.

[1] The current master transfer was aborted due to a transmit buf-
fer read error. At the time data was required by the transmit shift
register the buffer was empty. This bit is W1C.

• Data not acknowledged (DNAK)

[0] The current master receive has not detected a NAK during data
transmission.

[1] The current master transfer was aborted due to the detection of
a NAK during data transmission. This bit is W1C.

• Address not acknowledged (ANAK)

[0] The current master transmit has not detected NAK during
addressing.

[1] The current master transfer was aborted due to the detection of
a NAK during the address phase of the transfer. This bit is W1C.

Register Descriptions

16-38 ADSP-BF50x Blackfin Processor Hardware Reference

• Lost arbitration (LOSTARB)

[0] The current transfer has not lost arbitration with another
master.

[1] The current transfer was aborted due to the loss of arbitration
with another master. This bit is W1C.

• Master transfer in progress (MPROG)

[0] Currently no transfer is taking place. This can occur once a
transfer is complete or while an enabled master is waiting for an
idle bus.

[1] A master transfer is in progress.

TWI FIFO Control Register (TWI_FIFO_CTL)
The TWI_FIFO_CTL register control bits affect only the FIFO and are not
tied in any way with master or slave mode operation.

Figure 16-22. TWI FIFO Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWI FIFO Control Register (TWI_FIFO_CTL)

XMTFLUSH (Transmit Buffer
Flush)

Reset = 0x0000

RCVFLUSH (Receive Buffer
Flush)

RCVINTLEN (Receive Buffer
Interrupt Length)
XMTINTLEN (Transmit Buffer
Interrupt Length)

ADSP-BF50x Blackfin Processor Hardware Reference 16-39

Two-Wire Interface Controller

Additional information for the TWI_FIFO_CTL register bits includes:

• Receive buffer interrupt length (RCVINTLEN)

This bit determines the rate at which receive buffer interrupts are
to be generated. Interrupts may be generated with each byte
received or after two bytes are received.

[0] An interrupt (RCVSERV) is set when RCVSTAT indicates one or
two bytes in the FIFO are full (01 or 11).

[1] An interrupt (RCVSERV) is set when the RCVSTAT field in the
TWI_FIFO_STAT register indicates two bytes in the FIFO are full
(11).

• Transmit buffer interrupt length (XMTINTLEN)

This bit determines the rate at which transmit buffer interrupts are
to be generated. Interrupts may be generated with each byte trans-
mitted or after two bytes are transmitted.

[0] An interrupt (XMTSERV) is set when XMTSTAT indicates one or
two bytes in the FIFO are empty (01 or 00).

[1] An interrupt (XMTSERV) is set when the XMTSTAT field in the
TWI_FIFO_STAT register indicates two bytes in the FIFO are empty
(00).

• Receive buffer flush (RCVFLUSH)

[0] Normal operation of the receive buffer and its status bits.

[1] Flush the contents of the receive buffer and update the RCVSTAT

status bit to indicate the buffer is empty. This state is held until
this bit is cleared. During an active receive the receive buffer in this
state responds to the receive logic as if it is full.

Register Descriptions

16-40 ADSP-BF50x Blackfin Processor Hardware Reference

• Transmit buffer flush (XMTFLUSH)

[0] Normal operation of the transmit buffer and its status bits.

[1] Flush the contents of the transmit buffer and update the
XMTSTAT status bit to indicate the buffer is empty. This state is held
until this bit is cleared. During an active transmit the transmit buf-
fer in this state responds as if the transmit buffer is empty.

TWI FIFO Status Register (TWI_FIFO_STAT)

TWI FIFO Status

The fields in the TWI_FIFO_STAT register indicate the state of the FIFO
buffers’ receive and transmit contents. The FIFO buffers do not discrimi-
nate between master data and slave data. By using the status and control
bits provided, the FIFO can be managed to allow simultaneous master and
slave operation.

Figure 16-23. TWI FIFO Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWI FIFO Status Register (TWI_FIFO_STAT)
All bits are RO.

XMTSTAT[1:0] (Transmit
FIFO Status)

Reset = 0x0000

RCVSTAT[1:0] (Receive FIFO Status)

ADSP-BF50x Blackfin Processor Hardware Reference 16-41

Two-Wire Interface Controller

• Receive FIFO status (RCVSTAT[1:0])

The RCVSTAT field is read only. It indicates the number of valid data
bytes in the receive FIFO buffer. The status is updated with each
FIFO buffer read using the peripheral data bus or write access by
the receive shift register. Simultaneous accesses are allowed.

[00] The FIFO is empty.

[01] The FIFO contains one byte of data. A single byte peripheral
read of the FIFO is allowed.

[10] Reserved

[11] The FIFO is full and contains two bytes of data. Either a sin-
gle or double byte peripheral read of the FIFO is allowed.

• Transmit FIFO status (XMTSTAT[1:0])

The XMTSTAT field is read only. It indicates the number of valid data
bytes in the FIFO buffer. The status is updated with each FIFO
buffer write using the peripheral data bus or read access by the
transmit shift register. Simultaneous accesses are allowed.

[00] The FIFO is empty. Either a single or double byte peripheral
write of the FIFO is allowed.

[01] The FIFO contains one byte of data. A single byte peripheral
write of the FIFO is allowed.

[10] Reserved

[11] The FIFO is full and contains two bytes of data.

Register Descriptions

16-42 ADSP-BF50x Blackfin Processor Hardware Reference

TWI Interrupt Mask Register (TWI_INT_MASK)
The TWI_INT_MASK register enables interrupt sources to assert the interrupt
output. Each mask bit corresponds with one interrupt source bit in the
TWI_INT_STAT register. Reading and writing the TWI_INT_MASK register
does not affect the contents of the TWI_INT_STAT register.

Figure 16-24. TWI Interrupt Mask Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWI Interrupt Mask Register (TWI_INT_MASK)
For all bits, 0 = Interrupt generation disabled, 1 = Interrupt generation enabled.

SINITM (Slave Transfer
Initiated Interrupt Mask)

Reset = 0x0000

SCOMPM (Slave Transfer
Complete Interrupt Mask)
SERRM (Slave Transfer Error
Interrupt Mask)

SOVFM (Slave Overflow
Interrupt Mask)

RCVSERVM (Receive FIFO
Service Interrupt Mask)
XMTSERVM (Transmit FIFO
Service Interrupt Mask)
MERRM (Master Transfer Error
Interrupt Mask)
MCOMPM (Master Transfer
Complete Interrupt Mask)

ADSP-BF50x Blackfin Processor Hardware Reference 16-43

Two-Wire Interface Controller

TWI Interrupt Status Register (TWI_INT_STAT)

The TWI_INT_STAT register contains information about functional areas
requiring servicing. Many of the bits serve as an indicator to further read
and service various status registers. After servicing the interrupt source
associated with a bit, the user must clear that interrupt source bit by writ-
ing a 1 to it.

• Receive FIFO service (RCVSERV)

If RCVINTLEN in the TWI_FIFO_CTL register is 0, this bit is set each
time the RCVSTAT field in the TWI_FIFO_STAT register is updated to
either 01 or 11. If RCVINTLEN is 1, this bit is set each time RCVSTAT

is updated to 11.

[0] The receive FIFO does not require servicing or the RCVSTAT

field has not changed since this bit was last cleared.

[1] The receive FIFO has one or two 8-bit locations available to be
read.

Figure 16-25. TWI Interrupt Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWI Interrupt Status Register (TWI_INT_STAT)
All bits are sticky and W1C.

SINIT (Slave Transfer
Initiated)

Reset = 0x0000

SCOMP (Slave Transfer
Complete)
SERR (Slave Transfer Error)
SOVF (Slave Overflow)

RCVSERV (Receive FIFO Service)
XMTSERV (Transmit FIFO Service)
MERR (Master Transfer Error)
MCOMP (Master Transfer Complete)

Register Descriptions

16-44 ADSP-BF50x Blackfin Processor Hardware Reference

• Transmit FIFO service (XMTSERV)

If XMTINTLEN in the TWI_FIFO_CTL register is 0, this bit is set each
time the XMTSTAT field in the TWI_FIFO_STAT register is updated to
either 01 or 00. If XMTINTLEN is 1, this bit is set each time XMTSTAT

is updated to 00.

[0] FIFO does not require servicing or XMTSTAT field has not
changed since this bit was last cleared.

[1] The transmit FIFO buffer has one or two 8-bit locations avail-
able to be written.

• Master transfer error (MERR)

[0] No errors have been detected.

[1] A master error has occurred. The conditions surrounding the
error are indicated by the master status register (TWI_MASTER_STAT).

• Master transfer complete (MCOMP)

[0] The completion of a transfer has not been detected.

[1] The initiated master transfer has completed. In the absence of a
repeat start, the bus has been released.

• Slave overflow (SOVF)

[0] No overflow has been detected.

[1] The slave transfer complete (SCOMP) bit was set at the time a
subsequent transfer has acknowledged an address phase. The trans-
fer continues, however, it may be difficult to delineate data of one
transfer from another.

ADSP-BF50x Blackfin Processor Hardware Reference 16-45

Two-Wire Interface Controller

• Slave transfer error (SERR)

[0] No errors have been detected.

[1] A slave error has occurred. A restart or stop condition has
occurred during the data receive phase of a transfer.

• Slave transfer complete (SCOMP)

[0] The completion of a transfer has not been detected.

[1] The transfer is complete and either a stop, or a restart was
detected.

• Slave transfer initiated (SINIT)

[0] A transfer is not in progress. An address match has not occurred
since the last time this bit was cleared.

[1] The slave has detected an address match and a transfer has been
initiated.

Register Descriptions

16-46 ADSP-BF50x Blackfin Processor Hardware Reference

TWI FIFO Transmit Data Single Byte
Register (TWI_XMT_DATA8)

The TWI_XMT_DATA8 register holds an 8-bit data value written into the
FIFO buffer.

Transmit data is entered into the corresponding transmit buffer in a
first-in first-out order. For 16-bit PAB writes, a write access to
TWI_XMT_DATA8 adds only one transmit data byte to the FIFO buffer. With
each access, the transmit status (XMTSTAT) field in the TWI_FIFO_STAT regis-
ter is updated. If an access is performed while the FIFO buffer is full, the
write is ignored and the existing FIFO buffer data and its status remains
unchanged.

Figure 16-26. TWI FIFO Transmit Data Single Byte Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWI FIFO Transmit Data Single Byte Register (TWI_XMT_DATA8)
All bits are WO. This register always reads as 0x0000.

XMTDATA8[7:0] (Transmit
FIFO 8-Bit Data)

Reset = 0x0000

ADSP-BF50x Blackfin Processor Hardware Reference 16-47

Two-Wire Interface Controller

TWI FIFO Transmit Data Double Byte
Register (TWI_XMT_DATA16)

The TWI_XMT_DATA16 register holds a 16-bit data value written into the
FIFO buffer.

To reduce interrupt output rates and peripheral bus access times, a double
byte transfer data access can be performed. Two data bytes can be written,
effectively filling the transmit FIFO buffer with a single access.

The data is written in little endian byte order as shown in Figure 16-27
where byte 0 is the first byte to be transferred and byte 1 is the second byte
to be transferred. With each access, the transmit status (XMTSTAT) field in
the TWI_FIFO_STAT register is updated. If an access is performed while the
FIFO buffer is not empty, the write is ignored and the existing FIFO buf-
fer data and its status remains unchanged.

Figure 16-27. Transmit Little Endian Byte Order

Figure 16-28. TWI FIFO Transmit Data Double Byte Register

B1

TRANSMIT DATA REGISTER

B0

TRANSMISSION LINE

B1 B0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWI FIFO Transmit Data Double Byte Register (TWI_XMT_DATA16)
All bits are WO. This register always reads as 0x0000.

XMTDATA16[15:0] (Transmit
FIFO 16-Bit Data)

Reset = 0x0000

Register Descriptions

16-48 ADSP-BF50x Blackfin Processor Hardware Reference

TWI FIFO Receive Data Single Byte
Register (TWI_RCV_DATA8)

The TWI_RCV_DATA8 register holds an 8-bit data value read from the FIFO
buffer. Receive data is read from the corresponding receive buffer in a
first-in first-out order. Although peripheral bus reads are 16 bits, a read
access to TWI_RCV_DATA8 will access only one transmit data byte from the
FIFO buffer. With each access, the receive status (RCVSTAT) field in the
TWI_FIFO_STAT register is updated. If an access is performed while the
FIFO buffer is empty, the data is unknown and the FIFO buffer status
remains indicating it is empty.

TWI FIFO Receive Data Double Byte
Register (TWI_RCV_DATA16)

The TWI_RCV_DATA16 register holds a 16-bit data value read from the FIFO
buffer. To reduce interrupt output rates and peripheral bus access times, a
double byte receive data access can be performed. Two data bytes can be
read, effectively emptying the receive FIFO buffer with a single access.

The data is read in little endian byte order as shown in Figure 16-30
where byte 0 is the first byte received and byte 1 is the second byte
received. With each access, the receive status (RCVSTAT) field in the
TWI_FIFO_STAT register is updated to indicate it is empty. If an access is

Figure 16-29. TWI FIFO Receive Data Single Byte Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWI FIFO Receive Data Single Byte Register (TWI_RCV_DATA8)
All bits are RO.

RCVDATA8[7:0] (Receive
FIFO 8-Bit Data)

Reset = 0x0000

ADSP-BF50x Blackfin Processor Hardware Reference 16-49

Two-Wire Interface Controller

performed while the FIFO buffer is not full, the read data is unknown and
the existing FIFO buffer data and its status remains unchanged.

Figure 16-30. Receive Little Endian Byte Order

Figure 16-31. TWI FIFO Receive Data Double Byte Register

RECEIVE DATA REGISTER

B1 B0

TRANSMISSION LINE

B1 B0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWI FIFO Receive Data Double Byte Register (TWI_RCV_DATA16)
All bits are WO.

RCVDATA16[15:0] (Receive
FIFO 16-Bit Data)

Reset = 0x0000

Programming Examples

16-50 ADSP-BF50x Blackfin Processor Hardware Reference

Programming Examples
The following sections include programming examples for general setup,
slave mode, and master mode, as well as guidance for repeated start
conditions.

Master Mode Setup
Listing 16-1 shows how to initiate polled receive and transmit transfers in
master mode.

Listing 16-1. Master Mode Receive/Transmit Transfer

/***

Macro for the count field of the TWI_MASTER_CTL register

x can be any value between 0 and 0xFE (254). A value of

0xFF disables the counter.
***/

#define TWICount(x) (DCNT & ((x) << 6))

.section L1_data_b;

.byte TX_file[file_size] = "DATA.hex";

.BYTE RX_CHECK[file_size];

.byte rcvFirstWord[2];

.SECTION program;

_main:

/***

TWI Master Initialization subroutine

***/

TWI_INIT:

/***

Enable the TWI controller and set the Prescale value

ADSP-BF50x Blackfin Processor Hardware Reference 16-51

Two-Wire Interface Controller

Prescale = 10 (0xA) for an SCLK = 100 MHz (CLKIN = 50MHz)

Prescale = SCLK / 10 MHz

P1 points to the base of the system MMRs

***/

R1 = TWI_ENA | 0xA (z);

W[P1 + LO(TWI_CONTROL)] = R1;

/***

Set CLKDIV:

For example, for an SCL of 400 KHz (period = 1/400 KHz = 2500 ns)

and an internal time reference of 10 MHz (period = 100 ns):

CLKDIV = 2500 ns / 100 ns = 25

For an SCL with a 30% duty cycle, then CLKLOW = 17 (0x11) and

CLKHI = 8.

***/

R5 = CLKHI(0x8) | CLKLOW(0x11) (z);

W[P1 + LO(TWI_CLKDIV)] = R5;

/***

enable these signals to generate a TWI interrupt: optional

***/

R1 = RCVSERV | XMTSERV | MERR | MCOMP (z);

W[P1 + LO(TWI_INT_MASK)] = R1;

/***

The address needs to be shifted one place to the right

for example, 1010 001x becomes 0101 0001 (0x51) the TWI

controller

controller actually sends out 1010 001x where x is either a 0

for writes or 1 for reads

***/

R6 = 0xBF;

Programming Examples

16-52 ADSP-BF50x Blackfin Processor Hardware Reference

R6 = R6 >> 1;

TWI_INIT.END: W[P1 + LO(TWI_MASTER_ADDR)] = R6;

/******************** END OF TWI INIT **********************/

/***

Starting the Read transfer

Program the Master Control register with:

1. the number of bytes to transfer: TWICount(x)

2. Repeated Start (RESTART): optional

3. speed mode: FAST or SLOW

4. direction of transfer:

MDIR = 1 for reads, MDIR = 0 for writes

5. Master Enable MEN. This will kick off the master transfer

***/

R1 = TWICount(0x2) | FAST | MDIR | MEN;

W[P1 + LO(TWI_MASTER_CTL)] = R1;

ssync;

/***

Poll the FIFO Status register to know when

2 bytes have been shifted into the RX FIFO

***/

Rx_stat:

R1 = W[P1 + LO(TWI_FIFO_STAT)](Z);

R0 = 0xC;

R1 = R1 & R0;

CC = R1 == R0;

IF ! cc jump Rx_stat;

R0 = W[P1 + LO(TWI_RCV_DATA16)](Z); /* Read data from the RX fifo

*/
ssync;

/***

ADSP-BF50x Blackfin Processor Hardware Reference 16-53

Two-Wire Interface Controller

check that master transfer has completed

MCOMP is set when Count reaches zero

***/

M_COMP:

R1 = W[P1 + LO(TWI_INT_STAT)](z);

CC = BITTST (R1, bitpos(MCOMP));

if ! CC jump M_COMP;

M_COMP.END: W[P1 + LO(TWI_INT_STAT)] = R1;

/* load the pointer with the address of the transmit buffer */

P2.H = TX_file;

P2.L = TX_file;

/***

Pre-load the tx FIFO with the first two bytes: this is

necessary to avoid the generation of the Buffer Read Error

(BUFRDERR) which occurs whenever a transmit transfer is

initiated while the transmit buffer is empty

***/

R3 = W[P2++](Z);

W[P1 + LO(TWI_XMT_DATA16)] = R3;

/***

Initiating the Write operation

Program the Master Control register with:

1. the number of bytes to transfer: TWICount(x)

2. Repeated Start (RESTART): optional

3. speed mode: FAST or Standard

4. direction of transfer:

MDIR = 1 for reads, MDIR = 0 for writes

5. Master Enable MEN. Setting this bit will kick off the transfer

***/

R1 = TWICount(0xFE) | FAST | MEN;

W[P1 + LO(TWI_MASTER_CTL)] = R1;

Programming Examples

16-54 ADSP-BF50x Blackfin Processor Hardware Reference

SSYNC;

/***

loop to write data to a TWI slave device P3 times

***/

P3 = length(TX_file);

LSETUP (Loop_Start1, Loop_End1) LC0 = P3;

Loop_Start1:

/***

check that there's at least one byte location empty in

the tx fifo

***/

XMTSERV_Status:

R1 = W[P1 + LO(TWI_INT_STAT)](z);

CC = BITTST (R1, bitpos(XMTSERV)); /* test XMTSERV bit */

if ! CC jump XMTSERV_Status;

W[P1 + LO(TWI_INT_STAT)] = R1; /* clear status */

SSYNC;

/***

write byte into the transmit FIFO

***/

R3 = B[P2++](Z);

W[P1 + LO(TWI_XMT_DATA8)] = R3;

Loop_End1: SSYNC;

/* check that master transfer has completed */

M_COMP1:

R1 = W[P1 + LO(TWI_INT_STAT)](z);

CC = BITTST (R1, bitpos(MCOMP1));

if ! CC jump M_COMP;

M_COMP1.END:W[P1 + LO(TWI_INT_STAT)] = R1;

ADSP-BF50x Blackfin Processor Hardware Reference 16-55

Two-Wire Interface Controller

idle;

_main.end:

Slave Mode Setup
Listing 16-2 shows how to configure the slave for interrupt based trans-
fers. The interrupts are serviced in the subroutine _TWI_ISR shown in
Listing 16-3.

Listing 16-2. Slave Mode Setup

#include <defBF527.h>

/*BF527 is used here as an example—change as appropriate.*/

#include "startup.h"

#define file_size 254

#define SYSMMR_BASE 0xFFC00000

#define COREMMR_BASE 0xFFE00000

.GLOBAL _main;

.EXTERN _TWI_ISR;

.section L1_data_b;

.BYTE TWI_RX[file_size];

.BYTE TWI_TX[file_size] = "transmit.dat";

.section L1_code;

_main:

/***

TWI Slave Initialization subroutine

***/

TWI_SLAVE_INIT:

Programming Examples

16-56 ADSP-BF50x Blackfin Processor Hardware Reference

/***

Enable the TWI controller and set the Prescale value

Prescale = 10 (0xA) for an SCLK = 100 MHz (CLKIN = 50MHz)

Prescale = SCLK / 10 MHz

P1 points to the base of the system MMRs

P0 points to the base of the core MMRs

***/

R1 = TWI_ENA | 0xA (z);

W[P1 + LO(TWI_CONTROL)] = R1;

/***

Slave address

program the address to which this slave will respond to.

this is an arbitrary 7-bit value

***/

R1 = 0x5F;

W[P1 + LO(TWI_SLAVE_ADDR)] = R1;

/***

Pre-load the TX FIFO with the first two bytes to be

transmitted in the event the slave is addressed and a transmit

is required

***/

R3=0xB537(Z);

W[P1 + LO(TWI_XMT_DATA16)] = R3;

/***

FIFO Control determines whether an interrupt is generated

for every byte transferred or for every two bytes.

A value of zero which is the default, allows for single byte

events to generate interrupts

***/

R1 = 0;

ADSP-BF50x Blackfin Processor Hardware Reference 16-57

Two-Wire Interface Controller

W[P1 + LO(TWI_FIFO_CTL)] = R1;

/***

enable these signals to generate a TWI interrupt

***/

R1 = RCVSERV | XMTSERV | SOVF | SERR | SCOMP | SINIT (z);

W[P1 + LO(TWI_INT_MASK)] = R1;

/***

Enable the TWI Slave

Program the Slave Control register with:

1. Slave transmit data valid (STDVAL) set so that the contents of

the TX FIFO can be used by this slave when a master requests data

from it.

2. Slave Enable SEN to enable Slave functionality

***/

R1 = STDVAL | SEN;

W[P1 + LO(TWI_SLAVE_CTL)] = R1;

TWI_SLAVE_INIT.END:

P2.H = HI(TWI_RX);

P2.L = LO(TWI_RX);

P4.H = HI(TWI_TX);

P4.L = LO(TWI_TX);

/***

Remap the vector table pointer from the default __I10HANDLER

to the new _TWI_ISR interrupt service routine

***/

R1.H = HI(_TWI_ISR);

R1.L = LO(_TWI_ISR);

[P0 + LO(EVT10)] = R1; /* note that P0 points to the base of

the core MMR registers */

Programming Examples

16-58 ADSP-BF50x Blackfin Processor Hardware Reference

/***

ENABLE TWI generate to interrupts at the system level

***/

R1 = [P1 + LO(SIC_IMASK)];

BITSET(R1,BITPOS(IRQ_TWI));

[P1 + LO(SIC_IMASK)] = R1;

/***

ENABLE TWI to generate interrupts at the core level

***/

R1 = [P0 + LO(IMASK)];

BITSET(R1,BITPOS(EVT_IVG10));

[P0 + LO(IMASK)] = R1;

/***

wait for interrupts

***/

idle;

_main.END:

Listing 16-3. TWI Slave Interrupt Service Routine

/***

Function: _ TWI_ISR

Description: This ISR is executed when the TWI controller

detects a slave initiated transfer. After an interrupt is ser-

viced, its corresponding bit is cleared in the TWI_INT_STAT

register. This done by writing a 1 to the particular bit posi-

tion. All bits are write 1 to clear.

***/

#include <defBF527.h>

/*BF527 is used here as an example—change as appropriate.*/

ADSP-BF50x Blackfin Processor Hardware Reference 16-59

Two-Wire Interface Controller

.GLOBAL _TWI_ISR;

.section L1_code;

_TWI_ISR:

/***

read the source of the interrupt

***/

R1 = W[P1 + LO(TWI_INT_STAT)](z);

/***

Slave Transfer Initiated

***/

CC = BITTST(R1, BITPOS(SINIT));

if ! CC JUMP RECEIVE;

R0 = SINIT (Z);

W[P1 + LO(TWI_INT_STAT)] = R0; /* clear interrupt source bit */

ssync;

/***

Receive service

***/

RECEIVE:

CC = BITTST(R1, BITPOS(RCVSERV));

if ! CC JUMP TRANSMIT;

R0 = W[P1 + LO(TWI_RCV_DATA8)] (Z); /* read data */

B[P2++] = R0; /* store bytes into a buffer pointed to by P2 */

R0 = RCVSERV(Z);

W[P1 + LO(TWI_INT_STAT)] = R0; /*clear interrupt source bit */

ssync;

JUMP _TWI_ISR.END; /* exit */

/***

Transmit service

Programming Examples

16-60 ADSP-BF50x Blackfin Processor Hardware Reference

***/

TRANSMIT:

CC = BITTST(R1, BITPOS(XMTSERV));

if ! CC JUMP SlaveError;

R0 = B[P4++](Z);

W[P1 + LO(TWI_XMT_DATA8)] = R0;

R0 = XMTSERV(Z);

W[P1 + LO(TWI_INT_STAT)] = R0; /* clear interrupt source bit */

ssync;

JUMP _TWI_ISR.END; /* exit */

/***

slave transfer error

***/

SlaveError:

CC = BITTST(R1, BITPOS(SERR));

if ! CC JUMP SlaveOverflow;

R0 = SERR(Z);

W[P1 + LO(TWI_INT_STAT)] = R0; /* clear interrupt source bit */

ssync;

JUMP _TWI_ISR.END; /* exit */

/***

slave overflow

***/

SlaveOverflow:

CC = BITTST(R1, BITPOS(SOVF));

if !CC JUMP SlaveTransferComplete;

R0 = SOVF(Z);

W[P1 + LO(TWI_INT_STAT)] = R0; /* clear interrupt source bit */

ssync;

JUMP _TWI_ISR.END; /* exit */

/***

ADSP-BF50x Blackfin Processor Hardware Reference 16-61

Two-Wire Interface Controller

slave transfer complete

***/

SlaveTransferComplete:

CC = BITTST(R1, BITPOS(SCOMP));

if !CC JUMP _TWI_ISR.END;

R0 = SCOMP(Z);

W[P1 + LO(TWI_INT_STAT)] = R0; /* clear interrupt source bit */

ssync;

/* Transfer complete read receive FIFO buffer and set/clear sema-

phores etc.... */

R0 = W[P1 + LO(TWI_FIFO_STAT)](z);

CC = BITTST(R0,BITPOS(RCV_HALF)); /* BIT 2 indicates whether

there's a byte in the FIFO or not */

if !CC JUMP _TWI_ISR.END;

R0 = W[P1 + LO(TWI_RCV_DATA8)] (Z); /* read data */

B[P2++] = R0; /* store bytes into a buffer pointed to by P2 */

_TWI_ISR.END:RTI;

Electrical Specifications
All logic complies with the Electrical Specification outlined in the Philips
I2C Bus Specification version 2.1 dated January 2000.

Unique Information for the ADSP-BF50x
Processor

None.

Unique Information for the ADSP-BF50x Processor

16-62 ADSP-BF50x Blackfin Processor Hardware Reference

ADSP-BF50x Blackfin Processor Hardware Reference 17-1

17 CAN MODULE

This chapter describes the Controller Area Network (CAN) module. Fol-
lowing an overview and a list of key features is a description of operation.
The chapter concludes with a programming model, consolidated register
definitions, and programming examples. Familiarity with the CAN stan-
dard is assumed. Refer to Version 2.0 of CAN Specification from Robert
Bosch GmbH.

This chapter contains:

• “Overview”

• “Interface Overview” on page 17-2

• “CAN Operation” on page 17-9

• “Functional Operation” on page 17-22

• “CAN Register Definitions” on page 17-39

• “Programming Examples” on page 17-85

Overview
Key features of the CAN module are:

• Conforms to the CAN 2.0B (active) standard

• Supports both standard (11-bit) and extended (29-bit) identifiers

• Supports data rates of up to 1 Mbit/s

Interface Overview

17-2 ADSP-BF50x Blackfin Processor Hardware Reference

• 32 mailboxes (8 transmit, 8 receive, 16 configurable)

• Dedicated acceptance mask for each mailbox

• Data filtering (first 2 bytes) can be used for acceptance filtering
(DeviceNet™ mode)

• Error status and warning registers

• Universal counter module

• Readable receive and transmit pin values

The CAN module is a low bit rate serial interface intended for use in
applications where bit rates are typically up to 1 Mbit/s. The CAN proto-
col incorporates a data CRC check, message error tracking and fault node
confinement as means to improve network reliability to the level required
for control applications.

Interface Overview
The interface to the CAN bus is a simple two-wire line. See Figure 17-1
for a symbolic representation of the CAN transceiver interconnection, and
Figure 17-2 for a block diagram. The Blackfin processor’s CANTX output
and CANRX input pins are connected to an external CAN transceiver’s TX
and RX pins (respectively). The CANTX and CANRX pins operate with TTL
levels and are appropriate for operation with CAN bus transceivers
according to ISO/DIS 11898.

Figure 17-1. Representation of CAN Transceiver Interconnection

BLACKFIN

CANRX

CAN
TRANSCEIVER

RX

CANTX TX

CANL

CANH
FIELD BUS

ADSP-BF50x Blackfin Processor Hardware Reference 17-3

CAN Module

Figure 17-2. CAN Block Diagram

M
A

IL
B

O
X

 C
O

N
T

R
O

L
 2

MAILBOX INTERRUPT TRANSMIT 2

MAILBOX INTERRUPT MASK 2

RECEIVE MESSAGE LOST 1
REMOTE FRAME HANDLING 2

OVERWRITE PROTECTION/SINGLE SHOT 2

AILBOX INTERRUPT RECEIVE 2

TRANSMIT REQUEST RESET 2

RECEIVE MESSAGE PENDING 2

MAILBOX DIRECTION 1

2TRANSMIT ACKNOWLEDGE 2
ABORT ACKNOWLEDGE 1

TRANSMIT REQUEST SET 1

MAILBOX ENABLE 2

DATA

TIMESTAMP

DATA LENGTH

M
A

IL
B

O
X

 31

DATA

TIMESTAMP

ACCEPTANCE MASK

MESSAGE IDENTIFICATION

DATA LENGTH

M
A

IL
B

O
X

 18

M
A

IL
B

O
X

 17

M
A

IL
B

O
X

 16

M
A

IL
B

O
X

 15

DATA

TIMESTAMP

ACCEPTANCE MASK

MESSAGE IDENTIFICATION

DATA LENGTH

M
A

IL
B

O
X

 2

M
A

IL
B

O
X

 1

M
A

IL
B

O
X

 C
O

N
T

R
O

L
 1

TRANSMIT

MAILBOX INTERRUPT TRANSMIT 1

MAILBOX INTERRUPT MASK 1

RECEIVE MESSAGE LOST 1
REMOTE FRAME HANDLING 1

OVERWRITE PROTECTION/SINGLE SHOT 1

MAILBOX INTERRUPT RECEIVE 1

TRANSMIT REQUEST RESET 1

RECEIVE MESSAGE PENDING 1

MAILBOX DIRECTION 1

TRANSMIT ACKNOWLEDGE 1
ABORT ACKNOWLEDGE 1

TRANSMIT REQUEST SET 1

MAILBOX ENABLE 1

IN
T

E
R

R
U

P
T

S

GLOBAL INTERRUPT MASK

GLOBAL INTERRUPT FLAG

GLOBAL INTERRUPT STATUS

E
R

R
O

R
 H

A
N

D
L

E
R

ERROR STATUS

ERROR COUNTERS

ERROR WARNING

C
O

U
N

T
E

R

MODE

COUNTER

RELOAD/CAPTURE

G
L

O
B

A
L

 C
O

N
T

R
O

L

GLOBAL STATUS

GLOBAL CONTROL

DEBUG

T
IM

IN
GBIT TIMING

CLOCK DIVIDEM
A

IL
B

O
X

 0

DATA

TIMESTAMP

ACCEPTANCE MASK

MESSAGE IDENTIFICATION

DATA LENGTH

RECEIVE

ACCEPTANCE
FILTER

...

...

...

...

INTERRUPT

SIC CONTROLLER

P
O

R
T

 G

T
R

A
N

S
C

E
IV

E
R

P
A

B

16

CANx

BLACKFIN

Interface Overview

17-4 ADSP-BF50x Blackfin Processor Hardware Reference

The CANRX and CANTX signals can be found on GPIO Port G, pins PG1 and
PG2. CAN data is defined to be either dominant (logic 0) or recessive (logic
1). The default state of the CANTX output is recessive.

The PG1 pin (CANRX input pin) is also internally routed to the alternated
capture input TACI5 of GP timer 5. This way, GP timer 5 can be used to
auto-detect or adjust the bit rate on the CAN bus.

CAN Mailbox Area
The full-CAN controller features 32 message buffers, which are called
mailboxes. Eight mailboxes are dedicated for message transmission, eight
are for reception, and 16 are programmable in direction. Accordingly, the
CAN module architecture is based around a 32-entry mailbox RAM. The
mailbox is accessed sequentially by the CAN serial interface or the Black-
fin core. Each mailbox consists of eight 16-bit control and data registers
and two optional 16-bit acceptance mask registers, all of which must be
configured before the mailbox itself is enabled. Since the mailbox area is
implemented as RAM, the reset values of these registers are undefined.
The data is divided into fields, which includes a message identifier, a time
stamp, a byte count, up to 8 bytes of data, and several control bits. See
Figure 17-3.

The CAN mailbox identification (CAN_MBxx_ID0/1) register pair includes:

• The 29 bit identifier (base part BASEID plus extended part
EXTID_LO/HI)

• The acceptance mask enable bit (AME)

• The remote transmission request bit (RTR)

• The identifier extension bit (IDE)

ADSP-BF50x Blackfin Processor Hardware Reference 17-5

CAN Module

 Do not write to the identifier of a message object while the mailbox
is enabled for the CAN module (the corresponding bit in CAN_MCx

is set).

The other mailbox area registers are:

• The data length code (DLC) in CAN_MBxx_LENGTH. The upper 12 bits
of CAN_MBxx_LENGTH of each mailbox are marked as reserved. These
12 bits should always be set to 0. If DLC is programmed to a value
greater than eight, the internal logic will set it to eight.

• Up to eight bytes for the data field, sent MSB first from the
CAN_MBxx_DATA3/2/1/0 registers, respectively, based on the
number of bytes defined in the DLC. For example, if only one byte
is transmitted or received (DLC = 1), then it is stored in the most
significant byte of the CAN_MBxx_DATA3 register.

• Two bytes for the time stamp value (TSV) in the
CAN_MBxx_TIMESTAMP register

Figure 17-3. CAN Mailbox Area

FDF

EXTID_HI / DFC

AME

EXTID_HI / DFC

TSV

DLC

BASEIDAMIDEFMD

BYTE 6

CAN_AM00H

CAN_AM00L

CAN_MB00_ID1

CAN_MB00_ID0

CAN_MB00_TIMESTAMP

CAN_MB00_LENGTH

CAN_MB00_DATA3

CAN_MB00_DATA2

CAN_MB00_DATA1

CAN_MB00_DATA0BYTE 7

BYTE 4 BYTE 5

BYTE 2 BYTE 3

BYTE 0 BYTE 1

EXTID_LO

BASEIDIDERTR EXTID_LO

WORD9

WORD8

WORD7

WORD6

WORD5

WORD4

WORD3

WORD2

WORD1

WORD0

Interface Overview

17-6 ADSP-BF50x Blackfin Processor Hardware Reference

The final registers in the mailbox area are the acceptance mask registers
(CAN_AMxxH and CAN_AMxxL). The acceptance mask is enabled when the AME

bit is set in the CAN_MBxx_ID1 register. If the “filtering on data field”
option is enabled (DNM = 1 in the CAN_CONTROL register and FDF = 1 in the
corresponding acceptance mask), the EXTID_HI[15:0] bits of
CAN_MBxx_ID0 are reused as acceptance code (DFC) for the data field filter-
ing. For more details, see “Receive Operation” on page 17-15 of this
chapter.

CAN Mailbox Control
Mailbox control MMRs function as control and status registers for the 32
mailboxes. Each bit in these registers represents one specific mailbox.
Since CAN MMRs are all 16 bits wide, pairs of registers are required to
manage certain functionality for all 32 individual mailboxes. Mailboxes
0-15 are configured/monitored in registers with a suffix of 1. Similarly,
mailboxes 16-31 use the same named register with a suffix of 2. For exam-
ple, the CAN mailbox direction registers (CAN_MDx) would control
mailboxes as shown in Figure 17-4.

The mailbox control register area consists of these register pairs:

• CAN_MC1 and CAN_MC2 (mailbox enable registers)

• CAN_MD1 and CAN_MD2 (mailbox direction registers)

Figure 17-4. CAN Register Pairs

MD15

15

CAN_MD1

0

MD14 MD13 MD12 MD11 MD10 MD9 MD8 MD7 MD6 MD5 MD4 MD3 MD2 MD1 MD0

MD31

15

CAN_MD2

0

MD30 MD29 MD28 MD27 MD26 MD25 MD24 MD23 MD22 MD21 MD20 MD19 MD18 MD17 MD16

ADSP-BF50x Blackfin Processor Hardware Reference 17-7

CAN Module

• CAN_TA1 and CAN_TA2 (transmit acknowledge registers)

• CAN_AA1 and CAN_AA2 (abort acknowledge registers)

• CAN_TRS1 and CAN_TRS2 (transmit request set registers)

• CAN_TRR1 and CAN_TRR2 (transmit request reset registers)

• CAN_RMP1 and CAN_RMP2 (receive message pending registers)

• CAN_RML1 and CAN_RML2 (receive message lost registers)

• CAN_RFH1 and CAN_RFH2 (remote frame handling registers)

• CAN_OPSS1 and CAN_OPSS2 (overwrite protection/single shot
transmission registers)

• CAN_MBIM1 and CAN_MBIM2 (mailbox interrupt mask registers)

• CAN_MBTIF1 and CAN_MBTIF2 (mailbox transmit interrupt flag
registers)

• CAN_MBRIF1 and CAN_MBRIF2 (mailbox receive interrupt flag
registers)

Since mailboxes 24–31 support transmit operation only and mailboxes
0–7 are receive-only mailboxes, the lower eight bits in the “1” registers
and the upper eight bits in the “2” registers are sometimes reserved or are
restricted in their usage.

CAN Protocol Basics
Although the CANRX and CANTX pins are TTL-compliant signals, the CAN
signals beyond the transceiver (see Figure 17-1) have asymmetric drivers.
A low state on the CANTX pin activates strong drivers while a high state is
driven weakly. Consequently, active low is called the “dominant” state and
active high is called “recessive.” If the CAN module is passive, the CANTX

Interface Overview

17-8 ADSP-BF50x Blackfin Processor Hardware Reference

pin is always high. If two CAN nodes transmit at the same time, dominant
bits overwrite recessive bits.

The CAN protocol defines that all nodes trying to send a message on the
CAN bus attempt to send a frame once the CAN bus becomes available.
The start of frame indicator (SOF) signals the beginning of a new frame.
Each CAN node then begins transmitting its message starting with the
message ID. While transmitting, the CAN controller samples the CANRX

pin to verify that the logic level being driven is the value it just placed on
the CANTX pin. This is where the names for the logic levels apply. If a trans-
mitting node places a recessive ‘1’ on CANTX and detects a dominant ‘0’ on
the CANRX pin, it knows that another node has placed a dominant bit on
the bus, which means another node has higher priority. So, if the value
sensed on CANRX is the value driven on CANTX, transmission continues, oth-
erwise the CAN controller senses that it has lost arbitration and
configuration determines what the next course of action is once arbitra-
tion is lost. See Figure 17-5 for more details regarding CAN frame
structure.

Figure 17-5 is a basic 11-bit identifier frame. After the SOF and identifier
is the RTR bit, which indicates whether the frame contains data (data
frame) or is a request for data associated with the message identifier in the
frame being sent (remote frame).

Figure 17-5. Standard CAN Frame

SOF IDENTIFIER RTR

1 11 1

ARBITRATION PHASE

CRCIDE ACK0...8 BYTESr0 DLC

1 41 0 ... 64 16 2 7 3

EOF IFS

SOF
RTR

CRC

IDE

ACK

r0
DLC

EOF
IFS

- START OF FRAME (SINGLE BIT = 0)
- REMOTE TRANSMISSION REQUEST (REMOTE FRAME = 1)
- IDENTIFIER EXTENSION (EXTENDED ID FRAME = 1)
- RESERVED FOR FUTURE EXPANSION
- DATA LENGTH CONTROL (NUMBER OF DATA BYTES IN FRAME)
- CYCLIC REDUNDANCY CHECK (ERROR BITS IN FRAME)
- ACKNOWLEDGE (RECEIVER DRIVES ONE DOMINANT BIT TO ACK)
- END OF FRAME (SERIES OF 7 RECESSIVE BITS = b#1111111)
- INTERFRAME SPACE (3 RECESSIVE BITS = b#111)

ADSP-BF50x Blackfin Processor Hardware Reference 17-9

CAN Module

 Due to the inherent nature of the CAN protocol, a dominant bit in
the RTR field wins arbitration against a remote frame request
(RTR=1) for the same message ID, thereby defining a remote request
to be lower priority than a data frame.

The next field of interest is the IDE. When set, it indicates that the mes-
sage is an extended frame with a 29-bit identifier instead of an 11-bit
identifier. In an extended frame, the first part of the message resembles
Figure 17-6.

As could be concluded with regards to the RTR field, a dominant bit in the
IDE field wins arbitration against an extended frame with the same lower
11-bits, therefore, standard frames are higher priority than extended
frames. The substitute remote request bit (SRR, always sent as recessive),
the reserved bits r0 and r1 (always sent as dominant), and the checksum
(CRC) are generated automatically by the internal logic.

CAN Operation
The CAN controller is in configuration mode when coming out of proces-
sor reset or hibernate. It is only when the CAN is in configuration mode
that hardware behavior can be altered. Before initializing the mailboxes
themselves, the CAN bit timing must be set up to work on the CAN bus
that the controller is expected to connect to.

Figure 17-6. Extended CAN Frame

SOF IDENTIFIER SRR

1 11 1 1 18 1 1 4

RTRIDE r1

1

IDENTIFIER r0 DLC

CAN Operation

17-10 ADSP-BF50x Blackfin Processor Hardware Reference

Bit Timing
The CAN controller does not have a dedicated clock. Instead, the CAN
clock is derived from the system clock (SCLK) based on a configurable
number of time quanta. The Time Quantum (TQ) is derived from the
formula TQ = (BRP+1)/SCLK, where BRP is the 10-bit BRP field in the
CAN_CLOCK register. Although the BRP field can be set to any value, it is rec-
ommended that the value be greater than or equal to 4, as restrictions
apply to the bit timing configuration when BRP is less than 4.

The CAN_CLOCK register defines the TQ value, and multiple time quanta
make up the duration of a CAN bit on the bus. The CAN_TIMING register
controls the nominal bit time and the sample point of the individual bits
in the CAN protocol. Figure 17-7 shows the three phases of a CAN bit—
the synchronization segment, the segment before the sample point, and
the segment after the sample point.

The synchronization segment is fixed to one TQ. It is required to syn-
chronize the nodes on the bus. All signal edges are expected to occur
within this segment.

The TSEG1 and TSEG2 fields of CAN_TIMING control how many TQs the
CAN bits consist of, resulting in the CAN bit rate. The nominal bit time
is given by the formula tBIT = TQ x (1 + (1 + TSEG1) + (1 + TSEG2)). For safe
receive operation on given physical networks, the sample point is pro-
grammable by the TSEG1 field. The TSEG2 field holds the number of TQs

Figure 17-7. Three Phases of a CAN Bit

TQTQ

NOMINAL BIT TIME

TQ x (TSEG2 + 1)

TQ TQTQ TQ TQTQ TQTQ
t

TQTQTQ

SYNC
TQ x (TSEG1 + 1)

SAMPLE POINTTRANSMIT POINT

TQ TQ

ADSP-BF50x Blackfin Processor Hardware Reference 17-11

CAN Module

needed to complete the bit time. Often, best sample reliability is achieved
with sample points in the high 80% range of the bit time. Never use sam-
ple points lower than 50%. Thus, TSEG1 should always be greater than or
equal to TSEG2.

The Blackfin CAN module does not distinguish between the propagation
segment and the phase segment 1 as defined by the standard. The TSEG1

value is intended to cover both of them. The TSEG2 value represents the
phase segment 2.

If the CAN module detects a recessive-to-dominant edge outside the syn-
chronization segment, it can automatically move the sampling point such
that the CAN bit is still handled properly. The synchronization jump
width (SJW) field specifies the maximum number of TQs, ranging from 1
to 4 (SJW + 1), allowed for such a re-synchronization attempt. The SJW

value should not exceed TSEG2 or TSEG1. Therefore, the fundamental rule
for writing CAN_TIMING is:

SJW <= TSEG2 <= TSEG1

In addition to this fundamental rule, phase segment 2 must also be greater
than or equal to the Information Processing Time (IPT). This is the time
required by the logic to sample CANRX input. On the Blackfin CAN mod-
ule, this is 3 SCLK cycles. Because of this, restrictions apply to the minimal
value of TSEG2 if the clock prescaler BRP is lower than 2. If BRP is set to 0,
the TSEG2 field must be greater than or equal to 2. If the prescaler is set to
1, the minimum TSEG2 is 1.

 All nodes on a CAN bus should use the same nominal bit rate.

With all the timing parameters set, the final consideration is how sam-
pling is performed. The default behavior of the CAN controller is to
sample the CAN bit once at the sampling point described by the
CAN_TIMING register, controlled by the SAM bit. If the SAM bit is set, how-
ever, the input signal is oversampled three times at the SCLK rate. The

CAN Operation

17-12 ADSP-BF50x Blackfin Processor Hardware Reference

resulting value is generated by a majority decision of the three sample val-
ues. Always keep the SAM bit cleared if the BRP value is less than 4.

Do not modify the CAN_CLOCK or CAN_TIMING registers during normal oper-
ation. Always enter configuration mode first. Writes to these registers have
no effect if not in configuration or debug mode. If not coming out of
processor reset or hibernate, enter configuration mode by setting the CCR

bit in the master control (CAN_CONTROL) register and poll the global CAN
status (CAN_STATUS) register until the CCA bit is set.

 If the TSEG1 field of the CAN_TIMING register is programmed to ‘0,’
the module doesn’t leave the configuration mode.

During configuration mode, the module is not active on the CAN bus
line. The CANTX output pin remains recessive and the module does not
receive/transmit messages or error frames. After leaving the configuration
mode, all CAN core internal registers and the CAN error counters are set
to their initial values.

A software reset does not change the values of CAN_CLOCK and CAN_TIMING.
Thus, an ongoing transfer via the CAN bus cannot be corrupted by chang-
ing the bit timing parameter or initiating the software reset (SRS = 1 in
CAN_CONTROL).

Transmit Operation
Figure 17-8 shows the CAN transmit operation. Mailboxes 24-31 are ded-
icated transmitters. Mailboxes 8-23 can be configured as transmitters by
writing 0 to the corresponding bit in the CAN_MDx register. After writing
the data and the identifier into the mailbox area, the message is sent after
mailbox n is enabled (MCn = 1 in CAN_MCx) and, subsequently, the corre-
sponding transmit request bit is set (TRSn = 1 in CAN_TRSx).

When a transmission completes, the corresponding bits in the transmit
request set register and in the transmit request reset register (TRRn in
CAN_TRRx) are cleared. If transmission was successful, the corresponding

ADSP-BF50x Blackfin Processor Hardware Reference 17-13

CAN Module

bit in the transmit acknowledge register (TAn in CAN_TAx) is set. If the
transmission was aborted due to lost arbitration or a CAN error, the corre-
sponding bit in the abort acknowledge register (AAn in CAN_AAx) is set. A
requested transmission can also be manually aborted by setting the corre-
sponding TRRn bit in CAN_TRRx.

Multiple CAN_TRSx bits can be set simultaneously by software, and these
bits are reset after either a successful or an aborted transmission. The TRSn

bits can also be set by the CAN hardware when using the auto-transmit
mode of the universal counter, when a message loses arbitration and the
single-shot bit is not set (OPSSn = 0 in CAN_OPSSx), or in the event of a
remote frame request. The latter is only possible for receive/transmit mail-
boxes if the automatic remote frame handling feature is enabled (RFHn = 1

in CAN_RFHx).

Special care should be given to mailbox area management when a TRSn bit
is set. Write access to the mailbox is permissible with TRSn set, but chang-
ing data in such a mailbox may lead to unexpected data during
transmission.

Enabling and disabling mailboxes has an impact on transmit requests. Set-
ting the TRSn bit associated with a disabled mailbox may result in
erroneous behavior. Similarly, disabling a mailbox before the associated
TRSn bit is reset by the internal logic can cause unpredictable results.

Retransmission

Normally, the current message object is sent again after arbitration is lost
or an error frame is detected on the CAN bus line. If there is more than
one transmit message object pending, the message object with the highest
mailbox is sent first (see Figure 17-8). The currently aborted transmission
is restarted after any messages with higher priority are sent.

CAN Operation

17-14 ADSP-BF50x Blackfin Processor Hardware Reference

A message which is currently under preparation is not replaced by another
message which is written into the mailbox. The message under preparation
is one that is copied into the temporary transmit buffer when the internal
transmit request for the CAN core module is set. The message in the buf-
fer is not replaced until it is sent successfully, the arbitration on the CAN
bus line is lost, or there is an error frame on the CAN bus line.

Single Shot Transmission

If the single shot transmission feature is used (OPSSn = 1 in CAN_OPSSx), the
corresponding TRSn bit is cleared after the message is successfully sent or if
the transmission is aborted due to a lost arbitration or an error frame on

Figure 17-8. CAN Transmit Operation Flow Chart

AT LEAST 1 BIT SET IN CAN_TRSx REGISTERS

STARTING WITH
MAILBOX 31,

FIND HIGHEST SET
TRSn BIT

MESSAGE
ABORTED?

YES NO

CLEAR TRSn
AND REPORT
ABORT ERROR

PLACE MESSAGE
n IN TEMPORARY

TRANSMIT BUFFER

EXIT EXIT

CLEAR TRSn
AND REPORT

TRANSMIT
SUCCESSFUL

ADSP-BF50x Blackfin Processor Hardware Reference 17-15

CAN Module

the CAN bus line. Thus, there is no further attempt to transmit the mes-
sage again if the initial try failed, and the abort error is reported (AAn = 1

in CAN_AAx)

Auto-Transmission

In auto-transmit mode, the message in mailbox 11 can be sent periodically
using the universal counter. This mode is often used to broadcast heart-
beats to all CAN nodes. Accordingly, messages sent this way usually have
high priority.

The period value is written to the CAN_UCRC register. When enabled in this
mode (set UCCNF[3:0] = 0x3 in CAN_UCCNF), the counter (CAN_UCCNT) is
loaded with the value in the CAN_UCRC register. The counter decrements at
the CAN bit clock rate down to 0 and is then reloaded from CAN_UCRC.
Each time the counter reaches a value of 0, the TRS11 bit is automatically
set by internal logic, and the corresponding message from mailbox 11 is
sent.

For proper auto-transmit operation, mailbox 11 must be configured as a
transmit mailbox and must contain valid data (identifier, control bits, and
data) before the counter first expires after this mode is enabled.

Receive Operation
The CAN hardware autonomously receives messages and discards invalid
messages. Once a valid message has been successfully received, the receive
logic interrogates all enabled receive mailboxes sequentially, from mailbox
23 down to mailbox 0, whether the message is of interest to the local node
or not.

Each incoming data frame is compared to all identifiers stored in active
receive mailboxes (MDn = 1 and MCn = 1) and to all active transmit mail-
boxes with the remote frame handling feature enabled (RFHn = 1 in
CAN_RFHx).

CAN Operation

17-16 ADSP-BF50x Blackfin Processor Hardware Reference

The message identifier of the received message, along with the identifier
extension (IDE) and remote transmission request (RTR) bits, are compared
against each mailbox’s register settings. If the AME bit is not set, a match is
signalled only if IDE, RTR, and all identifier bits are exact. If, however, AME
is set, the acceptance mask registers determine which of the identifier, IDE,
and RTR bits need to match. The logic applies Received Message XNOR

CAN_IDx or AME AND CAN_AMx. A one at the respective bit position in the
CAN_AMxx mask registers means that the bit does not need to match when
AME = 1. This way, a mailbox can accept a group of messages.

If the acceptance filter finds a matching identifier, the content of the
received data frame is stored in that mailbox. A received message is stored
only once, even if multiple receive mailboxes match its identifier. If the
current identifier does not match any mailbox, the message is not stored.

Table 17-1. Mailbox Used for Acceptance Mask Filtering

Mailbox Used for Acceptance Filtering

MCn MDn RFHn Mailbox n Comment

0 x x Ignored Mailbox n disabled

1 0 0 Ignored Mailbox n enabled
Mailbox n configured for transmit
Remote frame handling disabled

1 0 1 Used Mailbox n enabled
Mailbox n configured for transmit
Remote frame handling enabled

1 1 x Used Mailbox n enabled
Mailbox n configured for receive

ADSP-BF50x Blackfin Processor Hardware Reference 17-17

CAN Module

Figure 17-9 illustrates the decision tree of the receive logic when process-
ing the individual mailboxes.

If a message is received for a mailbox and that mailbox still contains
unread data (RMPn = 1), the user has to decide whether the old message
should be overwritten or not. If OPSSn = 0, the receive message lost bit
(RMLn in CAN_RMLx) is set and the stored message is overwritten. This

Figure 17-9. CAN Receive Operation Flow Chart

MAILBOX
ENABLED?

AME?

Y

FROM MESSAGE RECEIVER/PREVIOUS MAILBOX

0COMPARE ALL
BITS

MATCH?

Y

N

EXIT

NEXT MAILBOX
N

1 COMPARE
UNMASKED
BITS ONLY

NEXT MAILBOX

MAILBOX
DIRECTION?

RECEIVE

MAILBOX
READY?

TRANSMIT

REMOTE
 MAILBOX?

N
NEXT MAILBOX

Y
OVERWRITE

PROTECTION?

N

N

Y

REPORT
OVERFLOW

ERROR

SAVE MESSAGE
TO MAILBOX

TRANSMIT
REMOTE

MESSAGE

Y
NEXT MAILBOX

EXIT EXIT

CAN Operation

17-18 ADSP-BF50x Blackfin Processor Hardware Reference

results in the receive message lost interrupt being raised in the global CAN
interrupt status register (RMLIS = 1 in CAN_GIS). If OPSSn = 1, the next mail-
boxes are checked for another matching identifier. If no match is found,
the message is discarded and the next message is checked.

 If a receive mailbox is disabled, an ongoing receive message for that
mailbox is lost even if a second mailbox is configured to receive the
same identifier.

Data Acceptance Filter

If DeviceNet mode is enabled (DNM = 1 in CAN_CONTROL) and the mailbox is
set up for filtering on data field, the filtering is done on the standard ID of
the message and data fields. The data field filtering can be programmed
for either the first byte only or the first two bytes, as shown in Table 17-2.

If the FDF bit is set in the corresponding CAN_AMxxH register, the CAN_AMxxL

register holds the data field mask (DFM[15:0]). If the FDF bit is cleared in
the corresponding CAN_AMxxH register, the CAN_AMxxL register holds the
extended identifier mask (EXTID_HI[15:0]).

Table 17-2. Data Field Filtering

FDF

Filter On Data Field

FMD
Full Mask Data Field

Description

0 0 Do not allow filtering on the data
field

0 1 Not allowed. FMD must be 0 if FDF
is 0.

1 0 Filter on first data byte only

1 1 Filter on first two data bytes

ADSP-BF50x Blackfin Processor Hardware Reference 17-19

CAN Module

Remote Frame Handling

Automatic handling of remote frames can be enabled/disabled by setting/
clearing the corresponding bit in the remote frame handling registers
(CAN_RFHx) of a transmit mailbox.

Remote frames are data frames with no data field and the RTR bit set. The
data length code of the responding data frame is overruled by the DLC of
the requesting remote frame. A data length code can be programmed with
values in the range of 0 to 15, but data length code values greater than 8
are considered as 8. A remote frame contains:

• the identifier bits

• the control field DLC

• the remote transmission request (RTR) bit

Only configurable mailboxes 8–23 can process remote frames, but all
mailboxes can receive and transmit remote frame requests. When setup for
automatic remote frame handling, the CAN_OPSSx register has no effect. All
content of a mailbox is always overwritten by an incoming message.

 If a remote frame is received, the DLC of the corresponding mailbox
is overwritten with the received value.

Erroneous behavior may result when the remote frame handling bit (RFHn)
is changed and the corresponding mailbox is currently processed. See
“Temporarily Disabling Mailboxes” on page 17-21 for safe mailbox
handling.

Watchdog Mode

Watchdog mode is used to make sure messages are received periodically. It
is often used to observe whether or not a certain node on the network is
alive and functioning properly, and, if not, to detect and manage its fail-
ure case accordingly.

CAN Operation

17-20 ADSP-BF50x Blackfin Processor Hardware Reference

Upon programming the universal counter to watchdog mode (set
UCCNF[3:0] = 0x2 in CAN_UCCNF), the counter in the CAN_UCCNT register is
loaded with the predefined value contained in the CAN universal counter
reload/capture register (CAN_UCRC). This counter then decrements at the
CAN bit rate. If the UCCT and UCRC bits in the CAN_UCCNF register are set
and a message is received in mailbox 4 before the counter counts down to
0, the counter is reloaded with the CAN_UCRC contents. If the counter has
counted down to 0 without receiving a message in mailbox 4, the UCEIS

bit in the global CAN interrupt status (CAN_GIS) register is set, and the
counter is automatically reloaded with the contents of the CAN_UCRC regis-
ter. If an interrupt is desired, the UCEIM bit in the CAN_GIM register must
also be set. With the mask bit set, when a watchdog interrupt occurs, the
UCEIF bit in the CAN_GIF register is also set.

The counter can be reloaded with the contents of CAN_UCRC or disabled by
writing to the CAN_UCCNF register.

The time period it takes for the watchdog interrupt to occur is controlled
by the value written into the CAN_UCRC register by the user.

Time Stamps
To get an indication of the time of reception or the time of transmission
for each message, program the CAN universal counter to time stamp
mode (set UCCNF[3:0] = 0x1 in CAN_UCCNF). The value of the 16-bit
free-running counter (CAN_UCCNT) is then written into the
CAN_MBxx_TIMESTAMP register of the corresponding mailbox when a
received message has been stored or a message has been transmitted.

The time stamp value is captured at the sample point of the start of frame
(SOF) bit of each incoming or outgoing message. Afterwards, this time
stamp value is copied to the CAN_MBxx_TIMESTAMP register of the corre-
sponding mailbox.

If the mailbox is configured for automatic remote frame handling, the
time stamp value is written for transmission of a data frame (mailbox

ADSP-BF50x Blackfin Processor Hardware Reference 17-21

CAN Module

configured as transmit) or the reception of the requested data frame (mail-
box configured as receive).

The counter can be cleared (set UCRC bit to 1) or disabled (set UCE bit to 0)
by writing to the CAN_UCCNF register. The counter can also be loaded with
a value by writing to the counter register itself (CAN_UCCNT).

It is also possible to clear the counter (CAN_UCCNT) by reception of a mes-
sage in mailbox number 4 (synchronization of all time stamp counters in
the system). This is accomplished by setting the UCCT bit in the CAN_UCCNF

register.

An overflow of the counter sets a bit in the global CAN interrupt status
register (UCEIS in the CAN_GIS register). A global CAN interrupt can
optionally occur by unmasking the bit in the global CAN interrupt mask
register (UCEIM in the CAN_GIM register). If the interrupt source is
unmasked, a bit in the global CAN interrupt flag register is also set (UCEIF
in the CAN_GIF register).

Temporarily Disabling Mailboxes
If this mailbox is used for automatic remote frame handling, the data field
must be updated without losing an incoming remote request frame and
without sending inconsistent data. Therefore, the CAN controller allows
for temporary mailbox disabling, which can be enabled by programming
the mailbox temporary disable register (CAN_MBTD).

The pointer to the requested mailbox must be written to the TDPTR[4:0]
bits of the CAN_MBTD register and the mailbox temporary disable
request bit (TDR) must be set. The corresponding mailbox temporary dis-
able flag (TDA) is subsequently set by the internal logic.

If a mailbox is configured as “transmit” (MDn = 0) and TDA is set, the con-
tent of the data field of that mailbox can be updated. If there is an
incoming remote request frame while the mailbox is temporarily disabled,
the corresponding transmit request set bit (TRSn) is set by the internal

Functional Operation

17-22 ADSP-BF50x Blackfin Processor Hardware Reference

logic and the data length code of the incoming message is written to the
corresponding mailbox. However, the message being requested is not sent
until the temporary disable request is cleared (TDR = 0). Similarly, all trans-
mit requests for temporarily disabled mailboxes are ignored until TDR is
cleared. Additionally, transmission of a message is immediately aborted if
the mailbox is temporarily disabled and the corresponding TRRn bit for
this mailbox is set.

If a mailbox is configured as “receive” (MDn = 1), the temporary disable flag
is set and the mailbox is not processed. If there is an incoming message for
the mailbox n being temporarily disabled, the internal logic waits until the
reception is complete or there is an error on the CAN bus to set TDA. Once
TDA is set, the mailbox can then be completely disabled (MCn = 0) without
the risk of losing an incoming frame. The temporary disable request (TDR)
bit must then be reset as soon as possible.

When TDA is set for a given mailbox, only the data field of that mailbox
can be updated. Accesses to the control bits and the identifier are denied.

Functional Operation
The following sections describe the functional operation of the CAN
module, including interrupts, the event counter, warnings and errors,
debug features, and low power features.

CAN Interrupts
The CAN module provides three independent interrupts: two mailbox
interrupts (mailbox receive interrupt MBRIRQ and mailbox transmit inter-
rupt MBTIRQ) and the global CAN interrupt GIRQ. The values of these three
interrupts can also be read back in the interrupt status registers.

ADSP-BF50x Blackfin Processor Hardware Reference 17-23

CAN Module

Mailbox Interrupts

Each of the 32 mailboxes in the CAN module may generate a receive or
transmit interrupt, depending on the mailbox configuration. To enable a
mailbox to generate an interrupt, set the corresponding MBIMn bit in
CAN_MBIMx.

If a mailbox is configured as a receive mailbox, the corresponding receive
interrupt flag is set (MBRIFn = 1 in CAN_MBRIFx) after a received message is
stored in mailbox n (RMPn = 1 in CAN_RMPx). If the automatic remote frame
handling feature is used, the receive interrupt flag is set after the requested
data frame is stored in the mailbox. If any MBRIFn bits are set in
CAN_MBRIFx, the MBRIRQ interrupt output is raised in CAN_INTR. In order to
clear the MBRIRQ interrupt request, all of the set MBRIFn bits must be
cleared by software by writing a 1 to those set bit locations in CAN_MBRIFx.

If a mailbox is configured as a transmit mailbox, the corresponding trans-
mit interrupt flag is set (MBTIFn = 1 in CAN_MBTIFx) after the message in
mailbox n is sent correctly (TAn = 1 in CAN_TAx). The TAn bits maintain
state even after the corresponding mailbox n is disabled (MCn = 0). If the
automatic remote frame handling feature is used, the transmit interrupt
flag is set after the requested data frame is sent from the mailbox. If any
MBTIFn bits are set in CAN_MBTIFx, the MBTIRQ interrupt output is raised in
CAN_INTR. In order to clear the MBTIRQ interrupt request, all of the set
MBTIFn bits must be cleared by software by writing a 1 to those set bit loca-
tions in CAN_MBTIFx.

Global CAN Status Interrupt

The global CAN status interrupt logic is implemented with three regis-
ters—the global CAN interrupt mask register (CAN_GIM), where each
interrupt source can be enabled or disabled separately; the global CAN
interrupt status register (CAN_GIS); and the global CAN interrupt flag reg-
ister (CAN_GIF). The interrupt mask bits only affect the content of the
global CAN interrupt flag register (CAN_GIF). If the mask bit is not set, the
corresponding flag bit is not set when the event occurs. The interrupt

Functional Operation

17-24 ADSP-BF50x Blackfin Processor Hardware Reference

status bits in the global CAN interrupt status register, however, are always
set if the corresponding interrupt event occurs, independent of the mask
bits. Thus, the interrupt status bits can be used for polling of interrupt
events.

The global CAN status interrupt output (GIRQ) bit in the global CAN
interrupt status register is only asserted if a bit in the CAN_GIF register is
set. The GIRQ bit remains set as long as at least one bit in the interrupt flag
register CAN_GIF is set. All bits in the interrupt status and in the interrupt
flag registers remain set until cleared by software or a software reset has
occurred.

 In the ISR, the interrupt latch should be cleared by a W1C opera-
tion to the corresponding bit of the CAN_GIS register. This clears
the related bits of both the CAN_GIS and CAN_GIF registers.

There are several interrupt events that can activate this GIRQ interrupt:

• Access denied interrupt (ADIM, ADIS, ADIF)

At least one access to the mailbox RAM occurred during a data
update by internal logic.

• External trigger output interrupt (EXTIM, EXTIS, EXTIF)

The external trigger event occurred.

• Universal counter exceeded interrupt (UCEIM, UCEIS, UCEIF)

There was an overflow of the universal counter (in time stamp
mode or event counter mode) or the counter has reached the value
0x0000 (in watchdog mode).

• Receive message lost interrupt (RMLIM, RMLIS, RMLIF)

A message has been received for a mailbox that currently contains
unread data. At least one bit in the receive message lost register
(CAN_RMLx) is set. If the bit in CAN_GIS (and CAN_GIF) is reset and

ADSP-BF50x Blackfin Processor Hardware Reference 17-25

CAN Module

there is at least one bit in CAN_RMLx still set, the bit in CAN_GIS (and
CAN_GIF) is not set again. The internal interrupt source signal is
only active if a new bit in CAN_RMLx is set.

• Abort acknowledge interrupt (AAIM, AAIS, AAIF)

At least one AAn bit in the abort acknowledge registers CAN_AAx is
set. If the bit in CAN_GIS (and CAN_GIF) is reset and there is at least
one bit in CAN_AAx still set, the bit in CAN_GIS (and CAN_GIF) is not
set again. The internal interrupt source signal is only active if a new
bit in CAN_AAx is set. The AAn bits maintain state even after the cor-
responding mailbox n is disabled (MCn = 0).

• Access to unimplemented address interrupt (UIAIM, UIAIS, UIAIF)

There was a CPU access to an address which is not implemented in
the controller module.

• Wakeup interrupt (WUIM, WUIS, WUIF)

The CAN module has left the sleep mode because of detected activ-
ity on the CAN bus line.

• Bus-Off interrupt (BOIM, BOIS, BOIF)

The CAN module has entered the bus-off state. This interrupt
source is active if the status of the CAN core changes from normal
operation mode to the bus-off mode. If the bit in CAN_GIS (and
CAN_GIF) is reset and the bus-off mode is still active, this bit is not
set again. If the module leaves the bus-off mode, the bit in CAN_GIS

(and CAN_GIF) remains set.

• Error-Passive interrupt (EPIM, EPIS, EPIF)

The CAN module has entered the error-passive state. This inter-
rupt source is active if the status of the CAN module changes from
the error-active mode to the error-passive mode. If the bit in

Functional Operation

17-26 ADSP-BF50x Blackfin Processor Hardware Reference

CAN_GIS (and CAN_GIF) is reset and the error-passive mode is still
active, this bit is not set again. If the module leaves the error-pas-
sive mode, the bit in CAN_GIS (and CAN_GIF) remains set.

• Error warning receive interrupt (EWRIM, EWRIS, EWRIF)

The CAN receive error counter (RXECNT) has reached the warning
limit. If the bit in CAN_GIS (and CAN_GIF) is reset and the error
warning mode is still active, this bit is not set again. If the module
leaves the error warning mode, the bit in CAN_GIS (and CAN_GIF)
remains set.

• Error warning transmit interrupt (EWTIM, EWTIS, EWTIF)

The CAN transmit error counter (TXECNT) has reached the warning
limit. If the bit in CAN_GIS (and CAN_GIF) is reset and the error
warning mode is still active, this bit is not set again. If the module
leaves the error warning mode, the bit in CAN_GIS (and CAN_GIF)
remains set.

Event Counter
For diagnostic functions, it is possible to use the universal counter as an
event counter. The counter can be programmed in the 4-bit UCCNF[3:0]
field of CAN_UCCNF to increment on one of these conditions:

• UCCNF[3:0] = 0x6 – CAN error frame. Counter is incremented if
there is an error frame on the CAN bus line.

• UCCNF[3:0] = 0x7 – CAN overload frame. Counter is incremented
if there is an overload frame on the CAN bus line.

• UCCNF[3:0] = 0x8 – Lost arbitration. Counter is incremented every
time arbitration on the CAN line is lost during transmission.

ADSP-BF50x Blackfin Processor Hardware Reference 17-27

CAN Module

• UCCNF[3:0] = 0x9 – Transmission aborted. Counter is incre-
mented every time arbitration is lost or a transmit request is
cancelled (AAn is set).

• UCCNF[3:0] = 0xA – Transmission succeeded. Counter is incre-
mented every time a message sends without detected errors (TAn is
set).

• UCCNF[3:0] = 0xB – Receive message rejected. Counter is incre-
mented every time a message is received without detected errors
but not stored in a mailbox because there is no matching identifier
found.

• UCCNF[3:0] = 0xC – Receive message lost. Counter is incremented
every time a message is received without detected errors but not
stored in a mailbox because the mailbox contains unread data (RMLn
is set).

• UCCNF[3:0] = 0xD – Message received. Counter is incremented
every time a message is received without detected errors, whether
the received message is rejected or stored in a mailbox.

• UCCNF[3:0] = 0xE – Message stored. Counter is incremented every
time a message is received without detected errors, has an identifier
that matches an enabled receive mailbox, and is stored in the
receive mailbox (RMPn is set).

• UCCNF[3:0] = 0xF – Valid message. Counter is incremented every
time a valid transmit or receive message is detected on the CAN
bus line.

CAN Warnings and Errors
CAN warnings and errors are controlled using the CAN_CEC register,
the CAN_ESR register, and the CAN_EWR register.

Functional Operation

17-28 ADSP-BF50x Blackfin Processor Hardware Reference

Programmable Warning Limits

It is possible to program the warning level for EWTIS (error warning trans-
mit interrupt status) and EWRIS (error warning receive interrupt status)
separately by writing to the error warning level error count fields for
receive (EWLREC) and transmit (EWLTEC) in the CAN error counter warning
level (CAN_EWR) register. After powerup reset, the CAN_EWR register is set to
the default warning level of 96 for both error counters. After software
reset, the content of this register remains unchanged.

CAN Error Handling

Error management is an integral part of the CAN standard. Five different
kinds of bus errors may occur during transmissions:

• Bit error

A bit error can be detected by the transmitting node only. When-
ever a node is transmitting, it continuously monitors its receive pin
(CANRX) and compares the received data with the transmitted data.
During the arbitration phase, the node simply postpones the trans-
mission if the received and transmitted data do not match.
However, after the arbitration phase (that is, once the RTR bit has
been sent successfully), a bit error is signaled any time the value on
CANRX does not equal what is being transmitted on CANTX.

• Form error

A form error occurs any time a fixed-form bit position in the CAN
frame contains one or more illegal bits, that is, when a dominant
bit is detected at a delimiter or end-of-frame bit position.

• Acknowledge error

An acknowledge error occurs whenever a message has been sent and
no receivers drive an acknowledge bit.

ADSP-BF50x Blackfin Processor Hardware Reference 17-29

CAN Module

• CRC error

A CRC error occurs whenever a receiver calculates the CRC on the
data it received and finds it different than the CRC that was trans-
mitted on the bus itself.

• Stuff error

The CAN specification requires the transmitter to insert an extra
stuff bit of opposite value after 5 bits have been transmitted with
the same value. The receiver disregards the value of these stuff bits.
However, it takes advantage of the signal edge to re-synchronize
itself. A stuff error occurs on receiving nodes whenever the 6th
consecutive bit value is the same as the previous five bits.

Once the CAN module detects any of the above errors, it updates the
error status register CAN_ESR as well as the error counter register CAN_CEC.
In addition to the standard errors, the CAN_ESR register features a flag that
signals when the CANRX pin sticks at dominant level, indicating that
shorted wires are likely.

Error Frames

It is of central importance that all nodes on the CAN bus ignore data
frames that one single node failed to receive. To accomplish this, every
node sends an error frame as soon as it has detected an error. See
Figure 17-10.

Once a device has detected an error, it still completes the ongoing bit and
initiates an error frame by sending six dominant and eight recessive bits to
the bus. This is a violation to the bit stuffing rule and informs all nodes
that the ongoing frame needs to be discarded.

All receivers that did not detect the transmission error in the first instance
now detect a stuff bit error. The transmitter may detect a normal bit error
sooner. It aborts the transmission of the ongoing frame and tries sending
it again later.

Functional Operation

17-30 ADSP-BF50x Blackfin Processor Hardware Reference

Finally, all nodes on the bus have detected an error. Consequently, all of
them send 6 dominant and 8 recessive bits to the bus as well. The result-
ing error frame consists of two different fields. The first field is given by
the superposition of error flags contributed from the different stations,
which is a sequence of 6 to 12 dominant bits. The second field is the error
delimiter and consists of 8 recessive bits indicating the end of frame.

For CRC errors, the error frame is initiated at the end of the frame, rather
than immediately after the failing bit.

After having received 8 recessive bits, every node knows that the error con-
dition has been resolved and starts transmission if messages are pending.
The former transmitter that had to abort its operation must win the new
arbitration again, otherwise its message is delayed as determined by
priority.

Figure 17-10. CAN Error Scenario Example

8 BITS

6 BITS

NODE 2 TX

NODE 1 TX

NODE 2 DETECTS
ANY ERROR AND
INITIATES ERROR
FRAME

NODE 1 DETECTS
A BIT EROR AND
SIGNALS THE
ERROR ALSO

NODE 1
WAS
TRANS-
MITTING
DATA

NEW START
BIT

NODE 3 TX

ERROR FRAME

RESULTING BUS

6 BITS

6 BITS

NODE 3 DETECTS
A STUFF BIT ERROR
AND SIGNALS THE
ERROR ALSO

ADSP-BF50x Blackfin Processor Hardware Reference 17-31

CAN Module

Because the transmission of an error frame destroys the frame under trans-
mission, a faulty node erroneously detecting an error can block the bus.
Because of this, there are two node states which determine a node’s right
to signal an error—error active and error passive. Error active nodes are
those which have an error detection rate below a certain limit. These
nodes drive an ‘active error flag’ of 6 dominant bits.

Nodes with a higher error detection rate are suspected of having a local
problem and, therefore, have a limited right to signal errors. These error
passive nodes drive a ‘passive error flag’ consisting of 6 recessive bits.
Thus, an error passive transmitting node is still able to inform the other
nodes about the abortion of a self-transmitted frame, but it is no longer
able to destroy correctly received frames of other nodes.

Error Levels

The CAN specification requires each node in the system to operate in one
of three levels. See Table 17-3. This prevents nodes with high error rates
from blocking the entire network, as the errors might be caused by local
hardware. The Blackfin CAN module provides an error counter for trans-
mit (TEC) and an error counter for receive (REC). The CAN error count
register CAN_CEC houses each of these 8-bit counters.

After initialization, both the TEC and the REC counters are 0. Each time a
bus error occurs, one of the counters is incremented by either 1 or 8,
depending on the error situation (documented in Version 2.0 of CAN
Specification). Successful transmit and receive operations decrement the
respective counter by 1.

If either of the error counters exceeds 127, the CAN module goes into a
passive state and the CAN error passive mode (EP) bit in CAN_STATUS is set.
Then, it is not allowed to send any more active error frames. However, it
is still allowed to transmit messages and to signal passive error frames in
case the transmission fails because of a bit error.

Functional Operation

17-32 ADSP-BF50x Blackfin Processor Hardware Reference

If one of the counters exceeds 255 (that is, when the 8-bit counters over-
flow), the CAN module is disconnected from the bus. It goes into bus off
mode and the CAN error bus off mode (EBO) bit is set in CAN_STATUS. Soft-
ware intervention is required to recover from this state.

In addition to these levels, the CAN module also provides a warning
mechanism, which is an enhancement to the CAN specification. There are
separate warnings for transmit and receive. By default, when one of the
error counters exceeds 96, a warning is signaled and is represented in the
CAN_STATUS register by either the CAN receive warning flag (WR) or CAN
transmit warning flag (WT) bits. The error warning level can be pro-
grammed using the error warning register, CAN_EWR. More information is
available on page 17-84.

Additionally, interrupts can occur for all of these levels by unmasking
them in the global CAN interrupt mask register (CAN_GIM) shown
on page 17-47. The interrupts include the bus off interrupt (BOIM), the
error-passive interrupt (EPIM), the error warning receive interrupt (EWRIM),
and the error warning transmit interrupt (EWTIM).

Table 17-3. CAN Error Level Description

Level Condition Description

Error Active Transmit and receive error
counters 128

This is the initial condition level. As
long as errors stay below 128, the
node will drive active error flags dur-
ing error frames.

Error Passive Transmit or receive error
counters  128, but  256

Errors have accumulated to a level
which requires the node to drive pas-
sive error flags during error frames.

Bus Off Transmit or receive error
counters  256

CAN module goes into bus off mode

ADSP-BF50x Blackfin Processor Hardware Reference 17-33

CAN Module

During the bus off recovery sequence, the configuration mode request bit
in the CAN_CONTROL register is set by the internal logic (CCR = 1), thus the
CAN core module does not automatically come out of the bus off mode.
The CCR bit cannot be reset until the bus off recovery sequence is finished.

 This behavior can be over-ridden by setting the auto-bus on (ABO)
bit in the CAN_CONTROL register. After exiting the bus off or configu-
ration modes, the CAN error counters are reset.

Debug and Test Modes
The CAN module contains test mode features that aid in the debugging of
the CAN software and system. Listing 17-1 provides an example of
enabling CAN debug features.

 When these features are used, the CAN module may not be com-
pliant to the CAN specification. All test modes should be enabled
or disabled only when the module is in configuration mode (CCA =
1 in the CAN_STATUS register) or in suspend mode (CSA = 1 in
CAN_STATUS).

The CDE bit is used to gain access to all of the debug features. This bit
must be set to enable the test mode, and must be written first before sub-
sequent writes to the CAN_DEBUG register. When the CDE bit is cleared, all
debug features are disabled.

Listing 17-1. Enabling CAN Debug Features in C

#include <cdefBF537.h>

/* Enable debug mode, CDE must be set before other flags can be

changed in register */

*pCAN_DEBUG |= CDE ;

Functional Operation

17-34 ADSP-BF50x Blackfin Processor Hardware Reference

/* Set debug flags */

*pCAN_DEBUG &= ~DTO ;

*pCAN_DEBUG |= MRB | MAA | DIL ;

/* Run test code */

/* Disable debug mode */

*pCAN_DEBUG &= ~CDE ;

When the CDE bit is set, it enables writes to the other bits of the CAN_DEBUG

register. It also enables these features, which are not compliant with the
CAN standard:

• Bit timing registers can be changed anytime, not only during con-
figuration mode. This includes the CAN_CLOCK and CAN_TIMING

registers.

• Allows write access to the read-only transmit/receive error counter
register CAN_CEC.

The mode read back bit (MRB) is used to enable the read back mode. In this
mode, a message transmitted on the CAN bus (or via an internal loop
back mode) is received back directly to the internal receive buffer. After a
correct transmission, the internal logic treats this as a normal receive mes-
sage. This feature allows the user to test most of the CAN features without
an external device.

The mode auto acknowledge bit (MAA) allows the CAN module to generate
its own acknowledge during the ACK slot of the CAN frame. No external
devices or connections are necessary to read back a transmit message. In
this mode, the message that is sent is automatically stored in the internal
receive buffer. In auto acknowledge mode, the module itself transmits the
acknowledge. This acknowledge can be programmed to appear on the
CANTX pin if DIL=1 and DTO=0. If the acknowledge is only going to be used
internally, then these test mode bits should be set to DIL=0 and DTO=1.

ADSP-BF50x Blackfin Processor Hardware Reference 17-35

CAN Module

The disable internal loop bit (DIL) is used to internally enable the transmit
output to be routed back to the receive input.

The disable transmit output bit (DTO) is used to disable the CANTX output
pin. When this bit is set, the CANTX pin continuously drives recessive bits.

The disable receive input bit (DRI) is used to disable the CANRX input.
When set, the internal logic receives recessive bits or receives the internally
generated transmit value in the case of the internal loop enabled (DIL=0).
In either case, the value on the CANRX input pin is ignored.

The disable error counters bit (DEC) is used to disable the transmit and
receive error counters in the CAN_CEC register. When this bit is set, the
CAN_CEC holds its current contents and is not allowed to increment or dec-
rement the error counters. This mode does not conform to the CAN
specification.

 Writes to the error counters should be in debug mode only. Write
access during reception may lead to undefined values. The maxi-
mum value which can be written into the error counters is 255.
Thus, the error counter value of 256 which forces the module into
the bus off state can not be written into the error counters.

Table 17-4 shows several common combinations of test mode bits.

Table 17-4. CAN Test Modes

MRB MAA DIL DTO DRI CDE Functional Description

X X X X X 0 Normal mode, not debug mode.

0 X X X X X No read back of transmit message.

1 0 1 0 0 1 Normal transmission on CAN bus
line.
Read back.
External acknowledge from external
device required.

Functional Operation

17-36 ADSP-BF50x Blackfin Processor Hardware Reference

1 1 1 0 0 1 Normal transmission on CAN bus
line.
Read back.
No external acknowledge required.
Transmit message and acknowledge
are transmitted on CAN bus line.
CANRX input is enabled.

1 1 0 0 0 1 Normal transmission on CAN bus
line.
Read back.
No external acknowledge required.
Transmit message and acknowledge
are transmitted on CAN bus line.
CANRX input and internal loop are
enabled (internal OR of TX and RX).

1 1 0 0 1 1 Normal transmission on CAN bus
line.
Read back.
No external acknowledge required.
Transmit message and acknowledge
are transmitted on CAN bus line.
CANRX input is ignored.
Internal loop is enabled

1 1 0 1 1 1 No transmission on CAN bus line.
Read back.
No external acknowledge required.
Neither transmit message nor
acknowledge are transmitted on
CANTX.
CANRX input is ignored.
Internal loop is enabled.

Table 17-4. CAN Test Modes (Cont’d)

MRB MAA DIL DTO DRI CDE Functional Description

ADSP-BF50x Blackfin Processor Hardware Reference 17-37

CAN Module

Low Power Features
The Blackfin processor provides a low power hibernate state, and the
CAN module includes built-in sleep and suspend modes to save power.
The behavior of the CAN module in these three modes is described in the
following sections.

CAN Built-In Suspend Mode

The most modest of power savings modes is the suspend mode. This mode
is entered by setting the suspend mode request (CSR) bit in the
CAN_CONTROL register. The module enters the suspend mode after the cur-
rent operation of the CAN bus is finished, at which point the internal
logic sets the suspend mode acknowledge (CSA) bit in CAN_STATUS.

 If the suspend mode is requested during the bus off recovery
sequence, the module stops after the bus-off recovery sequence has
completed. The module does not enter the suspend mode and the
CSA bit is not set. Software must manually clear the CSR bit to
restart the module.

Once this mode is entered, the module is no longer active on the CAN bus
line, slightly reducing power consumption. When the CAN module is in
suspend mode, the CANTX output pin remains recessive and the module
does not receive/transmit messages or error frames. The content of the
CAN error counters remains unchanged.

The suspend mode can subsequently be exited by clearing the CSR bit in
CAN_CONTROL. The only differences between suspend mode and configura-
tion mode are that writes to the CAN_CLOCK and CAN_TIMING registers are
still locked in suspend mode and the CAN control and status registers are
not reset when exiting suspend mode.

Functional Operation

17-38 ADSP-BF50x Blackfin Processor Hardware Reference

CAN Built-In Sleep Mode

The next level of power savings can be realized by using the CAN mod-
ule’s built-in sleep mode. This mode is entered by setting the sleep mode
request (SMR) bit in the CAN_CONTROL register. The module enters the sleep
mode after the current operation of the CAN bus is finished. Once this
mode is entered, many of the internal CAN module clocks are shut off,
reducing power consumption, and the sleep mode acknowledge (SMACK)
bit is set in CAN_INTR. When the CAN module is in sleep mode, all register
reads return the contents of CAN_INTR instead of the usual contents. All
register writes, except to CAN_INTR, are ignored in sleep mode.

A small part of the module is clocked continuously to allow for wakeup
out of sleep mode. A write to the CAN_INTR register ends sleep mode. If the
WBA bit in the CAN_CONTROL register is set before entering sleep mode, a
dominant bit on the CANRX pin also ends sleep mode.

CAN Wakeup From Hibernate State

For greatest power savings, the Blackfin processor provides a hibernate
state, where the internal voltage regulator shuts off the internal power sup-
ply to the chip, turning off the core and system clocks in the process. In
this mode, the only power drawn (roughly 50 A) is that used by the
regulator circuitry awaiting any of the possible hibernate wakeup events.
One such event is a wakeup due to CAN bus activity. After hibernation,
the CAN module must be re-initialized.

For low power designs, the external CAN bus transceiver is typically put
into standby mode via one of the Blackfin processor’s general purpose I/O
pins. While in standby mode, the CAN transceiver continually drives the
recessive logic ‘1’ level onto the CANRX pin. If the transceiver then senses
CAN bus activity, it will, in turn, drive the CANRX pin to the dominant
logic ‘0’ level. This signals to the Blackfin processor that CAN bus activity
has been detected. If the internal voltage regulator is programmed to
recognize CAN bus activity as an event to exit hibernate state, the part

ADSP-BF50x Blackfin Processor Hardware Reference 17-39

CAN Module

responds appropriately. Otherwise, the activity on the CANRX pin has no
effect on the processor state.

To enable this functionality, the voltage control register (VR_CTL) must be
programmed with the CAN wakeup enable bit set. The typical sequence
of events to use the CAN wakeup feature is:

1. Use a general-purpose I/O pin to put the external transceiver into
standby mode.

2. Program VR_CTL with the CAN wakeup enable bit (CANWE) set and
the HIBERNATEB bit set to 0.

CAN Register Definitions
The following sections describe the CAN register definitions.

• “Global CAN Registers” on page 17-43

• “Mailbox/Mask Registers” on page 17-48

• “Mailbox Control Registers” on page 17-68

• “Universal Counter Registers” on page 17-82

• “Error Registers” on page 17-84

Table 17-5 through Table 17-9 show the functions of the CAN registers.

Table 17-5. Global CAN Register Mapping

Register Name Function Notes

CAN_CONTROL Master control register Reserved bits 15:8 and 3 must always be
written as ‘0’

CAN_STATUS Global CAN status register Write accesses have no effect

CAN_DEBUG CAN debug register Use of these modes is not CAN-compliant

CAN Register Definitions

17-40 ADSP-BF50x Blackfin Processor Hardware Reference

CAN_CLOCK CAN clock register Accessible only in configuration mode

CAN_TIMING CAN timing register Accessible only in configuration mode

CAN_INTR CAN interrupt register Reserved bits 15:8 and 5:4 must always be
written as ‘0’

CAN_GIM Global CAN interrupt mask
register

Bits 15:11 are reserved

CAN_GIS Global CAN interrupt sta-
tus register

Bits 15:11 are reserved

CAN_GIF Global CAN interrupt flag
register

Bits 15:11 are reserved

Table 17-6. CAN Mailbox/Mask Register Mapping

Register Name Function Notes

CAN_AMxxH/L Acceptance mask
registers

Change only when mailbox MBxx is dis-
abled

CAN_MBxx_ID1/0 Mailbox word 7/6
register

Do not write when MBxx is enabled

CAN_MBxx_TIMESTAMP Mailbox word 5
register

Holds timestamp information when time-
stamp mode is active

CAN_MBxx_LENGTH Mailbox word 4
register

Values greater than 8 are treated as 8

CAN_MBxx_DATA3/2/1/0 Mailbox word
3/2/1/0 register

Software controls reading correct data based
on DLC

Table 17-5. Global CAN Register Mapping (Cont’d)

Register Name Function Notes

ADSP-BF50x Blackfin Processor Hardware Reference 17-41

CAN Module

Table 17-7. CAN Mailbox Control Register Mapping

Register Name Function Notes

CAN_MCx Mailbox configura-
tion registers

Always disable before modifying mailbox area
or direction

CAN_MDx Mailbox direction
registers

Never change MDn direction when mailbox n
is enabled. MD[31:24] and MD[7:0] are read
only

CAN_RMPx Receive message
pending registers

Clearing RMPn bits also clears corresponding
RMLn bits

CAN_RMLx Receive message lost
registers

Write accesses have no effect

CAN_OPSSx Overwrite protec-
tion or single-shot
transmission regis-
ter

Function depends on mailbox direction. Has no
effect when RFHn = 1. Do not modify OPSSn
bit if mailbox n is enabled

CAN_TRSx Transmission
request set registers

May by set by internal logic under certain cir-
cumstances. TRS[7:0] are read-only

CAN_TRRx Transmission
request reset regis-
ters

TRRn bits must not be set if mailbox n is dis-
abled or TRSn = 0

CAN_AAx Abort acknowledge
registers

AAn bit is reset if TRSn bit is set manually, but
not when TRSn is set by internal logic

CAN_TAx Transmission
acknowledge regis-
ters

TAn bit is reset if TRSn bit is set manually, but
not when TRSn is set by internal logic

CAN_MBTD Temporary mailbox
disable feature reg-
ister

Allows safe access to data field of an enabled
mailbox

CAN_RFHx Remote frame han-
dling registers

Available only to configurable mailboxes 23:8.
RFH[31:24] and RFH[7:0] are read-only

CAN_MBIMx Mailbox interrupt
mask registers

Mailbox interrupts are raised only if these bits
are set

CAN Register Definitions

17-42 ADSP-BF50x Blackfin Processor Hardware Reference

CAN_MBTIFx Mailbox transmit
interrupt flag regis-
ters

Can be cleared if mailbox or mailbox interrupt
is disabled. Changing direction while MBTIFn
= 1 results in MBRIFn = 1 and MBTIFn = 0

CAN_MBRIFx Mailbox receive
interrupt flag regis-
ters

Can be cleared if mailbox or mailbox interrupt
is disabled. Changing direction while MBRIFn
= 1 results in MBTIFn = 1 and MBRIFn = 0

Table 17-8. CAN Universal Counter Register Mapping

Register Name Function Notes

CAN_UCCNF Universal counter
mode register

Bits 15:8 and bit 4 are reserved

CAN_UCCNT Universal counter
register

Counts up or down based on universal counter
mode

CAN_UCRC Universal counter
reload/capture reg-
ister

In timestamp mode, holds time of last success-
ful transmit or receive

Table 17-9. CAN Error Register Mapping

Register Name Function Notes

CAN_CEC CAN error counter
register

Undefined while in bus off mode, not affected
by software reset

CAN_ESR Error status register Only the first error is stored. SA0 flag is cleared
by recessive bit on CAN bus

CAN_EWR CAN error counter
warning level regis-
ter

Default is 96 for each counter

Table 17-7. CAN Mailbox Control Register Mapping (Cont’d)

Register Name Function Notes

ADSP-BF50x Blackfin Processor Hardware Reference 17-43

CAN Module

Global CAN Registers
Figure 17-11 through Figure 17-19 show the global CAN registers.

CAN_CONTROL Register

Figure 17-11. Master Control Register

Master Control Register (CAN_CONTROL)

SRS (Software Reset)
0 - No effect
1 - Reset

Reset = 0x00800xFFC0 2AA0

DNM (DeviceNet Mode)
0 - Disable
1 - Enable
ABO (Auto Bus On)

CCR (CAN Configuration
Mode Request)
0 - Cancelled
1 - Requested
CSR (CAN Suspend Mode
Request)
0 - Cancelled
1 - Requested
SMR (Sleep Mode Request)
0 - Not requested
1 - Enters Sleep mode
WBA (Wake Up on CAN Bus
Activity)
0 - Stays in Sleep mode
1 - Can leave Sleep mode

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 - Enter Configuration mode
after bus-off recovery
1 - Enter Bus Active mode after
bus-off recovery

CAN Register Definitions

17-44 ADSP-BF50x Blackfin Processor Hardware Reference

CAN_STATUS Register

• Mail box pointer (MBPTR[4:0])

Represents the mailbox number of the current transmit message.
After a successful transmission, these bits remain unchanged.

[11111] The message of mailbox 31 is currently being processed.

…

…

…

[00000] The message of mailbox 0 is currently being processed.

Figure 17-12. Global CAN Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Global CAN Status Register (CAN_STATUS)
RO

WT (CAN Transmit Warning
Flag)
0 - TXECNT below limit
1 - TXECNT at limit

Reset = 0x00000xFFC0 2A8C

WR (CAN Receive Warning
Flag)
0 - RXECNT below limit
1 - RXECNT at limit
EP (CAN Error Passive
Mode)
0 - Both TXECNT and
RXECNT < 128
1 - TXECNT or RXECNT >
error passive level

EBO (CAN Error Bus Off
Mode)
0 - TXECNT < 256
1 - TXECNT > bus off limit

REC (Receive
Mode)
0 - Not in receive mode
1 - In receive mode
TRM (Transmit
Mode)
0 - Not in transmit mode
1 - In transmit mode
MBPTR[4:0] (Mailbox Pointer)
See description below
CCA (CAN Configuration
Mode Acknowledge)
0 - Not in Configuration mode
1 - In Configuration mode
CSA (CAN Suspend Mode
Acknowledge)
0 - Not in Suspend mode
1 - In Suspend mode

ADSP-BF50x Blackfin Processor Hardware Reference 17-45

CAN Module

CAN_DEBUG Register

CAN_CLOCK Register

Figure 17-13. CAN Debug Register

Figure 17-14. CAN Clock Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 1 0 0

CAN Debug Register (CAN_DEBUG)

Reset = 0x00080xFFC0 2A88

DEC (Disable Transmit and
Receive Error Counters)
0 - Enable CAN_CEC transmit
and receive error counters
1 - Disable CAN_CEC transmit
and receive error counters
DRI (Disable Receive Input
Pin, CANRX)
0 - Enable CANRX input pin
1 - Disable CANRX input pin -
drive recessive internally
DTO (Disable Transmit Out-
put Pin, CANTX)
0 - Enable CANTX output pin
1 - Disable CANTX output pin -
drive recessive

CDE (CAN Debug
Mode Enable)
0 - Debug mode disabled
1 - Debug mode enabled
MRB (Mode Read Back)
0 - Read back mode disabled
1 - Read back mode enabled
MAA (Mode Auto
Acknowledge)
0 - Auto acknowledge mode
disabled
1 - Auto acknowledge mode
enabled
DIL (Disable Internal Loop)
0 - Enable internal loop
1 - Disable internal loop

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CAN Clock Register (CAN_CLOCK)

BRP[9:0] (Bit Rate Prescaler
Register) W/R

Reset = 0x00000xFFC0 2A80

CAN Register Definitions

17-46 ADSP-BF50x Blackfin Processor Hardware Reference

CAN_TIMING Register

CAN_INTR Register

Figure 17-15. CAN Timing Register

Figure 17-16. CAN Interrupt Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CAN Timing Register (CAN_TIMING)

TSEG1[3:0] (Time Segment 1)

Reset = 0x00000xFFC0 2A84

TSEG2[2:0] (Time Segment 2)
SJW[1:0] (Synchronization Jump Width)
SAM (Sampling)

CAN Interrupt Register (CAN_INTR)
RO

MBRIRQ (Mailbox Receive
Interrupt Output)
0 - No receive flags set
1 - One or more receive flags
set

Reset = 0x00X0 (X = depen-
dent on pin values)

0xFFC0 2AA4

MBTIRQ (Mailbox Transmit
Interrupt Output)
0 - No transmit flags set
1 - One or more transmit flags
set
GIRQ (Global CAN Interrupt
Output)
0 - No global CAN flags set
1 - One or more global CAN flags
set

CANRX (Serial Input From Transceiver) - RO

Serial input from CAN bus line from
transceiver
0 - Value is dominant
1 - Value is recessive
CANTX (Serial Input To Transceiver) - RO

Serial input from CAN bus line
to transceiver
0 - Value is dominant
1 - Value is recessive
SMACK (Sleep Mode
Acknowledge)
0 - Not in sleep mode
1 - Full-CAN module in sleep mode

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 X X 0 0 0 0 0

ADSP-BF50x Blackfin Processor Hardware Reference 17-47

CAN Module

CAN_GIM Register

CAN_GIS Register

Figure 17-17. Global CAN Interrupt Mask Register

Figure 17-18. Global CAN Interrupt Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Global CAN Interrupt Mask Register (CAN_GIM)

EWTIM (Error Warning Transmit
Interrupt Mask)

Reset = 0x00800xFFC0 2A98

EWRIM (Error Warning Receive
Interrupt Mask)
EPIM (Error Passive Interrupt
Mask)
BOIM (Bus Off Interrupt Mask)

ADIM (Access Denied Interrupt Mask)
EXTIM (External Trigger Interrupt Mask)
UCEIM (Universal Counter Exceeded
Interrupt Mask)
RMLIM (Receive Message Lost Interrupt Mask)
AAIM (Abort Acknowledge Interrupt Mask)

WUIM (Wakeup Interrupt Mask)
UIAIM (Unimplemented Address
Interrupt Mask)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Global CAN Interrupt Status Register (CAN_GIS)
All bits are W1C

EWTIS (Error Warning
Transmit Interrupt Status)

Reset = 0x00000xFFC0 2A94

EWRIS (Error Warning
Receive Interrupt Status)
EPIS (Error Passive Interrupt
Status)
BOIS (Bus Off Interrupt Status)

ADIS (Access Denied
Interrupt Status)
EXTIS (External Trigger Interrupt
Status)
UCEIS (Universal Counter Exceeded
Interrupt Status)
RMLIS (Receive Message Lost Interrupt Status)
AAIS (Abort Acknowledge Interrupt Status) WUIS (Wakeup Interrupt Status)

UIAIS (Unimplemented
Address Interrupt Status)

CAN Register Definitions

17-48 ADSP-BF50x Blackfin Processor Hardware Reference

CAN_GIF Register

Mailbox/Mask Registers
Figure 17-20 through Figure 17-29 show the CAN mailbox and mask
registers.

CAN_AMxx Registers

Figure 17-19. Global CAN Interrupt Flag Register

Figure 17-20. Acceptance Mask Register (H)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Global CAN Interrupt Flag Register (CAN_GIF)

EWTIF (Error Warning Trans-
mit Interrupt Flag)

Reset = 0x00000xFFC0 2A9C

EWRIF (Error Warning
Receive Interrupt Flag)
EPIF (Error Passive Interrupt
Flag)
BOIF (Bus Off Interrupt Flag)

ADIF (Access Denied Interrupt Flag)
EXTIF (External Trigger Interrupt Flag)
UCEIF (Universal Counter Exceeded
Interrupt Flag)
RMLIF (Receive Message Lost Interrupt Flag)
AAIF (Abort Acknowledge Interrupt Flag)

WUIF (Wakeup Interrupt Flag)
UIAIF (Unimplemented
Address Interrupt Flag)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

Acceptance Mask Register (CAN_AMxxH)

EXTID[17:16] (Extended
Identifier)

Reset = 0xXXXX

BASEID[10:0] (Base Identifier)
AMIDE (Acceptance Mask
Identifier Extension)
FMD (Full Mask Data)
FDF (Filter on Data Field)

For memory-
mapped
addresses, see
Table 17-10.

ADSP-BF50x Blackfin Processor Hardware Reference 17-49

CAN Module

The value of the acceptance mask register does not care when the AME bit is
zero. If AME is set, only those bits are compared that have the correspond-
ing mask bit cleared. A bit position that is one in the mask register does
not need to match.

Table 17-10. Acceptance Mask Register (H) Memory-Mapped
Addresses

Register Name Memory-Mapped Address

CAN_AM00H 0xFFC0 2B04

CAN_AM01H 0xFFC0 2B0C

CAN_AM02H 0xFFC0 2B14

CAN_AM03H 0xFFC0 2B1C

CAN_AM04H 0xFFC0 2B24

CAN_AM05H 0xFFC0 2B2C

CAN_AM06H 0xFFC0 2B34

CAN_AM07H 0xFFC0 2B3C

CAN_AM08H 0xFFC0 2B44

CAN_AM09H 0xFFC0 2B4C

CAN_AM10H 0xFFC0 2B54

CAN_AM11H 0xFFC0 2B5C

CAN_AM12H 0xFFC0 2B64

CAN_AM13H 0xFFC0 2B6C

CAN_AM14H 0xFFC0 2B74

CAN_AM15H 0xFFC0 2B7C

CAN_AM16H 0xFFC0 2B84

CAN_AM17H 0xFFC0 2B8C

CAN_AM18H 0xFFC0 2B94

CAN_AM19H 0xFFC0 2B9C

CAN_AM20H 0xFFC0 2BA4

CAN Register Definitions

17-50 ADSP-BF50x Blackfin Processor Hardware Reference

CAN_AM21H 0xFFC0 2BAC

CAN_AM22H 0xFFC0 2BB4

CAN_AM23H 0xFFC0 2BBC

CAN_AM24H 0xFFC0 2BC4

CAN_AM25H 0xFFC0 2BCC

CAN_AM26H 0xFFC0 2BD4

CAN_AM27H 0xFFC0 2BDC

CAN_AM28H 0xFFC0 2BE4

CAN_AM29H 0xFFC0 2BEC

CAN_AM30H 0xFFC0 2BF4

CAN_AM31H 0xFFC0 2BFC

Figure 17-21. Acceptance Mask Register (L)

Table 17-11. Acceptance Mask Register (L) Memory-Mapped
Addresses

Register Name Memory-Mapped Address

CAN_AM00L 0xFFC0 2B00

CAN_AM01L 0xFFC0 2B08

CAN_AM02L 0xFFC0 2B10

Table 17-10. Acceptance Mask Register (H) Memory-Mapped
Addresses (Cont’d)

Register Name Memory-Mapped Address

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

Acceptance Mask Register (CAN_AMxxL)

EXTID[15:0]/DFM[15:0]
(Extended Identifier/Data Field
Mask)

Reset = 0xXXXXFor memory-
mapped
addresses, see
Table 17-11.

ADSP-BF50x Blackfin Processor Hardware Reference 17-51

CAN Module

CAN_AM03L 0xFFC0 2B18

CAN_AM04L 0xFFC0 2B20

CAN_AM05L 0xFFC0 2B28

CAN_AM06L 0xFFC0 2B30

CAN_AM07L 0xFFC0 2B38

CAN_AM08L 0xFFC0 2B40

CAN_AM09L 0xFFC0 2B48

CAN_AM10L 0xFFC0 2B50

CAN_AM11L 0xFFC0 2B58

CAN_AM12L 0xFFC0 2B60

CAN_AM13L 0xFFC0 2B68

CAN_AM14L 0xFFC0 2B70

CAN_AM15L 0xFFC0 2B78

CAN_AM16L 0xFFC0 2B80

CAN_AM17L 0xFFC0 2B88

CAN_AM18L 0xFFC0 2B90

CAN_AM19L 0xFFC0 2B98

CAN_AM20L 0xFFC0 2BA0

CAN_AM21L 0xFFC0 2BA8

CAN_AM22L 0xFFC0 2BB0

CAN_AM23L 0xFFC0 2BB8

CAN_AM24L 0xFFC0 2BC0

CAN_AM25L 0xFFC0 2BC8

CAN_AM26L 0xFFC0 2BD0

CAN_AM27L 0xFFC0 2BD8

Table 17-11. Acceptance Mask Register (L) Memory-Mapped
Addresses (Cont’d)

Register Name Memory-Mapped Address

CAN Register Definitions

17-52 ADSP-BF50x Blackfin Processor Hardware Reference

CAN_MBxx_ID1 Registers

CAN_AM28L 0xFFC0 2BE0

CAN_AM29L 0xFFC0 2BE8

CAN_AM30L 0xFFC0 2BF0

CAN_AM31L 0xFFC0 2BF8

Figure 17-22. Mailbox Word 7 Register

Table 17-12. Mailbox Word 7 Register Memory-Mapped
Addresses

Register Name Memory-Mapped Address

CAN_MB00_ID1 0xFFC0 2C1C

CAN_MB01_ID1 0xFFC0 2C3C

CAN_MB02_ID1 0xFFC0 2C5C

CAN_MB03_ID1 0xFFC0 2C7C

CAN_MB04_ID1 0xFFC0 2C9C

CAN_MB05_ID1 0xFFC0 2CBC

CAN_MB06_ID1 0xFFC0 2CDC

Table 17-11. Acceptance Mask Register (L) Memory-Mapped
Addresses (Cont’d)

Register Name Memory-Mapped Address

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

Mailbox Word 7 Register (CAN_MBxx_ID1)

EXTID[17:16] (Extended
Identifier)

Reset = 0xXXXX
For memory-
mapped
addresses, see
Table 17-12.

BASEID[10:0] (Base Identifier)
IDE (Identifier Extension)
RTR (Remote Transmission
Request)
AME (Acceptance Mask Enable)

ADSP-BF50x Blackfin Processor Hardware Reference 17-53

CAN Module

CAN_MB07_ID1 0xFFC0 2CFC

CAN_MB08_ID1 0xFFC0 2D1C

CAN_MB09_ID1 0xFFC0 2D3C

CAN_MB10_ID1 0xFFC0 2D5C

CAN_MB11_ID1 0xFFC0 2D7C

CAN_MB12_ID1 0xFFC0 2D9C

CAN_MB13_ID1 0xFFC0 2DBC

CAN_MB14_ID1 0xFFC0 2DDC

CAN_MB15_ID1 0xFFC0 2DFC

CAN_MB16_ID1 0xFFC0 2E1C

CAN_MB17_ID1 0xFFC0 2E3C

CAN_MB18_ID1 0xFFC0 2E5C

CAN_MB19_ID1 0xFFC0 2E7C

CAN_MB20_ID1 0xFFC0 2E9C

CAN_MB21_ID1 0xFFC0 2EBC

CAN_MB22_ID1 0xFFC0 2EDC

CAN_MB23_ID1 0xFFC0 2EFC

CAN_MB24_ID1 0xFFC0 2F1C

CAN_MB25_ID1 0xFFC0 2F3C

CAN_MB26_ID1 0xFFC0 2F5C

CAN_MB27_ID1 0xFFC0 2F7C

CAN_MB28_ID1 0xFFC0 2F9C

CAN_MB29_ID1 0xFFC0 2FBC

CAN_MB30_ID1 0xFFC0 2FDC

CAN_MB31_ID1 0xFFC0 2FFC

Table 17-12. Mailbox Word 7 Register Memory-Mapped
Addresses (Cont’d)

Register Name Memory-Mapped Address

CAN Register Definitions

17-54 ADSP-BF50x Blackfin Processor Hardware Reference

CAN_MBxx_ID0 Registers

Figure 17-23. Mailbox Word 6 Register

Table 17-13. Mailbox Word 6 Register Memory-Mapped
Addresses

Register Name Memory-Mapped Address

CAN_MB00_ID0 0xFFC0 2C18

CAN_MB01_ID0 0xFFC0 2C38

CAN_MB02_ID0 0xFFC0 2C58

CAN_MB03_ID0 0xFFC0 2C78

CAN_MB04_ID0 0xFFC0 2C98

CAN_MB05_ID0 0xFFC0 2CB8

CAN_MB06_ID0 0xFFC0 2CD8

CAN_MB07_ID0 0xFFC0 2CF8

CAN_MB08_ID0 0xFFC0 2D18

CAN_MB09_ID0 0xFFC0 2D38

CAN_MB10_ID0 0xFFC0 2D58

CAN_MB11_ID0 0xFFC0 2D78

CAN_MB12_ID0 0xFFC0 2D98

CAN_MB13_ID0 0xFFC0 2DB8

CAN_MB14_ID0 0xFFC0 2DD8

CAN_MB15_ID0 0xFFC0 2DF8

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

Mailbox Word 6 Register (CAN_MBxx_ID0)

EXTID[15:0]/DFC[15:0]
(Extended Identifier/Data Field
Acceptance Code)

Reset = 0xXXXX
For memory-
mapped
addresses, see
Table 17-13.

ADSP-BF50x Blackfin Processor Hardware Reference 17-55

CAN Module

CAN_MB16_ID0 0xFFC0 2E18

CAN_MB17_ID0 0xFFC0 2E38

CAN_MB18_ID0 0xFFC0 2E58

CAN_MB19_ID0 0xFFC0 2E78

CAN_MB20_ID0 0xFFC0 2E98

CAN_MB21_ID0 0xFFC0 2EB8

CAN_MB22_ID0 0xFFC0 2ED8

CAN_MB23_ID0 0xFFC0 2EF8

CAN_MB24_ID0 0xFFC0 2F18

CAN_MB25_ID0 0xFFC0 2F38

CAN_MB26_ID0 0xFFC0 2F58

CAN_MB27_ID0 0xFFC0 2F78

CAN_MB28_ID0 0xFFC0 2F98

CAN_MB29_ID0 0xFFC0 2FB8

CAN_MB30_ID0 0xFFC0 2FD8

CAN_MB31_ID0 0xFFC0 2FF8

Table 17-13. Mailbox Word 6 Register Memory-Mapped
Addresses (Cont’d)

Register Name Memory-Mapped Address

CAN Register Definitions

17-56 ADSP-BF50x Blackfin Processor Hardware Reference

CAN_MBxx_TIMESTAMP Registers

Figure 17-24. Mailbox Word 5 Register

Table 17-14. Mailbox Word 5 Register Memory-Mapped
Addresses

Register Name Memory-Mapped Address

CAN_MB00_TIMESTAMP 0xFFC0 2C14

CAN_MB01_TIMESTAMP 0xFFC0 2C34

CAN_MB02_TIMESTAMP 0xFFC0 2C54

CAN_MB03_TIMESTAMP 0xFFC0 2C74

CAN_MB04_TIMESTAMP 0xFFC0 2C94

CAN_MB05_TIMESTAMP 0xFFC0 2CB4

CAN_MB06_TIMESTAMP 0xFFC0 2CD4

CAN_MB07_TIMESTAMP 0xFFC0 2CF4

CAN_MB08_TIMESTAMP 0xFFC0 2D14

CAN_MB09_TIMESTAMP 0xFFC0 2D34

CAN_MB10_TIMESTAMP 0xFFC0 2D54

CAN_MB11_TIMESTAMP 0xFFC0 2D74

CAN_MB12_TIMESTAMP 0xFFC0 2D94

CAN_MB13_TIMESTAMP 0xFFC0 2DB4

CAN_MB14_TIMESTAMP 0xFFC0 2DD4

CAN_MB15_TIMESTAMP 0xFFC0 2DF4

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

Mailbox Word 5 Register (CAN_MBxx_ID0)

EXTID[15:0]/DFC[15:0]
(Extended Identifier/Data Field
Acceptance Code)

Reset = 0xXXXX
For memory-
mapped
addresses, see
Table 17-13.

ADSP-BF50x Blackfin Processor Hardware Reference 17-57

CAN Module

CAN_MB16_TIMESTAMP 0xFFC0 2E14

CAN_MB17_TIMESTAMP 0xFFC0 2E34

CAN_MB18_TIMESTAMP 0xFFC0 2E54

CAN_MB19_TIMESTAMP 0xFFC0 2E74

CAN_MB20_TIMESTAMP 0xFFC0 2E94

CAN_MB21_TIMESTAMP 0xFFC0 2EB4

CAN_MB22_TIMESTAMP 0xFFC0 2ED4

CAN_MB23_TIMESTAMP 0xFFC0 2EF4

CAN_MB24_TIMESTAMP 0xFFC0 2F14

CAN_MB25_TIMESTAMP 0xFFC0 2F34

CAN_MB26_TIMESTAMP 0xFFC0 2F54

CAN_MB27_TIMESTAMP 0xFFC0 2F74

CAN_MB28_TIMESTAMP 0xFFC0 2F94

CAN_MB29_TIMESTAMP 0xFFC0 2FB4

CAN_MB30_TIMESTAMP 0xFFC0 2FD4

CAN_MB31_TIMESTAMP 0xFFC0 2FF4

Table 17-14. Mailbox Word 5 Register Memory-Mapped
Addresses (Cont’d)

Register Name Memory-Mapped Address

CAN Register Definitions

17-58 ADSP-BF50x Blackfin Processor Hardware Reference

CAN_MBxx_LENGTH Registers

Figure 17-25. Mailbox Word 4 Register

Table 17-15. Mailbox Word 4 Register Memory-Mapped
Addresses

Register Name Memory-Mapped Address

CAN_MB00_LENGTH 0xFFC0 2C10

CAN_MB01_LENGTH 0xFFC0 2C30

CAN_MB02_LENGTH 0xFFC0 2C50

CAN_MB03_LENGTH 0xFFC0 2C70

CAN_MB04_LENGTH 0xFFC0 2C90

CAN_MB05_LENGTH 0xFFC0 2CB0

CAN_MB06_LENGTH 0xFFC0 2CD0

CAN_MB07_LENGTH 0xFFC0 2CF0

CAN_MB08_LENGTH 0xFFC0 2D10

CAN_MB09_LENGTH 0xFFC0 2D30

CAN_MB10_LENGTH 0xFFC0 2D50

CAN_MB11_LENGTH 0xFFC0 2D70

CAN_MB12_LENGTH 0xFFC0 2D90

CAN_MB13_LENGTH 0xFFC0 2DB0

CAN_MB14_LENGTH 0xFFC0 2DD0

CAN_MB15_LENGTH 0xFFC0 2DF0

CAN_MB16_LENGTH 0xFFC0 2E10

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

Mailbox Word 4 Register (CAN_MBxx_LENGTH)

DLC[3:0] (Data Length Code)

Reset = 0xXXXX
For memory-
mapped
addresses, see
Table 17-25.

ADSP-BF50x Blackfin Processor Hardware Reference 17-59

CAN Module

CAN_MBxx_DATAx Registers

CAN_MB17_LENGTH 0xFFC0 2E30

CAN_MB18_LENGTH 0xFFC0 2E50

CAN_MB19_LENGTH 0xFFC0 2E70

CAN_MB20_LENGTH 0xFFC0 2E90

CAN_MB21_LENGTH 0xFFC0 2EB0

CAN_MB22_LENGTH 0xFFC0 2ED0

CAN_MB23_LENGTH 0xFFC0 2EF0

CAN_MB24_LENGTH 0xFFC0 2F10

CAN_MB25_LENGTH 0xFFC0 2F30

CAN_MB26_LENGTH 0xFFC0 2F50

CAN_MB27_LENGTH 0xFFC0 2F70

CAN_MB28_LENGTH 0xFFC0 2F90

CAN_MB29_LENGTH 0xFFC0 2FB0

CAN_MB30_LENGTH 0xFFC0 2FD0

CAN_MB31_LENGTH 0xFFC0 2FF0

Figure 17-26. Mailbox Word 3 Register

Table 17-15. Mailbox Word 4 Register Memory-Mapped
Addresses (Cont’d)

Register Name Memory-Mapped Address

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

Mailbox Word 3 Register (CAN_MBxx_DATA3)

Data Field Byte 1[7:0]

Reset = 0xXXXX
For memory-
mapped
addresses, see
Table 17-16.

Data Field Byte 0[7:0]

CAN Register Definitions

17-60 ADSP-BF50x Blackfin Processor Hardware Reference

Table 17-16. Mailbox Word 3 Register Memory-Mapped
Addresses

Register Name Memory-Mapped Address

CAN_MB00_DATA3 0xFFC0 2C0C

CAN_MB01_DATA3 0xFFC0 2C2C

CAN_MB02_DATA3 0xFFC0 2C4C

CAN_MB03_DATA3 0xFFC0 2C6C

CAN_MB04_DATA3 0xFFC0 2C8C

CAN_MB05_DATA3 0xFFC0 2CAC

CAN_MB06_DATA3 0xFFC0 2CCC

CAN_MB07_DATA3 0xFFC0 2CEC

CAN_MB08_DATA3 0xFFC0 2D0C

CAN_MB09_DATA3 0xFFC0 2D2C

CAN_MB10_DATA3 0xFFC0 2D4C

CAN_MB11_DATA3 0xFFC0 2D6C

CAN_MB12_DATA3 0xFFC0 2D8C

CAN_MB13_DATA3 0xFFC0 2DAC

CAN_MB14_DATA3 0xFFC0 2DCC

CAN_MB15_DATA3 0xFFC0 2DEC

CAN_MB16_DATA3 0xFFC0 2E0C

CAN_MB17_DATA3 0xFFC0 2E2C

CAN_MB18_DATA3 0xFFC0 2E4C

CAN_MB19_DATA3 0xFFC0 2E6C

CAN_MB20_DATA3 0xFFC0 2E8C

CAN_MB21_DATA3 0xFFC0 2EAC

CAN_MB22_DATA3 0xFFC0 2ECC

CAN_MB23_DATA3 0xFFC0 2EEC

CAN_MB24_DATA3 0xFFC0 2F0C

ADSP-BF50x Blackfin Processor Hardware Reference 17-61

CAN Module

CAN_MB25_DATA3 0xFFC0 2F2C

CAN_MB26_DATA3 0xFFC0 2F4C

CAN_MB27_DATA3 0xFFC0 2F6C

CAN_MB28_DATA3 0xFFC0 2F8C

CAN_MB29_DATA3 0xFFC0 2FAC

CAN_MB30_DATA3 0xFFC0 2FCC

CAN_MB31_DATA3 0xFFC0 2FEC

Table 17-16. Mailbox Word 3 Register Memory-Mapped
Addresses (Cont’d)

Register Name Memory-Mapped Address

CAN Register Definitions

17-62 ADSP-BF50x Blackfin Processor Hardware Reference

Figure 17-27. Mailbox Word 2 Register

Table 17-17. Mailbox Word 2 Register Memory-Mapped
Addresses

Register Name Memory-Mapped Address

CAN_MB00_DATA2 0xFFC0 2C08

CAN_MB01_DATA2 0xFFC0 2C28

CAN_MB02_DATA2 0xFFC0 2C48

CAN_MB03_DATA2 0xFFC0 2C68

CAN_MB04_DATA2 0xFFC0 2C88

CAN_MB05_DATA2 0xFFC0 2CA8

CAN_MB06_DATA2 0xFFC0 2CC8

CAN_MB07_DATA2 0xFFC0 2CE8

CAN_MB08_DATA2 0xFFC0 2D08

CAN_MB09_DATA2 0xFFC0 2D28

CAN_MB10_DATA2 0xFFC0 2D48

CAN_MB11_DATA2 0xFFC0 2D68

CAN_MB12_DATA2 0xFFC0 2D88

CAN_MB13_DATA2 0xFFC0 2DA8

CAN_MB14_DATA2 0xFFC0 2DC8

CAN_MB15_DATA2 0xFFC0 2DE8

CAN_MB16_DATA2 0xFFC0 2E08

CAN_MB17_DATA2 0xFFC0 2E28

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

Mailbox Word 2 Register (CAN_MBxx_DATA2)

Reset = 0xXXXX
For memory-
mapped
addresses, see
Table 17-17.

