ADSP-BF51x Blackfin® Processor

Hardware Reference

(Includes ADSP-BF512, ADSP-BF514,
ADSP-BF516, ADSP-BF518)

Revision 1.2, February 2013

Part Number
82-100109-01

Analog Devices, Inc.

One Technology Way ANALOG
Norwood, Mass. 02062-9106 DEVICES

Copyright Information

© 2013 Analog Devices, Inc., ALL RIGHTS RESERVED. This docu-
ment may not be reproduced in any form without prior, express written
consent from Analog Devices, Inc.

Printed in the USA.

Disclaimer

Analog Devices, Inc. reserves the right to change this product without
prior notice. Information furnished by Analog Devices is believed to be
accurate and reliable. However, no responsibility is assumed by Analog
Devices for its use; nor for any infringement of patents or other rights of
third parties which may result from its use. No license is granted by impli-
cation or otherwise under the patent rights of Analog Devices, Inc.

Trademark and Service Mark Notice

The Analog Devices logo, Blackfin, CrossCore, EngineerZone, EZ-KIT
Lite, and VisualDSP++ are registered trademarks of Analog Devices, Inc.

All other brand and product names are trademarks or service marks of
their respective owners.

CONTENTS

PREFACE
Purpose of This Manualcccoooiiiiiiiiiiiiiceceee Ixi
Intended AUdiencecuevevieieiiiiiiiiiiee e Ixi
Manual CONTENTS .oeeveeiiiiiiiiiiiiee e e et e e e e e e e e e Ixii
What's New in This Manualccccceeiiiiiiiiiiniiiiiiiiiiceeeee e Ixvi
Technical SUPPOIT ..oooviiiiiiiii Ixvii
Supported Processorscooueieriiieriiiiiiiieeniieeeeee e Ixviii
Product Informationccceeeuieiiiiiiiiie e Ixviii
Analog Devices Web Sitecccoiviiiiiiiiiiiiiiiiiiiccs Ixix
ENgineerZoneccccovviiiiniiiiiiiiiiiic et Ixix
Notation CONVENTIONS ..uuvvvvrreeeeeeriiiiiiieieeeeeessaiiitireeeeeeeesaniinreeeeeeess Ixx
Register Diagram Conventionsccccccovviiiiiiiiiiiiiniiiiiiiiiennenn. Ixxi
INTRODUCTION
Peripheralsoocoiiiiiiiiiiii 1-1
Memory Architectureocooviiiiiiiiiiiiiiei e 1-3
Internal Memoryooooimiiiiiiiiiiiieiiiiiece e 1-5
External Memoryc.eoiiiiiiiiiiiiiiiiieiiiieee e 1-5
ADSP-BF51x Blackfin Processor Hardware Reference iii

Contents

I/0 Memory SPacecoooveuiiiiiiiiiiiiiiiiiiiieeeeeeeeeee e 1-5

One-Time-Programmable (OTP) Memoryc.ccoecuveercuiiennncne 1-6
DMA SUPPOIT ittt 1-7
External Bus Interface Uniteeeeevviiiieeiiiiiiieeiiiiiieeeiieee e 1-8

SDRAM Controller ...cuuvuiiiiieeeiiiiiiiiiieee e 1-8

Asynchronous Controllerccccovviiiniiiiiiiiiniiceee 1-9
General-Purpose I/O (GPIO) ..coooiiiiiiiiiiiiiiiiiiiceiiecceec e, 1-9
Two-Wire Interfacecoocvvvvviiieeeeieiiiiiieee e 1-10
Ethernet MACoiiiiiiiiiii e 1-11
TEEE 1588 SUPPOLT «ervvveeeerereeeereeeeseeeseeeeseeeeseesseeeseeseseeeeseseseee 1-12
RST INEErface .ooeeeveeiiiiiiiieee et 1-13
General-Purpose (GP) COUNterc.eeevuvieniieeniiiiiiieeenieeenieeene 1-13
3-Phase PWM URIT ..vviiiiiiiiiiiiiiiiiieeeee et 1-14
Parallel Peripheral Interfaceccooovviiiiiiiiniiiniiiiiiicees 1-15
SPORT Controllersccouiuuiiiiiniiiiieiiiiieeeeeiieee e 1-17
Serial Peripheral Interface (SPI) Portscoooovveeviveiinieiiniiieniieene 1-19
TIMIELS s 1-19
UART POIES wevvvviiiiiiiiiiiiiiiiiiitiiiieeeeeet e eeeeeeeeeees 1-20
SECULITY weviiiiiiiiiiii e 1-21
Real-Time Clockuuuiiiiiiiiiiiiiiiiee e 1-22
Watchdog TImMer ...ccovveiiiiiiiiiiiiiiicec e 1-23
Clock Signalsccooeviiiiiiiiiiiiiiiiiic e 1-24

iv ADSP-BF51x Blackfin Processor Hardware Reference

Contents

Dynamic Power Managementc.cceevvuiiiiiiiiiiiieiniiieeiiieecen. 1-24
Full-On Mode (Maximum Performance)ccccoovvvvuuenn.... 1-24
Active Mode (Moderate Power Savings)ccoocuveeviuveeniiieennnnee. 1-25
Sleep Mode (High Power Savings)ccccceevvviiniiniiiniienncne. 1-25
Deep Sleep Mode (Maximum Power Savings)cccoeeuveenne. 1-25
Hibernate Stateccceeeiiiiiiiiiiiiiiieiiiiee e 1-26

Instruction Set Descriptioncccccuviiiiiiieiiiiiiiiiiieieeeeeieiieeee, 1-26

Development Toolscccooiiiiiiiiiiiiiiiiicce e 1-27

MEMORY

Memory ArchiteCtureecovuieiiniiiiniiiciniieeeic e 2-1

L1 Instruction SRAM ..o, 2-2

L1 Data SRAM oot 2-3

L1 Data Cache .ooooviiiiiiiiiiiieeice e 2-4

Boot ROM ..ot 2-4

External Memoryccooiiiiiiiiiiiiiiiiiiiice e 2-5

Processor-Specific MMRS ..o..ooiiiiiiiiiiiiiiiciiccccc e 2-5
DMEM_CONTROL Registercccooviiiiiiiiiiiiiiiiiiiiiiineens 2-6
DTEST_COMMAND RegiStercccccceieiiiiiiiiiiniiiiiiiiiieeeens 2-6

ONE-TIME PROGRAMMABLE MEMORY

OTP Memory OVEIVIEW ..cccovviiiiiriiiiieeiiiieeeeeiiieeeeeireee e eireeee e 3-2

OTP Memory Map ...euviiiiiiiiiiiiiiiiiiiiiccceeieeeeeeee e 3-3

Error COrrection ..uu.uiieieiiieiiiiiiiieee ettt eeeees 3-7
Error Correction Policyceeoviiiiiiiiiiiiiiiiiiiiiiccec e 3-8

ADSP-BF51x Blackfin Processor Hardware Reference \

Contents

OTP ACCESS wevvveeiiiiiiiiiiiiiiiiiiteeeeeeeeeee ettt 3-10
OTP Timing Parameterscccccceoviiiiiiiniiiieeiiiiiieeiiiieeees 3-11
OTP_TIMING RegISter ..uevvveeeriiieiiiiiiieeeiiiieeeeiieeeeene 3-14
Callable ROM Functions for OTP ACCESScceeevvviineens 3-14
Initializing OTP .ooociiiiiiiiiiic e 3-14
bfrom_OtpCommandccceerviiiiniiiiniiiiiiiciiec e, 3-15
Programming and Reading OTPcccccoviiiiiiiiiniiinnnn. 3-17
bfrom_OtpReadccovviiiiiiiiiiiiiicc 3-17
bfrom_OtpWIIte .oouvviiviiiiiiiieiiiecec e 3-18

Error Codes ..ooiiiiiiiiiiiiiiiiiiiieeeeeeee e 3-22
Write-Protecting OTP Memoryccoovviiiiiiiiiiiiiiiiiiiieeee, 3-24
Accessing Private OTP Memorycccoovciieeiiniiiiceiniiiieeene 3-26
OTP Programming Examplesccccoooiiiniiiiiiiiii, 3-26

CHIP BUS HIERARCHY

Chip Bus Hierarchy Overviewcccoocviiviiiiniiiiiniiiienicceeecee 4-1
Interface OVErVIEW ..occuviiiiiiiiiiiiieiiiiiie et 4-3
Internal Clocksooiiiiiiiiiiiiiiiiiiei e 4-4
Core Bus OVEIVIEWuuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiaiieieaeaenenesanenenenenes 4-4
Peripheral Access Bus (PAB) ...oooviiiiiiiiiniiiiiiiciicecceee 4-6
PAB Arbitrationceeeeieeiiiiiiiiiiiieeeeeeeeiiiiieeeeee e 4-6

PAB Agents (Masters, Slaves)ccocoveerviiiiniiieniiieiieeee, 4-6

PAB Performanceueeeeeviieieeiiiiiieeeeeiiiiee e eeiieee e 4-7

vi ADSP-BF51x Blackfin Processor Hardware Reference

Contents

DMA Access Bus (DAB), DMA Core Bus (DCB),

DMA External Bus (DEB)oviiiiiiiiiiiiiiicceeeeeeeeee, 4-8
DAB, DCB, and DEB Arbitrationcc.ccccceeerviiiieierniiieeenn. 4-8
DAB Bus Agents (Masters)ccccoeevuiiiiiieiiiieiniiieiiiieeenen, 4-9
DAB, DCB, and DEB Performancecceeeeeueeeeeuaeeennnee. 4-10
External Access Bus (EAB) ooovvuiiiiiiiiiiiiieeeeeeee e 4-11
Arbitration of the External Buscccoceeiiiiiiiiiii, 4-11
DEB/EAB Performanceccoocceveeeiiiiieeeiiiiiieeeiiiieeeesiieeee. 4-11
SYSTEM INTERRUPTS
Specific Information for the ADSP-BF51x ..oocvviiiiiiiniiiiiiiciieens 5-1
OVEIVIEW ..tiiiiiiiiiiiiiiiiii et e e 5-2
Featurescoooiiiiiiiiiiiiiiii 5-2
Description of OPerationcoccueeeriuieeriieeinieeeniieenieee e eneeens 5-2
Events and Sequencingccccooviiiiiiiiiiiiiiiiiiiie 5-2
System Peripheral Interruptsc.ccccoeviiiriiiiiiiiiiiniiiiiccnees 5-4
Programming Modelcccooiiiiiiiiiiiiiii 5-7
System Interrupt Initializationccccccceviiiiiiiiniiiiinnniecen, 5-8
System Interrupt Processing Summarycccceeviiiiiiiiiiiinn. 5-8
System Interrupt Controller Registersccoccvveeviiieniieeniieennnee. 5-10
System Interrupt Assignment (SIC_IAR) Register 5-11
System Interrupt Mask (SIC_IMASK) Registercccceeeeneee. 5-12
System Interrupt Status (SIC_ISR) Registerccccceveevnnnneeen. 5-12
System Interrupt Wakeup-Enable (SIC_IWR) Register 5-12

ADSP-BF51x Blackfin Processor Hardware Reference

vii

Contents

Programming Examplesccccoiiiiiiiiiiiiiii 5-13
Clearing Interrupt ReqUestscceeeevviiiniiiiniiiieniiiciieceieenne 5-13
Unique Information for the ADSP-BF51x Processorccccue.... 5-16
INEEIFACES toiuiviiieeiiiiiie ettt 5-16
System Peripheral Interruptsccccooovviiviiiiniiiniiiiiiicieee 5-19
DIRECT MEMORY ACCESS

Specific Information for the ADSP-BF51xcooviiiiniiiiiniiiiiiecnne 6-1
Overview and Featuresoccuvveiiiiiiiiiiiiiiiiiiceeeeeeeiiieceee e 6-2
DMA Controller OVerviewceeeeeeeiiiciiiiiiieeeeeeniiiiiieeeeeeeeennnes 6-4
External Interfacescccceeiiviiieiiiiiiiiieiiiiiiceeeiece e 6-4
Internal Interfacescoocveeeeiiiiiiiiiiiiiee e 6-4
Peripheral DMAot 6-5
Memory DMA ... 6-6
Handshaked Memory DMA (HMDMA) Mode 6-8
Modes of OPerationcoccueeerieieniieiiiiieeiee e 6-9
Register-Based DMA Operationccceeeveeenieeeniineeniieennneenn. 6-9
Stop Mode oot 6-11
Autobuffer Modeoooiviieiiiiiiiiiiiiieeeeeeee e 6-11
Two-Dimensional DMA Operationccccceeevvieeinieeeniecennnn 6-11
Examples of Two-Dimensional DMAccccceoiiiiinniennne. 6-12
Descriptor-Based DMA Operationccccccevevieriiiennneeennnen. 6-13
Descriptor List Modeccoooiiiiniiiiiniiiiiiiceiiccicc e 6-14
Descriptor Array Modecceeeeiiiniiiiiiiniiiiieiiiiicceieecce 6-15

viii ADSP-BF51x Blackfin Processor Hardware Reference

Contents

Variable Descriptor Sizeccoocviiiiniiiiiinniiiiieiniieceee 6-15
Mixing Flow Modesccccoviiiiimiiiiniiiiiiiiienieeeneeceees 6-16
Functional Descriptionccecevvueeeriieeniiieniiee e 6-17
DMA Operation FIowccocooiiiiiiiiiiiiiiiiiiiciecceeen 6-17
DMA SEartup ..ooceveeeiiiiiiiiiiiiiee e 6-17
DMA Refresh .oocoviiiiiiiiiiii e 6-22
Work Unit Transitionsccceeeeeeeeeieeeeeniieeeeeniiieeeesiiieeeeenns 6-24
DMA Transmit and MDMA Sourceccccvvvvvveeeeenennnnnne. 6-25
DMA RECEIVE evvviiiiiiiiiiiiiiiiiiieeee et 6-26
Stopping DMA Transferscccccovviviiieniiiiiiiiiieniienieeee. 6-28
DMA Errors (ADOIts) ooveeeeiiiiiieeiiiiieeeeeeeee e 6-29
DMA Control Commandscceeeeeeriuiiiieiniiiieeiiiiieeeeiieenn 6-31
RESTIICTIONS ..ttt 6-34
Transmit Restart or Finish ... 6-34
Receive Restart or Finishooooiiiiii, 6-35
Handshaked Memory DMA Operationccccceeeviveenieeennnen. 6-36
Pipelining DMA Requestscoccuveeviiieniiieeniiieciieeeieeene 6-37
HMDMA INEEITUPES weeevuiiiiieiiiiiiieeniiieee e 6-40
DMA Performanceooccveeeeeiiiuiieeeeniiiieeeeiieeeeeeiieee e e 6-40
DMA Throughputccccceiiiiiiniiiiiiiiiciceceece, 6-42
Memory DMA Timing Detailscoooviiiiiiiiniiiiniiiiniees 6-44
Static Channel Prioritizationccccceevvciieeeiniieeeeeninenn. 6-44
Temporary DMA Urgencyccccoveuveeviiienniiiceniiiieneeeenee. 6-45

ADSP-BF51x Blackfin Processor Hardware Reference

X

Contents

Memory DMA Priority and Schedulingccccocceeiinin. 6-46
Traffic Controlc.eoeiiiiiiiiiiiic e 6-48
Programming Modelcccoiiiiiiiiiiiiiii 6-50
Synchronization of Software and DMAccccooiiiiiiiinnnnenn. 6-50
Single-Buffer DMA Transfersccccoceevviiiiniiiiniiiennieennne. 6-53
Continuous Transfers Using Autobufferingccoceeenee. 6-53
Descriptor STrUCTUIES ...vveeiriiriieeriiiiieeeeiiieee e 6-55
Descriptor Queue Managementccoeeeuiiiiiiiiiiiiinnnn. 6-56
Descriptor Queue Using Interrupts on Every Descriptor 6-57
Descriptor Queue Using Minimal Interrupts 6-58
Software Triggered Descriptor Fetchesccccociiiniiiennne. 6-60

DMA REGISTELS .uuiiiiiiiiiiiiiiiiiiiiiiiie et 6-62
DMA Channel RegiSterscoceeviiiniiiiiiiiiiiiieniieniccae 6-63

DMA Peripheral Map Registers
(DMAx_PERIPHERAL_MAP/
MDMA_yy_PERIPHERAL _MAP) ...ccccovviiiiiiiiiiiieenne 6-66

DMA Configuration Registers
(DMAx_CONFIG/MDMA_yy_CONFIG)c.cee....e. 6-67

DMA Interrupt Status Registers
(DMAx_IRQ_STATUS/MDMA _yy_IRQ_STATUS) 6-71

DMA Start Address Registers
(DMAx_START_ADDR/MDMA _yy_START_ADDR) . 6-74

DMA Current Address Registers
(DMAX_CURR_ADDR/MDMA_yy_CURR_ADDR) ... 6-74

DMA Inner Loop Count Registers
(DMAx_X_COUNT/MDMA_yy_X_COUNT) 6-75

X ADSP-BF51x Blackfin Processor Hardware Reference

Contents

DMA Current Inner Loop Count Registers
(DMAx_CURR_X_COUNT

/IMDMA_yy_CURR_X_COUNT) ..ccooviiiiiiiiiieeenineen. 6-76
DMA Inner Loop Address Increment Registers

(DMAx_X_MODIFY/MDMA_yy_X_MODIFY) 6-77
DMA Outer Loop Count Registers

(DMAx_Y_COUNT/MDMA _yy_Y_COUNT) 6-78

DMA Current Outer Loop Count Registers
(DMAx_CURR_Y_COUNT/
MDMA _yy_CURR_Y_COUNT) ..cceeiiriiiiiiiiiiieeene 6-78

DMA Outer Loop Address Increment Registers
(DMAX_Y_MODIFY/MDMA_yy_Y_MODIFY) 6-79

DMA Next Descriptor Pointer Registers
(DMAx_NEXT_DESC_PTR/
MDMA_yy_NEXT_DESC_PTR) ...cccceviiiiiiiiiiiiiinnn. 6-80

DMA Current Descriptor Pointer Registers
(DMAx_CURR_DESC_PTR/

MDMA_yy_CURR_DESC_PTR) 6-81
HMDMA RegiSterscccouviiiiiiiiiiiiiiiiiiiiiiiicccniiieee s, 6-82

Handshake MDMA Control Registers

(HMDMAx_CONTROL) .ooviiiiiiiiiieiieeeeieeeeiee e, 6-82
Handshake MDMA Initial Block Count Registers

(HMDMAX_BCINIT) oo, 6-84
Handshake MDMA Current Block Count Registers

(HMDMAX_BCOUNT) oot 6-85
Handshake MDMA Current Edge Count Registers

(HMDMAX_ECOUNT) eiiiiiieeeeiieee e 6-86
Handshake MDMA Initial Edge Count Registers

(HMDMAX_ECINIT) oot 6-87

ADSP-BF51x Blackfin Processor Hardware Reference x1

Contents

Handshake MDMA Edge Count Urgent Registers

(HMDMAx_ECURGENT) ..cociiiiiiiiiiiniiiniceiceieceen 6-87

Handshake MDMA Edge Count Overflow Interrupt
Registers (HMDMAx_ECOVERFLOW)cccccocuvevniennn. 6-88

DMA Traffic Control Registers
(DMA_TC_PER and DMA_TC_CNT) .ccovviiviieiiiiieeeenne 6-88
DMA_TC_PER Registercccccviiiiiiiiiiiiiiiiiiiiiiiiens 6-89
DMA_TC_CNT Registercccoccuviiiiiiiiiiiiniiiiceiieeeen. 6-89
Programming Examplesccocoveiiiiiiiiiiiiniiicceceec 6-91
Register-Based 2-D Memory DMA ... 6-91
Initializing Descriptors in Memoryccccceeeviiiiniiieenieeennnen. 6-94
Software-Triggered Descriptor Fetch Example 6-97
Handshaked Memory DMA Examplecccooveiniiiiiniecnnnn. 6-100
Unique Information for the ADSP-BF51x Processor 6-103
DMA Control Commandscccceeeiiiiiiiiiiniiiiniiiiieeens 6-103
Static Channel Prioritizationcccceeeviiiiiieniiieniiienicenens 6-103
EXTERNAL BUS INTERFACE UNIT

EBIU OVEIVIEW ..euviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiittteeeeeeieeseieeeeeenenenenenenes 7-1
Block DIagramcocceeoviiiiiiiiiiiiicicceccee e 7-4
Internal Memory Interfacescccooviiiiniiiiiniiiinniicinieceeene 7-4
ReEGISTErS ..uvviiiiiiiiiiiiiiiiiii 7-5
Shared and Multiplexed Pinsccccovciiiriiiiiniiiiniiiiiiiceeee 7-6
System Clock o.viiiiiiiiiiiiiic e 7-7
Error Detectionccoooiiiiiiiiiiiiiiiiiiiiiiiiiiiiin 7-7

xii ADSP-BF51x Blackfin Processor Hardware Reference

Contents

AMC Overview and Featurescccccevviiiiiiiniiiiiiiniiiicciniieceee 7-7
Featurescooiiiiiiiiiiiiiiiii 7-8
Asynchronous Memory Interfaceccocveeviiiiiniiiiniicenniecns 7-8

Asynchronous Memory Address Decodec.coovviiiniieennee. 7-9

AMC Pin Descriptioncccooviiiiiiiiiiiiiiiiiiiiiiiieeeee e 7-9

AMC Description of Operationcceecveeerueeeniiieeniieennieennneens 7-10
Avoiding Bus Contentioncccccoeeeviiiiiiiiiniiniiiiieiieccnen, 7-10

External Access EXtensionccccceeevviiieeiiniiieienniieeen, 7-11

AMC Functional Descriptionccccevcuvieriiieniiiciniieeniecenieeene 7-11

Programmable Timing Characteristicscccceeeviiiiriiiennnnnn. 7-11
Asynchronous Readsccooceeeviiiiniiiiiiiiiicec, 7-12
Asynchronous WIItescoovveeirieeeniiieiniiieiieceneee e 7-13
Adding External Access Extensionccccocciiviiiiiinienn 7-15

Byte Enablesoooiiiiiiiiii 7-15

AMC Programming Modelc.ccoooiiiniiiiiiiiiiiie 7-17

AMOC REGISTEIS ..evviiiiiiiiiiiiiiiiiic i 7-19
EBIU_AMGCTL RegIStercccccuvriiiiiiiiiiiiiiiieeeiiieee e 7-20
EBIU_AMBCTLO and EBIU_AMBCTLI Registers 7-20

AMC Programming Examplescccocoiiiiiiiiiiiii 7-23

SDC Overview and Featuresooccveeeiriiiiieiiiiiiieeiniiiee e 7-24
Featurescoooviiiiiiiiiiiiiii 7-24
SDRAM Configurations Supportedccccceevciiiiiiiiiiniennnn. 7-25
SDRAM External Bank Sizecceveeiiiiiiiiiiiiiiiiiiie, 7-26
SDC Address Mappingcoocueeeruieenniieeniieeniieeniiee e 7-26

ADSP-BF51x Blackfin Processor Hardware Reference

X111

Contents

Internal SDRAM Bank Selectcoovviiiiiviiiiieiiiiiiieiiiieeeene 7-28
Parallel Connection of SDRAMS ...ccvvviiiiiiieiiiiiiiiiiieeeee e, 7-28
SDC Interface OVErVIEW ..oc.vvviieviiiiieeiiiiiieeeiiiiee e e 7-28
SDC Pin Descriptioneeeeieeiiiiiiiiiiiiieeeiiiiiiiiieeeeeeeeneinns 7-29
SDRAM Performanceeeeeeeeeeeeiuiiiieeeeeeeeesiiiiiieeeeeeeseneens 7-30
SDC Description of Operationcoccueeervuveerneeeenieeeniueeenseeenns 7-31
Definition of SDRAM Architecture Termsccceeeeviveeeeenne 7-31
Refresh ..ovvvieiiiieee e 7-31
ROW ACTVATION .evvtiiiiiiiiiiiiiiiiiiiiiiieiieiiteieeeeeeeee e 7-31
Column Read/Writeccceeiiiiiiiiiiiiiiiiiiiiiiieeeeeeee 7-31
Row Prechargecoovviiiiiiiiiiiiiiiicc e, 7-31
Internal Bankccooiiiiiiiiiii 7-32
External Bankc.ccooiiiiiiiiiiiiiiiiiiieeeee e 7-32
Memory Sizecoooioiiiiiiiiiiiii 7-32
Burst Length ...ooooiiiiiiiii 7-32
Burst TYPe woveeeiiiiiiiiicccee 7-32
CAS Latencyoocccviiiiiiiiiiiiiiiiiiici 7-33
Data [/O Mask Functioncccooouiiiiiniiiiieiniiieeiiiieeeee 7-33
SDRAM Commandsccceoviiiiiiiieiieiiniiiiiiiieeee e e 7-33
Mode Register Set (MRS) Commandccccceevviiinnnnennne. 7-33
Extended Mode Register Set (EMRS) Command 7-33
Bank Activate Commandccceovuiviieeniiiiieeiiieee e, 7-33
Read/Write Commandcooouviviiireeeiiiiiiiiieeeee e 7-34
Precharge/Precharge All Commandccooceviiiiiiniienne. 7-34

X1V

ADSP-BF51x Blackfin Processor Hardware Reference

Contents

Auto-Refresh commandccccooviiiiiiiiiiii, 7-34
Enter Self-Refresh Modeccocouviiiiiiiiiiiiiiiiiiiiee 7-34
Exit Self-Refresh Modeccccociiiiiiiiiiiiiiiiiiiiiiie, 7-34
SDC Timing SPecscccocuiiiiiiiiiiiiiiiiiiiii i, 7-35
EDVIRID -+vvveersrrmmeeeesmmmmmeesammnneesaamneeeesannneeessananeeessannneeeesannens 7-35
TRAS +eeeerenmmmmmmmeeeeeeenmmmmnmunneeeeeseenaauutsreteeeeseasannrnreeeeeeesannnns 7-35
L e 7-36
ERCID) -+vvvreeeermmmmeeesmmmmneeesaninneeeeasnreeeesennneeesssaneeeeennnaeeeesannee 7-36
TRRID cveeeeerrensmmmmmmmeeeeeemmmmmmunnneteeeeesannnnnreeeeeeessannnnnneereeeeens 7-36
12074 - S 7-37
1900 AT 7-37

19 o T 7-37
EREQ ++eveveeeeesmmmeeeeaimuntee s et eeseetas e e s s ebae e e e s s iaa e e e s e naaeee s e 7-38
DYUGR +vveeeeeessemmmmmnneteeeeesaanrtsateteeeeesesintaaaaeeeeeeesesinaaaeareeeeens 7-38
TRER «eeeeeeeeeseammmmnmeeeeeeemmmmmmunneeteeeeesanntaanreeeeeessannnnnneeeeeeeens 7-38
1900 01) (T 7-39
SDC Functional Descriptionccueeeeeniiieierniiieeeiniiieeeeeniieeee. 7-39
SDC Operationccoiiiiiiiiiiiiiiiiiiiiiiiiicc e 7-39
SDC Address MUXINGcccviiiiiiiiiiiiiiiiieiiiieciieeccieeeee 7-42
Multibank Operationcocceiviiiiiiiiiiiiiiiiiceceee 7-43
Core and DMA Arbitrationccoocvveeeiniiieeiiniiiieeeneen, 7-44
Changing System Clock During Runtimecccceeveienee. 7-45
Changing Power Management During Runtime 7-46

ADSP-BF51x Blackfin Processor Hardware Reference XV

Contents

Deep Sleep Modeeeeeiiiiiiiiiniiiiiiiiiiiiceeiec e 7-46
Hibernate Statecoovvviiiiiiiiiieieeiiieeeee e 7-46
SDC Commandscceevruirieeiniiiieeiiiiiieeesiiieeeeesiieee e eiieee e 7-47
Mode Register Set Commandccccoeoiiiiiiiiniiiininn. 7-48
Extended Mode Register Set Command
(Mobile SDRAM) ..ooviiiiiieee e 7-49
Bank Activation Commandcceeeiiiiiiiiiiieeeininniinee, 7-50
Read/Write Commandcooocuviiiiireeeiiiiiiiiiiee e 7-50
Partial WIITe oovvveiiiiiiiieeeiiiiee e 7-51
Single Precharge Commandcccccoviiiiiiiiiiniiinin, 7-52
Precharge All Commandccocceeiiiiiiiiiiiiiiiccee 7-52
Auto-Refresh Commandccooovviiiiiiiiiiiiniiiiiiiiiieeee, 7-52
Self-Refresh Modeoooviiiiiiiiiiiiiiiiiiiieceeee e 7-53
Self-Refresh Entry Commandcccceeeviiiiniieennnee. 7-53
Self-Refresh Exit Commandccccooiiiiiiiiiiiiiinnne. 7-53
No Operation Commandcceovviiiiiimniiieeinniiiieeeneee. 7-54
SDC SATO PNl coiiiiiieeeiiiie ettt e e e eeraee e 7-55
SDC Programming Modelcccooiiiiiiiiiniiiiniiiiiceeceece 7-55
SDC Configurationccoceeevvievieriiieniienieeiie e 7-55
Example SDRAM System Block Diagramsccocceveevneeennn. 7-57
SDC Register Definitionscocceeeerieieniieeniieiiiiecenieeesieeesieeens 7-59
EBIU_SDRRC Registercccccceiiiiiiiiiiiiiiiiiiiiiiiiinceiinen, 7-60
EBIU_SDBCTL Registerc.ccceeiiiviiiiiiiiiiiiieiiiiiieciiieeeees 7-62
Using SDRAMs With Systems Smaller Than 16M Byte 7-64

XVi ADSP-BF51x Blackfin Processor Hardware Reference

Contents

EBIU_SDGCTL RegiStercccooviiiiiiiiiiiiiiiiiiiiiiiiieecciineen, 7-66
SDRAM Clock Enable (SCTLE) ..ccooviiiiiiiiiiiiiiieeeeeeeeeeee, 7-66
CAS Latency (CL) oeeovoiiiiiiiiiieeiiieiec e 7-68
Partial Array Self Refresh (PASR) ..occovviviiiiniiiiiiiiiiice 7-69
Bank Activate Command Delay (TRAS)ccccovvviiiinnnnnn. 7-69
Bank Precharge Delay (TRP) ..cocveeiiiiiiniiiiiiiciieceiece, 7-70
RAS to CAS Delay (TRCD)ovviiiiiiiiiiiiiiicciniiecceeee, 7-70
Write to Precharge Delay (TWR) .ooooiiiiiiiiiiiiiiiice. 7-71
Power-Up Start Delay (PUPSD) ..coociviiiiiiiiiiiiniiieieee, 7-71
Power-Up Sequence Mode (PSM)ooeiviiiiiiiiniiiiccininnen. 7-71
Power-Up Sequence Start Enable (PSSE)ccccoociieniiennn 7-72
Self-Refresh Setting (SRES) ...oooiiiiiiiiiiiiiiiciec 7-73

Enter Self-Refresh Modeccoovcuiiiiiiiiiiiiiiiiiieeie, 7-73

Exit Self-Refresh Modecoovvvviiiiiieiiiiiiiiiieeeeeee, 7-74

External Buffering Enabled (EBUFE)c.cccciiiiiiiiniicns 7-74

Fast Back-to-Back Read to Write (FBBRW)coevvvvuenenennnn. 7-75

Extended Mode Register Enabled (EMREN)cc.c.c.... 7-75

Temperature Compensated Self-Refresh (TCSR) 7-75

EBIU_SDSTAT Registerccoovvuiiiiiiiiiiiiiiiiiiiiiiiiiiecccieeen, 7-76

SDC Programming Examplesccoocvieriiiiniiiiiniiiiniiciieceee. 7-77
ADSP-BF51x Blackfin Processor Hardware Reference xvii

Contents

DYNAMIC POWER MANAGEMENT

Phase Locked Loop and Clock Controlcccccveiviiiiiniiiinineenne. 8-1
PLL OVEIVIEW .ieiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieee e 8-2
PLL Clock Multiplier Ratiosc.cccceeimiiiiieinniiiicinniiiecene 8-3

Core Clock/System Clock Ratio Controlcccceeevieeennee. 8-5

Dynamic Power Management Controllercccceeeviiiiniiiinnienne. 8-7
Operating Modesoocoiiiiiiiiiiiiiiiiiiiiiieccce 8-7
Dynamic Power Management Controller Statesc.cccoueeeen. 8-8

Full-On Mode ...ooooiiiiiiiiiiiiiiiccceceec e 8-8
Active Mode ...ovviiiiiiiiiiiiii e 8-8
Sleep Mode eviiiiiiiiiiiiii e 8-9
Deep Sleep Mode ...oooviiiiiiiiiiiiiiniicciieceeceee e 8-9
Hibernate Statecocoooiiiiiiiiiiiiiii 8-10
Operating Mode Transitionsccceceeevvveeriiiennieeiniieeenieeens 8-10
Programming Operating Mode Transitionsc.cccccevveeennnnee. 8-13
Dynamic Supply Voltage Controlccccovciiiiiiiiniiinnn. 8-15
Power Supply Managementccccceeeviiiiiniiieniiicinieeennneens 8-15
Changing Voltageccccooviiiiiiiiiiiiiiniiccceeceece 8-16
Powering Down the Core (Hibernate State)c.ccoceeeniene 8-17

PLL and VR Re@IStersccccueiiiiiiiniiiiiiiiiiiieceiic e 8-19
PLL_DIV RegIStercoiiimiieiaieennes 8-21
PLL_CTL ReISTer ...ccovuviiiiiiiiiiiiiiiiiiiiiiiiiiiice e 8-21
PLL_STAT Re@ISTEr .ccecuviiiiiiiiiiiiiiiiiiiee e 8-22

xXviil ADSP-BF51x Blackfin Processor Hardware Reference

Contents

PLL_LOCKCNT RegiSterccccuviiiiiiiiiiiiiiiiiiiiiiiineciiieeen. 8-22
VR_CTL ReGISTEr ..eeeiiiiiiiiiiiiiiiiiiiiiiicceeiee e 8-23
System Control ROM Functioncccecuvieriiiiiniiciniiienieceee. 8-24
Programming Modelccccoiiiiiiiiiii 8-26
Accessing the System Control ROM Function in C/C++ 8-26
Accessing the System Control ROM Function in Assembly 8-27
Programming Examplescccoccciiiiiiiiiiiiiiii, 8-30
Full-on Mode to Active Mode and Backcccooviiiiiinnninen. 8-32
Transition to Sleep Mode or Deep Sleep Modeccceeennnenn. 8-33
Set Wakeups and Entering Hibernate Statecccccoevvienninne 8-35
Perform a System Reset or Soft-Resetccccovvvierniiiininiannnen. 8-38

In Full-on Mode, Change VCO Frequency, Core Clock
Frequency, and System Clock Frequencycccocoeeniieennee. 8-39
Changing Voltage Levelsc.ccccovviiiniiiiniiiiiiiiiiccniceee, 8-42

GENERAL-PURPOSE PORTS

OVEIVIEW ..eiiiiiiiiiiiiiiiiiiii et 9-1
FEatUIES ...uuiiiiiiiiiiiiiiiiiii e 9-2
Interface OVEIrVIEWcooiiuiiiiiiiiiiiiiiiiiitee e 9-3
External Interfaceccocoiiiiiiiiiiiiiiiiii, 9-4
Port F Structurecccoooiiiiiiiiiiiii 9-4
Port G StrUCTUIE ...evvviiiiiiiiiiiiiiiiiii e 9-5
Port H Structureccccoiiiiiiiiiiiiiii 9-6
Input Tap Considerationscccceeevvvieiienniiiecinniiieeeneeeee. 9-7

ADSP-BF51x Blackfin Processor Hardware Reference

XiX

Contents

PWM Unit Considerationseeeeeeeerrniiiireeeeeeeenennnnnenne. 9-8

RST Considerationseeeeeeecueririeeeeeeeesiiiiieeeeeeeeeenneeeeees 9-9

Internal Interfacesocooeeeiiiiiiiiiiiiiiieiiiee e 9-10

SPIO and Internal Flash Usagec.cccocoiiiiiiiinninn. 9-10

GP Timer Interaction With Other Blockscccevnnnnnee. 9-11

Buffered CLKIN (CLKBUF)cooiiiiiiiiieiiiiieeeiiieeeee 9-11

GP COUNLET et 9-11

PPl e 9-12

UART e 9-12

SPORT e 9-12

Performance/Throughputcoccceiiiiiiiiii 9-13

Description of OPerationceeeveeeenieeenieeeniieeniieesieeenieens 9-13

OPErationeuiiiiiiiiiiiiiiiiiiiiiieee e 9-14

General-Purpose I/O Modulesccccoeeeviiiiniiiiiniiiiniiiininene 9-14

GPIO Interrupt Processingcccccuviviiiiiiiiiiiiiiiiiiiiieeninnns 9-18

Programming Modelc.ccoooiiiiiiiiii 9-24

Memory-Mapped GPIO RegiSterscccceeevvviernieeiniieeniiieenieeenns 9-26
PORTx Hysteresis Control (PORTx_HYSTERESIS)

Re@ister ...c.uuiiiiiiiiiiiiii 9-26
Non-GPIO Drive Strength Control Registercccccecueeennee 9-28
Non-GPIO Hysteresis (NONGPIO_HYSTERESIS)

Re@ister ...cuvviiiiiiiiiiiii 9-29
Port Multiplexer Control Register (PORTF_MUX) 9-30
Port Multiplexer Control Register (PORTG_MUX) 9-31
Port Multiplexer Control Register (PORTH_MUX) 9-32

XX ADSP-BF51x Blackfin Processor Hardware Reference

Contents

Function Enable Registers (PORTx_FER)ccccccciiiiiinnnn. 9-32
GPIO Direction Registers (PORTXIO_DIR)ccccceeeinnnnen. 9-33
GPIO Input Enable Registers (PORTXIO_INEN)c....... 9-33
GPIO Data Registers (PORTXIO) ...cocoviiiiiiiiiiiiiiiiiiiiiien. 9-34
GPIO Set Registers (PORTXIO_SET)ccoooviiiiiiiiiiiiiiinen. 9-34
GPIO Clear Registers (PORTXIO_CLEAR)ccoocvvveriiiennnee. 9-35
GPIO Toggle Registers (PORTXxIO_TOGGLE)cccoccue. 9-35
GPIO Polarity Registers (PORTXIO_POLAR)ccccovvveennnee. 9-36
Interrupt Sensitivity Registers (PORTxIO_EDGE) 9-36
GPIO Set on Both Edges Registers (PORTxIO_BOTH) 9-37
GPIO Mask Interrupt Registers (PORTxIO_MASKA/B) 9-37
GPIO Mask Interrupt Set Registers
(PORTXIO_MASKA/B_SET) tiiiiiiiiieeeiiiiee e 9-39
GPIO Mask Interrupt Clear Registers
(PORTXIO_MASKA/B_CLEAR) ...otvviiiiiiiieiiiiiieeeeiieeeeae 9-41
GPIO Mask Interrupt Toggle Registers
(PORTXxIO_MASKA/B_TOGGLE) ...ccoviiiiiiiieeeeeeee, 9-43
Programming Examplesccccoooiiiiiiiiiniiiiniicecccc 9-44
GENERAL-PURPOSE TIMERS
Specific Information for the ADSP-BF51x .ooooviiiiiiiiniiiiiiiccee. 10-1
OVEIVIEW ittt ettt ettt e e e e e e et et e e e 10-2
External Interfacecooovviiiiiiiiiiiiiiiiiiieeccc e 10-4
Internal Interfacec.eeeeeviiiiiiiiiiiiiie e, 10-4

ADSP-BF51x Blackfin Processor Hardware Reference xXX1

Contents

Description of Operationcceeeeeeeeinieeeniieeeniieeniieesiiee e 10-5
Interrupt Processingcccceviiiiiiiiiiiiiiiiiiiiiii 10-6
Illegal STatesccccveieriiiiiiiiiiicec e 10-8

Modes of OPerationcoocueeeriuieeriiiieeiiieeniee e 10-11
Pulse Width Modulation (PWM_OUT) Mode 10-11

Output Pad Disablec.cooviiiiniiiiniiiiiiiiceee 10-13
Single Pulse Generationcccccoviiiiiiiiiiniiiiniiiiinn, 10-13
Pulse Width Modulation Waveform Generation 10-14
PULSE_HI Toggle Modecoocvviimiiiiniiiiiiiiniieciieene 10-16
Externally Clocked PWM_OUTccccoviiiiiiiiiiiiiiinieeens 10-20
Using PWM_OUT Mode With the PPIcccccocveennneens 10-21
Stopping the Timer in PWM_OUT Modeccccvvernneenne 10-22
Pulse Width Count and Capture (WDTH_CAP) Mode 10-24
Autobaud Modeoeviiiiiiiiiiiiiiiie e 10-32
External Event (EXT_CLK) Modeoovvvvueeeeeeiiiiiiiiiiinnnnn. 10-33

Programming Modelccccooiiiiiiiiii 10-34

Timer ReGIStErsceiiiiiiiiiiiiiiiiiiiiiiic e 10-35
Timer Enable Register (TIMER_ENABLE)cccocoeininens 10-36
Timer Disable Register (TIMER_DISABLE) 10-37
Timer Status Register (TIMER_STATUS)cccociiiiinnnn. 10-38
Timer Configuration Register (TIMER_CONFIG) 10-39
Timer Counter Register (TIMER_COUNTER) 10-41
Timer Period (TIMER_PERIOD) and Timer

Width (TIMER_WIDTH) Registersc.cccccevueeinieeennncenn 10-42
SUMMATY i 10-45
xxii ADSP-BF51x Blackfin Processor Hardware Reference

Contents

Programming Examplescccocoiiiiiiiiiiiiiiii 10-48
Unique Information for the ADSP-BF51x Processor 10-57
Interface OVErVIEWeeiiiiiiiiiiiiiiiiiieieiiee et 10-57
External Interfacecoccovieiiniiiiieiiiiiiiieiiiee e 10-57
CORE TIMER
Specific Information for the ADSP-BE51x ..oocovieviiiiiniiiiniiciee. 11-1
Overview and Featurescccceeeviiiiieiiiiiiiieiiiieeeeniiee e 11-2
Timer OVEIVIEW ..oooiiiiiiiiiiiiiiiii e 11-2
External Interfacescooevveiiiiiiiiieiiiiiiiiieeeee e 11-3
Internal Interfacesccoovoiiiiiiiiiiieiiiiiiiieee e, 11-3
Description of OPerationcoccueeeriuieernieeeniieeniiee e eiiee e 11-3
Interrupt Processingcccccvviiiiiiiiiiiiiiiiiinii, 11-4
Core Timer Registerscooviiiiiiiiiiiiiiiiiiiieiiecc e 11-4
Core Timer Control Register (TCNTL)cccceeviiiiiiinnnnn. 11-5
Core Timer Count Register (TCOUNT)ccccoociiiiinnnnnnn. 11-5
Core Timer Period Register (TPERIOD)ccccceeviviiniiiicnnee. 11-6
Core Timer Scale Register (TSCALE)cccocoiiiiiiiiniiinnnn. 11-7
Programming Examplesccccoooiiiiiiiiiniiiiniiieiicee e 11-7
Unique Information for the ADSP-BF51x Processorcc...... 11-9
WATCHDOG TIMER
Specific Information for the ADSP-BF51x .ooooviiiiiiiiniiiiiiiiicee. 12-1
Overview and Featuresceeevviiiiiiiiieeeeeeiiiiiiieeee e 12-2
ADSP-BF51x Blackfin Processor Hardware Reference xxiii

Contents

Interface OVErVIEW ..ccccvviiiiiiiiiiiiieiiiiee et 12-3
External Interfacecoocoouviiiiiiiiiiiiiiiiieee e 12-3
Internal Interfaceooccoveiiiiiiiiiiiiiiiie e 12-3

Description of Operationcceeeevueeeinieeeniieeeniiieeniiee e e 12-4

Register DefINitionsc.eeovvuiiiriiiiiiiiieiiiceniecceirec e 12-5
Watchdog Count (WDOG_CNT) Registercccocuveerueeennnn 12-6
Watchdog Status (WDOG_STAT) Registercccceevuvennienne. 12-6
Watchdog Control (WDOG_CTL) Registerccccocvveennnennn. 12-7

Programming Examplesccoooiiiiiiiiiiiiiiniiiiiceceec 12-8

Unique Information for the ADSP-BF51x Processor 12-11

GENERAL-PURPOSE COUNTER

Specific Information for the ADSP-BF51xcoociiiniiiiniiiiniiens 13-1

OVEIVIEW ettt eeeeeeeeennnees 13-2

FEatures ..ooouuumiiiiiiiiiiiiie 13-2

Interface OVErVIEWuuvviiiiieeeeeiiiiiiiiiee e e e e e e e e e e e e e 13-3

Description of OpPerationcceeeeeeeenieeenieeeniieeeniiieesiee e 13-4
Quadrature Encoder Modeccooveiiiiiiiiieieiiicceccceccce 13-5
Binary Encoder Modecccoeeiiiiiiiiiiiiiiiiiiiicneceecee 13-6
Up/Down Counter Modeccovuvieniiiiiiiiiiniiieniieceiee e 13-6
Direction Counter Modecccoiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeee e 13-7
Timed Direction Modecccevvviiiiiieiieiiiiiiiieee e 13-7

Functional Descriptioncccocueeerrieeiniieeniieeniiec s 13-8
Input Noise Filtering (Debouncing)cccceeviiiiiniiinnnnnn 13-8
Zero Marker (Push Button) Operationccocceeevvveeennneennnn. 13-9

Xxiv ADSP-BF51x Blackfin Processor Hardware Reference

Contents

Boundary Comparison Modesccoocuveiiiniiiiiinniiiicennnneee. 13-11
Control and Signaling Eventsccocceeeviiiiniiiniiinneene. 13-12
Illegal Gray/Binary Code Eventsc.cccccovvuvieniiiiiniiicennnee. 13-12
Up/Down Count Eventsccccovviiiiiiiiiiiiiiiiniiinnn. 13-13
Zero-Count EVentscceeviiiiiiiiiiiiiiiie e 13-13
Overflow EVENntsccooveiiiiiiiiiie e 13-13
Boundary Match Eventscccoooiiiniiiiniiiiniiiiicceee 13-14
Zero Marker Eventsccooeeeeeeieiiiiiiieeceeeeeeeeeeeeeeeeeeeeeee, 13-14
Capturing Timing Informationccccceeeviiiiniiieniieenneeens 13-14
Capturing Time Interval Between
Successive Counter Eventscceevviiiiiiieeiiiiiineeeeniennnn. 13-15
Capturing Counter Interval and
CNT_COUNTER Read Timingccccceevvvieniienunennnenn 13-16
Programming Modelccccciiiiiiiiiiiii 13-18
ReGISTErS oottt 13-19
Counter Module Register Overviewccccoevviiviiieniiienne. 13-19
Counter Configuration Register (CNT_CONFIG) 13-20
Counter Interrupt Mask Register (CNT_IMASK) 13-21
Counter Status Register (CNT_STATUS)ccccccovviiiiininnn 13-21
Counter Command Register (CNT_COMMAND) 13-22
Counter Debounce Register (CNT_DEBOUNCE) 13-24
Counter Count Value Register (CNT_COUNTER) 13-25
Counter Boundary Registers
(CNT_MIN and CNT_MAX) ..ovvviiiieeeeiiiiiiiieeee e e 13-26
Programming Examplescccoooiiiiiiiiiiiiiiiiii 13-28
ADSP-BF51x Blackfin Processor Hardware Reference XXV

Contents

Unique Information for the ADSP-BF51x Processor
PWM CONTROLLER

Specific Information for the ADSP-BF51xcoociiiniiiiniiiiiniiens
OVEIVIEW ettt ettt ettt ettt et et e et et et et e e s e eneennes
General Operationccovuiiiiiiniiiiiiiniiiiee e

Functional Descriptionccoceeeviiiiiniiiieniieenieceiee e

Three-Phase PWM Timing Unit and Dead Time Control
UL einti ittt ettt ettt en e

PWM Switching Frequency (PWM_TM) Register
PWM Switching Dead Time (PWM_DT) Register

PWM Operating Mode (PWM_CTRL and PWM_STAT)
RegIStersoiiiiiiiiiiiiiiiiiiii

PWM Duty Cycle (PWM_CHA, PWM_CHB, and
PWM_CHC) RegiSterscccovvviiiiiiiiiiiiiiiiiiiiiccieeee,

Special Consideration for PWM Operation in
Over-Modulation ...ee..eeeee e

Three-Phase PWM Timing Unit Operationc..cccceeeneenne.
Effective PWM ACCUIACY ..ooovuviiiniiieniiieiiiceiee e
Switched Reluctance Modeccceeeviiiiniiiiiniiiiniiciicce,
Output Control Uniteeeevriiiiiiiiiiiiiiiiiiiceiiieceeieeceene
Crossover Featureccccccvviviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeneeee,
Mode Bits (POLARITY and SRMODE)ccccccvvviiinnnnns
Output Enable Functionccccoviiiiiiiiiiiiiiiniici.

Brushless DC Motor (Electronically Commutated Motor)
Control oo,

XXVi ADSP-BF51x Blackfin Processor Hardware Reference

Contents

Gate Drive Uit ..eeeeeeiiiiiiiiiiiiiieceeeeeeieeeee e 14-28
High-Frequency Choppingccccoeviiiniiiiniiiiniiienieenne 14-29
PWM Polarity Controlcccevviiiiniiiiiiiiiiniiciiiccieeee 14-31

Output Control Feature Precedenceccoocoveeiirniiiiiinnnnneee. 14-32

Switched Reluctance (SR) Modeoovvvueeeeeiiiiiiiiiiiiiieeee, 14-32

PWM Sync Operationcccocceeeeerniieeeeniiieeeenieeeeenneees 14-35
Internal PWM SYNC Generationeeeeeeeeevniiivieneeennn. 14-36
External PWM SYNC Generationcccccceeeeeeevinevvenennnnn. 14-36

PWM Shutdown and Interrupt Control Unitcccceevueeeenee. 14-37

PWM ReGISTELS ...ooiuiiiiiiiiiiiiiiiiiiie e 14-38

PWM Control (PWM_CTRL) Registerccccceeervuviernnncnnne. 14-39

PWM Status (PWM_STAT) Registerccccoceveerrcuneeeeniunnene. 14-41

PWM Period (PWM_TM) Registerccccceevvuviiriiiinineene 14-42

PWM Dead Time (PWM_DT) Registerccccceervveernneennne. 14-43

PWM Chopping Control (PWM_GATE) Register 14-43

PWM Channel A, B, C Duty Control

(PWM_CHA, PWM_CHB, PWM_CHC) Registers 14-44

PWM Crossover and Output Enable (PWM_SEG)

ReGISTEr ..oiiiiiiiiiiiiiiiii i 14-46

PWM Sync Pulse Width Control (PWM_SYNCWT)

REGISTEr oeiiiiiiiiiiiiiiie e 14-48

PWM Channel AL, BL, CL Duty Control

(PWM_CHAL, PWM_CHBL, PWM_CHCL) Registers ... 14-48

PWM Low Side Invert (PWM_LSI) Registerc.ccccervuveennee. 14-50

PWM Simulation Status (PWM_STAT?2) Register 14-51

ADSP-BF51x Blackfin Processor Hardware Reference xxvii

Contents

Unique Information for the ADSP-BF51x Processor 14-52

UART PORT CONTROLLERS

Specific Information for the ADSP-BF51xcoociiiniiiiniiiiiniiens 15-1
OVEIVIEW ittt eeeeeeeneaes 15-2
FEatures ..ooouuuuiiiiiii i 15-2
Interface OVErVIEWueviiiiiiieeeeiiiiiiiiieee e e e e e eeree e e e e e e e eeeaeeeeeas 15-3
External Interfacecoooouvviiiiiiiiiiiiiiiiiiiiiiiec e 15-3
Internal Interfaceoooooiiiiiiiiiiiiiiiiiie e 15-4
Description of Operationcceeeceeeirireeniieeeniieenieeeseee e 15-4
UART Transfer Protocolccueeiiiiiiiiiiiiiiiiieiiiiieeeiieee e 15-5
UART Transmit Operationcooeeeuveveieieeiinniiiiiiiieeeeeeeennns 15-6
UART Receive Operationcceeeeeveiiiieiiiiiieeeniiiieeeesieeeenn 15-7
IrDA Transmit Operationccceeeevvuereeenniiieeenniiieeeenieeeeenn 15-8
IrDA Receive Operationcccceevvivvuiiiieeeeeeinniiiiiiiieeeeeeenans 15-9
Interrupt Processingccccceeviiiiiiiiiiiiiiiiiiiii 15-11
Bit Rate Generationcccccecevoiiiiuiiiiiiiiiiiiii 15-12
Autobaud Detectioncceiiiiiiiiiiiiiiiiieiiiiiiiieeeee e 15-13
Programming Modelccccooiiiiiiiiiiiiii 15-15
NON-DMA MoOde ...eviiiiiiiiiiiiiiiiiieiiiiiee e 15-15
DMA MOE eviiiiiiiiiiiiiiiieee et 15-17
Mixing Modesooviuiiiiiiiiiiiieiiieeeec e 15-18
UART ReGISTErs .oooviuiiiiiiiiiiiiiiiiiiiiiiiiccceeeeeee e 15-19
UART Line Control (UART_LCR) Registerccccueee.e. 15-21
UART Modem Control (UART_MCR) Register 15-23
xxviii ADSP-BF51x Blackfin Processor Hardware Reference

Contents

UART Line Status (UART_LSR) Registerccccocviinnins 15-24
UART Transmit Holding (UART_THR) Register 15-25
UART Receive Buffer (UART_RBR) Registercccceeueeeene 15-26
UART Interrupt Enable (UART_IER) Register 15-26
UART Interrupt Identification (UART_IIR) Register 15-28
UART Divisor Latch
(UART_DLL and UART_DLH) Registerscccceeunee. 15-30
UART Scratch (UART_SCR) RegiSterccccoovveercuveeniuneene 15-31
UART Global Control (UART_GCTL) Registerc......... 15-31
Programming Examplescccocoiiiiiiiiniiiinii 15-32
Unique Information for the ADSP-BF51x Processor 15-42
TWO-WIRE INTERFACE CONTROLLER
Specific Information for the ADSP-BF51x .coocviiviiiiiniiiiiiiiciee. 16-1
OVEIVIEW tiieeeeeeiiiiiiiiee e e e e ettt e e e e e e e e e et es e e e e e e eeaeaaaenaeeeeeas 16-2
Interface OVErVIEW ..cceeeeeeeeeeeeeeeeeeeee e 16-3
External Interfacecccoevveiiiiiiiiiiiiieiiiiiiieeee e 16-4
Serial Clock Signal (SCL) ...ccovviiiriiiiiiiiiiiiiciiiccieeeee 16-4
Serial Data Signal (SDA) ..cocciiiiiiiiiiiccce, 16-5
TWI PINS teeeeeiiiiiiiee et e e e e e e e e 16-5
Internal INterfacescccovevviiiiiiiieeeeicciiee e 16-6
Description of OPerationcccceeeveveernieeeniieeniieenieee e e 16-7
TWI Transfer Protocolsccoeeecviiiiiieeeeiieciiiiiee e, 16-7
Clock Generation and Synchronizationccoceeeniieenne 16-8
Bus ArbItrationeeeeeeeeeeeeennieieiiiiiiieeeienenenennnenenenennnnnenene 16-9

ADSP-BF51x Blackfin Processor Hardware Reference XXIX

Contents

Start and Stop Conditionscoecvveeirniiiiieiniiiiiieiniieeeenn 16-9
General Call SUpport c.eoeviviiiiiiiiiice 16-11
Fast Mode ...ooiiiiiiiiiiiiiieeece e 16-11
Functional Descriptioncccceoviiiiieiniiiiiiiniiiecceieccc e 16-12
General SEtup ...oeeoviiiiiiiiiii e 16-12
Slave Mode ..oooiiiiiiiiiiiiiice e 16-12
Master Mode Clock Setup ..coeveeiviiiiniiiiiiiiiiiiiiceicceiecee 16-13
Master Mode Transmit ...cceevveeeeeeeeriiiiiiiiieeeeeeeseiiiieeeee e 16-14
Master Mode Receiveueviiiiiiiiiiiiiiiiiiiieiiicceeiieee e 16-15
Repeated Start Conditionccooccvveiivniiieiinniiieeeenineee. 16-16
Transmit/Receive Repeated Start Sequence 16-16
Receive/Transmit Repeated Start Sequence 16-18
Clock Stretchingcocovevviiiiiiiniiiiiiiiiccc, 16-19
Clock Stretching During FIFO Underflowcccccoe... 16-19
Clock Stretching During FIFO Overflowccccccoee.e. 16-20
Clock Stretching During Repeated Start Condition 16-22
Programming Modelcccccccoiiiiiniiiiiii 16-24
Register Descriptionscooccuveeieriiiieeiiniiiieeerieeee e 16-26
TWI CONTROL Register (TWI_CONTROL)c......... 16-26
SCL Clock Divider Register (TWI_CLKDIV)ccoccveeennee. 16-27
TWI Slave Mode Control Register (TWI_SLAVE_CTL) 16-28
TWI Slave Mode Address Register (TWI_SLAVE_ADDR) .. 16-30
TWI Slave Mode Status Register (TWI_SLAVE_STAT) 16-30
TWI Master Mode Control Register
(TWI_MASTER_CTL) eeiiiiiiiieeeeeeeiiieeeee e 16-31

XXX

ADSP-BF51x Blackfin Processor Hardware Reference

Contents

TWI Master Mode Address Register

(TWI_MASTER_ADDR) ..ovviiiiiiiiiieeciiieeeeeieee e 16-34
TWI Master Mode Status Register
(TWI_MASTER_STAT) tooeiieieeiiee et 16-35
TWI FIFO Control Register (TWI_FIFO_CTL) 16-38
TWI FIFO Status Register (TWI_FIFO_STAT)cccccceen. 16-40
TWI FIFO Status ..cceeeeevvniiiiiiieieeeeeieiiieeeeee e 16-40
TWI Interrupt Mask Register (TWI_INT_MASK) 16-41
TWI Interrupt Status Register (TWI_INT_STAT) 16-42
TWI FIFO Transmit Data Single Byte
Register (TWI_XMT_DATAS)oeevvviiiniiieniiieiiieeeieeens 16-45
TWI FIFO Transmit Data Double Byte
Register (TWI_XMT_DATAILG) ...ccooovviiviiiiiiiiiiiiiiiiienns 16-46
TWI FIFO Receive Data Single Byte
Register (TWI_RCV_DATAS) ...ocoeiviiiiiiiiiiieeiiieeeee, 16-47
TWI FIFO Receive Data Double Byte
Register (TWI_RCV_DATAILG) ..ccoocuiiiiiiiiiiiiiiiiiieeiee, 16-48
Programming Examplesccccooiiiiiiiiiiniiiiniiciiceceec 16-49
Master Mode Setupeoeoviiiiiiiiiiiiiiiiieicecceee e 16-49
Slave Mode Setup ..cocuveiiiiiiiiiiiiiiiicecec e 16-54
Electrical Specificationscccovvuveeriiiiiiiiiiniicenieceiec e 16-61
Unique Information for the ADSP-BF51x Processor 16-61
SPI-COMPATIBLE PORT CONTROLLER
Specific Information for the ADSP-BE51x ..oocvviviiiiiniiiiniiciee. 17-1
OVEIVIEW .ttt 17-2
FEaturescoeiiiiiiiiiiiiiee e 17-2
ADSP-BF51x Blackfin Processor Hardware Reference XXX1

Contents

Interface OVErVIEW ..ccccvviiiiiiiiiiiiieiiiiee et 17-4
External Interfacecoocoouviiiiiiiiiiiiiiiiieee e 17-4
SPI Clock Signal (SCK) .eoovviiiiiiiiiiiiiiiiceccec e 17-5
Master-Out, Slave-In (MOSI) Signalccccooeiiiiiinn 17-5
Master-In, Slave-Out (MISO) Signalcoooviiiiiiiinnenne. 17-5
SPI Slave Select Input Signal (SPISS) .ocveiiiiiiiiiiiiieene 17-6
SPI Slave Select Enable Output Signals ... 17-7
Slave Select INputs ...coccvviiviiiiiiiiiiiccecc e 17-8

Use of FLS Bits in SPI_FLG for Multiple Slave SPI
SYSTEIMS weviiiiiiiiiiiiiiiieec e 17-8
Internal Interfacescoooceiviiiiiieieeiiiiiiiiieee e 17-10
DMA Functionalityccocoueiiniiiiniiiiiiiceniiceniec e 17-10
Description of Operationc.ceeeevveeerieeeniieeniieeniiee e 17-11
SPI Transfer Protocolseeeeeeeeiiiiiiiiiiieeeeeesiiiieeee e 17-12
SPI General Operationcccevcvveeriiieniieiniieceieeeniee e 17-14
Clock Signalscccooeiiiiiiiiiiiiiiiiii e 17-16
Interrupt OUPUL ..ooiiiiiiiiiiiiiii 17-16
Functional Descriptioncccocveerrieieniiieeniiieeniiee e 17-17
Master Mode Operation (Non-DMA)ccooooiiiiiniiiiiiinnnne. 17-17
Transfer Initiation From Master (Transfer Modes) 17-19
Slave Mode Operation (Non-DMA)ccccoiiviiiiiniiiiniieene 17-20
Slave Ready for a Transfercccceeeviiiiniiiiniieiiiieceieceee, 17-21

XXXil ADSP-BF51x Blackfin Processor Hardware Reference

Contents

Programming Modelccccoiiiiiiiiii 17-21
Beginning and Ending an SPI Transferccccccoviiieniiienne. 17-21
Master Mode DMA Operationccoveeeerieeeniieeenneeennneenn. 17-24
Slave Mode DMA Operationccoccceeeeeiniiieeenniieeeenninneen. 17-26

SPI REGISTELS .eeiuiiiiiiiiiiiiiieeeiiee e 17-34
SPI Baud Rate (SPI_BAUD) Registerccccevcvvieriveennuneennne. 17-35
SPI Control (SPI_CTL) Registerccccceevuviiniiiiniiiiniiieenne 17-36
SPI Flag (SPI_FLG) Registercccccceevuiiiniiiiniiiieniiienieenne 17-38
SPI Status (SPI_STAT) Registercccccvveeviiiieiiniiiieeennnee. 17-40

Mode Fault Error (IMODE) oo 17-41
Transmission Error (TXE) .ooiivviiiiiiiiiiiieeeecec 17-42
Reception Error (RBSY) ..oooiiiiiiiiiiiii 17-42
Transmit Collision Error (TXCOL) .ioovvviiviiiiiiiiiiiiis 17-42
SPI Transmit Data Buffer (SPI_TDBR) Register 17-42
SPI Receive Data Buffer (SPI_RDBR) Registercc.......... 17-43
SPI RDBR Shadow (SPI_SHADOW) Registerccc.c...... 17-44

Programming Examplesccccoociiiiiiiiiniiiiniiciice e 17-44

Core-Generated Transfercccceeviniiiieiiiiiieeiiiiiee e, 17-45
Initialization Sequenceccocccviiiiiiiiiiniiiiiciniiiicee 17-45
Starting a Transferc.ccccooviiiiiiiiiniiiicc e 17-46
Post Transfer and Next Transferccccovviiiiieiiiiiiiennnne. 17-47
STOPPING vt 17-48

ADSP-BF51x Blackfin Processor Hardware Reference xxxiii

Contents

DMA-Based Transfercoocceeerviiiiniiiiniiiiniieciieceecee, 17-48
DMA Initialization Sequenceccceeevvveenueeeniuneennnnenns 17-48

SPI Initialization SeqUenceccooceeevuveeniivieniieennneenns 17-49
Starting a Transferccoooeiiiiniiiniiii 17-51
Stopping a Transferccoocvviiiiiiiiniiiiiiiiciiccceeee 17-51
Unique Information for the ADSP-BF51x Processor 17-53

SPI SERIAL FLASH

Memory Organizationcccccoviviiiiiiiiiiiiiiiiiiic e, 18-5
Device OPerationccccciiiiiiiiiiiiiiiiiiiiiiiiiccee e 18-5
ReSEt MOAE niiiiiiiiiiiiiee e 18-6
Status RegiSterooooiiiiiiiiiiiiiiiiiii i 18-8
BUSY 18-9
Write Enable Latch (WEL) woovviiiiiiiiiieeee e 18-9
Auto Address Increment (AAL) .eiviiviiieiiie e, 18-10
Block-Protection (BP2, BP1, BP0O) .ovvveviiiiieiiiiiieeeeeiienn 18-10
Block-Protection Lock-Down (BPL)oviviviiiiiiiiieeeiiiiinn, 18-10
INSTIUCTIONS iiiiiiiiiiiiiiiee e 18-11
Read (20 MHZ) ooviiiiiieeeeeeeeeeee e 18-14
High-Speed-Read (25 MHz)oooiiiiiiiiiiiiiiiiiiiiciieceecee 18-15
Byte-Programccccoiiiiiiiiii 18-16
Auto Address Increment (AAI) Word Programcc....... 18-17
End-of-Write Detectioncceeevevviiiieiiniiiieeeiiieee e 18-18
Hardware End-of-Write Detectioncooveiiiiiieeiiinnnnnns 18-18

XXXIV ADSP-BF51x Blackfin Processor Hardware Reference

Sector-Erase ..o,
32K Byte Block-Eraseccccoviiiiiiiiiniiiiiiiic
64K Byte Block-Erasec.ccccovviviiniiiiiniiiiniiiciiecene,
Chip-Erase ..eoovovieemiieiiiieeieceeceeee e
Read-Status-Register (RDSR) ...ccoooviiiniiiiniiiiiiieen,
Write-Enable (WREN) .oovviiiiiiieiiiieeeeeeeeeeeee,
Write-Disable (WRDI) .uviiiiiiiiiiiiiieeeeeeeeeeeeea,
Enable-Write-Status-Register (EWSR)coccoeevneennen
Write-Status-Register (WRSR)cooooiiiiiiiiiiiiiinnn.
Read-ID .ooiiiiiiiiiicee e
JEDEC Read-ID .ooooeiiiiiiiiiieeeeeeeeeee e

SPORT CONTROLLER

Specific Information for the ADSP-BF51x ..ccoceviiiinnnnnen.
OVEIVIEW .ttt
Featuresoouuvuiiiiiiiii e
Interface OVEIrvIEWccccveeiiiiiiiiieiiiiiiee e
SPORT Pin/Line Terminationsc.ccceeeeeeeieeeinnnnnnnn.
Description of Operationccccceeeveuveeriieeerieeenneeeenneen.
SPORT Disable ..cccuvveiiiiiiiiiiiiiiiiieeeiiceceeeee e
Setting SPORT Modesccccovviviiiiiiiiiiiiiiiiiicee,
Stereo Serial Operationccccceeeviiiiniiiiiniieenieenee.
Multichannel Operationccoccceevviiiiniiiniiiiiiecnee
Multichannel Enableccccoooiiiiiiiiiiiiiis

Frame Syncs in Multichannel Mode

Contents

ADSP-BF51x Blackfin Processor Hardware Reference

XXXV

Contents

The Multichannel Framec.ccccciiiiiniiiniiiniiin 19-19
Multichannel Frame Delayccccoooiiiiiiniiiinnin, 19-20
WiIndow SIZe ..cocveeiiiiiiiiiiiiiiiiiiic e 19-20
Window OffSeteeevviiiriiiiiiiieiiieeec e 19-21
Other Multichannel Fields in SPORT_MCMC2 19-21
Channel Selection Registercccovvuiiiiiiiiiniiiiniiiiiieens 19-22
Multichannel DMA Data Packingcccccooveiiiiniinnnne 19-23
Support for H.100 Standard Protocolcccceeviiiinniiennnee. 19-24
2x Clock Recovery Controlccceeevviiiiniiiiiniiiiiniicennen. 19-25
Functional Descriptionccccovviiiiiiniiiiiiiiniiccciieece e 19-25
Clock and Frame Sync Frequenciesc.cccccoevviiniieennncenne. 19-25
Maximum Clock Rate Restrictionsccccovvviiiniieennnee. 19-27
Word Length ..ooccoiiiiiiiiiiiiii 19-27
Bit Order ueviieiiiiiiiiii e 19-27
Data TYPe coeviieiiiiiiic e 19-28
Compandingocceiiiiiiiiiiiiiiiiiiiii 19-28
Clock Signal Optionscoccuveeviiiieniiiiiiiieeniieeeeeeeeee e 19-29
Frame Sync Optionscccccvveiiiiiiiiiiiiiiiiiiicciiieeeeen 19-30
Framed Versus Unframedccccociiniiiniiniinninnnn 19-30
Internal Versus External Frame Syncsccoccvveiiiiiinnneen, 19-32
Active Low Versus Active High Frame Syncscocceeeenee 19-33
Sampling Edge for Data and Frame Syncsccccecenene. 19-33
Early Versus Late Frame Syncs (Normal Versus
Alternate Timing)ccooceeeriiieiniiieniieeniiee e 19-35
Data Independent Transmit Frame Synccccccooeiiis 19-37

XXXV

ADSP-BF51x Blackfin Processor Hardware Reference

Contents

Moving Data Between SPORTs and Memoryccccoceeeee. 19-38
SPORT RX, TX, and Error Interruptscccocveeriveerineenne. 19-38
Peripheral Bus Errorsccccoociiiiiiiiiiiiiiiiiicecceec 19-39
Timing Examplesccccoiiiiiiiiiiiiiiiiiiic 19-39
SPORT REGISTELS uvvvieniiiieniiiieiiiie et 19-45

Register Writes and Effective Latencyc.cccccovveiiniiiennncen. 19-46
SPORT Transmit Configuration

(SPORT_TCR1 and SPORT_TCR2) Registers 19-47
SPORT Receive Configuration

(SPORT_RCRI and SPORT_RCR?2) Registers 19-52
Data Word FOrmats ..oeuueeeeneeeeeeee e 19-56
SPORT Transmit Data (SPORT_TX) Registerccccue.e... 19-57
SPORT Receive Data (SPORT_RX) Registercccccueeenee. 19-59
SPORT Status (SPORT_STAT) Registerccccovuvveeeennnnnnn. 19-61
SPORT Transmit and Receive Serial Clock Divider

(SPORT_TCLKDIV and SPORT_RCLKDIV) Registers ... 19-62
SPORT Transmit and Receive Frame Sync Divider

(SPORT_TFSDIV and SPORT_RESDIV) Registers 19-63
SPORT Multichannel Configuration

(SPORT_MCMCI1 and SPORT_MCMC2) Registers 19-64
SPORT Current Channel (SPORT_CHNL) Register 19-66
SPORT Multichannel Receive Selection

(SPORT_MRCSn) Registersccccueeeiiniiiieeiiiiiiieeiiiieeenns 19-66
SPORT Multichannel Transmit Selection

(SPORT_MTCSn) Registerscooovviiviiiiiiiiiiiiiiiiiiieenn, 19-67

ADSP-BF51x Blackfin Processor Hardware Reference XxxVii

Contents

Programming Examplesccccccoviiiiiiiiiiiiii, 19-69
SPORT Initialization Sequenceccoceveviivieniieenineennnnee. 19-69
DMA Initialization Sequencecccccovveiiiiiiniiiiienniiieeenn. 19-71
Interrupt Servicingccccciiiiiiiiiiiiiiiiiii 19-73
Starting a Transferc.cccoviviiiiiiiiiniii e 19-74

Unique Information for the ADSP-BF51x Processor 19-75

PARALLEL PERIPHERAL INTERFACE

Specific Information for the ADSP-BF51x ...cooviiiiiniiiiiiiiiiiniiens 20-1

OVEIVIEW ittt ettt ettt e e ettt e e e e e et eetaeaa e es 20-2

Features ovuueieeiii e 20-2

Interface OVEIrVIEW ...cooviiiriiiiiiiiiiiiic et 20-3

Description of Operationcceeeceeeiriieeeniieeeniieenieeeseee e 20-4

Functional Descriptioncoocueeeriieeiniieeniieeniiee e 20-5
ITU-R 656 MOdes ..cccevviiiiiiiiiiiiiiiiiiiieeeeeee e 20-5

ITU-R 656 Backgroundccoccvveiviiiiniiiiniiiciiiciieeenne, 20-5
ITU-R 656 Input Modescoovuvierniiiiniiiiniiiciieceieeens 20-9
Entire Fieldoooiiiiiiieee, 20-9
Active Video Only ...cooociiiiiiiiiiiiiiiiiiicceecee 20-10
Vertical Blanking Interval (VBI) Onlycccccceeiienne 20-10
ITU-R 656 Output Modeccccovviviiiiiiiiiiiiiiiiiicce, 20-11
Frame Synchronization in ITU-R 656 Modes 20-11

XXXViil ADSP-BF51x Blackfin Processor Hardware Reference

Contents

General-Purpose PPI Modesccooviiiiiiniiiieiiniiiicciniee. 20-12
Data Input (RX) Modes ...c.cceevviiiiniiiiiniiiiniieciicceeeene 20-14

No Frame Syncscccceiiiiiiiiiiiiiiiiiiiiiicceeeee 20-15

1, 2, or 3 External Frame Syncsccoocvviiiiniiiiiinnnnn. 20-15

2 or 3 Internal Frame Syncsccccoooveiiiiiiiiiiiniicnnnn. 20-16

Data Output (TX) Modesccoovveiemiiiiniiiiiniiieniiceniieenne 20-17

No Frame Syncscccceeviiiiiiiiiiiiiiiiiiiiieeceeeee 20-17

1 or 2 External Frame Syncsccocceeviiiinniiiinincenne. 20-18

1, 2, or 3 Internal Frame Syncsccccovveiinieiiniicennnen. 20-18

Frame Synchronization in GP Modesccoocvviiniieennncen. 20-19
Modes With Internal Frame Syncsccccoovveeniiiennnee. 20-19

Modes With External Frame Syncscccocoeeriiiennnee. 20-20
Programming Modelcccooiiiiiiiiii 20-21
DMA Operationccooevuiiiiiiiiiiiiiiiiiiiiiiiee e 20-22
PPT Re@IStersuuuiiiiiiiiiiiiiiiiiiii e 20-25
PPI Control Register (PPI_CONTROL)ccccceiviiiinninns 20-25

PPI Status Register (PPI_STATUS) ...ccccooviiiiiiiiiiiiiiiien. 20-29
PPI Delay Count Register (PPI_DELAY)ccccoveeriiienniecnne. 20-32
PPI Transfer Count Register (PPI_COUNT)ccccvevnenne. 20-32
PPI Lines Per Frame Register (PPI_FRAME) 20-33
Programming Examplesccccooviiiiiiiiiniiiiniiciic e 20-34
Unique Information for the ADSP-BF51x Processor 20-37

ADSP-BF51x Blackfin Processor Hardware Reference XXXIX

Contents

REMOVABLE STORAGE INTERFACE

OVEIVIEW ittt ettt ettt e et ettt e e e e e eeeeaeaeaaaes 21-1
Interface OVErVIEW ..occcvviiiiiiiiiiieiiiiiice et 21-3
Description of Operationceeeevueeeinieeeniieeniiieeniiee e 21-7
Functional Descriptionccoccueieniiieniiieniiecenieceniece e 21-9
RSI Clock Configurationcocceeeevieieniieiniieciniecenieeenieeens 21-9
RSI Interface Configurationcccccecvveriieniiiiniiienniinieennee. 21-10
Card Detection ...ccuvvviiieieeeeeeeiiiiiiieee e e e e e e e e e e e e 21-12

RSI Power Saving Configurationcoceeeveuveeriveeenneeennnn 21-14
RST Commands and Responsescceevvueeeeiiniieceinnnneeen. 21-15
IDLE State ..coeeeiiiiiiiiiiiiiee e 21-20
PEND State ...oceeeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeee 21-20
SEND State ceeeeeeeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiieeeeeeeeeeeeeeeeeeeeeeeee 21-21
WAIT State cooveeeeiieieiieieeeeeeeeeeeeeeee e, 21-21
RECEIVE State ...ccovvoiiiiiiiiiiieeeiiiiee e 21-22
CEATA_INT_WAIT State ceeeeevvviieeeeiiiieeeeiiieeeeeiieen. 21-22
CEATA_INT_DIS State ..ccccvvvreeeiiiiieeeeiiieeeeeiiee e 21-22

RSI Command Path CRCcccooiiiiiiiiiiiiiciiicc e 21-23
RST Data o 21-23
RSI Data Transmit Pathooviiiiiiiiiiiiiiiiieceeeee, 21-26
RSI Data Receive Pathooovviiiiiiiiiiiiiiiiicicccen 21-28
RSI Data Path CRC ...cceviiiiiiiiiieieeeee e 21-30
RST Data FIFO ..oiiiiiiii e 21-30
SDIO Interrupt and Read Wait Supportcccceveuveercueeennnnen. 21-31

x| ADSP-BF51x Blackfin Processor Hardware Reference

Contents

Programming Modelccccoiiiiiiiiii 21-32
Card Identificationcccccuveiiiiireeeeeiiiiiiee e e 21-33
SD Card Identification Procedureccovvvvvieenninieeennnne. 21-33
MMC Identification Procedurecccceevvirieeiniiniereennne. 21-35
Single Block Write Operationsccocveevvuvieriiiennieennneeenne. 21-35
USINg COLe ..uvviiiiiiiiiiiiiiiiiiiiiicce e 21-36
Using DMA L., 21-38
Single Block Read Operationccocceeevviiiiniiiiiniieeniieennne 21-39
USING COLE .evviiiiiiiiiiiiiiiiiee e 21-41
Using DMA ..o 21-43
Multiple Block Write Operationcccccceeeviieeniiienniecennneen. 21-44
USING COLE .evviiiiiiiiiiieiiiiiee e 21-45
Using DMA ..o, 21-47
Multiple Block Read Operationccoccveeviiiiiiiiieiniiieenineenn. 21-49
USING COLE .evviiiiiiiiiieeiiiiiee et 21-49
Using DMA L. 21-51
RST ReGIStErS ..oooiiiiiiiiiiiiiiiiiiiiiiiiii 21-53
RSI Power Control Register (RSI_PWR_CONTROL) 21-55
RSI Clock Control Register (RSI_CLK_CONTROL) 21-56
RSI Argument Register (RSI_ARGUMENT)c...c.c.. 21-58
RSI Command Register (RSI_COMMAND)cccceeenenn. 21-58
RSI Response Command Register (RSI_RESP_CMD) 21-60
RSI Response Registers (RSI_RESPONSEX)ccccceeevnnnnn. 21-61
RSI Data Timer Register (RSI_DATA_TIMER) 21-62

ADSP-BF51x Blackfin Processor Hardware Reference

xli

Contents

RSI Data Length Register (RSI_DATA_LGTH) 21-63
RSI Data Control Register (RSI_DATA_CONTROL) 21-63
RSI Data Counter Register (RSI_DATA_CNT)c.ccooeeee. 21-65
RSI Status Register (RSI_STATUS)cocovviiviiiiiiiiiiiiiennn, 21-66
RSI Status Clear Register (RSI_STATUSCL)ccceeevvuveennnnne. 21-70
RSI Interrupt Mask Registers (RSI_MASKX)ccccceevvuneennee. 21-72
RSI FIFO Counter Register (RSI_FIFO_CNT) 21-75
RSI CE-ATA Control Register (RSI_CEATA_CONTROL) .. 21-75
RSI Data FIFO Register (RSI_FIFO)ccocoiiiiiniiiiieinnen. 21-76
RSI Exception Status Register (RSI_ESTAT)ccccceeeee. 21-77
RSI Exception Mask Register (RSI_EMASK)cccceeennee. 21-78
RSI Configuration Register (RSI_CONFIG)ccccceevnneennn 21-79
RSI Read Wait Enable Register (RSI_RD_WAIT_EN) 21-81
RSI Peripheral ID Registers (RSI_PIDX)ccccceevvvvienneennnnne. 21-82
ETHERNET MAC

Specific Information for the ADSP-BF51x ...cooviiiiniiiiiiiiiiiiicns 22-1
OVEIVIEW ittt ettt et et eeaeeeeeeeeeeeeennnees 22-2
FEatUIes .vuueeeiiiiie i 22-2
Interface OVErVIEW ..occuvviiiiiiiiiiiiiiiiiie et 22-3
External Interfaceccoocuvviievniiiiiiiiiiiieeeeiiee e 22-4
ClocKing ...eeeeiiiiiiiiieiiic e 22-4

PINS coiiiiiiiii e 22-5
Internal Interfaceooocveiiiiiiiiiiiiiiiie e 22-7
Power Managementcccocccuviiiiiiiiiiiiiiiiiiinee e, 22-7

xlii ADSP-BF51x Blackfin Processor Hardware Reference

Description of Operationc.ccueeevveeenieeenieeenieeenieens
Protocol woveiieeiiiiiieie e
MII Management Interfaceccooovveeniiiiniiiinnneene
OPerationcccccuviiiiiiiiiiiiiiiiiiiieeee e
MII Management Interface Operation
Receive DMA Operationcccceevvviiiiiiiiiieeiinnnns
Frame Reception and Filteringccoccoo

RX Automatic Pad Strippingccccoeeriiiiennneens

RX DMA Data Alighmentcoocuveerneeernneenne

RX DMA Buffer Structureccccvveeeeiuiieeeennnne.

RX Frame Status Bufferccccovvvieiiiiinininnn.

RX Frame Status Classificationccccceeeeennnnne.

RX IP Frame Checksum Calculation

RX DMA Direction Errorscooooeeviiiiiiiiiinnnneee.
Transmit DMA Operationccccceeevviieeeennunneennn.
Flexible Descriptor Structureccccovuveeeennnnne.

TX DMA Data Alighmentccccecevvernueeennnenns

Late Collisionscccveeeeeriiiiieeiniiieeeiiieee e

TX Frame Status Classificationcccccoevuuneeee.

TX DMA Direction Errorsueveeeveeevevenennnn.
Power Managementcccceeeeeeveiveninieieienninineninnns
Ethernet Operation in the Sleep State
Magic Packet Detectioncoocvvieviiiiiniicinnneens

Remote Wake-up Filterscccccoviiiiniiinnnennne.

