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Introduction 
This document describes debug features of 
Blackfin® processors and the VisualDSP++® 
development tools. By applying the tips below, 
programmers can narrow down the cause of an 
encountered problem before reporting it to the 
Analog Devices embedded processor support 
team. This will help to solve the issue quickly. 

Debugging Tips and Tricks 
The following topics are covered: 

 Running an application via an emulator 
versus booting the application. Specifically, 
SDRAM initialization considerations are 
addressed. 

 Unlocking core B for dual-core processors. 
The emulator does this automatically; 
however, when code is booted in, core B 
must be unlocked manually. 

 Hardware errors and software exceptions 
 Blackfin processor debug features and tools, 

including: 
 Trace buffer 
 Breakpoints (software, embedded, and 

hardware) 
 VDK debugging (VDK Status window 

and VDK State History window) 
 Debugging issues when cache is enabled 
 Interrupts 

This EE-Note does not cover issues 
associated with troubleshooting 
peripherals. 

Emulation vs. Standalone Booting 

The emulator software uses .xml files to 
configure resources such as SDRAM timing on 
an EZ-KIT Lite® evaluation board. There are 
default .xml files for all Blackfin processors for 
which an evaluation platform exists (i.e., the EZ-
KIT Lite boards), where definitions are created 
to initialize certain registers upon emulator 
connection. 

For example, the following is an excerpt from 
the ADSP-BF537-proc.xml file for the ADSP-
BF537 Blackfin processor: 
<register-reset-definitions> 

<register name="EBIU_SDRRC" reset-
value="0x03A0" core="Common" /> 

<register name="EBIU_SDBCTL" reset-
value="0x25" core="Common" /> 

<register name="EBIU_SDGCTL" reset-
value="0x0091998d" core="Common" /> 

<register name="EBIU_AMGCTL" reset-
value="0xff" core="Common" /> 

</register-reset-definitions>  

Thus, when developing an application for the 
ADSP-BF537 EZ-KIT Lite board, the SDRAM 
is initialized automatically when the emulator 
software is invoked.  

However, when moving to a standalone 
application (that is, booting the application rather 
than downloading it using an emulator), it is the 
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user’s responsibility to enable the SDRAM 
controller if SDRAM memory is used in the 
system. This is accomplished by including an 
initialization file via the Loader page of the 
Project Options dialog box page when 
creating a loader file. See ADSP-BF533 Blackfin 
Booting Process (EE-240)[1]. 

Another difference that can cause issues when 
moving an application from an emulator session 
to booting standalone is related to ADSP-BF561 
Blackfin dual-core systems. By default, the 
emulator software “unlocks” core B and allows it 
to run from the beginning of L1 instruction 
memory. When both cores are to be used, core B 
must be unlocked by core A by clearing bit 5 of 
the system reset configuration register 
(SICA_SYSCR). 

Another issue that sometimes occurs as a result 
of the emulator unlocking core B is with regard 
to changing operating modes or clock 
frequencies. Specifically, core B must be in the 
idle state (not simply at a breakpoint) when 
making changes to the PLL or voltage regulator. 
This can cause trouble if, for example, a 
breakpoint is set in core B and code is run on 
core A that changes the PLL frequency. Be sure 
to run code that places core B into the idle state 
prior to changing the PLL frequency. This can be 
done using supplemental interrupts or GPIO 
pins. 

Hardware Errors and Software Exceptions 

Hardware errors and software exceptions are two 
specific types of events that can occur on 
Blackfin processors. Each of these events has a 
separate entry in the event vector table (EVT). 
Handlers should be installed for each of these 
events so that they can be trapped by using any 
of the breakpoint methods described later in this 
document. At that point, the state of the 
processor can be examined to understand what 
caused the particular event. The sequencer status 
register (SEQSTAT) has two fields that can be 
used to gain more insight into the offending 

condition.  The HWERRCAUSE field is used to 
identify the condition that generated a hardware 
error, and the EXCAUSE field is used to identify 
the condition that generated an exception. 