Data Field Byte 3[7:0]Data Field Byte 2[7:0]

ADSP-BF50x Blackfin Processor Hardware Reference 17-63

CAN Module

CAN_MB18_DATA2 0xFFC0 2E48

CAN_MB19_DATA2 0xFFC0 2E68

CAN_MB20_DATA2 0xFFC0 2E88

CAN_MB21_DATA2 0xFFC0 2EA8

CAN_MB22_DATA2 0xFFC0 2EC8

CAN_MB23_DATA2 0xFFC0 2EE8

CAN_MB24_DATA2 0xFFC0 2F08

CAN_MB25_DATA2 0xFFC0 2F28

CAN_MB26_DATA2 0xFFC0 2F48

CAN_MB27_DATA2 0xFFC0 2F68

CAN_MB28_DATA2 0xFFC0 2F88

CAN_MB29_DATA2 0xFFC0 2FA8

CAN_MB30_DATA2 0xFFC0 2FC8

CAN_MB31_DATA2 0xFFC0 2FE8

Table 17-17. Mailbox Word 2 Register Memory-Mapped
Addresses (Cont’d)

Register Name Memory-Mapped Address

CAN Register Definitions

17-64 ADSP-BF50x Blackfin Processor Hardware Reference

Figure 17-28. Mailbox Word 1 Register

Table 17-18. Mailbox Word 1 Register Memory-Mapped
Addresses

Register Name Memory-Mapped Address

CAN_MB00_DATA1 0xFFC0 2C04

CAN_MB01_DATA1 0xFFC0 2C24

CAN_MB02_DATA1 0xFFC0 2C44

CAN_MB03_DATA1 0xFFC0 2C64

CAN_MB04_DATA1 0xFFC0 2C84

CAN_MB05_DATA1 0xFFC0 2CA4

CAN_MB06_DATA1 0xFFC0 2CC4

CAN_MB07_DATA1 0xFFC0 2CE4

CAN_MB08_DATA1 0xFFC0 2D04

CAN_MB09_DATA1 0xFFC0 2D24

CAN_MB10_DATA1 0xFFC0 2D44

CAN_MB11_DATA1 0xFFC0 2D64

CAN_MB12_DATA1 0xFFC0 2D84

CAN_MB13_DATA1 0xFFC0 2DA4

CAN_MB14_DATA1 0xFFC0 2DC4

CAN_MB15_DATA1 0xFFC0 2DE4

CAN_MB16_DATA1 0xFFC0 2E04

CAN_MB17_DATA1 0xFFC0 2E24

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

Mailbox Word 1 Register (CAN_MBxx_DATA1)

Reset = 0xXXXX
For memory-
mapped
addresses, see
Table 17-18.

Data Field Byte 5[7:0]Data Field Byte 4[7:0]

ADSP-BF50x Blackfin Processor Hardware Reference 17-65

CAN Module

CAN_MB18_DATA1 0xFFC0 2E44

CAN_MB19_DATA1 0xFFC0 2E64

CAN_MB20_DATA1 0xFFC0 2E84

CAN_MB21_DATA1 0xFFC0 2EA4

CAN_MB22_DATA1 0xFFC0 2EC4

CAN_MB23_DATA1 0xFFC0 2EE4

CAN_MB24_DATA1 0xFFC0 2F04

CAN_MB25_DATA1 0xFFC0 2F24

CAN_MB26_DATA1 0xFFC0 2F44

CAN_MB27_DATA1 0xFFC0 2F64

CAN_MB28_DATA1 0xFFC0 2F84

CAN_MB29_DATA1 0xFFC0 2FA4

CAN_MB30_DATA1 0xFFC0 2FC4

CAN_MB31_DATA1 0xFFC0 2FE4

Table 17-18. Mailbox Word 1 Register Memory-Mapped
Addresses (Cont’d)

Register Name Memory-Mapped Address

CAN Register Definitions

17-66 ADSP-BF50x Blackfin Processor Hardware Reference

Figure 17-29. Mailbox Word 0 Register

Table 17-19. Mailbox Word 0 Register Memory-Mapped
Addresses

Register Name Memory-Mapped Address

CAN_MB00_DATA0 0xFFC0 2C00

CAN_MB01_DATA0 0xFFC0 2C20

CAN_MB02_DATA0 0xFFC0 2C40

CAN_MB03_DATA0 0xFFC0 2C60

CAN_MB04_DATA0 0xFFC0 2C80

CAN_MB05_DATA0 0xFFC0 2CA0

CAN_MB06_DATA0 0xFFC0 2CC0

CAN_MB07_DATA0 0xFFC0 2CE0

CAN_MB08_DATA0 0xFFC0 2D00

CAN_MB09_DATA0 0xFFC0 2D20

CAN_MB10_DATA0 0xFFC0 2D40

CAN_MB11_DATA0 0xFFC0 2D60

CAN_MB12_DATA0 0xFFC0 2D80

CAN_MB13_DATA0 0xFFC0 2DA0

CAN_MB14_DATA0 0xFFC0 2DC0

CAN_MB15_DATA0 0xFFC0 2DE0

CAN_MB16_DATA0 0xFFC0 2E00

CAN_MB17_DATA0 0xFFC0 2E20

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

Mailbox Word 0 Register (CAN_MBxx_DATA0)

Reset = 0xXXXX
For memory-
mapped
addresses, see
Table 17-19.

Data Field Byte 7[7:0]Data Field Byte 6[7:0]

ADSP-BF50x Blackfin Processor Hardware Reference 17-67

CAN Module

CAN_MB18_DATA0 0xFFC0 2E40

CAN_MB19_DATA0 0xFFC0 2E60

CAN_MB20_DATA0 0xFFC0 2E80

CAN_MB21_DATA0 0xFFC0 2EA0

CAN_MB22_DATA0 0xFFC0 2EC0

CAN_MB23_DATA0 0xFFC0 2EE0

CAN_MB24_DATA0 0xFFC0 2F00

CAN_MB25_DATA0 0xFFC0 2F20

CAN_MB26_DATA0 0xFFC0 2F40

CAN_MB27_DATA0 0xFFC0 2F60

CAN_MB28_DATA0 0xFFC0 2F80

CAN_MB29_DATA0 0xFFC0 2FA0

CAN_MB30_DATA0 0xFFC0 2FC0

CAN_MB31_DATA0 0xFFC0 2FE0

Table 17-19. Mailbox Word 0 Register Memory-Mapped
Addresses (Cont’d)

Register Name Memory-Mapped Address

CAN Register Definitions

17-68 ADSP-BF50x Blackfin Processor Hardware Reference

Mailbox Control Registers
Figure 17-30 through Figure 17-56 show the mailbox control registers.

CAN_MCx Registers

Figure 17-30. Mailbox Configuration Register 1

Figure 17-31. Mailbox Configuration Register 2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mailbox Configuration Register 1 (CAN_MC1)

MC0

MC12

MC13

MC14

MC15

MC1

MC2

MC3

MC4

MC5

For all bits, 0 - Mailbox disabled, 1 - Mailbox enabled

MC6

MC7

MC11

MC10

MC9

MC8

Reset = 0x00000xFFC0 2A00

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mailbox Configuration Register 2 (CAN_MC2)

MC16

MC28

MC29

MC30

MC31

MC17

MC18

MC19

MC20

MC21

For all bits, 0 - Mailbox disabled, 1 - Mailbox enabled

MC22

MC23

MC27

MC26

MC25

MC24

Reset = 0x00000xFFC0 2A40

ADSP-BF50x Blackfin Processor Hardware Reference 17-69

CAN Module

CAN_MDx Registers

Figure 17-32. Mailbox Direction Register 1

Figure 17-33. Mailbox Direction Register 2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 0 0 0 1 1 1 1 1 1 1

Mailbox Direction Register 1 (CAN_MD1)

MD0 - RO

MD12

MD13

MD14

MD15

MD1 - RO

MD2 - RO

MD3 - RO

MD4 - RO

MD5 - RO

For all bits, 0 - Mailbox configured as transmit mode, 1 - Mailbox configured as receive mode

MD6 - RO

MD7 - RO

MD11

MD10

MD9

MD8

Reset = 0x00FF0xFFC0 2A04

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mailbox Direction Register 2 (CAN_MD2)

MD16

MD28 - RO

MD29 - RO

MD30 - RO

MD31 - RO

MD17

MD18

MD19

MD20

MD21

For all bits, 0 - Mailbox configured as transmit mode, 1 - Mailbox configured as receive mode

MD22

MD23

MD27 - RO

MD26 - RO

MD25 - RO

MD24 - RO

Reset = 0x00000xFFC0 2A44

CAN Register Definitions

17-70 ADSP-BF50x Blackfin Processor Hardware Reference

CAN_RMPx Register

Figure 17-34. Receive Message Pending Register 1

Figure 17-35. Receive Message Pending Register 2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Receive Message Pending Register 1 (CAN_RMP1)

RMP0

RMP12

RMP13

RMP14

RMP15

RMP1

RMP2

RMP3

RMP4

RMP5

All bits are W1C

RMP6

RMP7

RMP11

RMP10

RMP9

RMP8

Reset = 0x00000xFFC0 2A18

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Receive Message Pending Register 2 (CAN_RMP2)

RMP16

RMP28 - RO

RMP29 - RO

RMP30 - RO

RMP31 - RO

RMP17

RMP18

RMP19

RMP20

RMP21

All bits are W1C

RMP22

RMP23

RMP27 - RO

RMP26 - RO

RMP25 - RO

RMP24 - RO

Reset = 0x00000xFFC0 2A58

ADSP-BF50x Blackfin Processor Hardware Reference 17-71

CAN Module

CAN_RMLx Register

Figure 17-36. Receive Message Lost Register 1

Figure 17-37. Receive Message Lost Register 2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Receive Message Lost Register 1 (CAN_RML1)

RML0

RML12

RML13

RML14

RML15

RML1

RML2

RML3

RML4

RML5

RO

RML6

RML7

RML11

RML10

RML9

RML8

Reset = 0x00000xFFC0 2A1C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Receive Message Lost Register 2 (CAN_RML2)

RML16

RML28

RML29

RML30

RML31

RML17

RML18

RML19

RML20

RML21

RO

RML22

RML23

RML27

RML26

RML25

RML24

Reset = 0x00000xFFC0 2A5C

CAN Register Definitions

17-72 ADSP-BF50x Blackfin Processor Hardware Reference

CAN_OPSSx Register

Figure 17-38. Overwrite Protection/Single Shot Transmission Register 1

Figure 17-39. Overwrite Protection/Single Shot Transmission Register 2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Overwrite Protection/Single Shot Transmission Register 1 (CAN_OPSS1)

OPSS0

OPSS12

OPSS13

OPSS14

OPSS15

OPSS1

OPSS2

OPSS3

OPSS4

OPSS5

OPSS6

OPSS7

OPSS11

OPSS10

OPSS9

OPSS8

Reset = 0x00000xFFC0 2A30

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Overwrite Protection/Single Shot Transmission Register 2 (CAN_OPSS2)

OPSS16

OPSS28

OPSS29

OPSS30

OPSS31

OPSS17

OPSS18

OPSS19

OPSS20

OPSS21

OPSS22

OPSS23

OPSS27

OPSS26

OPSS25

OPSS24

Reset = 0x00000xFFC0 2A70

ADSP-BF50x Blackfin Processor Hardware Reference 17-73

CAN Module

CAN_TRSx Registers

Figure 17-40. Transmission Request Set Register 1

Figure 17-41. Transmission Request Set Register 2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Transmission Request Set Register 1 (CAN_TRS1)

TRS0 - RO

TRS12

TRS13

TRS14

TRS15

TRS1 - RO

TRS2 - RO

TRS3 - RO

TRS4 - RO

TRS5 - RO

TRS6 - RO

TRS7 - RO

TRS11

TRS10

TRS9

TRS8

Reset = 0x00000xFFC0 2A08

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Transmission Request Set Register 2 (CAN_TRS2)

TRS16

TRS28

TRS29

TRS30

TRS31

TRS17

TRS18

TRS19

TRS20

TRS21

TRS22

TRS23

TRS27

TRS26

TRS25

TRS24

Reset = 0x00000xFFC0 2A48

CAN Register Definitions

17-74 ADSP-BF50x Blackfin Processor Hardware Reference

CAN_TRRx Registers

Figure 17-42. Transmission Request Reset Register 1

Figure 17-43. Transmission Request Reset Register 2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Transmission Request Reset Register 1 (CAN_TRR1)

TRR0 - RO

TRR12

TRR13

TRR14

TRR15

TRR1 - RO

TRR2 - RO

TRR3 - RO

TRR4 - RO

TRR5 - RO

TRR6 - RO

TRR7 - RO

TRR11

TRR10

TRR9

TRR8

Reset = 0x00000xFFC0 2A0C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Transmission Request Reset Register 2 (CAN_TRR2)

TRR16

TRR28

TRR29

TRR30

TRR31

TRR17

TRR18

TRR19

TRR20

TRR21

TRR22

TRR23

TRR27

TRR26

TRR25

TRR24

Reset = 0x00000xFFC0 2A4C

ADSP-BF50x Blackfin Processor Hardware Reference 17-75

CAN Module

CAN_AAx Register

Figure 17-44. Abort Acknowledge Register 1

Figure 17-45. Abort Acknowledge Register 2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Abort Acknowledge Register 1 (CAN_AA1)

AA0 - RO

AA12

AA13

AA14

AA15

AA1 - RO

AA2 - RO

AA3 - RO

AA4 - RO

AA5 - RO

All bits are W1C

AA6 - RO

AA7 - RO

AA11

AA10

AA9

AA8

Reset = 0x00000xFFC0 2A14

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Abort Acknowledge Register 2 (CAN_AA2)

AA16

AA28

AA29

AA30

AA31

AA17

AA18

AA19

AA20

AA21

All bits are W1C

AA22

AA23

AA27

AA26

AA25

AA24

Reset = 0x00000xFFC0 2A54

CAN Register Definitions

17-76 ADSP-BF50x Blackfin Processor Hardware Reference

CAN_TAx Register

Figure 17-46. Transmission Acknowledge Register 1

Figure 17-47. Transmission Acknowledge Register 2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Transmission Acknowledge Register 1 (CAN_TA1)

TA0 - RO

TA12

TA13

TA14

TA15

TA1 - RO

TA2 - RO

TA3 - RO

TA4 - RO

TA5 - RO

All bits are W1C

TA6 - RO

TA7 - RO

TA11

TA10

TA9

TA8

Reset = 0x00000xFFC0 2A10

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Transmission Acknowledge Register 2 (CAN_TA2)

TA16

TA28

TA29

TA30

TA31

TA17

TA18

TA19

TA20

TA21

All bits are W1C

TA22

TA23

TA27

TA26

TA25

TA24

Reset = 0x00000xFFC0 2A50

ADSP-BF50x Blackfin Processor Hardware Reference 17-77

CAN Module

CAN_MBTD Register

CAN_RFHx Registers

Figure 17-48. Temporary Mailbox Disable Register

Figure 17-49. Remote Frame Handling Register 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Temporary Mailbox Disable Feature Register (CAN_MBTD)

TDPTR[4:0] (Temporary
Disable Pointer)

Reset = 0x00000xFFC0 2AAC

TDA (Temporary Disable
Acknowledge)
TDR (Temporary Disable
Request)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Remote Frame Handling Register 1 (CAN_RFH1)

RFH0 - RO

RFH12

RFH13

RFH14

RFH15

RFH1 - RO

RFH2 - RO

RFH3 - RO

RFH4 - RO

RFH5 - RO

RFH6 - RO

RFH7 - RO

RFH11

RFH10

RFH9

RFH8

Reset = 0x00000xFFC0 2A2C

CAN Register Definitions

17-78 ADSP-BF50x Blackfin Processor Hardware Reference

CAN_MBIMx Registers

Figure 17-50. Remote Frame Handling Register 2

Figure 17-51. Mailbox Interrupt Mask Register 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Remote Frame Handling Register 2 (CAN_RFH2)

RFH16

RFH28 - RO

RFH29 - RO

RFH30 - RO

RFH31 - RO

RFH17

RFH18

RFH19

RFH20

RFH21

RFH22

RFH23

RFH27 - RO

RFH26 - RO

RFH25 - RO

RFH24 - RO

Reset = 0x00000xFFC0 2A6C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mailbox Interrupt Mask Register 1 (CAN_MBIM1)

MBIM0

MBIM12

MBIM13

MBIM14

MBIM15

MBIM1

MBIM2

MBIM3

MBIM4

MBIM5

MBIM6

MBIM7

MBIM11

MBIM10

MBIM9

MBIM8

Reset = 0x00000xFFC0 2A28

ADSP-BF50x Blackfin Processor Hardware Reference 17-79

CAN Module

CAN_MBTIFx Registers

Figure 17-52. Mailbox Interrupt Mask Register 2

Figure 17-53. Mailbox Transmit Interrupt Flag Register 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mailbox Interrupt Mask Register 2 (CAN_MBIM2)

MBIM16

MBIM28

MBIM29

MBIM30

MBIM31

MBIM17

MBIM18

MBIM19

MBIM20

MBIM21

MBIM22

MBIM23

MBIM27

MBIM26

MBIM25

MBIM24

Reset = 0x00000xFFC0 2A68

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mailbox Transmit Interrupt Flag Register 1 (CAN_MBTIF1)

MBTIF0 - RO

MBTIF12

MBTIF13

MBTIF14

MBTIF15

MBTIF1 - RO

MBTIF2 - RO

MBTIF3 - RO

MBTIF4 - RO

MBTIF5 - RO

All bits are W1C

MBTIF6 - RO

MBTIF7 - RO

MBTIF11

MBTIF10

MBTIF9

MBTIF8

Reset = 0x00000xFFC0 2A20

CAN Register Definitions

17-80 ADSP-BF50x Blackfin Processor Hardware Reference

CAN_MBRIFx Registers

Figure 17-54. Mailbox Transmit Interrupt Flag Register 2

Figure 17-55. Mailbox Receive Interrupt Flag Register 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mailbox Transmit Interrupt Flag Register 2 (CAN_MBTIF2)

MBTIF16

MBTIF28

MBTIF29

MBTIF30

MBTIF31

MBTIF17

MBTIF18

MBTIF19

MBTIF20

MBTIF21

All bits are W1C

MBTIF22

MBTIF23

MBTIF27

MBTIF26

MBTIF25

MBTIF24

Reset = 0x00000xFFC0 2A60

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mailbox Receive Interrupt Flag Register 1 (CAN_MBRIF1)

MBRIF0

MBRIF12

MBRIF13

MBRIF14

MBRIF15

MBRIF1

MBRIF2

MBRIF3

MBRIF4

MBRIF5

All bits are W1C

MBRIF6

MBRIF7

MBRIF11

MBRIF10

MBRIF9

MBRIF8

Reset = 0x00000xFFC0 2A24

ADSP-BF50x Blackfin Processor Hardware Reference 17-81

CAN Module

Figure 17-56. Mailbox Receive Interrupt Flag Register 2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mailbox Receive Interrupt Flag Register 2 (CAN_MBRIF2)

MBRIF16

MBRIF28 - RO

MBRIF29 - RO

MBRIF30 - RO

MBRIF31 - RO

MBRIF17

MBRIF18

MBRIF19

MBRIF20

MBRIF21

All bits are W1C

MBRIF22

MBRIF23

MBRIF27 - RO

MBRIF26 - RO

MBRIF25 - RO

MBRIF24 - RO

Reset = 0x00000xFFC0 2A64

CAN Register Definitions

17-82 ADSP-BF50x Blackfin Processor Hardware Reference

Universal Counter Registers
Figure 17-57 through Figure 17-59 show the universal counter registers.

CAN_UCCNF Register

Figure 17-57. Universal Counter Configuration Mode Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Universal Counter Configuration Mode Register (CAN_UCCNF)

UCCNF[3:0] (Universal Coun-
ter Configuration)

Reset = 0x00000xFFC0 2ACC

UCRC (Universal Counter
Reload/Clear) - WO

UCCT (Universal Counter
CAN Trigger)

UCE (Universal Counter
Enable)

0 - No action
1 - write 1 to reload counter in

watchdog mode
write 1 to clear counter in
all other modes

0 - No trigger
1 - mailbox 4 reception reloads

counter in watchdog mode
mailbox 4 reception clears

counter in time stamp mode
no effect in other modes

0 - Counter disabled
1 - Counter enabled

0x0 - Reserved
0x1 - Time stamp mode
0x2 - Watchdog mode
0x3 - Auto-transmit mode
0x4 - Reserved
0x5 - Reserved
0x6 - Count error frames
0x7 - Count overload frames
0x8 - Count arbitration losts
0x9 - Count aborted

transmissions
0xA - Count successful

transmissions
0xB - Count rejected receive

messages
0xC - Count receive message

losts
0xD - Count successful

receptions
0xE - Count stored receptions
0xF - Count valid messages

ADSP-BF50x Blackfin Processor Hardware Reference 17-83

CAN Module

CAN_UCCNT Register

CAN_UCRC Register

Figure 17-58. Universal Counter Register

Figure 17-59. Universal Counter Reload/Capture Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Universal Counter Register (CAN_UCCNT)

UCCNT[15:0]

Reset = 0x00000xFFC0 2AC4

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Universal Counter Reload/Capture Register (CAN_UCRC)

UCVAL[15:0]

Reset = 0x00000xFFC0 2AC8

CAN Register Definitions

17-84 ADSP-BF50x Blackfin Processor Hardware Reference

Error Registers
Figure 17-60 through Figure 17-62 show the CAN error registers.

CAN_CEC Register

CAN_ESR Register

CAN_EWR Register

Figure 17-60. CAN Error Counter Register

Figure 17-61. Error Status Register

Figure 17-62. CAN Error Counter Warning Level Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CAN Error Counter Register (CAN_CEC)

RXECNT[7:0] (Receive Error
Counter)

Reset = 0x00000xFFC0 2A90

TXECNT[7:0] (Transmit Error
Counter)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 1 0 0 0 0

Error Status Register (CAN_ESR)
All bits are W1C

ACKE (Acknowledge Error)

Reset = 0x00200xFFC0 2AB4

SER (Stuff Bit Error)
CRCE (CRC Error)

FER (Form Error)
BEF (Bit Error Flag)
SA0 (Stuck at Dominant)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 1 1 0 0 0 0 0 0 1 1 0 0 0 0

CAN Error Counter Warning Level Register (CAN_EWR)

EWLREC[7:0] (Receive Error
Warning Limit)

Reset = 0x60600xFFC0 2AB0

EWLTEC[7:0] (Transmit Error
Warning Limit)

ADSP-BF50x Blackfin Processor Hardware Reference 17-85

CAN Module

Programming Examples
The following CAN code examples (Listing 17-2 through Listing 17-4)
show how to program the CAN hardware and timing, initialize mailboxes,
perform transfers, and service interrupts. Each of these code examples
assumes that the appropriate header file is included in the source code
(that is, #include <defBF537.h> for ADSP-BF537 projects).

CAN Setup Code
The following code initializes the port pins to connect to the CAN con-
troller and configures the CAN timing parameters.

Listing 17-2. Initializing CAN

Initialize_CAN:

P0.H = HI(PORT_MUX); /* CAN pins muxed on Port J */

P0.L = LO(PORT_MUX);

R0 = PJCE_CAN(Z); /* Enable CAN TX/RX pins */
W[P0] = R0;
SSYNC;

/* ===
** Set CAN Bit Timing
**
** CAN_TIMING - SJW, TSEG2, and TSEG1 governed by:
** SJW <= TSEG2 <= TSEG1
**
** ===
*/

P0.H = HI(CAN_TIMING);

P0.L = LO(CAN_TIMING);

Programming Examples

17-86 ADSP-BF50x Blackfin Processor Hardware Reference

R0 = 0x0334(Z); /* SJW = 3, TSEG2 = 3, TSEG1 = 4 */

W[P0] = R0;
SSYNC;

/* ===
** CAN_CLOCK - Calculate Prescaler (BRP)
**
** Assume a 500kbps CAN rate is desired, which means
** the duration of the bit on the CAN bus (tBIT) is
** 2us. Using the tBIT formula from the HRM, solve for
** TQ:
**
** tBIT = TQ x (1 + (TSEG1 + 1) + (TSEG2 + 1))
** 2us = TQ x (1 + (4 + 1) + (3 + 1))
** 2e-6 = TQ x (1 + 5 + 4)
** TQ = 2e-6 / 10
** TQ = 2e-7
**
** Once time quantum (TQ) is known, BRP can be derived
** from the TQ formula in the HRM. Assume the default
** PLL settings are used for the ADSP-BF537 EZ-KIT,
** which implies that System Clock (SCLK) is 50MHz:
**
** TQ = (BRP+1) / SCLK
** 2e-7 = (BRP+1) / 50e6
** (BRP+1) = 10
** BRP = 9
*/
P0.L = LO(CAN_CLOCK);
R0 = 9(Z);
W[P0] = R0;
SSYNC;

RTS;

Initializing and Enabling CAN Mailboxes
Before the CAN can transfer data, the mailbox area must be properly set
up and the controller must be initialized properly.

ADSP-BF50x Blackfin Processor Hardware Reference 17-87

CAN Module

Listing 17-3. Initializing and Enabling Mailboxes

CAN_Initialize_Mailboxes:

P0.H = HI(CAN_MD1); /* Configure Mailbox Direction */
P0.L = LO(CAN_MD1);
R0 = W[P0](Z);
BITCLR(R0, BITPOS(MD8)); /* Set MB08 for Transmit */
BITSET(R0, BITPOS(MD9)); /* Set MB09 for Receive */
W[P0] = R0;
SSYNC;

/* ===
** Populate CAN Mailbox Area
**
** Mailbox 8 transmits ID 0x411 with 4 bytes of data
** Bytes 0 and 1 are a data pattern 0xAABB. Bytes 2
** and 3 will be a count value for the number of times
** that message is properly sent.
**
** Mailbox 9 will receive message ID 0x007
**
** ===
*/

/* Initialize Mailbox 8 For Transmit */
R0 = 0x411 << 2; /* Put Message ID in correct slot */
P0.L = LO(CAN_MB_ID1(8)); /* Access MB08 ID1 Register */
W[P0] = R0; /* Remote frame disabled, 11 bit ID */

R0 = 0;

P0.L = LO(CAN_MB_ID0(8));
W[P0] = R0; /* Zero Out Lower ID Register */

R0 = 4;
P0.L = LO(CAN_MB_LENGTH(8));
W[P0] = R0; /* Set DLC to 4 Bytes */

Programming Examples

17-88 ADSP-BF50x Blackfin Processor Hardware Reference

R0 = 0xAABB(Z);
P0.L = LO(CAN_MB_DATA3(8));
W[P0] = R0; /* Byte0 = 0xAA, Byte1 = 0xBB */

R0 = 1;
P0.L = LO(CAN_MB_DATA2(8));
W[P0] = R0; /* Initialize Count to 1 */

/* Initialize Mailbox 9 For Receive */
R0 = 0x007 << 2; /* Put Message ID in correct slot */
P0.L = LO(CAN_MB_ID1(9)); /* Access MB08 ID1 Register */
W[P0] = R0; /* Remote frame disabled, 11 bit ID */

R0 = 0;
P0.L = LO(CAN_MB_ID0(9));
W[P0] = R0; /* Zero Out Lower ID Register */
SSYNC;

/* Enable the Configured Mailboxes */
P0.L = LO(CAN_MC1);
R0 = W[P0](Z);
BITSET(R0, BITPOS(MC8)); /* Enable MB08 */
BITSET(R0, BITPOS(MC9)); /* Enable MB09 */
W[P0] = R0;
SSYNC;
RTS;

Initiating CAN Transfers and Processing Interrupts
After the mailboxes are properly set up, transfers can be requested in the
CAN controller. This code example initializes the CAN-level interrupts,
takes the CAN controller out of configuration mode, requests a transfer,
and then waits for and processes CAN TX and RX interrupts. This
example assumes that the CAN_RX_HANDLER and CAN_TX_HANDLER have been
properly registered in the system interrupt controller and that the inter-
rupts are enabled properly in the SIC_IMASK register.

ADSP-BF50x Blackfin Processor Hardware Reference 17-89

CAN Module

Listing 17-4. CAN Transfers and Interrupts

CAN_SetupIRQs_and_Transfer:

P0.H = HI(CAN_MBIM1);
P0.L = LO(CAN_MBIM1);
R0 = 0;
BITSET(R0, BITPOS(MBIM8)); /* Enable Mailbox Interrupts */
BITSET(R0, BITPOS(MBIM9)); /* for Mailboxes 8 and 9 */
W[P0] = R0;
SSYNC;

/* Leave CAN Configuration Mode (Clear CCR) */
P0.L = LO(CAN_CONTROL);
R0 = W[P0](Z);
BITCLR(R0, BITPOS(CCR));
W[P0] = R0;

P0.L = LO(CAN_STATUS);

/* Wait for CAN Configuration Acknowledge (CCA) */

WAIT_FOR_CCA_TO_CLEAR:

R1 = W[P0](Z);

CC = BITTST (R1, BITPOS(CCA));

IF CC JUMP WAIT_FOR_CCA_TO_CLEAR;

P0.L = LO(CAN_TRS1);
R0 = TRS8; /* Transmit Request MB08 */
W[P0] = R0; /* Issue Transmit Request */
SSYNC;

Wait_Here_For_IRQs:
NOP;
NOP;
NOP;
JUMP Wait_Here_For_IRQs;

/* ===
** CAN_TX_HANDLER
**
** ISR clears the interrupt request from MB8, writes
** new data to be sent, and requests to send again

Programming Examples

17-90 ADSP-BF50x Blackfin Processor Hardware Reference

**
** ===
*/

CAN_TX_HANDLER:
[--SP] = (R7:6, P5:5); /* Save Clobbered Registers */
[--SP] = ASTAT;

P5.H = HI(CAN_MBTIF1);
P5.L = LO(CAN_MBTIF1);
R7 = MBTIF8;
W[P5] = R7; /* Clear Interrupt Request Bit for MB08 */

P5.L = LO(CAN_MB_DATA2(8));
R7 = W[P5](Z); /* Retrieve Previously Sent Data */

R6 = 0xFF; /* Mask Upper Byte to Check Lower */
R6 = R6 & R7; /* Byte for Wrap */
R5 = 0xFF; /* Check Wrap Condition */

CC = R6 == R5; /* Check if Lower Byte Wraps */

IF CC JUMP HANDLE_COUNT_WRAP;
R7 += 1; /* If no wrap, Increment Count */
JUMP PREPARE_TO_SEND;

HANDLE_COUNT_WRAP:
R6 = 0xFF00(Z); /* Mask Off Lower Byte */
R7 = R7 & R6; /* Sets Lower Byte to 0 */
R6 = 0x0100(Z); /* Increment Value for Upper Byte */
R7 = R7 + R6; /* Increment Upper Byte */

PREPARE_TO_SEND:
W[P5] = R7; /* Set New TX Data */

P5.L = LO(CAN_TRS1);
R7 = TRS8;
W[P5] = R7; /* Issue New Transmit Request */

ASTAT = [SP++]; /* Restore Clobbered Registers */
(R7:6, P5:5) = [SP++];
SSYNC;
RTI;

ADSP-BF50x Blackfin Processor Hardware Reference 17-91

CAN Module

/* ===

** CAN_RX_HANDLER
**
** ISR clears the interrupt request from MB9, writes
** new data to be sent, and requests to send again
**
** ===
*/

CAN_RX_HANDLER:

[--SP] = (R7:7, P5:4); /* Save Clobbered Registers */
[--SP] = ASTAT;

P4.H = CAN_RX_WORD; /* Set Pointer to Storage Element */
P4.L = CAN_RX_WORD;

P5.H = HI(CAN_MBRIF1);
P5.L = LO(CAN_MBRIF1);
R7 = MBRIF9;
W[P5] = R7; /* Clear Interrupt Request Bit for MB09 */

P5.L = LO(CAN_MB_DATA3(9));
R7 = W[P5](Z); /* Read data from mailbox */
W[P4] = R7; /* Store data to memory */

ASTAT = [SP++]; /* Restore Clobbered Registers */
(R7:7, P5:4) = [SP++];
SSYNC;
RTI;

Programming Examples

17-92 ADSP-BF50x Blackfin Processor Hardware Reference

ADSP-BF50x Blackfin Processor Hardware Reference 18-1

18 SPI-COMPATIBLE PORT
CONTROLLER

This chapter describes the serial peripheral interface (SPI) port. Following
an overview and a list of key features is a description of operation and
functional modes of operation. The chapter concludes with a program-
ming model, consolidated register definitions, and programming
examples.

Specific Information for the ADSP-BF50x
For details regarding the number of SPIs for the ADSP-BF50x product,
refer to ADSP-BF504, ADSP-BF504F, ADSP-BF506F Embedded Processor
Data Sheet.

For SPI DMA channel assignments, refer to Table 7-7 on page 7-105 in
Chapter 7, “Direct Memory Access”.

For SPI interrupt vector assignments, refer to Table 4-3 on page 4-19 in
Chapter 4, “System Interrupts”.

To determine how each of the SPIs is multiplexed with other functional
pins, refer to Table 9-1 on page 9-4 through Table 9-3 on page 9-6 in
Chapter 9, “General-Purpose Ports”.

For a list of MMR addresses for each SPI, refer to Chapter A, “System
MMR Assignments”.

SPI behavior for the ADSP-BF50x that differs from the general informa-
tion in this chapter can be found in the section “Unique Information for
the ADSP-BF50x Processor” on page 18-54.

Overview

18-2 ADSP-BF50x Blackfin Processor Hardware Reference

Overview
The SPI port provides an I/O interface to a wide variety of SPI-compati-
ble peripheral devices.

With a range of configurable options, the SPI port provides a glueless
hardware interface with other SPI-compatible devices. SPI is a four-wire
interface consisting of two data signals, a device select signal, and a clock
signal. SPI is a full-duplex synchronous serial interface, supporting master
modes, slave modes, and multimaster environments. The SPI-compatible
peripheral implementation also supports programmable bit rate and clock
phase/polarities. The SPI features the use of open drain drivers to support
the multimaster scenario and to avoid data contention.

Features
The SPI includes these features:

• Full duplex, synchronous serial interface

• Supports 8- or 16-bit word sizes

• Programmable baud rate, clock phase, and polarity

• Supports multimaster environments

• Integrated DMA controller

• Double-buffered transmitter and receiver

• One SPI device select input and multiple chip select outputs

• Programmable shift direction of MSB or LSB first

• Interrupt generation on mode fault, overflow, and underflow

• Shadow register to aid debugging

ADSP-BF50x Blackfin Processor Hardware Reference 18-3

SPI-Compatible Port Controller

Typical SPI-compatible peripheral devices that can be used to interface to
the SPI-compatible interface include:

• Other CPUs or microcontrollers

• Codecs

• A/D converters

• D/A converters

• Sample rate converters

• SP/DIF or AES/EBU digital audio transmitters and receivers

• LCD displays

• Shift registers

• FPGAs with SPI emulation

Interface Overview
Figure 18-1 provides a block diagram of the SPI. The interface is essen-
tially a shift register that serially transmits and receives data bits, one bit at
a time at the SCK rate, to and from other SPI devices. SPI data is transmit-
ted and received at the same time through the use of a shift register. When
an SPI transfer occurs, data is simultaneously transmitted (shifted serially
out of the shift register) as new data is received (shifted serially into the
other end of the same shift register). The SCK synchronizes the shifting and
sampling of the data on the two serial data pins.

Interface Overview

18-4 ADSP-BF50x Blackfin Processor Hardware Reference

External Interface
The following sections describe the components of the SPI external inter-
face, which includes the following signals:

• “SPI Clock Signal (SCK)” on page 18-5

• “Master-Out, Slave-In (MOSI) Signal” on page 18-5

• “Master-In, Slave-Out (MISO) Signal” on page 18-5

• “SPI Slave Select Input Signal (SPISS)” on page 18-6

• “SPI Slave Select Enable Output Signals” on page 18-7

• “Slave Select Inputs” on page 18-8

Figure 18-1. SPI Block Diagram

MOSI MISO SCK

SPI INTERFACE LOGIC

SHIFT REGISTER

SPI_RDBR
RECEIVE

REGISTER

SPI_TDBR
TRANSMIT
REGISTER

SPI IRQ
OR DMA
REQUEST

SPI
INTERNAL

CLOCK
GENERATOR

SPI_CTL

SPI_FLG
SPI_BAUD

SPI_SHADOW

SPI_STAT

PAB

DAB

FOUR-DEEP FIFO

M S S M

SPISS

ADSP-BF50x Blackfin Processor Hardware Reference 18-5

SPI-Compatible Port Controller

SPI Clock Signal (SCK)

The SCK signal is the serial clock signal. This control signal is driven by the
master and controls the rate at which data is transferred. The master may
transmit data at a variety of bit rates. The SCK signal cycles once for each
bit transmitted. It is an output signal if the device is configured as a mas-
ter, and an input signal if the device is configured as a slave.

The SCK is a gated clock that is active during data transfers only for the
length of the transferred word. The number of active clock edges is equal
to the number of bits driven on the data lines. Slave devices ignore the
serial clock if the SPISS input is driven inactive (high).

The SCK is used to shift out and shift in the data driven on the MISO and
MOSI lines. Clock polarity and clock phase relative to data are programma-
ble in the SPI_CTL register and define the transfer format.

Master-Out, Slave-In (MOSI) Signal

The master-out, slave-in (MOSI) signal is one of the bidirectional I/O data
pins. If the processor is configured as a master, the MOSI pin transmits data
out. If the processor is configured as a slave, the MOSI pin receives data in.
In an SPI interconnection, the data is shifted out from the MOSI output
pin of the master and shifted into the MOSI input(s) of the slave(s).

Master-In, Slave-Out (MISO) Signal

The master-in, slave-out (MISO) signal is one of the bidirectional I/O data
pins. If the processor is configured as a master, the MISO pin receives data
in. If the processor is configured as a slave, the MISO pin transmits data
out. In an SPI interconnection, the data is shifted out from the MISO out-
put pin of the slave and shifted into the MISO input pin of the master.

 Only one slave is allowed to transmit data at any given time.

Interface Overview

18-6 ADSP-BF50x Blackfin Processor Hardware Reference

The SPI configuration example in Figure 18-2 illustrates how the proces-
sor can be used as the slave SPI device. The 8-bit host microcontroller is
the SPI master.

 The processor can be booted through its SPI interface to allow user
application code and data to be downloaded before runtime.

SPI Slave Select Input Signal (SPISS)

The SPISS signal is the SPI slave select input signal. This is an active-low
signal used to enable a processor when it is configured as a slave device.
This input-only pin behaves like a chip select and is provided by the mas-
ter device for the slave devices. For a master device, it can act as an error
signal input in a multimaster environment. In multimaster mode, if the
SPISS input signal of a master is asserted (driven low), and the PSSE bit in
the SPI_CTL register is enabled, an error has occurred. This means that
another device is also trying to be the master device.

The enable lead time (T1), the enable lag time (T2), and the sequential
transfer delay time (T3) each must always be greater than or equal to
one-half the SCK period. See Figure 18-3. The minimum time between
successive word transfers (T4) is two SCK periods. This is measured from
the last active edge of SCK of one word to the first active edge of SCK of the
next word. This is independent of the configuration of the SPI (CPHA,
MSTR, and so on).

Figure 18-2. ADSP-BF50x Processor as Slave SPI Device

8-BIT HOST
MICROCONTROLLER

BLACKFIN PROCESSOR
SLAVE SPI DEVICE

SCLK

MOSI

MISO MISO

SCK

MOSI

SPISSS_SEL

ADSP-BF50x Blackfin Processor Hardware Reference 18-7

SPI-Compatible Port Controller

For a master device with CPHA = 0, the slave select output is inactive (high)
for at least one-half the SCK period. In this case, T1 and T2 will each
always be equal to one-half the SCK period.

SPI Slave Select Enable Output Signals

When operating in master mode, Blackfin processors may use any GPIO
pin to enable individual SPI slave devices by software. In addition, the SPI
module provides hardware support to generate up to seven slave select
enable signals automatically (depending upon the configuration of the
specific processor). See Figure 18-14 on page 18-38 for details.

These signals are always active low in the SPI protocol. Since the respec-
tive pins are not driven during reset, it is recommended to pull them up
by a resistor.

If enabled as a master, the SPI uses the SPI_FLG register to enable gen-
eral-purpose port pins to be used as individual slave select lines. Before
manipulating this register, the port pins that are to be used as SPI
slave-select outputs must first be configured as such. To work as SPI out-
put pins, the port pins must be enabled for use by SPI in the appropriate
PORT_MUX register.

Figure 18-3. SPI Timing

T1 T2

SPISS
(TO SLAVE)

SCK
(CPOL = 1)

T4
T3

Interface Overview

18-8 ADSP-BF50x Blackfin Processor Hardware Reference

In slave mode, the SPI_FLG bits have no effect, and each SPI uses the
SPISS input as a slave select. Just as in the master mode case, the port pin
associated with SPISS must first be configured appropriately before use.
Figure 18-14 on page 18-38 shows the SPI_FLG register diagram.

Slave Select Inputs

If the SPI is in slave mode, SPISS acts as the slave select input. When
enabled as a master, SPISS can serve as an error detection input for the SPI
in a multimaster environment. The PSSE bit in SPI_CTL enables this fea-
ture. When PSSE = 1, the SPISS input is the master mode error input.
Otherwise, SPISS is ignored.

Use of FLS Bits in SPI_FLG for Multiple Slave SPI Systems

The FLSx bits in the SPI_FLG register are used in a multiple slave SPI
environment. For example, if there are eight SPI devices in the system
including a master processor equipped with seven slave selects, the master
processor can support the SPI mode transactions across the other seven
devices. This configuration requires only one master processor in this mul-
tislave environment. For example, assume that the SPI is the master. The
seven port pins that can be configured as SPI master mode slave-select
output pins can be connected to each of the slave SPI device’s SPISS pins.
In this configuration, the FLSx bits in SPI_FLG can be used in three
cases.

ADSP-BF50x Blackfin Processor Hardware Reference 18-9

SPI-Compatible Port Controller

In cases 1 and 2, the processor is the master and the seven microcon-
trollers/peripherals with SPI interfaces are slaves. The processor can:

1. Transmit to all seven SPI devices at the same time in a broadcast
mode. Here, all FLSx bits are set.

2. Receive and transmit from one SPI device by enabling only one
slave SPI device at a time.

In case 3, all eight devices connected through SPI ports can be
other processors.

3. If all the slaves are also processors, then the requester can receive
data from only one processor (enabled by clearing the EMISO bit in
the six other slave processors) at a time and transmit broadcast data
to all seven at the same time. This EMISO feature may be available in
some other microcontrollers. Therefore, it is possible to use the
EMISO feature with any other SPI device that includes this
functionality.

Interface Overview

18-10 ADSP-BF50x Blackfin Processor Hardware Reference

Figure 18-4 shows one processor as a master with three processors (or
other SPI-compatible devices) as slaves.

The transmit buffer becomes full after it is written to. It becomes empty
when a transfer begins and the transmit value is loaded into the shift regis-
ter. The receive buffer becomes full at the end of a transfer when the shift
register value is loaded into the receive buffer. It becomes empty when the
receive buffer is read.

 The SPIF bit in the SPI_STAT register is set when the SPI port is
disabled.

Upon entering DMA mode, the transmit buffer and the receive
buffer become empty. That is, the TXS bit and the RXS bit in the
SPI_STAT register are initially cleared upon entering DMA mode.

Figure 18-4. Single-Master, Multiple-Slave Configuration

MOSIMISO

SLAVE DEVICE

SCK MOSIMISO SCK MOSIMISO SCK

MOSIMISO SCK

MASTER
DEVICE

SLAVE DEVICE SLAVE DEVICE

PF/PG/PH

PF/PG/PH

PF/PG/PH

VDD

SPISS

SPISS

SPISS SPISS

ADSP-BF50x Blackfin Processor Hardware Reference 18-11

SPI-Compatible Port Controller

When using DMA for SPI transmit, the DMA_DONE interrupt signi-
fies that the DMA FIFO is empty. However, at this point there
may still be data in the SPI DMA FIFO waiting to be transmitted.
Therefore, software needs to poll TXS in the SPI_STAT register until
it goes low for two successive reads, at which point the SPI DMA
FIFO will be empty. When the SPIF bit subsequently gets set, the
last word has been transferred.

Internal Interfaces
The SPI has dedicated connections to the processor’s peripheral bus (PAB)
and DAB.

The low-latency PAB bus is used to map the SPI resources into the system
MMR space. For PAB accesses to SPI MMRs, the primary performance
criteria is latency, not throughput. Transfer latencies for both read and
write transfers on the peripheral bus are two SCLK cycles.

The DAB bus provides a means for DMA SPI transfers to gain access to
on-chip and off-chip memory with little or no degradation in core band-
width to memory. The SPI peripheral, as a DMA master, is capable of
sourcing DMA accesses. The arbitration policy for access to the DAB is
described in the Chip Bus Hierarchy chapter.

DMA Functionality

The SPI has a single DMA engine which can be configured to support
either an SPI transmit channel or a receive channel, but not both simulta-
neously. Therefore, when configured as a transmit channel, the received
data will essentially be ignored.

When configured as a receive channel, what is transmitted is irrelevant. A
16-bit by four-word FIFO (without burst capability) is included to
improve throughput on the DAB.

Description of Operation

18-12 ADSP-BF50x Blackfin Processor Hardware Reference

 When using DMA for SPI transmit, the DMA_DONE interrupt signi-
fies that the DMA FIFO is empty. However, at this point there
may still be data in the SPI DMA FIFO waiting to be transmitted.
Therefore, software needs to poll TXS in the SPI_STAT register until
it goes low for two successive reads, at which point the SPI DMA
FIFO will be empty. When the SPIF bit subsequently gets set, the
last word has been transferred.

The four-word FIFO is cleared when the SPI port is disabled.

Description of Operation
The following sections describe the operation of the SPI.

SPI Transfer Protocols
The SPI protocol supports four different combinations of serial clock
phase and polarity (SPI modes 0, 1, 2, 3). These combinations are selected
using the CPOL and CPHA bits in SPI_CTL as shown in Figure 18-5.

Figure 18-6 on page 18-14 and Figure 18-7 on page 18-14 demonstrate
the two basic transfer formats as defined by the CPHA bit. Two waveforms
are shown for SCK—one for CPOL = 0 and the other for CPOL = 1. The dia-
grams may be interpreted as master or slave timing diagrams since the SCK,
MISO, and MOSI pins are directly connected between the master and the
slave. The MISO signal is the output from the slave (slave transmission),
and the MOSI signal is the output from the master (master transmission).
The SCK signal is generated by the master, and the SPISS signal is the slave
device select input to the slave from the master. The diagrams represent an
8-bit transfer (SIZE = 0) with the most significant bit (MSB) first
(LSBF = 0). Any combination of the SIZE and LSBF bits of SPI_CTL is
allowed. For example, a 16-bit transfer with the least significant bit (LSB)
first is another possible configuration.

ADSP-BF50x Blackfin Processor Hardware Reference 18-13

SPI-Compatible Port Controller

The clock polarity and the clock phase should be identical for the master
device and the slave device involved in the communication link. The
transfer format from the master may be changed between transfers to
adjust to various requirements of a slave device.

When CPHA = 0, the slave select line, SPISS, must be inactive (high)
between each serial transfer. This is controlled automatically by the SPI
hardware logic. When CPHA = 1, SPISS may either remain active (low)
between successive transfers or be inactive (high). This must be controlled
by the software through manipulation of the SPI_FLG register.

Figure 18-5. SPI Modes of Operation

CLOCK PHASE (CPHA)
C

L
O

C
K

 P
O

L
A

R
IT

Y
 (

C
P

O
L

)

C
P

O
L

 =
 1

C
P

O
L

 =
 0

CPHA = 1CPHA = 0

SAMPLE
EDGE

DRIVE
EDGE

SAMPLE
EDGE

DRIVE
EDGE

SAMPLE
EDGE

DRIVE
EDGE

SAMPLE
EDGE

DRIVE
EDGE

MODE 0 MODE 1

MODE 2 MODE 3

Description of Operation

18-14 ADSP-BF50x Blackfin Processor Hardware Reference

Figure 18-6 shows the SPI transfer protocol for CPHA = 0. Note SCK starts
toggling in the middle of the data transfer, SIZE = 0, and LSBF = 0.

Figure 18-7 shows the SPI transfer protocol for CPHA = 1. Note SCK starts
toggling at the beginning of the data transfer, SIZE = 0, and LSBF = 0.

Figure 18-6. SPI Transfer Protocol for CPHA = 0

Figure 18-7. SPI Transfer Protocol for CPHA = 1

SPISS
(TO SLAVE)

SCK
(CPOL = 0)

SCK
(CPOL = 1)

MOSI
(FROM MASTER)

MISO
(FROM SLAVE)

1 2 3 4 85 6 7CLOCK CYCLE
NUMBER

(* = UNDEFINED)

MSB LSB6 5 4 3 2 1 **

MSB LSB6 5 4 3 2 1 *

SPISS
(TO SLAVE)

SCK
(CPOL = 0)

SCK
(CPOL = 1)

MOSI
(FROM MASTER)

MISO
(FROM SLAVE)

1 2 3 4 85 6 7CLOCK CYCLE
NUMBER

(* = UNDEFINED)

MSB LSB6 5 4 3 2 1 **

MSB LSB6 5 4 3 2 1*

ADSP-BF50x Blackfin Processor Hardware Reference 18-15

SPI-Compatible Port Controller

SPI General Operation
The SPI can be used in single master as well as multimaster environments.
The MOSI, MISO, and the SCK signals are all tied together in both configura-
tions. SPI transmission and reception are always enabled simultaneously,
unless the broadcast mode has been selected. In broadcast mode, several
slaves can be enabled to receive, but only one of the slaves must be in
transmit mode driving the MISO line. If the transmit or receive is not
needed, it can simply be ignored. This section describes the clock signals,
SPI operation as a master and as a slave, and error generation.

Precautions must be taken to avoid data corruption when changing the
SPI module configuration. The configuration must not be changed during
a data transfer. The clock polarity should only be changed when no slaves
are selected. An exception to this is when an SPI communication link con-
sists of a single master and a single slave, CPHA = 1, and the slave select
input of the slave is always tied low. In this case, the slave is always
selected and data corruption can be avoided by enabling the slave only
after both the master and slave devices are configured.

In a multimaster or multislave SPI system, the data output pins (MOSI and
MISO) can be configured to behave as open drain outputs, which prevents
contention and possible damage to pin drivers. An external pull-up resis-
tor is required on both the MOSI and MISO pins when this option is
selected.

The WOM bit in the SPI_CTL register controls this option. When WOM is set
and the SPI is configured as a master, the MOSI pin is three-stated when
the data driven out on MOSI is a logic high. The MOSI pin is not
three-stated when the driven data is a logic low. Similarly, when WOM is set
and the SPI is configured as a slave, the MISO pin is three-stated if the data
driven out on MISO is a logic high.

During SPI data transfers, one SPI device acts as the SPI link master,
where it controls the data flow by generating the SPI serial clock and
asserting the SPI device select signal (SPISS). The other SPI device acts as

Description of Operation

18-16 ADSP-BF50x Blackfin Processor Hardware Reference

the slave and accepts new data from the master into its shift register, while
it transmits requested data out of the shift register through its SPI trans-
mit data pin. Multiple processors can take turns being the master device,
as can other microcontrollers or microprocessors. One master device can
also simultaneously shift data into multiple slaves (known as broadcast
mode). However, only one slave may drive its output to write data back to
the master at any given time. This must be enforced in broadcast mode,
where several slaves can be selected to receive data from the master, but
only one slave at a time can be enabled to send data back to the master.

In a multimaster or multidevice environment where multiple processors
are connected through their SPI ports, all MOSI pins are connected
together, all MISO pins are connected together, and all SCK pins are con-
nected together.

For a multislave environment, the processor can make use of up to seven
programmable flags that are dedicated SPI slave select signals for the SPI
slave devices.

 At reset, the SPI is disabled and configured as a slave.

Clock Signals
The SCK signal is a gated clock that is only active during data transfers for
the duration of the transferred word. The number of active edges is equal
to the number of bits driven on the data lines. The clock rate can be as
high as one-fourth of the SCLK rate. For master devices, the clock rate is
determined by the 16-bit value in the SPI_BAUD register. For slave
devices, the value in SPI_BAUD is ignored. When the SPI device is a mas-
ter, SCK is an output signal. When the SPI is a slave, SCK is an input
signal. Slave devices ignore the serial clock if the slave select input is
driven inactive (high).

The SCK signal is used to shift out and shift in the data driven onto the
MISO and MOSI lines. The data is always shifted out on one edge of the
clock and sampled on the opposite edge of the clock. Clock polarity and

ADSP-BF50x Blackfin Processor Hardware Reference 18-17

SPI-Compatible Port Controller

clock phase relative to data are programmable in the SPI_CTL register and
define the transfer format. See Figure 18-5 on page 18-13.

Interrupt Output
The SPI has two interrupt output signals: a data interrupt and an error
interrupt.

The behavior of the SPI data interrupt signal depends on the TIMOD field
in the SPI_CTL register. In DMA mode (TIMOD = b#1X), the data interrupt
acts as a DMA request and is generated when the DMA FIFO is ready to
be written to (TIMOD = b#11) or read from (TIMOD = b#10). In non-DMA
mode (TIMOD = 0X), a data interrupt is generated when the SPI_TDBR regis-
ter is ready to be written to (TIMOD = b#01) or when the SPI_RDBR register
is ready to be read from (TIMOD = b#00).

An SPI error interrupt is generated in a master when a mode fault error
occurs, in both DMA and non-DMA modes. An error interrupt can also
be generated in DMA mode when there is an underflow (TXE when
TIMOD = b#11) or an overflow (RBSY when TIMOD = b#10) error condition.
In non-DMA mode, the underflow and overflow conditions set the TXE

and RBSY bits in the SPI_STAT register, respectively, but do not generate an
error interrupt.

For more information about this interrupt output, see the discussion of
the TIMOD bits in “SPI Control (SPI_CTL) Register” on page 18-36.

Functional Description
The following sections describe the functional operation of the SPI.

Functional Description

18-18 ADSP-BF50x Blackfin Processor Hardware Reference

Master Mode Operation (Non-DMA)
When the SPI is configured as a master (and DMA mode is not selected),
the interface operates in the following manner.

1. The core writes to the appropriate port register(s) to properly con-
figure the SPI interface for master mode operation. The required
pins are configured for SPI use as slave-select outputs.

2. The core writes to SPI_FLG, setting one or more of the SPI flag
select bits (FLSx). This ensures that the desired slaves are properly
deselected while the master is configured.

3. The core writes to the SPI_BAUD and SPI_CTL registers, enabling the
device as a master and configuring the SPI system by specifying the
appropriate word length, transfer format, baud rate, and other nec-
essary information.

4. If the CPHA bit in the SPI_CTL register = 1, the core activates the
desired slaves by clearing one or more of the SPI flag bits (FLGx) of
SPI_FLG.

5. The TIMOD bits in SPI_CTL determine the SPI transfer initiate
mode. The transfer on the SPI link begins upon either a data write
by the core to the SPI_TDBR register or a data read of the SPI_RDBR

register.

6. The SPI then generates the programmed clock pulses on SCK and
simultaneously shifts data out of MOSI and shifts data in from MISO.
Before a shift, the shift register is loaded with the contents of the
SPI_TDBR register. At the end of the transfer, the contents of the
shift register are loaded into the SPI_RDBR register.

7. With each new transfer initiate command, the SPI continues to
send and receive words, according to the SPI transfer initiate mode.

See Table 18-8 on page 18-30 for additional information.

ADSP-BF50x Blackfin Processor Hardware Reference 18-19

SPI-Compatible Port Controller

If the transmit buffer remains empty or the receive buffer remains full, the
device operates according to the states of the SZ and GM bits in SPI_CTL.

If SZ = 1 and the transmit buffer is empty, the device repeatedly transmits
zeros on the MOSI pin. One word is transmitted for each new transfer initi-
ate command. If SZ = 0 and the transmit buffer is empty, the device
repeatedly transmits the last word it transmitted before the transmit buffer
became empty.

If GM = 1 and the receive buffer is full, the device continues to receive new
data from the MISO pin, overwriting the older data in the SPI_RDBR regis-
ter. If GM = 0 and the receive buffer is full, the incoming data is discarded,
and SPI_RDBR is not updated.

Transfer Initiation From Master (Transfer Modes)
When a device is enabled as a master, the initiation of a transfer is defined
by the two TIMOD bits of SPI_CTL. Based on those two bits and the sta-
tus of the interface, a new transfer is started upon either a read of the
SPI_RDBR register or a write to the SPI_TDBR register. This is summa-
rized in Table 18-1.

 If the SPI port is enabled with TIMOD = b#01 or TIMOD = b#11, the
hardware immediately issues a first interrupt or DMA request.

Functional Description

18-20 ADSP-BF50x Blackfin Processor Hardware Reference

Slave Mode Operation (Non-DMA)
When a device is enabled as a slave (and DMA mode is not selected), the
start of a transfer is triggered by a transition of the SPISS select signal to
the active state (low), or by the first active edge of the clock (SCK),
depending on the state of the CPHA bit in the SPI_CTL register.

Table 18-1. Transfer Initiation

TIMOD Function Transfer Initiated Upon Action, Interrupt

b#00 Transmit and
receive

Initiate new single word trans-
fer upon read of SPI_RDBR
and previous transfer com-
pleted.

Interrupt is active when the
receive buffer is full.

Read of SPI_RDBR clears
interrupt.

b#01 Transmit and
receive

Initiate new single word trans-
fer upon write to SPI_TDBR
and previous transfer com-
pleted.

Interrupt is active when the
transmit buffer is empty.

Writing to SPI_TDBR clears
interrupt.

b#10 Receive with
DMA

Initiate new multiword trans-
fer upon enabling SPI for DMA
mode. Individual word trans-
fers begin with a DMA read of
SPI_RDBR, and last transfer
completed.

Request DMA reads as long as
the SPI DMA FIFO is not
empty.

b#11 Transmit with
DMA

Initiate new multiword trans-
fer upon enabling SPI for DMA
mode. Individual word trans-
fers begin with a DMA write to
SPI_TDBR, and last transfer
completed.

Request DMA writes as long as
the SPI DMA FIFO is not full.

ADSP-BF50x Blackfin Processor Hardware Reference 18-21

SPI-Compatible Port Controller

These steps illustrate SPI operation in the slave mode:

1. The core writes to the appropriate port register(s) to properly con-
figure the SPI for slave mode operation.

2. The core writes to SPI_CTL to define the mode of the serial link to
be the same as the mode set up in the SPI master.

3. To prepare for the data transfer, the core writes data to be trans-
mitted into SPI_TDBR.

4. Once the SPISS falling edge is detected, the slave starts shifting
data out on MISO and in from MOSI on SCK edges, depending upon
the states of CPHA and CPOL.

5. Reception/transmission continues until SPISS is released or until
the slave has received the proper number of clock cycles.

6. The slave device continues to receive/transmit with each new fall-
ing edge transition on SPISS and/or SCK clock edge.

See Table 18-8 on page 18-30 for additional information.

If the transmit buffer remains empty or the receive buffer remains full, the
device operates according to the states of the SZ and GM bits in SPI_CTL. If
SZ = 1 and the transmit buffer is empty, the device repeatedly transmits
zeros on the MISO pin. If SZ = 0 and the transmit buffer is empty, it repeat-
edly transmits the last word it transmitted before the transmit buffer
became empty. If GM = 1 and the receive buffer is full, the device continues
to receive new data from the MOSI pin, overwriting the older data in the
SPI_RDBR register. If GM = 0 and the receive buffer is full, the incoming
data is discarded, and the SPI_RDBR register is not updated.

Programming Model

18-22 ADSP-BF50x Blackfin Processor Hardware Reference

Slave Ready for a Transfer
When a device is enabled as a slave, the actions shown in Table 18-2 are
necessary to prepare the device for a new transfer.

Programming Model
The following sections describe the SPI programming model.

Beginning and Ending an SPI Transfer
The start and finish of an SPI transfer depend on whether the device is
configured as a master or a slave, which CPHA mode is selected, and which
transfer initiation mode (TIMOD) is selected. For a master SPI with
CPHA = 0, a transfer starts when either SPI_TDBR is written to or SPI_RDBR
is read, depending on TIMOD. At the start of the transfer, the enabled slave
select outputs are driven active (low). However, the SCK signal remains
inactive for the first half of the first cycle of SCK. For a slave with CPHA = 0,
the transfer starts as soon as the SPISS input goes low.

For CPHA = 1, a transfer starts with the first active edge of SCK for both
slave and master devices. For a master device, a transfer is considered

Table 18-2. Transfer Preparation

TIMOD Function Action, Interrupt

b#00 Transmit and
receive

Interrupt is active when the receive buffer is full.
Read of SPI_RDBR clears interrupt.

b#01 Transmit and
receive

Interrupt is active when the transmit buffer is empty.
Writing to SPI_TDBR clears interrupt.

b#10 Receive with
DMA

Request DMA reads as long as SPI DMA FIFO is not empty.

b#11 Transmit with
DMA

Request DMA writes as long as SPI DMA FIFO is not full.

ADSP-BF50x Blackfin Processor Hardware Reference 18-23

SPI-Compatible Port Controller

finished after it sends the last data and simultaneously receives the last
data bit. A transfer for a slave device ends after the last sampling edge of
SCK.

The RXS bit defines when the receive buffer can be read. The TXS bit
defines when the transmit buffer can be filled. The end of a single word
transfer occurs when the RXS bit is set, indicating that a new word has just
been received and latched into the receive buffer, SPI_RDBR. For a master
SPI, RXS is set shortly after the last sampling edge of SCK. For a slave SPI,
RXS is set shortly after the last SCK edge, regardless of CPHA or CPOL. The
latency is typically a few SCLK cycles and is independent of TIMOD and the
baud rate. If configured to generate an interrupt when SPI_RDBR is full
(TIMOD = b#00), the interrupt goes active one SCLK cycle after RXS is set.
When not relying on this interrupt, the end of a transfer can be detected
by polling the RXS bit.

To maintain software compatibility with other SPI devices, the SPIF bit is
also available for polling. This bit may have a slightly different behavior
from that of other commercially available devices. For a slave device, SPIF
is cleared shortly after the start of a transfer (SPISS going low for CPHA = 0,
first active edge of SCK on CPHA = 1), and is set at the same time as RXS. For
a master device, SPIF is cleared shortly after the start of a transfer (either
by writing the SPI_TDBR or reading the SPI_RDBR, depending on TIMOD),
and is set one-half SCK period after the last SCK edge, regardless of CPHA or
CPOL.

The time at which SPIF is set depends on the baud rate. In general, SPIF is
set after RXS, but at the lowest baud rate settings (SPI_BAUD < 4). The SPIF

bit is set before RXS is set, and consequently before new data is latched into
SPI_RDBR, because of the latency. Therefore, for SPI_BAUD = 2 or
SPI_BAUD = 3, RXS must be set before SPIF to read SPI_RDBR. For larger
SPI_BAUD settings, RXS is guaranteed to be set before SPIF is set.

If the SPI port is used to transmit and receive at the same time, or to
switch between receive and transmit operation frequently, then the
TIMOD = b#00 mode may be the best operation option. In this mode,

Programming Model

18-24 ADSP-BF50x Blackfin Processor Hardware Reference

software performs a dummy read from the SPI_RDBR register to initiate the
first transfer. If the first transfer is used for data transmission, software
should write the value to be transmitted into the SPI_TDBR register before
performing the dummy read. If the transmitted value is arbitrary, it is
good practice to set the SZ bit in the SPI_CTL register to ensure zero data is
transmitted rather than random values. When receiving the last word of
an SPI stream, software should ensure that the read from the SPI_RDBR

register does not initiate another transfer. It is recommended that the SPI
port be disabled before the final SPI_RDBR read access. Reading the
SPI_SHADOW register is not sufficient, as it does not clear the interrupt
request.

In master mode with the CPHA bit set, software should manually assert the
required slave select signal before starting the transaction. After all data
has been transferred, software typically releases the slave select again. If the
SPI slave device requires the slave select line to be asserted for the
complete transfer, this can be done in the SPI interrupt service routine
only when operating in TIMOD = b#00 or TIMOD = b#10 mode. With
TIMOD = b#01 or TIMOD = b#11, the interrupt is requested while the transfer
is still in progress.

Master Mode DMA Operation
When enabled as a master with the DMA engine configured to transmit or
receive data, the SPI interface operates as follows.

1. The core writes to the appropriate port register(s) to properly con-
figure the SPI for master mode operation. The appropriate pins can
be configured for SPI use as slave-select outputs.

2. The processor core writes to the appropriate DMA registers to
enable the SPI DMA channel and to configure the necessary work
units, access direction, word count, and so on. For more informa-
tion, see the Direct Memory Access chapter.

ADSP-BF50x Blackfin Processor Hardware Reference 18-25

SPI-Compatible Port Controller

3. The processor core writes to the SPI_FLG register, setting one or
more of the SPI flag select bits (FLSx).

4. The processor core writes to the SPI_BAUD and SPI_CTL registers,
enabling the device as a master and configuring the SPI system by
specifying the appropriate word length, transfer format, baud rate,
and so on. The TIMOD field should be configured to select either
“receive with DMA” (TIMOD = b#10) or “transmit with DMA”
(TIMOD = b#11) mode.

5. If configured for receive, a receive transfer is initiated upon
enabling of the SPI. Subsequent transfers are initiated as the SPI
reads data from the SPI_RDBR register and writes to the SPI DMA
FIFO. The SPI then requests a DMA write to memory. Upon a
DMA grant, the DMA engine reads a word from the SPI DMA
FIFO and writes to memory.

If configured for transmit, the SPI requests a DMA read from
memory. Upon a DMA grant, the DMA engine reads a word from
memory and writes to the SPI DMA FIFO. As the SPI writes data
from the SPI DMA FIFO into the SPI_TDBR register, it initiates a
transfer on the SPI link.

6. The SPI then generates the programmed clock pulses on SCK and
simultaneously shifts data out of MOSI and shifts data in from MISO.
For receive transfers, the value in the shift register is loaded into
the SPI_RDBR register at the end of the transfer. For transmit trans-
fers, the value in the SPI_TDBR register is loaded into the shift
register at the start of the transfer.

7. In receive mode, as long as there is data in the SPI DMA FIFO (the
FIFO is not empty), the SPI continues to request a DMA write to
memory. The DMA engine continues to read a word from the SPI
DMA FIFO and writes to memory until the SPI DMA word count
register transitions from “1” to “0”. The SPI continues receiving
words until SPI DMA mode is disabled.

Programming Model

18-26 ADSP-BF50x Blackfin Processor Hardware Reference

In transmit mode, as long as there is room in the SPI DMA FIFO
(the FIFO is not full), the SPI continues to request a DMA read
from memory. The DMA engine continues to read a word from
memory and write to the SPI DMA FIFO until the SPI DMA word
count register transitions from “1” to “0”. The SPI continues trans-
mitting words until the SPI DMA FIFO is empty.

See Figure 18-9 on page 18-31 for additional information.

For receive DMA operations, if the DMA engine is unable to keep up with
the receive datastream, the receive buffer operates according to the state of
the GM bit in the SPI_CTL register. If GM = 1 and the DMA FIFO is full, the
device continues to receive new data from the MISO pin, overwriting the
older data in the SPI_RDBR register. If GM = 0, and the DMA FIFO is full,
the incoming data is discarded, and the SPI_RDBR register is not updated.
While performing receive DMA, the transmit buffer is assumed to be
empty (and TXE is set). If SZ = 1, the device repeatedly transmits zeros on
the MOSI pin. If SZ = 0, it repeatedly transmits the contents of the
SPI_TDBR register. The TXE underrun condition cannot generate an error
interrupt in this mode.

For transmit DMA operations, the master SPI initiates a word transfer
only when there is data in the DMA FIFO. If the DMA FIFO is empty,
the SPI waits for the DMA engine to write to the DMA FIFO before start-
ing the transfer. All aspects of SPI receive operation should be ignored
when configured in transmit DMA mode, including the data in the
SPI_RDBR register, and the status of the RXS and RBSY bits. The RBSY over-
run conditions cannot generate an error interrupt in this mode. The TXE

underrun condition cannot happen in this mode (master DMA TX mode),
because the master SPI will not initiate a transfer if there is no data in the
DMA FIFO.

Writes to the SPI_TDBR register during an active SPI transmit DMA opera-
tion should not occur because the DMA data will be overwritten. Writes

ADSP-BF50x Blackfin Processor Hardware Reference 18-27

SPI-Compatible Port Controller

to the SPI_TDBR register during an active SPI receive DMA operation are
allowed. Reads from the SPI_RDBR register are allowed at any time.

DMA requests are generated when the DMA FIFO is not empty (when
TIMOD = b#10), or when the DMA FIFO is not full (when TIMOD = b#11).

Error interrupts are generated when there is an RBSY overflow error condi-
tion (when TIMOD = b#10).

A master SPI DMA sequence may involve back-to-back transmission
and/or reception of multiple DMA work units. The SPI controller sup-
ports such a sequence with minimal core interaction.

Slave Mode DMA Operation
When enabled as a slave with the DMA engine configured to transmit or
receive data, the start of a transfer is triggered by a transition of the SPISS

signal to the active-low state or by the first active edge of SCK, depending
on the state of CPHA.

The following steps illustrate the SPI receive or transmit DMA sequence
in an SPI slave (in response to a master command).

1. The core writes to the appropriate port register(s) to properly con-
figure the SPI for slave mode operation.

2. The processor core writes to the appropriate DMA registers to
enable the SPI DMA channel and configure the necessary work
units, access direction, word count, and so on. For more informa-
tion, see the Direct Memory Access chapter.

3. The processor core writes to the SPI_CTL register to define the
mode of the serial link to be the same as the mode set up in the SPI
master. The TIMOD field will be configured to select either “receive
with DMA” (TIMOD = b#10) or “transmit with DMA”
(TIMOD = b#11) mode.

Programming Model

18-28 ADSP-BF50x Blackfin Processor Hardware Reference

4. If configured for receive, once the slave select input is active, the
slave starts receiving and transmitting data on SCK edges. The value
in the shift register is loaded into the SPI_RDBR register at the end
of the transfer. As the SPI reads data from the SPI_RDBR register
and writes to the SPI DMA FIFO, it requests a DMA write to
memory. Upon a DMA grant, the DMA engine reads a word from
the SPI DMA FIFO and writes to memory.

If configured for transmit, the SPI requests a DMA read from
memory. Upon a DMA grant, the DMA engine reads a word from
memory and writes to the SPI DMA FIFO. The SPI then reads
data from the SPI DMA FIFO and writes to the SPI_TDBR register,
awaiting the start of the next transfer. Once the slave select input is
active, the slave starts receiving and transmitting data on SCK edges.
The value in the SPI_TDBR register is loaded into the shift register at
the start of the transfer.

5. In receive mode, as long as there is data in the SPI DMA FIFO
(FIFO not empty), the SPI slave continues to request a DMA write
to memory. The DMA engine continues to read a word from the
SPI DMA FIFO and writes to memory until the SPI DMA word
count register transitions from “1” to “0”. The SPI slave continues
receiving words on SCK edges as long as the slave select input is
active.

In transmit mode, as long as there is room in the SPI DMA FIFO
(FIFO not full), the SPI slave continues to request a DMA read
from memory. The DMA engine continues to read a word from
memory and write to the SPI DMA FIFO until the SPI DMA word
count register transitions from “1” to “0”. The SPI slave continues
transmitting words on SCK edges as long as the slave select input is
active.

See Figure 18-9 on page 18-31 for additional information.

ADSP-BF50x Blackfin Processor Hardware Reference 18-29

SPI-Compatible Port Controller

For receive DMA operations, if the DMA engine is unable to keep up with
the receive datastream, the receive buffer operates according to the state of
the GM bit in the SPI_CTL register. If GM = 1 and the DMA FIFO is full, the
device continues to receive new data from the MOSI pin, overwriting the
older data in the SPI_RDBR register. If GM = 0 and the DMA FIFO is full,
the incoming data is discarded, and the SPI_RDBR register is not updated.
While performing receive DMA, the transmit buffer is assumed to be
empty and TXE is set. If SZ = 1, the device repeatedly transmits zeros on
the MISO pin. If SZ = 0, it repeatedly transmits the contents of the
SPI_TDBR register. The TXE underrun condition cannot generate an error
interrupt in this mode.

For transmit DMA operations, if the DMA engine is unable to keep up
with the transmit stream, the transmit port operates according to the state
of the SZ bit. If SZ = 1 and the DMA FIFO is empty, the device repeatedly
transmits zeros on the MISO pin. If SZ = 0 and the DMA FIFO is empty, it
repeatedly transmits the last word it transmitted before the DMA buffer
became empty. All aspects of SPI receive operation should be ignored
when configured in transmit DMA mode, including the data in the
SPI_RDBR register, and the status of the RXS and RBSY bits. The RBSY over-
run conditions cannot generate an error interrupt in this mode.

Writes to the SPI_TDBR register during an active SPI transmit DMA opera-
tion should not occur because the DMA data will be overwritten. Writes
to the SPI_TDBR register during an active SPI receive DMA operation are
allowed. Reads from the SPI_RDBR register are allowed at any time.

DMA requests are generated when the DMA FIFO is not empty (when
TIMOD = b#10), or when the DMA FIFO is not full (when TIMOD = b#11).

Error interrupts are generated when there is an RBSY overflow error condi-
tion (when TIMOD = b#10), or when there is a TXE underflow error
condition (when TIMOD = b#11).

Programming Model

18-30 ADSP-BF50x Blackfin Processor Hardware Reference

Figure 18-8. Core-Driven SPI Flow Chart

MASTER OR SLAVE?

CPHA = 1
AND

MSTR = 1

TIMOD = 00

MASTER

SLAVE, MSTR = 0N

MULTISLAVE
SUPPORT?

Y

WRITE SPI_FLG TO SET APPROPRIATE FLSx BITS

WRITE SPI_BAUD TO SET DESIRED SPI BIT RATE

MSTR = 1

WRITE SPI_CTL TO CONFIGURE SPI HARDWARE AND ENABLE SPI PORT

Y

N

WRITE SPI_FLG
TO SELECT SLAVE(S)

USING FLGx BITS

WRITE SPI_TBDR WITH DATA TO SEND OVER SPI

Y

N

READ SPI_RDBR
TO START
TRANSFER

WAIT FOR TRANSFER COMPLETE

LAST TRANSFER?
Y

N

TIMOD = 01
Y

N

READ NEW DATA
FROM SPI_RDBR

CPHA = 1
AND

MSTR = 1

N

Y
WRITE SPI_FLG
TO DESELECT

SLAVE(S) USING
FLGx BITS

WRITE SPI_CTL TO DISABLE SPI PORT

WRITE TO PORT REGISTERS TO ENABLE
AND SELECT THE APPROPRIATE SLAVE

SELECT SIGNALS.

WRITE TO PORT REGISTERS TO ENABLE SPI
SIGNALS AND SELECT THE REQUIRED SIGNALS.

ADSP-BF50x Blackfin Processor Hardware Reference 18-31

SPI-Compatible Port Controller

Figure 18-9. SPI DMA Flow Chart (Part 1 of 3)

WRITE DESIRED DMA CHANNEL'S
DMA_PERIPHERAL_MAP TO SET AS SPI.

(REPLACE ALL MENTION OF DMA7 REGISTER NAMES
IN THIS FLOW CHART WITH CHOSEN DMAx PREFIX.)

DMA7_CONFIG
FLOW = ?

WRITE DMA7_CONFIG TO CONFIGURE DMA ENGINE

0x4 ARRAY
0x6 SMALL LIST
0x7 LARGE LIST

0x0 STOP
0x1 AUTOBUFFER

POPULATE
DESCRIPTORS

IN MEMORY

WRITE DMA REGISTERS:
DMA7_START_ADDR

DMA7_X_COUNT
DMA7_X_MODIFY

DMA7_CONFIG'S NDSIZE FIELD DETERMINES
WHICH DMA REGISTERS TO INITIALIZE STATICALLY

DMA7_CONFIG
FLOW = ?

0x6 SMALL LIST
0x7 LARGE LIST

0x4 ARRAY

SET
DMA7_CURR_DESC_PTR

TO ADDRESS OF
FIRST DESCRIPTOR

SET
DMA7_NEXT_DESC_PTR

TO ADDRESS OF
FIRST DESCRIPTOR

A

WRITE TO PORT REGISTERS TO ENABLE SPI
SIGNALS AND SELECT THE REQUIRED SIGNALS.

Programming Model

18-32 ADSP-BF50x Blackfin Processor Hardware Reference

Figure 18-10. SPI DMA Flow Chart (Part 2 of 3)

2D DMA?

IS SPI MASTER
OR SLAVE?

Y

N

WRITE DMA REGISTERS:
DMA7_Y_COUNT
DMA7_Y_MODIFY

MASTER

MULTI-SLAVE
SUPPORT?

N

A

SLAVE,
MSTR = 0

Y

WRITE SPI_FLG TO SET APPROPRIATE FLSx BITS

WRITE SPI_BAUD TO SET DESIRED SPI BIT RATE

MSTR = 1

WRITE SPI_CTL TO CONFIGURE SPI PORT

CPHA = 1
AND

MSTR = 1

Y

N

WRITE SPI_FLG
TO SELECT SLAVE(S)

USING FLGx BITS

WRITE DMA7_CONFIG TO ENABLE DMA

WRITE SPI_CTL TO ENABLE SPI

B

WRITE TO PORT
REGISTERS

TO ENABLE SLAVES

ADSP-BF50x Blackfin Processor Hardware Reference 18-33

SPI-Compatible Port Controller

Figure 18-11. SPI DMA Flow Chart (Part 3 of 3)

INTERRUPT
REQUESTED?

TERMINATE DMA?

Y

N

CLEAR INTERRUPT BY
WRITING THE DMA_DONE
BIT IN DMA7_IRQ_STATUS

N

TX OR RX DMA?

TX

B

Y

N

WRITE DMA7_CONFIG
TO ENABLE DMA

AGAIN

WAIT FOR DMA_RUN = 0 IN DMA7_IRQ_STATUS

WAIT FOR TWO STRAIGHT READS
OF TXS = 0 IN SPI_STAT

WAIT FOR SPIF = 1 IN SPI_STAT

CPHA = 1
AND

MSTR = 1

Y

N

WRITE SPI_FLG TO
DESELECT SLAVE(S)

VIA FLGx BITS

WRITE SPI_CTL TO DISABLE SPI PORT

WRITE DMA7_CONFIG TO DISABLE DMA

FLOW = STOP

Y

RX

SPI Registers

18-34 ADSP-BF50x Blackfin Processor Hardware Reference

SPI Registers
The SPI peripheral includes a number of user-accessible registers. Some of
these registers are also accessible through the DMA bus. Four registers
contain control and status information: SPI_BAUD, SPI_CTL, SPI_FLG, and
SPI_STAT. Two registers are used for buffering receive and transmit data:
SPI_RDBR and SPI_TDBR. The shift register, SFDR, is internal to the SPI
module and is not directly accessible.

Table 18-3 shows the functions of the SPI registers. Figure 18-12 through
Figure 18-18 provide details.

Table 18-3. SPI Register Mapping

Register Name Function Notes

SPI_BAUD SPI port
baud control

Value of “0” or “1” disables the serial clock

SPI_CTL SPI port
control

SPE and MSTR bits can also be modified by hardware
(when MODF is set)

SPI_FLG SPI port
flag

Bits 0 and 8 are reserved

SPI_STAT SPI port
status

SPIF bit can be set by clearing SPE in SPI_CTL

SPI_TDBR SPI port
transmit data buffer

Register contents can also be modified by hardware (by
DMA and/or when SZ = 1 in SPI_CTL)

SPI_RDBR SPI port
receive data buffer

When register is read, hardware events can be triggered

SPI_SHADOW SPI port
data

Register has the same contents as SPI_RDBR, but no
action is taken when it is read

ADSP-BF50x Blackfin Processor Hardware Reference 18-35

SPI-Compatible Port Controller

SPI Baud Rate (SPI_BAUD) Register
The SPI_BAUD register is used to set the bit transfer rate for a master
device. When configured as a slave, the value written to this register is
ignored. The serial clock frequency is determined by this formula:

SCK frequency = (peripheral clock frequency SCLK)/(2 × SPI_BAUD)

Writing a value of “0” or “1” to the register disables the serial clock.
Therefore, the maximum serial clock rate is one-fourth the system clock
rate.

Table 18-4 lists several possible baud rate values for SPI_BAUD.

Table 18-4. SPI Master Baud Rate Example

SPI_BAUD Decimal Value SPI Clock (SCK) Divide
Factor

Baud Rate for
SCLK at 100 MHz

0 N/A N/A

1 N/A N/A

2 4 25 MHz

3 6 16.7 MHz

4 8 12.5 MHz

65,535 (0xFFFF) 131,070 763 Hz

Figure 18-12. SPI Baud Rate Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Baud Rate[15:0]
SCLK/(2  SPI_BAUD)

Reset = 0x0000

SPI Baud Rate Register (SPI_BAUD)

SPI Registers

18-36 ADSP-BF50x Blackfin Processor Hardware Reference

SPI Control (SPI_CTL) Register
The SPI_CTL register is used to configure and enable the SPI system. This
register is used to enable the SPI interface, select the device as a master or
slave, and determine the data transfer format and word size.

The term “word” refers to a single data transfer of either 8 bits or 16 bits,
depending on the word length (SIZE) bit in SPI_CTL. There are two special
bits which can also be modified by the hardware: SPE and MSTR.

The TIMOD field is used to specify the action that initiates transfers to/from
the receive/transmit buffers. When set to b#00, a SPI port transaction is
begun when the receive buffer is read. Data from the first read will need to
be discarded since the read is needed to initiate the first SPI port transac-
tion. When set to b#01, the transaction is initiated when the transmit
buffer is written. A value of b#10 selects DMA receive mode and the first
transaction is initiated by enabling the SPI for DMA receive mode. Subse-
quent individual transactions are initiated by a DMA read of the SPI_RDBR

register. A value of 11 selects DMA transmit mode and the transaction is
initiated by a DMA write of the SPI_TDBR register.

The PSSE bit is used to enable the SPISS input for an external master.
When not used, SPISS can be disabled, freeing up a pin for an alternate
function.

The EMISO bit enables the MISO pin as an output. This is needed in an
environment where the master wishes to transmit to various slaves at one
time (broadcast). Only one slave is allowed to transmit data back to the
master. Except for the slave from whom the master wishes to receive, all
other slaves should have this bit cleared.

The SPE and MSTR bits can be modified by hardware when the MODF bit of
the SPI_STAT register is set. See “Mode Fault Error (MODF)” on
page 18-41.

ADSP-BF50x Blackfin Processor Hardware Reference 18-37

SPI-Compatible Port Controller

Figure 18-13 provides the bit descriptions for SPI_CTL.

Figure 18-13. SPI Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 1 0 0 0 0 0 0 0 0 00

TIMOD[1:0] (Transfer Initiation
Mode)
00 - Start transfer with read of

SPI_RDBR, interrupt when
SPI_RDBR is full

01 - Start transfer with write of
SPI_TDBR, interrupt when
SPI_TDBR is empty

10 - Start transfer with DMA read
of SPI_RDBR, request further
DMA reads as long as SPI DMA
FIFO is not empty

11 - Start transfer with DMA write
of SPI_TDBR, request further
DMA writes as long as SPI DMA
FIFO is not full

SZ (Send Zero)
Send zero or last word when
SPI_TDBR is empty
0 - Send last word
1 - Send zeros

GM (Get More Data)
When SPI_RDBR is full, get
data or discard incoming data
0 - Discard incoming data
1 - Get more data, overwrite

previous data

PSSE (Slave Select Enable)
0 - Disable
1 - Enable

EMISO (Enable MISO)
0 - MISO disabled
1 - MISO enabled

Reset = 0x0400

SPE (SPI Enable)
0 - Disabled
1 - Enabled

WOM (Write Open Drain
Master)
0 - Normal
1 - Open drain

MSTR (Master)
Sets the SPI module as
master or slave
0 - Slave
1 - Master

CPOL (Clock Polarity)
0 - Active high SCK
1 - Active low SCK

CPHA (Clock Phase)
Selects transfer format and
operation mode
0 - SCK toggles from middle

of the first data bit, slave select
pins controlled by hardware

1 - SCK toggles from beginning
of first data bit, slave select
pins controlled by software

LSBF (LSB First)
0 - MSB sent/received first
1 - LSB sent/received first

SIZE (Size of Words)
0 - 8 bits
1 - 16 bits

SPI Control Register (SPI_CTL)

SPI Registers

18-38 ADSP-BF50x Blackfin Processor Hardware Reference

SPI Flag (SPI_FLG) Register
The SPI_FLG register consists of two sets of bits that function as follows.

• Slave select enable (FLSx) bits

Each FLSx bit corresponds to a general purpose port pin. When an
FLSx bit is set, the corresponding port pin is driven as a slave select.
For example, if FLS1 is set in SPI_FLG, the port pin corresponding
to SPISSEL1 is driven as a slave select.

Figure 18-14. SPI Flag Register (example with 7 slave selects)

Reset = 0xFF00

FLS1 (Slave Select Enable 1)
0 - SPISSEL1 disabled
1 - SPISSEL1 enabled

FLS2 (Slave Select Enable 2)
0 - SPISSEL2 disabled
1 - SPISSEL2 enabled

FLS3 (Slave Select Enable 3)
0 - SPISSEL3 disabled
1 - SPISSEL3 enabled

FLS4 (Slave Select Enable 4)
0 - SPISSEL4 disabled
1 - SPISSEL4 enabled

FLS5 (Slave Select Enable 5)
0 - SPISSEL5 disabled
1 - SPISSEL5 enabled

FLS6 (Slave Select Enable 6)
0 - SPISSEL6 disabled
1 - SPISSEL6 enabled

FLS7 (Slave Select Enable 7)
0 - SPISSEL7 disabled
1 - SPISSEL7 enabled

FLG7 (Slave
Select Value 7)
SPISSEL7 value

FLG6 (Slave Select
Value 6)
SPISSEL6 value

FLG5 (Slave Select
Value 5)
SPISSEL5 value

FLG4 (Slave Select
Value 4)

SPISSEL4 value

FLG3 (Slave Select Value 3)
SPISSEL3 value

FLG2 (Slave Select Value 2)
SPISSEL2 value

FLG1 (Slave Select Value 1)
SPISSEL1 value

SPI Flag Register (SPI_FLG)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

01 1 1 1 1 1 1 1 0 0 0 0 0 0 0

(shown for an SPI instance with seven slave selects)

ADSP-BF50x Blackfin Processor Hardware Reference 18-39

SPI-Compatible Port Controller

If the FLSx bit is not set, the general-purpose port registers configure and
control the corresponding port pins.

• Slave select value (FLGx) bits

When a port pin is configured as a slave select output, the FLGx bits
can determine the value driven onto the output. If the CPHA bit in
SPI_CTL is set, the output value is set by software control of the
FLGx bits. The SPI protocol permits the slave select line to either
remain asserted (low) or be deasserted between transferred words.
The user must set or clear the appropriate FLGx bits. For example,
setting FLS3 in the SPI_FLG register drives the SPISSEL3 pin as a
slave select. Then, clearing FLG3 in the SPI_FLG register drives the
pin low, and setting FLG3 drives it high. The pin can be cycled high
and low between transfers by setting and clearing FLG3. Otherwise,
the pin remains active (low) between transfers.

If CPHA = 0, the SPI hardware sets the output value and the FLGx

bits are ignored. The SPI protocol requires that the slave select be
deasserted between transferred words. In this case, the SPI hard-
ware controls the pins. For example, to use the slave select function
on a port pin to which it is mapped, it is only necessary to set the
appropriate FLS bit in SPI_FLG. It is not necessary to write to an FLG

bit, because the SPI hardware automatically drives the port pin.

SPI Registers

18-40 ADSP-BF50x Blackfin Processor Hardware Reference

SPI Status (SPI_STAT) Register
The SPI_STAT register is used to detect when an SPI transfer is complete
or if transmission/reception errors occur. The SPI_STAT register can be
read at any time.

Some of the bits in SPI_STAT are read-only and other bits are sticky. Bits
that provide information only about the SPI are read-only. These bits are
set and cleared by the hardware. Sticky bits are set when an error condi-
tion occurs. These bits are set by hardware and must be cleared by
software. To clear a sticky bit, the user must write a “1” to the desired bit
position of SPI_STAT. For example, if the TXE bit is set, the user must write
a “1” to bit 2 of SPI_STAT to clear the TXE error condition. This allows the
user to read SPI_STAT without changing its value.

 Sticky bits are cleared on a reset, but are not cleared on an SPI
disable.

See Figure 18-15 for more information.

Figure 18-15. SPI Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0001

SPIF (SPI Finished) - RO
Set when SPI single word
transfer complete

MODF (Mode Fault Error) - W1C
Set in a master device when
some other device tries to
become the master

TXE (Transmission Error) - W1C
Set when transmission
occurred with no new data in
SPI_TDBR

SPI Status Register (SPI_STAT)

TXCOL (Transmit Collision Error) - W1C
When set, corrupt data may
have been transmitted

RXS (RX Data Buffer Status) - RO
0 - Empty
1 - Full

RBSY (Receive Error) - W1C
Set when data is received with
receive buffer full

TXS (SPI_TDBR Data Buffer Status) - RO
0 - Empty
1 - Full

ADSP-BF50x Blackfin Processor Hardware Reference 18-41

SPI-Compatible Port Controller

Mode Fault Error (MODF)

The MODF bit is set in SPI_STAT when the SPISS input pin of a device
enabled as a master is driven low by some other device in the system. This
occurs in multimaster systems when another device is also trying to be the
master. To enable this feature, the PSSE bit in SPI_CTL must be set. This
contention between two drivers can potentially damage the driving pins.
As soon as this error is detected, these actions occur:

• The MSTR control bit in SPI_CTL is cleared, configuring the SPI
interface as a slave

• The SPE control bit in SPI_CTL is cleared, disabling the SPI system

• The MODF status bit in SPI_STAT is set

• An SPI error interrupt is generated

These four conditions persist until the MODF bit is cleared by software.
Until the MODF bit is cleared, the SPI cannot be re-enabled, even as a slave.
Hardware prevents the user from setting either SPE or MSTR while MODF is
set.

When MODF is cleared, the interrupt is deactivated. Before attempting to
re-enable the SPI as a master, the state of the SPISS input pin should be
checked to make sure the pin is high. Otherwise, once SPE and MSTR are
set, another mode fault error condition immediately occurs.

When SPE and MSTR are cleared, the SPI data and clock pin drivers (MOSI,
MISO, and SCK) are disabled. However, the slave select output pins revert to
being controlled by the general-purpose I/O port registers. This could lead
to contention on the slave select lines if these lines are still driven by the
processor. To ensure that the slave select output drivers are disabled once
an MODF error occurs, the program must configure the general-purpose I/O
port registers appropriately.

When enabling the MODF feature, the program must configure as inputs all
of the port pins that will be used as slave selects. Programs can do this by

SPI Registers

18-42 ADSP-BF50x Blackfin Processor Hardware Reference

configuring the direction of the port pins prior to configuring the SPI.
This ensures that, once the MODF error occurs and the slave selects are auto-
matically reconfigured as port pins, the slave select output drivers are
disabled.

Transmission Error (TXE)

The TXE bit is set in SPI_STAT when all the conditions of transmission are
met, and there is no new data in SPI_TDBR (SPI_TDBR is empty). In this
case, the contents of the transmission depend on the state of the SZ bit in
SPI_CTL. The TXE bit is sticky (W1C).

Reception Error (RBSY)

The RBSY flag is set in the SPI_STAT register when a new transfer is com-
pleted, but before the previous data can be read from SPI_RDBR. The state
of the GM bit in the SPI_CTL register determines whether SPI_RDBR is
updated with the newly received data. The RBSY bit is sticky (W1C).

Transmit Collision Error (TXCOL)

The TXCOL flag is set in SPI_STAT when a write to SPI_TDBR coincides with
the load of the shift register. The write to SPI_TDBR can be by software or
the DMA. The TXCOL bit indicates that corrupt data may have been loaded
into the shift register and transmitted. In this case, the data in SPI_TDBR

may not match what was transmitted. This error can easily be avoided by
proper software control. The TXCOL bit is sticky (W1C).

SPI Transmit Data Buffer (SPI_TDBR) Register
The SPI_TDBR register is a 16-bit read-write register. Data is loaded into
this register before being transmitted. Just prior to the beginning of a data
transfer, the data in SPI_TDBR is loaded into the internal shift register
SFDR. A read of SPI_TDBR can occur at any time and does not interfere with
or initiate SPI transfers.

ADSP-BF50x Blackfin Processor Hardware Reference 18-43

SPI-Compatible Port Controller

When the DMA is enabled for transmit operation, the DMA engine loads
data into this register for transmission just prior to the beginning of a data
transfer. A write to SPI_TDBR should not occur in this mode because this
data will overwrite the DMA data to be transmitted.

When the DMA is enabled for receive operation, the contents of SPI_TDBR
are repeatedly transmitted. A write to SPI_TDBR is permitted in this mode,
and this data is transmitted.

If the SZ control bit in the SPI_CTL register is set, SPI_TDBR may be reset to
zero under certain circumstances.

If multiple writes to SPI_TDBR occur while a transfer is already in progress,
only the last data written is transmitted. None of the intermediate values
written to SPI_TDBR are transmitted. Multiple writes to SPI_TDBR are pos-
sible, but not recommended.

SPI Receive Data Buffer (SPI_RDBR) Register
The SPI_RDBR register is a 16-bit read-only register. At the end of a data
transfer, the data in the shift register is loaded into SPI_RDBR. During a
DMA receive operation, the data in SPI_RDBR is automatically read by the
DMA controller. When SPI_RDBR is read by software, the RXS bit in the

Figure 18-16. SPI Transmit Data Buffer Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

Transmit Data Buffer[15:0]

SPI Transmit Data Buffer Register (SPI_TDBR)

SPI Registers

18-44 ADSP-BF50x Blackfin Processor Hardware Reference

SPI_STAT register is cleared and an SPI transfer may be initiated (if
TIMOD = b#00).

SPI RDBR Shadow (SPI_SHADOW) Register
The SPI_SHADOW register is provided for use in debugging software.
This register is at a different address than the receive data buffer,
SPI_RDBR, but its contents are identical to that of SPI_RDBR. When a
software read of SPI_RDBR occurs, the RXS bit in SPI_STAT is cleared
and an SPI transfer may be initiated (if TIMOD = b#00 in SPI_CTL). No
such hardware action occurs when the SPI_SHADOW register is read.
The SPI_SHADOW register is read-only.

Figure 18-17. SPI Receive Data Buffer Register

Figure 18-18. SPI RDBR Shadow Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

Receive Data Buffer[15:0]

SPI Receive Data Buffer Register (SPI_RDBR)
Read Only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

SPI_RDBR Shadow[15:0]

SPI RDBR Shadow Register (SPI_SHADOW)
Read Only

Reset = 0x0000

ADSP-BF50x Blackfin Processor Hardware Reference 18-45

SPI-Compatible Port Controller

Programming Examples
This section includes examples (Listing 18-1 through Listing 18-8) for
both core-generated and DMA-based transfers. Each code example
assumes that the appropriate processor header files are included.

Core-Generated Transfer
The following core-driven master-mode SPI example shows how to initial-
ize the hardware, signal the start of a transfer, handle the interrupt and
issue the next transfer, and generate a stop condition.

Initialization Sequence

Before the SPI can transfer data, the registers must be configured as
follows.

Listing 18-1. SPI Register Initialization

SPI_Register_Initialization:

P0.H = hi(SPI_FLG);

P0.L = lo(SPI_FLG);

R0 = W[P0] (Z);

BITSET (R0,0x7); /* FLS7 */

W[P0] = R0; /* Enable slave-select output pin */

P0.H = hi(SPI_BAUD);

P0.L = lo(SPI_BAUD);

R0.L = 0x208E; /* Write to SPI Baud rate register */

W[P0] = R0.L; ssync; /* If SCLK = 133 MHz, SPI clock ~= 8 kHz

*/

/* Setup SPI Control Register */

/***

Programming Examples

18-46 ADSP-BF50x Blackfin Processor Hardware Reference

* TIMOD [1:0] = 00 : Transfer On RDBR Read.

* SZ [2] = 0 : Send Last Word When TDBR Is Empty

* GM [3] = 1 : Overwrite Previous Data If RDBR Is Full

* PSSE [4] = 0 : Disables Slave-Select As Input (Master)

* EMISO [5] = 0 : MISO Disabled For Output (Master)

* [7] and [6] = 0 : RESERVED

* SIZE [8] = 1 : 16 Bit Word Length Select

* LSBF [9] = 0 : Transmit MSB First

* CPHA [10] = 0 : Hardware Controls Slave-Select Outputs

* CPOL [11] = 1 : Active LOW Serial Clock

* MSTR [12] = 1 : Device Is Master

* WOM [13] = 0 : Normal MOSI/MISO Data Output (No Open Drain)

* SPE [14] = 1 : SPI Module Is Enabled

* [15] = 0 : RESERVED

***/

P0.H = hi(SPI_CTL) ;

P0.L = lo(SPI_CTL) ;

R0 = 0x5908;

W[P0] = R0.L; ssync; /* Enable SPI as MASTER */

Starting a Transfer

After the initialization procedure in the given master mode, a transfer
begins following a dummy read of SPI_RDBR. Typically, known data which
is desired to be transmitted to the slave is preloaded into the SPI_TDBR. In
the following code, P1 is assumed to point to the start of the 16-bit trans-
mit data buffer and P2 is assumed to point to the start of the 16-bit receive
data buffer. In addition, the user must ensure appropriate interrupts are
enabled for SPI operation.

ADSP-BF50x Blackfin Processor Hardware Reference 18-47

SPI-Compatible Port Controller

Listing 18-2. Initiate Transfer

Initiate_Transfer:

P0.H = hi(SPI_FLG);

P0.L = lo(SPI_FLG);

R0 = W[P0] (Z);

BITCLR (R0,0xF); /* FLG7 */

W[P0] = R0; /* Drive 0 on enabled slave-select pin */

P0.H = hi(SPI_TDBR); /* SPI Transmit Register */

P0.L = lo(SPI_TDBR);

R0 = W[P1++] (z); /* Get First Data To Be Transmitted

And Increment Pointer */

W[P0] = R0; /* Write to SPI_TDBR */

P0.H = hi(SPI_RDBR);

P0.L = lo(SPI_RDBR);

R0 = W[P0] (z); /* Dummy read of SPI_RDBR kicks off transfer */

Post Transfer and Next Transfer

Following the transfer of data, the SPI generates an interrupt, which is ser-
viced if the interrupt is enabled during initialization. In the interrupt
routine, software must write the next value to be transmitted prior to
reading the byte received. This is because a read of the SPI_RDBR initiates
the next transfer.

Listing 18-3. SPI Interrupt Handler

SPI_Interrupt_Handler:

Process_SPI_Sample:

P0.H = hi(SPI_TDBR); /* SPI transmit register */

P0.L = lo(SPI_TDBR);

R0 = W[P1++](z); /* Get next data to be transmitted */

Programming Examples

18-48 ADSP-BF50x Blackfin Processor Hardware Reference

W[P0] = R0.l; /* Write that data to SPI_TDBR */

Kick_Off_Next:

P0.H = hi(SPI_RDBR); /* SPI receive register */

P0.L = lo(SPI_RDBR);

R0 = W[P0] (z); /* Read SPI receive register (also kicks off

next transfer) */

W[P2++] = R0; /* Store received data to memory */

RTI; /* Exit interrupt handler */

Stopping

In order for a data transfer to end after the user has transferred all data,
the following code can be used to stop the SPI. Note that this is typically
done in the interrupt handler to ensure the final data has been sent in its
entirety.

Listing 18-4. Stopping SPI

Stopping_SPI:

P0.H = hi(SPI_CTL);

P0.L = lo(SPI_CTL);

R0 = W[P0];

BITCLR(R0, 14); /* Clear SPI enable bit */

W[P0] = R0.L; ssync; /* Disable SPI */

DMA-Based Transfer
The following DMA-driven master-mode SPI autobuffer example shows
how to initialize DMA, initialize SPI, signal the start of a transfer, and
generate a stop condition.

ADSP-BF50x Blackfin Processor Hardware Reference 18-49

SPI-Compatible Port Controller

DMA Initialization Sequence

The following code initializes the DMA to perform a 16-bit memory read
DMA operation in autobuffer mode, and generates an interrupt request
when the buffer has been sent. This code assumes that P1 points to the
start of the data buffer to be transmitted and that NUM_SAMPLES is a defined
macro indicating the number of elements being sent.

Listing 18-5. DMA Initialization

Initialize_DMA: /* Assume DMA7 as the channel for SPI DMA */

P0.H = hi(DMA7_CONFIG);

P0.L = lo(DMA7_CONFIG);

R0 = 0x1084(z); /* Autobuffer mode, IRQ on complete, linear

16-bit, mem read */

w[P0] = R0;

P0.H = hi(DMA7_START_ADDR);

P0.L = lo(DMA7_START_ADDR);

[p0] = p1; /* Start address of TX buffer */

P0.H = hi(DMA7_X_COUNT);

P0.L = lo(DMA7_X_COUNT);

R0 = NUM_SAMPLES;

w[p0] = R0; /* Number of samples to transfer */

R0 = 2;

P0.H = hi(DMA7_X_MODIFY);

P0.L = lo(DMA7_X_MODIFY);

w[p0] = R0; /* 2 byte stride for 16-bit words */

R0 = 1; /* single dimension DMA means 1 row */

P0.H = hi(DMA7_Y_COUNT);

P0.L = lo(DMA7_Y_COUNT);

w[p0] = R0;

Programming Examples

18-50 ADSP-BF50x Blackfin Processor Hardware Reference

SPI Initialization Sequence

Before the SPI can transfer data, the registers must be configured as
follows.

Listing 18-6. SPI Initialization

SPI_Register_Initialization:

P0.H = hi(SPI_FLG);

P0.L = lo(SPI_FLG);

R0 = W[P0] (Z);

BITSET (R0,0x7); /* FLS7 */

W[P0] = R0; /* Enable slave-select output pin */

P1.H = hi(SPI_BAUD);

P1.L = lo(SPI_BAUD);

R0.L = 0x208E; /* Write to SPI baud rate register */

W[P0] = R0.L; ssync; /* If SCLK = 133MHz, SPI clock ~= 8kHz */

/* Setup SPI Control Register */

/***

* TIMOD [1:0] = 11 : Transfer on DMA TDBR write

* SZ [2] = 0 : Send last word when TDBR is empty

* GM [3] = 1 : Discard incoming data if RDBR is full

* PSSE [4] = 0 : Disables slave-select as input (master)

* EMISO [5] = 0 : MISO disabled for output (master)

* [7] and [6] = 0 : RESERVED

* SIZE [8] = 1 : 16 Bit word length select

* LSBF [9] = 0 : Transmit MSB first

* CPHA [10] = 0 : Hardware Controls Slave-Select Outputs

* CPOL [11] = 1 : Active LOW serial clock

* MSTR [12] = 1 : Device is master

* WOM [13] = 0 : Normal MOSI/MISO data output (no open

drain)

* SPE [14] = 0 : SPI module is disabled

ADSP-BF50x Blackfin Processor Hardware Reference 18-51

SPI-Compatible Port Controller

* [15] = 0 : RESERVED

***/

/* Configure SPI as MASTER */

R1 = 0x190B(z); /* Leave disabled until DMA is enabled */

P1.L = lo(SPI_CTL);

W[P1] = R1; ssync;

Starting a Transfer

After the initialization procedure in the given master mode, a transfer
begins following enabling of SPI. However, the DMA must be enabled
before enabling the SPI.

Listing 18-7. Starting a Transfer

Initiate_Transfer:

P0.H = hi(DMA7_CONFIG);

P0.L = lo(DMA7_CONFIG);

R2 = w[P0](z);

BITSET (R2, 0); /*Set DMA enable bit */

w[p0] = R2.L; /* Enable TX DMA */

P4.H = hi(SPI_CTL);

P4.L = lo(SPI_CTL);

R2=w[p4](z);

BITSET (R2, 14); /* Set SPI enable bit */

w[p4] = R2; /* Enable SPI */

Stopping a Transfer

In order for a data transfer to end after the DMA has transferred all
required data, the following code is executed in the SPI DMA interrupt
handler. The example code below clears the DMA interrupt, then waits
for the DMA engine to stop running. When the DMA engine has
completed, SPI_STAT is polled to determine when the transmit buffer is

Programming Examples

18-52 ADSP-BF50x Blackfin Processor Hardware Reference

empty. If there is data in the SPI Transmit FIFO, it is loaded as soon as
the TXS bit clears. A second consecutive read with the TXS bit clear indi-
cates the FIFO is empty and the last word is in the shift register. Finally,
polling for the SPIF bit determines when the last bit of the last word has
been shifted out. At that point, it is safe to shut down the SPI port and the
DMA engine.

Listing 18-8. Stopping a Transfer

SPI_DMA_INTERRUPT_HANDLER:

P0.L = lo(DMA7_IRQ_STATUS);

P0.H = hi(DMA7_IRQ_STATUS);

R0 = 1 ;

W[P0] = R0 ; /* Clear DMA interrupt */

/* Wait for DMA to complete */

P0.L = lo(DMA7_IRQ_STATUS);

P0.H = hi(DMA7_IRQ_STATUS);

R0 = DMA_RUN; /* 0x08 */

CHECK_DMA_COMPLETE: /* Poll for DMA_RUN bit to clear */

R3 = W[P0] (Z);

R1 = R3 & R0;

CC = R1 == 0;

IF !CC JUMP CHECK_DMA_COMPLETE;

/* Wait for TXS to clear */

P0.L = lo(SPI_STAT);

P0.H = hi(SPI_STAT);

R1 = TXS; /* 0x08 */

Check_TXS: /* Poll for TXS = 0 */

R2 = W[P0] (Z);

R2 = R2 & R1;

ADSP-BF50x Blackfin Processor Hardware Reference 18-53

SPI-Compatible Port Controller

CC = R0 == 0;

IF !CC JUMP Check_TXS;

R2 = W[P0] (Z); /* Check if TXS stays clear for 2 reads */

R2 = R2 & R1;

CC = R0 == 0;

IF !CC JUMP Check_TXS;

/* Wait for final word to transmit from SPI */

Final_Word:

R0 = W[P0](Z);

R2 = SPIF; /* 0x01 */

R0 = R0 & R2;

CC = R0 == 0;

IF CC JUMP Final_Word;

Disable_SPI:

P0.L = lo(SPI_CTL);

P0.H = hi(SPI_CTL);

R0 = W[P0] (Z);

BITCLR (R0,0xe); /* Clear SPI enable bit */

W[P0] = R0; /* Disable SPI */

Disable_DMA:

P0.L = lo(DMA7_CONFIG);

P0.H = hi(DMA7_CONFIG);

R0 = W[P0](Z);

BITCLR (R0,0x0); /* Clear DMA enable bit */

W[P0] = R0; /* Disable DMA */

RTI; /* Exit Handler */

Unique Information for the ADSP-BF50x Processor

18-54 ADSP-BF50x Blackfin Processor Hardware Reference

Unique Information for the ADSP-BF50x
Processor

None.

ADSP-BF50x Blackfin Processor Hardware Reference 19-1

19 SPORT CONTROLLER

This chapter describes the synchronous serial peripheral port (SPORT).
Following an overview and a list of key features is a description of opera-
tion and functional modes of operation. The chapter concludes with a
programming model, consolidated register definitions, and programming
examples.

Specific Information for the ADSP-BF50x
For details regarding the number of SPORTs for the ADSP-BF50x prod-
uct, refer to ADSP-BF504, ADSP-BF504F, ADSP-BF506F Embedded
Processor Data Sheet.

For SPORT DMA channel assignments, refer to Table 7-7 on page 7-105
in Chapter 7, “Direct Memory Access”.

For SPORT interrupt vector assignments, refer to Table 4-3 on page 4-19
in Chapter 4, “System Interrupts”.

To determine how each of the SPORTs is multiplexed with other func-
tional pins, refer to Table 9-1 on page 9-4 through Table 9-3 on page 9-6
in Chapter 9, “General-Purpose Ports”.

For a list of MMR addresses for each SPORT, refer to Chapter A, “System
MMR Assignments”.

SPORT behavior for the ADSP-BF50x that differs from the general infor-
mation in this chapter can be found at the end of this chapter in the
section “Unique Information for the ADSP-BF50x Processor” on

Overview

19-2 ADSP-BF50x Blackfin Processor Hardware Reference

page 19-76.

Overview
Unlike the SPI interface which has been designed for SPI-compatible
communication only, the SPORT modules support a variety of serial data
communication protocols, for example:

• A-law or µ-law companding according to G.711 specification

• Multichannel or time-division-multiplexed (TDM) modes

• Stereo audio I2S mode

• H.100 telephony standard support

In addition to these standard protocols, the SPORT module provides
modes to connect to standard peripheral devices, such as ADCs or codecs,
without external glue logic. With support for high data rates, independent
transmit and receive channels, and dual data paths, the SPORT interface
is a perfect choice for direct serial interconnection between two or more
processors in a multiprocessor system. Many processors provide compati-
ble interfaces, including processors from Analog Devices and other
manufacturers.

Each SPORT has its own set of control registers and data buffers.

Features
A SPORT can operate at up to ½ the system clock (SCLK) rate for an inter-
nally generated or external serial clock. The SPORT external clock must
always be less than the SCLK frequency. Independent transmit and receive
clocks provide greater flexibility for serial communications.

ADSP-BF50x Blackfin Processor Hardware Reference 19-3

SPORT Controller

A SPORT offers these features and capabilities:

• Provides independent transmit and receive functions.

• Transfers serial data words from 3 to 32 bits in length, either MSB
first or LSB first.

• Provides alternate framing and control for interfacing to I2S serial
devices, as well as other audio formats (for example, left-justified
stereo serial data).

• Has FIFO plus double buffered data (both receive and transmit
functions have a data buffer register and a shift register), providing
additional time to service the SPORT.

• Provides two synchronous transmit and two synchronous receive
data signals and buffers to double the total supported datastreams.

• Performs A-law and -law hardware companding on transmitted
and received words. (See “Companding” on page 19-29 for more
information.)

• Internally generates serial clock and frame sync signals in a wide
range of frequencies or accepts clock and frame sync input from an
external source.

• Operates with or without frame synchronization signals for each
data word, with internally generated or externally generated frame
signals, with active high or active low frame signals, and with either
of two configurable pulse widths and frame signal timing.

• Performs interrupt-driven, single word transfers to and from
on-chip memory under processor control.

Interface Overview

19-4 ADSP-BF50x Blackfin Processor Hardware Reference

• Provides direct memory access transfer to and from memory under
DMA master control. DMA can be autobuffer-based (a repeated,
identical range of transfers) or descriptor-based (individual or
repeated ranges of transfers with differing DMA parameters).

• Has a multichannel mode for TDM interfaces. A SPORT can
receive and transmit data selectively from a time-division-multi-
plexed serial bitstream on 128 contiguous channels from a stream
of up to 1024 total channels. This mode can be useful as a network
communication scheme for multiple processors. The 128 channels
available to the processor can be selected to start at any channel
location from 0 to 895 (= 1023 – 128). Note the multichannel
select registers and the WSIZE register control which subset of the
128 channels within the active region can be accessed.

Interface Overview
A SPORT provides an I/O interface to a wide variety of peripheral serial
devices. SPORTs provide synchronous serial data transfer only. Each
SPORT has one group of signals (primary data, secondary data, clock, and
frame sync) for transmit and a second set of signals for receive. The receive
and transmit functions are programmed separately. A SPORT is a full
duplex device, capable of simultaneous data transfer in both directions. A
SPORT can be programmed for bit rate, frame sync, and number of bits
per word by writing to memory-mapped registers.

Figure 19-1 shows a simplified block diagram of a single SPORT. Data to
be transmitted is written from an internal processor register to the
SPORT_TX register via the peripheral bus. This data is optionally com-
pressed by the hardware and automatically transferred to the TX shift
register. The bits in the shift register are shifted out on the DTPRI/DTSEC
pin, MSB first or LSB first, synchronous to the serial clock on the TSCLK

pin. The receive portion of the SPORT accepts data from the DRPRI/DRSEC
pin synchronous to the serial clock on the RSCLK pin. When an entire word

ADSP-BF50x Blackfin Processor Hardware Reference 19-5

SPORT Controller

is received, the data is optionally expanded, then automatically transferred
to the SPORT_RX register, and then into the RX FIFO where it is available
to the processor. Table 19-1 shows the signals for each SPORT.

Table 19-1. SPORT Signals

Pin Description

DTxPRI Transmit Data Primary

DTxSEC Transmit Data Secondary

TSCLKx Transmit Clock

TFSx Transmit Frame Sync

DRxPRI Receive Data Primary

DRxSEC Receive Data Secondary

RSCLKx Receive Clock

RFSx Receive Frame Sync

Interface Overview

19-6 ADSP-BF50x Blackfin Processor Hardware Reference

A SPORT receives serial data on its DRPRI and DRSEC inputs and transmits
serial data on its DTPRI and DTSEC outputs. It can receive and transmit
simultaneously for full-duplex operation. For transmit, the data bits
(DTPRI and DTSEC) are synchronous to the transmit clock (TSCLK). For
receive, the data bits (DRPRI and DRSEC) are synchronous to the receive
clock (RSCLK). The serial clock is an output if the processor generates it, or
an input if the clock is externally generated. Frame synchronization signals
RFS and TFS are used to indicate the start of a serial data word or stream of
serial words.

Figure 19-1. SPORT Block Diagram1, 2, 3

1 All wide arrow data paths are 16- or 32-bits wide, depending on SLEN. for SLEN = 2 to 15, a 16-bit
data path with 8-deep fifo is used. for SLEN = 16 to 31, a 32-bit data path with 4-deep fifo is used.

2 TX register is the bottom of the TX fifo, RX register is the top of the RX fifo.
3 In multichannel mode, the TFS pin acts as transmit data valid (TDV). For more information, see

“Multichannel Operation” on page 19-15.

COMPANDING
HARDWARE

COMPANDING
HARDWARE

TFS

RX FIFO
4 x 32 OR 8 x 16

TSCLK RSCLK RFS

PAB

DAB

TX FIFO
4 x 32 OR 8 x 16

SERIAL
CONTROL

DTSECDTPRI DRSECDRPRI

TX REGISTER RX REGISTER

TX PRI
SHIFT REG

TX SEC
SHIFT REG

TX PRI
HOLD REG

TX SEC
HOLD REG

RX PRI
HOLD REG

RX SEC
HOLD REG

RX PRI
SHIFT REG

RX SEC
SHIFT REG

INTERNAL
CLOCK

GENERATOR

ADSP-BF50x Blackfin Processor Hardware Reference 19-7

SPORT Controller

The primary and secondary data pins, if enabled by a specific processor
port configuration, provide a method to increase the data throughput of
the serial port. They do not behave as totally separate SPORTs; rather,
they operate in a synchronous manner (sharing clock and frame sync) but
on separate data. The data received on the primary and secondary signals
is interleaved in main memory and can be retrieved by setting a stride in
the data address generators (DAG) unit. For more information about
DAGs, see the Data Address Generators chapter in Blackfin Processor Pro-
gramming Reference. Similarly, for TX, data should be written to the TX
register in an alternating manner—first primary, then secondary, then pri-
mary, then secondary, and so on. This is easily accomplished with the
processor’s powerful DAGs.

In addition to the serial clock signal, data must be signalled by a frame
synchronization signal. The framing signal can occur either at the begin-
ning of an individual word or at the beginning of a block of words.

Figure 19-2 shows a possible port connection for a device with at least two
SPORTs. Note serial devices A and B must be synchronous, as they share
common frame syncs and clocks. The same is true for serial devices 1, 2,
…N.

Interface Overview

19-8 ADSP-BF50x Blackfin Processor Hardware Reference

Figure 19-2. Example SPORT Connections

(SPORT0 is Standard Mode, SPORT1 is Multichannel Mode)1, 2

1 In multichannel mode, TFS functions as a transmit data valid (TDV) output. See “Multichannel Op-
eration” on page 19-15.

2 Although shown as an external connection, the TSCLK1/RSCLK1 connection is internal in multi-
channel mode. See “Multichannel Operation” on page 19-15.

RSCLK0

TSCLK0

TFS0

RFS0

SPORT0

DT0SEC

DR0SEC

DR0PRI

DT0PRI

TFS1 (TDV1)

TSCLK1

RSCLK1

RFS1

DT1SEC
DR1SEC

DR1PRI
DT1PRI

BLACKFIN

SPORT1

SERIAL
DEVICE 1

SERIAL
DEVICE B

(SECONDARY)

SERIAL
DEVICE A

(PRIMARY)

SERIAL
DEVICE 2

SERIAL
DEVICE N

ADSP-BF50x Blackfin Processor Hardware Reference 19-9

SPORT Controller

Figure 19-3 shows an example of a stereo serial device with three transmit
and two receive channels connected to a processor with two SPORTs.

SPORT Pin/Line Terminations
The processor has very fast drivers on all output pins, including the
SPORTs. If connections on the data, clock, or frame sync lines are longer
than six inches, consider using a series termination for strip lines on
point-to-point connections. This may be necessary even when using low
speed serial clocks, because of the edge rates.

Figure 19-3. Stereo Serial Connection

DBCLK
DLRCLK

DSDATA1

ALRCLK

ABCLK

DSDATA3
DSDATA2

ASDATA1

ASDATA2

AD1836
STEREO SERIAL

DEVICE BLACKFIN

RSCLK0

TSCLK0

TFS0

RFS0

DT0SEC

DR0PRI

DT0PRI

RSCLK1

TSCLK1

TFS1

RFS1

DT1SEC

DR1PRI

DT1PRI

SPORT1

DR1SEC

SPORT0

DR0SEC

Description of Operation

19-10 ADSP-BF50x Blackfin Processor Hardware Reference

Description of Operation
This section describes general SPORT operation, illustrating the most
common use of a SPORT. Since the SPORT functionality is configurable,
this description represents just one of many possible configurations.

Writing to a SPORT_TX register readies the SPORT for transmission. The
TFS signal initiates the transmission of serial data. Once transmission has
begun, each value written to the SPORT_TX register is transferred through
the FIFO to the internal transmit shift register. The bits are then sent,
beginning with either the MSB or the LSB as specified in the SPORT_TCR1

register. Each bit is shifted out on the driving edge of TSCLK. The driving
edge of TSCLK can be configured to be rising or falling. The SPORT gener-
ates the transmit interrupt or requests a DMA transfer as long as there is
space in the TX FIFO.

As a SPORT receives bits, they accumulate in an internal receive register.
When a complete word has been received, it is written to the SPORT
FIFO register and the receive interrupt for that SPORT is generated or a
DMA transfer is initiated. Interrupts are generated differently if DMA
block transfers are performed.

SPORT Disable
The SPORTs are automatically disabled by a processor hardware or soft-
ware reset. A SPORT can also be disabled directly by clearing the
SPORT’s transmit or receive enable bits (TSPEN in the SPORT_TCR1 register
and RSPEN in the SPORT_RCR1 register, respectively). Each method has a
different effect on the SPORT.

