
Engineer-to-Engineer Note EE-307

a

Technical notes on using Analog Devices DSPs, processors and development tools
Visit our Web resources http://www.analog.com/ee-notes and http://www.analog.com/processors or
e-mail processor.support@analog.com or processor.tools.support@analog.com for technical support.

Blackfin® Processor Troubleshooting Tips Using VisualDSP++® Tools
Contributed by Jorge Manguane Rev 1 – December 11, 2006

Copyright 2006, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of
customers’ products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property
of their respective holders. Information furnished by Analog Devices applications and development tools engineers is believed to be accurate and reliable, however
no responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices Engineer-to-Engineer Notes.

Introduction
This document describes debug features of
Blackfin® processors and the VisualDSP++®
development tools. By applying the tips below,
programmers can narrow down the cause of an
encountered problem before reporting it to the
Analog Devices embedded processor support
team. This will help to solve the issue quickly.

Debugging Tips and Tricks
The following topics are covered:

 Running an application via an emulator
versus booting the application. Specifically,
SDRAM initialization considerations are
addressed.

 Unlocking core B for dual-core processors.
The emulator does this automatically;
however, when code is booted in, core B
must be unlocked manually.

 Hardware errors and software exceptions
 Blackfin processor debug features and tools,

including:
 Trace buffer
 Breakpoints (software, embedded, and

hardware)
 VDK debugging (VDK Status window

and VDK State History window)
 Debugging issues when cache is enabled
 Interrupts

This EE-Note does not cover issues
associated with troubleshooting
peripherals.

Emulation vs. Standalone Booting

The emulator software uses .xml files to
configure resources such as SDRAM timing on
an EZ-KIT Lite® evaluation board. There are
default .xml files for all Blackfin processors for
which an evaluation platform exists (i.e., the EZ-
KIT Lite boards), where definitions are created
to initialize certain registers upon emulator
connection.

For example, the following is an excerpt from
the ADSP-BF537-proc.xml file for the ADSP-
BF537 Blackfin processor:
<register-reset-definitions>

<register name="EBIU_SDRRC" reset-
value="0x03A0" core="Common" />

<register name="EBIU_SDBCTL" reset-
value="0x25" core="Common" />

<register name="EBIU_SDGCTL" reset-
value="0x0091998d" core="Common" />

<register name="EBIU_AMGCTL" reset-
value="0xff" core="Common" />

</register-reset-definitions>

Thus, when developing an application for the
ADSP-BF537 EZ-KIT Lite board, the SDRAM
is initialized automatically when the emulator
software is invoked.

However, when moving to a standalone
application (that is, booting the application rather
than downloading it using an emulator), it is the

 a

Blackfin® Processor Troubleshooting Tips Using VisualDSP++® Tools (EE-307) Page 2 of 11

user’s responsibility to enable the SDRAM
controller if SDRAM memory is used in the
system. This is accomplished by including an
initialization file via the Loader page of the
Project Options dialog box page when
creating a loader file. See ADSP-BF533 Blackfin
Booting Process (EE-240)[1].

Another difference that can cause issues when
moving an application from an emulator session
to booting standalone is related to ADSP-BF561
Blackfin dual-core systems. By default, the
emulator software “unlocks” core B and allows it
to run from the beginning of L1 instruction
memory. When both cores are to be used, core B
must be unlocked by core A by clearing bit 5 of
the system reset configuration register
(SICA_SYSCR).

Another issue that sometimes occurs as a result
of the emulator unlocking core B is with regard
to changing operating modes or clock
frequencies. Specifically, core B must be in the
idle state (not simply at a breakpoint) when
making changes to the PLL or voltage regulator.
This can cause trouble if, for example, a
breakpoint is set in core B and code is run on
core A that changes the PLL frequency. Be sure
to run code that places core B into the idle state
prior to changing the PLL frequency. This can be
done using supplemental interrupts or GPIO
pins.