A hardware error can be generated for a variety 
of reasons, such as when an MMR is accessed 
with the wrong word size (e.g., a 16-bit MMR is 
accessed as 32-bit, or vice versa) or when the 
core or DMA controller tries to access reserved 
or uninitialized memory space. The RETI address 
will contain an address within 10 locations of the 
offending location. If hardware errors are 
enabled and the event is serviced, the condition 
will clear, but the hardware error cause will 
remain with the last error condition.  

For ADSP-BF561 Blackfin dual-core processors, 
hardware errors generated by a specific core will 
only cause an error on that core. If the DMA 
controller generates a hardware error, the error is 
sent to both cores. 

In each of the handlers (hardware error or 
exception) the HWERRCAUSE and EXCAUSE fields 
can be read to identify the cause of the event. 
Alternatively, when using an emulator to debug, 
trap instructions can be placed in the handlers, 
such as emuxcept, so that the processor will stop 
running whenever a hardware error and/or an 
exception occurs. The appropriate field in the 
SEQSTAT register can then be inspected to 
determine the cause of the event. 

Now that the cause of the event is known, the 
address of the offending instruction should be 
noted to determine when the problem occurred in 
the program. For exceptions, the return from 
exception register (RETX) contains the address of 
the “offending” instruction or the address of the 
next instruction to be executed. The address in 
RETX depends on the type of exception: service 
(S) or error (E). The ADSP-BF53x/BF56x 
Blackfin Processor Programming Reference[2] 
lists the events that cause exceptions, as well as 
their type (service or error). For convenience, 
this table is included in Appendix A. 
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For error type exceptions, RETX holds the address 
of the offending instruction; for service type 
exceptions, RETX holds the address of the next 
instruction after that of the offending instruction. 

At this point, the offending instruction can be 
examined for further insight into the problem. Is 
the instruction accessing memory which has no 
valid CPLB definition? Is the instruction 
performing a memory load/store from/to a 
misaligned location? Does the pointer or index 
register point to an invalid memory region?  

A breakpoint can be set in the vicinity of the 
instruction that caused the hardware error or 
exception, and the code can be single-stepped 
while observing the address registers (Ix or Px). 
Setting breakpoints and/or stepping through the 
code prior to the instruction of interest 
sometimes changes the behavior of the problem 
(i.e., the problem can no longer be observed 
under these conditions). In cases like this, the 
breakpoint can be placed past the instruction of 
interest and the state of the processor can be 
examined when the breakpoint is encountered. 
Note that the processor will have vectored off to 
the event handler, so the breakpoint is placed at 
the first instruction in the event handler 
(exception handler or hardware error handler). 

Using the Trace Buffer 

A 16-slot trace buffer, available on Blackfin 
processors, allows the last 16 non-contiguous 
changes of flow (excluding zero-overhead 
hardware loops) to be captured. The information 
in the trace buffer can be instrumental in 
determining the cause of a problem or, more 
importantly, in narrowing down the problem 
such that a small test case can be derived that 
consistently shows the unexpected behavior. In 
the previous section, methods to identify the 
instruction which causes a particular event were 
described; however, in many cases, that same 
instruction in isolation would not exhibit the 
problem. It is what happens before the 
instruction is fetched and executed (in some 

cases it does not make it to the execution stage) 
that is critical in zeroing in on the root cause. For 
example, consider an instruction that performs a 
memory load using the P2 register. Immediately 
before executing this instruction, an interrupt is 
taken, which, through bad programming practice, 
does not save and restore the registers it uses. 
The ISR code modifies the pointer register P2 
and, upon returning from the interrupt service 
routine, the original memory load instruction is 
executed. However, P2 no longer points to the 
desired memory location because it was 
overwritten during an asynchronous event, which 
could result in any one of the events previously 
discussed. More subtly, the data is written/read 
to/from the wrong memory. The latter is 
typically harder to detect. 