Contents

ADSP-BF51x Blackfin Processor Hardware Reference

xliii

Contents

Ethernet Event Interruptsccoccveeeviiieniiiieniiiiiieeenieeens 22-38
RX/TX Frame Status Interrupt Operation 22-41

RX Frame Status Register Operation at
Startup and Shutdownccccooviiiiiiiniiiiis 22-41

TX Frame Status Register Operation at
Startup and Shutdowncccoociiiiiiiiniiiiniiiiiieee 22-42
MAC Management COUNTELSccovurieviiieniiiieiiiieiiienns 22-42
Programming Modelcccccooiiiiiniiiiiii 22-45
Configure MAC PIns ..ocoecoviiiiiniiiiiiiiiiieceieceseeeeceee 22-45
Multiplexing Schemeccccoooiiiiiiiiiiiiiii 22-45
CLKBUF e 22-46
Configure INTEITUPLS weovuveeeriiiiniiiiiiieeeiee e 22-46
Configure MAC RegiSterscccoovvieviiiiiiiniuiiniiiiieiiienieens 22-47
MAC AdAress .ooeeeeeeiiiiiiiiee et 22-47
MII Station Managementeeeeeveeveeeeenniereeenniiieeeennnnne 22-47
Configure PHY ..oooiiiiiiiiiiiiiiiiicccec e 22-48
Receive and Transmit Dataccoovveiiiiiiiiiieiiiiiiiiiceee e, 22-49
Receiving Dataoooovviiiiiiiiiiiiiiiiniiccceiccceee e 22-49
Transmitting Datacccoooiiii 22-50
Ethernet MAC Register Definitionscccocceevvveeiiiiennieennnee. 22-50
Control-Status Register Groupccccceeevveeenieiiniieeenieeenne. 22-59
MAC Operating Mode (EMAC_OPMODE) Register 22-60
MAC Address Low (EMAC_ADDRLO) Register 22-67

MAC Address High Register (EMAC_ADDRHI)

Registerooooviiiiiiiiiiiiiii 22-68

xliv ADSP-BF51x Blackfin Processor Hardware Reference

Contents

MAC Multicast Hash Table High (EMAC_HASHHI)

and Low (EMAC_HASHLO) Registerscccocuveenneen. 22-68
MAC Station Management Address

(EMAC_STAADD) Registerccccceevvuiiiiiiiiiiiieinnnens 22-72
MAC Station Management Data

(EMAC_STADAT) Registercccceveeeriuieeeenniiiieeennnee. 22-74
MAC Flow Control (EMAC_FLC) Register 22-74
MAC VLANI1 Tag (EMAC_VLAN1)

and MAC VLAN2 Tag (EMAC_VLAN2)Registers 22-76
MAC Wakeup Frame Control and Status

(EMAC_WKUP_CTL) Registercccccceeeeriuueieennnnnnnn. 22-78

MAC Wakeup Frame0 Byte Mask (EMAC_WKUP_FFMSKO0)
MAC Wakeup Framel Byte Mask (EMAC_WKUP_FFMSK1)
MAC Wakeup Frame2 Byte Mask (EMAC_WKUP_FFMSK2)
MAC Wakeup Frame3 Byte Mask (EMAC_WKUP_FFMSK3)

RegIStersovviiiiiiiiiiiiiiii 22-80
MAC Wakeup Frame Filter Commands
(EMAC_WKUP_FFCMD) Registerccccoecuveeeennunnnnnn. 22-85
Ethernet MAC Wakeup Frame Filter Offsets
(EMAC_WKUP_FFOFF) Registercccoecuviiiennnnnnnn. 22-87
MAC Wakeup Frame Filter CRC0/1 (EMAC_WKUP_FFCRCO)
and CRC2/3 (EMAC_WKUP_FFCRCI1) Registers 22-87
System Interface Register Groupc.cccceevvieriiienniieennnncenne. 22-88
MAC System Control (EMAC_SYSCTL) Register 22-89
MAC System Status (EMAC_SYSTAT) Register 22-90
Ethernet MAC Frame Status Registerscccoocveeniieennneenn. 22-92
Ethernet MAC RX Current Frame Status
(EMAC_RX_STAT) RegiSterccccceevuiiiniiiiniiiieninnenns 22-93

ADSP-BF51x Blackfin Processor Hardware Reference

xlv

Contents

Ethernet MAC RX Sticky Frame Status

(EMAC_RX_STKY) Registercccccceeeeviiiiiiiniiiniennnnn. 22-99
Ethernet MAC RX Frame Status Interrupt Enable
(EMAC_RX_IRQE) Registercccccuviviiiiiriiiinnnncnns 22-104
Ethernet MAC TX Current Frame Status
(EMAC_TX_STAT) RegiStercccccuveeemmiuuveeeniiineeenns 22-105
Ethernet MAC TX Sticky Frame Status
(EMAC_TX_STKY) Registerccccceeeeriiiiiiinnnneenns 22-109
Ethernet MAC TX Frame Status Interrupt Enable
(EMAC_TX_IRQE) Registerccccccvvrviiiiiiiiinnnnins 22-112
Ethernet MAC MMC RX Interrupt Status
(EMAC_MMC_RIRQS) Registerccccovuvveeernunnnenn. 22-112
Ethernet MAC MMC RX Interrupt Enable
(EMAC_MMC_RIRQE) Registercccccuveeeeiuneeens 22-114
Ethernet MAC MMC TX Interrupt Status
(EMAC_MMC_TIRQS) Registercccccvevviuiernnncnns 22-114
Ethernet MAC MMC TX Interrupt Enable
(EMAC_MMC_TIRQE) Registercccoccvveerriunneenn 22-117
MAC Management Counter Registersccccooeiiiiinnnn. 22-117
MAC Management Counters Control
(EMAC_MMC_CTL) Registerccccceevvuvrieennunneennn 22-119
Programming Examplescccccoviiiiiiiiiiiiii 22-120
Ethernet STrUCTUTES .neeneen et 22-121
MAC Address SEtup ...ccovveeeriieeeniieeniiieiieeeee e 22-124
PHY Control ROUINES .uveeneeeeeeieeie e 22-124
Unique Information for the ADSP-BF51x Processor 22-127

xlvi ADSP-BF51x Blackfin Processor Hardware Reference

IEEE 1588 PTP ENGINE

PTP_TSYNC OVEIVIEW evvniiunieeeiieeeieeeee e
Featuresoouvuueiiiiiiiiiiiiiiiiic e,
General Operationccccceevuiieeiiniiiieeiniiieeeeeee e
PTP_TSYNC Module Description of Operation
Clock Source Selectioncccoccveeieeiiiiiiieenniiiieeennne,
Clock Adjustmentcccceevviieriiieniiiniiiiiciieeeieeee,
Event Message (Timestamping)cccccceeeeviinieeennnnn.
Transmit Packet Detectioncoocveeeiiniiiiiiiniiieeennans

Receive Packet Detectioneeeeeeeeeeeeeeeeeeeeeeeeeeeeeeenn

Pulse-Per-Second (PPS) ...oiiiveeeiiiiiieeiiiieee e
Auxiliary Snapshotoooceiiiiiiiiii
PTP_TSYNC Module Registerscccceevuvieriuniiriiiennnncnns
Control Register (EMAC_PTP_CTL) ...ccovvvvvvrineennnn.
Interrupt Enable Register (EMAC_PTP_IE)

Interrupt Status Register (EMAC_PTP_ISTAT)

Message Filter Offset Register (EMAC_PTP_FOFF)
Message Filter Value Register 1 (EMAC_PTP_FV1)
Message Filter Value Register 2 (EMAC_PTP_FV2)
Message Filter Value Register 3 (EMAC_PTP_FV3)
Addend Register (EMAC_PTP_ADDEND)
Accumulator Register (EMAC_PTP_ACCR)
Time Offset Register (EMAC_PTP_OFFSET)

Contents

ADSP-BF51x Blackfin Processor Hardware Reference

xlvii

Contents

Local Clock Time Low Register (EMAC_PTP_TIMELO) 23-26
Local Clock Time High Register (EMAC_PTP_TIMEHI) ... 23-27

Receive Snapshot Low Register

(EMAC_PTP_RXSNAPLO) ooiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeee, 23-28
Receive Snapshot High Register
(EMAC_PTP_RXSNAPHI) .oooeeeiiiiiiiiiiiiieeeeeeeeeeeeeeee, 23-29
Transmit Snapshot Low Register
(EMAC_PTP_TXSNAPLO) wvoovooooeooeeoeoeeoeeeoeoeeoeeeo 23-30
Transmit Snapshot High Register
(EMAC_PTP_TXSNAPHI) ..oetiiiiiieiiiiieeeeiiiee e 23-31
Target Alarm Time Low Register
(EMAC_PTP_ALARMLO) iiiiiiiiiiiiiiiieeeeieeeeeeee e 23-32
Target Alarm Time High Register
(EMAC_PTP_ALARMHI) ..ovvviiiiiiiieiiiieeeee e, 23-33
Source ID Offset Register (EMAC_PTP_ID_OFF) 23-34
Source ID Snapshot Register (EMAC_PTP_ID_SNAP) 23-35
PPS Start Low Register (EMAC_PTP_PPS_STARTLO) 23-36
PPS Start High Register (EMAC_PTP_PPS_STARTHI) 23-37
PPS Period Register (EMAC_PTP_PPS_PERIOD) 23-38
PTP_TSYNC Module Programming Modelcccccccevvviennne. 23-39
IEEE 1588-2002 Implementation Over IP/UDP 23-39
IEEE 1588-2008 Implementation Over IP/UDP 23-40
IEEE 1588-2008 Implementation Over MAC Layer 23-40
Pulse-Per-Second (PPS) Signal Generationccocveeeeneeennn. 23-41

xlviii ADSP-BF51x Blackfin Processor Hardware Reference

Contents

REAL-TIME CLOCK
Specific Information for the ADSP-BE51x ..oocviiiiiiiiniiiiiniicee. 24-1
OVEIVIEW ettiiiiitete ettt e e e e st e e e e e e e e 24-1
Interface OVErVIEWccoiviiiiiiiiiiiiiie et 24-3
Description of OPerationcocceeevvviernieeeniieeniiieenieee e 24-3
RTC Clock RequIrementsecevueeeenieeenireeniieeniieeeiieeeee 24-3
Prescaler Enablecooooiiiiiiiiiiin 24-5
RTC Programming Modelc.ccooiiiiiiiiiiiniiiiic e 24-6
Register WIITES ..eecevrviiieiiiiiiiee it 24-8
Write Latency cooovvveiiiiiiiiiiiiiiiiecceiiec e 24-9
Register Readscoovoviiiiiiiiiiiiiiiiiiciiccieccc e 24-10
Deep SIEEP uviiiiiiiiiiiit e 24-10
Event Flagscooooiiiiiiiiiiiiiiiicc 24-11
Setting Time of Daycocoviiiiiiiiiiiiiiciecece 24-13
Using the Stopwatch ..o 24-13
INEEITUPLS weveiiiiiiiiiiiiiiee ettt e 24-14
State Transitions Summarycccooeciiiiiiiiiiiiini. 24-17
Register Definitionsc.ccveeerieeiniieeniiieniieeeiecciec e 24-19
RTC Status (RTC_STAT) Registerc.cccocuvieviuiiiiiiiiinnnenne 24-21
RTC Interrupt Control (RTC_ICTL) Registercccecuveeee. 24-21
RTC Interrupt Status (RTC_ISTAT) Registerccccueeeennnne. 24-22
RTC Stopwatch Count (RTC_SWCNT) Register 24-22
RTC Alarm (RTC_ALARM) Registercccevvvveenineenineennne. 24-23
RTC Prescaler Enable (RTC_PREN) Registerccccoeuueenn. 24-23

ADSP-BF51x Blackfin Processor Hardware Reference xlix

Contents

Programming Examplesccccccoviiiiiiiiiiiiii, 24-24
Enable RTC Prescalerccooeee, 24-24
RTC Stopwatch For Exiting Deep Sleep Modecc.......... 24-25
RTC Alarm to Come Out of Hibernate Statec....c....... 24-27

Unique Information for the ADSP-BF51x Processor 24-28

SECURITY

OVEIVIEW etttiiiiiee e et ettt e e e ettt e e e e e e e e e eaaaae e e e e e eeeeeanaaaanns 25-2

FEATUIES .oviiiiiiiiiiiiiiiiiiiiiiiieeeeeeee et e e e e e e e e e e e e e e e e e eeeeaeeeees 25-4

Description of OPerationcceeeeveeenireeniieeeniiieeniieeseee e 25-6
Secure State Machinecccccceeviiiiiiiiiiiiiiieeeeeeeieee e 25-7

Open Mode ..oevviiiiiiiiiiiiii e 25-8
Secure Entry Mode ...occviiiiiiiiniiiiniiiciieceecce 25-9
Secure Mode ...ooooiiiiiiiiiiiie e 25-10
Secure Mode Controloevvvvviiiiiiiiiiiiiiiiiiiiieieeiiiiveeeeeans 25-11
Security Featuresccccccoiiiiiiiiii, 25-13
Digital Signature Authenticationcccccceevvvieiniieeennneenns 25-14
Digital Signature Authentication Performance
MEASUTEMENT vvvviiieeeiiiiieeeeiiieeeeeriieeeeeeaeaeeeeeaeneeaeeanns 25-17
Protection Featurescouuuuveiiiiiiiieiiiiiiinieiiiiieecceie e 25-17
Operating in Secure Modeooooviiiiiiiiniiiiniiiiiiiie 25-20
Entering Secure Modec.cceeiiiiiiiiiiiniiiiniiiciiceees 25-21
Exiting Secure Modeoooviiiiiiiiiniiiiiiiciiececeeee 25-21

| ADSP-BF51x Blackfin Processor Hardware Reference

Contents

Reset Handling in Secure Modecccccoeviiiiiiiiiniiiinnnnnne. 25-21
Hardware Resetveeiiiiiiiiiiiiiiiiiiiiccecccee e 25-21
Clearing Private Dataccoooveiiniiiiniiiiniiienicceieceeene 25-22

Public Key Requirementsccccceevvuiiiienniiieeenniiieeeenieeee. 25-24
Storing Public Cipher Key in Public OTPcccceeeineene 25-26

Cryptographic Ciphersccocciiriiiiiiiiiicec 25-27

Keys oo 25-27

Debug Functionalityccccooviiiiniiiiniiiiniiciiiciecece, 25-27
Programming Examplesccocoviiiviiiiniiiniiiiiniicnieene 25-31

Programming Model ..o 25-33

Secure Entry Service Routine (SESR) API ... 25-33

Starting Authenticationccceevieeiiiiiiniiiienieeecceeeee 25-34

Memory Configurationc..ceeceeevieeeiiieniiienieenieciie e 25-35
Message Placementcceeeviiiiniiieiiiiiiniicenieceec e 25-36
Digital SIgnatureccccceeeiiiiiiiiiniiiiiiiiiceec e 25-36
Message Size CONSLIAINTS ...oeeiiiviiiiiiiiiiiiiiiiiiiee e 25-36
Memory Usageccooovviiiiiiiiiiiiiiiiiiiiiiiiiieeen 25-37
Memory Protectionccccceeiiiiiiiiiiiiiiiiiiiiiiiieeen 25-37

Secure Function and Secure Entry Service Routine

ATGUMENTS Loviiiiiiiiiiiiiiiiiiii e 25-38
Secure Function Argumentsccccovveiiiiiiiiiniiiininnnnnnn. 25-38
Secure Entry Service Routine Argumentsccccccceueee. 25-39
USFLAES ©oeiiiiiiiiii 25-40
USIRQMask ..vvvviiiiieieeeiieee e 25-41
UIMESSAZESIZE .t 25-41

ADSP-BF51x Blackfin Processor Hardware Reference li

Contents

UISFENTryPOINt ..oveiiiiiiiiiiiiiiccicc e 25-41
UIMESSAZEPLE .vvviiniiiiiiiiicciec e 25-41
Secure Message Executioncccccceiiiiiiiiiiiiiiiiiiiiinnnnnn, 25-42
Return Codes ...ooouuiiiiiiiiiiiiiiiiiieeeeeee e 25-42
SECURE HASH ALGORITHM (SHA-1) API 25-44
ADI_SHA1 Data Type ..ccooveiiiiiiiiiiiiiiniieeeeeiieee e 25-44
bfrom_Shallnit ROM Routineccccceeevvivieeennnnnnenn. 25-45
bfrom_ShalHash ROM Routinecccoeveeeneeeenaeeennnnen. 25-45
Security RegISTErscocuviiiiiiiiiiiiiiiiiieeieeee e 25-46
Secure System Switch (SECURE_SYSSWT) Register 25-47
Secure Control (SECURE_CONTROL) Register 25-54
Secure Status (SECURE_STATUS) Registercccceeevureeeennn. 25-56

SYSTEM RESET AND BOOTING

OVEIVIEW etiiiiiiiiiiiiiiiiiiititeteee ettt ettt ettt et et e e e e e e e e e eeeeeeeees 26-1
Reset and POWEI-Up ..oeeeiiiiiiiiiiiiiiiiieeiiicceicceec e 26-3
Hardware Resetuuviiiiiiiiiiiiiiiiiieiec e 26-5
Software RESETS .uvviiiiiiiiiiieiiiiiie e 26-6
RESEE VECTOT ..ttt 26-7
Servicing Reset Interruptscooovviiiiiiiiiiiiiiiiiiiiiiiis 26-7
PreDOOT weveiiiiiiiiiii e 26-9
Factory Page Settings (FPS)cccoooiiiiiiiii 26-10
Preboot Page Settings (PBS) ...cooovviiviiiiniiiiiiiiiieceecee, 26-13
Alternative PBS Pagescccocceiiiiiiiiiiiiiniiiiiie, 26-14
Programming PBS Pagesccccccciiiiiii, 26-15

lii ADSP-BF51x Blackfin Processor Hardware Reference

Contents

Recovering From Misprogrammed PBS Pages 26-15
Customizing Power Managementccccccoevvviinininnnn. 26-16
Customizing Booting Optionsccccceevvuirreeiniunneeennnnne. 26-17
Customizing the Asynchronous Portccccccecveniiennne. 26-18
Customizing the Synchronous Portccccoocviiniiiinnien. 26-18
Basic Booting Processcccccoviviiiiiiiiiiiiiiiiiiiiiiiiiie, 26-19
Block Headersccuveiiiiiiiiiiiiiiiieeeieeeeee e 26-21
Block Code ..uvvviiiiiiiiiiiiiiiee e 26-22
DMA Code Fieldooooviiiiiiiiiiiiiiiiiicceeeeeen 26-22
Block Flags Fieldcccooovviiiiiiiiiiniiiiiiiciciccs 26-25
Header Checksum Fieldccccovviiiiiiiiiiiiieeee 26-27
Header Sign Fieldcoooniiiiiiiicees 26-27
Target Addresscooceiiiiiiiiiiiiiiii 26-27
Byte Countccoiiiiiiiiiiiiiii 26-28
ATGUIMEIIT .eiiiiiiiiiiiiiiiiiiiiie e e 26-29
Boot Host Wait (HWAIT) Feedback Strobecccccvvvvnennninn. 26-30
Using HWAIT as Reset Indicatorcccocoveeviiiiiniieennnne. 26-31
Boot Terminationcccccuiiiiiiiiiiiiiiiiiiiiiieeeeeeeiieeeeen 26-32
Single Block Boot Streamsccccoocviiiiiiiiiiiiiiiiiiiicee 26-32
Direct Code EXecutioncceeeeeviiciiiiiiieeeeeeeniiiiieeeennn. 26-33
Advanced Boot Techniquesccccovvuveeriiiiiniiiciniiieiieceec e, 26-35
Initialization Codecceieiiiiiiiiiiiiiiiiiiiiiee e 26-35
QUick BOOT eiiiiiiiiiiiiiic i 26-40
Indirect Bootingcocceiiiiiiiniiiiiiiiiiiececcec e 26-41

ADSP-BF51x Blackfin Processor Hardware Reference

liii

Contents

Callback RoUTINES ..ooouiiiiiiiiiieeiiiiiiieee e 26-42
Error Handlerooooiiiiiiiiiiiiiiieeee e, 26-45
CRC Checksum Calculationccccvveeiiniiiiiiniiiiieeiniinene. 26-45
Load FUNCHONS ..vviiiiiiiiiiiiiiiiiiceee e 26-46
Calling the Boot Kernel at Runtimecccocveeiiiiinniiennne. 26-47
Debugging the Boot Processccoovvvieviiiiniiiiniieciieceee. 26-48
Boot Managementccoccuviiiiiiiiiiiiiiiiiii 26-51
Booting a Different Applicationccoceveviviiniiieiniecennn. 26-51
Multi-DXE Boot Streamsc..eeeeeviiiiieeiniiiieeeiiiieeeee 26-52
Determining Boot Stream Start Addressesccceeeies 26-57
Initialization Hook Routineccccvvvvvieieeiiiiiiiiiieeeen, 26-57
Specific Boot Modescoviiiiiiiiiiiiiiiiiceeicee e 26-58
NO BOOt MOde ..viviiiiiiiiiiiiiiiiieeee et 26-59
Flash Boot Modescccuuviiiiiieeiiiiiiiiiiieee e 26-59
SDRAM Boot Modeuviiiiiiiiiiiiiiiiiiiieieeeeeeee e 26-62
SPI Master Boot Modescceeeeiiiiniiiiiiiiiiiiiiiiiiiiiceceeeenn 26-63
SPI Device Detection Routineoeevveeiiiiiiiiiiiieieneeenn. 26-65

SPI Slave Boot Modecceiviiiiiiiiiiiiiiiiiiiiieeeeiieee e 26-67
UART Slave Mode BoOt ...uuuiiiiiiiiiiiiiiiiiiiiiieeeeeieeeeee e 26-71
OTP Boot MOde ..oeeeeiiiiiiiiieeee et 26-73
Reset and Booting RegiSterscoovveieriiieniiieniiiiiieceniee e 26-74
Software Reset (SWRST) Registerccccocvveviiiniiiniiiniennen. 26-74
System Reset Configuration (SYSCR) Registerccccceeeneee. 26-76
Boot Code Revision Control (BK_REVISION)cccoeu..... 26-78

liv

ADSP-BF51x Blackfin Processor Hardware Reference

Contents

Boot Code Date Code (BK_DATECODE) ...ccovvvvvvviiinrinnnn. 26-79
Zero Word (BK_ZEROS) ..uuiiieiiiiiiiiiiceeeeeeeeeeeee e 26-80
Ones Word (BK_ONES) ..ot 26-81
OTP Memory Pages for Bootingcccceeviiiiiiiiiiiniiiinieennee 26-81
Lower PBS00 Half Pageccoooviiiniiiiniiiiiiciiiceiecceeee 26-81
Upper PBS00 Half Pageooooviiiiniiiiiiiiiiiiciieciecceee 26-84
Lower PBSO1 Half Pagecoceeviiiiiiiiiiiiiiiiiiciiecee, 26-85
Upper PBSO1 Half Pageeoovvviiiniiiiniiiiiiiciieceieceeee 26-85
Lower PBS02 Half Pageccovvviiiniiiiniiiiiiiciiecciicceee 26-88
Upper PBS02 Half Pageccceeevviiiiiniiiiniiiiiciiicciccceee, 26-89
Reserved Half Pagescccceeeviiiiniiiiiiiiiiiiciiccccc 26-89
Data STructureseeeeeeeieiiiiiiiiiiiiiiiii e 26-89
ADI_BOOT_HEADER ...coiiiiiiiiiiiiiiieeeeee e 26-89
ADI_BOOT_BUFFERooitiiiiiiieieeeeeeeeeeee e 26-90
ADI_BOOT_DATA ..o 26-90
dFlags Wordccccoooiiiiiiiiiiiii 26-94
Callable ROM Functions for Bootingccccceevviiiiniieinincennnn. 26-95
BFROM_FINALINIT ...t 26-95
BFROM_PDMA ..ottt 26-96
BFROM_MDMA ..ottt e 26-96
BFROM_MEMBOOTcoooiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeee, 26-96
BFROM_SPIBOOT ..oiiiiiiiiieeiiiee e 26-98
BFROM_OTPBOOT ..cociiiiieeeiieee ettt 26-100
BFROM_BOOTKERNEL ...ccocoiiiiiiiiiiiiiiiiieceeeieee e 26-101
ADSP-BF51x Blackfin Processor Hardware Reference lv

Contents

BFROM_CREC32 oottt 26-102
BFROM_CRC32POLY oot 26-102
BFROM_CRC32CALLBACK ..ottt 26-103
BFROM_CRC32INITCODEccciiiiiiiiiiiiiiiiiieeeeeeee 26-103
Programming Examplesccoocviiniiiiiiiiiiiiiiice 26-104
System ReSet ..ccoocuviiiiiiiiiiiiiiiiiiciiec e 26-104
Exiting Reset to User Modecccceeviiiiiiiiiiiiiiiiiiiiins 26-105
Exiting Reset to Supervisor Modeccoovuviiiiiiiniiienineenn. 26-106
Initcode (SDRAM Controller Setup) ...ccovvveevivieriieennnecens 26-107
Initcode (Power Management Control)ccccceeviiiiiiniins 26-109
Quickboot With Restore From SDRAMccoccvviienninnen. 26-112
XOR Checksum ...ccoiuvviiiiiiiiiiiiiiiiiiee e 26-113
Direct Code EXecutioncccooviiiiiiiiiiiiieiiiiiiiiiiiceeeee e 26-115
Managing PBS Pages in OTP Memoryccccccevviiiiiennnnnn. 26-116

SYSTEM DESIGN

Pin DesCriptionseeviviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiinieeeececeeeeeeeeeee 27-1
Managing Clockscociiiiiiiiiiiiiiiiiiiici 27-1

Managing Core and System Clockscoovoiviiniiiiniiiiniiennne. 27-2
Configuring and Servicing Interrupts «.....ccocoveevvveeiniiciniiecenineene 27-2
SemMaPROres ouuviiiiiiiiiiiie e 27-2

Example Code for Query Semaphorec.ccccoovviiiniiiinincennn. 27-3
Data Delays, Latencies and Throughputcccoooviiniiiniiinnnen. 27-4
Bus Prioritiescooooiiiiiiiiiiiiiiiii i 27-4

lvi ADSP-BF51x Blackfin Processor Hardware Reference

Contents

External Memory Design Issuesccccoooiiiiiiiiniiiiniiiiiin.. 27-5
Example Asynchronous Memory Interfacescccccceevuneennne. 27-5
Avoiding Bus Contentioncocceeeevieeeniiieniieeniiee e 27-7

High-Frequency Design Considerationsc.ccccecveevieriiienniennne. 27-8
Signal INTegrity «....oevouiiiiiiiiiiiieiieee e 27-8
Decoupling Capacitors and Ground Planesc.cccceeueeenee. 27-10
5 Volt Toleranceccoocoeiiiimiiiiiiiniiiiiceiieec e 27-11
Test POINT ACCESS uuvvvrvrreieeiieiiiiiiie ettt 27-12
Oscilloscope Probescoccveieviiiiniiiiiiiiiiiiiccec, 27-12
Recommended Readingccocviiiiiiiiiiiiinii, 27-12

Resetting the Processorccccovviiiiiiiiiiiiiiniiiciicie e 27-13

Recommendations for Unused Pinsccccoccveiiiiiiiiiiiiiiniinns 27-14

Programmable Outputscccovviiiiiiiiiiiiiiiiiii 27-14

Voltage Regulation Interfaceccocoeeviiiiiiiiiiniiiiniiiiiiiciees 27-14

SYSTEM MMR ASSIGNMENTS

Processor-Specific Memory Registersccoocvverviveernieeinieeennncens A-3

Core Timer Registersccooooiiiiiiiiiiii, A-3

System Reset and Interrupt Control

REGISTEIS ..vvviiiiiiiiiiiiiiiee e e A-4

DMA/Memory DMA Control Registersccccceviiiiiiniiiininens A-5

Handshake MDMA Control Registersc.cccccovvvviiniiiiiniiicenineenns A-7

External Bus Interface Unit Registersccccovveiriiiiiniiiiiniiecinnnens A-9

Ports Registersccooviiiiiiiiiiiiiiiiiii e A-9

Timer ReGISTErs ...coouviiiiiiiiiiiiiiiiiiic e A-13

ADSP-BF51x Blackfin Processor Hardware Reference lvii

Contents

Watchdog Timer Registersccccocveriiieniiiiniiiiiiiiiieciieniecne A-15
GP Counter Registersccoooeuiiiiiiiiiiiiiiiiiiiiiiii, A-15
Real-Time Clock Registersc.ccceviiiiriiiiiniiiiiniiiiniieceieceeen A-16
OTP and Security Registersccccceeeviiiiiiiiiiiiiiiiiiiiiiniicciiiees A-17
Dynamic Power Management Registersccccccoiiiiiiiiiiinnn.n. A-17
Ethernet MAC Re@iSterseeovuiiiniiiiiiiiiiiiceniiee e A-18
IEEE 1588 PTP Registerscccccovvuiiiiiiiiiiiiiiiiiiicciiiicccieen A-23
PPI ReGISTEIS ..ooiiiiiiiiiiiiiiiiiiiiiiiiiiiiiccc e A-25
SPI Controller RegiSterscovueeiriiieriiieiiiiiceniiee e A-25
SPORT Controller Registerscccceeviiiiiiiiiiiiiiiiiiiiiiiiciiens A-26
UART Controller Registerscceevvveiriiiiiniiieniiiienieeeieeeeenn A-30
Motor Control PWM Registersc.ccevveeriiiiiniiiiiniiieniieenieeenns A-31
Removable Storage Interface (RSI) Registerscccoocvievviininennnens A-32
TWI REGISTEIS niiiiiiiiiiiiiee e A-34
TEST FEATURES
JTAG Standardooovvviiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeee B-1
Boundary-Scan Architecturecocoeeeriiiiiiiiiiniiiiniieicee B-2
Instruction Registercccooviiiiiiiiiiiiiiiiiccic e B-4
Public InStructionscccocvvieiiiiiiiiiiiiiiiciiccice e B-6
EXTEST — Binary Code 00000cccovviiieiimniiieeeniiiieeenne B-6
SAMPLE/PRELOAD - Binary Code 10000cccueeenneee. B-6
BYPASS — Binary Code 11111 ..oiiviiiiiniiiiiiiiieniieenieeeeee, B-6
Boundary-Scan Registerccccevviiiiiiiiiiiiiiiiniiiiiiiciieee B-7
lviii ADSP-BF51x Blackfin Processor Hardware Reference

Contents

INDEX

ADSP-BF51x Blackfin Processor Hardware Reference lix

Contents

Ix ADSP-BF51x Blackfin Processor Hardware Reference

Preface

PREFACE

Thank you for purchasing and developing systems using an enhanced
Blackfin® processor from Analog Devices.

Purpose of This Manual

ADSP-BF51x Blackfin Processor Hardware Reference provides architectural
information about the ADSP-BF512, ADSP-BF514, ADSP-BF516,
ADSP-BF518 processors. This hardware reference provides architectural
information about these processors and the peripherals contained within
the ADSP-BF51x Blackfin packages. The architectural descriptions cover
functional blocks, buses, and ports, including all features and processes
that they support. For programming information, see Blackfin Processor
Programming Reference. For timing, electrical, and package specifications,

see ADSP-BF512/BF514/BF516/BF518(F) Embedded Processor Data Sheet.

Infended Audience

The primary audience for this manual is a programmer who is familiar
with Analog Devices processors. The manual assumes the audience has a
working knowledge of the appropriate processor architecture and instruc-
tion set. Programmers who are unfamiliar with Analog Devices processors
can use this manual, but should supplement it with other texts, such as

ADSP-BF51x Blackfin Processor Hardware Reference Ixi

Manual Contents

hardware and programming reference manuals that describe their target
architecture.

Manual Contents

This manual consists of one volume:

Chapter 1, “Introduction”
Provides a high level overview of the processor, including peripher-
als, power management, and development tools.

Chapter 2, “Memory”
Describes processor-specific memory topics, including L1 memo-
ries and processor-specific memory MMREs.

Chapter 3, “One-Time Programmable Memory”
Describes the one-time-programmable memory features.

Chapter 4, “Chip Bus Hierarchy”
Describes on-chip buses, including how data moves through the
system.

Chapter 5, “System Interrupts”
Describes the system peripheral interrupts, including setup and
clearing of interrupt requests.

Chapter 6, “Direct Memory Access”

Describes the peripheral DMA and Memory DMA controllers.
Includes performance, software management of DMA, and DMA
errors.

Chapter 7, “External Bus Interface Unit”
Describes the external bus interface unit of the processor. The
chapter also discusses the asynchronous memory interface, the

SDRAM controller (SDC), related registers, and SDC configura-
tion and commands.

Ixii

ADSP-BF51x Blackfin Processor Hardware Reference

Preface

* Chapter 8, “Dynamic Power Management”
Describes the clocking, including the PLL, and the dynamic power
management controller.

e Chapter 9, “General-Purpose Ports”
Describes the general-purpose 1/0 ports, including the structure of
each port, multiplexing, configuring the pins, and generating
interrupts.

e Chapter 10, “General-Purpose Timers”
Describes the eight general-purpose timers.

e Chapter 11, “Core Timer”
Describes the core timer.

e Chapter 12, “Watchdog Timer”

Describes the watchdog timer.

e Chapter 13, “General-Purpose Counter”
Describes the Rotary (up/down) Counter. This counter provides
support for manually controlled rotary controllers, such as the vol-
ume wheel on a radio device. This unit also supports industrial or
motor-control type of wheels.

* Chapter 14, “PWM Controller”
Describes the programmable, three-phase PWM waveform genera-
tor which can generate switching patterns to drive a three-phase
voltage source inverter for ac induction motor (ACIM) or
permanent magnet synchronous motor (PMSM) control.

e Chapter 15, “UART Port Controllers”
Describes the Universal Asynchronous Receiver/Transmitter port
that converts data between serial and parallel formats. The UART
supports the half-duplex IrDA® SIR protocol as a mode-enabled

feature.

ADSP-BF51x Blackfin Processor Hardware Reference Ixiii

Manual Contents

Chapter 16, “Two-Wire Interface Controller”

Describes the Two-Wire Interface (TWI) controller, which allows
a device to interface to an Inter IC bus as specified by the Philips
I2C Bus Specification version 2.1 dated January 2000.

Chapter 17, “SPI-Compatible Port Controller”
Describes the Serial Peripheral Interface (SPI) port that provides an
I/0 interface to a variety of SPI compatible peripheral devices.

Chapter 18, “SPI Serial Flash”
Describes the SPI serial flash memory contained within the pack-
age of the processor and connected to the SPI0.

Chapter 19, “SPORT Controller”

Describes the independent, synchronous Serial Port Controller
which provides an I/O interface to a variety of serial peripheral
devices.

Chapter 20, “Parallel Peripheral Interface”

Describes the Parallel Peripheral Interface (PPI) of the processor.
The PPI is a half-duplex, bidirectional port accommodating up to
16 bits of data and is used for digital video and data converter
applications.

Chapter 21, “Removable Storage Interface”

Describes the RSI interface for multimedia cards (MMC), secure
digital memory cards (SD), secure digital input/output cards
(SDIO) and consumer electronic ATA devices (CE-ATA).

Chapter 22, “Ethernet MAC”

Describes the Ethernet Media Access Controller (MAC) peripheral
that provides a 10/100M bit/s Ethernet interface, compliant to
IEEE Std. 802.3-2002, between an MII (Media Independent Inter-
face) and the Blackfin peripheral subsystem.

Ixiv

ADSP-BF51x Blackfin Processor Hardware Reference

Preface

e Chapter 23, “IEEE 1588 PTP Engine”
Describes the IEEE 1588 engine module (PTP_TSYNC for
ADSP-BF518 processors) and the module’s operation.

e Chapter 24, “Real-Time Clock”
The RTC provides a set of digital watch features to the processor,
including time of day, alarm, and stopwatch countdown. It is typi-
cally used to implement either a real-time watch or a life counter,
which counts the elapsed time since the last system reset.

e Chapter 25, “Security”
Describes the Lockbox ™ Secure Technology for Analog Devices
Blackfin processors. This comprises a mix of hardware and software
mechanisms designed to prevent unauthorized accesses and allow
trusted code to execute on the processor.

e Chapter 26, “System Reset and Booting”
Describes the booting methods, booting process and specific boot
modes for the processor.

e Chapter 27, “System Design”
Describes how to use the processor as part of an overall system. It
includes information about bus timing and latency numbers, sema-
phores, and a discussion of the treatment of unused pins.

* Appendix A, “System MMR Assignments”
Lists the memory-mapped registers included in this manual, their
addresses, and cross-references to text.

e Appendix B, “Test Features”
Describes test features for the processor, discusses the JTAG stan-
dard, boundary-scan architecture, instruction and boundary
registers, and public instructions.

This hardware reference is a companion document to Blackfin Pro-
cessor Programming Reférence.

ADSP-BF51x Blackfin Processor Hardware Reference Ixv

What's New in This Manual

What's New in This Manual

This is Revision 1.2 of ADSP-BF51x Blackfin Processor Hardware Refer-

ence. This revision corrects minor typographical errors and the following

1ssues:

UART not half-duplex in Chapter 1, “Introduction”
Range for UNSECURED ECC SPACE in the Public OTP Mem-

ory Map and 0TP_init_value setting in code example in
Chapter 3, “One-Time Programmable Memory”

Core priority over DMA when accessing L1 SRAM in Chapter 4,
“Chip Bus Hierarchy”

Note on timing dependencies for the TRP and TRAS settings in the
EBIU_SDGCTL register in Chapter 7, “External Bus Interface Unit”

Arithmetic operators in PLL block diagram, note on programming
the STOPCK bit, CLKBUF behavior during hibernate, input and output
delays removed from the processor and PLL_CTL diagram, and extra
pipe in the bfrom_SysControl code example in Chapter 8,
“Dynamic Power Management”

GPIO data register and RSI data pin assignments
in Chapter 9, “General-Purpose Ports”

Descriptions of the TWI_XMT_DATA8 register bit and RCVSERV, the
Receive FIFO service, in Chapter 16, “Two-Wire Interface
Controller”

Termination of SPI TX DMA operations and comments on
SPI_CTL register functionality in Chapter 17, “SPI-Compatible
Port Controller”

Reset timing parameter specifications that duplicate the datasheet

removed in Chapter 18, “SPI Serial Flash”

Ixvi

ADSP-BF51x Blackfin Processor Hardware Reference

Preface

* Description of multichannel mode operation added and receiver
and transmitter enable bit names standardized on RSPEN and TSPEN

in Chapter 19, “SPORT Controller”

* End-of-range address for Lockbox memory and SESR location
in Chapter 25, “Security”

e Target address setting by elfloader utility and MOST pin latching
information in Chapter 26, “System Reset and Booting”

Technical Support

You can reach Analog Devices processors and DSP technical support in
the following ways:

* DPost your questions in the processors and DSP support community
at EngineerZone™:
http://ez.analog.com/community/dsp

e Submit your questions to technical support directly at:
http://www.analog.com/support

* E-mail your questions about processors, DSPs, and tools develop-
ment software from CrossCore® Embedded Studio or

VisualDSP++®:

Choose Help > Email Support. This creates an e-mail to
processor.tools.support@analog.com and automatically attaches
your CrossCore Embedded Studio or Visual DSP++ version infor-
mation and license.dat file.

* E-mail your questions about processors and processor applications
to:
processor.support@analog.com or
processor.china@analog.com (Greater China support)

ADSP-BF51x Blackfin Processor Hardware Reference Ixvii

http://ez.analog.com/community/dsp
http://www.analog.com/support
mailto:processor.tools.support@analog.com
mailto:processor.support@analog.com
mailto:processor.china@analog.com

Supported Processors

* In the USA only, call 1-800-ANALOGD (1-800-262-5643)

* Contact your Analog Devices sales office or authorized distributor.
Locate one at:
www.analog.com/adi-sales

* Send questions by mail to:
Processors and DSP Technical Support
Analog Devices, Inc.
Three Technology Way
P.O. Box 9106
Norwood, MA 02062-9106
USA

Supported Processors

The name “Blackfin” refers to a family of 16-bit, embedded processors.
Refer to the CCES or VisualDSP++ online help for a complete list of sup-

ported processors.

Product Information

Product information can be obtained from the Analog Devices Web site

and the CCES or Visual DSP++ online help.

Ixviii ADSP-BF51x Blackfin Processor Hardware Reference

http://www.analog.com/adi-sales

Preface

Analog Devices Web Site

The Analog Devices Web site, www.analog.com, provides information
about a broad range of products—analog integrated circuits, amplifiers,
converters, and digital signal processors.

To access a complete technical library for each processor family, go to
http://www.analog.com/processors/technical_library. The manuals
selection opens a list of current manuals related to the product as well as a
link to the previous revisions of the manuals. When locating your manual
title, note a possible errata check mark next to the title that leads to the
current correction report against the manual.

Also note, myAnalog is a free feature of the Analog Devices Web site that
allows customization of a Web page to display only the latest information
about products you are interested in. You can choose to receive weekly
e-mail notifications containing updates to the Web pages that meet your
interests, including documentation errata against all manuals. myAnalog
provides access to books, application notes, data sheets, code examples,
and more.

Visit myAnalog to sign up. If you are a registered user, just log on. Your
user name is your e-mail address.

EngineerZone

EngineerZone is a technical support forum from Analog Devices, Inc. It
allows you direct access to ADI technical support engineers. You can
search FAQs and technical information to get quick answers to your
embedded processing and DSP design questions.

Use EngineerZone to connect with other DSP developers who face similar
design challenges. You can also use this open forum to share knowledge
and collaborate with the ADI support team and your peers. Visit
http://ez.analog.com to sign up.

ADSP-BF51x Blackfin Processor Hardware Reference Ixix

http://www.analog.com
http://www.analog.com/processors/technical_library/
http://www.analog.com/MyAnalog
http://www.analog.com/MyAnalog
http://www.analog.com/MyAnalog
http://ez.analog.com

Notation Conventions

Notation Conventions

Text conventions in this manual are identified and described as follows.

Example

Description

File > Close

Titles in reference sections indicate the location of an item within the
IDE environment’s menu system (for example, the Close command
appears on the File menu).

{this | that}

Alternative required items in syntax descriptions appear within curly
brackets and separated by vertical bars; read the example as this or
that. One or the other is required.

[this | that]

Optional items in syntax descriptions appear within brackets and sepa-
rated by vertical bars; read the example as an optional this or that.

[this,..] Optional item lists in syntax descriptions appear within brackets delim-
ited by commas and terminated with an ellipsis; read the example as an
optional comma-separated list of this.

.SECTION Commands, directives, keywords, and feature names are in text with
letter gothic font.

filename Non-keyword placeholders appear in text with italic style format.

®

Note: For correct operation, ...
A Note provides supplementary information on a related topic. In the
online version of this book, the word Note appears instead of this

symbol.

Caution: Incorrect device operation may result if ...

Caution: Device damage may result if ...

A Caution identifies conditions or inappropriate usage of the product

that could lead to undesirable results or product damage. In the online
version of this book, the word Caution appears instead of this symbol.

Warning: Injury to device users may result if ...

A Warning identifies conditions or inappropriate usage of the product
that could lead to conditions that are potentially hazardous for devices
users. In the online version of this book, the word Warning appears
instead of this symbol.

Ixx

ADSP-BF51x Blackfin Processor Hardware Reference

Preface

Register Diagram Conventions

Register diagrams use the following conventions:

The descriptive name of the register appears at the top, followed by
the short form of the name in parentheses.

If the register is read-only (RO), write-1-to-set (W1S), or
write-1-to-clear (W1C), this information appears under the name.
Read/write is the default and is not noted. Additional descriptive
text may follow.

If any bits in the register do not follow the overall read/write con-
vention, this is noted in the bit description after the bit name.

If a bit has a short name, the short name appears first in the bit
description, followed by the long name in parentheses.

The reset value appears in binary in the individual bits and in hexa-
decimal to the right of the register.

Bits marked x have an unknown reset value. Consequently, the
reset value of registers that contain such bits is undefined or depen-
dent on pin values at reset.

Shaded bits are reserved.

To ensure upward compatibility with future implementations,
write back the value that is read for reserved bits in a register,
unless otherwise specified.

ADSP-BF51x Blackfin Processor Hardware Reference Ixxi

Register Diagram Conventions

The following figure shows an example of these conventions.

Timer Configuration Registers (TIMERx_CONFIG)

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
|o|0|o|o|o|o|o|o|o|o|o|o|0|o|0|0|Reset=0x0000

ERR_TYP[1:0] (Error Type) - RO TMODE[1:0] (Timer Mode)

00 - No error. 00 - Reset state - unused.

01 - Counter overflow error. 01 - PWM_OUT mode.

10 - Period register programming error. 10 - WDTH_CAP mode.

11 - Pulse width register programming error. 11 - EXT_CLK mode.
PULSE_HI

EMU_RUN (Emulation Behavior Select) 0 - Negative action pulse.

0 - Timer counter stops during emulation. 1 - Positive action pulse.

1 - Timer counter runs during emulation. L PERIOD_CNT (Period

TOGGLE_HI (PWM_OUT PULSE_HI Toggle Mode)— Count)

0 - The effective state of PULSE_HI 0 - Count to end of width.

is the programmed state. 1 - Count to end of period.

1 - The effective state of PULSE_HI IRQ_ENA (Interrupt

alternates each period. Request Enable)

CLK_SEL (Timer Clock Select) 0 - Interrupt request

This bit must be set to 1, when operat- disable.

ing the PPl in GP Output modes. 1 - Interrupt request enable

0 - Use system clock SCLK for counter. TIN_SEL (Timer Input

1 - Use PWM_CLK to clock counter. L Select)

OUT_DIS (Output Pad Disable) 0 - Sample TMRx pin or

0 - Enable pad in PWM_OUT mode. PF1 pin.)

1 - Disable pad in PWM_OUT mode. 1 - Sample UART RX pin

or PPI_CLK pin.

Figure 1. Register Diagram Example

Ixxii ADSP-BF51x Blackfin Processor Hardware Reference

Infroduction

1 INTRODUCTION

The ADSP-BF51x processors are members of the Blackfin processor fam-
ily that offer significant high performance and low power features while
retaining their ease-of-use benefits. All parts within the family are
pin-compatible. However, the ADSP-BF512 does not include the RSI
module, the ADSP-BF512 and ADSP-BF514 do not include an Ethernet
MAC, and the ADSP-BF516 does not include an IEEE-1588 block.

Peripherals

The processor system peripherals include:
e Two memory-to-memory DMAs with handshake DMA
* Event handler with 56 interrupt inputs
e 12 peripheral DMAs (2 mastered by the Ethernet MAC)
* Removable Storage Interface (RSI) (not available on ADSP-BF512)
* 40 General-Purpose I/Os (GPIOs)
e Eight 32-bit timer/counters with PWM support
* 32-bit core timer

* Real-Time Clock (RTC) and watchdog timer

ADSP-BF51x Blackfin Processor Hardware Reference 1-1

Peripherals

* Rotary counter

* Lockbox security controller

* One-time Programmable (OTP) Memory

* On-chip PLL capable of 0.5x to 64x frequency multiplication
* Debug/JTAG interface

e IEEE 802.3-compliant 10/100 Ethernet MAC (only on the
ADSP-BF516 and ADSP-BF518)

» IEEE-1588 precision clock synchronization protocol for 10/100
Ethernet MAC (only on the ADSP-BF518)

 Darallel Peripheral Interface (PPI), supporting ITU-R 656 video

data formats
* Two Serial Peripheral Interface (SPI)-compatible ports
e Two-Wire Interface (TWI) controller

* Two dual-channel, full-duplex synchronous Serial Ports
(SPORTS), supporting eight stereo I2S channels

e Two UARTs with IrDA® support
* 3-phase PWM generation unit

These peripherals are connected to the core via several high bandwidth
buses, as shown in Figure 1-1.

Most of the peripherals are supported by a flexible DMA structure. There
are also two separate memory DMA channels dedicated to data transfers
between the processor’s memory spaces, which include external SDRAM
and asynchronous memory. Multiple on-chip buses provide enough band-
width to keep the processor core running even when there is also activity
on all of the on-chip and external peripherals.

1-2 ADSP-BF51x Blackfin Processor Hardware Reference

[rrc | HE

| wATCHDOG TIMER

Infroduction

PERIPHERAL
Tr ﬂ ﬁ ACCESS BUS
L COUNTER =]

[JTAG TEST AND EMULATION |

f

= 3-Phase PWM <=>
=D TIMERS7-0 <t=>

T™WI
) le— INTERRUPT =
BML’I{/@ CONTROLLER [* ¥
| SPORT1-0 =
f Tt ¥ >
) > RsI(sDIO) |<1=|>
L1 L1 <
DMA <
MEMORY MEMORY CONTROLLER =
A 4 UART1-0 =D
]T ﬁ 1 ﬁ ﬁ DMA ={>
lL EXTERNAL ACCESS BUS ¢ — .
< 0 BOOT
EXTERNAL PORT <
FLASH, SDRAM CONTROL (=P rom L | spo =
A
4 Mbit SPI Flash <J

Figure 1-1. ADSP-BF51x Processor Block Diagram

Memory Architecture

PORTS

The Blackfin processor architecture structures memory as a single, unified
4G byte address space using 32-bit addresses. All resources, including
internal memory, external memory, and I/O control registers, occupy sep-

arate sections of this common address space. The memory portions of this
address space are arranged in a hierarchical structure to provide a good
cost/performance balance of some very fast, low latency on-chip memory
as cache or SRAM, and larger, lower cost and lower performance off-chip
memory systems. Table 1-1 shows the memory for the ADSP-BF51x

processors.

ADSP-BF51x Blackfin Processor Hardware Reference

1-3

Memory Architecture

Table 1-1. Memory Configurations

Type of Memory ADSP-BF51x
Instruction SRAM/cache, lockable by way or line | 16K byte
Instruction SRAM 32K byte
Data SRAM/cache 32K byte
Data SRAM 32K byte
Data scratchpad SRAM 4K byte

L3 Boot ROM 32K byte
Total 148K byte

The L1 memory system is the primary highest performance memory avail-
able to the core. The off-chip memory system, accessed through the
external bus interface unit (EBIU), provides expansion with SDRAM,

flash memory, and SRAM, optionally accessing up to 132M bytes of phys-
ical memory.

The memory DMA controller provides high bandwidth data movement
capability. It can perform block transfers of code or data between the
internal memory and the external memory spaces.

1-4 ADSP-BF51x Blackfin Processor Hardware Reference

Infroduction

Internal Memory

The processor has three blocks of on-chip memory that provide high
bandwidth access to the core:

e L1 instruction memory, consisting of SRAM and a 4-way set-asso-
ciative cache. This memory is accessed at full processor speed.

* L1 data memory, consisting of SRAM and/or a 2-way set-associa-
tive cache. This memory block is accessed at full processor speed.

e L1 scratchpad RAM, which runs at the same speed as the L1 mem-
ories but is only accessible as data SRAM and cannot be configured
as cache memory.

External Memory

External (off-chip) memory is accessed via the external bus interface unit
(EBIU). This 16-bit interface provides a glueless connection to a bank of
synchronous DRAM (SDRAM) and as many as four banks of asynchro-
nous memory devices including flash memory, EPROM, ROM, SRAM,

and memory-mapped 1/O devices.

The SDRAM controller can be programmed to interface to up to
128M bytes of SDRAM.

The asynchronous memory controller can be programmed to control up
to four banks of devices. Each bank occupies a IM byte segment regardless
of the size of the devices used, so that these banks are only contiguous if
each is fully populated with 1M byte of memory.

I/0 Memory Space

Blackfin processors do not define a separate I/O space. All resources are
mapped through the flat 32-bit address space. Control registers for
on-chip I/0 devices are mapped into memory-mapped registers (MMRs)

ADSP-BF51x Blackfin Processor Hardware Reference 1-5

Memory Architecture

at addresses near the top of the 4G byte address space. These are separated
into two smaller blocks: one contains the control MMRs for all core func-
tions and the other contains the registers needed for setup and control of

the on-chip peripherals outside of the core. The MMRs are accessible only

in supervisor mode. They appear as reserved space to on-chip peripherals.

One-Time-Programmable (OTP) Memory

ADSP-BF51x processors also include an on-chip OTP memory array
which provides 64K bits of non-volatile memory that can be programmed
by the developer one time only. It includes the array and logic to support
read access and programming. A mechanism for error correction is pro-
vided. Additionally, its pages can be write protected.

The OTP is not part of the Blackfin linear memory map. OTP memory is
not accessed directly using the Blackfin memory map; rather, it is accessed
via four 32-bit-wide registers that act as the OTP memory read/write

buffer.

This memory is organized into 512 pages, each comprised of 128 bits and
equally separated into two distinct areas with privileged access dependant
upon modes of operation when security features are utilized. Approxi-
mately 400 pages are available for developer use. The remaining 100 pages
are utilized for page protection bits, error correction, and Analog Devices
factory-reserved areas. One area is read/write accessible at all time (Public
OTP Memory). The second area maintains privileged access and can only
be accessed (read/write) upon entry to Secure Mode when security features
are utilized (Private OTP Memory).

All together, OTP memory provides a means to store Public Keys in Pub-
lic OTP Memory or secrets such as Private Keys or Symmetric Keys in
Private OTP Memory. One page of the Public OTP Memory is initialized
in the Analog Devices factory with a Unique Chip ID.

This OTP memory provides a means to store public and private cipher
keys as well as chip, customer, and factory identification data.

1-6

ADSP-BF51x Blackfin Processor Hardware Reference

Infroduction

DMA Support

The processor has a DMA controller which supports automated data
transfers with minimal overhead for the core. DMA transfers can occur
between the internal memories and any of its DMA-capable peripherals.
Additionally, DMA transfers can be accomplished between any of the
DMA-capable peripherals and external devices connected to the external
memory interfaces, including the SDRAM controller and the asynchro-
nous memory controller. DMA-capable peripherals include the SPORTs,
SPI ports, UARTS, RSI, Ethernet, and PPI. Each individual DMA-capable
peripheral has at least one dedicated DMA channel.

The DMA controller supports both one-dimensional (1D) and
two-dimensional (2-D) DMA transfers. DMA transfer initialization can
be implemented from registers or from sets of parameters called descriptor

blocks.

The 2-D DMA capability supports arbitrary row and column sizes up to
64K elements by 64K elements, and arbitrary row and column step sizes
up to +/- 32K elements. Furthermore, the column step size can be less
than the row step size, allowing implementation of interleaved data-
streams. This feature is especially useful in video applications where data
can be de-interleaved on the fly.

Examples of DMA types supported include:
* A single, linear buffer that stops upon completion

* A circular, auto-refreshing buffer that interrupts on each full or
fractionally full buffer

* 1-D or 2-D DMA using a linked list of descriptors

e 2-D DMA using an array of descriptors specifying only the base
DMA address within a common page

ADSP-BF51x Blackfin Processor Hardware Reference 1-7

External Bus Interface Unit

In addition to the dedicated peripheral DMA channels, there are two sep-
arate pairs of memory DMA channels provided for transfers between the
various memories of the system. This enables transfers of blocks of data
between any of the memories—including external SDRAM, ROM,
SRAM, and flash memory—with minimal processor intervention. Mem-
ory DMA transfers can be controlled by a very flexible descriptor-based
methodology or by a standard register-based autobuffer mechanism.

The ADSP-BF51x processors also include a handshake DMA capability
via dual external DMA request pins when used in conjunction with the
external bus interface unit (EBIU). This functionality can be used when a
high speed interface is required for external FIFOs and high bandwidth
communications peripherals such as USB 2.0. It allows control of the
number of data transfers for MDMA. The number of transfers per edge is
programmable. This feature can be programmed to allow MDMA to have
an increased priority on the external bus relative to the core.

External Bus Interface Unit

The external bus interface unit (EBIU) on the processor interfaces with a
wide variety of industry-standard memory devices. The controller consists
of an SDRAM controller and an asynchronous memory controller.

SDRAM Controller

The SDRAM controller provides an interface to a single bank of indus-
try-standard SDRAM devices or DIMMs. The bank can be configured to
contain between 16M and 128M bytes of memory.

A set of programmable timing parameters is available to configure the
SDRAM bank to support slower memory devices. The memory bank is
16 bits wide for minimum device count and lower system cost.

1-8 ADSP-BF51x Blackfin Processor Hardware Reference

Infroduction

Asynchronous Controller

The asynchronous memory controller provides a configurable interface for
up to four separate banks of memory or I/O devices. Each bank can be
independently programmed with different timing parameters. This allows
connection to a wide variety of memory devices, including SRAM, ROM,
and flash EPROM, as well as I/O devices that interface with standard
memory control lines. Each bank occupies a 1M byte window in the pro-
cessor address space, but if not fully populated, these are not made
contiguous by the memory controller. The banks are 16 bits wide, for
interfacing to a range of memories and I/O devices.

General-Purpose 1/O (GPIO)

The ADSP-BF51x processors have 40 bidirectional, general-purpose 1/O
(GPIO) pins allocated across three separate GPIO modules—PORTFIO,
PORTGIO, and PORTHIO, associated with port F, port G, and port H,
respectively. Port] does not provide GPIO functionality. Each
GPIO-capable pin shares functionality with other ADSP-BF51x processor
peripherals via a multiplexing scheme; however, the GPIO functionality is
the default state of the device upon powerup. Neither GPIO output or
input drivers are active by default. Each general-purpose port pin can be
individually controlled by manipulation of the port control, status, and
interrupt registers:

* GPIO direction control register — Specifies the direction of each
individual GPIO pin as input or output.

* GPIO control and status registers — The ADSP-BF51x processors
employ a “write one to modify” mechanism that allows any combi-
nation of individual GPIO pins to be modified in a single
instruction, without affecting the level of any other GPIO pins.
Four control registers are provided. One register is written in order
to set pin values, one register is written in order to clear pin values,

ADSP-BF51x Blackfin Processor Hardware Reference 1-9

Two-Wire Interface

one register is written in order to toggle pin values, and one register
is written in order to specify a pin value. Reading the GPIO status
register allows software to interrogate the sense of the pins.

* GPIO interrupt mask registers — The two GPIO interrupt mask
registers allow each individual GPIO pin to function as an inter-
rupt to the processor. Similar to the two GPIO control registers
that are used to set and clear individual pin values, one GPIO
interrupt mask register sets bits to enable interrupt function, and
the other GPIO interrupt mask register clears bits to disable inter-
rupt function. GPIO pins defined as inputs can be configured to
generate hardware interrupts, while output pins can be triggered by
software interrupts.

* GPIO interrupt sensitivity registers — The two GPIO interrupt sen-
sitivity registers specify whether individual pins are level- or
edge-sensitive and specify—if edge-sensitive—whether just the ris-
ing edge or both the rising and falling edges of the signal are
significant. One register selects the type of sensitivity, and one reg-
ister selects which edges are significant for edge-sensitivity.

Two-Wire Interface

The Two-Wire Interface (TWI) is fully compatible with the widely used
12C bus standard. It was designed with a high level of functionality and is
compatible with multi-master, multi-slave bus configurations. To preserve
processor bandwidth, the TWI controller can be set up and a transfer ini-
tiated with interrupts only to service FIFO buffer data reads and writes.
Protocol related interrupts are optional.

1-10 ADSP-BF51x Blackfin Processor Hardware Reference

Infroduction

The TWI externally moves 8-bit data while maintaining compliance with
the I2C bus protocol. The Philips I2C Bus Specification version 2.1 covers
many variants of I2C. The TWI controller includes these features:

Simultaneous master and slave operation on multiple device
systems

Support for multi-master data arbitration

7-bit addressing

100K bits/second and 400K bit/second data rates

General call address support

Master clock synchronization and support for clock low extension
Separate multiple-byte receive and transmit FIFOs

Low interrupt rate

Individual override control of data and clock lines in the event of
bus lock-up

Input filter for spike suppression

Serial camera control bus support as specified in OmniVision Serial
Camera Control Bus (SCCB) Functional Specification version 2.1

Ethernet MAC

The Ethernet Media Access Controller (MAC) peripheral provides a
10/100M bit/second Ethernet interface, compliant with IEEE Std.
802.3-2002, between a Media Independent Interface (MII) and the Black-
fin peripheral subsystem. The MAC operates in both half-duplex and
full-duplex modes. It provides programmable enhanced features designed
to minimize bus utilization and pre- or post-message processing. The con-

ADSP-BF51x Blackfin Processor Hardware Reference 1-11

IEEE 1588 Support

nection to the external physical layer device (PHY) is achieved via the MII
or a Reduced Media Independent Interface (RMII). The RMII provides
data buses half as wide (2 bit vs. 4 bit) as those of an MII, operating at
double the frequency.

The MAC is clocked internally from the CLKIN pin on the processor. A

buffered version of this clock can also be used to drive the external PHY
via the CLKBUF pin. A 25 MHz source should be used with an MII PHY.
A 50 MHz clock source is required to drive an RMII PHY.

IEEE 1588 Support

The IEEE 1588 standard is a precision clock synchronization protocol for
networked measurement and control systems. The ADSP-BF518 proces-
sors include hardware support for IEEE 1588 with an integrated precision
time protocol synchronization engine (PTP_TSYNC). This engine pro-
vides hardware assisted time stamping to improve the accuracy of clock
synchronization between PTP nodes. The main features of the

PTP_SYNC engine are:
* Support for both IEEE 1588-2002 and IEEE 1588-2008 protocol

standards
* Hardware assisted time stamping capable of 12.5 ns resolution
* Lock adjustment
* Programmable PTM message support
* Dedicated interrupts
e Programmable alarm

e Multiple input clock sources (SCLK, MII clock, external clock up
to 50 MHz)

1-12 ADSP-BF51x Blackfin Processor Hardware Reference

Infroduction

Programmable pulse per second (PPS) output

Auxiliary snapshot to time stamp external events

RSI Interface

The removable storage interface (RSI) controller acts as the host interface
for multi-media cards (MMC), secure digital memory cards (SD Card),
secure digital input/output cards (SDIO), and CE-ATA hard disk drives.
The following list describes the main features of the RSI controller:

Support for a single MMC, SD memory, SDIO card or CE-ATA
hard disk drive

Support for 1-bit and 4-bit SD modes
Support for 1-bit, 4-bit and 8-bit MMC modes
Support for 4-bit and 8-bit CE-ATA hard disk drives

A ten-signal external interface with clock, command, and up to
eight data lines

Card detection using one of the data signals
Card interface clock generation from SCLK
SDIO interrupt and read wait features

CE-ATA command completion signal recognition and disable

General-Purpose (GP) Counter

A 32-bit GP counter is provided that can sense 2-bit quadrature or binary
codes as typically emitted by industrial drives or manual thumb wheels.
The counter can also operate in general-purpose up/down count modes.

ADSP-BF51x Blackfin Processor Hardware Reference 1-13

3-Phase PWM Unit

Then, count direction is either controlled by a level-sensitive input signal
or by two edge detectors. A third input can provide flexible zero marker
support and can alternatively be used to input the push-button signal of
thumb wheels. All three signals have a programmable debouncing circuit.
An internal signal forwarded to the GP timer unit enables one timer to
measure the intervals between count events. Boundary registers enable
auto-zero operation or simple system warning by interrupts when pro-
grammable count values are exceeded.

3-Phase PWM Unit

The processors integrate a flexible and programmable 3-phase PWM
waveform generator that can be programmed to generate the required
switching patterns to drive a 3-phase voltage source inverter for ac induc-
tion (ACIM) or permanent magnet synchronous (PMSM) motor control.
In addition, the PWM block contains special functions that considerably
simplify the generation of the required PWM switching patterns for con-
trol of the electronically commutated motor (ECM) or brushless dc motor

(BDCM). Software can enable a special mode for switched reluctance
motors (SRM).

Features of the 3-phase PWM generation unit are:
* 16-bit center-based PWM generation unit
* Programmable PWM pulse width
» Single/double update modes
* Programmable dead time and switching frequency

e Twos-complement implementation which permits smooth transi-

tion to full ON and full OFF states

* Dossibility to synchronize the PWM generation to an external
synchronization

1-14 ADSP-BF51x Blackfin Processor Hardware Reference

Infroduction

* Special provisions for BDCM operation (crossover and output
enable functions)

* Wide variety of special switched reluctance (SR) operating modes
* Output polarity and clock gating control
* Dedicated asynchronous PWM shutdown signal

The six PWM output signals consist of three high-side drive signals
(PWM_AH, PWM_BH, and PWM_CH) and three low-side drive signals (PWM_AL,
PWM_BL, and PWM_CL). The polarity of the generated PWM signal be set
with software, so that either active high or active low PWM patterns can
be produced. The switching frequency of the generated PWM pattern is
programmable. The PWM generator can operate in single update mode or
double update mode. In single update mode the duty cycle values are pro-
grammable only once per PWM period, so that the resultant PWM
patterns are symmetrical about the midpoint of the PWM period. In the
double update mode, a second updating of the PWM registers is imple-
mented at the midpoint of the PWM period. In this mode, it is possible to
produce asymmetrical PWM patterns that produce lower harmonic distor-
tion in 3-phase PWM inverters.

Parallel Peripheral Interface

The processor provides a Parallel Peripheral Interface (PPI) that can con-
nect directly to parallel A/D and D/A converters, [ITU-R 601/656 video
encoders and decoders, and other general-purpose peripherals. The PPI
consists of a dedicated input clock pin and three multiplexed frame sync
pins. The input clock supports parallel data rates up to half the system
clock rate.

In ITU-R 656 modes, the PPI receives and parses a data stream of 8-bit or
10-bit data elements. On-chip decode of embedded preamble control and
synchronization information is supported.

ADSP-BF51x Blackfin Processor Hardware Reference 1-15

Parallel Peripheral Interface

Three distinct ITU-R 656 modes are supported:

* Active video only - The PPI does not read in any data between the
End of Active Video (EAV) and Start of Active Video (SAV) pre-
amble symbols, or any data present during the vertical blanking
intervals. In this mode, the control byte sequences are not stored to
memory; they are filtered by the PPI.

* Vertical blanking only - The PPI only transfers Vertical Blanking
Interval (VBI) data, as well as horizontal blanking information and
control byte sequences on VBI lines.

* Entire field - The entire incoming bitstream is read in through the
PPI. This includes active video, control preamble sequences, and
ancillary data that may be embedded in horizontal and vertical
blanking intervals.

Though not explicitly supported, ITU-R 656 output functionality can be
achieved by setting up the entire frame structure (including active video,
blanking, and control information) in memory and streaming the data out
the PPI in a frame sync-less mode. The processor’s 2-D DMA features
facilitate this transfer by allowing the static frame buffer (blanking and
control codes) to be placed in memory once, and simply updating the
active video information on a per-frame basis.

The general-purpose modes of the PPI are intended to suit a wide variety
of data capture and transmission applications. The modes are divided into
four main categories, each allowing up to 16 bits of data transfer per
PPI_CLK cycle:

* Data receive with internally generated frame syncs
* Data receive with externally generated frame syncs
* Data transmit with internally generated frame syncs

* Data transmit with externally generated frame syncs

1-16 ADSP-BF51x Blackfin Processor Hardware Reference

Infroduction

These modes support ADC/DAC connections, as well as video communi-
cation with hardware signalling. Many of the modes support more than
one level of frame synchronization. If desired, a programmable delay can
be inserted between assertion of a frame sync and reception/transmission
of data.

SPORT Controllers

The processor incorporates two dual-channel synchronous serial ports
(SPORTO0 and SPORTY1) for serial and multiprocessor communications.
The SPORTSs support these features:

e Bidirectional, I*S capable operation

Each SPORT has two sets of independent transmit and receive
pins, which enable eight channels of I2S stereo audio.

* Buffered (eight-deep) transmit and receive ports

Each port has a data register for transferring data words to and
from other processor components and shift registers for shifting
data in and out of the data registers.

* Clocking

Each transmit and receive port can either use an external serial
clock or can generate its own in a wide range of frequencies.

e Word length

Each SPORT supports serial data words from 3 to 32 bits in
length, transferred in most significant bit first or least significant
bit first format.

ADSP-BF51x Blackfin Processor Hardware Reference 1-17

SPORT Controllers

Framing

Each transmit and receive port can run with or without frame sync
signals for each data word. Frame sync signals can be generated
internally or externally, active high or low, and with either of two
pulse widths and early or late frame sync.

Companding in hardware

Each SPORT can perform A-law or p-law companding according
to ITU recommendation G.711. Companding can be selected on
the transmit and/or receive channel of the SPORT without addi-
tional latencies.

DMA operations with single cycle overhead

Each SPORT can automatically receive and transmit multiple buf-
fers of memory data. The processor can link or chain sequences of
DMA transfers between a SPORT and memory.

Interrupts

Each transmit and receive port generates an interrupt upon com-
pleting the transfer of a data word or after transferring an entire
data buffer or buffers through DMA.

Multichannel capability

Each SPORT supports 128 channels out of a 1024-channel win-
dow and is compatible with the H.100, H.110, MVIP-90, and
HMVIP standards.

ADSP-BF51x Blackfin Processor Hardware Reference

Infroduction

Serial Peripheral Interface (SPI) Ports

The processor has two SPI-compatible ports that enable the processor to
communicate with multiple SPI-compatible devices.

Each SPI interface uses three pins for transferring data: two data pins and
a clock pin. An SPI chip select input pin lets other SPI devices select the
processor, and several SPI chip select output pins let the processor select
other SPI devices. The SPI select pins are reconfigured general-purpose
I/O pins. Using these pins, the SPI port provides a full-duplex, synchro-
nous serial interface, which supports both master and slave modes and
multimaster environments.

Each SPI port’s baud rate and clock phase/polarities are programmable,

and it has an integrated DMA controller, configurable to support either
transmit or receive datastreams. The SPI’s DMA controller can only ser-
vice unidirectional accesses at any given time.

During transfers, the SPI port simultaneously transmits and receives by
serially shifting data in and out of its two serial data lines. The serial clock
line synchronizes the shifting and sampling of data on the two serial data
lines.

Timers

There are nine general-purpose programmable timer units in the proces-
sor. Eight timers have an external pin that can be configured either as a
Pulse Width Modulator (PWM) or timer output, as an input to clock the
timer, or as a mechanism for measuring pulse widths of external events.
These timer units can be synchronized to an external clock input con-
nected to the TMRCLK/PPI_CLK pin or to the internal SCLK.

The timer units can be used in conjunction with the UARTSs to measure
the width of the pulses in the datastream to provide an autobaud detect
function for a serial channel.

ADSP-BF51x Blackfin Processor Hardware Reference 1-19

UART Ports

The timers can generate interrupts to the processor core to provide peri-
odic events for synchronization, either to the processor clock or to a count
of external signals.

In addition to the eight general-purpose programmable timers, a 9th timer
is also provided. This extra timer is clocked by the internal processor clock
and is typically used as a system tick clock for generation of operating sys-
tem periodic interrupts.

UART Ports

The processor provides two full-duplex Universal Asynchronous
Receiver/Transmitter (UART) ports, which are fully compatible with
PC-standard UARTs. The UART ports provide a simplified UART inter-
face to other peripherals or hosts, providing full-duplex, DMA-supported,
asynchronous transfers of serial data. The UART ports include support for
5 to 8 data bits; 1 or 2 stop bits; and none, even, or odd parity. The
UART ports support two modes of operation:

e Programmed I/O

The processor sends or receives data by writing or reading
I/O-mapped UART registers. The data is double buffered on both

transmit and receive.

* Direct Memory Access (DMA)

The DMA controller transfers both transmit and receive data. This
reduces the number and frequency of interrupts required to trans-
fer data to and from memory. Each of the two UARTSs have two
dedicated DMA channels, one for transmit and one for receive.
These DMA channels have lower priority than most DMA chan-
nels because of their relatively low service rates.

1-20 ADSP-BF51x Blackfin Processor Hardware Reference

Infroduction

The UARTS’ baud rate, serial data format, error code generation and sta-
tus, and interrupts can be programmed to support:

* Wide range of bit rates
* Data formats from 7 to 12 bits per frame

* Generation of maskable interrupts to the processor by both trans-
mit and receive operations

In conjunction with the general-purpose timer functions, autobaud detec-
tion is supported.

The capabilities of the UART ports are further extended with support for
the Infrared Data Association (IrDA®) Serial Infrared Physical Layer Link
Specification (SIR) protocol.

Security

ADSP-BF51x processors provides security features (Blackfin Lockbox™
Secure Technology) that enable customer applications to use secure proto-
cols, consisting of code authentication and execution of code within a
secure environment. Implementing secure protocols on Blackfin proces-
sors involves a combination of hardware and software components.
Together these components protect secure memory spaces and restrict
control of security features to authenticated developer code.

* Blackfin Lockbox Secure Technology incorporates a secure hard-
ware platform for confidentiality and integrity protection of secure
code and data with authenticity maintained by secure software.

 This secure platform provides:
* A secure execution mode

* Secure storage for on-chip keys

ADSP-BF51x Blackfin Processor Hardware Reference 1-21

Real-Time Clock

* On-chip secure ROM
e Secure RAM

* Access to code and data in the secure domain is monitored by the
hardware and any unauthorized access to the secure domain is
prevented.

* The secure ROM code establishes the root of trust for the secure
software in the system.

e The secure RAM provides integrity protection and confidentiality
for authenticated code and data.

e User-defined cipher key(s) and ID(s) can be securely stored in the
on-chip OTP memory.

* Every processor ships from the ADI factory with a unique chip ID
value stored in publicly accessible OTP memory area.

Real-Time Clock

The processor’s Real-Time Clock (RTC) provides a robust set of digital
watch features, including current time, stopwatch, and alarm. The RTC is
clocked by a 32.768 kHz crystal external to the processor. The RTC
peripheral has dedicated power supply pins, so that it can remain powered
up and clocked even when the rest of the processor is in a low power state.
The RTC provides several programmable interrupt options, including
interrupt per second, minute, hour, or day clock ticks, interrupt on pro-
grammable stopwatch countdown, or interrupt at a programmed alarm
time.

The 32.768 kHz input clock frequency is divided down to a 1 Hz signal
by a prescaler. The counter function of the timer consists of four counters:

a 60 second counter, a 60 minute counter, a 24 hours counter, and a
32768 day counter.

1-22 ADSP-BF51x Blackfin Processor Hardware Reference

Infroduction

When enabled, the alarm function generates an interrupt when the output
of the timer matches the programmed value in the alarm control register.
There are two alarms. The first alarm is for a time of day. The second
alarm is for a day and time of that day.

The stopwatch function counts down from a programmed value, with one
minute resolution. When the stopwatch is enabled and the counter under-
flows, an interrupt is generated.

Like the other peripherals, the RTC can wake up the processor from sleep
mode or deep sleep mode upon generation of any RTC wakeup event. An
RTC wakeup event can also wake up the on-chip internal voltage regula-
tor from a powered down state.

Watchdog Timer

The processor includes a 32-bit timer that can be used to implement a
software watchdog function. A software watchdog can improve system
availability by forcing the processor to a known state through generation
of a hardware reset, nonmaskable interrupt (NMI), or general-purpose
interrupt, if the timer expires before being reset by software. The pro-
grammer initializes the count value of the timer, enables the appropriate
interrupt, then enables the timer. Thereafter, the software must reload the
counter before it counts to zero from the programmed value. This protects
the system from remaining in an unknown state where software that
would normally reset the timer has stopped running due to an external
noise condition or software error.

If configured to generate a hardware reset, the watchdog timer resets both
the CPU and the peripherals. After a reset, software can determine if the
watchdog was the source of the hardware reset by interrogating a status bit
in the watchdog control register.

The timer is clocked by the system clock (SCLK), at a maximum frequency
of fSCLK'

ADSP-BF51x Blackfin Processor Hardware Reference 1-23

Clock Signals

Clock Signals

The processor can be clocked by an external crystal, a sine wave input, or a
buffered, shaped clock derived from an external clock oscillator.

This external clock connects to the processor’s CLKIN pin. The CLKIN input
cannot be halted, changed, or operated below the specified frequency dur-
ing normal operation. This clock signal should be a TTL-compatible
signal.

The core clock (CCLK) and system peripheral clock (SCLK) are derived from
the input clock (CLKIN) signal. An on-chip Phase Locked Loop (PLL) is
capable of multiplying the CLKIN signal by a user-programmable (0.5x to
64x) multiplication factor (bounded by specified minimum and maxi-
mum VCO frequencies). The default multiplier is 10x, but it can be
modified by a software instruction sequence. On-the-fly frequency
changes can be made by simply writing to the PLL_DIV register.

All on-chip peripherals are clocked by the system clock (SCLK). The system
clock frequency is programmable by means of the SSEL[3:0] bits of the
PLL_DIV register.

Dynamic Power Management

The processor provides four operating modes, each with a different perfor-
mance/power profile. In addition, dynamic power management provides
the control functions to dynamically alter the processor core supply volt-
age to further reduce power dissipation. Control of clocking to each of the
peripherals also reduces power consumption.

Full-On Mode (Maximum Performance)

In the full-on mode, the PLL is enabled, not bypassed, providing the max-
imum operational frequency. This is the normal execution state in which

1-24 ADSP-BF51x Blackfin Processor Hardware Reference

Infroduction

maximum performance can be achieved. The processor core and all

enabled peripherals run at full speed.

Active Mode (Moderate Power Savings)

In the active mode, the PLL is enabled, but bypassed. Because the PLL is
bypassed, the processor’s core clock (CCLK) and system clock (SCLK) run at
the input clock (CLKIN) frequency. In this mode, the CLKIN to VCO multi-

plier ratio can be changed, although the changes are not realized until the
full on mode is entered. DMA access is available to appropriately config-

ured L1 memories.

In the active mode, it is possible to disable the PLL through the PLL con-
trol register (PLL_CTL). If disabled, the PLL must be re-enabled before
transitioning to the full on or sleep modes.

Sleep Mode (High Power Savings)

The sleep mode reduces power dissipation by disabling the clock to the
processor core (CCLK). The PLL and system clock (SCLK), however, con-
tinue to operate in this mode. Typically an external event or RTC activity
will wake up the processor. When in the sleep mode, assertion of any
interrupt causes the processor to sense the value of the bypass bit (BYPASS)
in the PLL control register (PLL_CTL). If bypass is disabled, the processor
transitions to the full on mode. If bypass is enabled, the processor transi-
tions to the active mode.

When in the sleep mode, system DMA access to L1 memory is not

supported.

Deep Sleep Mode (Maximum Power Savings)

The deep sleep mode maximizes dynamic power savings by disabling the
processor core and synchronous system clocks (CCLK and SCLK). Asynchro-
nous systems, such as the RTC, may still be running, but cannot access

ADSP-BF51x Blackfin Processor Hardware Reference 1-25

Instruction Set Description

internal resources or external memory. This powered-down mode can only
be exited by assertion of the reset interrupt or by an asynchronous inter-
rupt generated by the RTC. When in deep sleep mode, an RTC
asynchronous interrupt causes the processor to transition to the active
mode. Assertion of RESET while in deep sleep mode causes the processor to
transition to the full on mode.

Hibernate State

For lowest possible power dissipation, this state allows the internal supply
(VppInT) to be powered down, while keeping the I/O supply (VppexT)
running. Although not strictly an operating mode like the four modes
detailed above, it is illustrative to view it as such.

Instruction Set Description

The Blackfin processor family assembly language instruction set employs
an algebraic syntax designed for ease of coding and readability. Refer to
Blackfin Processor Programming Reference for detailed information. The
instructions have been specifically tuned to provide a flexible, densely
encoded instruction set that compiles to a very small final memory size.
The instruction set also provides fully featured multifunction instructions
that allow the programmer to use many of the processor core resources in
a single instruction. Coupled with many features more often seen on
microcontrollers, this instruction set is very efficient when compiling C
and C++ source code. In addition, the architecture supports both user
(algorithm/application code) and supervisor (O/S kernel, device drivers,
debuggers, ISRs) modes of operation, allowing multiple levels of access to
core resources.

1-26 ADSP-BF51x Blackfin Processor Hardware Reference

Infroduction

The assembly language, which takes advantage of the processor’s unique
architecture, offers these advantages:

* Embedded 16/32-bit microcontroller features, such as arbitrary bit
and bit field manipulation, insertion, and extraction; integer opera-
tions on 8-, 16-, and 32-bit data types; and separate user and
supervisor stack pointers

* Seamlessly integrated DSP/CPU features optimized for both 8-bit
and 16-bit operations

* A multi-issue load/store modified Harvard architecture, which sup-
ports two 16-bit MAC or four 8-bit ALU + two load/store + two
pointer updates per cycle

e All registers, I/O, and memory mapped into a unified 4G byte
memory space, providing a simplified programming model

Code density enhancements include intermixing of 16- and 32-bit
instructions with no mode switching or code segregation. Frequently used
instructions are encoded in 16 bits.

Development Tools

The processor is supported by a complete set of software and hardware
development tools, including Analog Devices” emulators and the Cross-
Core Embedded Studio or VisualDSP++ development environment. (The
emulator hardware that supports other Analog Devices processors also
emulates the processor.)

ADSP-BF51x Blackfin Processor Hardware Reference 1-27

Development Tools

The development environments support advanced application code devel-
opment and debug with features such as:

* Create, compile, assemble, and link application programs written
in C++, C, and assembly

* Load, run, step, halt, and set breakpoints in application programs
* Read and write data and program memory

* Read and write core and peripheral registers

* Plot memory

Analog Devices DSP emulators use the IEEE 1149.1 JTAG test access
port to monitor and control the target board processor during emulation.
The emulator provides full speed emulation, allowing inspection and
modification of memory, registers, and processor stacks. Nonintrusive
in-circuit emulation is assured by the use of the processor JTAG inter-
face—the emulator does not affect target system loading or timing.

Software tools also include Board Support Packages (BSPs). Hardware
tools also include standalone evaluation systems (boards and extenders). In
addition to the software and hardware development tools available from
Analog Devices, third parties provide a wide range of tools supporting the
Blackfin processors. Third party software tools include DSP libraries,
real-time operating systems, and block diagram design tools.

1-28 ADSP-BF51x Blackfin Processor Hardware Reference

Memory

2 MEMORY

This chapter discusses memory population specific to the ADSP-BF51x
processors. Functional memory architecture is described in Blackfin Pro-
cessor Programming Reference.

Memory Architecture

Figure 2-1 provides an overview of the ADSP-BF51x processor system
memory map. For a detailed discussion of how to use them, see Blackfin
Processor Programming Reference. Note the architecture does not define a
separate I/O space. All resources are mapped through the flat 32-bit
address space. The memory is byte-addressable.

The upper portion of internal memory space is allocated to the core and
system MMRs. Accesses to this area are allowed only when the processor is
in supervisor or emulation mode (see the Operating Modes and States
chapter in Blackfin Processor Programming Reference).

Within the external memory map, four banks of asynchronous memory
space and one bank of SDRAM memory are available. Each of the asyn-
chronous banks is 1M byte and the SDRAM bank is up to 128M byte.

ADSP-BF51x Blackfin Processor Hardware Reference 2-1

L1 Instruction SRAM

Table 2-1. ADSP-BF51x Memory Map

Starting Address Ending Address Description

0xFFEO 0000
0xFFCO0 0000
0xFFBO 1000
0xFFBO 0000
0xFFA1 4000
0xFFA1 0000
0xFFAO0 8000
0xFFA0 4000
0xFFA0 0000
0xFF90 8000
0xFF90 4000
0xFF90 0000
0xFF80 8000
0xFF80 4000
0xFF80 0000
0xEF00 8000
0xEF00 0000
0x2040 0000
0x2030 0000
0x2020 0000
0x2010 0000
0x2000 0000
0x0800 0000
0x0000 0000

O0xFFFF FFFF
0xFFDF FFFF
OxFFBF FFFF
0xFFBO OFFF
O0xFFAF FFFF
0xFFA1 3FFF
0xFFAO FFFF
0xFFAO 7FFF
0xFFAO 3FFF
0xFF9F FFFF
0xFF90 7FFF
0xFF90 3FFF
0xFF9F FFFF
0xFF80 7FFF
0xFF80 3FFF
0xFF7F FFFF
0xEF00 7FFF
OxEEFF FFFF
0x203F FFFF
0x202F FFFF
0x201F FFFF
0x200F FFFF
O0x1FFF FFFF
0x07FF FFFF

Core MMR (2M bytes)

System MMR (2M bytes)

reserved

Scratchpad SRAM (4K bytes)

reserved

Instruction SRAM/Cache (16K bytes)

reserved

Instruction Bank B SRAM (16K bytes)

Instruction Bank A SRAM (16K bytes)

reserved

Data Bank B SRAM/Cache (16K bytes)

Data Bank B SRAM (16K bytes)

reserved

Data Bank A SRAM/Cache (16K bytes)

Data Bank A SRAM (16K bytes)

reserved

BOOT ROM (32K bytes)

reserved

Async Bank 3 (1M bytes)

Async Bank 2 (1M bytes)

Async Bank 1 (1M bytes)

Async Bank 0 (1M bytes)

reserved

SDRAM (128M bytes)

L1 Instruction SRAM

The processor core reads the instruction memory through the 64-bit wide
instruction fetch bus. All addresses from this bus are 64-bit aligned. Each
instruction fetch can return any combination of 16-, 32-, or 64-bit
instructions (for example, four 16-bit instructions, two 16-bit instructions
and one 32-bit instruction, or one 64-bit instruction).

2-2 ADSP-BF51x Blackfin Processor Hardware Reference

Memory

Table 2-2 lists the memory start locations of the L1 instruction memory

subbanks.

Table 2-2. L1 Instruction Memory Subbanks

Memory Subbank

Memory Start Location for
ADSP-BF51x Processors

0xFFA0 0000

0xFFAO0 1000

0xFFA0 2000

0xFFA0 3000

0xFFA0 4000

0xFFA0 5000

0xFFA0 6000

0xFFA0 7000

0xFFA1 0000

O | o | | N[] W]

0xFFA1 1000

—_
(=]

0xFFA1 2000

—_
—

0xFFA1 3000

L1 Data SRAM

Table 2-3 shows how the subbank organization is mapped into memory.

Table 2-3. L1 Data Memory SRAM Subbank Start Addresses

Memory Bank and Subbank |ADSP-BF51x Processors

Data Bank A, Subbank 0 0xFF80 0000

Data Bank A, Subbank 1

0xFF80 1000

Data Bank A, Subbank 2 0xFF80 2000

Data Bank A, Subbank 3

0xFF80 3000

ADSP-BF51x Blackfin Processor Hardware Reference

2-3

L1 Data Cache

Table 2-3. L1 Data Memory SRAM Subbank Start Addresses (Continued)

Memory Bank and Subbank |ADSP-BF51x Processors

Data Bank A, Subbank 4 0xFF80 4000

Data Bank A, Subbank 5 0xFF80 5000

Data Bank A, Subbank 6 0xFF80 6000

Data Bank A, Subbank 7 0xFF80 7000

Data Bank B, Subbank 0 0xFF90 0000

Data Bank B, Subbank 1 0xFF90 1000

Data Bank B, Subbank 2 0xFF90 2000

Data Bank B, Subbank 3 0xFF90 3000

Data Bank B, Subbank 4 0xFF90 4000

Data Bank B, Subbank 5 0xFF90 5000

Data Bank B, Subbank 6 0xFF90 6000

Data Bank B, Subbank 7 0xFF90 7000

L1 Data Cache

When data cache is enabled (controlled by bits DMC[1:0] in the
DMEM_CONTROL register), either 16K byte of data bank A or 16K byte of
both data bank A and data bank B can be set to serve as cache.

Boot ROM

The lowest 32K byte of internal memory space is occupied by the boot
ROM starting from address 0OxEF00 0000. This 16-bit boot ROM is not
part of the L1 memory module. Read accesses take one SCLK cycle and no
wait states are required. The read-only memory can be read by the core as
well as by DMA. It can be cached and protected by CPLB blocks like
external memory. The boot ROM not only contains boot-strap loader

2-4 ADSP-BF51x Blackfin Processor Hardware Reference

Memory

code, it also provides some subfunctions that are user-callable at runtime.
For more information, see Chapter 26, “System Reset and Booting”.

External Memory

The external memory space is shown in Figure 2-1 on page 2-2. One of
the memory regions is dedicated to SDRAM support. The size of the
SDRAM bank is programmable and can range in size from 16M byte to
128M byte. The start address of the bank is 0x0000 0000.

Each of the next four banks contains 1M byte and is dedicated to support
asynchronous memories. The start address of the asynchronous memory
bank is 0x2000 0000.

Processor-Specific MMRs

The complete set of memory-related MMREs is described in the Blackfin
Processor Programming Reference. Several MMRs have bit definitions spe-
cific to the processors described in this manual. These registers are
described in the following sections.

ADSP-BF51x Blackfin Processor Hardware Reference 2-5

Processor-Specific MMRs

DMEM_CONTROL Register

The data memory control register (DMEM_CONTROL), shown in Figure 2-1,
contains control bits for the L1 data memory.

Data Memory Control Register (DMEM_CONTROL)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
0xFFEO 0004 |o |o |o |o |o |o |o |o |o |o |o |o |o |o |o |o | Reset = 0x0000 1001

15 14 13 12 11 10

I°I°|°|1I°I°I°I°I°I°I°|°I°|°|°I1I

I—ENDCPLB (Data Cacheability
PORT_PREF1 (DAG1 Port Protection Lookaside Buffer
Preference) ——M8M8 | Enable)
0 - DAG1 non-cacheable fetches 0 - CPLBs disabled. Minimal
use port A address checking only
1 - DAG1 non-cacheable fetches 1 - CPLBs enabled
use port B L DMCI[1:0] (L1 Data Memory
PORT_PREFO0 (DAGO Port Configure)
Preference) ——M8M@¥™M— For ADSP-BF51x:
0 - DAGO non-cacheable fetches 00 - Both data banks are
use port A SRAM, also invalidates all
1 - DAGO non-cacheable fetches cache lines if previously
use port B configured as cache

DCBS (L1 Data Cache Bank Select)

Valid only when DMC[1:0] = 11. Determines
whether Address bit A[14] or A[23] is used to
select the L1 data cache bank.

0 - Address bit 14 is used to select Bank A or B
for cache access. If bit 14 of address is 1,
select L1 Data Memory Data Bank A; if bit 14
of address is 0, select L1 Data Memory Data
Bank B.

1 - Address bit 23 is used to select Bank A or B for
cache access. If bit 23 of address is 1, select
L1 Data Memory Data Bank A; if bit 23 of
address is 0, select L1 Data Memory Data
Bank B.

Figure 2-1. L1 Data Memory Control Register

DTEST_COMMAND Register

01 - Reserved

10 - Data Bank A is lower
16K byte SRAM, upper
16K byte cache
Data Bank B is SRAM

11 - Both data banks are
lower 16K byte SRAM,
upper 16K byte cache

When the data test command register (DTEST_COMMAND) is written to, the
L1 cache data or tag arrays are accessed, and the data is transferred
through the data test data registers (DTEST DATAL1:01]). This register is

shown in Figure 2-2.

2-6 ADSP-BF51x Blackfin Processor Hardware Reference

Memory

The data/instruction access bit allows direct access via the
DTEST_COMMAND MMR to L1 instruction SRAM.

Data Test Command Register (DTEST_COMMAND)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0xFFEO 0300 |x|x|x |x |x |x|x |x |x |x |x |x |x|x|x|x

I Reset = Undefined

Access Wayl/Instruction
Address Bit 11
0 - Access WayO/Instruction bit 11
1 - Access Way1/Instruction bit 11
Data/Instruction Access
0 - Access Data

1 - Access Instruction
Data Bank Access
0 - Access Data Bank A/Instr Memory 0xFFAO 0000
1 - Access Data Bank B/Instr Memory OxFFAO 4000

0
1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Subbank Access[1:0]
(SRAM ADDRJ[13:12])
00 - Access subbank 0
01 - Access subbank 1
10 - Access subbank 2
11 - Access subbank 3

D D P e [Pefxx e x e gx I x|

Data Cache Select/
Address Bit 14

0 - Reserved/Instruction bit 14 =0
1 - Select Data Cache Bank/Instruction bit 14 = 1

Set Index[5:0]
Selects one of 64 sets

Double Word Index[1:0]

Selects one of four 64-bit
double words in a 256-bit line

Figure 2-2. Data Test Command Register

|] |
Read/Write Access

0 - Read access

1 - Write access
Array Access

0 - Access tag array
1 - Access data array

Bit 14 and bit 23 of DTEST_COMMAND must be cleared to correctly
access the L1 Instruction Memory Bank A. Likewise, for accesses to
L1 Instruction Memory Bank B, bits 14 and 23 must both be set.

ADSP-BF51x Blackfin Processor Hardware Reference

2-7

Processor-Specific MMRs

2-8

ADSP-BF51x Blackfin Processor Hardware Reference

One-Time Programmable Memory

3 ONE-TIME PROGRAMMABLE
MEMORY

This chapter describes One-Time-Programmable (OTP) memory features
of the ADSP-BF51x Blackfin processor.

The chapter includes the following sections:
* “OTP Memory Overview”
e “OTP Memory Map” on page 3-3
e “Error Correction” on page 3-7
e “OTP Access” on page 3-10
e “Error Correction Policy” on page 3-8
e “OTP Timing Parameters” on page 3-11
e “Callable ROM Functions for OTP ACCESS” on page 3-14
* “Programming and Reading OTP” on page 3-17
e “Write-Protecting OTP Memory” on page 3-24
e “Accessing Private OTP Memory” on page 3-26
e “OTP Programming Examples” on page 3-26

ADSP-BF51x Blackfin Processor Hardware Reference 3-1

OTP Memory Overview

OTP Memory Overview

The ADSP-BF51x processors include an on-chip, one-time-programmable
memory array which provides 64k-bits of non-volatile memory. This
includes the array and logic to support read access and programming. A
mechanism for error correction is also provided. Additionally, pages can
be write protected.

OTP memory can be programmed through various methods including
software running on the Blackfin processor. The ADSP-BF51x processors
provide C and assembly callable functions in the on-chip ROM to help
the developer access the OTP memory.

The one-time-programmable memory is divided into two main regions. A
32-k bit “public” unsecured region which has no access restrictions and a
32-k bit “private” secured region with access restricted to authenticated

code when operating in Secure Mode (For information about these modes,

see Chapter 25, “Security” in this volume of the ADSP-BF51x Blackfin
Processor Hardware Reference.)

OTP enables developers to store both public and private data on-chip. A
64K x 1 bit array is available as shown in Figure 3-2. In addition to stor-
ing public and private data, it allows developers to store completely

user-definable data such as customer ID, product ID, MAC address, etc.

The public portion of OTP memory contains many “factory set
only” values. Users are urged to exercise caution when writing to
OTP memory and to consult the OTP memory map for details of
Customer Programmable Settings (CPS) and factory reserved areas
of this memory. See also Factory Page Settings (FPS) and Preboot
Page Settings (PBS) in Chapter 26, “System Reset and Booting” in
this volume of the ADSP-BF51x Blackfin Processor Hardware
Reference.