Hardware Errors and Software Exceptions

Hardware errors and software exceptions are two
specific types of events that can occur on
Blackfin processors. Each of these events has a
separate entry in the event vector table (EVT).
Handlers should be installed for each of these
events so that they can be trapped by using any
of the breakpoint methods described later in this
document. At that point, the state of the
processor can be examined to understand what
caused the particular event. The sequencer status
register (SEQSTAT) has two fields that can be
used to gain more insight into the offending

condition. The HWERRCAUSE field is used to
identify the condition that generated a hardware
error, and the EXCAUSE field is used to identify
the condition that generated an exception.

A hardware error can be generated for a variety
of reasons, such as when an MMR is accessed
with the wrong word size (e.g., a 16-bit MMR is
accessed as 32-bit, or vice versa) or when the
core or DMA controller tries to access reserved
or uninitialized memory space. The RETI address
will contain an address within 10 locations of the
offending location. If hardware errors are
enabled and the event is serviced, the condition
will clear, but the hardware error cause will
remain with the last error condition.

For ADSP-BF561 Blackfin dual-core processors,
hardware errors generated by a specific core will
only cause an error on that core. If the DMA
controller generates a hardware error, the error is
sent to both cores.

In each of the handlers (hardware error or
exception) the HWERRCAUSE and EXCAUSE fields
can be read to identify the cause of the event.
Alternatively, when using an emulator to debug,
trap instructions can be placed in the handlers,
such as emuxcept, so that the processor will stop
running whenever a hardware error and/or an
exception occurs. The appropriate field in the
SEQSTAT register can then be inspected to
determine the cause of the event.

Now that the cause of the event is known, the
address of the offending instruction should be
noted to determine when the problem occurred in
the program. For exceptions, the return from
exception register (RETX) contains the address of
the “offending” instruction or the address of the
next instruction to be executed. The address in
RETX depends on the type of exception: service
(S) or error (E). The ADSP-BF53x/BF56x
Blackfin Processor Programming Reference[2]
lists the events that cause exceptions, as well as
their type (service or error). For convenience,
this table is included in Appendix A.

 a

Blackfin® Processor Troubleshooting Tips Using VisualDSP++® Tools (EE-307) Page 3 of 11

For error type exceptions, RETX holds the address
of the offending instruction; for service type
exceptions, RETX holds the address of the next
instruction after that of the offending instruction.

At this point, the offending instruction can be
examined for further insight into the problem. Is
the instruction accessing memory which has no
valid CPLB definition? Is the instruction
performing a memory load/store from/to a
misaligned location? Does the pointer or index
register point to an invalid memory region?

A breakpoint can be set in the vicinity of the
instruction that caused the hardware error or
exception, and the code can be single-stepped
while observing the address registers (Ix or Px).
Setting breakpoints and/or stepping through the
code prior to the instruction of interest
sometimes changes the behavior of the problem
(i.e., the problem can no longer be observed
under these conditions). In cases like this, the
breakpoint can be placed past the instruction of
interest and the state of the processor can be
examined when the breakpoint is encountered.
Note that the processor will have vectored off to
the event handler, so the breakpoint is placed at
the first instruction in the event handler
(exception handler or hardware error handler).

Using the Trace Buffer

A 16-slot trace buffer, available on Blackfin
processors, allows the last 16 non-contiguous
changes of flow (excluding zero-overhead
hardware loops) to be captured. The information
in the trace buffer can be instrumental in
determining the cause of a problem or, more
importantly, in narrowing down the problem
such that a small test case can be derived that
consistently shows the unexpected behavior. In
the previous section, methods to identify the
instruction which causes a particular event were
described; however, in many cases, that same
instruction in isolation would not exhibit the
problem. It is what happens before the
instruction is fetched and executed (in some

cases it does not make it to the execution stage)
that is critical in zeroing in on the root cause. For
example, consider an instruction that performs a
memory load using the P2 register. Immediately
before executing this instruction, an interrupt is
taken, which, through bad programming practice,
does not save and restore the registers it uses.
The ISR code modifies the pointer register P2
and, upon returning from the interrupt service
routine, the original memory load instruction is
executed. However, P2 no longer points to the
desired memory location because it was
overwritten during an asynchronous event, which
could result in any one of the events previously
discussed. More subtly, the data is written/read
to/from the wrong memory. The latter is
typically harder to detect.