A processor reset disables the SPORTs by clearing the SPORT_TCR1,
SPORT_TCR2, SPORT_RCR1, and SPORT_RCR2 registers (including the TSPEN

and RSPEN enable bits) and the SPORT_TCLKDIV, SPORT_RCLKDIV,
SPORT_TFSDIVx, and SPORT_RFSDIVx clock and frame sync divisor registers.
Any ongoing operations are aborted.

ADSP-BF50x Blackfin Processor Hardware Reference 19-11

SPORT Controller

Clearing the TSPEN and RSPEN enable bits disables the SPORTs and aborts
any ongoing operations. Status bits are also cleared. Configuration bits
remain unaffected and can be read by the software in order to be altered or
overwritten. To disable the SPORT output clock, set the SPORT to be
disabled.

 Note that disabling a SPORT via TSPEN/RSPEN may shorten any
currently active pulses on the TFS/RFS and TSCLK/RSCLK outputs, if
these signals are configured to be generated internally.

When disabling the SPORT from multichannel operation, first disable
TSPEN and then disable RSPEN. Note both TSPEN and RSPEN must be dis-
abled before re-enabling. Disabling only TX or RX is not allowed.

Setting SPORT Modes
SPORT configuration is accomplished by setting bit and field values in
configuration registers. A SPORT must be configured prior to being
enabled. Once the SPORT is enabled, further writes to the SPORT con-
figuration registers are disabled (except for SPORT_RCLKDIV,
SPORT_TCLKDIV, and multichannel mode channel select registers). To
change values in all other SPORT configuration registers, disable the
SPORT by clearing TSPEN in SPORT_TCR1 and/or RSPEN in
SPORT_RCR1.

Each SPORT has its own set of control registers and data buffers. These
registers are described in detail in “SPORT Registers” on page 19-45. All
control and status bits in the SPORT registers are active high unless other-
wise noted.

Stereo Serial Operation
Several stereo serial modes can be supported by the SPORT, including the
popular I2S format. To use these modes, set bits in the SPORT_RCR2 or
SPORT_TCR2 registers. Setting RSFSE or TSFSE in SPORT_RCR2 or

Description of Operation

19-12 ADSP-BF50x Blackfin Processor Hardware Reference

SPORT_TCR2 changes the operation of the frame sync pin to a left/right
clock as required for I2S and left-justified stereo serial data. Setting this
bit enables the SPORT to generate or accept the special LRCLK-style
frame sync. All other SPORT control bits remain in effect and should be
set appropriately. Figure 19-4 on page 19-14 and Figure 19-5 on
page 19-15 show timing diagrams for stereo serial mode operation.

Table 19-2 shows several modes that can be configured using bits in
SPORT_TCR1 and SPORT_RCR1. The table shows bits for the receive side of
the SPORT, but corresponding bits are available for configuring the trans-
mit portion of the SPORT. A control field which may be either set or
cleared depending on the user’s needs, without changing the standard, is
indicated by an “X.”

 ADSP-BF50x SPORTs are designed such that, in I2S master mode,
LRCLK is held at the last driven logic level and does not transition,
to provide an edge, after the final data word is driven out. There-
fore, while transmitting a fixed number of words to an I2S receiver
that expects an LRCLK edge to receive the incoming data word, the
SPORT should send a dummy word after transmitting the fixed
number of words. The transmission of this dummy word toggles
LRCLK, generating an edge. Transmission of the dummy word is not
required when the I2S receiver is a ADSP-BF50x SPORT.

Table 19-2. Stereo Serial Settings

Bit Field Stereo Audio Serial Scheme

I2S Left-Justified DSP Mode

RSFSE 1 1 0

RRFST 0 0 0

LARFS 0 1 0

LRFS 0 1 0

RFSR 1 1 1

RCKFE 1 0 0

ADSP-BF50x Blackfin Processor Hardware Reference 19-13

SPORT Controller

Note most bits shown as a 0 or 1 may be changed depending on the user’s
preference, creating many other “almost standard” modes of stereo serial
operation. These modes may be of use in interfacing to codecs with
slightly non-standard interfaces. The settings shown in Table 19-2 pro-
vide glue-less interfaces to many popular codecs.

Note RFSDIV or TFSDIV must still be greater than or equal to SLEN. For I2S
operation, RFSDIV or TFSDIV is usually 1/64 of the serial clock rate. With
RSFSE set, the formulas to calculate frame sync period and frequency (dis-
cussed in “Clock and Frame Sync Frequencies” on page 19-26) still apply,
but now refer to one half the period and twice the frequency. For instance,
setting RFSDIV or TFSDIV = 31 produces an LRCLK that transitions every 32
serial clock cycles and has a period of 64 serial clock cycles.

The LRFS bit determines the polarity of the RFS or TFS frame sync pin for
the channel that is considered a “right” channel. Thus, setting LRFS = 0
(meaning that it is an active high signal) indicates that the frame sync is
high for the “right” channel, thus implying that it is low for the “left”
channel. This is the default setting.

The RRFST and TRFST bits determine whether the first word received or
transmitted is a left or a right channel. If the bit is set, the first word
received or transmitted is a right channel. The default is to receive or
transmit the left channel word first.

SLEN 2 – 31 2 – 31 2 – 31

RLSBIT 0 0 0

RFSDIV
(If internal FS is selected.)

2 – Max 2 – Max 2 – Max

RXSE
(Secondary Enable is available for RX and TX.)

X X X

Table 19-2. Stereo Serial Settings (Cont’d)

Bit Field Stereo Audio Serial Scheme

I2S Left-Justified DSP Mode

Description of Operation

19-14 ADSP-BF50x Blackfin Processor Hardware Reference

The secondary DRSEC and DTSEC pins are useful extensions of the SPORT
which pair well with stereo serial mode. Multiple I2S streams of data can
be transmitted or received using a single SPORT. Note the primary and
secondary pins are synchronous, as they share clock and LRCLK (frame
sync) pins. The transmit and receive sides of the SPORT need not be
synchronous, but may share a single clock in some designs. See
Figure 19-3, which shows multiple stereo serial connections being made
between the processor and an AD1836 codec.

Figure 19-4. SPORT Stereo Serial Modes, Transmit1, 2, 3

1 DSP mode does not identify channel.
2 TFS normally operates at fS except for DSP mode which is 2 x fS.
3 TSCLK frequency is normally 64 x TFS but may be operated in burst mode.

TFS

TSCLK

DTPRI

TFS

TSCLK

DTPRI

TFS

TSCLK

DTPRI

LEFT CHANNEL
RIGHT CHANNEL

LEFT CHANNEL
RIGHT CHANNEL

MSB MSB

MSB MSB

MSB MSB

LSB LSB

LSB LSB

LSB LSB

LEFT-JUSTIFIED MODE—3 TO 32 BITS PER CHANNEL

I2S MODE—3 TO 32 BITS PER CHANNEL

DSP MODE—3 TO 32 BITS PER CHANNEL

1/fS

ADSP-BF50x Blackfin Processor Hardware Reference 19-15

SPORT Controller

Multichannel Operation
The SPORT offers a multichannel mode of operation which allows the
SPORT to communicate in a time-division-multiplexed (TDM) serial sys-
tem. In multichannel communications, each data word of the serial
bitstream occupies a separate channel. Each word belongs to the next con-
secutive channel so that, for example, a 24-word block of data contains
one word for each of 24 channels.

The SPORT can automatically select words for particular channels while
ignoring the others. Up to 128 channels are available for transmitting or
receiving; each SPORT can receive and transmit data selectively from any
of the 128 channels. These 128 channels can be any 128 out of the 1024

Figure 19-5. SPORT Stereo Serial Modes, Receive1, 2, 3

1 DSP mode does not identify channel.
2 RFS normally operates at fS except for DSP mode which is 2 x fS.
3 RSCLK frequency is normally 64 × RFS but may be operated in burst mode.

RFS

RSCLK

DRPRI

RFS

RSCLK

DRPRI

RFS

RSCLK

DRPRI

LEFT CHANNEL
RIGHT CHANNEL

LEFT CHANNEL
RIGHT CHANNEL

MSB MSB

MSB MSB

MSB MSB

LSB LSB

LSB LSB

LSB LSB

LEFT-JUSTIFIED MODE—3 TO 32 BITS PER CHANNEL

I2S MODE—3 TO 32 BITS PER CHANNEL

DSP MODE—3 TO 32 BITS PER CHANNEL
1/fS

Description of Operation

19-16 ADSP-BF50x Blackfin Processor Hardware Reference

total channels. RX and TX must use the same 128-channel region to selec-
tively enable channels. The SPORT can do any of the following on each
channel:

• Transmit data

• Receive data

• Transmit and receive data

• Do nothing

Data companding and DMA transfers can also be used in multichannel
mode.

The DTPRI pin is always driven (not three-stated) if the SPORT is enabled
(TSPEN = 1 in the SPORT_TCR1 register), unless it is in multichannel mode
and an inactive time slot occurs. The DTSEC pin is always driven (not
three-stated) if the SPORT is enabled and the secondary transmit is
enabled (TXSE = 1 in the SPORT_TCR2 register), unless the SPORT is in
multichannel mode and an inactive time slot occurs.

In multichannel mode, RSCLK can either be provided externally or gener-
ated internally by the SPORT, and this signal is used for both transmit
and receive functions. Leave TSCLK disconnected if the SPORT is used
only in multichannel mode. If RSCLK is externally or internally provided,
the signal is internally distributed to both the receiver and transmitter
circuitry.

 The SPORT multichannel transmit select register and the SPORT
multichannel receive select register must be programmed before
enabling SPORT_TX or SPORT_RX operation for multichannel mode.
This is especially important in “DMA data unpacked mode,” since
SPORT FIFO operation begins immediately after RSPEN and TSPEN

are set, enabling both RX and TX. The MCMEN bit (in SPORT_MCMC2)
must be enabled prior to enabling SPORT_TX or SPORT_RX operation.
When disabling the SPORT from multichannel operation, first

ADSP-BF50x Blackfin Processor Hardware Reference 19-17

SPORT Controller

disable TSPEN and then disable RSPEN. Note both TSPEN and RSPEN

must be disabled before re-enabling. Disabling only TX or RX is
not allowed.

Figure 19-6 shows example timing for a multichannel transfer that has
these characteristics:

• Use TDM method where serial data is sent or received on different
channels sharing the same serial bus

• Can independently select transmit and receive channels

• RFS signals start of frame

• TFS is used as “transmit data valid” for external logic, true only dur-
ing transmit channels

• Receive on channels 0 and 2, transmit on channels 1 and 2

• Multichannel frame delay is set to 1

See “Timing Examples” on page 19-39 for more examples.

Figure 19-6. Multichannel Operation

RSCLK

B3 B2 B1 B2DR

RFS

B0 IGNORED B3

DT
B2B3 B0 B3 B2B1

CHANNEL 2CHANNEL 1CHANNEL 0

TFS

MFD = 1

Description of Operation

19-18 ADSP-BF50x Blackfin Processor Hardware Reference

Multichannel Enable

Setting the MCMEN bit in the SPORT_MCM2 register enables multichannel
mode. When MCMEN = 1, multichannel operation is enabled; when
MCMEN = 0, all multichannel operations are disabled.

 Setting the MCMEN bit enables multichannel operation for both the
receive and transmit sides of the SPORT. Therefore, if a receiving
SPORT is in multichannel mode, the transmitting SPORT must
also be in multichannel mode.

 When in multichannel mode, do not enable the stereo serial frame
sync modes or the late frame sync feature, as these features are
incompatible with multichannel mode.

Table 19-3 shows the dependencies of bits in the SPORT configuration
register when the SPORT is in multichannel mode.

Table 19-3. Multichannel Mode Configuration

SPORT_RCR1 or
SPORT_RCR2

SPORT_TCR1 or
SPORT_TCR2

Notes

RSPEN TSPEN Set or clear both

IRCLK - Independent

- ITCLK Independent

RDTYPE TDTYPE Independent

RLSBIT TLSBIT Independent

IRFS - Independent

- ITFS Ignored

RFSR TFSR Ignored

- DITFS Ignored

LRFS LTFS Independent

LARFS LATFS Both must be 0

RCKFE TCKFE Set or clear both to same value

ADSP-BF50x Blackfin Processor Hardware Reference 19-19

SPORT Controller

Frame Syncs in Multichannel Mode

All receiving and transmitting devices in a multichannel system must have
the same timing reference. The RFS signal is used for this reference, indi-
cating the start of a block or frame of multichannel data words.

When multichannel mode is enabled on a SPORT, both the transmitter
and the receiver use RFS as a frame sync. This is true whether RFS is gener-
ated internally or externally. The RFS signal is used to synchronize the
channels and restart each multichannel sequence. Assertion of RFS indi-
cates the beginning of the channel 0 data word.

Since RFS is used by both the SPORT_TX and SPORT_RX channels of the
SPORT in multichannel mode configuration, the corresponding bit pairs
in SPORT_RCR1 and SPORT_TCR1, and in SPORT_RCR2 and SPORT_TCR2,
should always be programmed identically, with the possible exception of
the RXSE and TXSE pair and the RDTYPE and TDTYPE pair. This is true even if
SPORT_RX operation is not enabled.

In multichannel mode, RFS timing similar to late (alternative) frame mode
is entered automatically; the first bit of the transmit data word is available
and the first bit of the receive data word is sampled in the same serial clock
cycle that the frame sync is asserted, provided that MFD is set to 0.

The TFS signal is used as a transmit data valid signal which is active during
transmission of an enabled word. The SPORT’s data transmit pin is
three-stated when the time slot is not active, and the TFS signal serves as an

SLEN SLEN Set or clear both to same value

RXSE TXSE Independent

RSFSE TSFSE Both must be 0

RRFST TRFST Ignored

Table 19-3. Multichannel Mode Configuration (Cont’d)

SPORT_RCR1 or
SPORT_RCR2

SPORT_TCR1 or
SPORT_TCR2

Notes

Description of Operation

19-20 ADSP-BF50x Blackfin Processor Hardware Reference

output-enabled signal for the data transmit pin. The SPORT drives TFS in
multichannel mode whether or not ITFS is cleared. The TFS pin in multi-
channel mode still obeys the LTFS bit. If LTFS is set, the transmit data valid
signal will be active low—a low signal on the TFS pin indicates an active
channel.

Once the initial RFS is received, and a frame transfer has started, all other
RFS signals are ignored by the SPORT until the complete frame has been
transferred.

If MFD > 0, the RFS may occur during the last channels of a previous frame.
This is acceptable, and the frame sync is not ignored as long as the delayed
channel 0 starting point falls outside the complete frame.

In multichannel mode, the RFS signal is used for the block or frame start
reference, after which the word transfers are performed continuously with
no further RFS signals required. Therefore, internally generated frame
syncs are always data independent.

The Multichannel Frame

A multichannel frame contains more than one channel, as specified by the
window size and window offset. A complete multichannel frame consists
of 1 – 1024 channels, starting with channel 0. The particular channels of
the multichannel frame that are selected for the SPORT are a combination
of the window offset, the window size, and the multichannel select regis-
ters. See Figure 19-7.

ADSP-BF50x Blackfin Processor Hardware Reference 19-21

SPORT Controller

Multichannel Frame Delay

The 4-bit MFD field in SPORT_MCMC2 specifies a delay between the frame
sync pulse and the first data bit in multichannel mode. The value of MFD is
the number of serial clock cycles of the delay. Multichannel frame delay
allows the processor to work with different types of interface devices.

A value of 0 for MFD causes the frame sync to be concurrent with the first
data bit. The maximum value allowed for MFD is 15. A new frame sync may
occur before data from the last frame has been received, because blocks of
data occur back-to-back.

Window Size

The window size (WSIZE[3:0]) defines the number of channels that can be
enabled/disabled by the multichannel select registers. This range of words
is called the active window. The number of channels can be any value in
the range of 0 to 15, corresponding to active window size of 8 to 128, in
increments of 8; the default value of 0 corresponds to a minimum active

Figure 19-7. Relationships for Multichannel Parameters

FRAME
SYNC

DATA DATA IGNORED

CHANNEL

RSCLK

DATA IGNORED DATA IGNORED

MULTICHANNEL FRAME

WINDOW OFFSET WINDOW
SPORT_MCMCn

REG FIELDS
SIZE

UNITS:

MFD

RANGE:

NOTE: FRAME LENGTH IS SET BY FRAME SYNC DIVIDE OR EXTERNAL FRAME SYNC PERIOD.

BITS WORDS MULTIPLES OF 8 WORDS
0–15 0–1015 8–128

Description of Operation

19-22 ADSP-BF50x Blackfin Processor Hardware Reference

window size of 8 channels. To calculate the active window size from the
WSIZE register, use this equation:

Number of words in active window = 8 × (WSIZE + 1)

Since the DMA buffer size is always fixed, it is possible to define a smaller
window size (for example, 32 words), resulting in a smaller DMA buffer
size (in this example, 32 words instead of 128 words) to save DMA band-
width. The window size cannot be changed while the SPORT is enabled.

Multichannel select bits that are enabled but fall outside the window
selected are ignored.

Window Offset

The window offset (WOFF[9:0]) specifies where in the 1024-channel range
to place the start of the active window. A value of 0 specifies no offset and
896 is the largest value that permits using all 128 channels. As an example,
a program could define an active window with a window size of 8
(WSIZE = 0) and an offset of 93 (WOFF = 93). This 8-channel window
would reside in the range from 93 to 100. Neither the window offset nor
the window size can be changed while the SPORT is enabled.

If the combination of the window size and the window offset would place
any portion of the window outside of the range of the channel counter,
none of the out-of-range channels in the frame are enabled.

Other Multichannel Fields in SPORT_MCMC2

The FSDR bit in the SPORT_MCMC2 register changes the timing relationship
between the frame sync and the clock received. This change enables the
SPORT to comply with the H.100 protocol.

Normally (When FSDR = 0), the data is transmitted on the same edge that
the TFS is generated. For example, a positive edge on TFS causes data to be
transmitted on the positive edge of the TSCLK—either the same edge or the
following one, depending on when LATFS is set.

ADSP-BF50x Blackfin Processor Hardware Reference 19-23

SPORT Controller

When the frame sync/data relationship is used (FSDR = 1), the frame sync
is expected to change on the falling edge of the clock and is sampled on
the rising edge of the clock. This is true even though data received is sam-
pled on the negative edge of the receive clock.

Channel Selection Register

A channel is a multibit word from 3 to 32 bits in length that belongs to
one of the TDM channels. Specific channels can be individually enabled
or disabled to select which words are received and transmitted during mul-
tichannel communications. Data words from the enabled channels are
received or transmitted, while disabled channel words are ignored. Up to
128 contiguous channels may be selected out of 1024 available channels.
The SPORT_MRCSn and SPORT_MTCSn multichannel select registers are used
to enable and disable individual channels; the SPORT_MRCSn registers spec-
ify the active receive channels, and the SPORT_MTCSn registers specify the
active transmit channels.

Four registers make up each multichannel select register. Each of the four
registers has 32 bits, corresponding to 32 channels. Setting a bit enables
that channel, so the SPORT selects its word from the multiple word block
of data (for either receive or transmit). See Figure 19-8.

Channel select bit 0 always corresponds to the first word of the active win-
dow. To determine a channel’s absolute position in the frame, add the
window offset words to the channel select position. For example, setting
bit 7 in MCS2 selects word 71 of the active window to be enabled. Setting
bit 2 in MCS1 selects word 34 of the active window, and so on.

Figure 19-8. Multichannel Select Registers

CHANNEL SELECT 0-127

MCS0 MCS1 MCS2 MCS3
0

0

31

31 0 31 0 31 0 31

32 63 64 95 96 127

Description of Operation

19-24 ADSP-BF50x Blackfin Processor Hardware Reference

Setting a particular bit in the SPORT_MTCSn register causes the SPORT to
transmit the word in that channel’s position of the datastream. Clearing
the bit in the SPORT_MTCSn register causes the SPORT’s data transmit pin
to three-state during the time slot of that channel.

Setting a particular bit in the SPORT_MRCSn register causes the SPORT to
receive the word in that channel’s position of the datastream; the received
word is loaded into the SPORT_RX buffer. Clearing the bit in the
SPORT_MRCSn register causes the SPORT to ignore the data.

Companding may be selected for all channels or for no channels. A-law or
-law companding is selected with the TDTYPE field in the SPORT_TCR1 reg-
ister and the RDTYPE field in the SPORT_RCR1 register, and applies to all
active channels. (See “Companding” on page 19-29 for more information
about companding.)

Multichannel DMA Data Packing

Multichannel DMA data packing and unpacking are specified with the
MCDTXPE and MCDRXPE bits in the SPORT_MCMC2 multichannel configuration
register.

If the bits are set, indicating that data is packed, the SPORT expects the
data contained by the DMA buffer corresponds only to the enabled
SPORT channels. For example, if an MCM frame contains 10 enabled
channels, the SPORT expects the DMA buffer to contain 10 consecutive
words for each frame. It is not possible to change the total number of
enabled channels without changing the DMA buffer size, and reconfigura-
tion is not allowed while the SPORT is enabled.

If the bits are cleared (the default, indicating that data is not packed), the
SPORT expects the DMA buffer to have a word for each of the channels
in the active window, whether enabled or not, so the DMA buffer size
must be equal to the size of the window. For example, if channels 1 and 10
are enabled, and the window size is 16, the DMA buffer size would have
to be 16 words (unless the secondary side is enabled). The data to be

ADSP-BF50x Blackfin Processor Hardware Reference 19-25

SPORT Controller

transmitted or received would be placed at addresses 1 and 10 of the buf-
fer, and the rest of the words in the DMA buffer would be ignored. This
mode allows changing the number of enabled channels while the SPORT
is enabled, with some caution. First read the channel register to make sure
that the active window is not being serviced. If the channel count is 0,
then the multichannel select registers can be updated.

Support for H.100 Standard Protocol
The processor supports the H.100 standard protocol. The following
SPORT parameters must be set to support this standard.

• Set for external frame sync. Frame sync generated by external bus
master.

• TFSR/RFSR set (frame syncs required)

• LTFS/LRFS set (active low frame syncs)

• Set for external clock

• MCMEN set (multichannel mode selected)

• MFD = 0 (no frame delay between frame sync and first data bit)

• SLEN = 7 (8-bit words)

• FSDR = 1 (set for H.100 configuration, enabling half-clock-cycle
early frame sync)

2× Clock Recovery Control

The SPORT can recover the data rate clock from a provided 2× input
clock. This enables the implementation of H.100 compatibility modes for
MVIP-90 (2 Mbps data) and HMVIP (8 Mbps data), by recovering
2 MHz from 4 MHz or 8 MHz from the 16 MHz incoming clock with
the proper phase relationship. A 2-bit mode signal (MCCRM[1:0] in the

Functional Description

19-26 ADSP-BF50x Blackfin Processor Hardware Reference

SPORT_MCMC2 register) chooses the applicable clock mode, which includes a
non-divide or bypass mode for normal operation. A value of MCCRM = 00
chooses non-divide or bypass mode (H.100-compatible), MCCRM = 10
chooses MVIP-90 clock divide (extract 2 MHz from 4 MHz), and
MCCRM = 11 chooses HMVIP clock divide (extract 8 MHz from 16 MHz).

Functional Description
The following sections provide a functional description of the SPORT.

Clock and Frame Sync Frequencies
The maximum serial clock frequency (for either an internal source or an
external source) is SCLK/2. The frequency of an internally generated clock
is a function of the system clock frequency (SCLK) and the value of the
16-bit serial clock divide modulus registers, SPORT_TCLKDIV and
SPORT_RCLKDIV.

TSCLK frequency = (SCLK frequency)/(2 × (SPORT_TCLKDIV + 1))

RSCLK frequency = (SCLK frequency)/(2 × (SPORT_RCLKDIV + 1))

If the value of SPORT_TCLKDIV or SPORT_RCLKDIV is changed while the
internal serial clock is enabled, the change in TSCLK or RSCLK frequency
takes effect at the start of the drive edge of TSCLK or RSCLK that follows the
next leading edge of TFS or RFS.

When an internal frame sync is selected (ITFS = 1 in the SPORT_TCR1 regis-
ter or IRFS = 1 in the SPORT_RCR1 register) and frame syncs are not
required, the first frame sync does not update the clock divider if the value
in SPORT_TCLKDIV or SPORT_RCLKDIV has changed. The second frame sync
will cause the update.

The SPORT_TFSDIV and SPORT_RFSDIV registers specify the number of
transmit or receive clock cycles that are counted before generating a TFS or

ADSP-BF50x Blackfin Processor Hardware Reference 19-27

SPORT Controller

RFS pulse (when the frame sync is internally generated). This enables a
frame sync to initiate periodic transfers. The counting of serial clock
cycles applies to either internally or externally generated serial clocks.

The formula for the number of cycles between frame sync pulses is:

of transmit serial clocks between frame sync assertions = TFSDIV + 1

of receive serial clocks between frame sync assertions = RFSDIV + 1

Use the following equations to determine the correct value of TFSDIV or
RFSDIV, given the serial clock frequency and desired frame sync frequency:

SPORT TFS frequency = (TSCLK frequency)/(SPORT_TFSDIV + 1)

SPORT RFS frequency = (RSCLK frequency)/(SPORT_RFSDIV + 1)

The frame sync would thus be continuously active (for transmit if
TFSDIV = 0 or for receive if RFSDIV = 0). However, the value of TFSDIV (or
RFSDIV) should not be less than the serial word length minus 1 (the value
of the SLEN field in SPORT_TCR2 or SPORT_RCR2). A smaller value could
cause an external device to abort the current operation or have other
unpredictable results. If a SPORT is not being used, the TFSDIV (or
RFSDIV) divisor can be used as a counter for dividing an external clock or
for generating a periodic pulse or periodic interrupt. The SPORT must be
enabled for this mode of operation to work.

Maximum Clock Rate Restrictions

Externally generated late transmit frame syncs also experience a delay from
arrival to data output, and this can limit the maximum serial clock speed.
See ADSP-BF504, ADSP-BF504F, ADSP-BF506F Embedded Processor
Data Sheet for exact timing specifications.

Functional Description

19-28 ADSP-BF50x Blackfin Processor Hardware Reference

Word Length
Each SPORT channel (transmit and receive) independently handles word
lengths of 3 to 32 bits. The data is right-justified in the SPORT data reg-
isters if it is fewer than 32 bits long, residing in the LSB positions. The
value of the serial word length (SLEN) field in the SPORT_TCR2 and
SPORT_RCR2 registers of each SPORT determines the word length
according to this formula:

Serial Word Length = SLEN + 1

 The SLEN value should not be set to 0 or 1; values from 2 to 31 are
allowed. Continuous operation (when the last bit of the current
word is immediately followed by the first bit of the next word) is
restricted to word sizes of 4 or longer (so SLEN 3).

Bit Order
Bit order determines whether the serial word is transmitted MSB first or
LSB first. Bit order is selected by the RLSBIT and TLSBIT bits in the
SPORT_RCR1 and SPORT_TCR1 registers. When RLSBIT (or TLSBIT) = 0, serial
words are received (or transmitted) MSB first. When RLSBIT (or
TLSBIT) = 1, serial words are received (or transmitted) LSB first.

Data Type
The TDTYPE field of the SPORT_TCR1 register and the RDTYPE field
of the SPORT_RCR1 register specify one of four data formats for both
single and multichannel operation. See Table 19-4.

ADSP-BF50x Blackfin Processor Hardware Reference 19-29

SPORT Controller

These formats are applied to serial data words loaded into the SPORT_RX

and SPORT_TX buffers. SPORT_TX data words are not actually zero filled or
sign extended, because only the significant bits are transmitted.

Companding
Companding (a contraction of COMpressing and exPANDing) is the pro-
cess of logarithmically encoding and decoding data to minimize the
number of bits that must be sent. The SPORT supports the two most
widely used companding algorithms, -law and A-law. The processor
compands data according to the CCITT G.711 specification. The type of
companding can be selected independently for each SPORT.

When companding is enabled, valid data in the SPORT_RX register is the
right-justified, expanded value of the eight LSBs received and sign
extended to 16 bits. A write to SPORT_TX causes the 16-bit value to be
compressed to eight LSBs (sign extended to the width of the transmit
word) and written to the internal transmit register. Although the com-
panding standards support only 13-bit (A-law) or 14-bit (-law)
maximum word lengths, up to 16-bit word lengths can be used. If the
magnitude of the word value is greater than the maximum allowed, the
value is automatically compressed to the maximum positive or negative
value.

Lengths greater than 16 bits are not supported for companding operation.

Table 19-4. TDTYPE, RDTYPE, and Data Formatting

TDTYPE or
RDTYPE

SPORT_TCR1 Data Formatting SPORT_RCR1 Data Formatting

00 Normal operation Zero fill

01 Reserved Sign extend

10 Compand using -law Compand using -law

11 Compand using A-law Compand using A-law

Functional Description

19-30 ADSP-BF50x Blackfin Processor Hardware Reference

Clock Signal Options
Each SPORT has a transmit clock signal (TSCLK) and a receive clock signal
(RSCLK). The clock signals are configured by the TCKFE and RCKFE bits of
the SPORT_TCR1 and SPORT_RCR1 registers. Serial clock frequency is config-
ured in the SPORT_TCLKDIV and SPORT_RCLKDIV registers.

 The receive clock pin may be tied to the transmit clock if a single
clock is desired for both receive and transmit.

Both transmit and receive clocks can be independently generated inter-
nally or input from an external source. The ITCLK bit of the SPORT_TCR1

configuration register and the IRCLK bit in the SPORT_RCR1 configuration
register determines the clock source.

When IRCLK or ITCLK = 1, the clock signal is generated internally by the
processor, and the TSCLK or RSCLK pin is an output. The clock frequency is
determined by the value of the serial clock divisor in the SPORT_RCLKDIV

register.

When IRCLK or ITCLK = 0, the clock signal is accepted as an input on the
TSCLK or RSCLK pins, and the serial clock divisors in the
SPORT_TCLKDIV/SPORT_RCLKDIV registers are ignored. The externally gener-
ated serial clocks do not need to be synchronous with the system clock or
with each other. The system clock must have a higher frequency than
RSCLK and TSCLK.

 When the SPORT uses external clocks, it must be enabled for a
minimal number of stable clock pulses before the first active frame
sync is sampled. Failure to allow for these clocks may result in a
SPORT malfunction. See ADSP-BF504, ADSP-BF504F,
ADSP-BF506F Embedded Processor Data Sheet for details.

The first internal frame sync will occur one frame sync delay after
the SPORTs are ready. External frame syncs can occur as soon as
the SPORT is ready.

ADSP-BF50x Blackfin Processor Hardware Reference 19-31

SPORT Controller

Frame Sync Options
Framing signals indicate the beginning of each serial word transfer. The
framing signals for each SPORT are TFS (transmit frame sync) and RFS
(receive frame sync). A variety of framing options are available; these
options are configured in the SPORT configuration registers
(SPORT_TCR1, SPORT_TCR2, SPORT_RCR1 and SPORT_RCR2).
The TFS and RFS signals of a SPORT are independent and are separately
configured in the control registers.

Framed Versus Unframed

The use of multiple frame sync signals is optional in SPORT communica-
tions. The TFSR (transmit frame sync required select) and RFSR (receive
frame sync required select) control bits determine whether frame sync sig-
nals are required. These bits are located in the SPORT_TCR1 and
SPORT_RCR1 registers.

When TFSR = 1 or RFSR = 1, a frame sync signal is required for every data
word. To allow continuous transmitting by the SPORT, each new data
word must be loaded into the SPORT_TX hold register before the previous
word is shifted out and transmitted.

When TFSR = 0 or RFSR = 0, the corresponding frame sync signal is not
required. A single frame sync is needed to initiate communications but is
ignored after the first bit is transferred. Data words are then transferred
continuously, unframed.

 With frame syncs not required, interrupt or DMA requests may
not be serviced frequently enough to guarantee continuous
unframed data flow. Monitor status bits or check for a SPORT
Error interrupt to detect underflow or overflow of data.

Functional Description

19-32 ADSP-BF50x Blackfin Processor Hardware Reference

Figure 19-9 illustrates framed serial transfers, which have these
characteristics:

• TFSR and RFSR bits in the SPORT_TCR1 and SPORT_RCR1
registers determine framed or unframed mode.

• Framed mode requires a framing signal for every word. Unframed
mode ignores a framing signal after the first word.

• Unframed mode is appropriate for continuous reception.

• Active low or active high frame syncs are selected with the LTFS and
LRFS bits of the SPORT_TCR1 and SPORT_RCR1 registers.

See “Timing Examples” on page 19-39 for more timing examples.

Internal Versus External Frame Syncs

Both transmit and receive frame syncs can be independently generated
internally or can be input from an external source. The ITFS and IRFS
bits of the SPORT_TCR1 and SPORT_RCR1 registers determine the
frame sync source.

Figure 19-9. Framed Versus Unframed Data

B3 B2 B1 B0

B3 B2 B1 B0 B3 B2 B1 B0 B3 B2 B1

B3 B2 B1 B0

FRAMED
DATA

UNFRAMED
DATA

TFS
OR

RFS

TFS
OR

RFS

DATA

TSCLK
OR

RSCLK

ADSP-BF50x Blackfin Processor Hardware Reference 19-33

SPORT Controller

When ITFS = 1 or IRFS = 1, the corresponding frame sync signal is gener-
ated internally by the SPORT, and the TFS pin or RFS pin is an output.
The frequency of the frame sync signal is determined by the value of the
frame sync divisor in the SPORT_TFSDIV or SPORT_RFSDIV register.

When ITFS = 0 or IRFS = 0, the corresponding frame sync signal is
accepted as an input on the TFS pin or RFS pin, and the frame sync divisors
in the SPORT_TFSDIV/SPORT_RFSDIV registers are ignored.

All of the frame sync options are available whether the signal is generated
internally or externally.

Active Low Versus Active High Frame Syncs

Frame sync signals may be either active high or active low (in other words,
inverted). The LTFS and LRFS bits of the SPORT_TCR1 and SPORT_RCR1 regis-
ters determine frame sync logic levels:

• When LTFS = 0 or LRFS = 0, the corresponding frame sync signal is
active high.

• When LTFS = 1 or LRFS = 1, the corresponding frame sync signal is
active low.

Active high frame syncs are the default. The LTFS and LRFS bits are initial-
ized to 0 after a processor reset.

Sampling Edge for Data and Frame Syncs

Data and frame syncs can be sampled on either the rising or falling edges
of the SPORT clock signals. The TCKFE and RCKFE bits of the
SPORT_TCR1 and SPORT_RCR1 registers select the driving and sam-
pling edges of the serial data and frame syncs.

For the SPORT transmitter, setting TCKFE = 1 in the SPORT_TCR1 register
selects the falling edge of TSCLK to drive data and internally generated
frame syncs and selects the rising edge of TSCLK to sample externally

Functional Description

19-34 ADSP-BF50x Blackfin Processor Hardware Reference

generated frame syncs. Setting TCKFE = 0 selects the rising edge of TSCLK to
drive data and internally generated frame syncs and selects the falling edge
of TSCLK to sample externally generated frame syncs.

For the SPORT receiver, setting RCKFE = 1 in the SPORT_RCR1 register
selects the falling edge of RSCLK to drive internally generated frame syncs
and selects the rising edge of RSCLK to sample data and externally gener-
ated frame syncs. Setting RCKFE = 0 selects the rising edge of RSCLK to drive
internally generated frame syncs and selects the falling edge of RSCLK to
sample data and externally generated frame syncs.

 Note externally generated data and frame sync signals should
change state on the opposite edge than that selected for sampling.
For example, for an externally generated frame sync to be sampled
on the rising edge of the clock (TCKFE = 1 in the SPORT_TCR1 regis-
ter), the frame sync must be driven on the falling edge of the clock.

The transmit and receive functions of two SPORTs connected together
should always select the same value for TCKFE in the transmitter and RCKFE

in the receiver, so that the transmitter drives the data on one edge and the
receiver samples the data on the opposite edge.

In Figure 19-10, TCKFE = RCKFE = 0 and transmit and receive are con-
nected together to share the same clock and frame syncs.

Figure 19-10. Example of TCKFE = RCKFE = 0, Transmit and Receive Con-
nected

B1 B2 B3B0

B1 B2 B3B0

TSCLK = RSCLK
INTERNAL OR EXTERNAL

TFS = RFS
INTERNAL OR EXTERNAL

DT

DR

DRIVE
EDGE

SAMPLE
EDGE

ADSP-BF50x Blackfin Processor Hardware Reference 19-35

SPORT Controller

In Figure 19-11, TCKFE = RCKFE = 1 and transmit and receive are con-
nected together to share the same clock and frame syncs.

Early Versus Late Frame Syncs (Normal Versus
Alternate Timing)

Frame sync signals can occur during the first bit of each data word (late)
or during the serial clock cycle immediately preceding the first bit (early).
The LATFS and LARFS bits of the SPORT_TCR1 and SPORT_RCR1 registers con-
figure this option.

When LATFS = 0 or LARFS = 0, early frame syncs are configured; this is the
normal mode of operation. In this mode, the first bit of the transmit data
word is available and the first bit of the receive data word is sampled in the
serial clock cycle after the frame sync is asserted, and the frame sync is not
checked again until the entire word has been transmitted or received. In
multichannel operation, this corresponds to the case when multichannel
frame delay is 1.

If data transmission is continuous in early framing mode (in other words,
the last bit of each word is immediately followed by the first bit of the next
word), then the frame sync signal occurs during the last bit of each word.
Internally generated frame syncs are asserted for one clock cycle in early

Figure 19-11. Example of TCKFE = RCKFE = 1, Transmit and Receive
Connected

B1 B2 B3

TSCLK = RSCLK
INTERNAL OR EXTERNAL

TFS = RFS
INTERNAL OR EXTERNAL

DT B0

B1 B2 B3DR B0

DRIVE
EDGE

SAMPLE
EDGE

Functional Description

19-36 ADSP-BF50x Blackfin Processor Hardware Reference

framing mode. Continuous operation is restricted to word sizes of 4 or
longer (SLEN  3).

When LATFS = 1 or LARFS = 1, late frame syncs are configured; this is the
alternate mode of operation. In this mode, the first bit of the transmit data
word is available and the first bit of the receive data word is sampled in the
same serial clock cycle that the frame sync is asserted. In multichannel
operation, this is the case when frame delay is 0. Receive data bits are sam-
pled by serial clock edges, but the frame sync signal is only checked during
the first bit of each word. Internally generated frame syncs remain asserted
for the entire length of the data word in late framing mode. Externally
generated frame syncs are only checked during the first bit.

Figure 19-12 illustrates the two modes of frame signal timing. In
summary:

• For the LATFS or LARFS bits of the SPORT_TCR1 or SPORT_RCR1 regis-
ters: LATFS = 0 or LARFS = 0 for early frame syncs, LATFS = 1 or
LARFS = 1 for late frame syncs.

• For early framing, the frame sync precedes data by one cycle. For
late framing, the frame sync is checked on the first bit only.

• Data is transmitted MSB first (TLSBIT = 0 or RLSBIT = 0) or LSB
first (TLSBIT = 1 or RLSBIT = 1).

• Frame sync and clock are generated internally or externally.

See “Timing Examples” on page 19-39 for more examples.

ADSP-BF50x Blackfin Processor Hardware Reference 19-37

SPORT Controller

Data Independent Transmit Frame Sync

Normally the internally generated transmit frame sync signal (TFS) is out-
put only when the SPORT_TX buffer has data ready to transmit. The
data-independent transmit frame sync select bit (DITFS) allows the contin-
uous generation of the TFS signal, with or without new data. The DITFS bit
of the SPORT_TCR1 register configures this option.

When DITFS = 0, the internally generated TFS is only output when a new
data word has been loaded into the SPORT_TX buffer. The next TFS is gen-
erated once data is loaded into SPORT_TX. This mode of operation allows
data to be transmitted only when it is available.

When DITFS = 1, the internally generated TFS is output at its programmed
interval regardless of whether new data is available in the SPORT_TX buffer.
Whatever data is present in SPORT_TX is transmitted again with each asser-
tion of TFS. The TUVF (transmit underflow status) bit in the SPORT_STAT

register is set when this occurs and old data is retransmitted. The TUVF sta-
tus bit is also set if the SPORT_TX buffer does not have new data when an
externally generated TFS occurs. Note that in this mode of operation, data
is transmitted only at specified times.

If the internally generated TFS is used, a single write to the SPORT_TX data
register is required to start the transfer.

Figure 19-12. Normal Versus Alternate Framing

B3 B2 B1 B0 ...

RSCLK
or

TSCLK

DATA

EARLY
FRAME

SYNC

LATE
FRAME

SYNC

Functional Description

19-38 ADSP-BF50x Blackfin Processor Hardware Reference

Moving Data Between SPORTs and Memory
Transmit and receive data can be transferred between the SPORTs and
on-chip memory in one of two ways: with single word transfers or with
DMA block transfers.

If no SPORT DMA channel is enabled, the SPORT generates an interrupt
every time it has received a data word or needs a data word to transmit.
SPORT DMA provides a mechanism for receiving or transmitting an
entire block or multiple blocks of serial data before the interrupt is gener-
ated. The SPORT’s DMA controller handles the DMA transfer, allowing
the processor core to continue running until the entire block of data is
transmitted or received. Interrupt service routines (ISRs) can then operate
on the block of data rather than on single words, significantly reducing
overhead.

SPORT RX, TX, and Error Interrupts
The SPORT RX interrupt is asserted when RSPEN is enabled and any
words are present in the RX FIFO. If RX DMA is enabled, the SPORT
RX interrupt is turned off and DMA services the RX FIFO.

The SPORT TX interrupt is asserted when TSPEN is enabled and the TX
FIFO has room for words. If TX DMA is enabled, the SPORT TX inter-
rupt is turned off and DMA services the TX FIFO.

The SPORT error interrupt is asserted when any of the sticky status bits
(ROVF, RUVF, TOVF, TUVF) are set. The ROVF and RUVF bits are cleared by
writing 0 to RSPEN. The TOVF and TUVF bits are cleared by writing 0 to
TSPEN.

ADSP-BF50x Blackfin Processor Hardware Reference 19-39

SPORT Controller

Peripheral Bus Errors
The SPORT generates a peripheral bus error for illegal register read or
write operations. Examples include:

• Reading a write-only register (for example, SPORT_TX)

• Writing a read-only register (for example, SPORT_RX)

• Writing or reading a register with the wrong size (for example,
32-bit read of a 16-bit register)

• Accessing reserved register locations

Timing Examples
Several timing examples are included within the text of this chapter (in the
sections “Framed Versus Unframed” on page 19-31, “Early Versus Late
Frame Syncs (Normal Versus Alternate Timing)” on page 19-35, and
“Frame Syncs in Multichannel Mode” on page 19-19). This section con-
tains additional examples to illustrate other possible combinations of the
framing options.

These timing examples show the relationships between the signals but are
not scaled to show the actual timing parameters of the processor. Consult
the ADSP-BF504, ADSP-BF504F, ADSP-BF506F Embedded Processor
Data Sheet for actual timing parameters and values.

These examples assume a word length of four bits (SLEN = 3). Framing sig-
nals are active high (LRFS = 0 and LTFS = 0).

Figure 19-13 on page 19-40 through Figure 19-18 on page 19-42 show
framing for receiving data.

Functional Description

19-40 ADSP-BF50x Blackfin Processor Hardware Reference

In Figure 19-13 and Figure 19-14, the normal framing mode is shown for
non-continuous data (any number of TSCLK or RSCLK cycles between
words) and continuous data (no TSCLK or SCLK cycles between words).

Figure 19-15 and Figure 19-16 show non-continuous and continuous
receiving in the alternate framing mode. These four figures show the input
timing requirement for an externally generated frame sync and also the
output timing characteristic of an internally generated frame sync. Note
the output meets the input timing requirement; therefore, with two
SPORT channels used, one SPORT channel could provide RFS for the
other SPORT channel.

Figure 19-13. SPORT Receive, Normal Framing

Figure 19-14. SPORT Continuous Receive, Normal Framing

B3B3 B2 B1 B0 B2 B1 B0

SPORT CONTROL REGISTER:
BOTH INTERNAL FRAMING OPTION AND EXTERNAL FRAMING OPTION SHOWN.
DR REPRESENTS DRPRI AND/OR DRSEC, DEPENDING ON DESIRED CONFIGURATION.

RSCLK

RFS OUTPUT

DR

RFS INPUT

RSCLK

RFS OUTPUT

RFS INPUT

DR B3 B2 B1 B0 B3 B2 B1 B0 B3 B2

SPORT CONTROL REGISTER:
BOTH INTERNAL FRAMING OPTION AND EXTERNAL FRAMING OPTION SHOWN
DR REPRESENTS DRPRI AND/OR DRSEC, DEPENDING ON DESIRED CONFIGURATION.

:

ADSP-BF50x Blackfin Processor Hardware Reference 19-41

SPORT Controller

Figure 19-17 and Figure 19-18 show the receive operation with normal
framing and alternate framing, respectively, in the unframed mode. A sin-
gle frame sync signal occurs only at the start of the first word, either one
RSCLK before the first bit (in normal mode) or at the same time as the first
bit (in alternate mode). This mode is appropriate for multiword bursts
(continuous reception).

Figure 19-15. SPORT Receive, Alternate Framing

Figure 19-16. SPORT Continuous Receive, Alternate Framing

B3B3 B2 B1 B0 B2 B1 B0

SPORT CONTROL REGISTER:
BOTH INTERNAL FRAMING OPTION AND EXTERNAL FRAMING OPTION SHOWN.
DR REPRESENTS DRPRI AND/OR DRSEC, DEPENDING ON DESIRED CONFIGURATION.

RSCLK

RFS OUTPUT

DR

RFS INPUT

RSCLK

RFS OUTPUT

RFS INPUT

DR B3 B2 B1 B0 B3 B2 B1 B0

SPORT CONTROL REGISTER:
BOTH INTERNAL FRAMING OPTION AND EXTERNAL FRAMING OPTION SHOWN
DR REPRESENTS DRPRI AND/OR DRSEC, DEPENDING ON DESIRED CONFIGURATION.

Functional Description

19-42 ADSP-BF50x Blackfin Processor Hardware Reference

Figure 19-19 through Figure 19-24 show framing for transmitting data
and are very similar to Figure 19-13 through Figure 19-18.

In Figure 19-19 and Figure 19-20, the normal framing mode is shown for
non-continuous data (any number of TSCLK cycles between words) and
continuous data (no TSCLK cycles between words). Figure 19-21 and
Figure 19-22 show non-continuous and continuous transmission in the
alternate framing mode. As noted previously for the receive timing dia-
grams, the RFS output meets the RFS input timing requirement.

Figure 19-17. SPORT Receive, Unframed Mode, Normal Framing

Figure 19-18. SPORT Receive, Unframed Mode, Alternate Framing

RSCLK

RFS

DR B3 B2 B1 B0 B3 B2 B1 B0 B2B3

DR REPRESENTS DRPRI AND/OR DRSEC, DEPENDING ON DESIRED CONFIGURATION.

RSCLK

RFS

DR B3 B2 B1 B0 B3 B2 B1 B0 B2B3

DR REPRESENTS DRPRI AND/OR DRSEC, DEPENDING ON DESIRED CONFIGURATION.

ADSP-BF50x Blackfin Processor Hardware Reference 19-43

SPORT Controller

Figure 19-19. SPORT Transmit, Normal Framing

Figure 19-20. SPORT Continuous Transmit, Normal Framing

Figure 19-21. SPORT Transmit, Alternate Framing

TSCLK

TFS OUTPUT

DT B2 B1 B0B3 B2 B1 B0B3

TFS INPUT

SPORT CONTROL REGISTER:
BOTH INTERNAL FRAMING OPTION AND EXTERNAL FRAMING OPTION SHOWN.
DT REPRESENTS DTPRI AND/OR DTSEC, DEPENDING ON DESIRED CONFIGURATION.

B2 B1 B0B3 B2 B1 B0B3 B3 B2

TSCLK

TFS OUTPUT

TFS INPUT

TR

SPORT CONTROL REGISTER:
BOTH INTERNAL FRAMING OPTION AND EXTERNAL FRAMING OPTION SHOWN
DT REPRESENTS DTPRI AND/OR DTSEC, DEPENDING ON DESIRED CONFIGURATION.

B2 B1 B0B3 B2 B1 B0B3

SPORT CONTROL REGISTER:
BOTH INTERNAL FRAMING OPTION AND EXTERNAL FRAMING OPTION SHOWN.
DT REPRESENTS DTPRI AND/OR DTSEC, DEPENDING ON DESIRED CONFIGURATION.

TSCLK

TFS OUTPUT

DT

TFS INPUT

Functional Description

19-44 ADSP-BF50x Blackfin Processor Hardware Reference

Figure 19-23 and Figure 19-24 show the transmit operation with normal
framing and alternate framing, respectively, in the unframed mode. A sin-
gle frame sync signal occurs only at the start of the first word, either one
TSCLK before the first bit (in normal mode) or at the same time as the first
bit (in alternate mode).

Figure 19-22. SPORT Continuous Transmit, Alternate Framing

Figure 19-23. SPORT Transmit, Unframed Mode, Normal Framing

Figure 19-24. SPORT Transmit, Unframed Mode, Alternate Framing

B2 B1 B0B3 B0B3 B2 B1

TSCLK

TFS OUTPUT

TFS INPUT

TR

SPORT CONTROL REGISTER:
BOTH INTERNAL FRAMING OPTION AND EXTERNAL FRAMING OPTION SHOWN
DT REPRESENTS DTPRI AND/OR DTSEC, DEPENDING ON DESIRED CONFIGURATION.

TSCLK

TFS

DT B3 B3B0B1B2 B1 B0 B3B2 B2

DT REPRESENTS DTPRI AND/OR DTSEC, DEPENDING ON DESIRED CONFIGURATION.

TSCLK

TFS

DT B3 B3B0B1B2 B1 B0 B3B2 B2

DT REPRESENTS DTPRI AND/OR DTSEC, DEPENDING ON DESIRED CONFIGURATION.

ADSP-BF50x Blackfin Processor Hardware Reference 19-45

SPORT Controller

SPORT Registers
The following sections describe the SPORT registers. Table 19-5 provides
an overview of the available control registers.

Table 19-5. SPORT Register Mapping

Register Name Function Notes

SPORT_TCR1 Primary transmit
configuration register

Bits [15:1] can only be written if
bit 0 = 0

SPORT_TCR2 Secondary transmit
configuration register

SPORT_TCLKDIV Transmit clock
divider register

Ignored if external SPORT clock
mode is selected

SPORT_TFSDIV Transmit frame sync divider register Ignored if external frame sync mode
is selected

SPORT_TX Transmit data register See description of FIFO buffering at
“SPORT Transmit Data
(SPORT_TX) Register” on
page 19-57

SPORT_RCR1 Primary receive
configuration register

Bits [15:1] can only be written if
bit 0 = 0

SPORT_RCR2 Secondary receive
configuration register

SPORT_RCLK_DIV Receive clock
divider register

Ignored if external SPORT clock
mode is selected

SPORT_RFSDIV Receive frame sync
divider register

Ignored if external frame sync mode
is selected

SPORT_RX Receive data register See description of FIFO buffering at
“SPORT Receive Data
(SPORT_RX) Register” on
page 19-59

SPORT_STAT Receive and transmit status

SPORT_MCM1 Primary multichannel mode
configuration register

Configure this register before
enabling the SPORT

SPORT Registers

19-46 ADSP-BF50x Blackfin Processor Hardware Reference

Register Writes and Effective Latency
When the SPORT is disabled (TSPEN and RSPEN cleared), SPORT register
writes are internally completed at the end of the SCLK cycle in which they
occurred, and the register reads back the newly-written value on the next
cycle.

When the SPORT is enabled to transmit (TSPEN set) or receive (RSPEN set),
corresponding SPORT configuration register writes are disabled (except
for SPORT_RCLKDIV, SPORT_TCLKDIV, and multichannel mode channel select
registers). The SPORT_TX register writes are always enabled; SPORT_RX,
SPORT_CHNL, and SPORT_STAT are read-only registers.

After a write to a SPORT register, while the SPORT is disabled, any
changes to the control and mode bits generally take effect when the
SPORT is re-enabled.

 Most configuration registers can only be changed while the
SPORT is disabled (TSPEN/RSPEN = 0). Changes take effect after the
SPORT is re-enabled. The only exceptions to this rule are the
TCLKDIV/RCLKDIV registers and multichannel select registers.

SPORT_MCM2 Secondary multichannel
mode configuration register

Configure this register before
enabling the SPORT

SPORT_MRCSn Receive channel selection registers Select or deselect channels in a mul-
tichannel frame

SPORT_MTCSn Transmit channel selection registers Select or deselect channels in a mul-
tichannel frame

SPORT_CHNL Currently serviced channel
in a multichannel frame

Table 19-5. SPORT Register Mapping (Cont’d)

Register Name Function Notes

ADSP-BF50x Blackfin Processor Hardware Reference 19-47

SPORT Controller

SPORT Transmit Configuration
(SPORT_TCR1 and SPORT_TCR2) Registers

The main control registers for the transmit portion of each SPORT are
the transmit configuration registers, SPORT_TCR1 and SPORT_TCR2,
shown in Figure 19-25 and Figure 19-26.

A SPORT is enabled for transmit if bit 0 (TSPEN) of the transmit configu-
ration 1 register is set to 1. This bit is cleared during either a hard reset or
a soft reset, disabling all SPORT transmission.

When the SPORT is enabled to transmit (TSPEN set), corresponding
SPORT configuration register writes are not allowed except for
SPORT_TCLKDIV and multichannel mode channel select registers. Writes to
disallowed registers have no effect. While the SPORT is enabled,
SPORT_TCR1 is not written except for bit 0 (TSPEN). For example,

write (SPORT_TCR1, 0x0001) ; /* SPORT TX Enabled */

write (SPORT_TCR1, 0xFF01) ; /* ignored, no effect */

write (SPORT_TCR1, 0xFFF0) ; /* SPORT disabled, SPORT_TCR1

still equal to 0x0000 */

SPORT Registers

19-48 ADSP-BF50x Blackfin Processor Hardware Reference

Figure 19-25. SPORT Transmit Configuration 1 Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPORT Transmit Configuration 1 Register (SPORT_TCR1)

0 - Transmit disabled
1 - Transmit enabled

ITFS (Internal Transmit
Frame Sync Select)

ITCLK (Internal Transmit
Clock Select)

TDTYPE[1:0] (Data Format-
ting Type Select)

TLSBIT (Transmit Bit Order)

TSPEN (Transmit Enable)

LTFS (Low Transmit
Frame Sync Select)

LATFS (Late Transmit
Frame Sync)

0 - Early frame syncs
1 - Late frame syncs

TCKFE (Clock Falling
Edge Select)

0 -External transmit clock
selected

1 - Internal transmit clock
selected

00 - Normal operation
01 - Reserved
10 - Compand using -law
11 - Compand using A-law

0 - Transmit MSB first
1 - Transmit LSB first

Reset = 0x0000

0 - External TFS used
1 - Internal TFS used

0 - Drive data and internal
frame syncs with rising
edge of TSCLK. Sample
external frame syncs with
falling edge of TSCLK.

1 - Drive data and internal
frame syncs with falling
edge of TSCLK. Sample
external frame syncs
with rising edge of TSCLK.

0 - Active high TFS
1 - Active low TFS

TFSR (Transmit Frame Sync
Required Select)

DITFS (Data-Independent
Transmit Frame Sync Select)
0 - Data-dependent TFS generated
1 - Data-independent TFS generated

0 - Does not require TFS for
every data word

1 - Requires TFS for every
data word

ADSP-BF50x Blackfin Processor Hardware Reference 19-49

SPORT Controller

Additional information for the SPORT_TCR1 and SPORT_TCR2 transmit con-
figuration register bits includes:

• Transmit enable (TSPEN). This bit selects whether the SPORT is
enabled to transmit (if set) or disabled (if cleared).

Setting TSPEN causes an immediate assertion of a SPORT TX inter-
rupt, indicating that the TX data register is empty and needs to be
filled. This is normally desirable because it allows centralization of
the transmit data write code in the TX interrupt service routine
(ISR). For this reason, the code should initialize the ISR and be
ready to service TX interrupts before setting TSPEN.

Similarly, if DMA transfers are used, DMA control should be con-
figured correctly before setting TSPEN. Set all DMA control
registers before setting TSPEN.

Clearing TSPEN causes the SPORT to stop driving data, TSCLK, and
frame sync pins; it also shuts down the internal SPORT circuitry.
In low power applications, battery life can be extended by clearing
TSPEN whenever the SPORT is not in use.

Figure 19-26. SPORT Transmit Configuration 2 Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPORT Transmit Configuration 2 Register (SPORT_TCR2)

SLEN[4:0] (SPORT Word
Length)

TSFSE (Transmit Stereo
Frame Sync Enable)

TRFST (Left/Right Order)
00000 - Illegal value
00001 - Illegal value
Serial word length is value in
this field plus 1

Reset = 0x0000

0 - Left stereo channel first
1 - Right stereo channel first

0 - Normal mode
1 - Frame sync becomes L/R clock

TXSE (TxSEC Enable)

0 - Secondary side disabled
1 - Secondary side enabled

SPORT Registers

19-50 ADSP-BF50x Blackfin Processor Hardware Reference

 All SPORT control registers should be programmed before TSPEN is
set. Typical SPORT initialization code first writes all control regis-
ters, including DMA control if applicable. The last step in the code
is to write SPORT_TCR1 with all of the necessary bits, including
TSPEN.

• Internal transmit clock select. (ITCLK). This bit selects the internal
transmit clock (if set) or the external transmit clock on the TSCLK

pin (if cleared). The TCLKDIV MMR value is not used when an
external clock is selected.

• Data formatting type select. The two TDTYPE bits specify data for-
mats used for single and multichannel operation.

• Bit order select. (TLSBIT). The TLSBIT bit selects the bit order of
the data words transmitted over the SPORT.

• Serial word length select. (SLEN). The serial word length (the num-
ber of bits in each word transmitted over the SPORTs) is
calculated by adding 1 to the value of the SLEN field:

Serial Word Length = SLEN + 1;

The SLEN field can be set to a value of 2 to 31; 0 and 1 are illegal
values for this field. Three common settings for the SLEN field are
15, to transmit a full 16-bit word; 7, to transmit an 8-bit byte; and
23, to transmit a 24-bit word. The processor can load 16- or 32-bit
values into the transmit buffer via DMA or an MMR write
instruction; the SLEN field tells the SPORT how many of those bits
to shift out of the register over the serial link. The SPORT always
transfers the SLEN+1 lower bits from the transmit buffer.

 The frame sync signal is controlled by the SPORT_TFSDIV and
SPORT_RFSDIV registers, not by SLEN. To produce a frame sync pulse
on each byte or word transmitted, the proper frame sync divider

ADSP-BF50x Blackfin Processor Hardware Reference 19-51

SPORT Controller

must be programmed into the frame sync divider register; setting
SLEN to 7 does not produce a frame sync pulse on each byte
transmitted.

• Internal transmit frame sync select. (ITFS). This bit selects
whether the SPORT uses an internal TFS (if set) or an external TFS
(if cleared).

• Transmit frame sync required select. (TFSR). This bit selects
whether the SPORT requires (if set) or does not require (if cleared)
a transmit frame sync for every data word.

 The TFSR bit is normally set during SPORT configuration. A frame
sync pulse is used to mark the beginning of each word or data
packet, and most systems need a frame sync to function properly.

• Data-Independent transmit frame sync select. (DITFS). This bit
selects whether the SPORT generates a data-independent TFS (sync
at selected interval) or a data-dependent TFS (sync when data is
present in SPORT_TX) for the case of internal frame sync select
(ITFS = 1). The DITFS bit is ignored when external frame syncs are
selected.

The frame sync pulse marks the beginning of the data word. If
DITFS is set, the frame sync pulse is issued on time, whether the
SPORT_TX register has been loaded or not; if DITFS is cleared, the
frame sync pulse is only generated if the SPORT_TX data register has
been loaded. If the receiver demands regular frame sync pulses,
DITFS should be set, and the processor should keep loading the
SPORT_TX register on time. If the receiver can tolerate occasional
late frame sync pulses, DITFS should be cleared to prevent the
SPORT from transmitting old data twice or transmitting garbled
data if the processor is late in loading the SPORT_TX register.

• Low transmit frame sync select. (LTFS). This bit selects an active
low TFS (if set) or active high TFS (if cleared).

SPORT Registers

19-52 ADSP-BF50x Blackfin Processor Hardware Reference

• Late transmit frame sync. (LATFS). This bit configures late frame
syncs (if set) or early frame syncs (if cleared).

• Clock drive/sample edge select. (TCKFE). This bit selects which
edge of the TCLKx signal the SPORT uses for driving data, for driv-
ing internally generated frame syncs, and for sampling externally
generated frame syncs. If set, data and internally generated frame
syncs are driven on the falling edge, and externally generated frame
syncs are sampled on the rising edge. If cleared, data and internally
generated frame syncs are driven on the rising edge, and externally
generated frame syncs are sampled on the falling edge.

• TxSec enable. (TXSE). This bit enables the transmit secondary side
of the SPORT (if set).

• Stereo serial enable. (TSFSE). This bit enables the stereo serial oper-
ating mode of the SPORT (if set). By default this bit is cleared,
enabling normal clocking and frame sync.

• Left/Right order. (TRFST). If this bit is set, the right channel is
transmitted first in stereo serial operating mode. By default this bit
is cleared, and the left channel is transmitted first.

SPORT Receive Configuration
(SPORT_RCR1 and SPORT_RCR2) Registers

The main control registers for the receive portion of each SPORT are the
receive configuration registers, SPORT_RCR1 and SPORT_RCR2,
shown in Figure 19-27 and Figure 19-28.

A SPORT is enabled for receive if bit 0 (RSPEN) of the receive configura-
tion 1 register is set to 1. This bit is cleared during either a hard reset or a
soft reset, disabling all SPORT reception.

ADSP-BF50x Blackfin Processor Hardware Reference 19-53

SPORT Controller

When the SPORT is enabled to receive (RSPEN set), corresponding
SPORT configuration register writes are not allowed except for
SPORT_RCLKDIV and multichannel mode channel select registers. Writes to
disallowed registers have no effect. While the SPORT is enabled,
SPORT_RCR1 is not written except for bit 0 (RSPEN). For example,

write (SPORT_RCR1, 0x0001) ; /* SPORT RX Enabled */

write (SPORT_RCR1, 0xFF01) ; /* ignored, no effect */

write (SPORT_RCR1, 0xFFF0) ; /* SPORT disabled, SPORT_RCR1

still equal to 0x0000 */

Figure 19-27. SPORT Receive Configuration 1 Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPORT Receive Configuration 1 Register (SPORT_RCR1)

0 - Receive disabled
1 - Receive enabled

IRFS (Internal Receive Frame
Sync Select)

IRCLK (Internal Receive
Clock Select)

RDTYPE[1:0] (Data
Formatting Type Select)

RLSBIT (Receive Bit Order)

RSPEN (Receive Enable)

LRFS (Low Receive Frame
Sync Select)

LARFS (Late Receive
Frame Sync)
0 - Early frame syncs
1 - Late frame syncs

RCKFE (Clock Falling
Edge Select)

0 -External receive clock
selected

1 - Internal receive clock
selected

00 - Zero fill
01 - Sign-extend
10 - Compand using -law
11 - Compand using A-law

0 - Receive MSB first
1 - Receive LSB first

Reset = 0x0000

0 - External RFS used
1 - Internal RFS used

0 - Drive internal frame sync
on rising edge of RSCLK.
Sample data and external
frame sync with falling
edge of RSCLK.

1 - Drive internal frame sync
on falling edge of RSCLK.
Sample data and external
frame sync with rising
edge of RSCLK.

0 - Active high RFS
1 - Active low RFS

RFSR (Receive Frame Sync
Required Select)
0 - Does not require RFS for

every data word
1 - Requires RFS for every data

word

SPORT Registers

19-54 ADSP-BF50x Blackfin Processor Hardware Reference

Additional information for the SPORT_RCR1 and SPORTRCR2 receive config-
uration register bits:

• Receive enable. (RSPEN). This bit selects whether the SPORT is
enabled to receive (if set) or disabled (if cleared). Setting the RSPEN

bit turns on the SPORT and causes it to sample data from the data
receive pins as well as the receive bit clock and receive frame sync
pins if so programmed.

Setting RSPEN enables the SPORT receiver, which can generate a
SPORT RX interrupt. For this reason, the code should initialize
the ISR and the DMA control registers, and should be ready to ser-
vice RX interrupts before setting RSPEN. Setting RSPEN also
generates DMA requests if DMA is enabled and data is received.
Set all DMA control registers before setting RSPEN.

Clearing RSPEN causes the SPORT to stop receiving data; it also
shuts down the internal SPORT receive circuitry. In low power
applications, battery life can be extended by clearing RSPEN when-
ever the SPORT is not in use.

Figure 19-28. SPORT Receive Configuration 2 Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPORT Receive Configuration 2 Register (SPORT_RCR2)

SLEN[4:0] (SPORT Word
Length)

RSFSE (Receive Stereo
Frame Sync Enable)

RRFST (Left/Right Order)
00000 - Illegal value
00001 - Illegal value
Serial word length is value in
this field plus 1

Reset = 0x0000

0 - Left stereo channel first
1 - Right stereo channel first

0 - Normal mode
1 - Frame sync becomes L/R clock

RXSE (RxSEC Enable)

0 - Secondary side disabled
1 - Secondary side enabled

ADSP-BF50x Blackfin Processor Hardware Reference 19-55

SPORT Controller

 All SPORT control registers should be programmed before RSPEN is
set. Typical SPORT initialization code first writes all control regis-
ters, including DMA control if applicable. The last step in the code
is to write SPORT_RCR1 with all of the necessary bits, including
RSPEN.

• Internal receive clock select. (IRCLK). This bit selects the internal
receive clock (if set) or external receive clock (if cleared). The RCLK-

DIV MMR value is not used when an external clock is selected.

• Data formatting type select. (RDTYPE). The two RDTYPE bits specify
one of four data formats used for single and multichannel
operation.

• Bit order select. (RLSBIT). The RLSBIT bit selects the bit order of
the data words received over the SPORTs.

• Serial word length select. (SLEN). The serial word length (the num-
ber of bits in each word received over the SPORTs) is calculated by
adding 1 to the value of the SLEN field. The SLEN field can be set to
a value of 2 to 31; 0 and 1 are illegal values for this field.

 The frame sync signal is controlled by the SPORT_TFSDIV and
SPORT_RFSDIV registers, not by SLEN. To produce a frame sync pulse
on each byte or word transmitted, the proper frame sync divider
must be programmed into the frame sync divider register; setting
SLEN to 7 does not produce a frame sync pulse on each byte
transmitted.

• Internal receive frame sync select. (IRFS). This bit selects whether
the SPORT uses an internal RFS (if set) or an external RFS (if
cleared).

• Receive frame sync required select. (RFSR). This bit selects whether
the SPORT requires (if set) or does not require (if cleared) a receive
frame sync for every data word.

SPORT Registers

19-56 ADSP-BF50x Blackfin Processor Hardware Reference

• Low receive frame sync select. (LRFS). This bit selects an active low
RFS (if set) or active high RFS (if cleared).

• Late receive frame sync. (LARFS). This bit configures late frame
syncs (if set) or early frame syncs (if cleared).

• Clock drive/sample edge select. (RCKFE). This bit selects which
edge of the RSCLK clock signal the SPORT uses for sampling data,
for sampling externally generated frame syncs, and for driving
internally generated frame syncs. If set, internally generated frame
syncs are driven on the falling edge, and data and externally gener-
ated frame syncs are sampled on the rising edge. If cleared,
internally generated frame syncs are driven on the rising edge, and
data and externally generated frame syncs are sampled on the fall-
ing edge.

• RxSec enable. (RXSE). This bit enables the receive secondary side of
the SPORT (if set).

• Stereo serial enable. (RSFSE). This bit enables the stereo serial oper-
ating mode of the SPORT (if set). By default this bit is cleared,
enabling normal clocking and frame sync.

• Left/Right order. (RRFST). If this bit is set, the right channel is
received first in stereo serial operating mode. By default this bit is
cleared, and the left channel is received first.

Data Word Formats
The format of the data words transferred over the SPORTs is configured
by the combination of transmit SLEN and receive SLEN; RDTYPE; TDTYPE;
RLSBIT; and TLSBIT bits of the SPORT_TCR1, SPORT_TCR2, SPORT_RCR1, and
SPORT_RCR2 registers.

ADSP-BF50x Blackfin Processor Hardware Reference 19-57

SPORT Controller

SPORT Transmit Data (SPORT_TX) Register
The SPORT_TX register is a write-only register. Reads produce a peripheral
bus error. Writes to this register cause writes into the transmitter FIFO.
The 16-bit wide FIFO is 8 deep for word length  16 and 4 deep for word
length > 16. The FIFO is common to both primary and secondary data
and stores data for both. Data ordering in the FIFO is shown in the
Figure 19-29. The SPORT_TX register is shown in Figure 19-30.

It is important to keep the interleaving of primary and secondary data in
the FIFO as shown. This means that peripheral bus/DMA writes to the
FIFO must follow an order of primary first, and then secondary, if sec-
ondary is enabled. DAB/peripheral bus writes must match their size to the
data word length. For word length up to and including 16 bits, use a
16-bit write. Use a 32-bit write for word length greater than 16 bits.

When transmit is enabled, data from the FIFO is assembled in the TX
Hold register based on TXSE and SLEN, and then shifted into the primary
and secondary shift registers. From here, the data is shifted out serially on
the DTPRI and DTSEC pins.

Figure 19-29. SPORT Transmit FIFO Data Ordering

015

015

015

015

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

W7

W6
W5

W4

W3

W2
W1

W0

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

W3 LOW

W3 HIGH
W2 LOW

W2 HIGH

W1 LOW

W1 HIGH
W0 LOW

W0 HIGH

SECONDARY W3

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY
PRIMARY

PRIMARY

PRIMARY

SECONDARY

SECONDARY

SECONDARY

W3
W2

W2

W1

W1
W0

W0

SECONDARY W1 LOW

SECONDARY

SECONDARY

SECONDARY

W1 HIGH
W1 LOW

W1 HIGH

W0 LOW

W0 HIGH
W0 LOW

W0 HIGH

ONLY PRIMARY ENABLED
DATA LENGTH <= 16 BITS

ONLY PRIMARY ENABLED
DATA LENGTH > 16 BITS

8 WORDS OF
PRIMARY DATA

IN FIFO

4 WORDS OF
PRIMARY DATA

IN FIFO

PRIMARY AND
SECONDARY ENABLED

DATA LENGTH <= 16 BITS

PRIMARY AND
SECONDARY ENABLED

DATA LENGTH > 16 BITS

4 WORDS OF
PRIMARY DATA AND

4 WORDS OF
SECONDARY DATA

IN FIFO

2 WORDS OF
PRIMARY DATA AND

2 WORDS OF
SECONDARY DATA

IN FIFO

SPORT Registers

19-58 ADSP-BF50x Blackfin Processor Hardware Reference

The SPORT TX interrupt is asserted when TSPEN = 1 and the TX FIFO
has room for additional words. This interrupt does not occur if SPORT
DMA is enabled.

The transmit underflow status bit (TUVF) is set in the SPORT_STAT register
when a transmit frame sync occurs and no new data has been loaded into
the serial shift register. In multichannel mode (MCM), TUVF is set when-
ever the serial shift register is not loaded, and transmission begins on the
current enabled channel. The TUVF status bit is a sticky write-1-to-clear
(W1C) bit and is also cleared by disabling the SPORT (writing
TSPEN = 0).

If software causes the core processor to attempt a write to a full TX FIFO
with a SPORT_TX write, the new data is lost and no overwrites occur to data
in the FIFO. The TOVF status bit is set and a SPORT error interrupt is
asserted. The TOVF bit is a sticky bit; it is only cleared by disabling the
SPORT TX. To find out whether the core processor can access the
SPORT_TX register without causing this type of error, read the register’s sta-
tus first. The TXF bit in the SPORT_STAT register is 0 if space is available for
another word in the FIFO.

The TXF and TOVF status bits in the SPORT_STAT register are updated upon
writes from the core processor, even when the SPORT is disabled.

ADSP-BF50x Blackfin Processor Hardware Reference 19-59

SPORT Controller

SPORT Receive Data (SPORT_RX) Register
The SPORT_RX register is a read-only register. Writes produce a peripheral
bus error. The same location is read for both primary and secondary data.
Reading from this register space causes reading of the receive FIFO. This
16-bit FIFO is 8 deep for receive word length  16 and 4 deep for
length > 16 bits. The FIFO is shared by both primary and secondary
receive data. The order for reading using peripheral bus/DMA reads is
important since data is stored in differently depending on the setting of
the SLEN and RXSE configuration bits.

Data storage and data ordering in the FIFO are shown in Figure 19-31.
The SPORT_RX register is shown in Figure 19-32.

Figure 19-30. SPORT Transmit Data Register

SPORT Transmit Data Register (SPORT_TX)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Transmit Data[31:16]

Reset = 0x0000 0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Transmit Data[15:0]

SPORT Registers

19-60 ADSP-BF50x Blackfin Processor Hardware Reference

When reading from the FIFO for both primary and secondary data, read
primary first, followed by secondary. DAB/peripheral bus reads must
match their size to the data word length. For word length up to and
including 16 bits, use a 16-bit read. Use a 32-bit read for word length
greater than 16 bits.

When receiving is enabled, data from the DRPRI pin is loaded into the RX
primary shift register, while data from the DRSEC pin is loaded into the RX
secondary shift register. At transfer completion of a word, data is shifted
into the RX hold registers for primary and secondary data, respectively.
Data from the hold registers is moved into the FIFO based on RXSE and
SLEN.

Figure 19-31. SPORT Receive FIFO Data Ordering

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

W7

0

PRIMARY AND
SECONDARY ENABLED

DATA LENGTH <= 16 BITS

PRIMARY AND
SECONDARY ENABLED

DATA LENGTH > 16 BITS

15

W6
W5

W4

W3

W2
W1

W0

W3 LOW

015

W3 HIGH
W2 LOW

W2 HIGH

W1 LOW

W1 HIGH
W0 LOW

W0 HIGH

SECONDARY W3

015

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY
PRIMARY

PRIMARY

PRIMARY

SECONDARY

SECONDARY

SECONDARY

W3
W2

W2

W1

W1
W0

W0

SECONDARY W1 LOW

015

SECONDARY

SECONDARY

SECONDARY

W1 HIGH
W1 LOW

W1 HIGH

W0 LOW

W0 HIGH
W0 LOW

W0 HIGH

4 WORDS OF
PRIMARY DATA AND

4 WORDS OF
SECONDARY DATA

IN FIFO

2 WORDS OF
PRIMARY DATA AND

2 WORDS OF
SECONDARY DATA

IN FIFO

FROM Rx HOLD REGISTER

TO
PAB/DAB
BUSES

TO
PAB/DAB
BUSES

TO
PAB/DAB
BUSES

TO
PAB/DAB
BUSES

FROM Rx HOLD REGISTER

FROM Rx HOLD REGISTER

FROM Rx HOLD REGISTER

ONLY PRIMARY ENABLED
DATA LENGTH <= 16 BITS

ONLY PRIMARY ENABLED
DATA LENGTH > 16 BITS

8 WORDS OF
PRIMARY DATA

IN FIFO

4 WORDS OF
PRIMARY DATA

IN FIFO

ADSP-BF50x Blackfin Processor Hardware Reference 19-61

SPORT Controller

The SPORT RX interrupt is generated when RSPEN = 1 and the RX FIFO
has received words in it. When the core processor has read all the words in
the FIFO, the RX interrupt is cleared. The SPORT RX interrupt is set
only if SPORT RX DMA is disabled; otherwise, the FIFO is read by
DMA reads.

If the program causes the core processor to attempt a read from an empty
RX FIFO, old data is read, the RUVF flag is set in the SPORT_STAT register,
and the SPORT error interrupt is asserted. The RUVF bit is a sticky bit and
is cleared only when the SPORT is disabled. To determine if the core can
access the RX registers without causing this error, first read the RX FIFO
status (RXNE in the SPORT_STAT register). The RUVF status bit is updated
even when the SPORT is disabled.

The ROVF status bit is set in the SPORT_STAT register when a new word is
assembled in the RX shift register and the RX hold register has not moved
the data to the FIFO. The previously written word in the hold register is
overwritten. The ROVF bit is a sticky bit; it is only cleared by disabling the
SPORT RX.

Figure 19-32. SPORT Receive Data Register

SPORT Receive Data Register (SPORT_RX)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Receive Data[31:16]

Reset = 0x0000 0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Receive Data[15:0]

SPORT Registers

19-62 ADSP-BF50x Blackfin Processor Hardware Reference

SPORT Status (SPORT_STAT) Register
The SPORT_STAT register is used to determine if the access to a SPORT RX
or TX FIFO can be made by determining their full or empty status. This
register is shown in Figure 19-33.

The TXF bit in the SPORT_STAT register indicates whether there is room in
the TX FIFO. The RXNE status bit indicates whether there are words in the
RX FIFO. The TXHRE bit indicates if the TX hold register is empty.

The transmit underflow status bit (TUVF) is set whenever the TFS signal
occurs (from either an external or internal source) while the TX shift regis-
ter is empty. The internally generated TFS may be suppressed whenever
SPORT_TX is empty by clearing the DITFS control bit in the SPORT_TCR1 reg-
ister. The TUVF status bit is a sticky write-1-to-clear (W1C) bit and is also
cleared by disabling the SPORT (writing TSPEN = 0).

For continuous transmission (TFSR = 0), TUVF is set at the end of a trans-
mitted word if no new word is available in the TX hold register.

The TOVF bit is set when a word is written to the TX FIFO when it is full.
It is a sticky W1C bit and is also cleared by writing TSPEN = 0. Both TXF

and TOVF are updated even when the SPORT is disabled.

When the SPORT RX hold register is full, and a new receive word is
received in the shift register, the receive overflow status bit (ROVF) is set in
the SPORT_STAT register. It is a sticky W1C bit and is also cleared by dis-
abling the SPORT (writing RSPEN = 0).

The RUVF bit is set when a read is attempted from the RX FIFO and it is
empty. It is a sticky W1C bit and is also cleared by writing RSPEN = 0. The
RUVF bit is updated even when the SPORT is disabled.

ADSP-BF50x Blackfin Processor Hardware Reference 19-63

SPORT Controller

SPORT Transmit and Receive Serial Clock Divider
(SPORT_TCLKDIV and SPORT_RCLKDIV) Registers

The frequency of an internally generated clock is a function of the system
clock frequency (as seen at the SCLK pin) and the value of the 16-bit
serial clock divide modulus registers (the SPORT_TCLKDIV register,
shown in Figure 19-34, and the SPORT_RCLKDIV register, shown in
Figure 19-35).

Figure 19-33. SPORT Status Register

Figure 19-34. SPORT Transmit Serial Clock Divider Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 1 0 0 0 0 0

SPORT Status Register (SPORT_STAT)

0 - Disabled
1 - Enabled

RUVF (Sticky Receive Under-
flow Status) - W1C

RXNE (Receive FIFO Not
Empty Status)

ROVF (Sticky Receive Over-
flow Status) - W1C

TUVF (Sticky Transmit Underflow Status) - W1C 0 - Disabled
1 - Enabled

0 - Empty
1 - Data present in FIFO

Reset = 0x0040

0 - Disabled
1 - Enabled

TOVF (Sticky Transmit Overflow Status) - W1C
0 - Disabled
1 - Enabled

TXF (Transmit FIFO Full Status)
0 - Not full
1 - Full

TXHRE (Transmit Hold Register Empty)
0 - Not empty
1 - Empty

SPORT Transmit Serial Clock Divider Register (SPORT_TCLKDIV)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Serial Clock Divide
Modulus[15:0]

Reset = 0x0000

SPORT Registers

19-64 ADSP-BF50x Blackfin Processor Hardware Reference

SPORT Transmit and Receive Frame Sync Divider
(SPORT_TFSDIV and SPORT_RFSDIV) Registers

The 16-bit SPORT_TFSDIV and SPORT_RFSDIV registers specify how
many transmit or receive clock cycles are counted before generating a TFS
or RFS pulse when the frame sync is internally generated. In this way, a
frame sync can be used to initiate periodic transfers. The counting of serial
clock cycles applies to either internally or externally generated serial
clocks. These registers are shown in Figure 19-36 and Figure 19-37.

Figure 19-35. SPORT Receive Serial Clock Divider Register

Figure 19-36. SPORT Transmit Frame Sync Divider Register

SPORT Receive Serial Clock Divider Register (SPORT_RCLKDIV)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Serial Clock Divide
Modulus[15:0]

Reset = 0x0000

SPORT Transmit Frame Sync Divider Register (SPORT_TFSDIV)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Frame Sync Divider[15:0]

Reset = 0x0000

Number of transmit clock cycles
counted before generating TFS pulse

ADSP-BF50x Blackfin Processor Hardware Reference 19-65

SPORT Controller

SPORT Multichannel Configuration
(SPORT_MCMC1 and SPORT_MCMC2) Registers

There are two multichannel configuration registers for each SPORT,
shown in Figure 19-38 and Figure 19-39. These registers are used to con-
figure the multichannel operation of the SPORT. The two control
registers are shown below.

Figure 19-37. SPORT Receive Frame Sync Divider Register

Figure 19-38. SPORT Multichannel Configuration Register 1

SPORT Receive Frame Sync Divider Register (SPORT_RFSDIV)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Frame Sync Divider[15:0]

Reset = 0x0000

Number of receive clock cycles counted
before generating RFS pulse

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPORT Multichannel Configuration Register 1 (SPORT_MCMC1)

WSIZE[3:0] (Window Size) WOFF[9:0] (Window Offset)

Reset = 0x0000

Places start of window anywhere in
the 0 to 1023 channel rangeValue in field = [(Desired window size)/8 –1]

SPORT Registers

19-66 ADSP-BF50x Blackfin Processor Hardware Reference

SPORT Current Channel (SPORT_CHNL) Register
The 10-bit CHNL field in the SPORT_CHNL register indicates which channel is
currently being serviced during multichannel operation. This field is a
read-only status indicator. The CHNL[9:0] field increments by one as each
channel is serviced. The counter stops at the upper end of the defined win-
dow. The channel select register restarts at 0 at each frame sync. As an
example, for a window size of 8 and an offset of 148, the counter displays
a value between 0 and 156.

Once the window size has completed, the channel counter resets to 0 in
preparation for the next frame. Because there are synchronization delays
between RSCLK and the processor clock, the channel register value is
approximate. It is never ahead of the channel being served, but it may lag
behind. See Figure 19-40.

Figure 19-39. SPORT Multichannel Configuration Register 2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPORT Multichannel Configuration Register 2 (SPORT_MCMC2)

0x - Bypass mode
10 - Recover 2 MHz clock

from 4 MHz
11 - Recover 8 MHz clock

from 16 MHz

MCDTXPE (Multichannel
DMA Transmit Packing)

MCCRM[1:0] (2X Clock
Recovery Mode)

FSDR (Frame Sync to Data Relationship)

0 - Disabled
1 - Enabled

Reset = 0x0000

0 - Normal
1 - Reversed, H.100 mode

MCDRXPE (Multichannel
DMA Receive Packing)
0 - Disabled
1 - Enabled

Delay between frame sync pulse and the
first data bit in Multichannel mode

MFD[3:0] (Multichannel
Frame Delay)

0 - Multichannel operations disabled
1 - Multichannel operations enabled

MCMEN (Multichannel Frame Mode Enable)

ADSP-BF50x Blackfin Processor Hardware Reference 19-67

SPORT Controller

SPORT Multichannel Receive Selection
(SPORT_MRCSn) Registers

The SPORT_MRCSn registers (shown in Figure 19-41) are used to enable and
disable individual channels. They specify the active receive channels.
There are four registers, each with 32 bits, corresponding to the 128 chan-
nels. Setting a bit enables that channel so that the SPORT selects that
word for receive from the multiple word block of data. For example, set-
ting bit 0 selects word 0, setting bit 12 selects word 12, and so on.

Setting a particular bit in the SPORT_MRCSn register causes the SPORT to
receive the word in that channel’s position of the datastream; the received
word is loaded into the RX buffer. When the secondary receive side is
enabled by the RXSE bit, both inputs are processed on enabled channels.
Clearing the bit in the SPORT_MRCSn register causes the SPORT to ignore
the data on either channel.

Figure 19-40. SPORT Current Channel Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPORT Current Channel Register (SPORT_CHNL)

CHNL[9:0] (Current
Channel Indicator)

Reset = 0x0000

RO

SPORT Registers

19-68 ADSP-BF50x Blackfin Processor Hardware Reference

SPORT Multichannel Transmit Selection
(SPORT_MTCSn) Registers

The SPORT_MTCSn registers (shown in Figure 19-42) are used to enable and
disable individual channels. They specify the active transmit channels.
There are four registers, each with 32 bits, corresponding to the 128 chan-
nels. Setting a bit enables that channel so that the SPORT selects that
word for transmit from the multiple word block of data. For example, set-
ting bit 0 selects word 0, setting bit 12 selects word 12, and so on.

Setting a particular bit in a SPORT_MTCSn register causes the SPORT to
transmit the word in that channel’s position of the datastream. When the
secondary transmit side is enabled by the TXSE bit, both sides transmit a
word on the enabled channel. Clearing the bit in the SPORT_MTCSn register

Figure 19-41. SPORT Multichannel Receive Select Registers

For all bits, 0 - Channel disabled, 1 - Channel
enabled, so SPORT selects that word from multi-
ple word block of data.

31

31

0

0

0 00 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0

31

63

0

32

31

95

0

64

31

127

0

96

Reset = 0x0000 0000

Reset = 0x0000 0000

Reset = 0x0000 0000

Reset = 0x0000 0000

MRCS0

MRCS1

MRCS2

MRCS3

Channel number

Bit number in register

Channel number

Bit number in register

Channel number

Bit number in register

Channel number

Bit number in register

0 00 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0

0 00 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0

0 00 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0

SPORT Multichannel Receive Select Registers (SPORT_MRCSn)

ADSP-BF50x Blackfin Processor Hardware Reference 19-69

SPORT Controller

causes a SPORT controllers’ data transmit pins to three-state during the
time slot of that channel.

Programming Examples
This section shows an example of typical usage of the SPORT peripheral
in conjunction with the DMA controller. See Listing 19-1 through
Listing 19-4. These listings assume a processor with at least two SPORTs,
SPORT0 and SPORT1.

The SPORT is usually employed for high-speed, continuous serial trans-
fers. The example reflects this, in that the SPORT is set-up for
auto-buffered, repeated DMA transfers.

Because of the many possible configurations, the example uses generic
labels for the content of the SPORT’s configuration registers (SPORT_RCRn

Figure 19-42. SPORT Multichannel Transmit Select Registers

SPORT Multichannel Transmit Select Registers (SPORT_MTCSn)
For all bits, 0 - Channel disabled, 1 - Channel enabled, so SPORT
selects that word from multiple word block of data.

31

31

0

0

31

63

0

32

31

95

0

64

31

127

0

96

Reset = 0x0000 0000

Reset = 0x0000 0000

Reset = 0x0000 0000

Reset = 0x0000 0000

MTCS0

MTCS1

MTCS2

MTCS3

Channel number

Bit number in register

Channel number

Bit number in register

Channel number

Bit number in register

Channel number

Bit number in register

0 00 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0

0 00 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0

0 00 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0

0 00 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0

Programming Examples

19-70 ADSP-BF50x Blackfin Processor Hardware Reference

and SPORT_TCRn) and the DMA configuration. An example value is given
in the comments, but for the meaning of the individual bits the user is
referred to the detailed explanation in this chapter.

The example configures both the receive and the transmit section. Since
they are completely independent, the code uses separate labels.

SPORT Initialization Sequence
The SPORT’s receiver and transmitter are configured, but they are not
enabled yet.

Listing 19-1. SPORT Initialization

Program_SPORT_TRANSMITTER_Registers:

/* Set P0 to SPORT0 Base Address */

P0.h = hi(SPORT0_TCR1);

P0.l = lo(SPORT0_TCR1);

/* Configure Clock speeds */

R1 = SPORT_TCLK_CONFIG; /* Divider SCLK/TCLK (value 0 to

65535) */

W[P0 + (SPORT0_TCLKDIV - SPORT0_TCR1)] = R1;

/* TCK divider register */

/* number of Bitclocks between FrameSyncs -1 (value SPORT_SLEN

to 65535) */

R1 = SPORT_TFSDIV_CONFIG;

W[P0 + (SPORT0_TFSDIV - SPORT0_TCR1)] = R1;

/* TFSDIV register */

/* Transmit configuration */

/* Configuration register 2 (for instance 0x000E for 16-bit

wordlength) */

R1 = SPORT_TRANSMIT_CONF_2;

ADSP-BF50x Blackfin Processor Hardware Reference 19-71

SPORT Controller

W[P0 + (SPORT0_TCR2 - SPORT0_TCR1)] = R1;

/* Configuration register 1 (for instance 0x4E12 for inter-

nally generated clk and framesync) */

R1 = SPORT_TRANSMIT_CONF_1;

W[P0] = R1;

ssync;

/* NOTE: SPORT0 TX NOT enabled yet (bit 0 of TCR1 must be zero) */

Program_SPORT_RECEIVER_Registers:

/* Set P0 to SPORT0 Base Address */

P0.h = hi(SPORT0_RCR1);

P0.l = lo(SPORT0_RCR1);

/* Configure Clock speeds */

R1 = SPORT_RCLK_CONFIG; /* Divider SCLK/RCLK (value 0 to

65535) */

W[P0 + (SPORT0_RCLKDIV - SPORT0_RCR1)] = R1; /* RCK divider

register */

/* number of Bitclock between FrameSyncs -1 (value SPORT_SLEN

to 65535) */

R1 = SPORT_RFSDIV_CONFIG;

W[P0 + (SPORT0_RFSDIV - SPORT0_RCR1)] = R1;

/* RFSDIV register */

/* Receive configuration */

/* Configuration register 2 (for instance 0x000E for 16-bit

wordlength) */

R1 = SPORT_RECEIVE_CONF_2;

W[P0 + (SPORT0_RCR2 - SPORT0_RCR1)] = R1;

/* Configuration register 1 (for instance 0x4410 for external

clk and framesync) */

R1 = SPORT_RECEIVE_CONF_1;

Programming Examples

19-72 ADSP-BF50x Blackfin Processor Hardware Reference

W[P0] = R1;

ssync; /* NOTE: SPORT0 RX NOT enabled yet (bit 0 of RCR1 must

be zero) */

DMA Initialization Sequence
Next the DMA channels for receive (channel3 in this example) and for
transmit (channel4 in this example) are set up for auto-buffered,
one-dimensional, 32-bit transfers. Again, there are other possibilities, so
generic labels have been used, with a particular value shown in the
comments.

Note that the DMA channels can be enabled at the end of the configura-
tion since the SPORT is not enabled yet. However, if preferred, the user
can enable the DMA later, immediately before enabling the SPORT. The
only requirement is that the DMA channel be enabled before the associ-
ated peripheral is enabled to start the transfer.

Listing 19-2. DMA Initialization

Program_DMA_Controller:

/* Receiver (DMA channel 3) */

/* Set P0 to DMA Base Address */

P0.l = lo(DMA3_CONFIG);

P0.h = hi(DMA3_CONFIG);

/* Configuration (for instance 0x108A for Autobuffer, 32-bit

wide transfers) */

R0 = DMA_RECEIVE_CONF(z);

W[P0] = R0; /* configuration register */

/* rx_buf = Buffer in Data memory (divide count by four because

of 32-bit DMA transfers) */

ADSP-BF50x Blackfin Processor Hardware Reference 19-73

SPORT Controller

R1 = (length(rx_buf)/4)(z);

W[P0 + (DMA3_X_COUNT - DMA3_CONFIG)] = R1;

/* X_count register */

R1 = 4(z); /* 4 bytes in a 32-bit transfer */

W[P0 + (DMA3_X_MODIFY - DMA3_CONFIG)] = R1;

/* X_modify register */

/* start_address register points to memory buffer

to be filled */

R1.l = rx_buf;

R1.h = rx_buf;

[P0 + (DMA3_START_ADDR - DMA3_CONFIG)] = R1;

BITSET(R0,0); /* R0 still contains value of CONFIG register -

set bit 0 */

W[P0] = R0; /* enable DMA channel (SPORT not enabled yet) */

/* Transmitter (DMA channel 4) */

/* Set P0 to DMA Base Address */

P0.l = lo(DMA4_CONFIG);

P0.h = hi(DMA4_CONFIG);

/* Configuration (for instance 0x1088 for Autobuffer, 32-bit

wide transfers) */

R0 = DMA_TRANSMIT_CONF(z);

W[P0] = R0; /* configuration register */

/* tx_buf = Buffer in Data memory (divide count by four because

of 32-bit DMA transfers) */

R1 = (length(tx_buf)/4)(z);

W[P0 + (DMA4_X_COUNT - DMA4_CONFIG)] = R1;

/* X_count register */

R1 = 4(z); /* 4 bytes in a 32-bit transfer */

Programming Examples

19-74 ADSP-BF50x Blackfin Processor Hardware Reference

W[P0 + (DMA4_X_MODIFY - DMA4_CONFIG)] = R1;

/* X_modify register */

/* start_address register points to memory buffer to be

transmitted from */

R1.l = tx_buf;

R1.h = tx_buf;

[P0 + (DMA4_START_ADDR - DMA4_CONFIG)] = R1;

BITSET(R0,0); /* R0 still contains value of CONFIG register -

set bit 0 */

W[P0] = R0; /* enable DMA channel (SPORT not enabled yet) */

Interrupt Servicing
The receive channel and the transmit channel will each generate an inter-
rupt request if so programmed. The following code fragments show the
minimum actions that must be taken. Not shown is the programming of
the core and system event controllers.

Listing 19-3. Servicing an Interrupt

RECEIVE_ISR:

[--SP] = RETI; /* nesting of interrupts */

/* clear DMA interrupt request */

P0.h = hi(DMA3_IRQ_STATUS);

P0.l = lo(DMA3_IRQ_STATUS);

R1 = 1;

W[P0] = R1.l; /* write one to clear */

RETI = [SP++];

rti;

ADSP-BF50x Blackfin Processor Hardware Reference 19-75

SPORT Controller

TRANSMIT_ISR:

[--SP] = RETI; /* nesting of interrupts */

/* clear DMA interrupt request */

P0.h = hi(DMA4_IRQ_STATUS);

P0.l = lo(DMA4_IRQ_STATUS);

R1 = 1;

W[P0] = R1.l; /* write one to clear */

RETI = [SP++];

rti;

Starting a Transfer
After the initialization procedure outlined in the previous sections, the
receiver and transmitter are enabled. The core may just wait for interrupts.

Listing 19-4. Starting a Transfer

/* Enable Sport0 RX and TX */

P0.h = hi(SPORT0_RCR1);

P0.l = lo(SPORT0_RCR1);

R1 = W[P0](Z);

BITSET(R1,0);

W[P0] = R1;

ssync; /* Enable Receiver (set bit 0) */

P0.h = hi(SPORT0_TCR1);

P0.l = lo(SPORT0_TCR1);

R1 = W[P0](Z);

BITSET(R1,0);

W[P0] = R1;

ssync; /* Enable Transmitter (set bit 0) */

Unique Information for the ADSP-BF50x Processor

19-76 ADSP-BF50x Blackfin Processor Hardware Reference

/* dummy wait loop (do nothing but waiting for interrupts) */

wait_forever:

jump wait_forever:

Unique Information for the ADSP-BF50x
Processor

None.

ADSP-BF50x Blackfin Processor Hardware Reference 20-1

20 PARALLEL PERIPHERAL
INTERFACE

This chapter describes the parallel peripheral interface (PPI). Following an
overview and a list of key features are a description of operation and func-
tional modes of operation. The chapter concludes with a programming
model, consolidated register definitions, and programming examples.

Specific Information for the ADSP-BF50x
For details regarding the number of PPIs for the ADSP-BF50x product,
refer to ADSP-BF504, ADSP-BF504F, ADSP-BF506F Embedded Processor
Data Sheet.

For PPI DMA channel assignments, refer to Table 7-7 on page 7-105 in
Chapter 7, “Direct Memory Access”.

For PPI interrupt vector assignments, refer to Table 4-3 on page 4-19 in
Chapter 4, “System Interrupts”.

To determine how each of the PPIs is multiplexed with other functional
pins, refer to Table 9-1 on page 9-4 through Table 9-3 on page 9-6 in
Chapter 9, “General-Purpose Ports”.

For a list of MMR addresses for each PPI, refer to Chapter A, “System
MMR Assignments”.

PPI behavior for the ADSP-BF50x that differs from the general informa-
tion in this chapter can be found in the section “Unique Information for
the ADSP-BF50x Processor” on page 20-37.

Overview

20-2 ADSP-BF50x Blackfin Processor Hardware Reference

Overview
The PPI is a half-duplex, bidirectional port accommodating up to 16 bits
of data. It has a dedicated clock pin and three multiplexed frame sync
pins. The highest system throughput is achieved with 8-bit data, since two
8-bit data samples can be packed as a single 16-bit word. In such a case,
the earlier sample is placed in the 8 least significant bits (LSBs).

Features
The PPI includes these features:

• Half duplex, bidirectional parallel port

• Supports up to 16 bits of data

• Programmable clock and frame sync polarities

• ITU-R 656 support

• Interrupt generation on overflow and underrun

Typical peripheral devices that can be interfaced to the PPI port:

• A/D converters

• D/A converters

• LCD panels

• CMOS sensors

• Video encoders

• Video decoders

ADSP-BF50x Blackfin Processor Hardware Reference 20-3

Parallel Peripheral Interface

Interface Overview
Figure 20-1 shows a block diagram of the PPI.

The PPI_CLK pin accepts an external clock input. It cannot source a clock
internally.

 When the PPI_CLK is not free-running, there may be additional
latency cycles before data gets received or transmitted. In RX and
TX modes, there may be at least 2 cycles latency before valid data is
received or transmitted.

The PPI_CLK not only supplies the PPI module itself, but it also can clock
one or more GP Timers to work synchronously with the PPI. Depending
on PPI operation mode, the PPI_CLK can either equal or invert the TMRCLK

input. For more information, see the General-Purpose Timers chapter.

Figure 20-1. PPI Block Diagram

DATA BUS

PPI_CLK

16 BITS
*

16-DEEP
FIFO

FS1

PPI_CONTROL

PACK/
UNPACK

PPI_COUNT

PPI_STATUS

PPI_DELAY

PPI_FRAME

GATE SYNC
FS2

FS3

DMA
CONTROLLER

PAB

DAB

Description of Operation

20-4 ADSP-BF50x Blackfin Processor Hardware Reference

Description of Operation
Table 20-1 shows all the possible modes of operation for the PPI.

Table 20-1. PPI Possible Operating Modes

PPI Mode # of Syncs PORT_DIR PORT_CFG XFR_TYPE POLC POLS FLD_ SEL

RX mode, 0 frame
syncs, external trig-
ger

0 0 11 11 0 or 1 0 or
1

0

RX mode, 0 frame
syncs, internal trig-
ger

0 0 11 11 0 or 1 0 or
1

1

RX mode, 1 exter-
nal frame sync

1 0 00 11 0 or 1 0 or
1

0

RX mode, 2 or 3
external frame syncs

3 0 10 11 0 or 1 0 or
1

0

RX mode, 2 or 3
internal frame syncs

3 0 01 11 0 or 1 0 or
1

0

RX mode, ITU-R
656, active field
only

embed-
ded

0 00 00 0 or 1 0 0 or 1

RX mode, ITU-R
656, vertical blank-
ing only

embed-
ded

0 00 10 0 or 1 0 0

RX mode, ITU-R
656, entire field

embed-
ded

0 00 01 0 or 1 0 0

TX mode, 0 frame
syncs

0 1 00 00 0 or 1 0 or
1

0

TX mode, 1 inter-
nal or external
frame sync

1 1 00 11 0 or 1 0 or
1

0

TX mode, 2 exter-
nal frame syncs

2 1 01 11 0 or 1 0 or
1

0

ADSP-BF50x Blackfin Processor Hardware Reference 20-5

Parallel Peripheral Interface

Functional Description
The following sections describe the function of the PPI.

ITU-R 656 Modes
The PPI supports three input modes for ITU-R 656-framed data. These
modes are described in this section. Although the PPI does not explicitly
support an ITU-R 656 output mode, recommendations for using the PPI
for this situation are provided as well.

ITU-R 656 Background

According to the ITU-R 656 recommendation (formerly known as
CCIR-656), a digital video stream has the characteristics shown in
Figure 20-2, and Figure 20-3 for 525/60 (NTSC) and 625/50 (PAL) sys-
tems. The processor supports only the bit-parallel mode of ITU-R 656.
Both 8- and 10-bit video element widths are supported.

In this mode, the horizontal (H), vertical (V), and field (F) signals are sent
as an embedded part of the video datastream in a series of bytes that form
a control word. The start of active video (SAV) and end of active video
(EAV) signals indicate the beginning and end of data elements to read in
on each line. SAV occurs on a 1-to-0 transition of H, and EAV begins on a

TX mode, 2 or 3
internal frame
syncs, FS3 sync’ed
to FS1 assertion

3 1 01 11 0 or 1 0 or
1

0

TX mode, 2 or 3
internal frame
syncs, FS3 sync’ed
to FS2 assertion

3 1 11 11 0 or 1 0 or
1

0

Table 20-1. PPI Possible Operating Modes (Cont’d)

PPI Mode # of Syncs PORT_DIR PORT_CFG XFR_TYPE POLC POLS FLD_ SEL

Functional Description

20-6 ADSP-BF50x Blackfin Processor Hardware Reference

0-to-1 transition of H. An entire field of video is comprised of active video
+ horizontal blanking (the space between an EAV and SAV code) and ver-
tical blanking (the space where V = 1). A field of video commences on a
transition of the F bit. The “odd field” is denoted by a value of F = 0,
whereas F = 1 denotes an even field. Progressive video makes no distinc-
tion between field 1 and field 2, whereas interlaced video requires each
field to be handled uniquely, because alternate rows of each field combine
to create the actual video image.

Figure 20-2. ITU-R 656 8-Bit Parallel Data Stream for NTSC (PAL)
Systems

4 268 (280 FOR PAL) 4 1440

F
F

0
0

0
0

X
Y

8
0

1
0

8
0

1
0

8
0

1
0

F
F

0
0

0
0

X
Y

C
B

Y C
R

Y C
B

Y C
R

Y C
R

Y F
F

DIGITAL
VIDEO
STREAM

START OF
NEXT LINE

EAV
CODE
(H = 1)

SAV
CODE
(H = 0)

HORIZONTAL
BLANKING

END OF ACTIVE VIDEO START OF ACTIVE VIDEO

1716 (1728 FOR PAL)

ADSP-BF50x Blackfin Processor Hardware Reference 20-7

Parallel Peripheral Interface

The SAV and EAV codes are shown in more detail in Table 20-2. Note
there is a defined preamble of three bytes (0xFF, 0x00, 0x00), followed by
the XY status word, which, aside from the F (field), V (vertical blanking)
and H (horizontal blanking) bits, contains four protection bits for sin-
gle-bit error detection and correction. Note F and V are only allowed to
change as part of EAV sequences (that is, transition from H = 0 to H = 1).
The bit definitions are as follows:

• F = 0 for field 1

• F = 1 for field 2

Figure 20-3. Typical Video Frame Partitioning for NTSC/PAL Systems for
ITU-R BT.656-4

LINE 4

FIELD 1
ACTIVE VIDEO

FIELD 1
ACTIVE VIDEO

FIELD 2
ACTIVE VIDEO

FIELD 2
ACTIVE VIDEO

FIELD 1

FIELD 2

LINE 266

LINE 313

LINE 625

LINE 3

LINE 1

EAV SAV

EAV SAV

1

20

264

283

525

1

23

311

336

624

625

LINE
NUMBER

LINE
NUMBER

F H
(SAV)

H
(EAV)

H
(SAV)

H
(EAV)

F

V

V

1-3,
266-282

4-19,
264-265

20-263

283-525

1-22,
311-312

23-310

313-335,
624-625

336-623

1

1 1

1

1

1

1

1

0

0 0

0

0

0

0

0

0

0

0

01

1

1

1

1

1

0

0

1

1

0

0

LINE #

VERTICAL
BLANKING

VERTICAL
BLANKING

VERTICAL
BLANKING

VERTICAL
BLANKING

VERTICAL
BLANKING

H
O

R
IZ

O
N

TA
L

B
L

A
N

K
IN

G
H

O
R

IZ
O

N
TA

L
B

L
A

N
K

IN
G

FIELD 1

FIELD 2

Functional Description

20-8 ADSP-BF50x Blackfin Processor Hardware Reference

• V = 1 during vertical blanking

• V = 0 when not in vertical blanking

• H = 0 at SAV

• H = 1 at EAV

• P3 = V XOR H

• P2 = F XOR H

• P1 = F XOR V

• P0 = F XOR V XOR H

In many applications, video streams other than the standard NTSC/PAL
formats (for example, CIF, QCIF) can be employed. Because of this, the
processor interface is flexible enough to accommodate different row and
field lengths. In general, as long as the incoming video has the proper
EAV/SAV codes, the PPI can read it in. In other words, a CIF image
could be formatted to be “656-compliant,” where EAV and SAV values
define the range of the image for each line, and the V and F codes can be
used to delimit fields and frames.

Table 20-2. Control Byte Sequences for 8-Bit and 10-Bit ITU-R 656
Video

8-bit Data 10-bit Data

D9
(MSB)

D8 D7 D6 D5 D4 D3 D2 D1 D0

Preamble 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Control Byte 1 F V H P3 P2 P1 P0 0 0

ADSP-BF50x Blackfin Processor Hardware Reference 20-9

Parallel Peripheral Interface

ITU-R 656 Input Modes

Figure 20-4 shows a general illustration of data movement in the ITU-R
656 input modes. In the figure, the clock CLK is either provided by the
video source or supplied externally by the system.

There are three submodes supported for ITU-R 656 inputs: entire field,
active video only, and vertical blanking interval only. Figure 20-5 shows
these three submodes.

Entire Field

In this mode, the entire incoming bitstream is read in through the PPI.
This includes active video as well as control byte sequences and ancillary
data that may be embedded in horizontal and vertical blanking intervals.
Data transfer starts immediately after synchronization to field 1 occurs,

Figure 20-4. ITU-R 656 Input Modes

Figure 20-5. ITU-R 656 Input Submodes

PPIx

PPI_CLK

PPI

CLK

'656
COMPATIBLE

VIDEOSOURCE

ITU-R 656 INPUT MODE

8- OR 10-BIT DATA WITH
EMBEDDED CONTROL

BLANKING BLANKING BLANKING

BLANKING BLANKING

BLANKING BLANKING BLANKING

FIELD 1
ACTIVE VIDEO

FIELD 2
ACTIVE VIDEO

FIELD 2
ACTIVE VIDEO

FIELD 2
ACTIVE VIDEO

FIELD 1
ACTIVE VIDEO

FIELD 1
ACTIVE VIDEO

ENTIRE FIELD SENT BLANKING ONLY SENTACTIVE VIDEO ONLY SENT

BLANKING

Functional Description

20-10 ADSP-BF50x Blackfin Processor Hardware Reference

but does not include the first EAV code that contains the F = 0
assignment.

 Note the first line transferred in after enabling the PPI will be miss-
ing its first 4-byte preamble. However, subsequent lines and frames
should have all control codes intact.

One side benefit of this mode is that it enables a “loopback” feature
through which a frame or two of data can be read in through the PPI and
subsequently output to a compatible video display device. Of course, this
requires multiplexing on the PPI pins, but it enables a convenient way to
verify that 656 data can be read into and written out from the PPI.

Active Video Only

This mode is used when only the active video portion of a field is of inter-
est, and not any of the blanking intervals. The PPI ignores (does not read
in) all data between EAV and SAV, as well as all data present when V = 1.
In this mode, the control byte sequences are not stored to memory; they
are filtered out by the PPI. After synchronizing to the start of field 1, the
PPI ignores incoming samples until it sees an SAV.

 In this mode, the user specifies the number of total (active plus ver-
tical blanking) lines per frame in the PPI_FRAME MMR.

Vertical Blanking Interval (VBI) Only

In this mode, data transfer is only active while V = 1 is in the control byte
sequence. This indicates that the video source is in the midst of the verti-
cal blanking interval (VBI), which is sometimes used for ancillary data
transmission. The ITU-R 656 recommendation specifies the format for
these ancillary data packets, but the PPI is not equipped to decode the
packets themselves. This task must be handled in software. Horizontal
blanking data is logged where it coincides with the rows of the VBI.
Control byte sequence information is always logged. The user specifies the
number of total lines (active plus vertical blanking) per frame in the
PPI_FRAME MMR.

ADSP-BF50x Blackfin Processor Hardware Reference 20-11

Parallel Peripheral Interface

Note the VBI is split into two regions within each field. From the PPI’s
standpoint, it considers these two separate regions as one contiguous
space. However, keep in mind that frame synchronization begins at the
start of field 1, which doesn’t necessarily correspond to the start of vertical
blanking. For instance, in 525/60 systems, the start of field 1 (F = 0) cor-
responds to line 4 of the VBI.

ITU-R 656 Output Mode

The PPI does not explicitly provide functionality for framing an ITU-R
656 output stream with proper preambles and blanking intervals. How-
ever, with the TX mode with 0 frame syncs, this process can be supported
manually. Essentially, this mode provides a streaming operation from
memory out through the PPI. Data and control codes can be set up in
memory prior to sending out the video stream. With the 2D DMA
engine, this could be performed in a number of ways. For instance, one
line of blanking (H + V) could be stored in a buffer and sent out N times by
the DMA controller when appropriate, before proceeding to DMA active
video. Alternatively, one entire field (with control codes and blanking) can
be set up statically in a buffer while the DMA engine transfers only the
active video region into the buffer, on a frame-by-frame basis.

Frame Synchronization in ITU-R 656 Modes

Synchronization in ITU-R 656 modes always occurs at the falling edge
of F, the field indicator. This corresponds to the start of field 1. Conse-
quently, up to two fields might be ignored (for example, if field 1 just
started before the PPI-to-camera channel was established) before data is
received into the PPI.

Because all H and V signaling is embedded in the datastream in ITU-R 656
modes, the PPI_COUNT register is not necessary. However, the PPI_FRAME

register is used in order to check for synchronization errors. The user pro-
grams this MMR for the number of lines expected in each frame of video,
and the PPI keeps track of the number of EAV-to-SAV transitions that

Functional Description

20-12 ADSP-BF50x Blackfin Processor Hardware Reference

occur from the start of a frame until it decodes the end-of-frame condition
(transition from F = 1 to F = 0). At this time, the actual number of lines
processed is compared against the value in PPI_FRAME. If there is a mis-
match, the FT_ERR bit in the PPI_STATUS register is asserted. For instance,
if an SAV transition is missed, the current field will only have NUM_ROWS –

1 rows, but resynchronization will reoccur at the start of the next frame.

Upon completing reception of an entire field, the field status bit is toggled
in the PPI_STATUS register. This way, an interrupt service routine (ISR)
can discern which field was just read in.

General-Purpose PPI Modes
The general-purpose PPI modes are intended to suit a wide variety of data
capture and transmission applications. Table 20-3 summarizes these
modes. If a particular mode shows a given PPI_FSx frame sync not being
used, this implies that the pin is available for its alternate, multiplexed
functions.

Table 20-3. General-Purpose PPI Modes

GP PPI Mode PPI_FS1
Direction

PPI_FS2
Direction

PPI_FS3
Direction

Data
Direction

RX mode, 0 frame syncs, external
trigger

Input Not used Not used Input

RX mode, 0 frame syncs, internal
trigger

Not used Not used Not used Input

RX mode, 1 external frame sync Input Not used Not used Input

RX mode, 2 or 3 external frame syncs Input Input Input (if
used)

Input

RX mode, 2 or 3 internal frame syncs Output Output Output (if
used)

Input

TX mode, 0 frame syncs Not used Not used Not used Output

TX mode, 1 external frame sync Input Not used Not used Output

ADSP-BF50x Blackfin Processor Hardware Reference 20-13

Parallel Peripheral Interface

Figure 20-6 illustrates the general flow of the general purpose PPI modes.
The top of the diagram shows an example of RX mode with one external
frame sync. After the PPI receives the hardware frame sync pulse
(PPI_FS1), it delays for the duration of the PPI_CLK cycles programmed
into PPI_DELAY. The DMA controller then transfers in the number of sam-
ples specified by PPI_COUNT. Every sample that arrives after this, but before
the next PPI_FS1 frame sync arrives, is ignored and not transferred onto
the DMA bus.

 If the next PPI_FS1 frame sync arrives before the specified
PPI_COUNT samples have been read in, the sample counter reinitial-
izes to 0 and starts to count up to PPI_COUNT again. This situation
can cause the DMA channel configuration to lose synchronization
with the PPI transfer process.

The bottom of Figure 20-6 shows an example of TX mode, one internal
frame sync. After PPI_FS1 is asserted, there is a latency of one PPI_CLK

cycle, and then there is a delay for the number of PPI_CLK cycles pro-
grammed into PPI_DELAY. Next, the DMA controller transfers out the
number of samples specified by PPI_COUNT. No further DMA takes place
until the next PPI_FS1 sync and programmed delay occur.

TX mode, 2 external frame syncs Input Input Not used Output

TX mode, 1 internal frame sync Output Not used Not used Output

TX mode, 2 or 3 internal frame syncs Output Output Output (if
used)

Output

Table 20-3. General-Purpose PPI Modes (Cont’d)

GP PPI Mode PPI_FS1
Direction

PPI_FS2
Direction

PPI_FS3
Direction

Data
Direction

Functional Description

20-14 ADSP-BF50x Blackfin Processor Hardware Reference

 If the next PPI_FS1 frame sync arrives before the specified
PPI_COUNT samples have been transferred out, the sync has priority
and starts a new line transfer sequence. This situation can cause the
DMA channel configuration to lose synchronization with the PPI
transfer process.

Data Input (RX) Modes

The PPI supports several modes for data input. These modes differ chiefly
by the way the data is framed. Refer to Table 20-1 on page 20-4 for infor-
mation on how to configure the PPI for each mode.

Figure 20-6. General Flow for GP Modes (Assumes Positive Assertion of
PPI_FS1)

INPUT

OUTPUT

PPI_COUNT

PPI_COUNT1 CYCLE
DELAY

PROG
DELAY

(PPI_DELAY)

PROG
DELAY

(PPI_DELAY)

FRAME
SYNC

(PPI_FS1)

FRAME
SYNC

(PPI_FS1)

SAMPLES
IGNORED

ADSP-BF50x Blackfin Processor Hardware Reference 20-15

Parallel Peripheral Interface

No Frame Syncs

These modes cover the set of applications where periodic frame syncs are
not generated to frame the incoming data. There are two options for start-
ing the data transfer, both configured by the PPI_CONTROL register.

• External trigger: An external source sends a single frame sync (tied
to PPI_FS1) at the start of the transaction, when FLD_SEL = 0 and
PORT_CFG = b#11.

• Internal trigger: Software initiates the process by setting
PORT_EN = 1 with FLD_SEL = 1 and PORT_CFG = b#11.

All subsequent data manipulation is handled via DMA. For example, an
arrangement could be set up between alternating 1K byte memory buffers.
When one fills up, DMA continues with the second buffer, at the same
time that another DMA operation is clearing the first memory buffer for
reuse.

 Due to clock domain synchronization in RX modes with no frame
syncs, there may be a delay of at least two PPI_CLK cycles between
when the mode is enabled and when valid data is received. There-
fore, detection of the start of valid data should be managed by
software.

1, 2, or 3 External Frame Syncs

The frame syncs are level-sensitive signals. The 1-sync mode is intended
for analog-to-digital converter (ADC) applications. The top part of

Functional Description

20-16 ADSP-BF50x Blackfin Processor Hardware Reference

Figure 20-7 shows a typical illustration of the system setup for this mode.

The 3-sync mode shown at the bottom of Figure 20-7 supports video
applications that use hardware signaling (HSYNC, VSYNC, FIELD) in accor-
dance with the ITU-R 601 recommendation. The mapping for the frame
syncs in this mode is PPI_FS1 = HSYNC, PPI_FS2 = VSYNC, PPI_FS3 = FIELD.
Refer to “Frame Synchronization in GP Modes” on page 20-19 for more
information about frame syncs in this mode.

A 2-sync mode is supported by not enabling the PPI_FS3 pin. See the
Product Specific Implementation section for information on how this is
achieved on this processor.

2 or 3 Internal Frame Syncs

This mode can be useful for interfacing to video sources that can be slaved
to a master processor. In other words, the processor controls when to read
from the video source by asserting PPI_FS1 and PPI_FS2, and then reading
data into the PPI. The PPI_FS3 frame sync provides an indication of
which field is currently being transferred, but since it is an output, it can

Figure 20-7. RX Mode, External Frame Syncs

PPI
VIDEO

SOURCE

A/D
CONVERTER

PPIx

PPIx

PPI_CLK

PPI_CLKCLK

CLK

PPI_FS1

PPI_FS2

PPI_FS3

PPI_FS1

HSYNC

VSYNC

FIELD

FRAMESYNC

8–16 BITS DATA

8–16 BITS DATA

DATA

DATA

PPI

ADSP-BF50x Blackfin Processor Hardware Reference 20-17

Parallel Peripheral Interface

simply be left floating if not used. Figure 20-8 shows a sample application
for this mode.

Data Output (TX) Modes

The PPI supports several modes for data output. These modes differ
chiefly by the way the data is framed. Refer to Table 20-1 on page 20-4
for information on how to configure the PPI for each mode.

No Frame Syncs

In this mode, data blocks specified by the DMA controller are sent out
through the PPI with no framing. That is, once the DMA channel is con-
figured and enabled, and the PPI is configured and enabled, data transfers
will take place immediately, synchronized to PPI_CLK. See Figure 20-9 for
an illustration of this mode.

 In this mode, there is a delay of up to 16 SCLK cycles (for > 8-bit
data) or 32 SCLK cycles (for 8-bit data) between enabling the PPI
and transmission of valid data. Furthermore, DMA must be config-
ured to transmit at least 16 samples (for > 8-bit data) or 32 samples
(for 8-bit data).

Figure 20-8. RX Mode, Internal Frame Syncs

PPI
IMAGE

SOURCE

PPIx

CLKPPI_CLK

PPI_FS1

PPI_FS2

HSYNC

VSYNC

8–16 BITS DATA DATA

Functional Description

20-18 ADSP-BF50x Blackfin Processor Hardware Reference

1 or 2 External Frame Syncs

In these modes, an external receiver can frame data sent from the PPI.
Both 1-sync and 2-sync modes are supported. The top diagram in
Figure 20-10 shows the 1-sync case, while the bottom diagram illustrates
the 2-sync mode.

 There is a mandatory delay of 1.5 PPI_CLK cycles, plus the value
programmed in PPI_DELAY, between assertion of the external frame
sync(s) and the transfer of valid data out through the PPI.