3-2

ADSP-BF51x Blackfin Processor Hardware Reference

One-Time Programmable Memory

OTP Memory Map

The OTP is not part of the Blackfin linear memory map. It has a separate
memory map that is shown in Figure 3-2. OTP memory is not accessed
directly using the Blackfin memory map, rather, it is accessed via four
32-bit wide registers (0TP_DATA3:0) which act as the OTP memory
read/write buffer.

In the case of an OTP memory read, the 0TP_DATAx registers will contain
the 16-byte result of the OTP memory access. In the case of an OTP
memory write, the 0TP_DATAx registers will contain 16 bytes of data to be
written to the OTP memory.

0TP_DATA3-0 registers are organized into a 128 bit page as shown in
Figure 3-1.

127 96 95 6463 — 3231 —— 0

BIT 31 BIT 0| BIT 31 BIT 0| BIT 31 BIT 0| BIT 31 BITO

OTP_DATA3 OTP_DATA2 OTP_DATA1 OTP_DATA0

Figure 3-1. OTP_DATAx Registers

ADSP-BF51x Blackfin Processor Hardware Reference 3-3

OTP Memory Map

< 128 BIT PAGE >

l«——64 BIT UPPER HALF PAGE—» «—64 BIT LOWER HALF PAGE—>|
PAGE PAGE 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0| BYTE
ADDRESS NAME' l«—BIT 127 BIT 0—>|
0x000 PROTECTION BITS FOR PAGES 0x000 (LSB) THROUGH 0x07F (MSB) \
0x001 PROTECTION BITS FOR PAGES 0x080 (LSB) THROUGH 0xOFF (MSB)
0x002 PROTECTION BITS FOR PAGES 0x100 (LSB) THROUGH 0x17F (MSB)
0x003 PROTECTION BITS FOR PAGES 0x180 (LSB) THROUGH 0x1FF (MSB)
0x004 FPS00 UNIQUE CHIP ID [127:0]
0x005 FPS01 FACTORY RESERVED
0x006 FPS02 FACTORY RESERVED
0x007 FPS03 Bytes 15:14, Part Number Integer | Bytes 12:0, Part Number String®
0x008 FPS04 FACTORY RESERVED
0x009 FPS05 FACTORY RESERVED
0x00A FPS06 FACTORY RESERVED
0x00B FPS07 FACTORY RESERVED
0x00C FPS08 FACTORY RESERVED
0x00D FPS09 FACTORY RESERVED _
0x00E FPS10 FACTORY RESERVED ﬁ
0xO00F FPS11 FACTORY RESERVED =
0x10 CPS00 CUSTOMER KEY [127:0] §
ox11 CPSO01 CUSTOMER KEY [255:128] E
0x12 CPS02 CUSTOMER KEY [383:256] 8
0x13 CPS03 RESERVED g
ox14 CPS04 RESERVED 2
0x15 CPS05 RESERVED
0x16 CPS06 RESERVED
0x17 CPS07 RESERVED
0x18 PBS00 Bytes[15:8], PBS00H Bytes[7:0], PBS00L
0x19 PSS01 Bytes[15:8], PBS01H Bytes[7:0], RESERVED PBS001U
O0x1A PBS02 Bytes[15:8], PBS002H Bytes[7:0], PBS002L
0x1B PBS03 Bytes[15:8], RESERVED PBS003H = Bytes[7:0], RESERVED PBS003L
0x1C to 0xODF UNSECURED GENERAL PURPOSE SPACE
0xOEO to 0xOFF UNSECURED ERROR CORRECTION CODE (ECC) SPACE? J

Footnotes

1. Factory Programmable Settings (FPS) are programmed at the factory. Customer Progammable Settings (CPS) are programi
by the customer.

2.This space should NOT be written by the customer. 8-bit error correction codes are automatically generated by firmware ar
stored in this region.

3. Part Number Field Definition. A string indicating the model number of the product is programmed into this location. Each
character is represented by standard 8-bit ASCII code. A termination character of 0x00000000 terminates the string. The

field supports up to 12 alphanumeric characters plus one termination character. The first string character resides in bits[7:0]
and the string grows to the left with the left most character being the termination character. Integer representation of the pari
number is shown in Table 3-1. Byte 13 in FPS03 is reserved.

Figure 3-2. Public OTP Memory Map

3-4 ADSP-BF51x Blackfin Processor Hardware Reference

One-Time Programmable Memory

4 128 BIT PAGE >
l«——64 BIT UPPER HALF PAGE—> «—64 BIT LOWER HALF PAGE—»|
PAGE 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0| BYTE
ADDRESS le—BIT 127 BIT 0—
0x100 to 0x10F SECURED FACTORY RESERVED SPACE
m
w
2
0x110 to 0x1DF SECURED GENERAL PURPOSE SPACE b
8
o
=
o
=
s
o
o
0x1EO to Ox1FF SECURED ERROR CORRECTION CODE (ECC) SPACE!

Footnotes
1.This space should NOT be written by the customer. 8-bit error correction codes are automatically generated by firmware ai
stored in this region.

Figure 3-3. Private OTP Memory Map

ADSP-BF51x Blackfin Processor Hardware Reference 3-5

OTP Memory Map

Table 3-1. Part Number Field Definition

Part # Code

ADSP-BF512 0x0200

ADSP-BF512F 0xF200
ADSP-BF514 0x0202
ADSP-BF514F 0xF202

ADSP-BF516 0x0204

ADSP-BF516F 0xF204

ADSP-BF518 0x0206

ADSP-BF518F 0xF206

OTP memory ranges marked as Factory Reserved, Reserved and Error
Correction Code Space, in Figure 3-2, must not be programmed by the
user. Customer Programmable Settings are optionally programmed by the
developer.

Page-Protection bits provide protection for each 128-bit page within the
OTP. By default, the OTP array bits are not set and will read back as zero
values if left unprogrammed. Programmed data values consist of zeroes
and ones, therefore, after programming OTP memory, some bits will
intentionally remain as zero values. The write-protect bits provide protec-
tion for the zero value bits to remain as zeroes and prevent future
programming (inadvertent or malicious) from changing bit values from
zero to one.

Pages 0x10, 0x11, and 0x12 hold the customer public key which is used
for Lockbox digital signature authentication. Refer to Chapter 25, “Secu-
rity” for more information on Lockbox and how the public key is used.

OTP memory is logically arranged in a sequential set of 128-bit pages.
Each OTP memory address refers to a 128-bit page. The ADSP-BF51x
processor thus provides 512 pages of OTP memory.

3-6 ADSP-BF51x Blackfin Processor Hardware Reference

One-Time Programmable Memory

In order to read or program the OTP memory, a set of functions are pro-
vided in the on-chip ROM. These functions include bfrom_0tpRead(),
bfrom_OtpWrite() and bfrom_0OtpCommand().

Error Correction

To meet strict quality goals, error correction is used to ensure data integ-

rity. bfrom_OtpRead() and bfrom_OtpWrite(), provided in the on-chip
ROM, support error correction.

Error correction works by calculating an 8-bit Error Correction Code

(ECC) for each 64-bit data word (half page) when it is programmed into
the OTP. When this word is later read from OTP, its corresponding ECC
is also read and a data integrity check is performed. If the check fails, error
correction on the data word can be attempted using the ECC. Depending
on the type of error, the error correction algorithm will perform as shown

in Table 3-2.

Table 3-2. Hamming Code Single Error Corrections, Double Error

Detection

Number of Bad Error(s) Detected? |Error(s) Corrected?
Bits in Data Word

0 N/A N/A

1 Yes Yes

2 Yes No

3 or more No No

ADSP-BF51x Blackfin Processor Hardware Reference

Error Correction

Error Correction Policy

1.

Error correction requires that OTP space is written and read in

64-bit widths. Firmware will only support writing or reading half
of an OTP page.

Error correction is used to correct data in all pages of OTP space
except the protection pages (0x0 to 0x3) and ECC pages them-
selves. See “OTP Access” on page 3-10 for more information.

Firmware will generate and program the 8-bit ECC fields as
mapped in Table 3-3 and Table 3-4.

The developer is responsible for locking both the data page(s)
AND the ECC page(s) after all programming is complete.

Pages 0x04 to 0xOF are reserved for ADI factory use. Therefore,
pages 0x004 to 0x00F, 0x0EO, and 0xOE1 will be locked coming
out of the Analog Devices factory.

Table 3-3. Mapping for Storage of Error Correction Codes for Unsecured

OTP Space
Page Byte
15 14 13 12 11 10 9 8
0x0E0 | 0x007U | 0x007L | 0x006U | 0x006L | 0x005U | 0x005L | 0x004U | 0x004L

0x0E1 | 0x00FU | 0x00FL | 0x00EU | 0x00EL | 0x00DU [0x00DL | 0x00CU | 0x00CL

0x0E2 | 0x017U | 0x017L | 0x016U |0x016L |0x015U |0x015L |0x014U |0x014L

0x0FB | 0xODFU | 0x0DFL | 0xODEU | 0xODEL | 0x0DDU | 0x0DDL | 0x0DCU | 0x0DCL
3-8

ADSP-BF51x Blackfin Processor Hardware Reference

One-Time Programmable Memory

Table 3-3. Mapping for Storage of Error Correction Codes for Unsecured
OTP Space (Continued)

Page Byte
15 14 13 12 11 10 9 8
Page 7 6 5 4 3 2 1 0

0x0EO0 | Unused Unused Unused Unused Unused Unused Unused Unused

0x0E1 | 0x00BU | 0x00BL | 0x00AU | 0x00AL | 0x009U | 0x009L 0x008U | 0x008L

0x0E2 | 0x013U |0x013L |0x012U |0x012L |0x011U |0x011L |0x010U | 0x010L

0x0FB | 0x0DBU | 0x0DBL | 0x0DAU | 0xODAL | 0x0D9U | 0x0D9L | 0x0D8U | 0x0DS8L

Table 3-4. Mapping for Storage of Error Correction Codes for Secured
OTP Space

Page Byte

15 14 13 12 11 10 9 8

0x1E0 | 0x107U |0x107L |0x106U |O0xI106L |0x105U |O0x105L |0x104U |0x104L

0x1E1 |0xI10FU | 0x10FL |O0x10EU |O0x10EL |0x10DU |[0x10DL |0x10CU | 0x10CL

0x1E2 | 0x117U |O0x117L 0x116U | 0x116L 0x115U | 0x115L 0x114U | 0x114L

0x1FB | 0x1DFU | 0x1DFL | 0x1DEU | 0x1DEL |0x1DDU | 0x1DDL | 0x1DCU | 0x1DCL

Page 7 6 5 4 3 2 1 0

0x1E0 | 0x103U | 0x103L 0x102U | 0x102L 0x101U | 0x101L 0x100U | 0x100L

0x1E1 | 0x10BU | 0x10BL 0x10AU | OxIOAL | 0x109U | 0x109L 0x108U | 0x108L

0x1E2 | 0x113U | 0x113L 0x112U | 0x112L |0x111U |Ox111L 0x110U | 0x110L

0x1FB | 0x1DBU | 0x1DBL | 0x1DAU | 0x1DAL |0x1D9U | 0x1D9L |0x1D8U | 0x1D8L

ADSP-BF51x Blackfin Processor Hardware Reference 3-9

OTP Access

OTP Access

The ADSP-BF51x on-chip ROM contains functions for initializing OTP
timing parameters, reading and programming the OTP memory. These
functions include bfrom_0OtpRead(), bfrom_OtpWrite() and
bfrom_OtpCommand().

These functions are callable from C or assembly application code.
Use only these functions for accessing OTP memory. Directly
accessing memory locations within OTP memory by other means is
not supported.

The existing ECC in ROM is known as “Hamming [72,64]” - This
is specifically a 64-bit Data, +8-bit ECC Field, for 1-bit correction
and 2-bit error detection scheme.

/ The ROM-based OTP read/write API must be used for all OTP

data accesses (see limited exceptions below). The ROM code incor-
porates the ONLY ECC method supported by Analog Devices.
Analog Devices does not support direct access of OTP data without
using error correction.

Exceptions: The only bits that do not use ECC are page lock bits
(first four pages) and the preboot invalidate bits. See the Preboot sec-
tion in Chapter 26, “System Reset and Booting”.

ADI does not support any ECC other than the ECC provided by ADI
withinthe ROM API. All attempts to implement other schemes are not
guaranteed or supported by Analog Devices.

OTP memory programming is done serially under software control. Since
the unprogrammed OTP memory value defaults to zero, only bits whose
value is intended to be “1” have to be programmed. In order to protect
areas of OTP memory that have been programmed or areas which have
intentionally been left unprogrammed which end users wish to remain
unchanged, write-protect bits can be set for each 128-bit page within

3-10 ADSP-BF51x Blackfin Processor Hardware Reference

One-Time Programmable Memory

OTP memory. Each write-protect bit, when set, will prevent further pro-
gramming attempts to OTP memory on a per page basis. Refer to the
OTP memory map (Figure 3-2) for details.

The ADSP-BF51x Blackfin processor can program OTP through software
code executing directly on the Blackfin processor. No on-chip charge
pump exists, therefore, an externally applied voltage is required to apply
the voltage levels appropriate for programming OTP memory. Refer to
the processor data sheet for VPPOTP specifications. OTP programming
code can be loaded into the processor via JTAG emulation, DMA, and all
supported boot methods.

OTP memory can only be written once (changing a bit from 0 to 1). Once
a bit has been changed from a 0 to a 1, it cannot be changed back to 0.
The write-protect bits prevent OTP memory from having any bits that are
meant to remain as 0 value later programmed to a value of 1.

Prior to accessing OTP memory, refer to the product data sheet for speci-
fications on VDDOTP and VPPOTP voltage levels to ensure reliable
OTP programming. OTP timing parameter settings must be set prior to
attempting any write accesses to OTD.

OTP Timing Parameters

In order to read and program the OTP memory reliably, set the OTP tim-
ing parameters prior to accessing OTP memory. All of the timing
parameters are bitfields within the 0TP_TIMING register (see
“OTP_TIMING Register” on page 3-14). The bfrom_0tpCommand() func-
tion (detailed in the following sections) is provided in the on-chip ROM
to program the timing parameters.

ADSP-BF51x Blackfin Processor Hardware Reference 3-11

OTP Access

OTP timing parameters must be set with bfrom_0tpCommand().
OTP read accesses can use the OTP timing default reset value
(Reset: 0TP_TIMING = 0x00001485).

Use of the OTP timing default reset value for writes will result in
write errors as this timing value is not appropriate for performing
write accesses.

Insufficient voltage/current provided to OTP during write access
or incorrect OTP timing parameters may result in the following
error returned during OTP writes:

0x11: error code returned (multiple bad bits in 64 bit data), and
subsequent reads from this page return 0.

The OTP timing parameters consist of several concatenated fields and
form one value, which then is passed as an argument to the
bfrom_0OtpCommand () function. There is one field for which the developer
must calculate a value based upon the desired SCLK frequency of operation
at which the OTP access will be performed. This calculated value then is
combined with a constant value field whose value is provided by Analog
Devices to arrive at the setting appropriate for the access.

The OTP timing parameters are comprised of two values as follows.
OTP_TIMING([7:0] = OTP_TP1 = 1000 / sclk_period (in nanoseconds)
OTP_TIMING(31:8] = OTP_TP2 = 0x145487

The 0TP_TP2 field is specified by Analog Devices and must be used to
ensure reliable OTP write accesses. The user-calculated field must be com-
bined with the 0TP_TP2 value as shown in Listing 3-1 and Listing 3-2.

Example calculations shown in Listing 3-1 and Listing 3-2 are based upon
VDDOTP and VPPOTP voltage values specified in
ADSP-BF512/BF514/BF516/BF518(F) Embedded Processor Data Sheet.
The OTP timing parameter calculations are dependent upon user-defined

3-12 ADSP-BF51x Blackfin Processor Hardware Reference

One-Time Programmable Memory

SCLK frequency of operation. (Refer to the processor data sheet for actual
VDDOTP and VPPOTP voltage and SCLK specifications, do not rely on
the specifications quoted in these examples.)

Listing 3-1. OTP Timing Calculations for SCLK = 80 MHz

For sCLK = 12.5ns (80 MHz), the following field calculations are needed
to determine the OTP timing argument for the bfrom_0tpCommand () call.

OTP_TP1 = 1000 / sclk_period = 1000 / 12.5 = 0x50 0x00000050
OTP_TP2 = (constant) 0x145487xx
Calculated OTP timing parameter value 0x14548750

The code for the API call (in C) is:

// Initialize OTP access settings

// Proper access settings for SCLK = 80 MHz

const u32 OTP_init_value = 0x14548750;

return_code = bfrom_0OtpCommand(OTP_INIT, OTP_init_value);

Listing 3-2. OTP Timing Calculations for SCLK = 50 MHz

For SCLK = 20.0ns (50 MHz), the following field calculations are needed
to determine the OTP timing argument for the bfrom_0tpCommand () call.

OTP_TP1 = 1000 / sclk_period = 1000 / 20.0 = 0x32 0x00000032
OTP_TP2 = (constant) 0x145487xx
Calculated OTP timing parameter value 0x14548732

ADSP-BF51x Blackfin Processor Hardware Reference 3-13

OTP Access

The code for the API call (in C) is:

// Initialize OTP access settings

// Proper access settings for SCLK 50 MHz

const u32 OTP_init_value = 0x14548732;

return_code = bfrom_0OtpCommand(OTP_INIT, OTP_init_value);

OTP_TIMING Register
OTP_TIMING Register

31 30 20 28 27 26 25 24 23 22 21 20 19 18 17 16
|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|0| Reset = 0x0000 1485

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|o|o|o|1|o|1|o|o|1|o|o|o|o|1|o|1| Valid for OTP Read
Il Access

L OTP_TP1[7:0]
OTP_TP2 [31:8]

OTP_TP1 = 1000/SCLK Period
OTP_TP2 = 0x145487
Figure 3-4. OTP_TIMING Register

Callable ROM Functions for OTP ACCESS

The following functions support OTP access.

Initializing OTP

This section describes the usage of the bfrom_0tpCommand() function for
the OTP memory controller setup provided in the ADSP-BF51x proces-
sor’s on-chip ROM. The prototype and macros to help decode the

function’s return codes are supplied in the bfrom.h header file located in

3-14 ADSP-BF51x Blackfin Processor Hardware Reference

One-Time Programmable Memory

the CCES or Visual DSP++ installation directory. The meaning of the
error code is described in “Error Codes” on page 3-22.

bfrom_OtpCommand

This function is used to implement various “commands” to setup the
OTP controller. The first input parameter is a mnemonic label specifying
the command. The second parameter is a generic value that is passed as
argument for the requested command. The second parameter is optional
and can be an integer value or (via opportune casting) a pointer or a
pointer to an extension structure. There are two commands:

* OTP_INIT: sets the required timing value (register 0TP_TIMING) to
“value”.

* 0TP_CLOSE: reinitializes the OTP controller. This can be called by
the user before exiting Secure Mode if desired. The Value parame-
ter may be specified as “0” or “NULL” with 0TP_CLOSE.

Entry address: 0xEF00 0018
Arguments:

RO: command (dCommand)
OTP_INIT
OTP_CLOSE

R1: timing value to be programmed (dValue), not used for 0TP_CLOSE
C Prototype: u32 bfrom_OtpCommand(u32 dCommand, u32 dValue):
Return code:

bfrom_OtpCommand () currently always returns with “0”.

From the examples above, the OTP timing parameter was calculated to be
0x14548750 processor with SCLK = 80 MHz. Shown below is a sample of

ADSP-BF51x Blackfin Processor Hardware Reference 3-15

OTP Access

C code that uses the bfrom_0tpCommand () function to program this timing
parameter.

#include <bfrom.h>
fdefine OTP_TIMING_PARAM (0x14548750)

u32 Otp_Timing_Param_Init()

{
u32 otp_timing_parameter;
u32 = RetVal;
otp_timing_parameter = OTP_TIMING_PARAM;
RetVal = bfrom_0OtpCommand(OTP_INIT, otp_timing_parameter);
// (equivalently, with a variable):
RetVal = bfrom_OtpCommand(OTP_INIT, OTP_TIMING_PARAM);

return RetVal;
t

More examples:

//timing parameter
const u32 init_value = 0x14548750;

// call sets OTP_TIMING register
RetVal = bfrom_OtpCommand(OTP_INIT, init_value);

// call sets OTP_TIMING register
RetVal = bfrom_OtpCommand(OTP_INIT, 0x14548750);

// call clears OTP controller and data registers
RetVal = bfrom_OtpCommand(O0TP_CLOSE, NULL);

The prototype of bfrom_0tpCommand () is also included in the bfrom.h
header file installed with the Visual DSP++ 5.0 or CrossCore Embedded
Studio IDE. The 0TP_INIT macro is defined in bfrom.h as well.

3-16

ADSP-BF51x Blackfin Processor Hardware Reference

One-Time Programmable Memory

Programming and Reading OTP

This section describes the usage of bfrom_0tpRead() and
bfrom_OtpWrite() read and write functions for OTP memory provided in
the ADSP-BF51x processor’s on-chip ROM. The prototypes and macros
to help decode their return codes are supplied in the bfrom.h header file
located in the CCES or Visual DSP++ installation directory. The meaning
of the error code is described in “Error Codes” on page 3-22.

bfrom_OtpRead
This function is used to read 64-bit OTP half-pages using error

correction.

Entry address: 0xEF00 001A
Arguments:

RO: OTP page address (dPage)

R1: Flags (dF1ags)
OTP_LOWER_HALF
OTP_UPPER_HALF
OTP_NO_ECC

R2: Pointer to 64-bit memory struct (long long) to put read data
(*pPageContent)

C prototype:

u32 bfrom_OtpRead (u32 dPage, u32 dFlags, u64 *pPageContent);
Return code:

RO: error or warning code, see Table 3-5.

This function reads a half-page and stores the content in the 64-bit vari-
able pointed to by its last parameter. The page parameter defines the

ADSP-BF51x Blackfin Processor Hardware Reference 3-17

OTP Access

address. The flags parameter defines whether the upper or the lower half
page is to be read. The default reset 0TP_TIMING value may be used for all
read accesses without requiring any new setting value to be programmed
prior to performing read accesses. Programming a valid value suitable for
write accesses will also allow read accesses.

The use of flag parameter 0TP_NO_ECC is not recommended for use with
any OTP read access as it will bypass error correction code support. It is
available only for diagnostic purposes.

bfrom_OtpWrite

This function attempts to write to (program) a half-page with the content
in the 64-bit variable pointed to by its last parameter. The page parameter

defines the address.

Entry address: 0xEF00 001C
Arguments:

RO: OTP page address (dF1ag)

R1: Flags (dF1ags)
OTP_LOWER_HALF
OTP_UPPER_HALF
OTP_NO_ECC
OTP_LOCK
OTP_CHECK_FOR_PREV_WRITE

R2: Pointer to 64-bit memory struct (long long) that contains the data to
be written to OTP memory (*pPageContent)

C Prototype:

u32 bfrom_OtpWrite (u32 dPage, u32 dFlags, u64 *pPageContent);

3-18 ADSP-BF51x Blackfin Processor Hardware Reference

One-Time Programmable Memory

Return code:
RO: error or warning code, see Table 3-5.

The dFlags parameter defines whether the upper or the lower half page is
to be written to and also whether the target half page should be checked
for a previously written value before any write attempt is made. Addition-
ally, a page can optionally be locked (permanently protected against
further writes).

When performing pure lock operations (only locking a page without writ-
ing any data values to it), the half-page parameter is not required and it
makes no difference which half-page is specified if this parameter is
included in the function call.

In order to reduce the probability of inadvertent writes to OTP pages, the
bfrom_OtpWrite() function checks for a valid OTP write timing setting in
the OTP_TIMING register. More specifically, bits [31:15] must not be equal
to zero. Calls to the write routine, when this field (bits [31:15]) is equal to
zero cause an access violation error and the requested action is not per-
formed. The user can use this mechanism to protect against inadvertent
writes by calling the bfrom_0tpCommand (OTP_init, ...) function with
appropriate values for reads only and for read/write accesses. Users are free
to ignore this mechanism by calling bfrom_0tpCommand (0TP_init, ...)
only once for read/write access.

When the flag 0TP_CHECK_FOR_PREV_WRITE is NOT specified, a previously
written value will be overwritten, both in the ECC and data fields for any
unlocked page where a write access is performed. Of course, once a bit was
set to “1” it cannot be reset to “0” by the new write operation. This means
that, in all likelihood, if the new value is different from the previous one,

the result will have multiple bit errors, in either or both the ECC and data
fields.

ADSP-BF51x Blackfin Processor Hardware Reference 3-19

OTP Access

Since the ECC field is written first by the ROM function, a multi-
ple bit error will abort the operation without writing the new data
value to the OTP data page.

Also note that multiple bit errors have a statistical chance of not
being detected as such. So this default mode of operation is not
recommended to be used, or used with appropriate caution.

The flag, 0TP_CHECK_FOR_PREV_WRITE, should always be used by
default when performing write accesses to OTP with the
bfrom_OtpWrite() function.

If the flag 0TP_CHECK_FOR_PREV_WRITE is specified in the call, a write to a
previously programmed page causes dedicated error messages and will not
be undertaken. More specifically, the criterion for generating errors is as
follows: the 64-bit data and the 8-bit ECC field are read and the total
number of “1” is counted. If this number is equal to or greater than 2, the
error flag OTP_PREV_WR_ERRO” is returned and the write operation is not
performed. If the number is 0, the page is certainly blank and the write is
performed. If the number is one, a more thorough check is performed. If
the “1” is in the ECC field, an error flag 0TP_SB_DEFECT_ERROR is returned
and the write is not performed. If the “1” is in the data field, it is deter-
mined whether the value to be written contains a “1” in the same position.
If so, the write is performed. If not, the error flag 0TP_SB_DEFECT_ERROR is
returned and the write is not performed. This error code warns the user
that it could be a single-bit defect in the page. The user can then decide
whether to use this page regardless (by repeating the call without the
OTP_CHECK_FOR_PREV_WRITE flag) or skip this page.

The 0TP_CHECK_FOR_PREV_WRITE flag is ignored when a pure lock opera-
tion is requested (for example, a 0TP_LOCK flag is set and *pPageContent =
NULL). It is therefore unnecessary and harmless to specify this flag. The
OTP_CHECK_FOR_PREV_WRITE flag is not ignored when doing a lock opera-
tion after a write (for example, 0TP_LOCK + write in the same call and
*pPageContent = NULL).

3-20 ADSP-BF51x Blackfin Processor Hardware Reference

One-Time Programmable Memory

If the flag parameter for the write operation is augmented by the OR with
0TP_LOCK flag, the write operation, if successful, will be immediately fol-
lowed by setting the protection bit for the requested full 128-bit page.

A special case is the following (0TP_L0OCK): if the third parameter is NULL,
this call will lock a page without writing any data value to it (pure lock
function). Note that in this case, “page” can span all pages from 0x000 to
0x1FF. This is the only way to lock the ECC pages themselves.

The use of flag parameter 0TP_NO_ECC is only supported in write
operations when used to implement write-protection/ page-locking
(use of OTP_LOCK parameter in bfrom_0Otp_Write function is pre-
ferred method of locking pages, see Write Protecting OTP
Memory section below) or to set the preboot invalidate bits (see the
Preboot section in Chapter 26, “System Reset and Booting”).
Bypassing error correction in OTP writes may result in loss of OTP
data integrity and is not supported for any other OTP access.

The use of ECC in all OTP accesses other than the limited excep-
tions described previously is mandatory.

ADSP-BF51x Blackfin Processor Hardware Reference 3-21

OTP Access

Error Codes

This section describes the returned error codes from the API functions.
Figure 3-5 and Table 3-5 demonstrate and list the returned error codes
from API functions.

Returned Error Codes from API Functions

30 20 28 27 26 25 24 23 22 21 20 19 18 17 16
|o|0|0|o|0|o|o|0|0|o|o|0|o|o|0|o| OTP_SUCCESS = 0x0000

15 14 13 12 11 10 9 8 6 5 4 3 2 1 0
oo o o o o oTolo oo ToTo [o o o]

I | Y I | T
OTP_ECC_SB_WARN OTP_MASTER_ERROR

(W) Single bad bit on write of Master Error Bit = OP[OR(bits
ECC 1,2,3,4,5,6,7), AND(bits 8,9)]
OTP_DATA_SB_WARN OTP_WRITE_ERROR
g\ﬁl)b_stigglte bad bit on write of (E) OTP Write Error

-bit data

OTP_READ_ERROR

OTP_SB_DEFECT_ERROR
(E) Single bit defect in the page E OTP Read Error

OTP_PREV_WR_ERROR

(E) Attempt to write previously
written space
OTP_ECC_MULT_ERROR

(E) Multiple bad bits on write of
ECC

OTP_ACC_VIO_ERROR

(E) Attempt to access invalid
OTP space

OTP_DATA_MULT_ERROR

(E) Multiple bad bits on write of
64-bit data

Figure 3-5. Returned Error Codes from API Functions

3-22

ADSP-BF51x Blackfin Processor Hardware Reference

One-Time Programmable Memory

Table 3-5. Returned Error Codes from API Functions

Bit Name Example |Definition
Position Return
Value

N/A OTP_SUCCESS 0x0 No Error

0 OTP_MASTER_ERROR 0x1 Master Error Bit = OR [OR (bits
1,2,3,4,5,6,7), AND (bits 8,9)]

1 OTP_WRITE_ERROR 0x3 (E) OTP Write Error

2 OTP_READ_ERROR 0x5 (E) OTP Read Error

3 OTP_ACC_VIO_ERROR 0x9 (E) Attempt to access invalid OTP
space

4 OTP_DATA_MULT_ERROR | 0x11 (E) Multiple bad bits on write of 64
bit data

5 OTP_ECC_MULT_ERROR 0x21 (E) Multiple bad bits on write of
ECC

6 OTP_PREV_WR_ERROR 0x41 (E) Attempt to write previously writ-
ten space

7 OTP_SB_DEFECT_ERROR 0x81 (E) Single-bit defect in the page

8 OTP_DATA_SB_WARN 0x100 (W) Single bad bit on write of 64 bit
data

9 OTP_ECC_SB_WARN 0x200 (W) Single bad bit on write of ECC

bfrom_OtpRead() returns with an error when any of the bits [6:2] are set
or both bits [9:8] are set. In this case, the 0TP_MASTER_ERROR bit is also set.
It returns with a warning if only one of the bits [9:8] is set.

bfrom_OtpWrite() returns with an error when any of the bits [7:1] are set
or both bits [9:8] are set. In this case, the 0TP_MASTER_ERROR bit is also set.
It returns with a warning if only one of the bits [9:8] is set.

bfrom_0OtpCommand () currently always returns with “0”.

ADSP-BF51x Blackfin Processor Hardware Reference

3-23

OTP Access

Write-Protecting OTP Memory

As shown in Figure 3-2, a small portion of OTP memory is reserved for
write-protect bits (“write-protect” is synonymous with “page-protect” in
the context of this discussion). After programming OTP memory, the pro-
grammer can use these protection bits to “lock” the page that was just
programmed by setting the write-protect bit corresponding to the OTP
data page. Once the write-protect bit is set and the lock is in place, further
attempts to write to that page will not be allowed, resulting in an error.
Page protect bits can also be set in order to prevent programming of
unwritten OTP pages as well. Once an OTP page is page-protected, the
write protection can not be reversed and no further write accesses can be
made to the protected page(s).

There are four pages reserved for the write-protection bits. Pages 0x0
through 0x3 contain the 512 write-protect bits, one bit for each of the 512
data pages within OTP memory. The first two write-protect bit pages
(pages 0x0 and 0x1) correspond to the public (non-secure) regions of the
OTP map. The other two write-protect bit pages (0x2 and 0x3) corre-
spond to the protection of private (secure) regions of the OTP map. The
processor does not need to be operating in Secure Mode in order to be
able to program protection pages associated with secure OTP regions. All
protection bits can be written in any security state including Open Mode.

Note that while reads and writes access a half-page at a time, set-
ting a protection bit for a page will effectively lock an entire page
for future write accesses (lower and upper half page). The program-
mer must ensure that all required programming is completed on a
full 128-bit OTP data page prior to setting the write-protect bit for
that page. In other words, the programmer must make sure that a
full 128-bit OTP page is programmed, or that no future program-
ming is required to be performed to the unprogrammed portion of

the page before locking the page.

3-24 ADSP-BF51x Blackfin Processor Hardware Reference

One-Time Programmable Memory

If P is the OTP page that is needed to be write-protected, the write-protect
bit and its page can be calculated as follows:

Let WPP be the write-protect page where the write-protect bit resides and
let WPB be the write-protect bit that needs to be set in order to lock page P.

The write-protect page can be calculated by:
WPP =P >> 7;

and the write-protect bit can be calculated by:
WPB = P & Ox7/f;

Manual calculation is largely unnecessary due to the fact that the
bfrom_OtpWrite() function can be used to lock pages (see “OTP Program-
ming Examples” on page 3-26 for details).

// Tock page (note third parameter equals NULL)
return_code = bfrom_OtpWrite(0x01C, OTP_LOCK, NULL);

Locking a single ECC (error correction code) page results in locking the
correction codes which correspond to eight OTP data pages (16 half
pages). This is due to the fact that a 64-bit half-page access must be per-
formed when write protecting the ECC page and every 8-bits within an
ECC page is a parity correction code which corresponds to a 64-bit
half-page of data in OTP. Therefore, a full 128-bit ECC page holds the
correction codes for eight full 128-bit pages of data in OTP, or 16
half-pages. Pages can only be locked as full 128-bit pages even though
read/write accesses may occur at 64-bit half-page granularity. Locking a
single ECC page will prevent further write access to the corresponding

eight OTP data pages.

ECC (error correction code) space is not permitted to be written to
directly.

ADSP-BF51x Blackfin Processor Hardware Reference 3-25

OTP Programming Examples

For example, locking ECC page 0xFB will result in locking the error cor-
rection parity data associated with the 16 data pages in the range of
0x0D8 — 0xODF.

// Only Lock ECC code page
return_code = bfrom_OtpWrite(0OxFB, OTP_LOCK, NULL);

No further write accesses to the ECC page 0xFB or corresponding data
pages 0x0D8 — 0xODF will be allowed following write protection of the
ECC page in this example.

Bits [3:0] of OTP page 0 are the write-protect bits for the first four
OTP pages, which contain the write-protect bits. If these bits are
set, it will prevent the other write-protect bits from being set, thus
disabling the write protection mechanism. But this does not pre-
vent the user from programming the other user-programmable

OTP pages.

Accessing Private OTP Memory

In order to read or write to the private area of OTP memory, the processor
must be operating in Secure Mode and the 0TPSEN bit within the

SECURE_SYSSWT register must be set to a value of 1 to enable secured OTP
access. For information about Security, Secure Mode, and the Secure State
Machine, see the Secure State Machine section of Chapter 25, “Security”.

OTP Programming Examples

The recommended sequence of steps when accessing OTP memory is as
follows:

1. Initialize OTP array by calling bfrom_0tpCommand().

2. Perform OTP read or write access by calling bfrom_0tpRead() or
bfrom_OtpWrite().

3-26 ADSP-BF51x Blackfin Processor Hardware Reference

One-Time Programmable Memory

3. Call bfrom_0tpCommand () with OTP_CLOSE parameter to re-initialize
the OTP controller when OTP read/write access is complete.

4. Initialize OTP array by calling bfrom_0tpCommand() for next OTP
access.

5. Repeat steps 1-3 for subsequent OTP accesses.

In general, it is recommended to use 0TP_CLOSE if sensitive data has been
written/read in some secure mode, and the processor is subsequently
returned to Open Mode operation. For information about these modes,
see Chapter 25, “Security”.

To enable access to private OTP memory space while operating in Secure
Mode, use the code shown in Listing 3-3.

Listing 3-3. Enable Access to Private OTP

// Enable private OTP access
*pSECURE_SYSSWT = ~EMUDABL | OTPSEN;
SSYNC();

To enable access to private OTP memory space via 0TPSEN while operating
in Secure Mode, use the code shown in Listing 3-4.

Listing 3-4. Enable Access to Private OTP and Enable JTAG Emulation in
Secure Mode

// Enable JTAG and private OTP access
*pSECURE_SYSSWT = *pSECURE_SYSSWT & (~EMUDABL)) | OTPSEN;
SSYNC(0);

To read pages 0x4 through 0xDF in public OTP memory space and print
results to the IDE console, use the code shown in Listing 3-5.

ADSP-BF51x Blackfin Processor Hardware Reference 3-27

OTP Programming Examples

Listing 3-5. Read Pages 0x4 Through 0xDF in Public OTP Memory Space

and Print Results to the IDE Console

#include <blackfin.h>
#include <bfrom.h>

u32 return_code, i;
ue4 value;

// Initialize OTP timing parameter
// Proper timing for OTP read access
const u32 OTP_init_value = 0x00001485;

return_code = bfrom_OtpCommand(OTP_INIT, OTP_init_value);

for (i= 0x004; <OxOxEQ; i++)
{
return_code = bfrom_OtpRead(i, OTP_LOWER_HALF,

printf(“page: 0x%03xL, Content ECC: O0x%01611x,
0x%03x \n”, i, value, return_code);

return_code = bfrom_OtpRead(i, OTP_UPPER_HALF,
printf(“page: 0x%03xH, Content ECC: 0x%01611x,

0x%03x \n”, i, value, return_code);
}

&value);

returncode:

&value);

returncode:

To write and lock a single OTP page and return the results to the IDE

console via printf, use the code shown in Listing 3-6.

3-28 ADSP-BF51x Blackfin Processor Hardware Reference

One-Time Programmable Memory

Listing 3-6. Perform OTP Write to a Single Page via Two 64-Bit
(Half-Page) Accesses

#include <blackfin.h>
#include <bfrom.h>

ue4 value;
u3?2 return_code;

// Initialize OTP timing parameter
// Proper timing for SCLK = 80 MHz
const u32 OTP_init_value = 0x14548750;

return_code bfrom_OtpCommand(OTP_INIT, OTP_init_value);
return_code = bfrom_OtpWrite(0x01C, OTP_LOWER_HALF |
OTP_CHECK_FOR_PREV_WRITE, &testdata);

printf(“WRITE page: 0x%03xL, Content ECC: 0x%01611x,
returncode: 0x%03x \n”, 0x1C, testdata, return_code);

return_code = bfrom_OtpWrite(0x01C, OTP_UPPER_HALF |

OTP_CHECK_FOR_PREV_WRITE | OTP_LOCK, &testdata);

printf(“WRITE page: 0x%03xH, Content ECC: 0x%01611x,
returncode: 0x%03x \n”, 0x1C, testdata, return_code);

Note that locking a page will lock the full 128-bit page, whereas the previ-
ous examples perform OTP access on a 64-bit half-page granularity. This
is the finest level of granularity that is allowed due to the OTP error cor-
rection implementation. The page lock should occur only after both the
lower and upper portion of the page have been written. Note that the page
lock operation is performed on the second and final access to the page in
the code in Listing 3-6.

It may be desired to lock some specific OTP pages in a separate access
after writing of data values is already complete.

ADSP-BF51x Blackfin Processor Hardware Reference 3-29

OTP Programming Examples

OTP pages are typically locked in order to protect them from being over-
written or to prevent inadvertent or malicious tampering. This can be
performed by the following instructions in Listing 3-7.

Listing 3-7. Perform Pure Page Lock Operation Without Writing any
Data Values

#include <blackfin.h>
#include <bfrom.h>

ue4d value;
u32 return_code;

// Initialize OTP timing parameter

// Proper timing for SCLK = 80 MHz

const u32 OTP_init_value = 0x14548750;

return_code = bfrom_OtpCommand(OTP_INIT, OTP_init_value);
return_code = bfrom_OtpWrite(0x01C, OTP_LOCK, NULL);

Listing 3-8. Read Unique Chip ID Stored in OTP Memory

#include <bfrom.h>

ffinclude <stdio.h>

#include <cdefBF518.h>

#include <ccblkfn.h> // contains intrinsics for Blackfin
// assembler commands

void main()
{
u3?2 return_code; // 32-bit element to hold return code
u64 idupper, idlower; // Two 64-bit elements to hold the
// upper & lower halves of the unique chip id

3-30 ADSP-BF51x Blackfin Processor Hardware Reference

One-Time Programmable Memory

// Code to read the unique chip ID

return_code = bfrom_OtpRead(0x4, OTP_LOWER_HALF, &idlower);

printf("page: 0x%03xL, Content ECC: 0x%01611x,
0x%03x\n", O0x4, idlower, return_code);

returncode:

return_code = bfrom_OtpRead(0x4, OTP_UPPER_HALF, &idupper);

printf("page: 0x%03xH, Content ECC: 0x%01611x, returncode:
0x%03x\n", O0x4, idupper, return_code);
return;
}
ADSP-BF51x Blackfin Processor Hardware Reference 3-31

OTP Programming Examples

3-32 ADSP-BF51x Blackfin Processor Hardware Reference

Chip Bus Hierarchy

4 CHIP BUS HIERARCHY

This chapter discusses on-chip buses, how data moves through the system,
and other factors that determine the system organization. Following an
overview and a list of key features is a block diagram of the chip bus hier-
archy and a description of its operation. The chapter concludes with
details about the system interconnects and associated system buses.

This chapter provides
e “Chip Bus Hierarchy Overview”

e “Interface Overview” on page 4-3

Chip Bus Hierarchy Overview

ADSP-BF51x Blackfin processors feature a powerful chip bus hierarchy on
which all data movement between the processor core, internal memory,
external memory, and its rich set of peripherals occurs. The chip bus hier-
archy includes the controllers for system interrupts, test/emulation, and
clock and power management. Synchronous clock domain conversion is
provided to support clock domain transactions between the core and the
system.

ADSP-BF51x Blackfin Processor Hardware Reference 4-1

Chip Bus Hierarchy Overview

The processor system includes:

e The peripheral set including timers, GP Counter, RTC, TWI, RSI
(except ADSP-BF512), 10/100 Ethernet MAC (ADSP-BF516 and
ADSP-BF518), IEEE 1588-2008 (ADSP-BF518), UARTS,
SPORTs, SPIs, PPI, watchdog timer, and PWM

e The External Bus Interface Unit (EBIU)
* The Direct Memory Access (DMA) controller

e The interfaces between these, the system, and the optional external
(off-chip) resources

The following sections describe the on-chip interfaces between the system
and the peripherals via the:

* DPeripheral Access Bus (PAB)
e DMA Access Bus (DAB)

e DMA Core Bus (DCB)

e DMA External Bus (DEB)

e External Access Bus (EAB)

The External Bus Interface Unit (EBIU) is the primary chip pin bus and is
discussed in Chapter 7, “External Bus Interface Unit”.

4-2 ADSP-BF51x Blackfin Processor Hardware Reference

Interface Overview

Chip Bus Hierarchy

Figure 4-1 shows the core processor and system boundaries as well as the
interfaces between them.

CORE CLOCK
(CCLK) DOMAIN

SYSTEM CLOCK
(SCLK) DOMAIN

VOLTAGE
CONTROL UNIT

CORE

PROCESSOR |

PERIPHERAL
ACCESS .
BUS (PAB) -

Figure 4-1. Processor Bus Hierarchy

WATCHDOG
TIMER

ETHERNET MAC
SPORTs

DMA ACCESS BUS (DAB)

32K ROM

16 EXTERNAL
—7—|| PoRT

16l BUS (EPB)

EXTERNAL
MEMORY
DEVICES

/64
32 INSTRUCTION L1 MEMORY
II
432 LOAD DATA
" 32 LOADDATA -
F >
STORE DATA AN
DMA
CORE
BUS
(DCB)
—7 EXTERNAL
DMA 716
>lcoNTROLLER |, 16 4] ACCESS
—7 BUS (EAB)
_ DMA
il EXT.
BUS
(DEB) |})
EBIU

ADSP-BF51x Blackfin Processor Hardware Reference

4-3

Interfface Overview

Internal Clocks

The core processor clock (CCLK) rate is highly programmable with respect
to CLKIN. The cCLK rate is divided down from the Phase Locked Loop
(PLL) output rate. This divider ratio is set using the CSEL parameter of the
PLL divide register.

The PAB, the DAB, the EAB, the DCB, the DEB, the EPB, and the EBIU
run at system clock frequency (SCLK domain). This divider ratio is set
using the SSEL parameter of the PLL divide (PLL_DIV) register and must be
set so that these buses run as specified in the processor data sheet, and
slower than or equal to the core clock frequency.

These buses can also be cycled at a programmable frequency to reduce
power consumption, or to allow the core processor to run at an optimal
frequency. Note all synchronous peripherals derive their timing from the
scLk. For example, the UART clock rate is determined by further divid-
ing this clock frequency.

Core Bus Overview

For the purposes of this discussion, level 1 memories (L1) are included in
the description of the core; they have full bandwidth access from the pro-
cessor core with a 64-bit instruction bus and two 32-bit data buses.

Figure 4-2 shows the core processor and its interfaces to the peripherals
and external memory resources.

The core can generate up to three simultaneous off-core accesses per cycle.

The core bus structure between the processor and L1 memory runs at the
full core frequency and has data paths up to 64 bits.

When the instruction request is filled, the 64-bit read can contain a single
64-bit instruction or any combination of 16-, 32-, or 64-bit (partial)
instructions.

4-4 ADSP-BF51x Blackfin Processor Hardware Reference

Chip Bus Hierarchy

When cache is enabled, four 64-bit read requests are issued to support
32-byte line fill burst operations. These requests are pipelined so that each
transfer after the first is filled in a single, consecutive cycle.

DSPID SYSTEM CLOCK
JTAG (8 BITS) AND POWER
MANAGEMENT

O
I
|
I
|
I
|
I
|
I
|
|
I
|
I
|
I
|
I
|
|
I
|
I
|
I
|
I
|
|
I
|

|
|
|
INT —e DEBUG AND JTAG INTERFACE |
' |
ACK <—}— CORE |
I EVENT
| |contRoLLER |
RESET powerAND | |
VECTOR £V| = N CLOCK I
CONTROLLER | |
|
| PROCESSOR I
|
| | CORETIMER PERFORMANCE
I < <> moNIToR :
' |
o - [=] =] - [11] 1]
| sl sl e & 3| =|| e :
I 32| 32 32|| 32|| 32|| 32 64 CORE |
I \\\ \\\ \\\ \\\ ~ \\\ I
| |
|
| H [U
| ' < '
| |
| MEMORY :
I L1 DATA MANAGEMENT L1 INSTRUCTION
| UNIT |
|
' |
e i S S S
DMA CORE BUS EAB PAB
(DCB)

Figure 4-2. Core Block Diagram

ADSP-BF51x Blackfin Processor Hardware Reference 4-5

Interfface Overview

Peripheral Access Bus (PAB)

The processor has a dedicated low latency peripheral bus that keeps core
stalls to a minimum and allows for manageable interrupt latencies to
time-critical peripherals. All peripheral resources accessed through the
PAB are mapped into the system MMR space of the processor memory
map. The core accesses system MMR space through the PAB bus.

The core processor has byte addressability, but the programming model is
restricted to only 32-bit (aligned) access to the system MMRs. Byte
accesses to this region are not supported.

PAB Arbitration

The core is the only master on this bus. No arbitration is necessary.

PAB Agents (Masters, Slaves)

The processor core can master bus operations on the PAB. All peripherals
have a peripheral bus slave interface which allows the core to access con-
trol and status state. These registers are mapped into the system MMR
space of the memory map. Appendix B lists system MMR addresses.

The slaves on the PAB bus are:
* System event controller
* Clock and power management controller
* Watchdog timer
* Real-time clock (RTC)

e Timer 0-7
e SPORTO0-1
e SPIO-1

4-6

ADSP-BF51x Blackfin Processor Hardware Reference

Chip Bus Hierarchy

* Ports

« UARTO-1
 PPI

e TWI

* Ethernet MAC IEEE 1588-2008

* PWM

* RSI

* Asynchronous memory controller (AMC)
e SDRAM controller (SDC)

* DMA controller

PAB Performance

For the PAB, the primary performance criteria is latency, not throughput.
Transfer latencies for both read and write transfers on the PAB are two
SCLK cycles.

For example, the core can transfer up to 32 bits per access to the PAB
slaves. With the core clock running at 2x the frequency of the system
clock, the first and subsequent system MMR read or write accesses take
four core clocks (CCLK) of latency.

The PAB has a maximum frequency of SCLK.

ADSP-BF51x Blackfin Processor Hardware Reference 4-7

Interfface Overview

DMA Access Bus (DAB), DMA Core Bus (DCB), DMA
External Bus (DEB)

The DAB, DCB, and DEB buses provide a means for DMA-capable
peripherals to gain access to on-chip and off-chip memory with little or no
degradation in core bandwidth to memory.

DAB, DCB, and DEB Arbitration

Sixteen DMA channels and bus masters support the DMA-capable periph-
erals in the processor system. The twelve peripheral DMA channel
controllers can transfer data between peripherals and internal or external
memory. Both the read and write channels of the dual-stream memory
DMA controller access their descriptor lists through the DAB.

The DCB has priority over the core processor on arbitration into L1 con-
figured as data SRAM, whereas the core processor has priority over the
DCB on arbitration into L1 instruction SRAM. For off-chip memory, the
core (by default) has priority over the DEB for accesses to the EPB. The
processor has a programmable priority arbitration policy on the DAB.
Table 4-1 shows the default arbitration priority. In addition, by setting
the CDPRIO bit in the EBIU_AMGCTL register, all DEB transactions to the
EPB have priority over core accesses to external memory. Use of this bit is
application-dependent. For example, if you are polling a peripheral
mapped to asynchronous memory with long access times, by default the
core will “win” over DMA requests. By setting the CDPRIO bit, the core
would be held off until DMA requests were serviced.

4-8 ADSP-BF51x Blackfin Processor Hardware Reference

Chip Bus Hierarchy

Table 4-1. DAB, DCB, and DEB Arbitration Priority

DAB, DCB, DEB Master Default Arbitration Priority
PPI receive/transmit 0 - highest
Ethernet receive 1

Ethernet transmit 2
SPORTO receive 3
SPORTO transmit 4

RSI

SPORT1 receive 5

SPI1 transmit/receive

SPORT1 transmit 6

SPIO receive/transmit 7

UARTO receive 8

UARTO transmit 9

UARTT receive 10
UARTT1 transmit 11
MDMA stream 0 destination 12
MDMA stream 0 source 13
MDMA stream 1 destination 14
MDMA stream 1 source 15 - lowest

DAB Bus Agents (Masters)

All peripherals capable of sourcing a DMA access are masters on this bus,
as shown in Table 4-1. A single arbiter supports a programmable priority
arbitration policy for access to the DAB.

When two or more DMA master channels are actively requesting the
DAB, bus utilization is considerably higher due to the DAB’s pipelined
design. Bus arbitration cycles are concurrent with the previous DMA
access’s data cycles.

ADSP-BF51x Blackfin Processor Hardware Reference 4-9

Interfface Overview

DAB, DCB, and DEB Performance

The processor DAB supports data transfers of 16 bits or 32 bits. The data
bus has a 16-bit width with a maximum frequency as specified in the pro-
cessor data sheet.

The DAB has a dedicated port into L1 memory. No stalls occur as long as
the core access and the DMA access are not to the same memory bank (4K
byte size for L1). If there is a conflict when accessing data memory, DMA
is the highest priority requester, followed by the core. If the conflict

occurs when accessing instruction memory, the core is the highest priority

requester, followed by DMA.

Note that a locked transfer by the core processor (for example, execution
of a TESTSET instruction) effectively disables arbitration for the addressed
memory bank or resource until the memory lock is deasserted. DMA con-
trollers cannot perform locked transfers.

DMA access to L1 memory can only be stalled by an access already in
progress from another DMA channel. Latencies caused by these stalls are
in addition to any arbitration latencies.

The core processor and the DAB must arbitrate for access to exter-
nal memory through the EBIU. This additional arbitration latency
added to the latency required to read off-chip memory devices can
significantly degrade DAB throughput, potentially causing periph-
eral data buffers to underflow or overflow. If you use DMA
peripherals other than the memory DMA controller, and you target
external memory for DMA accesses, you need to carefully analyze
your specific traffic patterns. Make sure that isochronous peripher-
als targeting internal memory have enough allocated bandwidth
and the appropriate maximum arbitration latencies.

4-10 ADSP-BF51x Blackfin Processor Hardware Reference

Chip Bus Hierarchy

External Access Bus (EAB)

The EAB provides a way for the processor core to directly access off-chip
memory.

Arbitration of the External Bus

Arbitration for use of external port bus interface resources is required
because of possible contention between the potential masters of this bus. A
fixed-priority arbitration scheme is used. That is, core accesses via the
EAB will be of higher priority than those from the DMA external bus
(DEB).

DEB/EAB Performance

The DEB and the EAB support single word accesses of either 8-bit or
16-bit data types. The DEB and the EAB operate at the same frequency as
the PAB and the DAB, up to the maximum SCLK frequency specified in
the processor data sheet.

Memory DMA transfers can result in repeated accesses to the same mem-
ory location. Because the memory DMA controller has the potential of
simultaneously accessing on-chip and off-chip memory, considerable
throughput can be achieved. The throughput rate for an on-chip/off-chip

memory access is limited by the slower of the two accesses.

In the case where the transfer is from on-chip to on-chip memory or from
off-chip to off-chip memory, the burst accesses cannot occur simultane-
ously. The transfer rate is then determined by adding each transfer plus an
additional cycle between each transfer.

Table 4-2 shows many types of 16-bit memory DMA transfers. In the
table, it is assumed that no other DMA activity is conflicting with ongoing
operations. The numbers in the table are theoretical values. These values

ADSP-BF51x Blackfin Processor Hardware Reference 4-11

Interfface Overview

may be higher when they are measured on actual hardware due to a variety
of reasons relating to the device that is connected to the EBIU.

For non-DMA accesses (for example, a core access via the EAB), a 32-bit
access to SDRAM (of the form R0 = [PO]; where PO points to an address in
SDRAM) is always more efficient than executing two 16-bit accesses (of
the form R0 = W[P0++]; where PO points to an address in SDRAM). In
this example, a 32-bit SDRAM read takes 10 SCLK cycles while two 16-bit
reads take 9 SCLK cycles each.

Table 4-2. Performance of DMA Access to External Memory

Source Destination Approximate SCLKs For n Words
(from start of DMA to interrupt at
end)

16-bit SDRAM L1 data memory n+ 14

L1 data memory 16-bit SDRAM n+11

16-bit async memory

L1 data memory

xn + 12, where x is the number of
wait states + setup/hold SCLK cycles

(minimum x = 2)

L1 data memory

16-bit async memory

xn + 9, where x is the number of wait
states + setup/hold SCLK cycles (min-

imum x = 2)

16-bit SDRAM

16-bit SDRAM

10 + (17n/7)

16-bit async memory

16-bit async memory

10 + 2xn, where x is the number of
wait states + setup/hold SCLK cycles
(minimum x = 2)

L1 data memory

L1 data memory

2n+ 12

ADSP-BF51x Blackfin Processor Hardware Reference

System Interrupts

5 SYSTEM INTERRUPTS

This chapter discusses the system interrupt controller (SIC). While this

chapter does refer to features of the core event controller (CEC), it does
not cover all aspects of it. Refer to Blackfin Processor Programming Refer-
ence for more information on the CEC.

Specific Information for the ADSP-BF51x

For details regarding the number of system interrupts for the
ADSP-BF51x product, refer to ADSP-BF512/BF514/BF516/BF518(F)
Embedded Processor Data Sheet.

To determine how each of the system interrupts is multiplexed with other
functional pins, refer to Table 9-2 on page 9-5 through Table 9-4 on
page 9-7 in Chapter 9, “General-Purpose Ports”.

For a list of MMR addresses for each DMA, refer to Chapter A, “System
MMR Assignments”.

System interrupt behavior for the ADSP-BF51x that differs from the gen-
eral information in this chapter can be found at the end of this chapter in
the section “Unique Information for the ADSP-BF51x Processor” on
page 5-16.

ADSP-BF51x Blackfin Processor Hardware Reference 5-1

Overview

Overview

The processor system has numerous peripherals, which therefore require
many supporting interrupts.

Features

The Blackfin architecture provides a two-level interrupt processing
scheme:

e The core event controller (CEC) runs in the CCLK clock domain. It
interacts closely with the program sequencer and manages the event
vector table (EVT). The CEC processes not only core-related inter-
rupts such as exceptions, core errors, and emulation events; it also
supports software interrupts.

e The system interrupt controller (SIC) runs in the SCLK clock
domain. It masks, groups, and prioritizes interrupt requests sig-

nalled by on-chip or off-chip peripherals and forwards them to the
CEC.

Description of Operation

The following sections describe the operation of the system interrupts.

Events and Sequencing

The processor employs a two-level event control mechanism. The proces-
sor SIC works with the CEC to prioritize and control all system
interrupts. The SIC provides mapping between the many peripheral inter-
rupt sources and the prioritized general-purpose interrupt inputs of the
core. This mapping is programmable, and individual interrupt sources can

be masked in the SIC.

5-2 ADSP-BF51x Blackfin Processor Hardware Reference

System Interrupts

The CEC of the processor manages five types of activities or events:
* Emulation
* Reset
e Nonmaskable interrupts (NMI)
* Exceptions
* Interrupts

Note the word event describes all five types of activities. The CEC man-
ages fifteen different events in all: emulation, reset, NMI, exception, and
eleven interrupts.

An interrupt is an event that changes the normal processor instruction
flow and is asynchronous to program flow. In contrast, an exception is a
software initiated event whose effects are synchronous to program flow.

The event system is nested and prioritized. Consequently, several service
routines may be active at any time, and a low priority event may be pre-
empted by one of higher priority.

The CEC supports nine general-purpose interrupts (IVG7 — IVG15) in
addition to the dedicated interrupt and exception events that are described
in Table 5-1. It is common for applications to reserve the lowest or the
two lowest priority interrupts (IVG14 and IVG15) for software interrupts,
leaving eight or seven prioritized interrupt inputs (IVG7 — IVG13) for
peripheral purposes. Refer to Table 5-1.

ADSP-BF51x Blackfin Processor Hardware Reference 5-3

Description of Operation

Table 5-1. System and Core Event Mapping

Event Source Core Event
Name

Core events

Emulation (highest priority) EMU

Reset RST

NMI NMI

Exception EVX

Reserved -

Hardware error IVHW

Core timer IVITMR
System interrupts IVG7-1VG13
Software interrupt 1 IVG14
Software interrupt 2 (lowest priority) IVG15

System Peripheral Interrupts

To service the rich set of peripherals, the SIC has multiple interrupt
request inputs and outputs that go to the CEC. The primary function of
the SIC is to mask, group, and prioritize interrupt requests and to forward
them to the nine general-purpose interrupt inputs of the CEC (1vG7—
I1VG15). Additionally, the SIC controller can enable individual peripheral
interrupts to wake up the processor from Idle or power-down state.

The nine general-purpose interrupt inputs (IVG7—1VG15) of the core event
controller have fixed priority. Of this group, the 1VG7 channel has the
highest priority and 1VG15 has the lowest priority. Therefore, the interrupt
assignment in the SIC_IAR registers not only groups peripheral interrupts;
it also programs their priority by assigning them to individual IVG chan-
nels. However, the relative priority of peripheral interrupts can be set by
mapping the peripheral interrupt to the appropriate general-purpose inter-
rupt level in the core. The mapping is controlled by the SIC_IAR register

5-4 ADSP-BF51x Blackfin Processor Hardware Reference

System Interrupts

settings shown in Figure 5-2 on page 5-11 and the tables in Appendix A,
“System MMR Assignments”. If more than one interrupt source is
mapped to the same interrupt, they are logically OR’ed, with no hardware
prioritization. Software can prioritize the interrupt processing as required
for a particular system application.

For general-purpose interrupts with multiple peripheral interrupts
assigned to them, take special care to ensure that software correctly
processes all pending interrupts sharing that input. Software is
responsible for prioritizing the shared interrupts.

The core timer has a dedicated input to the CEC controller. Its interrupt
is not routed through the SIC controller and always has higher priority
than requests from all peripherals.

The SIC_IMASK register allows software to mask any peripheral interrupt
source at the SIC level. This functionality is independent of whether the
particular interrupt is enabled at the peripheral itself. At reset, the con-
tents of the STC_IMASK register are all Os to mask off all peripheral
interrupts. Turning off a system interrupt mask and enabling the particu-
lar interrupt is performed by writing a 1 to a bit location in the SIC_IMASK
register.

The SIC includes one or more read-only SIC_ISR registers with individual
bits which correspond to the interrupt status of one of the peripheral
interrupt sources. When the SIC detects the interrupt, the bit is asserted.
When the SIC detects that the peripheral interrupt input has been deas-
serted, the respective bit in the system interrupt status register is cleared.
Note for some peripherals, such as general-purpose I/0O asynchronous
input interrupts, many cycles of latency may pass from the time an inter-
rupt service routine initiates the clearing of the interrupt (usually by
writing a system MMR) to the time the SIC senses that the interrupt has
been deasserted.

Depending on how interrupt sources map to the general-purpose interrupt
inputs of the core, the interrupt service routine may have to interrogate

ADSP-BF51x Blackfin Processor Hardware Reference 5-5

Description of Operation

multiple interrupt status bits to determine the source of the interrupt.
One of the first instructions executed in an interrupt service routine
should read the SIC_ISR register to determine whether more than one of
the peripherals sharing the input has asserted its interrupt output. The ser-
vice routine should fully process all pending, shared interrupts before
executing the RTI, which enables further interrupt generation on that
interrupt input.

@ When an interrupt’s service routine is finished, the RTT instruction

clears the appropriate bit in the IPEND register. However, the rele-
vant SIC_ISR bit is not cleared unless the service routine clears the
mechanism that generated the interrupt.

Many systems need relatively few interrupt-enabled peripherals, allowing
each peripheral to map to a unique core priority level. In these designs, the
SIC_ISR register will seldom, if ever, need to be interrogated.

The SIC_ISR register is not affected by the state of the STC_IMASK register
and can be read at any time. Writes to the SIC_ISR register have no effect
on its contents.

Peripheral DMA channels are mapped in a fixed manner to the peripheral
interrupt IDs. However, the assignment between peripherals and DMA
channels is freely programmable with the DMA_PERIPHERAL_MAP registers.
Table 5-1 on page 5-4 and Table 5-2 on page 5-11 show the default DMA
assignment. Once a peripheral has been assigned to any other DMA chan-
nel it uses the new DMA channel’s interrupt ID regardless of whether
DMA is enabled or not. Therefore, clean DMA_PERIPHERAL_MAP manage-
ment is required even if the DMA is not used. The default setup should be
the best choice for all non-DMA applications.

For dynamic power management, any of the peripherals can be configured
to wake up the core from its idled state to process the interrupt, simply by
enabling the appropriate bit in the SIC_IWR register (refer to Table 5-1 on
page 5-4 and Table 5-2 on page 5-11). If a peripheral interrupt source is

enabled in SIC_IWR and the core is idled, the interrupt causes the DPMC

5-6 ADSP-BF51x Blackfin Processor Hardware Reference

System Interrupts

to initiate the core wakeup sequence in order to process the interrupt.
Note this mode of operation may add latency to interrupt processing,
depending on the power control state. For further discussion of power
modes and the idled state of the core, see the Dynamic Power Manage-
ment chapter.

The SIC_IWR register has no effect unless the core is idled. By default, all
interrupts generate a wakeup request to the core. However, for some
applications it may be desirable to disable this function for some peripher-
als, such as for a SPORT transmit interrupt. The SIC_IWR register can be
read from or written to at any time. To prevent spurious or lost interrupt
activity, this register should be written to only when all peripheral inter-
rupts are disabled.

The wakeup function is independent of the interrupt mask func-
tion. If an interrupt source is enabled in the SIC_IWR but masked
off in the SIC_IMASK register, the core wakes up if it is idled, but it
does not generate an interrupt.

The peripheral interrupt structure of the processor is flexible. Upon reset,
multiple peripheral interrupts share a single, general-purpose interrupt in
the core by default, as shown in Table 5-2 on page 5-11.

An interrupt service routine that supports multiple interrupt sources must
interrogate the appropriate system memory mapped registers (MMRs) to
determine which peripheral generated the interrupt.

Programming Model

The programming model for the system interrupts is described in the fol-
lowing sections.

ADSP-BF51x Blackfin Processor Hardware Reference 5-7

Programming Model

System Interrupt Initialization

If the default peripheral-to-IVG assignments shown in Table 5-1 on
page 5-4 and Table 5-2 on page 5-11 are acceptable, then interrupt initial-
ization involves only:

Initialization of the core event vector table (EVT) vector address
entries

Initialization of the IMASK register

Unmasking the specific peripheral interrupts that the system
requires in the SIC_IMASK register

System Interrupt Processing Summary

Referring to Figure 5-1 on page 5-10, note when an interrupt (interrupt
A) is generated by an interrupt-enabled peripheral:

1.

SIC_ISR logs the request and keeps track of system interrupts that
are asserted but not yet serviced (that is, an interrupt service rou-
tine hasn’t yet cleared the interrupt).

SIC_IWR checks to see if it should wake up the core from an idled
state based on this interrupt request.

SIC_IMASK masks off or enables interrupts from peripherals at the
system level. If interrupt A is not masked, the request proceeds to

Step 4.

The SIC_IAR registers, which map the peripheral interrupts to a
smaller set of general-purpose core interrupts (IVG7 - IVG15),
determine the core priority of interrupt A.

ILAT adds interrupt A to its log of interrupts latched by the core
but not yet actively being serviced.

5-8

ADSP-BF51x Blackfin Processor Hardware Reference

System Interrupts

6. IMASK masks off or enables events of different core priorities. If the
IVGx event corresponding to interrupt A is not masked, the process

proceeds to Step 7.

7. The event vector table (EVT) is accessed to look up the appropriate
vector for interrupt A’s interrupt service routine (ISR).

8. When the event vector for interrupt A has entered the core pipe-
line, the appropriate IPEND bit is set, which clears the respective
ILAT bit. Thus, IPEND tracks all pending interrupts, as well as those
being presently serviced.

9. When the interrupt service routine (ISR) for interrupt A has been
executed, the RTI instruction clears the appropriate IPEND bit.
However, the relevant SIC_ISR bit is not cleared unless the inter-
rupt service routine clears the mechanism that generated interrupt
A, or if the process of servicing the interrupt clears this bit.

It should be noted that emulation, reset, NMI, and exception events, as
well as hardware error (1VHW) and core timer (IVTMR) interrupt requests,
enter the interrupt processing chain at the ILAT level and are not affected
by the system-level interrupt registers (SIC_IWR, SIC_ISR, SIC_IMASK,
SIC_IAR).

If multiple interrupt sources share a single core interrupt, then the inter-
rupt service routine (ISR) must identify the peripheral that generated the
interrupt. The ISR may then need to interrogate the peripheral to deter-
mine the appropriate action to take.

ADSP-BF51x Blackfin Processor Hardware Reference 5-9

System Interrupt Controller Registers

EMU
RESET
I NMI
| EVX
"INTERRUPT IVTMR
A" ' IVHW
{5 PERIPHERAL |
INTERRUPT I CORE
2
REQUESTS SYSTEM ASSIGN CORE INT%ORgﬁPT EVENT
INTERRUPT == SYSTEM I::> STATUS [=>1 | e VECTOR
MASK PRIORITY | | (ILAT) IMASK TABLE
(SIC_IMASK) (SIC_IAR) () (EVT[15:0])
A
SYSTEM SYSTEM CORE
WAKEUP STATUS PENDING
(SIC_IWR) (SIC_ISR) (IPEND)

TO DYNAMIC POWER
—> MANAGEMENT
CONTROLLER

SYSTEM INTERRUPT CONTROLLER CORE EVENT CONTROLLER

NOTE: NAMES IN PARENTHESES ARE MEMORY-MAPPED REGISTERS.

Figure 5-1. Interrupt Processing Block Diagram

System Interrupt Controller Registers

The SIC registers are described in the following sections.

These registers can be read from or written to at any time in supervisor
mode. It is advisable, however, to configure them in the reset interrupt
service routine before enabling interrupts. To prevent spurious or lost
interrupt activity, these registers should be written to only when all
peripheral interrupts are disabled.

5-10 ADSP-BF51x Blackfin Processor Hardware Reference

System Interrupts

System Interrupt Assignment (SIC_IAR) Register

The SIC_IAR register maps each peripheral interrupt ID to a correspond-
ing IVG priority level. This is accomplished with 4-bit groupings that
translate to IVG levels as shown in Table 5-2 and Figure 5-2. In other
words, Table 5-2 defines the value to write in a 4-bit field within SIC_TAR
in order to configure a peripheral interrupt ID for a particular IVG prior-
ity. Refer to Table 5-1 on page 5-4 for information on SIC_IAR
mappings for this specific processor.

System Interrupt Assignment Register (SIC_IAR)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
[ofofolofofofoofofoofofofo]o]o]
| Il

]
|— ID Grouping 4

ID Grouping 7
ID Grouping 6 — D Grouping5

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0

fofofo oo fofofo]ofofofofofofolo]

[|

ID Grouping 3 ! _ | ! l I—llDGroupingo

ID Grouping 2

ID Grouping 1

Figure 5-2. System Interrupt Assignment Register

Table 5-2. IVG Select Definition

General-Purpose Interrupt |Value in SIC_IAR
IVG7 0
IVGS8 1
IVGY 2
IVG10 3
IVG11 4
IVG12 5

ADSP-BF51x Blackfin Processor Hardware Reference 5-11

System Interrupt Controller Registers

Table 5-2. IVG Select Definition (Continued)

General-Purpose Interrupt |Value in SIC_IAR
IVG13 6
IVG1l4 7
IVG15 8

System Interrupt Mask (SIC_IMASK) Register

The SIC_IMASK register masks or enables peripheral interrupts at the sys-
tem level. A "0" in a bit position masks off (disables) interrupts for that
particular peripheral interrupt ID. A "1" enables interrupts for that inter-
rupt ID. Refer to Table 5-1 on page 5-4 and Table 5-2 for information on

how peripheral interrupt IDs are mapped to the SIC_IMASK register(s) for
this particular processor.

System Interrupt Status (SIC_ISR) Register

The SIC_ISR register keeps track of system interrupts that are asserted but
not yet serviced. A "0" in a bit position indicates that a particular inter-
rupt is deasserted. A "1" indicates that it is asserted. Refer to Table 5-1 on
page 5-4 and Table 5-2 for information on how peripheral interrupt IDs
are mapped to the SIC_ISR register(s) for this particular processor.

System Interrupt Wakeup-Enable (SIC_IWR)
Register

The SIC_IWR register allows an interrupt request to wake up the processor
core from an idled state. A "0" in a bit position indicates that a particular
peripheral interrupt ID is not configured to wake the core (upon assertion
of the interrupt request). A "1" indicates that it is configured to do so.
Refer to Table 5-1 on page 5-4 and Table 5-2 for information on how

5-12 ADSP-BF51x Blackfin Processor Hardware Reference

System Interrupts

peripheral interrupt IDs are mapped to the SIC_IWR register(s) for this par-
ticular processor.

Programming Examples

The following section provides an example for servicing interrupt
requests.

Clearing Interrupt Requests

When the processor services a core event it automatically clears the
requesting bit in the ILAT register and no further action is required by the
interrupt service routine. It is important to understand that the SIC con-
troller does not provide any interrupt acknowledgment feedback
mechanism from the CEC controller back to the peripherals. Although
the ILAT bits clear in the same way when a peripheral interrupt is serviced,
the signalling peripheral does not release its level-sensitive request until it
is explicitly instructed by software. If however, the peripheral keeps
requesting, the respective ILAT bit is set again immediately and the service
routine is invoked again as soon as its first run terminates by an RTI
instruction.

Every software routine that services peripheral interrupts must clear the
signalling interrupt request in the respective peripheral. The individual
peripherals provide customized mechanisms for how to clear interrupt
requests. Receive interrupts, for example, are cleared when received data is
read from the respective buffers. Transmit requests typically clear when
software (or DMA) writes new data into the transmit buffers. These
implicit acknowledge mechanisms avoid the need for cycle-consuming
software handshakes in streaming interfaces. Other peripherals such as
timers, GPIOs, and error requests require explicit acknowledge instruc-
tions, which are typically performed by efficient W1C (write-1-to-clear)
operations.

ADSP-BF51x Blackfin Processor Hardware Reference 5-13

Programming Examples

Listing 5-1 shows a representative example of how a GPIO interrupt
request might be serviced.

Listing 5-1. Servicing GPIO Interrupt Request

#include <defBF527.h>
/*ADSP-BF527 product is used as an example*/
.section program;
_portg_a_isr:
/* push used registers */
[--sp]l = (r7:7, p5:5);
/* clear interrupt request on GPIO pin PGZ */
/* no matter whether used A or B channel */
p5.1 = To(PORTGIO_CLEAR);
p5.h = hi(PORTGIO_CLEAR);
r7 = PG2;
wlp5] = r7;

/* place user code here */

/* sync system, pop registers and exit */
ssync;
(r7:7, p5:5) = [sp++t];
rti;
_portg_a_isr.end:

The W1C instruction shown in this example may require several SCLK
cycles to complete, depending on system load and instruction history. The
program sequencer does not wait until the instruction completes and con-
tinues program execution immediately. The SSYNC instruction ensures that
the W1C command indeed cleared the request in the GPIO peripheral
before the RTT instruction executes. However, the SSYNC instruction does
not guarantee that the release of interrupt request has also been recognized
by the CEC controller, which may require a few more CCLK cycles depend-
ing on the CCLK-to-SCLK ratio. In service routines consisting of a few

5-14 ADSP-BF51x Blackfin Processor Hardware Reference

System Interrupts

instructions only, two SSYNC instructions are recommended between the
clear command and the RTT instruction. However, one SSYNC instruction
is typically sufficient if the clear command performs in the very beginning
of the service routine, or the SSYNC instruction is followed by another set
of instructions before the service routine returns. Commonly, a pop-mul-
tiple instruction is used for this purpose as shown in Listing 5-1.

The level-sensitive nature of peripheral interrupts enables more than one
of them to share the same IVG channel and therefore the same interrupt
priority. This is programmable using the assignment registers. Then a
common service routine typically interrogates the SIC_ISR register to
determine the signalling interrupt source. If multiple peripherals are
requesting interrupts at the same time, it is up to the service routine to
either service all requests in a single pass or to service them one by one. If
only one request is serviced and the respective request is cleared by soft-
ware before the RTT instruction executes, the same service routine is
invoked another time because the second request is still pending. While
the first approach may require fewer cycles to service both requests, the
second approach enables higher priority requests to be serviced more
quickly in a non-nested interrupt system setup.

ADSP-BF51x Blackfin Processor Hardware Reference 5-15

Unique Information for the ADSP-BF51x Processor

Unique Information for the ADSP-BF51x
Processor

Components of the ADSP-BF51x processor with unique implementation
details include:

* “Interfaces” on page 5-16

e “System Peripheral Interrupts” on page 5-19

Interfaces

Figure 5-3 and Figure 5-4 provide an overview of how the individual
peripheral interrupt request lines connect to the SIC. These figures show
how the eight SIC_IAR registers control the assignment to the nine avail-
able peripheral request inputs of the CEC.

The memory-mapped ILAT, IMASK, and IPEND registers are part of
the CEC controller.

5-16 ADSP-BF51x Blackfin Processor Hardware Reference

System Interrupts

> IVG15
> 1VG14
- IVG13
- 1IVG12
> IVG6
> IVG5
> IVG3
> IVG2
> IVG1
- IVGO

|—> WAKE UP
S
]

PLL WAKEUP

DMA ERROR (GENERIC) 1 H H
DMARO BLOCK INTERRUPT ——=& - -
DMAR1 BLOCK INTERRUPT ——31 H H
DMARO OVERFLOW ERROR 4 H H

DMAR1 OVERFLOW ERROR —> N I
PPl ERROR B]

EMAC STATUS z B B

8

NMI —
RESET —
EMULATION —

EXCEPTIONS —]

CORETIMER —

HARDWARE ERROR —

SIC_IARO

SPORTO STATUS
SPORT1 STATUS

PTP ERROR INTERRUPT —10f H H
RESERVED —11 H H
UARTOSTATUS —12 _ H _ H

UART1 STATUS
REAL TIME CLOCK

DMAO (PPI)

SIC_IAR1

SIC_IWR0

15

SIC_ISRO

Tt

SIC_IMASKO

DMA3 (SPORTORX) —16f 1

DMA4 (SPORTO TX or RSI)

DMA5 (SPORT1 RX/SPI RX or TX) —1& H
pmMA6 (SPORTITXY) —4 H H

SIC_IAR2

™I H H ®

DMA7 (SPI RX or TX) —21 H H
DmMA8 (UARTORX) —=22{ H H
DMA9 (UARTOTX) —23 H H

DMA10 (UART1 RX) —24
DMA11 (UART1 TX) —23
OTP MEMORY —26 H H

GP COUNTER —27 H H

DMA1 (EMAC RX) —28/ H H
PORT H INTERRUPT A —22| H H
pmA2 EMACTX) —3 H H
PORT H INTERRUPT B —31

SIC_IAR3

Figure 5-3. Interrupt Routing Overview (Part 1)

ADSP-BF51x Blackfin Processor Hardware Reference 5-17

Unique Information for the ADSP-BF51x Processor

2IL N2 5w ©Ww MmN = o
228288¢g:2s228 gg822¢
KRR EAKEED KR AR
| IPEND |
g I T T T T T T T 1 L T.T T T 1
4 | IMASK |
<
= [T T T T T T T 1 I T T T T 1
| ILAT |
[T TTT]
mmero — H H | FET2s5h 3
TIMER1 1 H B =9 *QE
2 F = r <
TIMER2 H H T owiy 3
TIMER3 H H < &g H
TIMER4 49 4 H o 9 gZu
TIMERS 59 H H @ a
TIMER6 6 H H <
7 I
TIMER? H H f
PORT G INTERRUPT A 8 H H
PORT G INTERRUPT B H H b4
mpbmao —10 1 H P
mMDMA1 — 11 H K <
WATCHDOG TIMER ——12 H H._ o
PORT F INTERRUPT A tHeHEZ @
PORT F INTERRUPT B s HEHS
spiostatus — 184 o 1 ST H £
7} 7] o
SPI1 STATUS —18 H H®°
RESERVED — 12 H H
reserveD —& e
RSI INTERRUPT 0 9 H H <
RSIINTERRUPT1 —201 1 U o
PWM TRIP —21 H H @
PWM SYNC —22 H H
PTP STATUS — 22 H H
RESERVED —24 H H
RESERVED —23 H H
RESERVED —28 H H ~
ReserveED —2{ H H <
RESERVED —281 H H 5
RESERVED —221 H H o
RESERVED —32 H H i
RESERVED —3L{ H H

Figure 5-4. Interrupt Routing Overview (Part 2)

5-18 ADSP-BF51x Blackfin Processor Hardware Reference

System Interrupts

System Peripheral Interrupts

The MAC interrupt requests shown in Figure 5-3 on page 5-17 are avail-
able only on ADSP-BF516 and ADSP-BF518 parts. However, for code
compatibility, all of the default assignments for the ADSP-BF51x proces-
sors are the same.

Table 5-3 on page 5-20 and Table 5-4 on page 5-21 show the peripheral
interrupt events, the default mapping of each event, the peripheral inter-
rupt ID used in the system interrupt assignment registers (SIC_IAR), and
the core interrupt ID.

Note that the system interrupt to core event mappings shown are the
default values at reset and can be changed by software. Where there is
more than one DMA interrupt source for a given interrupt ID number,
the default DMA source mapping is listed first in parentheses.

The peripheral interrupt structure of the processor is flexible. Upon reset,
multiple peripheral interrupts share a single, general-purpose interrupt in
the core by default, as shown in Table 5-3 on page 5-20 and Table 5-4 on
page 5-21.

An interrupt service routine that supports multiple interrupt sources must
interrogate the appropriate system memory mapped registers (MMRs) to
determine which peripheral generated the interrupt.

ADSP-BF51x Blackfin Processor Hardware Reference 5-19

Unique Information for the ADSP-BF51x Processor

Table 5-3. Peripheral Interrupt Events (Part 1)

Peripheral |Bit Position for |SIC_IAR3-0 Interrupt Source Default
ID Number |SIC_ISRO, Mapping
SIC_IMASKO,
SIC_IWRO

31 Bit 31 SIC_IAR3[31:28] | Port H interrupt B IVG11
30 Bit 30 SIC_IAR3[27:24] | DMA2 (Ethernet MAC TX) IVG11
29 Bit 29 SIC_IAR3[23:20] | Port H interrupt A IVG11
28 Bit 28 SIC_IAR3[19:16] | DMAL1 (Ethernet MAC RX) IVG11
27 Bit 27 SIC_IAR3[15:12] | GP Counter IVG11
26 Bit 26 SIC_IAR3[11:8] | OTP Memory IVG11
25 Bit 25 SIC_IAR3[7:4] DMA11 (UART1 TX) IVG10
24 Bit 24 SIC_IAR3[3:0] DMA10 (UART1 RX) IVG10
23 Bit 23 SIC_IAR2[31:28] | DMA9 (UARTO0 TX) IVG10
22 Bit 22 SIC_IAR2[27:24] | DMA8 (UARTO0 RX) IVG10
21 Bit 21 SIC_IAR2[23:20] | DMA7 (SPI0 RX or TX) IVG10
20 Bit 20 SIC_IAR2[19:16] | TWI IVG10
19 Bit 19 SIC_IAR2[15:12] | DMAG (SPORT1 TX) IVG9
18 Bit 18 SIC_IAR2[11:8] | DMAS5 (SPORT1 RX/SPI1 RX or TX) | IVGY
17 Bit 17 SIC_IAR2[7:4] DMA4 (SPORTO0 TX/RSI) IVG9
16 Bit 16 SIC_IAR2[3:0] DMA3 (SPORT0 RX) IVG9
15 Bit 15 SIC_IAR1[31:28] | DMAO (PPI) IVG8
14 Bit 14 SIC_IAR1[27:24] | Real-time clock IVGS8
13 Bit 13 SIC_IAR1[23:20] | UART1 status IVG7
12 Bit 12 SIC_IAR1[19:16] | UARTO status IVG7
11 Bit 11 SIC_IAR1[15:12] | Reserved IVG7
10 Bit 10 SIC_IAR1[11:8] | PTP Error Interrupt 1IVG7
9 Bit 9 SIC_IAR1[7:4] SPORT1 status IVG7
8 Bit 8 SIC_IAR1[3:0] SPORTO status IVG7

5-20 ADSP-BF51x Blackfin Processor Hardware Reference

Table 5-3. Peripheral Interrupt Events (Part 1) (Continued)

System Interrupts

Peripheral |Bit Position for |SIC_IAR3-0 Interrupt Source Default
ID Number |SIC_ISRO, Mapping
SIC_IMASKO,
SIC_IWRO
7 Bit 7 SIC_IARO([31:28] | Ethernet MAC status IVG7
6 Bit 6 SIC_IARO[27:24] | PPI error IVG7
5 Bit 5 SIC_IAR0[23:20] | DMARI overflow error IVG7
4 Bit 4 SIC_IARO0[19:16] | DMARO overflow error IVG7
3 Bit 3 SIC_IARO[15:12] | DMARI block interrupt IVG7
2 Bit 2 SIC_IARO[11:8] | DMARO block interrupt IVG7
1 Bit 1 SIC_IARO[7:4] DMA Error (generic) IVG7
0 Bit 0 SIC_IARO[3:0] PLL Wakeup IVG7
Table 5-4. Peripheral Interrupt Events (Part 2)
Peripheral Bit Position for SIC_IAR7-4 Interrupt Source Default
ID Number SIC_ISR1, Mapping
SIC_IMASKI1,
SIC_IWR1
63 Bit 31 SIC_IAR7(31:28] Reserved IVG13
62 Bit 30 SIC_IAR7[27:24] Reserved IVG13
61 Bit 29 SIC_IAR7(23:20] Reserved IVG13
60 Bit 28 SIC_IAR7[19:16] Reserved IVG12
59 Bit 27 SIC_IAR7[15:12] Reserved IVG12
58 Bit 26 SIC_IAR7[11:8] Reserved IVG12
57 Bit 25 SIC_IAR7[7:4] Reserved IVG12
56 Bit 24 SIC_IAR7[3:0] Reserved IVG12
55 Bit 23 SIC_IARG[31:28] PTP Status IVG10
54 Bit 22 SIC_IARG[27:24] PWM Sync IVG10
53 Bit 21 SIC_IARG[23:20] PWM Trip IVG10

ADSP-BF51x Blackfin Processor Hardware Reference

5-21

Unique Information for the ADSP-BF51x Processor

Table 5-4. Peripheral Interrupt Events (Part 2) (Continued)

Peripheral Bit Position for SIC_IAR7-4 Interrupt Source Default
ID Number SIC_ISR1, Mapping
SIC_IMASK1,
SIC_IWRI1

52 Bit 20 SIC_IARG6[19:16] RST Interrupe 1 IVG10
51 Bit 19 SIC_IARG[15:12] RST Interrupt 0 IVG10
50 Bit 18 SIC_IARG([11:8] Reserved IVG7
49 Bit 17 SIC_IARG[7:4] Reserved IVG7
48 Bit 16 SIC_IARG6[3:0] SPI1 status IVG7
47 Bit 15 SIC_IAR5[31:28] SPIO status IVG7
46 Bit 14 SIC_IARS5(27:24] Port F interrupt B IVG13
45 Bit 13 SIC_IAR5(23:20] Port F interrupt A IVG13
44 Bit 12 SIC_IARS5[19:16] Watchdog timer IVG13
43 Bit 11 SIC_IAR5[15:12] MDMA1 IVG13
42 Bit 10 SIC_IAR5[11:8] MDMAO0 IVG13
41 Bit 9 SIC_IARS5[7:4] Port G interrupt B IVG12
40 Bit 8 SIC_IAR5[3:0] Port G interrupt A IVG12
39 Bit 7 SIC_IAR4[31:28] Timer 7 IVG12
38 Bit 6 SIC_IARA4[27:24] Timer 6 IVG12
37 Bit 5 SIC_IAR4[23:20] Timer 5 IVG12
36 Bit 4 SIC_IARA4[19:16] Timer 4 IVG12
35 Bit 3 SIC_IAR4[15:12] Timer 3 IVG12
34 Bit 2 SIC_IARA4[11:8] Timer 2 IVG12
33 Bit 1 SIC_IAR4[7:4] Timer 1 IVG12
32 Bit 0 SIC_IARA4[3:0] Timer 0 IVG12

5-22 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access

6 DIRECT MEMORY ACCESS

This chapter describes the direct memory access (DMA) controller. Fol-
lowing an overview and list of key features is a description of operation
and functional modes of operation. The chapter concludes with a pro-
gramming model, consolidated register definitions, and programming
examples.

This chapter describes the features common to all the DMA channels, as
well as how DMA operations are set up. For specific peripheral features,

see the appropriate peripheral chapter for additional information. Perfor-
mance and bus arbitration for DMA operations can be found in

Chapter 4, “Chip Bus Hierarchy”.

Specific Information for the ADSP-BF51x

For details regarding the number of DMA controllers for the
ADSP-BF51x product, refer to ADSP-BF512/BF514/BF516/BF518(F)
Embedded Processor Data Sheet.

For DMA interrupt vector assignments, refer to Table 5-3 on page 5-20 in
Chapter 5, “System Interrupts”.

To determine how each of the DMAs is multiplexed with other functional
pins, refer to Table 9-2 on page 9-5 through Table 9-4 on page 9-7 in
Chapter 9, “General-Purpose Ports”.

ADSP-BF51x Blackfin Processor Hardware Reference 6-1

Overview and Features

For a list of MMR addresses for each DMA, refer to Chapter A, “System
MMR Assignments”.

DMA controller behavior for the ADSP-BF51x that differs from the gen-
eral information in this chapter can be found in the section “Unique
Information for the ADSP-BF51x Processor” on page 6-103.

Overview and Features

The processor uses DMA to transfer data between memory spaces or
between a memory space and a peripheral. The processor can specify data
transfer operations and return to normal processing while the fully inte-
grated DMA controller carries out the data transfers independent of
processor activity.

The DMA controller can perform several types of data transfers:

e DPeripheral DMA transfers data between memory and on-chip
peripherals.