The trace buffer allows changes of flow that took
place before the problem occurred to be seen
easily in a window. It records the last 16 pairs of
discontinuities. The first entry in the pair is the
source of the discontinuity (i.e., a call
instruction), and the second entry is the
destination, or target, of the discontinuity (i.e.,
the first instruction of the called function). In the
above P2 example, the first instruction of a given
trace pair would be a return from interrupt
instruction (RTI), and the second entry in the pair
would be the load instruction or an instruction
before it. Since the trace buffer also shows the
addresses of the discontinuities, the address of
the RTI instruction can be inspected in the ISR to
find that P2 was modified and never restored
before exiting the ISR. This ISR could be part of
a scheduler of an RTOS that the application uses.
Of course, the example discussed here is very
simplistic. It could turn out that the ISR did not
implement a workaround to a known issue.

There will be times when nothing is apparent
(i.e., with all this analysis, why the problem
occurs still cannot be explained). Knowing the
transitions that took place before the problem
was encountered can help create a small test
case, which can be very helpful to the support

 a

Blackfin® Processor Troubleshooting Tips Using VisualDSP++® Tools (EE-307) Page 4 of 11

team to quickly investigate and resolve the
problem.

Figure 1 shows how entries are structured in a
trace buffer. The leftmost column lists the cycles
from 0 to 31. Cycles 0 and 1 are the last pair of
discontinuities recorded in the trace buffer,
cycles 2 and 3 are the penultimate pair, etc. The
second column from the left shows the grouping
of the pairs. For example, cycles 0 and 1 are the
15th pair (0xf), cycles 2 and 3 are the 14th pair
(0xe), and cycles 0x1e and 0x1f are the zero pair
(0x0). The first instruction of the pair is the
source of the discontinuity, and the second
instruction is the destination of the discontinuity.
For the 0xf pair, cycle 0 is the source address
(the RTS instruction), and cycle 1 is the
destination instruction (CALL
Initialize__3VDKFv). That is, this instruction
is executed first after returning from the
subroutine ending at address 0xffa086be.

Figure 1. Trace Buffer Example

Using Breakpoints

This section describes differences between
software, embedded, and hardware breakpoints,
and explains when and how to use them.

Software Breakpoints
Software breakpoints are convenient and easy to
use. Simply double-click on an instruction in the
editor (source) window or the Disassembly
window of the IDDE to set the breakpoint, and

execution halts when that line of code is hit.
However, behind the scenes, the value of the
location where the breakpoint is placed is
‘cached’ within the emulator. The emulator reads
the memory at the breakpoint location and saves
it to the emulator’s internal breakpoint list. When
the application is run, it places a trap instruction
at that location. When any breakpoint is hit, or
any halt event occurs, the trap instruction at the
breakpoint location is replaced by the instruction
that was previously ‘cached’. Clearly, this
suggests that software breakpoints are intrusive
in nature. Thus, many encountered problems may
seem to go away when software breakpoints are
used to diagnose the problem because the timing
of the application has changed due to the nature
of software breakpoints. Figure 2 shows what a
software breakpoint looks like in a VisualDSP++
IDDE session.

Figure 2. Software Breakpoint Example

Embedded Breakpoints
An embedded breakpoint is part of the
application code itself. It is similar to software
breakpoints, except that the debugger does not
need to look up a breakpoint table list or insert
‘halting’ op-codes into the application. As such,
this class of breakpoints is quasi-non-intrusive.
The emuexcpt instruction causes the processor to
halt when executed. This instruction only has
meaning when an emulator is connected;
otherwise, it acts as a NOP. It is good practice to
use embedded breakpoints inside event handlers
because, other than using code space, they do not
affect the timing of the application, thus allowing
for the state of the processor to be observed
confidently soon after the event occurred. Used
in conjunction with the trace buffer information,

 a

Blackfin® Processor Troubleshooting Tips Using VisualDSP++® Tools (EE-307) Page 5 of 11

now you can observe the state of the processor
and can also observe the transitions that took
place right before an event occurred. Figure 3
shows an example of an embedded breakpoint.