The trace buffer allows changes of flow that took 
place before the problem occurred to be seen 
easily in a window. It records the last 16 pairs of 
discontinuities. The first entry in the pair is the 
source of the discontinuity (i.e., a call 
instruction), and the second entry is the 
destination, or target, of the discontinuity (i.e., 
the first instruction of the called function). In the 
above P2 example, the first instruction of a given 
trace pair would be a return from interrupt 
instruction (RTI), and the second entry in the pair 
would be the load instruction or an instruction 
before it. Since the trace buffer also shows the 
addresses of the discontinuities, the address of 
the RTI instruction can be inspected in the ISR to 
find that P2 was modified and never restored 
before exiting the ISR. This ISR could be part of 
a scheduler of an RTOS that the application uses. 
Of course, the example discussed here is very 
simplistic. It could turn out that the ISR did not 
implement a workaround to a known issue. 

There will be times when nothing is apparent 
(i.e., with all this analysis, why the problem 
occurs still cannot be explained). Knowing the 
transitions that took place before the problem 
was encountered can help create a small test 
case, which can be very helpful to the support 
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team to quickly investigate and resolve the 
problem. 

Figure 1 shows how entries are structured in a 
trace buffer. The leftmost column lists the cycles 
from 0 to 31. Cycles 0 and 1 are the last pair of 
discontinuities recorded in the trace buffer, 
cycles 2 and 3 are the penultimate pair, etc. The 
second column from the left shows the grouping 
of the pairs. For example, cycles 0 and 1 are the 
15th pair (0xf), cycles 2 and 3 are the 14th pair 
(0xe), and cycles 0x1e and 0x1f are the zero pair 
(0x0). The first instruction of the pair is the 
source of the discontinuity, and the second 
instruction is the destination of the discontinuity. 
For the 0xf pair, cycle 0 is the source address 
(the RTS instruction), and cycle 1 is the 
destination instruction (CALL 
Initialize__3VDKFv). That is, this instruction 
is executed first after returning from the 
subroutine ending at address 0xffa086be. 

 

Figure 1. Trace Buffer Example 

Using Breakpoints 

This section describes differences between 
software, embedded, and hardware breakpoints, 
and explains when and how to use them. 

Software Breakpoints 
Software breakpoints are convenient and easy to 
use. Simply double-click on an instruction in the 
editor (source) window or the Disassembly 
window of the IDDE to set the breakpoint, and 

execution halts when that line of code is hit. 
However, behind the scenes, the value of the 
location where the breakpoint is placed is 
‘cached’ within the emulator. The emulator reads 
the memory at the breakpoint location and saves 
it to the emulator’s internal breakpoint list. When 
the application is run, it places a trap instruction 
at that location. When any breakpoint is hit, or 
any halt event occurs, the trap instruction at the 
breakpoint location is replaced by the instruction 
that was previously ‘cached’. Clearly, this 
suggests that software breakpoints are intrusive 
in nature. Thus, many encountered problems may 
seem to go away when software breakpoints are 
used to diagnose the problem because the timing 
of the application has changed due to the nature 
of software breakpoints. Figure 2 shows what a 
software breakpoint looks like in a VisualDSP++ 
IDDE session. 

 

Figure 2. Software Breakpoint Example 

Embedded Breakpoints 
An embedded breakpoint is part of the 
application code itself. It is similar to software 
breakpoints, except that the debugger does not 
need to look up a breakpoint table list or insert 
‘halting’ op-codes into the application. As such, 
this class of breakpoints is quasi-non-intrusive. 
The emuexcpt instruction causes the processor to 
halt when executed. This instruction only has 
meaning when an emulator is connected; 
otherwise, it acts as a NOP. It is good practice to 
use embedded breakpoints inside event handlers 
because, other than using code space, they do not 
affect the timing of the application, thus allowing 
for the state of the processor to be observed 
confidently soon after the event occurred. Used 
in conjunction with the trace buffer information, 
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now you can observe the state of the processor 
and can also observe the transitions that took 
place right before an event occurred. Figure 3 
shows an example of an embedded breakpoint. 