Figure 20-9. TX Mode, 0 Frame Syncs

Figure 20-10. TX Mode, 1, or 2 External Frame Syncs

CLK

PPIx

PPI_CLK

RECEIVER8- TO 16-BIT DATA

DATA
RECEIVER

DATA
RECEIVER

PPIx

CLK

CLK

PPI_CLK

PPI_FS1

PPI_FS2

8–16 BITS DATA

8–16 BITS DATA

DATA

DATA

PPI

PPI

PPI_CLK

PPIx

PPI_FS1FRAMESYNC

FRAMESYNC1

FRAMESYNC2

ADSP-BF50x Blackfin Processor Hardware Reference 20-19

Parallel Peripheral Interface

1, 2, or 3 Internal Frame Syncs

The 1-sync mode is intended for interfacing to digital-to-analog convert-
ers (DACs) with a single frame sync. The top part of Figure 20-11 shows
an example of this type of connection.

The 3-sync mode is useful for connecting to video and graphics displays,
as shown in the bottom part of Figure 20-11. A 2-sync mode is implicitly
supported by leaving PPI_FS3 unconnected in this case.

Frame Synchronization in GP Modes

Frame synchronization in general purpose modes operates differently in
modes with internal frame syncs than in modes with external frame syncs.

Modes With Internal Frame Syncs

In modes with internal frame syncs, PPI_FS1 and PPI_FS2 link directly to
the pulsewidth modulation (PWM) circuits of general purpose timers. See

Figure 20-11. PPI GP Output

PPI VIDEO DISPLAY

PPIx CLK

PPI_CLK

PPI_CLK

PPI_FS1

PPI_FS2

HSYNC

VSYNC

8–16 BITS DATA

8–16 BITS DATA

D/A
CONVERTER

PPI_FS3

PPIx

PPI_FS1

CLK

FIELD

FRAMESYNC

1 FRAME
SYNC

3 FRAME
SYNCS

PPI

DATA

Functional Description

20-20 ADSP-BF50x Blackfin Processor Hardware Reference

the General-Purpose Timers chapter for information on how this is
achieved on this processor. This allows for arbitrary pulse widths and peri-
ods to be programmed for these signals using the existing TIMERx registers.
This capability accommodates a wide range of timing needs. Note these
PWM circuits are clocked by PPI_CLK, not by SCLK (as during conven-
tional timer PWM operation). If PPI_FS2 is not used in the configured
PPI mode, its corresponding timer operates as it normally would, unre-
stricted in functionality. The state of PPI_FS3 depends completely on the
state of PPI_FS1 and/or PPI_FS2, so PPI_FS3 has no inherent
programmability.

 To program PPI_FS1 and/or PPI_FS2 for operation in an internal
frame sync mode:

1. Configure and enable DMA for the PPI. See “DMA Operation” on
page 20-22.

2. Configure the width and period for each frame sync signal via the
appropriate TIMER_WIDTH and TIMER_PERIOD registers.

3. Set up the appropriate TIMER_CONFIG register(s) for PWM_OUT mode.
This includes setting CLK_SEL to 1 and TIN_SEL to 1 for each timer
involved.

4. Write to PPI_CONTROL to configure and enable the PPI.

5. Write to TIMER_ENABLE to enable the appropriate timer(s).

 It is important to guarantee proper frame sync polarity between the
PPI and timer peripherals. To do this, make sure that if
PPI_CONTROL[15:14] = b#10 or b#11, the PULSE_HI bit is cleared in
the appropriate TIMER_CONFIG register(s). Likewise, if
PPI_CONTROL[15:14] = b#00 or b#01, the PULSE_HI bit should be set
in the appropriate TIMER_CONFIG register(s).

ADSP-BF50x Blackfin Processor Hardware Reference 20-21

Parallel Peripheral Interface

To switch to another PPI mode not involving internal frame syncs:

1. Disable the PPI (using PPI_CONTROL).

2. Disable the appropriate timer(s) (using TIMER_DISABLE).

Modes With External Frame Syncs

In RX modes with external frame syncs, the PPI_FS1 and PPI_FS2 pins
become edge-sensitive inputs. In such modes the timers associated with
the PPI_FS1 and PPI_FS2 pins can still be used for a purpose not involving
the actual pin. However, timer access to a TMRx pin is disabled when the
PPI is using that pin for a PPI_FSx frame sync input function. For modes
that do not require PPI_FS2, the associated timer is not restricted in func-
tionality and can be operated as if the PPI were not being used (that is, the
TMR1 pin becomes available for timer use as well). For more information
on configuring and using the timers, refer to the General-Purpose Timers
chapter.

 In RX mode with 3 external frame syncs, the start of frame detec-
tion occurs where a PPI_FS2 assertion is followed by an assertion of
PPI_FS1 while PPI_FS3 is low. This happens at the start of field 1.
Note that PPI_FS3 only needs to be low when PPI_FS1 is asserted,
not when PPI_FS2 asserts. Also, PPI_FS3 is only used to synchro-
nize to the start of the very first frame after the PPI is enabled. It is
subsequently ignored.

In TX modes with external frame syncs, the PPI_FS1 and PPI_FS2 pins are
treated as edge-sensitive inputs. In this mode, it is not necessary to config-
ure the timer(s) associated with the frame sync(s) as input(s), or to enable
them via the TIMER_ENABLE register. Additionally, the actual timers them-
selves are available for use, even though the timer pin(s) are taken over by
the PPI. In this case, there is no requirement that the timebase (configured
by TIN_SEL in TIMERx_CONFIG) be PPI_CLK.

However, if using a timer whose pin is connected to an external frame
sync, be sure to disable the pin via the OUT_DIS bit in TIMER_CONFIG. Then

Programming Model

20-22 ADSP-BF50x Blackfin Processor Hardware Reference

the timer itself can be configured and enabled for non-PPI use without
affecting PPI operation in this mode. For more information, see the
General-Purpose Timers chapter.

Programming Model
The following sections describe the PPI programming model.

DMA Operation
The PPI must be used with the processor’s DMA engine. This section dis-
cusses how the two interact. For additional information about the DMA
engine, including explanations of DMA registers and DMA operations,
refer to the Direct Memory Access chapter.

The PPI DMA channel can be configured for either transmit or receive
operation, and it has a maximum throughput of (PPI_CLK) ×
(16 bits/transfer). In modes where data lengths are greater than eight bits,
only one element can be clocked in per PPI_CLK cycle, and this results in
reduced bandwidth (since no packing is possible). The highest throughput
is achieved with 8-bit data and PACK_EN = 1 (packing mode enabled). Note
for 16-bit packing mode, there must be an even number of data elements.

Configuring the PPI’s DMA channel is a necessary step toward using the
PPI interface. It is the DMA engine that generates interrupts upon com-
pletion of a row, frame, or partial-frame transfer. It is also the DMA
engine that coordinates the origination or destination point for the data
that is transferred through the PPI.

The processor’s 2D DMA capability allows the processor to be interrupted
at the end of a line or after a frame of video has been transferred, as well as
if a DMA error occurs. In fact, the specification of the DMA_XCOUNT and
DMA_YCOUNT MMRs allows for flexible data interrupt points. For example,
assume the DMA registers XMODIFY = YMODIFY = 1. Then, if a data frame

ADSP-BF50x Blackfin Processor Hardware Reference 20-23

Parallel Peripheral Interface

contains 320 x 240 bytes (240 rows of 320 bytes each), these conditions
hold:

• Setting XCOUNT = 320, YCOUNT = 240, and DI_SEL = 1 (the DI_SEL

bit is located in DMA_CONFIG) interrupts on every row transferred,
for the entire frame.

• Setting XCOUNT = 320, YCOUNT = 240, and DI_SEL = 0 interrupts
only on the completion of the frame (when 240 rows of 320 bytes
have been transferred).

• Setting XCOUNT = 38,400 (320 x 120), YCOUNT = 2, and DI_SEL = 1
causes an interrupt when half of the frame has been transferred,
and again when the whole frame has been transferred.

The general procedure for setting up DMA operation with the PPI
follows.

1. Configure DMA registers as appropriate for desired DMA operat-
ing mode.

2. Enable the DMA channel for operation.

3. Configure appropriate PPI registers.

4. Enable the PPI by writing a 1 to bit 0 in PPI_CONTROL.

5. If internally generated frame syncs are used, write to the
TIMER_ENABLE register to enable the timers linked to the PPI frame
syncs.

Figure 20-12 shows a flow diagram detailing the steps on how to config-
ure the PPI for the various modes of operation.

Programming Model

20-24 ADSP-BF50x Blackfin Processor Hardware Reference

Figure 20-12. PPI Flow Diagram

2D DMA?
Y

N

PROGRAM
Y_COUNT AND

Y_MODIFY

START

Enable necessary PPI pins through
PORT_MUX and PORT_FER registers

GP?
Y

N

PROGRAM
PPI_FRAME

FS?

N

PROGRAM
PPI_DELAY

EXTERNAL
TRIGGER?

N

Y

PROGRAM
PPI_COUNT

INTERNAL FS?

N

Y PROGRAM TIMER(S)
LINKED WITH FS

Y

WRITE DMA_CONFIG TO ENABLE DMA

WRITE PPI_CONTROL TO ENABLE PPI

INTERNAL FS?

N

Y
WRITE TIMER_ENABLE TO ENABLE TIMERS

END

ADSP-BF50x Blackfin Processor Hardware Reference 20-25

Parallel Peripheral Interface

PPI Registers
The PPI has five memory-mapped registers (MMRs) that regulate its oper-
ation. These registers are the PPI control register (PPI_CONTROL), the PPI
status register (PPI_STATUS), the delay count register (PPI_DELAY), the
transfer count register (PPI_COUNT), and the lines per frame register
(PPI_FRAME).

Descriptions and bit diagrams for each of these MMRs are provided in the
following sections.

 PPI Control Register (PPI_CONTROL)
The PPI_CONTROL register configures the PPI for operating mode, control
signal polarities, and data width of the port. See Figure 20-13 for a bit dia-
gram of this MMR.

The POLC and POLS bits allow for selective signal inversion of the PPI_CLK

and PPI_FS1/PPI_FS2 signals, respectively. This provides a mechanism to
connect to data sources and receivers with a wide array of control signal
polarities. Often, the remote data source/receiver also offers configurable
signal polarities, so the POLC and POLS bits simply add increased flexibility.

The DLEN[2:0] field is programmed to specify the width of the PPI port in
any mode. Note any width from 8 to 16 bits is supported, with the excep-
tion of a 9-bit port width. Any pins unused by the PPI as a result of the
DLEN setting are free for use in their other functions.

 In ITU-R 656 modes, the DLEN field should not be configured for
anything greater than a 10-bit port width. If it is, the PPI will
reserve extra pins, making them unusable by other peripherals.

The SKIP_EN bit, when set, enables the selective skipping of data elements
being read in through the PPI. By ignoring data elements, the PPI is able
to conserve DMA bandwidth.

PPI Registers

20-26 ADSP-BF50x Blackfin Processor Hardware Reference

Figure 20-13. PPI Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PPI Control Register (PPI_CONTROL)

0 - PPI disabled
1 - PPI enabled

FLD_SEL (Active Field Select)

PORT_DIR (Direction)

XFR_TYPE[1:0] (Transfer
Type)

PORT_CFG[1:0] (Port
Configuration)

PORT_EN (Enable)

DLEN[2:0] (Data Length)
000 - 8 bits
001 - 10 bits
010 - 11 bits
011 - 12 bits
100 - 13 bits
101 - 14 bits
110 - 15 bits
111 - 16 bits

POLS

0 - PPI in Receive mode (input)
1 - PPI in Transmit mode

(output)

In Input mode:
00 - ITU-R 656, Active Field Only
01 - ITU-R 656, Entire Field
10 - ITU-R 656, Vertical Blanking

Only
11 - Non-ITU-R 656 mode
In Output mode:
00, 01, 10 - Sync-less Output

mode
11 - Output mode with 1, 2, or

3 frame syncs

Reset = 0x0000

In ITU-R 656 modes, when XFR_TYPE = 00:
0 - Field 1
1 - Fields 1 and 2
In RX mode with external frame sync, when PORT_CFG = 11:
0 - External trigger
1 - Internal trigger

0 - PPI_FS1 and
PPI_FS2 are treated
as rising edge
asserted

1 - PPI_FS1 and
PPI_FS2 are treated
as falling edge
asserted

SKIP_EN (Skip Enable)

SKIP_EO (Skip Even Odd)
In ITU-R 656 and GP Input modes:
0 - Skip odd-numbered elements
1 - Skip even-numbered elements

In ITU-R 656 and GP Input modes:
0 - Skipping disabled
1 - Skipping enabled
PACK_EN (Packing Mode Enable)
0 - Disabled
1 - Output mode, unpacking enabled;

Input mode, packing enabled

In non-ITU-R 656 Input modes
(PORT_DIR = 0, XFR_TYPE = 11):
00 - 1 external frame sync
01 - 2 or 3 internal frame syncs
10 - 2 or 3 external frame syncs
11 - 0 frame syncs, triggered
In Output modes with frame syncs
(PORT_DIR = 1, XFR_TYPE = 11):
00 - 1 frame sync
01 - 2 or 3 frame syncs
10 - Reserved
11 - Sync PPI_FS3 to assertion of

PPI_FS2 rather than of
PPI_FS1.

POLC
0 - PPI samples data on rising

edge and drives data on
falling edge of PPI_CLK

1 - PPI samples data on falling
edge and drives data on
rising edge of PPI_CLK

ADSP-BF50x Blackfin Processor Hardware Reference 20-27

Parallel Peripheral Interface

When the SKIP_EN bit is set, the SKIP_EO bit allows the PPI to ignore
either the odd or the even elements in an input datastream. This is useful,
for instance, when reading in a color video signal in YCbCr format (Cb,
Y, Cr, Y, Cb, Y, Cr, Y...). Skipping every other element allows the PPI to
only read in the luma (Y) or chroma (Cr or Cb) values. This could also be
useful when synchronizing two processors to the same incoming video
stream. One processor could handle luma processing and the other (whose
SKIP_EO bit is set differently from the first processor’s) could handle
chroma processing. This skipping feature is valid in ITU-R 656 modes
and RX modes with external frame syncs.

The PACK_EN bit only has meaning when the PPI port width (selected by
DLEN[2:0]) is eight bits. Every PPI_CLK-initiated event on the DMA bus
(that is, an input or output operation) handles 16-bit entities. In other
words, an input port width of ten bits still results in a 16-bit input word
for every PPI_CLK; the upper 6 bits are 0s. Likewise, a port width of eight
bits also results in a 16-bit input word, with the upper eight bits all 0s. In
the case of 8-bit data, it is usually more efficient to pack this information
so that there are two bytes of data for every 16-bit word. This is the func-
tion of the PACK_EN bit. When set, it enables packing for all RX modes.

Consider this data transported into the PPI via DMA:
0xCE, 0xFA, 0xFE, 0xCA....

• With PACK_EN set:

This is read into the PPI, configured for an 8-bit port width:
0xCE, 0xFA, 0xFE, 0xCA...

• This is transferred onto the DMA bus:
0xFACE, 0xCAFE,...

• With PACK_EN cleared:

This is read into the PPI:
0xCE, 0xFA, 0xFE, 0xCA,...

PPI Registers

20-28 ADSP-BF50x Blackfin Processor Hardware Reference

• This is transferred onto the DMA bus:
0x00CE, 0x00FA, 0x00FE, 0x00CA,...

For TX modes, setting PACK_EN enables unpacking of bytes. Consider this
data in memory, to be transported out through the PPI via DMA:
0xFACE CAFE....

(0xFA and 0xCA are the two most significant bits (MSBs) of their respec-
tive 16-bit words)

• With PACK_EN set:

This is DMA’ed to the PPI:
0xFACE, 0xCAFE,...

• This is transferred out through the PPI, configured for an 8-bit
port width (note LSBs are transferred first):

0xCE, 0xFA, 0xFE, 0xCA,...

• With PACK_EN cleared:

This is DMA’ed to the PPI:
0xFACE, 0xCAFE,...

• This is transferred out through the PPI, configured for an 8-bit
port width:

0xCE, 0xFE,...

The FLD_SEL bit is used primarily in the active field only ITU-R 656
mode. The FLD_SEL bit determines whether to transfer in only field 1 of
each video frame, or both fields 1 and 2. Thus, it allows a savings in DMA
bandwidth by transferring only every other field of active video.

The PORT_CFG[1:0] field is used to configure the operating mode of the
PPI. It operates in conjunction with the PORT_DIR bit, which sets the
direction of data transfer for the port. The XFR_TYPE[1:0] field is also
used to configure operating mode and is discussed below. See Table 20-1
on page 20-4 for the possible operating modes for the PPI.

ADSP-BF50x Blackfin Processor Hardware Reference 20-29

Parallel Peripheral Interface

The XFR_TYPE[1:0] field configures the PPI for various modes of opera-
tion. Refer to Table 20-1 on page 20-4 to see how XFR_TYPE[1:0]

interacts with other bits in PPI_CONTROL to determine the PPI operating
mode.

The PORT_EN bit, when set, enables the PPI for operation.

 When configured as an input port, the PPI does not start data
transfer after being enabled until the appropriate synchronization
signals are received. If configured as an output port, transfer
(including the appropriate synchronization signals) begins as soon
as the frame syncs (timer units) are enabled, so all frame syncs must
be configured before this happens. Refer to “Frame Synchroniza-
tion in GP Modes” on page 20-19 for more information.

PPI Status Register (PPI_STATUS)
The PPI_STATUS register, shown in Figure 20-14, contains bits that pro-
vide information about the current operating state of the PPI.

The ERR_DET bit is a sticky bit that denotes whether or not an error was
detected in the ITU-R 656 control word preamble. The bit is valid only in
ITU-R 656 modes. If ERR_DET = 1, an error was detected in the preamble.
If ERR_DET = 0, no error was detected in the preamble.

The ERR_NCOR bit is sticky and is relevant only in ITU-R 656 modes. If
ERR_NCOR = 0 and ERR_DET = 1, all preamble errors that have occurred have
been corrected. If ERR_NCOR = 1, an error in the preamble was detected but
not corrected. This situation generates a PPI error interrupt, unless this
condition is masked off in the SIC_IMASK register.

PPI Registers

20-30 ADSP-BF50x Blackfin Processor Hardware Reference

The FT_ERR bit is sticky and indicates, when set, that a frame track error
has occurred. In this condition, the programmed number of lines per
frame in PPI_FRAME does not match up with the “frame start detect” con-
dition (see the information note on page 20-34). A frame track error
generates a PPI error interrupt, unless this condition is masked off in the
SIC_IMASK register.

The FLD bit is set or cleared at the same time as the change in state of F (in
ITU-R 656 modes) or PPI_FS3 (in other RX modes). It is valid for input
modes only. The state of FLD reflects the current state of the F or PPI_FS3

Figure 20-14. PPI Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PPI Status Register (PPI_STATUS)

0 - Field 1
1 - Field 2

FT_ERR (Frame Track Error)
- W1C

OVR (FIFO Overflow) - W1C

FLD (Field Indicator)

ERR_DET (Error
Detected) - W1C

Used only in ITU-R 656
modes
0 - No preamble error
detected
1 - Preamble error
detected

ERR_NCOR (Error
Not Corrected)
- W1C

0 - No interrupt
1 - Frame Track Error

interrupt occurred

Reset = 0x0000

Used only in ITU-R 656
modes
0 - No uncorrected

preamble error
has occurred

1 - Preamble error
detected but not
corrected

0 - No interrupt
1 - FIFO Overflow Error

interrupt occurred

UNDR (FIFO Underrun)
- W1C
0 - No interrupt
1 - FIFO Underrun Error

interrupt occurred

0 - No horizontal tracking
underflow error

1 - PPI_FS1 (or SAV code)
received before
PPI_COUNT expired for
that line

LT_ERR_OVR (Horizontal Tracking
Overflow Error) - W1C

LT_ERR_UNDR (Horizontal Track-
ing Underflow Error) - W1C

Used only in ITU-R 656
modes
0 - No horizontal tracking

overflow error
1 - PPI_COUNT expired before

receiving SAV code

ADSP-BF50x Blackfin Processor Hardware Reference 20-31

Parallel Peripheral Interface

signals. In other words, the FLD bit always reflects the current video field
being processed by the PPI.

The OVR bit is sticky and indicates, when set, that the PPI FIFO has over-
flowed and can accept no more data. A FIFO overflow error generates a
PPI error interrupt, unless this condition is masked off in the SIC_IMASK

register.

 The PPI FIFO is 16 bits wide and has 16 entries.

The UNDR bit is sticky and indicates, when set, that the PPI FIFO has
underrun and is data-starved. A FIFO underrun error generates a PPI
error interrupt, unless this condition is masked off in the SIC_IMASK

register.

The LT_ERR_OVR and LT_ERR_UNDR bits are sticky and indicate, when set,
that a line track error has occurred. These bits are valid for RX modes with
recurring frame syncs only. If one of these bits is set, the programmed
number of samples in PPI_COUNT did not match up with the actual number
of samples counted between assertions of PPI_FS1 (for general-purpose
modes) or start of active video (SAV) codes (for ITU-R 656 modes). If the
PPI error interrupt is enabled in the SIC_IMASK register, an interrupt
request is generated when one of these bits is set.

The LT_ERR_OVR flag signifies that a horizontal tracking overflow has
occurred, where the value in PPI_COUNT was reached before a new SAV
code was received. This flag does not apply for non ITU-R 656 modes; in
this case, once the value in PPI_COUNT is reached, the PPI simply stops
counting until receiving the next PPI_FS1 frame sync.

The LT_ERR_UNDR flag signifies that a horizontal tracking underflow has
occurred, where a new SAV code or PPI_FS1 assertion occurred before the
value in PPI_COUNT was reached.

PPI Registers

20-32 ADSP-BF50x Blackfin Processor Hardware Reference

PPI Delay Count Register (PPI_DELAY)
The PPI_DELAY register, shown in Figure 20-15, can be used in all config-
urations except ITU-R 656 modes and GP modes with 0 frame syncs. It
contains a count of how many PPI_CLK cycles to delay after assertion of
PPI_FS1 before starting to read in or write out data.

 Note in TX modes using at least one frame sync, there is a
one-cycle delay beyond what is specified in the PPI_DELAY register.

PPI Transfer Count Register (PPI_COUNT)
The PPI_COUNT register, shown in Figure 20-16, is used in all modes
except “RX mode with 0 frame syncs, external trigger” and “TX mode
with 0 frame syncs.” For RX modes, this register holds the number of sam-
ples to read into the PPI per line, minus one. For TX modes, it holds the
number of samples to write out through the PPI per line, minus one. The
register itself does not actually decrement with each transfer. Thus, at the
beginning of a new line of data, there is no need to rewrite the value of
this register. For example, to receive or transmit 100 samples through the
PPI, set PPI_COUNT to 99.

Figure 20-15. PPI Delay Count Register

PPI Delay Count Register (PPI_DELAY)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PPI_DELAY[15:0]

Reset = 0x0000

Number of PPI_CLK cycles to
delay after assertion of
PPI_FS1 before latching in or
sending out data

ADSP-BF50x Blackfin Processor Hardware Reference 20-33

Parallel Peripheral Interface

 Take care to ensure that the number of samples programmed into
PPI_COUNT is in keeping with the number of samples expected dur-
ing the “horizontal” interval specified by PPI_FS1.

PPI Lines Per Frame Register (PPI_FRAME)
The PPI_FRAME register, shown in Figure 20-17, is used in all TX and RX
modes with two or three frame syncs. For ITU-R 656 modes, this register
holds the number of lines expected per frame of data, where a frame is
defined as field 1 and field 2 combined, designated by the F indicator in
the ITU-R stream. Here, a line is defined as a complete ITU-R 656
SAV-EAV cycle.

For non ITU-R 656 modes with external frame syncs, a frame is defined as
the data bounded between PPI_FS2 assertions, regardless of the state of
PPI_FS3. A line is defined as a complete PPI_FS1 cycle. In these modes,
PPI_FS3 is used only to determine the original “frame start” each time the
PPI is enabled. It is ignored on every subsequent field and frame, and its
state (high or low) is not important except during the original frame start.

If the start of a new frame (or field, for ITU-R 656 mode) is detected
before the number of lines specified by PPI_FRAME have been transferred, a
frame track error results, and the FT_ERR bit in PPI_STATUS is set.

Figure 20-16. PPI Transfer Count Register

PPI Transfer Count Register (PPI_COUNT)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PPI_COUNT[15:0]

Reset = 0x0000

In RX modes, holds one less
than the number of samples to
read in to the PPI per line. In
TX modes, holds one less
than the number of samples to
write out through the PPI per
line.

Programming Examples

20-34 ADSP-BF50x Blackfin Processor Hardware Reference

However, the PPI still automatically reinitializes to count to the value pro-
grammed in PPI_FRAME, and data transfer continues.

 In ITU-R 656 modes, a frame start detect happens on the falling
edge of F, the field indicator. This occurs at the start of field 1.

In RX mode with three external frame syncs, a frame start detect
refers to a condition where a PPI_FS2 assertion is followed by an
assertion of PPI_FS1 while PPI_FS3 is low. This occurs at the start
of field 1. Note that PPI_FS3 only needs to be low when PPI_FS1 is
asserted, not when PPI_FS2 asserts. Also, PPI_FS3 is only used to
synchronize to the start of the very first frame after the PPI is
enabled. It is subsequently ignored.

When using RX mode with three external frame syncs, and only
two syncs are needed, configure the PPI for 3-frame-sync operation
and provide an external pull-down to GND for the PPI_FS3 pin.

Programming Examples
The PPI can be configured to receive data from a video source in several
RX modes. The following programming examples (Listing 20-1 through
Listing 20-5) describe the ITU-R 656 entire field input mode.

Figure 20-17. PPI Lines Per Frame Register

PPI Lines Per Frame Register (PPI_FRAME)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PPI_FRAME[15:0]

Reset = 0x0000

Holds the number of lines
expected per frame of data

ADSP-BF50x Blackfin Processor Hardware Reference 20-35

Parallel Peripheral Interface

Listing 20-1. Configure DMA Registers

config_dma:

/*Assumes PPI is mapped to DMA channel 0.*/

/* DMA0_START_ADDR */

R0.L = rx_buffer;

R0.H = rx_buffer;

P0.L = lo(DMA0_START_ADDR);

P0.H = hi(DMA0_START_ADDR);

[P0] = R0;

/* DMA0_CONFIG */

R0.L = DI_EN | WNR;

P0.L = lo(DMA0_CONFIG);

P0.H = hi(DMA0_CONFIG);

W[P0] = R0.L;

/* DMA0_X_COUNT */

R0.L = 256;

P0.L = lo(DMA0_X_COUNT);

P0.H = hi(DMA0_X_COUNT);

W[P0] = R0.L;

/* DMA0_X_MODIFY */

R0.L = 0x0001;

P0.L = lo(DMA0_X_MODIFY);

P0.H = hi(DMA0_X_MODIFY);

W[P0] = R0.L;

ssync;

config_dma.END: RTS;

Programming Examples

20-36 ADSP-BF50x Blackfin Processor Hardware Reference

Listing 20-2. Configure PPI Registers

config_ppi:

/* PPI_CONTROL */

P0.L = lo(PPI_CONTROL);

P0.H = hi(PPI_CONTROL);

R0.L = 0x0004;

W[P0] = R0.L;

ssync;

config_ppi.END: RTS;

Listing 20-3. Enable DMA

/* DMA0_CONFIG */

P0.L = lo(DMA0_CONFIG);

P0.H = hi(DMA0_CONFIG);

R0.L = W[P0];

bitset(R0,0);

W[P0] = R0.L;

ssync;

Listing 20-4. Enable PPI

/* PPI_CONTROL */

P0.L = lo(PPI_CONTROL);

P0.H = hi(PPI_CONTROL);

R0.L = W[P0];

bitset(R0,0);

W[P0] = R0.L;

ssync;

ADSP-BF50x Blackfin Processor Hardware Reference 20-37

Parallel Peripheral Interface

Listing 20-5. Clear DMA Completion Interrupt

/* DMA0_IRQ_STATUS */

P2.L = lo(DMA0_IRQ_STATUS);

P2.H = hi(DMA0_IRQ_STATUS);

R2.L = W[P2];

BITSET(R2,0);

W[P2] = R2.L;

ssync;

Unique Information for the ADSP-BF50x
Processor

None.

Unique Information for the ADSP-BF50x Processor

20-38 ADSP-BF50x Blackfin Processor Hardware Reference

ADSP-BF50x Blackfin Processor Hardware Reference 21-1

21 REMOVABLE STORAGE
INTERFACE

This chapter describes the ADSP-BF50x Blackfin processor Removable
Storage Interface (RSI) and includes the following sections:

• “Overview”

• “Interface Overview” on page 21-2

• “Description of Operation” on page 21-6

• “Functional Description” on page 21-9

• “Programming Model” on page 21-32

• “RSI Registers” on page 21-52

Overview
ADSP-BF50x Blackfin processors provide an RSI interface for multimedia
cards (MMC), secure digital memory cards (SD), secure digital input/out-
put cards (SDIO) and consumer electronic ATA devices (CE-ATA). All of
these storage solutions use similar interface protocols. The main difference
between MMC and SD support is the initialization sequence. The main
difference between SD and SDIO support is the use of interrupt and read
wait signals for SDIO. CE-ATA devices require handling of larger block
sizes of 4K bytes and implement a device interrupt scheme known as the
command completion signal (CCS).

Interface Overview

21-2 ADSP-BF50x Blackfin Processor Hardware Reference

Features of the RSI interface include:

• Support for a single SD or SDIO card

• Support for one or more MMC cards (sharing the same interface)

• Support for 1- and 4-bit SD modes (SPI mode is not supported)

• Support for 1-, 4-, and 8-bit MMC modes (SPI mode is not
supported)

• Support for 4- and 8-bit CE-ATA devices

• Programmable clock frequency generated from SCLK

• SDIO interrupt and read wait features

• Command Completion Signal recognition and disable for CE-ATA
device support

• High-capacity card support such as SDHC implemented within
software

• 512-bit transmit/receive FIFO

• DMA channel with 32-bit DMA Access Bus

Interface Overview
The RSI interface handles the multimedia and secure digital card func-
tions. This includes clock generation, power management, command
transfer, and data transfer. The bus interface converts 16-bit PAB accesses
to 32-bit register accesses to the memory-mapped registers, and generates
interrupt requests to the processor core and system. The RSI has two
interrupt signals (IRQ0 and IRQ1) that are fed to the system interrupt
controller (SIC) IRQ10 and IRQ55, respectively.

ADSP-BF50x Blackfin Processor Hardware Reference 21-3

Removable Storage Interface

The RSI block has 22 individual status bits contained within the
RSI_STATUS register that can be configured to generate an interrupt. The
status bits may be mapped to either of the two interrupts fed to the system
interrupt controller, allowing for greater flexibility in system configura-
tion. In order for an interrupt to be generated on IRQ0, the interrupt
should be enabled by setting the corresponding bit in the RSI_MASK0 regis-
ter. Interrupts that are required to be generated on IRQ1 are enabled by
setting the corresponding bit in the RSI_MASK1 register. In addition to sta-
tus flags within the RSI_STATUS register being capable of generating
interrupts, each of the flags in the RSI_ESTAT register are also capable of
generating an interrupt. Interrupts for the RSI_ESTAT flags are enabled by
setting the corresponding bit in the RSI_EMASK register and are sent to the
SIC via IRQ10.

The 32-bit DAB bus allows for efficient transfer of data, both to and from
internal memory, via DMA channel 4 that is shared with the SPORT0
TX. The peripheral used by this DMA channel is determined by the
peripheral that is enabled via the pin multiplexing.

The RSI (Figure 21-1) is a 10-pin interface consisting of:

• RSI_CLK: The clock signal applied to the card from the RSI. All
transfers on the command and data signals are synchronous to this
signal. The frequency is variable between zero and the maximum
clock frequency. Refer to ADSP-BF504, ADSP-BF504F,
ADSP-BF506F Embedded Processor Data Sheet for maximum sup-
ported clock frequencies.

• RSI_CMD: A bidirectional command signal used for command trans-
fer and card initialization. The RSI drives this signal to send
commands to the cards, and the card drives the signal to send
responses back to the RSI. This signal is configurable for both
push-pull mode and open-drain mode. MMC cards are the only

Interface Overview

21-4 ADSP-BF50x Blackfin Processor Hardware Reference

cards to support open-drain mode. This allows multiple MMC
cards to share the data and command signals on the RSI interface
and allows for the initialization sequence to take place on all cards.

• RSI_DATA7-0: These are configurable bidirectional data channels
used for all data transfers both to and from the card. The data bus
width can be configured as 1-, 4-, or 8-bit.

 Although multiple MMC cards may be bused together to the single
RSI interface, it is not possible to bus together an MMC card with
an SD or SDIO such that they share the command and or data sig-
nals. Multiple MMC cards bused together respond to CMD1 and
CMD2 commands simultaneously using the open drain drivers. For
other card types, broadcast commands with a response must not be
issued if the command or data signals are shared between cards.

Figure 21-1. RSI Block Diagram

RSI_CLK RSI_CMD RSI_DATA

IRQ0

IRQ1

REMOVABLE STORAGE INTERFACE

CLOCK DIVIDER
AND SYNC LOGIC

512-BIT FIFO

TX AND RX LOGIC

PAB

DAB 16

16

DMA REQUEST

ADSP-BF50x Blackfin Processor Hardware Reference 21-5

Removable Storage Interface

Table 21-1 and Table 21-2 list the RSI interface pins functional opera-
tions for all supported protocol modes.

Table 21-1. RSI Protocol Interface

Signal Name MMC
(1-bit)

MMC
(4-bit)

MMC
(8-bit)

CE-ATA
(4-bit)

CE-ATA
(8-bit)

Direction

RSI_DATA7 Not Used Not Used Dat7 Not Used Dat7 Bi-dir.

RSI_DATA6 Not Used Not Used Dat6 Not Used Dat6 Bi-dir.

RSI_DATA7 Not Used Not Used Dat7 Not Used Dat7 Bi-dir.

RSI_DATA6 Not Used Not Used Dat6 Not Used Dat6 Bi-dir.

RSI_DATA5 Not Used Not Used Dat5 Not Used Dat5 Bi-dir.

RSI_DATA4 Not Used Not Used Dat4 Not Used Dat4 Bi-dir.

RSI_DATA3 Not Used /
Card Detect

Dat3/ Card
Detect

Dat3/ Card
Detect

Dat3 Dat3 Bi-dir.

RSI_DATA2 Not Used Dat2 Dat2 Dat2 Dat2 Bi-dir.

RSI_DATA1 Not Used Dat1 Dat1 Dat1 Dat1 Bi-dir.

RSI_DATA0 Dat0 Dat0 Dat0 Dat0 Dat0 Bi-dir.

RSI_CMD Command/
Response

Command/
Response

Command/
Response

Command/
Response/
CCS/
CCSD

Command/
Response/
CCS/
CCSD

Bi-dir.

RSI_CLK CLK CLK CLK CLK CLK Output

Description of Operation

21-6 ADSP-BF50x Blackfin Processor Hardware Reference

Description of Operation
The RSI controller is a fast, synchronous peripheral that uses various
protocols to communicate with MMC, SD, and SDIO cards as well as
CE-ATA hard drives. The RSI is compatible with the following protocols:

• MMC (Multimedia Card) bus protocol

• SD (Secure Digital) bus protocol

• SDIO (Secure Digital Input Output) bus protocol

• CE-ATA (Consumer Electronic ATA)

 The RSI does not support the SPI bus protocol.

Table 21-2. RSI Protocol Interface

Signal Name SD
(1-bit)

SD
(4-bit)

SDIO
(1-bit)

SDIO
(4-bit)

Direction

RSI_DATA7 Not Used Not Used Not Used Not Used Bidirectional

RSI_DATA6 Not Used Not Used Not Used Not Used Bidirectional

RSI_DATA5 Not Used Not Used Not Used Not Used Bidirectional

RSI_DATA4 Not Used Not Used Not Used Not Used Bidirectional

RSI_DATA3 Not Used/
Card Detect

Dat3/
Card Detect

Not Used/
Card Detect

Dat3/
Card Detect

Bidirectional

RSI_DATA2 Not Used Dat2 Read Wait Dat2/
Read Wait

Bidirectional

RSI_DATA1 Not Used Dat1 Interrupt Dat1/
Interrupt

Bidirectional

RSI_DATA0 Dat0 Dat0 Dat0 Dat0 Bidirectional

RSI_CMD Command/
Response

Command/
Response

Command Command Bidirectional

RSI_CLK CLK CLK CLK CLK Output

ADSP-BF50x Blackfin Processor Hardware Reference 21-7

Removable Storage Interface

Communication is via a master and slave type configuration, whereby the
RSI is the master and the card is the slave device. The RSI communicates
with the device via a message-based bus protocol in which the host sends
commands serially via the RSI_CMD signal. Certain commands require the
card to provide a response back to the host. This response is also sent seri-
ally via the RSI_CMD signal.

Data transfers, both to and from the card, occur via RSI_DATAx signals.
The number of data lines used for the data transfer can be configured to 1,
4, or 8 using RSI_DATA0, RSI_DATA3–0, or RSI_DATA7–0, respectively. All
transfers over the RSI_CMD and RSI_DATAx signals are transferred synchro-
nously to the RSI_CLK.

Commands, responses, and data transfers are protected from transmission
errors with the use of cyclic redundancy codes (CRC). A CRC7 code is
generated for every command sent by the host and for almost every
response returned by the card on the RSI_CMD signal. A CRC16 code is
used to protect block data transfers sent over the RSI_DATAx signals. In 4-
and 8-bit bus configurations, the CRC16 is calculated for each individual
data signal.

When a device connected to the RSI is first powered and detected by the
host or has been reset, the device must first be identified and initialized by
the host. This allows the software to determine whether the device is com-
patible with the RSI controller and the implemented software drivers.
This phase in the procedure is known commonly as the card identification
mode.

When a device is in card identification mode, the host may be required to
perform the following actions:

• Reset the device

• Validate the device operating voltage range

Description of Operation

21-8 ADSP-BF50x Blackfin Processor Hardware Reference

• Identify the device type,

• Assign/request a relative card address (RCA)

Only once a device has been assigned an RCA will the device then transi-
tion to a stand-by state, where it is then known to be in data transfer mode.
Only once the device has entered this mode may data transfers then take
place. All communication during the card identification phase between
the host and the attached device occur via the RSI_CMD signal. The maxi-
mum clock frequencies during this identification phase may typically be
far lower than the cards maximum operating frequency for data transfers.

Once the device is in data transfer mode, communication may take place
via the RSI_CMD and the RSI_DATAx signals. The card may be interrogated
to then identify further supported features such as supported bus widths,
maximum supported clock frequency, and the device capacity. At this
point the bus width may then be altered and the supplied clock frequency
increased.

Data may be written to the device or read from the device using the
following two methods:

• Stream reads and writes

• Block reads and writes

Stream transfers result in a continual stream of data being transferred until
a specific command is sent to the device by the RSI informing the device
to stop the transfer. There may be additional maximum operating fre-
quency limitations imposed by the device for stream read and write
operations. In addition, stream write operations may have restrictions that
are dependent on writable block boundaries.

Block-based transfers result in a block of a pre-configured size being trans-
ferred. The size of a block is dependent upon the device and can be
obtained by reading registers contained on the device that are read during
the device detection procedure.

ADSP-BF50x Blackfin Processor Hardware Reference 21-9

Removable Storage Interface

Functional Description
The following sections describe the functions and features of the RSI
controller as well as the MMC, SD, SDIO, and CE-ATA protocols.
For detailed information on timing parameters and protocol
requirements, refer to ADSP-BF504, ADSP-BF504F, ADSP-BF506F
Embedded Processor Data Sheet and the following standards and
specifications:

• MMCA System Specification

• JESD84 series of JEDEC standards

• SD Specifications Part 1 Physical Layer Specification

• SD Specifications Part 1 Physical Layer Simplified Specification

• SD Specifications Part E1 SDIO Specification

RSI Clock Configuration
The RSI is a fast, synchronous peripheral with a programmable clock fre-
quency that is supplied via the RSI_CLK signal. The interface between the
RSI and the PAB/DAB busses operates at SCLK frequency. Communica-
tion between the clock domain that is supplied externally from the RSI on
the RSI_CLK signal and the internal RSI access to the PAB and DAB busses
is accomplished using synchronizers in the RSI module. The RSI_CLK fre-
quency is configured via the 8-bit CLKDIV field and the CLKDIV_BYPASS bit
of the RSI_CLK_CONTROL register (see “RSI Clock Control Register
(RSI_CLK_CONTROL)” on page 21-55).

If CLKDIV_BYPASS is set, the clock frequency driven on the RSI_CLK signal
is derived directly from SCLK.

If CLKDIV_BYPASS is cleared, the clock divider logic provides an RSI_CLK

frequency, where CLKDIV is an 8-bit value ranging between 0 and 255.

Functional Description

21-10 ADSP-BF50x Blackfin Processor Hardware Reference

The RSI_CLK output is enabled or disabled via the CLK_EN bit in the
RSI_CLK_CONTROL register and a power save feature is implemented via
PWR_SV_EN that allows for the disabling of the RSI_CLK output when there
are no transfers taking place on the RSI interface.

RSI Interface Configuration
The RSI supports multiple card types via the various protocols. Different
card types may require slightly different interface configurations.

The command signal on MMC cards operates in two different modes
depending on the cards operating mode. During the card identification
mode, this signal operates in open-drain configuration, however upon the
cards entry to data transfer mode, the signal is then configured to
push-pull mode. The internal pull-up resistor of the RSI_CMD signal is only
intended to keep the signal from floating. The internal pull-up resistor is
not sufficient during the card identification phase when the MMC card
RSI_CMD signal is operating in open-drain mode. If support for MMC
devices is required, an external pull-up resistor should be added to the
SD_CMD signal as detailed in the JEDEC standard. The bus width used for
the data transfers is configurable to 1-bit, 4-bits, or 8-bits via the BUS_MODE

field in the RSI_CLK_CONTROL register (see “RSI Clock Control Register
(RSI_CLK_CONTROL)” on page 21-55).

RSI_CLK SCLK
2 CLKDIV 1+ 
---=

ADSP-BF50x Blackfin Processor Hardware Reference 21-11

Removable Storage Interface

In order to stop the signals from floating when no card is inserted or dur-
ing times when all card drivers are in a high-impedance mode, various
pull-up and pull-down resistor configurations can be enabled on the
RSI_DATAx signals. The RSI_CONFIG register (see “RSI Configuration Reg-
ister (RSI_CONFIG)” on page 21-78) allows for the following options:

• Enable or disable a pull-down resistor on the RSI_DATA3 signal

• Enable or disable a pull-up resistor on the RSI_DATA3 signal

• Enable or disable pull-up resistors on the RSI_DATA7 through
RSI_DATA4, RSI_DATA2 through RSI_DATA0 signals and the RSI_CMD

signal

Card Detection
The RSI allows for software to detect when a card is inserted into its slot.
There are a number of ways that this card detection can be performed.

SD and SDIO cards use an internal pull-up resistor on the RSI_DATA3 line
as a card detect signal to indicate to the host that a card is present. In
order to use the RSI_DATA3 signal for card detection, an external
pull-down resistor should be added to the pin in order to pull the pin low
during the time a card is not inserted. When a card is inserted into the
slot, a rising edge is detected on RSI_DATA3 by the RSI and SD_CARD_DET is
set within the RSI_ESTAT register. Once the card has been correctly identi-
fied, the SD_CARD_DET interrupt should be cleared and disabled then the
pull-up resistor within the SD card should be disabled by issuing the
SET_CLR_CARD_DETECT command.

 When using the RSI_DATA3 signal for card detection with an exter-
nal pull-down resistor, do not enable the internal pull-up resistor
by setting PU_DAT3.

The recommended method of detecting the insertion of a card is to use
the card detect feature that is made available through most sockets.

Functional Description

21-12 ADSP-BF50x Blackfin Processor Hardware Reference

Sockets supporting this feature can have the card detect pin de-bounced
and connected to a GPIO pin in order to allow not only interrupt-driven
card detection but also interrupt-driven card removal. This is the most
reliable and efficient method of detecting the insertion and removal of a
card as some MMC devices may not implement the card detect pull-up
resistor on the RSI_DATA3 signal. Once a card is detected, the GPIO pin
can have the interrupt level inverted to then generate an interrupt on card
removal.

The final approach to detecting the insertion and removal of a card is to
simply use software polling. Software would poll the slot periodically
using the card identification commands for the supported card types.
Once a card is inserted, this will result in valid responses being sent back
to the host; when the card is removed, command and data timeout errors
will be observed.

ADSP-BF50x Blackfin Processor Hardware Reference 21-13

Removable Storage Interface

Figure 21-2. RSI Socket Interface

RSI_CLK
RSI_CMD

RSI_DATA0
RSI_DATA1
RSI_DATA2
RSI_DATA3
RSI_DATA4
RSI_DATA5
RSI_DATA6
RSI_DATA7

RSI INTERFACE

GPIO

GPIO

SD/MMC SOCKET

CLK
CMD
DATA0
DATA1
DATA2
DATA3
DATA4
DATA5
DATA6
DATA7

CARD
DETECT

WRITE
PROTECT

3.3V

REQUIRED
FOR MMC

CARD
SUPPORT

REQUIRED ONLY
IF USING CARD
DETECTION VIA
DATA3 SIGNAL

Functional Description

21-14 ADSP-BF50x Blackfin Processor Hardware Reference

RSI Power Saving Configuration
The RSI requires two internal clock signals that are derived directly from
SCLK. In order for the RSI to function, these clocks must be enabled via
RSI_CLK_EN in the RSI_CONFIG register. Clearing RSI_CLK_EN disables the
RSI regardless of the other RSI clock configurations. One of these clock
signals is routed to the clock divider and generates the clock that is pro-
vided on the RSI_CLK signal. The RSI_CLK signal can be enabled or
disabled via CLK_EN in the RSI_CLK_CONTROL register and a power save fea-
ture is implemented via PWR_SV_EN that allows for the disabling of the
RSI_CLK output when there are no transfers taking place on the RSI inter-
face, providing additional power saving options.

Table 21-3. RSI Power Saving Configurations

CLKS_EN CLK_EN PWR_SV_E RSI State RSI_CLK output

0 0 0 Disabled No clock

0 0 1 Disabled No clock

0 1 0 Disabled No clock

0 1 1 Disabled No clock

1 0 0 Enabled No clock

1 0 1 Enabled No clock

1 1 0 Enabled Continuous clock1

1 The PWR_ON field of the RSI_PWR_CTL register must be set to 0x3.
If PWR_ON is 0x0, the clock will not be output.

1 1 1 Enabled Clock only driven during transfers1

ADSP-BF50x Blackfin Processor Hardware Reference 21-15

Removable Storage Interface

RSI Commands and Responses
The RSI sends commands to and receives responses from the card via the
RSI_CMD signal. The command to be sent to the card is issued by writing to
the RSI_COMMAND register (see “RSI Command Register
(RSI_COMMAND)” on page 21-57). This register contains a 6-bit
CMD_IDX field that contains the command index to be sent to the card pro-
viding support for a total of 64 commands, 0 (CMD0) to 63 (CMD63).
Some commands require an argument to be sent along with the command,
such as an address for a read transaction. An argument is always sent with
the command and it is the responsibility of the card to either ignore or use
the argument field based on the command that is received. The argument
sent with the command is provided via the RSI_ARGUMENT register
(see “RSI Argument Register (RSI_ARGUMENT)” on page 21-57).

All command transfers are protected by a 7-bit cyclic redundancy check
(CRC) code, more commonly referred to as a CRC7 checksum. This
allows for transmission errors to be detected and the command to be
re-issued to the card in the event of an error. All commands sent to the
card are composed of 48-bits as shown in Table 21-4.

The RSI_COMMAND register, as well as providing a means for issuing the
required command, also provides configuration information on whether a
response is to be expected back from the card and the type of response.

Table 21-4. RSI Command Format

Bit Position Width Value Description

47 1 0 Start bit

46 1 1 Transmitter bit

45:40 6 - Command index

39:8 32 - Argument

7:1 7 - CRC7 checksum

0 1 1 End bit

Functional Description

21-16 ADSP-BF50x Blackfin Processor Hardware Reference

The RSI can be configured via the CMD_RESP and CMD_L_RESP fields of the
RSI_COMMAND register to expect the following response types:

• No response

• Short response (see Table 21-5)

• Long response (see Table 21-6)

Table 21-5. RSI Short Response Format

Bit Position Width Value Description

47 1 0 Start bit

46 1 0 Transmitter bit

45:40 6 - Command index or check bits1

1 Responses that do not contain the command index have a check bits field
that contains “111111”.

39:8 32 - Card status, register contents or argument field

7:1 7 - CRC7 checksum or check bits2

2 Responses that do not contain a CRC7 checksum have a check bits field
that contains “1111111”.

0 1 1 End bit

Table 21-6. RSI Long Response Format

Bit Position Width Value Description

135 1 0 Start bit

134 1 0 Transmitter bit

133:128 6 111111 Check bits

127:1 127 - Register contents including internal CRC7

0 1 1 End bit

ADSP-BF50x Blackfin Processor Hardware Reference 21-17

Removable Storage Interface

Like the commands, all responses are sent on the RSI_CMD signal.
A response always has a “0” start bit followed by a “0” transmission bit
to indicate the transfer is from card to host. Unlike the commands issued
by the host, not all responses are protected by a CRC7 checksum. Refer
to the appropriate specification for full details on the response formats and
whether they are protected by a CRC7 checksum.

When a short response is received, the response is broken down by the RSI
and the 32-bit field containing bits 39:8 of the 48-bit response is stored to
RSI_RESPONSE0, where bit 39 of the response corresponds to bit 31 of
RSI_RESPONSE0 and bit 8 of the response to bit 0 of RSI_RESPONSE0. Bits
45:40 of the response are stored to the RESP_CMD field of the RSI_RESP_CMD

register.

For a long response, bits 127:1 of the response are stored in
RSI_RESPONE0–3, where bit 31 of RSI_RESPONSE0 contains the most
significant bit (bit 127) of the response and bit 0 of RSI_RESPONSE3
contains bit 1 of the response. Bit 31 of RSI_RESPONSE3 is always zero.

Figure 21-3 shows the command path state machine. In order for the state
machine to be active, the RSI must be enabled via RSI_CLK_EN. Disabling
the clocks to the RSI will result in the state machine returning to the
IDLE state. The command path state machine is responsible for setting
and clearing a number of status flags within the RSI_STATUS register (see
“RSI Status Register (RSI_STATUS)” on page 21-65).

Functional Description

21-18 ADSP-BF50x Blackfin Processor Hardware Reference

Figure 21-3. RSI Command Path State Machine

IDLE

RSI_CLK_EN &&
CMD_PEND_EN &&
CMD_EN

RSI_CLK_EN &&
CMD_EN &&
!CMD_PEND_EN

PEND

DAT_END

SEND

CMD_RSP

!RSI_CLK_EN || RSI_RST

!RSI_CLK_EN || RSI_RST ||
CMD_SENT

!RSI_CLK_EN || RSI_RST ||
CMD_TIMEOUT

!RSI_CLK_EN || RSI_RST ||
CMD_CRC_FAIL ||
CMD_RESP_END

!RSI_CLK_EN || RSI_RST
|| CEATA_INT_DET

CEATA_INT_DIS

CEATA_TX_CCSD

CEATA_INT_WAIT

CEATA_EN && CEATA_INT_EN

RECEIVE

!CMD_TIMEOUT ||
(CMD_INT_EN && INTERRUPT REQUEST FROM CARD)

WAIT

ADSP-BF50x Blackfin Processor Hardware Reference 21-19

Removable Storage Interface

Table 21-7 lists the status flags and exception flags that are affected by the
command path state machine.

The command path operates in a half-duplex mode, so that commands
and responses can either be sent or received. If the state machine is not in
the SEND state, the RSI_CMD output is in high impedance state.
Figure 21-4 describes a typical command and response transfer, the
RSI_CMD signal is sampled by the card and the host on the rising edge of
RSI_CLK.

The following sections describes the RSI command path states.

Table 21-7. RSI Command Path Status Flags

RSI_STATUS Flag Description State Flag Set in

CMD_ACT Command transfer is in progress WAIT_S

CMD_SENT Command without response sent successfully SEND

CMD_TIMEOUT Response timeout occurred (64 RSI_CLK cycles) WAIT_S

CMD_CRC_FAIL Response CRC failure RECEIVE

CMD_RESP_END Response CRC successful RECEIVE

CEATA_INT_DET CE-ATA command completion signal detected CEATA_INT_WAIT

Figure 21-4. RSI Command Transfer

RSI_CMD S T TE ES

SEND WAIT RECEIVE IDLE
COMMAND
PATH
STATE

S = START BIT
T = TRANSMITTER BIT
E = END BIT

Functional Description

21-20 ADSP-BF50x Blackfin Processor Hardware Reference

IDLE State

The command path state machine remains in the IDLE state when not
active. The command path state machine becomes enabled and leaves the
IDLE state once the CMD_EN bit of the RSI_COMMAND register is set. The state
will transition to the PEND state if the CMD_PEND_EN bit is set within
RSI_COMMAND; otherwise it will enter the SEND state.

When the command path state machine returns to the IDLE state from
one of the other states and the result of the return is not due to the RSI
being disabled or reset, the state machine will remain in the IDLE state for
at least eight RSI_CLK cycles. During this time, the RSI will continue to
drive the RSI_CLK signal even if the PWR_SV_EN feature is enabled. This is
required in order to allow the card to complete the current operation.
Only after the eight RSI_CLK cycles have passed will the state machine
leave the IDLE state if enabled again.

PEND State

The PEND state is entered if the CMD_PEND_EN bit is set within
RSI_COMMAND. The state machine remains in the PEND state until it is
notified by the data path sub block that a data transfer has completed.
This is indicated by the DAT_END flag being set as a result of the
RSI_DATA_CNT decrementing to zero. This mode is intended to enable the
automatic transmission of a STOP_TRANSMISSION command after reading or
writing the required amount of data for stream-based transactions.

 The CMD_PEND_EN feature is not functional for block-based transfers
and cannot be used to automatically issue the STOP_TRANSMISSION

command for MULTIPLE_BLOCK_READ or MULTIPLE_BLOCK_WRITE
operations.

SEND State

During the SEND state, the RSI sets the CMD_ACT flag in CMD_STATUS to
indicate a transfer is in progress. The behavior of the state machine upon

ADSP-BF50x Blackfin Processor Hardware Reference 21-21

Removable Storage Interface

completion of sending the command depends upon whether the com-
mand expects a response back from the card. If no response is expected,
the RSI clears the CMD_ACT flag and sets the CMD_SENT flag to indicate that a
command operation without a response has been completed and then the
state transitions to the IDLE state. If a response is expected, the RSI enters
the WAIT state.

WAIT State

Upon entering the WAIT state, the RSI awaits the response to be received
on the RSI_CMD signal. Upon entering this state, an internal timer starts
running. If the response is not received within 64 RSI_CLK cycles
(max. NCR), the CMD_TIMEOUT flag is set and the CMD_ACT flag is cleared.
The state machine then enters the IDLE state, awaiting the next action.
If a response is detected as being sent back from the card as indicated by
the “0” start bit on the RSI_CMD signal, the RSI transitions to the
RECEIVE state to receive a 48- or 136-bit response.

The WAIT state is also capable of detecting card interrupts. This is an
optional feature that applies only to MMC cards. This feature is enabled
by setting the CMD_INT_EN bit within RSI_COMMAND. When CMD_INT_EN is
set, the timeout timer that is normally started upon entry to the WAIT
state is disabled. The RSI remains in this state until a card interrupt is
detected. Cards that implement this interrupt feature may have functions
that result in the response being delayed and triggered by some internal
event in the card. Once the event is triggered the card then sends the
response. The RSI then detects this start bit of the response then proceeds
to the RECEIVE state.

RECEIVE State

The RSI reads in the response from the card on the RSI_CMD signal when
in the RECEIVE state. Upon receiving either the short or long response,
the CMD_ACT flag is cleared and the CMD_RESP_END flag is set if the response
passed the CRC check. A CRC failure in the response results in the

Functional Description

21-22 ADSP-BF50x Blackfin Processor Hardware Reference

CMD_CRC_FAIL flag being set. At this point the state machine then transi-
tions to the IDLE state.

Some CE-ATA commands require additional functionality upon reaching
this state. This additional functionality requires sending a command
completion signal back to the host upon completion of a specific task.
For commands that require this functionality, the CEATA_EN and
CEATA_CCS_EN bits of the RSI_DATA_CONTROL register should be set prior to
enabling the command path state machine. After receiving the response,
the state machine then enters the CEATA_INT_WAIT state.

CEATA_INT_WAIT State

Upon entering this state, the RSI waits for the CE-ATA device to issue the
command completion signal. This is indicated by the device sending a “0”
on the RSI_CMD signal. Upon detection of the command completion sig-
nal, the CMD_ACT flag is cleared and the CEATA_INT_DET flag of the
RSI_ESTAT register is set. Alternatively, the command completion signal of
the CE-ATA device can be disabled by the RSI. This action is performed
by setting the CEATA_TX_CCSD bit of the RSI_CEATA_CONTROL register, at
which point the state machine enters the CEATA_INT_DIS state. The
CEATA_TX_CCSD bit can be set prior to enabling the command path state
machine. This will result in the CCSD sequence being issued after the
response is received rather than having to wait for the response then set-
ting this CEATA_TX_CCSD.

CEATA_INT_DIS State

Upon entering this state, the RSI issues the command completion signal
disable sequence on the RSI_CMD signal before then transitioning to the
IDLE state and clearing the CMD_ACT flag. The command completion
signal disable sequence issued is the binary sequence “00001”.

ADSP-BF50x Blackfin Processor Hardware Reference 21-23

Removable Storage Interface

RSI Command Path CRC
The command CRC generator of the RSI calculates the 7-bit CRC check-
sum for all 40 bits preceding the CRC code for both 48-bit commands
and 48-bit responses. This includes the start bit, transmitter bit, com-
mand index, and command argument (or card status). The 7-bit CRC
checksum is calculated for the first 120 bits of the register contents field
for the long response format. Note that the start bit, transmitter bit, and
the six check bits are not used in the CRC calculation for the long
response. The command and response CRC checksum is a 7-bit value that
is calculated as follows:

with:

and for a short response:

or for a long response:

RSI Data
Data transfers both to and from the RSI take place over the RSI data bus
signals RSI_DATA7–0. The RSI data bus width is configured via the
BUS_MODE field of the RSI_CLK_CONTROL register (see “RSI Clock Control

CRC[6:0] Remainder=
x1 M(x)

G(x)

G(x) x7 x3 1+ +=

M(x) x39 (start bit) ... x0 (last bit before CRC)+ +=

M(x) x19 (start bit) ... x0 (last bit before CRC)+ +=

Functional Description

21-24 ADSP-BF50x Blackfin Processor Hardware Reference

Register (RSI_CLK_CONTROL)” on page 21-55). The default configu-
ration is for 1-bit bus mode, whereby the data is transferred over the
RSI_DATA0 signal. Alternatively, 4-bit mode or 8-bit mode may be enabled
after configuring the card for 4-bit or 8-bit mode of operation, respec-
tively. The RSI has a data path state machine that operates at RSI_CLK
frequency. The state machine becomes enabled and leaves the IDLE state
when the DATA_EN field of RSI_DATA_CONTROL is set, enabling the data
transfer. The state entered upon leaving the IDLE state is determined by
DATA_DIR. The data path state machine is shown in Figure 21-5.

Figure 21-5. RSI Data Path State Machine

IDLE

DATA_EN && !DATA_DIR DATA_EN && DATA_DIR

WAIT_S WAIT_R
START_BIT_ERR ||
DAT_TIMEOUT ||
RX_DAT_ZERO ||
!DATA_EN

!START_BIT_ERROR
TX_DAT_RDY

DAT_END ||
!DAT_EN

SEND

RECEIVE

BUSY

DAT_BLK_END

DAT_CRC_FAIL ||
!DATA_EN

DAT_BLK_END ||
DAT_END ||
RX_OVERRUN

END OF PACKET &&
!DATA_MODE

DAT_CRC_FAIL ||
DAT_TIMEOUT ||
!DATA_EN

DAT_CRC_FAIL ||
DAT_END ||
TX_UNDERRUN ||
!DATA_EN

ADSP-BF50x Blackfin Processor Hardware Reference 21-25

Removable Storage Interface

Table 21-8. RSI_STATUS Flags

RSI_STATUS Flag Description States Flag Set in

TX_ACT Data transmit in progress WAIT_S

RX_ACT Data receive in progress WAIT_R

DAT_BLK_END Data block sent successfully and
CRC pass token received

BUSY
(block transfer mode only)

Data block received correctly
and CRC passed

RECEIVE
(block transfer only)

DAT_CRC_FAIL Data block CRC failed on trans-
mit

SEND if transmitted data is not a
multiple of DATA_BLK_LGTH.
BUSY if CRC token indicates failure.

Data block CRC failed on
receive

RECEIVE

DAT_TIMEOUT Transmit timeout occurred
before card deasserted busy
signal on RSI_DATA0

BUSY

Receive timeout error occurred
before start bit of data detected

WAIT_R

DAT_END All data sent SEND

All data received RECEIVE

START_BIT_ERR Start bit not detected on all
RSI_DATAx signals

WAIT_R

TX_FIFO_STAT Transmit FIFO is half empty SEND

TX_FIFO_FULL Transmit FIFO is full SEND

TX_FIFO_EMPTY Transmit FIFO is empty SEND

TX_UNDERRUN Transmit FIFO under run error SEND

TX_DAT_RDY Valid data available in the trans-
mit FIFO

SEND

RX_FIFO_STAT Receive FIFO is half empty RECEIVE

RX_FIFO_FULL Receive FIFO is full RECEIVE

RX_FIFO_EMPTY Receive FIFO is empty RECEIVE

Functional Description

21-26 ADSP-BF50x Blackfin Processor Hardware Reference

RSI Data Transmit Path
The transmit path consists of the WAIT_S, SEND, and BUSY states.
Before enabling the data path state machine via RSI_DATA_CONTROL, both
RSI_DATA_LGTH and RSI_DATA_TIMER must be configured. Upon leaving
the IDLE state and entering the WAIT_S state, the RSI sets the TX_ACTIVE

flag and copies RSI_DATA_LGTH into RSI_DATA_CNT. The behavior of the
SEND state is influenced by the transfer mode.

If the RSI is configured for stream-transfer mode, the RSI sends data to
the card until RSI_DATA_CNT expires, at which time the DATA_END flag is set
and the state machine returns to the IDLE state. Additionally, the transi-
tion of RSI_DATA_CNT to zero will result in the command path state
machine being activated if currently in the PEND state. If at any point
during the stream transfer the transmit FIFO becomes empty and data is
not available in the FIFO by the time the next transfer is due to take place,
the TX_UNDERRUN flag is set before returning to the IDLE state.

In block transfer mode, DATA_BLK_LGTH bytes are transmitted as specified
during the write to RSI_DATA_CONTROL, each byte transferred also results in
the decrementing of RSI_DATA_CNT. Upon completion of the block trans-
fer, the RSI appends an internally generated 16-bit CRC code and an end
bit before waiting for the card response on the RSI_DATA0 line to indicate
whether the data was received correctly by the card. If the CRC response
token sent by the card indicates that the data was received correctly, the
DAT_BLK_END flag is set before moving onto the BUSY state; otherwise, the
DAT_CRC_FAIL flag is set before returning to the IDLE state. The decre-
menting of RSI_DATA_CNT to zero results in the DAT_END flag being set. If

RX_ OVERRUN Receive FIFO over run error RECEIVE

RX_FIFO_RDY Valid data is available in the
receive FIFO

RECEIVE

Table 21-8. RSI_STATUS Flags (Cont’d)

RSI_STATUS Flag Description States Flag Set in

ADSP-BF50x Blackfin Processor Hardware Reference 21-27

Removable Storage Interface

the total number of bytes transmitted for the current block results in the
RSI_DATA_CNT decrementing to zero and the number of bytes transferred is
not equal to DATA_BLK_LGTH, the transmission stops and the DAT_CRC_FAIL

flag is set and the data path returns to the IDLE state. If at any point dur-
ing the block transfer the transmit FIFO becomes empty and data is not
available in the FIFO by the time the next transfer is due to take place, the
TX_UNDERRUN flag is set before returning to the IDLE state.

Upon entry to the BUSY state, the RSI starts internally decrementing the
timeout value as specified by RSI_DATA_TIMER. While in the BUSY state,
the RSI continually samples the RSI_DATA0 signal, which at this time may
be driven low by the card to indicate that the card is busy. Upon a logic
high state being detected, indicating that the card is no longer busy, the
state machine returns to the WAIT_S state where it then either returns to
IDLE if all data has been sent or it moves back to the SEND state to start
another block transfer. If the RSI timeout counter expires before the
RSI_DATA0 signal is detected high, the RSI sets the DAT_TIMEOUT flag and
returns to the IDLE state.

RSI Data Receive Path
The receive path consists of the WAIT_R and the RECEIVE states.
Before enabling the data path state machine via RSI_DATA_CONTROL,
RSI_DATA_LGTH and RSI_DATA_TIMER must be configured. Upon leaving
the IDLE state and entering the WAIT_R state, the RSI sets the
RX_ACTIVE flag and copies RSI_DATA_LGTH into RSI_DATA_CNT. The behav-
ior of the RECEIVE state is influenced by the transfer mode.

Once the receive path has entered the WAIT_R state after being enabled
for a receive transaction, the RSI starts decrementing the timeout value
supplied via RSI_DATA_TIMER. If the RSI is configured for a 1-bit data bus,
the DAT_TIMEOUT flag is set if a start bit is not detected on the RSI_DATA0

signal before the timeout counter reaches zero and the state machine
returns to the IDLE state. If the RSI is configured for 4-bit bus mode and
the start bit is not detected on all four RSI_DATAx signals prior to the

Functional Description

21-28 ADSP-BF50x Blackfin Processor Hardware Reference

timeout counter expiring, the DAT_TIMEOUT flag is set and the state
machine returns to the IDLE state. If the RSI is configured for 4-bit bus
mode and a start bit is detected on some of the RSI_DATAx signals but not
all of them on the same sampled clock cycle, the START_BIT_ERR flag is set
and the state machine returns to the IDLE state. Upon correct detection
of the start bit, the state machine moves into the RECEIVE state.

The behavior of the RECEIVE state differs for stream and block transfers.
For stream transfers, received data is packed into bytes and written to the
data FIFO. Data is continually received and written to the data FIFO
until RSI_DATA_CNT decrements to zero. When the counter reaches zero,
the remaining data in the shift register is written into the FIFO, the
DAT_END flag is set and the state machine transitions to the WAIT_R state
where upon detecting the emptying of the receive FIFO the RX_DAT_ZERO

flag is set and the state transitions to the IDLE state. If at any time during
the receive state the data FIFO becomes full and data has not been read
from the FIFO prior to the next byte being written to the FIFO, the
RX_OVERRRUN flag is set and the state transitions to the WAIT_R state then
onto the IDLE state.

In block transfer mode, the received data is packed into bytes and written
to the data FIFO. Once DATA_BLK_LGTH bytes have been received, the RSI
reads the 16-bit CRC check bits. If the received CRC matches the inter-
nally calculated CRC, the DAT_BLK_END flag is set and the state transitions
to the WAIT_R state. If the RSI_DATA_CNT counter expires in alignment
with the end of a block as specified via DATA_BLK_LGTH, the DAT_END flag is
set in addition to the DAT_BLK_END flag and the state then transitions to the
WAIT_R state where upon detecting the emptying of the receive FIFO
the RX_DAT_ZERO flag is set and the state transitions to the IDLE state.
If RSI_DATA_CNT expires prior to the end of a block as specified via
DATA_BLK_LGTH being received, the DAT_CRC_FAIL flag is set and the state
transitions to the IDLE state.

ADSP-BF50x Blackfin Processor Hardware Reference 21-29

Removable Storage Interface

RSI Data Path CRC
The data CRC generator of the RSI calculates the 16-bit CRC checksum
for all bits sent or received for a given block transaction. The data path
CRC generator is not enabled for stream-based data transfers. For a 1-bit
bus configuration, the 16-bit CRC is calculated for all data sent on the
RSI_DATA0 signal. For a 4-bit-wide data bus, the 16-bit CRC is calculated
separately for each individual RSI_DATAx signal. The data path CRC
checksum is a 16-bit value calculates as follows:

with:

where:

RSI Data FIFO
The data FIFO is a 32-bit wide, 16-word deep data buffer with transmit
and receive logic. The FIFO is configuration depends on the state of the
TX_ACT and RX_ACT flags. If TX_ACT is set, the FIFO operates as a transmit
FIFO supplying data to the RSI for transfer to the card. The RX_ACT flag
configures the FIFO as a receive FIFO whereby the RSI writes the data
received from the card. If neither the TX_ACT nor RX_ACT flags are set, the
FIFO is disabled.

When the transmit FIFO is disabled, all the transmit status flags are deas-
serted and the transmit read and write pointers are reset. The RSI asserts

CRC[15:0] Remainder
x16 M(x)

G(x)
-----------------------=

G(x) x16 x12 x5 1+ + +=

M(x) x 8 DTX_BLK_LGTH  1–  (first data bit)  x0 (last data bit)+ +=

Functional Description

21-30 ADSP-BF50x Blackfin Processor Hardware Reference

the TX_ACT flag upon starting a data transmit operation. During the data
transfer, the transmit logic maintains a number of transmit FIFO status
flags as shown in Table 21-9.

When the receive FIFO is disabled, all receive status flags are deasserted
and the receive read and write pointers are reset. The RSI asserts the
RX_ACT flag upon starting a data read transaction. During the data transfer,
the receive logic maintains the receive FIFO status flags shown in
Table 21-10.

Table 21-9. RSI Transmit FIFO Status Flags

RSI_STATUS Flag Description

TX_FIFO_STAT Transmit FIFO is half empty

TX_FIFO_FULL Transmit FIFO is full

TX_FIFO_EMPTY Transmit FIFO is empty

TX_UNDERRUN Transmit FIFO under run error

TX_DAT_RDY Valid data available in the transmit FIFO

Table 21-10. RSI Receive FIFO Status Flags

RSI_STATUS Flag Description

RX_FIFO_STAT Receive FIFO is half empty

RX_FIFO_FULL Receive FIFO is full

RX_FIFO_EMPTY Receive FIFO is empty

RX_OVERRUN Receive FIFO under run error

RX_DAT_RDY Valid data available in the receive FIFO

ADSP-BF50x Blackfin Processor Hardware Reference 21-31

Removable Storage Interface

SDIO Interrupt and Read Wait Support
In order for the RSI to accommodate SDIO functionality, two additional
features are implemented:

• Hardware interrupt support over the RSI_DATA1 pin

• Read wait request over the RSI_DATA2 pin

SDIO devices may have multiple interrupt sources within the SDIO
device that are mapped to a single interrupt line. The interrupt is
level-sensitive, allowing multiple functions to generate an interrupt
simultaneously. Thus, the interrupt request will continually be asserted
until all sources generating an interrupt are determined and cleared by the
RSI. The sources of the interrupts are found by interrogating the SDIO
device and are cleared via function unique operations.

The SDIO device sends an interrupt request to the RSI by asserting the
RSI_DATA1 signal low. The interrupt status is indicated by the
SDIO_INT_DET bit of the RSI_ESTAT register. The status can be configured
to generate an interrupt on the processor via the SDIO_INT_DET_MASK bit of
the RSI_EMASK register.

When the RSI is configured for a 1-bit bus width, the interrupt may be
generated by the SDIO with no timing constraints as the RSI_DATA1 signal
acts as a dedicated IRQ signal. The RSI should be configured via
RSI_CONFIG such that pull-up are enabled on all RSI_DATAx signals. Upon
the RSI sampling RSI_DATA1 low, the RSI asserts the SDIO_INT_DET flag;
this flag is asserted until the RSI_DATA1 signal is sampled high again.

When the RSI is configured for 4-bit bus widths, the RSI_DATA1 signal is
shared between the IRQ signal and the RSI_DATA1 signal. In this
configuration, the interrupt may only be recognized by the RSI within a
specific interrupt period.

Programming Model

21-32 ADSP-BF50x Blackfin Processor Hardware Reference

Programming Model
This section contains the following procedures:

• “Card Identification”

• “Single Block Write Operations” on page 21-35

• “Single Block Read Operation” on page 21-39

• “Multiple Block Write Operation” on page 21-43

• “Multiple Block Read Operation” on page 21-48

Card Identification
Before data transfers can take place between the RSI and the
SD/MMC/SDIO device, the device type must first be identified. During
this phase of the card identification procedure, the RSI_CLK frequency
must be no greater than 400 kHz.

SD Card Identification Procedure

The SD card identification procedure is as follows:

1. Issue the IDLE command to the card via the RSI_COMMAND register

2. Issue the SEND_IF command to the card via the RSI_COMMAND reg-
ister supplying the host supply voltage and a check pattern via the
RSI_ARGUMENT register. The command expects an R7 response type.
If a valid response with a compatible voltage range and matching
check pattern is received, the card is likely an SD version 2.00 or
later complaint card. If a response is received with an incompatible
voltage range, the card cannot be used. If no response is received at
all (as indicated by the CMD_RESP_TIMEOUT field of the RSI_STATUS

register), continue from step 5.

ADSP-BF50x Blackfin Processor Hardware Reference 21-33

Removable Storage Interface

3. Issue the RSI_SEND_OP_COND command via the RSI_COMMAND regis-
ter, supplying the voltage window supported and whether the host
supports high capacity cards via the RSI_ARGUMENT register. The
RSI expects an R3 response to this command, at which time the
card can be rejected if the voltage range is not compatible. If the
card returns a response indicating that it is busy, resend the
RSI_SEND_OP_CMD until the card indicates that it is ready. If the host
does not support the high capacity mode (as indicated by setting
the HCS bit of the argument to 0), a high capacity card will never
clear the busy status bit. The card should be identified within
1 second. If in that timeframe the card is still busy or no valid
responses have been received, the card should be rejected.

4. If the host supports high-capacity cards, verify whether the
response in RSI_RESPONSE0 indicates the card capacity status (CCS)
bit is set. If CCS is set, an SD Version 2.00 or later high-capacity
SD memory card is present; proceed to step 6. If the CCS bit is
cleared, the card is an SD Version 2.00 or later standard-capacity
memory card; proceed to step 6.

5. Issue the RSI_SEND_OP_COND command via the RSI_COMMAND regis-
ter, supplying the voltage window supported and with the
high-capacity support (HCS) bit set to 0 via the RSI_ARGUMENT

register. The RSI expects an R3 response to this command, at
which time the card can be rejected if the voltage range is not com-
patible. If the card returns a response indicating that it is busy,
resend the RSI_SEND_OP_CMD until the card indicates that it is ready.
The card should be identified within 1 second. If in that timeframe
the card is still busy or no valid responses have been received, the
card should be rejected. Once the response indicates that the card
is ready, the card type has been identified as an SD Version 1.x
standard-capacity memory card.

Programming Model

21-34 ADSP-BF50x Blackfin Processor Hardware Reference

6. Issue the ALL_SEND_CID command to which an R2 response type is
expected. This will result in the card sending the 128-bit card iden-
tification (CID) register and transitioning from ready to
identification mode.

7. Issue the SEND_RELATIVE_ADDR command to which an R6 response
type is expected. This will result in the card issuing a new relative
address which must be used in order to select the card in the future
for data transfers. The card will then move into standby mode
completing the identification procedure.

MMC Identification Procedure

The MMC identification procedure is as follows:

1. Issue the IDLE command to the card via the RSI_COMMAND register.

2. Issue the SEND_OP_COND command to the card via the RSI_COMMAND

register, supplying the operating voltage window that the host is
compatible with and the access mode that the host supports (byte
or sector) via the RSI_ARGUMENT register. The RSI expects an R3
type response. This allows the host to reject the card if it is not
compatible with the supply voltage or if the access mode is not sup-
ported by the host software. If the card returns an indication that it
is busy, repeat this step until the card is either rejected or not busy.

3. Issue the ALL_SEND_CID command via the RSI_COMMAND register.
The RSI expects an R2 response to this command. This will result
in the card sending the 128-bit card identification (CID) register
and transitioning from ready to identification mode.

4. Issue the SET_RELATIVE_ADDR command, providing a 16-bit relative
card address (RCA) via the RSI_ARGUMENT register that will get
assigned to the card. An R1 response type is expected for this com-
mand. This will result in the card being assigned with the provided

ADSP-BF50x Blackfin Processor Hardware Reference 21-35

Removable Storage Interface

RCA, which must be used in order to select the card in the future
for data transfers. The card will then move into standby mode,
completing the identification procedure.

Single Block Write Operations
Block write operations typically consist of 512 bytes of data per block.
If the card is found to support other block lengths or the default block
length as specified in the CID register is not 512, the block length of the
RSI must be configured accordingly. The block length of the card and the
block length of the RSI must be configured for the same block size at all
times. The block length of the RSI is configured via the DATA_BLK_LGTH

field of the RSI_DATA_CONTROL register.

 It is important to pay attention as to when the data path state
machine is enabled and when data is written to the FIFO for trans-
fer to the card. Write transactions require that data be written after
the response has completed for the WRITE_BLOCK command. If the
data path state machine is enabled prior to sending the
WRITE_BLOCK command, data must not be written to the transmit
FIFO via the DMA or core until after the response has been
received as indicated by the CMD_RESP_END flag. Failure to adhere to
this procedure can result in data being written to the card in viola-
tion to the block write timing parameters, resulting in a data CRC
failure.

Programming Model

21-36 ADSP-BF50x Blackfin Processor Hardware Reference

Using Core

The procedure is as follows:

1. Write the RSI_ARGUMENT register with the cards RCA. The 16-bit
RCA should be written to the upper 16-bits of the RSI_ARGUMENT

register.

2. Write the RSI_COMMAND register with the SELECT/DESELECT_CARD

command, configuring the command path state machine to expect
a short response by setting CMD_RESP and clearing CMD_L_RESP. The
response type is R1b.

3. Wait for the CMD_RESP_END indication within the RSI_STATUS

register and clear the status bit once detected via the RSI_STATUSCL

register.

4. Ensure that the device is not busy and no errors occurred by
verifying the response contained in RSI_RESPONSE0.

5. Write the number of bytes to be transferred to the RSI_DATA_LGTH

register. This will be 512 bytes for a single block.

6. Write the appropriate timeout value for a write operation to the
RSI_DATA_TIMER register.

7. Write the destination start address to the RSI_ARGUMENT register.
The supplied address must be aligned to a 512 byte boundary if
misaligned accesses are not enabled and the card is not a
high-capacity SD card or sector-addressable MMC card.

8. Write the WRITE_BLOCK command to the RSI_COMMAND register, con-
figuring the command path state machine to expect a short
response by setting CMD_RESP and clearing CMD_L_RESP. The
response type is R1.

ADSP-BF50x Blackfin Processor Hardware Reference 21-37

Removable Storage Interface

9. Wait for the CMD_RESP_END indication within the RSI_STATUS

register and clear the status bit once detected via the RSI_STATUSCL

register.

10.Enable the data path state machine by writing to the
RSI_DATA_CONTROL register with DATA_BLK_LGTH set to 9 for a
512-byte block. DATA_EN should also be set to enable the data path
state machine. All other fields of the RSI_DATA_CONTROL register
should be zero.

11.Write data to the RSI_FIFO register until the FIFO becomes full as
indicated by the TX_FIFO_FULL flag of the RSI_STATUS register.
Continue to write data to the FIFO as long as the FIFO is not full
or write data in blocks of eight 32-bit words if polling on the
TX_FIFO_STAT bit indicating the transmit FIFO is half empty. Con-
tinue until all 128 32-bit words (512 bytes) have been transferred.

12.Wait for the card to respond with the CRC token by waiting for
the DAT_BLK_END flag to be set. DAT_END will also be set at this time
if the RSI_DATA_LGTH register was set to 512 bytes in step 5.

13.Clear the DAT_BLK_END and DAT_END flags via the RSI_STATUSCL

register.

Using DMA

The procedure is as follows:

1. Write the RSI_ARGUMENT register with the cards RCA. The 16-bit
RCA should be written to the upper 16-bits of the RSI_ARGUMENT

register.

2. Write the RSI_COMMAND register with the SELECT/DESELECT_CARD

command, configuring the command path state machine to expect
a short response by setting CMD_RESP and clearing CMD_L_RESP. The
response type is R1b.

Programming Model

21-38 ADSP-BF50x Blackfin Processor Hardware Reference

3. Wait for the CMD_RESP_END indication within the RSI_STATUS

register, and clear the status bit once detected via the RSI_STATUSCL

register.

4. Ensure that the device is not busy and no errors occurred by
verifying the response contained in RSI_RESPONSE0.

5. Configure the DMA channel assigned to the RSI controller. Write
DMAx_START_ADDR with the address of the first byte of data to be
written to the card. The DMAx_X_COUNT register should be set to
128, and the DMAx_X_MODIFY register to 4. The DMAx_CONFIG register
should be set for DMA enable (a word size of 32-bits).

6. Once the DMA channel has been configured and enabled, write
the number of bytes to be transferred to the RSI_DATA_LGTH

register. This will be 512 bytes for a single block.

7. Write the appropriate timeout value for a write operation to the
RSI_DATA_TIMER register.

8. Write the destination start address to the RSI_ARGUMENT register.
The address supplied must be aligned to a 512-byte boundary if
misaligned accesses are not enabled and the card is not a
high-capacity SD card or sector-addressable MMC card.

9. Write the WRITE_BLOCK command to RSI_COMMAND, configuring the
command path state machine to expect a short response by setting
CMD_RESP and clearing CMD_L_RESP. The response type is R1.

10.Wait for the CMD_RESP_END indication within the RSI_STATUS

register, and clear the status bit once detected via the RSI_STATUSCL

register.

11.Enable the data path state machine by writing to the
RSI_DATA_CONTROL register with DATA_BLK_LGTH set to 9 for a
512-byte block. DATA_EN and DATA_DMA_EN should also be set to

ADSP-BF50x Blackfin Processor Hardware Reference 21-39

Removable Storage Interface

enable the data path state machine and to allow the DMA control-
ler to access the transmit FIFO. All other fields of the
RSI_DATA_CONTROL register should be zero.

12.Wait for the card to respond with the CRC token by waiting for
the DAT_BLK_END flag to be set. DAT_END will also be set at this point
if the RSI_DATA_LGTH register was set to 512 bytes in step 5.

13.Clear the DAT_BLK_END and DAT_END flags via the RSI_STATUSCL

register. Also clear the DMA_DONE bit of the DMAx_IRQ_STATUS

register, if applicable.

Single Block Read Operation
Block read operations typically consist of 512 bytes of data per block.
If the card is found to support other block lengths or the default block
length as specified in the CID register is not 512, the block length of the
RSI must be configured accordingly. The block length of the card and the
block length of the RSI must be configured for the same block size at all
times. The block length of the RSI is configured via the DATA_BLK_LGTH

field of the RSI_DATA_CONTROL register.

 It is important to pay attention as to when the data path state
machine is enabled and when data is read from the receive FIFO
for data transfers from the card to the RSI. Read transactions can
occur on the RSI_DATAx signals prior to the response of the com-
mand being received. It is therefore advisable to enable the data
path state machine, and DMA controller if being used, either:

• Prior to issuing a command that involves a data read packet

• Immediately after the command has been issued but prior to pend-
ing on the CMD_RESP_END flag

Programming Model

21-40 ADSP-BF50x Blackfin Processor Hardware Reference

 If the core is being used to read the receive FIFO, it is advised not
to pend on the CMD_RESP_END flag. It is possible for data to be
driven on the RSI_DATAx signals two RSI_CLK cycles after the end
bit of the command. At minimum, an additional 48 RSI_CLK cycles
will pass before the response is received, during which time the
receive buffer may potentially have received 24 bytes of data on a
4-bit bus and will be approaching the half full state. Software
should ensure that the receive buffer does not become full prior to
data being read from the receive FIFO.

Using Core

The procedure is as follows:

1. Write the RSI_ARGUMENT register with the cards RCA. The 16-bit
RCA should be written to the upper 16-bits of the RSI_ARGUMENT

register.

2. Write the RSI_COMMAND register with the SELECT/DESELECT_CARD

command, configuring the command path state machine to expect
a short response by setting CMD_RESP and clearing CMD_L_RESP. The
response type is R1b.

3. Wait for the CMD_RESP_END indication within the RSI_STATUS

register and clear the status bit once detected via the RSI_STATUSCL

register.

4. Ensure that the device is not busy and no errors occurred by
verifying the response contained in RSI_RESPONSE0.

5. Write the number of bytes to be transferred to the RSI_DATA_LGTH

register. This will be 512 bytes for a single block.

6. Write the appropriate timeout value for a read operation to the
RSI_DATA_TIMER register.

ADSP-BF50x Blackfin Processor Hardware Reference 21-41

Removable Storage Interface

7. Write the destination start address to the RSI_ARGUMENT register.
The address supplied must be aligned to a 512-byte boundary if
misaligned accesses are not enabled and the card is not a
high-capacity SD card or sector-addressable MMC card.

8. Enable the data path state machine by writing to the
RSI_DATA_CONTROL register with DATA_BLK_LGTH set to 9 for a
512-byte block. DATA_EN and DATA_DIR should also be set to enable
the data path state machine and indicate the transfer direction is
from card to controller. All other fields of the RSI_DATA_CONTROL

register should be zero.

9. Write the READ_SINGLE_BLOCK command to the RSI_COMMAND regis-
ter, configuring the command path state machine to expect a short
response by setting CMD_RESP and clearing CMD_L_RESP. The
response type is R1.

10.In order to meet some timing restrictions related to block read
operations, it is advisable to not wait for the CMD_RESP_END indica-
tion within the RSI_STATUS register but instead move immediately
on the next step. This is due to the card being able to send data
before a response can completed on the RSI_CMD signal, moving
immediately onto step 11 will ensure a receive FIFO overflow does
not occur.

11.Poll the RX_FIFO_RDY bit or the RX_DAT_ZERO bit of RSI_STATUS
indicating the receive FIFO has data available, or the receive FIFO
is empty. As long as the receive FIFO is not empty, read data from
the RSI_FIFO register until all 512 bytes have been read

12.Once all bytes have been read, wait for the DAT_BLK_END flag to
indicate that the data was received correctly and passed the CRC
check. The DAT_END flag may also be set, depending on the value
written to RSI_DATA_LGTH.

13.Clear the DAT_BLK_END and DAT_END flags via the RSI_STATUSCL

register.

Programming Model

21-42 ADSP-BF50x Blackfin Processor Hardware Reference

Using DMA

The procedure is as follows:

1. Write the RSI_ARGUMENT register with the cards RCA. The 16-bit
RCA should be written to the upper 16-bits of the RSI_ARGUMENT

register.

2. Write the RSI_COMMAND register with the SELECT/DESELECT_CARD

command, configuring the command path state machine to expect
a short response by setting CMD_RESP and clearing CMD_L_RESP. The
response type is R1b.

3. Wait for the CMD_RESP_END indication within the RSI_STATUS

register, and clear the status bit once detected via the RSI_STATUSCL

register.

4. Ensure that the device is not busy and no errors occurred by
verifying the response contained in RSI_RESPONSE0.

5. Configure the DMA channel assigned to the RSI controller. Write
DMAx_START_ADDR with the address of the first byte of where the
received data is to be stored. The DMAx_X_COUNT register should be
set to 128 and the DMAx_X_MODIFY register to 4. The DMAx_CONFIG

register should be set for DMA enable (a word size of 32-bits and
direction set to memory write).

6. Write the number of bytes to be transferred to the RSI_DATA_LGTH

register. This will be 512 bytes for a single block.

7. Write the appropriate timeout value for a read operation to the
RSI_DATA_TIMER register.

8. Write the source start address to the RSI_ARGUMENT register. The
supplied address must be aligned to a 512-byte boundary if mis-
aligned accesses are not enabled and the card is not a high-capacity
SD card or sector-addressable MMC card.

ADSP-BF50x Blackfin Processor Hardware Reference 21-43

Removable Storage Interface

9. Enable the data path state machine by writing to the
RSI_DATA_CONTROL register with DATA_BLK_LGTH set to 9 for a
512-byte block. DATA_EN, DATA_DIR, and DATA_DMA_EN should also
be set to enable the data path state machine, set the transfer direc-
tion from card to controller and allow the DMA controller access
to the receive FIFO. All other fields of the RSI_DATA_CONTROL

register should be zero.

10.Write the READ_SINGLE_BLOCK command to the RSI_COMMAND regis-
ter, configuring the command path state machine to expect a short
response by setting CMD_RESP and clearing CMD_L_RESP. The
response type is R1.

11.Unlike core accesses, it is safe to poll on CMD_RESP_END indication
within the RSI_STATUS register and clear the status bit once
detected via the RSI_STATUSCL register. The DMA controller
enabled in step 5 will ensure any data sent to the receive FIFO
prior to the CMD_RESP_END flag being set is received correctly.

12.Wait for the DAT_BLK_END flag to indicate that the data was received
correctly and passed the CRC check. The DAT_END flag may also be
set, depending on the value written to RSI_DATA_LGTH.

13.Clear the DAT_BLK_END and DAT_END flags via the RSI_STATUSCL

register. Also clear the DMA_DONE bit of the DMAx_IRQ_STATUS

register, if applicable.

Multiple Block Write Operation
Block write operations typically consist of 512 bytes of data per block.
If the card is found to support other block lengths or the default block
length as specified in the CID register is not 512, the block length of the
RSI must be configured accordingly. The block length of the card and the
block length of the RSI must be configured for the same block size at all
times. The block length of the RSI is configured via the DATA_BLK_LGTH

field of the RSI_DATA_CTL register.

Programming Model

21-44 ADSP-BF50x Blackfin Processor Hardware Reference

Using Core

The procedure is as follows:

1. Write the RSI_ARGUMENT register with the cards RCA. The 16-bit
RCA should be written to the upper 16-bits of the RSI_ARGUMENT

register.

2. Write the RSI_COMMAND register with the SELECT/DESELECT_CARD

command, configuring the command path state machine to expect
a short response by setting CMD_RESP and clearing CMD_L_RESP. The
response type is R1b.

3. Wait for the CMD_RESP_END indication within the RSI_STATUS

register and clear the status bit once detected via the RSI_STATUSCL

register.

4. Ensure that the device is not busy and no errors occurred by
verifying the response contained in RSI_RESPONSE0.

5. Write the number of bytes to be transferred to the RSI_DATA_LGTH

register. For example, write 4096 to write eight blocks of 512
bytes.

6. Write the appropriate timeout value for a write operation to the
RSI_DATA_TIMER register.

7. Write the destination start address to the RSI_ARGUMENT register.
The supplied address must be aligned to a 512-byte boundary if
misaligned accesses are not enabled and the card is not a
high-capacity SD card or a sector-addressable MMC card.

8. Write the WRITE_MULTIPLE_BLOCK command to RSI_COMMAND, con-
figuring the command path state machine to expect a short
response by setting CMD_RESP and clearing CMD_L_RESP. The
response type is R1.

ADSP-BF50x Blackfin Processor Hardware Reference 21-45

Removable Storage Interface

9. Wait for the CMD_RESP_END indication within the RSI_STATUS

register, and clear the status bit once detected via the RSI_STATUSCL

register.

10.Enable the data path state machine by writing to the
RSI_DATA_CONTROL register with DATA_BLK_LGTH set to 9 for a
512-byte block. DATA_EN should also be set to enable the data path
state machine. All other fields of the RSI_DATA_CONTROL register
should be zero.

11.Write data to the RSI_FIFO register until the FIFO becomes full as
indicated by the TX_FIFO_FULL flag of the RSI_STATUS register.
Continue to write data to the FIFO as long as the FIFO is not full
or write data in blocks of eight 32-bit words if polling on the
TX_FIFO_STAT bit indicating the transmit FIFO is half empty. Con-
tinue until all 128 32-bit words (512 bytes) have been transferred.

12.Wait for the card to respond with the CRC token by waiting for
the DAT_BLK_END flag to be set.

13.Clear the DAT_BLK_END flag.

14.Repeat steps 11 to 13 for the number of blocks to be transferred or
until DAT_END flag is set.

15.Write the RSI_COMMAND register with the STOP_TRANSMISSION com-
mand, configuring the command path state machine to expect a
short response by setting CMD_RESP and clearing CMD_L_RESP. The
response type is R1.

16.Clear the DAT_END and CMD_RESP_END flags via the RSI_STATUSCL

register.

Programming Model

21-46 ADSP-BF50x Blackfin Processor Hardware Reference

Using DMA

The procedure is as follows:

1. Write the RSI_ARGUMENT register with the cards RCA. The 16-bit
RCA should be written to the upper 16-bits of the RSI_ARGUMENT

register.

2. Write the RSI_COMMAND register with the SELECT/DESELECT_CARD

command, configuring the command path state machine to expect
a short response by setting CMD_RESP and clearing CMD_L_RESP. The
response type is R1b.

3. Wait for the CMD_RESP_END indication within the RSI_STATUS

register, and clear the status bit once detected via the RSI_STATUSCL

register.

4. Ensure that the device is not busy and no errors occurred by
verifying the response contained in RSI_RESPONSE0.

5. Configure the DMA channel assigned to the RSI controller. Write
DMAx_START_ADDR with the address of the first byte of data to be
written to the card. The DMAx_X_COUNT register should be set to the
overall number of 32-bit words to be written; for example, write
1024 to transfer 4096 bytes. The DMAx_X_MODIFY register should be
set to 4. The DMAx_CONFIG register should be set for DMA enable
and a word size of 32-bits.

6. Once the DMA channel has been configured and enabled, write
the number of bytes to be transferred to the RSI_DATA_LGTH regis-
ter. For example, write 4096 to write eight blocks of 512 bytes.

7. Write the appropriate timeout value for a write operation to the
RSI_DATA_TIMER register.

ADSP-BF50x Blackfin Processor Hardware Reference 21-47

Removable Storage Interface

8. Write the destination start address to the RSI_ARGUMENT register.
The supplied address must be aligned to a 512-byte boundary if
misaligned accesses are not enabled and the card is not a
high-capacity SD card or sector addressable MMC card.

9. Write the WRITE_MULTIPLE_BLOCK command to the RSI_COMMAND,
configuring the command path state machine to expect a short
response by setting CMD_RESP and clearing CMD_L_RESP. The
response type is R1.

10.Wait for the CMD_RESP_END indication within the RSI_STATUS

register, and clear the status bit once detected via the RSI_STATUSCL

register.

11.Enable the data path state machine by writing to the
RSI_DATA_CONTROL register with DATA_BLK_LGTH set to 9 for a
512-byte block. DATA_EN and DATA_DMA_EN should also be set to
enable the data path state machine and to allow the DMA control-
ler to access the transmit FIFO. All other fields of the
RSI_DATA_CONTROL register should be zero.

12.Poll for the DAT_END flag or alternatively poll for each instance of
the DAT_BLK_END flag that will be set on successful completion of
each block transfer. For a 4096 byte transfer, DAT_BLK_END will be
set eight times and should be cleared after it is detected via the
RSI_STATUSCL register.

13.Write the RSI_COMMAND register with the STOP_TRANSMISSION com-
mand, configuring the command path state machine to expect a
short response by setting CMD_RESP and clearing CMD_L_RESP. The
response type is R1.

14.Clear the DAT_END and CMD_RESP_END flag via the RSI_STATUSCL

register. Also clear the DMA_DONE bit of the DMAx_IRQ_STATUS

register, if applicable.

Programming Model

21-48 ADSP-BF50x Blackfin Processor Hardware Reference

Multiple Block Read Operation
Block read operations typically consist of 512 bytes of data per block.
If the card is found to support other block lengths or the default block
length as specified in the CID register is not 512, the block length of the
RSI must be configured accordingly. The block length of the card and the
block length of the RSI must be configured for the same block size at all
times. The block length of the RSI is configured via the DATA_BLK_LGTH

field of the RSI_DATA_CONTROL register.

Using Core

The procedure is as follows:

1. Write the RSI_ARGUMENT register with the cards RCA. The 16-bit
RCA should be written to the upper 16-bits of the RSI_ARGUMENT

register.

2. Write the RSI_COMMAND register with the SELECT/DESELECT_CARD

command, configuring the command path state machine to expect
a short response by setting CMD_RESP and clearing CMD_L_RESP. The
response type is R1b.

3. Wait for the CMD_RESP_END indication within the RSI_STATUS

register, and clear the status bit once detected via the RSI_STATUSCL

register.

4. Ensure that the device is not busy and there are no errors occurred
by verifying the response contained in RSI_RESPONSE0.

5. Write the number of bytes to be transferred to the RSI_DATA_LGTH

register. This will be 4096 for a transfer of eight 512 byte blocks.

6. Write the appropriate timeout value for a read operation to the
RSI_DATA_TIMER register.

ADSP-BF50x Blackfin Processor Hardware Reference 21-49

Removable Storage Interface

7. Write the destination start address to the RSI_ARGUMENT register.
The supplied address must be aligned to a 512-byte boundary if
misaligned accesses are not enabled and the card is not a
high-capacity SD card or a sector-addressable MMC card.

8. Enable the data path state machine by writing to the
RSI_DATA_CONTROL register with DATA_BLK_LGTH set to 9 for a
512-byte block. DATA_EN and DATA_DIR should also be set to enable
the data path state machine and indicate the transfer direction is
from card to controller. All other fields of the RSI_DATA_CONTROL

register should be zero.

9. Write the READ_MULTIPLE_BLOCK command to the RSI_COMMAND reg-
ister, configuring the command path state machine to expect a
short response by setting CMD_RESP and clearing CMD_L_RESP. The
response type is R1.

10.In order to meet some timing restrictions related to block read
operations, it is advisable to not wait for the CMD_RESP_END indica-
tion within the RSI_STATUS register but instead move immediately
on the next step. This is due to the card being able to send data
before a response can completed on the RSI_CMD signal, moving
immediately onto step 11 will ensure a receive FIFO overflow does
not occur.

11.Poll the RX_FIFO_RDY bit or the RX_DAT_ZERO bit of RSI_STATUS
indicating the receive FIFO has data available, or the receive FIFO
is empty. As long as the receive FIFO is not empty, read data from
the RSI_FIFO register until 512 bytes have been read.

12.Once the block has been read, wait for the DAT_BLK_END flag to
indicate that the data was received correctly and passed the CRC
check.

13.Clear the DAT_BLK_END flag via RSI_STATUSCL.

Programming Model

21-50 ADSP-BF50x Blackfin Processor Hardware Reference

14.Repeat steps 11 to 13 until the required number of blocks have
been read or until the DAT_END flag has been set.

15.Write the RSI_COMMAND register with the STOP_TRANSMISSION com-
mand, configuring the command path state machine to expect a
short response by setting CMD_RESP and clearing CMD_L_RESP. The
response type is R1.

16.Clear the DAT_END and CMD_RESP_END flags via the RSI_STATUSCL

register.

Using DMA

The procedure is as follows:

1. Write the RSI_ARGUMENT register with the cards RCA. The 16-bit
RCA should be written to the upper 16-bits of the RSI_ARGUMENT

register.

2. Write the RSI_COMMAND register with the SELECT/DESELECT_CARD

command, configuring the command path state machine to expect
a short response by setting CMD_RESP and clearing CMD_L_RESP. The
response type is R1b.

3. Wait for the CMD_RESP_END indication within the RSI_STATUS

register, and clear the status bit once detected via the RSI_STATUSCL

register.

4. Ensure that the device is not busy and that no errors occurred by
verifying the response contained in RSI_RESPONSE0.

5. Configure the DMA channel assigned to the RSI controller. Write
DMAx_START_ADDR with the address of the first byte of where the
received data is to be stored. The DMAx_X_COUNT register should be
set to the number of 32-bit words to be read, which would be 1024

ADSP-BF50x Blackfin Processor Hardware Reference 21-51

Removable Storage Interface

for a 4096 byte read transfer. The DMAx_X_MODIFY register should be
set to 4. The DMAx_CONFIG register should be set for DMA enable
(a word size of 32-bits and direction set to memory write).

6. Write the number of bytes to be transferred to the RSI_DATA_LGTH

register. This will be 4096 for eight blocks of 512 bytes.

7. Write the appropriate timeout value for a read operation to the
RSI_DATA_TIMER register.

8. Write the source start address to the RSI_ARGUMENT register. The
supplied address must be aligned to a 512-byte boundary if mis-
aligned accesses are not enabled and the card is not a high-capacity
SD card or a sector-addressable MMC card.

9. Enable the data path state machine by writing to the
RSI_DATA_CONTROL register with DATA_BLK_LGTH set to 9 for a
512-byte block. DATA_EN, DATA_DIR, and DATA_DMA_EN should also
be set to enable the data path state machine. Set the transfer direc-
tion from card to controller and allow the DMA controller access
to the receive FIFO. All other fields of the RSI_DATA_CONTROL regis-
ter should be zero.

10.Write the READ_MULTIPLE_BLOCK command to the RSI_COMMAND reg-
ister, configuring the command path state machine to expect a
short response by setting CMD_RESP and clearing CMD_L_RESP. The
response type is R1.

11.Unlike core accesses, it is safe to poll on CMD_RESP_END indication
within the RSI_STATUS register and clear the status bit once
detected via the RSI_STATUSCL register. The DMA controller,
enabled in step 5 will ensure any data sent to the receive FIFO
prior to the CMD_RESP_END flag being set is received correctly.

RSI Registers

21-52 ADSP-BF50x Blackfin Processor Hardware Reference

12.Poll for the DAT_END flag or alternatively poll for each instance of
the DAT_BLK_END flag that will be set on successful completion of
each block transfer. For a 4096-byte transfer, DAT_BLK_END will be
set eight times and should be cleared after it is detected via the
RSI_STATUSCL register.

13.Write the RSI_COMMAND register with the STOP_TRANSMISSION com-
mand, configuring the command path state machine to expect a
short response by setting CMD_RESP and clearing CMD_L_RESP. The
response type is R1.

14.Clear the DAT_END and CMD_RESP_END flags via the RSI_STATUSCL

register. Also clear the DMA_DONE bit of the DMAx_IRQ_STATUS

register, if applicable.

RSI Registers
Table 21-11 summarizes the RSI registers together with their function,
memory-mapped address, type, and access.

Table 21-11. RSI Module Registers

Register Name Function Address Type Access

RSI_PWR_CONTROL RSI power control register
on page 21-54

0xFFC03800 R/W 16-bit

RSI_CLK_CONTROL RSI clock control register
on page 21-55

0xFFC03804 R/W 16-bit

RSI_ARGUMENT RSI argument register
on page 21-57

0xFFC03808 R/W 32-bit

RSI_COMMAND RSI command register
on page 21-57

0xFFC0380C R/W 16-bit

RSI_RESP_CMD RSI response command reg-
ister
on page 21-59

0xFFC03810 R 16-bit

ADSP-BF50x Blackfin Processor Hardware Reference 21-53

Removable Storage Interface

RSI_RESPONSE0
RSI_RESPONSE1
RSI_RESPONSE2
RSI_RESPONSE3

RSI response registers
on page 21-60

0xFFC03804
0xFFC03808
0xFFC0381C
0xFFC03820

R 32-bit

RSI_DATA_TIMER RSI data timer register
on page 21-61

0xFFC03824 R/W 32-bit

RSI_DATA_LGTH RSI data length register
on page 21-62

0xFFC03828 R/W 16-bit

RSI_DATA_CONTROL RSI data control register
on page 21-62

0xFFC0382C R/W 16-bit

RSI_DATA_CNT RSI data counter register
on page 21-64

0xFFC03830 R 16-bit

RSI_STATUS RSI status register
on page 21-65

0xFFC03834 R 32-bit

RSI_STATUSCL RSI status clear register
on page 21-68

0xFFC03838 W1A 16-bit

RSI_MASK0
RSI_MASK1

RSI IRQ0 mask registers
on page 21-70

0xFFC0383C
0xFFC03840

R/W 32-bit

RSI_FIFO_CNT RSI FIFO counter register
on page 21-73

0xFFC03848 R 16-bit

RSI_CEATA_CONTROL RSI CE-ATA control register
on page 21-74

0xFFC0384C R/W1A/W 16-bit

RSI_FIFO RSI data FIFO register
on page 21-75

0xFFC03880 R/W 32-bit

RSI_ESTAT RSI exception status register
on page 21-75

0xFFC038C0 R/W1C 16-bit

RSI_EMASK RSI exception mask register
on page 21-77

0xFFC038C4 R/W 16-bit

RSI_CONFIG RSI configuration register
on page 21-78

0xFFC038C8 R/W 16-bit

Table 21-11. RSI Module Registers (Cont’d)

Register Name Function Address Type Access

RSI Registers

21-54 ADSP-BF50x Blackfin Processor Hardware Reference

RSI Power Control Register (RSI_PWR_CONTROL)
The RSI_PWR_CONTROL register contains bits that control the power to the
RSI module as well as the open-drain configuration for the RSI_CMD signal.
The PWR_ON field must be set to “11” in order for the RSI to be enabled.
The RSI_CMD_OD bit, when set, results in the RSI driving the RSI_CMD sig-
nal in open-drain mode. The default mode of operation is push-pull. After
a data write, data cannot be written to this register for a five SCLK cycles.

RSI_RD_WAIT_EN RSI read wait enable register
on page 21-80

0xFFC038CC R/W1A/W 16-bit

RSI_PID0
RSI_PID1
RSI_PID2
RSI_PID3

RSI peripheral identifica-
tion registers
on page 21-81

0xFFC038D0
0xFFC038D4
0xFFC038D8
0xFFC038DC

R 16-bit

Figure 21-6. RSI Power Control Register

Table 21-11. RSI Module Registers (Cont’d)

Register Name Function Address Type Access

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RSI Power Control Register (RSI_PWR_CONTROL)

PWR_ON

Reserved

RSI_CMD_OD

Read/Write

Reset = 0x0000

Reserved

0xFFC0 3800

ADSP-BF50x Blackfin Processor Hardware Reference 21-55

Removable Storage Interface

RSI Clock Control Register (RSI_CLK_CONTROL)
The RSI_CLK_CONTROL register provides control functionality for the RSI
clock. RSI_CLK can be derived directly from the SCLK signal by enabling
CLKDIV_BYPASS; otherwise, RSI_CLK frequency is determined from the cur-
rent SCLK frequency and the CLKDIV field:

In order to conserve power, the RSI clock can be disabled without dis-
abling the entire RSI interface via the CLK_EN bit; additionally the
PWR_SV_EN bit, when set, results in the RSI_CLK signal only been driven
when the RSI is performing a transfer either to or from the card. In addi-
tional to clock control functionality, the data bus width of the RSI
interface is also controlled from this register.

Table 21-12. RSI_PWR_CONTROL Register

Bit Name Function Type Default

1:0 PWR_ON Power on
00 = RSI disabled
01 = Reserved
10 = Reserved
11 = RSI enabled

RO 0

5:2 Reserved Reserved RO 0

6 RSI_CMD_OD RSI_CMD open drain
0 = Disabled (push-pull)
1 = Enabled

RO 0

15:7 Reserved Reserved RO 0

RSI_CLK SCLK
2 CLKDIV 1+ 
---=

RSI Registers

21-56 ADSP-BF50x Blackfin Processor Hardware Reference

Figure 21-7. RSI Clock Control Register

Table 21-13. RSI_CLK_CONTROL Register

Bit Name Function Type Default

7:0 CLKDIV Clock divisor
0x0 to 0xFF
(see equation)

R/W 0

8 CLK_EN RSI_CLOCK enable
0 = Disable RSI_CLK
1 = Enable RSI_CLK

R/W 0

9 PWR_SV_EN Power save enable
0 = Disabled (RSI_CLK always
driven)
1 = Enabled (RSI_CLK only
enabled when bus is active)

R/W 0

10 CLKDIV_BYPASS Bypass clock divisor
0 = Disabled (do not bypass clock
divisor)
1 = Enabled (RSI_CLK derived
directly from SCLK)

R/W 0

12:11 BUS_MODE Data bus width
00 = 1-bit data bus
01 = 4-bit data bus
10 = 8-bit data bus
11 = Reserved

R/W 0

15:13 Reserved Reserved RO 0

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RSI Clock Control Register (RSI_CLK_CONTROL)

CLKDIV

Read/Write

Reset = 0x0000
0xFFC0 3804

BUS_MODE

PWR_SV_EN

CLK_EN

CLKDIV_BYPASS

ADSP-BF50x Blackfin Processor Hardware Reference 21-57

Removable Storage Interface

RSI Argument Register (RSI_ARGUMENT)
The RSI_ARGUMENT register contains the 32-bit argument that is sent on
the RSI_CMD signal as part of a command message. If a command requires
an argument, the argument must first be loaded into the RSI_ARGUMENT

register prior to writing and enabling the command in the RSI_COMMAND

register.

RSI Command Register (RSI_COMMAND)
The RSI_COMMAND register is responsible for controlling the command path
state machine. The CMD_IDX field contains the index of the command to be
issued via the RSI as part of the command message. If the command
requires a response, this is indicated via CMD_RSP_EN.

The length of the response (short or long) is controlled with CMD_LRSP_EN.
The command path state machine becomes active once the CMD_EN bit is
set and is disabled if this bit is cleared.

Figure 21-8. RSI Argument Register

RSI Argument [15:0]

RSI Argument [31:16]

0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0

RSI Argument Register (RSI_ARGUMENT)
Read/Write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0

0xFFC0 3808 Reset = 0x000 000000 0

0 0 0 0

0

0 0

RSI Registers

21-58 ADSP-BF50x Blackfin Processor Hardware Reference

 It is not required to manually clear the CMD_EN bit after the com-
mand sequence has completed. The command path state machine
will automatically terminate and become IDLE once the operation
has completed.

Figure 21-9. RSI Command Register

Table 21-14. RSI_COMMAND Register

Bit Name Function Type Default

5:0 CMD_IDX Command index
0x3F - 0x00
(Command number to be issued)

R/W 0

6 CMD_RSP_EN Wait for response
0 = Disabled
1 = Enabled

R/W 0

7 CMD_LRSP_EN Long response enable
0 = Disabled (short response
expected)
1 = Enabled (long response
expected)

R/W 0

8 CMD_INT_EN Command interrupt enable
0 = Disabled (timeout after 64
RSI_CLK cycles)
1 = Enabled (disable timeout
counter and wait for interrupt)

R/W 0

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RSI Command Register (RSI_COMMAND)

CMD_IDX

Read/Write

Reset = 0x0000
0xFFC0 380C

CMD_INT_EN
CMD_PEND_EN
CMD_EN CMD_RSP_EN

CMD_LRSP_EN

ADSP-BF50x Blackfin Processor Hardware Reference 21-59

Removable Storage Interface

RSI Response Command Register (RSI_RESP_CMD)
The RSI_RESP_CMD register contains the command index field of the last
response received. If the command response does not contain doe not con-
tain a command index field (as is the case with a long response), the
RESP_CMD field would typically be ignored. In this situation, it will likely
contain “0x3F”, which is the value of the reserved field of the response.

9 CMD_PEND_EN Pend enable
0 = Disabled (send command
immediately)
1 = Enabled (wait for DAT_END
before sending command)

R/W 0

10 CMD_EN Command enable
0 = Disable command path state
machine
1 = Enable command path state
machine

R/W 0

15:11 Reserved Reserved RO 0

Figure 21-10. RSI Response Command Register

Table 21-14. RSI_COMMAND Register (Cont’d)

Bit Name Function Type Default

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved

RSI Response Command Register (RSI_RESP_CMD)

RESP_CMD

Read

Reset = 0x0000
0xFFC0 3810

RSI Registers

21-60 ADSP-BF50x Blackfin Processor Hardware Reference

RSI Response Registers (RSI_RESPONSEx)
The four RSI_RESPONSEx registers (RSI_RESPONSE0, RSI_RESPONSE1,
RSI_RESPONSE2, and RSI_RESPONSE3,) contain the response information
received back from a card for a given command message. The received
response may be 32 or 127 bits in length, depending on whether the
response type is short or long. The most significant bit of the response is
received first and is located in bit 31 of the RSI_RESPONSE0 register. Bit 0
of RSI_RESPONSE3 is always zero. Table 21-16 shows the RSI response reg-
isters contents for the two types of responses.

Table 21-15. RSI_RESP_CMD Register

Bit Name Function Type Default

5:0 RESP_CMD Command index of last received
response
0x3F - 0x00
(command index)

RO 0

15:6 Reserved Reserved RO 0

Figure 21-11. RSI Response Registers

RSI Response [15:0]

RSI Response [31:16]

0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0

RSI Response Registers (RSI_RESPONSEx)
Read

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0

RSI_RESPONSE0 = 0xFFC0 3814
RSI_RESPONSE1 = 0xFFC0 3818
RSI_RESPONSE2 = 0xFFC0 381C
RSI_RESPONSE3 = 0xFFC0 3820

Reset = 0x0000 0000

0 0

0 0 0 0

0

0 0

ADSP-BF50x Blackfin Processor Hardware Reference 21-61

Removable Storage Interface

RSI Data Timer Register (RSI_DATA_TIMER)
The RSI_DATA_TIMER register contains a 32-bit value for the data timeout
period (RSI_CLK cycles). An internal counter loads the value from this reg-
ister, and starts to decrement when the data path state machine enters the
WAIT_R or the BUSY states. If the timer decrements to zero while the
data path state machine is still in either of these two states, the
DAT_TIMEOUT flag of the RSI_STATUS register is set. The RSI_DATA_TIMER

and the RSI_DATA_LGTH registers must both be written to prior to starting a
data transfer via the RSI_DATA_CONTROL register.

Table 21-16. RSI Response Registers Content

Response Register Short Response Long Response

RSI_RESPONSE0 Response bits [31:0] Response bits [127:96]

RSI_RESPONSE1 Not used Response bits [95:64]

RSI_RESPONSE2 Not used Response bits [63:32]

RSI_RESPONSE3 Not used Response bits [31:1]1

1 Bits 31:1 of the long response are stored in bits 30:0 of the RSI_RESPONSE3 register.
Bit 31 of the RSI_RESPONSE3 register is not used and is always zero.

Figure 21-12. RSI Data Timer Register

0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0

RSI Data Timer Register (RSI_DATA_TIMER)
Read

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0

Reset = 0x0000 00000 0

0 0 0 0

0

0 0

Data Timeout Period [31:16]

Data Timeout Period [15:0]

0xFFC0 3824

RSI Registers

21-62 ADSP-BF50x Blackfin Processor Hardware Reference

RSI Data Length Register (RSI_DATA_LGTH)
The RSI_DATA_LGTH register contains a 16-bit value for the number of data
bytes to be transferred before setting the DAT_END flag of the RSI_STATUS

register. The value loaded to this register is copied into the RSI_DATA_CNT

register when the data path state machine is enabled and starts the
transfer.

RSI Data Control Register (RSI_DATA_CONTROL)
The RSI_DATA_CONTROL register largely controls the data path state
machine. The state machine becomes enabled once the DATA_EN bit is set.
The direction of the transfer is determined by DATA_DIR. If the DMA
channel is to be used for the data transfer, the DATA_DMA_EN bit must be
set; otherwise, the RSI FIFO is only accessible via the core. For block
transfers, the block length must be specified via DATA_BLK_LGTH, where the
block length is 2DATA_BLK_LGTH. Two bits (CEATA_CCS_EN and CEATA_EN)
in this register configure the behavior of the command path state machine
for communication with CE-ATA devices. After a data write, data cannot
be written to this register for five SCLK cycles.

Figure 21-13. RSI Data Length Register

Table 21-17. RSI_DATA_LGTH Register

Bit Name Function Type Default

15:0 DATA_LENGTH Number of bytes to be transferred R/W 0

DATA_LENGTH

RSI Data Length Register (RSI_DATA_LGTH)
Read

0xFFC0 3828
Reset = 0x000015 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 00 0 0 0 0 0

ADSP-BF50x Blackfin Processor Hardware Reference 21-63

Removable Storage Interface

Figure 21-14. RSI Data Control Register

Table 21-18. RSI_DATA_CONTROL Register

Bit Name Function Type Default

0 DATA_EN Data enable
0 = Disabled (disables data path
state machine)
1 = Enabled (enables data path
state machine)

R/W 0

1 DATA_DIR Data transfer direction
0 = From RSI to card
1 = From card to RSI

R/W 0

2 DATA_MODE Data transfer mode
0 = Block transfer
1 = Stream transfer

R/W 0

3 DATA_DMA_EN Data DMA enable
0 = Disabled (use core to
read/write RSI_FIFO)
1 = Enabled (use DMA controller
to read/write RSI_FIFO)

R/W 0

7:4 DATA_BLK_LGTH Data block length
0x0 - 0xC

data block length (20 to 212)

R/W 0

8 CEATA_EN CE-ATA mode enable
0 = Disabled
1 = Enabled

R/W 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved

RSI Data Control Register (RSI_DATA_CONTROL)

DATA_EN

Read/Write

Reset = 0x0000
0xFFC0 382C

CEATA_EN
CEATA_CCS_EN DATA_DIR

DATA_MODE

DATA_DMA_EN
DATA_BLK_LGTH

RSI Registers

21-64 ADSP-BF50x Blackfin Processor Hardware Reference

RSI Data Counter Register (RSI_DATA_CNT)
The RSI_DATA_CNT register is loaded from the RSI_DATA_LGTH register
when the data path state machine becomes enabled and moves from the
IDLE state to the WAIT_S or WAIT_R states. As the data is transferred,
the counter decrements; upon decrementing to zero, the state machine
then moves back to the IDLE state and the DAT_END flag of the RSI_STATUS

register is set.

9 CEATA_CCS_EN Command completion signal
enable
0 = Disabled
1 = Enabled (wait for command
completion signal)

R/W 0

15:10 Reserved Reserved R/W 0

Figure 21-15. RSI Data Counter Register

Table 21-19. RSI_DATA_CNT Register

Bit Name Function Type Default

15:0 DATA_COUNT Number of bytes still to be trans-
ferred

RO 0

Table 21-18. RSI_DATA_CONTROL Register (Cont’d)

Bit Name Function Type Default

0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0

RSI Data Counter Register (RSI_DATA_CNT)
Read

Reset = 0x00000 0 0

DATA_COUNT

0xFFC0 3830

ADSP-BF50x Blackfin Processor Hardware Reference 21-65

Removable Storage Interface

RSI Status Register (RSI_STATUS)
The RSI_STATUS register contains both static and dynamic flags that
indicate the status of the RSI. The static flags (bits [10:0]) remain asserted
and are required to be cleared by writing to the RSI_STATUSCL register.
The dynamic flags (bits [21:11]) change state, depending on the state of
the underlying logic. The transmit and receive FIFO logic controls bits
[21:12], which will vary depending on the state of the FIFO and whether
the FIFO is currently enabled for a transmit or receive operation.