* Memory DMA (MDMA) transfers data between memory and
memory. The processor has two MDMA modules, each consisting
of independent memory read and memory write channels.

* Handshaking memory DMA (HMDMA) transfers data between
off-chip peripherals and memory. This enhancement of the
MDMA channels enables external hardware to control the timing
of individual data transfers or block transfers.

@ The HMDMA feature is not available for all products. Refer to
“Unique Information for the ADSP-BF51x Processor” on
page 6-103 to determine whether it applies to this product.

All DMAs can transport data to and from on-chip and off-chip memories,
including L1 and SDRAM. The L1 scratchpad memory cannot be
accessed by DMA.

6-2 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access

SDRAM and SRAM are not available on all products. Refer to
“Unique Information for the ADSP-BF51x Processor” on
page 6-103 to determine whether it applies to this product.

DMA transfers on the processor can be descriptor-based or register-based.

Register-based DMA allows the processor to directly program DMA con-
trol registers to initiate a DMA transfer. On completion, the control
registers may be automatically updated with their original setup values for
continuous transfer, if needed.

Descriptor-based DMA transfers require a set of parameters stored within
memory to initiate a DMA sequence. This sort of transfer allows the
chaining together of multiple DMA sequences. In descriptor-based DMA
operations, a DMA channel can be programmed to automatically set up
and start another DMA transfer after the current sequence completes.

Examples of DMA styles supported by flex descriptors include:
* Asingle linear buffer that stops on completion (FLOW = stop mode)

* A linear buffer with byte strides of any integer value, including
negative values (DMAx_X_MODIFY register)

* A circular, auto-refreshing buffer that interrupts on each full buffer

* A similar buffer that interrupts on fractional buffers (for example,

V5, Y4) (2-D DMA)

* 1-D DMA, using a set of identical ping-pong buffers defined by a
linked ring of 3-word descriptors, each containing a link pointer
and a 32-bit address

* 1-D DMA, using a linked list of 5-word descriptors containing a
link pointer, a 32-bit address, the buffer length, and a

configuration

ADSP-BF51x Blackfin Processor Hardware Reference 6-3

DMA Controller Overview

e 2-D DMA, using an array of 1-word descriptors, specifying only
the base DMA address within a common data page

e 2-D DMA, using a linked list of 9-word descriptors specifying
everything

DMA Controller Overview

A block diagram of the DMA controller can be found in the “Unique
Information for the ADSP-BF51x Processor” on page 6-103.

External Interfaces

The DMA does not connect external memories and devices directly.
Rather, data is passed through the EBIU port. Any kind of device that is
supported by the EBIU can also be accessed by peripheral DMA or mem-
ory DMA operation. This is typically flash memory, SRAM, SDRAM,
FIFOs, or memory-mapped peripheral devices.

For products with handshaking MDMA (HMDMA), the operation is sup-
ported by two MDMA request input pins, DMARO and DMARL. The DMARO
pin controls transfer timing on the MDMAO destination channel. The DMARL
pin controls the destination channel of MDMAL. With these pins, external
FIFO devices, ADC or DAC converters, or other streaming or block-pro-
cessing devices can use the MDMA channels to exchange their data or
data buffers with the Blackfin processor memory.

Internal Interfaces

Figure 4-1 on page 4-3 shows the dedicated DMA buses used by the DMA
controller to interconnect L1 memory, the on-chip peripherals, and the
EBIU port.

6-4 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access

The 16-bit DMA core bus (DCB) connects the DMA controller to a dedi-
cated port of L1 memory. L1 memory has dedicated DMA ports featuring
special DMA buffers to decouple DMA operation. See Blackfin Processor
Programming Reference for a description of the L1 memory architecture.
The DCB bus operates at core clock (CCLK) frequency. It is the DMA con-
troller’s responsibility to translate DCB transfers to the system clock
(scLK) domain.

The 16-bit DMA access bus (DAB) connects the DMA controller to the
on-chip peripherals. This bus operates at SCLK frequency.

The 16-bit DMA external bus (DEB) connects the DMA controller to the
EBIU port. This bus is used for all peripheral and memory DMA transfers

to and from external memories and devices. It operates at SCLK frequency.

Transferred data can be 8-, 16-, or 32-bits wide. The DMA controller,
however, connects only to 16-bit buses.

Memory DMA can pass data every SCLK cycle between L1 memory and the
EBIU. Transfers from L1 memory to L1 memory require two cycles, as the
DCB bus is used for both source and destination transfers. Similarly,
transfers between two off-chip devices require EBIU and DEB resources
twice. Peripheral DMA transfers can be performed every other SCLK cycle.

For more details on DMA performance see “DMA Performance” on

page 6-40.

Peripheral DMA

The DMA controller features 12 channels that perform transfers between
peripherals and on-chip or off-chip memories. The user has full control
over the mapping of DMA channels and peripherals. The default DMA
channel priority and mapping, shown in Table 6-7 on page 6-103, can be
changed by altering the 4-bit PMAP field in the DMAX_PERIPHERAL_MAP regis-
ters for the peripheral DMA channels.

ADSP-BF51x Blackfin Processor Hardware Reference 6-5

DMA Controller Overview

The default configuration should suffice in most cases, but there are some
cases where remapping the assignment can be helpful because of the DMA
channel priorities. When competing for any of the system buses, DMAO
has higher priority than DMA1, and so on. DMAI11 has the lowest prior-
ity of the peripheral DMA channels.

A 1:1 mapping should exist between DMA channels and peripher-
als. The user is responsible for ensuring that multiple DMA
channels are not mapped to the same peripheral and that multiple
peripherals are not mapped to the same DMA port. If multiple
channels are mapped to the same peripheral, only one channel is
connected (the lowest priority channel). If a nonexistent peripheral
(for example, OxF in the PMAP field) is mapped to a channel, that
channel is disabled—DMA requests are ignored, and no DMA
grants are issued. The DMA requests are also not forwarded from
the peripheral to the interrupt controller.

All peripheral DMA channels work completely independently from each
other. The transfer timing is controlled by the mapped peripheral.

Every DMA channel features its own 4-deep FIFO that decouples DAB
activity from DCB and DEB availability. DMA interrupt and descriptor
fetch timing is aligned with the memory side (DCB/DEB side) of the
FIFO. The user does, however, have an option to align interrupts with the
peripheral side (DAB side) of the FIFO for transmit operations. Refer to
the SYNC bit in the DMAX_CONFIG register for details.

Memory DMA

This section describes the two pairs of MDMA channels, which provide
memory-to-memory DMA transfers among the various memory spaces.
These include L1 memory and external synchronous/asynchronous
memories.

Each MDMA channel contains a DMA FIFO, an 8-word by 16-bit FIFO
block used to transfer data to and from either L1 or the DCB and DEB

6-6 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access

buses. Typically, it is used to transfer data between external memory and
internal memory. It will also support DMA from the boot ROM on the
DEB bus. The FIFO can be used to hold DMA data transferred between

two L1 memory locations or between two external memory locations.
Each page of MDMA channels consists of:

* A source channel (for reading from memory)

* A destination channel (for writing to memory)

A memory-to-memory transfer always requires both the source and the
destination channel to be enabled. Each source/destination channel forms
a “stream,” and these two streams are hardwired for DMA priorities 12

through 15.
* Priority 12: MDMAO destination
* Priority 13: MDMAO source
e Priority 14: MDMALI destination
* Priority 15: MDMAI source
MDMAQO takes precedence over MDMAT1, unless round-robin scheduling

is used or priorities become urgent, as programmed by the DRQ bit field in
the HMDMA_CONTROL register.

It is illegal to program a source channel for memory write or a des-
tination channel for memory read.

The channels support 8-, 16-, and 32-bit memory DMA transfers, but
both ends of the MDMA connect to 16-bit buses. Source and destination
channels must be programmed to the same word size. In other words, the
MDMA transfer does not perform packing or unpacking of data; each
read results in one write. Both ends of the MDMA FIFO for a given
stream are granted priority at the same time. Each pair shares an 8-word

deep 16-bit FIFO. The source DMA engine fills the FIFO, while the

ADSP-BF51x Blackfin Processor Hardware Reference 6-7

DMA Controller Overview

destination DMA engine empties it. The FIFO depth allows the burst
transfers of the external access bus (EAB) and DMA access bus (DAB) to
overlap, significantly improving throughput on block transfers between
internal and external memory. Two separate descriptor blocks are required
to supply the operating parameters for each MDMA pair, one for the
source channel and one for the destination channel.

Because the source and destination DMA engines share a single FIFO buf-
fer, the descriptor blocks must be configured to have the same data size. It
is possible to have a different mix of descriptors on both ends as long as
the total transfer count is the same.

To start a MDMA transfer operation, the MMRs for the source and desti-
nation channels are written, each in a manner similar to peripheral DMA.

The DMAX_CONFIG register for the source channel must be written
before the DMAXx_CONFIG register for the destination channel.

Handshaked Memory DMA (HMDMA) Mode

This feature is not available for all products. Refer to “Unique Informa-
tion for the ADSP-BF51x Processor” on page 6-103 to determine whether
it applies to this product.

Handshaked operation applies only to memory DMA channels.

Normally, memory DMA transfers are performed at maximum speed.
Once started, data is transferred in a continuous manner until either the
data count expires or the MDMA is stopped. In handshake mode, the
MDMA does not transfer data automatically when enabled; it waits for an
external trigger on the MDMA request input signals. The DMARO input is
associated with MDMAO and the DMARL input with MDMAL. Once a trig-
ger event is detected, a programmable portion of data is transferred and
then the MDMA stalls again and waits for the next trigger.

Handshake operation is not only useful for controlling the timing of
memory-to-memory transfers, it also enables the MDMA to operate with

6-8 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access

asynchronous FIFO-style devices connected to the EBIU port. The Black-
fin processor acknowledges a DMA request by a proper number of read or
write operations. It is up to the device connected to any of the AMSx
strobes to deassert or pulse the request signal and to decrement the num-
ber of pending requests accordingly.

Depending on HMDMA operating mode, an external DMA request may
trigger individual data word transfers or block transfers. A block can con-
sist of up to 65535 data words. For best throughput, DMA requests can
be pipelined. The HMDMA controllers feature a request counter to
decouple request timing from the data transfers.

See “Handshaked Memory DMA Operation” on page 6-36 for a func-

tional description.

Modes of Operation

The following sections describe the DMA operation.

Register-Based DMA Operation

Register-based DMA is the traditional kind of DMA operation. Software
configures the source or destination address and the length of the data to
be transferred to memory-mapped registers and then starts DMA
operation.

For basic operation, the software performs these steps:

e Werite the source or destination address to the 32-bit
DMAXx_START_ADDR register.

e Write the number of data words to be transferred to the 16-bit
DMAX_X_COUNT register.

ADSP-BF51x Blackfin Processor Hardware Reference 6-9

Modes of Operation

* Write the address modifier to the 16-bit DMAx_X_MODIFY register.
This is the two’s-complement value added to the address pointer
after every transfer. This value must always be initialized as there is
no default value. Typically, this register is set to 0x0004 for 32-bit
DMA transfers, to 0x0002 for 16-bit transfers, and to 0x0001 for
byte transfers.

* Write the operation mode to the DMAx_CONFIG register. These bits
in particular need to be changed as needed:

The DMAEN bit enables the DMA channel.

The WNR bit controls the DMA direction. DMAs that read
from memory (peripheral transmit DMAs and source chan-
nel MDMAG) keep this bit cleared. Peripheral receive
DMAs and destination channel MDMAS set this bit because

they write to memory.

The WDSIZE bit controls the data word width for the trans-
fer. It can be 8-, 16-, or 32-bits wide.

The DI_EN bit enables an interrupt when the DMA opera-
tion has finished.

Set the FLOW field to 0x0 for stop mode or 0x1 for autobuffer
mode.

Once the DMAEN bit is set, the DMA channel starts its operation. While
running, the DMAx_CURR_ADDR and the DMAx_CURR_X_COUNT registers can be
monitored to determine the current progress of the DMA operation.
However they should not be used to synchronize software and hardware.

The DMAX_IRQ_STATUS register signals whether the DMA has finished
(DMA_DONE bit), whether a DMA error has occurred (DMA_ERR bit), and
whether the DMA is currently running (DMA_RUN bit). The DMA_DONE and
the DMA_ERR bits also function as interrupt latch bits. They must be cleared
by write-one-to-clear (W1C) operations by the interrupt service routine.

6-10

ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access

Stop Mode

In stop mode, the DMA operation is executed only once. When started,
the DMA channel transfers the desired number of data words and stops
itself when the transfer is complete. If the DMA channel is no longer used,
software should clear the DMAEN enable bit to disable the otherwise paused
channel. Stop mode is entered if the FLOW bit field in the DMA channel’s
DMAX_CONFIG register is 0. The NDSIZE field must always be 0 in this mode.

For receive (memory write) operation, the DMA_RUN bit functions almost
the same as the inverted DMA_DONE bit. For transmit (memory read) opera-
tion, however, the two bits have different timing. Refer to the description
of the SYNC bit in the DMAX_CONFIG register for details.

Avutobuffer Mode

In autobuffer mode, the DMA operates repeatedly in a circular manner. If
all data words have been transferred, the address pointer DMAx_CURR_ADDR

is reloaded automatically by the DMAx_START_ADDR value. An interrupt may
also be generated.

Autobuffer mode is entered if the FLOW field in the DMAX_CONFIG register
is 1. The NDSIZE bit must be 0 in autobuffer mode.

Two-Dimensional DMA Operation

Register-based and descriptor-based DMA can operate in one-dimensional
mode or two-dimensional mode.

In two-dimensional (2-D) mode, the DMAx_X_COUNT register is accompa-
nied by the DMAx_Y_COUNT register, supporting arbitrary row and column
sizes up to 64K x 64K elements, as well as arbitrary DMAx_X_MODIFY and
DMAX_Y_MODIFY values up to +32K bytes. Furthermore, DMAx_Y_MODIFY can
be negative, allowing implementation of interleaved datastreams. The
DMAX_X_COUNT and DMAx_Y_COUNT values specify the row and column sizes,
where DMAX_X_COUNT must be 2 or greater.

ADSP-BF51x Blackfin Processor Hardware Reference 6-11

Modes of Operation

The start address and modify values are in bytes, and they must be aligned
to a multiple of the DMA transfer word size (WDSIZE[1:0] in
DMAX_CONFIG). Misalignment causes a DMA error.

The DMAX_X_MODIFY value is the byte-address increment that is applied
after each transfer that decrements the DMAx_CURR_X_COUNT register. The
DMAX_X_MODIFY value is not applied when the inner loop count is ended by
decrementing DMAx_CURR_X_COUNT from 1 to 0, except that it is applied on
the final transfer when DMAx_CURR_Y_COUNT is 1 and DMAx_CURR_X_COUNT
decrements from 1 to 0.

The DMAx_Y_MODIFY value is the byte-address increment that is applied
after each decrement of the DMAx_CURR_Y_COUNT register. However, the
DMAX_Y_MODIFY value is not applied to the last item in the array on which
the outer loop count (DMAx_CURR_Y_COUNT) also expires by decrementing
from 1 to 0.

After the last transfer completes, DMAx_CURR_Y_COUNT = 1,
DMAx_CURR_X_COUNT = 0, and DMAx_CURR_ADDR is equal to the last item’s
address plus DMAX_X_MODIFY.

If the DMA channel is programmed to refresh automatically (auto-
buffer mode), then these registers will be loaded from
DMAX_X_COUNT, DMAX_Y_COUNT, and DMAx_START_ADDR upon the first
data transfer.

The DI_SEL configuration bit enables DMA interrupt requests every time
the inner loop rolls over. If DI_SEL is cleared, but DI_EN is still set, only
one interrupt is generated after the outer loop completes.

Examples of Two-Dimensional DMA

Example 1: Retrieve a 16 x 8 block of bytes from a video frame buffer of
size (N x M) pixels:

DMAX_X_MODIFY = 1
DMAX_X_COUNT = 16

6-12 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access

DMAX_Y_MODIFY = N-15 (offset from the end of one row to the start of
another)
DMAX_Y_COUNT = 8

This produces the following address offsets from the start address:

0,1,2,...15,

NN+ 1, o000 N+ 15,
2N, 2N+ 1,... 2N + 15,
IN, 7N+ 1,... 7N + 15,

Example 2: Receive a video datastream of bytes,

(R,G,B pixels) x (N x M image size):

DMAX_X_MODIFY = (N * M)

DMAX_X_COUNT = 3

DMAX_Y_MODIFY =1 - 2(N * M) (negative)
DMAX_Y_COUNT = (N * M)

This produces the following address offsets from the start address:

0, (N* M), 2(N * M),
I, (N*M) + 1, 2(N*M) +1,
2, (N* M)+ 2, 2(N * M) + 2,

(N*M) -1, 2(N*M) -1, 3(N*M) -1,

Descriptor-Based DMA Operation

In descriptor-based DMA operation, software does not set up DMA
sequences by writing directly into DMA controller registers. Rather, soft-
ware keeps DMA configurations, called descriptors, in memory. On
demand, the DMA controller loads the descriptor from memory and over-
writes the affected DMA registers by its own control. Descriptors can be
fetched from L1 memory using the DCB bus or from external memory

using the DEB bus.

ADSP-BF51x Blackfin Processor Hardware Reference 6-13

Modes of Operation

A descriptor describes what kind of operation should be performed next
by the DMA channel. This includes the DMA configuration word as well
as data source/destination address, transfer count, and address modify val-
ues. A DMA sequence controlled by one descriptor is called a work unit.

Optionally, an interrupt can be requested at the end of any work unit by
setting the DI_EN bit in the configuration word of the respective
descriptor.

A DMA channel is started in descriptor-based mode by first writing the
32-bit address of the first descriptor into the DMAX_NEXT_DESC_PTR register
(or the DMAX_CURR_DESC_PTR in case of descriptor array mode) and then
performing a write to the DMAx_CONFIG register that sets the FLOW field to
either 0x4, 0x6, or 0x7 and enables the DMAEN bit. This causes the DMA
controller to immediately fetch the descriptor from the address pointed to
by the DMAX_NEXT_DESC_PTR register. The fetch overwrites the DMAx_CONFIG
register again. If the DMAEN bit is still set, the channel starts DMA
processing.

The DFETCH bit in the DMAx_IRQ_STATUS register tells whether a descriptor
fetch is ongoing on the respective DMA channel. The
DMAX_CURR_DESC_PTR points to the descriptor value that is to be fetched
next.

Descriptor List Mode

Descriptor list mode is selected by setting the FLOW bit field in the DMA
channel’s DMAX_CONFIG register to either 0x6 (small descriptor mode) or
0x7 (large descriptor mode). In either of these modes multiple descriptors
form a chained list. Every descriptor contains a pointer to the next
descriptor. When the descriptor is fetched, this pointer value is loaded
into the DMAX_NEXT_DESC_PTR register of the DMA channel. In large
descriptor mode this pointer is 32 bits wide. Therefore, the next descrip-
tor may reside in any address space accessible through the DCB and DEB
buses. In small descriptor mode this pointer is just 16 bits wide. For this
reason, the next descriptor must reside in the same 64K byte address space

6-14 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access

as the first one because the upper 16 bits of the DMAX_NEXT_DESC_PTR regis-
ter are not updated.

Descriptor list modes are started by writing first to the
DMAX_NEXT_DESC_PTR register and then to the DMAx_CONFIG register.

Descriptor Array Mode

Descriptor array mode is selected by setting the FLOW bit field in the DMA
channel’s DMAX_CONFIG register to Ox4. In this mode, the descriptors do
not contain further descriptor pointers. The initial DMAx_CURR_DESC_PTR
value is written by software. It points to an array of descriptors. The indi-
vidual descriptors are assumed to reside next to each other and, therefore,
their addresses are known.

Variable Descriptor Size

In any descriptor-based mode the NDSIZE field in the configuration word
specifies how many 16-bit words of the next descriptor need to be loaded
on the next fetch. In descriptor-based operation, NDSIZE must be
non-zero. The descriptor size can be any value from one entry (the lower
16 bits of DMAx_START_ADDR only) to nine entries (all the DMA parame-
ters). Table 6-1 illustrates how a descriptor must be structured in
memory. The values have the same order as the corresponding MMR
addresses.

If, for example, a descriptor is fetched in array mode with NDSIZE = 0x5,
the DMA controller fetches the 32-bit start address, the DMA configura-
tion word, and the XCNT and xM0D values. However, it does not load YCNT
and YMOD. This might be the case if the DMA operates in one-dimensional
mode or if the DMA is in two-dimensional mode, but the YCNT and YMOD
values do not need to change.

All the other registers not loaded from the descriptor retain their prior val-
ues, although the DMAXx_CURR_ADDR, DMAX_CURR_X_COUNT, and

ADSP-BF51x Blackfin Processor Hardware Reference 6-15

Modes of Operation

DMAx_CURR_Y_COUNT registers are reloaded between the descriptor fetch and
the start of DMA operation.

Table 6-1 shows the offsets for descriptor elements in the three modes
described above. Note the names in the table describe the descriptor ele-
ments in memory, not the actual MMRs into which they are eventually
loaded. For more information regarding descriptor element acronyms, see

Table 6-4 on page 6-63.

Table 6-1. Parameter Registers and Descriptor Offsets

Descriptor Offset | Descriptor Array Mode | Small Descriptor List Mode |Large Descriptor List Mode
0x0 SAL NDPL NDPL

0x2 SAH SAL NDPH

0x4 DMACFG SAH SAL

0x6 XCNT DMACFG SAH

0x8 XMOD XCNT DMACFG

0xA YCNT XMOD XCNT

0xC YMOD YCNT XMOD

0xE YMOD YCNT

0x10 YMOD

Note that every descriptor fetch consumes bandwidth from either the
DCB bus or the DEB bus and the external memory interface, so it is best
to keep the size of descriptors as small as possible.

Mixing Flow Modes

The FLOW mode of a DMA is not a global setting. If the DMA configura-
tion word is reloaded with a descriptor fetch, the FLOW and NDSIZE bit
fields can also be altered. A small descriptor might be used to loop back to
the first descriptor if a descriptor array is used in an endless manner. If the
descriptor chain is not endless and the DMA is required to stop after a

6-16 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access

certain descriptor has been processed, the last descriptor is typically pro-
cessed in stop mode. That is, its FLOW and NDSIZE fields are 0, but its DMAEN
bit is still set.

Functional Description

The following sections provide a functional description of DMA.

DMA Operation Flow

Figure 6-1 and Figure 6-2 describe the DMA flow.

DMA Startup

This section discusses starting DMA “from scratch.” This is similar to
starting it after it has been paused by the FLOW = 0 mode.

Before initiating DMA for the first time on a given channel, all parameter
registers must be initialized . Be sure to initialize the upper 16 bits of the
DMAx_NEXT_DESC_PTR (or DMAx_CURR_DESC_PTR register in FLOW = 4 mode)
and DMAx_START_ADDR registers, because they might not otherwise be
accessed, depending upon the flow mode. Also note that the
DMAX_X_MODIFY and DMAx_Y_MODIFY registers are not preset to a default
value at reset.

The user may wish to write other DMA registers that might be static dur-
ing DMA activity (for example, DMAX_X_MODIFY, DMAx_Y_MODIFY). The
contents of NDSIZE and FLOW in DMAx_CONFIG indicate which registers, if
any, are fetched from descriptor elements in memory. After the descriptor
fetch, if any, is completed, DMA operation begins, initiated by writing
DMAX_CONFIG with DMAEN = 1.

ADSP-BF51x Blackfin Processor Hardware Reference 6-17

Functional Description

USER WRITES SOME OR ALL DMA PARAMETER
REGISTERS, AND THEN WRITES DMA_CONFIG

'

DMA ERROR BAD DMA_CONFIG?

DMAEN= 0

TEST DMAEN DI_EN =0 OR
(DI_LEN =1 AND
DMA_DONE_IRQ =1)

FLOW =0 OR 1 Q
> A
FLOW = 4,6,0R 7
SET DFETCH IN IRQ_STATUS <—@

'

COPY FLOW, NDSIZE FROM DMA_CONFIG
INTO TEMPORARY DESCRIPTOR FETCH COUNTERS

DMAEN =1

-t

\

O

SET DMA_RUN IN IRQ_STATUS

v Y

DMA STOPPED.
CLEAR DMA_RUN IN
IRQ_STATUS

TEST FLOW

{

FLOW=6OR 7

COPY NEXT DESCRIPTOR POINTER
TO CURRENT DESCRIPTOR POINTER

Figure 6-1. DMA Flow, From DMA Controller’s Point of View (1 of 2)

6-18 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access

NDSIZE = 0 OR
NDSIZE > MAX_SIZE* DMA

TEST NDSIZE | ABORT
OCCURS
NDSIZE > 0 AND
NDSIZE <= MAX_SIZE*
READ NDSIZE ELEMENTS
OF DESCRIPTOR INTO
PARAMETER REGISTERS
VIA CURRENT
DESCRIPTOR POINTER
FLOW=00R 1 —
CLEAR DFETCH IN
IRQ_STATUS
DMA TRANSFER
BEGINS AND
CONTINUES UNTIL
COUNTS EXPIRE
»-| DATA FROM
TEST SYNC, WNR FIFOTO
SYNG = 0 OF ONTIL ENpTY
MEMORY WRITE
SIGNAL AN
INTERRUPT
TO THE CORE

FLOW =1

FLOW =4,6,7
| —————————

!

SET DMA_DONE
IN IRQ_STATUS

DATA FROM
TEST SYNC, WNR FIFOTO
PERIPHERAL
SYNC =1OR UNTIL EMPTY
MEMORY WRITE MEMORY WRITE (DESTINATION)
A
DMA STOPPED. MAX SIZE DEPENDS ON FLOW
CLEAR DMA_RUN IN IF FLOW =4, MAX_SIZE =7
IRQ_STATUS. IF FLOW =6, MAX_SIZE = 8
IF FLOW =7, MAX_SIZE =9

Figure 6-2. DMA Flow, From DMA Controller’s Point of View (2 of 2)

ADSP-BF51x Blackfin Processor Hardware Reference

6-19

Functional Description

When DMAX_CONFIG is written directly by software, the DMA controller
recognizes this as the special startup condition that occurs when starting
DMA for the first time on this channel or after the engine has been
stopped (FLOW = 0).

When the descriptor fetch is complete and DMAEN = 1, the DMACFG descrip-
tor element that was read into DMAx_CONFIG assumes control. Before this
point, the direct write to DMAx_CONFIG had control. In other words, the
WDSTZE, DI_EN, DI_SEL, SYNC, and DMA2D fields will be taken from the
DMACFG value in the descriptor read from memory, while these field values
initially written to the DMAx_CONFIG register are ignored.

As Figure 6-1 and Figure 6-2 show, at startup the FLOW and NDSIZE bits in
DMAX_CONFIG determine the course of the DMA setup process. The FLOW
value determines whether to load more current registers from descriptor
elements in memory, while the NDSIZE bits detail how many descriptor
elements to fetch before starting DMA. DMA registers not included in the
descriptor are not modified from their prior values.

If the FLOW value specifies small or large descriptor list modes, the
DMAX_NEXT_DESC_PTR is copied into DMAx_CURR_DESC_PTR. Then, fetches of
new descriptor elements from memory are performed, indexed by
DMAX_CURR_DESC_PTR, which is incremented after each fetch. If NDPL
and/or NDPH is part of the descriptor, then these values are loaded into
DMAX_NEXT_DESC_PTR, but the fetch of the current descriptor continues
using DMAx_CURR_DESC_PTR. After completion of the descriptor fetch,
DMAX_CURR_DESC_PTR points to the next 16-bit word in memory past the
end of the descriptor.

If neither NDPH nor NDPL are part of the descriptor (that is, in descriptor
array mode, FLOW = 4), then the transfer from NDPH/NDPL into
DMAx_CURR_DESC_PTR does not occur. Instead, descriptor fetch indexing
begins with the value in DMAX_CURR_DESC_PTR.

If DMACFG is not part of the descriptor, the previous DMAx_CONFIG settings
(as written by MMR access at startup) control the work unit operation. If

6-20 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access

DMACFG is part of the descriptor, then the DMAx_CONFIG value programmed
by the MMR access controls only the loading of the first descriptor from
memory. The subsequent DMA work operation is controlled by the low
byte of the descriptor’s DMACFG and by the parameter registers loaded from
the descriptor. The bits DI_EN, DI_SEL, DMA2D, WDSIZE, and WNR in the value
programmed by the MMR access are disregarded.

The DMA_RUN and DFETCH status bits in the DMAx_IRQ_STATUS register indi-
cate the state of the DMA channel. After a write to DMAx_CONFIG, the
DMA_RUN and DFETCH bits can be automatically set to 1. No data interrupts
are signaled as a result of loading the first descriptor from memory.

After the above steps, DMA data transfer operation begins. The DMA
channel immediately attempts to fill its FIFO, subject to channel prior-
ity—a memory write (RX) DMA channel begins accepting data from its
peripheral, and a memory read (TX) DMA channel begins memory reads,
provided the channel wins the grant for bus access.

When the DMA channel performs its first data memory access, its address
and count computations take their input operands from the start registers
(DMAX_START_ADDR, DMAX_X_COUNT, DMAx_Y_COUNT), and write results back
to the current registers (DMAx_CURR_ADDR, DMAXx_CURR_X_COUNT,
DMAx_CURR_Y_COUNT). Note also that the current registers are not valid
until the first memory access is performed, which may be some time after
the channel is started by the write to the DMA_CONFIG register. The current
registers are loaded automatically from the appropriate descriptor ele-
ments, overwriting their previous contents, as follows.

* DMAX_START_ADDR is copied to DMAx_CURR_ADDR
* DMAX_X_COUNT is copied to DMAx_CURR_X_COUNT
* DMAX_Y_COUNT is copied to DMAx_CURR_Y_COUNT

Then DMA data transfer operation begins, as shown in Figure 6-2.

ADSP-BF51x Blackfin Processor Hardware Reference 6-21

Functional Description

DMA Refresh

On completion of a work unit:

The DMA controller completes the transfer of all data between
memory and the DMA unit.

If SYNC = 1 and WNR = 0 (memory read), the DMA controller selects
a synchronized transition and transfers all data to the peripheral
before continuing.

If enabled by DI_EN, the DMA controller signals an interrupt to the
core and sets the DMA_DONE bit in the channel’s DMAX_IRQ_STATUS
register.

If FLOW = 0 the DMA controller stops operation by clearing the
DMA_RUN bit in DMAX_IRQ_STATUS register after all data in the chan-
nel’s DMA FIFO has been transferred to the peripheral.

During the fetch in FLOW modes 4, 6, and 7, the DMA controller
sets the DFETCH bit in DMAx_IRQ_STATUS register to 1. At this point,
the DMA operation depends on whether FLOW = 4, 6, or 7, as fol-

lows:

If FLOW = 4 (descriptor array) the DMA controller loads a new
descriptor from memory into the DMA registers using the contents
of DMAX_CURR_DESC_PTR, and increments DMAx_CURR_DESC_PTR. The
descriptor size comes from the NDSIZE field of the DMAX_CONFIG reg-
ister prior to the beginning of the fetch.

If FLOW = 6 (small descriptor list) the DMA controller copies the
32-bit DMAXx_NEXT_DESC_PTR into DMAx_CURR_DESC_PTR. Next, the
DMA controller fetches a descriptor from memory into the DMA
registers using the new contents of DMAx_CURR_DESC_PTR, and incre-
ments DMAx_CURR_DESC_PTR. The first descriptor element that is
loaded is a new 16-bit value for the lower 16 bits of
DMAX_NEXT_DESC_PTR, followed by the rest of the descriptor

6-22

ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access

elements. The high 16 bits of DMAX_NEXT_DESC_PTR will retain their
former value. This supports a shorter, more efficient descriptor
than the large descriptor list model, which is suitable whenever the
application can place the channel’s descriptors in the same 64K
byte range of memory.

If FLOW = 7 (large descriptor list) the DMA controller copies the
32-bit DMAXx_NEXT_DESC_PTR into DMAx_CURR_DESC_PTR. Next, the
DMA controller fetches a descriptor from memory into the DMA
registers using the new contents of DMAx_CURR_DESC_PTR, and incre-
ments DMAx_CURR_DESC_PTR. The first descriptor element that is
loaded is a new 32-bit value for the full DMAXx_NEXT_DESC_PTR, fol-
lowed by the rest of the descriptor elements. The high 16 bits of
DMAX_NEXT_DESC_PTR may differ from their former value. This sup-
ports a fully flexible descriptor list which can be located anywhere
in internal memory or external memory.

e Ifitis necessary to link from a descriptor chain whose descriptors
are in one 64K byte area to another chain whose descriptors are
outside that area, only the descriptor containing the link to the new
64K byte range needs to use FLOW = 7. All descriptors that reference
the same 64K byte area may use FLOW = 0.

e IfFLOW =4, 6, or 7 (descriptor array, small descriptor list, or large
descriptor list, respectively), the DMA controller clears the DFETCH
bit in the DMAX_IRQ_STATUS register.

ADSP-BF51x Blackfin Processor Hardware Reference 6-23

Functional Description

e If FLOW = any value but 0 (Stop), the DMA controller begins the
next work unit for that channel, which must contend with other
channels for priority on the memory buses. On the first memory
transfer of the new work unit, the DMA controller updates the cur-
rent registers from the start registers:

DMAx_CURR_ADDR loaded from DMAx_START_ADDR
DMAx_CURR_X_COUNT loaded from DMAx_X_COUNT
DMAx_CURR_Y_COUNT loaded from DMAx_Y_COUNT

The DFETCH bit in the DMAX_IRQ_STATUS register is then cleared,
after which the DMA transfer begins again, as shown in Figure 6-2.

Work Unit Transitions

Transitions from one work unit to the next are controlled by the SYNC bit
in the DMAx_CONFIG register of the work units. In general, continuous tran-
sitions have lower latency at the cost of restrictions on changes of data
format or addressed memory space in the two work units. These latency
gains and data restrictions arise from the way the DMA FIFO pipeline is
handled while the next descriptor is fetched. In continuous transitions
(SYNC = 0), the DMA FIFO pipeline continues to transfer data to and
from the peripheral or destination memory during the descriptor fetch
and/or when the DMA channel is paused between descriptor chains.

Synchronized transitions (SYNC = 1), on the other hand, provide better
real-time synchronization of interrupts with peripheral state and greater
flexibility in the data formats and memory spaces of the two work units, at
the cost of higher latency in the transition. In synchronized transitions,
the DMA FIFO pipeline is drained to the destination or flushed (RX data

discarded) between work units.

6-24 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access

Work unit transitions for MDMA streams are controlled by the
SYNC bit of the MDMA source channel’s DMAx_CONFIG register. The
SYNC bit of the MDMA destination channel is reserved and must be
0. In transmit (memory read) channels, the SYNC bit of the last
descriptor prior to the transition controls the transition behavior.
In contrast, in receive channels, the SYNC bit of the first descriptor
of the next descriptor chain controls the transition.

DMA Transmit and MDMA Source

In DMA transmit (memory read) and MDMA source channels, the SYNC
bit controls the interrupt timing at the end of the work unit and the han-
dling of the DMA FIFO between the current and next work units.

If SYNC = 0, a continuous transition is selected. In a continuous transition,
just after the last data item is read from memory, the following operations
start in parallel:

e The interrupt (if any) is signalled.
e The DMA_DONE bit in the DMAx_IRQ_STATUS register is set.

* The next descriptor begins to be fetched.

e The final data items are delivered from the DMA FIFO to the des-

tination memory or peripheral.

This allows the DMA to provide data from the FIFO to the peripheral

“continuously” during the descriptor fetch latency period.

When SYNC = 0, the final interrupt (if enabled) occurs when the last data is
read from memory. This interrupt is at the earliest time that the output
memory buffer may safely be modified without affecting the previous data
transmission. Up to four data items may still be in the DMA FIFO,
however, and not yet at the peripheral, so the DMA interrupt should not
be used as the sole means of synchronizing the shutdown or reconfigura-
tion of the peripheral following a transmission.

ADSP-BF51x Blackfin Processor Hardware Reference 6-25

Functional Description

If SYNC = 0 (continuous transition) on a transmit (memory read)
descriptor, the next descriptor must have the same data word size,
read/write direction, and source memory (internal vs. external) as
the current descriptor.

SYNC = 0 selects continuous transition on a work unit in FLOW = 0 mode
with interrupt enabled. The interrupt service routine may begin execution
while the final data is still draining from the FIFO to the peripheral. This
is indicated by the DMA_RUN bit in the DMAXx_IRQ_STATUS register; if it is 1,
the FIFO is not empty yet. Do not start a new work unit with different
word size or direction while DMA_RUN = 1. Further, if the channel is dis-
abled (by writing DMAEN = 0), the data in the FIFO is lost.

SYNC = 1 selects a synchronized transition in which the DMA FIFO is first
drained to the destination memory or peripheral before any interrupt is
signalled and before any subsequent descriptor or data is fetched. This
incurs greater latency, but provides direct synchronization between the
DMA interrupt and the state of the data at the peripheral.

For example, if SYNC = 1 and DI_EN = 1 on the last descriptor in a work
unit, the interrupt occurs when the final data has been transferred to the
peripheral, allowing the service routine to properly switch to non-DMA
transmit operation. When the interrupt service routine is invoked, the
DMA_DONE bit is set and the DMA_RUN bit is cleared.

A synchronized transition also allows greater flexibility in the format of
the DMA descriptor chain. If SYNC = 1, the next descriptor may have any
word size or read/write direction supported by the peripheral and may
come from either memory space (internal or external). This can be useful
in managing MDMA work unit queues, since it is no longer necessary to
interrupt the queue between dissimilar work units.

DMA Receive

In DMA receive (memory write) channels, the SYNC bit controls the han-
dling of the DMA FIFO between descriptor chains (not individual

6-26 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access

descriptors), when the DMA channel is paused. The DMA channel pauses
after descriptors with FLOW = 0 mode, and may be restarted (for example,
after an interrupt) by writing the channel’s DMAx_CONFIG register with
DMAEN = 1.

If the SYNC bit is O in the new work unit’s DMAx_CONFIG value, a continuous
transition is selected. In this mode, any data items received into the DMA
FIFO while the channel was paused are retained, and they are the first
items written to memory in the new work unit. This mode of operation
provides lower latency at work unit transitions and ensures that no data
items are dropped during a DMA pause, at the cost of certain restrictions

on the DMA descriptors.

If the SYNC bit is 0 on the first descriptor of a descriptor chain after
a DMA pause, the DMA word size of the new chain must not
change from the word size of the previous descriptor chain active
before the pause, unless the DMA channel is reset between chains
by writing the DMAEN bit to 0 and then to 1 again.

If the SYNC bit is 1 in the new work unit’s DMAx_CONFIG value, a synchro-
nized transition is selected. In this mode, only the data received from the
peripheral by the DMA channel after the write to the DMAX_CONFIG register
are delivered to memory. Any prior data items transferred from the
peripheral to the DMA FIFO before this register write are discarded. This
provides direct synchronization between the data stream received from the
peripheral and the timing of the channel restart (when the DMAXx_CONFIG
register is written).

For receive DMAs, the SYNC bit has no effect in transitions between work
units in the same descriptor chain (that is, when the previous descriptor’s
FLOW mode was not 0, so that DMA channel did not pause.)

If a descriptor chain begins with a SYNC bit of 1, there is no restriction on
DMA word size of the new chain in comparison to the previous chain.

ADSP-BF51x Blackfin Processor Hardware Reference 6-27

Functional Description

The DMA word size must not change between one descriptor and
the next in any DMA receive (memory write) channel within a sin-
gle descriptor chain, regardless of the SYNC bit setting. In other
words, if a descriptor has WNR = 1 and FLOW = 4, 6, or 7, then the
next descriptor must have the same word size. For any DMA
receive (memory write) channel, there is no restriction on changes
of memory space (internal vs. external) between descriptors or
descriptor chains. DMA transmit (memory read) channels may
have such restrictions (see “DMA Transmit and MDMA Source”
on page 6-25).

Stopping DMA Transfers

In FLOW = 0 mode, DMA stops automatically after the work unit is
complete.

If a list or array of descriptors is used to control DMA, and if every
descriptor contains a DMACFG element, then the final DMACFG element
should have a FLOW = 0 setting to gracefully stop the channel.

In autobuffer (FLOW = 1) mode, or if a list or array of descriptors without
DMACFG elements is used, then the DMA transfer process must be termi-
nated by an MMR write to the DMAX_CONFIG register with a value whose
DMAEN bit is 0. A write of O to the entire register will always terminate

DMA gracefully (without DMA abort).

If a channel has been stopped abruptly by writing DMAx_CONFIG to O
(or any value with DMAEN = 0), the user must ensure that any mem-
ory read or write accesses in the pipelines have completed before
enabling the channel again. If the channel is enabled again before
an “orphan” access from a previous work unit completes, the state
of the DMA interrupt and FIFO is unspecified. This can generally
be handled by ensuring that the core allocates several consecutive
idle cycles in its usage of the relevant memory space to allow up to
three pending DMA accesses to issue, plus allowing enough mem-
ory access time for the accesses themselves to complete.

6-28

ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access

DMA Errors (Aborts)

The DMA controller flags conditions that cause the DMA process to end
abnormally (abort). This functionality is provided as a tool for system
development and debug to detect DMA-related programming errors.
DMA errors (aborts) are detected by the DMA channel module in the
cases listed below. When a DMA error occurs, the channel is immediately
stopped (DMA_RUN goes to 0) and any prefetched data is discarded. In addi-
tion, a DMA_ERROR interrupt is asserted.

There is only one DMA_ERROR interrupt for the whole DMA controller,
which is asserted whenever any of the channels has detected an error
condition.

The DMA_ERROR interrupt handler must:

* Read each channel’s DMAX_IRQ_STATUS register to look for a channel
with the DMA_ERR bit set (bit 1).

* Clear the problem with that channel (for example, fix register
values).

e Clear the DMA_ERR bit (write DMAx_IRQ_STATUS with bit 1 set).

The following error conditions are detected by the DMA hardware and
result in a DMA abort interrupt.

* The configuration register contains invalid values:
e Incorrect WDSIZE value (WDSIZE = b#11)
e Bit 15 notsetto 0
e Incorrect FLOW value (FLOW = 2, 3, or 5)

* NDSIZE value does not agree with FLOW. See Table 6-2.

ADSP-BF51x Blackfin Processor Hardware Reference 6-29

Functional Description

A disallowed register write occurred while the channel was run-
ning. Only the DMAx_CONFIG and DMAx_IRQ_STATUS registers can be
written when DMA_RUN = 1.

An address alignment error occurred during any memory access.
For example, when DMAx_CONFIG register WDSIZE = 1 (16-bit) but
the least significant bit (LSB) of the address is not equal to b#0, or
when WDSIZE = 2 (32-bit) but the two LSBs of the address are not
equal to b#00.

A memory space transition was attempted (internal-to-external or
vice versa). For example, the value in the DMAx_CURR_ADDR register
or DMAx_CURR_DESC_PTR register crossed a memory boundary.

A memory access error occurred. Either an access attempt was
made to an internal address not populated or defined as cache, or
an external access caused an error (signaled by the external memory
interface).

Some prohibited situations are not detected by the DMA hardware. No
DMA abort is signaled for these situations:

DMAX_CONFIG direction bit (WNR) does not agree with the direction
of the mapped peripheral.

DMAX_CONFIG direction bit does not agree with the direction of the
MDMA channel.

DMAX_CONFIG word size (WDSIZE) is not supported by the mapped
peripheral. See Table 6-2.

DMAX_CONFIG word size in source and destination of the MDMA
stream are not equal.

6-30

ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access

* Descriptor chain indicates data buffers that are not in the same
internal/external memory space.

e In2-D DMA, X_COUNT =1

Table 6-2. Legal NDSIZE Values

FLOW NDSIZE Note

0 0

1 0

4 0 < NDSIZE <7 Descriptor array, no descriptor pointer fetched
6 0 <NDSIZE < 8 Descriptor list, small descriptor pointer fetched
7 0 < NDSIZE<9 Descriptor list, large descriptor pointer fetched

DMA Control Commands

Advanced peripherals, such as an Ethernet MAC module, are capable of
managing some of their own DMA operations, thus dramatically improv-
ing real-time performance and relieving control and interrupt demands on
the Blackfin processor core. These peripherals may communicate to the
DMA controller using DMA control commands, which are transmitted
from the peripheral to the associated DMA channel over internal DMA
request buses. Refer to “Unique Information for the ADSP-BF51x Proces-
sor” on page 6-103 to determine if DMA control commands are
applicable to a particular product.

The request buses consist of three wires per DMA-management-capable
peripheral. The DMA control commands extend the set of operations
available to the peripheral beyond the simple “request data” command
used by peripherals in general.

While these DMA control commands are not visible to or controllable by
the user, their use by a peripheral has implications for the structure of the
DMA transfers which that peripheral can support. It is important that
application software be written to comply with certain restrictions

ADSP-BF51x Blackfin Processor Hardware Reference 6-31

Functional Description

regarding work units and descriptor chains (described later in this section)
so that the peripheral operates properly whenever it issues DMA control
commands.

MDMA channels do not service peripherals and therefore do not support
DMA control commands. The DMA control commands are shown in

Table 6-3.

Table 6-3. DMA Control Commands

Code |Name Description
000 | NOP No operation
001 | Restart Restarts the current work unit from the beginning
010 | Finish Finishes the current work unit and starts the next
011 |- Reserved
100 | Req Data Typical DMA data request
101 | Req Data Urgent DMA data request
Urgent
110 |- Reserved
111 |- Reserved

Additional information for the control commands includes:

Restart

The Restart command causes the current work unit to interrupt
processing and start over, using the addresses and counts from
DMAX_START_ADDR, DMAx_X_COUNT, and DMAx_Y_COUNT. No interrupt
is signalled.

If a channel programmed for transmit (memory read) receives a
Restart command, the channel momentarily pauses while any
pending memory reads initiated prior to the Restart command are
completed.

6-32

ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access

During this period of time, the channel does not grant DMA
requests. Once all pending reads have been flushed from the chan-
nel’s pipelines, the channel resets its counters and FIFO and starts
prefetch reads from memory. DMA data requests from the periph-
eral are granted as soon as new prefetched data is available in the
DMA FIFO. The peripheral can thus use the Restart command to
re-attempt a failed transmission of a work unit.

If a channel programmed for receive (memory write) receives a
Restart command, the channel stops writing to memory, discards
any data held in its DMA FIFO, and resets its counters and FIFO.
As soon as this initialization is complete, the channel again grants
DMA write requests from the peripheral. The peripheral can thus
use the Restart command to abort transfer of received data into a
work unit and re-use the memory buffer for a later data transfer.

* Finish

The Finish command causes the current work unit to terminate
and move on to the next work unit. An interrupt is signalled as
usual, if selected by the DI_EN bit. The peripheral can thus use the
Finish command to partition the DMA stream into work units on
its own, perhaps as a result of parsing the data currently passing
though its supported communication channel, without direct
real-time control by the processor.

If a channel programmed for transmit (memory read) receives a
Finish command, the channel momentarily pauses while any
pending memory reads initiated prior to the Finish command are
completed. During this period of time, the channel does not grant
DMA requests. Once all pending reads have been flushed from the
channel’s pipelines, the channel signals an interrupt (if enabled),
and begins fetching the next descriptor (if any). DMA data requests
from the peripheral are granted as soon as new prefetched data is

available in the DMA FIFO.

ADSP-BF51x Blackfin Processor Hardware Reference 6-33

Functional Description

If a channel programmed for receive (memory write) receives a
Finish command, the channel stops granting new DMA requests
while it drains its FIFO. Any DMA data received by the DMA con-
troller prior to the Finish command is written to memory. When
the FIFO reaches an empty state, the channel signals an interrupt
(if enabled) and begins fetching the next descriptor (if any). Once
the next descriptor has been fetched, the channel initializes its
FIFO and then resumes granting DMA requests from the
peripheral.

* Request Data

The Request Data command is identical to the DMA request oper-
ation of peripherals that are not DMA-management-capable.

* Request Data Urgent

The Request Data Urgent command behaves identically to the
DMA Request command, except that the DMA channel performs
its memory accesses with urgent priority while it is asserted. This
includes both data and descriptor-fetch memory accesses. A
DMA-management-capable peripheral might use this command if
an internal FIFO is approaching a critical condition.

Restrictions

The proper operation of the 4-location DMA channel FIFO leads to cer-

tain restrictions in the sequence of DMA control commands.

Transmit Restart or Finish

No Restart or Finish command may be issued by a peripheral to a chan-
nel configured for memory read unless the peripheral has already
performed at least one DMA transfer in the current work unit and the cur-
rent work unit has more than four items remaining in
DMAX_CURR_X_COUNT/ DMAXx_CURR_Y_COUNT (thus not yet read from

6-34 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access

memory). Otherwise, the current work unit may already have completed
memory operations and can no longer be restarted or finished properly.

If the DMAX_CURR_X_COUNT/ DMAx_CURR_Y_COUNT value of the current work
unit is sufficiently large that it is always at least five more than the maxi-
mum data count prior to any Restart or Finish command, the above
restriction is satisfied. This implies that any work unit which might be
managed by Restart or Finish commands must have DMAx_CURR_X_COUNT/
DMAx_CURR_Y_COUNT values representing at least five data items.

Particularly if the DMAx_CURR_X_COUNT/ DMAX_CURR_Y_COUNT registers are
programmed to 0 (representing 65,536 transfers, the maximum value) the

channel will operate properly for 1-D work units up to 65,531 data items
or 2-D work units up to 4,294,967,291 data items.

Receive Restart or Finish

No Restart or Finish command may be issued by a peripheral to a chan-
nel configured for memory write unless either the peripheral has already
performed at least five DMA transfers in the current work unit or the pre-
vious work unit was terminated by a Finish command and the peripheral
has performed at least one DMA transfer in the current work unit. If five
data transfers have been performed, then at least one data item has been
written to memory in the current work unit, which implies that the cur-
rent work unit’s descriptor fetch completed before the data grant of the
fifth item. Otherwise, if less than five data items have been transferred, it
is possible that all of them are still in the DMA FIFO and the previous
work unit is still in the process of completion and transition between work
units.

Similarly, if a Finish command ended the previous work unit and at least
one subsequent DMA data transfer has occurred, then the fact that the
DMA channel issued the grant guarantees that the previous work unit has
already completed the process of draining its data to memory and transi-
tioning to the new work unit.

ADSP-BF51x Blackfin Processor Hardware Reference 6-35

Functional Description

If a peripheral terminates all work units with the Finish opcode (effec-
tively assuming responsibility for all work unit boundaries for the DMA
channel), then the peripheral need only ensure that it performs a single
transfer in each work unit before any restart or finish. This requires, how-
ever, that the user programs the descriptors for all work units managed by
the channel with DMAXx_CURR_X_COUNT/ DMAX_CURR_Y_COUNT values repre-
senting more data items than the maximum work unit size that the
peripheral will encounter. For example, DMAx_CURR_X_COUNT/
DMAX_CURR_Y_COUNT values of 0 allow the channel to operate properly on
1-D work units up to 65,535 data items and 2-D work units up to
4,294,967,295 data items.

Handshaked Memory DMA Operation

Handshaked memory DMA operation is not available for all products.
Refer to “Unique Information for the ADSP-BF51x Processor” on
page 6-103 to determine whether this feature applies to this product.

Each DMARx input has its own set of control and status registers. Hand-
shake operation for MDMADO is enabled by the HMDMAEN bit in the
HMDMAO_CONTROL register. Similarly, the HMDMAEN bit in the HMDMA1_CONTROL
register enables handshake mode for MDMAL.

It is important to understand that the handshake hardware works com-
pletely independently from the descriptor and autobuffer capabilities of
the MDMA, allowing most flexible combinations of logical data organiza-
tion vs. data portioning as required by FIFO depths, for example. If,
however, the connected device requires certain behavior of the address
lines, these must be controlled by traditional DMA setup.

@ The HMDMA unit controls only the destination (memory write)

channel of the memory DMA. The source channel (memory-read
side) fills the 8-deep DMA buffers immediately after the receive
side is enabled and issues eight read commands.

6-36 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access

The HMDMAX_BCINIT registers control how many data transfers are per-
formed upon every DMA request. If set to one, the peripheral can time
every individual data transfer. If greater than one, the peripheral must
have sufficient buffer size to provide or consume the number of words
programmed. Once the transfer has been requested, no further handshake
can hold off the DMA from transferring the entire block, except by stall-
ing the EBIU accesses by the ARDY signal. Nevertheless, the peripheral may
request a block transfer before the entire buffer is available by simply tak-
ing the minimum transfer time based on wait-state settings into
consideration.

The block count defines how many data transfers are performed by
the MDMA engine. A single DMA transfer can cause two read or
write operations on the EBIU port if the transfer word size is set to
32-bit in the MDMA_yy_CONFIG register (WDSIZE = b#10).

Since the block count registers are 16 bits wide, blocks can group up to

65,535 transfers.

Once a block transfer has been started, the HMDMAX_BCOUNT registers return
the remaining number of transfers to complete the current block. When
the complete block has been processed, the HMDMAX_BCOUNT register returns
zero. Software can force a reload of the HMDMAX_BCOUNT from the
HMDMAX_BCINIT register even during normal operation by setting the RBC
bit in the HMDMAX_CONTROL register. Set RBC when the HMDMA module is
already active, but only when the MDMA is not enabled.

Pipelining DMA Requests

The device mastering the DMA request lines is allowed to request addi-
tional transfers even before the former transfer has completed. As long as
the device can provide or consume sufficient data it is permitted to pulse
the DMARx inputs multiple times.

The HMDMAX_ECOUNT registers are incremented every time a significant edge
is detected on the respective DMARx input, and they are decremented when

ADSP-BF51x Blackfin Processor Hardware Reference 6-37

Functional Description

the MDMA completes the block transfer. These read-only registers use a
16-bit twos-complement data representation: if they return zero, all
requested block transfers have been performed. A positive value signals up
to 32767 requests that haven’t been served yet and indicates that the
MDMA is currently processing. Negative values indicate the number of
DMA requests that will be ignored by the engine. This feature restrains
initial pulses on the DMARX inputs at startup.

The HMDMAX_ECINIT registers reload the HMDMAX_ECOUNT registers every time
the handshake mode is enabled (when the HMDMAEN bit changes from

0 to 1). If the initial edge count value is 0, the handshake operation starts
with a settled request budget. If positive, the engine starts immediately
transferring the programmed number (up to 32767) of blocks once
enabled, even without detecting any activity on the DMARx pins. If nega-
tive, the engine will disregard the programmed number (up to 32768)
significant edges on the DMARx inputs before starting normal operation.

Figure 6-3 illustrates how an asynchronous FIFO could be connected. In
such a scenario the REP bit should be cleared to let the DMARX request pin
listen to falling edges.

BLACKFIN 1024K x 16 FIFO

D0 ..D15 J{10..115 00..015 >
<«—|FF

AMSx _

__ WR RD |«

AWE

DMARXx |

Figure 6-3. Transmit DMA Example Connection

The Blackfin processor does not evaluate the full flag such FIFOs usually
provide because asynchronous polling of that signal would reduce the sys-
tem throughput drastically. Moreover, the processor first fills the FIFO by
initializing the HMDMAX_ECINIT register to 1024, which equals the depth of
the FIFO. Once enabled, the MDMA automatically transmits 1024 data

6-38 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access

words. Afterward it continues to transmit only if the FIFO is emptied by
its read strobe again. Most likely, the HMDMAX_BCINIT register is pro-
grammed to 1 in this case.

In the receive example shown in Figure 6-4, the Blackfin processor again
does not use the FIFO’s internal control mechanism. Rather than testing
the empty flag, the processor counts the number of data words available in
the FIFO in its own HMDMAX_ECOUNT register. Theoretically, the MDMA
could immediately process data as soon as it is written into the FIFO by
the write strobe, but the fast MDMA engine would read out the FIFO
quickly and stall soon if the FIFO was not promptly filled with new data.
Streaming applications can balance the FIFO so that the producer is never
held off by a full FIFO and the consumer is never held by an empty FIFO.
This is accomplished by filling the FIFO halfway and then letting both
consumer and producer run at the same speed. In this case the
HMDMAX_ECINIT register can be written with a negative value, which corre-
sponds to half the FIFO depth. Then, the MDMA does not start
consuming data as long as the FIFO is not half-filled.

BLACKFIN 1024K x 16 FIFO

DO ..D15 {10..115 00..015 >
-
AMSX __
WR RD |
AWE

DMARXx |=

Figure 6-4. Receive DMA Example Connection

On internal system buses, memory DMA channels have lower priority
than other DMAs. In busy systems, the memory DMAs may tend to
starve. As this is not acceptable when transferring data through high-speed
FIFOs, the handshake mode provides a high-water functionality to
increase the MDMA'’s priority. With the UTE bit in the HMDMAx_CONTROL
register set, the MDMA gets higher priority as soon as a (positive) value in

ADSP-BF51x Blackfin Processor Hardware Reference 6-39

Functional Description

the HMDMAX_ECOUNT register becomes higher than the threshold held by the
HMDMAX_ECURGENT register.

HMDMA Interrupts
In addition to the normal MDMA interrupt channels, the handshake

hardware provides two new interrupt sources for each DMARx input. The
HMDMAxX_CONTROL registers provide interrupt enable and status bits. The
interrupt status bits require a write-1-to-clear operation to cancel the
interrupt request.

The block done interrupt signals that a complete MDMA block, as
defined by the HMDMAX_BCINIT register, has been transferred (when the
HMDMAX_BCOUNT register decrements to zero). While the BDIE bit enables
this interrupt, the MBDI bit can gate it until the edge count also becomes
zero, meaning that all requested MDMA transfers have been completed.

The overflow interrupt is generated when the HMDMA_ECOUNT register over-
flows. Since it can count up to 32767, which is much more than most
peripheral devices can support, the Blackfin processor has another thresh-
old register called HMDMA_ECOVERFLOW. It resets to OxFFFF and should be
written with any positive value by the user before enabling the function by
the 01E bit. Then, the overflow interrupt is issued when the value of the
HMDMA_ECOUNT register exceeds the threshold in the HMDMA_ECOVERFLOW
register.

DMA Performance

The DMA system is designed to provide maximum throughput per chan-
nel and maximum utilization of the internal buses, while accommodating
the inherent latencies of memory accesses.

The Blackfin architecture features several mechanisms to customize system
behavior for best performance. This includes DMA channel prioritization,
traffic control, and priority treatment of bursted transfers. Nevertheless,
the resulting performance of a DMA transfer often depends on

6-40 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access

application-level circumstances. For best performance consider the follow-
ing system software architecture questions.

* What is the required DMA bandwidth?

* Which DMA transfers have real-time requirements and which do
not?

* How heavily is the DMA controller competing with the core for
on-chip and off-chip resources?

* How often do competing DMA channels require the bus systems to
alter direction?

* How often do competing DMA or core accesses cause the SDRAM
to open different pages?

* Is there a way to distribute DMA requests nicely over time?

A key feature of the DMA architecture is the separation of the activity on
the DMA access bus (DAB) used by the peripherals from the activity on
the buses between the DMA and memory. For DMA to/from on-chip
memory the DMA core bus (DCB) is used, and the DMA external bus
(DEB) is used for DMA transfers with off-chip memory. The “Chip Bus
Hierarchy” chapter explains the bus architecture.

Each peripheral DMA channel has its own data FIFO which lies between
the DAB bus and the memory buses. These FIFOs automatically prefetch
data from memory for transmission and buffer received data for later
memory writes. This allows the peripheral to be granted a DMA transfer
with very low latency compared to the total latency of a pipelined memory
access, permitting the repeat rate (bandwidth) of each DMA channel to be
as fast as possible.

ADSP-BF51x Blackfin Processor Hardware Reference 6-41

Functional Description

DMA Throughput

Each peripheral DMA channel has a maximum transfer rate of one 16-bit
word per two system clocks in either direction. Like the DAB and DEB

buses, the DMA controller resides in the SCLK domain. The controller syn-
chronizes accesses to and from the DCB bus, which runs at the CCLK rate.

Each memory DMA channel has a maximum transfer rate of one 16-bit
word per system clock (SCLK) cycle.

When the traffic on all DMA channels is taken in the aggregate:

Transfers between the peripherals and the DMA unit have a maxi-
mum rate of one 16-bit transfer per system clock.

Transfers between the DMA unit and internal memory (L1) have a
maximum rate of one 16-bit transfer per system clock.

Transfers between the DMA unit and external memory have a
maximum rate of one 16-bit transfer per system clock.

Some considerations which limit the actual performance include:

Accesses to internal or external memory which conflict with core
accesses to the same memory. This can cause delays, for example
when both the core and the DMA access the same L1 bank, when
SDRAM pages need to be opened/closed, or when cache lines are
filled.

Direction changes from RX to TX on the DAB bus impose a one
SCLK cycle delay.

Direction changes on the DCB bus (for example, write followed by
read) to the same bank of internal memory can impose delays.

Direction changes (for example, read followed by write) on the
DEB bus to external memory can each impose a several-cycle delay.

6-42

ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access

* MMR accesses to DMA registers other than DMAx_CONFIG,
DMAX_IRQ_STATUS, or DMAx_PERIPHERAL_MAP stall all DMA activity
for one cycle per 16-bit word transferred. In contrast, MMR
accesses to the control/status registers do not cause stalls or wait
states.

* Reads from DMA registers other than control/status registers use
one PAB bus wait state, delaying the core for several core clocks.

* Descriptor fetches consume one DMA memory cycle per 16-bit
word read from memory, but do not delay transfers on the DAB

bus.

* Initialization of a DMA channel stalls DMA activity for one cycle.
This occurs when DMAEN changes from 0 to 1 or when the SYNC bit
is set in the DMAX_CONFIG register.

Several of these factors may be minimized by proper design of the applica-
tion software. It is often possible to structure the software to avoid
internal and external memory conflicts by careful allocation of data buffers
within banks and pages, and by planning for low cache activity during
critical DMA operations. Furthermore, unnecessary MMR accesses can be
minimized, especially by using descriptors or autobuffering.

Efficiency loss caused by excessive direction changes (thrashing) can be
minimized by the processor’s traffic control features, described in the next
section.

The MDMA channels are clocked by ScLk. If the source and destination
are in different memory spaces (one internal and one external), the inter-
nal and external memory transfers are typically simultaneous and
continuous, maintaining 100% bus utilization of the internal and external
memory interfaces. This performance is affected by core-to-system clock
frequency ratios. At ratios below about 2.5:1, synchronization and pipe-
line latencies result in lower bus utilization in the system clock domain.
For example DMA typically runs at 2/3 of the system clock rate when the

ADSP-BF51x Blackfin Processor Hardware Reference 6-43

Functional Description

core-to-system clock ratio is 2:1. At higher clock ratios, full bandwidth is
maintained.

If the source and destination are in the same memory space (both internal
or both external), the MDMA stream typically prefetches a burst of source
data into the FIFO, and then automatically turns around and delivers all
available data from the FIFO to the destination buffer. The burst length is
dependent on traffic, and is equal to three plus the memory latency at the
DMA in SCLKs (which is typically seven for internal transfers and six for
external transfers).

Memory DMA Timing Details

When the destination DMAx_CONFIG register is written, MDMA operation
starts after a latency of three SCLK cycles.

If either MDMA channel has been selected to use descriptors, the descrip-
tors are fetched from memory. The destination channel descriptors are
fetched first. Then the source MDMA channel begins fetching data from
the source buffer, after a latency of four SCLK cycles after the last descrip-
tor word is returned from memory. Due to memory pipelining, this is
typically eight SCLK cycles after the fetch of the last descriptor word. The
resulting data is deposited in the MDMA channel’s 8-location FIFO.
After a latency of two SCLK cycles, the destination MDMA channel begins
writing data to the destination memory buffer.

Static Channel Prioritization

DMA channels are ordinarily granted service strictly according to their
priority. The priority of a channel is simply its channel number, where
lower priority numbers are granted first. Thus, peripherals with high data
rates or low latency requirements should be assigned to lower numbered
(higher priority) channels using the PMAP field in the
DMAX_PERIPHERAL_MAP registers. The memory DMA streams are always
lower static priority than the peripherals, but as they request service

6-44 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access

continuously, they ensure that any time slots unused by peripheral DMA
are applied to MDMA transfers.

Temporary DMA Urgency

Typically, DMA transfers for a given peripheral occur at regular intervals.
Generally, the shorter the interval, the higher the priority that should be

assigned to the peripheral. If the average bandwidth of all the peripherals
is not too large a fraction of the total, then all peripherals’ requests should
be granted as required.

Occasionally, instantaneous DMA traffic might exceed the available band-
width, causing congestion. This may occur if L1 or external memory is
temporarily stalled, perhaps for an SDRAM page swap or a cache line fill.
Congestion might also occur if one or more DMA channels initiates a
flurry of requests, perhaps for descriptor fetches or to fill a FIFO in the
DMA or in the peripheral.

If congestion persists, lower priority DMA peripherals may become
starved for data. Even though the peripheral’s priority is low, if the neces-
sary data transfer does not take place before the end of the peripheral’s
regular interval, system failure may result. To minimize this possibility,
the DMA unit detects peripherals whose need for data has become urgent,
and preferentially grants them service at the highest priority.

A DMA channel’s request for memory service is defined as urgent if both:

* The channel’s FIFO is not ready for a DAB bus transfer (that is, a
transmit FIFO is empty or a receive FIFO is full), and

* The peripheral is asserting its DMA request line.

Descriptor fetches may be urgent if they are necessary to initiate or con-
tinue a DMA work unit chain for a starving peripheral.

DMA requests from an MDMA channel become urgent when handshaked

operation is enabled and the DMARX edge count exceeds the value stored in

ADSP-BF51x Blackfin Processor Hardware Reference 6-45

Functional Description

the HMDMAX_ECURGENT register. If handshaked operation is disabled, soft-
ware can control urgency of requests directly by altering the DRQ bit field
in the HMDMAX_CONTROL register.

When one or more DMA channels express an urgent memory request, two
events occur:

e All non-urgent memory requests are decreased in priority by 32,
guaranteeing that only an urgent request will be granted. The
urgent requests compete with each other, if there is more than one,
and directional preference among urgent requests is observed.

e The resulting memory transfer is marked for expedited processing
in the targeted memory system (L1 or external). All prior incom-
plete memory transfers ahead of it in that memory system are also
marked for expedited processing. This may cause a series of exter-
nal memory core accesses to be delayed for a few cycles so that a
peripheral’s urgent request may be accommodated.

The preferential handling of urgent DMA transfers is completely auto-
matic. No user controls are required for this function to operate.

Memory DMA Priority and Scheduling

All MDMA operations have lower precedence than any peripheral DMA
operations. MDMA thus makes effective use of any memory bandwidth
unused by peripheral DMA traffic.

By default, when more than one MDMA stream is enabled and ready,
only the highest priority MDMA stream is granted. If it is desirable for the
MDMA streams to share the available bandwidth, the
MDMA_ROUND_ROBIN_PERIOD may be programmed to select each stream in
turn for a fixed number of transfers.

If two MDMA streams are used (S0-D0 and S1-D1), the user may choose
to allocate bandwidth either by fixed stream priority or by a round-robin
scheme. This is selected by programming the MDMA_ROUND_ROBIN_PERIOD

6-46 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access

field in the DMA_TC_PER register (see “Static Channel Prioritization” on
page 6-44).

If this field is set to 0, then MDMA is scheduled by fixed priority.
MDMA stream 0 takes precedence over MDMA stream 1 whenever
stream 0 is ready to perform transfers. Since an MDMA stream is typically
capable of transferring data on every available cycle, this could cause
MDMA stream 1 traffic to be delayed for an indefinite time until any and
all MDMA stream 0 operations are completed. This scheme could be
appropriate in systems where low duration but latency-sensitive data buf-
fers need to be moved immediately, interrupting long duration, low
priority background transfers.

If the MDMA_ROUND_ROBIN_PERIOD field is set to some nonzero value in the
range 1 <P < 31, then a round-robin scheduling method is used. The two
MDMA streams are granted bus access in alternation in bursts of up to P
data transfers. This could be used in systems where two transfer processes
need to coexist, each with a guaranteed fraction of the available band-
width. For example, one stream might be programmed for
internal-to-external moves while the other is programmed for exter-
nal-to-internal moves, and each would be allocated approximately equal

data bandwidth.

In round-robin operation, the MDMA stream selection at any time is
either “free” or “locked.” Initially, the selection is free. On any free cycle
available to MDMA (when no peripheral DMA accesses take precedence),
if either or both MDMA streams request access, the higher precedence
stream will be granted (stream 0 in case of conflict), and that stream’s
selection is then “locked.” The MDMA_ROUND_ROBIN_COUNT counter field in
the DMA_TC_CNT register is loaded with the period P from
MDMA_ROUND_ROBIN_PERIOD, and MDMA transfers begin. The counter is
decremented on every data transfer (as each data word is written to mem-
ory). After the transfer corresponding to a count of one, the MDMA
stream selection is passed automatically to the other stream with zero over-
head, and the MDMA_ROUND_ROBIN_COUNT counter is reloaded with the

ADSP-BF51x Blackfin Processor Hardware Reference 6-47

Functional Description

period value P from MDMA_ROUND_ROBIN_PERIOD. In this cycle, if the other
MDMA stream is ready to perform a transfer, the stream selection is
locked on the new MDMA stream. If the other MDMA stream is not
ready to perform a transfer, then no transfer is performed, and the stream
selection unlocks and becomes free again on the next cycle.

If round-robin operation is used when only one MDMA stream is active,
one idle cycle will occur for each P MDMA data cycles, slightly lowering
the bandwidth by a factor of 1/(P+1). However if both MDMA streams
are used, memory DMA can operate continuously with zero additional
overhead for alternation of streams. (Other than overhead cycles normally
associated with reversal of read/write direction to memory). By selection
of various round-robin period values P, which limit how often the
MDMA streams alternate, maximal transfer efficiency can be maintained.

Traffic Control

In the Blackfin DMA architecture, there are two completely separate but
simultaneous prioritization processes—the DAB bus prioritization and the
memory bus (DCB and DEB) prioritization. Peripherals that are request-
ing DMA via the DAB bus, and whose data FIFOs are ready to handle the
transfer, compete with each other for DAB bus cycles. Similarly but sepa-
rately, channels whose FIFOs need memory service (prefetch or
post-write) compete together for access to the memory buses. MDMA
streams compete for memory access as a unit, and source and destination
may be granted together if their memory transfers do not conflict. In this
way, internal-to-external or external-to-internal memory transfers may
occur at the full system clock rate (SCLK). Examples of memory conflict
include simultaneous access to the same memory space and simultaneous
attempts to fetch descriptors. Special processing may occur if a peripheral
is requesting DMA but its FIFO is not ready (for example, an empty
transmit FIFO or full receive FIFO). For more information, see “Tempo-

rary DMA Urgency” on page 6-45.

6-48 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access

Traffic control is an important consideration in optimizing use of DMA
resources. Traffic control is a way to influence how often the transfer
direction on the data buses may change, by automatically grouping same
direction transfers together. The DMA block provides a traffic control
mechanism controlled by the DMA_TC_PER and DMA_TC_CNT registers. This
mechanism performs the optimization without real-time processor inter-
vention and without the need to program transfer bursts into the DMA
work unit streams. Traffic can be independently controlled for each of the
three buses (DAB, DCB, and DEB) with simple counters. In addition,
alternation of transfers among MDMA streams can be controlled with the
MDMA_ROUND_ROBIN_COUNT field of the DMA_TC_CNT register. See “Memory
DMA Priority and Scheduling” on page 6-46.

Using the traffic control features, the DMA system preferentially grants
data transfers on the DAB or memory buses which are going in the same
read/write direction as the previous transfer, until either the traffic control
counter times out or traffic stops or changes direction on its own. When
the traffic counter reaches zero, the preference is changed to the opposite
flow direction. These directional preferences work as if the priority of the
opposite direction channels were decreased by 16.

For example, if channels 3 and 5 were requesting DAB access, but lower
priority channel 5 is going with traffic and higher priority channel 3 is
going against traffic, then channel 3’s effective priority becomes 19, and
channel 5 would be granted instead. If, on the next cycle, only channels 3
and 6 were requesting DAB transfers, and these transfer requests were
both against traffic, then their effective priorities would become 19 and
22, respectively. One of the channels (channel 3) is granted, even though
its direction is opposite to the current flow. No bus cycles are wasted,
other than any necessary delay required for the bus turnaround.

This type of traffic control represents a trade-off of latency to improve uti-
lization (efficiency). Higher traffic timeouts might increase the length of
time each request waits for its grant, but it often dramatically improves the

ADSP-BF51x Blackfin Processor Hardware Reference 6-49

Programming Model

maximum attainable bandwidth in congested systems, often to above

90%.

To disable preferential DMA prioritization, program the DMA_TC_PER reg-
ister to 0x0000.

Programming Model

Several synchronization and control methods are available for use in devel-
opment of software tasks which manage peripheral DMA and memory
DMA (see also “Memory DMA” on page 6-6). Such software needs to be
able to accept requests for new DMA transfers from other software tasks,
integrate these transfers into existing transfer queues, and reliably notify
other tasks when the transfers are complete.

In the processor, it is possible for each peripheral DMA and memory
DMA stream to be managed by a separate task or to be managed together
with any other stream. Each DMA channel has independent, orthogonal
control registers, resources, and interrupts, so that the selection of the
control scheme for one channel does not affect the choice of control
scheme on other channels. For example, one peripheral can use a
linked-descriptor-list, interrupt-driven scheme while another peripheral
can simultaneously use a demand-driven, buffer-at-a-time scheme syn-
chronized by polling of the DMAXx_IRQ_STATUS register.

Synchronization of Software and DMA

A critical element of software DMA management is synchronization of
DMA buffer completion with the software. This can best be done using
interrupts, polling of DMAx_IRQ_STATUS, or a combination of both. Polling
for address or count can only provide synchronization within loose toler-
ances comparable to pipeline lengths.

6-50 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access

Interrupt-based synchronization methods must avoid interrupt overrun,
or the failure to invoke a DMA channel’s interrupt handler for every inter-
rupt event due to excessive latency in processing of interrupts. Generally,
the system design must either ensure that only one interrupt per channel is
scheduled (for example, at the end of a descriptor list), or that interrupts
are spaced sufficiently far apart in time that system processing budgets can
guarantee every interrupt is serviced. Note, since every interrupt channel
has its own distinct interrupt, interaction among the interrupts of differ-
ent peripherals is much simpler to manage.

Due to DMA FIFOs and DMA/memory pipelining, polling of the
DMAx_CURR_ADDR, DMAX_CURR_DESC_PTR, or DMAx_CURR_X_COUNT/
DMAX_CURR_Y_COUNT registers is not recommended for precisely synchroniz-
ing DMA with data processing. The current address, pointer, and count
registers change several cycles in advance of the completion of the corre-
sponding memory operation, as measured by the time at which the results
of the operation would first be visible to the core by memory read or write
instructions. For example, in a DMA memory write operation to external
memory, assume a DMA write by channel A is initiated that causes the
SDRAM to perform a page open operation which takes many system clock
cycles. The DMA engine may then move on to another DMA operation
by channel B which does not in itself incur latency, but will be stalled
behind the slow operation of channel A. Software monitoring of

channel B, based on examination of the DMAx_CURR_ADDR register contents,
would not safely conclude whether the memory location pointed to by
channel B’s DMAx_CURR_ADDR register has or has not been written.

If allowances are made for the lengths of the DMA/memory pipeline, poll-
ing of the current address, pointer, and count registers can permit loose
synchronization of DMA with software. The depth of the DMA FIFO is
four locations (either four 8- or 16-bit data elements, or two 32-bit data
elements) for a peripheral DMA channel, and eight locations (four 32-bit
data elements) for an MDMA FIFO. The DMA will not advance current
address/pointer/count registers if these FIFOs are filled with incomplete
work (including reads that have been started but not yet finished).

ADSP-BF51x Blackfin Processor Hardware Reference 6-51

Programming Model

Additionally, the length of the combined DMA and L1 pipelines to inter-
nal memory is approximately six 8- or 16-bit data elements. The length of
the DMA and external bus interface unit (EBIU) pipelines is approxi-
mately three data elements, when measured from the point where a DMA
register update is visible to an MMR read to the point where DMA and
core accesses to memory become strictly ordered. If the DMA FIFO
length and the DMA/memory pipeline length are added, an estimate can
be made of the maximum number of incomplete memory operations in
progress at one time. This value is a maximum because the DMA/memory
pipeline may include traffic from other DMA channels.

For example, assume a peripheral DMA channel is transferring a work
unit of 100 data elements into internal memory and its
DMAX_CURR_X_COUNT register reads a value of 60 remaining elements, so
that processing of the first 40 elements has at least been started. Since the
total pipeline length is no greater than the sum of four (for the peripheral
DMA FIFO) plus six (for the DMA/memory pipeline) or ten data ele-
ments, it is safe to conclude that the DMA transfer of the first 30 (40-10)

data elements is complete.

For precise synchronization, software should either wait for an interrupt
or consult the channel’s DMAx_IRQ_STATUS register to confirm completion
of DMA, rather than polling current address/pointer/count registers.
When the DMA system issues an interrupt or changes a DMAx_IRQ_STATUS
bit, it guarantees that the last memory operation of the work unit has been
completed and will definitely be visible to processor code. For memory
read DMA, the final memory read data will have been safely received in
the DMA’s FIFO. For memory write DMA, the DMA unit will have
received an acknowledgement from L1 memory, or the EBIU, that the
data has been written.

The following examples show methods of synchronizing software with

several different styles of DMA.

6-52 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access

Single-Buffer DMA Transfers

Synchronization is simple if a peripheral’s DMA activity consists of iso-
lated transfers of single buffers. DMA activity is initiated by software
writes to the channel’s control registers. The user may choose to use a sin-
gle descriptor in memory, in which case the software only needs to write
the DMAX_CONFIG and the DMAX_NEXT_DESC_PTR registers. Alternatively, the
user may choose to write all the MMR registers directly from software,
ending with the write to the DMAX_CONFIG register.

The simplest way to signal completion of DMA is by an interrupt. This is
selected by the DI_EN bit in the DMAX_CONFIG register, and by the necessary
setup of the system interrupt controller. If no interrupt is desired, the soft-
ware can poll for completion by reading the DMAXx_IRQ_STATUS register and
testing the DMA_RUN bit. If this bit is zero, the buffer transfer has
completed.

Continuous Transfers Using Autobuffering

If a peripheral’s DMA data consists of a steady, periodic stream of signal
data, DMA autobuffering (FLOW = 1) may be an effective option. Here,
DMA is transferred from or to a memory buffer with a circular addressing
scheme, using either one- or two-dimensional indexing with zero proces-
sor and DMA overhead for looping. Synchronization options include:

e 1-D interrupt-driven—software is interrupted at the conclusion of
each buffer. The critical design consideration is that the software
must deal with the first items in the buffer before the next DMA
transfer, which might overwrite or re-read the first buffer location
before it is processed by software. This scheme may be workable if
the system design guarantees that the data repeat period is longer
than the interrupt latency under all circumstances.

ADSP-BF51x Blackfin Processor Hardware Reference 6-53

Programming Model

2-D interrupt-driven (double buffering)—the DMA buffer is parti-
tioned into two or more sub-buffers, and interrupts are selected
(set DI_SEL = 1 in DMAX_CONFIG) to be signaled at the completion of
each DMA inner loop. In this way, a traditional double buffer or
“ping-pong” scheme can be implemented.

For example, two 512-word sub-buffers inside a 1K-word buffer
could be used to receive 16-bit peripheral data with these settings:

DMAX_START_ADDR = buffer base address

DMAX_CONFIG = 0x10D7 (FLOW = 1, DI_EN = 1, DI_SEL = 1,
DMA2D = 1, WDSIZE = b#01, WNR = 1, DMAEN = 1)

DMAX_X_COUNT = 512
DMAX_X_MODIFY = 2 for 16-bit data
DMAX_Y_COUNT = 2 for two sub-buffers

DMAX_Y_MODIFY = 2 same as DMAX_X_MODIFY for contiguous
sub-buffers

2-D polled—if interrupt overhead is unacceptable but the loose
synchronization of address/count register polling is acceptable, a
2-D multibuffer synchronization scheme may be used. For exam-
ple, assume receive data needs to be processed in packets of sixteen
32-bit elements. A four-part 2-D DMA buffer can be allocated
where each of the four sub-buffers can hold one packet with these
settings:

DMAX_START_ADDR = buffer base address

DMAX_CONFIG = Ox101B (FLOW = 1, DI_EN = 0, DMA2D = 1,
WDSIZE = b#10, WNR = 1, DMAEN = 1)

DMAX_X_COUNT = 16

DMAX_X_MODIFY = 4 for 32-bit data

6-54

ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access

DMAX_Y_COUNT = 4 for four sub-buffers

DMAX_Y_MODIFY = 4 same as DMAX_X_MODIFY for contiguous
sub-buffers

The synchronization core might read DMAx_Y_COUNT to determine
which sub-buffer is currently being transferred, and then allow one
full sub-buffer to account for pipelining. For example, if a read of
DMAX_Y_COUNT shows a value of 3, then the software should assume
that sub-buffer 3 is being transferred, but some portion of sub-buf-
fer 2 may not yet be received. The software could, however, safely
proceed with processing sub-buffers 1 or 0.

* 1-D unsynchronized FIFO—if a system’s design guarantees that
the processing of a peripheral’s data and the DMA rate of the data
will remain correlated in the steady state, but that short-term
latency variations must be tolerated, it may be appropriate to build
a simple FIFO. Here, the DMA channel may be programmed using
1-D autobuffer mode addressing without any interrupts or polling.

Descriptor Structures

DMA descriptors may be used to transfer data to or from memory data
structures that are not simple 1-D or 2-D arrays. For example, if a packet
of data is to be transmitted from several different locations in memory (a
header from one location, a payload from a list of several blocks of mem-
ory managed by a memory pool allocator, and a small trailer containing a
checksum), a separate DMA descriptor can be prepared for each memory
area, and the descriptors can be grouped in either an array or list by select-
ing the appropriate FLOW setting in DMAx_CONFIG.

The software can synchronize with the progress of the structure’s transfer
by selecting interrupt notification for one or more of the descriptors. For
example, the software might select interrupt notification for the header’s
descriptor and for the trailer’s descriptor, but not for the payload blocks’
descriptors.

ADSP-BF51x Blackfin Processor Hardware Reference 6-55

Programming Model

It is important to remember the meaning of the various fields in the
DMAX_CONFIG descriptor elements when building a list or array of DMA
descriptors. In particular:

* The lower byte of DMAx_CONFIG specifies the DMA transfer to be
performed by the current descriptor (for example 2-D inter-
rupt-enable mode)

* The upper byte of DMAx_CONFIG specifies the format of the next
descriptor in the chain. The NDSIZE and FLOW fields in a given
descriptor do not correspond to the format of the descriptor itself;
they specify the link to the next descriptor, if any.

On the other hand, when the DMA unit is being restarted, both bytes of
the DMAx_CONFIG value written to the DMA channel’s DMAx_CONFIG register
should correspond to the current descriptor. At a minimum, the FLOW,
NDSIZE, WNR, and DMAEN fields must all agree with the current descriptor.
The WDSIZE, DI_EN, DI_SEL, SYNC, and DMA2D fields will be taken from the
DMAX_CONFIG value in the descriptor read from memory. The field values
initially written to the register are ignored. See “Initializing Descriptors in
Memory” on page 6-94 in the “Programming Examples” section for infor-
mation on how descriptors can be set up.

Descriptor Queue Management

A system designer might want to write a DMA manager facility which
accepts DMA requests from other software. The DMA manager software
does not know in advance when new work requests will be received or
what these requests might contain. The software could manage these
transfers using a circular linked list of DMA descriptors, where each
descriptor’s NDPH and NDPL members point to the next descriptor, and the
last descriptor points back to the first.

The code that writes into this descriptor list could use the processor’s cir-
cular addressing modes (Ix, Lx, Mx, and Bx registers), so that it does not
need to use comparison and conditional instructions to manage the

6-56 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access

circular structure. In this case, the NDPH and NDPL members of each
descriptor could even be written once at startup and skipped over as each
descriptor’s new contents are written.

The recommended method for synchronization of a descriptor queue is
through the use of an interrupt. The descriptor queue is structured so that
at least the final valid descriptor is always programmed to generate an
interrupt.

There are two general methods for managing a descriptor queue using
interrupts:

e Interrupt on every descriptor

e Interrupt minimally - only on the last descriptor

Descriptor Queue Using Interrupts on Every Descriptor

In this system, the DMA manager software synchronizes with the DMA
unit by enabling an interrupt on every descriptor. This method should
only be used if system design can guarantee that each interrupt event will
be serviced separately (no interrupt overrun).

To maintain synchronization of the descriptor queue, the non-interrupt
software maintains a count of descriptors added to the queue, while the
interrupt handler maintains a count of completed descriptors removed
from the queue. The counts are equal only when the DMA channel is
paused after having processed all the descriptors.

When each new work request is received, the DMA manager software ini-
tializes a new descriptor, taking care to write a DMAx_CONFIG value with a
FLOW value of 0. Next, the software compares the descriptor counts to
determine if the DMA channel is running or not. If the DMA channel is
paused (counts are equal), the software increments its count and then
starts the DMA unit by writing the new descriptor’s DMAx_CONFIG value to
the DMA channel’s DMAX_CONFIG register.

ADSP-BF51x Blackfin Processor Hardware Reference 6-57

Programming Model

If the counts are unequal, the software instead modifies the next-to-last
descriptor’s DMAx_CONFIG value so that its upper half (FLOW and NDSIZE)
now describes the newly queued descriptor. This operation does not dis-
rupt the DMA channel, provided the rest of the descriptor data structure
is initialized in advance. It is necessary, however, to synchronize the soft-
ware to the DMA to correctly determine whether the new or the old
DMAX_CONFIG value was read by the DMA channel.

This synchronization operation should be performed in the interrupt
handler. First, upon interrupt, the handler should read the channel’s
DMAX_IRQ_STATUS register. If the DMA_RUN status bit is set, then the channel
has moved on to processing another descriptor, and the interrupt handler
may increment its count and exit. If the DMA_RUN status bit is not set, how-
ever, then the channel has paused, either because there are no more
descriptors to process, or because the last descriptor was queued too late
(the modification of the next-to-last descriptor’s DMAX_CONFIG element
occurred after that element was read into the DMA unit). In this case, the
interrupt handler should write the DMAX_CONFIG value appropriate for the
last descriptor to the DMA channel’s DMAXx_CONFIG register, increment the
completed descriptor count, and exit.

Again, this system can fail if the system’s interrupt latencies are large
enough to cause any of the channel’s DMA interrupts to be dropped. An
interrupt handler capable of safely synchronizing multiple descriptors’
interrupts would need to be complex, performing several MMR accesses to
ensure robust operation. In such a system environment, a minimal inter-
rupt synchronization method is preferred.

Descriptor Queue Using Minimal Interrupts

In this system, only one DMA interrupt event is possible in the queue at
any time. The DMA interrupt handler for this system can also be
extremely short. Here, the descriptor queue is organized into an “active”
and a “waiting” portion, where interrupts are enabled only on the last
descriptor in each portion.

6-58 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access

When each new DMA request is processed, the software’s non-interrupt
code fills in a new descriptor’s contents and adds it to the waiting portion
of the queue. The descriptor’s DMAx_CONFIG word should have a FLOW value
of zero. If more than one request is received before the DMA queue com-
pletion interrupt occurs, the non-interrupt code should queue later
descriptors, forming a waiting portion of the queue that is disconnected
from the active portion of the queue being processed by the DMA unit. In
other words, all but the last active descriptors contain FLOW values > 4 and
have no interrupt enable set, while the last active descriptor contains a
FLOW of 0 and an interrupt enable bit DI_EN set to 1. Also, all but the last
waiting descriptors contain FLOW values > 4 and no interrupt enables set,
while the last waiting descriptor contains a FLOW of 0 and an interrupt
enable bit set. This ensures that the DMA unit can automatically process
the whole active queue and then issue one interrupt. Also, this arrange-
ment makes it easy to start the waiting queue within the interrupt handler
with a single DMAx_CONFIG register write.

After queuing a new waiting descriptor, the non-interrupt software should
leave a message for its interrupt handler in a memory mailbox location
containing the desired DMAx_CONFIG value to use to start the first waiting
descriptor in the waiting queue (or 0 to indicate no descriptors are
waiting).