 

 

Figure 3. Embedded Breakpoint Example 

Hardware Breakpoints 
On the other hand, hardware breakpoints are 
completely non-intrusive, as they do not alter the 
application code in any way. Instead, hardware 
breakpoints rely on physical hardware logic on 
the chip, which monitors both the instruction and 
data buses. On Blackfin processors, hardware 
breakpoints are implemented by the watchpoint 
register unit. There are six instruction watchpoint 
registers and two data watchpoint registers. 
Instruction hardware breakpoints can be set on 
six specific instruction addresses or on three 
instruction address ranges. Data hardware 
breakpoints can be set on two specific data 
addresses or on one data address range. 
Hardware breakpoints can be used in RAM or 
ROM types of memory. 

To enable hardware breakpoints from within the 
VisualDSP++ IDDE, go to Settings and select 
Hardware Breakpoints. Figure 4 shows one of 
the Instruction pages of the Hardware 
Breakpoints window. 

 

Figure 4. Hardware Breakpoints (Instruction) 

The instruction address or address range can then 
be specified to force halts to the processor when 
these instructions are about to be executed. 

For data accesses, the type of access must be 
specified (read, write, or both), to trigger an 
emulation halt. Figure 5 shows the Data page of 
the Hardware Breakpoints window. 

 

Figure 5. Hardware Breakpoints (Data) 

The code can then be run, and the processor will 
halt if a match is seen between the internal 
instruction/data address bus and the address 
specified in the hardware breakpoint registers. 
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Hardware breakpoints provide a skip count 
feature, which can be used to indicate how many 
times to ignore accesses to the specified region 
before the processor is halted. For example, if 
skip count is set to 0xA, the processor will halt 
on the 10th occurrence of the address match. 

VisualDSP++ Kernel (VDK) 

VDK is a real-time kernel that simplifies the 
management of projects with multiple tasks.  
However, it adds a level of abstraction to the 
application. Due to this, just like any RTOS, it 
makes it that much harder to pinpoint bugs in the 
system. 

VisualDSP++ has a kernel-aware debugger that 
can display system performance details, which 
can help in application tuning and in debugging 
an RTOS-based system. It allows you to 
visualize the various threads at any given time 
(i.e., running, blocked, ready, etc.). Among other 
debug needs, this may be instrumental in 
identifying why a particular thread never gets to 
run. Figure 6 shows the VDK State History 
window. 

 

Figure 6. VDK State History Window 

 

Ensure that thread priorities are set 
appropriately. You should know each 
task’s needs in terms of run time. The 
VDK State History window can be 
instrumental in identifying overall 
thread time balancing. 

Another useful debug window, the VDK Status 
window, displays the cause of a kernel panic 
error. Figure 7 shows the VDK Status window. 

 

 

Figure 7. VDK Status Window 

The example in Figure 7 shows a stack overflow, 
which caused the kernel panic. The indicated 
Value identifies the thread (IDLE thread) whose 
stack size is insufficient. 

Cache-Related Issues 

When a cache problem is suspected, first consult 
the appropriate processor anomaly list to verify 
whether the particular observed behavior has 
been characterized there. 

If the unexpected behavior does not appear to be 
related to a known issue, try to rule out the cache 
controller as the cause by moving the region of 
interest into L1 memory. The previous sections 
showed how to identify this region. Run the 
application with cache turned on, and then run it 
a second time with cache turned off. Observe any 
differences in behavior. If the problem is still 
present with the cache turned off, it could 
indicate a race condition in the software 
application. Turning cache off may change the 
timing for the rest of the application, causing the 
failure to stop occurring. Because of this, try 
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bringing the region of interest into L1 and leave 
the cache turned on. If the problem persists and 
an exception and/or hardware error is generated 
in the region of the code that is in L1, it is not a 
cache integrity issue. 

If exceptions are present, refer to Hardware 
Errors and Software Exceptions above. 