Figure 21-16. RSI Status Register

0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 1 0 1 0 1 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RX_FIFO_STAT

RSI Status Register (RSI_STATUS)

CMD_CRC_FAIL

Read

Reset = 0x0000 0000
0xFFC0 3834

RX_ACT
TX_FIFO_STAT DAT_CRC_FAIL

CMD_TIMEOUT

DAT_TIMEOUT
TX_UNDERRUN

TX_ACT
CMD_ACT
DAT_BLK_END
START_BIT_ERR
DAT_END

RX_OVERRUN
CMD_RESP_END
CMD_SEND

Reserved

RSI Status Register (RSI_STATUS)
Read/Write

Reset = 0x0000 0000
0xFFC0 3834

TX_FIFO_FULL
RX_FIFO_FILL
TX_FIFO_ZERO

RX_DAT_ZERO
TX_DAT_RDY
RX_FIFO_RDY

RSI Registers

21-66 ADSP-BF50x Blackfin Processor Hardware Reference

Table 21-20. RSI_STATUS Register

Bit Name Function Type Default

0 CMD_CRC_FAIL Command response CRC fail
0 = No CRC received
1 = CRC failed on command
response

RO 0

1 DAT_CRC_FAIL Data CRC failure
0 = No CRC received on data
block
1 = CRC failed on data block

RO 0

2 CMD_TIMEOUT Command timeout
0 = Command response not timed
out
1 = Command response timed out

RO 0

3 DAT_TIMEOUT Data timeout
0 = Data not timed out
1 = Data timed out

RO 0

4 TX_UNDERRUN Transmit FIFO underrun error
0 = No error
1 = Underrun error

RO 0

5 RX_OVERRUN Receive FIFO overrun error
0 = No error
1 = Overrun error

RO 0

6 CMD_RESP_END Command response received
0 = No response received
1 = Response received and CRC
passed

RO 0

7 CMD_SENT Command sent
0 = No command sent
1 = Command sent (no response
required)

RO 0

8 DAT_END End of data
0 = Not end of data
1 = End of data

RO 0

ADSP-BF50x Blackfin Processor Hardware Reference 21-67

Removable Storage Interface

9 START_BIT_ERR Start bit error
0 = No start bit error
1 = Start bit error (start bit not
detected on all enabled data sig-
nals)

RO 0

10 DAT_BLK_END Data block end
0 = No data block end
1 = End of data block and CRC
passed

RO 0

11 CMD_ACT Command active
0 = No command active
1 = Command transfer in progress

RO 0

12 TX_ACT Data transmit active
0 = No data transmit in progress
1 = Data transmit in progress

RO 0

13 RX_ACT Data receive active
0 = No data receive in progress
1 = Data receive in progress

RO 0

14 TX_FIFO_STAT Transmit FIFO watermark
0 = No FIFO watermark detected
1 = Transmit FIFO half empty

RO 0

15 RX_FIFO_STAT Receive FIFO watermark
0 = No FIFO watermark detected
1 = Receive FIFO half full

RO 0

16 TX_FIFO_FULL Transmit FIFO full
0 = Not full
1 = Transmit FIFO full

RO 0

17 RX_FIFO_FULL Receive FIFO full
0 = Not full
1 = Receive FIFO full

RO 0

18 TX_FIFO_ZERO Transmit FIFO empty
0 = Not empty
1 = Transmit FIFO empty

RO 0

Table 21-20. RSI_STATUS Register (Cont’d)

Bit Name Function Type Default

RSI Registers

21-68 ADSP-BF50x Blackfin Processor Hardware Reference

RSI Status Clear Register (RSI_STATUSCL)
The RSI_STATUSCL register is used to clear the static flags of the
RSI_STATUS register. Write a “1” to any of the bits to clear the
corresponding flag in the RSI_STATUS register.

19 RX_DAT_ZERO Receive FIFO empty
0 = Not empty
1 = Receive FIFO empty

RO 0

20 TX_DAT_RDY Transmit data available
0 = No data
1 = Data available in transmit
FIFO

RO 0

21 RX_FIFO_RDY Receive data available
0 = No data
1 = Data available in receive FIFO

RO 0

31:22 Reserved Reserved RO 0

Figure 21-17. RSI Status Clear Register

Table 21-20. RSI_STATUS Register (Cont’d)

Bit Name Function Type Default

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved

RSI Status Clear Register (RSI_STATUSCL)

CMD_CRC_FAIL_STAT

Write 1 Action

Reset = 0x0000
0xFFC0 3838

DAT_CRC_FAIL_STAT
CMD_TIMEOUT_STAT

DAT_TIMEOUT_STAT
TX_UNDERRUN_STAT

DAT_BLK_END_STAT
START_BIT_ERR_STAT
DAT_END_STAT

RX_OVERRUN_STAT
CMD_RESP_END_STAT
CMD_SEND_STAT

ADSP-BF50x Blackfin Processor Hardware Reference 21-69

Removable Storage Interface

Table 21-21. RSI_STATUSCL Register

Bit Name Function Type Default

0 CMD_CRC_FAIL_STAT Clear command response CRC fail
0 = No effect
1 = Clear CMD_CRC_FAIL

W1A 0

1 DAT_CRC_FAIL_STAT Clear data CRC failure
0 = No effect
1 = Clear DAT_CRC_FAIL

W1A 0

2 CMD_TIMEOUT_STAT Clear command timeout
0 = No effect
1 = Clear CMD_TIMEOUT

W1A 0

3 DAT_TIMEOUT_STAT Clear data timeout
0 = No effect
1 = Clear DAT_TIMEOUT

W1A 0

4 TX_UNDERRUN_STAT Clear transmit FIFO underrun
error
0 = No effect
1 = Clear TX_UNDERRUN

W1A 0

5 RX_OVERRUN_STAT Clear receive FIFO overrun error
0 = No effect
1 = Clear RX_OVERRUN

W1A 0

6 CMD_RESP_END_STAT Clear command response received
0 = No effect
1 = Clear CMD_RSEP_END

W1A 0

7 CMD_SENT_STAT Clear command sent
0 = No effect
1 = Clear CMD_SENT

W1A 0

8 DAT_END_STAT Clear end of data
0 = No effect
1 = Clear DAT_END

W1A 0

9 START_BIT_ERR_STAT Clear start bit error
0 = No effect
1 = Clear START_BIT_ERR

W1A 0

RSI Registers

21-70 ADSP-BF50x Blackfin Processor Hardware Reference

RSI Interrupt Mask Registers (RSI_MASKx)
The RSI_MASKx registers (RSI_MASK0 and RSI_MASK1) determine which of
the static and dynamic flags of the RSI_STATUS register generate an inter-
rupt request to the SIC via one of the two available RSI interrupts.
An interrupt is enabled by setting the corresponding bit in the RSI_MASKx

register to 1. Interrupts enabled in the RSI_MASK0 register will result in an
IRQ being sent via the IRQ0 signal of the RSI, and interrupts enabled in
the RSI_MASK1 register generate an IRQ on the IRQ0 signal of the RSI.

10 DAT_BLK_END_STAT Clear data block end
0 = No effect
1 = Clear DAT_BLK_END

W1A 0

15:11 Reserved Reserved W1A 0

Table 21-21. RSI_STATUSCL Register (Cont’d)

Bit Name Function Type Default

ADSP-BF50x Blackfin Processor Hardware Reference 21-71

Removable Storage Interface

Figure 21-18. RSI Interrupt Mask Registers

Table 21-22. RSI_MASKx Registers

Bit Name Function Type Default

0 CMD_CRC_FAIL_MASK Command response CRC fail
0 = Disable interrupt
1 = Enable interrupt

R/W 0

1 DAT_CRC_FAIL_MASK Data CRC failure
0 = Disable interrupt
1 = Enable interrupt

R/W 0

2 CMD_TIMEOUT_MASK Command timeout
0 = Disable interrupt
1 = Enable interrupt

R/W 0

0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 1 0 1 0 1 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RX_FIFO_STAT_MASK

RSI Interrupt Mask Registers (RSI_MASKx)

CMD_CRC_FAIL_MASK

Read/Write

Reset = 0x0000 0000

RX_ACT_MASK
TX_FIFO_STAT_MASK DAT_CRC_FAIL_MASK

CMD_TIMEOUT_MASK

DAT_TIMEOUT_MASK
TX_UNDERRUN_MASK

TX_ACT_MASK
CMD_ACT_MASK
DAT_BLK_END_MASK
START_BIT_ERR_MASK
DAT_END_MASK

RX_OVERRUN_MASK
CMD_RESP_END_MASK
CMD_SENT_MASK

Reserved

RSI Interrupt Mask Registers (RSI_MASKx)
Read/Write

Reset = 0x0000 0000

TX_FIFO_FULL_MASK
RX_FIFO_FULL_MASK
TX_FIFO_ZERO_MASK

RX_DAT_ZERO_MASK
TX_DAT_RDY_MASK
RX_FIFO_RDY_MASK

MASK0 = 0xFFC0 383C
MASK1 = 0xFFC0 3840

RSI Registers

21-72 ADSP-BF50x Blackfin Processor Hardware Reference

3 DAT_TIMEOUT_MASK Data time out
0 = Disable interrupt
1 = Enable interrupt

R/W 0

4 TX_UNDERRUN_MASK Transmit FIFO underrun
error
0 = Disable interrupt
1 = Enable interrupt

R/W 0

5 RX_OVERRUN_MASK Receive FIFO overrun error
0 = Disable interrupt
1 = Enable interrupt

R/W 0

6 CMD_RESP_END_MASK Command response received
0 = Disable interrupt
1 = Enable interrupt

R/W 0

7 CMD_SENT_MASK Command sent
0 = Disable interrupt
1 = Enable interrupt

R/W 0

8 DAT_END_MASK End of data
0 = Disable interrupt
1 = Enable interrupt

R/W 0

9 START_BIT_ERR_MASK Start bit error
0 = Disable interrupt
1 = Enable interrupt

R/W 0

10 DAT_BLK_END_MASK Data block end
0 = Disable interrupt
1 = Enable interrupt

R/W 0

11 CMD_ACT_MASK Command active
0 = Disable interrupt
1 = Enable interrupt

R/W 0

12 TX_ACT_MASK Data transmit active
0 = Disable interrupt
1 = Enable interrupt

R/W 0

13 RX_ACT_MASK Data receive active
0 = Disable interrupt
1 = Enable interrupt

R/W 0

Table 21-22. RSI_MASKx Registers (Cont’d)

Bit Name Function Type Default

ADSP-BF50x Blackfin Processor Hardware Reference 21-73

Removable Storage Interface

RSI FIFO Counter Register (RSI_FIFO_CNT)
The RSI_FIFO_CNT register contains a value indicating the number of
32-bit words still to be read from or written to the FIFO. RSI_FIFO_CNT is
loaded from the RSI_DATA_LGTH register when the DATA_EN bit of the
RSI_DATA_CONTROL register is set. If the data length is not word-aligned
(multiple of 4), the remaining 1 to 3 bytes are regarded as a word.

14 TX_FIFO_STAT_MASK Transmit FIFO watermark
0 = Disable interrupt
1 = Enable interrupt

R/W 0

15 RX_FIFO_STAT_MASK Receive FIFO watermark
0 = Disable interrupt
1 = Enable interrupt

R/W 0

16 TX_FIFO_FULL_MASK Transmit FIFO full
0 = Disable interrupt
1 = Enable interrupt

R/W 0

17 RX_FIFO_FULL_MASK Receive FIFO full
0 = Disable interrupt
1 = Enable interrupt

R/W 0

18 TX_FIFO_ZER/W_MASK Transmit FIFO empty
0 = Disable interrupt
1 = Enable interrupt

R/W 0

19 RX_DAT_ZER/W_MASK Receive FIFO empty
0 = Disable interrupt
1 = Enable interrupt

R/W 0

20 TX_DAT_RDY_MASK Transmit data available
0 = Disable interrupt
1 = Enable interrupt

R/W 0

21 RX_FIFO_RDY_MASK Receive data available
0 = Disable interrupt
1 = Enable interrupt

R/W 0

31:22 Reserved Reserved R/W 0

Table 21-22. RSI_MASKx Registers (Cont’d)

Bit Name Function Type Default

RSI Registers

21-74 ADSP-BF50x Blackfin Processor Hardware Reference

RSI CE-ATA Control Register (RSI_CEATA_CONTROL)
The RSI_CEATA_CONTROL register contains bits applicable to CE-ATA
mode of operation. CEATA_TX_CCSD, when set, results in the RSI sending
the command completion signal disable sequence to the CE-ATA device
to notify the device not to send back the command completion signal.
The CEATA_TX_CCSD bit is a write-1-action bit and remains set until
actively cleared. If the bit is set prior to enabling the command path state
machine, the CCSD signal will automatically be sent after the response is
received from the CE-ATA device and the command path state machine
will return to the IDLE state.

Figure 21-19. RSI FIFO Counter Register

Table 21-23. RSI_FIFO Register

Bit Name Function Type Default

14:0 FIFO_COUNT Number of 32-bit words remain-
ing

RO 0

15 Reserved Reserved RO 0

Figure 21-20. RSI CE_ATA Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved

RSI FIFO Counter Register (RSI_FIFO_CNT)

FIFO_COUNT

Read

Reset = 0x0000
0xFFC0 3848

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved

RSI CE_ATA Control Register (RSI_CEATA_CONTROL)

CEATA_TX_CCSD

Read/Write 1 Action/Write

Reset = 0x0000
0xFFC0 384C

ADSP-BF50x Blackfin Processor Hardware Reference 21-75

Removable Storage Interface

RSI Data FIFO Register (RSI_FIFO)
The RSI_FIFO register provides access to the 16-entry transmit and receive
FIFO. The register is accessed as a 32-bit word.

RSI Exception Status Register (RSI_ESTAT)
The RSI_ESTAT register contains exception status bits for SDIO cards,
CE-ATA devices, and the card detection logic. These status bits can be
uses to generate an interrupt request via the IRQ0 signal by enabling the
interrupt in the RSI_EMASK register. All bits in this register are
write-1-to-clear bits. The SDIO interrupt is an interrupt generated by
SDIO cards on the RSI_DATA1 signal. The SD_CARD_DET bit is set when a

Table 21-24. RSI_CEATA_CONTROL Register

Bit Name Function Type Default

0 CEATA_TX_CCSD Transmit command comple-
tion signal disable
0 = No action
1 = Send command comple-
tion signal disable sequence

R/W1A/W 0

15 Reserved Reserved - 0

Figure 21-21. RSI Data FIFO Register

0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0

RSI Data FIFO Register (RSI_FIFO)
Read/Write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0

0xFFC0 3880 Reset = 0x0000 00000 0

0 0 0 0

0

0 0

RSI Data FIFO [31:16]

RSI Data FIFO [15:0]

RSI Registers

21-76 ADSP-BF50x Blackfin Processor Hardware Reference

rising edge is detected on the RSI_DATA3 signal and is intended for use
with devices that support card detection using this signal. CEATA_INT_DET
indicates whether the command completion response has been received
from the attached CE-ATA device, indicating that the ATA operation has
completed successfully or that ATA command termination has occurred as
the result of an error condition.

Figure 21-22. RSI Exception Status Register

Table 21-25. RSI_ESTAT Register

Bit Name Function Type Default

0 Reserved Reserved RO 0

1 SDIO_INT_DET SDIO interrupt detect
0 = No interrupt detected
1 = Interrupt detected

R/W1C 0

3:2 Reserved Reserved RO 0

4 SD_CARD_DET Card detect interrupt
0 = No interrupt detected
1 = Interrupt detected

R/W1C 0

5 CEATA_INT_DET Command completion signal detect
0 = No CCS detected
1 = CCS detected

R/W1C 0

15:6 Reserved Reserved RO 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RSI Exception Status Register (RSI_ESTAT)

SDIO_INT_DET

Reserved

SD_CARD_DET

Read/Write 1 Clear

Reset = 0x0000

Reserved

0xFFC0 38C0

Reserved

CEATA_INT_DET

ADSP-BF50x Blackfin Processor Hardware Reference 21-77

Removable Storage Interface

RSI Exception Mask Register (RSI_EMASK)
The RSI_EMASK register contains mask bits for the RSI_ESTAT status bits.
Writing a “1” to the RSI_EMASK bit enables the interrupt for the corre-
sponding bit in the RSI_ESTAT register.

Figure 21-23. RSI Exception Mask Register

Table 21-26. RSI_EMASK Register

Bit Name Function Type Default

0 Reserved Reserved R/W 0

1 SDIO_INT_DET_MASK SDIO interrupt enable
0 = Interrupt disabled
1 = Interrupt enabled

R/W 0

3:2 Reserved Reserved R/W 0

4 SD_CARD_DET_MASK Card detect interrupt enable
0 = Interrupt disabled
1 = Interrupt enabled

R/W 0

5 CEATA_INT_DET_MASK Command completion signal
detect enable
0 = Interrupt disabled
1 = Interrupt enabled

R/W 0

15:6 Reserved Reserved RO 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 1 0 0 0

RSI Exception Mask Register (RSI_EMASK)

SDIO_INT_DET_MASK

Reserved

SD_CARD_DET_MASK

Read/Write

Reset = 0x0010

Reserved

0xFFC0 38C4

Reserved

CEATA_INT_DET_MASK

RSI Registers

21-78 ADSP-BF50x Blackfin Processor Hardware Reference

RSI Configuration Register (RSI_CONFIG)
The RSI_CONFIG register controls bits that enable and disable portions of
the RSI module. The RSI_CLK_EN bit must be set in order to enable the
RSI for operation. After reset, PD_DAT3 is set. This bit is mutually exclusive
with PU_DAT3, therefore if the pull-up resistor is to be enabled on
RSI_DATA3, then PD_DAT3 should be cleared. If an external pull-down resis-
tor is used for implementing card detection on the RSI_DATA3 signal, then
PU_DAT3 should not be set. The pull-up and pull-down resistors on the
RSI_DATAx signals become active only when the corresponding GPIO pins
are configured for RSI functionality via the pin multiplexing. For exam-
ple, if only the 4-bit data bus is enabled in the pin multiplexing, setting
PU_DAT will only enable the pull-up resistors on the signals that are config-
ured for RSI use. The RSI_CONFIG register also provides additional
functionality for SDIO support. To enable SDIO 4-bit mode, in addition
to setting the bus width to 4-bit via the BUS_MODE field of the
RSI_CLK_CONTROL register, SDIO4_EN should be set. The MW_EN bit, when
set, allows for SDIO interrupts to be detected outside the specified
one-cycle window and is set when interrupt support is required during
multiple block read transactions from SDIO. The RSI can also be reset
with the RSI_RST bit. Writing this bit resets the RSI module and returns
all registers to their default values.

ADSP-BF50x Blackfin Processor Hardware Reference 21-79

Removable Storage Interface

Figure 21-24. RSI Configuration Register

Table 21-27. RSI_CONFIG Register

Bit Name Function Type Default

0 RSI_CLK_EN RSI clocks enable
0 = Disable internal RSI clocks
1 = Enable internal RSI clocks

R/W 0

1 Reserved Reserved R/W 0

2 SDIO4_EN SDIO 4-bit enable
0 = Disable SDIO 4-bit mode
1 = Enable SDIO 4-bit mode

R/W 0

3 MW_EN SDIO interrupt moving window enable
0 = Disabled
1 = Enabled (required when using SDIO multi-
ple block read operations)

R/W 0

4 RSI_RST RSI reset
0 = No action
1 = Reset the RSI

R/W 0

5 PU_DAT Pull-up enable
0 = Disable pull-up resistor on RSI_DATA7-4
and RSI_DATA2-0
1 = Enable pull-up resistor on RSI_DATA7-4
and RSI_DATA2-0

R/W 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 1 0 1 0 0 0 0

Reserved

RSI Configuration Register (RSI_CONFIG)

RSI_CLK_EN

Read/Write

Reset = 0x0A00
0xFFC0 38C8

Reserved
SDIO4_EN

MW_EN
RSI_RST
PU_DAT
PU_DAT3
PD_DAT3

RSI Registers

21-80 ADSP-BF50x Blackfin Processor Hardware Reference

RSI Read Wait Enable Register (RSI_RD_WAIT_EN)
The RSI_RD_WAIT_EN register contains the SDIO_RWR bit that, when set,
issues a read wait request to an SDIO card. Once software is ready to
resume the data transfer, this bit must be cleared. The functionality
applies to both 1-bit and 4-bit SDIO modes.

6 PU_DAT3 RSI_DATA3 pull-up enable
0 = Disable pull-up resistor on RSI_DATA3
1 = Enable pull-up resistor on RSI_DATA3

R/W 0

7 PD_DAT3 RSI_DATA3 pull-down enable
0 = Disable pull-down resistor on RSI_DATA3
1 = Enable pull-down resistor on RSI_DATA3

For more system flexibility, no internal
pull-down resistor is present. An external
pull-down resistor is required for card detection
capability on the RSI_DATA3 signal.

R/W 0

15:8 Reserved Reserved RO 0

Figure 21-25. RSI Read Wait Enable Register

Table 21-27. RSI_CONFIG Register (Cont’d)

Bit Name Function Type Default

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved

RSI Read Wait Enable Register (RSI_RD_WAIT_EN)

SDIO_RWR

Read/Write 1 Action/Write

Reset = 0x0000
0xFFC0 38CC

ADSP-BF50x Blackfin Processor Hardware Reference 21-81

Removable Storage Interface

RSI Peripheral ID Registers (RSI_PIDx)
The RSI_PIDx registers (RSI_PID0, RSI_PID1, RSI_PID2, RSI_PID3,
RSI_PID4, RSI_PID5, RSI_PID6, and RSI_PID7) contain a fixed value at
reset and are used to identify the peripheral revision. There are a total of
four 16-bit identification registers of which the lower 8-bits are valid. The
contents of these four registers are listed in Table 21-30.

Table 21-28. RSI_RD_WAIT_EN Register

Bit Name Function Type Default

0 SDIO_RWR RSI read wait request enable
0 = Normal operation
1 = Issue read wait request to SDIO device

R/W1A/W 0

15:1 Reserved Reserved RO 0

Figure 21-26. RSI Peripheral ID Registers

Table 21-29. RSI_PIDx Registers

Bit Name Function Type Default

7:0 RSI_PID Peripheral ID RO 0

15:8 Reserved Reserved RO 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved

RSI Peripheral ID Registers (RSI_PIDx)

RSI_PID

Read

Reset = 0x0000

PID0 = 0xFFC0 38D0
PID1 = 0xFFC0 38D4
PID2 = 0xFFC0 38D8
PID3 = 0xFFC0 38DC

RSI Registers

21-82 ADSP-BF50x Blackfin Processor Hardware Reference

Table 21-30. Peripheral IDs

RSI Peripheral ID Register RSI_PID Value

RSI_PID0 0x80

RSI_PID1 0x11

RSI_PID2 0x04

RSI_PID3 0x00

ADSP-BF50x Blackfin Processor Hardware Reference 22-1

22 ADC CONTROL MODULE
(ACM)

The ADC control module (ACM) on the ADSP-BF50x processor provides
an interface that synchronizes the controls between the processor and an
analog-to-digital converter (ADC). The analog-to-digital conversions are
initiated by the processor in response to external or internal events.

Traditional ADC sampling uses event-driven processor interrupts and the
interrupt service routine programming of the appropriate peripheral–usu-
ally SPORT or SPI–for initiating the ADC conversion process.

 On the ADSP-BF50x processors, the ADC module is used with
either SPORT0 or SPORT1. ADSP-BF50x processors do not sup-
port ACM operation with SPI.

The traditional approach to sampling has the following limiting factors:

• ADC sampling instances are not precisely controlled due to vari-
able interrupt latencies or instruction execution cycles

• Consumption of processor MIPS can be prohibitive, especially for
high frequency of conversion-related events.

The ACM avoids the limitations of the traditional approach by providing
dedicated hardware that samples the events and provides signals to the
ADC in real time. The ACM approach both saves processor MIPS and
provides precise controllability for ADC sampling time. The ACM syn-
chronizes the ADC conversion process, generating the ADC controls,
ADC conversion start signal, and related controls. However, data acquisi-
tion from the ADC is accomplished by other peripherals.

22-2 ADSP-BF50x Blackfin Processor Hardware Reference

Figure 22-1 and Figure 22-2 show how an external or internal ADC is
connected to the ACM and the SPORT.

 In comparing Figure 22-1 and Figure 22-2, observe that the con-
nections differ between ADSP-BF50x processors that include an
internal ADC versus the processors that do not include an internal
ADC.

Figure 22-1. ADSP-BF504F – ACM Connections (for External ADC)

SPORTx

DRxSEC

DRxPRI

RCLKx

RFSx

ADC
(EXTERNAL)

DOUTB

DOUTA

SCLK

CS

RANGE

SGL/DIFF

A[2:0]

ACM
CS

ACLK

ACM_RANGE

ACM_SGLDIFF

ACM_A[2:0]

TRIGGER[3:0]

ADSP-BF504 / ADSP-BF504F

SPORT
SELECT

MUX

ADSP-BF50x Blackfin Processor Hardware Reference 22-3

ADC Control Module (ACM)

Interface Overview
The ACM consists of two independent 32-bit timers, 16 event register
pairs, 16 event comparators, and a timing generation unit. The ACM can
accept four external trigger inputs, with the timers set to start counting on
receiving the external triggers based on the mode of the ACM. Each timer
can be independently enabled, and trigger selection can also be indepen-
dent. The two sets of 8 event register pairs (total of 16 event register pairs)
determine the ADC controls and timing for each ADC sampling interval.

Each event register pair consists of an event control register (ACM_ERx) and
an event time register (ACM_ETx). The ACM_ERx register enables a particular
event and determines settings for the ADC controls (A[2:0], RANGE, SGL-
DIFF, and others) for that particular ADC conversion. The ACM_ETx

register determines the time offset from the external trigger for each event
sampling at the ADC.

Figure 22-2. ADSP-BF506F – ACM Connections (for Internal ADC)

SPORTx

DRxSEC

DRxPRI

RCLKx

RFSx

ADC
(INTERNAL)

DOUTB

DOUTA

SCLK

CS

RANGE

SGL/DIFF

A[2:0]

ACM
CS

ACLK

ACM_RANGE

ACM_SGLDIFF

ACM_A[2:0]

TRIGGER[3:0]

ADSP-BF506F

SPORT
SELECT

MUX

Interface Overview

22-4 ADSP-BF50x Blackfin Processor Hardware Reference

Table 22-1. ACM Interface Pins

Pin I/O Description

ACM_A[2:0] O ADC Channel Select. 3-bit ADC Channel select signal

ACM_RANGE O Range Selector

ACM_SGLDIFF O Mode. Single Ended/Differential Mode selector

TRIGGER[3:0] I Trigger Inputs. Generated from external trigger events

CS O Start of Conversion. Chip select for ADC, and connected as Frame
Sync for SPORT

ACLK O ADC Clock. Clock output for ADC and SPORT

ADSP-BF50x Blackfin Processor Hardware Reference 22-5

ADC Control Module (ACM)

Figure 22-3 shows the ACM Block diagram.

Figure 22-3. ACM Block Diagram

Event Registers Event Registers

ACMTMR0 (32 Bit) ACMTMR1 (32 Bit)

16 Time Comparators

Pending Event FIFOTiming
Generation

Unit
CLK Divider

A[2:0] CS RANGE SGLDIFF ACLK

SCLK

Triggers

TRIG_SEL0 TRIG_SEL1

2 2

Interface Overview

22-6 ADSP-BF50x Blackfin Processor Hardware Reference

Events
An event, for the ACM, is a point in time where ADC sampling has to
happen on a particular channel of the ADC with the specified control set-
tings of the ADC. The parameters for the ADC sampling are specified in
the ACM_ERx register, and the time offset from the external trigger for the
sampling of the ADC for that event (when the event has to occur) is deter-
mined by the ACM_ETx register.

Timers
The ACM has two independent 32-bit timers (ACMTMR0, ACMTMR1) that
count based on system clock (SCLK). The timers can be independently
enabled using the timer enable bits (ACMTMR0EN, ACMTMR1EN) in the ACM_CTL

register. Each timer (by default) has 8 event register pairs associated with
it. If both timers are enabled at the same time, the ACM_ER0-7 and
ACM_ET0-7 event register pairs are associated with ACMTMR0, and the
ACM_ER8-15 and ACM_ET8-15 event register pairs are associated with
ACMTMR1. If only one timer is enabled, all of the event registers are associ-
ated with that particular timer. For example, if only ACMTMR1 is enabled, (if
ACMTMR0EN=0 and ACMTMR1EN=1), the ACM_ER0-15 and ACM_ET0-15 event
register pairs are associated with ACMTMR1. The timers start counting when
an external trigger occurs that is selected for that particular timer. If an
external trigger occurs while the timer is counting, the time resets and
starts counting again.

After a trigger, the timer only stops counting under one of the following
conditions:

1. A timer rollover occurs

2. All the events associated with the trigger have completed

Note that a timer rollover can never happen unless the ACM_ET register is
programmed at some point after the trigger occurs; this is a practice that is
contrary to ACM programming guidelines.

ADSP-BF50x Blackfin Processor Hardware Reference 22-7

ADC Control Module (ACM)

When an ACM timer is disabled or the ACM itself is disabled, the timer
resets to zero.

External Triggers
Each ACM timer ACMTMRx may be triggered by one of the following trigger
signals:

• ACM trigger input 0 (TRIGGER0) – PWM_SYNC0: The PWM_SYNC0 trig-
ger may be either internally-generated by the PWM unit or
externally-generated, depending on the configuration specified in
the PWM0 module.

• ACM trigger input 1 (TRIGGER1) – PWM_SYNC1: The PWM_SYNC1 trig-
ger may be either internally-generated by the PWM unit or
externally-generated, depending on the configuration specified in
the PWM1 module.

• ACM trigger input 2 (TRIGGER2) – Port F GPIO at PF10 or TMR2.
When the Port F PF10 pin is configured in function mode
(non-GPIO mode), then the ACM trigger input 2 is sourced from
the output of TMR2. When the Port F PF10 pin is configured in
GPIO mode, then the ACM trigger input 2 is sourced from the
GPIO signal at PF10. The source of the GPIO signal may be either
internal or external depending on the GPIO direction configura-
tion programmed in PORTFIO_DIR.

• ACM trigger input 3 (TRIGGER3) – Port G GPIO at PG5 or TMR7.
When the Port G PG5 pin is configured in function mode
(non-GPIO mode), then the ACM trigger input 3 is sourced from
the output of TMR7. When the Port G PG5 pin is configured in
GPIO mode, then the ACM trigger input 3 is sourced from the
GPIO signal at PG5. The source of the GPIO signal may be either
internal or external depending on the GPIO direction configura-
tion programmed in PORTGIO_DIR.

Interface Overview

22-8 ADSP-BF50x Blackfin Processor Hardware Reference

For all trigger signals, The active edge of the triggers is programmable in
the ACM_CTL register as either rising edge or falling edge. Figure 22-4
shows the detailed ACM trigger generation logic.

When trigger sources external to the processor are used for triggering the
ACM, (for example, external signals at the GPIO, timer, or PWM sync
pins), the minimum pulse width for such trigger sources needs to be
1 SCLK period + 1 ns.

Figure 22-4. ACM Trigger Logic

ACM

PWM0, PWM1

TMR

GPIO

Is PG5 or PF10 configured
in output GPIO mode?

Is PG5 or PF10 configured
in input GPIO mode?

Is PG5 or PF10 configured
in timer function mode?

Is PWM1 configured
for internal sync generation?

Is PWM0 configured
for internal sync generation?

0, 0

PG5 and PF10 pin inputs

Externally-supplied
sync signals

to PWM0 and PWM1

ACM trigger inputs 0,1,2,3

ACM
trigger
inputs

0,1

ACM
trigger
inputs

2,3

TMR7, TMR2

GPIO on PG5, GPIO on PF10

Internally
generated

sync signal
from PWM0

or PWM1

ADSP-BF50x Blackfin Processor Hardware Reference 22-9

ADC Control Module (ACM)

 A latency of no more than 4 SCLK cycles exists between external
trigger and ACMTMRx count start. Refer to “ADC Sampling
Latency” on page 22-18 for further details.

Event Register Pairs
The ACM has 16 event register pairs. Each pair consists of an ACM_ERx

register and an ACM_ETx register. The ACM_ERx register enables the particu-
lar event and determines the ADC control settings for the particular event.
The ACM_ETx register determines when the ADC sampling happens corre-
sponding to the event. Assignment of the 16 event register pairs: either 8
can be assigned to each of the timers (if both timers are enabled) or all 16
can be assigned to one particular timer (if only one timer is enabled).

Event Comparators
There are 16 event time comparators to determine when an enabled event
should happen. The comparators compare the event time with the corre-
sponding timer count. If the time value matches, the comparators signal
an active event signal to the timing generation unit. If more than one
event is active during the same SCLK cycle, only the highest priority event
is processed, and all other events are missed (even if there was space in the
pending event FIFO). The priority of events is fixed, with event 0 having
highest priority and event 15 having lowest priority.

Timing Generation Unit
The timing generation unit generates the ADC control signals based on
the ACM_ERx register setting. The timings of external signals (ACLK, CS,
A[2:0], RANGE, and others) are determined by the ACM_TCx registers. If an
event happens when another event is ongoing, the occurred event is stored
in the pending event FIFO. After the current event completes, the pend-
ing event is serviced (for example, the ACM starts an ADC conversion for
the event that occurred). If an event occurs when the pending event FIFO

Description of Operation

22-10 ADSP-BF50x Blackfin Processor Hardware Reference

is full, that event is missed. If an event is missed, the EMISS bit is set in the
ACM_STAT register, and the corresponding bit in the ACM_MS register also is
set. An optional missed event interrupt is generated if the missed event
interrupt enable for that event is unmasked in the ACM_EMSK register.

The pending event FIFO has a depth of 4, so it can hold up to 4 pending
events, after which the events are missed.

Interrupts
The ACM can generate two interrupts for each event: event completed or
event missed. These can be selectively enabled by using the ACM_IMSK and
ACM_EMSK registers. The event completion interrupt is generated only after
the entire event completes externally (for example, when CS goes inactive,
TH period and TZ periods are completed for that particular event).

The ACM_ES register provides the status of each event indicating which
event created the interrupt and the event completion interrupt can be
cleared by writing to the relevant W1C bit in the ACM_ES register.

The ACM_MS register provides the status of each missed event indicating
which event miss created the interrupt and the missed event interrupt can
be cleared by writing the relevant W1C bit in the ACM_MS register.

 A Status bit set either in ACM_MS or ACM_ES creates an interrupt only
if the corresponding bit in the ACM_IMSK or ACM_EMSK is enabled.

Description of Operation
This section describes the usage modes of the ACM, including how to use
the ACM for implementing power down mode for the ADC and how to
implement various sequencing modes.

ADSP-BF50x Blackfin Processor Hardware Reference 22-11

ADC Control Module (ACM)

ADC Power Down
The internal ADC available on ADSP-BF506F devices may be transi-
tioned into a power-down mode by asserting and deasserting the CS signal
for a number of clock cycles, as described in the “ADC — Modes of Oper-
ation” section of the ADSP-BF504, ADSP-BF504F, ADSP-BF506F
Embedded Processor Data Sheet. This ADC power-down mode of the inter-
nal ADC—and external ADCs that support a similar power-down
mechanism—may be achieved by issuing a “dummy” ADC event (or
events) after appropriately programming the TCSW field in the ACM_TC

register.

Single-Shot Sequencing Mode Emulation
In single-shot sequencing mode, all enabled events are sequentially issued
one after the other on the occurrence of an ACM trigger. The sequence of
events is fixed, starting with event 0 and ending with event 15.

Figure 22-5. Single-Shot Sequencing Mode Requirement

SCLK

Trigger

ACMTMR0

CS

ETIME0

ADC
Controls

Event[0] Event[1] Event[0]

Description of Operation

22-12 ADSP-BF50x Blackfin Processor Hardware Reference

Figure 22-5 shows an example of single-shot sequencing mode where only
event 0 and event 1 are enabled. ETIME0 is the value written into the
ACM_ET0 register, and ACMTMR0 is enabled in this mode.

To emulate this mode of operation using the ACM:

• Configure the appropriate trigger source for initiating ACM activ-
ity. Refer to “Interface Overview” on page 22-3 for information on
signals that can trigger the ACM counters.

• Enable only one ACM timer (ACMTMR0)

• Enable events and program the event time values as:

Event 0 time = X

Event 1 time = X+Y

Event 2 time = X+2Y

where X = ETIME0, the initial time offset from trigger (if
needed)

Y = TH+TCSW+TS+TZ

Where TH is the hold time, TZ is the zero t time, and TS is
the setup time; for more information, see “ACM External
Pin Timing” on page 22-20 and Figure 22-9 on page 22-20

(Y has to be slightly less than the above value to ensure that
the next event happens before the first event completes, so
that the next event is in the pending FIFO and enables the
transitions between events without a break)

Continuous Sequencing Mode Emulation
Continuous sequencing mode is similar to single-shot sequencing mode,
except in continuous sequencing the event sequencing is continuously

ADSP-BF50x Blackfin Processor Hardware Reference 22-13

ADC Control Module (ACM)

repeated. As in single-shot mode, the time offset is programmable in con-
tinuous mode. The trigger in continuous mode is relevant only for the
first time. Therefore, any subsequent triggers after the first active edge of
the trigger are neglected.

Figure 22-6 shows an example of continuous sequencing mode with only
two events – event 0, event 1 enabled.

 Figure 22-6 does not exactly reflect exact internal ACM operation.
It shows the user requirement to sample the ADC based on events
in a particular sequence.

Figure 22-6. Continuous Sequencing Mode Requirement

SCLK

Trigger

ACM_TMR0

CS

ETIME0

ADC
Controls

Event[0] Event[1] Event[0]

Description of Operation

22-14 ADSP-BF50x Blackfin Processor Hardware Reference

To emulate continuous sequencing mode using ACM:

• Enable only one timer (Timer0)

• Enable events and program the event time values as:

Event 0 time = X

Event 1 time = X+Y

Event 2 time = X+2Y

where X,Y value are as described in the single-shot case (Y
can be slightly less than TH+TCSW+TS+TZ to avoid any
break between Events)

• Enable one of the two general purpose timers (TMR2 and TMR7)
to generate an ACM trigger with the following time period:

Timer time period = N*Y

where N = number of enabled events

Y = TH+TCSW+TS+TZ (Y should be exactly equal here)

For more information on ACM triggers, refer to “Interface
Overview” on page 22-3.

Continuous sequencing may also be implemented without the use of the
general purpose timers TMR2 or TMR7, but through the use of general
purpose I/O (GPIO) pin. This may be achieved by using a GPIO as a trig-
ger and by enabling the event completion interrupt for an event that
precede the last event. In the interrupt service routine, the GPIO is pro-
grammed to generate a new trigger in order to repeat the sequencing of
events again.

 The interrupt should be triggered early enough to account for any
offset value (for example, ETIME0 value)

ADSP-BF50x Blackfin Processor Hardware Reference 22-15

ADC Control Module (ACM)

Functional Description
The ACM uses the ACM timers and the event time register to create
events. The user has to enable one of the timers (or both timers) for the
ACM operation. Appropriate event control register and event time register
values also have to be programmed. After receiving an external trigger, the
timer starts counting. If at anytime the timer count matches the enabled
event time (ACM_ETx) for an event associated with the timer, the compara-
tors generate an event signal to the timing generation unit to start the
ADC access. The counter continues counting, and (for each matching and
enabled event) the ACM gives an event signal to the timing generation
unit.

Figure 22-7 shows the ACM operation where only two events (event 0
and event 3) are enabled.

In Figure 22-7, the line labeled “ADC Controls” depicts the timing of the
ADC control signals: A[2:0], RANGE, and SGLDIFF. Note that Figure 22-7
depicts a usage case in which ACM_ET3 is programmed with a count value
that is greater than that programmed in ACM_ET0. So, event 3 occurs after
event 0.

Functional Description

22-16 ADSP-BF50x Blackfin Processor Hardware Reference

There are, however, no restrictions on the order of the different events.
ACM_ET0 can be greater than ACM_ET3, ACM_ET0 can be less than ACM_ET3,
and ACM_ET0 can be equal to ACM_ET3. When the value in ACM_ET0 is
greater than the value in ACM_ET3, event 0 occurs after event 3. When mul-
tiple events have the same event time values, for example the value in
ACM_ET0 is equal to the value in ACM_ET3, the events are processed accord-
ing to their priorities. Event 0 has the highest priority. So, when event 0
and event 3 share the same event time value, the timing generation unit
processes event 0 while event 3 is missed. The event 3 missed (EM3) sta-
tus bit is set in the missed event status register (ACM_MS), and the EMISS bit
is set in the ACM_STAT register, indicating that an event has been missed. In

Figure 22-7. Mode Of Operation

SCLK

Trigger

ACMTMR0

CS

ETIME3

ADC
Controls

Event[0] Event[3] Event[0]

ADSP-BF50x Blackfin Processor Hardware Reference 22-17

ADC Control Module (ACM)

case more than two simultaneous events occur, only the highest priority
event is processed, and all the lower priority events are missed (even if the
pending event FIFO had space). In this case, the appropriate bits are set in
the ACM_MS, and the EMISS bit is set in ACM_STAT.

If event times are not sufficiently spaced apart, an event could occur while
a previous event is underway (while the CS of the previous event is
asserted). In such a situation, the second event is queued in the pending
event FIFO. If the pending event FIFO is full, the event will not get
queued. Instead, the appropriate event miss indicators will be set in the
ACM_MS and ACM_STAT registers. It is the programmers responsibility to
ensure that the values in the event time registers do not lead to event
misses. On disabling the ACM, all pending events in the FIFO are
flushed.

When events that are triggered by both timers (ACMTMR0 and ACMTMR1)
occurs simultaneously, the events triggered by ACMTMR0 are given higher
priority. For example, when an ACMTMR0 event (one of events 0 through 7)
and ACMTMR1 event (one of events 8 through 15) occur simultaneously, the
ACMTMR0 event is processed by the timing generation unit or is queued in
the pending event FIFO before the processing or the queuing of the
ACMTMR1 event.

When ACMTMR0 and ACMTMR1 are triggered by sources that are not synchro-
nized together, it is possible for the events controlled by the two timers to
overlap. It is therefore important to consider the possibility of events
occurring either simultaneously or being missed when enabling events on
two asynchronously-triggered timers.

When all the events enabled for a given ACM timer (ACMTMRx) are pro-
cessed, the ACM timer stops incrementing. (Note that this timer action is
not reflected in Figure 22-7.)

The ACM can be used to generate various sequences of ADC sampling
events through appropriate programming of event time registers, event
control registers, and triggers. For more information, see the usage cases

Functional Description

22-18 ADSP-BF50x Blackfin Processor Hardware Reference

described in “Single-Shot Sequencing Mode Emulation” on page 22-11
and “Continuous Sequencing Mode Emulation ” on page 22-12.

ADC Sampling Latency
The ACM ensures a predictable latency between the internal occurrence
of an event (event time value matching the timer count value) and the
assertion of a sampling event by the timing generation unit (the assertion
of CS and other ACM signals as appropriate).

Latency of Event to CS active = (TS + TED) SCLK cycles

Where:

• TS = ADC control setup cycles programmed in ACM_TC register

• TED = 1 SCLK

This predictable latency is applies only when the timing generation unit is
idle. If the timing generation unit was processing a prior sampling event,
the new event will be held in the pending event FIFO, and the latency will
increase by the duration that the new event is held in the pending event
FIFO.

The latency between the occurrence of an external trigger to the start of
count of an ACM timer is three to four SCLK cycles.

The one SCLK cycle variability is due to delays in latching asynchronous
external triggers. When the external trigger is synchronous to SCLK, the
one SCLK cycle variability is eliminated and the latency from external
trigger to start of count of an ACM timer becomes fixed at three SCLK
cycles.

ADSP-BF50x Blackfin Processor Hardware Reference 22-19

ADC Control Module (ACM)

As a result, the total latency between an external trigger and between the
assertion of an ADC sampling event, assuming that the sampling event
does is not queued in the pending event FIFO, is:

Total Latency = TTRIG + TED + TPD + TS

Where:

TPD is the delay programmed in the Event Time (ACM_ETx) register. (See
Figure 22-8.)

Figure 22-8 shows latency details from occurrence of external triggers to
assertion to ADC sampling events.

Figure 22-8. Trigger-to-Event Latency

00

SCLK

Trigger

ACMTMR0

CS

ACMET3 = 0x00000002

ADC
Controls

Event[3] 5h00 Event[0]

ACMET0 = 0x000000EF

01

02

03

04

05

06

07

EF

EE

ED

EC

00

01

02

03

04

05

06

07

TTRIG TED TS TCSW TH TED TS TCSW THTPD

Functional Description

22-20 ADSP-BF50x Blackfin Processor Hardware Reference

In Figure 22-8, observe the following timing definitions:

• TTRIG = trigger to timer start delay (3 to 4 SCLK)

• TED = internal event delay (1 SCLK)

• TS - set up time

• TCSW = CS width

• TH = hold time

ACM External Pin Timing
All ADC controls (ACM_A[2:0], ACM_SGLDIFF, and ACM_RANGE) and CS are
driven on the rising edge of SCLK. As a result, these signals are not syn-
chronous to ACLK. The setup, hold, and other timing parameters of the
ADC controls, CS, and the frequency of ACLK can be configured in the
ACM timing configuration registers (ACM_TCx). The polarity of CS and
ACLK can be configured in the ACM control register (ACM_CTL). The tim-
ing parameters of the ADC controls (ACM_A[2:0], ACM_RANGE, and
ACM_SGLDIFF) cannot be individually specified.

Figure 22-9. External Pin Timings

ACLK

CS

1

A[2:0]
RANGE

SGLDIFF

2 143 4 15 16

Event0
Control

Event1
Control

TCK TCSW TCSIW

THTS TZ TS

TCSIW=TH+TZ+TS

ADSP-BF50x Blackfin Processor Hardware Reference 22-21

ADC Control Module (ACM)

The inactive period of CS (TCSIW as shown in the Figure 22-9) is the sum
of the three timing parameters – Setup Time (TS), Zero Time (TZ) and
the Hold Time (TH):

TCSIW = TS + TZ + TH.

Appropriate specification of the values of those three parameters can yield
the desired inactive period of CS.

In order to provide a predictable latency from the occurrence of an inter-
nal event to the assertion of an external ADC sampling event, the ADC
controls and CS must be driven on the rising edge of SCLK. Therefore, the
Setup Time (TS) of these signals is specified in terms of SCLK.

To achieve accurate timing relationship between CS and ACLK (which is a
free running clock), the ACLK signal is re-aligned with the active edge of
CS. This realignment of ACLK ensures that the setup time of the first
active edge of ACLK, with respect to the active edge of CS, is at least
1 ACLK cycle.

The figures in the following sections:

• “Case 1—Chip Select Asserted During the High Phase of ACLK”
on page 22-22

• “Case 2—Chip Select Asserted During the Low Phase of ACLK”
on page 22-23

• “Case 3—Chip Select Asserted Right Before the Falling
Edge of ACLK” on page 22-24

• “Case 4—Chip Select Asserted Right Before the Rising
Edge of ACLK” on page 22-25

• “Case 5—ACLK Polarity Set to 1 (CLKPOL=1)” on page 22-26

show various scenarios of ACLK re-alignment. All of these figures assume
an ACLK:SCLK ratio of 1:4.

Functional Description

22-22 ADSP-BF50x Blackfin Processor Hardware Reference

The figures show both the ACM-generated CS signal, which is output
externally onto the appropriate SPORT Receive Frame Sync (RFSx) pin,
and the SPORTx_RFS signal, which is an internal signal that is routed to the
receive frame sync input of the appropriate SPORT.

Case 1—Chip Select Asserted During the High Phase of ACLK

Figure 22-10 shows the realignment of ACLK when CS is asserted during
the high phase of ACLK. The first edge of ACLK after the assertion of CS
is the falling edge.

The two reference clock signals (Ref ACLK1 and Ref ACLK2) are shown
to illustrate how the ACLK signal can be generated from a free running
clock (Ref ACLK1) in order to meet the timing requirements between
ACLK and CS. Ref ACLK2 is based on the free running clock Ref ACLK1,
but is adjusted such that its period is immediately reset upon the assertion

Figure 22-10. ACLK Adjustment for the Case of CS Assertion During the
High Phase of ACLK

SCLK

Ref ACLK1

CS

ACLK
Duty
Cycle

Variation

Edges Suppressed
1 2

Ref ACLK2

3

SPORTx_RFS

ADSP-BF50x Blackfin Processor Hardware Reference 22-23

ADC Control Module (ACM)

of CS. The resulting ACLK signal, shown in Figure 22-10, is such that the
time from the active edge of CS to the falling edge of ACLK is constant at
a period of 1 ACLK cycle.

Case 2—Chip Select Asserted During the Low Phase of ACLK

When CS is asserted during the low phase of ACLK, as shown in
Figure 22-11, ACLK is immediately pulled high causing a duty cycle vari-
ation. It is important to ensure that systems interfacing with the ACM can
tolerate such duty cycle variation. In this case, similar to case 1, the time
from the active edge of CS to the falling edge of ACLK is 1 ACLK period.

Figure 22-11. ACLK Adjustment for the Case of CS Assertion During the
Low Phase of ACLK

SCLK

Ref ACLK1

CS

ACLK

Duty
Cycle

Variation

Edges Suppressed
1 2

Ref ACLK2

3

SPORTx_RFS

Phase
Changed

Functional Description

22-24 ADSP-BF50x Blackfin Processor Hardware Reference

Case 3—Chip Select Asserted Right Before the Falling
Edge of ACLK

When CS is asserted right before the falling edge of ACLK, the falling edge
of ACLK is suppressed, as shown in Figure 22-12. This ensures that the
time from the active edge of CS to the falling edge of ACLK is constant at
a period of 1 ACLK cycle. Notice that this suppression of ACLK falling
edge leads to duty cycle variation. It is important to ensure that systems
interfacing with the ACM can tolerate such duty cycle variation.

Figure 22-12. ACLK Adjustment for the Case of CS Assertion Right Before
the Falling Edge of ACLK (CLKPOL =0)

SCLK

Ref ACLK1

CS

ACLK

Duty
Cycle

Variation

Edges Suppressed
1 2 3

ADSP-BF50x Blackfin Processor Hardware Reference 22-25

ADC Control Module (ACM)

Case 4—Chip Select Asserted Right Before the Rising
Edge of ACLK

When CS is asserted right before the rising edge of ACLK, the high phase
of ACLK is extended, as shown in Figure 22-13.

This extension ensures that the time from the active edge of CS to the fall-
ing edge of ACLK is constant at a period of 1 ACLK cycle. Notice that
this leads to duty cycle variation. It is important to ensure that systems
interfacing with the ACM can tolerate such duty cycle variation.

Figure 22-13. ACLK Adjustment for the Case of CS Assertion Right Before
the Rising Edge of ACLK (CLKPOL =0)

SCLK

Ref ACLK1

CS

ACLK

Duty
Cycle

Variation

Edges Suppressed
1 2

Phase
Changed

Functional Description

22-26 ADSP-BF50x Blackfin Processor Hardware Reference

Case 5—ACLK Polarity Set to 1 (CLKPOL=1)

When the ACLK polarity is set to 1 (bit CLKPOL is set to 1 in the ACM_CTL

register), the first ACLK edge after the assertion of CS is the rising edge.

The ACM ensures that the time from the active edge of CS to the rising
edge of ACLK has a constant duration of 1 ACLK cycle. Figure 22-14
shows an example diagram of the case where CLKPOL=1.

ACM Timing Specifications
The AC timings of ACM signals are specified in ADSP-BF504,
ADSP-BF504F, ADSP-BF506F Embedded Processor Data Sheet. When
trigger sources external to the processor are used for triggering the ACM,
(for example, external signals on the GPIO, timer, or PWM sync pins),
the minimum pulsewidth for such trigger sources needs to be 1 SCLK
period + 1 ns in order for the ACM trigger logic to detect the trigger.

Figure 22-14. Showing ACLK With CLKPOL =1

SCLK

Ref ACLK1

CS

ACLK

Duty
Cycle

Variation

Edges Suppressed
1 2

Ref ACLK2

3

SPORTx_RFS

ADSP-BF50x Blackfin Processor Hardware Reference 22-27

ADC Control Module (ACM)

 When the ACM is used in conjunction with the SPORT, the setup
and hold timing requirements for the SPORT data signals with
respect to ACLK are different from those requirements with respect
to internally-generated or externally-supplied SPORT clock. Con-
sult ADSP-BF504, ADSP-BF504F, ADSP-BF506F Embedded
Processor Data Sheet for information on these timing requirements.

Programming Model
Because the ACM module is used with the SPORT and PWM controllers,
general-purpose timer, and general-purpose ports, programs must comply
with the following to ensure its reliable operation:

• The ACM is a control module that provides clock and chip select
and control signals with required timing to the ADC device. For
capturing the data from the ADC, use either SPORT0 or SPORT1 on
the receiver side of the processor.

• The ACM should be enabled before the SPORT controller is
enabled, however, the SPORT can be configured before the ACM
is enabled. The SPORT receiver should be configured in slave
mode (external clock (IRCLK=0) and external frame sync (IRFS=0)).

• External ADC timing determines the settings of the SPORT con-
troller register’s LRFS, LARFS, RCKFE, and RLSBIT bits.

• The SPORT receiver’s DMA mode is preferred because it saves the
processor MIPS when receiving chunks of data. However, receiving
ADC samples in core mode is also possible. When using DMA
mode, the DMA registers of the selected SPORT channel should
be configured appropriately; DMA must be enabled before
enabling the SPORT. When using both the primary and secondary
SPORT channels to receive data from two ADC channels, the 2D
feature of DMA can be effectively used to de-interleave the data

Programming Model

22-28 ADSP-BF50x Blackfin Processor Hardware Reference

from the two channels. When using the SPORT’s core mode, the
core handler should be registered to handle the data read requests
from the SPORT receiver.

• In addition to SPORT register settings, the PORT registers should
also be set properly to enable the SPORT data pins, ACM clock,
CS, and control and trigger pins.

• Before enabling the ACM (by setting the ACMEN bit), all the control
bits of the ACM control register should be programmed properly.
The control bits include the ACM timer’s trigger selects (TRGSELx),
trigger input polarities (TRGPOLx), CS signal polarity (CSPOL), ACM
clock polarity (CLKPOL), and serial port unit selection (EPS).

• Configure the ACM timing control registers to define the ACM
clock frequency, chip select signal width and setup, and hold and
zero time of ACM control signals.

• Configure the event register pairs (Event Control and Event Time
registers) to create required ACM events.

• The Timer Enabled (TMRENx) bits should be programmed together
only after the ACM is enabled, but once the bits are programmed it
should not be changed; modifying the enable bits in the ACM
Control register is not recommended while the ACM is in opera-
tion. Doing so can cause events to change from dependency on one
timer to dependency on the other, and can cause the values in the
ACM status registers (ACM_STAT and ACM_ES) to be inaccurate.

 If an application requires both timers, enable them together after
enabling the ACM. If one timer is already enabled, disable and
re-enable the ACM, and then program both timer enable bits. Sim-
ilarly, when both timers are running, they should disabled
together.

ADSP-BF50x Blackfin Processor Hardware Reference 22-29

ADC Control Module (ACM)

• Once the configuration of the peripherals is done, the ACM should
be enabled first, followed by the SPORT module itself. Ideally the
trigger should not be active when enabling the ACM.

• When both timers are enabled, because there is only one ECOM bit
to show event completion, the ECOM bit is unable to show comple-
tion of all the events as the timers are running independently of
each other. The ACM_ES register can be polled for determining event
completions.

For example. if both timers are enabled, and if the trigger for
ACMTMR0 occurs first and when all the events related to ACMTMR0 are
over, then the ECOM is set even though the ACMTMR1 events did not
occur (as the ACMTMR1 was not triggered); the ECOM bit goes low
when the ACM receives either the ACMTMR0 or ACMTMR1 trigger.
Therefore, if the ACMTMR1 trigger occurs late or not at all, the ECOM

bit shows completion as soon as ACMTMR0-related events are over,
without waiting for the ACMTMR1 events.

• Because ACLK is an external clock relative to the SPORT peripheral,
any SPORT requirements for a minimum number of stable exter-
nal clock cycles before assertion of the first SPORT frame sync
must be observed. The SPORT requires a minimum of three clock
cycles before it is able to recognize valid frame sync. Therefore the
required number of ACLK cycles should elapse before the first asser-
tion of CS. This can be guaranteed using either of the following
methods:

• Ensuring that ACM triggers are generated at least 3ACLK
cycles after the ACM is enabled.

• Ensuring that the event time value (ACM_ETx) of the first
active event is such that 3ACLK cycles would elapse before
the event is processed.

Programming Model

22-30 ADSP-BF50x Blackfin Processor Hardware Reference

When the minimum number of ACLK cycles before the assertion of
CS is not observed, the SPORT may miss the data of the first ADC
sampling event.

• While disabling the ACM system, disable SPORT first, then
DMA, and finally the ACM.

When the ACM is used to interface with the internal ADC of processor,
settings of the SPORT and ACM control registers that should be used
include the following:

Figure 22-15. SPORT and ACM Bit Settings for ADC Applications

Bit Setting Description

SPORTx_RCR1.IRCLK=0 External serial clock mode

SPORTx_RCR1.IRFS=0 External frame sync mode

SPORTx_RCR1.RFSR=1 Frame sync required mode

SPORTx_RCR1.RLSBIT=0 MSB bit-first format

SPORTx_RCR1.RCKFE=0 Sample data and external frame sync with
rising edge of RSCLK

SPORTx_RCR1.LRFS=1 Active low frame sync

SPORTx_RCR1.LARFS=1 Late frame sync mode

SPORTx_RCR1.LEN=13 14-bit serial word length

SPORTx_RCR1.RSFSE=0 Normal FS mode

ACM_CTL.CSPOL=0 Active low chip-select signal

ACM_CTL.CLKPOL=0 ACLK rising edge occurs after CS active

ACM_TC1.CSW=0xD 14 ACLKs

ADSP-BF50x Blackfin Processor Hardware Reference 22-31

ADC Control Module (ACM)

 Control bits and registers not covered in the table should be pro-
grammed according to application requirements.

ACM Registers
The ADC controller module has a number of memory-mapped registers
(MMRs) that regulate its operation. These registers are ACM control reg-
ister (ACM_CTL), ACM timing configuration registers (ACM_TCx), ACM
status register (ACM_STAT), ACM event status register (ACM_ES), ACM
interrupt mask register (ACM_IMSK), ACM missed event status register
(ACM_MS), ACM event missed interrupt mask register (ACM_EMSK), ACM
event control registers (ACM_ERx), and ACM event time registers
(ACM_ETx).

Descriptions and bit diagrams for each of these MMRs are provided in the
following sections.

ACM_TC0.SC Setup cycles should be programmed accord-
ing to acquisition time requirements of the
ADC as specified in the data sheet.

ACM_TC0.CKDIV ACM-generated clock rate should not exceed
the maximum clock supported by ADC.

Figure 22-15. SPORT and ACM Bit Settings for ADC Applications

Bit Setting Description

ACM Registers

22-32 ADSP-BF50x Blackfin Processor Hardware Reference

ACM Control (ACM_CTL) Register
The ACM_CTL register enables and selects the various modes of operation of
the ACM.

Figure 22-16. ACM Control (ACM_CTL) Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ACM Control Register (ACM_CTL)

0 - Disabled
1 - Enabled

ACMTMR0EN (Timer0 Enable)

ACMEN (ACM Enable)

ACMTMR1EN (Timer1 Enable)

0 - Disabled
1 - Enabled

0 - Disable
1 - Enable

Reset = 0x0000

Timer0 external trigger select:
00 - Select PWM_SYNC0
01 - Select PWM_SYNC1
10 - Select PF10 (GPIO or TMR2)
11 - Select PG5 (GPIO or TMR7)

TRGSEL0 (Trigger Select 0)

Timer1 external trigger select:
00 - Select PWM_SYNC0
01 - Select PWM_SYNC1
10 - Select PF10 (GPIO or TMR2)
11 - Select PG5 (GPIO or TMR7)

TRGSEL1 (Trigger Select 1)

Timer0 trigger polarity select:
0 - Rising edge trigger
1 - Falling edge trigger

TRGPOL0 (Trigger Polarity 0)

Timer1 trigger polarity select:
0 - Rising edge trigger
1 - Falling edge trigger

TRGPOL1 (Trigger Polarity 1)

0 - Active Low CS
1 - Active High CS

CSPOL (CS Polarity)

0 - ACLK falling edge occurs
after CS active

1 - ACLK rising edge occurs
after CS active

CLKPOL (ACLK Polarity)

00 - SPORT0 interfaces to ACM
01 - SPORT1 interfaces to ACM
1x - Reserved

EPS1–0 (External Peripheral Select)

ADSP-BF50x Blackfin Processor Hardware Reference 22-33

ADC Control Module (ACM)

ACM Status (ACM_STAT) Register
The ACM_STAT register indicates which event is currently being serviced,
any pending events, any missed events, and any missed triggers.

ACM Busy (BSY=1)

ACM Busy status indicates that an external sampling event is in progress
(for example, CS is active or about to go active)

Event(s) Missed (EMISS=1)

Event(s) Missed status indicates that one or more bits in the ACM_MS regis-
ter are set. The EMISS bit has to be cleared by writing into the ACM_MS

register.

Events Completed (ECOM=1)

Events Completed status indicates that all enabled events are completed
for the current trigger. The ECOM bit gets cleared with each trigger. If both
the timers are enabled, ECOM is set only after completion of all events for
both.

Figure 22-17. ACM Status (ACM_STAT) Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ACM Status Register (ACM_STAT)

0 - Pending incomplete events
1 - All enabled events for current

trigger completed

EMISS (Event Missed) RO

BSY (ACM Busy)

ECOM (Events Completed) RO

0 - No missed events
1 - Missed events

0 - ACM idle
1 - ACM busy

Reset = 0x0000

Status indicates relationship between the ongoing
external access (if any) and Event register:
0000 - Current Event corresponds to Event0 register
0001 - Current Event corresponds to Event1 register

...

...
1111 - Current Event corresponds to Event15 register

CEVNT (Current Event)

ACM Registers

22-34 ADSP-BF50x Blackfin Processor Hardware Reference

ACM Event Status (ACM_ES) Register
The ACM Event Status register identifies which enabled event has
occurred for a particular trigger cycle. When an ESx bit is cleared (=0), this
status indicates that the ACM has not begun or completed conversion for
Event x (conversion not done). When an ESx bit is set (=1), this status
indicates that the ACM has completed conversion for Event x (conversion
done).

Figure 22-18. ACM Event Status (ACM_ES) Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ACM Event Status Register (ACM_ES)

ES0 (Event 0 Status) W1C

0 - No Event 0 conversion
1 - Event 0 conversion done

Reset = 0x0000

ES1 (Event 1 Status) W1C

0 - No Event 1 conversion
1 - Event 1 conversion done

ES2 (Event 2 Status) W1C

0 - No Event 2 conversion
1 - Event 2 conversion done

ES3 (Event 3 Status) W1C

0 - No Event 3 conversion
1 - Event 3 conversion done

ES4 (Event 4 Status) W1C

0 - No Event 4 conversion
1 - Event 4 conversion done

ES5 (Event 5 Status) W1C

0 - No Event 5 conversion
1 - Event 5 conversion done

ES6 (Event 6 Status) W1C

0 - No Event 6 conversion
1 - Event 6 conversion done

ES7 (Event 7 Status) W1C

0 - No Event 7 conversion
1 - Event 7 conversion done

ES15 (Event 15 Status) W1C

0 - No Event 15 conversion
1 - Event 15 conversion done

ES14 (Event 14 Status) W1C

0 - No Event 14 conversion
1 - Event 14 conversion done

ES13 (Event 13 Status) W1C

0 - No Event 13 conversion
1 - Event 13 conversion done

ES12 (Event 12 Status) W1C

0 - No Event 12 conversion
1 - Event 12 conversion done

ES11 (Event 11 Status) W1C

0 - No Event 11 conversion
1 - Event 11 conversion done

ES10 (Event 10 Status) W1C

0 - No Event 10 conversion
1 - Event 10 conversion done

ES9 (Event 9 Status) W1C

0 - No Event 9 conversion
1 - Event 9 conversion done

ES8 (Event 8 Status) W1C

0 - No Event 8 conversion
1 - Event 8 conversion done

ADSP-BF50x Blackfin Processor Hardware Reference 22-35

ADC Control Module (ACM)

ACM Event Interrupt Mask (ACM_IMSK) Register
The ACM Interrupt Mask register selectively enables the interrupts associ-
ated with an event completion. When an IEx bit is set (=1), an interrupt is
generated whenever Event x status (ESx in the ACM_ES register) gets set (for
example, interrupt on Event x completion).

Figure 22-19. ACM Event Interrupt Mask (ACM_IMSK) Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ACM Event Interrupt Mask Register (ACM_IMSK)

IE0 (Evt0 Status IRQ Enable)

0 - Disable (mask interrupt)
1 - Enable (unmask interrupt)

Reset = 0x0000

IE1 (Evt1 Status IRQ Enable)

0 - Disable (mask interrupt)
1 - Enable (unmask interrupt)

IE2 (Evt2 Status IRQ Enable)

0 - Disable (mask interrupt)
1 - Enable (unmask interrupt)

IE3 (Evt3 Status IRQ Enable)

0 - Disable (mask interrupt)
1 - Enable (unmask interrupt)

IE4 (Evt4 Status IRQ Enable)

0 - Disable (mask interrupt)
1 - Enable (unmask interrupt)

IE5 (Evt5 Status IRQ Enable)

0 - Disable (mask interrupt)
1 - Enable (unmask interrupt)

IE6 (Evt6 Status IRQ Enable)

0 - Disable (mask interrupt)
1 - Enable (unmask interrupt)

IE7 (Evt7 Status IRQ Enable)

0 - Disable (mask interrupt)
1 - Enable (unmask interrupt)

IE15 (Evt15 Status IRQ Enable)

0 - Disable (mask interrupt)
1 - Enable (unmask interrupt)

IE14 (Evt14 Status IRQ Enable)

0 - Disable (mask interrupt)
1 - Enable (unmask interrupt)

IE13 (Evt13 Status IRQ Enable)

0 - Disable (mask interrupt)
1 - Enable (unmask interrupt)

IE12 (Evt12 Status IRQ Enable)

0 - Disable (mask interrupt)
1 - Enable (unmask interrupt)

IE11 (Evt11 Status IRQ Enable)

0 - Disable (mask interrupt)
1 - Enable (unmask interrupt)

IE10 (Evt10 Status IRQ Enable)

0 - Disable (mask interrupt)
1 - Enable (unmask interrupt)

IE9 (Evt9 Status IRQ Enable)

0 - Disable (mask interrupt)
1 - Enable (unmask interrupt)

IE8 (Evt8 Status IRQ Enable)

0 - Disable (mask interrupt)
1 - Enable (unmask interrupt)

ACM Registers

22-36 ADSP-BF50x Blackfin Processor Hardware Reference

ACM Missed Event Status (ACM_MS) Register
The ACM Missed Event Status register indicates which enabled event has
been missed for a particular trigger cycle. When an EMx bit is set (=1), this
status indicates that event x was missed. This status generates an interrupt
if the corresponding bit in the ACM_EMSK register is set.

Figure 22-20. ACM Missed Event Status (ACM_MS) Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ACM Missed Event Status Register (ACM_MS)

EM0 (Event 0 Missed) W1C

0 - No event missed
1 - Event missed

Reset = 0x0000

EM1 (Event 1 Missed) W1C

0 - No event missed
1 - Event missed

EM2 (Event 2 Missed) W1C

0 - No event missed
1 - Event missed

EM3 (Event 3 Missed) W1C

0 - No event missed
1 - Event missed

EM4 (Event 4 Missed) W1C

0 - No event missed
1 - Event missed

EM5 (Event 5 Missed) W1C

0 - No event missed
1 - Event missed

EM6 (Event 6 Missed) W1C

0 - No event missed
1 - Event missed

EM7 (Event 7 Missed) W1C

0 - No event missed
1 - Event missed

EM15 (Event 15 Missed) W1C

0 - No event missed
1 - Event missed

EM14 (Event 14 Missed) W1C

0 - No event missed
1 - Event missed

EM13 (Event 13 Missed) W1C

0 - No event missed
1 - Event missed

EM12 (Event 12 Missed) W1C

0 - No event missed
1 - Event missed

EM11 (Event 11 Missed) W1C

0 - No event missed
1 - Event missed

EM10 (Event 10 Missed) W1C

0 - No event missed
1 - Event missed

EM9 (Event 9 Missed) W1C

0 - No event missed
1 - Event missed

EM8 (Event 8 Missed) W1C

0 - No event missed
1 - Event missed

ADSP-BF50x Blackfin Processor Hardware Reference 22-37

ADC Control Module (ACM)

ACM Event Missed Interrupt Mask (ACM_EMSK)
Register

The ACM Event Missed Interrupt Mask register selectively enables the
interrupts associated with an event being missed. When an MIEx bit is set
(=1), an interrupt is generated whenever Event x is missed (EMx in the
ACM_MS register is set); for example, interrupt on Event x miss.

Figure 22-21. ACM Event Missed Interrupt Mask (ACM_EMSK) Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ACM Event Missed Interrupt Mask Register (ACM_EMSK)

MIE0 (Evt0 Missed IRQ Enable)

0 - Disable (mask interrupt)
1 - Enable (unmask interrupt)

Reset = 0x0000

MIE1 (Evt1 Missed IRQ Enable)

0 - Disable (mask interrupt)
1 - Enable (unmask interrupt)

MIE2 (Evt2 Missed IRQ Enable)

0 - Disable (mask interrupt)
1 - Enable (unmask interrupt)

MIE3 (Evt3 Missed IRQ Enable)

0 - Disable (mask interrupt)
1 - Enable (unmask interrupt)

MIE4 (Evt4 Missed IRQ Enable)

0 - Disable (mask interrupt)
1 - Enable (unmask interrupt)

MIE5 (Evt5 Missed IRQ Enable)

0 - Disable (mask interrupt)
1 - Enable (unmask interrupt)

MIE6 (Evt6 Missed IRQ Enable)

0 - Disable (mask interrupt)
1 - Enable (unmask interrupt)

MIE7 (Evt7 Missed IRQ Enable)

0 - Disable (mask interrupt)
1 - Enable (unmask interrupt)

MIE15 (Evt15 Missed IRQ Enable)

0 - Disable (mask interrupt)
1 - Enable (unmask interrupt)

MIE14 (Evt14 Missed IRQ Enable)

0 - Disable (mask interrupt)
1 - Enable (unmask interrupt)

MIE13 (Evt13 Missed IRQ Enable)

0 - Disable (mask interrupt)
1 - Enable (unmask interrupt)

MIE12 (Evt12 Missed IRQ Enable)

0 - Disable (mask interrupt)
1 - Enable (unmask interrupt)

MIE11 (Evt11 Missed IRQ Enable)

0 - Disable (mask interrupt)
1 - Enable (unmask interrupt)

MIE10 (Evt10 Missed IRQ Enable)

0 - Disable (mask interrupt)
1 - Enable (unmask interrupt)

MIE9 (Evt9 Missed IRQ Enable)

0 - Disable (mask interrupt)
1 - Enable (unmask interrupt)

MIE8 (Evt8 Missed IRQ Enable)

0 - Disable (mask interrupt)
1 - Enable (unmask interrupt)

ACM Registers

22-38 ADSP-BF50x Blackfin Processor Hardware Reference

ACM Event Control (ACM_ERx) Registers
The ACM Event Control registers hold the ADC Control value corre-
sponding to the event. They also have enable bits to selectively enable a
particular event.

Enable Event (ENAEV=1)

When the ENEAV bit is set (=1), an event (time comparison match or other
external trigger) causes a sampling event to occur to the ADC with the
ADC controls selected by the EPF4–0 bit field

Event Parameter Field (EPF4–0)

The EPF4–0 bit field selects values for the ADC control pins, which are
output when the enabled event occurs. Selection of EPFx values are based
on the type of ADC, usage mode, and other items.

 To prevent incorrect results, the ACM_ER register should not be pro-
grammed when an event is active. Program the ACM_ER before
providing a trigger, and re-program it after all the events complete
(ECOM bit in the ACM_STAT register is set).

Figure 22-22. ACM Event Control (ACM_ERx) Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ACM Event Control Register (ACM_ERx)

ENAEV (Enable Event)

0 - Disable event
1 - Enable event

Reset = 0x0000

EPF2–0 - Settings for ACM_A2–0 pins
(typically for ADC channel select signal)

EPF3 - Setting for ACM_RANGE pin
(typically for ADC range selector)

EPF4 - Setting for ACM_SGLDIFF pin
(typically for ADC single ended/differential selector)

EPF4–0 (Event Parameter Field)

ADSP-BF50x Blackfin Processor Hardware Reference 22-39

ADC Control Module (ACM)

ACM Event Time (ACM_ETx) Registers
The ACM_ETx registers hold the 32-bit time value (ETIME bits) for each
event. There are 16 event time registers: 8 are assigned to each ACM
timer, if both timers are enabled. If only one timer is enabled, all 16
ACM_ETx registers are assigned to the enabled timer.

 To prevent incorrect results, ACM_ET should not be programmed
when an event is active. Program the ACM_ET before providing a
trigger and re-program it after all the events are complete (ECOM bit
in the ACM_STAT register is set).

ACM Timing Configuration (ACM_TCx) Registers
The ACM has two External Timing Configuration registers - Timing
Configuration 0 (ACM_TC0) and Timing Configuration 1 (ACM_TC1). For
information relating to signal timing and operation of the ACM_TCx regis-
ters, see “ACM External Pin Timing” on page 22-20. For timing
specifications, see the ADSP-BF504, ADSP-BF504F, ADSP-BF506F
Embedded Processor Data Sheet.

Figure 22-23. ACM Event Control (ACM_ERx) Registers

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ACM Event Time Register (ACM_ETx)

ETIME (Event Time)

32-bit value

Reset = 0x0000 0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ACM Registers

22-40 ADSP-BF50x Blackfin Processor Hardware Reference

ACM Timing Configuration 0 (ACM_TC0) Register

The ACM_TC0 register determines the frequency of ACLK (using the CKDIV

field) and the setup cycles (using the SC field) for the ADC controls. Note
that the setup cycles are specified in terms of SCLK.

The frequency of an internally generated clock is a function of the system
clock frequency (SCLK) and the value of the CKDIV field as follows:

ACLK frequency = (SCLK frequency)/(2 x (CKDIV + 1))

The maximum ACLK frequency is SCLK/2, and the minimum ACLK fre-
quency is SCLK/512. So, for a 100 MHz SCLK, the ACLK range is from
195 KHz to 50 MHz.

Figure 22-24. ACM Timing Configuration 0 (ACM_TC0) Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ACM Timing Configuration 0 Register (ACM_TC0)

CKDIV (Clock Divisor)

8-bit serial clock divide
modulus

Reset = 0x0000

ADC control (A[2:0], SGLDIFF,RANGE, and
others) setup in SCLK cycles with respect to
active CS edge:
0000 0000 – 1 SCLK cycle setup time
0000 0001 – 2 SCLK cycle setup time
...
...

1111 1111 – 256 SCLK cycle setup time

SC (Setup Cycle)

ADSP-BF50x Blackfin Processor Hardware Reference 22-41

ADC Control Module (ACM)

ACM Timing Configuration 1 (ACM_TC1) Register

The ACM_TC1 register provides programmability for the active duration of
Chip Select (TCSW), Hold Cycles (TH), and Zero Cycles (TZ) for ADC
controls.

Note that all timings specified in ACM_TC1 register are in terms of ACLK.
For more information, see the TCSW, TH, and TZ parameters shown in
Figure 22-9.

Programming Examples
Listing 22-1 shows how to use the ACM in conjunction with a SPORT.

Figure 22-25. ACM Timing Configuration 1 (ACM_TC1) Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ACM Timing Configuration 1 Register (ACM_TC1)

CSW (CS Width)

Active duration of active CS in
ACLK cycles
0000 0000 – 1 ACLK cycle
0000 0001 – 2 ACLK cycles
...

0000 1111 – 16 ACLK cycle
...

1111 1111 – 256 ACLK cycle

Reset = 0x0000

HC (Hold Cycles)

Hold in ACLK cycles after the
inactive edge of CS for all ADC
controls
0000 – 0 ACLK cycles
0001 – 1 ACLK cycle
...

1111 – 15 ACLK cycles

ZC (Zero Cycles)

Zero duration (driven low) in
ACLK cycles for all ADC controls
0000 – 0 ACLK cycles
0001 – 1 ACLK cycle
...

1111 – 15 ACLK cycles

Programming Examples

22-42 ADSP-BF50x Blackfin Processor Hardware Reference

Listing 22-1. Using the ACM in Conjunction with a SPORT

/***

** Example pseudo code showing the process for **

** using the ACM in conjunction with a SPORT **

***/

/* SPORT1 Selected

ACLK falling edge occurs after CS

Active low CS

Trigger 1 polarity set to rising edge

Trigger 0 polarity set to rising edge

Trigger 1 select set to PWM_SYNC1

Trigger 0 select set to PWM_SYNC0

ACMTMR1 enabled

ACMTMR0 enabled

ACM disabled */

write(ACM_CTL, 0x4026, 16bit);

/* Timing configurations 1 register

CS width (Tcsw) = 'd10

Hold cycles (Th) = 'd15

Zero cycles (Tz) = 'd2 */

write(ACM_TC1, 0x2f0a, 16bit);

/* Timing configurations 0 register

Clock divisor (CKDIV) = 'd1

Setup cycles (Ts) = 'd0 */

write(ACM_TC0, 0x0001, 16bit);

/* Event 2 ETIME = 'h00000001 */

write(ACM_ET2, 0x00000001, 32bit);

/* ACM signal settings for event 2:

ADSP-BF50x Blackfin Processor Hardware Reference 22-43

ADC Control Module (ACM)

ACM_A[2:0] = 'h6

ACM_RANGE = 1

ACM_SGLDIFFS = 0

Event 2 enabled */

write(ACM_ER2, 0x1d, 16bit);

/* Event 5 ETIME = 'h00000022 */

write(ACM_ET5, 0x00000022, 32bit);

/* ACM signal settings for event 5:

ACM_A[2:0] = 'h7

ACM_RANGE = 1

ACM_SGLDIFFS = 1

Event 5 enabled */

write(ACM_ER5, 0x3f, 16bit);

/* Event 14 ETIME = 'h00000001 */

write(ACM_ET14, 0x00000001, 32bit);

/* ACM signal settings for event 14:

ACM_A[2:0] = 'h5

ACM_RANGE = 1

ACM_SGLDIFFS = 1

Event 14 enabled */

write(ACM_ER14, 0x3b, 16bit);

/* All ACM event misses generate an interrupt */

write(ACM_EMSK, 0xffff, 16bit);

/* All ACM events generate interrupts */

write(ACM_IMSK, 0xffff, 16bit);

/* Enable the ACM before enabling the SPORT */

write(ACM_CTL, 0x4027, 16bit);

Programming Examples

22-44 ADSP-BF50x Blackfin Processor Hardware Reference

/* Configure and enable SPORT1 */

configure_enable_sport1();

/* Now setup a trigger to initiate sampling */

/* ensure that any SPORT requirements around a

minimum number of stable external clock cycles

before assertion of the first SPORT frame sync

are observed (refer to "Programming Model" */

set_trig();

/* Wait for all events to complete */

wait();

/* Disable the SPORT */

disable_sport1();

/* Finally, disable the ACM */

write(ACM_CTL, 0x0000, 16bit);

ADSP-BF50x Blackfin Processor Hardware Reference 23-1

23 ANALOG/DIGITAL
CONVERTER (ADC)

The internal analog-to-digital converter (ADC) module on the
ADSP-BF50x processor may be managed using the ADC control module
(ACM). For more information on the ACM interface (which synchronizes
the controls between the processor and the ADC), see “ADC Control
Module (ACM)” on page 22-1.

This chapter provides information derived from the theory and operation
sections of the AD7266 data sheet. For ADC specification and system
design-for-performance information, see ADSP-BF504, ADSP-BF504F,
ADSP-BF506F Embedded Processor Data Sheet.

ADC Architecture
The ADSP-BF506F processor includes an ADC. All internal ADC signals
are connected out to package pins to enable maximum flexibility in mixed
signal applications.

The internal ADC is a dual, 12-bit, high speed, low power, successive
approximation ADC that operates from a single 2.7 V to 5.25 V power
supply and features throughput rates up to 2 MSPS. The device contains
two ADCs, each preceded by a 3-channel multiplexer, and a low noise,
wide bandwidth track-and-hold amplifier that can handle input frequen-
cies in excess of 30 MHz.

ADC Architecture

23-2 ADSP-BF50x Blackfin Processor Hardware Reference

Figure 23-1 shows the functional block diagram of the internal ADC.

The ADC features include:

• Dual 12-bit, 3-channel ADC

• Throughput rate: up to 2 MSPS

• Specified for VDD of 2.7 V to 5.25 V

Figure 23-1. ADC (Internal) Functional Block Diagram

12-BIT
SUCCESSIVE

APPROXIMATION
ADC

DOUTAOUTPUT
DRIVERS

CONTROL
LOGIC

T/H

BUF

VA1
VA2

VA3
VA4

VA5
VA6

MUX

REF
ADC

VDRIVE

REF SELECT DCAPA AVDD DVDD

BUF

DOUTBOUTPUT
DRIVERS

12-BIT
SUCCESSIVE

APPROXIMATION
ADC

T/H

VB1
VB2

VB3
VB4

VB5
VB6

MUX

AGND AGND AGND DCAPB DGND DGND

CS
ADSCLK

RANGE
SGL/DIFF
A0
A1
A2

ADSP-BF50x Blackfin Processor Hardware Reference 23-3

Analog/Digital Converter (ADC)

• Pin-configurable analog inputs

• 12-channel single-ended inputs

• 6-channel fully differential inputs

• 6-channel pseudo differential inputs

• Accurate on-chip reference: 2.5 V

• Dual conversion with read 437.5 ns, 32 MHz ADSCLK

• High speed serial interface

• SPI®-, QSPI™-, MICROWIRE™-, and DSP-compatible

• Low power shutdown mode

The conversion process and data acquisition use standard control inputs
allowing easy interfacing to microprocessors or DSPs. The input signal is
sampled on the falling edge of CS; conversion is also initiated at this point.
The conversion time is determined by the ADSCLK frequency. There are
no pipelined delays associated with the part.

The internal ADC uses advanced design techniques to achieve very low
power dissipation at high throughput rates. The part also offers flexible
power/ throughput rate management when operating in normal mode as
the quiescent current consumption is so low.

The analog input range for the part can be selected to be a 0 V to VREF (or
2 × VREF) range, with either straight binary or twos complement output
coding. The internal ADC has an on-chip 2.5 V reference that can be
overdriven when an external reference is preferred.

Additional highlights of the internal ADC include:

• Two Complete ADC Functions Allow Simultaneous Sampling and
Conversion of Two Channels — Each ADC has three fully/pseudo
differential pairs, or six single-ended channels, as programmed.

Maximum ADC Sampling Rate

23-4 ADSP-BF50x Blackfin Processor Hardware Reference

The conversion result of both channels is simultaneously available
on separate data lines, or in succession on one data line if only one
serial port pin is available.

• High Throughput with Low Power Consumption

• The internal ADC offers both a standard 0 V to VREF input range
and a 2 × VREF input range.

• No Pipeline Delay — The part features two standard successive
approximation ADCs with accurate control of the sampling instant
via a CS input and once off conversion control.

Maximum ADC Sampling Rate
When the ADC is connected to the serial port of the processor, the maxi-
mum sampling rate achievable depends on the timing specifications of
both the ADC and the processor peripherals involved in the connectivity.
The following sections describe two commonly used interface options that
can support maximum sampling rates.

Interfacing the ADC With the ACM and the SPORT
As shown in Figure 22-1 on page 22-2 (“ADSP-BF504F – ACM Connec-
tions (for External ADC)”) and in Figure 22-2 on page 22-3
(“ADSP-BF506F – ACM Connections (for Internal ADC)”), the ACM
generates the clock to drive the ADC and the SPORT. The following tim-
ing specifications apply:

• DRxPRI/DRxSEC minimum setup before clock = TSDR

• Data access time after ADSCLK falling edge = T4

Ignoring any board delays, a data bit transfer takes:

• Transfer Time per bit (TB) = TSDR + T4

ADSP-BF50x Blackfin Processor Hardware Reference 23-5

Analog/Digital Converter (ADC)

The transfer time per sample takes:

• Transfer Time per sample (TS) = (TB  NB) + TQUIET

Where:

• NB is the minimum number of bits necessary to transfer a sample

• TQUIET is the minimum time between two consecutive samples

Therefore, the maximum theoretic sampling rate:

 See the ADSP-BF504, ADSP-BF504F, ADSP-BF506F Embedded
Processor Data Sheet for the actual value of the parameters necessary
for the above calculations.

In practice, various factors (such as board delays and maximum frequency
ratings) can reduce the maximum achievable sampling rate. Fore example,
assuming the following values:

• TSDR = 7 ns

• T4 = 27 ns

• TQUIET = 30 ns

• NB = 14 bits

and board delays of 2 ns, the maximum achievable sampling rate may be
calculated as follows:

• TS = (34  14) + 30

F MTSR
1

T S
-------=

F MTSR
1

T S
-------=

Maximum ADC Sampling Rate

23-6 ADSP-BF50x Blackfin Processor Hardware Reference

Interfacing the ADC With the SPORT and With TMR
Pins

As shown in Figure 23-2, the processor timer generates the clock to drive
the ADC and the SPORT.

For this system design, the following timing specifications apply:

• DRxPRI/DRxSEC minimum setup before external clock = TSDRE

• Data access time after ADSCLK falling edge (VDD = 5 V) = T4

Assuming board delays of no more than 3 ns, the maximum sampling rate
of 2 MSPS can be supported for VDD = 5 V and ADSCLK = 31.25 MHz.

Figure 23-2. ADC, TMR, and SPORT Connections

SPORTx

DRxSEC

DRxPRI

RCLKx

RFSx

ADC
(INTERNAL)

DOUTB

DOUTA

ADSCLK

CS

RANGE

SGL/DIFF

A[2:0]

TIMERS
AND

PROGRAMMABLE
FLAGS

TMRs

TMRu

PFw

PFv

PFx, PFy, PFz

PROCESSOR

ADSP-BF50x Blackfin Processor Hardware Reference 24-1

24 SYSTEM RESET AND
BOOTING

This document contains material that is subject to change without notice.
The content of the boot ROM as well as hardware behavior may change
across silicon revisions. See the anomaly list for differences between silicon
revisions. This document describes functionality of silicon revision 0.0 of
the ADSP-BF50x processors.

Overview
When the RESET input signal releases, the processor starts fetching and
executing instructions from the on-chip boot ROM at address
0xEF00 0000.

The internal boot ROM includes a small boot kernel that loads applica-
tion data from an external memory or host device. The application data is
expected to be available in a well-defined format called the boot stream. A
boot stream consists of multiple blocks of data and special commands that
instruct the boot kernel how to initialize on-chip L1 memories as well as
off-chip volatile memories.

The boot kernel processes the boot stream block-by-block until it is
instructed by a special command to terminate the procedure and jump to
the application’s programmable start address, which traditionally is at
0xFFA0 0000 in on-chip L1 memory. This process is called “booting.”

Overview

24-2 ADSP-BF50x Blackfin Processor Hardware Reference

The processor features three dedicated input pins BMODE[2:0] that select
the booting mode. The boot kernel evaluates the BMODE pins and performs
booting from respective sources. Table 24-1 describes the modes of the
BMODE pins.

Table 24-1. Booting Modes

BMODE2–0 Boot Source Description

000 No boot – idle The processor does not boot. Rather, the boot
kernel executes an IDLE instruction.

001 Boot from internal parallel flash1

in asynchronous mode

In this mode, conservative timing parameters are
used to communicate with the flash device. The
boot kernel communicates with the flash device
asynchronously.

010 Boot from internal parallel flash1

in synchronous burst mode

In this mode, fast timing parameters are used to
communicate with the flash device. The boot ker-
nel configures the flash device for synchronous
burst communication and boots from the flash syn-
chronously.

011 Boot from external serial SPI
memory

After an initial device detection routine, the kernel
boots from either 8-bit, 16-bit, 24-bit or 32-bit
addressable SPI flash or EEPROM memory that
connects to SPI0_SSEL1.

100 Boot from SPI host In this slave mode, the kernel expects the boot
stream to be applied to SPI0 by an external host
device.

101 Boot from PPI host In this boot mode, the kernel expects data to be
received over the 16-bit PPI port. Data transfers are
controlled with the incoming PPI_FS1 signal. The
processor uses the PPI_FS2 signal to indicate when
it is ready to receive data and how much data is
expected.

ADSP-BF50x Blackfin Processor Hardware Reference 24-3

System Reset and Booting

Reset and Power-up
Table 24-2 describes the six types of resets.

 Note that each type resets the core except for the System Software
reset.

110 Reserved Reserved

111 Boot from UART0 host In this slave mode, the kernel expects the boot
stream to be applied to UART0 by an external host
device. Prior to providing the boot stream, the host
device is expected to send a 0x40 (ASCII '@') char-
acter that is examined by the kernel to adjust the
bit rate.

1 This mode is only available for products containing flash memory.

Table 24-2. Resets

Reset Source Result

Hardware
reset

The RESET pin causes a hard-
ware reset.

Resets both the core and the peripherals, includ-
ing the dynamic power management controller
(DPMC).
Resets bits [15:4] of the SYSCR register. For more
information, see “System Reset Configuration
(SYSCR) Register” on page 24-61.

Wakeup from
hibernate state

Wake-up event as enabled in
the VR_CTL register and
reported by the PLL_STAT
register.

Behaves as hardware reset except the WURESET bit
in the SYSCR register is set. Booting can be per-
formed conditionally on this event.

Table 24-1. Booting Modes (Cont’d)

BMODE2–0 Boot Source Description

Reset and Power-up

24-4 ADSP-BF50x Blackfin Processor Hardware Reference

System soft-
ware reset

Calling the
bfrom_SysControl() rou-
tine with the
SYSCTRL_SYSRESET option
triggers a system reset.

Resets only the peripherals, excluding the RTC
(real time clock) block and most of the DPMC.
The system software reset clears bits [15:13] and
bits [11:4] of the SYSCR register, but not the
WURESET bit. The core is not reset and a boot
sequence is not triggered. Sequencing continues
at the instruction after bfrom_SysControl()
returns.

Watchdog
timer reset

Programming the watchdog
timer causes a watchdog timer
reset.

Resets both the core and the peripherals, exclud-
ing the RTC block and most of the DPMC.
(Because of the partial reset to the DPMC, the
watchdog timer reset is not functional when the
processor is in Sleep or Deep Sleep modes.)
The SWRST or the SYSCR register can be read to
determine whether the reset source was the
watchdog timer.

Core
double-fault
reset

A core double fault occurs
when an exception happens
while the exception handler is
executing. If the core enters a
double-fault state, and the
Core Double Fault Reset
Enable bit (DOUBLE_FAULT) is
set in the SWRST register, then
a software reset will occur.

Resets both the core and the peripherals, exclud-
ing the RTC block and most of the DPMC. The
SWRST or SYSCR registers can be read to deter-
mine whether the reset source was a core dou-
ble-fault.

Software reset This reset is caused by execut-
ing a RAISE 1 instruction or
by setting the software reset
(SYSRST) bit in the core
debug control register
(DBGCTL) through emulation
software through the JTAG
port. The DBGCTL register is
not visible to the memory
map.

Program executions vector to the 0xEF00 0000
address. The boot code executes an immediate
system reset to ensure system consistency.

Table 24-2. Resets (Cont’d)

Reset Source Result

ADSP-BF50x Blackfin Processor Hardware Reference 24-5

System Reset and Booting

Hardware Reset
The processor chip reset is an asynchronous reset event. The RESET input
pin must be deasserted after a specified asserted hold time to perform a
hardware reset. For more information, see the product data sheet.

A hardware-initiated reset results in a system-wide reset that includes both
core and peripherals. After the RESET pin is deasserted, the processor
ensures that all asynchronous peripherals have recognized and completed a
reset. After the reset, the processor transitions into the boot mode
sequence configured by the state of the BMODE pins.

The BMODE pins are dedicated mode control pins. No other functions are
shared with these pins, and they may be permanently strapped by tying
them directly to either VDDEXT or GND. The pins and the corresponding
bits in the SYSCR register configure the boot mode that is employed after
hardware reset or system software reset. See Blackfin Processor Program-
ming Reference for further information.

Software Resets
A software reset may be initiated in three ways.

• By the watchdog timer, if appropriately configured

• Calling the bfrom_SysControl() API function residing in the
on-chip ROM. For further information, see Chapter 8, “Dynamic
Power Management”.

• By the RAISE 1 instruction

The watchdog timer resets both the core and the peripherals, as long as the
processor is in Active or Full-On mode. A system software reset results in a
reset of the peripherals without resetting the core and without initiating a
booting sequence.

Reset and Power-up

24-6 ADSP-BF50x Blackfin Processor Hardware Reference

 In order to perform a system reset, the bfrom_SysControl() rou-
tine must be called while executing from L1 memory (either as
cache or as SRAM). When L1 instruction memory is configured as
cache, make sure the system reset sequence is read into the cache.

After either the watchdog or system software reset is initiated, the proces-
sor ensures that all asynchronous peripherals have recognized and
completed a reset.

For a reset generated by formatting the watchdog timer, the processor
transitions into the boot mode sequence. The boot mode is configured by
the state of the BMODE bit field in the SYSCR register.

A software reset is initiated by executing the RAISE 1 instruction or setting
the software reset (SYSRST) bit in the core debug control register (DBGCTL)
(DBGCTL is not visible to the memory map) through emulation software
through the JTAG port.

A software reset only affects the state of the core. The boot kernel immedi-
ately issues a system reset to keep consistency with the system domain.

On a hardware reset, the boot kernel initializes the EVT1 register to
0xFFA0 0000. When the booting process completes, the boot kernel
jumps to the location provided by the EVT1 vector register. The content of
the EVT1 register is overwritten by the TARGET ADDRESS field of the first
block of the applied boot stream. If the BCODE field of the SYSCR register is
set to 1 (no boot option), the EVT1 register is not modified by the boot
kernel on software resets. Therefore, programs can control the reset vector
for software resets through the EVT1 register. This process is illustrated by
the flow chart in Figure 24-1.

The content of the EVT1 register may be undefined in emulator sessions.

ADSP-BF50x Blackfin Processor Hardware Reference 24-7

System Reset and Booting

Figure 24-1. Global Boot Flow

START at
0xEF00 0000

Issue System Reset
(SWRST = 0x0007)

RESET

ELSE

HARDWARE

BCODE

JUMP TO EVT1 VECTOR

BCODE_NOBOOT

PREPARE
ALLBOOT

(BFLAG_WAKEUP = 0)

PREPARE
QUICKBOOT

(BFLAG_WAKEUP = 1)

WAKEUP

BCODE
BCODE_QUICKBOOTELSE

ELSE
BOOT KERNEL

Reset and Power-up

24-8 ADSP-BF50x Blackfin Processor Hardware Reference

Servicing Reset Interrupts
The processor services a reset event like other interrupts. The reset inter-
rupt has top priority. Only emulation events have higher priority. When
coming out of reset, the processor is in supervisor mode and has full access
to all system resources. The boot kernel can be seen as part of the reset ser-
vice routine. It runs at the top interrupt priority level.

Even when the boot process has finished and the boot kernel passes con-
trol to the user application, the processor is still in the reset interrupt. To
enter user mode, the reset service routine must initialize the RETI register
and terminate with an RTI instruction.

For a programming example, see “Example System Reset” on page 24-82.

Listing 24-1 and Listing 24-2 on page 24-83 show code examples that
handle the reset event. See Blackfin Processor Programming Reference for
details on user and supervisor modes.

Systems that do not work in an operating system environment may not
enter user mode. Typically, the interrupt level needs to be degraded down
to IVG15. Listing 24-3 and Listing 24-4 on page 24-84 show how this is
accomplished.

 Since the boot kernel is running at reset interrupt priority, NMI
events, hardware errors and exceptions are not serviced at boot
time. As soon as the reset service routine returns, the processor can
service the events that occurred during the boot sequence. It is rec-
ommended that programs install NMI, hardware error, and
exception handlers before leaving the reset service routine. This
includes proper initialization of the respective event vector registers
EVTx.

ADSP-BF50x Blackfin Processor Hardware Reference 24-9

System Reset and Booting

Basic Booting Process
After evaluating the BMODE pins, the boot kernel residing in the on-chip
boot ROM starts processing the boot stream. The boot stream is either
read from memory or received from a host processor. A boot stream repre-
sents the application data and is formatted in a special manner. The
application data is segmented into multiple blocks of data. Each block
begins with a block header. The header contains control words such as the
destination address and data length information.

As Figure 24-2 illustrates, your development tools suite features a loader
utility (elfloader.exe). The loader utility parses the input executable file
(.dxe), segments the application data into multiple blocks, and creates the
header information for each block. The output is stored in a loader file
(.ldr). The loader file contains the boot stream and is made available to
hardware by programming or burning it into non-volatile external mem-
ory. Refer to Loader and Utilities Manual for information about the
loader.

Basic Booting Process

24-10 ADSP-BF50x Blackfin Processor Hardware Reference

Figure 24-3 shows the parallel or serial boot stream contained in a flash
memory device. In host boot scenarios, the non-volatile memory more
likely connects to the host processor rather than directly to the Blackfin
processor. After reset, the headers are read and parsed by the on-chip boot
ROM, and processed block-by-block. Payload data is copied to destina-
tion addresses in on-chip L1 memory.

 Booting into scratchpad memory (0xFFB0 0000–0xFFB0 0FFF) is
not supported. If booting to scratchpad memory is attempted, the
processor hangs within the on-chip boot ROM. Similarly, booting
into the upper 16 bytes of L1 data bank A (0xFF80 7FF0–
0xFF80 7FFF by default) is not supported. These memory loca-
tions are used by the boot kernel for intermediate storage of block
header information. These memory regions cannot be initialized at
boot time. After booting, they can be used by the application dur-
ing runtime.

Figure 24-2. Project Flow for a Standalone System

BOOTING
UPON RESET

EXTERNAL
MEMORY

SOURCE
FILES

ASSEMBLER
AND/OR

COMPILER
LINKER LOADER

.ASM/.C/.CPP .DOJ(s) .DXE(s)

TARGET SYSTEM

.LDR

B

ADSP-BF50x Blackfin Processor Hardware Reference 24-11

System Reset and Booting

When the BFLAG_INDIRECT flag for any block is set, the boot kernel uses
another memory block in L1 data bank A (by default, 0xFF80 7F00–
0xFF80 7FEF) for intermediate data storage. To avoid conflicts, the
elfloader utility ensures this region is booted last.

The entire source code of the boot ROM is shipped with the CCES or
VisualDSP++ tools installation. Refer to the source code for any addi-
tional questions not covered in this manual. Note that minor maintenance
work may be done to the content of the boot ROM when silicon is
updated.

Block Headers
A boot stream consists of multiple boot blocks, as shown in Figure 24-3.
Every block is headed by a 16-byte block header. However, every block
does not necessarily have a payload, as shown in Figure 24-4.

Figure 24-3. Booting Process

16-BYTE HEADER FOR BLOCK 1

BLOCK 1

16-BYTE HEADER FOR BLOCK 2

BLOCK 2

16-BYTE HEADER FOR BLOCK 3

BLOCK n

. . .

16-BYTE HEADER FOR BLOCK n

BLOCK 3

FLASH/PROM

APPLICATION
CODE/DATA

ON-CHIP
BOOT ROM

BLOCK 1
BLOCK 3

LI MEMORY

0xEF00 0000

.LDR FILE

B

Basic Booting Process

24-12 ADSP-BF50x Blackfin Processor Hardware Reference

The 16 bytes of the block header are functionally grouped into four 32-bit
words, the BLOCK CODE, the TARGET ADDRESS, the BYTE COUNT, and the
ARGUMENT fields.

Figure 24-4. Boot Stream Headers

BLOCK 0 HEADER

BLOCK 0 PAYLOAD

BLOCK 1 HEADER

BLOCK 2 HEADER

BLOCK 2 PAYLOAD

BLOCK CODE

TARGET ADDRESS

BYTE COUNT

ARGUMENT

OFFSET 0X0000

OFFSET 0X0004

OFFSET 0X0008

OFFSET 0X000C

0123

4567

891011

12131415

ADSP-BF50x Blackfin Processor Hardware Reference 24-13

System Reset and Booting

Block Code

The first 32-bit word is the BLOCK CODE. See Figure 24-5.

DMA Code Field

The DMA code (DMACODE) field instructs the boot kernel whether to use
8-bit, 16-bit or 32-bit DMA and how to program the source modifier of a
memory DMA. Particularly in case of memory boot modes, this field is
interrogated by the boot kernel to differentiate the 8-bit, 16-bit, and
32-bit cases.

Figure 24-5. Block Code, 31–0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

01 0 1 1 0 1 0 0 0 0 0 0 01 0

HDRCHK
Header XOR Checksum

Block Code, 31–16

HDRSGN
Header Sign

Block Code, 15–0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

BFLAG_FINAL

BFLAG_FIRST

BFLAG_INDIRECT

BFLAG_IGNORE

BFLAG_INIT

BFLAG_CALLBACK

BFLAG_QUICKBOOT

BFLAG_FILL

DMACODE
DMA Coding

BFLAG_SAVE

BFLAG_AUX

Basic Booting Process

24-14 ADSP-BF50x Blackfin Processor Hardware Reference

The boot kernel tests this field only on the first block and ignores the field
in further blocks (See Table 24-3).

Table 24-3. Bus and DMA Width Coding

DMA Code DMA Width Source DMA
Modify

Application

0 reserved1

1 Reserved to differentiate from ADSP-BF53x boot streams.

1 8-bit 1 Default 8-bit boot from 8-bit source2

2 Used by all byte-wise serial boot modes.

2 8-bit 2 Zero-padded 8-bit boot from 16-bit EBIU

3 8-bit 4 Zero-padded 8-bit boot from 32-bit EBIU3

3 Applicable only to memory boot modes.

4 8-bit 8 Zero-padded 8-bit boot from 64-bit EBIU4

4 Not supported by ADSP-BF50x Blackfin products.

5 8-bit 16 Zero-padded 8-bit boot from 128-bit EBIU4

6 16-bit 2 Default 16-bit boot from 16-bit source

7 16-bit 4 Zero-padded 16-bit boot from 32-bit EBIU3

8 16-bit 8 Zero-padded 16-bit boot from 64-bit EBIU4

9 16-bit 16 Zero-padded 16-bit boot from 128-bit EBIU4

10 32-bit 4 Default 32-bit boot from 32-bit source3

11 32-bit 8 Zero-padded 32-bit boot from 64-bit EBIU4

12 32-bit 16 Zero-padded 32-bit boot from 128-bit EBIU4

13 64-bit 8 Default 64-bit boot from 64-bit source4

14 64-bit 16 Zero-padded 64-bit boot from 128-bit EBIU4

15 128-bit 16 Default 128-bit boot from 128-bit source4

ADSP-BF50x Blackfin Processor Hardware Reference 24-15

System Reset and Booting

Block Flags Field

Table 24-4. Block Flags

Bit Name Description

4 BFLAG_SAVE Saves the memory of this block to off-chip memory in case of
power failure or a hibernate request. This flag is not used by the
on-chip boot kernel.

5 BFLAG_AUX Nests special block types as required by special purpose sec-
ond-stage loaders. This flag is not used by the on-chip boot kernel.

6 Reserved

7 Reserved

8 BFLAG_FILL Tells the boot kernel to not process any payload data. Instead the
target memory (specified by the TARGET ADDRESS and
BYTE COUNT fields) is filled with the 32-bit value provided by the
ARGUMENT word. The fill operation is always performed by 32-bit
DMA; therefore target address and byte count must be divisible by
four.

9 BFLAG_QUICKBOOT Processes the block for full boot only. Does not process this block
for a quick boot (warm boot).

10 BFLAG_CALLBACK Calls a subfunction that may reside in on-chip or off-chip ROM or
is loaded by an initcode in advance. Often used with the
BFLAG_INDIRECT switch. If BFLAG_CALLBACK is set for any block,
an initcode must register the callback function first. The function
is called when either the entire block is loaded or the intermediate
storage memory is full. The callback function can do advanced
processing such as CRC checksum.

11 BFLAG_INIT This flag causes the boot kernel to issue a CALL instruction to the
target address of the boot block after the entire block is loaded.
The initcode should return by an RTS instruction. It may or may
not be overwritten by application data later in the boot process. If
the code is loaded earlier or resides in ROM, the init block can be
zero sized (no payload).

Basic Booting Process

24-16 ADSP-BF50x Blackfin Processor Hardware Reference

The BFLAG_FIRST flag must not be combined with the BFLAG_FILL flag.
The BFLAG_FIRST flag may be combined with the BFLAG_IGNORE flag to
deposit special user data at the top of the boot stream. Note the special
importance of the elfloader –readall switch.

Header Checksum Field

The header checksum (HDRCHK) field holds a simple XOR checksum of the
other 31 bytes in the boot block header. The boot kernel jumps to the
error routine if the result of an XOR operation across all 32 header bytes
(including the HDRCHK value) differs from zero. The default error routine is

12 BFLAG_IGNORE Indicates a block that is not booted into memory. It instructs the
boot kernel to skip the number of bytes of the boot stream as spec-
ified by BYTE COUNT. In master boot modes, the boot kernel sim-
ply modifies its source address pointer. In this case the
BYTE COUNT value can be seen as a 32-bit two’s-complement offset
value to be added to the source address pointer. In slave boot
modes, the boot kernel actively loads and changes the payload of
the block. In slave modes the byte count must be a positive value.

13 BFLAG_INDIRECT Boots to an intermediate storage place, allowing for calling an
optional callback function, before booting to the destination. This
flag is used when the boot source does not have DMA support and
either the destination cannot be accessed by the core (L1 instruc-
tion SRAM) or cannot be efficiently accessed by the core. This flag
is also used when CALLBACK requires access to data to calculate a
checksum, or when performing tasks such as decryption or decom-
pression.

14 BFLAG_FIRST This flag, which is only set on the first block of a DXE, tells the
boot kernel about the special nature of the TARGET ADDRESS and
the ARGUMENT fields. The TARGET ADDRESS field holds the start
address of the application. The ARGUMENT field holds the offset to
the next DXE.

15 BFLAG_FINAL This flag causes the boot kernel to pass control over to the applica-
tion after the final block is processed. This flag is usually set on the
last block of a DXE unless multiple DXEs are merged.

Table 24-4. Block Flags (Cont’d)

Bit Name Description

ADSP-BF50x Blackfin Processor Hardware Reference 24-17

System Reset and Booting

a simple IDLE; instruction. The user can overwrite the default error han-
dler using the initcode mechanism.

Header Sign Field

The header signature (HDRSGN) byte always reads as 0xAD and is used to
verify whether the block pointer actually points to a valid block.

Target Address

This 32-bit field holds the target address where the boot kernel loads the
block payload data. When the BFLAG_FILL flag is set, the boot kernel fills
the memory with the value stored in the ARGUMENT field starting at this
address. If the BFLAG_INIT flag is set the kernel issues a
CALL(TARGET ADDRESS) instruction after the optional payload is loaded.

If the BFLAG_FIRST flag is set, the TARGET ADDRESS field contains the start
address of the application to which the boot kernel jumps at the end of the
boot process. This address will also be stored in the EVT1 register. The elf-
loader utility sets this value to 0xFFA0 0000 for compatibility with other
Blackfin products.

The target address should be divisible by four, because the boot kernel
uses 32-bit DMA for certain operations. The target address must point to
valid on-chip memory locations. When booting through peripherals that
do not support DMA transfers, the BFLAG_INDIRECT flag must be set if the
target address points to L1 instruction memory.

 Booting to scratchpad memory is not supported. The scratchpad
memory functions as a stack for the boot kernel. The L1 data mem-
ory locations 0xFF80 7FF0 to 0xFF80 7FFF are used by the boot
kernel and should not be overwritten by the application. The mem-
ory range used for intermediate storage as controlled by the
BFLAG_INDIRECT switch should only be booted after the last
BFLAG_INDIRECT bit is processed. By default the address range
0xFF80 7F00–0xFF80 7FEF is used for intermediate storage.

Basic Booting Process

24-18 ADSP-BF50x Blackfin Processor Hardware Reference

For normal boot operation, the target address points to RAM memory.
There are however a few exceptions where the target address can point to
on-chip or off-chip ROM. For example a zero-sized BFLAG_INIT block
would instruct the boot kernel to call a subroutine residing in ROM or
flash memory. This method is used to activate the CRC32 feature.

Byte Count

This 32-bit field tells the boot kernel how many bytes to process. Nor-
mally, this is the size of the payload data of a boot block. If the
BFLAG_FILL flag is set there is no payload. In this case the BYTE COUNT field
uses the value in its ARGUMENT field to tell the boot kernel how many bytes
to process.

The byte count is a 32-bit value that should be divisible by four. Zero val-
ues are allowed in all block types. Most boot modes are based upon DMA
operation which are only 16-bit words for Blackfin processors. The boot
kernel may therefore start multiple DMA work units for large boot blocks.
This enables a single block to fill to zero the memory, for example, result-
ing in compact boot streams. The HWAIT signal may toggle for each work
unit.

If the BFLAG_IGNORE flag is set, the byte count is used to redirect the boot
source pointer to another memory location. In master boot modes, the
byte count is a two’s-complement (signed long integer) value. In slave
boot modes, the value must be positive.

Argument

This 32-bit field is a user variable for most block types. The value is acces-
sible by the initcode or the callback routine and can therefore be used for
optional instructions to these routines. When the CRC32 feature is acti-
vated, the ARGUMENT field holds the checksum over the payload of the
block.

ADSP-BF50x Blackfin Processor Hardware Reference 24-19

System Reset and Booting

When the BFLAG_FILL flag is set there is no payload. The argument con-
tains the 32-bit fill value, which is most likely a zero.

If the BFLAG_FIRST flag is set, the argument contains the relative
next-DXE pointer for multi-DXE applications. For single-DXE applica-
tions the field points to the next free boot source address after the current
DXE’s boot stream.

Boot Host Wait (HWAIT) Feedback Strobe
The HWAIT feedback strobe is a handshake signal that is used to hold off
the host device from sending further data while the boot kernel is busy.

On ADSP-BF50x processors, this feature is implemented by a GPIO that
is toggled by the boot kernel as required. The PG3 GPIO is used for this
purpose.

The signal polarity of the HWAIT strobe is programmable by an external
resistor in the 10 k range.

A pull-up resistor instructs the HWAIT signal to be active high. In this case
the host is permitted to send header and footer data when HWAIT is low,
but should pause while HWAIT is high. This is the mode used in SPI slave
boot on other Blackfin products.

Similarly, a pull-down resistor programs active-low behavior.

 Note that the HWAIT signal is implemented slightly differently than
on ADSP-BF53x Blackfin processors. In the ADSP-BF50x proces-
sors, the meaning of the pulling resistor is inverted and HWAIT is
asserted by default during reset.

The boot kernel first senses the polarity on the respective HWAIT pin. Then
it enables the output driver but keeps the signal in its asserted state. The
signal is not released until the boot kernel is ready for data, or when a
receive DMA is started. As soon as the DMA completes, HWAIT becomes
active again.

Basic Booting Process

24-20 ADSP-BF50x Blackfin Processor Hardware Reference

The boot host wait signal holds the host from booting in any slave boot
mode and prevents it from being overrun with data. The HWAIT signal is,
however, available in all boot modes.

In general the host device must interrogate the HWAIT signal before every
word that is sent. This requirement can be relaxed for boot modes using
on-chip peripherals that feature larger receive FIFOs. However, the host
must not rely on the DMA FIFO since its content is cleared at the end of
a DMA work unit.

While the HWAIT signal is only used for boot purposes, it may also play a
significant role after booting. In slave boot modes, for example, the host
device does not necessarily know whether the Blackfin processor is in an
active mode or a power-down mode. For example, the HWAIT signal can be
used to signal when the processor is in hibernate mode.

Using HWAIT as Reset Indicator

While the HWAIT signal is mandatory in some boot modes, it is optional in
others.

If using a pull-up resistor, the HWAIT signal is driven low for the rest of the
boot process (and beyond). If using a pull-down resistor, HWAIT is driven
high.

With a pull-down resistor, this feature can be used to simulate an
active-low reset output. When the processor is reset, or in hibernate, the
GPIO is in a high impedance state and HWAIT is pulled low by the resistor.
As soon as the processor recovers and has settled the PLL again, the HWAIT

is driven high and can alert external circuits.

Boot Termination
After the successful download of the application into the bootable mem-
ory, the boot kernel passes control to the user application. By default this
is performed by jumping to the vector stored in the EVT1 register. The

ADSP-BF50x Blackfin Processor Hardware Reference 24-21

System Reset and Booting

boot kernel provides options to execute an RTS instruction or a RAISE 1

instruction instead. The default behavior can be changed by an initcode
routine. The EVT1 register is updated by the boot kernel when processing
the BFLAG_FIRST block. See “Servicing Reset Interrupts” on page 24-8 to
learn how the application can take control.

Before the boot kernel passes program control to the application it does
some housekeeping. Most of the registers that were used are changed back
to their default state but some register values may differ for individual
boot modes. DMA configuration registers and primary register control
registers (UARTx_LCR, SPIx_CTL, etc.) are restored, while others are pur-
posely not restored. For example SPIx_BAUD, UARTx_DLH and UARTx_DLL

remain unchanged so that settings obtained during the booting process are
not lost.

Single Block Boot Streams
The simplest boot stream consists of a single block header and one contig-
uous block of instructions. With appropriate flag instructions the boot
kernel loads the block to the target address and immediately terminates by
executing the loaded block.

Table 24-5 shows an example of a single block boot stream header that
could be loaded from any serial boot mode. It places a 256-byte block of
instructions at L1 instruction SRAM address 0xFFA0 0000. The flags
BFLAG_FIRST and BFLAG_FINAL are both set at the same time. Advanced
flags, such as BFLAG_IGNORE, BFLAG_INIT, BFLAG_CALLBACK and
BFLAG_FILL, do not make sense in this context and should not be used.

Table 24-5. Header for a Single Block Boot Stream

Field Value Comments

BLOCK CODE 0xAD33 C001 0xAD00 0000 | XORSUM | BFLAG_FINAL |
BFLAG_FIRST | (DMACODE & 0x1)

TARGET ADDRESS 0xFFA0 0000 Start address of block and application code

Basic Booting Process

24-22 ADSP-BF50x Blackfin Processor Hardware Reference

With the BFLAG_FIRST flag set, the ARGUMENT field functions as the
next-DXE pointer. This is a relative pointer to the next free source address
or to the next DXE start address in a multi-DXE stream.

Direct Code Execution

Applications may want to avoid long booting times and start code execu-
tion directly from 16-bit flash. This feature is called direct code execution.
This is a special case of boot termination that replaces the no-boot/bypass
mode in the ADSP-BF53x Blackfin processors.

An initial boot block header is needed for the processor to fetch and exe-
cute program code from the boot device as early as possible. The safety
mechanisms of the block, such as the header signature and the XOR
checksum, avoid unpredictable processor behavior due to the boot mem-
ory not being programmed with valid data yet. The boot kernel first loads
the first block header and checks it for consistency. If the block header is
corrupted, the boot kernel goes into a safe idle state and does not start
code execution.

If the initial block header checks good, the boot kernel interrogates the
block flags. If the block has the BFLAG_FINAL flag set, the boot kernel
immediately terminates and jumps directly to the address stored in the
EVT1 register. To cause the boot kernel to customize the EVT1 register in
advance, the initial blocks must also have the BFLAG_FIRST flag set. The
TARGET ADDRESS field is then copied to the EVT1 register. In this way, the
TARGET ADDRESS field of the initial block defines the start address of the
application.

BYTE COUNT 0x0000 0100 256 bytes of code

ARGUMENT 0x0000 0100 Functions as next-DXE pointer in multi-DXE boot streams

Table 24-5. Header for a Single Block Boot Stream (Cont’d)

Field Value Comments

ADSP-BF50x Blackfin Processor Hardware Reference 24-23

System Reset and Booting

For example in BMODE = 001, when the block header described in
Table 24-6 is placed at address 0x2000 0000, the boot kernel is instructed
to issue a JUMP command to address 0x2000 0020.

The development tools must be instructed to link the above block to
address 0x2000 0000 and the application code to address 0x2000 0020.
An example shown in “Example Direct Code Execution” on page 24-88
illustrates how this is accomplished using the CCES or VisualDSP++ tools
suite.

For multi-DXE boot streams, Figure 24-9 on page 24-42 shows a linked
list of initial blocks that represent different applications.

Advanced Boot Techniques
The following sections describe advanced boot techniques. These tech-
niques are useful for customers developing custom boot routines.

Table 24-6. Initial Header for Direct Code Execution in BMODE = 001

Field Value Comments

BLOCK CODE 0xAD7B D006 0xAD00 0000 | XORSUM | BFLAG_FINAL |
BFLAG_FIRST | BFLAG_IGNORE | (DMACODE &
0x6)

TARGET ADDRESS 0x2000 0020 Start address of application code

BYTE COUNT 0x0000 0010 Ignores 16 bytes to provide space for control data such as
version code and build data. This is optional and can be
zero.

ARGUMENT 0x0000 0010 Functions as next-DXE pointer in multi-DXE boot
streams

Advanced Boot Techniques

24-24 ADSP-BF50x Blackfin Processor Hardware Reference

Initialization Code
Initcode routines are subroutines that the boot kernel calls during the
booting process. The user can customize and speed up the booting
mechanisms using this feature. Traditionally, an initcode is used to set up
system PLL, bit rates, wait states. If executed early in the boot process, the
boot time can be significantly reduced.

After the payload data is loaded for a specific boot block, if the
BFLAG_INIT flag is set, the boot kernel issues a CALL instruction to the tar-
get address of the block.

On ADSP-BF50x Blackfin processors, initcode routines follow the
C language calling convention so they can be coded in C language or
assembly.

The expected prototype is:

void initcode(ADI_BOOT_DATA* pBootStruct);

The header files define the ADI_BOOT_INITCODE_FUNC type:

typedef void ADI_BOOT_INITCODE_FUNC (ADI_BOOT_DATA*) ;

Optionally, the initcode routine can interrogate the formatting structure
and customize its own behavior or even manipulate the regular boot pro-
cess. A pointer to the structure is passed in the R0 register. Assembly
coders must ensure that the routine returns to the boot kernel by a termi-
nating RTS instruction.

Initcodes can rely on the validity of the stack, which resides in scratchpad
memory. The ADI_BOOT_DATA structure resides on the stack. Rules for reg-
ister usage conform to the compiler conventions. See C++ Compiler and
Library Manual for Blackfin Processors for more information.

In the simple case, initcodes consist of a single instruction section and are
represented by a single block within the boot stream. This block has the
BFLAG_INIT bit set.

ADSP-BF50x Blackfin Processor Hardware Reference 24-25

System Reset and Booting

An init block can consist of multiple sections where multiple boot blocks
represent the initcode within the boot stream. Only the last block has the
BFLAG_INIT bit set.

The elfloader utility ensures that the last of these blocks vectors to the
initcode entry address. The utility instructs the on-chip boot ROM to exe-
cute a CALL instruction to the given target address.

When the on-chip boot ROM detects a block with the BFLAG_INIT bit set,
it boots the block into Blackfin memory and then executes it by issuing a
CALL to its target address. For this reason, every initcode must be termi-
nated by an RTS instruction to ensure that the processor vectors back to
the on-chip boot ROM for the rest of the boot process.

Sometimes initcode boot blocks have no payload and the BYTE COUNT field
is set to zero. Then the only purpose of the block may be to instruct the
boot kernel to issue the CALL instruction.