Once processing by the DMA unit has started, it is critical that the soft-
ware not directly modify the contents of the active descriptor queue unless
careful synchronization measures are taken. In the most straightforward
implementation of a descriptor queue, the DMA manager software would
never modify descriptors on the active queue; instead, the DMA manager
waits until the DMA queue completion interrupt indicates the processing
of the entire active queue is complete.

When a DMA queue completion interrupt is received, the interrupt han-
dler reads the mailbox from the non-interrupt software and writes the
value in it to the DMA channel’s DMAx_CONFIG register. This single register
write restarts the queue, effectively transforming the waiting queue to an

ADSP-BF51x Blackfin Processor Hardware Reference 6-59

Programming Model

active queue. The interrupt handler should then pass a message back to
the non-interrupt software indicating the location of the last descriptor
accepted into the active queue. If, on the other hand, the interrupt han-
dler reads its mailbox and finds a DMAx_CONFIG value of zero, indicating
there is no more work to perform, then it should pass an appropriate mes-
sage (for example zero) back to the non-interrupt software indicating that
the queue has stopped. This simple handler should be able to be coded in

a very small number of instructions.

The non-interrupt software which accepts new DMA work requests needs
to synchronize the activation of new work with the interrupt handler. If
the queue has stopped (the mailbox from the interrupt software is zero),
the non-interrupt software is responsible for starting the queue (writing
the first descriptor’s DMAx_CONFIG value to the channel’s DMAX_CONFIG reg-
ister). If the queue is not stopped, the non-interrupt software must not
write to the DMAx_CONFIG register (which would cause a DMA error).
Instead the descriptor should queue to the waiting queue, and update its
mailbox directed to the interrupt handler.

Software Triggered Descriptor Fetches

If a DMA has been stopped in FLOW = 0 mode, the DMA_RUN bit in the
DMAx_IRQ_STATUS register remains set until the content of the internal
DMA FIFOs has been completely processed. Once the DMA_RUN bit clears,
it is safe to restart the DMA by simply writing again to the DMAX_CONFIG
register. The DMA sequence is repeated with the previous settings.

Similarly, a descriptor-based DMA sequence that has been stopped tem-
porarily with a FLOW = 0 descriptor can be continued with a new write to
the configuration register. When the DMA controller detects the FLOW = 0
condition by loading the DMACFG field from memory, it has already
updated the next descriptor pointer, regardless of whether operating in
descriptor array mode or descriptor list mode.

The next descriptor pointer remains valid if the DMA halts and is
restarted. As soon as the DMA_RUN bit clears, software can restart the DMA

6-60 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access

and force the DMA controller to fetch the next descriptor. To accomplish
this, the software writes a value with the DMAEN bit set and with proper val-
ues in the FLOW and NDSIZE fields into the configuration register. The next
descriptor is fetched if FLOW equals 0x4, 0x6, or 0x7. In this mode of oper-
ation, the NDSIZE field should at least span up to the DMACFG field to
overwrite the configuration register immediately.

One possible procedure is:

1. Write to DMAX_NEXT_DESC_PTR

2. Write to DMAX_CONFIG with
FLOW = Ox8
NDSIZE > OxA
DI_EN=10
DMAEN = 1

3. Automatically fetched DMACFG has
FLOW = 0x0
NDSIZE = 0x0
SYNC = 1 (for transmitting DMAs only)
DI_EN=1
DMAEN = 1

4. In the interrupt routine, repeat step 2. The DMAXx_NEXT_DESC_PTR is
updated by the descriptor fetch.

To avoid polling of the DMA_RUN bit, set the SYNC bit in case of
memory read DMAs (DMA transmit or MDMA source).

ADSP-BF51x Blackfin Processor Hardware Reference 6-61

DMA Registers

If all DMACFG fields in a descriptor chain have the FLOW and NDSIZE fields set
to zero, the individual DMA sequences do not start until triggered by soft-
ware. This is useful when the DMAs need to be synchronized with other
events in the system, and it is typically performed by interrupt service rou-
tines. A single MMR write is required to trigger the next DMA sequence.

Especially when applied to MDMA channels, such scenarios play an
important role. Usually, the timing of MDMAs cannot be controlled (See
“Handshaked Memory DMA Operation” on page 6-36). By halting
descriptor chains or rings this way, the whole DMA transaction can be
broken into pieces that are individually triggered by software.

Source and destination channels of a MDMA may differ in descrip-
tor structure. However, the total work count must match when the
DMA stops. Whenever a MDMA is stopped, destination and
source channels should both provide the same FLOW = 0 mode after
exactly the same number of words. Accordingly, both channels
need to be started afterward.

Software-triggered descriptor fetches are illustrated in Listing 6-7 on
page 6-98. MDMA channels can be paused by software at any time by
writing a 0 to the DRQ bit field in the HMDMAX_CONTROL register. This simply
disables the self-generated DMA requests, whether or not the HMDMA is
enabled.

DMA Registers

DMA registers fall into three categories:
* DMA channel registers
* Handshaked MDMA registers
* Global DMA traffic control registers

6-62 ADSP-BF51x Blackfin Processor Hardware Reference

DMA Channel Registers

Direct Memory Access

A processor features up to twelve peripheral DMA channels and two chan-
nel pairs for memory DMA. All channels have an identical set of registers
as summarized in Table 6-4.

Table 6-4 lists the generic names of the DMA registers. For each register,
the table also shows the MMR offset, a brief description of the register,
the register category, and where applicable, the corresponding name for
the data element in a DMA descriptor.

Table 6-4. Generic Names of the DMA Memory-Mapped

Registers
MMR |Generic MMR MMR Description Register |Name of
Offset |Name Category |Corresponding
Descriptor Element in
Memory
0x00 | NEXT_DESC_PTR Link pointer to next descrip- | Parame- | NDPH (upper 16 bits),
tor ter NDPL (lower 16 bits)
0x04 | START_ADDR Start address of current buffer | Parame- | SAH (upper 16 bits),
ter SAL (lower 16 bits)
0x08 | CONFIG DMA Configuration register, | Parame- | DMACFG
including enable bit ter
0x0C | Reserved Reserved
0x10 | X_COUNT Inner loop count Parame- | XCNT
ter
0x14 | X_MODIFY Inner loop address increment, | Parame- | XMOD
in bytes ter
0x18 | Y_COUNT Outer loop count (2-D only) | Parame- | YCNT
ter
0x1C | Y_MODIFY Outer loop address incre- Parame- | YMOD
ment, in bytes ter
0x20 | CURR_DESC_PTR Current descriptor pointer Current | N/A
0x24 | CURR_ADDR Current DMA address Current | N/A

ADSP-BF51x Blackfin Processor Hardware Reference

6-63

DMA Registers

Table 6-4. Generic Names of the DMA Memory-Mapped
Registers (Continued)

MMR |Generic MMR MMR Description Register |Name of

Offset |Name Category |Corresponding
Descriptor Element in
Memory

0x28 | IRQ_STATUS Interrupt status register con- | Control/ | N/A

tains completion and DMA | Status
error interrupt status and
channel state

(run/fetch/paused)

0x2C | PERIPHERAL_MAP Peripheral to DMA channel | Control/ | N/A
mapping contains a 4-bit Status
value specifying the periph-

eral associated with this DMA

channel (read-only for
MDMA channels)

0x30 | CURR_X_COUNT Current count (1-D) or Current | N/A
intra-row X count (2-D);
counts down from

X_COUNT

0x34 | Reserved Reserved

0x38 | CURR_Y_COUNT Current row count (2-D Current | N/A
only); counts down from
Y_COUNT

0x3C | Reserved Reserved

Channel-specific register names are composed of a prefix and the generic
MMR name shown in Table 6-4. For peripheral DMA channels the prefix
“DMAx_" is used, where “x” stands for a channel number between 0 and
11. For memory DMA channels, the prefix is “MDMA_yy_”, where “yy”
stands for either “D0”, “S0”, “D1”, or “S1” to indicate destination and
source channel registers of MDMAO and MDMAL. For example the
peripheral DMA channel 6 configuration register is called DMA6_CONFIG.
The register for the MDMAL1 source channel is called MDMA_S1_CONFIG.

6-64 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access

The generic MMR names shown in Table 6-4 are not actually
mapped to resources in the processor.

For convenience, discussions in this chapter use generic
(non-peripheral specific) DMA and memory DMA register names.

DMA channel registers fall into three categories.

* DParameter registers such as DMAx_CONFIG and DMAx_X_COUNT that can
be loaded directly from descriptor elements as shown in Table 6-4

e Current registers such as DMAx_CURR_ADDR and DMAx_CURR_X_COUNT

» Control/status registers such as DMAx_IRQ_STATUS and
DMAXx_PERIPHERAL_MAP

All DMA registers can be accessed as 16-bit entities. However, the follow-
ing registers may also be accessed as 32-bit registers.

® DMAX_NEXT_DESC_PTR
®* DMAxX_START_ADDR

¢ DMAx_CURR_DESC_PTR
* DMAx_CURR_ADDR

@ When these four registers are accessed as 16-bit entities, only the

lower 16 bits can be accessed.

Because confusion might arise between descriptor element names and
generic DMA register names, this chapter uses different naming conven-
tions for physical registers and their corresponding elements in descriptors
that reside in memory. Table 6-4 shows the relation.

ADSP-BF51x Blackfin Processor Hardware Reference 6-65

DMA Registers

DMA Peripheral Map Registers (DMAXx_PERIPHERAL_MAP/
MDMA_yy_PERIPHERAL_MAP)

Each DMA channel’s DMAx_PERIPHERAL_MAP register contains bits that:
* Map the channel to a specific peripheral

* Identify whether the channel is a peripheral DMA channel or a
memory DMA channel

DMA Peripheral Map Registers
(DMAx_PERIPHERAL_MAP/MDMA_yy_PERIPHERAL_MAP)
R/W prior to enabling channel; RO after enabling channel

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ESENENES ES ENES B3 ENENESES ENENESES

PMAP[3:0] \;I_‘ \— CTYPE (DMA Channel Type) - RO

(Peripheral is mapped to this channel) 0 - Peripheral DMA
1 - Memory DMA

Default peripheral mappings are provided in Table 6-7 on page 6-103.

Figure 6-5. DMA Peripheral Map Registers

Follow these steps to swap the DMA channel priorities of two channels.
Assume that channels 6 and 7 are involved.

1. Make sure DMA is disabled on channels 6 and 7.

2. Write DMA6_PERIPHERAL_MAP with 0x7000 and
DMA7_PERIPHERAL_MAP with 0x6000.

3. Enable DMA on channels 6 and/or 7.

6-66 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access

DMA Configuration Registers
(DMAXx_CONFIG/MDMA_yy_CONFIG)

The DMAx_CONFIG register, shown in Figure 6-6, is used to set up DMA
parameters and operating modes. Writing the DMAx_CONFIG register while
DMA is already running will cause a DMA error unless writing with the
DMAEN bit set to 0.

DMA Configuration Registers (DMAx_CONFIG/MDMA_yy_CONFIG)
R/W prior to enabling channel; RO after enabling channel

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
|o|o|o|o|o|o|o|o|o|o |0|o o|o|0|o| Reset = 0x0000

I | I |
FLOW[2:0] (Next DMAEN (DMA
Operation) Channel Enable)
0x0 - Stop 0 - Disable DMA channel
0x1 - Autobuffer mode 1 - Enable DMA channel
0x4 - Descriptor array L WNR (DMA Direction)
0x6 - Descriptor list (small model) 0 - DMA is a memory read
0x7 - Descriptor list (large model) (source) operation
NDSIZE[3:0] (Flex Descriptor Size) 1 - DMA is a memory write
Size of next descriptor (destination) operation
0000 - Required if in Stop or Autobuffer mode
0001 - 1001 - Descriptor size — WDSIZE[1:0] (Transfer
1010 - 1111 - Reserved Word Size) f
DI_EN (Data Interrupt Enable)— | 00 - 8-bit transfers
0 - Do not allow completion of 01 - 16-bit transfers
work unit to generate an interrupt 10 - 32-bit transfers
1 - Allow completion of work unit 11 - Reserved
to generate a data interrupt
o DMA2D (DMA Mode)
DI_SEL (Data Interrupt Timing Select) 0 - Linear (One-dimensional)
Applies only when DMA2D = 1 1 - Two-dimensional (2-D)
0 - Interrupt after completing SYNC (Work Unit

whole buffer (outer loop)
1 - Interrupt after completing
each row (inner loop)

Transitions)
0 - Continuous transition
1 - Synchronized transition

Figure 6-6. DMA Configuration Registers

ADSP-BF51x Blackfin Processor Hardware Reference 6-67

DMA Registers

The fields of the DMAX_CONFIG register are used to set up DMA parameters
and operating modes.

FLOW[2:0] (next operation). This field specifies the type of DMA
transfer to follow the present one. The flow options are:

0x0 - stop. When the current work unit completes, the DMA chan-
nel stops automatically, after signaling an interrupt (if selected).
The DMA_RUN status bit in the DMAXx_IRQ_STATUS register changes
from 1 to 0, while the DMAEN bit in the DMAX_CONFIG register is
unchanged. In this state, the channel is paused. Peripheral
interrupts are still filtered out by the DMA unit. The channel may
be restarted simply by another write to the DMAX_CONFIG register
specifying the next work unit, in which the DMAEN bit is set to 1.

0x1 - autobuffer mode. In this mode, no descriptors in memory are
used. Instead, DMA is performed in a continuous circular buffer
fashion based on user-programmed DMA MMR settings. Upon
completion of the work unit, the parameter registers are reloaded
into the current registers, and DMA resumes immediately with
zero overhead. Autobuffer mode is stopped by a user write of 0 to
the DMAEN bit in the DMAX_CONFIG register.

0x4 - descriptor array mode. This mode fetches a descriptor from
memory that does not include the NDPH or NDPL elements. Because
the descriptor does not contain a next descriptor pointer entry, the
DMA engine defaults to using the DMAx_CURR_DESC_PTR register to
step through descriptors, thus allowing a group of descriptors to
follow one another in memory like an array.

0x6 - descriptor list (small model) mode. This mode fetches a
descriptor from memory that includes NDPL, but not NDPH. There-
fore, the high 16 bits of the next descriptor pointer field are taken
from the upper 16 bits of the DMAX_NEXT_DESC_PTR register, thus
confining all descriptors to a specific 64K page in memory.

6-68

ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access

0x7 - descriptor list (large model) mode. This mode fetches a
descriptor from memory that includes NDPH and NDPL, thus allowing
maximum flexibility in locating descriptors in memory.

* NDSIZE[3:0] (flex descriptor size). This field specifies the number
of descriptor elements in memory to load. This field must be 0 if in
stop or autobuffer mode. If NDSIZE and FLOW specify a descriptor
that extends beyond YMOD, a DMA error results.

e DI_EN (data interrupt enable). This bit specifies whether to allow
completion of a work unit to generate a data interrupt.

e DI_SEL (data interrupt timing select). This bit specifies the timing
of a data interrupt—after completing the whole buffer or after
completing each row of the inner loop. This bit is used only in 2-D
DMA operation.

* SYNC (work unit transitions). This bit specifies whether the DMA
channel performs a continuous transition (SYNC = 0) or a synchro-
nized transition (SYNC = 1) between work units. For more
information, see “Work Unit Transitions” on page 6-24.

In DMA transmit (memory read) and MDMA source channels, the
SYNC bit controls the interrupt timing at the end of the work unit
and the handling of the DMA FIFO between the current and next

work unit.

@ Work unit transitions for MDMA streams are controlled by the
SYNC bit of the MDMA source channel’s DMAx_CONFIG register. The
SYNC bit of the MDMA destination channel is reserved and must be
0.

ADSP-BF51x Blackfin Processor Hardware Reference 6-69

DMA Registers

DMA2D (DMA mode). This bit specifies whether DMA mode
involves only DMAx_X_COUNT and DMAx_X_MODIFY (one-dimensional
DMA) or also involves DMAx_Y_COUNT and DMAx_Y_MODIFY
(two-dimensional DMA).

WDSIZE[1:0] (transfer word size). The DMA engine supports trans-
fers of 8-, 16-, or 32-bit items. Each request/grant results in a
single memory access (although two cycles are required to transfer
32-bit data through a 16-bit memory port or through the 16-bit
DMA access bus). The increment sizes (strides) of the DMA
address pointer registers must be a multiple of the transfer unit
size—one for 8-bit, two for 16-bit, four for 32-bit.

Only SPORT DMA and Memory DMA can operate with a transfer
size of 32 bits. All other peripherals have a maximum DMA trans-
fer size of 16 bits.

WNR (DMA direction). This bit specifies DMA direction—memory

read (0) or memory write (1).

DMAEN (DMA channel enable). This bit specifies whether to enable
a given DMA channel.

When a peripheral DMA channel is enabled, interrupts from the
peripheral denote DMA requests. When a channel is disabled, the
DMA unit ignores the peripheral interrupt and passes it directly to
the interrupt controller. To avoid unexpected results, take care to
enable the DMA channel before enabling the peripheral, and to
disable the peripheral before disabling the DMA channel.

6-70

ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access

DMA Interrupt Status Registers
(DMAX_IRQ_STATUS/MDMA _yy_IRQ_STATUS)

The DMAX_IRQ_STATUS register, shown in Figure 6-7, contains bits that
record whether the DMA channel:

Is enabled and operating, enabled but stopped, or disabled.
Is fetching data or a DMA descriptor.

Has detected that a global DMA interrupt or a channel interrupt is
being asserted.

Has logged occurrence of a DMA error.

Note the DMA_DONE interrupt is asserted when the last memory access (read
or write) has completed.

For a memory transfer to a peripheral, there may be up to four data
words in the channel’s DMA FIFO when the interrupt occurs. At
this point, it is normal to immediately start the next work unit. If,
however, the application needs to know when the final data item is
actually transferred to the peripheral, the application can test or
poll the DMA_RUN bit. As long as there is undelivered transmit data
in the FIFO, the DMA_RUN bit is 1.

For a memory write DMA channel, the state of the DMA_RUN bit has

no meaning after the last DMA_DONE event has been signaled. It does
not indicate the status of the DMA FIFO.

For MDMA transfers where an interrupt is not desired to notify
when the DMA operation has ended, software should poll the
DMA_DONE bit, rather than the DMA_RUN bit to determine when the
transaction has completed.

ADSP-BF51x Blackfin Processor Hardware Reference 6-71

DMA Registers

DMA Interrupt Status Registers (DMAx_IRQ_STATUS/MDMA_yy_IRQ_STATUS)

1514 1312 1110 9 8 7 6 5 4 3 2 1 0
|o|o|o|o|o|o|o|o|o|o|o|o|o|o|0|0|Reset=0x0000

DMA_RUN (DMA Channel Running) - RO —I |— DMA_DONE (DMA Comple-
This bit is set to 1 automatically when tion Interrupt Status) - W1C
the DMAx_CONFIG register is written 0 - No interrupt is being
0 - This DMA channel is disabled, or it asserted for this channel
is enabled but paused (FLOW 1 - DMA work unit has
mode 0) completed, and this DMA
1 - This DMA channel is enabled and channel’s interrupt is being
operating, either transferring data asserted
or fetching a DMA descriptor —— DMA_ERR (DMA Error Inter-
DFETCH (DMA Descriptor Fetch) - RO rupt Status) - W1C
This bit is set to 1 automatically when 0 - No DMA error has
occurred

the DMAx_CONFIG register is written 1 - A DMA error has occurred,

with FLOW modes 4-7
h L . and the global DMA Error
0 - This DMA channel is disabled, or it interrupt is being asserted.

is enabled but stopped (FLOW After this error occurs,

mode 0)
. . the contents of the DMA
1 - This DMA channel is enabled and Current registers are

presently fetching a DMA descriptor unspecified. Control/

Status and Parameter
registers are unchanged.

Figure 6-7. DMA Interrupt Status Registers

The processor supports a flexible interrupt control structure with three
interrupt sources:

* Data driven interrupts (see Table 6-5)
* DPeripheral error interrupts
e DMA error interrupts (for example, bad descriptor or bus error)

Separate interrupt request (IRQ) levels are allocated for data, peripheral
error, and DMA error interrupts.

6-72 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access

Table 6-5. Data Driven Interrupts

Interrupt Name Description

No Interrupt Interrupts can be disabled for a given work unit.

Peripheral Inter- These are peripheral (non-DMA) interrupts.
rupt

Row Completion | DMA Interrupts can occur on the completion of a row (CURR_X_COUNT

expiration).

Buffer Completion | DMA Interrupts can occur on the completion of an entire buffer (when
CURR_X_COUNT and CURR_Y_COUNT expire).

The DMA error conditions for all DMA channels are OR’ed together into
one system-level DMA error interrupt. The individual TRQ_STATUS words

of each channel can be read to identify the channel that caused the DMA
error interrupt.

Note the DMA_DONE and DMA_ERR interrupt indicators are
write-one-to-clear (W1C).

When switching a peripheral from DMA to non-DMA mode, the
peripheral’s interrupts should be disabled during the mode switch
(via the appropriate peripheral register or SIC_IMASK register) so
that no unintended interrupt is generated on the shared
DMA/interrupt request line.

ADSP-BF51x Blackfin Processor Hardware Reference 6-73

DMA Registers

DMA Start Address Registers
(DMAXx_START_ADDR/MDMA_yy_START_ADDR)

The DMAX_START_ADDR register, shown in Figure 6-8, contains the start
address of the data buffer currently targeted for DMA.

DMA Start Address Registers (DMAx_START_ADDR/ MDMA_yy START_ADDR)
R/W prior to enabling channel; RO after enabling channel

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
|>< |>< |x |>< |>< |>< |>< |x |x |>< |>< |>< |x |x |>< |><| Reset = Undefined
L]

| DMA Start
Address[31:16]

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
KN ES N ES CNES ENES ENEN ENES ENESENER
L |

| DMA Start
Address[15:0]

Figure 6-8. DMA Start Address Registers

DMA Current Address Registers
(DMAx_CURR_ADDR/MDMA _yy_CURR_ADDR)

The 32-bit DMAXx_CURR_ADDR register shown in Figure 6-9, contains the
present DMA transfer address for a given DMA session. On the first mem-
ory transfer of a DMA work unit, the DMAXx_CURR_ADDR register is loaded
from the DMAX_START_ADDR register, and it is incremented as each transfer

occurs.

6-74 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access

DMA Current Address Registers (DMAx_CURR_ADDR/MDMA_yy CURR_ADDR)
R/W prior to enabling channel; RO after enabling channel

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
|>< |>< |x |>< |>< |>< |>< |x|x|>< |>< |><|>< |x |>< |><| Reset = Undefined
L]

| Current Address[31:16]
Upper 16 bits of present
DMA transfer address for
a given DMA session

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
D DD P e e e x e x|
L |

| Current Address[15:0]

Lower 16 bits of present
DMA transfer address for
a given DMA session

Figure 6-9. DMA Current Address Registers

DMA Inner Loop Count Registers
(DMAXx_X_COUNT/MDMA _yy_X_COUNT)

For 2-D DMA, the DMAx_X_COUNT register, shown in Figure 6-10, contains
the inner loop count. For 1-D DMA, it specifies the number of elements
to transfer. For details, see “Two-Dimensional DMA Operation” on

page 6-11. A value of 0 in DMAX_X_COUNT corresponds to 65,536 elements.

DMA Inner Loop Count Registers (DMAx_X_COUNT/MDMA_yy_X_COUNT)
R/W prior to enabling channel; RO after enabling channel

1514 1312 1110 9 8 7 6 5 4 3 2 1 0
|x |x |x |x |x |x |x |x|x |x |x |x|x |x |x |x| Reset = Undefined
1 I
| X_COUNT[15:0] (Inner
Loop Count)

The number of elements to
transfer (1-D); the number of
rows in the inner loop (2-D)

Figure 6-10. DMA Inner Loop Count Registers

ADSP-BF51x Blackfin Processor Hardware Reference 6-75

DMA Registers

DMA Current Inner Loop Count Registers
(DMAX_CURR_X_COUNT
/MDMA_yy_CURR_X_COUNT)

The DMAX_CURR_X_COUNT register, shown in Figure 6-11, holds the number
of transfers remaining in the current DMA row (inner loop). On the first
memory transfer of each DMA work unit, it is loaded with the value in the
DMAX_X_COUNT register and then decremented. For 2-D DMA, on the last
memory transfer in each row except the last row, it is reloaded with the
value in the DMAX_X_COUNT register; this occurs at the same time that the
value in the DMAx_CURR_Y_COUNT register is decremented. Otherwise it is
decremented each time an element is transferred. Expiration of the count
in this register signifies that DMA is complete. In 2-D DMA, the
DMAX_CURR_X_COUNT register value is 0 only when the entire transfer is
complete. Between rows it is equal to the value of the DMAX_X_COUNT
register.

DMA Current Inner Loop Count Registers (DMAx_CURR_X_COUNT/
MDMA_yy_CURR_X_COUNT)

R/W prior to enabling channel; RO after enabling channel

1514 1312 1110 9 8 7 6 5 4 3 2 1 0
|x|x|x|x|x|x|x|x|x|xlexlxlxlxlxl Reset = Undefined
| I

| CURR_X_COUNTI[15:0]
(Current Inner Loop
Count)
Loaded by X_COUNT
at the beginning of each
DMA session (1-D DMA),
or at the beginning of
each row (2-D DMA)

Figure 6-11. DMA Current Inner Loop Count Registers

6-76 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access

DMA Inner Loop Address Increment Registers
(DMAXx_X_MODIFY/MDMA_yy_X_MODIFY)

The DMAX_X_MODIFY register, shown in Figure 6-12, contains a signed,
two’s-complement byte-address increment. In 1-D DMA, this increment
is the stride that is applied after transferring each element.

@ DMAX_X_MODIFY is specified in bytes, regardless of the DMA transfer

size.

In 2-D DMA, this increment is applied after transferring each element in
the inner loop, up to but not including the last element in each inner
loop. After the last element in each inner loop, the DMAX_Y_MODIFY register
is applied instead, except on the very last transfer of each work unit. The
DMAX_X_MODIFY register is always applied to the last transfer of a work unit.

The DMAx_X_MODIFY field may be set to 0. In this case, DMA is performed
repeatedly to or from the same address. This is useful, for example, in
transferring data between a data register and an external memory-mapped

peripheral.

DMA Inner Loop Address Increment Registers (DMAx_X_MODIFY/MDMA_yy X_MODIFY)
R/W prior to enabling channel; RO after enabling channel

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|x |x |x |x |x |x |x |x |x |x |x |x |x |x |x |x | Reset = Undefined
L |
l X_MODIFY[15:0] (Inner
Loop Address Increment)

Stride (in bytes) to take after
each decrement of
CURR_X_COUNT

Figure 6-12. DMA Inner Loop Address Increment Registers

ADSP-BF51x Blackfin Processor Hardware Reference 6-77

DMA Registers

DMA Outer Loop Count Registers
(DMAX_Y_COUNT/MDMA_yy_Y_COUNT)

For 2-D DMA, the DMAx_Y_COUNT register, shown in Figure 6-13, contains
the outer loop count. It is not used in 1-D DMA mode. This register con-
tains the number of rows in the outer loop of a 2-D DMA sequence. For
details, see “Two-Dimensional DMA Operation” on page 6-11.

DMA Outer Loop Count Registers (DMAx_Y_COUNT/MDMA_yy_Y_COUNT)
R/W prior to enabling channel; RO after enabling channel

1514 1312 11 10 9 8 7 6 5 4 3 2 1 0
|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x| Reset = Undefined

| Y_COUNTI[15:0]
(Outer Loop Count)
The number of rows in
the outer loop of a 2-D
DMA sequence

Figure 6-13. DMA Outer Loop Count Registers

DMA Current Outer Loop Count Registers
(DMAXx_CURR_Y_COUNT/
MDMA _yy_CURR_Y_COUNT)

The DMAX_CURR_Y_COUNT register, used only in 2-D mode, holds the num-
ber of full or partial rows (outer loops) remaining in the current work
unit. See Figure 6-14. On the first memory transfer of each DMA work
unit, it is loaded with the value of the DMAX_Y_COUNT register. The register
is decremented each time the DMAX_CURR_X_COUNT register expires during
2-D DMA operation (1 to DMAx_X_COUNT or 1 to O transition), signifying
completion of an entire row transfer. After a 2-D DMA session is com-
plete, DMAX_CURR_Y_COUNT = 1 and DMAx_CURR_X_COUNT = 0.

6-78 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access

DMA Current Outer Loop Count Registers
(DMAx_CURR_Y_COUNT/MDMA _yy_CURR_Y_COUNT)
R/W prior to enabling channel; RO after enabling channel

1514 1312 1110 9 8 7 6 5 4 3 2 1 0
|x|x|x|x|x|x|x|x|x|xlexlxlxlxlxl Reset = Undefined
| I

CURR_Y_COUNT[15:0]
(Current Outer Loop
Count)

Loaded by Y_COUNT
at the beginning of each
2-D DMA session; not
used for 1-D DMA

Figure 6-14. DMA Current Outer Loop Count Registers

DMA Outer Loop Address Increment Registers
(DMAXx_Y_MODIFY/MDMA_yy_Y_MODIFY)

The DMAX_Y_MODIFY register contains a signed, two’s-complement value.
See Figure 6-15. This byte-address increment is applied after each decre-
ment of the DMAX_CURR_Y_COUNT register except for the last item in the 2-D
array where the DMAX_CURR_Y_COUNT also expires. The value is the offset
between the last word of one row and the first word of the next row. For
details, see “Two-Dimensional DMA Operation” on page 6-11.

@ DMAX_Y_MODIFY is specified in bytes, regardless of the DMA transfer

size.

ADSP-BF51x Blackfin Processor Hardware Reference 6-79

DMA Registers

DMA Outer Loop Address Increment Registers (DMAx_Y_MODIFY/ MDMA_yy_Y_MODIFY)
R/W prior to enabling channel; RO after enabling channel

1514 1312 1110 9 8 7 6 5 4 3 2 1 0
|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x| Reset = Undefined
| I

Y_MODIFY[15:0]
(Outer Loop Address
Increment)

Stride to take after each
decrement of
CURR_Y_COUNT

Figure 6-15. DMA Outer Loop Address Increment Registers

DMA Next Descriptor Pointer Registers
(DMAXx_NEXT_DESC_PTR/
MDMA _yy_NEXT_DESC_PTR)

The 32-bit DMAX_NEXT_DESC_PTR register, shown in Figure 6-16, specifies
where to look for the start of the next descriptor block when the DMA
activity specified by the current descriptor block finishes. This register is
used in small and large descriptor list modes. At the start of a descriptor
fetch in either of these modes, this register is copied into the
DMAX_CURR_DESC_PTR register. Then, during the descriptor fetch, the
DMAX_CURR_DESC_PTR register increments after each element of the descrip-
tor is read in.

In small and large descriptor list modes, the DMAXx_NEXT_DESC_PTR
register, and not the DMAx_CURR_DESC_PTR register, must be pro-
grammed directly via MMR access before starting DMA operation.

In descriptor array mode, the next descriptor pointer register is disre-
garded, and fetching is controlled only by the DMAXx_CURR_DESC_PTR
register.

6-80 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access

DMA Next Descriptor Pointer Registers
(DMAx_NEXT_DESC_PTR/MDMA_yy_NEXT_DESC_PTR)

R/W prior to enabling channel; RO after enabling channel
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
|>< |>< |>< |>< |x |>< |>< |>< |>< |x |>< |>< |>< |>< |x |>< | Reset = Undefined
L]

Next Descriptor
Pointer[31:16]

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
KN ENENES KN ENENES ESENENES ENENESER

Next Descriptor
Pointer[15:0]

Figure 6-16. DMA Next Descriptor Pointer Registers

DMA Current Descriptor Pointer Registers
(DMAXx_CURR_DESC_PTR/
MDMA _yy_CURR_DESC_PTR)

The 32-bit DMAx_CURR_DESC_PTR register, shown in Figure 6-17, contains
the memory address for the next descriptor element to be loaded. For FLOW
mode settings that involve descriptors (FLOW = 4, 6, or 7), this register is
used to read descriptor elements into appropriate MMRs before a DMA
work block begins. For descriptor list modes (FLOW = 6 or 7), this register
is initialized from the DMAX_NEXT_DESC_PTR register before loading each
descriptor. Then, the address in the DMAx_CURR_DESC_PTR register incre-
ments as each descriptor element is read in.

When the entire descriptor has been read, the DMAx_CURR_DESC_PTR regis-
ter contains this value:

Descriptor Start Address + (2 x Descriptor Size) (# of elements)

For descriptor array mode (FLOW = 4), this register, and not the
DMAX_NEXT_DESC_PTR register, must be programmed by MMR
access before starting DMA operation.

ADSP-BF51x Blackfin Processor Hardware Reference 6-81

DMA Registers

DMA Next Descriptor Pointer Registers
(DMAx_NEXT_DESC_PTR/MDMA_yy NEXT_DESC_PTR)

R/W prior to enabling channel; RO after enabling channel
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
E3 ESES KN E3 KN ENES ESENES EY ENERENER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

K3 ES KN KN E3 3 ENES ES N ES K3 ENER ERE

Reset = Undefined

Next Descriptor
Pointer[31:16]

Next Descriptor
Pointer[15:0]

Figure 6-17. DMA Current Descriptor Pointer Registers

HMDMA Registers

Some processors have two HMDMA blocks, while others have none. See
the “Unique Information for the ADSP-BF51x Processor” on page 6-103
to determine whether this feature is applicable to your product.

HMDMADO is associated with MDMAOQO, and HMDMALI is associated with

MDMAL.

Handshake MDMA Control Registers (HMDMAXx_CONTROL)

The HMDMAX_CONTROL register, shown in Figure 6-18, is used to set up

HMDMA parameters and operating modes.

The DRQ[1:0] field is used to control the priority of the MDMA channel
when the HMDMA is disabled, that is, when handshake control is not

being used (see Table 6-6).

6-82 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access

Handshake MDMA Control Registers (HMDMAx_CONTROL)

1514 1312 11 10 9 8 7 6 5 4 3 2 1 0
|0|o|o|o|o|o 1|o|o|0 |0|o|o|o|o|o| Reset = 0x0200
|

BDI (Block Done
Interrupt Generated)
-WicC

0 - Block done interrupt
not generated

1 - Block done interrupt
generated

Ol (Overflow Interrupt

Generated) - W1C

0 - Overflow interrupt
not generated

1 - Overflow interrupt
generated

PS (Pin Status) - RO

0 - Request pinis 0

1 - Request pin is 1

RBC (Force Reload of

BCOUNT) - WO
0 - Reload not active

1 - Force reload of BCOUNT with BCINIT.

Write 1 to activate
DRQ[1:0] (Default MDMA Request

When Handshake DMA is Disabled

EN=0)
00 - No request

HMDMAEN (Handshake MDMA

Enable)

0 - Disable handshake
Operation

1 - Enable handshake
Operation

REP (HMDMA Request Polarity)

0 - Increment ECOUNT on
falling edges of DMARX
input

1 - Increment ECOUNT on
rising edges of DMARx
input

UTE (Urgency Threshold
Enable)

0 - Disable urgency threshold

1 - Enable urgency threshold
OIE (Overflow Interrupt
Enable)

0 - Disable overflow interrupt

1 - Enable overflow interrupt
BDIE (Block Done Interrupt
Enable)

0 - Disable block done interrupt
1 - Enable block done interrupt
MBDI (Mask Block Done
Interrupt)

BDIE must = 1

0 - Interrupt generated when
BCOUNT decrements to 0

1 - Interrupt generated when
BCOUNT decrements to 0
and ECOUNT =0

01 - Request single transfer from MDMA channel
10 - Request multiple transfers from MDMA channel (default)
11 - Request urgent multiple transfers from MDMA channel

Figure 6-18. Handshake MDMA Control Registers

ADSP-BF51x Blackfin Processor Hardware Reference 6-83

DMA Registers

Table 6-6. DRQ[1:0] Values

DRQ[1:0] |Priority Description

00 Disabled | The MDMA request is disabled.

01 Enabled/S | Normal MDMA channel priority. The channel in this mode is limited to

single memory transfers separated by one idle system clock. Request sin-
gle transfer from MDMA channel.

10 Enabled/ | Normal MDMA channel functionality and priority. Request multiple
M transfers from MDMA channel (default).
11 Urgent The MDMA channel priority is elevated to urgent. In this state, it has

higher priority for memory access than non-urgent channels. If two chan-
nels are both urgent, the lower-numbered channel has priority.

The RBC bit forces the BCOUNT register to be reloaded with the BCINIT value
while the module is already active. Do not set this bit in the same write
that sets the HMDMAEN bit to active.

Handshake MDMA Initial Block Count Registers
(HMDMAX_BCINIT)

The HMDMAX_BCINIT register, shown in Figure 6-19, holds the number of
transfers to do per edge of the DMARx control signal.

Handshake MDMA Initial Block Count Registers (HMDMAX_BCINIT)

1514 1312 1110 9 8 7 6 5 4 3 2 1 0
0|0|o|o|o|o|o|o|o|o |o|0|o|o|o|0| Reset = 0x0000

BCINIT[15:0] (Initial Block
Count)

Figure 6-19. Handshake MDMA Initial Block Count Registers

6-84 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access

Handshake MDMA Current Block Count Registers
(HMDMAX_BCOUNT)

The HMDMAX_BCOUNT register, shown in Figure 6-20, holds the number of
transfers remaining for the current edge. MDMA requests are generated if
this count is greater than 0.

Examples:
e 0000 = O transfers remaining
e FFFF = 65535 transfers remaining

The BCOUNT field is loaded with BCINIT when ECOUNT is greater than 0 and
BCOUNT is expired (0). Also, if the RBC bit in the HMDMAX_CONTROL register is
written to 1, BCOUNT is loaded with BCINIT. The BCOUNT field is decre-
mented with each MDMA grant. It is cleared when HMDMA is disabled.

A block done interrupt is generated when BCOUNT decrements to 0. If the
MBDI bit in the HMDMAX_CONTROL register is set, the interrupt is suppressed
until ECOUNT is 0. If BCINIT is 0, no block done interrupt is generated,
since no DMA requests were generated or grants received.

Handshake MDMA Current Block Count Register (HMDMAXx_BCOUNT)

1514 1312 1110 9 8 7 6 5 4 3 2 1 0
o|o|o|o|o|o|o|o|o|o |o|o|o|o|o|0| Reset = 0x0000
|

| BCOUNT[15:0] (Transfers
Remaining for Current Edge)

Figure 6-20. Handshake MDMA Current Block Count Registers

ADSP-BF51x Blackfin Processor Hardware Reference 6-85

DMA Registers

Handshake MDMA Current Edge Count Registers
(HMDMAX_ECOUNT)

The HMDMAX_ECOUNT register, shown in Figure 6-21, holds a signed number
of edges remaining to be serviced. This number is in a signed
two’s-complement representation. When an edge is detected on the
respective DMARx input, requests occur if this count is greater than or equal
to 0 and BCOUNT is greater than 0.

When the handshake mode is enabled, ECOUNT is loaded and the resulting
number of requests is:

Number of edges + N,

where N is the number loaded from ECINIT. The number N can be posi-
tive or negative. Examples:

* O0x7FFF = 32,767 edges remaining
e 0x0000 = 0 edges remaining
* 0x8000 = —32,768: ignore the next 32,768 edges

Each time that BCOUNT expires, ECOUNT is decremented and BCOUNT is
reloaded from BCINIT. When a handshake request edge is detected, ECOUNT
is incremented. The ECOUNT field is cleared when HMDMA is disabled.

Handshake MDMA Current Edge Count Register (HMDMAXx_ECOUNT)

1514 1312 1110 9 8 7 6 5 4 3 2 1 0
|o|o|o|o|0|o|o|o|o|o |0|o|o|o|o|o| Reset = 0x0000

| ECOUNT[15:0] (Edges
Remaining to be Serviced)

Figure 6-21. Handshake MDMA Current Edge Count Registers

6-86 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access

Handshake MDMA Initial Edge Count Registers
(HMDMAX_ECINIT)

The HMDMAX_ECINIT register, shown in Figure 6-22, holds a signed number
that is loaded into HMDMAX_ECOUNT when handshake DMA is enabled. This
number is in a signed two’s complement representation.

Handshake MDMA Initial Edge Count Registers (HMDMAXx_ECINIT)

1514 1312 1110 9 8 7 6 5 4
|0 |o |o |o |o |0 |o|o|o |o |0|0 |o |o |0| Reset = 0x0000

| ECINIT[15:0] (Initial Edge
Count)

Figure 6-22. Handshake MDMA Initial Edge Count Registers

Handshake MDMA Edge Count Urgent Registers
(HMDMAX_ECURGENT)

The HMDMAX_ECURGENT register, shown in Figure 6-23, holds the urgent
threshold. If the ECOUNT field in the HMDMAX_ECOUNT register is greater than
this threshold, the MDMA request is urgent and might get higher
priority.

Handshake MDMA Edge Count Urgent Registers (HMDMAx_ECURGENT)

1514 1312 11 10 9 8 7 6 5 4
1|1 |1 |1 |1 |1 |1 |1 |1 |1 |1 |1 |1 |1 |1 |1| Reset = OXFFFF
|

UTHE[15:0] (Urgent
Threshold)

Figure 6-23. Handshake MDMA Edge Count Urgent Registers

ADSP-BF51x Blackfin Processor Hardware Reference 6-87

DMA Registers

Handshake MDMA Edge Count Overflow Interrupt
Registers (HMDMAXx_ECOVERFLOW)

The HMDMAX_ECOVERFLOW register, shown in Figure 6-24, holds the inter-
rupt threshold. If the ECOUNT field in the HMDMAX_ECOUNT register is greater
than this threshold, an overflow interrupt is generated.

Handshake MDMA Edge Count Overflow Interrupt Registers (HMDMAx_ECOVERFLOW)

1514 1312 1110 9 8 7 6 5 4 3 2 1 0
1|1|1|1|1|1|1|1|1|1 |1|1|1|1|1|1| Reset = OXFFFF

ITHR[15:0] (Interrupt
Threshold)

Figure 6-24. Handshake MDMA Edge Count Overflow Interrupt
Registers

DMA Traffic Control Registers
(DMA_TC_PER and DMA_TC_CNT)

The DMA_TC_PER register (see Figure 6-25) and the DMA_TC_CNT register (see
Figure 6-26) work with other DMA registers to define traffic control.

6-88 ADSP-BF51x Blackfin Processor Hardware Reference

DMA_TC_PER Register

DMA Traffic Control Counter Period Register (DMA_TC_PER)

15 14 13 12 11

Direct Memory Access

I Reset = 0x0000

folofofofe]
I |

10 9 8 7 6 5 4 3 2 1 0
0 |0|0|0|o |o |o|0|o|o|0
| | |

MDMA_ROUND_ROBIN_PERIODI[4:0]
Maximum length of MDMA round

robin bursts. If not zero, any MDMA
stream which receives a grant is
allowed up to that number of DMA
transfers, to the exclusion of the other
MDMA streams.

DAB_TRAFFIC_PERIOD[2:0]

000 - No DAB bus transfer grouping performed
Other - Preferred length of unidirectional bursts
on the DAB bus between the DMA and the
peripherals

DCB_TRAFFIC_PERIODI[3:0]
0000 - No DCB bus transfer
grouping performed

Other - Preferred length of unidi-
rectional bursts on the DCB bus
between the DMA and internal L1
memory

DEB_TRAFFIC_PERIOD[3:0]
0000 - No DEB bus transfer
grouping performed

Other - Preferred length of unidi-
rectional bursts on the DEB bus
between the DMA and external
memory

Figure 6-25. DMA Traffic Control Counter Period Register

DMA_TC_CNT Register

DMA Traffic Control Counter Register (DMA_TC_CNT)

RO

15 14 13 12 11

10

9

8

7 6

5

4

2 1 0

fofofofofofofe]o

ofofofofofofolo]

Reset = 0x0000

MDMA_ROUND_ROBIN_COUNT[4:0]

Current transfer count remaining in
the MDMA round-robin period

DAB_TRAFFIC_COUNT[2:0]

Current cycle count remaining in the
DAB traffic period

DCB_TRAFFIC_COUNTI[3:0]
Current cycle count remaining
in the DCB traffic period
DEB_TRAFFIC_COUNT[3:0]
Current cycle count remaining
in the DEB traffic period

Figure 6-26. DMA Traffic Control Counter Register

The MDMA_ROUND_ROBIN_COUNT field shows the current transfer count
remaining in the MDMA round-robin period. It initializes to

ADSP-BF51x Blackfin Processor Hardware Reference

6-89

DMA Registers

MDMA_ROUND_ROBIN_PERIOD whenever DMA_TC_PER is written, whenever a
different MDMA stream is granted, or whenever every MDMA stream is
idle. It then counts down to 0 with each MDMA transfer. When this
count decrements from 1 to 0, the next available MDMA stream is
selected.

The DAB_TRAFFIC_COUNT field shows the current cycle count remaining in
the DAB traffic period. It initializes to DAB_TRAFFIC_PERIOD whenever
DMA_TC_PER is written, or whenever the DAB bus changes direction or
becomes idle. It then counts down from DAB_TRAFFIC_PERIOD to 0 on each
system clock (except for DMA stalls). While this count is nonzero, same
direction DAB accesses are treated preferentially. When this count decre-
ments from 1 to 0, the opposite direction DAB access is treated
preferentially, which may result in a direction change. When this count is
0 and a DAB bus access occurs, the count is reloaded from
DAB_TRAFFIC_PERIOD to begin a new burst.

The DEB_TRAFFIC_COUNT field shows the current cycle count remaining in
the DEB traffic period. It initializes to DEB_TRAFFIC_PERIOD whenever
DMA_TC_PER is written or whenever the DEB bus changes direction or
becomes idle. It then counts down from DEB_TRAFFIC_PERIOD to 0 on each
system clock (except for DMA stalls). While this count is nonzero, same
direction DEB accesses are treated preferentially. When this count decre-
ments from 1 to 0, the opposite direction DEB access is treated
preferentially, which may result in a direction change. When this count is
0 and a DEB bus access occurs, the count is reloaded from
DEB_TRAFFIC_PERIOD to begin a new burst.

The DCB_TRAFFIC_COUNT field shows the current cycle count remaining in
the DCB traffic period. It initializes to DCB_TRAFFIC_PERIOD whenever
DMA_TC_PER is written or whenever the DCB bus changes direction or
becomes idle. It then counts down from DCB_TRAFFIC_PERIOD to 0 on each
system clock (except for DMA stalls). While this count is nonzero, same
direction DCB accesses are treated preferentially. When this count decre-
ments from 1 to 0, the opposite direction DCB access is treated

6-90 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access

preferentially, which may result in a direction change. When this count is
0 and a DCB bus access occurs, the count is reloaded from
DCB_TRAFFIC_PERIOD to begin a new burst.

Programming Examples

The following examples illustrate memory DMA and handshaked memory
DMA basics. Examples for peripheral DMAs can be found in the respec-
tive peripheral chapters.

Register-Based 2-D Memory DMA

Listing 6-1 shows a register-based, two-dimensional MDMA. While the
source channel processes linearly, the destination channel re-sorts ele-
ments by transposing the two-dimensional data array. See Figure 6-27.

1|7 131925 12)3]a|s5]e
2|18(14)120]26 7|8 9]10|11|12
3|9 f15]21)27 13| 14| 15[16[17|18
4 1016 [22] 28

19| 20| 21| 22| 23|24
5 (11 [17 (23] 29

25| 26| 27| 28| 20(30
6 |12 18 | 24 |30

Figure 6-27. DMA Example, 2-D Array

The two arrays reside in two different L1 data memory blocks. However,
the arrays could reside in any internal or external memory, including L1
instruction memory and SDRAM. For the case where the destination
array resided in SDRAM, it is a good idea to let the source channel re-sort
elements and to let the destination buffer store linearly.

ADSP-BF51x Blackfin Processor Hardware Reference 6-91

Programming Examples

Listing 6-1. Register-Based 2-D Memory DMA

f#include <defBF527.h>/*For ADSP-BF527 product, as an example.*/
ffdefine X 5
ffdefine Y 6

.section L1 _data_a;

.byte2 aSourcel[X*Y] =
1, 7, 13, 19, 25,
2, 8, 14, 20, 26,
3, 9, 15, 21, 27,
4, 10, 16, 22, 28,
5, 11, 17, 23, 29,
6, 12, 18, 24, 30;

.section Ll_data_b;
.byte?2 aDestination[X*Y];

.section L1_code;
.global _main;
_main:
p0.1 = To(MDMA_SO_CONFIG);
pO.h = hi(MDMA_SO_CONFIG);
call memdma_setup;
call memdma_wait;
_main.forever:
jump _main.forever;
_main.end:

The setup routine shown in Listing 6-2 initializes either MDMAO or
MDMALI, depending on whether the MMR address of MDMA_SO_CONFIG or
MDMA_S1_CONFIG is passed in the PO register. Note that the source channel
is enabled before the destination channel. Also, it is common to synchro-
nize interrupts with the destination channel because only those interrupts
indicate completion of both DMA read and write operations.

6-92 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access

Listing 6-2. Two-Dimensional Memory DMA Setup Example

memdma_setup:
[--spl = r7;
/* setup 1D source DMA for 16-bit transfers */
r7.1 = lo(aSource);
r7.h = hi(aSource);
[p0O + MDMA_SO_START_ADDR - MDMA_SO_CONFIG] = r7;

r7.1 = 2;
w[pO + MDMA_SO_X_MODIFY - MDMA_SO_CONFIG] = r7;
r7.1 =X *Y;

wlp0O + MDMA_SO_X_COUNT - MDMA_SO_CONFIG] = r7;
r7.1 = WDSIZE_16 | DMAEN;
wlp0] = r7;

/* setup 2D destination DMA for 16-bit transfers */
r7.1 = lo(aDestination);
r7.h = hi(aDestination);
[p0 + MDMA_DO_START_ADDR - MDMA_SO_CONFIG] = r7;

r7.1 = 2*Y;

wlpO + MDMA_DO_X_MODIFY - MDMA_SO_CONFIG] = r7;
r7.1 =Y;

wlp0 + MDMA_DO_Y_COUNT - MDMA_SO_CONFIG] = r7;

r7.1 = X;

wlpO + MDMA_DO_X_COUNT - MDMA_SO_CONFIG] = r7;

r7.1 = -2 * (Y * (X-1) - 1);

w[p0 + MDMA_DO_Y_MODIFY - MDMA_SO_CONFIG] = r7;
r7.1 = DMA2D | DI_EN | WDSIZE_16 | WNR | DMAEN;
w[p0 + MDMA_DO_CONFIG - MDMA_SO_CONFIG] = r7;
r7 = [sp++];
rts;

memdma_setup.end:

For simplicity the example shown in Listing 6-3 polls the DMA status
rather than using interrupts, which is the normal case in a real application.

ADSP-BF51x Blackfin Processor Hardware Reference 6-93

Programming Examples

Listing 6-3. Polling DMA Status

memdma_wait:
[--spl = r7;
memdma_wait.test:
r7 = wlp0 + MDMA_DO_IRQ_STATUS - MDMA_SO_CONFIG] (z);
CC = bittst (r7, bitpos(DMA_DONE));
if ICC jump memdma_wait.test;
r7 = DMA_DONE (z);
wlp0 + MDMA_DO_IRQ_STATUS - MDMA_SO_CONFIG] = r7;
r7 = [sp++];
rts;
memdma_wait.end:

Initializing Descriptors in Memory

Descriptor-based DMAs expect the descriptor data to be available in
memory by the time the DMA is enabled. Often, the descriptors are pro-
grammed by software at run-time. Many times, however, the
descriptors—or at least large portions of them—can be static and there-
fore initialized at boot time. How to set up descriptors in global memory
depends heavily on the programming language and the tool set used. The
following examples show how this is best performed in the CCES or Visu-
alDSP++ tools” assembly language.

Listing 6-4 uses multiple variables of either 16-bit or 32-bit size to
describe DMA descriptors. This example has two descriptors in small list
flow mode that point to each other. At the end of the second work unit,
an interrupt is generated without discontinuing the DMA processing. The
trailing . end label is required to let the linker know that a descriptor forms
a logical unit. It prevents the linker from removing variables when
optimizing.

6-94 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access

Listing 6-4. Two Descriptors in Small List Flow Mode

.section sdram;
.byte2 arrBlockl1[0x4001];
.byte2 arrBlock2[0x8001];

.section L1 _data_a;
.byte2 descBlockl = To(descBlock?2);
.var descBlockl.addr = arrBlockl;
.byte? descBlockl.cfg FLOW_SMALL|NDSIZE_5|WDSIZE_16|DMAEN;
.byte2 descBlockl.len = length(arrBlockl);
descBlockl.end:

.byte2 descBlock2 = lTo(descBlockl);

.var descBlock2.addr = arrBlock?;

.byte?2 descBlock2.cfg =

FLOW_SMALL|NDSIZE_5|DI_EN|WDSIZE_16|DMAEN;

.byte2 descBlock2.len = length(arrBlock?2);
descBlock?.end:

Another method featured by the CCES or Visual DSP++ tools takes advan-
tage of C-style structures in global header files. The header file
descriptors.h could look like Listing 6-5.

ADSP-BF51x Blackfin Processor Hardware Reference 6-95

Programming Examples

Listing 6-5. Header File to Define Descriptor Structures

J#ifndef __INCLUDE_DESCRIPTORS__
fidefine __INCLUDE_DESCRIPTORS__
fhifdef _LANGUAGE_C
typedef struct

void *pStart;

short dConfig;

short dXCount;

short dXModify;

short dYCount;

short dYModify;
} dma_desc_arr;

typedef struct
void *pNext;
void *pStart;
short dConfig;
short dXCount;
short dXModify;
short dYCount;
short dYModify;

} dma_desc_list;

ffendif // _LANGUAGE_C
ffendif // __INCLUDE_DESCRIPTORS__

Note that near pointers are not natively supported by the C language and,
thus, pointers are always 32 bits wide. Therefore, the scheme above cannot
be used directly for small list mode without giving up pointer syntax. The
variable definition file is required to import the C-style header file and can
finally take advantage of the structures. See Listing 6-6.

6-96 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access

Listing 6-6. Using Descriptor Structures

f##include "descriptors.h"”
.import "descriptors.h";

.section L1_data_a;
.align 4;

.var arrBlock3[N];
.var arrBlock4[N];

.struct dma_desc_list descBlock3 = {
descBlock4, arrBlock3,
FLOW_LARGE | NDSIZE_7 | WDSIZE_32 | DMAEN,
length(arrBlock3), 4,
0, 0 /* unused values */

.struct dma_desc_list descBlock4 = {
descBlock3, arrBlock4,
FLOW_LARGE | NDSIZE_7 | DI_EN | WDSIZE_32 | DMAEN,
length(arrBlock4), 4,
0, 0 /* unused values */
b

Software-Triggered Descriptor Fetch Example

Listing 6-7 demonstrates a large list of descriptors that provide FLOW = 0
(stop mode) configuration. Consequently, the DMA stops by itself as soon
as the work unit has finished. Software triggers the next work unit by sim-
ply writing the proper value into the DMA configuration registers. Since
these values instruct the DMA controller to fetch descriptors in large list
mode, the DMA immediately fetches the descriptor, thus overwriting the
configuration value again with the new settings when it is started.

ADSP-BF51x Blackfin Processor Hardware Reference 6-97

Programming Examples

Note the requirement that source and destination channels stop after the
same number of transfers. Between stops, the two channels can have com-
pletely individual structures.

Listing 6-7. Software-Triggered Descriptor Fetch

.import "descriptors.h";

f#define N 4
.section Ll _data_a;

.byte2 arrSourcel[N]

{ 0x1001, 0x1002, 0x1003, 0x1004 };

.byte2 arrSource2[N] = { 0x2001, 0x2002, 0x2003, 0x2004 };

.byte2 arrSource3[N]

{ 0x3001, 0x3002, 0x3003, 0x3004 };

.byte2 arrDestl1[N];
.byte2 arrDest2[2*N];

.struct dma_desc_Tlist descSourcel = {

b

descSource?2, arrSourcel,
WDSIZE_16 | DMAEN,
length(arrSourcel), 2,

0, 0 /* unused values */

.struct dma_desc_Tlist descSource?2 = {

b

descSource3, arrSource?,

FLOW_LARGE | NDSIZE_7 | WDSIZE_16 | DMAEN,
length(arrSource2), 2,

0, 0 /* unused values */

.struct dma_desc_Tlist descSource3 = {

descSourcel, arrSource3,
WDSIZE_16 | DMAEN,
length(arrSource3d), 2,

0, 0 /* unused values */

6-98

ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access

.struct dma_desc_list descDestl = {
descDest?2, arrDestl,
DI_EN | WDSIZE_16 | WNR | DMAEN,
length(arrDestl), 2,
0, 0O /* unused values */
b
.struct dma_desc_list descDest2 = {
descDestl, arrDest?,
DI_EN | WDSIZE_16 | WNR | DMAEN,
length(arrDest2), 2,
0, 0O /* unused values */

.section L1_code;
_main:
/* write descriptor address to next descriptor pointer */

pO.h = hi(MDMA_SO_CONFIG);

p0.1 = To(MDMA_SO_CONFIG);

rO0.h = hi(descDestl);

r0.1T = lo(descDestl);

[pO + MDMA_DO_NEXT_DESC_PTR - MDMA_SO_CONFIG] = r0;
r0.h = hi(descSourcel);

r0.1 = lo(descSourcel);

[pO + MDMA_SO_NEXT_DESC_PTR - MDMA_SO_CONFIG] = r0;

/* start first work unit */

r6.1 = FLOW_LARGE |NDSIZE_7 |WDSIZE_16|DMAEN;
wlp0 + MDMA_SO_CONFIG - MDMA_SO_CONFIG] = r6;
r7.1 = FLOW_LARGE |NDSIZE_7 |WDSIZE_16 |WNR|DMAEN;

w[pO + MDMA_DO_CONFIG - MDMA_SO_CONFIG] = r7;

ADSP-BF51x Blackfin Processor Hardware Reference 6-99

Programming Examples

/* wait until destination channel has finished and W1C Tatch */
_main.wait:

ro w[pO + MDMA_DO_IRQ_STATUS - MDMA_SO_CONFIG] (z);

cC bittst (r0, bitpos(DMA_DONE));

if ICC jump _main.wait;

r0.1 = DMA_DONE;

w[pO + MDMA_DO_IRQ_STATUS - MDMA_SO_CONFIG] = roO;

/* wait for any software or hardware event here */

/* start next work unit */
wlp0 + MDMA_SO_CONFIG - MDMA_SO_CONFIG]
wlpO0 + MDMA_DO_CONFIG - MDMA_SO_CONFIG]
Jjump _main.wait;

_main.end:

re;
r7;

Handshaked Memory DMA Example

The functional block for the handshaked MDMA operation can be con-
sidered completely separately from the MDMA channels themselves.
Therefore the following HMDMA setup routine can be combined with
any of the MDMA examples discussed above. Be sure that the HMDMA
module is enabled before the MDMA channels.

Listing 6-8 enables the HMDMAT1 block, which is controlled by the bMAR1
pin and is associated with the MDMAL1 channel pair.

6-100 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access

Listing 6-8. HMDMALT1 Block Enable

/* optionally, enable all four bank select strobes */
pl.1T = To(EBIU_AMGCTL);

pl.h = hi(EBIU_AMGCTL);
r0.1 = 0x0009;
wlpl]l = r0;

/* function enable for DMAR1 */

pl.1 = To(PORTG_FER);
ro.1 = PG12;

wlpl]l = r0;

pl.1T = To(PORTG_MUX);
ro.1 = 0x0000;

wlpl]l = r0;

/* every single transfer requires one DMAR1 event */
pl.1 = To(HMDMA1_BCINIT);
ro.1 =1;
wlpl]l = r0;

/* start with balanced request counter */
pl.1 = To(HMDMA1_ECINIT);
ro.1 = 0;
wlpl]l = r0;

/* enable for rising edges */

pl.T = To(HMDMAI_CONTROL);
r2.1 = REP | HMDMAEN;
wlpl]l = r2;

ADSP-BF51x Blackfin Processor Hardware Reference 6-101

Programming Examples

If the HMDMA is intended to copy from internal memory to external
devices, the above setup is sufficient. If, however, the data flow is from
outside the processor to internal memory, then this small issue must be
considered—the HMDMA only controls the destination channel of the
memory DMA. It does not gate requests to the source channel at all.
Thus, as soon as the source channel is enabled, it starts filling the DMA
FIFO immediately. In 16-bit DMA mode, this results in eight read strobes
on the EBIU even before the first DMARI event has been detected. In
other words, the transferred data and the DMARI strobes are eight posi-
tions off. The example in Listing 6-9 delays processing until eight
DMARTI requests have been received. By doing so, the transmitter is
required to add eight trailing dummy writes after all data words have been
sent. This is because the transmit channel still has to drain the DMA
FIFO.

Listing 6-9. HMDMA With Delayed Processing

/* wait for eight requests */
pl.1 = To(HMDMAI_ECOUNT);
ro =7 (z);
initial_requests:
rl = wlpll (z);
CC =rl1 < r0;
if CC jump initial_requests;

/* disable and reenable to clear edge count */
pl.1 = To(HMDMA1_CONTROL);

ro.1 = 0;
wlpl]l = r0;
wlpl]l = r2;

If the polling operation shown in Listing 6-9 is too expensive, an interrupt
version of it can be implemented by using the HMDMA overflow feature.
Temporarily set the HMDMAx_OVERFLOW register to eight.

6-102 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access

Unique Information for the ADSP-BF51x
Processor

Figure 6-28 provides a block diagram of the ADSP-BF51x DMA

controller.

DMA Control Commands

The ADSP-BF516 and ADSP-BF518 processors both offer an Ethernet
MAC module that supports DMA control commands. Refer to
Chapter 22, “Ethernet MAC” for a description of how these commands
are used.

Static Channel Prioritization

The default DMA channel priority and mapping shown in Table 6-7 can
be changed by altering the 4-bit PMAP field in the DMAx_PERIPHERAL_MAP
registers for the peripheral DMA channels.

Note that the ADSP-BF512 and ADSP-BF514 processors do not
feature the Ethernet MAC module. Therefore, the DMAI and
DMA2 channels cannot be used with the default channel mapping
on these products. Also, the ADSP-BF512 does not have an RSI
module, but DMA3 can still be used for SPORTO0 RX transfers in

this case.

ADSP-BF51x Blackfin Processor Hardware Reference 6-103

Unique Information for the ADSP-BF51x Processor

CCLK | SCLK DMARO DMART N
: |
DMA TRAFFIC CONTROL < ~ >
4
| > IRQ 2,3,4,5
I - [> IRQ 1
! D::> | MDMA 0 SOURCE CONTROL lg
FIFO v |
I « HMDMA 0 E:l MDMA 0 DESTINATION CONTROL lg > IRQ 42
N |
|
| < I —
LI - | MDMA 1 SOURCE CONTROL lg
FIFO AVA)
I >
* HMDMA 1 E_I MDMA 1 DESTINATION CONTROL lg > IRQ43
T
AAL
L4
” D<:::>| FIFO |<:>' PMAP I:' DMA 11 CONTROL lg > IRQ 25
1 1
L4
D<:::>| FIFO |<:>' PMAP I:' DMA 10 CONTROL lg > IRQ 24
1 1
L4
D<:::>| FIFO |<:>' PMAP I:' DMA 9 CONTROL lg > IRQ23
I I
L4
D<2:I>| FIF0 [T Pmap] DMA 8 CONTROL = > IRQ 22
1 1
L4
D<2:I>| FIFO |<:>' Puar [DMA 7 CONTROL lg > IRQ 21
1 1
L4
D<1:I>| FIFO ®' PMAP I:' DMA 6 CONTROL lg > IRQ 19
I I
—4 -
D<:::>| FIFO |<:>' PMAP I:' DMA 5 CONTROL lg > IRQ 18
1 1
L4
D<:::>| FIFO |<:>' PMAP I:' DMA 4 CONTROL lg > IRQ17
1 1
L4
D<:::>| FIFO |<:>' PMAP I:' DMA 3 CONTROL lg > IRQ 16
1 1
L4
D<:::>| FIFO |<:>' PMAP I:' DMA 2 CONTROL lg > IRQ 30
I I
L4
D<:::>| FIFO |<:>' PMAP I:' DMA 1 CONTROL lg > IRQ 28
1 1
D<:::>| FIFO ®' PMAP I:' DMA 0 CONTROL lg_’ IRQ 15
N i
Tl1e ! 1716 016 T12 [3x12 [16
v | v J v
DCB DEB DAB DGT DRQ PAB

Figure 6-28. ADSP-BF51x DMA Controller Block Diagram

6-104 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access

Table 6-7. Priority and Default Mapping of Peripheral to DMA

Priority |DMA Channel |PMAP Default Value |Peripheral Mapped by Default
Highest | DMA 0 0x0 PPI receive or transmit
DMA 1 0x1 Ethernet MAC receive
DMA 2 0x2 Ethernet MAC transmit
DMA 3 0x3 SPORTO receive
DMA 4 0x4 SPORTO transmit or RSI
DMA 5 0x5 SPORTT receive or SPI1 transmit/receive
DMA 6 0x6 SPORT1 transmit
DMA 7 0x7 SPIO transmit/receive
DMA 8 0x8 UARTO receive
DMA 9 0x9 UARTO transmit
DMA 10 0xA UART1 receive
DMA 11 0xB UART1 transmit
MDMA DO N/A N/A
MDMA S0 N/A N/A
MDMA D1 N/A N/A
Lowest | MDMA S1 N/A N/A

ADSP-BF51x Blackfin Processor Hardware Reference 6-105

Unique Information for the ADSP-BF51x Processor

6-106 ADSP-BF51x Blackfin Processor Hardware Reference

External Bus Interface Unit

7 EXTERNAL BUS INTERFACE
UNIT

The external bus interface unit (EBIU) provides glueless interfaces to
external memories. The processor supports Synchronous DRAM
(SDRAM) including mobile SDRAM. The EBIU also supports asynchro-
nous interfaces such as SRAM, ROM, FIFOs, flash memory, and
ASIC/FPGA designs.

EBIU Overview

The EBIU services requests for external memory from the core or from a
DMA channel. The priority of the requests is determined by the external
bus controller. The address of the request determines whether the request
is serviced by the EBIU SDRAM controller or the EBIU asynchronous

memory controller.

The DMA controller provides high-bandwidth data movement capability.
The Memory DMA (MDMA) channels can perform block transfers of
code or data between the internal memory and the external memory
spaces. The MDMA channels also feature a Handshake Operation mode
(HMDMA) via dual external DMA request pins. When used in conjunc-
tion with the EBIU, this functionality can be used to interface high-speed

ADSP-BF51x Blackfin Processor Hardware Reference 7-1

EBIU Overview

external devices, such as FIFOs and USB 2.0 controllers, in an automatic
manner. For more information on HMDMA and the external DMA
request pins, refer to Chapter 6, “Direct Memory Access”.

The EBIU is clocked by the system clock (SCLK). All synchronous memo-
ries interfaced to the processor operate at the SCLK frequency. The ratio
between core clock frequency (CCLK) and SCLK frequency is programmable
using a Phase Locked Loop (PLL) system Memory-Mapped Register
(MMR). For more information, see “Core Clock/System Clock Ratio
Control” on page 8-5.

The external memory space is shown in Figure 7-1. One memory region is
dedicated to SDRAM support. SDRAM interface timing and the size of
the SDRAM region are programmable. The SDRAM memory space can
range in size from 16M byte to 128M byte.

The start address of the SDRAM memory space is 0x0000 0000. The area
from the end of the SDRAM memory space up to address 0x2000 0000 is
reserved.

The next four regions are dedicated to supporting asynchronous memo-
ries. Each asynchronous memory region can be independently
programmed to support different memory device characteristics. Each
region has its own memory select output pin from the EBIU.

The next region is reserved memory space. References to this region do
not generate external bus transactions. Writes have no effect on external
memory values, and reads return undefined values. The EBIU generates
an error response on the internal bus, which will generate a hardware
exception for a core access or will optionally generate an interrupt from a

DMA channel.

7-2

ADSP-BF51x Blackfin Processor Hardware Reference

External Bus Interface Unit

EXTERNAL MEMORY MAP

OXEEFF FFFF >

RESERVED

A

0x2040 0000
ASYNC MEMORY BANK 3 (1 MByte)

\d

0x2030 0000
ASYNC MEMORY BANK 2 (1 MByte)

0x2020 0000 >

ASYNC MEMORY BANK 1 (1 MByte)
0x2010 0000 >

ASYNC MEMORY BANK 0 (1 MByte)
0x2000 0000 >

RESERVED

SDRAM MEMORY
(16 MByte—128 MByte)

0x0000 0000 —>

NOTE: RESERVED OFF-CHIP MEMORY AREAS ARE LABELED IN THE DIAGRAM
ABOVE. ALL OTHER OFF-CHIP SYSTEM RESOURCES ARE ADDRESSABLE BY
BOTH THE CORE AND THE SYSTEM.

Figure 7-1. External Memory Map

ADSP-BF51x Blackfin Processor Hardware Reference 7-3

EBIU Overview

Block Diagram

Figure 7-2 is a conceptual block diagram of the EBIU and its interfaces.
Signal names shown with an overbar are active low signals.

Since only one external memory device can be accessed at a time, control,
address, and data pins for each memory type are multiplexed together at
the pins of the device. The Asynchronous Memory Controller (AMC) and
the SDRAM Controller (SDC) effectively arbitrate for the shared pin

resources.
EBIU <-—> DATA [15:0]
—— ADDR [19:1]
« | ASYNCHRONOUS = :—zi [[ylg]]/SDQM [1:0]
EAB 4 MEMORY [< :
o <—— ARDY
— CONTROLLER ARy
I — (AMC) —'%
DEB g —
17 85 b W |—>AWE
0@ [T —P—> S 8—>5ms
a< ! W < cLKOUT
a ——» SCKE
s SDRAM —— SA10
I CONTROLLER |« —> SRAS
& (spc) —» SCAS
& N > SwE
PAB f

Figure 7-2. External Bus Interface Unit (EBIU)

Internal Memory Interfaces

The EBIU functions as a slave on three buses internal to the processor:

» External Access Bus (EAB), mastered by the core memory manage-
ment unit on behalf of external bus requests from the core

* DMA External Bus (DEB), mastered by the DMA controller on
behalf of external bus requests from any DMA channel

7-4 ADSP-BF51x Blackfin Processor Hardware Reference

External Bus Interface Unit

* DPeripheral Access Bus (PAB), mastered by the core on behalf of sys-
tem MMR requests from the core

These are synchronous interfaces, clocked by SCLK, as is the EBIU. The
EAB provides access to both asynchronous external memory and synchro-
nous DRAM external memory. The external access is controlled by either
the AMC or the SDC, depending on the internal address used to access
the EBIU. Since the AMC and SDC share the same interface to the exter-
nal pins, access is sequential and must be arbitrated based on requests

from the EAB.

The third bus (PAB) is used only to access the memory-mapped control
and status registers of the EBIU. The PAB connects separately to the
AMC and SDC. It does not need to arbitrate with, nor take access cycles
from, the EAB bus.

The External Bus Controller (EBC) logic must arbitrate access requests for
external memory coming from the EAB and DEB buses. The EBC logic
routes read and write requests to the appropriate memory controller based
on the bus selects. The AMC and SDC compete for access to the shared
resources. This competition is resolved in a pipelined fashion, in the order
dictated by the EBC arbiter. Transactions from the core have priority over
DMA accesses in most circumstances. However, if the DMA controller
detects an excessive backup of transactions, it can request its priority to be
temporarily raised above the core.

Registers

There are six control registers and one status register in the EBIU. They
are:

* Asynchronous memory global control register (EBIU_AMGCTL)
* Asynchronous memory bank control 0 register (EBIU_AMBCTLO)

* Asynchronous memory bank control 1 register (EBIU_AMBCTL1)

ADSP-BF51x Blackfin Processor Hardware Reference 7-5

EBIU Overview

e SDRAM memory global control register (EBIU_SDGCTL)
e SDRAM memory bank control register (EBIU_SDBCTL)
* SDRAM refresh rate control register (EBIU_SDRRC)
e SDRAM control status register (EBIU_SDSTAT)
Each of these registers is described in detail in the AMC and SDC sections

later in this chapter.

Shared and Multiplexed Pins

Both the AMC and the SDC share the external interface address and data

pins, as well as some of the control signals. These pins are shared:
e ADDR[19:1], address bus
* DATAL15:0], data bus
e ABE[1:01/5SDAaML1:0], AMC byte enables/SDC data masks
* CLKOUT, system clock for SDC and AMC

No other signals are multiplexed between the two controllers.

The following AMC signals are multiplexed. Refer to Chapter 9, “Gen-
eral-Purpose Ports” for the locations of these signals and information on
configuring them.

e AMS[3:2] — Asynchronous memory bank selects

* AOE — Asynchronous memory output enable

* ARDY — Asynchronous memory ready response

7-6 ADSP-BF51x Blackfin Processor Hardware Reference

External Bus Interface Unit

System Clock

The CLKOUT pin is shared by both the SDC and AMC. Two different regis-

ters are used to control this:
* EBIU_SDGCTL register, SCTLE bit for SDC clock
* EBIU_AMGCTL register, AMCKEN bit for AMC clock
If enabling or disabling the system clock, software control for both regis-

ters is required.

Error Detection

The EBIU responds to any bus operation which addresses the range of
0x0000 0000 — OxEEFF FFFF, even if that bus operation addresses
reserved or disabled memory or functions. It responds by completing the
bus operation (asserting the appropriate number of acknowledges as speci-
fied by the bus master) and by asserting the bus error signal for these error
conditions:

* Any access to a disabled external memory bank
* Any access to reserved SDRAM memory space
* Any access to unpopulated SDRAM space

If the core requested the faulting bus operation, the bus error response
from the EBIU is gated into the hardware error interrupt (IVHW) internal
to the core (this interrupt can be masked off in the core). If a DMA master
requested the faulting bus operation, then the bus error is captured in that
controller and can optionally generate an interrupt to the core.

AMC Overview and Features

The following sections describe the features of the AMC.

ADSP-BF51x Blackfin Processor Hardware Reference 7-7

AMC Overview and Features

Features

The EBIU AMC features include:

16-bit I/0O width

1.8, 2.5 or 3.3 V I/O supply

Supports up to 4M bytes of SRAM in four external banks
AMC supports 8-bit data masking writes

AMC has control of the EBIU while auto-refresh is performed to
SDRAM

AMC supports asynchronous access extension (ARDY pin)
Supports instruction fetch

Allows booting from bank 0 (AMS0)

Asynchronous Memory Interface

The asynchronous memory interface allows a glueless interface to a variety
of memory and peripheral types. These include SRAM, ROM, EPROM,
flash memory, and FPGA/ASIC designs. Four asynchronous memory
regions are supported. Each has a unique memory pin select associated
with it, shown in Table 7-1.

Table 7-1. Asynchronous Memory Bank Address Range

Memory Bank Select|Address Start |Address End

AMST3] 0x2030 0000 | 0x203F FFFF
AMS[2] 0x2020 0000 | 0x202F FFFF
AMS[1] 0x2010 0000 | 0x201F FFFF
AMSTOT 0x2000 0000 | 0x200F FFFF

7-8

ADSP-BF51x Blackfin Processor Hardware Reference

External Bus Interface Unit

Asynchronous Memory Address Decode

The address range allocated to each asynchronous memory bank is fixed at
IM bytes; however, not all of an enabled memory bank need be

populated.

Accesses to unpopulated memory or partially populated AMC
banks do not result in a bus error and will alias to valid AMC

addresses.

The asynchronous memory signals are defined in Table 7-2. The timing of
these pins is programmable to allow a flexible interface to devices of differ-
ent speeds. For example interfaces, see Chapter 27, “System Design”.

AMC Pin Description

The following table describes the signals associated with each interface.

Table 7-2. Asynchronous Memory Interface Signals

Pad Pin Type ! |Description

DATAL15:0] 1/0 External data bus

CLKOUT (@) Switches at system clock frequency. Connect to the periph-
eral if required.

ADDR[19:1] O External address bus

AMS[3:0] O Asynchronous memory bank selects

AWE (@) Asynchronous memory write enable

ARE (@) Asynchronous memory read enable

AOE (@) Asynchronous memory output enable
In most cases, the AOE pin should be connected to the 0F
pin of an external memory-mapped asynchronous device.
Refer to the product data sheet for specific timing informa-
tion between the AOE and ARE signals to determine which
interface signal should be used in your system.

ADSP-BF51x Blackfin Processor Hardware Reference 7-9

AMC Description of Operation

Table 7-2. Asynchronous Memory Interface Signals (Continued)

Pad Pin Type ! |Description
ARDY I Asynchronous memory ready response
ABE[1:01/SDQM[1:01| O Byte enables

1 Pin Types: I = Input, O = Output

AMC Description of Operation

The following sections describe the operation of the AMC.

Avoiding Bus Contention

Because the three-stated data bus is shared by multiple devices in a system,
be careful to avoid contention. Contention causes excessive power dissipa-
tion and can lead to device failure. Contention occurs during the time one
device is getting off the bus and another is getting on. If the first device is
slow to three-state and the second device is quick to drive, the devices
contend.

There are two cases where contention can occur. The first case is a read
followed by a write to the same memory space. In this case, the data bus
drivers can potentially contend with those of the memory device addressed
by the read. The second case is back-to-back reads from two different
memory spaces. In this case, the two memory devices addressed by the two
reads could potentially contend at the transition between the two read
operations.

To avoid contention, program the turnaround time (bank transition time)
appropriately in the asynchronous memory bank control registers. This
feature allows software to set the number of clock cycles between these
types of accesses on a bank-by-bank basis. Minimally, the EBIU provides
one cycle for the transition to occur.

7-10 ADSP-BF51x Blackfin Processor Hardware Reference

External Bus Interface Unit

External Access Extension

Each bank can be programmed to sample the ARDY input after the read or
write access timer has counted down or to ignore this input signal. If
enabled and disabled at the sample window, ARDY can be used to extend
the access time as required.

The polarity of ARDY is programmable on a per-bank basis. Since ARDY is
not sampled until an access is in progress to a bank in which the ARDY
enable is asserted, ARDY does not need to be driven by default. For more
information, see “Adding External Access Extension” on page 7-15.

AMC Functional Description

The following sections provide a functional description of the AMC.

Programmable Timing Characteristics

This section describes the programmable timing characteristics for the
EBIU. Timing relationships depend on the programming of the AMC, no
matter whether the transaction initiation is from the core or from memory
DMA, or what the sequence of transactions is (read followed by read, read
followed by write, and so on).

ADSP-BF51x Blackfin Processor Hardware Reference 7-11

AMC Functional Description

Asynchronous Reads

Figure 7-3 shows an asynchronous read bus cycle with timing pro-
grammed as setup = 2 cycles, read access = 2 cycles, hold = 1 cycle, and
transition time = 1 cycle.

TRANSITION
SETUP READ ACCESS HOLD = TIME

| 2 CYCLES | 2 CYCLES I1 CYCLE|1 CYCLEI

I

ANS[3:0] [\

H

ABE[1:0] |
I I
I I
ADDR[19:1] | X X |
I I
I I
DATA[15:0) ——F—(X X —t—

W

I
ROE '\

I
I
ARE I
I
|
T

we /|

Figure 7-3. Asynchronous Read Bus Cycles

—

(.

Asynchronous read bus cycles proceed as follows.

1. At the start of the setup period, AMSTxT and AGE assert. The address
bus becomes valid. The ABE[T:07 signals are low during the read.

2. At the beginning of the read access period and after the 2 setup
cycles, ARE asserts.

7-12 ADSP-BF51x Blackfin Processor Hardware Reference

External Bus Interface Unit

3. At the beginning of the hold period, read data is sampled on the

rising edge of the EBIU clock. The ARE pin deasserts after this ris-
ing edge.

At the end of the hold period, AOE deasserts unless this bus cycle is
followed by another asynchronous read to the same memory space.
Also, AMSTx] deasserts unless the next cycle is to the same memory

bank.

Unless another read of the same memory bank is queued internally,
the AMC appends the programmed number of memory transition
time cycles.

Asynchronous Writes

Figure 7-4 shows an asynchronous write bus cycle followed by an asyn-
chronous read cycle to the same bank, with timing programmed as setup =
2 cycles, write access = 2 cycles, read access = 3 cycles, hold = 1 cycle, and
transition time = 1 cycle.

Asynchronous write bus cycles proceed as follows.

1.

2.
3.

At the start of the setup period, AMSTxJ, the address bus, data buses,
and ABE[1:0] become valid. See “Byte Enables” on page 7-15 for
more information.

At the beginning of the write access period, AWE asserts.

At the beginning of the hold period, AWE deasserts.

Asynchronous read bus cycles proceed as follows.

1.

2.

At the start of the setup period, AMSTx] and AOE assert. The address
bus becomes valid. The ABE[1:01] signals are low during the read.

At the beginning of the read access period, ARE asserts.

ADSP-BF51x Blackfin Processor Hardware Reference 7-13

AMC Functional Description

DATA LATCHED
TRANSITION
SETUP WRITE ACCESS |, HOLD SETUP READ ACCESS HOLD = TIME
| | P

2 CYCLES | 2 CYCLES 1CYCLE | 2CYCLES | 3 CYCLES | 1CYCLE |1 CYCLE |
CLKOUT

I I
_L\ I I I I I /_I_
AWSIX] I I I I
I I
I I
. 1 l
ABE[1:0] : K¢ __BEt . . \ / :

ADDRI[19:1] X A1 X A2 X

I
DATA15:0] ————(D1 — (

AOE

\

ARE

\

AWE

—_ | g|—]

o I
(. I
— I
I |
I I
(. I
NI o e

Figure 7-4. Asynchronous Write and Read Bus Cycles

3. At the beginning of the hold period, read data is sampled on the
rising edge of the EBIU clock. The ARE signal deasserts after this
rising edge.

4. At the end of the hold period, AOE deasserts unless this bus cycle is
followed by another asynchronous read to the same memory space.
Also, AMS[x] deasserts unless the next cycle is to the same memory

bank.

7-14 ADSP-BF51x Blackfin Processor Hardware Reference

External Bus Interface Unit

5. Unless another read of the same memory bank is queued internally,
the AMC appends the programmed number of memory transition
time cycles.

Adding External Access Extension

The ARDY pin is used to insert extra wait states. The EBIU starts sampling
ARDY on the clock cycle before the end of the programmed strobe period.
If ARDY is sampled as deasserted, the access period is extended. The ARDY
pin is then sampled on each subsequent clock edge. Read data is latched
on the clock edge after ARDY is sampled as asserted. The read- or
write-enable remains asserted for one clock cycle after ARDY is sampled as
asserted. An example of this behavior is shown in Figure 7-5, where
setup = 2 cycles, read access = 4 cycles, and hold = 1 cycle.

The read access period must be programmed to a minimum of two
cycles to make use of the ARDY input.

Byte Enables

The AMC provides byte enable pins to allow the processor to perform
efficient byte-wide arithmetic and byte-wide processing in external
memory.

In general, there are two different ways to modify a single byte within the
16-bit interface. First, it can be done by a read/modify/write sequence.
However, this is not very efficient because multiple accesses are required
(that is, it takes many cycles for reads and writes to external memory).
Another option is available where just a specific byte can be modified for a
16-bit devices using the ABE[1:0] pins. See Table 7-3.

The ABE[1:0] pins are both low during all asynchronous reads and 16-bit
asynchronous writes. When an asynchronous write is made to the upper
byte of a 16-bit memory, ABE1 = 0 and ABEO = 1. When an asynchronous
write is made to the lower byte of a 16-bit memory, ABE1 = 1 and ABEO = 0.

ADSP-BF51x Blackfin Processor Hardware Reference 7-15

AMC Functional Description

SETUP PROGRAMMED READ ACCESS | ACCESS EXTENDED HOLD

I<—>I |

| 2CYCLES | 4CYCLES | 3 CYCLES |1 CYCLE

I I I '

I | READY SAMPLED Daenen |
I

aVaVaVaVaVaAUAY aUalal aWaWal

AMS[X] \

I

I

I
ABE[1:0] \

X ADDRESS X

|
I
I
ADDR[19:1] | : : : : : : :
I
I
I

1 1 |
DATA[15:0] —((READ D)
I
I

ROE — T\
I

ARE

AWE

ARDY

A

Figure 7-5. Inserting Wait States Using ARDY

7-16 ADSP-BF51x Blackfin Processor Hardware Reference

External Bus Interface Unit

Table 7-3. Byte Enables 8-Bit Write Accesses

Internal Address IA[0] |Internal Transfer Size

1 byte 2 bytes

0 ABE[1]=1|ABE[1]1=0
ABELO] =0|ABE[0]=0

1 ABE[1]1=0|ABE[11=0
ABE[0] =1| ABE[0] =0
This combination is invalid.

AMC Programming Model

The asynchronous memory global control register (EBIU_AMGCTL) config-
ures global aspects of the controller. It contains bank enables and other
information as described in this section. This register should not be
programmed while the AMC is in use. The EBIU_AMGCTL register should be
the last control register written to when configuring the processor to
access external memory-mapped asynchronous devices.

Additional information for the EBIU_AMGCTL register bits includes:
* Asynchronous memory clock enable (AMCKEN)

For external devices that need a clock, CLKOUT can be enabled by
setting the AMCKEN bit in the EBIU_AMGCTL register. In systems that
do not use CLKOUT, set the AMCKEN bit to 0.

* Asynchronous memory bank enable (AMBEN).

If a bus operation accesses a disabled asynchronous memory bank,
the EBIU responds by acknowledging the transfer and asserting the
error signal on the requesting bus. The error signal propagates back
to the requesting bus master. This generates a hardware exception
to the core, if it is the requester. For DMA mastered requests, the
error is captured in the respective status register. If a bank is not

ADSP-BF51x Blackfin Processor Hardware Reference 7-17

AMC Programming Model

fully populated with memory, then the memory likely aliases into
multiple address regions within the bank. This aliasing condition is
not detected by the EBIU, and no error response is asserted.

Core/DMA priority (CDPRIO).

This bit configures the AMC to control the priority over requests
that occur simultaneously to the EBIU from either processor core
or the DMA controller. When this bit is set to 0, a request from the
core has priority over a request from the DMA controller to the
AMC, unless the DMA is urgent. When the CDPRIO bit is set, all
requests from the DMA controller, including the memory DMAs,
have priority over core accesses. For the purposes of this discussion,
core accesses include both data fetches and instruction fetches.

@ The cDPRIO bit also applies to the SDC.

The EBIU asynchronous memory controller has two asynchronous mem-
ory bank control registers (EBIU_AMBCTLO and EBIU_AMBCTL1). They
contain bits for counters for setup, access, and hold time; bits to deter-
mine memory type and size; and bits to configure use of ARDY. These
registers should not be programmed while the AMC is in use.

The timing characteristics of the AMC can be programmed using these
four parameters:

Setup: the time between the beginning of a memory cycle (AMS[x]
low) and the read-enable assertion (ARE low) or write-enable asser-
tion (AWE low).

Read access: the time between read-enable assertion (ARE low) and
deassertion (ARE high).

ADSP-BF51x Blackfin Processor Hardware Reference

External Bus Interface Unit

e Werite access: the time between write-enable assertion (AWE low) and
deassertion (AWE high).

* Hold: the time between read-enable deassertion (ARE high) or
write-enable deassertion (AWE high) and the end of the memory
cycle (AMS[x] high).

Each of these parameters can be programmed in terms of EBIU clock
cycles. In addition, there are minimum values for these parameters:

e Setup =1 cycle
* Read access > 1 cycle
e Write access > 1 cycle

* Hold > 0 cycles

AMC Registers

The following sections describe the AMC registers.

ADSP-BF51x Blackfin Processor Hardware Reference 7-19

AMC Registers

EBIU_AMGCTL Register

Figure 7-6 shows the asynchronous memory global control register
(EBIU_AMGCTL).

Asynchronous Memory Global Control Register (EBIU_AMGCTL)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0xFFCOOA00|o|o|o|o|o|o|o|o|1|1 |1|1|o|o|1|o| Reset = 0x00F2
L 1 ‘
CDPRIO AMCKEN
0 - Core has priority over DMA 0 - Disable CLKOUT for
for external accesses asynchronous memory
1 - DMA has priority over core region accesses
for external accesses 1 - Enable CLKOUT for
For more information, see asynchronous memory
Chapter 4, “Chip Bus Hierarchy”. region accesses
AMBENT[2:0]
Enable asynchronous memory
banks

000 - All banks disabled

001 - BankO enabled

010 - Bank0 and Bank1 enabled

011 - Bank0, Bank1, and Bank2
enabled

1xx - All banks (BankO, Bank1,
Bank2, Bank3) enabled

Figure 7-6. Asynchronous Memory Global Control Register

EBIU_AMBCTLO and EBIU_AMBCTL1 Registers

Figure 7-7 and Figure 7-8 show the asynchronous memory bank control
registers (EBIU_AMBCTLO and EBIU_AMBCTLL).