Figure 3. Embedded Breakpoint Example

Hardware Breakpoints
On the other hand, hardware breakpoints are
completely non-intrusive, as they do not alter the
application code in any way. Instead, hardware
breakpoints rely on physical hardware logic on
the chip, which monitors both the instruction and
data buses. On Blackfin processors, hardware
breakpoints are implemented by the watchpoint
register unit. There are six instruction watchpoint
registers and two data watchpoint registers.
Instruction hardware breakpoints can be set on
six specific instruction addresses or on three
instruction address ranges. Data hardware
breakpoints can be set on two specific data
addresses or on one data address range.
Hardware breakpoints can be used in RAM or
ROM types of memory.

To enable hardware breakpoints from within the
VisualDSP++ IDDE, go to Settings and select
Hardware Breakpoints. Figure 4 shows one of
the Instruction pages of the Hardware
Breakpoints window.

Figure 4. Hardware Breakpoints (Instruction)

The instruction address or address range can then
be specified to force halts to the processor when
these instructions are about to be executed.

For data accesses, the type of access must be
specified (read, write, or both), to trigger an
emulation halt. Figure 5 shows the Data page of
the Hardware Breakpoints window.

Figure 5. Hardware Breakpoints (Data)

The code can then be run, and the processor will
halt if a match is seen between the internal
instruction/data address bus and the address
specified in the hardware breakpoint registers.

 a

Blackfin® Processor Troubleshooting Tips Using VisualDSP++® Tools (EE-307) Page 6 of 11

Hardware breakpoints provide a skip count
feature, which can be used to indicate how many
times to ignore accesses to the specified region
before the processor is halted. For example, if
skip count is set to 0xA, the processor will halt
on the 10th occurrence of the address match.

VisualDSP++ Kernel (VDK)

VDK is a real-time kernel that simplifies the
management of projects with multiple tasks.
However, it adds a level of abstraction to the
application. Due to this, just like any RTOS, it
makes it that much harder to pinpoint bugs in the
system.

VisualDSP++ has a kernel-aware debugger that
can display system performance details, which
can help in application tuning and in debugging
an RTOS-based system. It allows you to
visualize the various threads at any given time
(i.e., running, blocked, ready, etc.). Among other
debug needs, this may be instrumental in
identifying why a particular thread never gets to
run. Figure 6 shows the VDK State History
window.

Figure 6. VDK State History Window

Ensure that thread priorities are set
appropriately. You should know each
task’s needs in terms of run time. The
VDK State History window can be
instrumental in identifying overall
thread time balancing.

Another useful debug window, the VDK Status
window, displays the cause of a kernel panic
error. Figure 7 shows the VDK Status window.

Figure 7. VDK Status Window

The example in Figure 7 shows a stack overflow,
which caused the kernel panic. The indicated
Value identifies the thread (IDLE thread) whose
stack size is insufficient.

Cache-Related Issues

When a cache problem is suspected, first consult
the appropriate processor anomaly list to verify
whether the particular observed behavior has
been characterized there.

If the unexpected behavior does not appear to be
related to a known issue, try to rule out the cache
controller as the cause by moving the region of
interest into L1 memory. The previous sections
showed how to identify this region. Run the
application with cache turned on, and then run it
a second time with cache turned off. Observe any
differences in behavior. If the problem is still
present with the cache turned off, it could
indicate a race condition in the software
application. Turning cache off may change the
timing for the rest of the application, causing the
failure to stop occurring. Because of this, try

 a

Blackfin® Processor Troubleshooting Tips Using VisualDSP++® Tools (EE-307) Page 7 of 11

bringing the region of interest into L1 and leave
the cache turned on. If the problem persists and
an exception and/or hardware error is generated
in the region of the code that is in L1, it is not a
cache integrity issue.

If exceptions are present, refer to Hardware
Errors and Software Exceptions above.

Cache Coherency
Blackfin processors do not maintain coherency
between cache memory and main memory.
Typically, coherency will be an issue in systems
where a peripheral DMA channel accesses a
region of external memory defined as cacheable.
The cache controller has no knowledge of these
accesses and, as a result, may use its stale (old)
data for computations, thus producing
unexpected results. Software must ensure that
coherency is maintained by invalidating lines
that might have been accessed by a DMA
controller.