Initcode routines can be very different in nature. They might reside in
ROM or SRAM. They might be called once during the booting process or
multiple times. They might be volatile and be overwritten by other boot
blocks after executing, or they might be permanently available after boot
time. The boot kernel has no knowledge of the nature of initcodes and has
no restrictions in this regard. Refer to Loader and Utilities Manual for how
this feature is supported by the tools chain.

It is the user’s responsibility to ensure that all code and data sections that
are required by the initcode are present in memory by the time the
initcode executes. Special attention is required if initcodes are written in
C or C++ language. Ensure that the initcode does not contain calls to the
runtime libraries. Do not assume that parts of the runtime environment,
such as the heap are fully functional. Ensure that all runtime components
are loaded and initialized before the initcode executes.

Advanced Boot Techniques

24-26 ADSP-BF50x Blackfin Processor Hardware Reference

The elfloader utility provides two different mechanisms to support the
initcode feature.

• The -init initcode.dxe command line switch

• The -initcall address/symbol command line switch

If enabled by the elfloader -init initcode.dxe command-line switch, the
initcode is added to the beginning of the boot stream. Here, initcode.dxe
refers to the user-provided custom initialization executable— a separate
project. Figure 24-6 shows a boot stream example that performs the fol-
lowing steps.

1. Boot initcode into L1 memory.

2. Execute initcode.

3. Overwrite initcode with final application code.

4. Boot data/code into memory.

5. Continue program execution with block n.

Although initcode.dxe files are built as CCES or VisualDSP++ projects,
they differ from standard projects. Initcodes provide only a callable
sub-function, so they look more like a library than an application. Never-
theless, unlike library files (.DLB file extension), the symbol addresses have
already been resolved by the linker.

An initcode is always a heading for the regular application code. Conse-
quently whether the initcode consists of one or multiple blocks, it is not
terminated by a BFLAG_FINAL bit indicator—this would cause the boot
ROM to terminate the boot process.

It is advantageous to have a clear separation between the initcode and the
application by using the -init switch. If this separation is not needed, the
elfloader -initcall command-line switch might be preferred. It enables

ADSP-BF50x Blackfin Processor Hardware Reference 24-27

System Reset and Booting

fractions of the application code to be traded as initcode during the boot
process. See Loader and Utilities Manual for further details.

Initcode examples are shown in “Programming Examples” on page 24-82.

Figure 24-6. Initialization Code Execution/Boot

Blackfin Processor

Header for Init Block

Init Block

Flash/PROM or SPI Device

L1 Memory
Init Block

0xEF00 0000

On-Chip Boot
ROM

........

Header for L1 Block

L1 Block

........

........

Header for Block n

Block n

Flash/PROM or SPI Device

Init Block

........

 L1 Block

Blackfin Processor

Header for Init Block

Init Block

Header for L1 Block

L1 Block

........

........

Header for Block n

Block n

On-Chip Boot
ROM

0xEF00 0000

After Init Code
Execution

Before Init Code
Execution

L1 Memory

App Code/Data

App Code/Data

1. Init block
2. lowest address

Advanced Boot Techniques

24-28 ADSP-BF50x Blackfin Processor Hardware Reference

Quick Boot
In some booting scenarios, not all memories need to be re-initialized.

The ADSP-BF50x processor’s boot kernel can conditionally process boot
blocks. The normal scenario is all boot, the shortened version is quick
boot. It relies on the following primitives.

• The SYSCR register is read to determine what kind of boot is
expected from the boot kernel. Refer to Figure 24-22 on
page 24-61.

The WURESET bit is used to distinguish between cold boot and warm
boot situations and to identify wake-up from hibernate situations.

The BCODE bit field in the SYSCR register can overrule the native
decision of the boot kernel for a software boot. See the flowchart in
Figure 24-1 on page 24-7.

• The BFLAG_WAKEUP bit in the dFlag word of the ADI_BOOT_DATA

structure indicates that the final decision was to perform a quick
boot. If the boot kernel is called from the application, then the
application can control the boot kernel behavior by setting the
BFLAG_WAKEUP flag accordingly. See the dFlags variable on
Figure 24-27 on page 24-72.

• The BFLAG_QUICKBOOT flag in the BLOCK CODE word of the block
header controls whether the current block is ignored for quick
boot.

If both the global BFLAG_WAKEUP and the block-specific BFLAG_QUICKBOOT

flags are set, the boot kernel ignores those blocks. But since the
BFLAG_INIT, BFLAG_CALLBACK, BFLAG_FINAL, and BFLAG_AUX flags are inter-
nally cleared and the BFLAG_IGNORE flag is toggled, through double
negation, the “ignore the ignore block” command instructs the boot ker-
nel to process the block.

ADSP-BF50x Blackfin Processor Hardware Reference 24-29

System Reset and Booting

Although the BFLAG_INIT flag is suppressed in quick boot, the user may
not want to combine the BFLAG_INIT flag with the BFLAG_QUICKBOOT flag.
The initialization code can interrogate the BFLAG_WAKEUP flag and execute
conditional instructions.

Indirect Booting
The processor’s boot kernel provides a control mechanism to let blocks
either boot directly to their final destination or load to an intermediate
storage place, then copy the data to the final destination in a second step.

This feature is motivated by the following requirements:

• Some boot modes do not use DMA. They load data by core
instruction. The core cannot access some memories directly (for
example L1 instruction SRAM), or is less efficient than the DMA
in accessing some memories.

• In some advanced booting scenarios, the core needs to access the
boot data during the booting process, for example in processing
decompression, decryption and checksum algorithms at boot time.
The indirect booting option helps speed-up and simplify such sce-
narios. Software accesses off-chip memory less efficiently and
cannot access data directly if it resides in L1 instruction SRAM.

Indirect booting is not a global setting. Every boot block can control its
own processing by the BFLAG_INDIRECT flag in the block header.

In general a boot block may not fit into the temporary storage memory so
the boot kernel processes the block in multiple steps. The larger the tem-
porary buffer, the faster the boot process. By default the L1 data memory
region between 0xFF80 7F00 and 0xFF80 7FEF is used for intermediate
storage. Initialization code can alter this region by modifying the
pTempBuffer and dTempByteCount variables in the ADI_BOOT_DATA struc-
ture. The default region is at the upper end of a physical memory block.

Advanced Boot Techniques

24-30 ADSP-BF50x Blackfin Processor Hardware Reference

When increasing the dTempByteCount value, pTempBuffer also has to
change.

Callback Routines
Callback routines, like initialization codes, are user-defined subroutines
called by the boot kernel at boot time. The BFLAG_CALLBACK flag in the
block header controls whether the callback routine is called for a specific
block.

There are several differences between initcodes and callback routines.
While the BFLAG_INIT flag causes the boot kernel to issue a CALL instruc-
tion to the target address of the specific boot block, the BFLAG_CALLBACK

flag causes the boot kernel to issue a CALL instruction to the address held
by the pCallBackFunction pointer in the ADI_BOOT_DATA structure. While
a boot stream can have multiple individual initcodes, it can have just one
callback routine. In the standard boot scenario, the callback routine has to
be registered by an initcode prior to the first block that has the
BFLAG_CALLBACK flag set.

The purpose of the callback routine is to apply standard processing to the
block data. Typically, callback routines contain checksum, decryption,
decompression, or hash algorithms. Checksum or hash words can be
passed through the block header ARGUMENT field.

Since callback routines require access to the payload data of the boot
blocks, the block data must be loaded before it can be processed. Unlike
initcodes, a callback usually resides permanently in memory. If the block
is loaded to L1 instruction memory or off-chip memory, the
BFLAG_CALLBACK flag is likely combined with the BFLAG_INDIRECT bit. The
boot kernel performs these steps in the following order.

1. Data is loaded into the temporary buffer defined by the
pTempBuffer variable.

2. The CALL to the pCallBackFunction is issued.

ADSP-BF50x Blackfin Processor Hardware Reference 24-31

System Reset and Booting

3. After the callback routine returns, the memory DMA copies data to
the destination.

If a block does not fit into the temporary buffer, for example when the
BLOCK COUNT is greater than the dTempByteCount variable, the three steps
are executed multiple times until all payload data is loaded and processed.
The boot kernel passes the parameter dCbFlags to the callback routine to
tell it that it is being invoked the first or the last time for a specific block.
To store intermediate results across multiple calls the callback routine can
use the uwUserShort and dUserLong variables in the ADI_BOOT_DATA

structure.

Callback routines meet C language calling conventions for subroutines.
The prototype is as follows.
s32 CallBackFunction (ADI_BOOT_DATA* pBootStruct,

ADI_BOOT_BUFFER* pCallbackStruct, s32 dCbFlags);

The header file defines the ADI_BOOT_CALLBACK_FUNC type the following
way:
typedef s32 ADI_BOOT_CALLBACK_FUNC (ADI_BOOT_DATA*,

ADI_BOOT_BUFFER*, s32) ;

The pBootStruct argument is passed in R0 and points to the
ADI_BOOT_DATA structure used by the boot kernel. These are handled by
the pTempBuffer and dTempByteCount variables as well as the pHeader

pointer to the ARGUMENT field. The callback routine may process the block
further by modifying the pTempBuffer and dTempByteCount variables.

The pCallbackStruct structure passed in R1 provides the address and
length of the data buffer. When the BFLAG_INDIRECT flag is not set, the
pCallbackStruct contains the target address and byte count of the boot
block. If the BFLAG_INDIRECT flag is set, the pCallbackStruct contains a
copy of the pTempBuffer. Depending on the size of the boot block and
processing progress, the byte count provided by pCallbackStruct equals
either dTempByteCount or the remainder of the byte count.

Advanced Boot Techniques

24-32 ADSP-BF50x Blackfin Processor Hardware Reference

When the BFLAG_INDIRECT flag is set along with the BFLAG_CALLBACK flag,
memory DMA is invoked by the boot kernel after the callback routine
returns. This memory DMA relies on the pCallbackStruct structure not
the global pTempBuffer and dTempByteCount variables.

The callback routine can control the source of the memory DMA by alter-
ing the content of the pCallbackStruct structure, as may be required if
the callback routine performs data manipulation such as decompression.

The dCbFlags parameter passed in R2 tells the callback routine whether it
is invoked the first time (CBFLAG_FIRST) or whether it is called the last
time (CBFLAG_FINAL) for a specific block. The CBFLAG_DIRECT flag indi-
cates that the BFLAG_INDIRECT bit is not active so that the callback routine
will only be called once per block. When the CBFLAG_DIRECT flag is set, the
CBFLAG_FIRST and CBFLAG_FINAL flags are also set.

#define CBFLAG_FINAL 0x0008

#define CBFLAG_FIRST 0x0004

#define CBFLAG_DIRECT 0x0001

A callback routine also has a boolean return parameter in register R0. If the
return value is non-zero, the subsequent memory DMA does not execute.
When the CBFLAG_DIRECT flag is set, the return value has no effect.

Error Handler
While the default handler simply puts the processor into idle mode, an
initcode routine can overwrite this pointer to create a customized error
handler. The expected prototype is
void ErrorFunction (ADI_BOOT_DATA* pBootStruct, void

*pFailingAddress);

Use an initcode to write the entry address of the error routine to the
pErrorFunction pointer in the ADI_BOOT_DATA structure. The error han-
dler has access to the boot structure and receives the instruction address
that triggered the error.

ADSP-BF50x Blackfin Processor Hardware Reference 24-33

System Reset and Booting

CRC Checksum Calculation
The ADSP-BF50x Blackfin processors provide an initcode and a callback
routine in ROM that can be used for CRC32 checksum generation during
boot time. The checksum routine only verifies the payload data of the
blocks. The block headers are already protected by the native XOR check-
sum mechanism.

Before boot blocks can be tagged with the BFLAG_CALLBACK flag to enable
checksum calculation on the blocks, the boot stream must contain an
initcode block with no payload data and with the CRC32 polynomial in
the block header ARGUMENT word.

The initcode registers a proper CRC32 wrapper to the pCallBackFunction

pointer. The registration principle is similar to the XOR checksum exam-
ple shown in “Programming Examples” on page 24-82.

Load Functions
All boot modes are processed by a common boot kernel algorithm. The
major customization is done by a subroutine that must be registered to the
pLoadFunction pointer in the ADI_BOOT_DATA structure. Its simple proto-
type is as follows.
void LoadFunction (ADI_BOOT_DATA* pBootStruct);

The header files define the following type:
typedef void ADI_BOOT_LOAD_FUNC (ADI_BOOT_DATA*) ;

For a few scenarios some of the flags in the dFlags word of the
ADI_BOOT_DATA structure, such as BFLAG_PERIPHERAL and BFLAG_SLAVE,
slightly modify the boot kernel algorithm.

The boot ROM contains several load functions. One performs a memory
DMA for flash boot, others perform peripheral DMAs or load data from
booting source by polling operation. The first is reused for fill operation
and indirect booting as well.

Advanced Boot Techniques

24-34 ADSP-BF50x Blackfin Processor Hardware Reference

In second-stage boot schemes, the user can create customized load func-
tions or reuse the original BFROM_PDMA routine and modify the
pDmaControlRegister, pControlRegister and dControlValue values in
the ADI_BOOT_DATA structure. The pDmaControlRegister points to the
DMAx_CONFIG or MDMA_Dx_CONFIG register. When the BFLAG_SLAVE flag is
not set, the pControlRegister and dControlValue variables instruct the
peripheral DMA routine to write the control value to the control register
every time the DMA is started.

Load functions written by users must meet the following requirements.

• Protect against dByteCount values of zero.

• Multiple DMA work units are required if the dByteCount value is
greater than 65536.

• The pSource and pDestination pointers must be properly updated.

In slave boot modes, the boot kernel uses the address of the dArgument

field in the pHeader block as the destination for the required dummy
DMAs when payload data is consumed from BFLAG_IGNORE blocks. If the
load function requires access to the block's ARGUMENT word, it should be
read early in the function.

The most useful load functions BFROM_MDMA and BFROM_PDMA are accessible
through the jump table. Others, do not have entries in the jump table.
Their start address can be determined with the help of the hook routine
when calling the respective BFROM_SPIBOOT or other functions. In this way,
they can be re-purposed for runtime utilization.

Calling the Boot Kernel at Runtime
The boot kernel’s primary purpose is to boot data to memory after
power-up and reset cycles. However some of the routines used by the boot
kernel might be of general value to the application. The boot ROM sup-
ports reuse of these routines as C-callable subroutines. Programs such as

ADSP-BF50x Blackfin Processor Hardware Reference 24-35

System Reset and Booting

second-stage boot kernels, boot managers, and firmware update tools may
call the function in the ROM at runtime. This could load entirely differ-
ent applications or a fraction of an application, such as a code overlay or a
coefficient array.

To call these boot kernel subroutines, the boot ROM provides an API at
address 0xEF00 0000 in the form of a jump table.

When calling functions in the boot ROM, the user must ensure the pres-
ence of a valid stack following C language conventions. See C++ Compiler
and Library Manual for Blackfin Processors for details.

Debugging the Boot Process
If the boot process fails, very little information can be gained by watching
the chip from outside. In master boot modes, the interface signals can be
observed. In slave boot modes only the HWAIT or the RTS signals tell about
the progress of the boot process.

However, by using the emulator, there are many possibilities for debug-
ging the boot process. The entire source code of the boot kernel is
provided with the CCES or VisualDSP++ installation. This includes the
project executable (DXE) file. The LOAD SYMBOLS feature helps to navigate
the program. Note that the content of the ROM might differ between sil-
icon revisions. Hardware breakpoints and single-stepping capabilities are
also available.

Advanced Boot Techniques

24-36 ADSP-BF50x Blackfin Processor Hardware Reference

Table 24-7 identifies the program symbols in the boot kernel for debug.

The boot kernel also generates a circular log file in scratch pad memory.
While the pLogBuffer and the dLogByteCount variables describe the loca-
tion and dimension of the log buffer, the pLogCurrent points to the next
free location in the buffer. The log file is updated whenever the kernel
passes the _bootrom.bootkernel.breakpoint label.

Table 24-7. Boot Kernel Symbols for Debug

Symbol Comment

_bootrom.assert.default If the program counter halts at the IDLE instruction at the
_bootrom.assert.default address, the boot kernel has
detected an error condition and will not continue the boot pro-
cess. A misformatted boot stream is the most likely cause of
such an error. The RETS register points to the failing routine.
When stepping a couple of instructions further, there is a way
to ignore the error and to continue the boot process by clearing
the >ASTAT register while the emulator steps over the subse-
quent IF CC JUMP 0 instruction.

_bootrom.bootmenu If the emulator hits a hardware breakpoint at the
_bootrom.bootmenu address, this indicates that a valid boot
mode is being used.

_bootrom.bootkernel.entry If the emulator hits a hardware breakpoint at the
_bootrom.bootkernel.entry label, this indicates that device
detection or autobaud returned properly.

_bootrom.bootkernel.breakpoint This is a good address to place a hardware breakpoint. The
boot kernel loads a new block header at this breakpoint. The
block header can be watched at address 0xFF80 7FF0 or wher-
ever the pHeader points to.

_bootrom.bootkernel.initcode All payload data of the current block is loaded by the time the
program passes the _bootrom.bootkernel.initcode label.
The boot kernel is about to interrogate the BFLAG_INIT flag. If
set, the initcode can be debugged.

_bootrom.bootkernel.exit Once the boot kernel arrives at the _bootrom.bootkernel
exit label, it detects a BFLAG_FINAL flag. After some house-
keeping, it jumps to the EVT1 vector.

ADSP-BF50x Blackfin Processor Hardware Reference 24-37

System Reset and Booting

At each pass, nine 32-bit words are written to the log file, as follows.

• block code word (dBlockCode) of the block header

• target address (pTargetAddress) of the block header

• byte count (dByteCount) of the block header

• argument word (dArgument) of the block header

• source pointer (pSource) of the boot stream

• block count (dBlockCount)

• internal copy of the dBlockCode word OR’ed with dFlags

• content of the SEQSTAT register

• 0xFFFF FFFA (-6) constant

The ninth word is overwritten by the next entry set, so that 0xFFFF FFFA
always marks the last entry in the log file.

Most of the data structures used by the boot kernel reside on the stack in
scratchpad memory. While executing the boot kernel routine (excluding
subroutines), the P5 points to the ADI_BOOT_DATA structure. Type
“(ADI_BOOT_DATA*) $P5” in the IDE’s expression view or window to see
the structure content.

Boot Management
Blackfin processor hardware platforms may be required to run different
software at different times. An example might be a system with at least one
application and one in-the-field firmware upgrade utility. Other systems
may have multiple applications, one starting then terminating, to be
replaced by another application. Conditional booting is called boot man-
agement. Some applications may self-manage their booting rules, while

Boot Management

24-38 ADSP-BF50x Blackfin Processor Hardware Reference

others may have a separate application that controls the process, namely a
boot manager.

In a master boot mode where the on-chip boot kernel loads the boot
stream from memory, the boot manager is a piece of Blackfin software
which decides at runtime what application is booted next. This may sim-
ply be based on the state of a GPIO input pin interrogated by the boot
manager, or it may be the conclusion of complex system behavior.

Slave boot scenarios are different from master boot scenarios. In slave boot
modes, the host masters boot management by setting the Blackfin proces-
sor to reset and then applying alternate boot data. Optionally, the host
could alter the BMODE configuration pins, resulting in little impact to the
Blackfin processor since the intelligence is provided by the host device.

Booting a Different Application
The boot ROM provides a set of user-callable functions that help to boot
a new application (or a fraction of an application). Usually there is no
need for the boot manager to deal with the format details of the boot
stream.

These functions are:

• BFROM_MEMBOOT discussed in “Flash Boot Modes” on page 24-45

• BFROM_SPIBOOT discussed in “SPI Master Boot Modes” on
page 24-47

The user application, the boot manager application, or an initcode can call
these functions to load the requested boot data. Using the BFLAG_RETURN

flag the user can control whether the routine simply returns to the calling
function or executes the loaded application immediately.

These ROM functions expect the start address of the requested boot
stream as an argument. For BFROM_MEMBOOT, this is a Blackfin memory
address, for BFROM_SPIBOOT it is a serial address. The SPI function can also

ADSP-BF50x Blackfin Processor Hardware Reference 24-39

System Reset and Booting

accept the code for the GPIO pin that controls the device select strobe of
the SPI memory.

Multi-DXE Boot Streams

If the start addresses of all the boot streams are predefined, the boot man-
ager needs only to call the ROM functions directly. However since the
addresses tend to vary from build to build they may have to be calculated
at runtime.

In the world of the elfloader, a boot stream is always generated from a
DXE file. It is therefore common to talk about multi-DXE or multi-appli-
cation booting. When the elfloader utility accepts multiple DXE files on
its command line, it generates a contiguous boot image by default. The
second boot stream is appended immediately to the first one. Since the
utility updates the ARGUMENT field of all BFLAG_FIRST blocks, the ARGUMENT

field of a BFLAG_FIRST block is called next-DXE pointer (NDP).

The next-DXE pointer of the first DXE boot stream points relatively to
the start address of the second DXE boot stream. A multi-DXE boot
image can be seen as a linked list of boot streams. The next-DXE pointer
of the last DXE boot stream points relatively to the next free address. This
is illustrated by an example shown in the next two figures. Figure 24-7
shows a commented sketch as an example. Figure 24-8 shows a screenshot
of the Blackfin loader file viewer utility for the same example. The
LdrViewer utility is not part of the CrossCore Embedded Studio or Visu-
alDSP++ tools suite. It is a third-party freeware product available on
www.dolomitics.com.

Boot Management

24-40 ADSP-BF50x Blackfin Processor Hardware Reference

Figure 24-7. Multi-DXE Boot Stream Example for Flash Boot

TARGET ADDRESS = 0xFFA0 0000

BYTE COUNT = 0x0000 0010

ARGUMENT = 0x0000 0120

BLOCK CODE = 0xAD95 5006

Optional 16-byte bubble

TARGET ADDRESS = 0xFFA1 0000

BYTE COUNT = 0x0000 0100

ARGUMENT = 0x0000 0000

BLOCK CODE = 0xADFC 0806

Payload of initcode
0x100 bytes

TARGET ADDRESS = 0xFFA0 0000

BYTE COUNT = 0x0000 0000

ARGUMENT = 0x0000 0220

BLOCK CODE = 0xAD86 5006

TARGET ADDRESS = 0xFFA0 0000

BYTE COUNT = 0x0000 0200

ARGUMENT = 0x0000 0000

BLOCK CODE = 0xADF6 0006

Payload of data/code block
0x200 bytes

TARGET ADDRESS = 0xFF80 0000

BYTE COUNT = 0x0000 8000

ARGUMENT = 0xA5A5 A5A5

BLOCK CODE = 0xADD5 8106

TARGET ADDRESS = 0xFFA0 0000

BYTE COUNT = 0x0000 0000

ARGUMENT = 0x0000 1000

BLOCK CODE = 0xADB4 5006

First block of initcode DXE BFLAG_FIRST | BFLAG_IGNORE

Start address of application

Size of optional bubble

Next DXE pointer

Bubble to be ignored by kernel

BFLAG_INIT (BFLAG_FINAL not set to continue boot processing)

Target address of initcode

Size of initcode

Not used

Initcode

First block of first application DXE BFLAG_FIRST | BFLAG_IGNORE

Start address of application

No bubble

Next DXE pointer

Normal data block

Target address of block data

Size of payload

Not used

Loads L1 instruction SRAM

Last block of first application DXE BFLAG_FINAL | BFLAG_FILL

Fills L1 data bank 0

32-bit fill value

First block of second application DXE BFLAG_FIRST|BFLAG_IGNORE

Start address of application

No bubble

Next DXE pointer

0x2000 0000

0x2000 0010

0x2000 0020

0x2000 0030

0x2000 0130

0x2000 0140

0x2000 0150

0x2000 0350

0x2000 0360

0x2000 1370

Further boot stream of second
application DXE
(0x1000 bytes total)

ADSP-BF50x Blackfin Processor Hardware Reference 24-41

System Reset and Booting

Boot management principles are not only applicable to multi-DXE boot
streams. The same scheme, as shown in Figure 24-9, can be applied to
direct code executions of multiple applications. See “Direct Code Execu-
tion” on page 24-22 for more information. The example shows a linked
list of initial block headers that instruct the boot kernel to terminate

Figure 24-8. LdrViewer Screen Shot

Boot Management

24-42 ADSP-BF50x Blackfin Processor Hardware Reference

immediately and to start code execution at the address provided by the
TARGET ADDRESS field of the individual blocks. There is nothing in the
boot ROM that prevents multi-DXE applications from mixing regular
boot streams and direct code execution blocks.

Figure 24-9. Multi-DXE Direct Code Execution Arrangement Example

TARGET ADDRESS = 0x2000 0100

BYTE COUNT = 0x0000 0010

ARGUMENT = 0x0000 0010

BLOCK CODE = 0xAD5A D006

Optional 16-byte bubble

TARGET ADDRESS = 0x2001 0000

BYTE COUNT = 0x0000 0000

ARGUMENT = 0x0000 0000

BLOCK CODE = 0xAD5A D006

TARGET ADDRESS = 0x2002 0000

BYTE COUNT = 0x0000 0000

ARGUMENT = 0x0000 0000

BLOCK CODE = 0xAD59 D006

Application 0 at 0x2000 0100

Application 1 at 0x2001 0000

Application 2 at 0x2002 0000

ADSP-BF50x Blackfin Processor Hardware Reference 24-43

System Reset and Booting

Determining Boot Stream Start Addresses

The ROM functions BFROM_MEMBOOT, BFROM_SPIBOOT, etc. not only allow
the application to boot a subroutine residing at a given start address, they
also assist in walking through linked multi-DXE streams.

When the BFLAG_NEXTDXE bit in dFlags is set and these functions are
called, the system does not boot but instead walks though the boot stream
following the next-DXE pointers. The dBlockCount parameter can be used
to specify the DXE of interest. The routines then return the start address
of the requested DXE’s boot stream.

Initialization Hook Routine

When the ROM functions BFROM_MEMBOOT, BFROM_SPIBOOT, etc. are called,
they create an instance of the ADI_BOOT_DATA structure on the stack and fill
the items with default values. If the BFLAG_HOOK is set, the boot kernel
invokes a callback routine which was passed as the fourth argument of the
ROM routines, after the default values have been filled. The hook routine
can be used to overwrite the default values. Every hook routine should fit
the prototype:

void hook (ADI_BOOT_DATA* pBS);

The header files define the ADI_BOOT_HOOK_FUNC type the following way:

typedef void ADI_BOOT_HOOK_FUNC (ADI_BOOT_DATA*);

The hook function also gives access to the DMA load function used by the
respective boot mode, which can be used for general purposes at runtime.
For example, in the BFROM_SPIBOOT case, an instance of the load function:

ADI_BOOT_LOAD_FUNC *pSpiLoadFunction;

can be initialized by equipping the hook function with the instruction:

pSpiLoadFunction = pBS->pLoadFunction;

Specific Boot Modes

24-44 ADSP-BF50x Blackfin Processor Hardware Reference

Specific Boot Modes
This section discusses individual boot modes and the required hardware
connections.

The boot modes differ in terms of the booting source— for example
whether data is loaded through the SPI or the parallel interface. Boot
modes can also be grouped into slave boot modes and master boot modes.

In slave boot modes, the Blackfin processor functions as a slave to any host
device, which is typically another embedded processor, an FPGA device or
even a desktop computer. Likely, the Blackfin processor RESET input is
controlled by the host device. So, usually the host sets RESET first, then
waits until the preboot routine terminates by sensing the HWAIT output,
and finally provides the boot data.

If a Blackfin processor, configured to operate in any of the slave boot
modes, awakens from hibernate, it cannot boot by its own control. A feed-
back mechanism has to be implemented at the system level to inform the
host device whether the processor is in hibernate state or not. The HWAIT

strobe is an important primitive in such systems.

In the master boot modes, the Blackfin processor usually does not need to
be synchronized and can load the boot data by itself. Master modes typi-
cally read from memory. This can be parallel memory such as flash
devices, or serial memory that is read through SPI interfaces.

Memory boot modes should also be differentiated from peripheral boot
modes. Boot modes that load boot streams through memory DMA are
referred to as memory boot mode, reading data from regular memory.
Peripheral modes load boot data through peripherals such as UART. All
memory boot modes are master modes. The boot source is typically
non-volatile memory, such as a flash or EPROM device or even on-chip
ROM. When supported by the system in warm boot scenarios, the boot
source can also be SRAM.

ADSP-BF50x Blackfin Processor Hardware Reference 24-45

System Reset and Booting

Whether from the host (slave booting mode) or from memory (master
booting mode), the boot source does not need to know about the structure
of the boot stream.

No Boot Mode
When the BMODE pins are all tied low (BMODE = 000), the Blackfin processor
does not boot. Instead, it executes an IDLE instruction, preventing it from
executing any instructions provided by the regular boot source. The pur-
pose of this mode is to bring the processor up to a clean state after reset.

When connecting an emulator and starting a debug session, the processor
awakens from an idle due to the emulation interrupt and can be debugged
in the normal manner.

 The no boot mode is not the same as the bypass mode featured by
the ADSP-BF53x Blackfin processor. To simulate that bypass
mode feature using BMODE = 000, see “Direct Code Execution” on
page 24-22 and “Example Direct Code Execution” on page 24-88.

Flash Boot Modes
These booting modes are intended to boot from internal parallel synchro-
nous flash memory of ADSP-BF504F or ADSP-BF506F processor. The
flash boot modes are activated by either BMODE = 001 (asynchronous mode)
or BMODE = 010 (synchronous mode).

• BMODE1 – Boot from Internal Parallel Flash (Asynchronous Mode)

In this mode conservative timing parameters are used to communi-
cate with the flash device. The boot kernel communicates with the
flash device asynchronously.

• BMODE2 – Boot from Internal Parallel Flash (Synchronous Burst
Mode)

Specific Boot Modes

24-46 ADSP-BF50x Blackfin Processor Hardware Reference

In this mode fast timing parameters are used to communicate with
the flash device. The boot kernel configures the flash device for
synchronous burst communication and boots from the flash
synchronously.

For the flash modes, the DMA options shown in Table 24-8 are
supported.

The DMACODE field is filled by the elfloader utility based on boot mode,
-width and -dmawidth settings. See Loader and Utilities Manual for
details.

After the boot kernel has loaded and interpreted the first four 16-bit
words, it continues loading the rest of the first block header and processes
the boot stream.

Hardware configuration is shown in Table 6-1 on page 6-2. The chip
select is always controlled by the AMS0 strobe. This maps the boot stream
to the Blackfin processor’s address 0x2000 0000.

Internal parallel flash provides write protection mechanisms, which can be
activated during the power-up and reset cycles of the Blackfin processor.
For details, see “Internal Flash Memory Control Registers” on page 6-88.

Table 24-8. DMA Options

DMACODE DMA
Width

Source
Modify

Comment

1 8 1 Not recommended
Provides ADSP-BF533 style 8-bit boot from 16-bit flash memory

2 8 2 8-bit MDMA boots from 8-bit flash mapped to lower byte of
address bus.

6 16 2 16-bit MDMA boots from 16-bit flash

10 32 4 32-bit MDMA boots from 16-bit flash

ADSP-BF50x Blackfin Processor Hardware Reference 24-47

System Reset and Booting

The flash boot modes can also be used to instruct the boot kernel to termi-
nate immediately and directly execute code from the 16-bit flash memory
instead. Code execution from 8-bit flash memory is not supported. See
“Direct Code Execution” on page 24-22 for details.

SPI Master Boot Modes
The ADSP-BF50x processors feature booting from off-chip SPI memory.

The external SPI boot mode (BMODE = 011) boots from SPI memories con-
nected to the SPI0_SSEL1 interface. 8-, 16-, 24-, and 32-bit address words
are supported. Standard SPI memories are read using either the standard
0x03 SPI read command or the 0x0B SPI fast read command.

 Unlike other Blackfin processors, the ADSP-BF50x Blackfin pro-
cessors have no special support for DataFlash devices from Atmel.
Nevertheless, DataFlash devices can be used for booting and are
sold as standard 24-bit addressable SPI memories. They also sup-
port the fast read mode. If used for booting, DataFlash memory
must be programmed in the power-of-2 page mode.

For booting, the SPI memory is connected as shown in Figure 24-10.

Figure 24-10. Blackfin to SPI Memory Connections

(MASTER SPI DEVICE)
SPI MEMORY

SPI0SCK (PF10) SCK

SPI0_SSEL1 (PF13) CS

SPI0_MOSI (PF12) MOSI

BLACKFIN
(SLAVE SPI DEVICE)

SPI0_MISO (PF11) MISO

VDDEXT

10K10K

Specific Boot Modes

24-48 ADSP-BF50x Blackfin Processor Hardware Reference

The pull-up resistor on the MISO line is required for automatic device
detection. The pull-up resistor on the SPI0_SSEL1 line ensures that the
memory is in a known state when the Blackfin GPIO is in a high-imped-
ance state (for example, during reset). A pull-down resistor on the SPI0SCK

line displays cleaner oscilloscope plots during debugging.

For SPI master boot, the SPE, MSTR and SZ bits are set in the SPI0_CTL reg-
ister. For details see Chapter 18, “SPI-Compatible Port Controller”. With
TIMOD = 2, the receive DMA mode is selected. Clearing both the CPOL and
CPHA bits results in SPI mode 0. The boot kernel does not allow SPI0
hardware to control the SPI0_SSEL1 pin. Instead, this pin is toggled in
GPIO mode by software. Initialization code is allowed to manipulate the
uwSsel variable in the ADI_BOOT_DATA structure to extend the boot mecha-
nism to a second SPI memory connected to another GPIO pin.

By default, the boot kernel sets the SPI0_BAUD register to a value of 133,
resulting in a bit rate of SCLK/266 (as shown in Table 24-9).

Similarly, the boot kernel uses the standard 0x03 SPI read command, by
default.

Table 24-9. Bit Rate

SPI_BAUD Bit Rate

133 SCLK/(2x133) << default

Reserved

2 SCLK/(2x2)

4 SCLK/(2x4)

8 SCLK/(2x8)

16 SCLK/(2x16)

32 SCLK/(2x32)

64 SCLK/(2x64)

ADSP-BF50x Blackfin Processor Hardware Reference 24-49

System Reset and Booting

SPI Device Detection Routine

Since BMODE = 011 supports booting from various SPI memories, the boot
kernel automatically detects what type of memory is connected. To deter-
mine whether the SPI memory device requires an 8-, 16-, 24- or 32-bit
addressing scheme, the boot kernel performs a device detection sequence
prior to booting. The MISO signal requires a pull-up resistor, since the rou-
tine relies on the fact that memories do not drive their data outputs unless
the right number of address bytes are received.

Initially, the boot kernel transmits a read command (either 0x03 or 0x0B)
on the MOSI line, which is immediately followed by two zero bytes. Once
the transmission is finished, the boot kernel interrogates the data received
on the MISO line. If it does not equal 0xFF (usually a DMACODE value of
0x01 is expected), then an 8-bit addressable device is assumed.

If the received value equals 0xFF, it is assumed that the memory device has
not driven its data output yet and that the 0xFF value is due to the pull-up
resistor. Thus, another zero byte is transmitted and the received data is
tested again. If it differs from 0xFF, either a 16-bit addressable device
(standard mode) or an 8-bit addressable device (fast read mode) is
assumed.

If the value still equals 0xFF, device detection continues. Device detection
aborts immediately if a byte different than 0xFF is received. The boot ker-
nel continues with normal boot operation and it re-issues a read command
to read from address 0 again. The first block header is loaded by two read
sequences, further block headers and block payload fields are loaded by
separate read sequences.

Specific Boot Modes

24-50 ADSP-BF50x Blackfin Processor Hardware Reference

Figure 24-11 illustrates how individual devices would behave.

Figure 24-12 shows the initial signaling when a 24-bit addressable SPI
memory is connected in SPI master boot mode. After RESET releases, a
0x03 command is transmitted to the MOSI output, followed by a number
of 0x00 bytes. The 24-bit addressable memory device returns a first data
byte at the fourth zero byte. Then, the device detection has completed and
the boot kernel re-issues a 0x00 address to load the boot stream.

Figure 24-11. SPI Device Detection Principle

Figure 24-12. Typical SPI Master Boot Waveforms

0x000x000x03 |0x0B 0x00 0x00 0x00 0x00

0x010xFF0xFF

0xFF0xFF0xFF 0x01

0xFF0xFF0xFF 0xFF 0x01

0xFF0xFF0xFF 0xFF 0xFF 0x01

0xFF0xFF0xFF 0xFF 0xFF 0xFF 0x01

. . .

. . .

. . .

. . .

MOSI

MISO

MISO

MISO

MISO

MISO

STANDARD 8-BIT

STANDARD 16-BIT,
FAST READ 8-BIT

STANDARD 24-BIT,
FAST READ 16-BIT

STANDARD 32-BIT,
FAST READ 24-BIT

FAST READ
32-BIT

0 0 0

1

010

0

0

0 0 0

0 1

1

1

1

1

1

1

0

0

0 00

0

0

0

0

0

1 1

1

1

1

1

0

0

1 10

0

0 0

RESET

SPI0_CLK

SPI0_SSEL1

SPI0_MOSI

SPI0_MISO

HWAIT

ADSP-BF50x Blackfin Processor Hardware Reference 24-51

System Reset and Booting

SPI Slave Boot Mode
For SPI slave mode boot (BMODE = 100), the Blackfin processor is consum-
ing boot data from an external SPI host device. SPI0 is configured as an
SPI slave device. The hardware configuration is shown in Figure 24-13. As
in all slave boot modes, the host device controls the Blackfin processor
RESET input.

The host drives the SPI clock and is responsible for the timing. The host
must provide an active-low chip select signal that connects to the SPI0SS

input of the Blackfin processor. It can toggle with each byte transferred or
remain low during the entire procedure. 8-bit data is expected. The 16-bit
mode is not supported.

In SPI slave boot mode, the boot kernel sets the CPHA bit and clears the
CPOL bit in the SPI0_CTL register. Therefore the MOSI pin is latched on the
falling edge of the SPI_SCK pin. For details see Chapter 18, “SPI-Compat-
ible Port Controller”. In SPI slave boot mode, HWAIT functionality is
critical. When high, the resistor shown in Figure 24-13 programs HWAIT to
hold off the host. HWAIT holds the host off while the Blackfin processor is
in reset.

Figure 24-13. Connections Between Host (SPI Master) and Blackfin Pro-
cessor (SPI Slave)

(MASTER SPI DEVICE)
BLACKFIN

SPICLK SPI0_SCK (PF10)

S_SEL SPI0_SS (PF13)

MOSI SPI0_MOSI (PF12)

HOST
(SLAVE SPI DEVICE)

MISO SPI0_MISO (PF11)

HWAIT (PG3)FLAG/INTERRUPT

VDDEXT

Specific Boot Modes

24-52 ADSP-BF50x Blackfin Processor Hardware Reference

After HWAIT turns inactive, the host can send boot data. The SPI module
does not provide very large receive FIFOs, so the host must test the HWAIT

Figure 24-14. SPI Program Flow on Host Device

HWAIT

Start

Pulse /RESET low

Asserted

Assert SPI /SS

Deasserted

HWAIT Asserted

Send Next Byte

Deasserted

More BytesYes

No

EXIT

Release SPI /SS

ADSP-BF50x Blackfin Processor Hardware Reference 24-53

System Reset and Booting

signal for every byte. Figure 24-14 illustrates the required program flow
on the host side.

Figure 24-15 shows the initial waveform for an SPI slave boot case. As
soon as the Blackfin processor releases HWAIT after reset, the host device
pulls the SPI0SS pin low and starts transmitting data. After the eighth data
word has been received, the boot kernel asserts HWAIT again as it has to
process the DMACODE field of the first block header. When the host detects
the asserted HWAIT it gracefully finishes the transmission of the on-going
word. Then, it pauses transmission until HWAIT releases again.

PPI Boot Mode
The ADSP-BF50x processors feature a 16-bit PPI boot mode
(BMODE = 101). The PPI is a half-duplex bidirectional port consisting of up
to 16 data lines, 3 frame synchronization signals and a clock signal.

In PPI boot mode, the PPI mode of operation is configured as follows:

• Receive mode with 1 external frame sync

• 16-bit bus width

• Data sampled on falling edge of clock

• Frame sync configured for falling edge asserted

• PPI_DELAY value of 0x0

Figure 24-15. Typical SPI Slave Boot Waveforms

HWAIT

SPI0_CLK

SPI0_SS

SPI0_MOSI

SPI0_MISO

RESET

0

1

0 0 0 0 0 0 0

0

0 0 0 0 0

0 0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1 1

1

0

1

0 0

1 1

1

Specific Boot Modes

24-54 ADSP-BF50x Blackfin Processor Hardware Reference

The external frame sync signal is on PPI_FS1. This signal is driven low by
the host at the start of a data transfer with a 16-bit word being transferred
on each PPI_CLK cycle that the PPI_FS1 signal is asserted low.

In order to simplify the PPI host design, PPI boot mode also configures
Timer1 for PWM mode of operation. The PWM circuits of the timer are
configured to be clocked by the externally provided PPI_CLK signal allow-
ing for arbitrary pulse widths and pulse periods to be programmed thus
simulating an internally generated frame sync signal on the PPI_FS2 signal.
This configuration lets the processor inform the host when the processor is
ready to receive data and also how much data is expected. This feature
removes the need for the host to process the actual contents of the boot
stream to identify the size of the data transfer.

The PPI host can synchronize the PPI_FS2 signal to PPI_CLK signal and
initiate all data transfers accordingly. The PPI_FS2 signal can be looped
back to the PPI_FS1. (See Figure 24-16.)

The Timer1 is configured to generate a periodic pulse as opposed to a sin-
gle shot pulse. The pulse period is set to the maximum of 0xFFFFFFFF
allowing for any transfer size supported by the kernel. Note the current

Figure 24-16. PPI Slave Boot Mode Connections

(MASTER PPI DEVICE)
BLACKFIN

PPI_CLK PPI_CLK

HOST
(SLAVE PPI DEVICE)

PPI_FS1 PPI_FS1

PPI_FS2 PPI_FS2

PPI_DATA15-0PPI_DATA15-0

VDDEXT

16

ADSP-BF50x Blackfin Processor Hardware Reference 24-55

System Reset and Booting

16-bit DMA X Count limits the maximum width of a pulse to 0xFFFF
words.

After completion of the DMA transfer, the PWM_OUT out mode is termi-
nated and cleared in the required manner. This mode of operation does
impose some restrictions on the amount of time that the PPI host device
can hold off a transfer. If a DMA transfer consists of 0xFFFF words, the
timer period will be reached 0xFFFF0000 PPI_CLK cycles after the deasser-
tion of the PPI_FS2/TMR1 signal. This will result in the generation of an
identical PPI_FS2/TMR1 pulse if the DMA transfer has not completed
and the PWM_OUT timer has not been disabled.

In the unlikely event that a user requires a transfer to be held off for this
significant amount of time, the PPI host must be able to ignore any fur-
ther PPI_FS2/TMR1 assertions until the currently pending transaction
that was delayed has completed. If the master is not capable of ignoring
further PPI_FS2/TMR1 assertions, the master must ensure that the DMA
completes allowing for the PWM_OUT timer to be disabled prior to the com-
pletion of the timer pulse period of 0xFFFFFFFF PPI_CLK cycles.

 After PPI boot completion the PPI interface is disabled and the
PPI_CONTROL register is cleared, this register-clearing operation is
not done for the Timer1 registers. Although the timer is disabled,
the TIMER1_CONFIG register is not reloaded with the default reset
value.

UART Slave Mode Boot
Figure 24-17 shows the interconnection required for booting. The figure
does not show physical line drivers and level shifters that are typically
required to meet the individual UART-compatible standards.

For BMODE = 111, the ADSP-BF50x processor consumes boot data from a
UART host device connected to the UART0 interface. Automatic control
of the UA0_RTS output provides flow control.

Specific Boot Modes

24-56 ADSP-BF50x Blackfin Processor Hardware Reference

The host downloads programs formatted as boot streams using an auto-
baud detection sequence. The host selects a bit rate within the UART
clocking capabilities. To determine the bit rate when performing the auto-
baud, the boot kernel expects an “@” character (0x40, eight data bits, one
start bit, one stop bit, no parity bit) on the UART UA0_RX input. The boot
kernel acknowledges, and the host then downloads the boot stream. The
acknowledgement consists of four bytes: 0xBF, UARTx_DLL, UARTx_DLH,
0x00. The host is requested to not send further bytes until it has received
the complete acknowledge string. Once the 0x00 byte is received, the host
can send the entire boot stream. The host should know the total byte
count of the boot stream, but it is not required to have any knowledge
about the content of the boot stream. Further information regarding auto-
baud detection is given in “Autobaud Detection” on page 15-20.

Figure 24-17. UART Slave Boot Mode Connections

Figure 24-18. UART Autobaud Waveform

(MASTER UART DEVICE)
BLACKFIN

TX UA0_RX

HOST
(SLAVE UART DEVICE)

RX UA0_TX

INTERRUPT HWAIT

UA0_RTSCTS

VDDEXT

0 0 0
1 1 1

UA0_TX

UA0_RX

UA0_RTS

0

0 0

1

1 1

RESET

HWAIT

1
0

0
1

0

0 0 00 0

1

11

ADSP-BF50x Blackfin Processor Hardware Reference 24-57

System Reset and Booting

When the boot kernel is processing fill or initcode blocks it might require
extra processing time and needs to hold the host off from sending more
data. This is signalled with the HWAIT output as well as by the RTS output.
When equipped with a pull-up resistor the HWAIT signal imitates the
behavior of an UA0_RTS output and could be connected to the CTS input of
the booting host. The host is not allowed to send data until HWAIT turns
inactive after a reset cycle. Therefore a pulling resistor on the HWAIT signal
is required.

If the resistor pulls to ground, the host must pause transmission when
HWAIT is low and is permitted to send when HWAIT is high. A pull-up resis-
tor inverts the signal polarity of HWAIT. The host should test HWAIT at every
transmitted byte.

During ADSP-BF50x boot operation, the host device more likely relies on
the RTS output of UART0. Then, the use of HWAIT becomes optional. At
boot time the Blackfin processor does not evaluate RTS signals driven by
the host and the UART0 UA0_CTS input is inactive. Since the UA0_RTS is in
a high impedance state when the Blackfin processor is in reset or while
executing preboot, an external pull-up resistor to VDDEXT is recommended.

Figure 24-19 and Figure 24-20 show the initial case of the UART boot
mode. As soon as HWAIT releases after reset, the boot kernel expects to
receive a 0x40 byte for bit rate detection. After the bit rate is known, the
UART is enabled and the kernel transmits for bytes.

Figure 24-19 and Figure 24-20 compare UA0_RTS and HWAIT timing when
an extended initcode executes. Since code execution distracts from data
loading, the host device should be prevented from sending more data. The
HWAIT timing is much more conservative than the RTS. If the host relies on
HWAIT, the UART receive buffer may not be filled over watermark level
and UA0_RTS might not be deasserted at all. If, however, the host relies on
UA0_RTS, it will be stalled a couple of bytes later. Both methods are valid.

Specific Boot Modes

24-58 ADSP-BF50x Blackfin Processor Hardware Reference

As shown in Figure 24-20, when the UART is enabled, UA0_RTS goes low,
encouraging the host to send the boot stream data immediately. With a
half-duplex UART connection this must be avoided. The host should
either rely on the HWAIT signal or wait until it has received the four bytes
from the Blackfin processor, before sending any data.

For UART boot, it is not obvious on how to change the PLL by an
initcode routine. This is because the UARTx_DLL and UARTx_DLH registers
have to be updated to keep the required bit rate constant after the SCLK

frequency has changed. It must be ensured that the host does not send
data while the PLL is changing. The initcode examples provided along
with the CCES or VisualDSP++ tools installation demonstrate how this
can be accomplished.

Figure 24-19. UART Boot - Host Relying on HWAIT

Figure 24-20. UART Boot - Host Relying on RTS

UA0_TX

UA0_RX

UA0_RTS

0

0

0

1

1

RESET

HWAIT

0 0 0 0 0
1 1 11

UA0_TX

UA0_RX

UA0_RTS

0

0 0

0

1

1

1

RESET

HWAIT

ADSP-BF50x Blackfin Processor Hardware Reference 24-59

System Reset and Booting

Reset and Booting Registers
Two registers are used for reset and booting—the software reset register
(SWRST) and the system reset configuration register (SYSCR).

Software Reset (SWRST) Register
A software reset can be initiated by setting bits [2:0] in the system soft-
ware reset field in the software reset register (SWRST) shown in
Figure 24-21.

Bit 3 can be used to generate a reset upon core-double-fault. A core-dou-
ble-fault resets both the core and the peripherals, but not the RTC block
and most of the DPMC. Bit 15 indicates whether a software reset has
occurred since the last time SWRST was read. Bit 14 indicates the software
watchdog timer has generated the software reset. Bit 13 indicates the
core-double-fault has generated the software reset. Bits [15:13] are
read-only and cleared when the register is read. Reading the SWRST also
clears bits [15:13] in the SYSCR register. Bits [3:0] are read/write.

Only writing to bits[2:0], resets only the modules in the SCLK domain. It
does not clear the core. The program executes normally at the instruction
after the MMR write to SWRST. The system is kept in the reset state as long
as the bits[2:0] are set to b#111. To release reset, write a zero again. Exam-
ples for this are available in assembly (Listing 24-1 on page 24-82) and C
(Listing 24-2 on page 24-83). It is not recommended that this functional-
ity be used directly. Rather, call the ROM function bfrom_SysControl()

to perform a system reset.

Reset and Booting Registers

24-60 ADSP-BF50x Blackfin Processor Hardware Reference

Figure 24-21. Software Reset Register

0

Software Reset Register (SWRST)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0

SYSTEM_RESET
(System Software Reset)
0x0—0x6 – No SW reset
0x7 – Reset system

DOUBLE_FAULT
(Core-Double-Fault Reset
Enable)
0 – Do not generate reset

on core-double-fault
1 – Generate reset

on core-double-fault

RESET_SOFTWARE
(Software Reset Status) – RO
0 – No SW reset since last

SWRST read
1 – SW reset occurred since

last SWRST read

RESET_WDOG
(Software Watchdog Timer Source)
– Read only
0 – Software reset not generated

by watchdog
1 – Software reset generated

by watchdog

RESET_DOUBLE
(Core-Double-Fault Reset) – RO
0 – SW reset not generated

by core-double-fault
1 – SW reset generated

by core-double-fault

0 0 0 0 0 0 0 0 0 0 0 0 0 00xFFC0 0100 Reset = 0x0000

ADSP-BF50x Blackfin Processor Hardware Reference 24-61

System Reset and Booting

System Reset Configuration (SYSCR) Register
The software reset configuration register (SYSCR) is shown in
Figure 24-22.

Figure 24-22. System Reset Configuration Register

SWRESET
Software Reset – RO
A software reset
0 – last reset was not
1 – last reset was

WDRESET
Watchdog Reset – RO
A watchdog reset
0 – last reset was not
1 – last rest was

DFRESET
Double-fault Reset – RO
A double-fault reset
0 – last reset was not
1 – last reset was

WURESET
Wake-up Reset – RO
Since last hardware reset
0 – no wake-up event
1 – there was a wake-up

Reserved

BCODE[3:0]
Boot Code – RW
0000 – BCODE_NORMAL

Perform quick boot as WURESET. Update power management.
0001 – BCODE_NOBOOT

Do not boot, directly jump to EVT1 vector.
0010 – BCODE_QUICKBOOT

Ignore WURESET, always perform quick boot.
0100 – BCODE_ALLBOOT

Ignore WURESET, do not perform quick boot.
0110 – BCODE_FULLBOOT

Ignore WURESET, do not perform quick boot.
Update power management

1xxx – reserved

X0000 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 X X Reset = dependent on pin
values

System Reset Configuration Register (SYSCR)
X – state is initialized from BMODE pins during hardware reset

0xFFC0 0104 0 0

BMODE [2:0] (Boot Mode) – RO
000 – BMODE_BYPASS

Bypass boot ROM, execute from
16-bit external memory

001 – BMODE_FLASH_ASYNC
Boot from stacked parallel flash
in asynchronous mode

010 – BMODE_FLASH_SYNC
Boot from stacked parallel flash
in synchronous mode

011 – BMODE_SPIMEM
Boot from serial SPI memory
(master mode)

100 – BMODE_SPIHOST
Boot from SPI0 host (slave mode)

101 – BMODE_PPIHOST
Boot from PPI host

110 – Reserved
111 – BMODE_UART0HOST

Boot from UART0 host

Reserved

Reset and Booting Registers

24-62 ADSP-BF50x Blackfin Processor Hardware Reference

The values sensed from the BMODE[2:0] pins are mirrored into the system
reset configuration register (SYSCR). The values are available for software
access and modification after the hardware reset sequence. Software can
modify only bits[7:4] in this register to customize boot processing upon a
software reset.

The WURESET indicates whether there was a wake up from hibernate since
the last hardware reset. The bit cannot be cleared by software.

The bits [15:13] are exact copies of the same bits in the SWRST register.
Unlike the SWRST register, SYSCR can be read without clearing these bits.
Reading SWRST also causes SYSCR[15:13] to clear.

ADSP-BF50x Blackfin Processor Hardware Reference 24-63

System Reset and Booting

Boot Code Revision Control (BK_REVISION)
The boot ROM reserves the 32-bits at address 0xEF00 0040 for a four
byte version code as shown in Figure 24-23.

Figure 24-23. Boot Code Revision Code (BK_REVISION)

Bit 23:16— BK_PROJECT
(Boot Kernel Project)
Reads as 0x04 on ADSP-BF50x processors

0xEF00 0040

Boot Code Revision BK_REVISION Word, 31–16

Bit 31:24— BK_ID
(Boot Kernel Identifier)
Reads as 0xAD

Boot Code Revision BK_REVISION Word, 15–0

0xEF00 0040

BK_VERSION
(Boot Kernel Version)
Global boot kernel version number

BK_UPDATE
(Boot Kernel Update
Enhancements/Bug fix version specifically made for
the specific project. Refer to the specific processor
anomaly sheet for the version control of a specific
silicon revision.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reset and Booting Registers

24-64 ADSP-BF50x Blackfin Processor Hardware Reference

Boot Code Date Code (BK_DATECODE)
The boot ROM reserves the 32-bits at address 0xEF00 0050 for the build
date as shown in Figure 24-24.

Figure 24-24. Boot Code Date Code (BK_DATECODE)

0xEF00 0050

Boot Code Date Code BK_DATECODE Word, 31–16

Bit 31:16 – BK_YEAR

Boot Code Date Code BK_DATECODE Word, 15–0

0xEF00 0050

BK_MONTH BK_DAY

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

ADSP-BF50x Blackfin Processor Hardware Reference 24-65

System Reset and Booting

Zero Word (BK_ZEROS)
The boot ROM reserves the 32-bits at address 0xEF00 0048 which always
reads as 0x0000 000 as shown in Figure 24-25.

Figure 24-25. Zero Word (BK_ZEROS)

0xEF00 0048

Zero Word BK_ZEROS, 31–16

Read only

Zero Word BK_ZEROS, 15–0

0xEF00 0048

Read only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Data Structures

24-66 ADSP-BF50x Blackfin Processor Hardware Reference

Ones Word (BK_ONES)
The boot ROM reserves the 32-bits at address 0xEF00 004C which always
reads 0xFFFF FFFF as shown in Figure 24-26.

Data Structures
The boot kernel uses specific data structures for internal processing.
Advanced users can customize the booting process by changing the con-
tent of the structure within the initcode routines. This section uses C
language definitions for documentation purposes. Developers can use
these structures directly in assembly programs by using the .IMPORT direc-
tive. The structures are supplied by the bfrom.h header file in your CCES
or VisualDSP++ installation directory.

Figure 24-26. Ones Word (BK_ONES)

0xEF00 004C

Ones Word BK_ONES, 31–16

Read only

Ones Word BK_ONES, 15–0

0xEF00 004C

Read only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 1 1 1 1 1 1 1 1 1 1 1 11 1

11 1 1 1 1 1 1 1 1 1 1 1 11 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

ADSP-BF50x Blackfin Processor Hardware Reference 24-67

System Reset and Booting

ADI_BOOT_HEADER
typedef struct {

s32 dBlockCode;

void* pTargetAddress;

s32 dByteCount;

s32 dArgument;

} ADI_BOOT_HEADER;

The structure ADI_BOOT_HEADER is used by the boot kernel to load and pro-
cess a block header.

Every block header is loaded to L1 data memory location 0xFF80 7FF0–
0xFF80 7FFF first or where pHeader points to. There it is analyzed by the
boot kernel.

ADI_BOOT_BUFFER
typedef struct {

void* pSource;

s32 dByteCount;

} ADI_BOOT_BUFFER;

The structure ADI_BOOT_BUFFER is used for any kind of buffer. For the
user, this structure is important when implementing advanced callback
mechanisms.

ADI_BOOT_DATA
typedef struct {

void* pSource;

void* pDestination;

s16* pControlRegister;

s16* pDmaControlRegister;

s32 dControlValue;

Data Structures

24-68 ADSP-BF50x Blackfin Processor Hardware Reference

s32 dByteCount;

s32 dFlags;

s16 uwDataWidth;

s16 uwSrcModifyMult;

s16 uwDstModifyMult;

s16 uwHwait;

s16 uwSsel;

s16 uwUserShort;

s32 dUserLong;

s32 dReserved;

ADI_BOOT_ERROR_FUNC* pErrorFunction;

ADI_BOOT_LOAD_FUNC* pLoadFunction;

ADI_BOOT_CALLBACK_FUNC* pCallBackFunction;

ADI_BOOT_HEADER* pHeader;

void* pTempBuffer;

void* pTempCurrent;

s32 dTempByteCount;

s32 dBlockCount;

s32 dClock;

void* pLogBuffer;

void* pLogCurrent;

s32 dLogByteCount;

} ADI_BOOT_DATA;

The structure ADI_BOOT_DATA is the main data structure. A pointer to a
ADI_BOOT_DATA structure is passed to most complex subroutines, including
load functions, initcode, and callback routines. The structure has two
parts. While the first is closely related to internal memory load routines,
the second provides access to global boot settings.

ADSP-BF50x Blackfin Processor Hardware Reference 24-69

System Reset and Booting

Table 24-10 describes the data structures.

Table 24-10. Structure Variables, ADI_BOOT_DATA

Variable Description

pSource In the context of the boot kernel, the pSource pointer points either to
the start address of the entire boot stream or to the header of the next
boot block. In the context of memory load routines pSource points to
the source address of the DMA work unit.

pDestination The pDestination pointer is only used in memory load routines. It
points to the destination address of the DMA work unit. It points to
either 0xFF80 7FF0 when a header is loaded, or the target address
when the payload data is loaded.

pControlRegister This pointer holds the MMR address of the peripheral’s main control
register (for example UARTx_LCR or SPIx_CTL)

pDmaControlRegister This pointer holds the MMR address of the DMAx_CONFIG register for
the DMA channel in use.

dControlValue The lower 16 bits of this value are written to the pControlRegister
location each time a DMA work unit is started.

dByteCount Number of bytes to be transferred.

dFlags The lower 16 bits of this variable hold the lower 16 bits of the current
block code. The upper 16 bits hold global flags. See “dFlags Word” on
page 24-72.

uwDataWidth This instructs the memory load routine to use:
0 – 8-bit DMA
1 – 16-bit DMA
2 – 32-bit DMA

uwSrcModifyMult This is the multiplication factor used by the DMA source. A value of 1
sets the source modifier to 1 for 8-bit DMA, 2 for 16-bit DMA, or 4
for 32-bit DMA.

uwDstModifyMult This is the multiplication factor used by the DMA destination. A value
of 1 sets the destination modifier to 1 for 8-bit DMA, 2 for 16-bit
DMA, or 4 for 32-bit DMA.

uwHwait This 16-bit value holds the GPIO used for HWAIT signaling. The PG3
pin is configured as HWAIT signal on ADSP-BF50x processors. The
upper eight bits designate the port number (for example 01 for Port A,
02 for Port B). The lower four bits designate the GPIO in the port.

Data Structures

24-70 ADSP-BF50x Blackfin Processor Hardware Reference

uwSsel This 16-bit value holds the GPIO used for SPI slave select. The PF13
pin is configured as SPI slave select signal on ADSP-BF50x processors.
The upper eight bits designate the port number (for example 01 for
Port A, 02 for Port B). The lower four bits designate the GPIO in the
port.

uwUserShort The programmer can use this 16-bit value for passing parameters
between modules of a customized booting scheme.

dUserLong The programmer can use this 32-bit value for passing parameters
between modules of a customized booting scheme.

dReserved This 32-bit value is reserved for future development.

pErrorFunction This is the pointer to the error handler. See “Error Handler” on
page 24-32.

pLoadFunction This is the pointer to the function responsible for loading data. See
“Load Functions” on page 24-33

pCallBackFunction; This is the pointer to the callback function. See “Callback Routines” on
page 24-30.

pHeader The pHeader pointer holds the address for intermediate storage of the
block header. By default this value is set to 0xFF80 7FF0.

pTempBuffer This pointer tells the boot kernel what memory to use for intermediate
storage when the BFLAG_INDIRECT flag is set for a given block. The
pointer defaults to 0xFF80 7F00. The value can be modified by the
initcode routine, but there would be some impact to the CCES or Visu-
alDSP++ tools.

pTempCurrent Defaults to the pTempBuffer value. A load function can modify this
value to manipulate subsequent callback and memory DMA routines.

dTempByteCount This is the size of the intermediate storage buffer used when the
BFLAG_INDIRECT flag is set for a given block. This value defaults to
256 and can be modified by an initcode routine. When increasing this
value, the pTempBuffer must also be changed since by default the
block is at the end of a physical data memory block.

dBlockCount This 32-bit variable counts the boot blocks that are processed by the
boot kernel. If the user sets this value to a negative value, the boot ker-
nel exits when the variable increments to zero.

Table 24-10. Structure Variables, ADI_BOOT_DATA (Cont’d)

Variable Description

ADSP-BF50x Blackfin Processor Hardware Reference 24-71

System Reset and Booting

dClock The dClock variable holds information about the clock divider used by
individual (serial) boot modes.

pLogBuffer Pointer to the circular log buffer. By default the log buffer resides in L1
scratch pad memory at address 0xFFB0 0400.

pLogCurrent Pointer to the next free entry of the circular log buffer.

dLogByteCount Size of the circular log buffer, default is 0x400 bytes.

Table 24-10. Structure Variables, ADI_BOOT_DATA (Cont’d)

Variable Description

Data Structures

24-72 ADSP-BF50x Blackfin Processor Hardware Reference

dFlags Word

Figure 24-27 and Figure 24-28 describe the dFlags word. dFlags [15–0]

is a copy of Block Code[15–0] of the block currently being processed.

Figure 24-27. dFlags Word (Bits 31–16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 00 0

BFLAG_HOOK
0 – Do not callback initialization

hook routine
1 – Do callback initialization hook

routine

BFLAG_HDRINDIRECT
0 – Headers are loaded directly
1 – Headers are loaded indirectly

BFLAG_TYPE
00 – (BFLAG_TYPE1) one SPI

address byte
01 – (BFLAG_TYPE2) two SPI

address bytes
10 – (BFLAG_TYPE3) three SPI

address bytes
11 – (BFLAG_TYPE4) four SPI

address bytes

BFLAG_FASTREAD
0 – normal SPI mode
1 – SPI fast read operation

BFLAG_ALTERNATE
(ADSP-BF50x only)
0 - regular boot
1 - alternate boot

dFlags Word, Bits 31–16

BFLAG_NONRESTORE
0 – restore control registers

on exit
1 – do not restore control

registers on exit

BFLAG_RESET
0 – do not issue system reset

on exit
1 – issue system reset on exit

BFLAG_RETURN
0 – jump to EVT1 address on exit
1 – issue RTS instruction on exit

BFLAG_NEXTDXE
0 – perform exit
1 – look for DXE start address

BFLAG_WAKEUP
0 – no wakeup case, perform boot
1 – wakeup case, perform

quick boot

BFLAG_SLAVE
0 – master boot mode
1 – slave boot mode

BFLAG_PERIPHERAL
0 – memory boot mode
1 – peripheral boot mode

BFLAG_NOAUTO
0 – perform automatic device

detection
1 – suppress automatic device

detection

ADSP-BF50x Blackfin Processor Hardware Reference 24-73

System Reset and Booting

Callable ROM Functions for Booting
The following functions support boot management.

BFROM_FINALINIT
Entry address:

0xEF00 0002

Arguments:

no arguments

C prototype:

void bfrom_FinalInit (void);

The bfrom_FinalInit function never returns. It only executes a JUMP to
the address stored in EVT1.

Figure 24-28. dFlags Word (Bits 15–0)

dFlags Word, Bits 15–0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

BFLAG_FINAL

BFLAG_FIRST

BFLAG_INDIRECT

BFLAG_IGNORE

BFLAG_INIT

BFLAG_CALLBACK

BFLAG_QUICKBOOT

BFLAG_FILL

DMACODE – DMA Coding

BFLAG_SAVE

BFLAG_AUX

Callable ROM Functions for Booting

24-74 ADSP-BF50x Blackfin Processor Hardware Reference

BFROM_PDMA
Entry address:

0xEF00 0004

Arguments:

pointer to ADI_BOOT_DATA in R0

C prototype:

void bfrom_PDma (ADI_BOOT_DATA *p);

This is the load function for peripherals such as SPI and UART that sup-
port DMA in their boot modes.

BFROM_MDMA
Entry address:

0xEF00 0006

Arguments:

pointer to ADI_BOOT_DATA in R0

C prototype:

void bfrom_MDma (ADI_BOOT_DATA *p);

This is the load function used for memory boot modes. This routine is
also reused when the BFLAG_FILL or the BFLAG_INDIRECT flags are
specified.

ADSP-BF50x Blackfin Processor Hardware Reference 24-75

System Reset and Booting

BFROM_MEMBOOT
Entry address:

0xEF00 0008

Arguments:

pointer to boot stream in R0, dFlags in R1, dBlockCount in R2, pCallHook
passed over the stack in [FP+0x14], and updated block count returned in
R0

C prototype:

s32 bfrom_MemBoot (

void* pBootStream,

s32 dFlags,

s32 dBlockCount,

ADI_BOOT_HOOK_FUNC* pCallHook);

This routine processes any boot stream that maps to the Blackfin memory
starting from address pBootStream.

To boot a new application that may overwrite the calling application, the
dFlags word is usually zero. When done, the routine does not return, but
jumps to the EVT1 vector address. If the BFLAG_RETURN flag is set, an RTS is
executed instead and the routine returns to the parent function. In this
way, fractions of an application can be loaded.

If the dBlockCount parameter is zero or a positive value, all boot blocks are
processed until the BFLAG_FINAL flag is detected. If dBlockCount is a nega-
tive value, the negative number represents the number of blocks to be
booted. For example, –1 causes the kernel to return immediately, –2 pro-
cesses only one block.

The routine returns the updated source address pSource of the boot
stream (for example, the first unused address after the processed boot
stream).

Callable ROM Functions for Booting

24-76 ADSP-BF50x Blackfin Processor Hardware Reference

The BFLAG_NEXTDXE flag suppresses boot loading. The boot kernel steps
through the boot stream by analyzing the next-DXE pointers (in the
ARGUMENT field of a BFLAG_FIRST block) and jumping to the next DXE.
Assuming that the boot image is a chained list of boot streams, the boot
kernel returns the absolute start address of the requested boot stream. In
this example, the start address of the third boot stream (DXE) in a flash
device is returned.

bfrom_MemBoot(

(void*)0x20000000,

BFLAG_RETURN|BFLAG_NEXTDXE,

-3,

NULL);

In the above example, the routine would return 0x2000 0000 when
dBlockCount was set to –1. If the parameter dBlockCount is zero or posi-
tive when used along with the BFLAG_NEXTDXE command, the kernel
returns when the BFLAG_FIRST flag on a header in the next-DXE chain is
not set.

If the BFLAG_HOOK switch is set, the memboot routine call (pCallHook rou-
tine) after the ADI_BOOT_DATA structure is filled with default values. It then
can overrule the default settings of the structure.

The bfrom_MemBoot() uses both MDMA channel pairs. Respective
wake-up bits must be set in the SIC_IWRx registers.

ADSP-BF50x Blackfin Processor Hardware Reference 24-77

System Reset and Booting

BFROM_SPIBOOT
Entry address:

0xEF00 000A

Arguments:

• SPI address in R0

• dFlags in R1

• dBlockCount in R2

• pCallHook passed over the stack in [FP+0x14]

• updated block count returned in R0

C prototype:

s32 bfrom_SpiBoot (

s32 dSpiAddress,

s32 dFlags,

s32 dBlockCount,

ADI_BOOT_HOOK_FUNC* pCallHook);

This SPI master boot routine processes boot streams residing in SPI mem-
ories, using the SPI0 controller. The fourth argument pCallHook is passed
over the stack. It provides a hook to call a callback routine after the
ADI_BOOT_DATA structure is filled with default values. For example, the
pCallHook routine may overwrite the default value of the uwSsel value in
the ADI_BOOT_DATA structure. The coding follows the rules of uwHWAIT (see
“Boot Host Wait (HWAIT) Feedback Strobe” on page 24-19). A value of
0x060D represents GPIO PF13 (SPI0_SSEL1).

Additional bits in the dFlags word are relevant. The user should always set
the BFLAG_PERIPHERAL flag but never the BFLAG_SLAVE bit. The
BFLAG_NOAUTO flag instructs the system to skip the SPI device detection

Callable ROM Functions for Booting

24-78 ADSP-BF50x Blackfin Processor Hardware Reference

routine. The BFLAG_TYPE then tells the boot kernel what addressing mode
is required for the SPI memory. (See “SPI Device Detection Routine” on
page 24-49.) The BFLAG_FASTREAD flag controls whether standard SPI read
(0x3 command) or fast read (0xB) is performed. The three lower bits of
the dFlags word are translated by the boot kernel into specific values to
the SPI0_BAUD registers. This follows the truth table shown in Table 24-9
on page 24-48.

When called with the BFLAG_ALTERNATE flag, the bfrom_SpiBoot() func-
tion attempts to boot from external SPI memory device. Unless the uwSsel

variable in the ADI_BOOT_DATA structure is altered by a hook routine, the
memory is expected to be connected to SPI0_SSEL1. A pull-up resistor on
this signal is required when automatic device detection is desired.

The bfrom_SpiBoot() routine does not deal with port muxing at all.
When a part has been booted via SPI master mode after reset, the port
muxing configuration is typically already ready for a runtime call to the
bfrom_SpiBoot() routine. Otherwise ensure that the SPI0MISO, SPI0MOSI
and SPI0SCK signals are properly activated in the PORTx_FER and PORTx_MUX

registers. The SPI0_SSEL1 signal requires, however, that the respective
PORTx_FER bit be cleared, as the boot kernel toggles the signal in GPIO
mode.

Similarly, the user shall set the PF13 bit in the PORTF_FER register when
booting from an external device.

The bfrom_SpiBoot() routine uses the MDMA0 memory DMA channel
pair and the DMA7 peripheral DMA. Respective wake-up bits must be set
in the SIC_IWRx registers. If a different peripheral DMA channel has been
assigned to the SPI0 controller, use the hook routine to store the MMR
address of the respective DMAx_CONFIG register into the pDmaControlRegis-

ter variable in the ADI_BOOT_DATA structure. Similarly, when using a
different SPI controller than SPI0, write the MMR address of the relevant
SPIx_CTL register into the pControlRegister variable.

ADSP-BF50x Blackfin Processor Hardware Reference 24-79

System Reset and Booting

BFROM_BOOTKERNEL
Entry address:

0xEF00 0020

Arguments:

• pointer to ADI_BOOT_DATA in R0

• returns updated source address pSource in R0

C prototype:

s32 bfrom_BootKernel (

ADI_BOOT_DATA *p);

This ROM entry provides access to the raw boot kernel routine. It is the
user's responsibility to initialize the items passed in the ADI_BOOT_DATA

structure. Pay particular attention that the function pointers
(pLoadFunction, and pErrorFunction) point to functional routines.

BFROM_CRC32
Entry address:

0xEF00 0030

Arguments:

• pointer to look-up table in R0

• pointer to data in R1

• dByteCount in R2

• initial CRC value in R0

• CRC value returned in R0

Callable ROM Functions for Booting

24-80 ADSP-BF50x Blackfin Processor Hardware Reference

C prototype:

s32 bfrom_Crc32 (

s32 *pLut,

void *pData,

s32 dByteCount,

s32 dInitial);

This routine calculates the CRC32 checksum for a given array of bytes.
The look-up table is typically generated by the BFROM_CRC32POLY routine.
During the boot process this routine is called by the BFROM_CRC32CALLBACK

routine. The dInitial value is normally set to zero unless the CRC32 rou-
tine is called in multiple slices. Then, the dInitial parameter expects the
result of the former run.

BFROM_CRC32POLY
Entry address:

0xEF00 0032

Arguments:

• pointer to look-up table in R0

• polynomial in R1

• updated block count returned in R0

C prototype:

s32 bfrom_Crc32Poly (

unsigned s32 *pLut,

s32 dPolynomial);

This function generates a 1024-byte look-up table from a given CRC
polynomial. During the boot process this routine is hidden by the
BFROM_CRC32INITCODE routine.

ADSP-BF50x Blackfin Processor Hardware Reference 24-81

System Reset and Booting

BFROM_CRC32CALLBACK
Entry address:

0xEF00 0034

Arguments:

• pointer to ADI_BOOT_DATA in R0

• pointer to ADI_BOOT_BUFFER in R1* Callback Flags in R2

C prototype:

s32 bfrom_Crc32Callback (

ADI_BOOT_DATA *pBS,

ADI_BOOT_BUFFER *pCS,

s32 dCbFlags);

This is a wrapper function that ensures the BFROM_CRC32 subroutine fits
into the boot process.

BFROM_CRC32INITCODE
Entry address:

0xEF00 0036

Arguments:

pointer to

ADI_BOOT_DATA in R0

C prototype:

void bfrom_Crc32Initcode (

ADI_BOOT_DATA *p);

Programming Examples

24-82 ADSP-BF50x Blackfin Processor Hardware Reference

This is an initcode residing in ROM with the following jobs:

• Register BFROM_CRC32CALLBACK as a callback routine to the
pCallback pointer in ADI_BOOT_DATA.

• Call BFROM_CRC32POLY to generate the look-up table.

This function is unlikely to be called by user code directly. This function
is called as an initcode during the boot process when the CRC calculation
is desired. See “CRC Checksum Calculation” on page 24-33 for details.

Programming Examples
This section provides programming examples that demonstrate a number
of system reset and booting techniques.

Example System Reset
To perform a system reset, use the code shown in Listing 24-1 or
Listing 24-2.

Listing 24-1. System Reset in Assembly

#include <blackfin.h>

P0.L = LO(BFROM_SYSCONTROL);

P0.H = HI(BFROM_SYSCONTROL);

R0.L = LO(SYSCTRL_SYSRESET);

R0.H = HI(SYSCTRL_SYSRESET);

R1 = 0;

R2 = 0;

CALL (P0);

ADSP-BF50x Blackfin Processor Hardware Reference 24-83

System Reset and Booting

Listing 24-2. System Reset in C Language

bfrom_SysControl(

SYSCTRL_SYSRESET,

0,

NULL);

Example Exiting Reset to User Mode
To exit reset while remaining in user mode, use the code shown in
Listing 24-3.

Listing 24-3. Exiting Reset to User Mode

_reset: P1.L = LO(_usercode);

/* Point to start of user code */

P1.H = HI(_usercode);

RETI = P1; /* Load address of _start into RETI */

RTI; /* Exit reset priority */

_reset.end:

_usercode: /* Place user code here */

...

The reset handler most likely performs additional tasks not shown in the
examples above. Stack pointers and EVTx registers are initialized here.

Example Exiting Reset to Supervisor Mode
To exit reset while remaining in supervisor mode, use the code shown in
Listing 24-4.

Programming Examples

24-84 ADSP-BF50x Blackfin Processor Hardware Reference

Listing 24-4. Exiting Reset by Staying in Supervisor Mode

_reset:

P0.L = LO(EVT15);

/* Point to IVG15 in Event Vector Table */

P0.H = HI(EVT15);

P1.L = LO(_isr_IVG15); /* Point to start of IVG15 code */

P1.H = HI(_isr_IVG15);

[P0] = P1; /* Initialize interrupt vector EVT15 */

P0.L = LO(IMASK); /* read-modify-write IMASK register */

R0 = [P0]; /* to enable IVG15 interrupts */

R1 = EVT_IVG15 (Z);

R0 = R0 | R1; /* set IVG15 bit */

[P0] = R0; /* write back to IMASK */

RAISE 15; /* generate IVG15 interrupt request */

/* IVG 15 is not served until reset

handler returns */

P0.L = LO(_usercode);

P0.H = HI(_usercode);

RETI = P0; /* RETI loaded with return address */

RTI; /* Return from Reset Event */

_reset.end:

_usercode: /* Wait in user mode till IVG15 */

JUMP _usercode; /* interrupt is serviced */

_isr_IVG15: /* IVG15 vectors here due to EVT15 */

...

Example Power Management with Initcode
Listing 24-5 and Listing 24-6 show how to change PLL and the voltage
regulator within an initcode.

The ADSP-BF50x processors do not have an on-chip voltage regulator.
Set the bfrom_SysControl option to SYSCTRL_EXTVOLTAGE.

ADSP-BF50x Blackfin Processor Hardware Reference 24-85

System Reset and Booting

Listing 24-5. Changing PLL and Voltage Regulator in C Language

#include <ccblkfn.h>

#include <bfrom.h>

void init_DPM(ADI_BOOT_DATA* pBS)

{

ADI_SYSCTRL_VALUES init_DPM;

init_DPM.uwPllCtl = SET_MSEL(12);

init_DPM.uwPllDiv = (SET_SSEL(4) | CSEL_DIV1);

init_DPM.uwPllLockCnt = 0x0200;

bfrom_SysControl(SYSCTRL_EXTVOLTAGE | SYSCTRL_PLLCTL |

SYSCTRL_PLLDIV | SYSCTRL_LOCKCNT | SYSCTRL_WRITE, &init_DPM,

NULL);

}

Listing 24-6. Changing PLL and Voltage Regulator in Assembly

#include <blackfin.h>

#include <bfrom.h>

.import "bfrom.h";

/* Load Immediate 32-bit value into data or address register */

#define IMM32(reg,val) reg##.H=hi(val); reg##.L=lo(val)

.SECTION L1_code;

init_DPM:

link sizeof(ADI_SYSCTRL_VALUES)+2;

[--SP] = (R7:0,P5:5);

SP += -12;

R0.L = SET_MSEL(12);

w[FP+-sizeof(ADI_SYSCTRL_VALUES)+offse-

tof(ADI_SYSCTRL_VALUES,uwPllCtl)] = R0;

R0.L = (SET_SSEL(4) | CSEL_DIV1);

w[FP+-sizeof(ADI_SYSCTRL_VALUES)+offse-

tof(ADI_SYSCTRL_VALUES,uwPllDiv)] = R0;

R0.L = 0x0200;

Programming Examples

24-86 ADSP-BF50x Blackfin Processor Hardware Reference

w[FP+-sizeof(ADI_SYSCTRL_VALUES)+offse-

tof(ADI_SYSCTRL_VALUES,uwPllLockCnt)] = R0;

R0 = (SYSCTRL_EXTVOLTAGE | SYSCTRL_PLLCTL | SYSCTRL_PLLDIV |

SYSCTRL_LOCKCNT | SYSCTRL_WRITE);

R1 = FP;

R1 += -sizeof(ADI_SYSCTRL_VALUES);

R2 = 0 (z);

IMM32(P5,BFROM_SYSCONTROL);

call(P5);

SP += 12;

(R7:0,P5:5) = [SP++];

unlink;

rts;

init_DPM.end:

Care must be taken that the reprogramming of the PLL does not break the
communication with the booting host. For example, in the case of UART
boot, the UARTx_DLL and UARTx_DLH registers must be updated to keep the
old bit rate.

Example XOR Checksum
Listing 24-7 illustrates how an initcode can be used to register a callback
routine. The routine is called after each boot block that has the
BFLAG_CALLBACK flag set. The calculated XOR checksum is compared
against the block header ARGUMENT field. When the checksum fails, this
example goes into idle mode. Otherwise control is returned to the boot
kernel.

Since this callback example accesses the data after it is loaded, it would fail
if the target address were in L1 instruction space. Therefore the
BFLAG_INDIRECT flag should also be set. The xor_callback routine could
then perform the checksum calculation at an intermediate storage place.
The boot kernel transfers the data from the temporary buffer to the final
destination after the callback routine returns.

ADSP-BF50x Blackfin Processor Hardware Reference 24-87

System Reset and Booting

In general, the block size is bigger than the size of the temporary buffer.
Therefore, the boot kernel may need to divide the processing of a single
block into multiple steps. The callback routine may also need to be
invoked multiple times—every time the temporary buffer is filled up and
once for the remaining bytes. The boot kernel passes the dFlags parame-
ter, so that the callback routines knows whether it is called the first time,
the last time or neither. The dUserLong variable in the ADI_BOOT_DATA

structure is used to store the intermediate results between function calls.

Listing 24-7. XOR Checksum

s32 xor_callback(

ADI_BOOT_DATA* pBS,

ADI_BOOT_BUFFER* pCS,

s32 dFlags)

{

s32 i;

if ((pCS!= NULL) && (pBS->pHeader!= NULL)) {

if (dFlags & CBFLAG_FIRST) {

pBS->dUserLong = 0;

}

for (i=0; i<pCS->dByteCount/sizeof(s32); i++) {

pBS->dUserLong^= ((s32 *)pCS->pSource)[i];

}

if (dFlags & CBFLAG_FINAL) {

if (pBS->dUserLong!= pBS->pHeader->dArgument) {

idle ();

}

}

}

return 0;

}

Programming Examples

24-88 ADSP-BF50x Blackfin Processor Hardware Reference

void xor_initcode (ADI_BOOT_DATA *pBS)

{

pBS->pCallBackFunction = xor_callback;

}

Note that the callback routine is not volatile. It should not be overwritten
by subsequent boot blocks. It can, however, be overwritten after process-
ing the last block with BFLAG_CALLBACK flag set.

The checksum algorithm must be booted first and cannot protect itself.
Problems can be avoided by letting initcode and callback execute directly
from off-chip flash memory. The ADSP-BF50x processors provide a
CRC32 checksum algorithm in the on-chip L1 instruction ROM, that can
be used for booting under this scenario. For more information see “CRC
Checksum Calculation” on page 24-33.

Example Direct Code Execution
This code example illustrates how to instruct the CCES or VisualDSP++
tools to generate a flash image that causes the boot kernel to start code
execution at flash address 0x2000 0020 rather than performing a regular
boot. See “Direct Code Execution” on page 24-22.

First, a 32-byte data block is defined in an assembly file that contains the
initial block.

.section bootblock;

.global _firstblock;

.var _firstblock[4] = 0xAD7BD006,

0x20000020,

0x00000010,

0x00000010;

ADSP-BF50x Blackfin Processor Hardware Reference 24-89

System Reset and Booting

Then, the linker is instructed to map the initial block to address
0x2000 0000 in the LDF file.

MEMORY

{

MEM_ASYNC0

{

START(0x20000000)

END(0x23FFFFFF)

TYPE(ROM)

WIDTH(8)

}

}

PROCESSOR p0

{

RESOLVE(_firstblock,0x20000000)

RESOLVE(start,0x20000020)

KEEP(start,_firstblock)

SECTIONS

{

flash

{

INPUT_SECTION_ALIGN(4)

INPUT_SECTIONS($OBJECTS(program) $LIBRARIES(program))

INPUT_SECTIONS($OBJECTS(bootblock))

} >MEM_ASYNC0

}

}

To invoke the elfloader utility, activate the meminit feature and use the
command-line switches –romsplitter and –maskaddr. Refer to the appli-
cation note Running Programs from Flash on ADSP-BF533 Blackfin
Processors (EE-239) for further details.

Programming Examples

24-90 ADSP-BF50x Blackfin Processor Hardware Reference

ADSP-BF50x Blackfin Processor Hardware Reference 25-1

25 SYSTEM DESIGN

This chapter provides hardware, software and system design information
to aid users in developing systems based on the Blackfin processor. The
design options implemented in a system are influenced by cost, perfor-
mance, and system requirements. In many cases, design issues cited here
are discussed in detail in other sections of this manual. In such cases, a ref-
erence appears to the corresponding section of the text, instead of
repeating the discussion in this chapter.

Pin Descriptions
Refer to the processor data sheet for pin information, including pin
numbers.

Managing Clocks
Systems can drive the clock inputs with a crystal oscillator or a buffered,
shaped clock derived from an external clock oscillator. The external clock
connects to the processor’s CLKIN pin. It is not possible to halt, change, or
operate CLKIN below the specified frequency during normal operation. The
processor uses the clock input (CLKIN) to generate on-chip clocks. These
include the core clock (CCLK) and the peripheral clock (SCLK).

Configuring and Servicing Interrupts

25-2 ADSP-BF50x Blackfin Processor Hardware Reference

Managing Core and System Clocks
The processor produces a multiplication of the clock input provided on
the CLKIN pin to generate the PLL VCO clock. This VCO clock is divided to
produce the core clock (CCLK) and the system clock (SCLK). The core clock
is based on a divider ratio that is programmed via the CSEL bit settings in
the PLL_DIV register. The system clock is based on a divider ratio that is
programmed via the SSEL bit settings in the PLL_DIV register. For detailed
information about how to set and change CCLK and SCLK frequencies, see
Chapter 16, “Dynamic Power Management”.

Configuring and Servicing Interrupts
A variety of interrupts are available. They include both core and periph-
eral interrupts. The processor assigns default core priorities to system-level
interrupts. However, these system interrupts can be remapped via the sys-
tem interrupt assignment registers (SIC_IARx). For more information, see
the System Interrupts chapter.

The processor core supports nested and non-nested interrupts, as well as
self-nested interrupts. For explanations of the various modes of servicing
events, please see Blackfin Processor Programming Reference.

Semaphores
Semaphores provide a mechanism for communication between multiple
processors or processes/threads running in the same system. They are used
to coordinate resource sharing. For instance, if a process is using a particu-
lar resource and another process requires that same resource, it must wait
until the first process signals that it is no longer using the resource. This
signalling is accomplished via semaphores.

ADSP-BF50x Blackfin Processor Hardware Reference 25-3

System Design

Semaphore coherency is guaranteed by using the test and set byte (atomic)
instruction (TESTSET). The TESTSET instruction performs these
functions.

• Loads the half word at memory location pointed to by a P-register.
The P-register must be aligned on a half-word boundary.

• Sets CC if the value is equal to zero.

• Stores the value back in its original location (but with the most sig-
nificant bit (MSB) of the low byte set to 1).

The events triggered by TESTSET are atomic operations. The bus for the
memory where the address is located is acquired and not relinquished
until the store operation completes. In multithreaded systems, the TESTSET

instruction is required to maintain semaphore consistency.

To ensure that the store operation is flushed through any store or write
buffers, issue an SSYNC instruction immediately after semaphore release.

The TESTSET instruction can be used to implement binary semaphores or
any other type of mutual exclusion method. The TESTSET instruction sup-
ports a system-level requirement for a multicycle bus lock mechanism.

The processor restricts use of the TESTSET instruction to the external mem-
ory region only. Use of the TESTSET instruction to address any other area
of the memory map may result in unreliable behavior.

Example Code for Query Semaphore
Listing 17-1 provides an example of a query semaphore that checks the
availability of a shared resource.

Data Delays, Latencies and Throughput

25-4 ADSP-BF50x Blackfin Processor Hardware Reference

Listing 25-1. Query Semaphore

/* Query semaphore. Denotes “Busy” if its value is nonzero. Wait

until free (or reschedule thread-- see note below). P0 holds

address of semaphore. */

QUERY:

TESTSET (P0) ;

IF !CC JUMP QUERY ;

/* At this point, semaphore has been granted to current thread,

and all other contending threads are postponed because semaphore

value at [P0] is nonzero. Current thread could write thread_id to

semaphore location to indicate current owner of resource. */

R0.L = THREAD_ID ;

B[P0] = R0 ;

/* When done using shared resource, write a zero byte to [P0] */

R0 = 0 ;

B[P0] = R0 ;

SSYNC ;

/* NOTE: Instead of busy idling in the QUERY loop, one can use an

operating system call to reschedule the current thread. */

Data Delays, Latencies and Throughput
For detailed information on latencies and performance estimates on the
DMA and external memory buses, refer to the Chip Bus Hierarchy chapter.

Bus Priorities
For an explanation of prioritization between the various internal buses,
refer to the Chip Bus Hierarchy chapter.

ADSP-BF50x Blackfin Processor Hardware Reference 25-5

System Design

High-Frequency Design Considerations
Because the processor can operate at very fast clock frequencies, signal
integrity and noise problems must be considered for circuit board design
and layout. The following sections discuss these topics and suggest various
techniques to use when designing and debugging signal processing
systems.

Signal Integrity
In addition to reducing signal length and capacitive loading, critical sig-
nals should be treated like transmission lines.

Capacitive loading and signal length of buses can be reduced by using a
buffer for devices that operate with wait states (for example, SDRAMs).
This reduces the capacitance on signals tied to the zero-wait-state devices,
allowing these signals to switch faster and reducing noise-producing cur-
rent spikes. Extra care should be taken with certain signals such as external
memory, read, write, and acknowledge strobes.

Use simple signal integrity methods to prevent transmission line reflec-
tions that may cause extraneous extra clock and sync signals. Additionally,
avoid overshoot and undershoot that can cause long term damage to input
pins.

Some signals are especially critical for short trace length and usually
require series termination. The CLKIN pin should have impedance match-
ing series resistance at its driver. SPORT interface signals TCLK, RCLK, RFS,
and TFS should use some termination. Although the serial ports may be
operated at a slow rate, the output drivers still have fast edge rates and for
longer distances the drivers often require resistive termination located at
the source. (Note also that TFS and RFS should not be shorted in
multi-channel mode.) On the PPI interface, the PPI_CLK and SYNC signals
also benefit from these standard signal integrity techniques. If these pins
have multiple sources, it will be difficult to keep the traces short.

High-Frequency Design Considerations

25-6 ADSP-BF50x Blackfin Processor Hardware Reference

Adding termination to fix a problem on an existing board requires delays
for new artwork and new boards. A transmission line simulator is recom-
mended for critical signals. IBIS models are available from Analog Devices
Inc. that will assist signal simulation software. Some signals can be cor-
rected with a small zero or 22 ohm resistor located near the driver. The
resistor value can be adjusted after measuring the signal at all endpoints.

For details, see the reference sources in “Recommended Reading” on
page 17-13 for suggestions on transmission line termination.

Other recommendations and suggestions to promote signal integrity:

• Use more than one ground plane on the Printed Circuit Board
(PCB) to reduce crosstalk. Be sure to use lots of vias between the
ground planes.

• Keep critical signals such as clocks, strobes, and bus requests on a
signal layer next to a ground plane and away from or laid out per-
pendicular to other non-critical signals to reduce crosstalk.

• Experiment with the board and isolate crosstalk and noise issues
from reflection issues. This can be done by driving a signal wire
from a pulse generator and studying the reflections while other
components and signals are passive.

Decoupling Capacitors and Ground Planes
Ground planes must be used for the ground and power supplies. The
capacitors should be placed very close to the VDDEXT and VDDINT pins of the
package as shown in Figure 17-4. Use short and fat traces for this. The
ground end of the capacitors should be tied directly to the ground plane
inside the package footprint of the processor (underneath it, on the bot-
tom of the board), not outside the footprint. A surface-mount capacitor is
recommended because of its lower series inductance.

ADSP-BF50x Blackfin Processor Hardware Reference 25-7

System Design

Connect the power plane to the power supply pins directly with minimum
trace length. A ground plane should be located near the component side of
the board to reduce the distance that ground current must travel through
vias. The ground planes must not be densely perforated with vias or traces
as their effectiveness is reduced.

VDDINT is the highest frequency and requires special attention. Two things
help power filtering above 100 MHz. First, capacitors should be physically
small to reduce the inductance. Surface mount capacitors of size 0402 give
better results than larger sizes. Secondly, lower values of capacitance will
raise the resonant frequency of the LC circuit. While a cluster of 0.1F is
acceptable below 50 MHz, a mix of 0.1F, 0.01F, 0.001F and even 100
pF is preferred in the 500 MHz range.

Figure 25-1. Bypass Capacitor Placement

CASE 1:
BYPASS CAPACITORS ON NON-
COMPONENT (BOTTOM) SIDE OF
BOARD, BENEATH PACKAGE

CASE 2:
BYPASS CAPACITORS ON
COMPONENT (TOP) SIDE OF
BOARD, AROUND PACKAGE

a

ADSP-BF50x

B

High-Frequency Design Considerations

25-8 ADSP-BF50x Blackfin Processor Hardware Reference

Note that the instantaneous voltage on both internal and external power
pins must at all times be within the recommended operating conditions as
specified in the product data sheet. Local “bulk capacitance” (many micro-
farads) is also necessary. Although all capacitors should be kept close to
the power consuming device, small capacitance values should be the clos-
est and larger values may be placed further from the chip.

5 Volt Tolerance
Outputs that connect to inputs on 5 V devices can float or be pulled up to
5 V. Most Blackfin pins are not 5 V tolerant. There are a few exceptions
such as the TWI pins. Level shifters are required on all other Blackfin pins
to keep the pin voltage at or below absolute maximum ratings.

Test Point Access
The debug process is aided by test points on signals such as CLKOUT or
SCLK, bank selects, PPICLK, and RESET. If selection pins such as boot mode
are connected directly to power or ground, they are inaccessible under a
BGA chip. Use pull-up and pull-down resistors instead.

Oscilloscope Probes
When making high-speed measurements, be sure to use a “bayonet” type
or similarly short (< 0.5 inch) ground clip, attached to the tip of the oscil-
loscope probe. The probe should be a low-capacitance active probe
with 3 pF or less of loading. The use of a standard ground clip with
4 inches of ground lead causes ringing to be seen on the displayed trace
and makes the signal appear to have excessive overshoot and undershoot.
To see the signals accurately, a 1 GHz or better sampling oscilloscope is
needed.

ADSP-BF50x Blackfin Processor Hardware Reference 25-9

System Design

Recommended Reading
For more information, refer to High-Speed Digital Design: A Handbook of

Black Magic, Johnson & Graham, Prentice Hall, Inc., ISBN
0-13-395724-1.

This book is a technical reference that covers the problems encountered in
state of the art, high-frequency digital circuit design. It is an excellent

source of information and practical ideas. Topics covered in the book
include:

• High-speed properties of logic gates

• Measurement techniques

• Transmission lines

• Ground planes and layer stacking

• Terminations

• Vias

• Power systems

• Connectors

• Ribbon cables

• Clock distribution

• Clock oscillators

Resetting the Processor

25-10 ADSP-BF50x Blackfin Processor Hardware Reference

Consult your CAD software tools vendor. Some companies offer demon-
stration versions of signal integrity software. Simply by using their free
software, you can learn:

• Transmission lines are real

• Un-terminated printed circuit board traces will ring and have over-
shoot and undershoot

• Simple termination will control signal integrity problems

Resetting the Processor
The reset pin requires a monotonic rise and fall. Therefore the pin should
not be connected directly to an R/C time delay because such a circuit
could be noise sensitive. In addition to the hardware reset mode provided
via the RESET pin, the processor supports several software reset modes.
For detailed information on the various modes, see Blackfin Processor Pro-
gramming Reference. The processor state after reset is also described in the
programming reference.

Recommendations for Unused Pins
Most often, there is no need to terminate unused pins, but the handful
that do require termination are listed at the end of the pin list description
section of the product data sheet.

Also note that unused peripherals may have separate power connections.
These should be driven to the specified value.

ADSP-BF50x Blackfin Processor Hardware Reference 25-11

System Design

Programmable Outputs
During power up, each GPIO pin is set to an input and any pins used in
the system as an output should be connected to a pullup or pulldown
resistor to maintain the desired state.

This would be particularly important in motor drive applications. It is also
important for UART TX and RTS, SPI and serial TWI, or other commu-
nications interfaces. Some memory enable pull-ups may also be desired.

After the boot cycle, each GPIO pin may be set to input or output
depending on ADSP-BF50x model number and the boot cycle chosen.
The I/O / GPIO muxing of all pins may need to be reprogrammed to sup-
port the users application. Care should be taken for compatibility of
function and state, before boot, during boot, and application pin usage.

Voltage Regulation Interface
ADSP-BF50x processors must use an external voltage regulator to power
the VDDINT domain. The EXT_WAKE and PG signals can facilitate commu-
nication with the external voltage regulator. EXT_WAKE is high-true for
power-up and low only when the processor is in the hibernate state.
EXT_WAKE may be connected directly to the low-true shut down input of
many common regulators.

The PG (power-good, low-true) signal that allows the processor to start
only after the internal voltage has reached a chosen level. In this way, the
startup time of the external regulator will be detected after hibernation.

If the processor never will enter the hibernate state, the PG signal can be
grounded in this mode. This will always indicate “power good”, meaning
that VDDINT is at a safe operating level. Any delay required at initial
power-on, to guarantee a safe operating level for VDDINT, will be pro-
vided by the RESET signal.

Voltage Regulation Interface

25-12 ADSP-BF50x Blackfin Processor Hardware Reference

If the external regulator for VDDINT has a power-good signal output, it
can be used to help the processor recover properly from it’s hibernate
state. This signal may need to be inverted, as the processor’s input should
be low-true in order to indicate a “power good” condition.

If the external regulator does not have a power-good output, the PG signal
should be driven to a fixed level (just below the desired operating voltage)
so that the PG pin voltage can be compared to VDDINT by the internal
startup logic. This can be accomplished with an external resistor divider
from VDDEXT or any other fixed stable voltage. A divider with impedance
of 1M Ohm is sufficient to supply current to this PG input. To save even
more current during hibernation, the EXT_WAKE signal may be used as the
voltage source to the divider. EXT_WAKE is low during hibernation, but will
go high before the VDDINT voltage is applied by the external regulator. In
all cases, care should be taken to account for the min and max values of
VDDEXT or VOH for EXT_WAKE. The voltage applied to the PG pin is used as
the threshold that is compared internally to the rising value of VDDINT to
signal the processor to start. The voltage at PG should be calculated such
that the VDDINT value has risen to the desired voltage range for the
application.

ADSP-BF50x Blackfin Processor Hardware Reference A-1

A SYSTEM MMR ASSIGNMENTS

This appendix lists MMR addresses and register names for all system regis-
ters on the ADSP-BF50x processors. Table A-1 groups the registers by
function/peripheral and indicates the section later in this chapter where
individual registers for that group are listed. The tables in the later sec-
tions cross reference to individual register diagrams located in the chapter
where that register is described. The diagrams show individual bit descrip-
tions for each register.

Table A-1. Register Tables in This Chapter

Function/Peripheral

“System Reset and Interrupt Control Registers” on page A-4

“DMA/Memory DMA Control Registers” on page A-5

“Ports Registers” on page A-8

“Timer Registers” on page A-11

“Core Timer Registers” on page A-3

“Watchdog Timer Registers” on page A-15

“GP Counter Registers” on page A-15

“Dynamic Power Management Registers” on page A-17

“Processor-Specific Memory Registers” on page A-2

“PPI Registers” on page A-17

“SPI Controller Registers” on page A-18

“SPORT Controller Registers” on page A-19

“UART Controller Registers” on page A-23

“TWI Registers” on page A-25

Processor-Specific Memory Registers

A-2 ADSP-BF50x Blackfin Processor Hardware Reference

These notes provide general information about the system mem-
ory-mapped registers (MMRs):

• The system MMR address range is 0xFFC0 0000 – 0xFFDF FFFF.

• All system MMRs are either 16 bits or 32 bits wide. MMRs that are
16 bits wide must be accessed with 16-bit read or write operations.
MMRs that are 32 bits wide must be accessed with 32-bit read or
write operations. Check the description of the MMR to determine
whether a 16-bit or a 32-bit access is required.

• All system MMR space that is not defined in this appendix is
reserved for internal use only.

Processor-Specific Memory Registers
Processor-specific memory registers (0xFFE0 0004 – 0xFFE0 0300) are
listed in Table A-2.

“CAN Registers” on page A-26

“ACM Registers” on page A-42

“PWM Registers” on page A-44

“RSI Registers” on page A-46

Table A-2. Processor-Specific Memory Registers

Memory-Mapped
Address

Register Name For individual bits, see this diagram:

0xFFE0 0004 DMEM_CONTROL “L1 Data Memory Control Register” on
page 2-5

0xFFE0 0300 DTEST_COMMAND “Data Test Command Register” on page 2-6

Table A-1. Register Tables in This Chapter (Cont’d)

Function/Peripheral

ADSP-BF50x Blackfin Processor Hardware Reference A-3

System MMR Assignments

Core Timer Registers
Core timer registers (0xFFE0 3000 – 0xFFE0 300C) are listed in
Table A-3.

0XFFC0 0A00 EBIU_AMGCTL Asynchronous Memory Global Control Register

0XFFC0 0A04 EBIU_AMBCTL Asynchronous Memory Bank Control Register

0XFFC0 0A20 EBIU_MODE Asynchronous Memory Mode Control Register

0XFFC0 0A24 EBIU_FCTL Asynchronous Memory Parameter Control Reg-
ister

0XFFC0 328C FLASH_CONTROL Stacked flash control register

0XFFC0 3290 FLASH_CONTROL_SET Stacked flash control set register

0XFFC0 3294 FLASH_CONTROL_CLEAR Stacked flash control clear register

Table A-3. Core Timer Registers

Memory-Mapped
Address

Register Name For individual bits, see this diagram:

0xFFE0 3000 TCNTL “Core Timer Control Register (TCNTL)” on
page 11-5

0xFFE0 3004 TPERIOD “Core Timer Period Register (TPERIOD)” on
page 11-6

0xFFE0 3008 TSCALE “Core Timer Scale Register (TSCALE)” on
page 11-7

0xFFE0 300C TCOUNT “Core Timer Count Register (TCOUNT)” on
page 11-5

Table A-2. Processor-Specific Memory Registers (Cont’d)

Memory-Mapped
Address

Register Name For individual bits, see this diagram:

System Reset and Interrupt Control Registers

A-4 ADSP-BF50x Blackfin Processor Hardware Reference

System Reset and Interrupt Control
Registers

System reset and interrupt control registers (0xFFC0 0100 –
0xFFC0 01FF) are listed in Table A-4.

Table A-4. System Reset and Interrupt Control Registers

Memory-Mapped
Address

Register
Name

For individual bits, see this diagram:

0xFFC0 0104 SYSCR “System Reset Configuration (SYSCR) Regis-
ter” on page 24-61

0xFFC0 010C SIC_IMASK0 “System Interrupt Mask (SIC_IMASK) Regis-
ter” on page 4-12

0xFFC0 014C SIC_IMASK1 “System Interrupt Mask (SIC_IMASK) Regis-
ter” on page 4-12

0xFFC0 0110 SIC_IAR0 “System Interrupt Assignment (SIC_IAR) Reg-
ister” on page 4-11

0xFFC0 0114 SIC_IAR1 “System Interrupt Assignment (SIC_IAR) Reg-
ister” on page 4-11

0xFFC0 0118 SIC_IAR2 “System Interrupt Assignment (SIC_IAR) Reg-
ister” on page 4-11

0xFFC0 011C SIC_IAR3 “System Interrupt Assignment (SIC_IAR) Reg-
ister” on page 4-11

0xFFC0 0150 SIC_IAR4 “System Interrupt Assignment (SIC_IAR) Reg-
ister” on page 4-11

0xFFC0 0154 SIC_IAR5 “System Interrupt Assignment (SIC_IAR) Reg-
ister” on page 4-11

0xFFC0 0158 SIC_IAR6 “System Interrupt Assignment (SIC_IAR) Reg-
ister” on page 4-11

0xFFC0 0120 SIC_ISR0 “System Interrupt Status (SIC_ISR) Register”
on page 4-12

0xFFC0 0160 SIC_ISR1 “System Interrupt Status (SIC_ISR) Register”
on page 4-12

ADSP-BF50x Blackfin Processor Hardware Reference A-5

System MMR Assignments

DMA/Memory DMA Control Registers
DMA control registers (0xFFC0 0B00 – 0xFFC0 0FFF) are listed in
Table A-5.

Since each DMA channel has an identical MMR set, with fixed offsets
from the base address associated with that DMA channel, it is convenient
to view the MMR information as provided in Table A-6 and Table A-7.
Table A-6 identifies the base address of each DMA channel, as well as the
register prefix that identifies the channel. Table A-7 then lists the register
suffix and provides its offset from the Base Address.

As an example, the DMA channel 0 Y_MODIFY register is called DMA0_Y_

MODIFY, and its address is 0xFFC0 0C1C. Likewise, the memory DMA
stream 0 source current address register is called MDMA_S0_CURR_ADDR, and
its address is 0xFFC0 0E64.

0xFFC0 0124 SIC_IWR0 “System Interrupt Wakeup-Enable (SIC_IWR)
Register” on page 4-12

0xFFC0 0164 SIC_IWR1 “System Interrupt Wakeup-Enable (SIC_IWR)
Register” on page 4-12

Table A-5. DMA Traffic Control Registers

Memory-Mapped
Address

Register Name For individual bits, see this diagram:

0xFFC0 0B0C DMA_TC_PER “DMA_TC_PER Register” on page 7-90

0xFFC0 0B10 DMA_TC_CNT “DMA_TC_CNT Register” on page 7-90

Table A-4. System Reset and Interrupt Control Registers (Cont’d)

Memory-Mapped
Address

Register
Name

For individual bits, see this diagram:

DMA/Memory DMA Control Registers

A-6 ADSP-BF50x Blackfin Processor Hardware Reference

Table A-6. DMA Channel Base Addresses

DMA Channel Identifier MMR Base Address Register Prefix

0 0xFFC0 0C00 DMA0_

1 0xFFC0 0C40 DMA1_

2 0xFFC0 0C80 DMA2_

3 0xFFC0 0CC0 DMA3_

4 0xFFC0 0D00 DMA4_

5 0xFFC0 0D40 DMA5_

6 0xFFC0 0D80 DMA6_

7 0xFFC0 0DC0 DMA7_

8 0xFFC0 0E00 DMA8_

9 0xFFC0 0E40 DMA9_

10 0xFFC0 0E80 DMA10_

11 0xFFC0 0EC0 DMA11_

MemDMA stream 0 destination 0xFFC0 0F00 MDMA_D0_

MemDMA stream 0 source 0xFFC0 0F40 MDMA_S0_

MemDMA stream 1 destination 0xFFC0 0F80 MDMA_D1_

MemDMA stream 1 source 0xFFC0 0FC0 MDMA_S1_

Table A-7. DMA Register Suffix and Offset

Register Suffix Offset
From Base

For individual bits, see this diagram:

NEXT_DESC_PTR 0x00 “DMA Next Descriptor Pointer Registers (DMAx_NEXT_
DESC_PTR/ MDMA_yy_NEXT_DESC_PTR)” on
page 7-81

START_ADDR 0x04 “DMA Start Address Registers (DMAx_START_
ADDR/MDMA_yy_START_ADDR)” on page 7-75

CONFIG 0x08 “DMA Configuration Registers (DMAx_CONFIG/MDMA_
yy_CONFIG)” on page 7-68

ADSP-BF50x Blackfin Processor Hardware Reference A-7

System MMR Assignments

X_COUNT 0x10 “DMA Inner Loop Count Registers (DMAx_X_
COUNT/MDMA_yy_X_COUNT)” on page 7-76

X_MODIFY 0x14 “DMA Inner Loop Address Increment Registers (DMAx_X_
MODIFY/MDMA_yy_X_MODIFY)” on page 7-78

Y_COUNT 0x18 “DMA Outer Loop Count Registers (DMAx_Y_
COUNT/MDMA_yy_Y_COUNT)” on page 7-79

Y_MODIFY 0x1C “DMA Outer Loop Address Increment Registers (DMAx_Y_
MODIFY/MDMA_yy_Y_MODIFY)” on page 7-80

CURR_DESC_PTR 0x20 “DMA Current Descriptor Pointer Registers (DMAx_CURR_
DESC_PTR/ MDMA_yy_CURR_DESC_PTR)” on
page 7-82

CURR_ADDR 0x24 “DMA Current Address Registers (DMAx_CURR_
ADDR/MDMA_yy_CURR_ADDR)” on page 7-76

IRQ_STATUS 0x28 “DMA Interrupt Status Registers (DMAx_IRQ_STA-
TUS/MDMA_yy_IRQ_STATUS)” on page 7-72

PERIPHERAL_MAP 0x2C “DMA Peripheral Map Registers (DMAx_PERIPHERAL_
MAP/ MDMA_yy_PERIPHERAL_MAP)” on page 7-67

CURR_X_COUNT 0x30 “DMA Current Inner Loop Count Registers (DMAx_CURR_
X_COUNT /MDMA_yy_CURR_X_COUNT)” on page 7-77

CURR_Y_COUNT 0x38 “DMA Outer Loop Count Registers (DMAx_Y_
COUNT/MDMA_yy_Y_COUNT)” on page 7-79

Table A-7. DMA Register Suffix and Offset (Cont’d)

Register Suffix Offset
From Base

For individual bits, see this diagram:

Ports Registers

A-8 ADSP-BF50x Blackfin Processor Hardware Reference

Ports Registers
Ports registers (port F: 0xFFC0 0700 – 0xFFC0 07FF, port G:
0xFFC0 1500 – 0xFFC0 15FF, port H: 0xFFC0 1700 – 0xFFC0 17FF,
pin control: 0xFFC0 3200 – 0xFFC0 32FF) are listed in Table A-8.

Table A-8. Ports Registers

Memory-Mapped
Address

Register Name For individual bits, see this diagram:

0xFFC0 0700 PORTFIO “GPIO Data Registers” on page 9-31

0xFFC0 0704 PORTFIO_CLEAR “GPIO Clear Registers” on page 9-32

0xFFC0 0708 PORTFIO_SET “GPIO Set Registers” on page 9-32

0xFFC0 070C PORTFIO_TOGGLE “GPIO Toggle Registers” on page 9-33

0xFFC0 0710 PORTFIO_MASKA “GPIO Mask Interrupt A Registers” on
page 9-35

0xFFC0 0714 PORTFIO_MASKA_CLEAR “GPIO Mask Interrupt A Clear Registers” on
page 9-38

0xFFC0 0718 PORTFIO_MASKA_SET “GPIO Mask Interrupt A Set Registers” on
page 9-36

0xFFC0 071C PORTFIO_MASKA_TOGGLE “GPIO Mask Interrupt A Toggle Registers” on
page 9-40

0xFFC0 0720 PORTFIO_MASKB “GPIO Mask Interrupt B Registers” on
page 9-35

0xFFC0 0724 PORTFIO_MASKB_CLEAR “GPIO Mask Interrupt B Clear Registers” on
page 9-39

0xFFC0 0728 PORTFIO_MASKB_SET “GPIO Mask Interrupt B Set Registers” on
page 9-37

0xFFC0 072C PORTFIO_MASKB_TOGGLE “GPIO Mask Interrupt B Toggle Registers” on
page 9-41

0xFFC0 0730 PORTFIO_DIR “GPIO Direction Registers” on page 9-30

0xFFC0 0734 PORTFIO_POLAR “GPIO Polarity Registers” on page 9-33

0xFFC0 0738 PORTFIO_EDGE “Interrupt Sensitivity Registers” on page 9-34

ADSP-BF50x Blackfin Processor Hardware Reference A-9

System MMR Assignments

0xFFC0 073C PORTFIO_BOTH “GPIO Set on Both Edges Registers” on
page 9-34

0xFFC0 0740 PORTFIO_INEN “GPIO Input Enable Registers” on page 9-31

0xFFC0 1500 PORTGIO “GPIO Data Registers” on page 9-31

0xFFC0 1504 PORTGIO_CLEAR “GPIO Clear Registers” on page 9-32

0xFFC0 1508 PORTGIO_SET “GPIO Set Registers” on page 9-32

0xFFC0 150C PORTGIO_TOGGLE “GPIO Toggle Registers” on page 9-33

0xFFC0 1510 PORTGIO_MASKA “GPIO Mask Interrupt A Registers” on
page 9-35

0xFFC0 1514 PORTGIO_MASKA_CLEAR “GPIO Mask Interrupt A Clear Registers” on
page 9-38

0xFFC0 1518 PORTGIO_MASKA_SET “GPIO Mask Interrupt A Set Registers” on
page 9-36

0xFFC0 151C PORTGIO_MASKA_TOGGLE “GPIO Mask Interrupt A Toggle Registers” on
page 9-40

0xFFC0 1520 PORTGIO_MASKB “GPIO Mask Interrupt B Registers” on
page 9-35

0xFFC0 1524 PORTGIO_MASKB_CLEAR “GPIO Mask Interrupt B Clear Registers” on
page 9-39

0xFFC0 1528 PORTGIO_MASKB_SET “GPIO Mask Interrupt B Set Registers” on
page 9-37

0xFFC0 152C PORTGIO_MASKB_TOGGLE “GPIO Mask Interrupt B Toggle Registers” on
page 9-41

0xFFC0 1530 PORTGIO_DIR “GPIO Direction Registers” on page 9-30

0xFFC0 1534 PORTGIO_POLAR “GPIO Polarity Registers” on page 9-33

0xFFC0 1538 PORTGIO_EDGE “Interrupt Sensitivity Registers” on page 9-34

0xFFC0 153C PORTGIO_BOTH “GPIO Set on Both Edges Registers” on
page 9-34

0xFFC0 1540 PORTGIO_INEN “GPIO Input Enable Registers” on page 9-31

Table A-8. Ports Registers (Cont’d)

Memory-Mapped
Address

Register Name For individual bits, see this diagram:

Ports Registers

A-10 ADSP-BF50x Blackfin Processor Hardware Reference

0xFFC0 1700 PORTHIO “GPIO Data Registers” on page 9-31

0xFFC0 1704 PORTHIO_CLEAR “GPIO Clear Registers” on page 9-32

0xFFC0 1708 PORTHIO_SET “GPIO Set Registers” on page 9-32

0xFFC0 170C PORTHIO_TOGGLE “GPIO Toggle Registers” on page 9-33

0xFFC0 1710 PORTHIO_MASKA “GPIO Mask Interrupt A Registers” on
page 9-35

0xFFC0 1714 PORTHIO_MASKA_CLEAR “GPIO Mask Interrupt A Clear Registers” on
page 9-38

0xFFC0 1718 PORTHIO_MASKA_SET “GPIO Mask Interrupt A Set Registers” on
page 9-36

0xFFC0 171C PORTHIO_MASKA_TOGGLE “GPIO Mask Interrupt A Toggle Registers” on
page 9-40

0xFFC0 1720 PORTHIO_MASKB “GPIO Mask Interrupt B Registers” on
page 9-35

0xFFC0 1724 PORTHIO_MASKB_CLEAR “GPIO Mask Interrupt B Clear Registers” on
page 9-39

0xFFC0 1728 PORTHIO_MASKB_SET “GPIO Mask Interrupt B Set Registers” on
page 9-37

0xFFC0 172C PORTHIO_MASKB_TOGGLE “GPIO Mask Interrupt B Toggle Registers” on
page 9-41

0xFFC0 1730 PORTHIO_DIR “GPIO Direction Registers” on page 9-30

0xFFC0 1734 PORTHIO_POLAR “GPIO Polarity Registers” on page 9-33

0xFFC0 1738 PORTHIO_EDGE “Interrupt Sensitivity Registers” on page 9-34

0xFFC0 173C PORTHIO_BOTH “GPIO Set on Both Edges Registers” on
page 9-34

0xFFC0 1740 PORTHIO_INEN “GPIO Input Enable Registers” on page 9-31

0xFFC0 3200 PORTF_FER “Function Enable Registers” on page 9-30

0xFFC0 3204 PORTG_FER “Function Enable Registers” on page 9-30

Table A-8. Ports Registers (Cont’d)

Memory-Mapped
Address

Register Name For individual bits, see this diagram:

ADSP-BF50x Blackfin Processor Hardware Reference A-11

System MMR Assignments

Timer Registers
Timer registers (0xFFC0 0600 – 0xFFC0 06FF) are listed in Table A-9.