7-20 ADSP-BF51x Blackfin Processor Hardware Reference

External Bus Interface Unit

Asynchronous Memory Bank Control 0 Register (EBIU_AMBCTLO)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0xFFCO 0A04 |1|1|1|1|1|1|1|1|1|1 |0|o o|o|1|o| Reset = 0xFFC2 FFC2
| | i I |

BIWAT[3:0] — | |B1RDYEN

Bank 1 write access time (number of
cycles AWE is held asserted)

0000 - Not supported

0001 to 1111 - 1 to 15 cycles
B1RAT[3:0]
Bank 1 read access time (number of
cycles ARE is held asserted)

0000 - Not supported

0001 to 1111 - 1 to 15 cycles
B1HT[1:0]

Bank 1 hold time (number of cycles between AWE
or ARE deasserted, and AQE deasserted)
00 - 0 cycles

Bank 1 ARDY enable
0 - Ignore ARDY for accesses to
this memory bank
1 - After access time countdown,
use state of ARDY to deter-
mine completion of access
— B1RDYPOL
Bank 1 ARDY polarity
0 - Transaction completes if
ARDY sampled low
1 - Transaction completes if
ARDY sampled high
B1TT[1:0]

01 -1 cycle Bank 1 memory transition time

10 - 2 cycles (number of cycles inserted after a

11 - 3 cycles read access to this bank, and
B1ST[1:0] before a write access to this bank

Bank 1 setup time (number of cycles after AOE
asserted, before AWE or ARE asserted)
00 - 4 cycles

or a read access to another bank)
00 - 4 cycles for bank transition
01 - 1 cycle for bank transition

01 -1 cycle 10 - 2 cycles for bank transition
10 - 2 cycles 11 - 3 cycles for bank transition
11 - 3 cycles 15 14 13 12 11 10 9 8 7 6 4 3 2 1 0

1|1|1|1 1|1|1|1 1|1|o|0 0|o|1|0|

BOWATI[3:0] |

Bank 0 write access time (number of
cycles AWE is held asserted)

0000 - Not supported

0001 to 1111 - 1 to 15 cycles
BORAT[3:0]
Bank O read access time (number of
cycles ARE is held asserted)

0000 - Not supported

0001 to 1111 - 1 to 15 cycles
BOHT[1:0]

Bank 0 hold time (number of cycles between AWE or
ARE deasserted, and AOE deasserted)

|
BORDYEN

Bank 0 ARDY enable

0 - Ignore ARDY for accesses to
this memory bank

1 - After access time countdown,
use state of ARDY to deter-
mine completion of access

BORDYPOL

Bank 0 ARDY polarity

0 - Transaction completes if

ARDY sampled low

1 - Transaction completes if

ARDY sampled high

00 - 0 cycles BOTT[1:0]

01 -1 cycle - .)

10 - 2 cycles Bank 0 memory transition time

11 - 3 cycles (number of cycles inserted after a
BOST[1-3I] read access to this bank, and

Bank 0 setup time (number of cycles after AOE
asserted, before AWE or ARE asserted)

before a write access to this bank
or a read access to another bank)
00 - 4 cycles for bank transition

00-4 cyc:es 01 - 1 cycle for bank transition
01 -1cycle 10 - 2 cycles for bank transition
10 - 2 cycles 11 - 3 cycles for bank transition
11 - 3 cycles

Figure 7-7. Asynchronous Memory Bank Control 0 Register

ADSP-BF51x Blackfin Processor Hardware Reference

7-21

AMC Registers

Asynchronous Memory Bank Control 1 Register (EBIU_AMBCTL1)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17

16

O0xFFCO 0A08

ofo]t]o]

Reset = 0xFFC2 FFC2

|1|1|1|1|1|1|1|1 1|1 |0|0
| | |

I [|
B3WAT[3:0] — |

Bank 3 write access time (number of
cycles AWE is held asserted)
0000 - Not supported
0001 to 1111 - 1 to 15 cycles
B3RAT[3:0]
Bank 3 read access time (number of
cycles ARE is held asserted)
0000 - Not supported
0001 to 1111 - 1 to 15 cycles
B3HTI[1:0]
Bank 3 hold time (number of cycles between AWE or
ARE deasserted, and AOE deasserted)
00 - 0 cycles
01 -1 cycle
10 - 2 cycles
11 - 3 cycles
B3ST[1:0]
Bank 3 setup time (number of cycles after AOE
asserted, before AWE or ARE asserted)
00 - 4 cycles
01 -1 cycle
10 - 2 cycles
11 - 3 cycles

15 14 13 12 11 10 9 8 7 6 5 4 3 2 A1

I
B3RDYEN
Bank 3 ARDY enable
0 - Ignore ARDY for accesses to
this memory bank
1 - After access time countdown,
use state of ARDY to deter-
mine completion of access
B3RDYPOL
Bank 3 ARDY polarity
0 - Transaction completes if
ARDY sampled low
1 - Transaction completes if
ARDY sampled high

L B3TT[1:0]

Bank 3 memory transition time
(number of cycles inserted after a
read access to this bank, and
before a write access to this bank
or a read access to another bank)
00 - 4 cycles for bank transition
01 - 1 cycle for bank transition
10 - 2 cycles for bank transition
11 - 3 cycles for bank transition

0

1|1|1|1 1|1|1|1 1|1|o|o 0|0|1

o]

B2WAT[3:0] — |
Bank 2 write access time (number of
cycles AWE is held asserted)
0000 - Not supported
0001 to 1111 - 1 to 15 cycles
B2RAT[3:0]
Bank 2 read access time (number of
cycles ARE is held asserted)
0000 - Not supported
0001 to 1111 - 1 to 15 cycles
B2HT[1:0]
Bank 2 hold time (number of cycles between AWE or
ARE deasserted, and AOE deasserted)
00 - 0 cycles
01 -1 cycle
10 - 2 cycles
11 - 3 cycles
B2ST[1:0]
Bank 2 setup time (number of cycles after AOE
asserted, before AWE or ARE asserted)
00 - 4 cycles
01 -1 cycle
10 - 2 cycles
11 - 3 cycles

|
B2RDYEN
Bank 2 ARDY enable
0 - Ignore ARDY for accesses to
this memory bank
1 - After access time countdown,
use state of ARDY to deter-
mine completion of access
B2RDYPOL
Bank 2 ARDY polarity
0 - Transaction completes if
ARDY sampled low
1 - Transaction completes if
ARDY sampled high
B2TT[1:0]
Bank 2 memory transition time
(number of cycles inserted after a
read access to this bank, and
before a write access to this bank
or a read access to another bank)
00 - 4 cycles for bank transition
01 - 1 cycle for bank transition
10 - 2 cycles for bank transition
11 - 3 cycles for bank transition

Figure 7-8. Asynchronous Memory Bank Control 1 Register

7-22

ADSP-BF51x Blackfin Processor Hardware Reference

External Bus Interface Unit

AMC Programming Examples

Listing 7-1 and Listing 7-2 provide examples for working with the AMC.
Listing 7-1. 16-Bit Core Transfers to SRAM

.section Ll_data_b;
.byte2 source[N] = 0x1122, 0x3344, 0x5566, 0x7788;
.section SRAM_bank_0;
.byte? dest[N];
.section L1_code;
I0.L
I0.H = hi(source);
I1.L lo(dest);
I1.H hi(dest);

RO.L = w[IO++];

P5=N-1;

ITsetup(lp, 1p) LCO=P5;
Tp: RO.L = wlIO++] || wlIl++]

w[I1++]

lo(source);

RO.L;
RO.L;

Listing 7-2. 8-Bit Core Transfers to SRAM Using Byte Mask ABE[1:0]

Pins

.section Ll_data_b;

.byte source[N] = 0x11, 0x22, 0x33, 0x44, 0x55, 0Ox66, 0x77, 0x88;
.section SRAM_bank_0;

.byte dest[N];

p0.L = To(source);

p0.H = hi(source);

pl.L = To(dest);
pl.H = hi(dest);
p5=N;

Isetup(start, end) LCO=P5;

ADSP-BF51x Blackfin Processor Hardware Reference 7-23

SDC Overview and Features

start: RO = b[p0++]1(z);
end: blpl++] = RO; /* byte data masking */

SDC Overview and Features

The SDRAM Controller (SDC) enables the processor to transfer data to
and from Synchronous DRAM (SDRAM) with a maximum frequency
specified in the product data sheet. The processor supports a glueless
interface with one external bank of standard SDRAMs of 64M bit to
512M bit, with configurations x4, x8, and x16, up to a maximum total
capacity of 128M bytes of SDRAM.

Features

The EBIU SDC provides a glueless interface with standard SDRAMs. Fea-

tures include:
e I/O width 16-bit, I/O supply 1.8, 2.5, or 3.3 V
* Supports up to 128M byte of SDRAM in external bank
* Types of 64, 128, 256, and 512M bit with I/O of x4, x8, and x16
* Supports SDRAM page sizes of 512 byte, 1K, 2K, and 4K byte
* Supports multibank operation within the SDRAM
* Supports mobile SDRAMs
* SDC uses no-burst mode (BL = 1) with sequential burst type
* SDC supports 8-bit data masking writes

e SDC uses open page policy—any open page is closed only if a new
access in another page of the same bank occurs

7-24 ADSP-BF51x Blackfin Processor Hardware Reference

External Bus Interface Unit

* Uses a programmable refresh counter to coordinate between vary-
ing clock frequencies and the SDRAM’s required refresh rate

* Provides multiple timing options to support additional buffers
between the processor and SDRAM

e Allows independent auto-refresh while the asynchronous memory
controller has control of the EBIU port

* Supports self-refresh mode for power savings
* During hibernate state, self-refresh mode is supported

* Supports instruction fetch

SDRAM Configurations Supported

Table 7-4 shows all possible bank sizes, and SDRAM discrete component
configurations that can be gluelessly interfaced to the SDC. The bank
width for all cases is 16 bits.

ADSP-BF51x Blackfin Processor Hardware Reference 7-25

SDC Overview and Features

Table 7-4. SDRAM Discrete Component Configurations
Supported

System Size | System Size |SDRAM Number of
(M byte) |(M bit) Configuration | Chips
16 8Mx 16 8Mx 8 2

16 8M x 16 8M x 16 1

32 16Mx 16 |16Mx 4 4

32 I6Mx 16 |16M«x 8 2

32 16Mx 16 |16Mx 16 1

64 32Mx 16 |32M x4 4

64 32Mx 16 |[32Mx 8 2

64 32Mx 16 |32Mx 16 1

128 64M x 16 | 64M x 4 4

128 64M x 16 |64M x 8 2

128 64M x 16 |64M x 16 1

SDRAM External Bank Size

The total amount of external SDRAM memory addressed by the processor
is controlled by the EBSZ bits of the EBIU_SDBCTL register (see Table 7-5).
Accesses above the range shown for a specialized EBSZ value results in an
internal bus error and the access does not occur. For more information,
see “Error Detection” on page 7-7.

SDC Address Mapping

The address mapping scheme describes how the SDC maps the address
into SDRAM. To access SDRAM, the SDC uses the bank interleaving
map scheme, which fills each internal SDRAM bank before switching to
the next internal bank. Since the SDRAMs have four internal banks, the
entire SDRAM address space is therefore divided into four sub-address

7-26 ADSP-BF51x Blackfin Processor Hardware Reference

External Bus Interface Unit

regions containing the addresses of each internal bank. (See Figure 7-10
on page 7-40.) It starts with address 0x0 for internal bank A and ends with
the last valid address (specified with EBSZ and EBCAW parameters) contain-
ing the internal bank D.

The internal 29-bit non-multiplexed address (See Figure 7-9) is multi-
plexed into:

* Byte data mask (IA[0])

* SDRAM column address

* SDRAM row address

* Internal SDRAM bank address

@ A good understanding of the SDC address map scheme in conjunc-
tion with the multibank operation is required to obtain optimized
system performance.

Internal 32-bit Address

—
Bank Row Column Byte
Address Address Address Mask

Figure 7-9. Multiplexed SDRAM Addressing Scheme

Table 7-5. External Bank Size Encodings

EBSZ Bank Size (M byte) Valid SDRAM Addresses

b#00 16 0x0000 0000 — 0xO00FF FFFF
b#01 32 0x0000 0000 — 0x01FF FFFF
b#10 64 0x0000 0000 — 0x03FF FFFF
b#11 128 0x0000 0000 — 0x07FF FFFF

ADSP-BF51x Blackfin Processor Hardware Reference 7-27

SDC Interface Overview

Internal SDRAM Bank Select

The internal SDRAM banks are driven by the ADSP-BF51x ADDR[19:18]

which are part of the row and column address and connected to the
SDRAM BA[1:0].

Do not flip up both internal bank select connections, if using the

mobile SDRAM PASR feature. If this is done, the system will not
work properly because the selected internal banks are not refreshed
during partial array self-refresh.

Parallel Connection of SDRAMs

To specify an SDRAM system, multiple possibilities are given based on
the different architectures. (See Table 7-13 on page 7-64.) For the
ADSP-BF51x processors, I/O capabilities of 1 x 16-bit, 2 x 8-bit or 4 x
4-bit are given. The reason to use a system of 4 x 4-bit vs. 2 x 8-bit or 1 x
16-bit is determined by the SDRAM page size. All 3 systems have the
same external bank size, but different page sizes. On one hand, the higher
the page size, the higher the performance. On the other hand, the higher

the page size, the higher the hardware layout requirements.

Even if connecting SDRAMs in parallel, the SDC always considers
the entire system as one external SDRAM bank (SMS pin) because
all address and control lines feed the parallel parts.

However, access to a single cluster part is achieved using the mask feature
(SDQML1:0] pins). This allows masked 8-bit I/O writes to dedicated chips
whereby the other 8-bit I/O is masked at its input buffer of the other
chips. See Listing 7-4 on page 7-78.

SDC Interface Overview

The following sections describe the SDC interface.

7-28 ADSP-BF51x Blackfin Processor Hardware Reference

External Bus Interface Unit

SDC Pin Description

The SDRAM interface signals are shown in Table 7-6.

Table 7-6. SDRAM Interface Signals

Pad Pin Type ! |Description
DATAL15:0] /0 External data bus
ADDR[19:181, | O External address bus
ADDR[16:127, Connect to SDRAM address pins. Bank address is output on
ADDR[10:1] ADDR[19:18] and should be connected to SDRAM BA[1:0] pins.
SRAS (@) SDRAM row address strobe pin
Connect to SDRAM’s RAS pin.
SCAS (0] SDRAM column address strobe pin
Connect to SDRAM’s CAS pin.
SWE O SDRAM write enable pin
Connect to SDRAM’s WE pin.
ABE[1:01/ (@) SDRAM data mask pins
SDQM[1:01 Connect to SDRAM’s DQM pins.
SMS (0] Memory select pin of external memory bank configured for
SDRAM
Connect to SDRAM’s CS (Chip Select) pin. Active low.
SA10 O SDRAM A10 pin
SDRAM interface uses this pin to be able to do refreshes while the
AMC is using the bus. Connect to SDRAM’s A[10] pin.
SCKE O SDRAM clock enable pin
Connect to SDRAM’s CKE pin.
CLKOUT O SDRAM clock output pin
Switches at system clock frequency. Connect to the SDRAM’s CLK
pin.

1 Pin Types: I = Input, O = Output

ADSP-BF51x Blackfin Processor Hardware Reference 7-29

SDC Interface Overview

SDRAM Performance

On-page sequential or non-sequential accesses are from internal data
memory to SDRAM. Table 7-7 summarizes SDRAM performance for

these on-page accesses.

Table 7-7. SDRAM Performance Between Internal Data Memory and

SDRAM!

Type of access

Performance

DAG access, write

1 SCLK cycle per 16-bit word

DAG access, read

8 SCLK cycles per 16-bit word

MemDMA access, write

1 SCLK cycle per 16-bit word

MemDMA access, read

1.1 SCLK cycles per 16-bit word

1 Valid for core/system clock > 2:1

On-page sequential instruction fetches from SDRAM are summarized in

Table 7-8.

Table 7-8. SDRAM Performance For On-Page Instruction Fetches

Type of access

Performance

Ifetch from SDRAM

a].1 SCLK cycles per 16-bit word

I/Dcache line fill from SDRAM

a].1 SCLK cycles per 16-bit word

Off-page accesses are summarized in Table 7-9.

Table 7-9. SDRAM Stall Cycles For Off-Page Accesses

Type of access |Stall Cycles

Write twR + RP + TRCD

Read tRp + tRCD + CL
7-30

ADSP-BF51x Blackfin Processor Hardware Reference

External Bus Interface Unit

SDC Description of Operation

The following sections describe the operation of the SDC.

Definition of SDRAM Architecture Terms

The following are definitions of SDRAM architecture terms used in the
remainder of this chapter.

Refresh

Since the information is stored in a low-capacitance cell that suffers from
leakage effects, the SDRAM must be refreshed periodically.

Row Activation

SDRAM accesses are multiplexed, which means any first access will open a
row/page before the column access is performed. It stores the row in a
“row cache” called row activation.

Column Read/Write

The row’s columns represent a page, which can be accessed with successive
read or write commands without needing to activate another row. This is
called column access and performs transfers from the “row cache.”

Row Precharge

If the next access is in a different row, the current row is closed before
another is opened. The current “row cache” is written back to the row.
This is called row precharge.

ADSP-BF51x Blackfin Processor Hardware Reference 7-31

SDC Description of Operation

Internal Bank

There are up to 4 internal memory banks on a given SDRAM. Each of
these banks can be accessed with the bank select lines BA[1:0]. The bank
address can be thought of as part of the row address.

External Bank
This is the address region where the SDC address the SDRAM.

Do not confuse the internal banks, which are internal to the
SDRAM and are selected with the BA[1:0] pins with the external
bank that is enabled by the CS pin.

Memory Size

Since the 2-D memory is based on rows and columns, the size is:
mem size = (# rows) x (# columns) x (# internal banks) x I/O (Mbit)

Burst Length
The burst length determines the number of words that the SDRAM device

stores or delivers after detecting a single write or read command followed
by a NOP (no operation) command, respectively (Number of NOPs =
burst length - 1). Burst lengths of full page, 8, 4, 2, and 1 (no burst) are
available. The burst length is selected by writing the BL bits in the
SDRAM mode register during the SDRAM powerup sequence.

Burst Type

The burst type determines the address order in which the SDRAM deliv-
ers burst data. The burst type is selected by writing the BT bits in the
SDRAM mode register during the SDRAM powerup sequence.

7-32 ADSP-BF51x Blackfin Processor Hardware Reference

External Bus Interface Unit

CAS Latency

The CAS latency, or read latency, specifies the time between latching a
read address and driving the data off chip. This spec is normalized to the
system clock and varies from 2 to 3 cycles based on the speed. The CAS
latency is selected by writing the CL bits in the SDRAM mode register dur-
ing the SDRAM powerup sequence.

Data I/O Mask Function

SDRAMs allow a data byte-masking capability on writes. The DaM[1:0]
mask pins are used to block the data input buffer of the SDRAM during

write operations.

SDRAM Commands

SDRAM commands are not based on typical read or write strobes. The
pulsed €S, RAS, CAS, and WE lines determine the command on the rising
clock edge by a truth table.

Mode Register Set (MRS) Command

SDRAM devices contain an internal extended configuration register
which allows specification of the mobile SDRAM device’s functionality.

Extended Mode Register Set (EMRS) Command

Mobile SDRAM devices contain an internal extended configuration regis-
ter which allows specification of the mobile SDRAM device’s
functionality.

Bank Activate Command

The bank activate command causes the SDRAM to open an internal bank
(specified by the bank address) in a row (specified by the row address).

When the bank activate command is issued, it opens a new row address in

ADSP-BF51x Blackfin Processor Hardware Reference 7-33

SDC Description of Operation

the dedicated bank. The memory in the open internal bank and row is
referred to as the open page. The bank activate command must be applied
before a read or write command.

Read/Write Command

For the read command, the SDRAM latches the column address. The start
address is set according to the column address. For the write command,
SDRAM latches the column address. Data is also asserted in the same
cycle. The start address is set according to the column address.

Precharge/Precharge All Command

The precharge command closes a specific active page in an internal bank
and the precharge all command closes all 4 active pages in all 4 banks.

Avuto-Refresh command

When the SDC refresh counter times out, the SDC precharges all four
banks of SDRAM and then issues an auto-refresh command to them. This
causes the SDRAM to generate an internal auto-refresh cycle. When the
internal refresh completes, all four internal SDRAM banks are precharged.

Enter Self-Refresh Mode
When the SDRAM enters self-refresh mode, the SDRAM’s internal timer

initiates refresh cycles periodically, without external control input.

Exit Self-Refresh Mode
When the SDRAM exits self-refresh mode, the SDRAM’s internal timer

stops refresh cycles and relinquishes control to external SDC.

7-34 ADSP-BF51x Blackfin Processor Hardware Reference

External Bus Interface Unit

SDC Timing Specs

The following SDRAM timing specs are used by the SDC and SDRAM.
To program the SDRAM interface, see the SDRAM specific datasheet

information

Any absolute timing parameter must be normalized to the system
clock, which allows the SDC to adapt to the timing parameter of
the device.

tmrD

This is the required delay between issuing a mode register set and an
activate command during powerup.

Dependency: system clock frequency
SDC setting: 3 system clock cycles
SDC usage: MRS command

tras

This is the required delay between issuing a bank A activate command and
issuing a bank A precharge command.

Dependency: system clock frequency
SDC setting: 1-15 normalized system clock cycles
SDC usage: single column read/write, auto-refresh, self-refresh command

SDC dependencies: tgc, trpc, and tysg

ADSP-BF51x Blackfin Processor Hardware Reference 7-35

SDC Description of Operation

CL

The CAS latency, or read latency, is the delay between when the SDRAM
detects the read command and when it provides the data off-chip. This
spec does not apply to writes.

Dependency: system clock frequency and speed grade
SDC setting: 2—3 normalized system clock cycles

SDC usage: first read command

trcp

This is the required delay between a bank A activate command and the
first bank A read or write command.

Dependency: system clock frequency
SDC setting: 1-7 normalized system clock cycles

SDC usage: first read/write command

trrD

This is the required delay between a bank A activate command and a bank
B activate command. This spec is used for multibank operation.

Dependency: system clock frequency
SDC setting: tgcp + 1 normalized system clock cycles

SDC usage: multiple bank activation

7-36 ADSP-BF51x Blackfin Processor Hardware Reference

External Bus Interface Unit

twr

This is the required delay between a bank A write command and a bank A
precharge command. This spec does not apply to reads.

Dependency: system clock frequency
SDC setting: 1-3 normalized system clock cycles

SDC usage: during off-page write command

This is the required delay between a bank A precharge command and a
bank A activation command.

Dependency: system clock frequency
SDC setting: 1-7 normalized system clock cycles
SDC usage: off-page read/write, auto-refresh, self-refresh command

SDC dependencies: tge, trpc, and tysg

This is the required delay between issuing successive bank activate
commands.

Dependency: system clock frequency

SDC setting: User must ensure that tgag + trp >= tgp (normalized system
clock cycles)

SDC usage: single column read/write command

ADSP-BF51x Blackfin Processor Hardware Reference 7-37

SDC Description of Operation

trrc

This is the required delay between issuing successive auto-refresh com-

mands (all banks).
Dependency: system clock frequency

SDC setting: User must ensure that tgag + trp >= trpc (normalized sys-
tem clock cycles)

SDC usage: auto-refresh, exit self-refresh command

txsr

This is the required delay between exiting self-refresh mode and the
auto-refresh command.

Dependency: system clock frequency

SDC setting: User must ensure that tgag + trp >= tysr (normalized sys-
tem clock cycles)

SDC usage: exit self-refresh command

trer
This is the row refresh period, and typically takes 64 ms.
Dependency: system clock frequency
SDC setting: none

SDC usage: auto-refresh command

7-38 ADSP-BF51x Blackfin Processor Hardware Reference

External Bus Interface Unit

tREFI

This is the row refresh interval and typically takes 15.6 ps for < 8k rows
and 7.8 us for >= 8k rows. This spec is available by dividing tggp by the
number of rows. This number is used by the SDC refresh counter.

Dependency: system clock frequency
SDC setting: tggpy normalized system clock cycles (RDIV register)

SDC usage: auto-refresh command

In typical applications making sequential (not random) accesses to
the SDRAM memory, the tgag timing parameter is less critical
than tgp. System designers should be aware that whenever the
(trp + tras) in their design is violating one of the other timing
specifications, then they should increase the tgag parameter.

SDC Functional Description

The functional description of the SDC is provided in the following

sections.

SDC Operation

The AMC normally generates an external memory address, which then
asserts the corresponding CS select, along with RD and WR strobes. However
these control signals are not used by the SDC. The internal strobes are
used to generate pulsed commands (SMS, SCKE, SRAS, SCAS, SWE) within a
truth table (see Table 7-11 on page 7-48). The memory access to SDRAM
is based by mapping ADDR[28:0] causing an internal memory select to

SDRAM space (see Figure 7-10).

ADSP-BF51x Blackfin Processor Hardware Reference 7-39

SDC Functional Description

The configuration is programmed in the SDBCTL register. The SDRAM
controller can hold off the processor core or DMA controller with an

internally connected acknowledge signal, as controlled by refresh, or page
miss latency overhead.

A programmable refresh counter is provided which generates background
auto-refresh cycles at the required refresh rate based on the clock fre-
quency used. The refresh counter period is specified with the RDIV field in
the SDRAM refresh rate control register.

To allow auto-refresh commands to execute in parallel with any AMC
access, a separate A10 pin (SA10) is provided.

ADSP-BF51x
SDRAM
COMMAND LOGIC
CLKOUT > | CLK
INT RD > SCKE > CKE
INTWR [—————» SRAS »| RAS
INT RESET - SCAS >| CAS
INT ACK |«—BUSY REFRESH SWE »| WE
s COUNTER s >l s
CORE > SA10 »| A10
DMA
ADDRESS
MULTIPLEXER
A28:0] A /snoMAm]
0 1:0 »>| DQM
, | ADDRESS [0] [1:0] QMx
BUFFER A[18] »>| BAO
A[19] >| BA1
A[1:10], A[12:13] > A[0:9], A[11:12]
DATA
LATCH/ D[15:0] DQ15:0
DRIVE

Figure 7-10. Simplified SDC Architecture

7-40 ADSP-BF51x Blackfin Processor Hardware Reference

External Bus Interface Unit

The internal 32-bit non-multiplexed address is multiplexed into:
* Data mask for bytes
e SDRAM column address
e SDRAM row address
e Internal SDRAM bank address
Bit A[0] is used for 8-bit wide SDRAMs to generate the data masks. The

next lowest bits are mapped into the column address, next bits are mapped
into the row address, and the final two bits are mapped into the internal
bank address. This mapping is based on the EBCAW and EBSZ values pro-
grammed into the SDRAM memory bank control register.

The SDC uses no burst mode (BL = 1) for read and write operations. This
requires the SDC to post every read or write address on the bus as for
non-sequential reads or writes, but does not cause any performance degra-
dation. For read commands, there is a latency from the start of the read
command to the availability of data from the SDRAM, equal to the CAS
latency. This latency is always present for any single read transfer. Subse-
quent reads do not have latency.

Whenever a page miss to the same bank occurs, the SDC executes a pre-
charge command followed by a bank activate command before executing
the read or write command. If there is a page hit, the read or write com-
mand can be given immediately without requiring the precharge
command.

ADSP-BF51x Blackfin Processor Hardware Reference 7-41

SDC Functional Description

SDC Address Muxing
Table 7-10 shows the connection of the address pins with the SDRAM

device pins.

Table 7-10. SDRAM Address Connections for 16-Bit Banks

External Address Pin |SDRAM Address Pin
ADDR[191] BA[1]
ADDR[18] BALO]
ADDR[161] A[15]
ADDR[15] A[14]
ADDR[141] A[13]
ADDR[131] A[12]
ADDR[121] A[11]
ADDR[11] Not used
SAT10] A[10]
ADDR[101] AL9]
ADDRL9] A[8]
ADDRL8] AL7]
ADDRL7] AL6]
ADDRL6] A[5]
ADDRL5] Al4]
ADDR[4] A[3]
ADDRL3] Al2]
ADDRL2] Al1]
ADDR[1] ALO]

7-42 ADSP-BF51x Blackfin Processor Hardware Reference

External Bus Interface Unit

Multibank Operation

Since an SDRAM contains 4 independent internal banks (A-D), the SDC
is capable of supporting multibank operation thus taking advantage of the
architecture.

Any first access to SDRAM bank (A) will force an activate command
before a read or write command. However, if any new access falls into the
address space of the other banks (B, C, D) the SDC leaves bank (A) open
and activates any of the other banks (B, C, D). Bank (A) to bank (B)
active time is controlled by tgrp = trcp + 1. This scenario is repeated
until all 4 banks (A-D) are opened and results in an effective page size up
to 4 pages because no latency causes switching between these open pages
(compared to 1 page in only one bank at the time). Any access to any
closed page in any opened bank (A-D) forces a precharge command only
to that bank. If, for example, 2 MemDMA channels are pointing to the
same internal SDRAM bank, this always forces precharge and activation
cycles to switch between the different pages. However, if the 2 MemDMA
channels are pointing to different internal SDRAM banks, it does not
cause additional overhead. See Figure 7-11.

ADSP-BF51x Blackfin Processor Hardware Reference 7-43

SDC Functional Description

The benefit of multibank operation reduces precharge and activa-
tion cycles by mapping opcode/data among different internal

SDRAM banks driven by the A[19:18] pins.

SINGLE BANK MULTIBANK
OPERATION OPERATION

ACCESS TO PAGE X
- ACCESS TO PAGE X

BANK A B —— BANK A
ACCESS TO PAGE Y
-

ACCESS TO PAGE Y
BANK B -~ BANK B

ACCESS TO PAGE X

BANK C | BANKC
ACCESS TO PAGE Y
BANK D M BANK D

Figure 7-11. SDRAM Bank Operation Types

Core and DMA Arbitration

The CDPRIO bit configures the SDC to control the priority over requests
that occur simultaneously to the EBIU from either the processor core or
the DMA controller. When this bit is set to 0, a request from the core has
priority over a request from the DMA controller to the SDC, unless the
DMA is urgent. When it is set to 1, all requests from the DMA controller,
including the memory DMAs, have priority over core accesses. For the
purposes of this discussion, core accesses include both data fetches and
instruction fetches.

7-44 ADSP-BF51x Blackfin Processor Hardware Reference

External Bus Interface Unit

Changing System Clock During Runtime

All timing specs are normalized to the system clock. Since most of them
are minimum specs, except trgp, which is a maximum spec, a variation of
system clock will on one hand violate a specific spec and on the other
hand cause a performance degradation for the other specs.

The reduction of system clock will violate the minimum specs, while
increasing system clock will violate the maximum tggg spec. Therefore,
careful software control is required to adapt these changes.

@ For most applications, the SDRAM powerup sequence and writing

of the mode register needs to be done only once. Once the pow-
erup sequence has completed, the PSSE bit should not be set again
unless a change to the mode register is desired.

The recommended procedure for changing the PLL vC0 frequency is:

1. Issue an SSYNC instruction to ensure all pending memory opera-
tions have completed.

2. Set the SDRAM to self-refresh mode by writing a 1 to the SRFS bit
of EBIU_SDGCTL.

3. Execute the desired PLL programming sequence. (For details, refer
to Chapter 8, “Dynamic Power Management”.)

4. After the wakeup occurs that signifies the PLL has settled to the
new VCO frequency, reprogram the SDRAM registers (EBIU_SDRRC,
EBIU_SDGCTL) with values appropriate to the new SCLK fre-
quency, and assure that the PSSE bit is set.

5. Bring the SDRAM out of self-refresh mode by clearing the SRFS bit
of EBIU_SDGCTL.

ADSP-BF51x Blackfin Processor Hardware Reference 7-45

SDC Functional Description

Changing the SCLK frequency using the SSEL bits in PLL_DIV, as opposed
to actually changing the vC0 frequency, should be done using these steps:

1. Issue an SSYNC instruction to ensure all pending memory opera-
tions have completed.

2. Set the SDRAM to self-refresh mode by writing a 1 to the SRFS bit
of EBIU_SDGCTL.

3. Execute the desired write to the SSEL bits.

4. Reprogram the SDRAM registers with values appropriate to the
new SCLK frequency, and assure that the PSSE bit is set.

5. Bring the SDRAM out of self-refresh mode by clearing the SRFS bit
of EBIU_SDGCTL.

Changing Power Management During Runtime

Deep sleep mode and hibernate state are available during runtime.

Deep Sleep Mode

During deep sleep mode, the core and system clock will halt. Therefore,
careful software control is required to place the SDRAM in self-refresh
before the device enters deep sleep mode.

Hibernate State

In the hibernate state the core voltage is 0 (core reset), but the I/O voltage
can still be applied. In order to save the SDRAM volatile data, the
ADSP-BF51x processor supports driving the SCKE signal low during core
reset. Setting the SCKELOW bit of VR_CTL keeps the SCKE signal low. This
ensures that the self-refresh mode is not exited during the reset sequence
initiated by a hibernate wake-up event. Normally, the SCKE pin is toggled
high during reset to comply with PC-133 specifications. For details about
the SCKELOW bit, refer to Chapter 8, “Dynamic Power Management”.

7-46 ADSP-BF51x Blackfin Processor Hardware Reference

External Bus Interface Unit

SDC Commands

This section provides a description of each of the commands that the SDC
uses to manage the SDRAM interface. These commands are initiated
automatically upon a memory read or memory write. A summary of the
various commands used by the on-chip controller for the SDRAM inter-
face is as follows.

MODE REGISTER SET

EXTENDED MODE REGISTER SET

BANK ACTIVATION

READ and WRITE

SINGLE PRECHARGE

PRECHARGE ALL

AUTO-REFRESH

SELF-REFRESH ENTRY and SELF-REFRESH EXIT
NOP

Table 7-11 shows the SDRAM pin state during SDC commands.

ADSP-BF51x Blackfin Processor Hardware Reference 7-47

SDC Functional Description

Table 7-11. Pin State During SDC Commands

Command [SCKE [SCKE |SMS SRAS SCAS SWE SA10 Addresses
(n-1)|(n)
(E)/Mode |High |High |Low Low Low Low Op-code Op-code
register set
Activate High |High |Low Low High High Valid address | Valid
bit
Read High |High |Low High Low High Low Valid
(CMD)
Single High |High |Low Low High Low Low Valid
precharge
Precharge High |High |Low Low High Low High Don’t care
all
Write High |High |Low High Low Low Low (CMD) | Valid
Auto-refresh| High | High | Low Low Low High Don’t care Don’t care
Self-refresh |High |Low |Low Low Low High Don’t care Don’t care
entry
Self-refresh |Low |Low |Don’t care | Don’t care | Don’t care | Don’t care | Don’t care Don’t care
Self-refresh |Low |High |High Don’t care | Don’t care | Don’t care | Don’t care Don’t care
exit
NOP High |High |Low High High High Don’t care Don’t care
Inhibit High |High |High Don’t care | Don’t Care | Don’t care | Don’t care Don’t care

Mode Register Set Command

The MODE REGISTER SET (MRS) command initializes SDRAM operation
parameters. This command is a part of the SDRAM power-up sequence.
The MRS command uses the address bus of the SDRAM as data input.
The power-up sequence is initiated by setting the PSSE bit in the SDRAM
memory global control register (EBIU_SDGCTL) and then writing or reading
from any enabled address within the SDRAM address space to trigger the
power-up sequence. The exact order of the power-up sequence is deter-
mined by the PSM bit of the EBIU_SDGCTL register.

7-48 ADSP-BF51x Blackfin Processor Hardware Reference

External Bus Interface Unit

The MRS command initializes these parameters:
e Burst length = 1, bits A[2-0], always 0
* Burst type = sequential, bit A[31], always 0

* CAS latency, bits AL6-4], programmable in the EBIU_SDGCTL
register

e Bits A[12-71, always 0

After power-up and before executing a read or write to the SDRAM mem-
ory space, the application must trigger the SDC to write the SDRAM
mode register. The write of the SDRAM mode register is triggered by set-
ting the PSSE bit in the SDRAM memory global control register
(EBIU_SDGCTL) and then issuing a read or write transfer to the SDRAM
address space. The initial read or write triggers the SDRAM power-up
sequence to be run, which programs the SDRAM mode register with burst
length, burst type, and CAS latency from the EBIU_SDGCTL register and
optionally the content to the extended mode register. This initial read or
write to SDRAM takes many cycles to complete.

While executing an MRS command, the unused address pins are cleared.
During the two clock cycles following the MRS command (tyrp), the
SDC issues only NOP commands.

Extended Mode Register Set Command (Mobile SDRAM)

The extended mode register is a subset of the mode register. The EBIU
enables programming of the extended mode register during power-up via
the EMREN bit in the EBIU_SDGCTL register.

ADSP-BF51x Blackfin Processor Hardware Reference 7-49

SDC Functional Description

The extended mode register is initialized with these parameters:

 Dartial array self-refresh, bits A[2-01, bit A[2] always 0, bits A[1-0]
programmable in EBIU_SDGCTL

* Temperature compensated self-refresh, bits A[4-31, bit A[3] always
1, bit A[4] programmable in EBIU_SDGCTL

* Drive strength control, bits A[6-57, always 0
* Bits A[12-71, always 0, and bit A[13] always 1

@ Not programming the extended mode register upon initialization

results in default settings for the low-power features. The extended
mode defaults with the temperature sensor enabled, full drive
strength, and full array refresh.

Bank Activation Command

The BANK ACTIVATION command is required for first access to any internal
bank in SDRAM. Any subsequent access to the same internal bank but
different row will be preceded by a precharge and activation command to

that bank.

However, if an access to another bank occurs, the SDC leaves the current
page open and issues a BANK ACTIVATION command before executing the
read or write command to that bank. With this method, called multibank
operation, one page per bank can be open at a time, which results in a
maximum of four pages.

Read/Write Command

A read/write command is executed if the next read/write access is in the
present active page. During the read command, the SDRAM latches the
column address. The delay between activate and read commands is deter-
mined by the tgcp parameter. Data is available from the SDRAM after
the CAS latency has been met.

7-50 ADSP-BF51x Blackfin Processor Hardware Reference

External Bus Interface Unit

In the write command, the SDRAM latches the column address. The
write data is also valid in the same cycle. The delay between activate and
write commands is determined by the tycp parameter.

The SDC does not use the auto-precharge function of SDRAMs, which is
enabled by asserting SA10 high during a read or write command.

Partial Write

In general, there are two different ways to modify a single byte within the
16-bit interface. First, it can be done by a read/modify/write sequence.
However, this is not very efficient because multiple accesses are required.

During partial writes to SDRAM, the SDQM[1:0] pins are used to mask
writes to bytes that are not accessed. Table 7-12 shows the SDAM[1:0]

encodings based on the internal transfer address bit 1A[0] and the transfer
size.

However, during read transfers to SDRAM banks, reads are always done
of all bytes in the bank regardless of the transfer size. This means for
16-bit SDRAM banks, SDQM[1:07 are all zeros (0s).

The SDC provides byte enable pins SDQM[1:0] to allow the pro-
cessor to perform efficient byte-wide arithmetic and byte-wide
processing in external memory.

Table 7-12. SDQM][1:0] Encodings During Writes

Internal Address | Internal Transfer Size

IA[0]
1 byte 2 bytes

0 SDQMI1] =1 | SDQM[1] =0
SDQMI0] =0 | SDQM][0] =0

1 SDQMI1] =0 | SDQM[1] =0
SDQM[0] =1 | SDQMI0] = 0

ADSP-BF51x Blackfin Processor Hardware Reference 7-51

SDC Functional Description

For 16-bit SDRAMSs, connect SDQM[0] to DQML, and connect
SDQML11]1 to DOMH.

Single Precharge Command

For a page miss during reads or writes in a specific internal SDRAM bank,
the SDC uses the SINGLE PRECHARGE command to that bank.

The SDC does not use the auto-precharge read or write command
of SDRAMSs, which is enabled by asserting SA10 high during a read
or write command.

Precharge All Command

The PRECHARGE ALL command is used to precharge all internal banks at the
same time before executing an auto-refresh. All open banks will be auto-
matically closed. This is possible since the SDC uses a separate SA10 pin
which is asserted high during this command. This command precedes the
AUTO-REFRESH command.

Auto-Refresh Command

The SDRAM internally increments the refresh address counter and causes
an auto-refresh to occur internally for that address when the AUTO-REFRESH
command is given. The SDC generates an AUTO-REFRESH command after
the SDC refresh counter times out. The RDIV value in the SDRAM refresh
rate control register must be set so that all addresses are refreshed within
the trgp period specified in the SDRAM timing specifications. This com-
mand is issued to the external bank whether or not it is enabled (EBE in the
SDRAM memory global control register). Before executing the
AUTO-REFRESH command, the SDC executes a PRECHARGE ALL command to
the external bank. The next activate command is not given until the tggc
specification (tRpc = trag + trp) is met.

Auto-refresh commands are also issued by the SDC as part of the powerup
sequence and after exiting self-refresh mode.

7-52 ADSP-BF51x Blackfin Processor Hardware Reference

External Bus Interface Unit

Self-Refresh Mode

The self-refresh mode is controlled by the SELF-REFRESH ENTRY and
SELF-REFRESH EXIT commands. The SDC must issue a series of com-
mands, including the SELF-REFRESH ENTRY command, to put the SDRAM
into this low power operation, and it must issue another series of com-
mands, including the SELF-REFRESH EXIT command, to re-access the
SDRAM.

Self-Refresh Entry Command

The SELF-REFRESH ENTRY command causes refresh operations to be per-
formed internally by the SDRAM without any external control. This
means that the SDC does not generate any auto-refresh commands while
the SDRAM is in self-refresh mode. Before executing the SELF-REFRESH
ENTRY command, all internal banks are precharged. The SELF-REFRESH
ENTRY command is started by setting the SRFS bit of the SDRAM memory
global control register (EBIU_SDGCTL). The SDC now drives SCKE low.

Only the SCKE pin keeps control during self-refresh, all other
SDRAM pins are allowed to be disabled. However the SDC still
drives the SCLK during self-refresh mode. Software may disable the
clock by clearing the SCTLE bit in EBIU_SDGCTL.

Self-Refresh Exit Command

Leaving self-refresh mode is performed with the SELF-REFRESH EXIT com-
mand, whereby the SDC asserts SCKE. Any internal core/DMA access
causes the SDC to perform an SELF-REFRESH EXIT command. The SDC
waits to meet the tygg specification (tygr = tras + trp) and then issues an
AUTO-REFRESH command. After the AUTO-REFRESH command, the SDC
waits for the trpc specification (tRpc = tras + trp) to be met before exe-
cuting the activate command for the transfer that caused the SDRAM to
exit self-refresh mode. The latency from when a transfer is received by the
SDC while in self-refresh mode, until the activate command occurs for
that transfer, is:

ADSP-BF51x Blackfin Processor Hardware Reference 7-53

SDC Functional Description

Time to exit self-refresh: 2 x (tgag + trp)

The minimum time between a subsequent SELF-REFRESH ENTRY
and the SELF-REFRESH EXIT command is at least tgag cycles. If a
self-refresh entry command is issued during any MDMA transfer,
the SDC satisfies this core request with the minimum self-refresh
period (trag)-

The application software should ensure that all applicable clock timing
specifications are met before the transfer to SDRAM address space which
causes the controller to exit self-refresh mode. If a transfer occurs to
SDRAM address space when the SCTLE bit is cleared, an internal bus error
is generated, and the access does not occur externally, leaving the SDRAM
in self-refresh mode. For more information, see “Error Detection” on

page 7-7.

No Operation Command

The no operation (NOP) command to the SDRAM has no effect on opera-
tions currently in progress. The command inhibit command is the same as
a NOP command; however, the SDRAM is not chip-selected. When the
SDC is actively accessing the SDRAM to insert additional wait states, the
NOP command is given. When the SDC is not accessing the SDRAM, the
command inhibit command is given (SMS = 1).

7-54 ADSP-BF51x Blackfin Processor Hardware Reference

External Bus Interface Unit

SDC SA10 Pin

The SDRAM’s AL10] pin follows the truth table below:

* During the precharge command, it is used to indicate a precharge

all

* During a bank activate command, it outputs the row address bit

* During read and write commands, it is used to disable
auto-precharge

Therefore, the SDC uses a separate SA10 pin with these rules.

Connect the SA10 pin with the SDRAM A[10] pin. Because the
ADSP-BF51x processor uses byte addressing, it starts with A[1].
The A[11] pin is left unconnected for SDRAM accesses and is
replaced by the SA10 pin.

SDC Programming Model

The following sections provide programming model information for the

SDC.

SDC Configuration

After a processor’s hardware or software reset, the SDC clocks are enabled;
however, the SDC must be configured and initialized. Before program-
ming the SDC and executing the powerup sequence, these steps are
required:

1. Ensure the clock to the SDRAM is stable after the power has stabi-
lized for the proper amount of time (typically 100 ms).

2. Write to the SDRAM refresh rate control register (EBIU_SDRRC).

ADSP-BF51x Blackfin Processor Hardware Reference 7-55

SDC Programming Model

3. Write to the SDRAM memory bank control register
(EBIU_SDBCTL).

4. Write to the SDRAM memory global control register
(EBIU_SDGCTL) and issue an SSYNC instruction.

5. Perform SDRAM access.

The SDRS bit of the SDRAM control status register can be checked to
determine the current state of the SDC. If this bit is set, the SDRAM

powerup sequence has not been initiated.

The RDIV field of the EBIU_SDRRC register should be written to set the
SDRAM refresh rate.

The EBIU_SDBCTL register should be written to describe the sizes /configu-
ration of SDRAM memory (EBSZ and EBCAW) and to enable the external
bank (EBE). Prior to the start of the SDRAM powerup sequence, any
access to SDRAM address space, regardless of the state of the EBE bit, gen-
erates an internal bus error, and the access does not occur externally. For
more information, see “Error Detection” on page 7-7.

The powerup latency can be estimated as:

trp + (8 X tRpc) + tMRD + tRCD

If the external bank remains disabled after the SDRAM powerup sequence

has completed, any transfers to it will result in a hardware error interrupt
and the SDRAM transfer will not occur.

7-56 ADSP-BF51x Blackfin Processor Hardware Reference

External Bus Interface Unit

The EBIU_SDGCTL register is written:

* To set the SDRAM cycle timing options (CL, TRAS, TRP, TRCD, TWR,
EBUFE)

e To enable the SDRAM clock (SCTLE)

* To select and enable the start of the SDRAM powerup sequence
(PSM, PSSE)

If SCTLE is disabled, any access to SDRAM address space generates an
internal bus error and the access does not occur externally. For more infor-
mation, see “Error Detection” on page 7-7.

Once the PSSE bit in the EBIU_SDGCTL register is set, and a transfer occurs
to enabled SDRAM address space, the SDC initiates the SDRAM pow-
erup sequence. The exact sequence is determined by the PSM bit in the
EBIU_SDGCTL register. The transfer used to trigger the SDRAM powerup
sequence can be either a read or a write. This transfer occurs when the
SDRAM powerup sequence has completed. This initial transfer takes
many cycles to complete since the SDRAM powerup sequence must take
place.

Example SDRAM System Block Diagrams

Figure 7-12 shows a block diagram of an SDRAM interface. In this exam-
ple, the SDC is connected to 2 x (8M x 8) = 8M x 16 to form one external
128M bit / 16M byte bank of memory. The system’s page size is 1024
bytes. The same address and control bus feeds both SDRAM devices.

ADSP-BF51x Blackfin Processor Hardware Reference 7-57

SDC Programming Model

BLACKFIN SDRAM 1
. __ 8Mx8
SMS »>|CS
SRAS » | RAS
SCAS | CAS
SWE » | WE
A[18] »| BAO DQ[7:0]
A[19] » | BA1
SA10 »| A[10]
ADDR[12,10:1] »| A[11,9:0]
CLKOUT » | CLK
SCKE »| CKE
SDQM[0] »| DQM
sSDQM[1]
DATA[7:0]
DATA[15:0] | >
DATA[15:8]
SDRAM 2
_ 8Mx8
| RAS
»| CAS
»>| WE
> BAO DQ[7:0]
> BA1
> A[10]
»| A[11,9:0]
»| CLK
»| CKE
> DQM

Figure 7-12. SDRAM System Block Diagram, Example 1

Figure 7-13 shows a block diagram of an SDRAM interface. In this exam-
ple, the SDC is connected to 4 x (16M x 4) = 16M x 16 to form one
external 256M bit / 32M byte bank of memory. The system’s page size is
2048 bytes. The same address and control bus pass a registered buffer
before they feed all 4 SDRAM devices.

7-58 ADSP-BF51x Blackfin Processor Hardware Reference

ADSP-BF51x

SMS
SRAS

SCAS

SWE

A[18]

A[19]

SA10
ADDRI[12,10:1]
SCKE
CLKOUT

DATA[15:0]

SDQM[0]
SDQM[1]

External Bus Interface Unit

SDRAM 1 SDRAM 2
Cs 16Mx4 cs 16Mx4
RAS RAS
CAS CAs
WE WE
REGISTERED BAO D[3:0] BAO D[7:4]
BUFFER > BA1 DQI3:0] |<— oAt DQ[3:0] [—
A[10] A[10]
A[11,9:0] A[11,9:0]
CLK CLK
T CKE CKE
—>| DaMm » | DaM
CLKOUT
A
SDRAM 3 SDRAM 4
_ 16Mx4 — 16Mx4
cs cs
RAS RAS
cAs cas
WE WE
BAO DQ[3:0] [<— BAO DQ[3:0] |<—
BA1 ol DI11:8] | gy 30l D[15:12]
A[10] A[10]
A[11,9:0] A[11,9:0]
CLK CLK
CKE CKE
L DaM L —»|DaMm

Figure 7-13. SDRAM System Block Diagram, Example 2

Furthermore, the EBUFE bit should be used to enable or disable external
buffer timing. When buffered SDRAM modules or discrete register-buf-
fers are used to drive the SDRAM control inputs, EBUFE should be set.
Using this setting adds a cycle of data buffering to read and write accesses.

SDC Register Definitions

The following sections describe the SDC registers.

ADSP-BF51x Blackfin Processor Hardware Reference

7-59

SDC Register Definitions

EBIU_SDRRC Register

The SDRAM refresh rate control register (EBIU_SDRRC, shown in

Figure 7-14) provides a flexible mechanism for specifying the auto-refresh
timing. Since the clock supplied to the SDRAM can vary, the SDC pro-
vides a programmable refresh counter, which has a period based on the
value programmed into the RDIV field of this register. This counter coordi-
nates the supplied clock rate with the SDRAM device’s required refresh
rate.

The desired delay (in number of SDRAM clock cycles) between consecu-
tive refresh counter time-outs must be written to the RDIV field. A refresh
counter time-out triggers an auto-refresh command to all external
SDRAM devices. Write the RDIV value to the EBIU_SDRRC register before
the SDRAM powerup sequence is triggered. Change this value only when
the SDC is idle.

SDRAM Refresh Rate Control Register (EBIU_SDRRC)
1514 1312 11 10 9 8 7 6 5 4 3 2 1 0
0xFFCO 0A18 |o|o|0|o|1 |o|o|0|o|o|o|1|1|o|1|o| Reset = 0x081A
| |

‘ RDIV[11:0]

Figure 7-14. SDRAM Refresh Rate Control Register

To calculate the value that should be written to the EBIU_SDRRC register,
use the following equation:

RDIV = ((fSCLK X tREF) / NRA) — (tRAS + tRP)

= (fscrk * tREFD - (trRAS + tRP)
Where:

* fycrx = SDRAM clock frequency (system clock frequency)
* trer = SDRAM row refresh period

7-60 ADSP-BF51x Blackfin Processor Hardware Reference

External Bus Interface Unit

* trgr; = SDRAM row refresh interval

* NRA = Number of row addresses in SDRAM (refresh cycles to
refresh whole SDRAM)

* tpas = Active to precharge time (TRAS in the SDRAM memory
global control register) in number of clock cycles

* trp = RAS to precharge time (TRP in the SDRAM memory global

control register) in number of clock cycles

@ See the DRAM data sheet if NRA differs from the number of
required refresh cycles. In this case use the refresh cycle number

instead of NRA.

This equation (8192 row addresses per refresh cycle) calculates the num-
ber of clock cycles between required refreshes and subtracts the required
delay between bank activate commands to the same internal bank (tgc =
tras + trp)- The tpc value is subtracted, so that in the case where a refresh
time-out occurs while an SDRAM cycle is active, the SDRAM refresh rate
specification is guaranteed to be met. The result from the equation should
always be rounded down to an integer.

Below is an example of the calculation of RDIV for a typical SDRAM in a
system with a 80 MHz clock:

fscrx = 80 MHz
tRgf = 64 ms
NRA = 8192 row addresses
tras = 0
trp = 3
The equation for RDIV yields:

RDTV = ((80 x 10° x 64 x 1073) / 8192) — (6 + 3) = 616 clock cycles

ADSP-BF51x Blackfin Processor Hardware Reference 7-61

SDC Register Definitions

This means RDIV is 0x268 and the EBIU_SDRRC register should be written
with 0x0268.

®

RDIV must be programmed to a nonzero value if the SDRAM con-
troller is enabled. When RDIV = 0, operation of the SDRAM
controller is not supported and can produce undesirable behavior.
Values for RDIV can range from 0x001 to OxFFF.

EBIU_SDBCTL Register

The SDRAM memory bank control register (EBIU_SDBCTL), shown in
Figure 7-15, includes external bank-specific programmable parameters. It
allows software to control some parameters of the SDRAM. The external
bank can be configured for a different size of SDRAM. It uses the access
timing parameters defined in the SDRAM memory global control register
(EBIU_SDGCTL). The EBIU_SDBCTL register should be programmed before
powerup and should be changed only when the SDC is idle.

External bank enable (EBE)

The EBE bit is used to enable or disable the external SDRAM bank.
If the SDRAM is disabled, any access to the SDRAM address space
generates an internal bus error, and the access does not occur exter-
nally. For more information, see “Error Detection” on page 7-7.

External bank size (EBS?)

The EBSZ encoding stores the configuration information for the
SDRAM bank interface. The EBIU supports 64M bit, 128M bit,
256M bit, and 512M bit SDRAM devices with x4, x8, and x16
configurations. Table 7-13 maps SDRAM density and I/O width.
See “SDRAM External Bank Size” on page 7-26 for more informa-
tion regarding the decoding of bank start addresses.

7-62

ADSP-BF51x Blackfin Processor Hardware Reference

External Bus Interface Unit

* External bank column address width (EBCAW)

The SDC determines the internal SDRAM page size from the
EBCAW parameters. Page sizes of 512 B, 1K byte, 2K byte, and 4K
byte are supported. Table 7-13 shows the page size and breakdown
of the internal address (IA[31:01, as seen from the core or DMA)
into the row, bank, column, and byte address. The bank width in
all cases is 16 bits. The column address and the byte address
together make up the address inside the page.

SDRAM Memory Bank Control Register (EBIU_SDBCTL)

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
0xFFCO 0A14 I0|0|0|0|0|0|0|0I0|0|0|0|0|0|o|0| Reset = 0x0000

_rl L1 L
EBCAWI[1:0] EBE

SDRAM external bank column SDRAM external bank enable
address width

> 0 - Disabled

8(1) - 293 E!Is 1 - Enabled

10 10 bits EBSZ[1:0]

11 - 11 bits SDRAM external bank size
00 - 16M byte
01 - 32M byte
10 - 64M byte

11 - 128M byte

Figure 7-15. SDRAM Memory Bank Control Register

The page size can be calculated for 16-bit SDRAM banks with this

formula:

page size = 2(CAW + 1)

where CAW is the column address width of the SDRAM, plus 1 because the
SDRAM bank is 16 bits wide (1 address bit = 2 bytes).

ADSP-BF51x Blackfin Processor Hardware Reference 7-63

SDC Register Definitions

Table 7-13. Internal Address Mapping

g % @ Page

° v | &< B

N o 53 9/ § o » » S »w »
2ESZsZ|2 8.8 : |Ef |2
e T w |- Q R =g 2 - = =
ism|egallf s < 5 < S © gt
SZ2R|SER|E% &2 2 < o< @<
128 11 4 1A[26:25] | IA[24:12] | IA[11:1] | IA[O]
128 10 2 1A[26:25] | IA[24:11] | IA[10:1] | IA[O]
128 1 1A[26:25] | 1A[24:10] | 1A[9:1] |IA[0]
128 8 5 1A[26:25] | IA[24:9] | IA[8:1] |IA[O]
64 11 4 1A[25:24] | 1A[23:12] | 1A[11:1]] 1A[0]
64 10 2 1A[25:24] | IA[23:11] | IA[10:1] | IA[O]
64 9 1 1A[25:24] | IA[23:10] | IA[9:1] | IA[O]
64 8 5 [A[25:24] | IA[23:9] | IA[8:1] |IA[0]
32 11 4 1A[24:23] | 1A[22:12] | 1A[11:1]] 1A[0]
32 10 2 1A[24:23] | 1A[22:11] | 1A[10:1] | TA[0]
32 9 1 1A[24:23] | 1A[22:10] | 1A[9:1] | 1A[0]
32 8 .5 1A[24:23] | IA[22:9] |IA[8:1] |IA[0]
16 11 4 1A[23:22] | TA[21:12] | IA[11:1]| TIA[O]
16 10 2 1A[23:22] | TA[21:11] | IA[10:1] | IA[O]
16 9 1 1A[23:22] | 1A[21:10] | 1A[9:1] |1A[0]
16 8 5 1A[23:22] | IA[21:9] | IA[8:1] |IA[O]

Using SDRAMs With Systems Smaller Than 16M Byte
It is possible to use SDRAMs smaller than 16M byte on the ADSP-BF51x,

as long as it is understood how the resulting memory map is altered.
Figure 7-16 shows an example where a 2M byte SDRAM (512K x 16 bits
x 2 banks) is mapped to the external memory interface. In this example,
there are 11 row addresses and eight column addresses per bank. Referring
to Table 7-4 on page 7-26, the lowest available bank size (16M byte) for a
device with eight column addresses has two bank address lines (1A[23:22])

7-64 ADSP-BF51x Blackfin Processor Hardware Reference

External Bus Interface Unit

and 13 row address lines (IA[21:9]). Therefore, one processor bank
address line and two row address lines are unused when hooking up to the
SDRAM in the example. This causes aliasing in the processor’s external
memory map, which results in the SDRAM being mapped into non-con-
tiguous regions of the processor’s memory space.

Referring to the table in Figure 7-16, note that each line in the table cor-
responds to 2!” bytes, or 512K byte. Thus, the mapping of the 2M byte
SDRAM is non-contiguous in Blackfin memory, as shown by the memory

mapping in the left side of the figure.

EXAMPLE: 2M BYTE SDRAM WITH
512K x 16 x 2 BANKS, BANK ROW ADDRESS
11 ROW ADDRESSES AND ADDRESS
8 COLUMN ADDRESSES PER BANK
1A23 | IA22 | 1A21 | 1A20 | IA19
BLACKFIN MEMORY MAP 0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 1 1
W 0 0 1 0 0
)
Py 0 0 1 0 1
0 0 1 1 0
0 0 1 1 1
0 1 0 0 0
0 1 0 0 1
0 1 0 1 0
0 1 0 1 1
o
" 1M BYTE 0 1 1 0 0
)
< o | 1 |1 |o |1
0 1 1 1 0
0 1 1 1 1
1M BYTE ¢ 1 X X X X

0x0000 0000 UNAVAILABLE COMBINATIONS ARE SHADED

Figure 7-16. Using Small SDRAMs

ADSP-BF51x Blackfin Processor Hardware Reference 7-65

SDC Register Definitions

EBIU_SDGCIL Register

The SDRAM memory global control register (EBIU_SDGCTL) includes all
programmable parameters associated with the SDRAM access timing and
configuration. Figure 7-17 shows the EBIU_SDGCTL register bit definitions.

Werites to this register should be followed by an SSYNC instruction
to prevent a subsequent external access from occurring before the
timing changes are properly effected.

SDRAM Clock Enable (SCTLE)

The SCTLE bit is used to enable or disable the SDC. If SCTLE is cleared, any
access to SDRAM address space generates an internal bus error, and the
access does not occur externally. For more information, see “Error Detec-
tion” on page 7-7. When SCTLE is cleared, all SDC control pins are in
their inactive states and the SDRAM clock is not running. The SCTLE bit
must be set for SDC operation and is set by default at reset. The CAS
latency (CL), SDRAM tgag timing (TRAS), SDRAM tgp timing (TRP),
SDRAM trcp timing (TRCD), and SDRAM tyg timing (TWR) bits should
be programmed based on the system clock frequency and the timing spec-

ifications of the SDRAM used.

@ The user must ensure that tRAS + tRP >= max(tRC,tRFC,tXSR).

The SCTLE bit allows software to disable all SDRAM control pins. These
pins are SDQM[3:01, SCAS, SRAS, SWE, SCKE, and CLKOUT.

e SCTLE=0
Disable all SDRAM control pins (control pins negated, CLKOUT
low).

e SCTLE =1

Enable all SDRAM control pins (CLKOUT toggles).

7-66 ADSP-BF51x Blackfin Processor Hardware Reference

External Bus Interface Unit

SDRAM Memory Global Control Register (EBIU_SDGCTL)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
0xFFCO0 0A10 |1|1|1 |o|o|o|o|o|o|o|o|o|1|o|o|0| Reset = 0xE008 8849

L |
|—| TRCD[2:1]

Reserve SDRAM trcp in SCLK cycles

000 - Reserved

001-111 - 1 to 7 cycles

TWR[1:0]

SDRAM tyg in SCLK cycles
TCSR 00 - Reserved
Temperature compensated self-refresh 01-11 - 1 to 3 cycles
value in extended mode register PUPSD
0 - 45 degrees C Powerup start delay
1-85degrees C 0 - No extra delay added
EMREN - before first Precharge
Extended mode register enable command
0 - Disabled 1 - Fifteen SCLK cycles of
1 - Enabled delay before first
FBBRW Precharge command
Fast back-to-back read to write PSM
0 - Disabled SDRAM powerup sequence
1 - Enabled 0 - Precharge, 8 CBR refresh
EBUFE — - cycles, mode register set
SDRAM timing for external buffering 1 - Precharge, mode register
of address and CoerI. . . set, 8 CBR refresh cycles
0 - External buffering timing disabled PSSE

1 - External buffering timing enabled SDRAM powerup sequence

SRFS start enable. Always reads 0
SDRAM self-refresh enable 0 - No effect
0 - Disable self-refresh 1 - Enables SDRAM powerup

1 - Enable self-refresh during inactivity

1514 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[lelofofrfofofofofrofo]ifofo]]
[[Il Il

sequence on next SDRAM
access

I LscrLE
Enable CLKOUT, SRAS,

TRCD[0] SCAS, SWE, sbaMm[1:0]
SDRAM tgrcp in SCLK cycles 0 - Disabled
000 - Reserved 1 - Enabled
001-111 - 1 to 7 cycles L CL[1:0]
TRP[2:0] SDRAM CAS latency
SDRAM tgp in SCLK cycles 00-01 - Reserved
000 - No effect 10 - 2 cycles
001-111 -1 to 7 cycles 11 - 3 cycles
TRAS[3:0] — PASRI1:0] .
SDRAM tgag in SCLK cycles Partial array self—ref_resh in
0000 - No effect extended mode register
0001-1111 - 1 to 15 cycles 00 - All 4 banks refreshed

01 - Int banks 0, 1 refreshed
10 - Int bank 0 only refreshed
11 - Reserved

Figure 7-17. SDRAM Memory Global Control Register

ADSP-BF51x Blackfin Processor Hardware Reference 7-67

SDC Register Definitions

Note that the CLKOUT function is also shared with the AMC. Even if SCTLE
is disabled, CLKOUT can be enabled independently by the CLKOUT enable in
the AMC (AMCKEN in the EBIU_AMGCTL register).

If the system does not use SDRAM, SCTLE should be set to 0.

If an access occurs to the SDRAM address space while SCTLE is 0, the
access generates an internal bus error and the access does not occur exter-
nally. For more information, see “Error Detection” on page 7-7.

With careful software control, the SCTLE bit can be used in con-
junction with the SRFS bit to further lower power consumption by
freezing the CLKOUT pin. However, SCTLE must remain enabled at
all times when the SDC is needed to generate auto-refresh com-

mands to SDRAM.

CAS Latency (CL)

The cL bits in the SDRAM memory global control register (EBIU_SDGCTL)
select the CAS latency value:

e CL=b#00
Reserved

e (L =Db#01
Reserved

e CL=Db#10

2 clock cycles

e CL=b#l1
3 clock cycles

7-68 ADSP-BF51x Blackfin Processor Hardware Reference

External Bus Interface Unit

Partial Array Self Refresh (PASR)

The PASR bits determine how many internal SDRAM banks are refreshed
during self-refresh.

e PASR = b#00
All 4 banks

* PASR = b#01
Internal banks 0 and 1 refreshed

e PASR = b#10
Only internal bank 0 refreshed

e PASR = b#11
Reserved

Internal banks are decoded with the A[19:18] pins.

The PASR feature requires careful software control with regard to
the internal bank used.

Bank Activate Command Delay (TRAS)

The TRAS bits in the SDRAM memory global control register
(EBIU_SDGCTL) select the tgpg value. Any value between 1 and 15 clock
cycles can be selected. For example:

e TRAS = b#0000
No effect

e TRAS = b#0001
1 clock cycle

e TRAS = b#0010
2 clock cycles

* TRAS = b#1111
15 clock cycles

ADSP-BF51x Blackfin Processor Hardware Reference 7-69

SDC Register Definitions

Bank Precharge Delay (TRP)

The TRP bits in the SDRAM memory global control register
(EBIU_SDGCTL) select the tgp value. Any value between 1 and 7 clock
cycles may be selected. For example:

e TRP = b#000
No effect
e TRP = b#001

1 clock cycle

e TRP =b#010
2 clock cycles

e TRP =b#111
7 clock cycles

RAS to CAS Delay (TRCD)

The TRCD bits in the SDRAM memory global control register
(EBIU_SDGCTL) select the tgcp value Any value between 1 and 7 clock
cycles may be selected. For example:

e TRCD = b#000
Reserved, no effect

e TRCD = b#001
1 clock cycle

e TRCD = b#010
2 clock cycles

e TRCD = b#111
7 clock cycles

7-70 ADSP-BF51x Blackfin Processor Hardware Reference

External Bus Interface Unit

Write to Precharge Delay (TWR)

The TuR bits in the SDRAM memory global control register
(EBIU_SDGCTL) select the typg value. Any value between 1 and 3 clock
cycles may be selected. For example:

e TWR = b#00
Reserved
e TWR =b#01

1 clock cycle

* TWR =Db#10
2 clock cycles

e TWR=b#l11
3 clock cycles

Power-Up Start Delay (PUPSD)

The power-up start delay bit (PUPSD) optionally delays the power-up start
sequence for 15 SCLK cycles. This is useful for multiprocessor systems shar-
ing an external SDRAM. If the bus has been previously granted to the
other processor before power-up and self-refresh mode is used when
switching bus ownership, then the PUPSD bit can be used to guarantee a
sufficient period of inactivity from self-refresh to the first Precharge com-
mand in the power-up sequence in order to meet the exit self-refresh time

(tXSR) of the SDRAM.

Power-Up Sequence Mode (PSM)
If the PSM bit is set to 1, the SDC command sequence is:
1. Precharge all
2. Mode register set

3. 8 auto-refresh cycles

ADSP-BF51x Blackfin Processor Hardware Reference 7-71

SDC Register Definitions

If the PSM bit is cleared, the SDC command sequence is:
1. Precharge all
2. 8 auto-refresh cycles

3. Mode register set

Power-Up Sequence Start Enable (PSSE)
The pPsM and PSSE bits work together to specify and trigger an SDRAM

power-up (initialization) sequence. Two events must occur before the

SDC does the SDRAM power-up sequence:

* The PSSE bit must be set to enable the SDRAM power-up
sequence.

e A read or write access must be done to enabled SDRAM address
space in order to have the external bus granted to the SDC so that
the SDRAM power-up sequence may occur.

The SDRAM power-up sequence occurs and is followed immediately by
the read or write transfer to SDRAM that was used to trigger the SDRAM
power-up sequence. Note that there is a latency for this first access to
SDRAM because the SDRAM power-up sequence takes many cycles to
complete.

Before executing the SDC power-up sequence, ensure that the
SDRAM receives stable power and is clocked for the proper
amount of time, as described in the SDRAM specifications.

7-72 ADSP-BF51x Blackfin Processor Hardware Reference

External Bus Interface Unit

Self-Refresh Setting (SRFS)

The SRFS and SCTLE bits work together in EBIU_SDGCTL for self-refresh
control.

®* SRFS = b#0
Disable self-refresh mode

® SRFS = bitl
Enter self-refresh mode

When SRFS is set, self-refresh mode is triggered. Once the SDC completes
any active transfers, the SDC executes a sequence of commands to put the

SDRAM into self-refresh mode.

When the device comes out of reset, the SCKE pin is driven high. If it is
necessary to enter self-refresh mode after reset, program SRFS = b#1.

Enter Self-Refresh Mode

When SRFS is set, once the SDC enters an idle state it issues a precharge all
command and then issues a self-refresh entry command. If an internal
access is pending, the SDC delays issuing the self-refresh entry command
until it completes the pending SDRAM access and any subsequent pend-
ing access requests.

Once the SDRAM device enters into self-refresh mode, the SDRAM con-
troller asserts the SDSRA bit in the SDRAM control status register
(EBIU_SDSTAT).

Once the SRFS bit is set to 1, the SDC enters self-refresh mode
when it finishes pending accesses. There is no way to cancel the
entry into self-refresh mode.

Before disabling the CLKOUT pin with the SCTLE bit, be sure to place the
SDC in self-refresh mode (SRFS bit). If this is not done, the SDRAM is

unclocked and will not work properly.

ADSP-BF51x Blackfin Processor Hardware Reference 7-73

SDC Register Definitions

Exit Self-Refresh Mode

The SDRAM device exits self-refresh mode only when the SDC receives
core or DMA requests. In conjunction with the SRFS bit, two possibilities
are given to exit self-refresh mode.

e If the SRFS bit remains set before the core/DMA request, the SDC
exits self-refresh mode temporarily for a single request and returns
back to self-refresh mode until a new request is latched.

* If the SRFS bit is cleared before the core/DMA request, the SDC
exits self-refresh mode and returns to auto-refresh mode.

Before exiting self-refresh mode with the SRFS bit, be sure to enable the
CLKOUT pin (SCTLE bit). If this is not done, the SDRAM is unclocked and
will not work properly.

External Buffering Enabled (EBUFE)

With the total I/O width of 16 bits, a maximum of 4x4 bits can be con-
nected in parallel in order to increase the system’s overall page size.

To meet overall system timing requirements, systems that employ several
SDRAM devices connected in parallel may require buffering between the
processor and the multiple SDRAM devices. This buffering generally con-

sists of a register and driver.

To meet such timing requirements and to allow intermediary registration,
the SDC supports pipelining of SDRAM address and control signals.

The EBUFE bit in the EBIU_SDGCTL register enables this mode:

e EBUFE =0
Disable external buffering timing

e F[BUFE =1
Enable external buffering timing

7-74 ADSP-BF51x Blackfin Processor Hardware Reference

External Bus Interface Unit

When EBUFE = 1, the SDRAM controller delays the data in write accesses
by one cycle, enabling external buffer registers to latch the address and
controls. In read accesses, the SDRAM controller samples data one cycle
later to account for the one-cycle delay added by the external buffer regis-
ters. When external buffering timing is enabled, the latency of all accesses
is increased by one cycle.

Connection of 4 x 4 bits rather than 1 x 16 bits increases the page
size by a factor of four, thus resulting in fewer off-page penalties.

Fast Back-to-Back Read to Write (FBBRW)

The FBBRW bit enables an SDRAM read followed by write to occur on con-
secutive cycles. In many systems, this is not possible because the turn-off
time of the SDRAM data pins is too long, leading to bus contention with
the succeeding write from the processor. When this bit is cleared, a clock
cycle is inserted between read accesses followed immediately by write
accesses.

Extended Mode Register Enabled (EMREN)

The EMREN bit enables programming of the extended mode register during
startup. The extended mode register is used to control SDRAM power
consumption in certain mobile low power SDRAMs. If the EMREN bit is
enabled, then the TCSR and PASR[1:07 bits control the value written to the
extended mode register.

Temperature Compensated Self-Refresh (TCSR)

The TCSR bit signals to the SDRAM the worst case temperature range for
the system, and thus how often the SDRAM internal banks need to be
refreshed during self-refresh.

@ All reserved bits in this register must always be written with Os.

ADSP-BF51x Blackfin Processor Hardware Reference 7-75

SDC Register Definitions

EBIU_SDSTAT Register

The SDRAM control status register (EBIU_SDSTAT), shown in Figure 7-18,
provides information on the state of the SDC. This information can be
used to determine when it is safe to alter SDC control parameters or it can

be used as a debug aid.

SDRAM Control Status Register (EBIU_SDSTAT)

1514 1312 11 10 9 8 7 6 5 4 3 2 1 0
0xFFCO 0A1C o|o|o|o|o|o|o|o|o|o |o|0|1 |o|o|o| Reset = 0x0008

| | L
Reserved ‘ SDCI

SDRAM controller idle
0 - SDC is busy performing
an access or an Auto-

SDEASE - W1C Refresh
SDRAM EAB sticky error status. Write 1 1-SDC is idle
to this bit to clear it. SDSRA
0 - No error detected SDRAM self-refresh active
1 - EAB access generated an error 0 - SDRAMSs not in self-
SDRS refresh mode
0 - Will not power up on next SDRAM 1 - SDRAMs in self-refresh
access (SDRAM already powered up) mode
1 - Will power up on next SDRAM -———SDPUA
access if SDRAM enabled SDRAM powerup active
0 - SDC not in powerup
sequence
1 - SDC in powerup
sequence

Figure 7-18. SDRAM Control Status Register

e SDC idle (sbci)

If the SDCT bit is cleared, the SDC is performing a user access or
auto-refresh. If the SDCI bit is set, no commands are issued and the
SDC is in idle state.

e SDC self-refresh active (SDSRA)

If the SDSRA bit is cleared, the SDC is performing auto-refresh
(SCKE pin = 0). If the SDSRA bit is set, the SDC performs self-refresh
mode (SCKE pin = 1).

7-76 ADSP-BF51x Blackfin Processor Hardware Reference

External Bus Interface Unit

* SDC powerup active (SDPUA)

If the SDPUA bit is cleared, the SDC is not in powerup sequence. If
the SDPUA bit is set, the SDC performs the powerup sequence.

* SDC powerup delay (SDRS)

If the SDRS bit is cleared, the SDC has already powered up. If the
SDRS bit is set, the SDC will still perform the powerup sequence.

» SDC EAB sticky error status (SDEASE)

If the SDEASE bit is cleared, there were no errors detected on the
EAB core bus. If the SDEASE bit is set, there were errors detected on
the EAB core bus. The SDEASE bit is sticky. Once it has been set,
software must explicitly write a 1 to the bit to clear it. Writes have
no effect on the other status bits, which are updated by the SDC
only.

SDC Programming Examples

Listing 7-3 through Listing 7-6 provide examples for working with the
SDC.

Listing 7-3. 16-Bit Core Transfers to SDRAM

.section L1_data_b;
.byte2 source[N] = 0x1122, 0x3344, 0xb566, 0x7788;
.section SDRAM;
.byte? dest[N];
.section L1_code;
I0.L = To(source);

I0.H = hi(source);
I1.L = lo(dest);
I1.H = hi(dest);

ADSP-BF51x Blackfin Processor Hardware Reference 7-77

SDC Programming Examples

RO.L = wlIO++];
p5=N-1;
Isetup(lp, 1p) 1cO0=pbh;
Tp:RO.L = wlIO++] || w[Il++] = RO.L;
wlIl++] = RO.L;

Listing 7-4. 8-Bit Core Transfers to SDRAM Using Byte Mask
SDQM][1:0] Pins

.section Ll_data_b;
.byte source[N] = 0x11, 0x22, 0x33, 0x44, 0x55, 0Ox66, 0x77, 0x88;

.section SDRAM;
.byte dest[N];

pO0.L = To(source);
pO0.H = hi(source);

pl.L = To(dest);
pl.H = hi(dest);
p5=N;

lsetup(start, end) TcO=pb;
start: RO = b[pO0++]1(z);
end: b[pl++] = RO; /* byte data masking */

Listing 7-5. Self-Refresh Mode Power Savings With Disabled CLKOUT

ro.1 = wlll++]; /* SDRAM access */
ssync; /* force lTast SDRAM access to finish */
PO.L = 1o(EBIU_SDGCTL);
PO.H = hi(EBIU_SDGCTL);
R1 = [PO];
bitset(R1l, bitpos(SRFS)); /* enter self-refresh */
[PO] = RI1;

7-78 ADSP-BF51x Blackfin Processor Hardware Reference

External Bus Interface Unit

ssync;

PO.L 1o0(EBIU_SDSTAT);
PO.H hi (EBIU_SDSTAT);
RO = [PO];

ssync;

self_refresh_status:
cc = bittst(RO, bitpos(SDSRA)); /* poll self-refresh status */
if lcc jump self_refresh_status;

PO.L = To(EBIU_SDGCTL);
PO.H = hi(EBIU_SDGCTL);
R1 = [PO];

bitcIr(R1l, bitpos(SCTLE));

/* disable CLKOUT after approx 20 cycles */
[PO] = RI;
ssync;

P5 = 30000;
LSETUP(1p,1p) LCO = P5;
Ip: nop; /* dummy loop */

R1 = [PO];
bitset(R1l, bitpos(SCTLE));
/* enable CLKOUT after approx 20 cycles */
[PO] = RI1;
ssync;

R1 = [PO];
bitcTIr(R1l, bitpos(SRFS)); /* exit self-refresh */
[PO] = RI;

ADSP-BF51x Blackfin Processor Hardware Reference 7-79

SDC Programming Examples

ssync;
wlIl++] = r0.1; /* SDRAM access */
Listing 7-6. Init

/***/

/* SDRAM part# Micron MT48LC32M8A2-75 (32Mx8/256Mbit) */
/* 8k rows, 1k columns -> EBCAW = 10 */
/* 2xSDRAM: 32Mx16 = 64Mbytes -> EBSZ = 010 */

/* populated SDRAM addresses -> 0x00000000 - OxQO1FFFFFF */
/* internal SDRAM bank A 0x00000000 - OxOO7FFFFF */
/* internal SDRAM bank B 0x00800000 - OxOOFFFFFF */
/* internal SDRAM bank C 0x01000000 - OxO17FFFFF */

/* internal SDRAM bank D 0x01800000 - OxOLFFFFFF */

/* powerup: PRE-REF-MRS -> PSM = 0 */
/* SCLK = 80 MHz */
/* tCK = 7.5ns min@CL=3 -> CL =3 */

/* tRAS = 44ns min -> TRAS =6 */
/* tRP = 20ns min -> TRP = 3 */
/* tRCD = 20ns min -> TRCD = 3 */
/* tWR = 15ns min -> TWR =2 */

/* tREF = 64ms max
->RDIV = (80MHz*64ms)/8192-(6+3)=0x268 cycles */

/***/

f#ifdef INIT_SDRAM

/* Check if already enabled */
p0.1 1o(EBIU_SDSTAT);

pO.h = hi(EBIU_SDSTAT);

ro [p0];

7-80 ADSP-BF51x Blackfin Processor Hardware Reference

External Bus Interface Unit

cc = bittst(r0, bitpos(SDRS));
if lcc jump skip init_sdram;

/* SDRAM Refresh Rate Control Register */
PO.L = To(EBIU_SDRRC);

PO.H = hi(EBIU_SDRRC);
RO.L = 0x0268;
WLPOT = RO.L;

/* SDRAM Memory Bank Control Register */
PO.L = 1o(EBIU_SDBCTL);

PO.H = hi(EBIU_SDBCTL);
RO.L = 0x0025;
WLPOT = RO.L;

/* SDRAM Memory Global Control Register */

PO.L = To(EBIU_SDGCTL);

PO.H = hi(EBIU_SDGCTL);

RO.L = 0x998d;

RO.H = 0x8491;

[PO] = RO;

ssync; /* wait until executed */

ADSP-BF51x Blackfin Processor Hardware Reference

7-81

SDC Programming Examples

7-82 ADSP-BF51x Blackfin Processor Hardware Reference

Dynamic Power Management

8 DYNAMIC POWER
MANAGEMENT

This chapter describes the dynamic power management functionality of
the Blackfin processor and includes the following sections:

* “Phase Locked Loop and Clock Control”
* “Dynamic Power Management Controller” on page 8-7
* “Operating Modes” on page 8-7
* “Dynamic Supply Voltage Control” on page 8-15
e “System Control ROM Function” on page 8-24
e “PLL and VR Registers” on page 8-19

* “Programming Examples” on page 8-30

Phase Locked Loop and Clock Control

The input clock into the processor, CLKIN, provides the necessary clock
frequency, duty cycle, and stability to allow accurate internal clock multi-
plication by means of an on-chip PLL module. During normal operation,
the user programs the PLL with a multiplication factor for CLKIN. The
resulting, multiplied signal is the voltage controlled oscillator (VCO)

ADSP-BF51x Blackfin Processor Hardware Reference 8-1

Phase Locked Loop and Clock Control

clock. A user-programmable value then divides the VCO clock signal to
generate the core clock (CCLK).

A user-programmable value divides the VCO signal to generate the system
clock (scLk). The scLk signal clocks the Peripheral Access Bus (PAB),
DMA Access Bus (DAB), External Access Bus (EAB), and the external bus
interface unit (EBIU).

These buses run at the PLL frequency divided by 1-15 (ScLK
domain). Using the SSEL parameter of the PLL divide register,
select a divider value that allows these buses to run at or below the
maximum SCLK rate specified in the processor data sheet.

To optimize performance and power dissipation, the processor allows the
core and system clock frequencies to be changed dynamically in a “coarse
adjustment.” For a “fine adjustment,” the PLL clock frequency can also be
varied.

PLL Overview

To provide the clock generation for the core and system, the processor
uses an analog PLL with programmable state machine control.

The PLL design serves a wide range of applications. It emphasizes embed-
ded and portable applications and low cost, general-purpose processors, in
which performance, flexibility, and control of power dissipation are key
features. This broad range of applications requires a wide range of fre-
quencies for the clock generation circuitry. The input clock may be a
crystal, a crystal oscillator, or a buffered, shaped clock derived from an
external system clock oscillator.

The PLL interacts with the Dynamic Power Management Controller
(DPMC) block to provide power management functions for the processor.
For information about the DPMC, see “Dynamic Power Management
Controller” on page 8-7.

8-2 ADSP-BF51x Blackfin Processor Hardware Reference

Dynamic Power Management

Subject to the maximum VCO frequency specified in the processor data
sheet, the PLL supports a wide range of multiplier ratios and achieves
multiplication of the input clock, CLKIN. To achieve this wide multiplica-
tion range, the processor uses a combination of programmable dividers in
the PLL feedback circuit and output configuration blocks.

Figure 8-1 illustrates a conceptual model of the PLL circuitry, configura-
tion inputs, and resulting outputs. In the figure, the VCO is an
intermediate clock from which the core clock (CCLK) and system clock
(SCLK) are derived.

OUTPUT CLOCK
GENERATOR (CLOCK
DIVIDE AND MUX)

PHASE LOCKED LOOP

CLKBUFHlj
|

SCLK
T
DF CLKIN SSEL [3:0}
f[)LI(IN
FILTER - SCLK
- — 94 - - PDWN
O I DEEP SLEEP
CLKouT POWERDOWN
| I (CCLK AND
| EN I SCLK OFF)
L I R P CCLK
|
|
|

. MSEL [5:0]
CLKIN XTAL] STOPCK
CSEL [1:0] (SLEEP MODE)
PLL_OFF DISABLE STOP CLOCK
CONTROL INPUTTO PLL. BYPASS CCLK OFF
CAN ADDITIONALLY BE (ACTIVE
USED WITH BYPASS MODE)

CCLK = SCLK = CLKIN

Figure 8-1. PLL Block Diagram

PLL Clock Multiplier Ratios

The PLL control register (PLL_CTL) governs the operation of the PLL. For
details about the PLL_CTL register, see “PLL_CTL Register” on page 8-21.

ADSP-BF51x Blackfin Processor Hardware Reference 8-3

Phase Locked Loop and Clock Control

The divide frequency (DF) bit and multiplier select (MSEL[5:01) field con-
figure the various PLL clock dividers:

* DF enables the input divider
* MSEL[5:071 controls the feedback dividers

The reset value of MSEL is 0x5. This value can be reprogrammed at startup
in the boot code.

Table 8-1 illustrates the VCO multiplication factors for the various MSEL
and DF settings.

As shown in the table, different combinations of MSEL[5:0] and DF can
generate the same VCO frequencies. For a given application, one combi-
nation may provide lower power or satisfy the VCO maximum frequency.
Under normal conditions, setting DF to 1 typically results in lower power
dissipation. See the processor data sheet for maximum and minimum fre-
quencies for CLKIN, CCLK, and VCO.

Table 8-1. MSEL Encodings

Signal Name VCO Frequency
MSEL[5:0] DF=0 DF =1
0 64x 32x

1 1x 0.5x

2 2x 1x

N = 3-62 Nx 0.5Nx
63 63x 31.5x

The PLL control (PLL_CTL) register controls operation of the PLL (see
Figure 8-4 on page 8-21). Note that changes to the PLL_CTL register do
not take effect immediately. In general, the PLL_CTL register is first pro-
grammed with a new value, and then a specific PLL programming
sequence must be executed to implement the changes. This is handled

ADSP-BF51x Blackfin Processor Hardware Reference

Dynamic Power Management

automatically by the system control ROM function (bfrom_SysControl())
as described in “System Control ROM Function” on page 8-24.

Core Clock/System Clock Ratio Control

Table 8-2 describes the programmable relationship between the VCO fre-
quency and the core clock. Table 8-3 shows the relationship of the VCO
frequency to the system clock. Note the divider ratio must be chosen to
limit the SCLK to a frequency specified in the processor data sheet. The
SCLK drives all synchronous, system-level logic.

The divider ratio control bits, CSEL and SSEL, are in the PLL divide
(PLL_DIV) register. For information about this register, see “PLL_DIV
Register” on page 8-21.

The reset value of CSEL[1:0] is 0x0, and the reset value of SSEL[3:0] is
0x4. These values can be reprogrammed at startup by the boot code.

By updating PLL_DIV with an appropriate value, you can change the CSEL
and SSEL value dynamically. Note the divider ratio of the core clock can

never be greater than the divider ratio of the system clock. If the PLL_DIV
register is programmed to illegal values, the sCLk divider is automatically
increased to be greater than or equal to the core clock divider.

Unlike writing the PLL_CTL register, the PLL_DIV register can be pro-
grammed at any time to change the CCLK and SCLK divide values without
entering the PLL programing sequence.

Table 8-2. Core Clock Ratio

Signal Name Divider Ratio Example Frequency Ratios (MHz)
CSEL[1:0] VCO/CCLK VCO CCLK

00 1 300 300

01 2 300 150

10 4 400 100

11 8 400 50

ADSP-BF51x Blackfin Processor Hardware Reference 8-5

Phase Locked Loop and Clock Control

As long as the MSEL and DF control bits in the PLL control (PLL_CTL) regis-
ter remain constant, the PLL is locked.

Table 8-3. System Clock Ratio

Signal Name Divider Ratio Example Frequency Ratios (MHz)
SSEL[3:0] VCO/SCLK VCO SCLK

0000 Reserved N/A N/A

0001 1:1 50 50

0010 2:1 150 75

0011 3:1 150 50

0100 4:1 200 50

0101 5:1 300 60

0110 6:1 360 60

N=7-15 N:1 400 400/N

If changing the clock ratio via writing a new SSEL value into
PLL_DIV, take care that the enabled peripherals do not suffer data
loss due to SCLK frequency changes.