Cache Coherency 
Blackfin processors do not maintain coherency 
between cache memory and main memory. 
Typically, coherency will be an issue in systems 
where a peripheral DMA channel accesses a 
region of external memory defined as cacheable. 
The cache controller has no knowledge of these 
accesses and, as a result, may use its stale (old) 
data for computations, thus producing 
unexpected results. Software must ensure that 
coherency is maintained by invalidating lines 
that might have been accessed by a DMA 
controller. 

Interrupt-Related Issues 

In the ISR, ensure that the pushing and popping 
of resources is done in the correct order. Also, 
note the significance of pushing and popping 
RETI. When RETI is pushed onto the stack, 
interrupt nesting is enabled; conversely, popping 
RETI disables interrupt nesting. So, if higher 
priority interrupts should not interrupt the 
interrupt service routine, do not push RETI onto 
the stack. If programming in C/C++, use the non-
nested interrupt handler: 
EX_INTERRUPT_HANDLER(Timer_handler) 

If interrupt nesting should be enabled for a 
particular ISR, use the following interrupt 
handler: 
EX_REENTRANT_HANDLER(Timer_handler) 

This reentrant handler pushes RETI at the 
beginning of the ISR and pops it at the end, right 
before the RTI is executed. 

To prevent repeated vectoring to the same ISR, 
clear the cause of the interrupt in the ISR before 

exiting. For example, for a core timer, clearing 
the TINT (timer interrupt) bit in the core timer 
control register will clear the interrupt. 

When using nested interrupts, be sure to avoid 
problems that may arise due to using shared 
resources. Minimizing an ISR’s execution time 
allows lower-priority ISRs to also be serviced in 
a timely manner. Keeping ISRs short also 
reduces the number of used resources within the 
ISR, thus alleviating stack usage. Another type 
of problem that arises with nested interrupts is 
stack overflow. One way to detect stack overflow 
in nested interrupts (or even in deeply nested 
subroutines) is to read the stack pointer (SP) at 
the beginning of every ISR to check if the 
pointer is nearing the end of the stack. 

Summary 
This EE-Note describes VDK tools and Blackfin 
processor features that are available to help 
narrow down problems. 

First and foremost, always check the anomaly list 
for the silicon revision of the processor used to 
verify whether the problem is already known. If 
it is, implement the given workaround. To get 
automated software support for known silicon 
errata, ensure that the latest tools are being used 
and that silicon workarounds are enabled. 

Applications should install event handlers 
(exception handlers, interrupt handlers) before 
running the main application so you can trap 
events when necessary. 

Verify the behavior. What exactly is not working 
properly? Are exceptions/hardware errors being 
generated? If so, what exception and/or hardware 
error? The tables in Appendix A will help 
determine this. Are the peripherals 
overflowing/underflowing? Are DMA errors 
being generated? 

Find ways to increase repeatability. Although not 
always possible, increasing the frequency with 
which a problem occurs enhances the chance of 
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fixing the problem. Increasing repeatability could 
mean increasing or shortening loop iterations, 
changing the core voltage, adjusting the core 
and/or system frequencies, etc. It should be noted 
that only one variable should be changed at a 
time. If the modified variable has no effect on the 
bug, leave the variable as it was before a new 
modification is made. 

Use software breakpoints to observe processor 
state prior to the triggering of the fault. If the 
failure stops occurring when software 
breakpoints are inserted, then either use 
embedded or, ultimately, hardware breakpoints. 

If hardware errors/exceptions are generated, find 
the respective causes from the sequencer status 
register and check the tables in Appendix A to 
see what might have generated those events. 

Trap the events in the respective exception 
handlers by using embedded breakpoints or 
hardware breakpoints. 

Use the Trace window to observe processor 
transitions prior to the occurrence of the 
problem. 

Save all registers for post analysis by choosing 
Register->Save Registers in VisualDSP++, 
as shown in Figure 8. 