0xFFC0 3208 PORTH_FER “Function Enable Registers” on page 9-30

0xFFC0 3210 PORTF_MUX “Port F Multiplexer Control Register” on
page 9-27

0xFFC0 3214 PORTG_MUX “Port F Multiplexer Control Register” on
page 9-27

0xFFC0 3218 PORTH_MUX “Port F Multiplexer Control Register” on
page 9-27

0xFFC0 3240 PORTF_HYSTERESIS “Port F Hysteresis Register” on page 9-24

0xFFC0 3244 PORTG_HYSTERESIS “Port G Hysteresis Register” on page 9-25

0xFFC0 3248 PORTH_HYSTERESIS “Port H Hysteresis Register” on page 9-25

0xFFC0 3280 NONGPIO_DRIVE “Drive Strength Control” on page 9-26

0xFFC0 3288 NONGPIO_HYSTERESIS “Non-GPIO Hysteresis Register” on page 9-26

Table A-9. Timer Registers

Memory-Mapped
Address

Register Name For individual bits, see this diagram:

0xFFC0 0600 TIMER0_CONFIG “Timer Configuration Register (TIMER_
CONFIG)” on page 10-41

0xFFC0 0604 TIMER0_COUNTER “Timer Counter Register (TIMER_COUN-
TER)” on page 10-42

0xFFC0 0608 TIMER0_PERIOD “Timer Period (TIMER_PERIOD) and Timer
Width (TIMER_WIDTH) Registers” on
page 10-43

Table A-8. Ports Registers (Cont’d)

Memory-Mapped
Address

Register Name For individual bits, see this diagram:

Timer Registers

A-12 ADSP-BF50x Blackfin Processor Hardware Reference

0xFFC0 060C TIMER0_WIDTH “Timer Period (TIMER_PERIOD) and Timer
Width (TIMER_WIDTH) Registers” on
page 10-43

0xFFC0 0610 TIMER1_CONFIG “Timer Configuration Register (TIMER_
CONFIG)” on page 10-41

0xFFC0 0614 TIMER1_COUNTER “Timer Counter Register (TIMER_COUN-
TER)” on page 10-42

0xFFC0 0618 TIMER1_PERIOD “Timer Period (TIMER_PERIOD) and Timer
Width (TIMER_WIDTH) Registers” on
page 10-43

0xFFC0 061C TIMER1_WIDTH “Timer Period (TIMER_PERIOD) and Timer
Width (TIMER_WIDTH) Registers” on
page 10-43

0xFFC0 0620 TIMER2_CONFIG “Timer Configuration Register (TIMER_
CONFIG)” on page 10-41

0xFFC0 0624 TIMER2_COUNTER “Timer Counter Register (TIMER_COUN-
TER)” on page 10-42

0xFFC0 0628 TIMER2_PERIOD “Timer Period (TIMER_PERIOD) and Timer
Width (TIMER_WIDTH) Registers” on
page 10-43

0xFFC0 062C TIMER2_WIDTH “Timer Period (TIMER_PERIOD) and Timer
Width (TIMER_WIDTH) Registers” on
page 10-43

0xFFC0 0630 TIMER3_CONFIG “Timer Configuration Register (TIMER_
CONFIG)” on page 10-41

0xFFC0 0634 TIMER3_COUNTER “Timer Counter Register (TIMER_COUN-
TER)” on page 10-42

0xFFC0 0638 TIMER3_PERIOD “Timer Period (TIMER_PERIOD) and Timer
Width (TIMER_WIDTH) Registers” on
page 10-43

Table A-9. Timer Registers (Cont’d)

Memory-Mapped
Address

Register Name For individual bits, see this diagram:

ADSP-BF50x Blackfin Processor Hardware Reference A-13

System MMR Assignments

0xFFC0 063C TIMER3_WIDTH “Timer Period (TIMER_PERIOD) and Timer
Width (TIMER_WIDTH) Registers” on
page 10-43

0xFFC0 0640 TIMER4_CONFIG “Timer Configuration Register (TIMER_
CONFIG)” on page 10-41

0xFFC0 0644 TIMER4_COUNTER “Timer Counter Register (TIMER_COUN-
TER)” on page 10-42

0xFFC0 0648 TIMER4_PERIOD “Timer Period (TIMER_PERIOD) and Timer
Width (TIMER_WIDTH) Registers” on
page 10-43

0xFFC0 064C TIMER4_WIDTH “Timer Period (TIMER_PERIOD) and Timer
Width (TIMER_WIDTH) Registers” on
page 10-43

0xFFC0 0650 TIMER5_CONFIG “Timer Configuration Register (TIMER_
CONFIG)” on page 10-41

0xFFC0 0654 TIMER5_COUNTER “Timer Counter Register (TIMER_COUN-
TER)” on page 10-42

0xFFC0 0658 TIMER5_PERIOD “Timer Period (TIMER_PERIOD) and Timer
Width (TIMER_WIDTH) Registers” on
page 10-43

0xFFC0 065C TIMER5_WIDTH “Timer Period (TIMER_PERIOD) and Timer
Width (TIMER_WIDTH) Registers” on
page 10-43

0xFFC0 0660 TIMER6_CONFIG “Timer Configuration Register (TIMER_
CONFIG)” on page 10-41

0xFFC0 0664 TIMER6_COUNTER “Timer Counter Register (TIMER_COUN-
TER)” on page 10-42

0xFFC0 0668 TIMER6_PERIOD “Timer Period (TIMER_PERIOD) and Timer
Width (TIMER_WIDTH) Registers” on
page 10-43

Table A-9. Timer Registers (Cont’d)

Memory-Mapped
Address

Register Name For individual bits, see this diagram:

Timer Registers

A-14 ADSP-BF50x Blackfin Processor Hardware Reference

0xFFC0 066C TIMER6_WIDTH “Timer Period (TIMER_PERIOD) and Timer
Width (TIMER_WIDTH) Registers” on
page 10-43

0xFFC0 0670 TIMER7_CONFIG “Timer Configuration Register (TIMER_
CONFIG)” on page 10-41

0xFFC0 0674 TIMER7_COUNTER “Timer Counter Register (TIMER_COUN-
TER)” on page 10-42

0xFFC0 0678 TIMER7_PERIOD “Timer Period (TIMER_PERIOD) and Timer
Width (TIMER_WIDTH) Registers” on
page 10-43

0xFFC0 067C TIMER7_WIDTH “Timer Period (TIMER_PERIOD) and Timer
Width (TIMER_WIDTH) Registers” on
page 10-43

0xFFC0 0680 TIMER_ENABLE “Timer Enable Register (TIMER_ENABLE)”
on page 10-36

0xFFC0 0684 TIMER_DISABLE “Timer Disable Register (TIMER_DISABLE)”
on page 10-37

0xFFC0 0688 TIMER_STATUS “Timer Status Register (TIMER_STATUS)” on
page 10-39

Table A-9. Timer Registers (Cont’d)

Memory-Mapped
Address

Register Name For individual bits, see this diagram:

ADSP-BF50x Blackfin Processor Hardware Reference A-15

System MMR Assignments

Watchdog Timer Registers
Watchdog timer registers (0xFFC0 0200 – 0xFFC0 02FF) are listed in
Table A-10.

GP Counter Registers
GP Counter 0 registers (0xFFC0 3500 – 0xFFC0 351C) are listed in
Table A-11, and GP Counter 1 registers (0xFFC0 3300 – 0xFFC0 331C)
are listed in Table A-12.

Table A-10. Watchdog Timer Registers

Memory-Mapped
Address

Register Name For individual bits, see this diagram:

0xFFC0 0200 WDOG_CTL “Watchdog Control (WDOG_CTL) Register”
on page 12-7

0xFFC0 0204 WDOG_CNT “Watchdog Count (WDOG_CNT) Register”
on page 12-5

0xFFC0 0208 WDOG_STAT “Watchdog Status (WDOG_STAT) Register”
on page 12-6

Table A-11. GP Counter 0 Registers

Memory-Mapped
Address

Register Name For individual bits, see this diagram:

0xFFC0 3500 CNT0_CONFIG “Counter Configuration Register (CNT_CON-
FIG)” on page 13-19

0xFFC0 3504 CNT0_IMASK “Counter Interrupt Mask Register (CNT_
IMASK)” on page 13-20

0xFFC0 3508 CNT0_STATUS “Counter Status Register (CNT_STATUS)” on
page 13-20

0xFFC0 350C CNT0_COMMAND “Counter Status Register (CNT_STATUS)” on
page 13-20

GP Counter Registers

A-16 ADSP-BF50x Blackfin Processor Hardware Reference

0xFFC0 3510 CNT0_DEBOUNCE “Counter Debounce Register (CNT_
DEBOUNCE)” on page 13-23

0xFFC0 3514 CNT0_COUNTER “Counter Count Value Register (CNT_
COUNTER)” on page 13-24

0xFFC0 3518 CNT0_MAX “Counter Boundary Registers (CNT_MIN and
CNT_MAX)” on page 13-25

0xFFC0 351C CNT0_MIN “Counter Boundary Registers (CNT_MIN and
CNT_MAX)” on page 13-25

Table A-12. GP Counter 1 Registers

Memory-Mapped
Address

Register Name For individual bits, see this diagram:

0xFFC0 3300 CNT1_CONFIG “Counter Configuration Register (CNT_CON-
FIG)” on page 13-19

0xFFC0 3304 CNT1_IMASK “Counter Interrupt Mask Register (CNT_
IMASK)” on page 13-20

0xFFC0 3308 CNT1_STATUS “Counter Status Register (CNT_STATUS)” on
page 13-20

0xFFC0 330C CNT1_COMMAND “Counter Status Register (CNT_STATUS)” on
page 13-20

0xFFC0 3310 CNT1_DEBOUNCE “Counter Debounce Register (CNT_
DEBOUNCE)” on page 13-23

0xFFC0 33514 CNT1_COUNTER “Counter Count Value Register (CNT_
COUNTER)” on page 13-24

0xFFC0 3318 CNT1_MAX “Counter Boundary Registers (CNT_MIN and
CNT_MAX)” on page 13-25

0xFFC0 331C CNT1_MIN “Counter Boundary Registers (CNT_MIN and
CNT_MAX)” on page 13-25

Table A-11. GP Counter 0 Registers (Cont’d)

Memory-Mapped
Address

Register Name For individual bits, see this diagram:

ADSP-BF50x Blackfin Processor Hardware Reference A-17

System MMR Assignments

Dynamic Power Management Registers
Dynamic power management registers (0xFFC0 0000 – 0xFFC0 00FF)
are listed in Table A-13.

PPI Registers
PPI registers (0xFFC0 1000 – 0xFFC0 10FF) are listed in Table A-14.

Table A-13. Dynamic Power Management Registers

Memory-Mapped
Address

Register Name For individual bits, see this diagram:

0xFFC0 0000 PLL_CTL “PLL Control Register” on page 8-21

0xFFC0 0004 PLL_DIV “PLL Divide Register” on page 8-20

0xFFC0 0008 VR_CTL “Voltage Regulator Control Register” on
page 8-22

0xFFC0 000C PLL_STAT “PLL Status Register” on page 8-21

0xFFC0 0010 PLL_LOCKCNT “PLL Lock Count Register” on page 8-22

Table A-14. PPI Registers

Memory-Mapped
Address

Register Name For individual bits, see this diagram:

0xFFC0 1000 PPI_CONTROL “PPI Control Register (PPI_CONTROL)” on
page 20-25

0xFFC0 1004 PPI_STATUS “PPI Status Register (PPI_STATUS)” on
page 20-29

0xFFC0 1008 PPI_COUNT “PPI Transfer Count Register (PPI_COUNT)”
on page 20-32

SPI Controller Registers

A-18 ADSP-BF50x Blackfin Processor Hardware Reference

SPI Controller Registers
SPI0 controller registers (0xFFC0 0500 – 0xFFC0 05FF) are listed in
Table A-15.

SPI1 controller registers (0xFFC0 3400 – 0xFFC0 34FF) are listed in
Table A-16 on page A-19.

0xFFC0 100C PPI_DELAY “PPI Delay Count Register (PPI_DELAY)” on
page 20-32

0xFFC0 1010 PPI_FRAME “PPI Lines Per Frame Register (PPI_FRAME)”
on page 20-33

Table A-15. SPI0 Controller Registers

Memory-Mapped
Address

Register Name For individual bits, see this diagram:

0xFFC0 0500 SPI0_CTL “SPI Control (SPI_CTL) Register” on
page 18-36

0xFFC0 0504 SPI0_FLG “SPI Flag (SPI_FLG) Register” on page 18-38

0xFFC0 0508 SPI0_STAT “SPI Status (SPI_STAT) Register” on
page 18-40

0xFFC0 050C SPI0_TDBR “SPI Transmit Data Buffer (SPI_TDBR) Regis-
ter” on page 18-42

0xFFC0 0510 SPI0_RDBR “SPI Receive Data Buffer (SPI_RDBR) Regis-
ter” on page 18-43

0xFFC0 0514 SPI0_BAUD “SPI Baud Rate (SPI_BAUD) Register” on
page 18-35

0xFFC0 0518 SPI0_SHADOW “SPI RDBR Shadow (SPI_SHADOW) Regis-
ter” on page 18-44

Table A-14. PPI Registers (Cont’d)

Memory-Mapped
Address

Register Name For individual bits, see this diagram:

ADSP-BF50x Blackfin Processor Hardware Reference A-19

System MMR Assignments

SPORT Controller Registers
SPORT0 controller registers (0xFFC0 0800 – 0xFFC0 08FF) are listed in
Table A-17. SPORT1 controller registers (0xFFC0 0900 – 0xFFC0 09FF)
are listed in Table A-18 on page A-21.

Table A-16. SPI1 Controller Registers

Memory-Mapped
Address

Register Name For individual bits, see this diagram:

0xFFC0 3400 SPI1_CTL “SPI Control (SPI_CTL) Register” on
page 18-36

0xFFC0 3404 SPI1_FLG “SPI Flag (SPI_FLG) Register” on page 18-38

0xFFC0 3408 SPI1_STAT “SPI Status (SPI_STAT) Register” on
page 18-40

0xFFC0 340C SPI1_TDBR “SPI Transmit Data Buffer (SPI_TDBR) Regis-
ter” on page 18-42

0xFFC0 3410 SPI1_RDBR “SPI Receive Data Buffer (SPI_RDBR) Regis-
ter” on page 18-43

0xFFC0 3414 SPI1_BAUD “SPI Baud Rate (SPI_BAUD) Register” on
page 18-35

0xFFC0 3418 SPI1_SHADOW “SPI RDBR Shadow (SPI_SHADOW) Regis-
ter” on page 18-44

Table A-17. SPORT0 Controller Registers

Memory-Mapped
Address

Register Name For individual bits, see this diagram:

0xFFC0 0800 SPORT0_TCR1 “SPORT Transmit Configuration (SPORT_
TCR1 and SPORT_TCR2) Registers” on
page 19-47

0xFFC0 0804 SPORT0_TCR2 “SPORT Transmit Configuration (SPORT_
TCR1 and SPORT_TCR2) Registers” on
page 19-47

SPORT Controller Registers

A-20 ADSP-BF50x Blackfin Processor Hardware Reference

0xFFC0 0808 SPORT0_TCLKDIV “SPORT Transmit and Receive Serial Clock
Divider (SPORT_TCLKDIV and SPORT_
RCLKDIV) Registers” on page 19-63

0xFFC0 080C SPORT0_TFSDIV “SPORT Transmit and Receive Frame Sync
Divider (SPORT_TFSDIV and SPORT_RFS-
DIV) Registers” on page 19-64

0xFFC0 0810 SPORT0_TX “SPORT Transmit Data (SPORT_TX) Regis-
ter” on page 19-57

0xFFC0 0818 SPORT0_RX “SPORT Receive Data (SPORT_RX) Register”
on page 19-59

0xFFC0 0820 SPORT0_RCR1 “SPORT Receive Configuration (SPORT_
RCR1 and SPORT_RCR2) Registers” on
page 19-52

0xFFC0 0824 SPORT0_RCR2 “SPORT Receive Configuration (SPORT_
RCR1 and SPORT_RCR2) Registers” on
page 19-52

0xFFC0 0828 SPORT0_RCLKDIV “SPORT Transmit and Receive Serial Clock
Divider (SPORT_TCLKDIV and SPORT_
RCLKDIV) Registers” on page 19-63

0xFFC0 082C SPORT0_RFSDIV “SPORT Transmit and Receive Frame Sync
Divider (SPORT_TFSDIV and SPORT_RFS-
DIV) Registers” on page 19-64

0xFFC0 0830 SPORT0_STAT “SPORT Status (SPORT_STAT) Register” on
page 19-62

0xFFC0 0834 SPORT0_CHNL “SPORT Current Channel (SPORT_CHNL)
Register” on page 19-66

0xFFC0 0838 SPORT0_MCMC1 “SPORT Multichannel Configuration
(SPORT_MCMC1 and SPORT_MCMC2)
Registers” on page 19-65

0xFFC0 083C SPORT0_MCMC2 “SPORT Multichannel Configuration
(SPORT_MCMC1 and SPORT_MCMC2)
Registers” on page 19-65

Table A-17. SPORT0 Controller Registers (Cont’d)

Memory-Mapped
Address

Register Name For individual bits, see this diagram:

ADSP-BF50x Blackfin Processor Hardware Reference A-21

System MMR Assignments

0xFFC0 0840 SPORT0_MTCS0 “SPORT Multichannel Transmit Selection
(SPORT_MTCSn) Registers” on page 19-68

0xFFC0 0844 SPORT0_MTCS1 “SPORT Multichannel Transmit Selection
(SPORT_MTCSn) Registers” on page 19-68

0xFFC0 0848 SPORT0_MTCS2 “SPORT Multichannel Transmit Selection
(SPORT_MTCSn) Registers” on page 19-68

0xFFC0 084C SPORT0_MTCS3 “SPORT Multichannel Transmit Selection
(SPORT_MTCSn) Registers” on page 19-68

0xFFC0 0850 SPORT0_MRCS0 “SPORT Multichannel Receive Selection
(SPORT_MRCSn) Registers” on page 19-67

0xFFC0 0854 SPORT0_MRCS1 “SPORT Multichannel Receive Selection
(SPORT_MRCSn) Registers” on page 19-67

0xFFC0 0858 SPORT0_MRCS2 “SPORT Multichannel Receive Selection
(SPORT_MRCSn) Registers” on page 19-67

0xFFC0 085C SPORT0_MRCS3 “SPORT Multichannel Receive Selection
(SPORT_MRCSn) Registers” on page 19-67

Table A-18. SPORT1 Controller Registers

Memory-Mapped
Address

Register Name For individual bits, see this diagram:

0xFFC0 0900 SPORT1_TCR1 “SPORT Transmit Configuration (SPORT_
TCR1 and SPORT_TCR2) Registers” on
page 19-47

0xFFC0 0904 SPORT1_TCR2 “SPORT Transmit Configuration (SPORT_
TCR1 and SPORT_TCR2) Registers” on
page 19-47

0xFFC0 0908 SPORT1_TCLKDIV “SPORT Transmit and Receive Serial Clock
Divider (SPORT_TCLKDIV and SPORT_
RCLKDIV) Registers” on page 19-63

Table A-17. SPORT0 Controller Registers (Cont’d)

Memory-Mapped
Address

Register Name For individual bits, see this diagram:

SPORT Controller Registers

A-22 ADSP-BF50x Blackfin Processor Hardware Reference

0xFFC0 090C SPORT1_TFSDIV “SPORT Transmit and Receive Frame Sync
Divider (SPORT_TFSDIV and SPORT_RFS-
DIV) Registers” on page 19-64

0xFFC0 0910 SPORT1_TX “SPORT Transmit Data (SPORT_TX) Regis-
ter” on page 19-57

0xFFC0 0918 SPORT1_RX “SPORT Receive Data (SPORT_RX) Register”
on page 19-59

0xFFC0 0920 SPORT1_RCR1 “SPORT Receive Configuration (SPORT_
RCR1 and SPORT_RCR2) Registers” on
page 19-52

0xFFC0 0924 SPORT1_RCR2 “SPORT Receive Configuration (SPORT_
RCR1 and SPORT_RCR2) Registers” on
page 19-52

0xFFC0 0928 SPORT1_RCLKDIV “SPORT Transmit and Receive Serial Clock
Divider (SPORT_TCLKDIV and SPORT_
RCLKDIV) Registers” on page 19-63

0xFFC0 092C SPORT1_RFSDIV “SPORT Transmit and Receive Frame Sync
Divider (SPORT_TFSDIV and SPORT_RFS-
DIV) Registers” on page 19-64

0xFFC0 0930 SPORT1_STAT “SPORT Status (SPORT_STAT) Register” on
page 19-62

0xFFC0 0934 SPORT1_CHNL “SPORT Current Channel (SPORT_CHNL)
Register” on page 19-66

0xFFC0 0938 SPORT1_MCMC1 “SPORT Multichannel Configuration
(SPORT_MCMC1 and SPORT_MCMC2)
Registers” on page 19-65

0xFFC0 093C SPORT1_MCMC2 “SPORT Multichannel Configuration
(SPORT_MCMC1 and SPORT_MCMC2)
Registers” on page 19-65

0xFFC0 0940 SPORT1_MTCS0 “SPORT Multichannel Transmit Selection
(SPORT_MTCSn) Registers” on page 19-68

Table A-18. SPORT1 Controller Registers (Cont’d)

Memory-Mapped
Address

Register Name For individual bits, see this diagram:

ADSP-BF50x Blackfin Processor Hardware Reference A-23

System MMR Assignments

UART Controller Registers
UART0 controller registers (0xFFC0 0400 – 0xFFC0 04FF) are listed in
Table A-19. UART1 controller registers (0xFFC0 2000 – 0xFFC0 20FF)
are listed in Table A-20.

0xFFC0 0944 SPORT1_MTCS1 “SPORT Multichannel Transmit Selection
(SPORT_MTCSn) Registers” on page 19-68

0xFFC0 0948 SPORT1_MTCS2 “SPORT Multichannel Transmit Selection
(SPORT_MTCSn) Registers” on page 19-68

0xFFC0 094C SPORT1_MTCS3 “SPORT Multichannel Transmit Selection
(SPORT_MTCSn) Registers” on page 19-68

0xFFC0 0950 SPORT1_MRCS0 “SPORT Multichannel Receive Selection
(SPORT_MRCSn) Registers” on page 19-67

0xFFC0 0954 SPORT1_MRCS1 “SPORT Multichannel Receive Selection
(SPORT_MRCSn) Registers” on page 19-67

0xFFC0 0958 SPORT1_MRCS2 “SPORT Multichannel Receive Selection
(SPORT_MRCSn) Registers” on page 19-67

0xFFC0 095C SPORT1_MRCS3 “SPORT Multichannel Receive Selection
(SPORT_MRCSn) Registers” on page 19-67

Table A-19. UART0 Controller Registers

Memory-Mapped
Address

Register Name For individual bits, see this diagram:

0XFFC0 0400 UART0_DLL “UARTx_DLL and UARTx_DLH Registers”
on page 15-43

0XFFC0 0404 UART0_DLH “UARTx_DLL and UARTx_DLH Registers”
on page 15-43

0XFFC0 0408 UART0_GCTL “UARTx_GCTL Registers” on page 15-45

Table A-18. SPORT1 Controller Registers (Cont’d)

Memory-Mapped
Address

Register Name For individual bits, see this diagram:

UART Controller Registers

A-24 ADSP-BF50x Blackfin Processor Hardware Reference

0XFFC0 040C UART0_LCR “UARTx_LCR Registers” on page 15-28

0XFFC0 0410 UART0_MCR “UARTx_MCR Registers” on page 15-31

0XFFC0 0414 UART0_LSR “UARTx_LSR Registers” on page 15-33

0XFFC0 0418 UART0_MSR “UARTx_MSR Registers” on page 15-36

0XFFC0 041C UART0_SCR “UARTx_SCR Registers” on page 15-44

0XFFC0 0420 UART0_IER_SET “UARTx_IER_SET and UARTx_IER_CLEAR
Registers” on page 15-39

0XFFC0 0424 UART0_IER_CLEAR “UARTx_IER_SET and UARTx_IER_CLEAR
Registers” on page 15-39

0XFFC0 0428 UART0_THR “UARTx_THR Registers” on page 15-37

0XFFC0 042C UART0_RBR “UARTx_RBR Registers” on page 15-38

Table A-20. UART1 Controller Registers

Memory-Mapped
Address

Register Name For individual bits, see this diagram:

0XFFC0 2000 UART1_DLL “UARTx_DLL and UARTx_DLH Registers”
on page 15-43

0XFFC0 2004 UART1_DLH “UARTx_DLL and UARTx_DLH Registers”
on page 15-43

0XFFC0 2008 UART1_GCTL “UARTx_GCTL Registers” on page 15-45

0XFFC0 200C UART1_LCR “UARTx_LCR Registers” on page 15-28

0XFFC0 2010 UART1_MCR “UARTx_MCR Registers” on page 15-31

0XFFC0 2014 UART1_LSR “UARTx_LSR Registers” on page 15-33

0XFFC0 2018 UART1_MSR “UARTx_MSR Registers” on page 15-36

0XFFC0 201C UART1_SCR “UARTx_SCR Registers” on page 15-44

0XFFC0 2020 UART1_IER_SET “UARTx_IER_SET and UARTx_IER_CLEAR
Registers” on page 15-39

Table A-19. UART0 Controller Registers (Cont’d)

Memory-Mapped
Address

Register Name For individual bits, see this diagram:

ADSP-BF50x Blackfin Processor Hardware Reference A-25

System MMR Assignments

TWI Registers
Two-Wire Interface (TWI) registers (0xFFC0 1400 – 0xFFC0 14FF) are
listed in Table A-21.

0XFFC0 2024 UART1_IER_CLEAR “UARTx_IER_SET and UARTx_IER_CLEAR
Registers” on page 15-39

0XFFC0 2028 UART1_THR “UARTx_THR Registers” on page 15-37

0XFFC0 202C UART1_RBR “UARTx_RBR Registers” on page 15-38

Table A-21. TWI Registers

Memory-Mapped
Address

Register Name For individual bits, see this diagram:

0xFFC0 1400 TWI_CLKDIV “SCL Clock Divider Register (TWI_CLK-
DIV)” on page 16-26

0xFFC0 1404 TWI_CONTROL “TWI CONTROL Register (TWI_CON-
TROL)” on page 16-25

0xFFC0 1408 TWI_SLAVE_CTL “TWI Slave Mode Control Register (TWI_
SLAVE_CTL)” on page 16-27

0xFFC0 140C TWI_SLAVE_STAT “TWI Slave Mode Status Register (TWI_
SLAVE_STAT)” on page 16-29

0xFFC0 1410 TWI_SLAVE_ADDR “TWI Slave Mode Address Register (TWI_
SLAVE_ADDR)” on page 16-29

0xFFC0 1414 TWI_MASTER_CTL “TWI Master Mode Control Register (TWI_
MASTER_CTL)” on page 16-31

0xFFC0 1418 TWI_MASTER_STAT “TWI Master Mode Status Register (TWI_
MASTER_STAT)” on page 16-35

0xFFC0 141C TWI_MASTER_ADDR “TWI Master Mode Address Register (TWI_
MASTER_ADDR)” on page 16-34

Table A-20. UART1 Controller Registers (Cont’d)

Memory-Mapped
Address

Register Name For individual bits, see this diagram:

CAN Registers

A-26 ADSP-BF50x Blackfin Processor Hardware Reference

CAN Registers
Controller Area Network (CAN) registers (0xFFC0 2A00 –
0xFFC0 2FFF) are listed in Table A-22, Table A-23, Table A-24, and
Table A-25.

0xFFC0 1420 TWI_INT_STAT “TWI Interrupt Status Register (TWI_INT_
STAT)” on page 16-43

0xFFC0 1424 TWI_INT_MASK “TWI Interrupt Mask Register (TWI_INT_
MASK)” on page 16-42

0xFFC0 1428 TWI_FIFO_CTL “TWI FIFO Control Register (TWI_FIFO_
CTL)” on page 16-38

0xFFC0 142C TWI_FIFO_STAT “TWI FIFO Status Register (TWI_FIFO_
STAT)” on page 16-40

0xFFC0 1480 TWI_XMT_DATA8 “TWI FIFO Transmit Data Single Byte Regis-
ter (TWI_XMT_DATA8)” on page 16-46

0xFFC0 1484 TWI_XMT_DATA16 “TWI FIFO Transmit Data Double Byte Regis-
ter (TWI_XMT_DATA16)” on page 16-47

0xFFC0 1488 TWI_RCV_DATA8 “TWI FIFO Receive Data Single Byte Register
(TWI_RCV_DATA8)” on page 16-48

0xFFC0 148C TWI_RCV_DATA16 “TWI FIFO Receive Data Double Byte Register
(TWI_RCV_DATA16)” on page 16-48

Table A-22. CAN Mailbox Configuration 1 Registers
(For Mailboxes 0-15)

Memory-Mapped
Address

Register Name For individual bits, see this diagram:

0XFFC0 2A00 CAN_MC1 Mailbox config reg 1

0XFFC0 2A04 CAN_MD1 Mailbox direction reg 1

Table A-21. TWI Registers (Cont’d)

Memory-Mapped
Address

Register Name For individual bits, see this diagram:

ADSP-BF50x Blackfin Processor Hardware Reference A-27

System MMR Assignments

0XFFC0 2A08 CAN_TRS1 Transmit Request Set reg 1

0XFFC0 2A0C CAN_TRR1 Transmit Request Reset reg 1

0XFFC0 2A10 CAN_TA1 Transmit Acknowledge reg 1

0XFFC0 2A14 CAN_AA1 Transmit Abort Acknowledge reg 1

0XFFC0 2A18 CAN_RMP1 Receive Message Pending reg 1

0XFFC0 2A1C CAN_RML1 Receive Message Lost reg 1

0XFFC0 2A20 CAN_MBTIF1 Mailbox Transmit Interrupt Flag reg 1

0XFFC0 2A24 CAN_MBRIF1 Mailbox Receive Interrupt Flag reg 1

0XFFC0 2A28 CAN_MBIM1 Mailbox Interrupt Mask reg 1

0XFFC0 2A2C CAN_RFH1 Remote Frame Handling reg 1

0XFFC0 2A30 CAN_OPSS1 Overwrite Protection Single Shot Xmission reg
1

Table A-23. CAN Mailbox Configuration 2 Registers
(For Mailboxes 16-31)

Memory-Mapped
Address

Register Name For individual bits, see this diagram:

0XFFC0 2A40 CAN_MC2 Mailbox config reg 2

0XFFC0 2A44 CAN_MD2 Mailbox direction reg 2

0XFFC0 2A48 CAN_TRS2 Transmit Request Set reg 2

0XFFC0 2A4C CAN_TRR2 Transmit Request Reset reg 2

0XFFC0 2A50 CAN_TA2 Transmit Acknowledge reg 2

0XFFC0 2A54 CAN_AA2 Transmit Abort Acknowledge reg 2

0XFFC0 2A58 CAN_RMP2 Receive Message Pending reg 2

0XFFC0 2A5C CAN_RML2 Receive Message Lost reg 2

Table A-22. CAN Mailbox Configuration 1 Registers
(For Mailboxes 0-15) (Cont’d)

Memory-Mapped
Address

Register Name For individual bits, see this diagram:

CAN Registers

A-28 ADSP-BF50x Blackfin Processor Hardware Reference

0XFFC0 2A60 CAN_MBTIF2 Mailbox Transmit Interrupt Flag reg 2

0XFFC0 2A64 CAN_MBRIF2 Mailbox Receive Interrupt Flag reg 2

0XFFC0 2A68 CAN_MBIM2 Mailbox Interrupt Mask reg 2

0XFFC0 2A6C CAN_RFH2 Remote Frame Handling reg 2

0XFFC0 2A70 CAN_OPSS2 Overwrite Protection Single Shot Xmission reg
2

0XFFC0 2A80 CAN_CLOCK Bit Timing Configuration register 0

0XFFC0 2A84 CAN_TIMING Bit Timing Configuration register 1

0XFFC0 2A88 CAN_DEBUG Debug Register

0XFFC0 2A8C CAN_STATUS Global Status Register

0XFFC0 2A90 CAN_CEC Error Counter Register

0XFFC0 2A94 CAN_GIS Global Interrupt Status Register

0XFFC0 2A98 CAN_GIM Global Interrupt Mask Register

0XFFC0 2A9C CAN_GIF Global Interrupt Flag Register

0XFFC0 2AA0 CAN_CONTROL Master Control Register

0XFFC0 2AA4 CAN_INTR Interrupt Pending Register

0XFFC0 2AAC CAN_MBTD Mailbox Temporary Disable Feature

0XFFC0 2AB0 CAN_EWR Programmable Warning Level

0XFFC0 2AB4 CAN_ESR Error Status Register

0XFFC0 2AC4 CAN_UCCNT Universal Counter

0XFFC0 2AC8 CAN_UCRC Universal Counter Reload/Capture Register

0XFFC0 2ACC CAN_UCCNF Universal Counter Configuration Register

Table A-23. CAN Mailbox Configuration 2 Registers
(For Mailboxes 16-31) (Cont’d)

Memory-Mapped
Address

Register Name For individual bits, see this diagram:

ADSP-BF50x Blackfin Processor Hardware Reference A-29

System MMR Assignments

Table A-24. CAN Mailbox Acceptance Mask Registers

Memory-Mapped
Address

Register Name For individual bits, see this diagram:

0XFFC0 2B00 CAN_AM00L Mailbox 0 Low Acceptance Mask

0XFFC0 2B04 CAN_AM00H Mailbox 0 High Acceptance Mask

0XFFC0 2B08 CAN_AM01L Mailbox 1 Low Acceptance Mask

0XFFC0 2B0C CAN_AM01H Mailbox 1 High Acceptance Mask

0XFFC0 2B10 CAN_AM02L Mailbox 2 Low Acceptance Mask

0XFFC0 2B14 CAN_AM02H Mailbox 2 High Acceptance Mask

0XFFC0 2B18 CAN_AM03L Mailbox 3 Low Acceptance Mask

0XFFC0 2B1C CAN_AM03H Mailbox 3 High Acceptance Mask

0XFFC0 2B20 CAN_AM04L Mailbox 4 Low Acceptance Mask

0XFFC0 2B24 CAN_AM04H Mailbox 4 High Acceptance Mask

0XFFC0 2B28 CAN_AM05L Mailbox 5 Low Acceptance Mask

0XFFC0 2B2C CAN_AM05H Mailbox 5 High Acceptance Mask

0XFFC0 2B30 CAN_AM06L Mailbox 6 Low Acceptance Mask

0XFFC0 2B34 CAN_AM06H Mailbox 6 High Acceptance Mask

0XFFC0 2B38 CAN_AM07L Mailbox 7 Low Acceptance Mask

0XFFC0 2B3C CAN_AM07H Mailbox 7 High Acceptance Mask

0XFFC0 2B40 CAN_AM08L Mailbox 8 Low Acceptance Mask

0XFFC0 2B44 CAN_AM08H Mailbox 8 High Acceptance Mask

0XFFC0 2B48 CAN_AM09L Mailbox 9 Low Acceptance Mask

0XFFC0 2B4C CAN_AM09H Mailbox 9 High Acceptance Mask

0XFFC0 2B50 CAN_AM10L Mailbox 10 Low Acceptance Mask

0XFFC0 2B54 CAN_AM10H Mailbox 10 High Acceptance Mask

0XFFC0 2B58 CAN_AM11L Mailbox 11 Low Acceptance Mask

0XFFC0 2B5C CAN_AM11H Mailbox 11 High Acceptance Mask

0XFFC0 2B60 CAN_AM12L Mailbox 12 Low Acceptance Mask

CAN Registers

A-30 ADSP-BF50x Blackfin Processor Hardware Reference

0XFFC0 2B64 CAN_AM12H Mailbox 12 High Acceptance Mask

0XFFC0 2B68 CAN_AM13L Mailbox 13 Low Acceptance Mask

0XFFC0 2B6C CAN_AM13H Mailbox 13 High Acceptance Mask

0XFFC0 2B70 CAN_AM14L Mailbox 14 Low Acceptance Mask

0XFFC0 2B74 CAN_AM14H Mailbox 14 High Acceptance Mask

0XFFC0 2B78 CAN_AM15L Mailbox 15 Low Acceptance Mask

0XFFC0 2B7C CAN_AM15H Mailbox 15 High Acceptance Mask

0XFFC0 2B80 CAN_AM16L Mailbox 16 Low Acceptance Mask

0XFFC0 2B84 CAN_AM16H Mailbox 16 High Acceptance Mask

0XFFC0 2B88 CAN_AM17L Mailbox 17 Low Acceptance Mask

0XFFC0 2B8C CAN_AM17H Mailbox 17 High Acceptance Mask

0XFFC0 2B90 CAN_AM18L Mailbox 18 Low Acceptance Mask

0XFFC0 2B94 CAN_AM18H Mailbox 18 High Acceptance Mask

0XFFC0 2B98 CAN_AM19L Mailbox 19 Low Acceptance Mask

0XFFC0 2B9C CAN_AM19H Mailbox 19 High Acceptance Mask

0XFFC0 2BA0 CAN_AM20L Mailbox 20 Low Acceptance Mask

0XFFC0 2BA4 CAN_AM20H Mailbox 20 High Acceptance Mask

0XFFC0 2BA8 CAN_AM21L Mailbox 21 Low Acceptance Mask

0XFFC0 2BAC CAN_AM21H Mailbox 21 High Acceptance Mask

0XFFC0 2BB0 CAN_AM22L Mailbox 22 Low Acceptance Mask

0XFFC0 2BB4 CAN_AM22H Mailbox 22 High Acceptance Mask

0XFFC0 2BB8 CAN_AM23L Mailbox 23 Low Acceptance Mask

0XFFC0 2BBC CAN_AM23H Mailbox 23 High Acceptance Mask

0XFFC0 2BC0 CAN_AM24L Mailbox 24 Low Acceptance Mask

0XFFC0 2BC4 CAN_AM24H Mailbox 24 High Acceptance Mask

Table A-24. CAN Mailbox Acceptance Mask Registers (Cont’d)

Memory-Mapped
Address

Register Name For individual bits, see this diagram:

ADSP-BF50x Blackfin Processor Hardware Reference A-31

System MMR Assignments

0XFFC0 2BC8 CAN_AM25L Mailbox 25 Low Acceptance Mask

0XFFC0 2BCC CAN_AM25H Mailbox 25 High Acceptance Mask

0XFFC0 2BD0 CAN_AM26L Mailbox 26 Low Acceptance Mask

0XFFC0 2BD4 CAN_AM26H Mailbox 26 High Acceptance Mask

0XFFC0 2BD8 CAN_AM27L Mailbox 27 Low Acceptance Mask

0XFFC0 2BDC CAN_AM27H Mailbox 27 High Acceptance Mask

0XFFC0 2BE0 CAN_AM28L Mailbox 28 Low Acceptance Mask

0XFFC0 2BE4 CAN_AM28H Mailbox 28 High Acceptance Mask

0XFFC0 2BE8 CAN_AM29L Mailbox 29 Low Acceptance Mask

0XFFC0 2BEC CAN_AM29H Mailbox 29 High Acceptance Mask

0XFFC0 2BF0 CAN_AM30L Mailbox 30 Low Acceptance Mask

0XFFC0 2BF4 CAN_AM30H Mailbox 30 High Acceptance Mask

0XFFC0 2BF8 CAN_AM31L Mailbox 31 Low Acceptance Mask

0XFFC0 2BFC CAN_AM31H Mailbox 31 High Acceptance Mask

Table A-25. CAN Mailbox Registers

Memory-Mapped
Address

Register Name For individual bits, see this diagram:

0XFFC0 2C00 CAN_MB00_DATA0 Mailbox 0 Data Word 0 [15:0] Register

0XFFC0 2C04 CAN_MB00_DATA1 Mailbox 0 Data Word 1 [31:16] Register

0XFFC0 2C08 CAN_MB00_DATA2 Mailbox 0 Data Word 2 [47:32] Register

0XFFC0 2C0C CAN_MB00_DATA3 Mailbox 0 Data Word 3 [63:48] Register

0XFFC0 2C10 CAN_MB00_LENGTH Mailbox 0 Data Length Code Register

0XFFC0 2C14 CAN_MB00_TIMESTAMP Mailbox 0 Time Stamp Value Register

0XFFC0 2C18 CAN_MB00_ID0 Mailbox 0 Identifier Low Register

0XFFC0 2C1C CAN_MB00_ID1 Mailbox 0 Identifier High Register

Table A-24. CAN Mailbox Acceptance Mask Registers (Cont’d)

Memory-Mapped
Address

Register Name For individual bits, see this diagram:

CAN Registers

A-32 ADSP-BF50x Blackfin Processor Hardware Reference

0XFFC0 2C20 CAN_MB01_DATA0 Mailbox 1 Data Word 0 [15:0] Register

0XFFC0 2C24 CAN_MB01_DATA1 Mailbox 1 Data Word 1 [31:16] Register

0XFFC0 2C28 CAN_MB01_DATA2 Mailbox 1 Data Word 2 [47:32] Register

0XFFC0 2C2C CAN_MB01_DATA3 Mailbox 1 Data Word 3 [63:48] Register

0XFFC0 2C30 CAN_MB01_LENGTH Mailbox 1 Data Length Code Register

0XFFC0 2C34 CAN_MB01_TIMESTAMP Mailbox 1 Time Stamp Value Register

0XFFC0 2C38 CAN_MB01_ID0 Mailbox 1 Identifier Low Register

0XFFC0 2C3C CAN_MB01_ID1 Mailbox 1 Identifier High Register

0XFFC0 2C40 CAN_MB02_DATA0 Mailbox 2 Data Word 0 [15:0] Register

0XFFC0 2C44 CAN_MB02_DATA1 Mailbox 2 Data Word 1 [31:16] Register

0XFFC0 2C48 CAN_MB02_DATA2 Mailbox 2 Data Word 2 [47:32] Register

0XFFC0 2C4C CAN_MB02_DATA3 Mailbox 2 Data Word 3 [63:48] Register

0XFFC0 2C50 CAN_MB02_LENGTH Mailbox 2 Data Length Code Register

0XFFC0 2C54 CAN_MB02_TIMESTAMP Mailbox 2 Time Stamp Value Register

0XFFC0 2C58 CAN_MB02_ID0 Mailbox 2 Identifier Low Register

0XFFC0 2C5C CAN_MB02_ID1 Mailbox 2 Identifier High Register

0XFFC0 2C60 CAN_MB03_DATA0 Mailbox 3 Data Word 0 [15:0] Register

0XFFC0 2C64 CAN_MB03_DATA1 Mailbox 3 Data Word 1 [31:16] Register

0XFFC0 2C68 CAN_MB03_DATA2 Mailbox 3 Data Word 2 [47:32] Register

0XFFC0 2C6C CAN_MB03_DATA3 Mailbox 3 Data Word 3 [63:48] Register

0XFFC0 2C70 CAN_MB03_LENGTH Mailbox 3 Data Length Code Register

0XFFC0 2C74 CAN_MB03_TIMESTAMP Mailbox 3 Time Stamp Value Register

0XFFC0 2C78 CAN_MB03_ID0 Mailbox 3 Identifier Low Register

0XFFC0 2C7C CAN_MB03_ID1 Mailbox 3 Identifier High Register

0XFFC0 2C80 CAN_MB04_DATA0 Mailbox 4 Data Word 0 [15:0] Register

Table A-25. CAN Mailbox Registers (Cont’d)

Memory-Mapped
Address

Register Name For individual bits, see this diagram:

ADSP-BF50x Blackfin Processor Hardware Reference A-33

System MMR Assignments

0XFFC0 2C84 CAN_MB04_DATA1 Mailbox 4 Data Word 1 [31:16] Register

0XFFC0 2C88 CAN_MB04_DATA2 Mailbox 4 Data Word 2 [47:32] Register

0XFFC0 2C8C CAN_MB04_DATA3 Mailbox 4 Data Word 3 [63:48] Register

0XFFC0 2C90 CAN_MB04_LENGTH Mailbox 4 Data Length Code Register

0XFFC0 2C94 CAN_MB04_TIMESTAMP Mailbox 4 Time Stamp Value Register

0XFFC0 2C98 CAN_MB04_ID0 Mailbox 4 Identifier Low Register

0XFFC0 2C9C CAN_MB04_ID1 Mailbox 4 Identifier High Register

0XFFC0 2CA0 CAN_MB05_DATA0 Mailbox 5 Data Word 0 [15:0] Register

0XFFC0 2CA4 CAN_MB05_DATA1 Mailbox 5 Data Word 1 [31:16] Register

0XFFC0 2CA8 CAN_MB05_DATA2 Mailbox 5 Data Word 2 [47:32] Register

0XFFC0 2CAC CAN_MB05_DATA3 Mailbox 5 Data Word 3 [63:48] Register

0XFFC0 2CB0 CAN_MB05_LENGTH Mailbox 5 Data Length Code Register

0XFFC0 2CB4 CAN_MB05_TIMESTAMP Mailbox 5 Time Stamp Value Register

0XFFC0 2CB8 CAN_MB05_ID0 Mailbox 5 Identifier Low Register

0XFFC0 2CBC CAN_MB05_ID1 Mailbox 5 Identifier High Register

0XFFC0 2CC0 CAN_MB06_DATA0 Mailbox 6 Data Word 0 [15:0] Register

0XFFC0 2CC4 CAN_MB06_DATA1 Mailbox 6 Data Word 1 [31:16] Register

0XFFC0 2CC8 CAN_MB06_DATA2 Mailbox 6 Data Word 2 [47:32] Register

0XFFC0 2CCC CAN_MB06_DATA3 Mailbox 6 Data Word 3 [63:48] Register

0XFFC0 2CD0 CAN_MB06_LENGTH Mailbox 6 Data Length Code Register

0XFFC0 2CD4 CAN_MB06_TIMESTAMP Mailbox 6 Time Stamp Value Register

0XFFC0 2CD8 CAN_MB06_ID0 Mailbox 6 Identifier Low Register

0XFFC0 2CDC CAN_MB06_ID1 Mailbox 6 Identifier High Register

0XFFC0 2CE0 CAN_MB07_DATA0 Mailbox 7 Data Word 0 [15:0] Register

0XFFC0 2CE4 CAN_MB07_DATA1 Mailbox 7 Data Word 1 [31:16] Register

Table A-25. CAN Mailbox Registers (Cont’d)

Memory-Mapped
Address

Register Name For individual bits, see this diagram:

CAN Registers

A-34 ADSP-BF50x Blackfin Processor Hardware Reference

0XFFC0 2CE8 CAN_MB07_DATA2 Mailbox 7 Data Word 2 [47:32] Register

0XFFC0 2CEC CAN_MB07_DATA3 Mailbox 7 Data Word 3 [63:48] Register

0XFFC0 2CF0 CAN_MB07_LENGTH Mailbox 7 Data Length Code Register

0XFFC0 2CF4 CAN_MB07_TIMESTAMP Mailbox 7 Time Stamp Value Register

0XFFC0 2CF8 CAN_MB07_ID0 Mailbox 7 Identifier Low Register

0XFFC0 2CFC CAN_MB07_ID1 Mailbox 7 Identifier High Register

0XFFC0 2D00 CAN_MB08_DATA0 Mailbox 8 Data Word 0 [15:0] Register

0XFFC0 2D04 CAN_MB08_DATA1 Mailbox 8 Data Word 1 [31:16] Register

0XFFC0 2D08 CAN_MB08_DATA2 Mailbox 8 Data Word 2 [47:32] Register

0XFFC0 2D0C CAN_MB08_DATA3 Mailbox 8 Data Word 3 [63:48] Register

0XFFC0 2D10 CAN_MB08_LENGTH Mailbox 8 Data Length Code Register

0XFFC0 2D14 CAN_MB08_TIMESTAMP Mailbox 8 Time Stamp Value Register

0XFFC0 2D18 CAN_MB08_ID0 Mailbox 8 Identifier Low Register

0XFFC0 2D1C CAN_MB08_ID1 Mailbox 8 Identifier High Register

0XFFC0 2D20 CAN_MB09_DATA0 Mailbox 9 Data Word 0 [15:0] Register

0XFFC0 2D24 CAN_MB09_DATA1 Mailbox 9 Data Word 1 [31:16] Register

0XFFC0 2D28 CAN_MB09_DATA2 Mailbox 9 Data Word 2 [47:32] Register

0XFFC0 2D2C CAN_MB09_DATA3 Mailbox 9 Data Word 3 [63:48] Register

0XFFC0 2D30 CAN_MB09_LENGTH Mailbox 9 Data Length Code Register

0XFFC0 2D34 CAN_MB09_TIMESTAMP Mailbox 9 Time Stamp Value Register

0XFFC0 2D38 CAN_MB09_ID0 Mailbox 9 Identifier Low Register

0XFFC0 2D3C CAN_MB09_ID1 Mailbox 9 Identifier High Register

0XFFC0 2D40 CAN_MB10_DATA0 Mailbox 10 Data Word 0 [15:0] Register

0XFFC0 2D44 CAN_MB10_DATA1 Mailbox 10 Data Word 1 [31:16] Register

0XFFC0 2D48 CAN_MB10_DATA2 Mailbox 10 Data Word 2 [47:32] Register

Table A-25. CAN Mailbox Registers (Cont’d)

Memory-Mapped
Address

Register Name For individual bits, see this diagram:

ADSP-BF50x Blackfin Processor Hardware Reference A-35

System MMR Assignments

0XFFC0 2D4C CAN_MB10_DATA3 Mailbox 10 Data Word 3 [63:48] Register

0XFFC0 2D50 CAN_MB10_LENGTH Mailbox 10 Data Length Code Register

0XFFC0 2D54 CAN_MB10_TIMESTAMP Mailbox 10 Time Stamp Value Register

0XFFC0 2D58 CAN_MB10_ID0 Mailbox 10 Identifier Low Register

0XFFC0 2D5C CAN_MB10_ID1 Mailbox 10 Identifier High Register

0XFFC0 2D60 CAN_MB11_DATA0 Mailbox 11 Data Word 0 [15:0] Register

0XFFC0 2D64 CAN_MB11_DATA1 Mailbox 11 Data Word 1 [31:16] Register

0XFFC0 2D68 CAN_MB11_DATA2 Mailbox 11 Data Word 2 [47:32] Register

0XFFC0 2D6C CAN_MB11_DATA3 Mailbox 11 Data Word 3 [63:48] Register

0XFFC0 2D70 CAN_MB11_LENGTH Mailbox 11 Data Length Code Register

0XFFC0 2D74 CAN_MB11_TIMESTAMP Mailbox 11 Time Stamp Value Register

0XFFC0 2D78 CAN_MB11_ID0 Mailbox 11 Identifier Low Register

0XFFC0 2D7C CAN_MB11_ID1 Mailbox 11 Identifier High Register

0XFFC0 2D80 CAN_MB12_DATA0 Mailbox 12 Data Word 0 [15:0] Register

0XFFC0 2D84 CAN_MB12_DATA1 Mailbox 12 Data Word 1 [31:16] Register

0XFFC0 2D88 CAN_MB12_DATA2 Mailbox 12 Data Word 2 [47:32] Register

0XFFC0 2D8C CAN_MB12_DATA3 Mailbox 12 Data Word 3 [63:48] Register

0XFFC0 2D90 CAN_MB12_LENGTH Mailbox 12 Data Length Code Register

0XFFC0 2D94 CAN_MB12_TIMESTAMP Mailbox 12 Time Stamp Value Register

0XFFC0 2D98 CAN_MB12_ID0 Mailbox 12 Identifier Low Register

0XFFC0 2D9C CAN_MB12_ID1 Mailbox 12 Identifier High Register

0XFFC0 2DA0 CAN_MB13_DATA0 Mailbox 13 Data Word 0 [15:0] Register

0XFFC0 2DA4 CAN_MB13_DATA1 Mailbox 13 Data Word 1 [31:16] Register

0XFFC0 2DA8 CAN_MB13_DATA2 Mailbox 13 Data Word 2 [47:32] Register

0XFFC0 2DAC CAN_MB13_DATA3 Mailbox 13 Data Word 3 [63:48] Register

Table A-25. CAN Mailbox Registers (Cont’d)

Memory-Mapped
Address

Register Name For individual bits, see this diagram:

CAN Registers

A-36 ADSP-BF50x Blackfin Processor Hardware Reference

0XFFC0 2DB0 CAN_MB13_LENGTH Mailbox 13 Data Length Code Register

0XFFC0 2DB4 CAN_MB13_TIMESTAMP Mailbox 13 Time Stamp Value Register

0XFFC0 2DB8 CAN_MB13_ID0 Mailbox 13 Identifier Low Register

0XFFC0 2DBC CAN_MB13_ID1 Mailbox 13 Identifier High Register

0XFFC0 2DC0 CAN_MB14_DATA0 Mailbox 14 Data Word 0 [15:0] Register

0XFFC0 2DC4 CAN_MB14_DATA1 Mailbox 14 Data Word 1 [31:16] Register

0XFFC0 2DC8 CAN_MB14_DATA2 Mailbox 14 Data Word 2 [47:32] Register

0XFFC0 2DCC CAN_MB14_DATA3 Mailbox 14 Data Word 3 [63:48] Register

0XFFC0 2DD0 CAN_MB14_LENGTH Mailbox 14 Data Length Code Register

0XFFC0 2DD4 CAN_MB14_TIMESTAMP Mailbox 14 Time Stamp Value Register

0XFFC0 2DD8 CAN_MB14_ID0 Mailbox 14 Identifier Low Register

0XFFC0 2DDC CAN_MB14_ID1 Mailbox 14 Identifier High Register

0XFFC0 2DE0 CAN_MB15_DATA0 Mailbox 15 Data Word 0 [15:0] Register

0XFFC0 2DE4 CAN_MB15_DATA1 Mailbox 15 Data Word 1 [31:16] Register

0XFFC0 2DE8 CAN_MB15_DATA2 Mailbox 15 Data Word 2 [47:32] Register

0XFFC0 2DEC CAN_MB15_DATA3 Mailbox 15 Data Word 3 [63:48] Register

0XFFC0 2DF0 CAN_MB15_LENGTH Mailbox 15 Data Length Code Register

0XFFC0 2DF4 CAN_MB15_TIMESTAMP Mailbox 15 Time Stamp Value Register

0XFFC0 2DF8 CAN_MB15_ID0 Mailbox 15 Identifier Low Register

0XFFC0 2DFC CAN_MB15_ID1 Mailbox 15 Identifier High Register

0XFFC0 2E00 CAN_MB16_DATA0 Mailbox 16 Data Word 0 [15:0] Register

0XFFC0 2E04 CAN_MB16_DATA1 Mailbox 16 Data Word 1 [31:16] Register

0XFFC0 2E08 CAN_MB16_DATA2 Mailbox 16 Data Word 2 [47:32] Register

0XFFC0 2E0C CAN_MB16_DATA3 Mailbox 16 Data Word 3 [63:48] Register

0XFFC0 2E10 CAN_MB16_LENGTH Mailbox 16 Data Length Code Register

Table A-25. CAN Mailbox Registers (Cont’d)

Memory-Mapped
Address

Register Name For individual bits, see this diagram:

ADSP-BF50x Blackfin Processor Hardware Reference A-37

System MMR Assignments

0XFFC0 2E14 CAN_MB16_TIMESTAMP Mailbox 16 Time Stamp Value Register

0XFFC0 2E18 CAN_MB16_ID0 Mailbox 16 Identifier Low Register

0XFFC0 2E1C CAN_MB16_ID1 Mailbox 16 Identifier High Register

0XFFC0 2E20 CAN_MB17_DATA0 Mailbox 17 Data Word 0 [15:0] Register

0XFFC0 2E24 CAN_MB17_DATA1 Mailbox 17 Data Word 1 [31:16] Register

0XFFC0 2E28 CAN_MB17_DATA2 Mailbox 17 Data Word 2 [47:32] Register

0XFFC0 2E2C CAN_MB17_DATA3 Mailbox 17 Data Word 3 [63:48] Register

0XFFC0 2E30 CAN_MB17_LENGTH Mailbox 17 Data Length Code Register

0XFFC0 2E34 CAN_MB17_TIMESTAMP Mailbox 17 Time Stamp Value Register

0XFFC0 2E38 CAN_MB17_ID0 Mailbox 17 Identifier Low Register

0XFFC0 2E3C CAN_MB17_ID1 Mailbox 17 Identifier High Register

0XFFC0 2E40 CAN_MB18_DATA0 Mailbox 18 Data Word 0 [15:0] Register

0XFFC0 2E44 CAN_MB18_DATA1 Mailbox 18 Data Word 1 [31:16] Register

0XFFC0 2E48 CAN_MB18_DATA2 Mailbox 18 Data Word 2 [47:32] Register

0XFFC0 2E4C CAN_MB18_DATA3 Mailbox 18 Data Word 3 [63:48] Register

0XFFC0 2E50 CAN_MB18_LENGTH Mailbox 18 Data Length Code Register

0XFFC0 2E54 CAN_MB18_TIMESTAMP Mailbox 18 Time Stamp Value Register

0XFFC0 2E58 CAN_MB18_ID0 Mailbox 18 Identifier Low Register

0XFFC0 2E5C CAN_MB18_ID1 Mailbox 18 Identifier High Register

0XFFC0 2E60 CAN_MB19_DATA0 Mailbox 19 Data Word 0 [15:0] Register

0XFFC0 2E64 CAN_MB19_DATA1 Mailbox 19 Data Word 1 [31:16] Register

0XFFC0 2E68 CAN_MB19_DATA2 Mailbox 19 Data Word 2 [47:32] Register

0XFFC0 2E6C CAN_MB19_DATA3 Mailbox 19 Data Word 3 [63:48] Register

0XFFC0 2E70 CAN_MB19_LENGTH Mailbox 19 Data Length Code Register

0XFFC0 2E74 CAN_MB19_TIMESTAMP Mailbox 19 Time Stamp Value Register

Table A-25. CAN Mailbox Registers (Cont’d)

Memory-Mapped
Address

Register Name For individual bits, see this diagram:

CAN Registers

A-38 ADSP-BF50x Blackfin Processor Hardware Reference

0XFFC0 2E78 CAN_MB19_ID0 Mailbox 19 Identifier Low Register

0XFFC0 2E7C CAN_MB19_ID1 Mailbox 19 Identifier High Register

0XFFC0 2E80 CAN_MB20_DATA0 Mailbox 20 Data Word 0 [15:0] Register

0XFFC0 2E84 CAN_MB20_DATA1 Mailbox 20 Data Word 1 [31:16] Register

0XFFC0 2E88 CAN_MB20_DATA2 Mailbox 20 Data Word 2 [47:32] Register

0XFFC0 2E8C CAN_MB20_DATA3 Mailbox 20 Data Word 3 [63:48] Register

0XFFC0 2E90 CAN_MB20_LENGTH Mailbox 20 Data Length Code Register

0XFFC0 2E94 CAN_MB20_TIMESTAMP Mailbox 20 Time Stamp Value Register

0XFFC0 2E98 CAN_MB20_ID0 Mailbox 20 Identifier Low Register

0XFFC0 2E9C CAN_MB20_ID1 Mailbox 20 Identifier High Register

0XFFC0 2EA0 CAN_MB21_DATA0 Mailbox 21 Data Word 0 [15:0] Register

0XFFC0 2EA4 CAN_MB21_DATA1 Mailbox 21 Data Word 1 [31:16] Register

0XFFC0 2EA8 CAN_MB21_DATA2 Mailbox 21 Data Word 2 [47:32] Register

0XFFC0 2EAC CAN_MB21_DATA3 Mailbox 21 Data Word 3 [63:48] Register

0XFFC0 2EB0 CAN_MB21_LENGTH Mailbox 21 Data Length Code Register

0XFFC0 2EB4 CAN_MB21_TIMESTAMP Mailbox 21 Time Stamp Value Register

0XFFC0 2EB8 CAN_MB21_ID0 Mailbox 21 Identifier Low Register

0XFFC0 2EBC CAN_MB21_ID1 Mailbox 21 Identifier High Register

0XFFC0 2EC0 CAN_MB22_DATA0 Mailbox 22 Data Word 0 [15:0] Register

0XFFC0 2EC4 CAN_MB22_DATA1 Mailbox 22 Data Word 1 [31:16] Register

0XFFC0 2EC8 CAN_MB22_DATA2 Mailbox 22 Data Word 2 [47:32] Register

0XFFC0 2ECC CAN_MB22_DATA3 Mailbox 22 Data Word 3 [63:48] Register

0XFFC0 2ED0 CAN_MB22_LENGTH Mailbox 22 Data Length Code Register

0XFFC0 2ED4 CAN_MB22_TIMESTAMP Mailbox 22 Time Stamp Value Register

0XFFC0 2ED8 CAN_MB22_ID0 Mailbox 22 Identifier Low Register

Table A-25. CAN Mailbox Registers (Cont’d)

Memory-Mapped
Address

Register Name For individual bits, see this diagram:

ADSP-BF50x Blackfin Processor Hardware Reference A-39

System MMR Assignments

0XFFC0 2EDC CAN_MB22_ID1 Mailbox 22 Identifier High Register

0XFFC0 2EE0 CAN_MB23_DATA0 Mailbox 23 Data Word 0 [15:0] Register

0XFFC0 2EE4 CAN_MB23_DATA1 Mailbox 23 Data Word 1 [31:16] Register

0XFFC0 2EE8 CAN_MB23_DATA2 Mailbox 23 Data Word 2 [47:32] Register

0XFFC0 2EEC CAN_MB23_DATA3 Mailbox 23 Data Word 3 [63:48] Register

0XFFC0 2EF0 CAN_MB23_LENGTH Mailbox 23 Data Length Code Register

0XFFC0 2EF4 CAN_MB23_TIMESTAMP Mailbox 23 Time Stamp Value Register

0XFFC0 2EF8 CAN_MB23_ID0 Mailbox 23 Identifier Low Register

0XFFC0 2EFC CAN_MB23_ID1 Mailbox 23 Identifier High Register

0XFFC0 2F00 CAN_MB24_DATA0 Mailbox 24 Data Word 0 [15:0] Register

0XFFC0 2F04 CAN_MB24_DATA1 Mailbox 24 Data Word 1 [31:16] Register

0XFFC0 2F08 CAN_MB24_DATA2 Mailbox 24 Data Word 2 [47:32] Register

0XFFC0 2F0C CAN_MB24_DATA3 Mailbox 24 Data Word 3 [63:48] Register

0XFFC0 2F10 CAN_MB24_LENGTH Mailbox 24 Data Length Code Register

0XFFC0 2F14 CAN_MB24_TIMESTAMP Mailbox 24 Time Stamp Value Register

0XFFC0 2F18 CAN_MB24_ID0 Mailbox 24 Identifier Low Register

0XFFC0 2F1C CAN_MB24_ID1 Mailbox 24 Identifier High Register

0XFFC0 2F20 CAN_MB25_DATA0 Mailbox 25 Data Word 0 [15:0] Register

0XFFC0 2F24 CAN_MB25_DATA1 Mailbox 25 Data Word 1 [31:16] Register

0XFFC0 2F28 CAN_MB25_DATA2 Mailbox 25 Data Word 2 [47:32] Register

0XFFC0 2F2C CAN_MB25_DATA3 Mailbox 25 Data Word 3 [63:48] Register

0XFFC0 2F30 CAN_MB25_LENGTH Mailbox 25 Data Length Code Register

0XFFC0 2F34 CAN_MB25_TIMESTAMP Mailbox 25 Time Stamp Value Register

0XFFC0 2F38 CAN_MB25_ID0 Mailbox 25 Identifier Low Register

0XFFC0 2F3C CAN_MB25_ID1 Mailbox 25 Identifier High Register

Table A-25. CAN Mailbox Registers (Cont’d)

Memory-Mapped
Address

Register Name For individual bits, see this diagram:

CAN Registers

A-40 ADSP-BF50x Blackfin Processor Hardware Reference

0XFFC0 2F40 CAN_MB26_DATA0 Mailbox 26 Data Word 0 [15:0] Register

0XFFC0 2F44 CAN_MB26_DATA1 Mailbox 26 Data Word 1 [31:16] Register

0XFFC0 2F48 CAN_MB26_DATA2 Mailbox 26 Data Word 2 [47:32] Register

0XFFC0 2F4C CAN_MB26_DATA3 Mailbox 26 Data Word 3 [63:48] Register

0XFFC0 2F50 CAN_MB26_LENGTH Mailbox 26 Data Length Code Register

0XFFC0 2F54 CAN_MB26_TIMESTAMP Mailbox 26 Time Stamp Value Register

0XFFC0 2F58 CAN_MB26_ID0 Mailbox 26 Identifier Low Register

0XFFC0 2F5C CAN_MB26_ID1 Mailbox 26 Identifier High Register

0XFFC0 2F60 CAN_MB27_DATA0 Mailbox 27 Data Word 0 [15:0] Register

0XFFC0 2F64 CAN_MB27_DATA1 Mailbox 27 Data Word 1 [31:16] Register

0XFFC0 2F68 CAN_MB27_DATA2 Mailbox 27 Data Word 2 [47:32] Register

0XFFC0 2F6C CAN_MB27_DATA3 Mailbox 27 Data Word 3 [63:48] Register

0XFFC0 2F70 CAN_MB27_LENGTH Mailbox 27 Data Length Code Register

0XFFC0 2F74 CAN_MB27_TIMESTAMP Mailbox 27 Time Stamp Value Register

0XFFC0 2F78 CAN_MB27_ID0 Mailbox 27 Identifier Low Register

0XFFC0 2F7C CAN_MB27_ID1 Mailbox 27 Identifier High Register

0XFFC0 2F80 CAN_MB28_DATA0 Mailbox 28 Data Word 0 [15:0] Register

0XFFC0 2F84 CAN_MB28_DATA1 Mailbox 28 Data Word 1 [31:16] Register

0XFFC0 2F88 CAN_MB28_DATA2 Mailbox 28 Data Word 2 [47:32] Register

0XFFC0 2F8C CAN_MB28_DATA3 Mailbox 28 Data Word 3 [63:48] Register

0XFFC0 2F90 CAN_MB28_LENGTH Mailbox 28 Data Length Code Register

0XFFC0 2F94 CAN_MB28_TIMESTAMP Mailbox 28 Time Stamp Value Register

0XFFC0 2F98 CAN_MB28_ID0 Mailbox 28 Identifier Low Register

0XFFC0 2F9C CAN_MB28_ID1 Mailbox 28 Identifier High Register

0XFFC0 2FA0 CAN_MB29_DATA0 Mailbox 29 Data Word 0 [15:0] Register

Table A-25. CAN Mailbox Registers (Cont’d)

Memory-Mapped
Address

Register Name For individual bits, see this diagram:

ADSP-BF50x Blackfin Processor Hardware Reference A-41

System MMR Assignments

0XFFC0 2FA4 CAN_MB29_DATA1 Mailbox 29 Data Word 1 [31:16] Register

0XFFC0 2FA8 CAN_MB29_DATA2 Mailbox 29 Data Word 2 [47:32] Register

0XFFC0 2FAC CAN_MB29_DATA3 Mailbox 29 Data Word 3 [63:48] Register

0XFFC0 2FB0 CAN_MB29_LENGTH Mailbox 29 Data Length Code Register

0XFFC0 2FB4 CAN_MB29_TIMESTAMP Mailbox 29 Time Stamp Value Register

0XFFC0 2FB8 CAN_MB29_ID0 Mailbox 29 Identifier Low Register

0XFFC0 2FBC CAN_MB29_ID1 Mailbox 29 Identifier High Register

0XFFC0 2FC0 CAN_MB30_DATA0 Mailbox 30 Data Word 0 [15:0] Register

0XFFC0 2FC4 CAN_MB30_DATA1 Mailbox 30 Data Word 1 [31:16] Register

0XFFC0 2FC8 CAN_MB30_DATA2 Mailbox 30 Data Word 2 [47:32] Register

0XFFC0 2FCC CAN_MB30_DATA3 Mailbox 30 Data Word 3 [63:48] Register

0XFFC0 2FD0 CAN_MB30_LENGTH Mailbox 30 Data Length Code Register

0XFFC0 2FD4 CAN_MB30_TIMESTAMP Mailbox 30 Time Stamp Value Register

0XFFC0 2FD8 CAN_MB30_ID0 Mailbox 30 Identifier Low Register

0XFFC0 2FDC CAN_MB30_ID1 Mailbox 30 Identifier High Register

0XFFC0 2FE0 CAN_MB31_DATA0 Mailbox 31 Data Word 0 [15:0] Register

0XFFC0 2FE4 CAN_MB31_DATA1 Mailbox 31 Data Word 1 [31:16] Register

0XFFC0 2FE8 CAN_MB31_DATA2 Mailbox 31 Data Word 2 [47:32] Register

0XFFC0 2FEC CAN_MB31_DATA3 Mailbox 31 Data Word 3 [63:48] Register

0XFFC0 2FF0 CAN_MB31_LENGTH Mailbox 31 Data Length Code Register

0XFFC0 2FF4 CAN_MB31_TIMESTAMP Mailbox 31 Time Stamp Value Register

0XFFC0 2FF8 CAN_MB31_ID0 Mailbox 31 Identifier Low Register

0XFFC0 2FFC CAN_MB31_ID1 Mailbox 31 Identifier High Register

Table A-25. CAN Mailbox Registers (Cont’d)

Memory-Mapped
Address

Register Name For individual bits, see this diagram:

ACM Registers

A-42 ADSP-BF50x Blackfin Processor Hardware Reference

ACM Registers
ADC controller module (ACM) registers (0xFFC0 3100 – 0xFFC0 31FF)
are listed in Table A-26.

Table A-26. AMC Registers

Memory-Mapped
Address

Register Name For individual bits, see this diagram:

0XFFC0 3100 ACM_CTL ACM Control Register

0XFFC0 3104 ACM_TC0 ACM Timing Configuration 0 Register

0XFFC0 3108 ACM_TC1 ACM Timing Configuration 1 Register

0XFFC0 310C ACM_STAT ACM Status Register

0XFFC0 3110 ACM_ES ACM Event Status Register

0XFFC0 3114 ACM_IMSK ACM Interrupt Mask Register

0XFFC0 3118 ACM_MS ACM Missed Event Status Register

0XFFC0 311C ACM_EMSK ACM Missed Event Interrupt Mask Register

0XFFC0 3120 ACM_ER0 ACM Event 0 Control Register

0XFFC0 3124 ACM_ER1 ACM Event 1 Control Register

0XFFC0 3128 ACM_ER2 ACM Event 2 Control Register

0XFFC0 312C ACM_ER3 ACM Event 3 Control Register

0XFFC0 3130 ACM_ER4 ACM Event 4 Control Register

0XFFC0 3134 ACM_ER5 ACM Event 5 Control Register

0XFFC0 3138 ACM_ER6 ACM Event 6 Control Register

0XFFC0 313C ACM_ER7 ACM Event 7 Control Register

0XFFC0 3140 ACM_ER8 ACM Event 8 Control Register

0XFFC0 3144 ACM_ER9 ACM Event 9 Control Register

0XFFC0 3148 ACM_ER10 ACM Event 10 Control Register

0XFFC0 314C ACM_ER11 ACM Event 11 Control Register

0XFFC0 3150 ACM_ER12 ACM Event 12 Control Register

ADSP-BF50x Blackfin Processor Hardware Reference A-43

System MMR Assignments

0XFFC0 3154 ACM_ER13 ACM Event 13 Control Register

0XFFC0 3158 ACM_ER14 ACM Event 14 Control Register

0XFFC0 315C ACM_ER15 ACM Event 15 Control Register

0XFFC0 3180 ACM_ET0 ACM Event 0 Time Register

0XFFC0 3184 ACM_ET1 ACM Event 1 Time Register

0XFFC0 3188 ACM_ET2 ACM Event 2 Time Register

0XFFC0 318C ACM_ET3 ACM Event 3 Time Register

0XFFC0 3190 ACM_ET4 ACM Event 4 Time Register

0XFFC0 3194 ACM_ET5 ACM Event 5 Time Register

0XFFC0 3198 ACM_ET6 ACM Event 6 Time Register

0XFFC0 319C ACM_ET7 ACM Event 7 Time Register

0XFFC0 31A0 ACM_ET8 ACM Event 8 Time Register

0XFFC0 31A4 ACM_ET9 ACM Event 9 Time Register

0XFFC0 31A8 ACM_ET10 ACM Event 10 Time Register

0XFFC0 31AC ACM_ET11 ACM Event 11 Time Register

0XFFC0 31B0 ACM_ET12 ACM Event 12 Time Register

0XFFC0 31B4 ACM_ET13 ACM Event 13 Time Register

0XFFC0 31B8 ACM_ET14 ACM Event 14 Time Register

0XFFC0 31BC ACM_ET15 ACM Event 15 Time Register

0XFFC0 31C0 ACM_TMR0 ACM Timer 0 Registers

0XFFC0 31C4 ACM_TMR1 ACM Timer 1 Registers

Table A-26. AMC Registers (Cont’d)

Memory-Mapped
Address

Register Name For individual bits, see this diagram:

PWM Registers

A-44 ADSP-BF50x Blackfin Processor Hardware Reference

PWM Registers
Pulsewidth modulator (PWM0 and PWM1) registers (0xFFC0 3700 –
0xFFC0 37FF) are listed in Table A-27 and Table A-28.

Table A-27. PWM0 Registers

Memory-Mapped
Address

Register Name For individual bits, see this diagram:

0XFFC0 3700 PWM0_CTRL PWM0 Control Register

0XFFC0 3704 PWM0_STAT PWM0 Status Register

0XFFC0 3708 PWM0_TM PWM0 Period Register

0XFFC0 370C PWM0_DT PWM0 Dead Time Register

0XFFC0 3710 PWM0_GATE PWM0 Chopping Control

0XFFC0 3714 PWM0_CHA PWM0 Channel A Duty Control

0XFFC0 3718 PWM0_CHB PWM0 Channel B Duty Control

0XFFC0 371C PWM0_CHC PWM0 Channel C Duty Control

0XFFC0 3720 PWM0_SEG PWM0 Crossover and Output Enable

0XFFC0 3724 PWM0_SYNCWT PWM0 Sync pulse width control

0XFFC0 3728 PWM0_CHAL PWM0 Channel AL Duty Control (SR mode
only)

0XFFC0 372C PWM0_CHBL PWM0 Channel BL Duty Control (SR mode
only)

0XFFC0 3730 PWM0_CHCL PWM0 Channel CL Duty Control (SR mode
only)

0XFFC0 3734 PWM0_LSI Low Side Invert (SR mode only)

0XFFC0 3738 PWM0_STAT2 PWM0 Status Register

ADSP-BF50x Blackfin Processor Hardware Reference A-45

System MMR Assignments

Table A-28. PWM1 Registers

Memory-Mapped
Address

Register Name For individual bits, see this diagram:

Motor Control PWM1 Registers (0xFFC03000 - 0xFFC030FF)

0XFFC0 3000 PWM1_CTRL PWM1 Control Register

0XFFC0 3004 PWM1_STAT PWM1 Status Register

0XFFC0 3008 PWM1_TM PWM1 Period Register

0XFFC0 300C PWM1_DT PWM1 Dead Time Register

0XFFC0 3010 PWM1_GATE PWM1 Chopping Control

0XFFC0 3014 PWM1_CHA PWM1 Channel A Duty Control

0XFFC0 3018 PWM1_CHB PWM1 Channel B Duty Control

0XFFC0 301C PWM1_CHC PWM1 Channel C Duty Control

0XFFC0 3020 PWM1_SEG PWM1 Crossover and Output Enable

0XFFC0 3024 PWM1_SYNCWT PWM1 Sync pulse width control

0XFFC0 3028 PWM1_CHAL PWM1 Channel AL Duty Control (SR mode
only)

0XFFC0 302C PWM1_CHBL PWM1 Channel BL Duty Control (SR mode
only)

0XFFC0 3030 PWM1_CHCL PWM1 Channel CL Duty Control (SR mode
only)

0XFFC0 3034 PWM1_LSI Low Side Invert (SR mode only)

0XFFC0 3038 PWM1_STAT2 PWM1 Status Register

RSI Registers

A-46 ADSP-BF50x Blackfin Processor Hardware Reference

RSI Registers
Removable storage interface (RSI) registers (0xFFC0 3800 –
0xFFC0 3CFF) are listed in Table A-29.

Table A-29. RSI Registers

Memory-Mapped
Address

Register Name For individual bits, see this diagram:

0XFFC0 3800 RSI_PWR_CONTROL RSI Power Control Register

0XFFC0 3804 RSI_CLK_CONTROL RSI Clock Control Register

0XFFC0 3808 RSI_ARGUMENT RSI Argument Register

0XFFC0 380C RSI_COMMAND RSI Command Register

0XFFC0 3810 RSI_RESP_CMD RSI Response Command Register

0XFFC0 3814 RSI_RESPONSE0 RSI Response Register

0XFFC0 3818 RSI_RESPONSE1 RSI Response Register

0XFFC0 381C RSI_RESPONSE2 RSI Response Register

0XFFC0 3820 RSI_RESPONSE3 RSI Response Register

0XFFC0 3824 RSI_DATA_TIMER RSI Data Timer Register

0XFFC0 3828 RSI_DATA_LGTH RSI Data Length Register

0XFFC0 382C RSI_DATA_CONTROL RSI Data Control Register

0XFFC0 3830 RSI_DATA_CNT RSI Data Counter Register

0XFFC0 3834 RSI_STATUS RSI Status Register

0XFFC0 3838 RSI_STATUSCL RSI Status Clear Register

0XFFC0 383C RSI_MASK0 RSI Interrupt 0 Mask Register

0XFFC0 3840 RSI_MASK1 RSI Interrupt 1 Mask Register

0XFFC0 3848 RSI_FIFO_CNT RSI FIFO Counter Register

0XFFC0 384C RSI_CEATA_CONTROL RSI CEATA Register

0XFFC0 3880 RSI_FIFO RSI Data FIFO Register

0XFFC0 38C0 RSI_ESTAT RSI Exception Status Register

ADSP-BF50x Blackfin Processor Hardware Reference A-47

System MMR Assignments

ACM Registers
The ADC controller module (ACM) registers (0xFFC0 3100 –
0xFFC0 31FF) are listed in Table A-30.

0XFFC0 38C4 RSI_EMASK RSI Exception Mask Register

0XFFC0 38C8 RSI_CONFIG RSI Configuration Register

0XFFC0 38CC RSI_RD_WAIT_EN RSI Read Wait Enable Register

0XFFC0 38D0 RSI_PID0 RSI Peripheral ID Register 0

0XFFC0 38D4 RSI_PID1 RSI Peripheral ID Register 1

0XFFC0 38D8 RSI_PID2 RSI Peripheral ID Register 2

0XFFC0 38DC RSI_PID3 RSI Peripheral ID Register 3

Table A-30. ADC Controller Module (ACM) Registers

Memory-Mapped
Address

Register Name For individual bits, see this diagram:

0XFFC0 3100 ACM_CTL ACM Control Register on page 22-32

0XFFC0 3104 ACM_TC0 ACM Timing Configuration 0 on page 22-39

0XFFC0 3108 ACM_TC1 ACM Timing Configuration1 on page 22-39

0XFFC0 310C ACM_STAT ACM Status Register on page 22-33

0XFFC0 3110 ACM_ES ACM Event Status Register on page 22-34

0XFFC0 3114 ACM_IMSK ACM Interrupt Mask Register on page 22-35

0XFFC0 3118 ACM_MS ACM Missed Event Status on page 22-36

0XFFC0 311C ACM_EMSK ACM Event Missed Interrupt Mask
on page 22-37

0XFFC0 3120 ACM_ER0 ACM Event0 Control Register on page 22-38

Table A-29. RSI Registers (Cont’d)

Memory-Mapped
Address

Register Name For individual bits, see this diagram:

ACM Registers

A-48 ADSP-BF50x Blackfin Processor Hardware Reference

0XFFC0 3124 ACM_ER1 ACM Event1 Control Register on page 22-38

0XFFC0 3128 ACM_ER2 ACM Event2 Control Register on page 22-38

0XFFC0 312C ACM_ER3 ACM Event3 Control Register on page 22-38

0XFFC0 3130 ACM_ER4 ACM Event4 Control Register on page 22-38

0XFFC0 3134 ACM_ER5 ACM Event5 Control Register on page 22-38

0XFFC0 3138 ACM_ER6 ACM Event6 Control Register on page 22-38

0XFFC0 313C ACM_ER7 ACM Event7 Control Register on page 22-38

0XFFC0 3140 ACM_ER8 ACM Event8 Control Register on page 22-38

0XFFC0 3144 ACM_ER9 ACM Event9 Control Register on page 22-38

0XFFC0 3148 ACM_ER10 ACM Event10 Control Register on page 22-38

0XFFC0 314C ACM_ER11 ACM Event11 Control Register on page 22-38

0XFFC0 3150 ACM_ER12 ACM Event12 Control Register on page 22-38

0XFFC0 3154 ACM_ER13 ACM Event13 Control Register on page 22-38

0XFFC0 3158 ACM_ER14 ACM Event14 Control Register on page 22-38

0XFFC0 315C ACM_ER15 ACM Event15 Control Register on page 22-38

0XFFC0 3180 ACM_ET0 ACM Event0 Time Register on page 22-39

0XFFC0 3184 ACM_ET1 ACM Event1 Time Register on page 22-39

0XFFC0 3188 ACM_ET2 ACM Event2 Time Register on page 22-39

0XFFC0 318C ACM_ET3 ACM Event3 Time Register on page 22-39

0XFFC0 3190 ACM_ET4 ACM Event4 Time Register on page 22-39

0XFFC0 3194 ACM_ET5 ACM Event5 Time Register on page 22-39

0XFFC0 3198 ACM_ET6 ACM Event6 Time Register on page 22-39

0XFFC0 319C ACM_ET7 ACM Event7 Time Register on page 22-39

0XFFC0 31A0 ACM_ET8 ACM Event8 Time Register on page 22-39

0XFFC0 31A4 ACM_ET9 ACM Event9 Time Register on page 22-39

Table A-30. ADC Controller Module (ACM) Registers (Cont’d)

Memory-Mapped
Address

Register Name For individual bits, see this diagram:

ADSP-BF50x Blackfin Processor Hardware Reference A-49

System MMR Assignments

0XFFC0 31A8 ACM_ET10 ACM Event10 Time Register on page 22-39

0XFFC0 31AC ACM_ET11 ACM Event11 Time Register on page 22-39

0XFFC0 31B0 ACM_ET12 ACM Event12 Time Register on page 22-39

0XFFC0 31B4 ACM_ET13 ACM Event13 Time Register on page 22-39

0XFFC0 31B8 ACM_ET14 ACM Event14 Time Register on page 22-39

0XFFC0 31BC ACM_ET15 ACM Event15 Time Register on page 22-39

Table A-30. ADC Controller Module (ACM) Registers (Cont’d)

Memory-Mapped
Address

Register Name For individual bits, see this diagram:

ACM Registers

A-50 ADSP-BF50x Blackfin Processor Hardware Reference

ADSP-BF50x Blackfin Processor Hardware Reference B-1

B TEST FEATURES

This appendix discusses the test features of the ADSP-BF50x processor.

JTAG Standard
The processor is fully compatible with the IEEE 1149.1 standard, also
known as the Joint Test Action Group (JTAG) standard.

The JTAG standard defines circuitry that may be built to assist in the test,
maintenance, and support of assembled printed circuit boards. The cir-
cuitry includes a standard interface through which instructions and test
data are communicated. A set of test features is defined, including a
boundary-scan register, such that the component can respond to a mini-
mum set of instructions designed to help test printed circuit boards.

The standard defines test logic that can be included in an integrated cir-
cuit to provide standardized approaches to:

• Testing the interconnections between integrated circuits once they
have been assembled onto a printed circuit board

• Testing the integrated circuit itself

• Observing or modifying circuit activity during normal component
operation

The test logic consists of a boundary-scan register and other building
blocks. The test logic is accessed through a Test Access Port (TAP).

Boundary-Scan Architecture

B-2 ADSP-BF50x Blackfin Processor Hardware Reference

Full details of the JTAG standard can be found in the document IEEE
Standard Test Access Port and Boundary-Scan Architecture, ISBN
1-55937-350-4.

Boundary-Scan Architecture
The boundary-scan test logic consists of:

• A TAP comprised of five pins (see Table B-1)

• A TAP controller that controls all sequencing of events through the
test registers

• An instruction register (IR) that interprets 5-bit instruction codes
to select the test mode that performs the desired test operation

• Several data registers defined by the JTAG standard

The TAP controller is a synchronous, 16-state, finite-state machine con-
trolled by the TCK and TMS pins. Transitions to the various states in the
diagram occur on the rising edge of TCK and are defined by the state of the

Table B-1. Test Access Port Pins

Pin Name Input/Output Description

TDI Input Test Data Input

TMS Input Test Mode Select

TCK Input Test Clock

TRST Input Test Reset

TDO Output Test Data Out

ADSP-BF50x Blackfin Processor Hardware Reference B-3

Test Features

TMS pin, here denoted by either a logic 1 or logic 0 state. For full details of
the operation, see the JTAG standard.

Figure B-1 shows the state diagram for the TAP controller.

Figure B-1. TAP Controller State Diagram

Test-Logic_Reset

Run-Test/Idle Select-DR-Scan

Capture-DR

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Update-DR

Select-IR-Scan

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-IR

1

1 1 1

1

1

1

1

1

1 1

1

1

1

1

1

0

0
0 0

0 0
0 0

0 0

0

0 0

0
0

0

Boundary-Scan Architecture

B-4 ADSP-BF50x Blackfin Processor Hardware Reference

Note:

• The TAP controller enters the test-logic-reset state when TMS is
held high after five TCK cycles.

• The TAP controller enters the test-logic-reset state when TRST is
asynchronously asserted.

• An external system reset does not affect the state of the TAP con-
troller, nor does the state of the TAP controller affect an external
system reset.

Instruction Register
The instruction register is five bits wide and accommodates up to 32
boundary-scan instructions.

The instruction register holds both public and private instructions. The
JTAG standard requires some of the public instructions; other public
instructions are optional. Private instructions are reserved for the manu-
facturer’s use.

The binary decode column of Table B-2 lists the decode for the public
instructions. The register column lists the serial scan paths.

Table B-2. Decode for Public JTAG-Scan Instructions

Instruction Name Binary Decode
01234

Register

EXTEST 00000 Boundary-Scan

SAMPLE/PRELOAD 10000 Boundary-Scan

BYPASS 11111 Bypass

ADSP-BF50x Blackfin Processor Hardware Reference B-5

Test Features

Figure B-2 shows the instruction bit scan ordering for the paths shown in
Table B-2.

Figure B-2. Serial Scan Paths

TDOTDI

N

N-1

N-2 2

1

0

0
130

31

4

3

2

1

0

1

Bypass Register

Boundary-Scan Register

JTAG Instruction Register

Boundary-Scan Architecture

B-6 ADSP-BF50x Blackfin Processor Hardware Reference

Public Instructions
The following sections describe the public JTAG scan instructions.

EXTEST – Binary Code 00000

The EXTEST instruction selects the boundary-scan register to be connected
between the TDI and TDO pins. This instruction allows testing of on-board
circuitry external to the device.

The EXTEST instruction allows internal data to be driven to the boundary
outputs and external data to be captured on the boundary inputs.

 To protect the internal logic when the boundary outputs are over-
driven or signals are received on the boundary inputs, make sure
that nothing else drives data on the processor’s output pins.

SAMPLE/PRELOAD – Binary Code 10000

The SAMPLE/PRELOAD instruction performs two functions and selects the
Boundary-Scan register to be connected between TDI and TDO. The
instruction has no effect on internal logic.

The SAMPLE part of the instruction allows a snapshot of the inputs and
outputs captured on the boundary-scan cells. Data is sampled on the ris-
ing edge of TCK.

The PRELOAD part of the instruction allows data to be loaded on the device
pins and driven out on the board with the EXTEST instruction. Data is pre-
loaded on the pins on the falling edge of TCK.

BYPASS – Binary Code 11111

The BYPASS instruction selects the BYPASS register to be connected to TDI

and TDO. The instruction has no effect on the internal logic. No data
inversion should occur between TDI and TDO.

ADSP-BF50x Blackfin Processor Hardware Reference B-7

Test Features

Boundary-Scan Register
The boundary-scan register is selected by the EXTEST and SAMPLE/PRELOAD

instructions. These instructions allow the pins of the processor to be con-
trolled and sampled for board-level testing.

Boundary-Scan Architecture

B-8 ADSP-BF50x Blackfin Processor Hardware Reference

ADSP-BF50x Blackfin Processor Hardware Reference I-1

I INDEX

Numerics
2D DMA, 7-11
2X input clock, 19-25
5 volt tolerance, 25-8

A
AAIF bit, 17-25, 17-48
AAIM bit, 17-25, 17-47
AAIS bit, 17-25, 17-47
AAn bit, 17-75
ABO bit, 17-43
abort acknowledge interrupt, CAN, 17-25
abort acknowledge register 1 (CAN_AA1),

17-75
abort acknowledge register 2 (CAN_AA2),

17-75
aborts, DMA, 7-30
acceptance mask register (CAN_AMxxH),

17-48
acceptance mask register (CAN_AMxxL),

17-50
access denied interrupt, CAN, 17-24
accesses

off-core, 3-4
to internal memory, 2-1

access to unimplemented address interrupt,
CAN, 17-25

access way ⁄instruction address bit 11 bit,
2-6

ACKE bit, 17-84
ACM, 1-22

ACM busy (BSY) bit, 22-33
ACM control (ACM_CTL) register, 22-32
ACM_CTL (ACM control) register, 22-32
ACM_EMSK (ACM event missed

interrupt mask) register, 22-37
ACM_ERx (ACM event control) registers,

22-38
ACM_ES (ACM event status) register,

22-34
ACM_ETx (ACM event time) registers,

22-39
ACM event control (ACM_ERx) registers,

22-38
ACM event interrupt mask (ACM_IMSK)

register, 22-35
ACM event missed interrupt mask

(ACM_EMSK) register, 22-37
ACM event status (ACM_ES) register,

22-34
ACM event time (ACM_ETx) registers,

22-39
ACM_IMSK (ACM event interrupt mask)

register, 22-35
ACM interface

overview, 1-22
ACM missed event status (ACM_MS)

register, 22-36
ACM_MS (ACM missed event status)

register, 22-36
ACM_STAT (ACM status) register, 22-33
ACM status (ACM_STAT) register, 22-33

Index

I-2 ADSP-BF50x Blackfin Processor Hardware Reference

ACM_TC0 (ACM timing configuration 0)
register, 22-40

ACM_TC1 (ACM timing configuration 1)
register, 22-41

ACM timing configuration 0 (ACM_TC0)
register, 22-40

ACM timing configuration 1 (ACM_TC1)
register, 22-41

active descriptor queue, and DMA
synchronization, 7-60

active low/high frame syncs, serial port,
19-33

active mode, 1-24, 8-9
ACTIVE_PLLDISABLED bit, 8-21
ACTIVE_PLLENABLED bit, 8-21
active video only mode, PPI, 20-10
ACTS bit, 15-31
ADC, 1-22
ADC, internal

overview, 1-22
ADC controller module. See ACM
ADCs, connecting to, 19-2
ADIF bit, 17-24, 17-48
ADIM bit, 17-24, 17-47
ADIS bit, 17-24, 17-47
A-law companding, 19-24, 19-29
alternate frame sync mode, 19-36
alternate timing, serial port, 19-35
AMBEN[2:0] field, 5-8, 5-10
AMC

bus contention, 5-6
features, 5-6
timing parameters, 5-8

AMCKEN bit, 5-7, 5-10
AME bit, 17-6, 17-52
AMIDE bit, 17-48
ANAK (address not acknowledged) bit,

16-35, 16-37
analog-to-digital converter. See ADC
application data, loading, 24-1

arbitration
DAB, 3-7, 3-8
DCB, 3-7, 3-8
DEB, 3-7, 3-8
EAB, 3-10
latency, 3-10
TWI, 16-8

architecture, memory, 2-1
array access bit, 2-6
ARTS bit, 15-31
asynchronous

memory, 5-6
memory bank address range (table),

14-24
asynchronous Flash memory parameter

control (EBIU_FCTL), 5-12
asynchronous Flash memory parameter

control register (EBIU_FCTL), 5-12
asynchronous memory bank control

(EBIU_AMBCTL), 5-11
asynchronous memory bank control

register (EBIU_AMBCTL), 5-11
asynchronous memory global control

(EBIU_AMGCTL), 5-7
asynchronous memory interface, 5-6
asynchronous memory mode control

(EBIU_MODECTL), 5-12
asynchronous memory mode control

register (EBIU_MODECTL), 5-12
asynchronous serial communications, 15-6
ASYNC memory banks, 5-2
atomic operations, 25-3
autobaud, and general-purpose timers,

10-32
autobaud detection, 15-20
autobuffer mode, 7-11, 7-29, 7-69
auto-transmit mode, CAN, 17-15
Avoiding Bus Contention, 5-6
avoiding bus contention, 5-6

ADSP-BF50x Blackfin Processor Hardware Reference I-3

Index

B
B0HT[1:0] field, 5-11
B0MODE bits, 5-12
B0RAT[3:0] field, 5-11
B0RDYEN bit, 5-11
B0RDYPOL bit, 5-11
B0ST[1:0] field, 5-11
B0TT[1:0] field, 5-11
B0WAT[3:0] field, 5-11
bandwidth, and memory DMA operations,

7-47
BASEID[10:0] field, 17-48, 17-52
baud rate

SPI, 18-35
UART, 15-8, 15-19

baud rate[15:0] field, 18-35
BCINIT[15:0] field, 7-86
BCLK bits, 5-12
BCODE [3-0] field, 24-61
BCOUNT[15:0] field, 7-87
BDI (block done interrupt generated) bit,

7-85
BDIE (block done interrupt enable) bit,

7-41, 7-85
BEF bit, 17-84
BFLAG_ALTERNATE bit, 24-72
BFLAG_AUX bit, 24-13, 24-73
BFLAG_CALLBACK bit, 24-13, 24-73
BFLAG_FASTREAD bit, 24-72
BFLAG_FILL bit, 24-13, 24-73
BFLAG_FINAL bit, 24-13, 24-73
BFLAG_FIRST bit, 24-73
BFLAG_first bit, 24-13
BFLAG_HDRINDIRECT bit, 24-72
BFLAG_HOOK bit, 24-72
BFLAG_IGNORE bit, 24-13, 24-73
BFLAG_INDIRECT bit, 24-13, 24-73
BFLAG_INIT bit, 24-13, 24-73
BFLAG_NEXTDXE bit, 24-72
BFLAG_NOAUTO bit, 24-72

BFLAG_NONRESTORE bit, 24-72
BFLAG_PERIPHERAL bit, 24-72
BFLAG_QUICKBOOT bit, 24-13, 24-73
BFLAG_RESET bit, 24-72
BFLAG_RETURN bit, 24-72
BFLAG_SAVE bit, 24-13, 24-73
BFLAG_SLAVE bit, 24-72
BFLAG_TYPE bit, 24-72
BFLAG_WAKEUP bit, 24-72
BI (break indicator) bit, 15-35
BI (break interrupt) bit, 15-34
binary decode, B-4
bit 15 overflow interrupt enable

(COV15IE) bit, 13-20
bit 15 overflow interrupt identifier

(COV15II) bit, 13-21
bit 31 overflow interrupt enable

(COV31IE) bit, 13-20
bit 31 overflow interrupt identifier

(COV31II) bit, 13-21
bit order, selecting, 19-28
BKDATECODE (boot code dated code)

register, 24-64
BK_DAY field, 24-64
BK_ID field, 24-63
BK_MONTH field, 24-64
BK_ONES (boot code ones) register,

24-66
BK_ONES field, 24-66
BK_PROJECT field, 24-63
BKREVISION (boot code revision)

register, 24-63
BK_UPDATE field, 24-63
BK_VERSION field, 24-63
BK_YEAR field, 24-64
BK_ZERO field, 24-65
BKZEROS (boot code zeros) register,

24-65
Blackfin processor family

memory architecture, 1-4

Index

I-4 ADSP-BF50x Blackfin Processor Hardware Reference

block, DMA, 7-9
block code field, 24-13
Block Code word, 24-13
block count, DMA, 7-38
block diagrams

bus hierarchy, 3-3
CAN, 17-3
core, 3-4
core timer, 11-2
DMA controller, 7-104
EBIU, 5-3
general-purpose timers, 10-59
PLL, 8-4
PPI, 20-3
processor, 1-4
SPI, 18-3, 18-4
SPORT, 19-6
TWI, 16-3
UART, 15-3, 15-11
watchdog timer, 12-3

block done interrupt, DMA, 7-41
Block Flags, 24-15
block transfers, DMA, 7-38
BMODE[2:0] pins, 24-5
BMODE[2-0] field, 24-61
BMODE pins, 24-2
BNDMODE (boundary register mode)

bits, 13-19
BOIF bit, 17-25, 17-48
BOIM bit, 17-25, 17-47
BOIS bit, 17-25, 17-47
boot

call boot kernel at run time, 24-34
load function, 24-33
manager, 24-38
quick, 24-28
ROM functions, 24-38
streams

multi-DXE, 24-39

boot code date code (BKDATECODE)
register, 24-64

boot code ones (BK_ONES) register,
24-66

boot code revision (BKREVISION)
register, 24-63

boot code zero word (BK_ZEROS)
register, 24-65

boot host wait
HWAIT, 24-19

booting, 24-1 to 24-89
BFROM_MEMBOOT, 24-38
BFROM_SPIBOOT, 24-38
boot stream, 24-9
host boot scenarios, 24-10
indirect, 24-29
initialization code execution/boot, 24-27
memory locations, 24-10
SPI slave mode, 24-51

booting modes, 24-2
boot kernel, 24-1
Boot Management, 24-37
boot mode

flash boot, 24-45
no-boot, 24-45
SPI device detection, 24-49

boot ROM
internal, 24-1
memory space, 2-4

boot stream, 24-1, 24-9
boot termination, 24-20
boundary register mode (BNDMODE)

bits, 13-19
boundary-scan architecture, B-2
boundary-scan register, B-7
broadcast mode, 18-9, 18-15, 18-16
BRP[9:0] field, 17-10, 17-45
BSY (ACM busy) bit, 22-33
buffer registers, timers, 10-44

ADSP-BF50x Blackfin Processor Hardware Reference I-5

Index

BUFRDERR (buffer read error) bit, 16-35,
16-37

BUFWRERR (buffer write error) bit,
16-35, 16-37

bus agents
DAB, 3-9
PAB, 3-6

BUSBUSY (bus busy) bit, 16-35, 16-36
bus contention, avoiding, 5-6
bus error, EBIU, 5-5
buses

See also DAB, DCB, DEB, EAB, EPB,
PAB

bandwidth, 1-4
core, 3-4
hierarchy, 3-2
on-chip, 3-1
PAB, 3-5
peripheral, 3-5
and peripherals, 1-4
prioritization and DMA, 7-49

bus-off interrupt, CAN, 17-25
bus standard, I2C, 1-10
bypass

capacitor placement, 25-7
BYPASS bit, 8-21
BYPASS instruction, B-6
BYPASS register, B-6

C
callback routines, 24-30
CAN, 1-21, 17-1 to 17-91

abort acknowledge interrupt, 17-25
acceptance mask filtering, 17-16
acceptance mask registers, 17-6
access denied interrupt, 17-24
access to unimplemented address

interrupt, 17-25
acknowledge error, 17-28
architecture, 17-4

CAN (continued)
auto-transmit mode, 17-15
bit error, 17-28
bit timing, 17-10
block diagram, 17-3
bus interface, 17-2
bus-off interrupt, 17-25
clock, 17-10
code examples, 17-85
configuration mode, 17-9, 17-12
CRC error, 17-29
data field filtering, 17-18
debug and test modes, 17-33
enabling mailboxes, 17-87
error frames, 17-26, 17-29
error levels, 17-31
errors, 17-27
error warning receive interrupt, 17-26
error warning transmit interrupt, 17-26
event counter, 17-26
extended frame, 17-9
external trigger output interrupt, 17-24
features, 17-1
form error, 17-28
global interrupts, 17-21, 17-23
hibernate state, 17-38
identifier frame, 17-8
initializing code, 17-85
initializing mailboxes, 17-87
initiating transfers, 17-88
interrupt processing, 17-88
interrupts, 17-22
lost arbitration, 17-26
low power designs, 17-38
low power features, 17-37
mailbox area registers, 17-5
mailbox control, 17-6
mailboxes, 17-4
mailbox interrupts, 17-23
mailbox RAM, 17-4

Index

I-6 ADSP-BF50x Blackfin Processor Hardware Reference

CAN (continued)
message buffers, 17-4
message received, 17-27
message stored, 17-27
nominal bit rate, 17-11
nominal bit time, 17-10
overload frame, 17-26
propagation segment, 17-11
protocol basics, 17-7
receive message lost, 17-27
receive message lost interrupt, 17-24
receive message rejected, 17-27
receive operation, 17-15
receive operation flow chart, 17-17
registers, table, 17-39
remote frame handling, 17-19
re-synchronization, 17-11
retransmission, 17-13
sampling, 17-11
single shot transmission, 17-14
sleep mode, 17-38
software reset, 17-12
standard frame, 17-8
stuff error, 17-29
suspend mode, 17-37
test modes, 17-35
time quantum, 17-10
time stamps, 17-20
timing parameters, 17-11
transceiver interconnection, 17-2
transmission, 17-8
transmission aborted, 17-27
transmission succeeded, 17-27
transmit operation, 17-12
transmit operation flow chart, 17-14
universal counter as event counter, 17-26
universal counter exceeded interrupt,

17-24
valid message, 17-27
wakeup from hibernate, 17-38

CAN (continued)
wakeup interrupt, 17-25
warnings, 17-27
watchdog mode, 17-19

CAN_AA1 (abort acknowledge) register 1,
17-75

CAN_AA2 (abort acknowledge) register 2,
17-75

CAN_AAx (abort acknowledge) registers,
17-41

CAN_AMxxH (acceptance mask) register,
17-6, 17-40, 17-48

CAN_AMxxL (acceptance mask) register,
17-6, 17-40, 17-50

CAN_CEC (CAN error counter) register,
17-35, 17-42, 17-84

CAN_CLOCK (CAN clock) register,
17-10, 17-40, 17-46

CAN_CONTROL (master control)
register, 17-39, 17-43

CAN_DEBUG (CAN debug) register,
17-33, 17-34, 17-39, 17-45

CAN_ESR (error status) register, 17-42,
17-84

CAN_EWR (CAN error counter warning
level) register, 17-42, 17-84

CAN_GIF (global interrupt flag) register,
17-40, 17-48

CAN_GIM (global interrupt mask)
register, 17-40, 17-47

CAN_GIS (global interrupt status) register,
17-40, 17-47

CAN_INTR (CAN interrupt) register,
17-40, 17-46

CAN_MBIM1 (mailbox interrupt mask)
register 1, 17-78

CAN_MBIM2 (mailbox interrupt mask)
register 2, 17-79

CAN_MBIMx (mailbox interrupt mask)
registers, 17-41

ADSP-BF50x Blackfin Processor Hardware Reference I-7

Index

CAN_MBRIF1 (mailbox receive interrupt
flag) register 1, 17-80

CAN_MBRIF2 (mailbox receive interrupt
flag) register 2, 17-81

CAN_MBRIFx (mailbox receive interrupt
flag) registers, 17-42

CAN_MBTD (mailbox temporary disable)
register, 17-21

CAN_MBTD (temporary mailbox disable
feature) register, 17-41, 17-77

CAN_MBTIF1 (mailbox transmit
interrupt flag) register 1, 17-79

CAN_MBTIF2 (mailbox transmit
interrupt flag) register 2, 17-80

CAN_MBTIFx (mailbox transmit
interrupt flag) registers, 17-42

CAN_MBxx_DATA0 (mailbox word 0)
register, 17-40, 17-66

CAN_MBxx_DATA1 (mailbox word 1)
register, 17-40, 17-64

CAN_MBxx_DATA2 (mailbox word 2)
register, 17-40, 17-62

CAN_MBxx_DATA3 (mailbox word 3)
register, 17-40, 17-59

CAN_MBxx_DATA registers, 17-5
CAN_MBxx_ID0 (mailbox word 6)

register, 17-40, 17-54, 17-56
CAN_MBxx_ID1 (mailbox word 7)

register, 17-4, 17-40, 17-52
CAN_MBxx_IDx (mailbox word 6)

register, 17-4
CAN_MBxx_LENGTH (mailbox word 4)

register, 17-5, 17-40, 17-58
CAN_MBxx_TIMESTAMP (mailbox

word 5) register, 17-5, 17-40
CAN_MC1 (mailbox configuration)

register 1, 17-68
CAN_MC2 (mailbox configuration)

register 2, 17-68

CAN_MCx (mailbox configuration)
registers, 17-41

CAN_MD1 (mailbox direction) register 1,
17-69

CAN_MD2 (mailbox direction) register 2,
17-69

CAN_MDx (mailbox direction) registers,
17-41

CAN_OPSS1 (overwrite protection/single
shot transmission) register 1, 17-72

CAN_OPSS2 (overwrite protection/single
shot transmission) register 2, 17-72

CAN_OPSSx (overwrite protection/single
shot transmission) registers, 17-41

CAN ports
overview, 1-21

CAN_RFH1 (remote frame handling)
register 1, 17-77

CAN_RFH2 (remote frame handling)
register 2, 17-78

CAN_RFHx (remote frame handling)
registers, 17-19, 17-41

CAN_RML1 (receive message lost) register
1, 17-71

CAN_RML2 (receive message lost) register
2, 17-71

CAN_RMLx registers, 17-41
CAN_RMP1 (receive message pending)

register 1, 17-70
CAN_RMP2 (receive message pending)

register 2, 17-70
CAN_RMPx registers, 17-41
CANRX bit, 17-46
CANRX input, sampling, 17-11
CANRX pin, 17-7
CAN_STATUS (global status) register,

17-39, 17-44
CAN_TA1 (transmission acknowledge)

register 1, 17-76

Index

I-8 ADSP-BF50x Blackfin Processor Hardware Reference

CAN_TA2 (transmission acknowledge)
register 2, 17-76

CAN_TAx (transmission acknowledge)
registers, 17-41

CAN_TIMING (CAN timing) register,
17-10, 17-40, 17-46

CAN_TRR1 (transmission request reset)
register 1, 17-74

CAN_TRR2 (transmission request reset)
register 2, 17-74

CAN_TRRx (transmission request reset)
registers, 17-41

CAN_TRS1 (transmission request set)
register 1, 17-73

CAN_TRS2 (transmission request set)
register 2, 17-73

CAN_TRSx (transmission request set)
registers, 17-41

CANTX bit, 17-46
CANTX pin, 17-7
CAN_UCCNF (universal counter

configuration mode) register, 17-42,
17-82

CAN_UCCNT (universal counter)
register, 17-42, 17-83

CAN_UCRC (universal counter
reload/capture) register, 17-42, 17-83

capacitors, 25-6
capture mode. See WDTH_CAP mode
CCA bit, 17-44
CCIR-656. See ITU-R 656
CCITT G.711 specification, 19-29
CCLK (core clock), 8-5

status by operating mode, 8-8
CCLK (core processor clock), 3-2
CCR bit, 17-43
CDE bit, 17-33, 17-45
CDGINV (CDG pin polarity invert) bit,

13-19

CDG pin polarity invert (CDGINV) bit,
13-19

CDPRIO bit, 3-8, 5-8, 5-10
CEVNT (current event) bits, 22-33
channels

defined, serial, 19-23
serial port TDM, 19-23
serial select offset, 19-23

CHNL[9:0] field, 19-66, 19-67
circuit board testing, B-1, B-6
circular addressing, 7-57
CKDIV (clock divisor) bitfield, 22-40
clearing interrupt requests, 4-13
clear Pxn bit, 9-32
clear Pxn interrupt A enable bit, 9-38
clear Pxn interrupt B enable bit, 9-39
CLKHI[7:0] field, 16-27
CLKIN (input clock), 1-23, 3-2, 8-1, 8-2
CLKLOW[7:0] field, 16-27
CLK_SEL (timer clock select) bit, 10-12,

10-21, 10-42, 10-47
clock

clock signals, 1-23
control, 8-1
EBIU, 5-1
external, 1-23
frequency for SPORT, 19-63
internal, 3-2
managing, 25-1
peripheral, 8-7
source for general-purpose timers, 10-3
SPI clock signal, 18-5
system, 1-24
system (SCLK), 25-2
types, 25-1

clock divide modulus registers, 19-63
clock divisor (CKDIV) bitfield, 22-40
clock domain synchronization, PPI, 20-15
clock input (CLKIN) pin, 25-1
clock phase, SPI, 18-12, 18-14

ADSP-BF50x Blackfin Processor Hardware Reference I-9

Index

clock polarity, SPI, 18-12
clock rate

core timer, 11-1
SPORT, 19-2

clock ratio, changing, 8-6
clocks, overview, 1-23
clock signals, 1-23
CNT_COMMAND (command) register,

13-18, 13-21
CNT_CONFIG (configuration) register,

13-18, 13-19
CNT_COUNTER (counter) register,

13-18, 13-25
CNT_DEBOUNCE (debounce) register,

13-18, 13-24
CNTE (counter enable) bit, 13-19
CNT_IMASK (interrupt mask) register,

13-18, 13-20
CNT_MAX (maximal count) register,

13-19, 13-25
CNT_MIN (minimal count) register,

13-19, 13-25
CNTMODE (counter operating mode)

bits, 13-19
CNT_STATUS (status) register, 13-18,

13-21
codecs, connecting to, 19-2
command (CNT_COMMAND) register,

13-18, 13-21
commands

DMA control, 7-32, 7-33
transfer initiate, 18-18, 18-19

companding, 19-16, 19-24
defined, 19-29
lengths supported, 19-29
multichannel operations, 19-24

configuration
CAN, 17-12
SPORT, 19-11

configuration (CNT_CONFIG) register,
13-18, 13-19

congestion, on DMA channels, 7-46
contention, bus, avoiding, 5-6
continuous transition, DMA, 7-28
control bit summary, general-purpose

timers, 10-46
control byte sequences, PPI, 20-8
controller area network (CAN), 17-1
controller area network. See CAN
control register

data memory, 2-5
EBIU, 5-4

core
block diagram, 3-4
core bus, 3-4
core clock (CCLK), 8-5, 25-2
core clock/system clock ratio control, 8-5
timer, 4-5
waking from idle state, 4-6

core and system reset, code example, 24-82,
24-83

core clock (CCLK), 11-2
core clock. See CCLK
core double-fault reset, 24-4
core event controller (CEC), 4-2
core-only software reset, 24-4
core select (CSEL) bits, 8-20
core timer, 11-1 to 11-8

block diagram, 11-2
clock rate, 11-1
features, 11-2
initialization, 11-3
internal interfaces, 11-3
low power mode, 11-3
operation, 11-3
registers, 11-4
scaling, 11-7

core timer control (TCNTL) register, 11-3,
11-5

Index

I-10 ADSP-BF50x Blackfin Processor Hardware Reference

core timer count (TCOUNT) register,
11-3, 11-5

core timer scale (TSCALE) register, 11-3,
11-7

counter (CNT_COUNTER) register,
13-18, 13-25

counter enable (CNTE) bit, 13-19
counter operating mode (CNTMODE)

bits, 13-19
count to zero interrupt enable (CZEROIE)

bit, 13-20
count to zero interrupt identifier

(CZEROII) bit, 13-21
count value[15:0] field, 11-6
count value[31:16] field, 11-6
COV15IE (bit 15 overflow interrupt

enable) bit, 13-20
COV15II (bit 15 overflow interrupt

identifier) bit, 13-21
COV31IE (bit 31 overflow interrupt

enable) bit, 13-20
COV31II (bit 31 overflow interrupt

identifier) bit, 13-21
CPHA bit, 18-37
CPOL bit, 18-37
CRC32 checksum generation, 24-33
CRCE bit, 17-84
CROSSCORE software, 1-28
crosstalk, 25-6
crystal

external, 1-23
CSA bit, 17-37, 17-44
CSEL[1:0] field, 8-5, 8-20, 25-2
CSR bit, 17-37, 17-43
CSW (CS width) bitfield, 22-41
CS width (CSW) bitfield, 22-41
CTS (clear to send) bit, 15-36
CTYPE (DMA channel type) bit, 7-67
CUD and CDZ input disable (INPDIS)

bit, 13-19

CUDINV (CUD pin polarity invert) bit,
13-19

CUD pin polarity invert (CUDINV) bit,
13-19

current address field, 7-76
current address registers

(DMAx_CURR_ADDR), 7-76
(MDMA_yy_CURR_ADDR), 7-76

current descriptor pointer
(DMAx_CURR_DESC_PTR)
registers, 7-82

current descriptor pointer
(MDMA_yy_CURR_DESC_PTR)
registers, 7-82

current event (CEVNT) bits, 22-33
current inner loop count registers

(DMAx_CURR_X_COUNT), 7-77
(MDMA_yy_CURR_X_COUNT),

7-77
current outer loop count registers

(DMAx_CURR_Y_COUNT), 7-80
(MDMA_yy_CURR_Y_COUNT),

7-80
CURR_X_COUNT[15:0] field, 7-78
CURR_Y_COUNT[15:0] field, 7-80
CZEROIE (count to zero interrupt enable)

bit, 13-20
CZEROII (count to zero interrupt

identifier) bit, 13-21
CZMEIE (CZM error interrupt enable)

bit, 13-20
CZMEII (CZM error interrupt identifier)

bit, 13-21
CZM error interrupt enable (CZMEIE)

bit, 13-20
CZM error interrupt identifier (CZMEII)

bit, 13-21
CZMIE (CZM pin interrupt enable) bit,

13-20

ADSP-BF50x Blackfin Processor Hardware Reference I-11

Index

CZMII (CZM pin interrupt identifier) bit,
13-21

CZMINV (CZM pin polarity invert) bit,
13-19

CZM pin interrupt enable (CZMIE) bit,
13-20

CZM pin interrupt identifier (CZMII) bit,
13-21

CZM pin polarity invert (CZMINV) bit,
13-19

CZM zeroes counter enable (ZMZC) bit,
13-19

CZM zeroes counter interrupt enable
(CZMZIE) bit, 13-20

CZM zeroes counter interrupt identifier
(CZMZII) bit, 13-21

CZMZIE (CZM zeroes counter interrupt
enable) bit, 13-20

CZMZII (CZM zeroes counter interrupt
identifier) bit, 13-21

D
DAB, 3-7, 7-5, 7-42, 7-91

arbitration, 3-7, 3-8
bus agents (masters), 3-9
latencies, 3-10
performance, 3-9
throughput, 3-10

DAB_TRAFFIC_COUNT[2:0] field,
7-91

data
sampling, serial, 19-33

data bank access bit, 2-6
data cache select/address bit 14 bit, 2-6
data corruption, avoiding with SPI, 18-15
data-driven interrupts, 7-73
data field byte 0[7:0] field, 17-59
data field byte 1[7:0] field, 17-59
data field byte 2[7:0] field, 17-62
data field byte 3[7:0] field, 17-62

data field byte 4[7:0] field, 17-64
data field byte 5[7:0] field, 17-64
data field byte 6[7:0] field, 17-66
data field byte 7[7:0] field, 17-66
data field filtering, CAN, 17-18
data formats, SPORT, 19-28
data input modes for PPI, 20-14 to 20-17
data/instruction access bit, 2-6
data memory control

(DMEM_CONTROL) register, 2-5
data memory control register

(DMEM_CONTROL), 2-5
data move, serial port operations, 19-38
data output modes for PPI, 20-17 to 20-19
data structures, 24-66

boot_struct, 24-68
buffer_struct, 24-67
header_struct, 24-67

data test command register
(DTEST_COMMAND), 2-6

data transfers
DMA, 3-9, 7-2
SPI, 18-15

data word, serial data formats, 19-56
DCB, 3-7, 7-5, 7-42, 7-91

arbitration, 3-7, 3-8
DCBS (L1 data cache bank select) bit, 2-5
DCB_TRAFFIC_COUNT field, 7-91
DCB_TRAFFIC_PERIOD field, 7-91
DCIE (down count interrupt enable) bit,

13-20
DCII (down count interrupt identifier) bit,

13-21
DCNT[7:0] field, 16-31, 16-32
DEB, 3-7, 7-5, 7-42, 7-91

arbitration, 3-7, 3-8
and EBIU, 5-4
frequency, 3-10
performance, 3-10

DEBE (debounce enable) bit, 13-19

Index

I-12 ADSP-BF50x Blackfin Processor Hardware Reference

debounce (CNT_DEBOUNCE) register,
13-18, 13-24

debounce enable (DEBE) bit, 13-19
DEB_TRAFFIC_COUNT field, 7-91
DEB_TRAFFIC_PERIOD field, 7-91
debugging

test point access, 25-8
DEC bit, 17-35, 17-45
deep sleep mode, 1-26, 8-10
delaycount (PPI_DELAY) register, 20-32
descriptor

array mode, DMA, 7-15, 7-69
chains, DMA, 7-27
list mode, DMA, 7-15, 7-69, 7-70

descriptor-based DMA, 7-14
descriptor queue, 7-58

management, 7-57
synchronization, 7-58

descriptor structures
DMA, 7-56
MDMA, 7-63

destination channels, memory DMA, 7-7
development tools, 1-28
DF bit, 8-4, 8-21
DFC[15:0] field, 17-54, 17-56
DFETCH bit, 7-14, 7-22, 7-74
dFlags word, 24-72
DFM[15:0] field, 17-50
DFRESET bit, 24-61
DI_EN bit, 7-14, 7-68, 7-70
DIL bit, 17-35, 17-45
direct code execution, 24-22

initial header, 24-21, 24-23
direct memory access. See DMA
disabling

PLL, 8-13
DI_SEL bit, 7-68, 7-70
DITFS (data-independent transmit frame

sync select) bit, 19-37, 19-48, 19-51,
19-62

divisor latch high byte[15:8] field, 15-43
divisor latch low byte[7:0] field, 15-43
divisor reset, UART, 15-44
DLC[3:0] field, 17-58
DLEN[2:0] field, 20-25, 20-26
DMA, 7-1 to 7-103

1-D interrupt-driven, 7-54
1-D unsynchronized FIFO, 7-56
2-D, polled, 7-55
2-D array, example, 7-92
2-D interrupt-driven, 7-54
autobuffer mode, 7-11, 7-29, 7-69
bandwidth, 7-46
block count, 7-38
block diagram, 7-104
block done interrupt, 7-41
block transfers, 7-9, 7-38
buffer size, multichannel SPORT, 19-24
buses, 3-7
channel registers, 7-66
channels, 7-42
channels and control schemes, 7-51
channel-specific register names, 7-65
congestion, 7-46
connecting asynchronous FIFO, 7-39
continuous transfers using autobuffering,

7-54
continuous transition, 7-28
control command restrictions, 7-35
control commands, 7-32, 7-33
controllers, 1-8
data transfers, 7-2
descriptor array, 7-23
descriptor array mode, 7-15, 7-69
descriptor-based, 7-14
descriptor-based, initializing, 7-95
descriptor-based vs. register-based

transfers, 7-3
descriptor chains, 7-27
descriptor element offsets, 7-16

ADSP-BF50x Blackfin Processor Hardware Reference I-13

Index

DMA (continued)
descriptor list mode, 7-15, 7-69, 7-70
descriptor lists, 7-23
descriptor queue, 7-57, 7-58
descriptors, recommended size, 7-17
descriptor structures, 7-56
direction, 7-71
DMA error interrupt, 7-74
double buffer scheme, 7-54
and EBIU, 7-4
errors, 7-30, 7-31
example connection, receive, 7-40
example connection, transmit, 7-39
external interfaces, 7-4
features, 7-2
finish control command, 7-34
first data memory access, 7-22
flow chart, 7-19, 7-20
FLOW mode, 7-17
FLOW value, 7-21
for SPI transmit, 18-11
handshake DMA, 1-8
handshake operation, 7-37
header file to define descriptor structures

example, 7-96
HMDMA1 block enable example, 7-101
HMDMA with delayed processing

example, 7-102
initializing, 7-17
internal interfaces, 7-4
and L1 memory, 7-5
large model mode, 7-70
latency, 7-25
memory conflict, 7-49
memory DMA, 1-8, 7-6
memory DMA streams, 7-7
memory DMA transfers, 7-5
memory read, 7-26
operation flow, 7-17
orphan access, 7-29

DMA (continued)
overflow interrupt, 7-41
overview, 1-8
performance considerations, 7-43
peripheral, 7-5
peripheral channels priority, 7-6
peripheral interrupts, 4-6
peripheral priority and default mapping,

7-105
pipelining requests, 7-38
polling DMA status example, 7-95
polling registers, 7-52
and PPI, 20-35
prioritization and traffic control, 7-45 to

7-50
programming examples, 7-92 to 7-103
receive, 7-27
refresh, 7-23
register-based, 7-9
register-based 2D memory DMA

example, 7-93
register naming conventions, 7-66
remapping peripheral assignment, 7-6
request data control command, 7-35
request data urgent control command,

7-35
restart control command, 7-33, 7-34
round robin operation, 7-48
serial port block transfers, 19-38
single-buffer transfers, 7-53
small model mode, 7-69
software management, 7-51
software-triggered descriptor fetch

example, 7-98
and SPI, 18-11
SPI data transmission, 18-43
SPI master, 18-24
SPI slave, 18-27
and SPORT, 19-4
startup, 7-17

Index

I-14 ADSP-BF50x Blackfin Processor Hardware Reference

DMA (continued)
stop mode, 7-11, 7-69
stopping transfers, 7-29
support for peripherals, 1-4
switching peripherals from, 7-75
and synchronization with PPI, 20-13
synchronization, 7-51 to 7-61
synchronized transition, 7-28
termination without abort, 7-29
throughput, 7-42
traffic control, 7-49
traffic exceeding available bandwidth,

7-46
transfers, 1-8, 3-11
transfers, urgent, 7-45
transmit, 7-26
transmit restart or finish, 7-35, 7-36
triggering transfers, 7-61
two descriptors in small list flow mode,

example, 7-96
two-dimensional, 7-11
two-dimensional memory DMA setup

example, 7-94
types supported, 1-8
and UART, 15-24, 15-39
using descriptor structures example, 7-97
variable descriptor size, 7-15
with PPI, 20-22
word size, changing, 7-28, 7-29
work units, 7-14, 7-23, 7-25