When changing clock frequencies in the PLL, the PLL requires time to
stabilize and lock to the new frequency. The PLL lock count
(PLL_LOCKCNT) register defines the number of CLKIN cycles that occur
before the processor sets the PLL_LOCKED bit in the PLL_STAT register.
When executing the PLL programming sequence, the internal PLL lock
counter begins incrementing upon execution of the IDLE instruction. The
lock counter increments by 1 each CLKIN cycle. When the lock counter has
incremented to the value defined in the PLL_LOCKCNT register, the
PLL_LOCKED bit is set.

See the processor data sheet for more information about PLL stabilization
time and programmed values for this register. For more information about
operating modes, see “Operating Modes” on page 8-7.

8-6 ADSP-BF51x Blackfin Processor Hardware Reference

Dynamic Power Management

Dynamic Power Management Controller

The Dynamic Power Management Controller (DPMC) works in conjunc-
tion with the PLL, allowing the user to control the processor’s
performance characteristics and power dissipation dynamically. The
DPMC provides these features that allow the user to control performance

and power:

Multiple operating modes — The processor works in four operating

modes, each with different performance characteristics and power
dissipation profiles. See “Operating Modes”.

ically when the peripheral is disabled.

Peripheral clocks — Clocks to each peripheral are disabled automat-

Voltage control — The VppnT domain must be powered by an

external voltage regulator. For more information see “Voltage Reg-
ulation Interface” on page 27-14.

Operating Modes

The processor works in four operating modes, each with unique perfor-

mance and power saving benefits. Table 8-4 summarizes the operational
characteristics of each mode.

Table 8-4. Operational Characteristics

Operating Mode|Power PLL Status |PLL Bypassed| CCLK |SCLK |Allowed DMA Access
Savings

Full On None Enabled |No Enabled | Enabled | L1

Active Medium | gpabled! | Yes Enabled | Enabled |L1

Sleep High Enabled |No Disabled | Enabled |-

Deep Sleep Maximum | Disabled |- Disabled | Disabled | -

1 PLL can also be disabled in this mode.

ADSP-BF51x Blackfin Processor Hardware Reference

8-7

Dynamic Power Management Controller

Dynamic Power Management Controller States

Ful

Ac

Power management states are synonymous with the PLL control state.
The active and full-on states of the DPMC/PLL can be determined by
reading the PLL status register (see “PLL_STAT Register” on page 8-22).
In these modes, the core can either execute instructions or be in the IDLE
core state. If the core is in the IDLE state, it can be awakened by several
sources. (See Chapter 5, “System Interrupts” for details.)

The following sections describe the DPMC/PLL states in more detail, as
they relate to the power management controller functions.

I-On Mode

Full-on mode is the maximum performance mode. In this mode, the PLL
is enabled and not bypassed. Full-on mode is the normal execution state of
the processor, with the processor and all enabled peripherals running at
full speed. The system clock (SCLK) frequency is determined by the SSEL
specified ratio to VCO. DMA access is available to L1 and external mem-
ories. From full-on mode, the processor can transition directly to active,
sleep, or deep sleep modes, as shown in Figure 8-2 on page 8-12.

tive Mode

In active mode, the PLL is enabled but bypassed. Because the PLL is
bypassed, the processor’s core clock (CCLK) and system clock (SCLK) run at
the input clock (CLKIN) frequency. DMA access is available to appropri-
ately configured L1 and external memories.

In active mode, it is possible not only to bypass, but also to disable the
PLL. If disabled, the PLL must be re-enabled before transitioning to full-
on or sleep modes.

From active mode, the processor can transition directly to full-on, sleep,
or deep sleep modes.

8-8

ADSP-BF51x Blackfin Processor Hardware Reference

Dynamic Power Management

In this mode or in the transition phase to other modes, changes to
MSEL are not latched by the PLL.

Sleep Mode

Sleep mode significantly reduces power dissipation by idling the processor
core. The CCLK is disabled in this mode; however, SCLK continues to run at
the speed configured by MSEL and SSEL bit settings. Since CCLK is disabled,
DMA access is available only to external memory in sleep mode. From
sleep mode, a wakeup event causes the processor to transition to one of
these modes:

* Active mode if the BYPASS bit in the PLL_CTL register is set
¢ Full-on mode if the BYPASS bit is cleared

The processor resumes execution from the program counter value present
immediately prior to entering sleep mode.

The STOPCK bit is not a status bit and is therefore unmodified by
hardware when the wakeup occurs. Software must explicitly clear
STOPCK in the next write to PLL_CTL to avoid going back into sleep
mode.

Deep Sleep Mode

Deep sleep mode maximizes power savings by disabling the PLL, CCLK,
and SCLK. In this mode, the processor core and all peripherals except the

real-time clock (RTC) are disabled. DMA is not supported in this mode.

Deep sleep mode can be exited only by a hardware reset event or an RTC
interrupt. A hardware reset begins the hardware reset sequence. For more
information about hardware reset, see Chapter 5, “System Interrupts”. An
RTC interrupt causes the processor to transition to active mode, and exe-
cution resumes from where the program counter was when deep sleep

mode was entered. If an interrupt is also enabled in SIC_IMASK, the vector
is taken immediately after exiting deep sleep and the ISR is executed.

ADSP-BF51x Blackfin Processor Hardware Reference 8-9

Dynamic Power Management Controller

Note an RTC interrupt in deep sleep mode automatically resets some
fields of the PLL control (PLL_CTL) register. See Table 8-5.

When in deep sleep mode, clocking to the SDRAM is turned off.
Before entering deep sleep mode, software should ensure that
important information in SDRAM is saved to a non-volatile mem-
ory and/or the SDRAM is placed into self-refresh mode.

Table 8-5. PLL_CTL Values after RT'C Wakeup Interrupt

Field Value
PLL_OFF 0
STOPCK 0
PDWN 0
BYPASS 1

Hibernate State

For lowest possible power dissipation, this state allows the internal supply
(VppINT) to be powered down by the external regulator, while keeping
the I/O supply (VppexT and Vppmewm) running. Although not strictly an
operating mode like the four modes detailed above, it is illustrative to view
it as such in the diagram of Figure 8-2 on page 8-12.This feature is dis-
cussed in detail in “Powering Down the Core (Hibernate State)” on

page 8-17.

Operating Mode Transitions

Figure 8-2 on page 8-12 graphically illustrates the operating modes and
transitions. In the diagram, ellipses represent operating modes and rectan-
gles represent processor states. Arrows show the allowed transitions into
and out of each mode or state.

For mode transitions, the text next to each transition arrow shows the
fields in the PLL control (PLL_CTL) register that must be changed for the

8-10 ADSP-BF51x Blackfin Processor Hardware Reference

Dynamic Power Management

transition to occur. For example, the transition from full-on mode to sleep
mode indicates that the STOPCK bit must be set to 1 and the PDWN bit must
be set to 0.

For transitions to processor states, the text next to each transition arrow
shows either a processor event (RTC wake up or hardware reset) or the
fields in the voltage regulator control register (VR_CTL) that must be
changed for the transition to occur.

For information about how to effect mode transitions, see “Programmin
g g
Operating Mode Transitions” on page 8-13.

In addition to the mode transitions shown in Figure 8-2 on page 8-12, the
PLL can be modified while in active operating mode. Changes to the PLL
do not take effect immediately. As with operating mode transitions, the
PLL programming sequence must be executed for these changes to take
effect (see “Programming Operating Mode Transitions” on page 8-13).

e PLL disabled: In addition to being bypassed in the active mode, the
PLL can be disabled.

When the PLL is disabled, additional power savings are achieved
although they are relatively small. To disable the PLL, set the
PLL_OFF bit in the PLL_CTL register, and then execute the PLL pro-
gramming sequence.

e PLL enabled: When the PLL is disabled, it can be re-enabled later

when additional performance is required.

The PLL must be re-enabled before transitioning to the full-on or
sleep operating modes. To re-enable the PLL, clear the PLL_OFF bit
in the PLL_CTL register, and then execute the PLL programming
sequence.

ADSP-BF51x Blackfin Processor Hardware Reference 8-11

Dynamic Power Management Controller

= Wakeup &
Sngvaﬁ = 3 BYPASS =0

STOPCK =1 &
PDWN =

Wakeup &
BYPASS =1

BYPASS =0 & PLL_OFF =0 &
STOPCK =0 & PDWN =0

BYPASS =1 & STOPCK =0 &
PDWN =0

FREQ = 00
RTC Wakeup
HARDWARE
RESET
WAKE =1 & MSEL = new value
RTC Wakeup occurs and PLL_OFF=0
. and BYPASS =0
Hibernate

FREQ =00
HARDWARE RESET

ETHERNET PHY Activity
and PHYWE =1

Figure 8-2. Operating Mode Transitions

8-12 ADSP-BF51x Blackfin Processor Hardware Reference

Dynamic Power Management

e New multiplier ratio: The multiplier ratio can also be changed

while in full-on mode.

The PLL state automatically transitions to active mode while the

PLL is locking. After locking, the PLL returns to full-on mode. To
program a new CLKIN to VCO multiplier, write the new MSEL[5:0]
and/or DF values to the PLL_CTL register; then execute the PLL pro-

gramming sequence (on page 8-13).

Table 8-6 summarizes the allowed operating mode transitions.

Attempting to cause mode transitions other than those shown in
Table 8-6 causes unpredictable behavior.

Table 8-6. Allowed Operating Mode Transitions

Current Mode
New Mode Full-On Active Sleep Deep Sleep
Full On - Allowed Allowed Allowed
Active Allowed - Allowed Allowed
Sleep Allowed Allowed - -
Deep Sleep Allowed Allowed - -

Programming Operating Mode Transitions

The operating mode is defined by the state of the PLL_OFF, BYPASS,
STOPCK, and PDWN bits of the PLL control (PLL_CTL) register. Merely modi-
fying the bits of the PLL_CTL register does not change the operating mode
or behavior of the PLL. Changes to the PLL_CTL register are realized only
after a specific code sequence is executed. This sequence is managed by a
user-callable routine in the on-chip ROM called bfrom_SysControl ().
When calling this function, no further precautions have to be taken. See
“System Control ROM Function” on page 8-24 for more information.

ADSP-BF51x Blackfin Processor Hardware Reference

8-13

Dynamic Power Management Controller

If the PLL_CTL register changes include a new CLKIN to VCO multiplier or
power is reapplied to the PLL, the PLL needs to relock. To relock, the
PLL lock counter is cleared first, then starts incrementing once per SCLK
cycle. After the PLL lock counter reaches the value programmed in the
PLL lock count (PLL_LOCKCNT) register, the PLL sets the PLL_LOCKED bit in
the PLL status (PLL_STAT) register, and the PLL asserts the PLL wake-up
interrupt.

When the bfrom_SysControl() routine reprograms the PLL_CTL register
with a new value, the bfrom_SysControl() routine executes a subsequent
IDLE instruction and prevents all other system interrupt sources, other
than the DPMC, from waking up the core from the IDLE state. If the lock
counter expires, the PLL issues an interrupt, and the code execution con-
tinues the instruction after the IDLE instruction. Therefore, the system is
in the new state by the time the bfrom_SysControl () routine returns.

@ If the new value written to the PLL_CTL or VR_CTL register is the

same as the previous value, the PLL wake-up occurs immediately
(PLL is already locked), but the core and system clock are bypassed
for the PLL_LOCKCNT duration. For this interval, code executes at
the CLKIN rate instead of the expected CCLK rate. Software guards
against this condition by comparing the current value to the new
value before writing the new value.

* When the wake-up signal is asserted, the code execution continues
the instruction after the IDLE instruction, causing a transition to:

* Active mode if BYPASS in the PLL_CTL register is set
¢ Full-on mode if the BYPASS bit is cleared

e If the PLL_CTL register is programmed to enter the sleep operating
mode, the processor transitions immediately to sleep mode and
waits for a wake-up signal before continuing code execution. If the

8-14 ADSP-BF51x Blackfin Processor Hardware Reference

Dynamic Power Management

PLL_CTL register is programmed to enter the deep sleep operating
mode, the processor immediately transitions to deep sleep mode
and waits for an RTC interrupt or hardware reset signal:

* An RTC interrupt causes the processor to enter active oper-
ating mode and to return from the bfrom_SysControl()
routine.

* A hardware reset causes the processor to execute the reset
. . <«
sequence. For more information see Chapter 26, “System
Reset and Booting”.

If no operating mode transition is programmed, the PLL generates a
wake-up signal, and the bfrom_SysControl() routine returns.

Dynamic Supply Voltage Control

In addition to clock frequency control, the processor's core is capable of
running at different voltage levels. As power dissipation is proportional to
the voltage squared, significant power reductions can be accomplished
when lower voltages are used.

The processor uses multiple power domains. Each power domain has a
separate Vpp supply. Note that the internal logic of the processor and
much of the processor I/O can be run over a range of voltages. See the
product data sheet for details on the allowed voltage ranges for each power
domain and power dissipation data.

Power Supply Management

VppInT is supplied by an external regulator and pin PG is used to accept
an active-low power-good indicator from the regulator. Note that the
external regulator must comply with the VpnT specifications defined in
the processor data sheet.

ADSP-BF51x Blackfin Processor Hardware Reference 8-15

Dynamic Power Management Controller

Changing Voltage

When changing the voltage using an external regulator, a specific pro-
gramming sequence must be followed.

Unlike other Blackfin derivatives that feature an internal voltage regulator;
the voltage level for the ADSP-BF51x cannot be changed by programming
the VR_CTL register. With an internal voltage regulator, the PLL would
automatically enter the active mode when the processor enters the 1DLE
state. At that point the voltage level would change and the PLL would
re-lock to the new voltage. After the PLL_LOCKCNT has expired, the part
returns to the full-on state.

With an external voltage regulator, this sequence must be reproduced in
the program code by the user. The PLL_LOCKCNT register cannot be used in
this case, but the value is still needed for calculating the required delay. A
larger PLL_LOCKCNT value may be necessary for changing voltages than
when changing just the PLL frequency. See the processor data sheet for
details.

The processor must enter active mode before the user can access the exter-
nal voltage regulator and program a new voltage level. See the data sheet of
external voltage regulator for information on changing voltage levels. See
the processor data sheet for more information about voltage tolerances
and allowed rates of change.

Reducing the processor’s operating voltage to greatly conserve
power or raising the operating voltage to greatly increase perfor-
mance will probably require significant changes to the operating
voltage level. To ensure predictable behavior the recommended
procedure is to bring the processor to the sleep operating mode
before substantially varying the voltage.

The user must ensure a stable voltage and give the PLL time to re-lock at
the new voltage level. This can be done by running the core in a loop for a
certain amount of time before leaving active mode.

8-16 ADSP-BF51x Blackfin Processor Hardware Reference

Dynamic Power Management

After the voltage has been changed to the new level, the processor can
safely return to any operational mode—so long as the operating parame-
ters, such as core clock frequency (CCLK), are within the limits specified
in the processor data sheet for the new operating voltage level.

See “Changing Voltage Levels” on page 8-42 for more details on mode
transitions and changing voltage levels.

The VSTAT bit in the PLL_STAT register can be used to indicate whether
VpDpINT i stable and ready to use. The VSTAT bit works in conjunction
with the PG (Power Good) input signal of the ADSP-BF51x. The inverted
version of a "power good" signal from the external regulator is fed to the
ADSP-BF51x to indicate that the voltage has reached its programmed
value. That in turn will set the VSAT bit, which should be considered the
end of your "wait" state for the voltage regulator to settle.

Powering Down the Core (Hibernate State)

The external regulator can be signaled to shut off VT using the
EXT_WAKE signal. Writing b#00 to the FREQ bits of the VR_CTL register,
which disables CCLK and SCLK, will also make EXT_WAKE go low. EXT_WAKE
will transition high if any wakeup sources occur, which will signal the
external voltage regulator to turn Vppnt on again. The wakeup sources
are several user-selectable events, all of which are controlled in the VR_CTL
register:

* Assertion of the RESET pin always exits hibernate state and requires
no modification to VR_CTL.

* RTC event. Set the wake-up enable control bit (WAKE) to enable
wake-up upon an RTC interrupt. This can be any of the RTC
interrupts (alarm, daily alarm, day, hour, minute, second, or
stopwatch).

ADSP-BF51x Blackfin Processor Hardware Reference 8-17

Dynamic Power Management Controller

External GP event or Ethernet PHY event. Set the PHY wakeup
enable control (PHYWE) bit to enable wakeup upon assertion of the
PHY_INT/PF15 pin by an external PHY device. If no external PHY
interrupt is needed, set this bit to enable a general-purpose external
event via the PF15 pin.

Pin EXT_WAKE is provided to indicate the occurrence of wakeup.
EXT_WAKE is an output pin, which is a logical OR of the above
wakeup sources, except hardware reset. The pin follows the wakeup
signal of the various wakeup sources.

When the core is powered down, VppnT is set to 0 V, and the
internal state of the processor is not maintained, with the exception
of the VR_CTL register. Therefore, any critical information stored
internally (memory contents, register contents, and so on) must be
written to a non-volatile storage device prior to removing power.
Be sure to set the drive SCKE low during reset control (SCKELOW) bit
in VR_CTL to protect against the default reset state behavior of set-
ting the EBIU pins to their inactive state. Failure to set the SCKELOW
bit results in the SCKE pin going high during reset, which takes the
SDRAM out of self-refresh mode, resulting in data decay in the
SDRAM due to loss of refresh rate.

Powering dOW[l VDDINT dOCS not affect VDDEXT or VDDMEM' Whlle
Vopext and Vppamewm are still applied to the processor, external pins are
maintained at a three-state level unless specified otherwise.

The SCKE pin will be three-stated during hibernate. In addition to
setting the SCKELOW bit in VR_CTL prior to entering the hibernate
state, an external pull-down resistor on the SCKE pin is required to
also keep the pin low when the Blackfin processor is not driving it.

ADSP-BF51x Blackfin Processor Hardware Reference

Dynamic Power Management

To signal the external regulator to power down VppnT:

1. Write 0 to the appropriate bits in the SIC_IWRx registers to prevent
enabled peripheral resources from interrupting the hibernate
process.

2. Call the bfrom_SysControl() routine; ensure that the FREQ bits in
the VR_CTL variable are set to b#00, and the appropriate wake-up
bit(s) to 1 (WAKE and/or Ethernet Phy). Optionally, set the SCKELOW
bit if SORAM data should be maintained.

3. The bfrom_SysControl () routine executes until VT transi-
tions to 0 V. bfrom_SysControl() never returns.

4. When the processor is woken up, the PLL relocks and the boot
sequence defined by the BMODE[2:0] pin settings takes effect.

The WURESET in the SYSCTRL register is set and stays set until the next hard-
ware reset. The WURESET bit may control a conditional boot process.

If the CLKBUFOE bit is set, the crystal oscillator and CLKBUF signals
remain enabled during hibernate and draw current.

PLL and VR Registers

The user interface to the PLL and VR registers is through the system con-
trol ROM function (bfrom_SysControl()) described in “System Control
ROM Function” on page 8-24. The memory-mapped registers (MMRs)
are shown in Table 8-7 and illustrated in Figure 8-3 through Figure 8-7.

Table 8-7 shows the functions of the PLL/VR registers.

ADSP-BF51x Blackfin Processor Hardware Reference 8-19

PLL and VR Registers

Table 8-7. PLL/VR Register Mapping

Register Name

Function

Notes

For More Information See:

PLL_CTL

PLL control register

Requires reprogramming
sequence when written

Figure 8-4 on page 8-21

PLL_DIV

PLL divisor register

Can be written freely

Figure 8-3 on page 8-21

PLL_STAT

PLL status register

Monitors active modes of
operation

Figure 8-5 on page 8-22

PLL_LOCKCNT

PLL lock count register

Number of SCLKs
allowed for PLL to relock

Figure 8-6 on page 8-22

VR_CTL

Voltage regulator
control register

Requires PLL reprogram-
ming sequence when writ-
ten

Figure 8-7 on page 8-23

8-20

ADSP-BF51x Blackfin Processor Hardware Reference

Dynamic Power Management

PLL_DIV Register

PLL Divide Register (PLL_DIV)

15 14 1312 1110 9 8 7 6 5 4 3 2 1 0

0XFFCO 0004 |o |o |o |o |o |o |o |o |o |o |o |o |o |1 |o |o IReset=0x0004
I]

CSEL[1:0] (Core Select) I L SSEL[3:0] (System Select)
00 - CCLK=VCO /1 0 - Reserved
01-CCLK=VCO/2 1-15- SCLK = VCO / X
10- CCLK=VCO/4
11-CCLK=VCO/8

Figure 8-3. PLL Divide Register

PLL_CTL Register

PLL Control Register (PLL_CTL)

1514 1312 1110 9 8 7 6 5 4 3 2 1 0
0xFFCO0 0000 Io |o |o |o |1 |o |1 |0 |o|o |0 |o|o |o |0 |o| Reset = 0x0A00

e e |

(Multiplier Select)

DF (Divide Frequency)
0 - Pass CLKIN to PLL

See Table 8-1 on page 8-4 for 1 - Pass CLKIN/2 to PLL
CLKIN/VCO multiplication PLL_OFF
factors

0 - Enable control of PLL

BYPASS 1 - Disable control of PLL
0 - Do not bypass PLL L STOPCK (Stop Clock)
1 - Bypass PLL 0 - CCLK on

1 - CCLK off

PDWN (Power Down)

0 - All internal clocks on
1 - All internal clocks off

Figure 8-4. PLL Control Register

ADSP-BF51x Blackfin Processor Hardware Reference 8-21

PLL and VR Registers

PLL_STAT Register

PLL Status Register (PLL_STAT)

Read only. Unless otherwise noted, 1 - Processor operating in this mode. For more infor-
mation, see “Operating Modes” on page 8-7.

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0

oxFFC0000C fo [ofo [oJo JofoJoJt o]t Jo]ofo[r]o] Reset=oxo0a2
?)l:s\-;-c‘:;ge regulator is not stable. ACTIVE_PLLENABLED
1: Voltage regulator is stable. FULL_ON

PLL_LOCKED
ACTIVE_PLLDISABLED

Figure 8-5. PLL Status Register

PLL_LOCKCNT Register

PLL Lock Count Register (PLL_LOCKCNT)

1514 1312 1110 9 8 7 6 5 4 3 2 1.0
oxFFc0 0010 fo JoJo JoJo JoJr JoJoJo JoJoJoJoJoJo] Reset=oxo200

LOCKCNT[15:0]
Number of SCLK cycles
before PLL Lock Count
timer expires.

Figure 8-6. PLL Lock Count Register

8-22 ADSP-BF51x Blackfin Processor Hardware Reference

Dynamic Power Management

VR_CTL Register

The CLKIN buffer output enable (CLKBUFOE) control bit allows another
device, most likely the Ethernet PHY, and the Blackfin processor to run
from a single crystal oscillator. Clearing this bit prevents the CLKBUF pin
from driving a buffered version of the input clock CLKIN.

Voltage Regulator Control Register (VR_CTL)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
oxFrcoooos fo [t [+ J1 JofoJofo i JoJ1 1 JoJooJo] Reset=ox7oBo
SCKELOW L
(SCKE Low

Reserved
Reset
0- AIIZ)W SCKE to go Do not modify.
high (=1) during reset Supported only by products that
1- Maintain SCKE low frigt’lﬁo‘?” internal voltage
=0) during reset
(=0) 9 WAKE (Real Time Clock Wake Enable)
?cLLKKBI‘rl\l”;?:fEfer 0 - RTC wakeup disabled
Output Enable) 1 - RTC wakeup enabled
0 - CLKIN buffer disabled Reserved
1 - CLKIN buffer enabled PHYWE (PHY/PF15 Wake Enable)
FREQ
00 - Hibernate 0 - Ethernet PHY or PF15 wakeup
01 - Reserved disabled
10 - Reserved 1 - Ethernet PHY or PF15 wakeup
11 - Normal
enabled
Reserved

Figure 8-7. Voltage Regulator Control Register

ADSP-BF51x Blackfin Processor Hardware Reference 8-23

System Control ROM Function

System Control ROM Function

The PLL and voltage regulator registers should not be accessed directly.
Instead, use the bfrom_SysControl() function to alter or read the register
values. The function resides in the on-chip ROM and can be called by the

user following C-language style calling conventions.
Entry address: 0xEF00 0038
Arguments:

e dActionFlags word in RO

* pSysCtriSettings pointer in R1

* zero value in R?

A potential error message of internally called bfrom_0tpRead() function
forwarded and returned in RO.

The system control ROM function does not verify the correctness
of the forwarded arguments. Therefore, it is up to the programmer
to choose the correct values.

C prototype: u32 bfrom_SysControl(u32 dActionFlags,
ADI_SYSCTRL_VALUES *pSysCtrlSettings, void *reserved);

The first argument (u32 dActionFlags) to the system control ROM func-
tion holds the instruction flags. The following flags are supported.

ffdefine SYSCTRL_READ 0x00000000
ffdefine SYSCTRL_WRITE 0x00000001
ffdefine SYSCTRL_SYSRESET 0x00000002
ffdefine SYSCTRL_SOFTRESET 0x00000004
ftdefine SYSCTRL_VRCTL 0x00000010

ffdefine SYSCTRL_EXTVOLTAGE 0x00000020
ffdefine SYSCTRL_OTPVOLTAGE 0x00000040
ftdefine SYSCTRL_PLLCTL 0x00000100

8-24 ADSP-BF51x Blackfin Processor Hardware Reference

Dynamic Power Management

ftdefine SYSCTRL_PLLDIV 0x00000200
ffdefine SYSCTRL_LOCKCNT 0x00000400
ftdefine SYSCTRL_PLLSTAT 0x00000800

With SYSCTRL_READ and SYSCTRL_WRITE, a read or a write operation is ini-
tialized. The SYSCTRL_SYSRESET flag performs a system reset, while the
SYSCTRL_SOFTRESET flag combines a core and system reset. The
SYSCTRL_EXTVOLTAGE flag indicates that Vppn is supplied externally.
The SYSCTRL_OTPVOLTAGE flag is for factory purposes only. The last five
flags (_VRCTL, _PLLCTL, _PLLDIV, _LOCKCNT, _PLLSTAT) tells the system con-
trol ROM function which registers to be written to or read from. Note
that SYSCTRL_PLLSTAT flag is read-only.

The second argument (ADI_SYSCTRL_VALUES *pSysCtriSettings) to the
system control ROM function passes a pointer to a special structure,
which has entries for all PLL and voltage regulator registers. It is pre-
defined in the bfrom.h header file as follows.

typedef struct
{
ule uwVrCti;
ule uwP11Ct1;
ulé uwP11Div;
ule uwPllLockCnt;
ulé uwPl1Stat;
} ADI_SYSCTRL_VALUES;

The third argument to the system control ROM function is reserved and
should be kept zero (NULL pointer).

The function’s return value is described in the following bfrom_0tpRead()
ROM routine descriptions; whereby a single-bit warning is suppressed.

The system control ROM function executes the correct steps and
programming sequence for the Dynamic Power Management Sys-
tem of the Blackfin processor.

ADSP-BF51x Blackfin Processor Hardware Reference 8-25

System Control ROM Function

Programming Model

The programming model for the system control ROM function in C/C++
and Assembly is described in the following sections.

Accessing the System Control ROM Function in
C/C++

To read the PLL_DIV and PLL_CTL register values, for example, specify the
SYSCTRL_READ instruction flag along with the SYSCTRL_PLLCTL and
SYSCTRL_PLLDIV register flags. The bfrom_0tpRead() function then only
updates the uwP11Ct1 and uwP11D1v variables:

ADI_SYSCTRL_VALUES read;
bfrom_SysControl (SYSCTRL_READ | SYSCTRL_PLLCTL | SYSCTRL_PLLDIV,
&read, NULL);

The read.uwP11Ct1 and read.uwP11D1iv variables access the PLL_CTL and
PLL_DIV register values, respectively. To update the register values, specify
the SYSCTRL_WRITE instruction flag along with the register flags of those
registers that should be modified and have valid data in the respective
ADI_SYSCTRL_VALUES variables:

ADI_SYSCTRL_VALUES write;

write.uwP11Ct1 = 0x0A00;

write.uwP11Div = 0x0004;

bfrom_SysControl (SYSCTRL_WRITE | SYSCTRL_PLLCTL |SYSCTRL_PLLDIV,
dwrite, NULL);

8-26 ADSP-BF51x Blackfin Processor Hardware Reference

Dynamic Power Management

Accessing the System Control ROM Function in
Assembly

The assembler supports C structs, which is required to import the file

bfrom.h:

#include <bfrom.h>
.IMPORT "bfrom.h";
.STRUCT ADI_SYSCTRL_VALUES dpm;

You can pre-load the struct:

.STRUCT ADI_SYSCTRL_VALUES dpm = { 0x70BO, 0x0A00, 0x0004,
0x0200, 0x00AZ2 };

or load the values dynamically inside the code:

P5.H = hi(dpm);

P5.L = lo(dpm->uwVrCtl1);
R7 = 0x70B0 (z);
w[P5] = R7;

P5.L = To(dpm->uwP11Ct1);
R7 = 0x0A00 (z);
w[P5] = R7;

P5.L = lo(dpm->uwP11Div);
R7 = 0x0004 (z);
wlP5] = R7;

P5.L = To(dpm->uwP1TLockCnt);
R7 = 0x0200 (z);
wlP5] = RO;

ADSP-BF51x Blackfin Processor Hardware Reference 8-27

System Control ROM Function

The function u32 bfrom_SysControl(u32 dActionFlags,
ADI_SYSCTRL_VALUES *pSysCtrlSettings, void *reserved); can be
accessed by BFROM_SYSCONTROL. Following the C/C++ run-time environ-
ment conventions, the parameters passed are hold by the data registers R0,
R1, and R2.

/* 10 = sizeof (ADI_SYSCTRL_VALUES). uimml8m4: 18-bit unsigned
field that must be a multiple of 4, with a range of 8 through
262,152 bytes (0x00000 through Ox3FFFC) */

lTink sizeof (ADI_SYSCTRL_VALUES)+2;

[--SP] = (R7:0,P5:0);

/* Allocate at least 12 bytes on the stack for outgoing argu-
ments, even if the function being called requires less than this.
*/

SP += -12;

RO SYSCTRL_WRITE |
SYSCTRL_VRCTL
SYSCTRL_EXTVOLTAGE |
SYSCTRL_PLLCTL
SYSCTRL_PLLDIV ;

R1.H = hi(dpm);

R1.L = To(dpm);

R2 =0 (2);

P5.H = hi(BFROM_SYSCONTROL);
P5.L = 10(BFROM_SYSCONTROL);
call(P5);

SP += 12;

(R7:0,P5:0) = [SP++1;
unlink;

rts;

8-28 ADSP-BF51x Blackfin Processor Hardware Reference

Dynamic Power Management

The processor’s internal scratchpad memory can be used as an alternative
for taking a C struct. Therefore, the stack/frame pointer must be loaded
and passed.

/* 10 = sizeof (ADI_SYSCTRL_VALUES). uimml8m4: 18-bit unsigned
field that must be a multiple of 4, with a range of 8 through
262,152 bytes (0x00000 through Ox3FFFC) */

link sizeof (ADI_SYSCTRL_VALUES)+2;

[--SP] = (R7:0,P5:0);

/* Allocate at least 12 bytes on the stack for outgoing argu-
ments, even if the function being called requires less than this.
*/

SP += -12;

R7 = 0;

R7.L = 0x70B0;

WLFP+-sizeof (ADI_SYSCTRL_VALUES)+offse-
tof (ADI_SYSCTRL_VALUES,uwVrCtl)] = R7;
R7.L = 0x0A00;

WLFP+-sizeof (ADI_SYSCTRL_VALUES)+offse-
tof (ADI_SYSCTRL_VALUES,uwP11Ct1)] = R7;
R7.L = 0x0004;

WLFP+-sizeof (ADI_SYSCTRL_VALUES)+offse-
tof (ADI_SYSCTRL_VALUES,uwP11Div)] = R7;
R7.L = 0x0200;

WLFP+-sizeof (ADI_SYSCTRL_VALUES)+offse-
tof (ADI_SYSCTRL_VALUES,uwP11LockCnt)] = R7;

RO = SYSCTRL_WRITE
SYSCTRL_VRCTL
SYSCTRL_EXTVOLTAGE
SYSCTRL_PLLCTL
SYSCTRL_PLLDIV ;

ADSP-BF51x Blackfin Processor Hardware Reference 8-29

Programming Examples

R1 = FP;

Rl += -sizeof(ADI_SYSCTRL_VALUES);
R2 = 0;

P5.H = hi(BFROM_SYSCONTROL) ;

P5.L = 10(BFROM_SYSCONTROL) ;
call(P5);

SP += 12;

(R7:0,P5:0) = [SP++];

unlink;

rts;

Programming Examples

The following code examples illustrate how to use the system control
ROM function to effect various operating mode transitions.

The following examples are only meant to demonstrate how to pro-
gram the PLL registers. Do not assume that the voltages and
frequencies shown in the examples are supported by your proces-
sor. Instead, check your product's data sheet for supported voltages
and frequencies.

Some setup code has been removed for clarity, and the following assump-
tions are made.

e PLL control (PLL_CTL) register setting: 0x0A00
e PLL divider (PLL_DIV) register setting: 0x0004
e PLL lock count (PLL_LOCKCNT) register setting: 0x0200

* Clock in (CLKIN) frequency: 25 MHz

8-30 ADSP-BF51x Blackfin Processor Hardware Reference

Dynamic Power Management

VCO frequency is 125 MHz, core clock frequency is 125 MHz, and sys-
tem clock frequency is 31.25 MHz.

* Voltage regulator control (VR_CTL) register setting: 0x70B0
* Logical voltage level (VDDINT) is at 1.20 V
For operating mode transition and voltage regulator examples:
e C
* Jinclude <blackfin.h>
* finclude <bfrom.h>
e Assembly
* J#include <blackfin.h>

e Jinclude <bfrom.h>

.IMPORT "bfrom.h";

jfdefine IMM32(reg,val) regi.H=hi(val);

regift.L=1o(val);

ADSP-BF51x Blackfin Processor Hardware Reference 8-31

Programming Examples

Full-on Mode to Active Mode and Back

Listing 8-1 and Listing 8-2 provide code for transitioning from the full-on
operating mode to active mode in C and Blackfin assembly code,
respectively.

Listing 8-1. Transitioning from Full-on Mode to Active Mode (C)

void active(void)

{

ADI_SYSCTRL_VALUES active;

bfrom_SysControl (SYSCTRL_READ | SYSCTRL_EXTVOLTAGE |
SYSCTRL_PLLCTL, &active, NULL);

active.uwP11Ct1 |= (BYPASS | PLL_OFF); /* PLL_OFF bit optional */
bfrom_SysControl(SYSCTRL_WRITE | SYSCTRL_EXTVOLTAGE |
SYSCTRL_PLLCTL, &active, NULL);

return;

J
Listing 8-2. Transitioning from Full-on Mode to Active Mode (ASM)
__active:

Tink sizeof(ADI_SYSCTRL_VALUES)+2;
[--SP] = (R7:0,P5:0);
SP += -12;

RO (SYSCTRL_READ | SYSCTRL_EXTVOLTAGE | SYSCTRL_PLLCTL);
R1 = FP;

R1 += -sizeof(ADI_SYSCTRL_VALUES);

R2 =0 (z2);

IMM32 (P4 ,BFROM_SYSCONTROL) ;

call(P4);

8-32 ADSP-BF51x Blackfin Processor Hardware Reference

Dynamic Power Management

RO = w[FP+-sizeof(ADI_SYSCTRL_VALUES)+offse-
tof (ADI_SYSCTRL_VALUES,uwP11Ct1)71;
bitset(RO,bitpos(BYPASS));
bitset(RO,bitpos(PLL_OFF)); /* optional */
WLFP+-sizeof (ADI_SYSCTRL_VALUES)+offse-

tof (ADI_SYSCTRL_VALUES,uwP11Ct1)] = RO;

RO
R1

(SYSCTRL_WRITE | SYSCTRL_EXTVOLTAGE | SYSCTRL_PLLCTL);
FP;

R1 += -sizeof (ADI_SYSCTRL_VALUES);

R2 0 (z);

IMM32 (P4 ,BFROM_SYSCONTROL) ;

call(P4);

+

SP += 12;

(R7:0,P5:0) = [SP++];
unlink;

rts;

__active.end:

To return from active mode (go back to full-on mode), the BYPASS bit and
the PLL_OFF bit must be cleared again, respectively.

Transition to Sleep Mode or Deep Sleep Mode

Listing 8-3 and Listing 8-4 provide code for transitioning from the full-on
operating mode to sleep or deep sleep mode in C and Blackfin assembly
code, respectively.

ADSP-BF51x Blackfin Processor Hardware Reference 8-33

Programming Examples

Listing 8-3. Transitioning to Sleep Mode or Deep Sleep Mode (C)

void sleep(void)

{

ADI_SYSCTRL_VALUES sTeep;
bfrom_SysControl(SYSCTRL_EXTVOLTAGE | SYSCTRL_PLLCTL |
SYSCTRL_READ, &sleep, NULL);

sleep.uwP11Ct1 |= STOPCK; /* either: Sleep Mode */
sleep.uwP11Ctl |= PDWN; /* or: Deep Sleep Mode */
bfrom_SysControl (SYSCTRL_WRITE | SYSCTRL_EXTVOLTAGE |
SYSCTRL_PLLCTL, &sleep, NULL);

return;

}

Listing 8-4. Transitioning to Sleep Mode or Deep Sleep Mode (ASM)
__Sleep:

Tink sizeof(ADI_SYSCTRL_VALUES)+2;
[--SP] = (R7:0,P5:0);
SP += -12;

RO = (SYSCTRL_READ | SYSCTRL_EXTVOLTAGE |
SYSCTRL_PLLCTL);

R1 = FP;

R1 += -sizeof (ADI_SYSCTRL_VALUES);

R2 =0 (2);

IMM32 (P4 ,BFROM_SYSCONTROL) ;

call(P4);

RO = wlFP+-sizeof (ADI_SYSCTRL_VALUES)+offse-

tof (ADI_SYSCTRL_VALUES,uwP11Ct1)1;
bitset(RO,bitpos(STOPCK)); /* either: Sleep Mode */
bitset(RO,bitpos(PDWN)); /* or: Deep Sleep Mode */

8-34 ADSP-BF51x Blackfin Processor Hardware Reference

Dynamic Power Management

W[FP+-sizeof (ADI_SYSCTRL_VALUES)+offse-
tof (ADI_SYSCTRL_VALUES,uwP11Ct1)] = RO;

RO (SYSCTRL_WRITE | SYSCTRL_EXTVOLTAGE | SYSCTRL_PLLCTL);
R1 FPs

R1 += -sizeof(ADI_SYSCTRL_VALUES);

R2 0 (z);

IMM32 (P4 ,BFROM_SYSCONTROL) ;

call(P4);

SP +=12;

(R7:0,P5:0) = [SP++1;
unlink;

rts;

__Sleep.end:

Set Wakeups and Entering Hibernate State

Listing 8-5 and Listing 8-6 provide code for configuring the regulator
wakeups (RTC wakeup) and placing the regulator in the hibernate state in
C and Blackfin assembly code, respectively.

ADSP-BF51x Blackfin Processor Hardware Reference 8-35

Programming Examples

Listing 8-5. Configuring Regulator Wakeups and Entering Hibernate
State (C)

void hibernate(void)
{
ADI_SYSCTRL_VALUES hibernate;
/* SCKELOW = 1: Enable Drive SCKE Low During Reset */
/* Protect SDRAM contents during reset after wakeup */
hibernate.uwVrCt1=SCKELOW |
WAKE | /* RTC/Reset Wake-Up Enable */
HIBERNATE;/ *Powerdown */
bfrom_SysControl(SYSCTRL_WRITE | SYSCTRL_VRCTL |
SYSCTRL_EXTVOLTAGE, &hibernate, NULL);
/* Hibernate State: no code executes until wakeup triggers reset
*/
}

8-36 ADSP-BF51x Blackfin Processor Hardware Reference

Dynamic Power Management

Listing 8-6. Configuring Regulator Wakeups and Entering Hibernate
State (ASM)

__hibernate:

1ink sizeof(ADI_SYSCTRL_VALUES)+2;
[--SP] = (R7:0,P5:0);
SP 4= -12;

cli R6; /* disable interrupts, copy IMASK to R6 */

/* SCKELOW = 1: Enable Drive SCKE Low During Reset */
/* Protect SDRAM contents during reset after wakeup */
RO.L = SCKELOW |
WAKE | /* RTC/Reset Wake-Up Enable */
HIBERNATE ; /* Powerdown */
wWLFP+-sizeof (ADI_SYSCTRL_VALUES)+
offsetof (ADI_SYSCTRL_VALUES,uwVrCt1)] = RO;

RO = (SYSCTRL_WRITE | SYSCTRL_VRCTL | SYSCTRL_EXTVOLTAGE);
R1 = FP;

Rl += -sizeof (ADI_SYSCTRL_VALUES);

R2 =0 (z);

IMM32 (P4 ,BFROM_SYSCONTROL) ;

call(P4);

/* Hibernate State: no code executes until wakeup triggers reset
*/

__hibernate.end:

ADSP-BF51x Blackfin Processor Hardware Reference 8-37

Programming Examples

Perform a System Reset or Soft-Reset

Listing 8-7 and Listing 8-8 provide code for executing a system reset or a

soft-reset (system and core reset) in C and Blackfin assembly code,
respectively.

Listing 8-7. Execute a System Reset or a Soft-Reset (C)

void reset(void)

{

bfrom_SysControl (SYSCTRL_SYSRESET, NULL, NULL); /* either */
bfrom_SysControl (SYSCTRL_SOFTRESET, NULL, NULL); /* or */
return;

}

8-38 ADSP-BF51x Blackfin Processor Hardware Reference

Dynamic Power Management

Listing 8-8. Execute a System Reset or a Soft-Reset (ASM)
__reset:

Tink sizeof (ADI_SYSCTRL_VALUES)+2;

[--SP] = (R7:0,P5:0);

SP += -12;

RO

SYSCTRL_SYSRESET; /* either */
RO SYSCTRL_SOFTRESET; /* or */

R1 0 (z);

R2 =0 (z);

IMM32 (P4 ,BFROM_SYSCONTROL) ;
call(P4);

SP +=12;

(R7:0,P5:0) = [SP++1;
unlink;

rts;

__reset.end:

In Full-on Mode, Change VCO Frequency, Core
Clock Frequency, and System Clock Frequency

Listing 8-9 and Listing 8-10 provide C and Blackfin assembly code for
changing the CLKIN to VCO multiplier (from 10x to 21x), keeping the
CSEL divider at 1, and changing the SSEL divider (from 5 to 4) in the
full-on operating mode.

ADSP-BF51x Blackfin Processor Hardware Reference 8-39

Programming Examples

Listing 8-9. Transition of Frequencies (C)

void frequency(void)
{
ADI_SYSCTRL_VALUES frequency;

/* Set MSEL = 0-63 --> VCO = CLKIN*MSEL */
frequency.uwP11Ct1 = SET_MSEL(21)

/* Set SSEL = 1-15 --> SCLK = VCO/SSEL */

/* CCLK = VCO / 1 */

frequency.uwP11Div = SET_SSEL(4) |
CSEL_DIVI

frequency.uwPT1LockCnt = 0x0200;

bfrom_SysControl(SYSCTRL_WRITE | SYSCTRL_EXTVOLTAGE |
SYSCTRL_PLLCTL | SYSCTRL_PLLDIV | SYSCTRL_LOCKCNT, &frequency,
NULL);

return;

}

8-40 ADSP-BF51x Blackfin Processor Hardware Reference

Dynamic Power Management

Listing 8-10. Transition of Frequencies (ASM)
__frequency:

Tink sizeof (ADI_SYSCTRL_VALUES)+2;

[--SP] = (R7:0,P5:0);

SP += -12;

/* write the struct */
RO = 0;

RO.L = SET_MSEL(21) ; /* Set MSEL = 0-63 --> VCO CLKIN*MSEL */
WLFP+-sizeof (ADI_SYSCTRL_VALUES)+

offsetof (ADI_SYSCTRL_VALUES,uwP11Ct1)] = RO;

RO.L = SET_SSEL(4) | /* Set SSEL = 1-15 --> SCLK
CSEL_DIVI ; /* CCLK = VvCO / 1 */

W[FP+-sizeof (ADI_SYSCTRL_VALUES)+

offsetof (ADI_SYSCTRL_VALUES,uwP11Div)] = RO;

VCO/SSEL */

RO.L = 0x0200;
WLFP+-sizeof (ADI_SYSCTRL_VALUES)+
offsetof (ADI_SYSCTRL_VALUES,uwP11LockCnt)] = RO;

/* argument 1 in RO */
RO = (SYSCTRL_WRITE | SYSCTRL_EXTVOLTAGE | SYSCTRL_PLLCTL |
SYSCTRL_PLLDIV);

/* argument 2 in R1: structure lays on local stack */
Rl = FP;
R1 += -sizeof(ADI_SYSCTRL_VALUES);

/* argument 3 must always be NULL */
R2 = 0;

ADSP-BF51x Blackfin Processor Hardware Reference 8-41

Programming Examples

/* call of SysControl function */
IMM32 (P4 ,BFROM_SYSCONTROL) ;
call (P4); /* RO contains the result from SysControl */

SP += 12;

(R7:0,P5:0) = [SP++];
unlink;

rts;

__frequency.end:

Changing Voltage Levels

Listing 8-11 provides C code for changing the voltage level dynamically.
The User must include his own code for accessing the external voltage
regulator.

8-42

ADSP-BF51x Blackfin Processor Hardware Reference

Dynamic Power Management

Listing 8-11. Changing Core Voltage (C)

void voltage(void)

{

ADI_SYSCTRL_VALUES voltage;

u32 ulCnt = 0;

bfrom_SysControl(SYSCTRL_EXTVOLTAGE | SYSCTRL_PLLCTL |
SYSCTRL_READ, &init, NULL);

init.uwP11Ct1 |= BYPASS;

init.uwPTTLockCnt = 0x0200;

bfrom_SysControl(SYSCTRL_WRITE | SYSCTRL_PLLCTL | SYSCTRL_LOCKCNT
| SYSCTRL_EXTVOLTAGE, &voltage, NULL);

/* Put your code for accessing the external voltage regulator
here */

/* A delay Toop is required to ensure VDDint is stable and the
PLL has re-locked. As this is depending on the external voltage
regulator circuitry the user must ensure timings are kept. The
compiler (no optimization enabled) will create a loop that takes
about 10 cycles. Time base is CLKIN as the PLL is bypassed. We
need 0x0200 CLKIN cycles that represent PLL_LOCKCNT and addition-
ally the time required by the circuitry */

ulCnt = 0x0200 + 0x0200;

while (ulCnt != 0) {ulCnt--;}

init.uwP11Ct1 &= ~BYPASS;

bfrom_SysControl (SYSCTRL_WRITE | SYSCTRL_PLLCTL |
SYSCTRL_EXTVOLTAGE, &voltage, NULL);

return;

}

ADSP-BF51x Blackfin Processor Hardware Reference 8-43

Programming Examples

8-44 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Ports

9 GENERAL-PURPOSE PORTS

This chapter describes the general-purpose ports. Following an overview
and a list of key features is a block diagram of the interface and a descrip-
tion of operation. The chapter concludes with a programming model,
consolidated register definitions, and programming examples.

Overview

The ADSP-BF51x Blackfin processors feature a rich set of peripherals,
which, through a powerful pin multiplexing scheme, provides great flexi-
bility to the external application space.

Table 9-1 shows all the peripheral signals that can be accessed off-chip.
ADSP-BF51x processors feature 42 peripheral pins through which all

on-chip peripheral are multiplexed.

ADSP-BF51x Blackfin Processor Hardware Reference 9-1

Features

Table 9-1. General-Purpose and Special Function Signals

Peripheral Signals

10/100 Ethernet MAC! with | MII interface (18) or RMII (11), IEEE-1588(3)

IEEE-1588°

RSI interfaced Data (8), clock (1), command (1)

PWM Channels (6), sync (1), trip (1)

PPI Interface Data (16), frame sync (3), clock (1)

SPI Interface Data (4), clock (2), slave select (2), slave enable (9)

SPORTs Data (8), clock (4), frame sync (4)

UART:s Data (4)

Timers PWM/capture/clock (8), alternate clock input (4), alternate cap-
ture input (7)

General-Purpose I/0 GPIO (40)

Handshake MemDMA MemDMA request (2)

1 ADSP-BF516 and ADSP-BF518 only.
2 ADSP-BF518 only.
3 ADSP-BF514, ADSP-BF516, and ADSP-BF518 only.

Features

The peripheral pins are functionally organized into general-purpose ports

designated port F, port G, and port H.

Port F provides 16 pins:
e MII/RMII signals (ADSP-BF516 and ADSP-BF518 only)
« DPI data signals
e DPWM signals

e Primary Timer signals

9-2 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Ports

Additional SPI0 and SPI1 slave selects

GPIOs

Port G provides 16 pins:

SPORTO signals

Primary SPIO signals

UARTO signals

RSI signals (ADSP-BF514, ADSP-BF516, and ADSP-BF518 only)
Handshake memDMA request signals

PPI Clock and Frame Sync signals
GPIOs

Port H provides 8 pins:

SPORTT signals
UARTT signals
SPI1 primary signals
Up/Down Counter

Primary Timer signals

GPIOs

Interface Overview

By default, all port F, port G, and port H pins are in general-purpose I/O
(GPIO) mode. Port] does not provide GPIO functionality. In this mode,

a pin can function as a digital input, digital output, or interrupt input.

ADSP-BF51x Blackfin Processor Hardware Reference 9-3

Interfface Overview

See “General-Purpose I/O Modules” on page 9-14 for details. Peripheral
functionality must be explicitly enabled by the function enable registers
(PORTF_FER, PORTG_FER, and PORTH_FER). The competing peripherals on
port F, port G, and port H are controlled by the respective multiplexer
control register (PORTF_MUX, PORTG_MUX, PORTH_MUX).

In this chapter, the naming convention for registers and bits uses a
lowercase x to represent F, G, or H. For example, the name
PORTX_FER represents PORTF_FER, PORTG_FER, and PORTH_FER. The
bit name Px0 represents PF0, PGO, and PHO. This convention is used
to discuss registers common to these three ports.

External Interface

The external interface of the general-purpose ports are described in the
following sections.

Port F Structure

Table 9-2 shows the multiplexer scheme for port F. Port F is controlled by
the PORTF_MUX and the PORTF_FER registers.

Port F consists of 16 pins, referred to as PFO to PF15, as shown in

Table 9-2. Besides the 16 GPIOs, this port houses all the PPI data signals
(PPID15-0) and MII/RMII signals. The PPI signals are multiplexed with
PWM signals. With an 8-bit PPI, there is no restriction to use the 4 chan-
nels of PWM. All the input signals in the “Additional Use” column are
enabled by their module only, regardless of the state of the PORTx_MUX and
PORTX_FER registers.

Any GPIO can be enabled individually and overrides the peripheral func-
tion if the respective bit in PORTF_FER is cleared.

9-4 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Ports

Table 9-2. Port F Multiplexing Scheme

PORTF_MUX |00 01 10 11
1st Function 2nd Function |3rd Function |4th Function |Additional Use | GPIO
Bit[1:0] MII ETxD2 PPI DO SPI1SSEL2 - TACLKG6 PFO
Bit[3:2] MII ERxD2 PPI D1 PWM_AH - TACLK7 PF1
MII ETxD3 PPI D2 PWM_AL - PF2
MII ERxD3 PPI D3 PWM_BH - TACLKO PF3
MII ERxCLK | PPI D4 PWM_BL - TACLK1 PF4
MII ERxDV PPI D5 PWM_CH - TACIO PF5
MII COL PPI D6 PWM_CL - TACI1 PF6
Bit[5:4] SPIOSSEL1 PPI D7 PWM_SYNC| - PF7
Bit[7:6] RMII MDC PPI D8 SPI1SSEL4 - PF8
RMII MDIO | PPI D9 TMR2 - PF9
RMII ETxDO0O PPI D10 TMR3 - PF10
Bit[9:8] RMII ERxDO PPI D11 PWM_AH - TACI3 PF11
RMII ETxD1 PPI D12 PWM_AL - PF12
RMII ERxD1 PPI D13 PWM_BH - PF13
RMII ETxEN | PPI D14 PWM_BL - PF14
Bit[11:10] RMII PHYINT | PPI D15 PWM_SYNC| - PF15

Bits 13-15 in the PORTF_MUX register are reserved. If TMRCLK is used
as an input to a GP Timer but the PPI is disabled, then bit 12 of
PORTF_MUX should be set.

Port G Structure

Table 9-3 shows the multiplexer scheme for port G. Port G is controlled
by the PORTG_MUX and PORTG_FER registers.

Port G consists of 16 pins, referred to as PGO to PG15, as shown in

Table 9-3. Besides the 16 GPIOs, this port houses SPORTO and SPIO
signals along with the RSI data, clock, and command signals. If a second-
ary channel on SPORTO is not required, you can enable UARTO signals
or an additional timer.

ADSP-BF51x Blackfin Processor Hardware Reference 9-5

Interfface Overview

Special attention is required for the use of the timers with PPI enabled.
Timer0 and Timer] are typically used for PPI frame sync generation.

Any GPIO can be enabled individually and overrides the peripheral func-
tion if the respective bit in the PORTG_FER register is cleared.

Table 9-3. Port G Multiplexing Scheme

PORTG_MUX (00 01 10 11
1st Function |2nd Function 3rd Function 4th Function [Additional GPIO
Use
Bit[1:0] RMII CRS HWAIT SPI1SSEL3 - PGO
MRII ERxER | DMAR1 PWM_CH - PG1
RMII TxCLK| DMARO PWM_CL - PG2
Bit[3:2] DROPRI RSI_DATAO SPIOSSELS - TACLK3 PG3
Bit[5:4] RSCLKO0 RSI_DATA1 TMR5 - TACI5 PG4
Bit[7:6] RFSO RSI_DATA2 PPICLK/TMRCLK| - PG5
TFSO RSI_DATA3 TMRO/PPIES1 - PG6
DTOPRI RSI_CMD TMRI1/PPIES2 PG7
Bit[9:8] TSCLKO RSI_CLK TMRG6 - TACI6 PGS
Bit[11:10] DTOSEC UARTO0 TX TMR4 - PG9
DROSEC UARTO0 RX PWM_TRIPB - TACI4 PG10
Bit[13:12] SPIO SS AMS2 SPI1SSELS5 - TACLK2 PG11
Bit[15:14] SPI0 SCK PPICLK/TMRCLK|PTP_PPS - PG12
SPI0 MISO | TMRO/PPIES1 PTP_CLKOUT - PG13
SPI0 MOSI | TMR1/PPIES2 PWM_TRIPB - PTP_AUXIN | PG14
SPIOSSEL2 PPI ES3 AMS3 - PG15

Port H Structure

Table 9-4 shows the multiplexer scheme for port H. Port H is controlled
by the PORTH_MUX and PORTH_FER registers.

Port H consists of 9 pins. PHO to PH7 (shown in Table 9-4) are GPIO capa-
ble and operate in the same fashion as the Port F and Port G pins. PH8 has

limited GPIO capability and connects to the chip enable of the optional
internal SPI flash in the ADSP-BF51x package. Port H also houses the

9-6

ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Ports

SPORTT and SPI signals. If a secondary channel on SPORTT1 is not
required, you can enable UART signals, or an additional SPI1 slave
enable signal or an additional timer.

Any GPIO can be enabled individually and overrides the peripheral func-
tion if the respective bit in the PORTH_FER register is cleared.

Table 9-4. Port H Multiplexing Scheme

PORTH_MUX (00 01 10 11
1st Function|2nd Function|3rd Function 4th Function |[Additional Use |GPIO
Bit[1:0] DRI1PRI SPI1 SS RSI_DATA4 - PHO
REFS1 SPI1 MISO |RSI_DATA5 - PHI1
RSCLK1 SPI1 SCK RSI_DATAG6 - PH2
DT1PRI SPI1 MOSI |RSI_DATA7 - PH3
Bit[3:2] TFS1 AOE SPIOSSEL3 - CUD PH4
TSCLK1 ARDY ECLK - CDG PH5
Bit[5:4] DTI1SEC UART1 TX |[SPI1SSEL1 - CZM PH6
Bit[7:6] DRISEC UART1 RX |[TMR7 - TACI2 PH7

@ Bits 8-15 in the PORTH_MUX register are reserved.

Input Tap Considerations

Input taps are shown in Table 9-2, Table 9-3 and Table 9-4 under the
“Additional Use” column. When input taps (as well as GPIO based taps)
are used with other functionality enabled on the GPIO pins, the signals
seen by the input tap modules might be different from what is seen on the
pins. This is because different pin functions have different signal require-
ments with respect to when the signal is latched, if at all. Because of this,
input taps multiplexed on certain pins may behave differently than those

ADSP-BF51x Blackfin Processor Hardware Reference 9-7

Interfface Overview

on other pins, depending on which pin function is selected. The input
taps will see different signals than at the pins in the following cases:

e« All GPIO inputs except PG2, PG4, PG8, PGY, PG11, PG12, PHZ, PH6
when GPIO is tapped with PORTx_FER set to 1.

e TACLK6 if PORTF_FER[0] = 1 and PORTF_MUX[1:0] = b#01

e TACLK7 if PORTF_FER[1] = 1 and PORTF_MUX[3:2] = b#00, b#01

e TACLKO if PORTF_FER[3] = 1 and PORTF_MUX[3:2] = b#00, b#01

® TACLKL if PORTF_FER[4] = 1 and PORTF_MUX[3:2] = b#01

® TACLK3 if PORTG_FER[3] = 1 and PORTG_MUX[3:2] = b#00

e TACIO if PORTF_FER[5] = 1 and PORTF_MUX[3:2] = b#00, b#01

e TACI1 if PORTF_FER[6] =1 and PORTF_MUX[3:2] = b#01

e TACI3 if PORTF_FER[11] = 1 and PORTF_MUX[9:8] = b#00, b#01
e TACI4 if PORTG_FER[10] =1 and PORTG_MUX[11:10] = b#00
e TACI2 if PORTH_FER[7] =1 and PORTH_MUX[7:6] = b#00

® PTP_AUXIN if PORTG_FER[14] = 1 and PORTG_MUX[15:14] = b#00,
b#01

* CUD if PORTH_FER[4] =1 and PORTH_MUX[3:2] = b#00

e (DG if PORTH_FER[5] =1 and PORTH_MUX[3:2] = b#01

PWM Unit Considerations

PWM signals that appear in multiple ports, if selected on both, will have
inputs and outputs enabled only on PF1—PF7. PUM_TRIPB appears twice
within Port G: on PG10 and PG14. If both are configured as PWM_TRIPB and
selected, inputs will only be enabled on PG10.

9-8 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Ports

If PUM_TRIPB is not selected on either PG14 or PG10, then the internal
PWM_TRIPB signal to the PWM module will be driven low. That is, the
PWM unit will be tripped if neither of these PWM_TRIPB signals is selected
via the PORTG_MUX register.

RSI Considerations
Pull up/pull down enabling for RSI:

e DPull down for RSI_DATA[3] will be enabled only if RSI is selected
on PG6 (that is, PORTG_MUX[7:6] == b#01) and the PD_Dat3 bit is set
in the RSI_CONFIG register.

e DPull up for RSI_DATA[3] will be enabled only if RSI is selected on
PG6 (that is, PORTG_MUX[7:6]1 == b#01) and the PU_Dat3 bit is set in
the RSI_CONFIG register.

e DPull up for RSI_DATALO0] will be enabled only if RST_DATALO0] is
selected on PG3 (that is, PORTG_MUX[3:2] == b#01) and the PU_Dat
bit is set in the RST_CONFIG register.

e DPull up for RSI_DATA[1] will be enabled only if RST_DATA[1] is
selected on PG4 (that is, PORTG_MUX[5:4] == b#01) and the PU_Dat
bit is set in the RSI_CONFIG register.

e DPull up for RSI_DATAL2] will be enabled only if RST DATA[2] is
selected on PG5 (that is, PORTG_MUX[7:6] == b#01) and the PU_Dat
bit is set in the RST_CONFIG register.

e Pull up for RSI_DATA[7:4] will be enabled only if RST_DATAL7:4] is
selected on PH[3:0] (thatis, PORTH_MUX[1:0] == b#10) and the
PU_Dat bit is set in the RSI_CONFIG register.

If RSI_DATAL3] is not selected on PG6 (that is, PG_MUX[7:6] = b#01) then
the RSI_DATAL3] signal to RSI module will be driven low. This is to pre-
vent a spurious card detect interrupt generated by RSI due to data

ADSP-BF51x Blackfin Processor Hardware Reference 9-9

Interfface Overview

toggling on the PG6 pin when it is selected for SPORT/PPI/TMR/GPIO

operation.

Internal Interfaces

Port control and GPIO registers are part of the system memory-mapped
registers (MMRs). The addresses of the GPIO module MMRs appear in

Appendix B. Core access to the GPIO configuration registers is through
the system bus.

The PORTX_MUX registers control the muxing schemes of port F, port G,
and port H.

The function enable registers (PORTF_FER, PORTG_FER, PORTH_FER) enable
the peripheral functionality for each individual pin of port x.

SPI0 and Internal Flash Usage

PH8 has limited GPIO capability and connects to the chip enable of the
optional internal SPI flash in the ADSP-BF51x package.

On ADSP-BF51x parts, with and without external flash,
PORTH_FER[8] must always be set to b#1 for SPI0 to function prop-
erly—unless PH8 is used to select the internal SPI flash.

Table 9-5. SPI0 Usage Scenarios

Scenario PORTH_FER[8] [PORTHIO_DIR[8] |Processors Additional Information
SPIO master b#1 b#0 ADSP-BF51x

external access and

using SPI_FLG ADSP-BF51xF

SPI0 master b#1 b#0 ADSP-BF51x

external access and

using GPIO ADSP-BF51xF

slave selection

9-10 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Ports

Table 9-5. SPI0 Usage Scenarios (Continued)

Scenario

internal flash
access using
GPIO slave

selection

only

PORTH_FER[8] [PORTHIO_DIR[8] [Processors Additional Information
SPIO slave b#1 b#0 ADSP-BF51x
access and
ADSP-BF51xF
SPIO master b#1 b#0 ADSP-BF51xF
internal flash only
access using
SPI_FLG FLS4
SPIO master b#0 b#1 ADSP-BF51xF

Use PORTHIO_SET(8],
PORTHIO_CLEAR[S],
PORTHIO_TOGGLEJ8]

to access internal flash

Broadcast mode is restricted for SPI0. SPI0 can broadcast to all slaves
except the internal SPI flash (FLS4 in the SPIO_FLG register). Therefore,
in broadcast mode, FLS4 of SPI_FLG register should be set to b#0 and all
other slave selects (FLS1-3 and FLS5) may be set to b#1.

GP Timer Interaction With Other Blocks

The TACLKx and TACIx inputs of the GP Timers connect to several differ-

ent subsystems of the ADSP-BF51x processor. Following are the details of
these connections.

TACLK5 and TACLK4 connect internally to the CLKBUF pin

GP Counter

Buffered CLKIN (CLKBUF)

TAC17 connects to the COUNTERO TO output internally.

ADSP-BF51x Blackfin Processor Hardware Reference

9-11

Interfface Overview

PPI

TMRO is internally looped back to PPI_FS1 (to be used as internally gener-
ated frame sync). In this case, PPI_CLK is the clock input for the Timer0
module.

TMR1 is internally looped back to PPI_FS2 (to be used as internally gener-
ated frame sync) In this case, PPI_CLK is the clock input for the Timerl
module.

PPI_CLK/TMRCLK can be used as a clock input for any of the timers. If
TMRCLK is used as an input to a GP Timer but the PPI is disabled, then
bit 12 of PORTF_MUX should be set.

PPI/TMR signals (PPICLK/TMRCLK, TMRO/PPIFS1, TMR1/PPIFS2) that appear
in multiple ports, if selected on both, will have inputs and outputs enabled
only on PG12—PG14.

UART
TACI4 can be used for autobaud detection of UARTO RX.
TACI2 can be used for autobaud detection of UART1 RX.

SPORT

If TMR5 is configured as an output and PORTG_MUX[5:4] == b#10 and
SPORTO’s RSCLKO input enable is active, then TMR5 is the clock input for
RSCLKO.

If TMR6 is configured as an output and PORTG_MUX[9:8] == b#10, and
SPORTO’s TSCLKO input enable is active, then TMR6 is the clock input for
TSCLKO.

If SPORTO’s RSCLKO is configured as an output and PORTG_MUX[5:4] ==
b#00 and TMR5 input enable is active, then RSCLKO is the clock input for
TMRS.

9-12 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Ports

If SPORTO’s TSCLKO is configured as an output and PORTG_MUX[9:8] ==
b#00 and TMR6 input enable is active, then TSCLKO is the clock input for
TMR6.

If TACIS is selected in the TMRS module, then the signal from the PG4 pin is
fed to both SPORTO0’s RSCLKO and TACIS.

If TACI6 is selected in the TMR6 module, then the signal from the PG8 pin is
fed to both SPORTO0’s TSCLKO and TACI6.

Performance/Throughput

The PFx, PGx, and PHx pins are synchronized to the system clock (SCLK).
When configured as outputs, the GPIOs can transition once every system
clock cycle.

When configured as inputs, the overall system design should take into
account the potential latency between the core and system clocks. Changes
in the state of port pins have a latency of 3 SCLK cycles before being detect-
able by the processor. When configured for level-sensitive interrupt
generation, there is a minimum latency of 4 SCLK cycles between the time
the signal is asserted on the pin and the time that program flow is inter-
rupted. When configured for edge-sensitive interrupt generation, an
additional SCLK cycle of latency is introduced, giving a total latency of 5
SCLK cycles between the time the edge is asserted and the time that the
core program flow is interrupted.

Description of Operation

The operation of the general-purpose ports is described in the following
sections.

ADSP-BF51x Blackfin Processor Hardware Reference 9-13

Description of Operation

Operation

The GPIO pins on port F, port G, and port H can be controlled individu-
ally by the function enable registers (PORTx_FER). With a control bit in
these registers cleared, the peripheral function is fully decoupled from the
pin. It functions as a GPIO pin only. To drive the pin in GPIO output
mode, set the respective direction bit in the PORTxI0_DIR register. To
make the pin a digital input or interrupt input, enable its input driver in
the PORTXIO_INEN register.

By default all peripheral pins are configured as inputs after reset.
port F, port G, and port H pins are in GPIO mode. However,
GPIO input drivers are disabled to minimize power consumption
and any need of external pulling resistors.

When the control bit in the function enable registers (PORTx_FER) is set,
the pin is set to its peripheral functionality and is no longer controlled by
the GPIO module. However, the GPIO module can still sense the state of
the pin. When using a particular peripheral interface, pins required for the
peripheral must be individually enabled. Keep the related function enable
bit cleared if a signal provided by the peripheral is not required by your
application. This allows it to be used in GPIO mode.

General-Purpose 1/O Modules

The processor supports 40 bidirectional or general-purpose I/0O (GPIO)
signals. These 40 GPIOs are managed by three different GPIO modules,
which are functionally identical. One is associated with port F, one with
port G, and one with port H. Port F and port G each consist of 16 GPIOs
(PF15-0 and PG15-0), respectively. Port H consists of eight GPIOs
(PH7-0).

Each GPIO can be individually configured as either an input or an output
by using the GPIO direction registers (PORTxI0_DIR).

9-14 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Ports

When configured as output, the GPIO data registers (PORTFI0, PORTGIO,
and PORTHIO) can be directly written to specify the state of the GPIO:s.

The GPIO direction registers are read-write registers with each bit posi-
tion corresponding to a particular GPIO. A logic 1 configures a GPIO as
an output, driving the state contained in the GPIO data register if the
peripheral function is not enabled by the function enable registers. A logic
0 configures a GPIO as an input.

Note when using the GPIO as an input, the corresponding bit
should also be set in the GPIO input enable register. Otherwise,
changes at the input pins will not be recognized by the processor.

The GPIO input enable registers (PORTFIO_INEN, PORTGIO_INEN, and
PORTHIO_INEN) are used to enable the input buffers on any GPIO that is
being used as an input. Leaving the input buffer disabled eliminates the
need for pull-ups and pull-downs when a particular PFx, PGx, or PHx pin is
not used in the system. By default, the input buffers are disabled.

Once the input driver of a GPIO pin is enabled, the GPIO is not
allowed to operate as an output anymore. Never enable the input
driver (by setting PORTxIO_INEN bits) and the output driver (by set-
ting PORTxI0_DIR bits) for the same GPIO.

A write operation to any of the GPIO data registers sets the value of all
GPIOs in this port that are configured as outputs. GPIOs configured as
inputs ignore the written value. A read operation returns the state of the
GPIOs defined as outputs and the sense of the inputs, based on the polar-
ity and sensitivity settings, if their input buffers are enabled. Table 9-6
helps to interpret read values in GPIO mode, based on the settings of the
PORTxIO_POLAR, PORTXIO_EDGE, and PORTXIO_BOTH registers.

ADSP-BF51x Blackfin Processor Hardware Reference 9-15

Description of Operation

Table 9-6. GPIO Value Register Pin Interpretation

POLAR EDGE BOTH Effect of MMR Settings

0 0 X Pin that is high reads as 1; pin that is low
reads as 0

0 1 0 If rising edge occurred, pin reads as 1;
otherwise, pin reads as 0

1 0 X Pin that is low reads as 1; pin that is high
reads as 0

1 1 0 If falling edge occurred, pin reads as 1;

otherwise, pin reads as 0

X 1 1 If any edge occurred, pin reads as 1; oth-
erwise, pin reads as 0

For GPIOs configured as edge-sensitive, a readback of 1 from one
of these registers is sticky. That is, once it is set it remains set until
cleared by user code. For level-sensitive GPIOs, the pin state is
checked every cycle, so the readback value will change when the
original level on the pin changes.

The state of the output is reflected on the associated pin only if the func-
tion enable bit in the PORTx_FER register is cleared.

Werite operations to the GPIO data registers modify the state of all GPIOs
of a port. In cases where only one or a few GPIOs need to be changed, the
user may write to the GPIO set registers, PORTxI0_SET, the GPIO clear
registers, PORTxI0_CLEAR, or to the GPIO toggle registers, PORTxI0_TOGGLE
instead.

While a direct write to a GPIO data register alters all bits in the register,
writes to a GPIO set register can be used to set a single or a few bits only.
No read-modify-write operations are required. The GPIO set registers are
write-1-to-set registers. All s contained in the value written to a GPIO set
register sets the respective bits in the GPIO data register. The 0s have no
effect. For example, assume that PF0 is configured as an output. Writing
0x0001 to the GPIO set register drives a logic 1 on the PF0 pin without

9-16 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Ports

affecting the state of any other PFx pins. The GPIO set registers are typi-
cally also used to generate GPIO interrupts by software. Read operations
from the GPIO set registers return the content of the GPIO data registers.

The GPIO clear registers provide an alternative port to manipulate the
GPIO data registers. While a direct write to a GPIO data register alters all
bits in the register, writes to a GPIO clear register can be used to clear
individual bits only. No read-modify-write operations are required. The
clear registers are write-1-to-clear registers. All 1s contained in the value
written to the GPIO clear register clears the respective bits in the GPIO
data register. The Os have no effect. For example, assume that PF4 and PF5
are configured as outputs. Writing 0x0030 to the PORTFIO_CLEAR register
drives a logic 0 on the PF4 and PF5 pins without affecting the state of any
other PFx pins.

If an edge-sensitive pin generates an interrupt request, the service
routine must acknowledge the request by clearing the respective

GPIO latch. This is usually performed through the clear registers.

Read operations from the GPIO clear registers return the content of the

GPIO data registers.

The GPIO toggle registers provide an alternative port to manipulate the
GPIO data registers. While a direct write to a GPIO data register alters all
bits in the register, writes to a toggle register can be used to toggle individ-
ual bits. No read-modify-write operations are required. The GPIO toggle
registers are write-1-to-toggle registers. All 1s contained in the value writ-
ten to a GPIO toggle register toggle the respective bits in the GPIO data
register. The Os have no effect. For example, assume that PG1 is configured
as an output. Writing 0x0002 to the PORTGIO_TOGGLE register changes the
pin state (from logic 0 to logic 1, or from logic 1 to logic 0) on the PG1 pin
without affecting the state of any other PGx pins. Read operations from the
GPIO toggle registers return the content of the GPIO data registers.

The state of the GPIOs can be read through any of these data, set, clear, or
toggle registers. However, the returned value reflects the state of the input

ADSP-BF51x Blackfin Processor Hardware Reference 9-17

Description of Operation

pin only if the proper input enable bit in the PORTXI0_INEN register is set.
Note that GPIOs can still sense the state of the pin when the function
enable bits in the PORTx_FER registers are set.

Since function enable registers and GPIO input enable registers reset to
zero, no external pull-ups or pull-downs are required on the unused pins

of port F, port G, and port H.

GPIO Interrupt Processing

Each GPIO can be configured to generate an interrupt. The processor can
sense up to 40 asynchronous off-chip signals, requesting interrupts
through five interrupt channels. To make a pin function as an interrupt
pin, the associated input enable bit in the PORTXIO_INEN register must be
set. The function enable bit in the PORTx_FER register is typically cleared.
Then, an interrupt request can be generated according to the state of the
pin (either high or low), an edge transition (low to high or high to low), or
on both edge transitions (low to high and high to low). Input sensitivity is
defined on a per-bit basis by the GPIO polarity registers (PORTFI0_POLAR,
PORTGIO_POLAR, and PORTHIO_POLAR), and the GPIO interrupt sensitivity
registers (PORTFIO_EDGE, PORTGIO_EDGE, and PORTHIO_EDGE). If configured
for edge sensitivity, the GPIO set on both edges registers (PORTFI0_BOTH,
PORTGIO_BOTH, and PORTHIO_BOTH) let the interrupt request generate on
both edges.

The GPIO polarity registers are used to configure the polarity of the
GPIO input source. To select active high or rising edge, set the bits in the
GPIO polarity register to 0. To select active low or falling edge, set the
bits in the GPIO polarity register to 1. This register has no effect on
GPIOs that are defined as outputs. The contents of the GPIO polarity

registers are cleared at reset, defaulting to active high polarity.

The GPIO interrupt sensitivity registers are used to configure each of the
inputs as either a level-sensitive or an edge-sensitive source. When using
an edge-sensitive mode, an edge detection circuit is used to prevent a

9-18 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Ports

situation where a short event is missed because of the system clock rate.
The GPIO interrupt sensitivity register has no effect on GPIOs that are
defined as outputs. The contents of the GPIO interrupt sensitivity regis-
ters are cleared at reset, defaulting to level sensitivity.

The GPIO set on both edges registers are used to enable interrupt genera-
tion on both rising and falling edges. When a given GPIO has been set to
edge-sensitive in the GPIO interrupt sensitivity register, setting the
respective bit in the GPIO set on both edges register to both edges results
in an interrupt being generated on both the rising and falling edges. This
register has no effect on GPIOs that are defined as level-sensitive or as
outputs. See Table 9-6 for information on how the GPIO set on both
edges register interacts with the GPIO polarity and GPIO interrupt sensi-
tivity registers.

When the GPIO’s input drivers are enabled while the GPIO direction reg-
isters configure it as an output, software can trigger a GPIO interrupt by
writing to the data/set/toggle registers. The interrupt service routine

should clear the GPIO to acknowledge the request.

Each of the three GPIO modules provides two independent interrupt
channels. Identical in functionality, these are called interrupt A and inter-
rupt B. Both interrupt channels have their own mask register which lets
you assign the individual GPIOs to none, either, or both interrupt
channels.

Since all mask registers reset to zero, none of the GPIOs is assigned any
interrupt by default. Each GPIO represents a bit in each of these registers.
Setting a bit means enabling the interrupt on this channel.

Interrupt A and interrupt B operate independently. For example, writing
1 to a bit in the mask interrupt A register does not affect interrupt channel
B. This facility allows GPIOs to generate GPIO interrupt A, GPIO inter-
rupt B, both GPIO interrupts A and B, or neither.

A GPIO interrupt is generated by a logical OR of all unmasked GPIOs for
that interrupt. For example, if PF0 and PF1 are both unmasked for GPIO

ADSP-BF51x Blackfin Processor Hardware Reference 9-19

Description of Operation

interrupt channel A, GPIO interrupt A will be generated when triggered

by PF0 or PF1. The interrupt service routine must evaluate the GPIO data
register to determine the signaling interrupt source. Figure 9-1 illustrates
the interrupt flow of any GPIO module's interrupt A channel.

When using either rising or falling edge-triggered interrupts, the
interrupt condition must be cleared each time a corresponding
interrupt is serviced by writing 1 to the appropriate bit in the
GPIO clear register.

At reset, all interrupts are masked and disabled.

Similarly to the GPIOs themselves, the mask register can either be written
through the GPIO mask data registers (PORTxI0_MASKA, PORTxI0_MASKB) or
be controlled by the mask A/mask B set, clear and toggle registers.

The GPIO mask interrupt set registers (PORTxI0_MASKA_SET,
PORTXIO_MASKB_SET) provide an alternative port to manipulate the GPIO
mask interrupt registers. While a direct write to a mask interrupt register
alters all bits in the register, writes to a mask interrupt set register can be
used to set a single or a few bits only. No read-modify-write operations are
required.

The mask interrupt set registers are write-1-to-set registers. All ones con-
tained in the value written to the mask interrupt set register set the
respective bits in the mask interrupt register. The zeroes have no effect.
Writing a one to any bit enables the interrupt for the respective GPIO.

9-20 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Ports

START

IS THE
GPIO ENABLED IN
PORTxIO_MASKA_D?

NO
(INPUT)

IS THE GPIO SET
AS AN OUTPUT IN
PORTxIO_DIR?

IS THE INPUT
DRIVER ENABLED IN
PORTxIO_INEN?

IS THE GPIO
EDGE-SENSITIVE
AS DEFINED IN
PORTxIO_EDGE?

YES
(EDGE SENSITIVE)

NO
(LEVEL SENSITIVE)

IS THE GPIO
SET TO ONE?

IS EDGE
DETECTED

AS DEFINED IN
PORTxIO_POLAR &
PORTxIO_BOTH?

IS THE INPUT
AN ACTIVE LEVEL
AS DEFINED IN
PORTxIO_POLAR?

GENERATE INTERRUPT A

Figure 9-1. GPIO Interrupt Generation Flow for Interrupt Channel A

The GPIO mask interrupt clear registers (PORTXI0_MASKA_CLEAR,
PORTXI0_MASKB_CLEAR) provide an alternative port to manipulate the
GPIO mask interrupt registers. While a direct write to a mask interrupt
register alters all bits in the register, writes to the mask interrupt clear

ADSP-BF51x Blackfin Processor Hardware Reference 9-21

Description of Operation

register can be used to clear a single bit or a few bits only. No read-mod-
ify-write operations are required.

The mask interrupt clear registers are write-1-to-clear registers. All ones
contained in the value written to the mask interrupt clear register clear the
respective bits in the mask interrupt register. The zeroes have no effect.
Writing a one to any bit disables the interrupt for the respective GPIO.

The GPIO mask interrupt toggle registers (PORTxI0_MASKA_TOGGLE,
PORTXI0_MASKB_TOGGLE) provide an alternative port to manipulate the
GPIO mask interrupt registers. While a direct write to a mask interrupt
register alters all bits in the register, writes to a mask interrupt toggle reg-
ister can be used to toggle a single bit or a few bits only. No
read-modify-write operations are required.

The mask interrupt toggle registers are write-1-to-clear registers. All ones
contained in the value written to the mask interrupt toggle register toggle
the respective bits in the mask interrupt register. The zeroes have no

effect. Writing a one to any bit toggles the interrupt for the respective
GPIO.

Figure 9-1 illustrates the interrupt flow of any GPIO module’s interrupt A
channel. The interrupt B channel behaves identically.

All GPIOs assigned to the same interrupt channel are OR’ed. If multiple
GPIOs are assigned to the same interrupt channel, it is up to the interrupt
service routine to evaluate the GPIO data registers to determine the sig-
naling interrupt source.

All GPIOs assigned to the same interrupt channel are OR’ed. (See

Figure 9-2.) If multiple GPIOs are assigned to the same interrupt channel,
it is up to the interrupt service routine to evaluate the GPIO data registers
to determine the signaling interrupt source.

9-22 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Ports

PORTFIO_MASKA_D IRQ45

e *u. *u. **u. *u. *u. *u. *u. * *
o o o o o o o o
PORTFIO_MASKB_D
PORTGIO_MASKA_D " IRQ40

PORTGIO_MASKB_D

IRQ46

IRQ41

PORTHIO_MASKA_D — IRQ29
I I
PORTHIO_MASKB_D — IRQ31

Figure 9-2. GPIO Interrupt Channels

ADSP-BF51x Blackfin Processor Hardware Reference 9-23

Programming Model

Programming Model

Figure 9-3 and Figure 9-4 show the programming model for the gen-

eral-purpose ports.

GPIO OR
PERIPHERAL?

WRITE PORTx_FERTO CLEAR
APPROPRIATE PFx, PGx, AND PHx BITS

GPIO OUTPUT
OR INPUT?

PERIPHERAL

WRITE PORTx_MUX, WRITE PORTx_FER
TO SET APPROPRIATE PERIPHERAL BITS

!

SEE PERIPHERAL FOR MORE DETAILS

OUTPUT

WRITE PORTxIO_DIRTO SET
APPROPRIATE BITS FOR OUTPUT DIRECTION

WRITE PORTxIO_DIRTO CLEAR
APPROPRIATE BITS FOR INPUT DIRECTION

!

WRITE PORTxIO_INEN TO SET APPROPRIATE
BITS TO ENABLE INPUT DRIVERS DIRECTION

!

SET OR CLEAR
GPIO?

!

WRITE PORTxIO_CLEARTO SET
APPROPRIATE BITS TO LOWER INDIVIDUAL GPIO

WRITE PORTxIO_SET TO SET <
APPROPRIATE BITS TO RAISE INDIVIDUAL GPIO

Figure 9-3. GPIO Flow Chart (Part 1 of 2)

9-24

ADSP-BF51x Blackfin Processor Hardware Reference

EDGE OR LEVEL
SENSITIVE?

WRITE PORTxIO_EDGE TO CLEAR
APPROPRIATE BITS FOR LEVEL SENSITIVITY

LEVEL HIGH
OR LOW?

| WRITE PORTxIO_POLAR TO SET
APPROPRIATE BITS FOR LOW LEVEL SENSITIVITY

WRITE PORTxIO_POLAR TO CLEAR APPROPRIATE
BITS FOR HIGH LEVEL SENSITIVITY

EDGE

General-Purpose Ports

WRITE PORTxIO_EDGE TO SET
APPROPRIATE BITS FOR EDGE SENSITIVITY

1

RISING OR FALLING

ALLING OR BOTH?

WRITE PORTxIO_BOTH TO SET
APPROPRIATE BITS FOR BOTH EDGE SENSITIVITY

WRITE PORTxIO_BOTH TO CLEAR APPROPRIATE |
BITS FOR EDGE SENSITIVITY

'

EDGE RISING
OR FALLING?

FALLING

WRITE PORTxIO_POLAR TO SET
APPROPRIATE BITS FOR FALLING EDGE SENSITIVITY

WRITE PORTxIO_POLAR TO CLEAR APPROPRIATE
BITS FOR RISING EDGE SENSITIVITY

Y

INTERRUP
ABILITY?

SOFTWARE CAN INTERROGATE
PORTx_DATA BITS TO
DETERMINE EVENTS

T

WRITE EITHER PORTxIO_MASKA, PORTxIO_MASKB, PORTxIO_MASKA_SET,
PORTxIO_MASKB_SET, PORTxIO_MASKA_TOGGLE, OR PORTxIO_MASKB_TOGGLE

TO SET APPROPRIATE BITS ON WHICH TO GENERATE AN INTERRUPT

{

INTERRUPTS MUST THEN BE CONFIGURED AT THE
SYSTEM INTERRUPT CONTROLLER AND
CORE EVENT CONTROLLER

Figure 9-4. GPIO Flow Chart (Part 2 of 2)

ADSP-BF51x Blackfin Processor Hardware Reference

9-25

Memory-Mapped GPIO Registers

Memory-Mapped GPIO Registers

The GPIO registers are part of the system memory-mapped registers
(MMRs). Figure 9-10 through Figure 9-30 on page 9-44 illustrate the
GPIO registers. The addresses of the programmable flag MMRs appear in
Appendix B.

In Figure 9-10 through Figure 9-30, bits 8-15 are reserved for
Port H register descriptions.

PORTx Hysteresis Control (PORTx_HYSTERESIS)
Register

The ADSP-BF51x contains additional registers controlling the hysteresis
(via Schmitt triggering) for Port F, Port G and Port H. These are also
included for several pins other than GPIOs. Figure 9-5 to Figure 9-7 show
the bit descriptions of these registers.

This register configures Schmitt triggering (SE) for the PORTx inputs.
The Schmitt trigger can be set only for pin groups, classified by the pin
muxing controls. For each controlled group of pins, b#00 will disable
Schmitt triggering, while b#01 will enable it. Combinations of b#1x are
reserved.

Port F Hysteresis Register (PORTF_HYSTERESIS)
15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
[oTooJoJoJoJoJo oo Jo]oJo]oJoJo] Reset=oxo000
L | I IL | J I |

Reserved# PFO SE

PF6 to PF1 SE

PF15 SE
PF7 SE

PF14 to PF11 SE PF10 to PF8 SE

Figure 9-5. Port F Hysteresis Register

9-26 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Ports

Port G Hysteresis Register (PORTG_HYSTERESIS)

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
o|0|o|o|o|o|0|o|o|o|o|o|o|o o|o|Reset=0x0000
|

PG15 to PG12 SEJ I— PG2 to PGO SE
PG11 SE _ L PG3SE
PG10toPG9SE ——MM———————— L PG4 SE
PG8 SE PG7 to PG5 SE

Figure 9-6. Port G Hysteresis Register

Port H Hysteresis Register (PORTH_HYSTERESIS)

1514 1312 11 10 9 8 7 6 5 4 3 2 1 0
|o|o|0|o|o|o|o|o|o|o|o|o|o|o|o|oIReset—Oxoooo
Il |

\— PH3 to PHO SE
Reserved
PH7 SE L PHS5 to PH4 SE
PH6 SE

Figure 9-7. Port H Hysteresis Register

ADSP-BF51x Blackfin Processor Hardware Reference 9-27

Memory-Mapped GPIO Registers

Non-GPIO Drive Strength Control Register

This register sets the drive strength and tolerance for the TWI signals on
the ADSP-BF51x as specified in the diagram.

Non-GPIO Ports Drive Strength Control Register (NONGPIO_DRIVE)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Io |o |o |o Io |o |o |0 Io |o |o |1 Io |0 |o |1 I Reset = 0x0011

Reserved ‘

TWIL_DT
Drive/tolerate for TWI pins SCL and SDA

000:
001:
010:
011:
100:
101:
110:
111:

3.3V Vddext 3.3V Vbustwi
1.8 V Vddext 1.8V Vbustwi
2.5V Vddext 3.3V Vbustwi
1.8V Vddext 3.3V Vbustwi
3.3V Vddext 5 V Vbustwi
1.8V Vddext 2.5V Vbustwi
2.5V Vddext 2.5V Vbustwi
Reserved

Reserved

Figure 9-8. Non-GPIO Drive Strength Control Register

9-28

ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Ports

Non-GPIO Hysteresis (NONGPIO_HYSTERESIS)
Register

This register sets the Schmitt trigger (SE) for various ADSP-BF51x sig-
nals. The bits relating to SPI flash (on parts with on-chip SPI flash) are
intended for power conservation where possible.