 

Figure 8. Save Registers Feature 

If, after the steps described above, the fault 
cannot be corrected, having the knowledge of the 
sequence of events that triggers the unexpected 
behavior should allow for a small test case to be 
generated. Once a test case is available, 
summarize your findings for the embedded 
processor support team and include the test case. 
This will allow for rapid reproduction of the 
issue, which will ultimately help get the issue 
resolved.
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Appendix A 

Table 1. Events that Cause Exceptions 

Exception  EXCAUS
E [5:0]  

Type: 
Error (E) 
Service 
(S) 

Notes/Examples  

Force Exception 
instruction EXCPT 
with 4-bit m field  

m field  S  Instruction provides 4 bits of EXCAUSE.  

Single step  0x10  S  When the processor is in single step mode, every instruction generates 
an exception. Primarily used for debugging.  

Exception caused by a 
trace buffer full 
condition 

0x11  S  The processor takes this exception when the trace buffer overflows 
(only when enabled by the Trace Unit Control register).  

Undefined instruction  0x21  E  May be used to emulate instructions that are not defined for a particular 
processor implementation.  

Illegal instruction 
combination  

0x22  E  See section for multi-issue rules in the ADSP-BF53x/BF56x Blackfin 
Processor Programming Reference.  

Data access CPLB 
protection violation  

0x23  E  Attempted read or write to Supervisor resource, or illegal data memory 
access. Supervisor resources are registers and instructions that are 
reserved for Supervisor use: Supervisor only registers, all MMRs, and 
Supervisor only instructions. (A simultaneous, dual access to two 
MMRs using the data address generators generates this type of 
exception.) In addition, this entry is used to signal a protection 
violation caused by disallowed memory access, and it is defined by the 
Memory Management Unit (MMU) cacheability protection lookaside 
buffer (CPLB).  

Data access mis-
aligned address 
violation  

0x24  E  Attempted misaligned data memory or data cache access.  

Unrecoverable event  0x25  E  For example, an exception generated while processing a previous 
exception. 

Data access CPLB 
miss  

0x26  E  Used by the MMU to signal a CPLB miss on a data access.  

Data access multiple 
CPLB hits  

0x27  E  More than one CPLB entry matches data fetch address.  

Exception caused by an 
emulation watch-point 
match 

0x28  E  There is a watchpoint match, and one of the EMUSW bits in the 
Watchpoint Instruction Address Control (WPIACTL) register is set.  
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Instruction fetch 
misaligned address 
violation  

0x2A  E  Attempted misaligned instruction cache fetch. On a misaligned 
instruction fetch exception, the return address provided in RETX is the 
destination address which is misaligned, rather than the address of the 
offending instruction. For example, if an indirect branch to a 
misaligned address held in P0 is attempted, the return address in RETX 
is equal to P0, rather than to the address of the branch instruction. 
(Note this exception can never be generated from PC-relative branches, 
only from indirect branches.)  

Instruction fetch CPLB 
protection violation  

0x2B  E  Illegal instruction fetch access (memory protection violation).  

Instruction fetch CPLB 
miss  

0x2C  E  CPLB miss on an instruction fetch.  

Instruction fetch 
multiple CPLB hits  

0x2D  E  More than one CPLB entry matches instruction fetch address.  

Illegal use of 
supervisor resource  

0x2E  E  Attempted to use a Supervisor register or instruction from User mode. 
Supervisor resources are registers and instructions that are reserved for 
Supervisor use: Supervisor only registers, all MMRs, and Supervisor 
only instructions.  

 

Table 2. Hardware Conditions Causing Hardware Error Interrupts 

Hardware Condition HWERRCAUS
E(Hexadecimal)   

Notes / Examples  

System MMR Error 0x02  An error can occur if an invalid System MMR location is accessed, if a 
32-bit register is accessed with a 16-bit instruction, or if a 16-bit 
register is accessed with a 32-bit instruction. 

External Memory 
Addressing Error 

0x03   

Performance Monitor 
Overflow 

0x12   

RAISE 5 instruction 0x18  Software issued a RAISE 5 instruction to invoke the Hardware Error 
Interrupt (IVHW). 

Reserved  All other values.   
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