DMA2D bit, 7-68, 7-71
DMA bus. See DAB
DMACFG field, 7-21, 7-63
DMA channel registers, 7-64
DMACODE field, 24-13, 24-73
DMA Code field

DMACODE, 24-13
DMA configuration (DMAx_CONFIG)

registers, 7-68

DMA configuration
(MDMA_yy_CONFIG) registers,
7-68

DMA controller, 7-2
DMA core bus. See DCB
DMA direction (WNR) bit, 7-68, 7-71
DMA_DONE bit, 7-10, 7-74
DMA_DONE interrupt, 7-72
DMAEN bit, 7-18, 7-62, 7-68, 7-71
DMA_ERR bit, 7-10, 7-74
DMA_ERROR interrupt, 7-30
DMA error interrupts, 7-73
DMA external bus. See DEB
DMA performance optimization, 7-41
DMA queue completion interrupt, 7-60
DMA registers, 7-63, 7-64
DMA_RUN bit, 7-22, 7-59, 7-62, 7-72,

7-74
DMA_RUN bit), 7-10
DMARx pin, 7-38
DMA start address field, 7-75
DMA_TC_CNT (DMA traffic control

counter) register, 7-90, 7-91
DMA_TC_PER (DMA traffic control

counter period) register, 7-47, 7-91
DMA traffic control registers, 7-89
DMA_TRAFFIC_PERIOD field, 7-91
DMAx_CONFIG (DMA configuration)

registers, 7-8, 7-18, 7-25, 7-68
DMAx_CURR_ADDR (current address)

registers, 7-76
DMAx_CURR_DESC_PTR (current

descriptor pointer) registers, 7-82
DMAx_CURR_X_COUNT (current

inner loop count) registers, 7-77
DMAx_CURR_Y_COUNT (current

outer loop count) registers, 7-80
DMAx_IRQ_STATUS (interrupt status)

registers, 7-72, 7-74

ADSP-BF50x Blackfin Processor Hardware Reference I-15

Index

DMAx_NEXT_DESC_PTR (next
descriptor pointer) registers, 7-17,
7-81

DMAx_PERIPHERAL_MAP (peripheral
map) registers, 4-6, 7-67

DMAx_START_ADDR (start address)
registers, 7-17, 7-75

DMAx_X_COUNT (inner loop count)
registers, 7-76

DMAx_X_MODIFY (inner loop address
increment) registers, 7-18, 7-78

DMAx_Y_COUNT (outer loop count)
registers, 7-79

DMAx_Y_MODIFY (outer loop address
increment) registers, 7-18, 7-80

DMC[1:0] field, 2-5
DMEM_CONTROL (data memory

control) register, 2-4, 2-5
DNAK (data not acknowledged) bit,

16-35, 16-37
DNM bit, 17-43
DOUBLE_FAULT bit, 24-60
double word index[1:0] field, 2-6
DPMC, 8-2, 8-7 to 8-19
DR bit, 15-17
DR (data ready) bit, 15-33, 15-34
DR flag, 15-23
DRI bit, 17-35, 17-45
DRQ[1:0] field, 7-46, 7-84, 7-85
DRxPRI signal, 19-5
DRxPRI SPORT input, 19-6
DRxSEC signal, 19-5
DRxSEC SPORT input, 19-6
DTEST_COMMAND (data test

command) register, 2-6
DTO bit, 17-35, 17-45
DTxPRI signal, 19-5
DTxPRI SPORT output, 19-6
DTxSEC signal, 19-5
DTxSEC SPORT output, 19-6

dynamic power management, 1-24, 8-1
controller, 8-2

E
EAB

arbitration, 3-10
and EBIU, 5-4
frequency, 3-10
performance, 3-10

early frame sync, 19-35
EAV signal, 20-5
EBC, 5-4
EBIU, 1-6, 5-1 to 5-12

as slave, 5-4
block diagram, 5-3
bus errors, 5-5
clock, 5-1
clocking, 8-2
control registers, 5-4
and DMA, 7-4
error detection, 5-5
overview, 5-1
request priority, 5-1
status register, 5-4

EBIU_AMBCTL (asynchronous memory
bank control) register, 5-11

EBIU_AMGCTL (asynchronous memory
global control) register, 5-10

EBIU chapter, 5-1
EBIU_FCTL (asynchronous Flash memory

parameter control) register, 5-12
EBIU_MODECTL (asynchronous

memory mode control) register, 5-12
EBO bit, 17-44
ECINIT[15:0] field, 7-88
ECOM (events completed) bit, 22-33
ECOUNT[15:0] field, 7-88
edge detection, GPIO, 9-17
elfloader.exe, 24-9
ELSI bit, 15-9, 15-40, 15-41, 15-42

Index

I-16 ADSP-BF50x Blackfin Processor Hardware Reference

EMISO (enable MISO) bit, 18-36, 18-37
EMISS (events missed) bit, 22-33
emulation, and timer counter, 10-43
EMU_RUN bit, 10-42, 10-43, 10-47
EMx (event x missed) bits, 22-36
enable Pxn interrupt A bit, 9-35
enable Pxn interrupt B bit, 9-35
enabling

interrupts, 4-5
ENAEV (event enable) bit, 22-38
ENDCPLB bit, 2-5
entire field mode, PPI, 20-9
EP bit, 17-44
EPF4-0 (event parameter field) bitfield,

22-38
EPIF bit, 17-25, 17-48
EPIM bit, 17-25, 17-47
EPIS bit, 17-25, 17-47
EPROM, 1-6
EPS (even parity select) bit, 15-28
ERBFI bit, 15-9, 15-17, 15-39, 15-40,

15-41
ERR_DET (error detected) bit, 20-29,

20-30
ERR_NCOR (error not corrected) bit,

20-29, 20-30
error detection, 5-5
error frames, CAN, 17-29
error-passive interrupt, CAN, 17-25
errors

DMA, 7-30
not detected by DMA hardware, 7-31
startup, and timers, 10-8

error signals, SPI, 18-40 to 18-42
error status register (CAN_ESR), 17-84
error warning receive interrupt, CAN,

17-26
error warning transmit interrupt, CAN,

17-26

ERR_TYP[1:0] field, 10-7, 10-41, 10-42,
10-47

ERR_TYP bits, 10-29
ESx (event x status) bits, 22-34
ETBEI bit, 15-7, 15-16, 15-39, 15-40,

15-41
ETIME (event time) bits, 22-39
event controller, 4-2
event counter, CAN, 17-26
event enable (ENAEV) bit, 22-38
event handling, 4-2
event parameter field (EPF4-0MIEx)

bitfield, 22-38
events

definition, 4-3
types of, 4-2

events completed (ECOM) bit, 22-33
events missed (EMISS) bit, 22-33
event system, 4-3
event time (ETIME) bits, 22-39
event vector table (EVT), 4-2
event x missed (EMx) bits, 22-36
event x missed interrupt enable (MIEx)

bits, 22-37
event x status (ESx) bits, 22-34
event x status interrupt enable (IEx) bits,

22-35
EVT1 register, 24-6
EWLREC[7:0] field, 17-84
EWLTEC[7:0] field, 17-84
EWRIF bit, 17-26, 17-48
EWRIM bit, 17-26, 17-47
EWRIS bit, 17-26, 17-47
EWTIF bit, 17-26, 17-48
EWTIM bit, 17-26, 17-47
EWTIS bit, 17-26, 17-47
EXT_CLK mode, 10-33, 10-44

control bit and register usage, 10-46
flow diagram, 10-34

ADSP-BF50x Blackfin Processor Hardware Reference I-17

Index

external
emulator debugger, 10-43

external access bus. See EAB
external bus interface unit. See EBIU
external crystal, 1-23
external memory, 1-6, 2-4

reserved, 5-3
start address, 5-3

external memory map
figure, 5-2

external trigger output interrupt, CAN,
17-24

EXTEST instruction, B-6
EXTID[15:0] field, 17-50, 17-54, 17-56
EXTID[17:16] field, 17-48, 17-52
EXTIF bit, 17-24, 17-48
EXTIM bit, 17-24, 17-47
EXTIS bit, 17-24, 17-47

F
FAST (fast mode) bit, 16-31, 16-33
fast mode, TWI, 16-10
FCPOL (flow control pin polarity) bit,

15-31
FDF bit, 17-18, 17-48
FE (framing error) bit, 15-34, 15-35
FER bit, 17-84
FFE bit, 15-45, 15-46
FIFO

asynchronous connection, 7-39
finish control command, DMA, 7-34
flash

memory, 5-1
Flash memory, 5-3
flash memory, 1-6
Flash memory controller, 1-6, 5-4

EBIU block diagram, 5-4
Flash pins

reset, 6-78
FLD (field indicator) bit, 20-30

FLD_SEL (active field select) bit, 20-4,
20-26, 20-28

flex descriptors, 7-3
FLGx (slave select value) bit, 18-38, 18-39
FLOW[2:0] field, 7-23, 7-24, 7-56, 7-68,

7-69
flow charts

CAN receive operation, 17-17
CAN transmit operation, 17-14
DMA, 7-19, 7-20
general-purpose timers interrupt

structure, 10-6
GPIO, 9-22
GPIO interrupt generation, 9-19
PPI, 20-24
SPI core-driven, 18-30
SPI DMA, 18-31
timer EXT_CLK mode, 10-34
timer PWM_OUT mode, 10-11
timer WDTH_CAP mode, 10-24
TWI master mode, 16-24
TWI slave mode, 16-23

FLOW mode, DMA, 7-17
FLOW (next operation) bit, 7-15
FLOW value, DMA, 7-21
FLSx (slave select enable) bit, 18-8, 18-38
FMD bit, 17-48
FPE bit, 15-45, 15-46
framed serial transfers, characteristics,

19-32
framed/unframed data, 19-31
frame start detect, PPI, 20-34
frame sync

active high/low, 19-33
early, 19-35
early/late, 19-35
external/internal, 19-32
internal, 19-26
internally generated, 19-64
late, 19-35

Index

I-18 ADSP-BF50x Blackfin Processor Hardware Reference

frame sync (continued)
multichannel mode, 19-19
sampling edge, 19-33
SPORT options, 19-31

frame sync divider[15:0] field, 19-64,
19-65

frame synchronization
PPI in GP modes, 20-19
and SPORT, 19-3

frame sync polarity, PPI and timer, 20-20
frame sync pulse

use of, 19-51
when issued, 19-51

frame sync signal, control of, 19-50, 19-55
frame track error, 20-30, 20-33
frequencies, clock and frame sync, 19-26
frequency, DEB, 3-10
frequency, EAB, 3-10
FSDR (frame sync to data relationship) bit,

19-22, 19-66
F signal, 20-30
FT_ERR (frame track error) bit, 20-30,

20-33
full duplex, 19-4, 19-6

SPI, 18-2
FULL_ON bit, 8-21
full-on mode, 1-24, 8-8
function enable (PORTF_FER) register,

9-10
function enable (PORTG_FER) register,

9-10
function enable (PORTH_FER) register,

9-10
function enable (PORTx_FER) registers,

9-30

G
GCALL (general call) bit, 16-29, 16-30
general call address, TWI, 16-10
general-purpose interrupts, 4-2, 4-3

general-purpose I/O
overview, 1-9

general-purpose I/O. See GPIO
general-purpose ports, 9-1 to 9-42

assigning interrupt channels, 9-18
interrupt channels, 9-18
interrupt generation flow, 9-17
latency, 9-12
pin defaults, 9-3
pins, interrupt, 9-16
throughput, 9-12

general-purpose ports. See GPIO
general-purpose timers, 10-1 to 10-58

aborting immediately, 10-23
and startup errors, 10-8
autobaud mode, 10-32
block diagram, 10-59
buffer registers, 10-44
capture mode, 10-5
clock source, 10-3
code examples, 10-49
control bit summary, 10-46
counter, 10-4
disable timing, 10-23
enabling, 10-5, 10-34
error detection, 10-7
EXT_CLK mode, 10-44
external interface, 10-3
features, 10-2
flow diagram for EXT_CLK mode,

10-34
generating maximum frequency, 10-16
illegal states, 10-7, 10-9
internal interface, 10-4
internal timer structure, 10-3
interrupts, 10-4, 10-5, 10-15, 10-29
interrupt setup, 10-51
interrupt structure, 10-6
measurement report, 10-25, 10-27,

10-28

ADSP-BF50x Blackfin Processor Hardware Reference I-19

Index

general-purpose timers (continued)
non-overlapping clock pulses, 10-54
output pad disable, 10-12
overflow, 10-4
periodic interrupt requests, 10-52
port setup, 10-49
and PPI, 10-58
preventing errors in PWM_OUT mode,

10-45
programming model, 10-34
PULSE_HI toggle mode, 10-16
PWM mode, 10-5
PWM_OUT mode, 10-10 to 10-23,

10-44
registers, 10-35
signal generation, 10-50
single pulse generation, 10-13
size of register accesses, 10-36
stopping in PWM_OUT mode, 10-22
three timers with same period, 10-18
two timers with non-overlapping clocks,

10-18
waveform generation, 10-14
WDTH_CAP mode, 10-24, 10-44
WDTH_CAP mode configuration,

10-56
WDTH_CAP mode flow diagram,

10-24
GEN (general call enable) bit, 16-27, 16-28
GIRQ bit, 17-46
glitch filtering, UART, 15-14
global interrupts, CAN, 17-23
global interrupt status register (CAN_GIS),

17-47
global status register (CAN_STATUS),

17-44
GM (get more data) bit, 18-21, 18-37
GPIO, 1-9, 9-1 to 9-42

assigned to same interrupt channel, 9-21
clearing interrupt conditions, 9-18

GPIO (continued)
clear registers, 9-15
code examples, 9-41
configuration, 9-13
data registers, 9-13, 9-14, 9-15
direction registers, 9-13, 9-18
edge detection, 9-17
edge-sensitive, 9-15
flow chart, 9-22
function enable registers, 9-12, 9-13,

9-16
input buffers, 9-14
input driver, 9-14
input drivers, 9-18
input enable registers, 9-14, 9-16
interrupt channels, 9-21
interrupt generation flow chart, 9-19
interrupt request, 4-14
interrupts, 9-17
interrupt sensitivity registers, 9-17
mask data registers, 9-19
mask interrupt clear registers, 9-20
mask interrupt set registers, 9-20
mask interrupt toggle registers, 9-20
mask registers, 9-18
overview, 1-9
pins, 9-12, 9-13
polarity registers, 9-17
registers, 9-27
set registers, 9-15
toggle registers, 9-16
using as input, 9-14
write operations, 9-14
writes to registers, 9-15

GPIO clear (PORTxIO_CLEAR) registers,
9-32

GPIO data (PORTxIO) registers, 9-31
GPIO direction (PORTxIO_DIR)

registers, 9-30, 14-41, 14-42, 14-44,
14-47, 14-48, 14-49, 14-50

Index

I-20 ADSP-BF50x Blackfin Processor Hardware Reference

GPIO input enable (PORTxIO_INEN)
registers, 9-31

GPIO mask interrupt A clear registers, 9-38
GPIO mask interrupt A

(PORTxIO_MASKA_CLEAR)
registers, 9-35

GPIO mask interrupt A set
(PORTxIO_MASKA_SET) registers,
9-36

GPIO mask interrupt A toggle
(PORTxIO_MASKA_TOGGLE)
registers, 9-40

GPIO mask interrupt B clear
(PORTxIO_MASKB_CLEAR)
registers, 9-39

GPIO mask interrupt B
(PORTxIO_MASKB) registers, 9-35

GPIO mask interrupt B set
(PORTxIO_MASKB_SET) registers,
9-37

GPIO mask interrupt B toggle
(PORTxIO_MASKB_TOGGLE)
registers, 9-41

GPIO pins, 9-12
GPIO polarity (PORTxIO_POLAR)

registers, 9-33
GPIO set on both edges

(PORTxIO_BOTH) registers, 9-34
GPIO set (PORTxIO_SET) registers, 9-32
GPIO toggle (PORTxIO_TOGGLE)

registers, 9-33
GP modes, PPI, 20-14
ground plane, 25-6, 25-7

H
H.100, 19-22
H.100 standard protocol, 19-25
handshake DMA, 1-8
handshake MDMA, 7-8

interrupts, 7-40

handshake MDMA configuration
(HMDMAx_BCINIT) registers, 7-37

handshake MDMA control
(HMDMAx_CONTROL) registers,
7-83

handshake MDMA control registers, 7-85
handshake MDMA current block count

(HMDMAx_BCOUNT) registers,
7-38, 7-86

handshake MDMA current block count
registers (HMDMAx_BCOUNT),
7-87

handshake MDMA current edge count
(HMDMAx_ECOUNT) registers,
7-38, 7-39, 7-87, 7-88

handshake MDMA edge count overflow
interrupt
(HMDMAx_ECOVERFLOW)
registers, 7-89

handshake MDMA edge count urgent
(HMDMAx_ECURGENT) registers,
7-88, 7-89

handshake MDMA initial block count
(HMDMAx_BCINIT) registers, 7-86

handshake MDMA initial edge count
(HMDMAx_ECINIT) registers,
7-39, 7-88

handshaking MDMA operation, 7-4
handshaking memory DMA (HMDMA),

7-2
hardware reset, 24-3, 24-5, 24-6
HC (hold cycle) bitfield, 22-41
HDRCHK field, 24-13
HDRSGN field, 24-13
header checksum field

HDRCHK, 24-16
HIBERNATEB bit, 1-26, 8-18, 17-39
hibernate state, 1-26, 8-11

and CAN, 17-38
high-frequency design considerations, 25-5

ADSP-BF50x Blackfin Processor Hardware Reference I-21

Index

HMDMA, 7-2, 7-8
HMDMAEN bit, 7-37, 7-39, 7-85
HMDMAx_BCINIT (handshake MDMA

configuration) registers, 7-37, 7-86
HMDMAx_BCOUNT (handshake

MDMA current block count)
registers, 7-38, 7-86, 7-87

HMDMAx_CONTROL (handshake
MDMA control) registers, 7-83, 7-85

HMDMAx_ECINIT (handshake MDMA
initial edge count) registers, 7-39,
7-88

HMDMAx_ECOUNT (handshake
MDMA current edge count) registers,
7-38, 7-39, 7-87, 7-88

HMDMAx_ECOVERFLOW (handshake
MDMA edge count overflow
interrupt) registers, 7-89

HMDMAx_ECURGENT (handshake
MDMA edge count urgent) registers,
7-88, 7-89

HMVIP, 19-25
hold, for EBIU asynchronous memory

controller, 5-9
hold cycle (HC) bitfield, 22-41
horizontal blanking, 20-6
horizontal tracking, PPI, 20-31

I
I2C, See TWI
I2C bus standard, 1-10, 16-2
I2S, 1-16

format, 19-11
serial devices, 19-3

ICIE (illegal gray/binary code interrupt
enable) bit, 13-20

ICII (illegal gray/binary code interrupt
identifier) bit, 13-21

IDE bit, 17-52

idle state
waking from, 4-6

IEEE 1149.1 standard. See JTAG standard
IEx (event x status interrupt enable) bits,

22-35
IMASK (interrupt mask) register

initialization, 4-8
information processing time (IPT), 17-11
INIT bit, 24-25
initcall address/symbol command, 24-26
initcode routines, 24-24
initialization

IMASK register, 4-8
interrupt, 4-8

initializing
CAN, 17-9
DMA, 7-17

init initcode.dxe command, 24-26
inner loop address increment registers

(DMAx_X_MODIFY), 7-78
(MDMA_yy_X_MODIFY), 7-78

inner loop count registers
(DMAx_X_COUNT), 7-76
(MDMA_yy_X_COUNT), 7-76

INPDIS (CUD and CDZ input disable)
bit, 13-19

input buffers, GPIO, 9-14
input clock. See CLKIN
input driver, GPIO, 9-14
instruction bit scan ordering, B-5
instruction register (IR), B-2, B-4
instructions, 1-27

private, B-4
public, B-4
See also instructions by name

interfaces
internal memory, 5-4
on-chip, 3-2
overview, 3-2
system, 3-2

Index

I-22 ADSP-BF50x Blackfin Processor Hardware Reference

inter IC bus, 16-2
interlaced video, 20-6
interleaving

of data in SPORT FIFO, 19-57
SPORT data, 19-7

internal
clocks, 3-2

internal boot ROM, 24-1
internal/external frame syncs. See frame

sync
internal memory, 1-6

accesses, 2-1
interfaces, 5-4

Internal Memory Interfaces, 5-4
interrupt

for peripheral, 4-1
interrupt channels, UART, 15-39
interrupt conditions, UART, 15-42
interrupt handler and DMA

synchronization, 7-59
interrupt mask (CNT_IMASK) register,

13-18, 13-20
interrupt output, SPI, 18-17
interrupt request lines, peripheral, 4-15
interrupts, 4-1 to 4-15

CAN, 17-22
channels, assigning, 9-18
channels, GPIO, 9-18
clearing requests, 4-13
configuring and servicing, 25-2
control of system, 4-2
default mapping, 4-3
definition, 4-3
determining source, 4-5
DMA channels, 4-6
DMA_ERROR, 7-30
DMA error, 7-74
DMA overflow, 7-41
DMA queue completion, 7-60
enabling, 4-5

interrupts (continued)
evaluation of GPIO interrupts, 9-21
general-purpose, 4-2, 4-3
general-purpose timers, 10-4, 10-5,

10-15, 10-29
generated by peripherals, 4-8
global, 17-23
GPIO, 9-16, 9-18, 9-21
handshake MDMA, 7-40
initialization, 4-8
inputs and outputs, 4-4
mailbox, 17-23
mapping, 4-4
mask function, 4-7
multiple sources, 4-9
peripheral, 4-2, 4-3, 4-4 to 4-7
prioritization, 4-4
processing, 4-1, 4-8
programming examples, 4-13 to 4-15
reset, 24-8
routing overview, 4-16, 4-17
shared, 4-4
software, 4-3
SPI, 18-17, 18-47
SPORT error, 19-38
SPORT RX, 19-38, 19-61
SPORT TX, 19-38, 19-58
system, 4-1
to wake core from idle, 4-6
UART, 15-16
use in managing a descriptor queue, 7-58

interrupt sensitivity (PORTxIO_EDGE)
registers, 9-34

interrupt service routine, determining
source of interrupt, 4-5

interrupt status registers
(DMAx_IRQ_STATUS), 7-72, 7-74
(MDMA_yy_IRQ_STATUS), 7-72,

7-74

ADSP-BF50x Blackfin Processor Hardware Reference I-23

Index

I/O interface to peripheral serial device,
19-4

I/O memory space, 1-7
I/O pins, general-purpose, 9-13
IRCLK (internal receive clock select) bit,

19-53, 19-55
IrDA

receiver, 15-14
transmitter, 15-13

IrDA mode, 15-45
IREN bit, 15-45
IRFS (internal receive frame sync select) bit,

19-32, 19-53, 19-55
IR instruction register, B-2, B-4
IRPOL bit, 15-15
IRQ bit, 10-48
IRQ_ENA bit, 10-42, 10-46, 10-48
ISR

supporting multiple interrupt sources,
4-7, 4-18

ISR and multiple interrupt sources, 4-9
ITCLK (internal transmit clock select) bit,

19-48, 19-50
ITFS (internal transmit frame sync select)

bit, 19-20, 19-32, 19-48, 19-51
ITHR[15:0] field, 7-89
ITU-R 601/656, 1-14
ITU-R 601 recommendation, 20-16
ITU-R 656 modes, 20-5, 20-9, 20-28,

20-29
active video only submode, 20-9, 20-10
and DLEN field, 20-25
entire field submode, 20-9
frame start detect, 20-34
frame synchronization, 20-11
output, 20-11
SAV codes, 20-31
supported, 1-15
vertical blanking interval only submode,

20-9, 20-10

J
JTAG, B-1, B-3, B-4

L
L1

data cache, 2-4
data memory, 1-6
data memory subbanks, 2-3
data SRAM, 2-3
instruction memory, 1-6, 2-2
memory and core, 3-4
memory and DMA controller, 7-5
scratchpad RAM, 1-6

L1 instruction memory
address alignment, 2-2
subbanks, 2-3

LARFS (late receive frame sync) bit, 19-35,
19-53, 19-56

large descriptor mode, DMA, 7-15
large model mode, DMA, 7-70
late frame sync, 19-18, 19-35
latency

DAB, 3-10
DMA, 7-25
general-purpose ports, 9-12

LATFS (late transmit frame sync) bit,
19-35, 19-48, 19-52

level shifters, 25-8
lines per frame (PPI_FRAME) register,

20-34
lines per frame register, 20-33
line terminations, SPORT, 19-9
little endian byte order, 16-47
loader file, 24-9
loader utility, 24-9
LOCKCNT[15:0] field, 8-22
locked transfers, DMA, 3-9
loopback feature, PPI, 20-10

Index

I-24 ADSP-BF50x Blackfin Processor Hardware Reference

LOOPBACK (loopback mode enable) bit,
15-31

loopback mode, UART, 15-31
LOSTARB (lost arbitration) bit, 16-35,

16-38
LRFS (low receive frame sync select) bit,

19-13, 19-32, 19-33, 19-53, 19-56
LSBF (LSB first) bit, 18-37
LT_ERR_OVR flag, 20-31
LT_ERR_OVR (horizontal tracking

overflow error) bit, 20-30, 20-31
LT_ERR_UNDR flag, 20-31
LT_ERR_UNDR (horizontal tracking

underflow error) bit, 20-30, 20-31
LTFS (low transmit frame sync select) bit,

19-20, 19-32, 19-33, 19-48, 19-51

M
MAA bit, 17-45
MADDR[6:0] field, 16-34
mailbox configuration register 1

(CAN_MC1), 17-68
mailbox configuration register 2

(CAN_MC2), 17-68
mailbox direction register 1 (CAN_MD1),

17-69
mailbox direction register 2 (CAN_MD2),

17-69
mailboxes, CAN, 17-4
mailbox interrupt mask registers, 17-78
mailbox interrupts, CAN, 17-23
mailbox receive interrupt flag registers,

17-80
mailbox transmit interrupt flag registers,

17-79
mailbox word 0 register

(CAN_MBxx_DATA0), 17-66
mailbox word 1 register

(CAN_MBxx_DATA1), 17-64

mailbox word 2 register
(CAN_MBxx_DATA2), 17-62

mailbox word 3 register
(CAN_MBxx_DATA3), 17-59

mailbox word 4 register
(CAN_MBxx_LENGTH), 17-58

mailbox word 6 register
(CAN_MBxx_ID0), 17-54, 17-56

mailbox word 7 register
(CAN_MBxx_ID1), 17-52

master control register
(CAN_CONTROL), 17-43

masters
DAB, 3-9
PAB, 3-6

MAXCIE (max count interrupt enable) bit,
13-20

MAXCII (max count interrupt identifier)
bit, 13-21

max count interrupt identifier (MAXCII)
bit, 13-21

maximal count (CNT_MAX) register,
13-19, 13-25

maximum count interrupt enable
(MAXCIE) bit, 13-20

MBDI bit, 7-41, 7-85
MBIMn bit, 17-78, 17-79
MBPTR[4:0] field, 17-44
MBRIFn bit, 17-80, 17-81
MBRIRQ bit, 17-46
MBTIFn bit, 17-79, 17-80
MBTIRQ bit, 17-46
MCCRM[1:0] field, 19-66
MCDRXPE (multichannel DMA receive

packing) bit, 19-66
MCDTXPE (multichannel DMA transmit

packing) bit, 19-66
MCMEN (multichannel frame mode

enable) bit, 19-18, 19-66

ADSP-BF50x Blackfin Processor Hardware Reference I-25

Index

MCOMP (master transfer complete) bit,
16-43, 16-44

MCOMPM (master transfer complete
interrupt mask) bit, 16-42

MCx bit, 17-68
MDIR (master transfer direction) bit,

16-31, 16-33
MDMA channels, 7-6
MDMA controllers, 7-6
MDMA_ROUND_ROBIN_COUNT[4:

0] field, 7-48, 7-91
MDMA_ROUND_ROBIN_PERIOD

field, 7-47, 7-48, 7-91
MDMA_yy_CONFIG (DMA

configuration) registers, 7-68
MDMA_yy_CURR_ADDR (current

address) registers, 7-76
MDMA_yy_CURR_DESC_PTR (current

descriptor pointer) registers, 7-82
MDMA_yy_CURR_X_COUNT (current

inner loop count) registers, 7-77
MDMA_yy_CURR_Y_COUNT (current

outer loop count) registers, 7-80
MDMA_yy_IRQ_STATUS (interrupt

status) registers, 7-72, 7-74
MDMA_yy_NEXT_DESC_PTR (next

descriptor pointer) registers, 7-81
MDMA_yy_PERIPHERAL_MAP

(peripheral map) registers, 7-67
MDMA_yy_START_ADDR (start

address) registers, 7-75
MDMA_yy_X_COUNT (inner loop

count) registers, 7-76
MDMA_yy_X_MODIFY (inner loop

address increment) registers, 7-78
MDMA_yy_Y_COUNT (outer loop

count) registers, 7-79
MDMA_yy_Y_MODIFY (outer loop

address increment) registers, 7-80
MDn bit, 17-69

measurement report, general-purpose
timers, 10-25, 10-27, 10-28

memory, 2-1 to 2-6
accesses to internal, 2-1
architecture, 1-4, 2-1
boot ROM, 2-4
configurations, 1-5
external, 1-6, 2-4
flash, 1-6
Flash memory region, 5-3
internal, 1-6
internal interfaces, 5-4
L1, 3-4
L1 data, 1-6, 2-3
L1 data cache, 2-4
L1 instruction, 1-6, 2-2
L1 scratchpad RAM, 1-6
moving data between SPORT and,

19-38
off-chip, 1-5, 1-6
on-chip, 1-5, 1-6
OTP, 1-7
start locations of L1 instruction memory

subbanks, 2-3
structure, 1-4
unpopulated, 5-6

memory conflict, DMA, 7-49
memory DMA, 1-8, 7-6

bandwidth, 7-44
buffers, 7-8
channels, 7-7
descriptor structures, 7-63
handshake operation, 7-8
priority, 7-47
scheduling, 7-47
timing, 7-45
transfer operation, starting, 7-8
transfer performance, 3-11
transfers, 7-2, 7-5
word size, 7-7

Index

I-26 ADSP-BF50x Blackfin Processor Hardware Reference

memory map
ADSP-BF50x, 2-2

memory map, external (figure), 5-2
memory-mapped registers. See MMRs
memory-to-memory transfers, 7-7
MEN (master mode enable) bit, 16-31,

16-33
MERR (master transfer error) bit, 16-43,

16-44
MERRM (master transfer error interrupt

mask) bit, 16-42
MFD[3:0] field, 19-21, 19-66
MIEx (event x missed interrupt enable)

bits, 22-37
MINCIE (min count interrupt enable) bit,

13-20
MINCII (min count interrupt identifier)

bit, 13-21
min count interrupt identifier (MINCII)

bit, 13-21
minimal count (CNT_MIN) register,

13-19, 13-25
minimum count interrupt enable

(MINCIE) bit, 13-20
MISO pin, 18-5, 18-12, 18-15, 18-16,

18-21
MMRs, 1-7

address range, A-2
for PPI, 20-25
memory-related, 2-5
width, A-2

mode fault error, 18-17, 18-41
modes

broadcast, 18-9, 18-15, 18-16
multichannel, 19-15
serial port, 19-11
SPI master, 18-15, 18-18
SPI slave, 18-16, 18-20
UART DMA, 15-24
UART non-DMA, 15-22

MODF (mode fault error) bit, 18-40,
18-41

MOSI pin, 18-5, 18-12, 18-15, 18-16,
18-21

moving data, serial port, 19-38
MPROG (master transfer in progress) bit,

16-35, 16-38
MRB bit, 17-45
MRTS (manual request to send) bit, 15-31
MSEL[5:0] field, 8-4, 8-21
MSTR (master) bit, 18-36, 18-37
multichannel frame, 19-20
multichannel frame delay field, 19-21
multichannel mode, 19-15

enable/disable, 19-18
frame syncs, 19-19
SPORT, 19-19

multichannel operation, SPORT, 19-15 to
19-25

multiple interrupt sources, 4-9
multiple slave SPI systems, 18-8
multiplexing, 9-1
MVIP-90, 19-25

N
NAK (not acknowledge) bit, 16-27, 16-28
NDPH bit, 7-21
NDPL bit, 7-21
NDSIZE[3:0] field, 7-15, 7-68, 7-70

legal values, 7-32
next descriptor pointer registers

(DMAx_NEXT_DESC_PTR), 7-81
(MDMA_yy_NEXT_DESC_PTR),

7-81
nFlags variable, 24-72
nominal bit rate, CAN, 17-11
nominal bit time, CAN, 17-10
normal frame sync mode, 19-35
normal timing, serial port, 19-35
NTSC systems, 20-6

ADSP-BF50x Blackfin Processor Hardware Reference I-27

Index

O
OE (overrun error) bit, 15-33, 15-34
off-chip

bus connections, 3-7
memory, 1-5
peripherals, 7-2
signals, 9-16

off-chip memory, 1-6
external access bus (EAB), 3-10

off-core
accesses, 3-4

offsets, DMA descriptor elements, 7-16
OI bit, 7-85
OIE bit, 7-85
on-chip

busses, 3-7
I/O devices, 1-7
memory, 1-5, 1-6
peripherals, 1-7, 7-2
PLL, 1-23

one-time-programmable (OTP) memory,
1-7

open drain drivers, 18-2
open drain outputs, 18-15
operating modes, 8-8

active, 1-24, 8-9
deep sleep, 1-26, 8-10
full-on, 1-24, 8-8
hibernate state, 1-26, 8-11
PPI, 20-4
sleep, 1-25, 8-9
transition, 8-11, 8-12

OPSSn bit, 17-72
optimization, of DMA performance, 7-41
oscilloscope probes, 25-8
OUT_DIS bit, 10-41, 10-42, 10-47, 10-59
outer loop address increment registers

(DMAx_Y_MODIFY), 7-80
(MDMA_yy_Y_MODIFY), 7-80

outer loop count registers
(DMAx_Y_COUNT), 7-79
(MDMA_yy_Y_COUNT), 7-79

output pad disable, timer, 10-12
overflow interrupt, DMA, 7-41
overwrite protection/single shot

transmission register 1
(CAN_OPSS1), 17-72

overwrite protection/single shot
transmission register 2
(CAN_OPSS2), 17-72

P
PAB, 3-5

arbitration, 3-6
bus agents (masters, slaves), 3-6
clocking, 8-1
and EBIU, 5-4
performance, 3-7

PACK_EN (packing mode enable) bit,
20-26, 20-27

packing, serial port, 19-24
PAL systems, 20-6
parallel peripheral interface. See PPI
PDWN bit, 8-21
PEN (parity enable) bit, 15-28
PE (parity error) bit, 15-34
performance

DAB, 3-9
DCB, 3-9
DEB, 3-9, 3-10
DMA, 7-43
EAB, 3-10
general-purpose ports, 9-12
memory DMA, 7-44
memory DMA transfers, 3-11
optimization, DMA, 7-41
PAB, 3-7

PERIOD_CNT bit, 10-12, 10-21, 10-25,
10-26, 10-42, 10-46

Index

I-28 ADSP-BF50x Blackfin Processor Hardware Reference

period value[15:0] field, 11-6
period value[31:16] field, 11-6
peripheral

DMA, 7-5
DMA channels, 7-42
DMA transfers, 7-2
error interrupts, 7-73
interrupt request lines, 4-15
supporting interrupts, 4-1

peripheral access bus. See PAB
Peripheral bus

errors generated by SPORT, 19-39
peripheral DMA start address registers,

7-75
peripheral interrupts, 4-2, 4-3, 4-4 to 4-7
peripheral map registers

(DMAx_PERIPHERAL_MAP), 7-67
(MDMA_yy_PERIPHERAL_MAP),

7-67
peripheral pins, default configuration, 9-13
peripherals, 1-4

and buses, 1-4
compatible with SPI, 18-3
and DMA controller, 7-32
DMA support, 1-4
enabling, 9-3
interrupt generated by, 4-8
interrupts, clearing, 4-13
level-sensitivity of interrupts, 4-15
list of, 1-4
mapping to DMA, 7-105
multiplexing, 9-1
remapping DMA assignment, 7-6
switching from DMA to non-DMA,

7-75
timing, 3-4
used to wake from idle, 4-6

PF0 pin, 9-15
PFx pin, 18-7
phase locked loop. See PLL

pin information, 25-1
pins, 25-1

GPIO, 9-12
multiplexing, 9-1
unused, 25-10

pin terminations, SPORT, 19-9
pipeline, lengths of, 7-52
pipelining

DMA requests, 7-38
PJSE bit, 9-27, 9-28, 9-29
PLL, 8-1 to 8-29

active (enabled but bypassed) mode, 8-9
active mode, 8-9
applying power to the PLL, 8-13
block diagram, 8-4
BYPASS bit, 8-9
CCLK derivation, 8-4
changing clock ratio, 8-6
clock control, 8-1
clock dividers, 8-4
clock multiplier ratios, 8-4
configuration, 8-3
control bits, 8-11
deep sleep mode, 8-10
design overview, 8-2
disabled, 8-13
divide frequency, 8-4
DMA access, 8-9
dynamic power management controller

(DPMC), 8-7
enabled, 8-13
hibernate state, 8-11
interacting with DPMC, 8-2
and internal clocks, 3-2
maximum performance mode, 8-8
modification in active mode, 8-13
multiplier select (MSEL) field, 8-4
operating modes, operational

characteristics, 8-8
operating mode transitions, 8-11, 8-13

ADSP-BF50x Blackfin Processor Hardware Reference I-29

Index

PDWN bit, 8-11
PLL_OFF bit, 8-13
PLL status (table), 8-8
power domains, 8-16
power savings by operating mode (table),

8-8
registers, table, 8-20
removing power to the PLL, 8-13
SCLK derivation, 8-1, 8-4
sleep mode, 8-9
STOPCK bit, 8-11
voltage control, 8-7

PLL control (PLL_CTL) register, 8-4, 8-5,
8-20, 8-21

PLL_CTL (PLL control) register, 8-4, 8-5,
8-20, 8-21

PLL divide register, 3-4
PLL_DIV (PLL divide) register, 8-6, 8-20
PLL_LOCKCNT (PLL lock count)

register, 8-20, 8-22
PLL_LOCKED bit, 8-21
PLL_OFF bit, 8-21
PLL_STAT (PLL status) register, 8-20,

8-21
PMAP[3:0] field, 7-5, 7-45, 7-67
polarity, GPIO, 9-17
POLC (polarity change) bit, 20-4, 20-25,

20-26
polling DMA registers, 7-52
POLS bit, 20-4, 20-25, 20-26
PORT_CFG[1:0] field, 20-4, 20-26,

20-28
port connection, SPORT, 19-7
PORT_DIR bit, 13-25
PORT_DIR (direction) bit, 20-4, 20-26,

20-28
PORT_EN (enable) bit, 20-26, 20-29

port F
GPIO, 9-13
peripherals, 9-1
structure, 9-3

PORTF_FER (function enable) register,
9-10

PORTF_HYSTERESIS register, 9-24
port G

GPIO, 9-13
peripherals, 9-2, 9-5
structure, 9-5

PORTG_FER (function enable) register,
9-10

PORTG_HYSTERESIS register, 9-25
port H

GPIO, 9-13
peripherals, 9-2
structure, 9-6

PORTH_FER (function enable) register,
9-10

PORTH_HYSTERESIS register, 9-25
port pins, 9-3, 18-39
port pins, test access, B-2
PORT_PREF0 bit, 2-5
PORT_PREF1 bit, 2-5
port width, PPI, 20-27
PORTx_FER (function enable) registers,

9-3, 9-12, 9-16, 9-30
PORTx_FER registers, 9-30
PORTxIO_BOTH (GPIO set on both

edges) registers, 9-34
PORTxIO_BOTH registers, 9-34
PORTxIO_CLEAR (GPIO clear) registers,

9-32
PORTxIO_CLEAR registers, 9-32
PORTxIO_DIR (GPIO direction)

registers, 9-30, 14-41, 14-42, 14-44,
14-47, 14-48, 14-49, 14-50

PORTxIO_DIR registers, 9-30

Index

I-30 ADSP-BF50x Blackfin Processor Hardware Reference

PORTxIO_EDGE (interrupt sensitivity)
registers, 9-34

PORTxIO_EDGE registers, 9-34
PORTxIO (GPIO data) registers, 9-31
PORTxIO_INEN (GPIO input enable)

registers, 9-16, 9-31
PORTxIO_INEN registers, 9-31
PORTxIO_MASKA_CLEAR (GPIO

mask interrupt A clear) registers, 9-20,
9-38

PORTxIO_MASKA_CLEAR registers,
9-38

PORTxIO_MASKA (GPIO mask
interrupt A) registers, 9-35

PORTxIO_MASKA registers, 9-35
PORTxIO_MASKA_SET (GPIO mask

interrupt A set) registers, 9-36
PORTxIO_MASKA_SET registers, 9-36
PORTxIO_MASKA_TOGGLE (GPIO

mask interrupt A toggle) registers,
9-40

PORTxIO_MASKA_TOGGLE registers,
9-40

PORTxIO_MASKB_CLEAR (GPIO
mask interrupt B clear) registers, 9-20,
9-39

PORTxIO_MASKB_CLEAR registers,
9-39

PORTxIO_MASKB (GPIO mask
interrupt B) registers, 9-35

PORTxIO_MASKB registers, 9-35
PORTxIO_MASKB_SET (GPIO mask

interrupt B set) registers, 9-37
PORTxIO_MASKB_SET registers, 9-37
PORTxIO_MASKB_TOGGLE (GPIO

mask interrupt B toggle) registers,
9-41

PORTxIO_MASKB_TOGGLE registers,
9-41

PORTxIO_POLAR (GPIO polarity)
registers, 9-33

PORTxIO_POLAR registers, 9-33
PORTxIO registers, 9-31
PORTxIO_SET (GPIO set) registers, 9-32
PORTxIO_SET registers, 9-32
PORTxIO_TOGGLE (GPIO toggle)

registers, 9-33
PORTxIO_TOGGLE registers, 9-33
PORTx_MUX (port multiplexer control)

register, 9-3, 9-27, 9-28, 9-29
PORTx_MUX (port multiplexer control)

registers, 9-3, 9-9
PORTx_MUX registers, 9-27, 9-28, 9-29
power

dissipation, 8-16
domains, 8-16
plane, 25-7

power management, 1-24, 8-1 to 8-29
PPI, 20-2 to 20-37

active video only mode, 20-10
block diagram, 20-3
clearing DMA completion interrupt,

20-37
clock input, 20-3
configure DMA registers, 20-35
configuring registers, 20-36
control byte sequences, 20-8
control signal polarities, 20-25
data input modes, 20-14 to 20-17
data movement, 20-9
data output modes, 20-17 to 20-19
data width, 20-25
delay before starting, 20-32
DMA operation, 20-22
edge-sensitive inputs, 20-21
enabling, 20-29, 20-36
enabling DMA, 20-36
entire field mode, 20-9
external frame sync modes, 20-15

ADSP-BF50x Blackfin Processor Hardware Reference I-31

Index

PPI (continued)
external frame syncs, 20-16, 20-18
features, 20-2
FIFO, 20-31
flow diagram, 20-24
frame start detect, 20-34
frame synchronization with ITU-R 656,

20-11
frame sync polarity with timer

peripherals, 20-20
frame track error, 20-30, 20-33
general flow for GP modes, 20-14
general-purpose modes, 20-12
GP modes, 20-14
GP modes with frame synchronization,

20-19
GP output, 13-3, 13-5, 13-8, 20-19
hardware signalling, 20-16
horizontal tracking, 20-31
interlaced video, 20-6
internal frame sync modes, 20-16
internal frame syncs, 20-17
internal frame syncs modes, 20-19
ITU-R 601 recommendation, 20-16
ITU-R 656 modes, 20-5
ITU-R 656 output mode, 20-11
loopback feature, 20-10
memory-mapped registers, 20-25
multiplexed with general-purpose timers,

10-58
no frame syncs modes, 20-15, 20-17
number of lines per frame, 20-33
number of samples, 20-32
operating modes, 20-4, 20-25
overview, 1-14
port width, 20-27
preamble, 20-7
programming model, 20-22
progressive video, 20-6

PPI (continued)
submodes for ITU-R 656, 20-9
and synchronization with DMA, 20-13
timer pins, 20-21
transfer delay, 20-18
TX modes with external frame syncs,

20-21
TX modes with internal frame syncs,

20-19
valid data detection, 20-15
vertical blanking interval only mode,

20-10
video frame partitioning, 20-7
video processing, 20-5
video streams, 20-8
when data transfer begins, 20-29

PPI_CLK cycle count, 20-32
PPI_CLK pin, 20-3
PPI_CLK signal, 20-25
PPI_CONTROL (PPI control) register,

20-25, 20-26
PPI control register (PPI_CONTROL),

20-25, 20-26
PPI_COUNT[15:0] field, 20-33
PPI_COUNT (transfer count) register,

20-32, 20-33
PPI_DELAY[15:0] field, 20-32
PPI_DELAY (delay count) register, 20-32
PPI_FRAME[15:0] field, 20-34
PPI_FRAME (lines per frame) register,

20-33, 20-34
PPI_FS1 signal, 20-25
PPI_FS2 signal, 20-25
PPI_FS3 signal, 20-31
PPI_STATUS (PPI status) register, 20-29,

20-30
preamble, PPI, 20-7
prescale[6:0] field, 16-26
PRESCALE value, 16-4

Index

I-32 ADSP-BF50x Blackfin Processor Hardware Reference

priorities
memory DMA operations, 7-47
peripheral DMA operations, 7-47

prioritization
DMA, 7-45 to 7-50
interrupts, 4-4

private instructions, B-4
probes, oscilloscope, 25-8
processor

dynamic power management, 8-1
test features, B-1

processor block diagram, 1-4
program Pxn bit, 9-31
progressive video, 20-6
propagation segment, CAN, 17-11
PS bit, 7-85
PSSE (slave select enable) bit, 18-36, 18-37
public instructions, B-4
public JTAG scan instructions, B-6
PULSE_HI bit, 10-14, 10-17, 10-25,

10-42, 10-46
PULSE_HI toggle mode, 10-16
pulse width count and capture mode. See

WDTH_CAP mode
pulse width modulation mode. See

PWM_OUT mode
pulse width modulation mode. See

PWM_OUT mode
pulse width modulator, 1-18
PWM_CHA, 14-37
PWM_CHAL, 14-38
PWM chapter, 14-1
PWM_CHB, 14-37
PWM_CHBL, 14-38
PWM_CHC, 14-37
PWM_CHCL, 14-38
PWM_CLK clock, 10-21
PWM_CLK signal, 10-21
PWM_CTL, 14-37
PWM_DT, 14-37

PWM_GATE, 14-37
PWM_LSI, 14-38
PWM_OUT mode, 10-10 to 10-23, 10-44

control bit and register usage, 10-46
error prevention, 10-45
externally clocked, 10-21
PULSE_HI toggle mode, 10-16
stopping the timer, 10-22

PWM_SEG, 14-37
PWM_STAT, 14-37
PWM_STAT2, 14-38
PWM_SYNCWT, 14-38
PWM_TM, 14-37
Pxn bit, 9-30
Pxn both edges bit, 9-34
Pxn direction bit, 9-30
Pxn input enable bit, 9-31
Pxn polarity bits, 9-33
Pxn sensitivity bit, 9-34

Q
query semaphore, 25-3
quick boot, 24-28

R
RBC bit, 7-38, 7-85
RBSY flag, 18-42
RBSY (receive error) bit, 18-40
RCKFE (clock falling edge select) bit,

19-33, 19-53, 19-56
RCVDATA16[15:0] field, 16-49
RCVDATA8[7:0] field, 16-48
RCVFLUSH (receive buffer flush) bit,

16-38, 16-39
RCVINTLEN (receive buffer interrupt

length) bit, 16-38, 16-39
RCVSERVM (receive FIFO service

interrupt mask) bit, 16-42

ADSP-BF50x Blackfin Processor Hardware Reference I-33

Index

RCVSERV (receive FIFO service) bit,
16-43

RCVSTAT[1:0] field, 16-40, 16-41
RDTYPE[1:0] field, 19-28, 19-53, 19-55
read access, for EBIU asynchronous

memory controller, 5-9
read/write access bit, 2-6
REC bit, 17-44
receive buffer[7:0] field, 15-38
receive configuration (SPORTx_RCR1,

SPORTx_RCR2) registers, 19-52
receive data[15:0] field, 19-61
receive data[31:16] field, 19-61
receive data buffer[15:0] field, 18-44
receive FIFO, SPORT, 19-59
receive message lost interrupt, CAN, 17-24
receive message lost register 1

(CAN_RML1), 17-71
receive message lost register 2

(CAN_RML2), 17-71
receive message pending register 1

(CAN_RMP1), 17-70
receive message pending register 2

(CAN_RMP2), 17-70
reception error, SPI, 18-42
register-based DMA, 7-9
registers

See also registers by name
rotary counter, 13-18
system, A-2

remote frame handling, CAN, 17-19
remote frame handling register 1

(CAN_RFH1), 17-77
remote frame handling register 2

(CAN_RFH2), 17-78
Removable Storage Interface chapter, 21-1
REP bit, 7-39, 7-85
request data control command, DMA, 7-35
request data urgent control command,

DMA, 7-35

reserved external memory, 5-3
reset

effect on SPI, 18-16
reset, Flash pins, 6-78
RESET_DOUBLE bit, 24-60
RESET pin, 24-5
resets

core and system, 24-82, 24-83
core double-fault, 24-4
core-only software, 24-4
hardware, 24-3, 24-6
interrupts, 24-8
software, 24-5
system software, 24-4
watchdog timer, 24-4, 24-5

RESET_SOFTWARE bit, 24-60
reset vector, 24-1
RESET_WDOG bit, 12-5, 24-60
resource sharing, with semaphores, 25-2
restart control command, DMA, 7-33,

7-34
restart or finish control command,

transmit, 7-35, 7-36
restrictions

DMA control commands, 7-35
DMA work unit, 7-25

re-synchronization, CAN, 17-11
RETI register, 24-8
RFCS (receive FIFO count status) bit,

15-36
RFHn bit, 17-77, 17-78
RFIT (receive FIFO IRQ threshold) bit,

15-31
RFRT (receive FIFO RTS threshold) bit,

15-31
RFS pins, 19-31
RFSR (receive frame sync required select)

bit, 19-31, 19-32, 19-53, 19-55
RFS signal, 19-19
RFSx signal, 19-5

Index

I-34 ADSP-BF50x Blackfin Processor Hardware Reference

RLSBIT (receive bit order) bit, 19-53,
19-55

RMLIF bit, 17-24, 17-48
RMLIM bit, 17-24, 17-47
RMLIS bit, 17-24, 17-47
RMLn bit, 17-71
RMPn bit, 17-70
ROM, 1-6, 5-1
rotary counter registers, 13-18
round robin operation, MDMA, 7-48
routing of interrupts, 4-16, 4-17
ROVF (sticky receive overflow status) bit,

19-61, 19-62, 19-63
RPOLC bit, 15-45, 15-46
RRFST (left/right order) bit, 19-13, 19-54,

19-56
RSCLKx pins, 19-30
RSCLKx signal, 19-5
RSFSE (receive stereo frame sync enable)

bit, 19-11, 19-54, 19-56
RSPEN (receive enable) bit, 19-10, 19-52,

19-53, 19-54
RSTART (repeat start) bit, 16-31, 16-32
RTR bit, 17-52
RUVF (sticky receive underflow status) bit,

19-61, 19-62, 19-63
RXECNT[7:0] field, 17-84
RX hold register, 19-60
RX modes with external frame syncs, 20-21
RXNE (receive FIFO not empty status) bit,

19-63
RXREQ signal, 15-9
RXSE (RxSEC enable) bit, 19-54, 19-56
RXS (RX data buffer status) bit, 18-23,

18-40

S
SA0 bit, 17-84
SADDR[6:0] field, 16-29

SAM bit, 17-46
SAMPLE/PRELOAD instruction, B-6
sampling, CAN, 17-11
sampling edge, SPORT, 19-33
SAV codes, 20-31
SAV signal, 20-5
SB (set break) bit, 15-28
scale value[7:0] field, 11-6
scaling, of core timer, 11-7
scan paths, B-5
SCCB bit, 16-26
scheduling, memory DMA, 7-47
SCK signal, 18-5, 18-12, 18-15, 18-16
SCLK, 3-4, 8-5

derivation, 8-1
EBIU, 5-1
status by operating mode (table), 8-8

SCLOVR (serial clock override) bit, 16-31
SCL pin, 16-5
SCLSEN (serial clock sense) bit, 16-35,

16-36
SCL serial clock, 16-26
SCL (serial clock) signal, 16-3
SCOMPM (slave transfer complete

interrupt mask) bit, 16-42
SCOMP (slave transfer complete) bit,

16-43, 16-45
scratch[7:0] field, 15-44
scratchpad memory, and booting, 24-10
SC (setup cycles) bitfield, 22-40
SCTS (sticky CTS) bit, 15-36
SDAOVR (serial data override) bit, 16-31,

16-32
SDA pin, 16-5
SDASEN (serial data sense) bit, 16-35,

16-36
SDA (serial data) signal, 16-3, 16-4
SDIR (slave transfer direction) bit, 16-29,

16-30

ADSP-BF50x Blackfin Processor Hardware Reference I-35

Index

semaphores, 25-2
coherency, 25-3
example code, 25-3
query, 25-3

SEN (slave enable) bit, 16-27, 16-28
SER bit, 17-84
serial

clock frequency, 18-35
data transfer, 19-4
scan paths, B-4

serial clock divide modulus[15:0] field,
19-63, 19-64

serial communications, 15-6
serial peripheral interface. See SPI
serial scan paths, B-5
SERRM (slave transfer error interrupt

mask) bit, 16-42
SERR (slave transfer error) bit, 16-43,

16-45
set index[5:0] field, 2-6
set Pxn bit, 9-32
set Pxn interrupt A enable bit, 9-36
set Pxn interrupt B enable bit, 9-37
setup

for EBIU asynchronous memory
controller, 5-9

setup cycles (SC) bitfield, 22-40
shared interrupts, 4-4
SIC_IAR0 (system interrupt assignment 0)

register, 4-11
SIC_IMASK (system interrupt mask)

register, 4-5
SIC registers, 4-10
SIC. See system interrupt controller
signal integrity, 25-5
signalling, via semaphores., 25-2
sine wave input, 1-23
single pulse generation, timer, 10-13
single shot transmission, CAN, 17-14

SINITM (slave transfer initiated interrupt
mask) bit, 16-42

SINIT (slave transfer initiated) bit, 16-43,
16-45

size of accesses, timer registers, 10-36
SIZE (size of words) bit, 18-36, 18-37
SJW[1:0] field, 17-46
SJW[1:0] (synchronization jump width)

field, 17-11
SKIP_EN (skip enable) bit, 20-25, 20-26
SKIP_EO (skip even odd) bit, 20-26,

20-27
slave mode setup, in TWI, 16-11, 16-55
slaves

EBIU, 5-4
PAB, 3-6

slave select, SPI, 18-39
slave SPI device, 18-5
sleep mode, 1-25, 8-9

CAN, 17-38
SLEN[4:0] field, 19-49, 19-50, 19-54,

19-55
restrictions, 19-28
word length formula, 19-28

small descriptor mode, DMA, 7-15
small model mode, DMA, 7-69
SMR bit, 17-43
software

interrupts, 4-3
management of DMA, 7-51
watchdog timer, 1-23, 12-1

software reset, 24-5, 24-59
software reset, and CAN, 17-12
software reset register (SWRST), 24-60
source channels, memory DMA, 7-7
SOVFM (slave overflow interrupt mask)

bit, 16-42
SOVF (slave overflow) bit, 16-43, 16-44
SPE (SPI enable) bit, 18-36, 18-37

Index

I-36 ADSP-BF50x Blackfin Processor Hardware Reference

SPI, 18-2 to 18-53
beginning and ending transfers, 18-22
block diagram, 18-3, 18-4
clock phase, 18-12, 18-14, 18-17
clock polarity, 18-12, 18-16
clock signal, 18-3, 18-16
code examples, 18-45
compatible peripherals, 18-3
data corruption, avoiding, 18-15
data interrupt, 18-17
data transfer, 18-15
detecting transfer complete, 18-40
and DMA, 18-11
DMA initialization, 18-49
DMA transfers, 18-48
effect of reset, 18-16
enabling the SPI system, 18-36
error interrupt, 18-17
error signals, 18-40 to 18-42
features, 18-2
full-duplex synchronous serial interface,

18-2
general operation, 18-15 to 18-22
initialization, 18-45
internal interfaces, 18-11
interrupt outputs, 18-17
interrupts, 18-47
master mode, 18-15, 18-18
master mode DMA operation, 18-24
mode fault error, 18-41
multiple slave systems, 18-8
overview, 1-18
reception error, 18-42
registers, table, 18-34
SCK signal, 18-5
slave boot mode, 24-51
slave device, 18-5
slave mode, 18-16, 18-20
slave mode DMA operation, 18-27

SPI (continued)
slave-select function, 18-38
slave transfer preparation, 18-22
SPI_FLG mapping to port pins, 18-39
starting DMA transfer, 18-51
starting transfer, 18-46
stopping, 18-48
stopping DMA transfers, 18-51
switching between transmit and receive,

18-23
timing, 18-6
transfer formats, 18-12 to 18-14
transfer initiate command, 18-18, 18-19
transfer modes, 18-19
transfer protocol, 18-14
transmission error, 18-42
transmission/reception errors, 18-40
transmit collision error, 18-42
using DMA, 18-11
word length, 18-36

SPI_BAUD (SPI baud rate) register, 18-34,
18-35

SPI_BAUD values, 18-35
SPI_CTL (SPI control) register, 18-5,

18-34, 18-36, 18-37
SPI_FLG (SPI flag) register, 18-7, 18-8,

18-34, 18-38
SPIF (SPI finished) bit, 18-10, 18-23,

18-40
SPI_RDBR shadow[15:0] field, 18-44
SPI RDBR shadow (SPI_SHADOW

register), 18-34
SPI RDBR shadow (SPI_SHADOW)

register, 18-44
SPI_RDBR (SPI receive data buffer)

register, 18-34, 18-43, 18-44
SPI_SHADOW (SPI RDBR shadow)

register, 18-34, 18-44
SPI slave select, 18-39
SPISS signal, 18-6, 18-8, 18-12

ADSP-BF50x Blackfin Processor Hardware Reference I-37

Index

SPI_STAT (SPI status) register, 18-34,
18-40

SPI_TDBR (SPI transmit data buffer)
register, 18-34, 18-42, 18-43

SPORT, 1-16, 19-1 to 19-76
2X clock recovery control, 19-25
active low vs. active high frame syncs,

19-33
channels, 19-15
clock, 19-30
clock frequency, 19-26, 19-63
clock rate, 19-2
clock rate restrictions, 19-27
companding, 19-29
configuration, 19-11
data formats, 19-28
data word formats, 19-56
disabling, 19-11
DMA data packing, 19-24
enable/disable, 19-10
enabling multichannel mode, 19-18
framed serial transfers, 19-32
framed vs. unframed, 19-31
frame sync, 19-32, 19-35
frame sync frequencies, 19-26
framing signals, 19-31
general operation, 19-10
H.100 standard protocol, 19-25
initialization code, 19-55
internal memory access, 19-38
internal vs. external frame syncs, 19-32
late frame sync, 19-18
modes, 19-11
moving data to memory, 19-38
multichannel frame, 19-20
multichannel operation, 19-15 to 19-25
multichannel transfer timing, 19-17
overview, 1-16
packing data, multichannel DMA, 19-24

SPORT (continued)
peripheral access bus error, 19-39
pin/line terminations, 19-9
port connection, 19-7
receive and transmit functions, 19-4
receive clock signal, 19-30
receive FIFO, 19-59
receive word length, 19-60
register writes, 19-46
RX hold register, 19-60
sampling edge, 19-33
selecting bit order, 19-28
serial data communication protocols,

19-2
shortened active pulses, 19-11
signals, 19-5
single clock for both receive and

transmit, 19-30
single word transfers, 19-38
stereo serial connection, 19-9
stereo serial frame sync modes, 19-18
stereo serial operation, 19-11
support for standard protocols, 19-25
termination, 19-9
throughput, 19-7
timing, 19-39
transmit clock signal, 19-30
transmitter FIFO, 19-57
transmit word length, 19-57
TX hold register, 19-57
TX interrupt, 19-58
unframed data flow, 19-31
unpacking data, multichannel DMA,

19-24
window offset, 19-22
word length, 19-28

SPORT error interrupt, 19-38
SPORT registers, table, 19-45
SPORT RX interrupt, 19-38, 19-61
SPORT TX interrupt, 19-38

Index

I-38 ADSP-BF50x Blackfin Processor Hardware Reference

SPORTx_CHNL (SPORTx current
channel) registers, 19-66

SPORTx_MCMCn (SPORTx
multichannel configuration) registers,
19-65

SPORTx_MRCSn (SPORTx
multichannel receive select) registers,
19-23, 19-24, 19-67

SPORTx_MTCSn (SPORTx
multichannel transmit select) registers,
19-23, 19-24, 19-68

SPORTx_RCLKDIV (SPORTx receive
serial clock divider) registers, 19-63

SPORTx_RCR1 (SPORTx receive
configuration 1) registers, 19-52

SPORTx_RCR2 (SPORTx receive
configuration 2) registers, 19-52,
19-54

SPORTx_RFSDIV (SPORTx receive
frame sync divider) registers, 19-64

SPORTx_RX (SPORTx receive data)
registers, 19-19, 19-59

SPORTx_STAT (SPORTx status)
registers, 19-62

SPORTx_TCLKDIV (SPORTx transmit
serial clock divider) registers, 19-63

SPORTx_TCR1 (transmit configuration
1) register, 19-47

SPORTx_TCR2 (transmit configuration
2) register, 19-47

SPORTx_TFSDIV (SPORTx transmit
frame sync divider) registers, 19-64

SPORTx_TX (SPORTx transmit data)
registers, 19-19, 19-37, 19-57

SRAM ADDR[13:12] field, 2-6
SRS bit, 17-43
SSEL[3:0] field, 3-4, 8-5, 8-20
SSEL bit, 25-2
SSEL (system select) bit, 8-20

start address registers
(DMAx_START_ADDR), 7-75
(MDMA_yy_START_ADDR), 7-75

status (CNT_STATUS) register, 13-18,
13-21

STB (stop bits) bit, 15-28
STDVAL (slave transmit data valid) bit,

16-27, 16-28
stereo serial

data, 19-3
device, SPORT connection, 19-9
frame sync modes, 19-18
operation, SPORT, 19-11

STOPCK (stop clock) bit, 8-21
stop clock (STOPCK) bit, 8-21
STOP (issue stop condition) bit, 16-33
stop mode, DMA, 7-11, 7-69
stopping DMA transfers, 7-29
STP (stick parity) bit, 15-28
streams, memory DMA, 7-7
subbank access[1:0] field, 2-6
subbanks

L1 data memory, 2-3
L1 instruction memory, 2-3

supervisor mode, 24-8
surface-mount capacitors, 25-6
suspend mode, CAN, 17-37
SWRESET bit, 24-61
SWRST, software reset register, 24-59
SWRST (software reset register), 24-60
SYNC bit, 7-25, 7-26, 7-27, 7-62, 7-68,

7-70, 15-24
synchronization

interrupt-based methods, 7-51
of descriptor queue, 7-58
of DMA, 7-51 to 7-61

synchronized transition, DMA, 7-28
synchronous Flash memory controller. See

Flash memory controller
synchronous serial data transfer, 19-4

ADSP-BF50x Blackfin Processor Hardware Reference I-39

Index

synchronous serial ports. See SPORT
SYSCR (system reset configuration

register), 24-61, 24-62
SYSCR (system reset configuration)

register, 24-61
system

interrupt controller, 4-2, 10-7
interrupt processing, 4-8
interrupts, 4-1, 4-2
peripherals, 1-4

system and core event mapping (table), 4-3
system clock, 1-24
system clock (SCLK), 8-1

managing, 25-2
system design, 25-1 to 25-9

high frequency considerations, 25-5
recommendations and suggestions, 25-6
recommended reading, 25-9

system interrupt assignment 0 (SIC_IAR0)
register, 4-11

system interrupt controller (SIC), 4-2
controlling interrupts, 4-4
enabling flexible interrupt handling,

10-7
enabling individual peripheral interrupts,

4-4
main functions of, 4-4
peripheral interrupt events, 4-18
registers, 4-10

system interrupt mask (SIC_IMASK)
register, 4-5

system peripheral clock. See SCLK
system reset, 24-1 to 24-89
SYSTEM_RESET[2:0] field, 24-60
system reset configuration register

(SYSCR), 24-61, 24-62
system reset configuration (SYSCR)

register, 24-61
system select (SSEL) bit, 8-20
system software reset, 24-4

SZ (send zero) bit, 18-21, 18-37

T
TAn bit, 17-76
TAP registers

boundary-scan, B-7
BYPASS, B-6
instruction, B-2, B-4

TAP (test access port), B-1, B-2
controller, B-2

target address, 24-17
TAUTORLD bit, 11-3, 11-5
TCKFE (clock drive/sample edge select)

bit, 19-33, 19-48, 19-52
TCNTL (core timer control) register, 11-3,

11-5
TCOUNT (core timer count) register,

11-3, 11-5
TDA bit, 17-21, 17-77
TDM interfaces, 19-4
TDPTR[4:0] field, 17-77
TDR bit, 17-21, 17-77
TDTYPE[1:0] field, 19-28, 19-48, 19-50
technical support, lvi
temporary mailbox disable feature register

(CAN_MBTD), 17-77
TEMT bit, 15-8, 15-34, 15-35
termination, DMA, 7-29
terminations, SPORT pin/line, 19-9
test access port (TAP), B-1, B-2

controller, B-2
test clock (TCK), B-6
test features, B-1 to B-7
testing circuit boards, B-1, B-6
test-logic-reset state, B-4
test point access, 25-8
TESTSET instruction, 3-9, 25-3
TFI (transmission finished indicator) bit,

15-34, 15-35
TFS pins, 19-31, 19-37

Index

I-40 ADSP-BF50x Blackfin Processor Hardware Reference

TFSR (transmit frame sync required select)
bit, 19-31, 19-32, 19-48, 19-51

TFS signal, 19-19
TFSx signal, 19-5
THRE bit, 15-16, 15-35
THRE flag, 15-7, 15-22
THRE (transmit hold register empty) bit,

15-34
throughput

DAB, 3-10
DMA, 7-42
from DMA system, 7-41
general-purpose ports, 9-12
SPORT, 19-7

TIMDISx bit, 10-37, 10-38
time-division-multiplexed (TDM) mode,

19-15
See also SPORT, multichannel operation

TIMENx bit, 10-36, 10-37
time quantum (TQ), 17-10
timer configuration (TIMERx_CONFIG)

registers, 10-5, 10-41, 10-42
timer counter[15:0] field, 10-43
timer counter[31:16] field, 10-43
timer counter (TIMERx_COUNTER)

registers, 10-4, 10-42, 10-43
TIMER_DISABLE bit, 10-46
TIMER_DISABLE (timer disable) register,

10-5, 10-38
timer disable (TIMER_DISABLE) register,

10-5, 10-38
TIMER_ENABLE bit, 10-46
TIMER_ENABLE (timer enable) register,

10-5, 10-36, 10-37, 20-23
timer enable (TIMER_ENABLE) register,

10-5, 10-36, 10-37
timer input select (TIN_SEL) bit, 10-42,

10-47
timer interrupt (TIMILx) bits, 10-4, 10-40
timer period[15:0] field, 10-45

timer period[31:16] field, 10-45
timer period (TIMERx_PERIOD)

registers, 10-4, 10-44, 10-45
timers, 10-1 to 10-58

core, 11-1 to 11-8
EXT_CLK mode, 10-33
overview, 1-18
watchdog, 1-23, 12-1 to 12-10
WDTH_CAP mode, 15-22

TIMER_STATUS (timer status) register,
10-5, 10-39, 10-40

timer status (TIMER_STATUS) register,
10-5, 10-39, 10-40

timer width[15:0] field, 10-46
timer width[31:16] field, 10-46
timer width (TIMERx_WIDTH) registers,

10-44, 10-46
TIMERx_CONFIG (timer configuration)

registers, 10-5, 10-41, 10-42
TIMERx_COUNTER (timer counter)

registers, 10-4, 10-42, 10-43
TIMERx_PERIOD (timer period)

registers, 10-4, 10-44, 10-45
TIMERx_WIDTH (timer width) registers,

10-44, 10-46
time stamps, CAN, 17-20
TIMILx (timer interrupt) bits, 10-4, 10-40
timing

memory DMA, 7-45
multichannel transfer, 19-17
peripherals, 3-4
SPI, 18-6

timing examples, for SPORTs, 19-39
timing parameters, CAN, 17-11
TIMOD[1:0] field, 18-17, 18-19, 18-36,

18-37
TIN_SEL (timer input select) bit, 10-42,

10-47
TINT bit, 11-3, 11-5
TLSBIT (bit order select) bit, 19-48, 19-50

ADSP-BF50x Blackfin Processor Hardware Reference I-41

Index

TMODE[1:0] field, 10-11, 10-42, 10-46
TMPWR bit, 11-3, 11-5
TMRCLK input, 10-58
TMREN bit, 11-3, 11-5
TMR pin, 10-47
TMRx pins, 10-3, 10-16
TOGGLE_HI bit, 10-42, 10-47
TOGGLE_HI mode, 10-17
toggle Pxn bit, 9-33
toggle Pxn interrupt A enable bit, 9-40
toggle Pxn interrupt B enable bit, 9-41
tools, development, 1-28
TOVF_ERRx bit, 10-25, 10-29
TOVF_ERRx bits, 10-4, 10-7, 10-15,

10-40, 10-41, 10-48
TOVF (transmit overflow status) bit,

19-58, 19-62, 19-63
TPOLC bit, 15-45, 15-46
traffic control, DMA, 7-45 to 7-50
transfer count (PPI_COUNT) register,

20-32, 20-33
transfer initiate command, 18-18, 18-19
transfer initiation from SPI master, 18-19
transfer rate

memory DMA channels, 7-42
peripheral DMA channels, 7-42

transfers
memory-to-memory, 7-7

transitions
continuous DMA, 7-25
DMA work unit, 7-25
operating mode, 8-11, 8-12
synchronized DMA, 7-25

transmission acknowledge register 1
(CAN_TA1), 17-76

transmission acknowledge register 2
(CAN_TA2), 17-76

transmission error, SPI, 18-42
transmission request reset register 1

(CAN_TRR1), 17-74

transmission request reset register 2
(CAN_TRR2), 17-74

transmission request set register 1
(CAN_TRS1), 17-73

transmission request set register 2
(CAN_TRS2), 17-73

transmit clock, serial (TSCLKx) pins,
19-30

transmit collision error, SPI, 18-42
transmit configuration registers

(SPORTx_TCR1 and
SPORTx_TCR2), 19-47

transmit data[15:0] field, 19-59
transmit data[31:16] field, 19-59
transmit data buffer[15:0] field, 18-43
transmit hold[7:0] field, 15-37, 15-38
TRFST (left/right order) bit, 19-49, 19-52
triggering DMA transfers, 7-61
TRM bit, 17-44
TRRn bit, 17-74
TRSn bit, 17-73
TRUNx bits, 10-22, 10-39, 10-40, 10-48
TSCALE (core timer scale) register, 11-3,

11-7
TSCLKx signal, 19-5
TSEG1[3:0] field, 17-10, 17-46
TSEG2[2:0] field, 17-10, 17-46
TSFSE (transmit stereo frame sync enable)

bit, 19-10, 19-11, 19-49, 19-52
TSPEN (transmit enable) bit, 19-47,

19-48, 19-49
TUVF (transmit underflow status) bit,

19-37, 19-58, 19-62, 19-63
TWI, 1-10, 16-2 to 16-61

block diagram, 16-3
bus arbitration, 16-8
clock generation, 16-7
controller, 16-2
electrical specifications, 16-61
fast mode, 16-10

Index

I-42 ADSP-BF50x Blackfin Processor Hardware Reference

TWI (continued)
features, 16-2
general call address, 16-10
general setup, 16-11
I2C compatibility, 1-10
master mode clock setup, 16-12
master mode receive, 16-14
master mode transmit, 16-13
peripheral interface, 16-5
pins, 16-5
slave mode operation, 16-11
start and stop conditions, 16-8
synchronization, 16-7
transfer protocol, 16-6

TWI_CLKDIV (SCL clock divider)
register, 16-26, 16-27

TWI_CONTROL (TWI control) register,
16-4, 16-26

TWI_ENA bit, 16-26
TWI_FIFO_CTL (TWI FIFO control)

register, 16-38
TWI_FIFO_STAT (TWI FIFO status)

register, 16-40
TWI_INT_STAT (TWI interrupt status)

register, 16-43
TWI_MASTER_CTL (TWI master mode

control) register, 16-31
TWI_MASTER_STAT (TWI master

mode status) register, 16-35
TWI_SLAVE_ADDR (TWI slave mode

address) register, 16-29
TWI_SLAVE_CTL (TWI slave mode

control) register, 16-27
TWI_SLAVE_STAT (TWI slave mode

status) register, 16-30
two-dimensional DMA, 7-11
two-wire interface. See TWI
TXCOL flag, 18-42
TXCOL (transmit collision error) bit,

18-40

TXECNT[7:0] field, 17-84
TXE (transmission error) bit, 18-40, 18-42,

19-58, 19-63
TXF (transmit FIFO full status) bit, 19-62
TX hold register, 19-57
TXHRE (transmit hold register empty) bit,

19-63
TXREQ signal, 15-7
TXSE (TxSEC enable) bit, 19-49, 19-52
TXS (SPI_TDBR data buffer status) bit,

18-23, 18-40

U
UART, 1-19, 15-1 to 15-55

autobaud detection, 15-20, 15-50
baud rate, 15-8
baud rate examples, 15-19
bit rate examples, 15-19
bitstream, 15-6
block diagram, 15-3, 15-11
booting, 15-20
character transmission, 15-50
clock, 15-18
clock rate, 3-4
code examples, 15-46
data words, 15-6
divisor reset, 15-44
DMA channels, 15-24
DMA mode, 15-24
errors during reception, 15-9
external interfaces, 15-3
features, 15-2
glitch filtering, 15-14
initialization, 15-47
internal interfaces, 15-5
interrupt channels, 15-39
interrupt conditions, 15-42
interrupts, 15-16
IrDA mode, 15-2
IrDA receiver, 15-14

ADSP-BF50x Blackfin Processor Hardware Reference I-43

Index

UART (continued)
IrDA receiver pulse detection, 15-15
IrDA transmit pulse, 15-13
IrDA transmitter, 15-13
and ISRs, 15-23
loopback mode, 15-31
mixing modes, 15-25
non-DMA interrupt operation, 15-52
non-DMA mode, 15-22
receive operation, 15-8
receive sampling window, 15-14
registers, table, 15-27
signals, 15-4
standard, 15-1
string transmission, 15-51
switching from DMA to non-DMA,

15-25
switching from non-DMA to DMA,

15-26
and system DMA, 15-39
transmission, 15-7
transmission SYNC bit use, 15-53

UART divisor latch high byte
(UARTx_DLH) registers, 15-43

UART divisor latch low byte
(UARTx_DLL) registers, 15-43

UART global control (UARTx_GCTL)
registers, 15-45

UART interrupt enable clear
(UARTx_IER_CLEAR) registers,
15-39

UART interrupt enable registers
(UARTx_IER), 15-41

UART interrupt enable set
(UARTx_IER_SET) registers, 15-39

UART interrupt enable (UARTx_IER)
registers, 15-39

UART line control registers
(UARTx_LCR), 15-28

UART line control (UARTx_LCR)
registers, 15-28

UART line status registers (UARTx_LSR),
15-33

UART line status (UARTx_LSR) registers,
15-34

UART modem control (UARTx_MCR)
registers, 15-31

UART modem status (UARTx_MSR)
registers, 15-36

UART ports
overview, 1-19

UART receive buffer registers
(UARTx_RBR), 15-8

UART receive buffer (UARTx_RBR)
registers, 15-38

UART scratch registers (UARTx_SCR),
15-44

UART scratch (UARTx_SCR) registers,
15-44

UART transmit holding (UARTx_THR)
registers, 15-37

UARTx_DLH (UART divisor latch high
byte registers), 15-27

UARTx_DLH (UART divisor latch high
byte) registers, 15-43

UARTx_DLL, 15-27
UARTx_DLL (UART divisor latch low

byte registers), 15-27
UARTx_DLL (UART divisor latch low

byte) registers, 15-43
UARTx_GCTL (UART global control

registers), 15-27
UARTx_GCTL (UART global control)

registers, 15-45
UARTx_IER_CLEAR (UART interrupt

enable clear) registers, 15-39
UARTx_IER_SET (UART interrupt

enable set) registers, 15-39

Index

I-44 ADSP-BF50x Blackfin Processor Hardware Reference

UARTx_IER (UART interrupt enable
registers), 15-41

UARTx_IER (UART interrupt enable)
registers, 15-39

UARTx_IIR (UART interrupt
identification registers), 15-27

UARTx_LCR (UART line control
registers), 15-27, 15-28

UARTx_LCR (UART line control)
registers, 15-28

UARTx_LSR (UART line status registers),
15-27, 15-33

UARTx_LSR (UART line status) registers,
15-34

UARTx_MCR (UART modem control
registers), 15-27

UARTx_MCR (UART modem control)
registers, 15-31

UARTx_MSR (UART modem status)
registers, 15-36

UARTx_RBR (UART receive buffer
registers), 15-8, 15-27

UARTx_RBR (UART receive buffer)
registers, 15-38

UARTx_SCR (UART scratch registers),
15-27, 15-44

UARTx_SCR (UART scratch) registers,
15-44

UARTx_THR (UART transmit holding
registers), 15-7, 15-27

UARTx_THR (UART transmit holding)
registers, 15-37

UCCNF[3:0] field, 17-26, 17-82
UCCNT[15:0] field, 17-83
UCCT bit, 17-82
UCE bit, 17-82
UCEIF bit, 17-24, 17-48
UCEIM bit, 17-24, 17-47
UCEIS bit, 17-24, 17-47
UCEN bit, 15-8, 15-18, 15-45, 15-46

UCIE (up count interrupt enable) bit,
13-20

UCII (up count interrupt identifier) bit,
13-21

UCRC[15:0] field, 17-83
UCRC bit, 17-82
UIAIF bit, 17-25, 17-48
UIAIM bit, 17-25, 17-47
UIAIS bit, 17-25, 17-47
UNDR (FIFO underrun) bit, 20-30, 20-31
unframed/framed, serial data, 19-31
universal asynchronous

receiver/transmitter. See UART
universal counter, CAN, 17-26
universal counter configuration mode

register (CAN_UCCNF), 17-82
universal counter exceeded interrupt, CAN,

17-24
universal counter register

(CAN_UCCNT), 17-83
universal counter reload/capture register

(CAN_UCRC), 17-83
unpopulated memory, 5-6
unused pins, 25-10
urgency threshold enable (UTE) bit, 7-40
user mode, 24-8
UTE (urgency threshold enable) bit, 7-40
UTHE[15:0] field, 7-89

V
VCO, multiplication factors, 8-4
VCO signal, 8-1
VDDEXT pins, 25-6
VDDINT pins, 25-6
vertical blanking, 20-6
vertical blanking interval only submode,

20-10
video frame partitioning, 20-7

ADSP-BF50x Blackfin Processor Hardware Reference I-45

Index

video streams
CIF, 20-8
NTSC, 20-5
PAL, 20-5
QCIF, 20-8

voltage, 8-16
control, 8-7
dynamic control, 8-16

voltage controlled oscillator (VCO), 8-3
voltage regulator control (VR_CTL)

register, 8-20, 8-22
VR_CTL (voltage regulator control)

register, 8-20, 8-22, 17-39

W
W1C operations, 7-10
wakeup function, 4-7
wakeup interrupt, CAN, 17-25
watchdog control (WDOG_CTL) register,

12-7, 12-8
watchdog count[15:0] field, 12-6
watchdog count[31:16] field, 12-6
watchdog count (WDOG_CNT) register,

12-5, 12-6
watchdog mode, CAN, 17-19
watchdog status[15:0] field, 12-7
watchdog status[31:16] field, 12-7
watchdog status (WDOG_STAT) register,

12-3, 12-4, 12-6, 12-7
watchdog timer, 1-23, 12-1 to 12-10

block diagram, 12-3
disabling, 12-5
and emulation mode, 12-2
enabling with zero value, 12-5
features, 12-2
internal interface, 12-3
overview, 1-23
registers, 12-5
reset, 12-5, 24-4, 24-5
starting, 12-4

waveform generation, pulse width
modulation, 10-14

WBA bit, 17-43
WDEN[7:0] field, 12-7
WDEV[1:0] field, 12-4, 12-7
WDOG_CNT (watchdog count) register,

12-5, 12-6
WDOG_CTL (watchdog control) register,

12-7, 12-8
WDOG_STAT (watchdog status) register,

12-3, 12-4, 12-6, 12-7
WDRESET bit, 24-61
WDSIZE[1:0] field, 7-68, 7-71
WDTH_CAP mode, 10-24, 10-44

control bit and register usage, 10-46
WLS[1:0] field, 15-28
WNR bit, 7-71
WNR (DMA direction) bit, 7-68, 7-71
WOFF[9:0] field, 19-22, 19-65
WOM (write open drain master) bit,

18-15, 18-37
word length

SPI, 18-36
SPORT, 19-28
SPORT receive data, 19-60
SPORT transmit data, 19-57

work unit
completion, 7-23
DMA, 7-14
interrupt timing, 7-26
restrictions, 7-25
transitions, 7-25

WR bit, 17-44
write access for EBIU asynchronous

memory controller, 5-9
write-one-to-clear (W1C) operations, 7-10
write operation, GPIO, 9-14
WSIZE[3:0] field, 19-21, 19-65
WT bit, 17-44
WUIF bit, 17-25, 17-48

Index

I-46 ADSP-BF50x Blackfin Processor Hardware Reference

WUIM bit, 17-25, 17-47
WUIS bit, 17-25, 17-47
WURESET bit, 24-61

X
X_COUNT[15:0] field, 7-77
XFR_TYPE[1:0] field, 20-4, 20-26, 20-28,

20-29
X_MODIFY[15:0] field, 7-79
XMTDATA16[15:0] field, 16-47
XMTDATA8[7:0] field, 16-46
XMTFLUSH (transmit buffer flush) bit,

16-38, 16-40
XMTINTLEN (transmit buffer interrupt

length) bit, 16-38, 16-39
XMTSERVM (transmit FIFO service

interrupt mask) bit, 16-42

XMTSERV (transmit FIFO service) bit,
16-43, 16-44

XMTSTAT[1:0] field, 16-40, 16-41
XOFF (transmitter off) bit, 15-31

Y
YCbCr format, 20-27
Y_COUNT[15:0] field, 7-79
Y_MODIFY[15:0] field, 7-81

Z
ZC (zero cycle) bitfield, 22-41
zero cycle (ZC) bitfield, 22-41
ZMZC (CZM zeroes counter enable) bit,

13-19
µ-law companding, 19-24, 19-29

	ADSP-BF50x Blackfin Processor Hardware Reference, Revision 1.2

	Contents

	Preface
	Purpose of This Manual
	Intended Audience
	Manual Contents
	What’s New in This Manual
	Technical Support
	Supported Processors
	Product Information
	Analog Devices Web Site
	EngineerZone

	Notation Conventions
	Register Diagram Conventions

	1 Introduction
	General Description of Processor
	Portable Low-Power Architecture
	System Integration

	Peripherals
	Memory Architecture
	Internal Memory
	External Memory
	I/O Memory Space

	DMA Support
	General-Purpose I/O (GPIO)
	Two-Wire Interface
	RSI Interface
	General-Purpose (GP) Counter
	3-Phase PWM Unit
	Parallel Peripheral Interface
	SPORT Controllers
	Serial Peripheral Interface (SPI) Ports
	Timers
	UART Ports
	Controller Area Network (CAN) Interface
	ACM Interface
	Internal ADC
	Watchdog Timer
	Clock Signals
	Dynamic Power Management
	Full-On Operating Mode—Maximum Performance
	Active Operating Mode—Moderate Dynamic Power Savings
	Sleep Operating Mode—High Dynamic Power Savings
	Deep Sleep Operating Mode—Maximum Dynamic Power Savings
	Hibernate State—Maximum Static Power Savings

	Instruction Set Description
	Development Tools

	2 Memory
	Memory Architecture
	L1 Instruction SRAM
	L1 Data SRAM
	L1 Data Cache
	Boot ROM
	External Memory
	Processor-Specific MMRs
	DMEM_CONTROL Register
	DTEST_COMMAND Register

	3 Chip Bus Hierarchy
	Chip Bus Hierarchy Overview
	Interface Overview
	Internal Clocks
	Core Bus Overview
	Peripheral Access Bus (PAB)
	PAB Arbitration
	PAB Agents (Masters, Slaves)
	PAB Performance

	DMA Access Bus (DAB), DMA Core Bus (DCB), DMA External Bus (DEB)
	DAB, DCB, and DEB Arbitration
	DAB Bus Agents (Masters)
	DAB, DCB, and DEB Performance

	External Access Bus (EAB)
	Arbitration of the External Bus
	DEB/EAB Performance

	4 System Interrupts
	Specific Information for the ADSP-BF50x
	Overview
	Features

	Description of Operation
	Events and Sequencing
	System Peripheral Interrupts

	Programming Model
	System Interrupt Initialization
	System Interrupt Processing Summary

	System Interrupt Controller Registers
	System Interrupt Assignment (SIC_IAR) Register
	System Interrupt Mask (SIC_IMASK) Register
	System Interrupt Status (SIC_ISR) Register
	System Interrupt Wakeup-Enable (SIC_IWR) Register

	Programming Examples
	Clearing Interrupt Requests

	Unique Information for the ADSP-BF50x Processor
	Interfaces
	System Peripheral Interrupts

	5 External Bus Interface Unit
	EBIU Overview
	Block Diagram
	Internal Memory Interfaces
	Registers
	Error Detection

	AMC Overview and Features
	Features
	Asynchronous Memory Interface
	Asynchronous Memory Address Decode

	AMC Description of Operation
	Avoiding Bus Contention

	AMC Programming Model
	EBIU Registers
	EBIU_AMGCTL Register
	EBIU_AMBCTL Register
	EBIU_MODECTL Register
	EBIU_FCTL Register

	6 Internal Flash Memory
	Overview
	Command Interface to Internal Flash Memory
	Command Interface – Standard Commands
	Read Array Command
	Read Status Register Command
	Read Electronic Signature Command
	Read CFI Query Command
	Clear Status Register Command
	Block Erase Command
	Program Command
	Program/Erase Suspend Command
	Program/Erase Resume Command
	Protection Register Program Command
	The Set Configuration Register Command
	Block Lock Command
	Block Unlock Command
	Block Lock-Down Command

	Status Register
	Program/Erase Controller Status Bit (SR7)
	Erase Suspend Status Bit (SR6)
	Erase Status Bit (SR5)
	Program Status Bit (SR4)
	VPP Status Bit (SR3)
	Program Suspend Status Bit (SR2)
	Block Protection Status Bit (SR1)
	Bank Write Status Bit (SR0)

	Configuration Register
	Read Select Bit (CR15)
	X Latency Bits (CR13-CR11)
	Wait Polarity Bit (CR10)
	Data Output Configuration Bit (CR9)
	Wait Configuration Bit (CR8)
	Burst Type Bit (CR7)
	Valid Clock Edge Bit (CR6)
	Wrap Burst Bit (CR3)
	Burst Length Bits (CR2-CR0)

	Read Modes
	Asynchronous Read Mode
	Synchronous Burst Read Mode
	Synchronous Burst Read Suspend
	Single Synchronous Read Mode

	Dual Operations and Multiple Bank Architecture
	Block Locking
	Reading a Block’s Lock Status
	Locked State
	Unlocked State
	Lock-Down State
	Locking Operations During Erase Suspend

	Block Address Table
	Common Flash Interface
	Flowcharts and Pseudo Codes
	Command Interface State Tables
	Internal Flash Memory Programming Guidelines
	Bringing Internal Flash Memory Out of Reset
	Timing Configurations for Setting the Internal Flash Memory in Asynchronous Read Mode
	Timing Configurations for Setting the Internal Flash Memory for Write Accesses
	Enabling the Program or Erasure of Internal Flash Memory Blocks
	Configuring Internal Flash Memory for Synchronous Burst Read Mode
	Supported Configuration Register Combinations in ADSP-BF50xF Processors
	Configuring the EBIU for Synchronous Read Mode

	Unsupported Programming Practices in Flash

	Internal Flash Memory Control Registers
	Internal Flash Memory Control (FLASH_CONTROL) Register
	Internal Flash Memory Control Set (FLASH_CONTROL_SET) Register
	Internal Flash Memory Control Clear (FLASH_CONTROL_CLEAR) Register

	7 Direct Memory Access
	Specific Information for the ADSP-BF50x
	Overview and Features
	DMA Controller Overview
	External Interfaces
	Internal Interfaces
	Peripheral DMA
	Memory DMA
	Handshaked Memory DMA (HMDMA) Mode

	Modes of Operation
	Register-Based DMA Operation
	Stop Mode
	Autobuffer Mode

	Two-Dimensional DMA Operation
	Examples of Two-Dimensional DMA

	Descriptor-based DMA Operation
	Descriptor List Mode
	Descriptor Array Mode
	Variable Descriptor Size
	Mixing Flow Modes

	Functional Description
	DMA Operation Flow
	DMA Startup
	DMA Refresh
	Work Unit Transitions
	DMA Transmit and MDMA Source
	DMA Receive

	Stopping DMA Transfers

	DMA Errors (Aborts)
	DMA Control Commands
	Restrictions
	Transmit Restart or Finish
	Receive Restart or Finish

	Handshaked Memory DMA Operation
	Pipelining DMA Requests
	HMDMA Interrupts

	DMA Performance
	DMA Throughput
	Memory DMA Timing Details
	Static Channel Prioritization
	Temporary DMA Urgency
	Memory DMA Priority and Scheduling
	Traffic Control

	Programming Model
	Synchronization of Software and DMA
	Single-Buffer DMA Transfers
	Continuous Transfers Using Autobuffering
	Descriptor Structures
	Descriptor Queue Management
	Descriptor Queue Using Interrupts on Every Descriptor
	Descriptor Queue Using Minimal Interrupts

	Software-Triggered Descriptor Fetches

	DMA Registers
	DMA Channel Registers
	DMA Peripheral Map Registers (DMAx_PERIPHERAL_MAP/ MDMA_yy_PERIPHERAL_MAP)
	DMA Configuration Registers (DMAx_CONFIG/MDMA_yy_CONFIG)
	DMA Interrupt Status Registers (DMAx_IRQ_STATUS/MDMA_yy_IRQ_STATUS)
	DMA Start Address Registers (DMAx_START_ADDR/MDMA_yy_START_ADDR)
	DMA Current Address Registers (DMAx_CURR_ADDR/MDMA_yy_CURR_ADDR)
	DMA Inner Loop Count Registers (DMAx_X_COUNT/MDMA_yy_X_COUNT)
	DMA Current Inner Loop Count Registers (DMAx_CURR_X_COUNT /MDMA_yy_CURR_X_COUNT)
	DMA Inner Loop Address Increment Registers (DMAx_X_MODIFY/MDMA_yy_X_MODIFY)
	DMA Outer Loop Count Registers (DMAx_Y_COUNT/MDMA_yy_Y_COUNT)
	DMA Current Outer Loop Count Registers (DMAx_CURR_Y_COUNT/ MDMA_yy_CURR_Y_COUNT)
	DMA Outer Loop Address Increment Registers (DMAx_Y_MODIFY/MDMA_yy_Y_MODIFY)
	DMA Next Descriptor Pointer Registers (DMAx_NEXT_DESC_PTR/ MDMA_yy_NEXT_DESC_PTR)
	DMA Current Descriptor Pointer Registers (DMAx_CURR_DESC_PTR/ MDMA_yy_CURR_DESC_PTR)

	HMDMA Registers
	Handshake MDMA Control Registers (HMDMAx_CONTROL)
	Handshake MDMA Initial Block Count Registers (HMDMAx_BCINIT)
	Handshake MDMA Current Block Count Registers (HMDMAx_BCOUNT)
	Handshake MDMA Current Edge Count Registers (HMDMAx_ECOUNT)
	Handshake MDMA Initial Edge Count Registers (HMDMAx_ECINIT)
	Handshake MDMA Edge Count Urgent Registers (HMDMAx_ECURGENT)
	Handshake MDMA Edge Count Overflow Interrupt Registers (HMDMAx_ECOVERFLOW)

	DMA Traffic Control Registers (DMA_TC_PER and DMA_TC_CNT)
	DMA_TC_PER Register
	DMA_TC_CNT Register

	Programming Examples
	Register-Based 2-D Memory DMA
	Initializing Descriptors in Memory
	Software-Triggered Descriptor Fetch Example
	Handshaked Memory DMA Example

	Unique Information for the ADSP-BF50x Processor
	Static Channel Prioritization

	8 Dynamic Power Management
	Phase Locked Loop and Clock Control
	PLL Overview
	PLL Clock Multiplier Ratios
	Core Clock/System Clock Ratio Control

	Dynamic Power Management Controller
	Operating Modes
	Dynamic Power Management Controller States
	Full-On Mode
	Active Mode
	Sleep Mode
	Deep Sleep Mode
	Hibernate State

	Operating Mode Transitions
	Programming Operating Mode Transitions
	Dynamic Supply Voltage Control
	Power Supply Management
	Changing Voltage
	Powering Down the Core (Hibernate State)

	PLL and VR Registers
	PLL_DIV Register
	PLL_CTL Register
	PLL_STAT Register
	PLL_LOCKCNT Register
	VR_CTL Register

	System Control ROM Function
	Programming Model
	Accessing the System Control ROM Function in C/C++
	Accessing the System Control ROM Function in Assembly

	Programming Examples
	Full-on Mode to Active Mode and Back
	Transition to Sleep Mode or Deep Sleep Mode
	Set Wakeup Events and Enter Hibernate State
	Perform a System Reset or Soft-Reset
	In Full-on Mode, Change VCO Frequency, Core Clock Frequency, and System Clock Frequency
	Changing Voltage Levels

	9 General-Purpose Ports
	Overview
	Features
	Interface Overview
	External Interface
	Port F Structure
	Port G Structure
	Port H Structure
	Input Tap Considerations
	PWM Unit Considerations
	RSI Considerations
	GP Counter Considerations
	SPI Considerations

	Internal Interfaces
	GP Timer Interaction With Other Blocks
	Buffered CLKIN (CLKBUF)
	GP Counter
	PPI
	UART
	SPORT
	ACM

	Performance/Throughput

	Description of Operation
	Operation
	General-Purpose I/O Modules
	GPIO Interrupt Processing

	Programming Model
	Hysteresis Control
	PORTx Hysteresis (PORTx_HYSTERESIS) Register

	Drive Strength Control
	Memory-Mapped GPIO Registers
	Port Multiplexer Control Registers (PORTx_MUX)
	Function Enable Registers (PORTx_FER)
	GPIO Direction Registers (PORTxIO_DIR)
	GPIO Input Enable Registers (PORTxIO_INEN)
	GPIO Data Registers (PORTxIO)
	GPIO Set Registers (PORTxIO_SET)
	GPIO Clear Registers (PORTxIO_CLEAR)
	GPIO Toggle Registers (PORTxIO_TOGGLE)
	GPIO Polarity Registers (PORTxIO_POLAR)
	Interrupt Sensitivity Registers (PORTxIO_EDGE)
	GPIO Set on Both Edges Registers (PORTxIO_BOTH)
	GPIO Mask Interrupt Registers (PORTxIO_MASKA/B)
	GPIO Mask Interrupt Set Registers (PORTxIO_MASKA/B_SET)
	GPIO Mask Interrupt Clear Registers (PORTxIO_MASKA/B_CLEAR)
	GPIO Mask Interrupt Toggle Registers (PORTxIO_MASKA/B_TOGGLE)

	Programming Examples

	10 General-Purpose Timers
	Specific Information for the ADSP-BF50x
	Overview
	External Interface
	Internal Interface

	Description of Operation
	Interrupt Processing
	Illegal States

	Modes of Operation
	Pulse Width Modulation (PWM_OUT) Mode
	Output Pad Disable
	Single Pulse Generation
	Pulse Width Modulation Waveform Generation
	PULSE_HI Toggle Mode
	Externally Clocked PWM_OUT
	Using PWM_OUT Mode With the PPI
	Stopping the Timer in PWM_OUT Mode

	Pulse Width Count and Capture (WDTH_CAP) Mode
	Autobaud Mode

	External Event (EXT_CLK) Mode

	Programming Model
	Timer Registers
	Timer Enable Register (TIMER_ENABLE)
	Timer Disable Register (TIMER_DISABLE)
	Timer Status Register (TIMER_STATUS)
	Timer Configuration Register (TIMER_CONFIG)
	Timer Counter Register (TIMER_COUNTER)
	Timer Period (TIMER_PERIOD) and Timer Width (TIMER_WIDTH) Registers
	Summary

	Programming Examples
	Unique Information for the ADSP-BF50x Processor
	Interface Overview
	External Interface

	11 Core Timer
	Specific Information for the ADSP-BF50x
	Overview and Features
	Timer Overview
	External Interfaces
	Internal Interfaces

	Description of Operation
	Interrupt Processing

	Core Timer Registers
	Core Timer Control Register (TCNTL)
	Core Timer Count Register (TCOUNT)
	Core Timer Period Register (TPERIOD)
	Core Timer Scale Register (TSCALE)

	Programming Examples
	Unique Information for the ADSP-BF50x Processor

	12 Watchdog Timer
	Specific Information for the ADSP-BF50x
	Overview and Features
	Interface Overview
	External Interface
	Internal Interface

	Description of Operation
	Register Definitions
	Watchdog Count (WDOG_CNT) Register
	Watchdog Status (WDOG_STAT) Register
	Watchdog Control (WDOG_CTL) Register

	Programming Examples
	Unique Information for the ADSP-BF50x Processor

	13 General-Purpose Counter
	Specific Information for the ADSP-BF50x
	Overview
	Features
	Interface Overview
	Description of Operation
	Quadrature Encoder Mode
	Binary Encoder Mode
	Up/Down Counter Mode
	Direction Counter Mode
	Timed Direction Mode

	Functional Description
	Input Noise Filtering (Debouncing)
	Zero Marker (Push Button) Operation
	Boundary Comparison Modes
	Control and Signaling Events
	Illegal Gray/Binary Code Events
	Up/Down Count Events
	Zero-Count Events
	Overflow Events
	Boundary Match Events
	Zero Marker Events

	Capturing Timing Information
	Capturing Time Interval Between Successive Counter Events
	Capturing Counter Interval and CNT_COUNTER Read Timing

	Programming Model
	Registers
	Counter Module Register Overview
	Counter Configuration Register (CNT_CONFIG)
	Counter Interrupt Mask Register (CNT_IMASK)
	Counter Status Register (CNT_STATUS)
	Counter Command Register (CNT_COMMAND)
	Counter Debounce Register (CNT_DEBOUNCE)
	Counter Count Value Register (CNT_COUNTER)
	Counter Boundary Registers (CNT_MIN and CNT_MAX)

	Programming Examples
	Unique Information for the ADSP-BF50x Processor

	14 PWM Controller
	Specific Information for the ADSP-BF50x
	Overview
	General Operation
	Functional Description
	Three-Phase PWM Timing Unit and Dead Time Control Unit
	PWM Switching Frequency (PWM_TM) Register
	PWM Switching Dead Time (PWM_DT) Register
	PWM Operating Mode (PWM_CTRL and PWM_STAT) Registers
	PWM Duty Cycle (PWM_CHA, PWM_CHB, and PWM_CHC) Registers
	Special Consideration for PWM Operation in Over-Modulation
	Three-Phase PWM Timing Unit Operation
	Effective PWM Accuracy
	Switched Reluctance Mode
	Output Control Unit
	Crossover Feature
	Mode Bits (POLARITY and SRMODE)
	Output Enable Function
	Brushless DC Motor (Electronically Commutated Motor) Control

	Gate Drive Unit
	High-Frequency Chopping
	PWM Polarity Control

	Output Control Feature Precedence
	Switched Reluctance (SR) Mode
	PWM Sync Operation
	Internal PWM SYNC Generation
	External PWM SYNC Generation

	PWM Shutdown and Interrupt Control Unit

	PWM Registers
	PWM Control (PWM_CTRL) Register
	PWM Status (PWM_STAT) Register
	PWM Period (PWM_TM) Register
	PWM Dead Time (PWM_DT) Register
	PWM Chopping Control (PWM_GATE) Register
	PWM Channel A, B, C Duty Control (PWM_CHA, PWM_CHB, PWM_CHC) Registers
	PWM Crossover and Output Enable (PWM_SEG) Register
	PWM Sync Pulse Width Control (PWM_SYNCWT) Register
	PWM Channel AL, BL, CL Duty Control (PWM_CHAL, PWM_CHBL, PWM_CHCL) Registers
	PWM Low Side Invert (PWM_LSI) Register
	PWM Simulation Status (PWM_STAT2) Register

	Unique Information for the ADSP-BF50x Processor

	15 UART Port Controllers
	Overview
	Features

	Interface Overview
	External Interface
	Internal Interface

	Description of Operation
	UART Transfer Protocol
	UART Transmit Operation
	UART Receive Operation
	Hardware Flow Control
	IrDA Transmit Operation
	IrDA Receive Operation
	Interrupt Processing
	Bit Rate Generation
	Autobaud Detection

	Programming Model
	Non-DMA Mode
	DMA Mode
	Mixing Modes

	UART Registers
	UARTx_LCR Registers
	UARTx_MCR Registers
	UARTx_LSR Registers
	UARTx_MSR Registers
	UARTx_THR Registers
	UARTx_RBR Registers
	UARTx_DLL and UARTx_DLH Registers
	UARTx_SCR Registers
	UARTx_GCTL Registers

	Programming Examples

	16 Two-Wire Interface Controller
	Specific Information for the ADSP-BF50x
	Overview
	Interface Overview
	External Interface
	Serial Clock Signal (SCL)
	Serial Data Signal (SDA)
	TWI Pins

	Internal Interfaces

	Description of Operation
	TWI Transfer Protocols
	Clock Generation and Synchronization
	Bus Arbitration
	Start and Stop Conditions
	General Call Support
	Fast Mode

	Functional Description
	General Setup
	Slave Mode
	Master Mode Clock Setup
	Master Mode Transmit
	Master Mode Receive
	Repeated Start Condition
	Transmit/Receive Repeated Start Sequence
	Receive/Transmit Repeated Start Sequence

	Clock Stretching
	Clock Stretching During FIFO Underflow
	Clock Stretching During FIFO Overflow
	Clock Stretching During Repeated Start Condition

	Programming Model
	Register Descriptions
	TWI CONTROL Register (TWI_CONTROL)
	SCL Clock Divider Register (TWI_CLKDIV)
	TWI Slave Mode Control Register (TWI_SLAVE_CTL)
	TWI Slave Mode Address Register (TWI_SLAVE_ADDR)
	TWI Slave Mode Status Register (TWI_SLAVE_STAT)
	TWI Master Mode Control Register (TWI_MASTER_CTL)
	TWI Master Mode Address Register (TWI_MASTER_ADDR)
	TWI Master Mode Status Register (TWI_MASTER_STAT)
	TWI FIFO Control Register (TWI_FIFO_CTL)
	TWI FIFO Status Register (TWI_FIFO_STAT)
	TWI FIFO Status

	TWI Interrupt Mask Register (TWI_INT_MASK)
	TWI Interrupt Status Register (TWI_INT_STAT)
	TWI FIFO Transmit Data Single Byte Register (TWI_XMT_DATA8)
	TWI FIFO Transmit Data Double Byte Register (TWI_XMT_DATA16)
	TWI FIFO Receive Data Single Byte Register (TWI_RCV_DATA8)
	TWI FIFO Receive Data Double Byte Register (TWI_RCV_DATA16)

	Programming Examples
	Master Mode Setup
	Slave Mode Setup

	Electrical Specifications
	Unique Information for the ADSP-BF50x Processor

	17 CAN Module
	Overview
	Interface Overview
	CAN Mailbox Area
	CAN Mailbox Control
	CAN Protocol Basics

	CAN Operation
	Bit Timing
	Transmit Operation
	Retransmission
	Single Shot Transmission
	Auto-Transmission

	Receive Operation
	Data Acceptance Filter
	Remote Frame Handling
	Watchdog Mode

	Time Stamps
	Temporarily Disabling Mailboxes

	Functional Operation
	CAN Interrupts
	Mailbox Interrupts
	Global CAN Status Interrupt

	Event Counter
	CAN Warnings and Errors
	Programmable Warning Limits
	CAN Error Handling
	Error Frames
	Error Levels

	Debug and Test Modes
	Low Power Features
	CAN Built-In Suspend Mode
	CAN Built-In Sleep Mode
	CAN Wakeup From Hibernate State

	CAN Register Definitions
	Global CAN Registers
	CAN_CONTROL Register
	CAN_STATUS Register
	CAN_DEBUG Register
	CAN_CLOCK Register
	CAN_TIMING Register
	CAN_INTR Register
	CAN_GIM Register
	CAN_GIS Register
	CAN_GIF Register

	Mailbox/Mask Registers
	CAN_AMxx Registers
	CAN_MBxx_ID1 Registers
	CAN_MBxx_ID0 Registers
	CAN_MBxx_TIMESTAMP Registers
	CAN_MBxx_LENGTH Registers
	CAN_MBxx_DATAx Registers

	Mailbox Control Registers
	CAN_MCx Registers
	CAN_MDx Registers
	CAN_RMPx Register
	CAN_RMLx Register
	CAN_OPSSx Register
	CAN_TRSx Registers
	CAN_TRRx Registers
	CAN_AAx Register
	CAN_TAx Register
	CAN_MBTD Register
	CAN_RFHx Registers
	CAN_MBIMx Registers
	CAN_MBTIFx Registers
	CAN_MBRIFx Registers

	Universal Counter Registers
	CAN_UCCNF Register
	CAN_UCCNT Register
	CAN_UCRC Register

	Error Registers
	CAN_CEC Register
	CAN_ESR Register
	CAN_EWR Register

	Programming Examples
	CAN Setup Code
	Initializing and Enabling CAN Mailboxes
	Initiating CAN Transfers and Processing Interrupts

	18 SPI-Compatible Port Controller
	Specific Information for the ADSP-BF50x
	Overview
	Features
	Interface Overview
	External Interface
	SPI Clock Signal (SCK)
	Master-Out, Slave-In (MOSI) Signal
	Master-In, Slave-Out (MISO) Signal
	SPI Slave Select Input Signal (SPISS)
	SPI Slave Select Enable Output Signals
	Slave Select Inputs
	Use of FLS Bits in SPI_FLG for Multiple Slave SPI Systems

	Internal Interfaces
	DMA Functionality

	Description of Operation
	SPI Transfer Protocols
	SPI General Operation
	Clock Signals
	Interrupt Output

	Functional Description
	Master Mode Operation (Non-DMA)
	Transfer Initiation From Master (Transfer Modes)
	Slave Mode Operation (Non-DMA)
	Slave Ready for a Transfer

	Programming Model
	Beginning and Ending an SPI Transfer
	Master Mode DMA Operation
	Slave Mode DMA Operation

	SPI Registers
	SPI Baud Rate (SPI_BAUD) Register
	SPI Control (SPI_CTL) Register
	SPI Flag (SPI_FLG) Register
	SPI Status (SPI_STAT) Register
	Mode Fault Error (MODF)
	Transmission Error (TXE)
	Reception Error (RBSY)
	Transmit Collision Error (TXCOL)

	SPI Transmit Data Buffer (SPI_TDBR) Register
	SPI Receive Data Buffer (SPI_RDBR) Register
	SPI RDBR Shadow (SPI_SHADOW) Register

	Programming Examples
	Core-Generated Transfer
	Initialization Sequence
	Starting a Transfer
	Post Transfer and Next Transfer
	Stopping

	DMA-Based Transfer
	DMA Initialization Sequence
	SPI Initialization Sequence
	Starting a Transfer
	Stopping a Transfer

	Unique Information for the ADSP-BF50x Processor

	19 SPORT Controller
	Specific Information for the ADSP-BF50x
	Overview
	Features

	Interface Overview
	SPORT Pin/Line Terminations

	Description of Operation
	SPORT Disable
	Setting SPORT Modes
	Stereo Serial Operation
	Multichannel Operation
	Multichannel Enable
	Frame Syncs in Multichannel Mode
	The Multichannel Frame
	Multichannel Frame Delay
	Window Size
	Window Offset
	Other Multichannel Fields in SPORT_MCMC2
	Channel Selection Register
	Multichannel DMA Data Packing

	Support for H.100 Standard Protocol
	2× Clock Recovery Control

	Functional Description
	Clock and Frame Sync Frequencies
	Maximum Clock Rate Restrictions

	Word Length
	Bit Order
	Data Type
	Companding
	Clock Signal Options
	Frame Sync Options
	Framed Versus Unframed
	Internal Versus External Frame Syncs
	Active Low Versus Active High Frame Syncs
	Sampling Edge for Data and Frame Syncs
	Early Versus Late Frame Syncs (Normal Versus Alternate Timing)
	Data Independent Transmit Frame Sync

	Moving Data Between SPORTs and Memory
	SPORT RX, TX, and Error Interrupts
	Peripheral Bus Errors
	Timing Examples

	SPORT Registers
	Register Writes and Effective Latency
	SPORT Transmit Configuration (SPORT_TCR1 and SPORT_TCR2) Registers
	SPORT Receive Configuration (SPORT_RCR1 and SPORT_RCR2) Registers
	Data Word Formats
	SPORT Transmit Data (SPORT_TX) Register
	SPORT Receive Data (SPORT_RX) Register
	SPORT Status (SPORT_STAT) Register
	SPORT Transmit and Receive Serial Clock Divider (SPORT_TCLKDIV and SPORT_RCLKDIV) Registers
	SPORT Transmit and Receive Frame Sync Divider (SPORT_TFSDIV and SPORT_RFSDIV) Registers
	SPORT Multichannel Configuration (SPORT_MCMC1 and SPORT_MCMC2) Registers
	SPORT Current Channel (SPORT_CHNL) Register
	SPORT Multichannel Receive Selection (SPORT_MRCSn) Registers
	SPORT Multichannel Transmit Selection (SPORT_MTCSn) Registers

	Programming Examples
	SPORT Initialization Sequence
	DMA Initialization Sequence
	Interrupt Servicing
	Starting a Transfer

	Unique Information for the ADSP-BF50x Processor

	20 Parallel Peripheral Interface
	Specific Information for the ADSP-BF50x
	Overview
	Features
	Interface Overview
	Description of Operation
	Functional Description
	ITU-R 656 Modes
	ITU-R 656 Background
	ITU-R 656 Input Modes
	Entire Field
	Active Video Only
	Vertical Blanking Interval (VBI) Only

	ITU-R 656 Output Mode
	Frame Synchronization in ITU-R 656 Modes

	General-Purpose PPI Modes
	Data Input (RX) Modes
	No Frame Syncs
	1, 2, or 3 External Frame Syncs
	2 or 3 Internal Frame Syncs

	Data Output (TX) Modes
	No Frame Syncs
	1 or 2 External Frame Syncs
	1, 2, or 3 Internal Frame Syncs

	Frame Synchronization in GP Modes
	Modes With Internal Frame Syncs
	Modes With External Frame Syncs

	Programming Model
	DMA Operation

	PPI Registers
	PPI Control Register (PPI_CONTROL)
	PPI Status Register (PPI_STATUS)
	PPI Delay Count Register (PPI_DELAY)
	PPI Transfer Count Register (PPI_COUNT)
	PPI Lines Per Frame Register (PPI_FRAME)

	Programming Examples
	Unique Information for the ADSP-BF50x Processor

	21 Removable Storage Interface
	Overview
	Interface Overview
	Description of Operation
	Functional Description
	RSI Clock Configuration
	RSI Interface Configuration
	Card Detection
	RSI Power Saving Configuration
	RSI Commands and Responses
	IDLE State
	PEND State
	SEND State
	WAIT State
	RECEIVE State
	CEATA_INT_WAIT State
	CEATA_INT_DIS State

	RSI Command Path CRC
	RSI Data
	RSI Data Transmit Path
	RSI Data Receive Path
	RSI Data Path CRC
	RSI Data FIFO
	SDIO Interrupt and Read Wait Support

	Programming Model
	Card Identification
	SD Card Identification Procedure
	MMC Identification Procedure

	Single Block Write Operations
	Using Core
	Using DMA

	Single Block Read Operation
	Using Core
	Using DMA

	Multiple Block Write Operation
	Using Core
	Using DMA

	Multiple Block Read Operation
	Using Core
	Using DMA

	RSI Registers
	RSI Power Control Register (RSI_PWR_CONTROL)
	RSI Clock Control Register (RSI_CLK_CONTROL)
	RSI Argument Register (RSI_ARGUMENT)
	RSI Command Register (RSI_COMMAND)
	RSI Response Command Register (RSI_RESP_CMD)
	RSI Response Registers (RSI_RESPONSEx)
	RSI Data Timer Register (RSI_DATA_TIMER)
	RSI Data Length Register (RSI_DATA_LGTH)
	RSI Data Control Register (RSI_DATA_CONTROL)
	RSI Data Counter Register (RSI_DATA_CNT)
	RSI Status Register (RSI_STATUS)
	RSI Status Clear Register (RSI_STATUSCL)
	RSI Interrupt Mask Registers (RSI_MASKx)
	RSI FIFO Counter Register (RSI_FIFO_CNT)
	RSI CE-ATA Control Register (RSI_CEATA_CONTROL)
	RSI Data FIFO Register (RSI_FIFO)
	RSI Exception Status Register (RSI_ESTAT)
	RSI Exception Mask Register (RSI_EMASK)
	RSI Configuration Register (RSI_CONFIG)
	RSI Read Wait Enable Register (RSI_RD_WAIT_EN)
	RSI Peripheral ID Registers (RSI_PIDx)

	22 ADC Control Module (ACM)
	Interface Overview
	Events
	Timers
	External Triggers
	Event Register Pairs
	Event Comparators
	Timing Generation Unit
	Interrupts

	Description of Operation
	ADC Power Down
	Single-Shot Sequencing Mode Emulation
	Continuous Sequencing Mode Emulation

	Functional Description
	ADC Sampling Latency
	ACM External Pin Timing
	Case 1—Chip Select Asserted During the High Phase of ACLK
	Case 2—Chip Select Asserted During the Low Phase of ACLK
	Case 3—Chip Select Asserted Right Before the Falling Edge of ACLK
	Case 4—Chip Select Asserted Right Before the Rising Edge of ACLK
	Case 5—ACLK Polarity Set to 1 (CLKPOL=1)

	ACM Timing Specifications

	Programming Model
	ACM Registers
	ACM Control (ACM_CTL) Register
	ACM Status (ACM_STAT) Register
	ACM Event Status (ACM_ES) Register
	ACM Event Interrupt Mask (ACM_IMSK) Register
	ACM Missed Event Status (ACM_MS) Register
	ACM Event Missed Interrupt Mask (ACM_EMSK) Register
	ACM Event Control (ACM_ERx) Registers
	ACM Event Time (ACM_ETx) Registers
	ACM Timing Configuration (ACM_TCx) Registers
	ACM Timing Configuration 0 (ACM_TC0) Register
	ACM Timing Configuration 1 (ACM_TC1) Register

	Programming Examples

	23 Analog/Digital Converter (ADC)
	ADC Architecture
	Maximum ADC Sampling Rate
	Interfacing the ADC With the ACM and the SPORT
	Interfacing the ADC With the SPORT and With TMR Pins

	24 System Reset and Booting
	Overview
	Reset and Power-up
	Hardware Reset
	Software Resets
	Servicing Reset Interrupts

	Basic Booting Process
	Block Headers
	Block Code
	DMA Code Field
	Block Flags Field
	Header Checksum Field
	Header Sign Field

	Target Address
	Byte Count
	Argument

	Boot Host Wait (HWAIT) Feedback Strobe
	Using HWAIT as Reset Indicator

	Boot Termination
	Single Block Boot Streams
	Direct Code Execution

	Advanced Boot Techniques
	Initialization Code
	Quick Boot
	Indirect Booting
	Callback Routines
	Error Handler
	CRC Checksum Calculation
	Load Functions
	Calling the Boot Kernel at Runtime
	Debugging the Boot Process

	Boot Management
	Booting a Different Application
	Multi-DXE Boot Streams
	Determining Boot Stream Start Addresses
	Initialization Hook Routine

	Specific Boot Modes
	No Boot Mode
	Flash Boot Modes
	SPI Master Boot Modes
	SPI Device Detection Routine

	SPI Slave Boot Mode
	PPI Boot Mode
	UART Slave Mode Boot

	Reset and Booting Registers
	Software Reset (SWRST) Register
	System Reset Configuration (SYSCR) Register
	Boot Code Revision Control (BK_REVISION)
	Boot Code Date Code (BK_DATECODE)
	Zero Word (BK_ZEROS)
	Ones Word (BK_ONES)

	Data Structures
	ADI_BOOT_HEADER
	ADI_BOOT_BUFFER
	ADI_BOOT_DATA
	dFlags Word

	Callable ROM Functions for Booting
	BFROM_FINALINIT
	BFROM_PDMA
	BFROM_MDMA
	BFROM_MEMBOOT
	BFROM_SPIBOOT
	BFROM_BOOTKERNEL
	BFROM_CRC32
	BFROM_CRC32POLY
	BFROM_CRC32CALLBACK
	BFROM_CRC32INITCODE

	Programming Examples
	Example System Reset
	Example Exiting Reset to User Mode
	Example Exiting Reset to Supervisor Mode
	Example Power Management with Initcode
	Example XOR Checksum
	Example Direct Code Execution

	25 System Design
	Pin Descriptions
	Managing Clocks
	Managing Core and System Clocks

	Configuring and Servicing Interrupts
	Semaphores
	Example Code for Query Semaphore

	Data Delays, Latencies and Throughput
	Bus Priorities
	High-Frequency Design Considerations
	Signal Integrity
	Decoupling Capacitors and Ground Planes
	5 Volt Tolerance
	Test Point Access
	Oscilloscope Probes
	Recommended Reading

	Resetting the Processor
	Recommendations for Unused Pins
	Programmable Outputs
	Voltage Regulation Interface

	A System MMR Assignments
	Processor-Specific Memory Registers
	Core Timer Registers
	System Reset and Interrupt Control Registers
	DMA/Memory DMA Control Registers
	Ports Registers
	Timer Registers
	Watchdog Timer Registers
	GP Counter Registers
	Dynamic Power Management Registers
	PPI Registers
	SPI Controller Registers
	SPORT Controller Registers
	UART Controller Registers
	TWI Registers
	CAN Registers
	ACM Registers
	PWM Registers
	RSI Registers
	ACM Registers

	B Test Features
	JTAG Standard
	Boundary-Scan Architecture
	Instruction Register
	Public Instructions
	EXTEST – Binary Code 00000
	SAMPLE/PRELOAD – Binary Code 10000
	BYPASS – Binary Code 11111

	Boundary-Scan Register

	I Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