Interrupt-Related Issues

In the ISR, ensure that the pushing and popping
of resources is done in the correct order. Also,
note the significance of pushing and popping
RETI. When RETI is pushed onto the stack,
interrupt nesting is enabled; conversely, popping
RETI disables interrupt nesting. So, if higher
priority interrupts should not interrupt the
interrupt service routine, do not push RETI onto
the stack. If programming in C/C++, use the non-
nested interrupt handler:
EX_INTERRUPT_HANDLER(Timer_handler)

If interrupt nesting should be enabled for a
particular ISR, use the following interrupt
handler:
EX_REENTRANT_HANDLER(Timer_handler)

This reentrant handler pushes RETI at the
beginning of the ISR and pops it at the end, right
before the RTI is executed.

To prevent repeated vectoring to the same ISR,
clear the cause of the interrupt in the ISR before

exiting. For example, for a core timer, clearing
the TINT (timer interrupt) bit in the core timer
control register will clear the interrupt.

When using nested interrupts, be sure to avoid
problems that may arise due to using shared
resources. Minimizing an ISR’s execution time
allows lower-priority ISRs to also be serviced in
a timely manner. Keeping ISRs short also
reduces the number of used resources within the
ISR, thus alleviating stack usage. Another type
of problem that arises with nested interrupts is
stack overflow. One way to detect stack overflow
in nested interrupts (or even in deeply nested
subroutines) is to read the stack pointer (SP) at
the beginning of every ISR to check if the
pointer is nearing the end of the stack.

Summary
This EE-Note describes VDK tools and Blackfin
processor features that are available to help
narrow down problems.

First and foremost, always check the anomaly list
for the silicon revision of the processor used to
verify whether the problem is already known. If
it is, implement the given workaround. To get
automated software support for known silicon
errata, ensure that the latest tools are being used
and that silicon workarounds are enabled.

Applications should install event handlers
(exception handlers, interrupt handlers) before
running the main application so you can trap
events when necessary.

Verify the behavior. What exactly is not working
properly? Are exceptions/hardware errors being
generated? If so, what exception and/or hardware
error? The tables in Appendix A will help
determine this. Are the peripherals
overflowing/underflowing? Are DMA errors
being generated?

Find ways to increase repeatability. Although not
always possible, increasing the frequency with
which a problem occurs enhances the chance of

 a

Blackfin® Processor Troubleshooting Tips Using VisualDSP++® Tools (EE-307) Page 8 of 11

fixing the problem. Increasing repeatability could
mean increasing or shortening loop iterations,
changing the core voltage, adjusting the core
and/or system frequencies, etc. It should be noted
that only one variable should be changed at a
time. If the modified variable has no effect on the
bug, leave the variable as it was before a new
modification is made.

Use software breakpoints to observe processor
state prior to the triggering of the fault. If the
failure stops occurring when software
breakpoints are inserted, then either use
embedded or, ultimately, hardware breakpoints.

If hardware errors/exceptions are generated, find
the respective causes from the sequencer status
register and check the tables in Appendix A to
see what might have generated those events.

Trap the events in the respective exception
handlers by using embedded breakpoints or
hardware breakpoints.

Use the Trace window to observe processor
transitions prior to the occurrence of the
problem.

Save all registers for post analysis by choosing
Register->Save Registers in VisualDSP++,
as shown in Figure 8.

Figure 8. Save Registers Feature

If, after the steps described above, the fault
cannot be corrected, having the knowledge of the
sequence of events that triggers the unexpected
behavior should allow for a small test case to be
generated. Once a test case is available,
summarize your findings for the embedded
processor support team and include the test case.
This will allow for rapid reproduction of the
issue, which will ultimately help get the issue
resolved.

 a

Blackfin® Processor Troubleshooting Tips Using VisualDSP++® Tools (EE-307) Page 9 of 11

Appendix A

Table 1. Events that Cause Exceptions

Exception EXCAUS
E [5:0]

Type:
Error (E)
Service
(S)

Notes/Examples

Force Exception
instruction EXCPT
with 4-bit m field

m field S Instruction provides 4 bits of EXCAUSE.

Single step 0x10 S When the processor is in single step mode, every instruction generates
an exception. Primarily used for debugging.

Exception caused by a
trace buffer full
condition

0x11 S The processor takes this exception when the trace buffer overflows
(only when enabled by the Trace Unit Control register).

Undefined instruction 0x21 E May be used to emulate instructions that are not defined for a particular
processor implementation.

Illegal instruction
combination

0x22 E See section for multi-issue rules in the ADSP-BF53x/BF56x Blackfin
Processor Programming Reference.

Data access CPLB
protection violation

0x23 E Attempted read or write to Supervisor resource, or illegal data memory
access. Supervisor resources are registers and instructions that are
reserved for Supervisor use: Supervisor only registers, all MMRs, and
Supervisor only instructions. (A simultaneous, dual access to two
MMRs using the data address generators generates this type of
exception.) In addition, this entry is used to signal a protection
violation caused by disallowed memory access, and it is defined by the
Memory Management Unit (MMU) cacheability protection lookaside
buffer (CPLB).

Data access mis-
aligned address
violation

0x24 E Attempted misaligned data memory or data cache access.

Unrecoverable event 0x25 E For example, an exception generated while processing a previous
exception.

Data access CPLB
miss

0x26 E Used by the MMU to signal a CPLB miss on a data access.

Data access multiple
CPLB hits

0x27 E More than one CPLB entry matches data fetch address.

Exception caused by an
emulation watch-point
match

0x28 E There is a watchpoint match, and one of the EMUSW bits in the
Watchpoint Instruction Address Control (WPIACTL) register is set.

 a

Blackfin® Processor Troubleshooting Tips Using VisualDSP++® Tools (EE-307) Page 10 of 11

Instruction fetch
misaligned address
violation

0x2A E Attempted misaligned instruction cache fetch. On a misaligned
instruction fetch exception, the return address provided in RETX is the
destination address which is misaligned, rather than the address of the
offending instruction. For example, if an indirect branch to a
misaligned address held in P0 is attempted, the return address in RETX
is equal to P0, rather than to the address of the branch instruction.
(Note this exception can never be generated from PC-relative branches,
only from indirect branches.)

Instruction fetch CPLB
protection violation

0x2B E Illegal instruction fetch access (memory protection violation).

Instruction fetch CPLB
miss

0x2C E CPLB miss on an instruction fetch.

Instruction fetch
multiple CPLB hits

0x2D E More than one CPLB entry matches instruction fetch address.

Illegal use of
supervisor resource

0x2E E Attempted to use a Supervisor register or instruction from User mode.
Supervisor resources are registers and instructions that are reserved for
Supervisor use: Supervisor only registers, all MMRs, and Supervisor
only instructions.

Table 2. Hardware Conditions Causing Hardware Error Interrupts

Hardware Condition HWERRCAUS
E(Hexadecimal)

Notes / Examples

System MMR Error 0x02 An error can occur if an invalid System MMR location is accessed, if a
32-bit register is accessed with a 16-bit instruction, or if a 16-bit
register is accessed with a 32-bit instruction.

External Memory
Addressing Error

0x03

Performance Monitor
Overflow

0x12

RAISE 5 instruction 0x18 Software issued a RAISE 5 instruction to invoke the Hardware Error
Interrupt (IVHW).

Reserved All other values.

 a

Blackfin® Processor Troubleshooting Tips Using VisualDSP++® Tools (EE-307) Page 11 of 11

References
[1] ADSP-BF533 Blackfin Booting Process (EE-240). Rev 3. January 2005. Analog Devices, Inc.

[2] ADSP-BF53x/ADSP-BF56x Programming Reference. Rev 1. May 2005. Analog Devices, Inc.

Document History

Revision Description

Rev 1 – December 11, 2006
by J. Manguane

Initial Release.

	Introduction
	Debugging Tips and Tricks
	Emulation vs. Standalone Booting
	Hardware Errors and Software Exceptions
	Using the Trace Buffer
	Using Breakpoints
	Software Breakpoints
	Embedded Breakpoints
	Hardware Breakpoints

	VisualDSP++ Kernel (VDK)
	Cache-Related Issues
	Cache Coherency

	Interrupt-Related Issues

	Summary
	Appendix A
	References
	Document History