Non-GPIO Hysteresis Register (NONGPIO_HYSTERESIS)

i5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|o |o |o |o Io |o |o |o |o | o|o |o Io |o |o |o | Reset = 0x0000
| | | I I [|

Reserved g LReserved
SPISO_PUPEN NMLRST?BMODE?ISE
0 - Disables the internal pull-up resistance on %(I)E_S?I'able hé?\}lereDSés f‘or NlMI‘
the SPI0_MISO pin for the internal SPI flash T, and BMODE signals
1 - Enables the internal pull-up resistance on 01 - Disable hystereS|s_NMI,
the SPI0_MISO pin for the internal SPI flash RESET, and BMODE signals
1x Reserved
SPISO_IEDSBL L JTAG_SE
0 - Enable input for SPI0_MISO pad connected to 00 - Disable hysteresis for
internal SPI flash. JTAG input signals
1 - Disable input for SPI0_MISO pad connected to 01 - Enable hysteresis for
internal SPI flash. JTAG input signals
1x Reserved
Reserved

Figure 9-9. Non-GPIO Hysteresis Register

ADSP-BF51x Blackfin Processor Hardware Reference 9-29

Memory-Mapped GPIO Registers

Port Multiplexer Control Register (PORTF_MUX)

Port F Multiplexer Control Register (PORTF_MUX)

1514 1312 1110 9 8 .7 6 5 4.3 2 1 0
|o|0|o|o|o|o o|0|o|o|o|o|o|o o|0|ReSEt=°X00°0
[| [[I [

Reserved — | PFO_MUX
PF6to1_MUX

PF15_MUX L PF7_MUX

PF14to11_MUX PF10to8_MUX

For all bit fields:
00 = 1st Peripheral function
01 = 1st alternate peripheral function
10 = 2nd alternate peripheral function
11 = Reserved

Refer to Table 9-2 on page 9-5 to Table 9-4 on page 9-7 for reserved bits in the PORTF_MUX register.

Figure 9-10. Port F Multiplexer Control Register

9-30 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Ports

Port Multiplexer Control Register (PORTG_MUX)

Port G Multiplexer Control Register (PORTG_MUX)

1514 1312 1110 9 8 .7 6 5 4 .3 2 1 0
|o|0|o|o|o|o o|0|o|o|o|o|o|o o|0|ReSEt=°X00°0
[| | [It I [

PG15to12_MUX —! PG2to0_MUX
PG11_MUX — | — PG3_MUX
PG10to9_MUX L———— PG4_MUX
PG8_MUX PG7to5_MUX

For all bit fields:
00 = 1st Peripheral function
01 = 1st alternate peripheral function
10 = 2nd alternate peripheral function
11 = Reserved

Refer to Table 9-2 on page 9-5 to Table 9-4 on page 9-7 for reserved bits in the PORTG_MUX register.

Figure 9-11. Port G Multiplexer Control Register

ADSP-BF51x Blackfin Processor Hardware Reference 9-31

Memory-Mapped GPIO Registers

Port Multiplexer Control Register (PORTH_MUX)

Port H Multiplexer Control Register (PORTH_MUX)

1514 1312 11 10 9 8 7 6 5 4 3 2 1 0
fofofofolofo]ofolofoJofofoo oo Reset=0x0000
I I [Il [

Reserved PH3to0_MUX
PH5t04_MUX
For all bit fields: L PH6_MUX

00 = 1st Peripheral function

01 = 1st alternate peripheral function
10 = 2nd alternate peripheral function
11 = Reserved

Refer to Table 9-2 on page 9-5 to Table 9-4 on page 9-7 for reserved bits in the PORTH_MUX register.

PH7_MUX

Figure 9-12. Port H Multiplexer Control Register

Function Enable Registers (PORTx_FER)

Function Enable Registers (PORTx_FER)
For all bits, 0 - GPIO mode, 1 - Enable peripheral function

1514 1312 1110 9 8 7 6 5 4 3 2 1 0
|o|o|o|o|o|o|o|o|0|0|0|o|0|0|0|0| Reset = 0x0000

L Px0

Px1

Px2

Px3

Px15 Px4
Px14 — | Px5
Px13 Px6
Px12 Px7
Px11 Px8
Px10 Px9

Figure 9-13. Function Enable Registers

9-32 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Ports

GPIO Direction Registers (PORTxIO_DIR)

GPIO Direction Registers (PORTxIO_DIR)

For all bits, 0 -

Px15 Direction
Px14 Direction
Px13 Direction
Px12 Direction
Px11 Direction
Px10 Direction

Input, 1

- Output
15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
fofofoofofofofofofofofofofofolo]

L

Figure 9-14. GPIO Direction Registers

Reset = 0x0000

Px0 Direction
Px1 Direction
Px2 Direction
Px3 Direction
Px4 Direction
Px5 Direction
Px6 Direction
Px7 Direction

Px8 Direction
Px9 Direction

GPIO Input Enable Registers (PORTxIO_INEN)

GPIO Input Enable Registers (PORTxIO_INEN)

For all bits, 0 -

Px15 Input Enable
Px14 Input Enable
Px13 Input Enable
Px12 Input Enable
Px11 Input Enable
Px10 Input Enable

Input Buffer Disabled, 1

- Input Buffer Enabled

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
[ofoofofeofo]ofofofofofofofofo]o]

IE

Figure 9-15. GPIO Input Enable Registers

Reset = 0x0000

Px0 Input Enable
Px1 Input Enable
Px2 Input Enable
Px3 Input Enable
Px4 Input Enable
Px5 Input Enable
Px6 Input Enable

Px7 Input Enable
Px8 Input Enable
Px9 Input Enable

ADSP-BF51x Blackfin Processor Hardware Reference

9-33

Memory-Mapped GPIO Registers

GPIO Data Registers (PORTxIO)

GPIO Data Registers (PORTxIO)
1 - Set, 0 - Clear
1514 1312 11 10 9 8 7 6 5 4 3 2 1 0
Io |o |o |o Io |o |o |o Io |o |o |o Io |o |o |o Reset = 0x0000

Program Px0

Program Px1

Program Px2

Program Px3
Program Px15

Program Px4

Program Px14

’F

Program Px5

Program Px13

Program Px6
Program Px7
Program Px8
Program Px10 Program Px9

Program Px12
Program Px11

Figure 9-16. GPIO Data Registers

GPIO Set Registers (PORTxIO_SET)

GPIO Set Registers (PORTxIO_SET)
Write-1-to-set

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
Io |o |o |o |o |0 |o |o |o |o |0 |0 |o |o |o |o | Reset = 0x0000

L Set Px0

Set Px1

Set Px2

Set Px3

Set Px15 Set Px4
Set Px14 Set Px5
Set Px13 Set Px6
Set Px12 ——M — Set Px7
Set Px11 Set Px8
Set Px10 Set Px9

Figure 9-17. GPIO Set Registers

9-34 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Ports

GPIO Clear Registers (PORTxIO_CLEAR)

GPIO Clear Registers (PORTxIO_CLEAR)
Write-1-to-clear

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[oJofoJofoJofoJoofoofoJofoJofo] Reset=oxo000

L Clear Px0

Clear Px1

Clear Px2

Clear Px3

Clear Px15 Clear Px4
Clear Px14 Clear Px5
Clear Px13 Clear Px6
ClearPx12 —— | Clear Px7
Clear Px11 Clear Px8
Clear Px10 Clear Px9

Figure 9-18. GPIO Clear Registers

GPIO Toggle Registers (PORTXIO_TOGGLE)

GPIO Toggle Registers (PORTxIO_TOGGLE)
Write-1-to-toggle
1514 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Io |o |o |o Io |0 |o |o |0 |o |0 |0 |0 |0 |0 |0 | Reset = 0x0000

\—Toggle Px0

Toggle Px1

Toggle Px2

Toggle Px3

Toggle Px15 Toggle Px4
Toggle Px14 ———— Toggle Px5
Toggle Px13 Toggle Px6
Toggle Px12 Toggle Px7
Toggle Px11 Toggle Px8
Toggle Px10 Toggle Px9

Figure 9-19. GPIO Toggle Registers

ADSP-BF51x Blackfin Processor Hardware Reference 9-35

Memory-Mapped GPIO Registers

GPIO Polarity Registers (PORTxXIO_POLAR)

GPIO Polarity Registers (PORTxIO_POLAR)
For all bits, 0 - Active high or rising edge, 1 - Active low or falling edge

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0

[oJofoJoJoJoJoJoofoJofofofoJoJo] Reset=oxo000

Px0 Polarity

_ Px1 Polarity

Px2 Polarity

Px3 Polarity

Px15 Polarity Px4 Polarity
Px14 Polarity Px5 Polarity
Px13 Polarity Px6 Polarity
Px12 Polarity Px7 Polarity
Px11 Polarity Px8 Polarity
Px10 Polarity Px9 Polarity

Figure 9-20. GPIO Polarity Registers

Interrupt Sensitivity Registers (PORTxIO_EDGE)

Interrupt Sensitivity Registers (PORTxIO_EDGE)

For all bits, O - Level, 1 - Edge
1514 1312 11 10 9 8 7 6 5 4 3 2 1 0
fofofofofofofofofofofofofofofofo] Reset=oxoo00

L Px0 Sensitivity

Px1 Sensitivity

Px2 Sensitivity
Px3 Sensitivity

Px15 Sensitivity Px4 Sensitivity

Px14 Sensitivity ——!

Px5 Sensitivity
Px13 Sensitivity

Px6 Sensitivity

Px12 Sensitivity

o Px7 Sensitivity
Px11 Sensitivity ——— Px8 Sensitivity
Px10 Sensitivity Px9 Sensitivity

Figure 9-21. Interrupt Sensitivity Registers

9-36 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Ports

GPIO Set on Both Edges Registers (PORTxIO_BOTH)

GPIO Set on Both Edges Registers (PORTxIO_BOTH)

For all bits when enabled for edge-sensitivity, 0 - Single edge, 1 - Both edges

15 14 13 12 11 10

9

8

7 6

5

4

3 2 1 0

[oJofoJoJoJoJo]ofofoJofoJofo]o]o] Reset=oxo000

Px15 Both Edges
Px14 Both Edges
Px13 Both Edges
Px12 Both Edges
Px11 Both Edges
Px10 Both Edges

L Px0 Both Edges
Px1 Both Edges
Px2 Both Edges
Px3 Both Edges

Px4 Both Edges
Px5 Both Edges

Px6 Both Edges

Px7 Both Edges

Px8 Both Edges
Px9 Both Edges

Figure 9-22. GPIO Set on Both Edges Registers

GPIO Mask Interrupt Registers (PORTxIO_MASKA/B)

GPIO Mask Interrupt A Registers (PORTxIO_MASKA)
For all bits, 1 - Enable, 0 - Disable

15 14 13 12 11 10 9

7 6

2 1 0

fofofofodofofofofofofofofofofo]o]

Reset = 0x0000

Enable Px15 Interrupt
A

Enable Px14 Interrupt A —

Enable Px13 Interrupt A ——
Enable Px12 Interrupt A
Enable Px11 Interrupt A
Enable Px10 Interrupt A

Enable Px0 Interrupt A
Enable Px1 Interrupt A
Enable Px2 Interrupt A
Enable Px3 Interrupt A
Enable Px4 Interrupt A
Enable Px5 Interrupt A
Enable Px6 Interrupt A

Enable Px7 Interrupt A

Enable Px8 Interrupt A

Enable Px9 Interrupt A

Figure 9-23. GPIO Mask Interrupt A Registers

ADSP-BF51x Blackfin Processor Hardware Reference

9-37

Memory-Mapped GPIO Registers

GPIO Mask Interrupt B Registers (PORTxIO_MASKB)
For all bits, 1 - Enable

1514 1312 11 10 9 8 7 6 5 4 3 2 1 0
|o|0|0|o|o|o|o|0|o|o|o|o|0|o|o|o| Reset = 0x0000

Enable Px0 Interrupt B
Enable Px1 Interrupt B

Enable Px2 Interrupt B
Enable Px3 Interrupt B

E\r::ﬁlspl:)gs Enable Px4 Interrupt B
Enable Px14 Interrupt B - ——— Enable Px5 Interrupt B
Enable Px13 Interrupt B —— L Enable Px6 Interrupt B
Enable Px12 Interrupt B Enable Px7 Interrupt B
Enable Px11 InterruptB ——— Enable Px8 Interrupt B
Enable Px10 Interrupt B Enable Px9 Interrupt B

Figure 9-24. GPIO Mask Interrupt B Registers

9-38 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Ports

GPIO Mask Interrupt Set Registers
(PORTxXIO_MASKA/B_SET)

GPIO Mask Interrupt A Set Registers (PORTxIO_MASKA_SET)

For all bits, 1 - Set

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|o|o|o|o|o|o|o|o|o|o |o|o|o|o|o|o| Reset = 0x0000

\— Set Px0 Interrupt A
Enable
Set Px1 Interrupt A
Enable
Set Px15 Interrupt A Set Px2 Interrupt A
Enable Enable
Set Px14 Interrupt A Set Px3 Interrupt A
Enable Enable
Set Px13 Interrupt A Set Px4 Interrupt A
Enable Enable
Set Px12 Interrupt A Set Px5 Interrupt A
Enable Enable
Set Px11 Interrupt A Set Px6 Interrupt A
Enable Enable
Set Px10 Interrupt A Set Px7 Interrupt A
Enable Enable
Set Px8 Interrupt A
Enable
Set Px9 Interrupt A
Enable

Figure 9-25. GPIO Mask Interrupt A Set Registers

ADSP-BF51x Blackfin Processor Hardware Reference 9-39

Memory-Mapped GPIO Registers

GPIO Mask Interrupt B Set Registers (PORTxIO_MASKB_SET)

For all bits, 1 - Set

Set Px15 Interrupt B
Enable

Set Px14 Interrupt B
Enable

Set Px13 Interrupt B
Enable

15 14 13 12 11

10

9

8

7 6

5

4

3

2

1

0

fofofofofofofofofofofofofofo]o]e]

Set Px12 Interrupt B
Enable

Set Px11 Interrupt B

Enable

Set Px10 Interrupt B
Enable

Figure 9-26. GPIO Mask Interrupt B Set Registers

Reset = 0x0000

\— Set Px0 Interrupt B

Enable
Set Px1 Interrupt B
Enable
Set Px2 Interrupt B
Enable
Set Px3 Interrupt B
Enable
Set Px4 Interrupt B
Enable
Set Px5 Interrupt B
Enable

Set Px6 Interrupt B
Enable

Set Px7 Interrupt B
Enable

Set Px8 Interrupt B
Enable
Set Px9 Interrupt B
Enable

9-40

ADSP-BF51x Blackfin Processor Hardware Reference

GPIO Mask

General-Purpose Ports

Interrupt Clear Registers

(PORTXIO_MASKA/B_CLEAR)

GPIO Mask Interrupt A Clear Registers (PORTxIO_MASKA_CLEAR)

For all bits, 1 - Clear

Clear Px15 Interrupt A
Enable

Clear Px14 Interrupt A
Enable

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|o|o|o|o|o|o|o|o|o|o |o|o|o|o|o|o| Reset = 0x0000

\—Clear Px0 Interrupt A Enable

Clear Px1 Interrupt A
Enable
Clear Px2 Interrupt A
Enable

Clear Px3 Interrupt A
Enable

Clear Px13 Interrupt A

Clear Px4 Interrupt A
Enable

Enable

Clear Px12 Interrupt A
Enable

Clear Px5 Interrupt A
Enable

Clear Px11 Interrupt A
Enable.

Clear Px6 Interrupt A
Enable

Clear Px10 Interrupt A

Clear Px7 Interrupt A
Enable

Enable

Clear Px8 Interrupt A
Enable
Clear Px9 Interrupt A Enable

Figure 9-27. GPIO Mask Interrupt A Clear Registers

ADSP-BF51x Blackfin Processor Hardware Reference 9-41

Memory-Mapped GPIO Registers

GPIO Mask Interrupt B Clear Registers (PORTxIO_MASKB_CLEAR)
For all bits, 1 - Clear
15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
fofofofofofofofofofofofofofofo]o]

Reset = 0x0000

\—Clear Px0 Interrupt B

Clear Px15 Interrupt B
Enable

Clear Px14 Interrupt B
Enable

Clear Px13 Interrupt B
Enable

Clear Px12 Interrupt B
Enable

Clear Px11 Interrupt B
Enable

Clear Px10 Interrupt B
Enable

Figure 9-28. GPIO Mask Interrupt B Clear Registers

Enable
Clear Px1 Interrupt B
Enable
Clear Px2 Interrupt B
Enable
Clear Px3 Interrupt B
Enable
Clear Px4 Interrupt B
Enable
Clear Px5 Interrupt B
Enable
Clear Px6 Interrupt B
Enable
Clear Px7 Interrupt B
Enable
Clear Px8 Interrupt B
Enable
Clear Px9 Interrupt B
Enable

9-42

ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Ports

GPIO Mask Interrupt Toggle Registers

(PORTxIO_MASKA/B_TOGGLE)

GPIO Mask Interrupt A Toggle Registers (PORTxIO_MASKA_TOGGLE)

For all bits, 1 - Toggle

15 14 13 12 11 10 9

8

7 6

5

4

3

2

1

0

[ofofofofofofofofofofofofofofo]o]

Reset = 0x0000

Toggle Px15
Interrupt A Enable
Toggle Px14
Interrupt A Enable

Toggle Px13 Interrupt A
Enable

Toggle Px12 Interrupt A
Enable

Toggle Px11 Interrupt A
Enable

Toggle Px10 Interrupt A
Enable

\—Toggle Px0 Interrupt A
Enable
Toggle Px1 Interrupt A
Enable
Toggle Px2 Interrupt A
Enable
Toggle Px3 Interrupt A
Enable
Toggle Px4 Interrupt A
Enable

Toggle Px5 Interrupt A
Enable

Toggle Px6 Interrupt A
Enable

Toggle Px7 Interrupt A
Enable

Toggle Px8 Interrupt A
Enable

Toggle Px9 Interrupt A
Enable

Figure 9-29. GPIO Mask Interrupt A Toggle Registers

ADSP-BF51x Blackfin Processor Hardware Reference

9-43

Programming Examples

GPIO Mask Interrupt B Toggle Registers (PORTxIO_MASKB_TOGGLE)

For all bits, 1 - Toggle

15 14 13 12 11 10

[olofoJofofofofofofoofofofoJofo] Reset=oxo000

Toggle Px15
Interrupt B Enable
Toggle Px14
Interrupt B Enable

Toggle Px13 Interrupt B
Enable

Toggle Px12 Interrupt B

Enable
Toggle Px11 Interrupt B

Toggle PxO0 Interrupt B
Enable

Toggle Px1 Interrupt B
Enable

Toggle Px2 Interrupt B
Enable

Toggle Px3 Interrupt B
Enable
Toggle Px4 Interrupt B
Enable

Toggle Px5 Interrupt B
Enable

Enable Toggle Px6 Interrupt B
Toggle Px10 Interrupt B Enable

Enable

Toggle Px7 Interrupt B
Enable

Toggle Px8 Interrupt B
Enable

Toggle Px9 Interrupt B
Enable

Figure 9-30. GPIO Mask Interrupt B Toggle Registers

Programming Examples
Listing 9-1 provides examples for using the general-purpose ports.
Listing 9-1. General-Purpose Ports

/* set port f function enable register to GPIO (not peripheral)
*/

p0.1 = To(PORTF_FER);
pO.h = hi(PORTF_FER);
RO.h = 0x0000;

ro.1 = 0x0000;

9-44 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Ports

wlp0]l = r0;

/* set port f direction register to enable some GPIO as output,
remaining are input */
pO0.1 = To(PORTFIO_DIR);

pO.h = hi(PORTFIO_DIR);
rO.h = 0x0000;

ro.1 = Ox0FCO;

wlp0] = r0;

ssync;

/* set port f clear register */
p0.1 1T0(PORTFIO_CLEAR);
p0.h hi(PORTFIO_CLEAR);

ro.1 = 0xFCO;

wlp0]l = r0;

ssync;

/* set port f input enable register to enable input drivers of
some GPIOs */
p0.1 = To(PORTFIO_INEN);

p0.h = hi(PORTFIO_INEN);
r0.h = 0x0000;

ro.1 = 0x003C;

wlp0]l = r0;

ssync;

/* set port f polarity register */

p0.1 = To(PORTFIO_POLAR);
pO.h = hi(PORTFIO_POLAR);
ro = 0x00000;

wlp0] = r0;

ssync;

ADSP-BF51x Blackfin Processor Hardware Reference 9-45

Programming Examples

9-46 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Timers

10 GENERAL-PURPOSE TIMERS

This chapter describes the general-purpose (GP) timer module. Following
an overview and a list of key features is a description of operation and
functional modes of operation. The chapter concludes with a program-
ming model, consolidated register definitions, and programming
examples.

Specific Information for the ADSP-BF51x

For details regarding the number of GP timers for the ADSP-BF51x prod-
uct, refer to ADSP-BF512/BF514/BF516/BF518(F) Embedded Processor
Data Sheet.

For GP Timer interrupt vector assignments, refer to Table 5-3 on
page 5-20 in Chapter 5, “System Interrupts”.

To determine how each of the GP Timers is multiplexed with other func-
tional pins, refer to Table 9-2 on page 9-5 through Table 9-4 on page 9-7
in Chapter 9, “General-Purpose Ports”.

For a list of MMR addresses for each GP Timer, refer to Chapter A, “Sys-
tem MMR Assignments”.

ADSP-BF51x Blackfin Processor Hardware Reference 10-1

Overview

GP timer behavior for the ADSP-BF51x that differs from the general
information in this chapter can be found at the end of this chapter in the
section “Unique Information for the ADSP-BF51x Processor” on

page 10-57.

Overview

The general-purpose timers support the following operating modes:

Single-shot mode for interval timing and single pulse generation

Pulse width modulation (PWM) generation with consistent update
of period and pulse width values

External signal capture mode with consistent update of period and
pulse width values

External event counter mode

Feature highlights are:

Synchronous operation

Consistent management of period and pulse width values
Interaction with PPI module for video frame sync operation
Autobaud detection for UART module

Graceful bit pattern termination when stopping

Support for center-aligned PWM patterns

Error detection on implausible pattern values

All read and write accesses to 32-bit registers are atomic

10-2

ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Timers

Every timer has its dedicated interrupt request output

Unused timers can function as edge-sensitive pin interrupts

The internal structure of the individual timers is illustrated by
Figure 10-1, which shows the details of timer 0 as a representative exam-
ple. The other timers have identical structure.

SCLK —
TMRCLK
TACLKO T

TMRO 7%

<=1

TIMERO_CONFIG |

LEADING EDGE

P

::>| TIMERO_PERIOD (WRITE)|<::/

32 /I{;IE:

<2:| TIMERO_PERIOD (READ)|

e

TIMER 0

| COMPARATOR

Ei

ENABLE
LATCH

|<¢—F TIMENO

-4«———TIMDISO

|—PTRUNO

1
TIMERO_COUNTER ——

¥

[TOVF_ERRO

[—TIMILO

| COMPARATOR |

5

<}:| TIMERO_WIDTH (READ) |

2 | [*

3
J:>‘ TIMERO_WIDTH (WRITE) |<f

TMRO

TRAILING EDGE

Figure 10-1. Internal Timer Structure

PERIOD
1 MATCH
| > -
> INTERRUPT
»| CONTROL
OVERFLOW [
1 WIDTH MATCH|
> PIN
CONTROL
[14_ <t EDGE
< DETECTOR

<+«——TACI0

ADSP-BF51x Blackfin Processor Hardware Reference

10-3

Overview

External Interface

Every timer has a dedicated TMR pin. If enabled, the TMR pins output the
single-pulse or PWM signals generated by the timer. The TMR pins func-
tion as input in capture and counter modes. Polarity of the signals is
programmable.

When clocked internally, the clock source is the processor’s peripheral
clock (SCLK). Assuming the peripheral clock is running at 133 MHz, the
maximum period for the timer count is ((2%%-1) / 133 MHz) =

32.2 seconds.

Clock and capture input pins are sampled every SCLK cycle. The duration
of every low or high state must be at least one SCLK. Therefore, the maxi-
mum allowed frequency of timer input signals is SCLK/2.

Internal Interface

Timer registers are always accessed by the core through the 16-bit PAB
bus. Hardware ensures that all read and write operations from and to
32-bit timer registers are atomic.

Every timer has a dedicated interrupt request output that connects to the
system interrupt controller (SIC).

10-4 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Timers

Description of Operation

The core of every timer is a 32-bit counter, that can be interrogated
through the read-only TIMER_COUNTER register. Depending on the mode of
operation, the counter is reset to either 0x0000 0000 or 0x0000 0001
when the timer is enabled. The counter always counts upward. Usually, it
is clocked by scLK. In PWM mode it can be clocked by the alternate clock
input TACLK or, alternatively, the common timer clock input TMRCLK. In
counter mode, the counter is clocked by edges on the TMR input pin. The
significant edge is programmable.

After 2%2-1 clocks, the counter overflows. This is reported by the over-
flow/error bit TOVF_ERR in the TIMER_STATUS register. In PWM and
counter mode, the counter is reset by hardware when its content reaches
the values stored in the TIMER_PERIOD register. In capture mode, the coun-
ter is reset by leading edges on the TMR or TACI input pin. If enabled, these
events cause the interrupt latch TIMIL in the TIMER_STATUS register to be
set and issue a system interrupt request. The TOVF_ERR and TIMIL latches
are sticky and should be cleared by software using W1C (write-1-to-clear)
operations to clear the interrupt request. The global TIMER_STATUS register
is 32-bits wide. A single atomic 32-bit read can report the status of all cor-
responding timers.

Before a timer can be enabled, its mode of operation is programmed in the
individual timer-specific TIMER_CONFIG register. Then, the timers are
started by writing a “1” to the representative bits in the global
TIMER_ENABLE register.

The TIMER_ENABLE register can be used to enable all timers simultaneously.
The register contains W1S (write-1-to-set) control bits, one for each
timer. Correspondingly, the TIMER_DISABLE register contains W1C con-
trol bits to allow simultaneous or independent disabling of the timers.
Either register can be read to check the enable status of the timers. A “1”
indicates that the corresponding timer is enabled. The timer starts count-
ing three SCLK cycles after the TIMEN bit is set.

ADSP-BF51x Blackfin Processor Hardware Reference 10-5

Description of Operation

While the PWM mode is used to generate PWM patterns, the capture
mode (WDTH_CAP) is designed to “receive” PWM signals. A PWM pattern is
represented by a pulse width and a signal period. This is described by the
TIMER_WIDTH and TIMER_PERIOD register pair. In capture mode these regis-
ters are read only. Hardware always captures both values. Regardless of
whether in PWM or capture mode, shadow buffers always ensure consis-
tency between the TIMER_WIDTH and TIMER_PERIOD values. In PWM mode,
hardware performs a plausibility check by the time the timer is enabled. If
there is an error, the type is reported by the TIMER_CONFIG register and sig-
nalled by the TOVF_ERR bit.

Interrupt Processing

Each timer can generate a single interrupt. The resulting interrupt signals
are routed to the system interrupt controller block for prioritization and
masking. The timer status (TIMER_STATUS) register latches the timer inter-
rupts to provide a means for software to determine the interrupt source.

10-6 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Timers

Figure 10-2 shows the interrupt structure of the timers.

ILLEGAL
TIMER_WIDTH COUNT = WIDTH
COUNT = PERIOD
ILLEGAL
TIMER _PERIOD TRALING
EDGE
COUNTER
OVERFLOW l LEADING
y | EDGE

v {
PERIOD_CNT—»\ 1 0 /4\\1_¢_o/
\ \

PWM_OUT WDTH_CAP EXT_CLK PWM_OUT WDTH_CAP EXT_CLK
TMODE —» TMODE —»

INTERRUPT
ERROR EVENT * l EVENT
IRQ_ENA ——
vy PWM_OUT ;
SET SET TIMER
IRQ SYSTEM
TOVF_ERR TIMIL > |NTERRUPT [—>| PROCESSOR

CONTROLLER CORE

R Q

RST
MMR WRITE TO T 1 é

TIMER_STATUS
TIMIL WRITE DATA

—

TOVF_ERR WRITE DATA

Figure 10-2. Timers Interrupt Structure

To enable interrupt generation, set the IRQ_ENA bit and unmask the inter-
rupt source in the IMASK and SIC_IMASK registers. To poll the TIMIL bit

ADSP-BF51x Blackfin Processor Hardware Reference 10-7

Description of Operation

without interrupt generation, set IRQ_ENA but leave the interrupt masked
at the system level. If enabled by IRQ_ENA, interrupt requests are also gen-
erated by error conditions as reported by the TOVF_ERR bits.

The system interrupt controller enables flexible interrupt handling. All
timers may or may not share the same CEC interrupt channel, so that a
single interrupt routine services more than one timer. In PWM mode,
multiple timers may run with the same period settings and issue their
interrupt requests simultaneously. In this case, the service routine might
clear all TIMIL latch bits at once by writing 0x000F 000F to the
TIMER_STATUS register.

If interrupts are enabled, make sure that the interrupt service routine
(ISR) clears the TIMIL bit in the TIMER_STATUS register before the RTI
instruction executes. This ensures that the interrupt is not reissued.
Remember that writes to system registers are delayed. If only a few
instructions separate the TIMIL clear command from the RTT instruction,
an extra SSYNC instruction may be inserted. In EXT_CLK mode, reset the
TIMIL bit in the TIMER_STATUS register at the very beginning of the inter-
rupt service routine to avoid missing any timer events.

lllegal States

Every timer features an error detection circuit. It handles overflow situa-
tions but also performs pulse width vs. period plausibility checks. Errors
are reported by the TOVF_ERR bits in the TIMER_STATUS register and the
ERR_TYP bit field in the individual TIMER_CONFIG registers. Table 10-1 pro-
vides a summary of error conditions, using these terms:

* Startup. The first clock period during which the timer counter is
running after the timer is enabled by writing TIMER_ENABLE.

¢ Rollover. The time when the current count matches the value in
TIMER_PERIOD and the counter is reloaded with the value “1”.

10-8 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Timers

* Opverflow. The timer counter was incremented instead of doing a
rollover when it was holding the maximum possible count value of
O0xFFFF FFFF. The counter does not have a large enough range to
express the next greater value and so erroneously loads a new value
of 0x0000 0000.

* Unchanged. No new error.

e When ERR_TYP is unchanged, it displays the previously
reported error code or 00 if there has been no error since
this timer was enabled.

* When TOVF_ERR is unchanged, it reads “0” if there has been
no error since this timer was enabled, or if software has per-
formed a W1C to clear any previous error. If a previous

error has not been acknowledged by software, TOVF_ERR
reads “17.

Software should read TOVF_ERR to check for an error. If TOVF_ERR is set,
software can then read ERR_TYP for more information. Once detected,
software should write “1” to clear TOVF_ERR to acknowledge the error.

The following table can be read as: “In mode __ at event __, if
TIMER_PERIOD is __ and TIMER_WIDTH is then ERR_TYP is __ and
TOVF_ERRis __.”

J—

Startup error conditions do not prevent the timer from starting.
Similarly, overflow and rollover error conditions do not stop the
timer. Illegal cases may cause unwanted behavior of the TMR pin.

ADSP-BF51x Blackfin Processor Hardware Reference 10-9

Description of Operation

Table 10-1. Overview of Illegal States

(=]
o o
= =
Ll — o
a. = o o<
| | > [
] = & & = o
E : : : = |3
E <3} — —] —
PWM_OUT, Startup ==0 Anything b#10 | Set
PERIOD_CNT = 1| (Nob iti
_ (No boundary condition 1 Anything b#10 | Set
tests performed on
TIMER_WIDTH) >2 Anything No No
change | change
Rollover ==0 Anything b#10 | Set
==1 Anything b#11 Set
>2 == b#11 Set
>2 < TIMER_PERIOD | No No
change | change
>2 > TIMER_PERIOD | b#11 Set
Overflow, not possible | Anything | Anything b#01 | Set
unless there is also
another error, such as
TIMER_PERIOD ==
PWM_OUT, Startup Anything | == 0 b#01 | Set
PERIOD_CNT =0
- This case is not detected at startup, but results in an
overflow error once the counter counts through its
entire range.
Anything | 21 No No
change | change
Rollover Rollover is not possible in this mode.
Overflow, not possible | Anything | Anything b#01 | Set
unless there is also
another error, such as
TIMER_WIDTH == 0

10-10 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Timers

Table 10-1. Overview of Illegal States (Continued)

(=]
o p
= =
(58] — o
a = a o
| | > L
< 2 i i - N
E : : : = |3
E <3} — —] —
WDTH_CAP Startup TIMER_PERIOD and TIMER_WIDTH are
read-only in this mode, no error possible.
Rollover TIMER_PERIOD and TIMER_WIDTH are
read-only in this mode, no error possible.
Overflow Anything | Anything b#01 | Set
EXT_CLK Startup == Anything b#10 | Set
>1 Anything No No
change | change
Rollover ==0 Anything b#10 | Set
>1 Anything No No
change | change
Overflow, not possible | Anything | Anything b#01 | Set
unless there is also
another error, such as
TIMER_PERIOD ==

Modes of Operation

The following sections provide a functional description of the gen-
eral-purpose timers in various operating modes.

Pulse Width Modulation (PWM_OUT) Mode

Use the PWM_0UT mode for PWM signal or single-pulse generation, for

interval timing or for periodic interrupt generation. Figure 10-3 illustrates

PWM_OUT mode.

ADSP-BF51x Blackfin Processor Hardware Reference

10-11

Modes of Operation

Setting the TMODE field to b#01 in the TIMER_CONFIG register enables
PWM_OUT mode. Here, the TMR pin is an output, but it can be disabled by
setting the OUT_DIS bit in the TIMER_CONFIG register.

In PWM_OUT mode, the bits PULSE_HI, PERIOD_CNT, IRQ_ENA, OUT_DIS,
CLK_SEL, EMU_RUN, and TOGGLE_HI enable orthogonal functionality. They
may be set individually or in any combination, although some combina-
tions are not useful (such as TOGGLE_HI = 1 with 0UT_DIS =1 or
PERIOD_CNT = 0).

< DATA BUS >
A A

Y

TIMER_PERIOD TIMER_WIDTH
TMRCLK PWM_CLK
1 cLockK RESET
TACLK »| TIMER_COUNTER |<—
SCLK—{ 0
] [
L\ y
TIN_SEL CLK_SEL
EQUAL? EQUAL?
YES TIMER_ENABLE D YES
ASSERT DEASSERT
b
PULSE_HI
TOGGLE_HI—s| PWMOUT
OUT_DIS Loaic
INTERRUPT VR
pin
PERIOD_CNT

Figure 10-3. Timer Flow Diagram, PWM_OUT Mode

10-12 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Timers

Once a timer has been enabled, the timer counter register is loaded with a
starting value. If CLK_SEL = 0, the timer counter starts at Ox1. If

CLK_SEL = 1, it is reset to 0x0 as in EXT_CLK mode. The timer counts
upward to the value of the timer period register. For either setting of
CLK_SEL, when the timer counter equals the timer period, the timer coun-
ter is reset to 0x1 on the next clock.

In PWM_OUT mode, the PERIOD_CNT bit controls whether the timer generates
one pulse or many pulses. When PERIOD_CNT is cleared (PUM_OUT single
pulse mode), the timer uses the TIMER_WIDTH register, generates one assert-
ing and one deasserting edge, then generates an interrupt (if enabled) and
stops. When PERIOD_CNT is set (PWM_OUT continuous pulse mode), the
timer uses both the TIMER_PERIOD and TIMER_WIDTH registers and generates
a repeating (and possibly modulated) waveform. It generates an interrupt
(if enabled) at the end of each period and stops only after it is disabled. A
setting of PERIOD_CNT = O counts to the end of the width; a setting of
PERIOD_CNT = 1 counts to the end of the period.

The TIMER_PERIOD and TIMER_WIDTH registers are read-only in some
operation modes. Be sure to set the TMODE field in the TIMER_CONFIG
register to b#01 before writing to these registers.

Ouvutput Pad Disable

The output pin can be disabled in PWM_0UT mode by setting the OUT_DIS
bit in the TIMER_CONFIG register. The TMR pin is then three-stated regard-
less of the setting of PULSE_HI and TOGGLE_HI. This can reduce power
consumption when the output signal is not being used. The TMR pin can
also be disabled by the function enable and the multiplexer control
registers.

Single Pulse Generation

If the PERIOD_CNT bit is cleared, the PWM_0UT mode generates a single pulse
on the TMR pin. This mode can also be used to implement a precise delay.

ADSP-BF51x Blackfin Processor Hardware Reference 10-13

Modes of Operation

The pulse width is defined by the TIMER_WIDTH register, and the
TIMER_PERIOD register is not used. See Figure 10-4.

At the end of the pulse, the timer interrupt latch bit TIMIL is set, and the
timer is stopped automatically. No writes to the TIMER_DISABLE register
are required in this mode. If the PULSE_HI bit is set, an active high pulse is
generated on the TMR pin. If PULSE_HI is not set, the pulse is active low.

EXAMPLE TIMER ENABLE AND AUTOMATIC DISABLE TIMING
(PWM_OUT MODE, PERIOD_CNT = 0)

xR [A O v

TIMER_WIDTH 3
TIMER_COUNTER X X 1+ X 2 X s
TIMEN | |

TRUN | I

TMR, PULSE_HI=0 | |

TMR, PULSE_HI = 1 | |

f

wWis TO
TIMER_ENABLE

Figure 10-4. Timer Enable and Automatic Disable Timing

The pulse width may be programmed to any value from 1 to (2°*-1),
inclusive.

Pulse Width Modulation Waveform Generation

If the PERIOD_CNT bit is set, the internally clocked timer generates rectan-
gular signals with well-defined period and duty cycle (PWM patterns).
This mode also generates periodic interrupts for real-time signal
processing.

10-14 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Timers

The 32-bit TIMER_PERIOD and TIMER_WIDTH registers are programmed with
the values required by the PWM signal.

When the timer is enabled in this mode, the TMR pin is pulled to a deas-
serted state each time the counter equals the value of the pulse width
register, and the pin is asserted again when the period expires (or when the
timer gets started).

To control the assertion sense of the TMR pin, the PULSE_HI bit in the cor-
responding TIMER_CONFIG register is used. For a low assertion level, clear
this bit. For a high assertion level, set this bit. When the timer is disabled
in PWM_0OUT mode, the TMR pin is driven to the deasserted level.

Figure 10-5 shows timing details.

EXAMPLE TIMER ENABLE TIMING (PWM_OUT MODE, PERIOD_CNT = 1)

e S A 5 s A

TIMER_PERIOD 4 X 4 X 4
TIMER_WIDTH 1 X 1 X 1
TIMER_COUNTER X X 1+ X2 X5 X & X1 X2 X' s X
TIMEN |
TRUN ,
TMR pin, PULSE_HI = 0 L | L
TMR pin, PULSE_HI = 1 [] 1
f
W1STO

TIMER_ENABLE

Figure 10-5. Timer Enable Timing

If enabled, a timer interrupt is generated at the end of each period. An
interrupt service routine must clear the interrupt latch bit (TIMIL) and
might alter period and/or width values. In PWM applications, the soft-
ware needs to update period and pulse width values while the timer is

ADSP-BF51x Blackfin Processor Hardware Reference 10-15

Modes of Operation

running. When software updates either the TIMER_PERIOD or TIMER_WIDTH
registers, the new values are held by special buffer registers until the period
expires. Then the new period and pulse width values become active simul-
taneously. Reads from TIMER_PERIOD and TIMER_WIDTH registers return the
old values until the period expires.

The TOVF_ERR status bit signifies an error condition in PWM_0UT mode. The
TOVF_ERR bit is set if TIMER_PERIOD = 0 or TIMER_PERIOD = 1 at startup, or
when the timer counter register rolls over. It is also set if the timer pulse
width register is greater than or equal to the timer period register by the
time the counter rolls over. The ERR_TYP bits are set when the TOVF_ERR bit
is set.

Although the hardware reports an error if the TIMER_WIDTH value equals
the TIMER_PERIOD value, this is still a valid operation to implement PWM
patterns with 100% duty cycle. If doing so, software must generally ignore
the TOVL_ERR flags. Pulse width values greater than the period value are
not recommended. Similarly, TIMER_WIDTH = 0 is not a valid operation.
Duty cycles of 0% are not supported.

To generate the maximum frequency on the TMR output pin, set the period
value to “2” and the pulse width to “1”. This makes the pin toggle each
SCLK clock, producing a duty cycle of 50%. The period may be pro-
grammed to any value from 2 to (232 — 1), inclusive. The pulse width may
be programmed to any value from 1 to (period — 1), inclusive.

PULSE_HI Toggle Mode

The waveform produced in PWM_0UT mode with PERIOD_CNT = 1 normally
has a fixed assertion time and a programmable deassertion time (via the
TIMER_WIDTH register). When two or more timers are running synchro-
nously by the same period settings, the pulses are aligned to the asserting
edge as shown in Figure 10-6.

10-16 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Timers

| |
|<«—— PERIOD 1 —»

|
TOGGLE_HI=0

|
PULSE_HI=1 TMRO | |
|
|
|

ACTIVE
' HiGH

TOGGLE_HI=0
PULSE_HI=1 TMR1 | |
I ACTIVE I

: HIGH :

TOGGLE_HI=0
PULSE_HI =1 M
ACTIVE '
HIGH

TIMER
ENABLE

Figure 10-6. Example of Timers With Pulses Aligned to Asserting Edge

The TOGGLE_HI mode enables control of the timing of both the asserting
and deasserting edges of the output waveform produced. The phase
between the asserting edges of two timer outputs is programmable. The
effective state of the PULSE_HI bit alternates every period. The adjacent
active low and active high pulses, taken together, create two halves of a
symmetrical rectangular waveform. The effective waveform is active high
when PULSE_HT is set and active low when PULSE_HI is cleared. The value
of the TOGGLE_HI bit has no effect unless the mode is PWM_0UT and
PERIOD_CNT = 1.

In TOGGLE_HI mode, when PULSE_HI is set, an active low pulse is generated
in the first, third, and all odd-numbered periods, and an active high pulse
is generated in the second, fourth, and all even-numbered periods. When
PULSE_HI is cleared, an active high pulse is generated in the first, third,
and all odd-numbered periods, and an active low pulse is generated in the
second, fourth, and all even-numbered periods.

The deasserted state at the end of one period matches the asserted state at
the beginning of the next period, so the output waveform only transitions
when Count = Pulse Width. The net result is an output waveform pulse
that repeats every two counter periods and is centered around the end of
the first period (or the start of the second period).

ADSP-BF51x Blackfin Processor Hardware Reference 10-17

Modes of Operation

Figure 10-7 shows an example with three timers running with the same
period settings. When software does not alter the PWM settings at
run-time, the duty cycle is 50%. The values of the TIMER_WIDTH registers
control the phase between the signals.

WAVEFORM
PERIOD 1

WAVEFORM
PERIOD 2

PERIOD 1 : PERIOD 2 | PERIOD 3 : PERIOD 4
|

I I
I I
I I
I I
TIMER TIMER : TIMER TIMER :
I I
| | |
I I
| |

|
|
|
I
|
|
|
|
TOGGLE_HI =1 :
|
|
|
|
I
I

PULSE HI=1 JTMRO I I
ACTIVE : ACTIVE | ACTIVE : ACTIVE |
LOW | HIGH | LOW | HIGH |
| | | |
TOGGLE_HI =1 : :

PULSE HI=1 TMRi !

ACTIVE	ACTIVE	ACTIVE : ACTIVE	
LOW	HIGH	LOW	HIGH
TOGGLE_HI =1 | | |
PULSE_HI=1 TMR2! | ! !

| |
ACTIVE | ACTIVE | ACTIVE | ACTIVE |
LOW + HIGH ' LOW 1 HIGH !
TIMER
ENABLE

Figure 10-7. Three Timers With Same Period Settings

Similarly, two timers can generate non-overlapping clocks, by cen-
ter-aligning the pulses while inverting the signal polarity for one of the
timers (see Figure 10-8).

When TOGGLE_HI = 0, software updates the TIMER_PERIOD and
TIMER_WIDTH registers once per waveform period. When TOGGLE_HI = 1,
software updates the TIMER_PERIOD and TIMER_WIDTH registers twice per
waveform. Period values are half as large. In odd-numbered periods, write
(Period — Width) instead of Width to the TIMER_WIDTH register in order to
obtain center-aligned pulses.

10-18 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Timers

WAVEFORM

| WAVEFORM |
PERIOD 1 | PERIOD 2 |
I

TIMER TIMER | TIMER TIMER |
PERIOD 1| PERIOD 2! PERIOD 3| PERIOD 4 |
< > | |

| | | |

TOGGLE_HI =1 —|—|
PULSE_HI=0 TMRO |

ACTIVE , ACTIVE , ACTIVE , ACTIVE

HIGH Low HIGH Low

I
I I
I I
TOGGLE_HI =1 | |

PULSE HI=1 TMR1! ! ! !

- I I
I
I

[

| |
| ACTIVE | ACTIVE ACTIVE | ACTIVE |
T LOW . HIGH LOW HIGH |

TIMER
ENABLE

Figure 10-8. Two Timers With Non-overlapping Clocks
For example, if the pseudo-code when TOGGLE_HI = 0 is:

int period, width;

for (;3) f
period = generate_period(...)
width = generate_width(...)

waitfor (interrupt)

write (TIMER_PERIOD, period)
write (TIMER_WIDTH, width)
}

Then when TOGGLE_HI = 1, the pseudo-code would be:

int period, width ;
int perl, per2, widl, wid?

for (;3) |
period = generate_period(...)
width = generate_width(...)

ADSP-BF51x Blackfin Processor Hardware Reference 10-19

Modes of Operation

perl = period/2
widl width/2

per?2 = period/2
wid2 width/2

waitfor (interrupt)

write (TIMER_PERIOD, perl)
write (TIMER_WIDTH, perl - widl) ;

waitfor (interrupt)

write (TIMER_PERIOD, per2)
write (TIMER_WIDTH, wid2)

}

As shown in this example, the pulses produced do not need to be symmet-
ric (widl does not need to equal wid2). The period can be offset to adjust
the phase of the pulses produced (perl does not need to equal per2).

The TRUN bit in the TIMER_STATUS register is updated only at the end of
even-numbered periods in TOGGLE_HI mode. When TIMER_DISABLE is writ-
ten to "1", the current pair of counter periods (one waveform period)
completes before the timer is disabled.

As when TOGGLE_HI = 0, errors are reported if the TIMER_PERIOD register is
either set to “0” or “1”, or when the width value is greater than or equal to
the period value.

Externally Clocked PWM_OUT

By default, the timer is clocked internally by SCLK. Alternatively, if the
CLK_SEL bit in the TIMER_CONFIG register is set, the timer is clocked by

10-20 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Timers

PWM_CLK. The PWM_CLK is normally input from the TACLK pin, but may be
taken from the common TMRCLK pin regardless of whether the timers are
configured to work with the PPI. Different timers may receive different
signals on their PWM_CLK inputs, depending on configuration. As selected
by the PERIOD_CNT bit, the PWM_OUT mode either generates pulse width
modulation waveforms or generates a single pulse with pulse width
defined by the TIMER_WIDTH register.

When CLK_SEL is set, the counter resets to 0x0 at startup and increments
on each rising edge of PUM_CLK. The TMR pin transitions on rising edges of
PWM_CLK. There is no way to select the falling edges of PWM_CLK. In this
mode, the PULSE_HT bit controls only the polarity of the pulses produced.
The timer interrupt may occur slightly before the corresponding edge on
the TMR pin (the interrupt occurs on an SCLK edge, the pin transitions on a
later PUM_CLK edge). It is still safe to program new period and pulse width
values as soon as the interrupt occurs. After a period expires, the counter
rolls over to a value of Ox1.

The PWM_CLK clock waveform is not required to have a 50% duty cycle, but
the minimum PWM_CLK clock low time is one SCLK period, and the mini-
mum PWM_CLK clock high time is one SCLK period. This implies the
maximum PWM_CLK clock frequency is SCLK/2.

The alternate timer clock inputs (TACLK) are enabled when a timer is in
PWM_OUT mode with CLK_SEL = 1 and TIN_SEL = 0, without regard to the
content of the multiplexer control and function enable registers.

Using PWM_OUT Mode With the PPI

Some timers may be used to generate frame sync signals for certain PPI
modes. For detailed instructions on how to configure the timers for use
with the PPI, refer to “Frame Synchronization in GP Modes” on

page 20-19.

ADSP-BF51x Blackfin Processor Hardware Reference 10-21

Modes of Operation

Stopping the Timer in PWM_OUT Mode

In all PUM_OUT mode variants, the timer treats a disable operation (W1C to
TIMER_DISABLE) as a “stop is pending” condition. When disabled, it auto-
matically completes the current waveform and then stops cleanly. This
prevents truncation of the current pulse and unwanted PWM patterns at
the TMR pin. The processor can determine when the timer stops running by
polling for the corresponding TRUN bit in the TIMER_STATUS register to read
“0” or by waiting for the last interrupt (if enabled). Note the timer cannot
be reconfigured (TIMER_CONFIG cannot be written to a new value) until
after the timer stops and TRUN reads “0”.

In PWM_OUT single pulse mode (PERIOD_CNT = 0), it is not necessary to write
TIMER_DISABLE to stop the timer. At the end of the pulse, the timer stops
automatically, the corresponding bit in TIMER_ENABLE (and
TIMER_DISABLE) is cleared, and the corresponding TRUN bit is cleared. See
Figure 10-4 on page 10-14. To generate multiple pulses, write a “1” to
TIMER_ENABLE, wait for the timer to stop, then write another “1” to
TIMER_ENABLE.

In continuous PWM generation mode (PWM_OUT, PERIOD_CNT = 1) software
can stop the timer by writing to the TIMER_DISABLE register. To prevent
the ongoing PWM pattern from being stopped in an unpredictable way,
the timer does not stop immediately when the corresponding “1” has been
written to the TIMER_DISABLE register. Rather, the write simply clears the
enable latch and the timer still completes the ongoing PWM patterns
gracefully. It stops cleanly at the end of the first period when the enable
latch is cleared. During this final period the TIMEN bit returns “0”, but the
TRUN bit still reads as a “1”.

If the TRUN bit is not cleared explicitly, and the enable latch can be cleared
and re-enabled all before the end of the current period will continue to
run as if nothing happened. Typically, software should disable a PWM_0UT
timer and then wait for it to stop itself.

10-22 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Timers

Figure 10-9 shows detailed timing.

EXAMPLE TIMER DISABLE TIMING (PWM_OUT MODE, PERIOD_CNT = 1)

S U [O

TIMER_PERIOD 7 X 7 X 7
TIMER WIDTH 5 X 5 X 5
TMERCOUNTER 7 X 1 X 2 X 3 X 4 X 5 X & X 7
TIMEN |
TRUN L

TMR PIN, PULSE_HI=0 |
TMR PIN, PULSE_HI =1 |
1‘
W1CTO

TIMER_DISABLE

Figure 10-9. Timer Disable Timing

If necessary, the processor can force a timer in PUM_0UT mode to abort
immediately. Do this by first writing a “1” to the corresponding bit in
TIMER_DISABLE, and then writing a “1” to the corresponding TRUN bit in
TIMER_STATUS. This stops the timer whether the pending stop was waiting
for the end of the current period (PERIOD_CNT = 1) or the end of the cur-
rent pulse width (PERIOD_CNT = 0). This feature may be used to regain
immediate control of a timer during an error recovery sequence.

Use this feature carefully, because it may corrupt the PWM pattern
generated at the TMR pin.

When a timer is disabled, the TIMER_COUNTER register retains its state;
when a timer is re-enabled, the timer counter is reinitialized based on the
operating mode. The TIMER_COUNTER register is read-only. Software cannot
overwrite or preset the timer counter value directly.

ADSP-BF51x Blackfin Processor Hardware Reference 10-23

Modes of Operation

Pulse Width Count and Capture (WDTH_CAP) Mode

Use the WDTH_CAP mode, often simply called “capture mode,” to measure
pulse widths on the TMR or TACI input pins, or to “receive” PWM signals.

Figure 10-10 shows a flow diagram for WDTH_CAP mode.

(=

DATA BUS

—

A

TIMER_PERIOD

A

TIMER_COUNTER

RESET

‘ SCLK
—>

TIMER_WIDTH [

PULSE_HI

TMR
“ ‘

PIN
LEADING
EDGE
DETECT

I

TIMER_ENABLE

I

TOVF_ERR

PERIOD_CNT

PULSE_HI
TMR
(PIN

TRAILING
EDGE
DETECT

JL

4

Al

INTERRUPT
LOGIC

'

INTERRUPT

Figure 10-10. Timer Flow Diagram, WDTH_CAP Mode

In WDTH_CAP mode, the TMR pin is an input pin. The internally clocked
timer is used to determine the period and pulse width of externally applied

rectangular waveforms. Setting the TMODE field to b#10 in the
TIMER_CONFIG register enables this mode.

10-24

ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Timers

When enabled in this mode, the timer resets the count in the
TIMER_COUNTER register to 0x0000 0001 and does not start counting until
it detects a leading edge on the TMR pin.

When the timer detects the first leading edge, it starts incrementing.
When it detects a trailing edge of a waveform, the timer captures the cur-
rent 32-bit value of the TIMER_COUNTER register into the width buffer. At
the next leading edge, the timer transfers the current 32-bit value of the
TIMER_COUNTER register into the period buffer. The count register is reset
to 0x0000 0001 again, and the timer continues counting and capturing
until it is disabled.

In this mode, software can measure both the pulse width and the pulse
period of a waveform. To control the definition of leading edge and trail-
ing edge of the TMR pin, the PULSE_HI bit in the TIMER_CONFIG register is
set or cleared. If the PULSE_HI bit is cleared, the measurement is initiated
by a falling edge, the content of the counter register is captured to the
pulse width buffer on the rising edge, and to the period buffer on the next
falling edge. When the PULSE_HI bit is set, the measurement is initiated by
a rising edge, the counter value is captured to the pulse width buffer on

the falling edge, and to the period buffer on the next rising edge.
In WDTH_CAP mode, these three events always occur at the same time:
1. The TIMER_PERIOD register is updated from the period buffer.
2. The TIMER_WIDTH register is updated from the width buffer.
3. The TIMIL bit gets set (if enabled) but does not generate an error.

The PERIOD_CNT bit in the TIMER_CONFIG register controls the point in
time at which this set of transactions is executed. Taken together, these
three events are called a measurement report. The TOVF_ERR bit does not
get set at a measurement report. A measurement report occurs, at most,
once per input signal period.

ADSP-BF51x Blackfin Processor Hardware Reference 10-25

Modes of Operation

The current timer counter value is always copied to the width buffer and
period buffer registers at the trailing and leading edges of the input signal,
respectively, but these values are not visible to software. A measurement
report event samples the captured values into visible registers and sets the
timer interrupt to signal that TIMER_PERIOD and TIMER_WIDTH are ready to
be read. When the PERIOD_CNT bit is set, the measurement report occurs
just after the period buffer captures its value (at a leading edge). When the
PERIOD_CNT bit is cleared, the measurement report occurs just after the
width buffer captures its value (at a trailing edge).

If the PERTOD_CNT bit is set and a leading edge occurred (see Figure 10-11),
then the TIMER_PERIOD and TIMER_WIDTH registers report the pulse period
and pulse width measured in the period that just ended. If the PERIOD_CNT
bit is cleared and a trailing edge occurred (see Figure 10-12), then the
TIMER_WIDTH register reports the pulse width measured in the pulse that
just ended, but the TIMER_PERIOD register reports the pulse period mea-
sured at the end of the previous period.

If the PERIOD_CNT bit is cleared and the first trailing edge occurred, then
the first period value has not yet been measured at the first measurement
report, so the period value is not valid. Reading the TIMER_PERIOD value in
this case returns “0”, as shown in Figure 10-12. To measure the pulse
width of a waveform that has only one leading edge and one trailing edge,
set PERIOD_CNT = 0. If PERIOD_CNT = 1 for this case, no period value is cap-
tured in the period buffer. Instead, an error report interrupt is generated
(if enabled) when the counter range is exceeded and the counter wraps
around. In this case, both TIMER_WIDTH and TIMER_PERIOD read “0”
(because no measurement report occurred to copy the value captured in
the width buffer to TIMER_WIDTH). See the first interrupt in Figure 10-13.

10-26 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Timers

SCLK

TMR PIN, PULSE_HI =0

TMR PIN, PULSE_HI =1

D SR .0 080 800000

TIMER_PERIOD BUFFER X X 0 X 4 x 8

L
[

TIMER_WIDTH BUFFER X

A
TIMER_PERIOD X X 0 X 4 XE
A

TIMER_WIDTH X

TIMIL |_ |_

TOVF_ERR

TIMEN

} }

STARTS J‘ MEASUREMENT MEASUREMENT
COUNTING REPORT REPORT

NOTE: FOR SIMPLICITY, THE SYNCHRONIZATION DELAY BETWEEN TMR PIN EDGES
AND BUFFER REGISTER UPDATES IS NOT SHOWN.

Figure 10-11. Example of Period Capture Measurement Report Timing
(WDTH_CAP mode, PERIOD_CNT = 1)

ADSP-BF51x Blackfin Processor Hardware Reference 10-27

Modes of Operation

SCLK | | | | |

TMR PIN, PULSE_HI =0

TMR PIN, PULSE7r|—|—| I—I_
LCE LR SR 6 680 00000000800

X o 'C

TIMER_PERIOD BUFFER

X o € A X

TIMER_WIDTH BUFFER

TIMER_PERIOD X x 0 X 0 X 8 x 4

TIMER_WIDTH ZX 0 X3 X1 XZ
TIMIL [[[

TOVF_ERR

TIMEN

STARTS MEASUREMEN1f MEASUREMEN1j MEASUREMEN1j
COUNTING REPORT REPORT REPORT

NOTE: FOR SIMPLICITY, THE SYNCHRONIZATION DELAY BETWEEN TMR PIN EDGES AND BUFFER
REGISTER UPDATES IS NOT SHOWN.

Figure 10-12. Example of Width Capture Measurement Report Timing
(WDTH_CAP mode, PERIOD_CNT = 0)

10-28 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Timers

@ When using the PERIOD_CNT = 0 mode described above to measure

the width of a single pulse, it is recommended to disable the timer
after taking the interrupt that ends the measurement interval. If
desired, the timer can then be reenabled as appropriate in
preparation for another measurement. This procedure prevents the
timer from free-running after the width measurement, and from
logging errors generated by the timer count overflowing.

A timer interrupt (if enabled) is generated if the TIMER_COUNTER register
wraps around from OxFFFF FFFF to "0" in the absence of a leading edge.
At that point, the TOVF_ERR bit in the TIMER_STATUS register and the
ERR_TYP bits in the TIMER_CONFIG register are set, indicating a count over-
flow due to a period greater than the counter’s range. This is called an
error report. When a timer generates an interrupt in WDTH_CAP mode,
either an error has occurred (an error report) or a new measurement is
ready to be read (a measurement report), but never both at the same time.
The TIMER_PERIOD and TIMER_WIDTH registers are never updated at the
time an error is signaled.

Refer to Figure 10-13 and Figure 10-14 for more information.

ADSP-BF51x Blackfin Processor Hardware Reference 10-29

Modes of Operation

SCLK | | |
14
@

TMR PIN, PULSE_HI = 0

TMR PIN, PULSE_HI = 1
@

IHER COUNTER ZX:XZXZ 22 @@@%n'aan °

X o 2 o0 X+
T G O X

X

X

TIMER_PERIOD BUFFER X

TIMER_PERIOD X

TIMER_WIDTH X

TIMIL |_ |_

&

TOVF_ERR @ |_

TIMEN ¥

STARTS j ERROR j MEASUREMENT
COUNTING REPORT REPORT

1

NOTE: FOR SIMPLICITY, THE SYNCHRONIZATION DELAY BETWEEN TMR PIN EDGES AND BUFFER
REGISTER UPDATES IS NOT SHOWN.

Figure 10-13. Example Timing for Period Overflow Followed by Period
Capture (WDTH_CAP mode, PERIOD_CNT = 1)

10-30 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Timers

SCLK |
14
I

TMR pin, PULSE_HI = 0

TMR pin, PULSE_| HI _ 1

TIMER_PERIOD BUFFER
X X 0 X 0 X4

TIMER_WIDTH BUFFER

xX 0 3% 3

TIMER_PERIOD X X 0 o0& o

TIMER_WIDTH X X 0 3¢ 3

TIMIL [0 [

TOVF_ERR p [

TIMEN ¢

STARTS j t MEASUREMENT t ERROR
COUNTING REPORT REPORT

NOTE: FOR SIMPLICITY, THE SYNCHRONIZATION DELAY BETWEEN TMR PIN EDGES AND BUFFER
REGISTER UPDATES IS NOT SHOWN.

Figure 10-14. Example Timing for Width Capture Followed by Period
Overflow (WDTH_CAP mode, PERIOD_CNT = 0)

ADSP-BF51x Blackfin Processor Hardware Reference 10-31

Modes of Operation

Both TIMIL and TOVF_ERR are sticky bits, and software must explicitly clear
them. If the timer overflowed and PERIOD_CNT = 1, neither the
TIMER_PERIOD nor the TIMER_WIDTH register were updated. If the timer
overflowed and PERIOD_CNT = 0, the TIMER_PERIOD and TIMER_WIDTH regis-
ters were updated only if a trailing edge was detected at a previous
measurement report.

Software can count the number of error report interrupts between mea-
surement report interrupts to measure input signal periods longer than
0xFFFF FFFF. Each error report interrupt adds a full 232 scLk counts to
the total for the period, but the width is ambiguous. For example, in
Figure 10-13 the period is 0x1 0000 0004 but the pulse width could be
either 0x0 0000 0002 or 0x1 0000 0002.

The waveform applied to the TMR pin is not required to have a 50% duty
cycle, but the minimum TMR pin low time is one SCLK period and the min-
imum TMR pin high time is one SCLK period. This implies the maximum
TMR pin input frequency is SCLK/2 with a 50% duty cycle. Under these
conditions, the WDTH_CAP mode timer would measure Period = 2 and

Pulse Width = 1.

Avutobaud Mode

On some devices, in WDTH_CAP mode, some of the timers can provide auto-
baud detection for the Universal Asynchronous Receiver/Transmitter
(UART) interface(s). The TIN_SEL bit in the TIMER_CONFIG register causes
the timer to sample the TACI pin instead of the TMR pin when enabled for
WDTH_CAP mode. Autobaud detection can be used for initial bit rate negoti-
ations as well as for detection of bit rate drifts while the interface is in
operation.

10-32 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Timers

External Event (EXT_CLK) Mode

Use the EXT_CLK mode (sometimes referred to as the counter mode) to
count external events—that is, signal edges on the TMR pin (which is an
input in this mode). Figure 10-15 shows a flow diagram for EXT_CLK
mode.

The timer works as a counter clocked by an external source, which can
also be asynchronous to the system clock. The current count in
TIMER_COUNTER represents the number of leading edge events detected.
Setting the TMODE field to b#11 in the TIMER_CONFIG register enables this
mode. The TIMER_PERIOD register is programmed with the value of the
maximum timer external count.

The waveform applied to the TMR pin is not required to have a 50% duty
cycle, but the minimum TMR low time is one SCLK period, and the mini-
mum TMR high time is one SCLK period. This implies the maximum TMR
pin input frequency is SCLK/2.

232

Period may be programmed to any value from 1 to (2°“ — 1), inclusive.

After the timer has been enabled, it resets the TIMER_COUNTER register to
0x0 and then waits for the first leading edge on the TMR pin. This edge
causes the TIMER_COUNTER register to be incremented to the value 0x1.
Every subsequent leading edge increments the count register. After reach-
ing the period value, the TIMIL bit is set, and an interrupt is generated.
The next leading edge reloads the TIMER_COUNTER register again with 0x1.
The timer continues counting until it is disabled. The PULSE_HT bit deter-
mines whether the leading edge is rising (PULSE_HI set) or falling
(PULSE_HI cleared).

The configuration bits TIN_SEL and PERIOD_CNT have no effect in this
mode. The TOVF_ERR and ERR_TYP bits are set if the TIMER_COUNTER register
wraps around from OxFFFF FFFF to “0” or if Period = “0” at startup or
when the TIMER_COUNTER register rolls over (from Count = Period to
Count = 0x1). The TIMER_WIDTH register is unused.

ADSP-BF51x Blackfin Processor Hardware Reference 10-33

Programming Model

< DATA BUS >
A [

\

TIMER_PERIOD

RESET CLOCK
> TIMER_COUNTER [

] L

I LEADING
PULSE_HI— EDGE |<«— TMR pin
DETECT

Y

INTERRUPT
TIMER_ENABLE

Figure 10-15. Timer Flow Diagram, EXT_CLK Mode

A

Programming Model

The architecture of the timer block enables any of the timers within this
block to work individually or synchronously along with others as a group
of timers. Regardless of the operating mode, the programming model is
always straightforward. Because of the error checking mechanism, always
follow this order when enabling timers:

1. Set timer mode.
2. Write TIMER_WIDTH and TIMER_PERIOD registers as applicable.
3. Enable timer.

If this order is not followed, the plausibility check may fail because of
undefined width and period values, or writes to TIMER_WIDTH and
TIMER_PERIOD may result in an error condition, because the registers are
read-only in some modes. The timer may not start as expected.

10-34 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Timers

If in PWM_OUT mode the PWM patterns of the second period differ from
the patterns of the first one, the initialization sequence above might
become:

1.

D

Set timer mode to PWM_0UT.
Write first TIMER_WIDTH and TIMER_PERIOD value pair.
Enable timer.

Immediately write second TIMER_WIDTH and TIMER_PERIOD value
pair.

Hardware ensures that the buffered width and period values become active
when the first period expires.

Once started, timers require minimal interaction with software, which is

usually performed by an interrupt service routine. In PWM_0UT mode soft-
ware must update the pulse width and/or settings as required. In WDTH_CAP
mode it must store captured values for further processing. In any case, the
service routine should clear the TIMIL bits of the timers it controls.

Timer Registers

The timer peripheral module provides general-purpose timer functional-
ity. It consists of multiple identical timer units.

Each timer provides four registers:

TIMER_CONFIG[15:0] — timer configuration register
TIMER_WIDTH[31:0] — timer pulse width register
TIMER_PERIOD[31:0] — timer period register

TIMER_COUNTER[31:0] — timer counter register

ADSP-BF51x Blackfin Processor Hardware Reference 10-35

Timer Registers

Additionally, three registers are shared between the timers within a block:
* TIMER_ENABLE[15:0] — timer enable register
* TIMER_DISABLE[15:0] — timer disable register
® TIMER_STATUS[31:0] — timer status register

The size of accesses is enforced. A 32-bit access to a TIMER_CONFIG register
or a 16-bit access to a TIMER_WIDTH, TIMER_PERIOD, or TIMER_COUNTER reg-
ister results in a memory-mapped register (MMR) error. Both 16- and
32-bit accesses are allowed for the TIMER_ENABLE, TIMER_DISABLE, and
TIMER_STATUS registers. On a 32-bit read of one of the 16-bit registers, the
upper word returns all Os.

Timer Enable Register (TIMER_ENABLE)

Figure 10-16 shows an example of the TIMER_ENABLE register for a product
with eight timers. The register allows simultaneous enabling of multiple
timers so that they can run synchronously. For each timer there is a single
W18 control bit. Writing a “1” enables the corresponding timer; writing a
“0” has no effect. The bits can be set individually or in any combination.
A read of the TIMER_ENABLE register shows the status of the enable for the
corresponding timer. A “1” indicates that the timer is enabled. All unused
bits return “0” when read.

10-36 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Timers

Timer Enable Register (TIMER_ENABLE)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|o |o |o |o |o |o |o |o Io |o |o |o|o |0 |o |0 |Reset=0x0000

TIMEN7? (Timer7 Enable) ‘ TIMENO (Timer0 Enable)
1 - Enable timer 1 - Enable timer

Read as 1 when enabled Read as 1 when enabled
TIMENSG (Timer6 Enable) TIMEN1 (Timer1 Enable)
1 - Enable timer 1 - Enable timer

Read as 1 when enabled Read as 1 when enabled
TIMENS5 (Timer5 Enable) L———— TIMEN2 (Timer2 Enable)
1 - Enable timer 1 - Enable timer

Read as 1 when enabled Read as 1 when enabled

TIMEN4 (Timer4 Enable) TIMENS3 (Timer3 Enable)
1 - Enable timer 1 - Enable timer

Read as 1 when enabled Read as 1 when enabled

This diagram shows an example configuration for eight timers. Different products
have different numbers of timers.

Figure 10-16. Timer Enable Register

Timer Disable Register (TIMER_DISABLE)

Figure 10-17 shows an example of the TIMER_DISABLE register for a prod-
uct with eight timers. The register allows simultaneous disabling of
multiple timers. For each timer there is a single W1C control bit. Writing
a “1” disables the corresponding timer; writing a “0” has no effect. The
bits can be cleared individually or in any combination. A read of the
TIMER_DISABLE register returns a value identical to a read of the
TIMER_ENABLE register. A “1” indicates that the timer is enabled. All
unused bits return “0” when read.

ADSP-BF51x Blackfin Processor Hardware Reference 10-37

Timer Registers

Timer Disable Register (TIMER_DISABLE)

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
|o|o|o|o|o|o|o|o|0|o|o|o|o|0|0|o|Reset=0x0000

TIMDIS7 (Timer7 Disable) —} L TIMDISO (Timer0 Disable)

1 - Disable timer 1 - Disable timer

Read as 1 if this timer is enabled Read as 1 if this timer is enabled
TIMDIS6 (Timer6 Disable) TIMDIS1 (Timer1 Disable)

1 - Disable timer 1 - Disable timer

Read as 1 if this timer is enabled Read as 1 if this timer is enabled
TIMDIS5 (Timer5 Disable) L TIMDIS2 (Timer2 Disable)

1 - Disable timer 1 - Disable timer

Read as 1 if this timer is enabled Read as 1 if this timer is enabled
TIMDIS4 (Timer4 Disable) TIMDIS3 (Timer3 Disable)

1 - Disable timer 1 - Disable timer

Read as 1 if this timer is enabled Read as 1 if this timer is enabled

This diagram shows an example configuration for eight timers. Differ-
ent products have different numbers of timers.

Figure 10-17. Timer Disable Register

In PWM_OUT mode, a write of a “1” to TIMER_DISABLE does not stop the cor-
responding timer immediately. Rather, the timer continues running and
stops cleanly at the end of the current period (if PERIOD_CNT = 1) or pulse
(if PERIOD_CNT = 0). If necessary, the processor can force a timer in
PWM_OUT mode to stop immediately by first writing a “1” to the corre-
sponding bit in TIMER_DISABLE, and then writing a “1” to the
corresponding TRUN bit in TIMER_STATUS. See “Stopping the Timer in
PWM_OUT Mode” on page 10-22.

In WDTH_CAP and EXT_CLK modes, a write of a “1” to TIMER_DISABLE stops
the corresponding timer immediately.

Timer Status Register (TIMER_STATUS)

The TIMER_STATUS register indicates the status of the timers and is used to
check the status of multiple timers with a single read. Status bits are sticky
and W1C. The TRUN bits can clear themselves, which they do when a

PWM_OUT mode timer stops at the end of a period. During a TIMER_STATUS

10-38 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Timers

register read access, all reserved or unused bits return a “0”. Figure 10-18
shows an example of the TIMER_STATUS register for a product with eight
timers.

For detailed behavior and usage of the TRUN bit see “Stopping the Timer in
PWM_OUT Mode” on page 10-22. Writing the TRUN bits has no effect in
other modes or when a timer has not been enabled. Writing the TRUN bits
to “1” in PWM_0UT mode has no effect on a timer that has not first been

disabled.

Error conditions are explained in “Illegal States” on page 10-8.

Timer Configuration Register (TIMER_CONFIG)

The operating mode for each timer is specified by its TIMER_CONFIG regis-
ter. The TIMER_CONFIG register, shown in Figure 10-19, may be written
only when the timer is not running. After disabling the timer in PWM_0UT
mode, make sure the timer has stopped running by checking its TRUN bit in
TIMER_STATUS before attempting to reprogram TIMER_CONFIG. The
TIMER_CONFIG registers may be read at any time. The ERR_TYP field is
read-only. It is cleared at reset and when the timer is enabled.

Each time TOVF_ERR is set, ERR_TYP[1:0] is loaded with a code that identi-
fies the type of error that was detected. This value is held until the next
error or timer enable occurs. For an overview of error conditions, see
Table 10-1 on page 10-10. The TIMER_CONFIG register also controls the
behavior of the TMR pin, which becomes an output in PWM_OUT mode
(TMODE = 01) when the 0UT_DIS bit is cleared.

When operating the PPI in GP output modes with internal frame
syncs, the CLK_SEL and the TIN_SEL bits for the timers involved
must be set to “17.

ADSP-BF51x Blackfin Processor Hardware Reference 10-39

Timer Registers

Timer Status Register (TIMER_STATUS)
All bits are W1C
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Io |0 |o |o Io |o |0 |o |o |o |o |0 Io |o |0 |0 | Reset = 0x0000 0000

TRUN?7 (Timer7

Slave Enable Status) TIMIL4 (Timer4 Interrupt)
Read as 1 if timer Indicates an interrupt request
running, W1C to abort in when IRQ_ENA is set
PWM_OUT mode TIMIL5 (Timer5 Interrupt)
TRUNG (Timer6 Slave Indicates an interrupt request
Enable Status) when IRQ_ENA is set

Read as 1 if timer running, W1C to TIMIL6 (Timer6 Interrupt)
abort in PWM_OUT mode Indicates an interrupt request
TRUNS (Timer5 Slave when IRQ_ENA is set
Enable Status) L TIMIL7 (Timer7 Interrupt)
Read as 1 if timer running, W1C Indicates an interrupt request
to abort in PWM_OUT mode when IRQ_ENA is set
TRUN4 (Timer4 Slave Enable - TOVF_ERR4 (Timer4
Status) Counter Overflow)

Read as 1 if timer running, W1C to abort Indicates that an error or an
in PWM_OUT mode overflow occurred
TOVF_ERR7 (Timer7 Counter Overflow) ———— | TOVF_ERRS5 (Timer5
Indicates that an error or an overflow occurred Counter Overflow)
TOVF_ERRS6 (Timer6 Counter Overflow) Indicates that an error or an
Indicates that an error or an overflow occurred overflow occurred

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
fofofolofofofofofofoofofofo]olo]

TRUNS3 (Timer:

Slal\J/e?Eslablz gtams) TIMILO (Timgro Interrupt)
Read as 1 if timer running, W1C Indicates an interrupt request
to abort in PWM_OUT mode when IRQ_ENA is set
TRUN2 (Timer2 Slave Enable TIMIL1 (Timer1 Interrupt)
Status) Indicates an interrupt request
Read as 1 if timer running, W1C to when IRQ_ENA is set

abort in PWM_OUT mode TIMIL2 (Timer2 Interrupt)

TRUN1 (Timer1 Slave Enable Status) | Indicates an interrupt request when
Read as 1 if timer running, W1C to abort IRQ_ENA is set

in PWM_OUT mode TIMIL3 (Timer3 Interrupt)

TRUNO (Timer0 Slave Enable Status) | Indicates an interrupt request when
Read as 1 if timer running, W1C to abort in IRQ_ENA is set

PWM_OUT mode '—TOVF_ERRO (Timer0 Counter Overflow)
TOVF_ERRS3 (Timer3 Counter Overflow) Indicates that an error or an overflow occurred

L TOVF_ERR1 (Timer1 Counter Overflow)

Indicates that an error or an overflow occurred Indicates that an error or an overflow occurred

TOVF_ERR2 (Timer2 Counter Overflow)
Indicates that an error or an overflow occurred
This diagram shows an example configuration for eight timers. Different products have differ-
ent numbers of timers, therefore some of the bits may not be applicable to your device.

Figure 10-18. Timer Status Register

10-40 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Timers

Timer Configuration Register (TIMER_CONFIG)

1514 1312 11 10 9 8 7 6 5 4 3 2 1 0
|o|0|o|o|o|o|0|0|o|o|o|o|0|o|0|0|Reset=0x0000

ERR_TYP[1:0] (Error
Type) - RO

00 - No error

01 - Counter overflow error
10 - Period register programming error

11 - Pulse width register programming error
EMU_RUN (Emulation Behavior Select)

0 - Timer counter stops during emulation

1 - Timer counter runs during emulation
TOGGLE_HI (PWM_OUT PULSE_HI
Toggle Mode)

0 - The effective state of PULSE_HI
is the programmed state
1 - The effective state of PULSE_HI
alternates each period
CLK_SEL (Timer Clock Select)
0 - Use system clock SCLK for counter
1 - Use PWM_CLK to clock counter

OUT_DIS (Output Pad Disable)
0 - Enable TMR pad in PWM_OUT mode
1 - Disable pad in PWM_OUT mode

Figure 10-19. Timer Configuration Register

TMODE[1:0] (Timer Mode)
00 - Reset state - unused
01 - PWM_OUT mode

10 - WDTH_CAP mode

11 - EXT_CLK mode

PULSE_HI

0 - Negative action pulse

1 - Positive action pulse
PERIOD_CNT (Period
Count)

0 - Count to end of width

1 - Count to end of period
IRQ_ENA (Interrupt
Request Enable)

0 - Interrupt request disable
1 - Interrupt request enable

TIN_SEL (Timer Input

Select)

PWM_OUT Mode

0 - Clock from TACLK
input if CLK_SEL = 1

1 - Clock from TMRCLK
input if CLK_SEL =1

WDTH_CAP Mode

0 - Sample TMR pin input

1 - Sample TACI input

Timer Counter Register (TIMER_COUNTER)

This read-only register retains its state when disabled. When enabled, the
TIMER_COUNTER register is reinitialized by hardware based on configuration
and mode. The TIMER_COUNTER register, shown in Figure 10-20, may be

read at any time (whether the timer is running or stopped), and it returns
an atomic 32-bit value. Depending on the operating mode, the increment-
ing counter can be clocked by four different sources: SCLK, the TMR pin, the
alternative timer clock pin TACLK, or the common TMRCLK pin, which is

most likely used as the PPI clock (PPI_CLK).

ADSP-BF51x Blackfin Processor Hardware Reference 10-41

Timer Registers

While the processor core is being accessed by an external emulator debug-
ger, all code execution stops. By default, the TIMER_COUNTER register also
halts its counting during an emulation access in order to remain synchro-
nized with the software. While stopped, the count does not advance—in
PWM_OUT mode, the TMR pin waveform is “stretched”; in WDTH_CAP mode,
measured values are incorrect; in EXT_CLK mode, input events on the TMR
pin may be missed. All other timer functions such as register reads and
writes, interrupts previously asserted (unless cleared), and the loading of
TIMER_PERIOD and TIMER_WIDTH in WDTH_CAP mode remain active during an
emulation stop.

Some applications may require the timer to continue counting asynchro-
nously to the emulation-halted processor core. Set the EMU_RUN bit in
TIMER_CONFIG to enable this behavior.

Timer Counter Register (TIMER_COUNTER)

31 30 20 28 27 26 25 24 23 22 21 20 19 18 17 16
|o |o |o |0 |o |o |o |o |0 |o |o |o |o |0 |o |0 | Reset = 0x0000 0001
|

‘ Timer Counter[31:16]

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0

[efofofofofofofo]ofofofofofolo]t]

| Timer Counter[15:0]

Figure 10-20. Timer Counter Register

Timer Period (TIMER_PERIOD) and Timer
Width (TIMER_WIDTH) Registers

When a timer is enabled and running, and the software writes new
values to the TIMER_PERIOD register and the TIMER_WIDTH register,
the writes are buffered and do not update the registers until the end
of the current period (when TIMER_COUNTER equals TIMER_WIDTH).

10-42 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Timers

Usage of the TIMER_PERIOD register, shown in Figure 10-21, and the
TIMER_WIDTH register, shown in Figure 10-22, varies depending on the
mode of the timer:

e In PWM_OUT mode, both the TIMER_PERIOD and TIMER_WIDTH register
values can be updated “on-the-fly” since the values change
simultaneously.

* In WDTH_CAP mode, the timer period and timer pulse width buffer
values are captured at the appropriate time. The TIMER_PERIOD and
TIMER_WIDTH registers are then updated simultaneously from their
respective buffers. Both registers are read-only in this mode.

e In EXT_CLK mode, the TIMER_PERIOD register is writable and can be
updated “on-the-fly.” The TIMER_WIDTH register is not used.

If new values are not written to the TIMER_PERIOD register or the
TIMER_WIDTH register, the value from the previous period is reused. Writes
to the 32-bit TIMER_PERIOD register and TIMER_WIDTH register are atomic; it
is not possible for the high word to be written without the low word also
being written.

Values written to the TIMER_PERIOD registers or TIMER_WIDTH registers are
always stored in the buffer registers. Reads from the TIMER_PERIOD or
TIMER_WIDTH registers always return the current, active value of period or
pulse width. Written values are not read back until they become active.
When the timer is enabled, they do not become active until after the
TIMER_PERIOD and TIMER_WIDTH registers are updated from their respective
buffers at the end of the current period. See Figure 10-1 on page 10-3.

When the timer is disabled, writes to the buffer registers are immediately
copied through to the TIMER_PERIOD or TIMER_WIDTH register so that they
will be ready for use in the first timer period. For example, to change the
values for the TIMER_PERIOD and/or TIMER_WIDTH registers in order to use a

ADSP-BF51x Blackfin Processor Hardware Reference 10-43

Timer Registers

different setting for each of the first three timer periods after the timer is
enabled, the procedure to follow is:

1. Program the first set of register values.
2. Enable the timer.
3. Immediately program the second set of register values.
4. Wait for the first timer interrupt.
5. Program the third set of register values.
Each new setting is then programmed when a timer interrupt is received.

In PWM_0OUT mode with very small periods (less than 10 counts),
there may not be enough time between updates from the buffer
registers to write both the TIMER_PERIOD register and the
TIMER_WIDTH register. The next period may use one old value and
one new value. In order to prevent “pulse width > period” errors,
write the TIMER_WIDTH register before the TIMER_PERIOD register
when decreasing the values, and write the TIMER_PERIOD register
before the TIMER_WIDTH register when increasing the value.

Timer Period Register (TIMER_PERIOD)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Io |o |0 |o |o |o |o |0 Io |o |o |o |0 |0 |o |0| Reset = 0x0000 0000
L |

‘ Timer Period[31:16]

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
lefofofofofofofofofofofofofofolo]

‘ Timer Period[15:0]

Figure 10-21. Timer Period Register

10-44 ADSP-BF51x Blackfin Processor Hardware Reference

Timer Width Register (TIMER_WIDTH)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

General-

fofofofodofofofofofofofofofofo]e]

15 14 13 12 11 10 9 8 7 6 5 4

2 1

ofofofofofofolofefoofofofolo]o]
|

Figure 10-22. Timer Width Register

Summary

Purpose Timers

Reset = 0x0000 0000

Timer Width[31:16]

Timer Width[15:0]

Table 10-2 summarizes control bit and register usage in each timer mode.

Table 10-2. Control Bit and Register Usage Chart

Bit / Register

PWM_OUT Mode

WDTH_CAP Mode

EXT_CLK Mode

TIMER_ENABLE

1 - Enable timer

1 - Enable timer

1 - Enable timer

0 - Disable interrupt

0 - Disable interrupt

0 - No effect 0 - No effect 0 - No effect
TIMER_DISABLE 1 - Disable timer at end | 1 - Disable timer 1 - Disable timer
of period 0 - No effect 0 - No effect
0 - No effect
TMODE b#01 b#10 b#11
PULSE_HI 1 - Generate high width| 1 - Measure high width| 1 - Count rising edges
0 - Generate low width | 0 - Measure low width | 0 - Count falling edges
PERIOD_CNT 1 - Generate PWM 1 - Interrupt after mea- | Unused
0 - Single width pulse | suring period
0 - Interrupt after mea-
suring width
IRQ_ENA 1 - Enable interrupt 1 - Enable interrupt 1 - Enable interrupt

0 - Disable interrupt

ADSP-BF51x Blackfin Processor Hardware Reference

10-45

Timer Registers

Table 10-2. Control Bit and Register Usage Chart (Continued)

Bit / Register PWM_OUT Mode WDTH_CAP Mode EXT_CLK Mode
TIN_SEL Depends on CLK_SEL: | 1 - Select TACI input | Unused
0 - Select TMR pin
If CLK_SEL =1, input
1 - Count TMRCLK
clocks
0 - Count TACLK
clocks
If CLK_SEL = 0,
Unused
OUT_DIS 1 - Disable TMR pin Unused Unused
0 - Enable TMR pin
CLK_SEL 1 - PWM_CLK clocks | Unused Unused
timer
0 - SCLK clocks timer
TOGGLE_HI 1 - One waveform Unused Unused
period every two coun-
ter periods
0 - One waveform
period every one coun-
ter period
ERR_TYP Reports b#00, b#01, Reports b#00 or b#01, | Reports b#00, b#01, or
b#10, or b#11, as as appropriate b#10, as appropriate
appropriate
EMU_RUN 0 - Halt during 0 - Halt during 0 - Halt during
emulation emulation emulation
1 - Count during 1 - Count during 1 - Count during
emulation emulation emulation
TMR Pin Depends on Depends on TIN_SEL: | Input
OUT_DIS: 1 - Unused
1 - Three-state 0 - Input
0 - Output
Period R/W: Period value RO: Period value R/W: Period value
Width R/W: Width value RO: Width value Unused
10-46 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Timers

Table 10-2. Control Bit and Register Usage Chart (Continued)

Bit / Register

PWM_OUT Mode

WDTH_CAP Mode

EXT_CLK Mode

TOVEF_ERR set or
when counter equals
period and
PERIOD_CNT =1 or
when counter equals
width and
PERIOD_CNT =0

0 - Not set

TOVEF_ERR set or
when counter captures
period and
PERIOD_CNT =1 or
when counter captures
width and
PERIOD_CNT =0

0 - Not set

Counter RO: Counts up on RO: Counts up on RO: Counts up on
SCLK or PWM_CLK | SCLK TMR pin event
TRUN Read: Timer slave Read: Timer slave Read: Timer slave
enable status enable status enable status
Write: Write: Write:
1 - Stop timer if dis- 1 - No effect 1 - No effect
abled 0 - No effect 0 - No effect
0 - No effect
TOVF_ERR Set at startup or roll- | Set if counter wraps Set if counter wraps or
over if period = 0 or 1 set at startup or roll-
Set at rollover if width over if period = 0
>= Period
Set if counter wraps
IRQ Depends on Depends on Depends on
[RQ_ENA: [RQ_ENA: [RQ_ENA:
1 - Set when 1 - Set when 1 - Set when counter

equals period or
TOVF_ERR set
0 - Not set

ADSP-BF51x Blackfin Processor Hardware Reference

10-47

Programming Examples

Programming Examples

Listing 10-1 configures the port control registers in a way that enables TMR
pins associated with Port G. This example assumes TMR1-7 are connected

to Port G bits 5-11.
Listing 10-1. Port Setup
timer_port_setup:

[--sp]l = (r7:7, p5:5);
p5.h = hi(PORTG_FER);

p5.1 = To(PORTG_FER);

r7.1 = PG5|PG6|PG7|PG8|PGI|PGIO|PGLL;
wlpb] = r7;

p5.1 = To(PORTG_MUX) ;

r7.1 = PFTE;

wlpb] = r7;

(r7:7, p5:5) = [sp++]1;

rts;

timer_port_setup.end:

Listing 10-2 generates signals on the TMR4 and TMR5 outputs. By default,
timer 5 generates a continuous PWM signal with a duty cycle of 50%
(period = 0x40 SCLKSs, width = 0x20 SCLKs) while the PWM signal gen-
erated by timer 4 has the same period but 25% duty cycle (width = 0x10
SCLKs).

If the preprocessor constant SINGLE_PULSE is defined, every TMR pin out-
puts only a single high pulse of 0x20 (timer 4) and 0x10 SCLKSs (timer 5)
duration.

In any case the timers are started synchronously and the rising edges are

aligned. That is, the pulses are left aligned.

10-48 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Timers

Listing 10-2. Signal Generation

// ffdefine SINGLE_PULSE
timer45_signal_generation:
[--spl = (r7:7, p5:5);

p5.h = hi(TIMER_ENABLE);
p5.1 = To(TIMER_ENABLE);
fhifdef SINGLE_PULSE
r7.1 = PULSE_HI | PWM_OUT;
felse
r7.1 = PERIOD_CNT | PULSE_HI | PWM_OUT;
ffendif
wlpb + TIMER5_CONFIG - TIMER_ENABLE] r7;
wlpb + TIMER4_CONFIG - TIMER_ENABLE] = r7;
r7 = 0x10 (z);
[p5 + TIMER5_WIDTH - TIMER_ENABLE] = r7;
r7 = 0x20 (z);
[p5 + TIMER4A_WIDTH - TIMER_ENABLE] = r7;
#ifndef SINGLE_PULSE
r7 = 0x40 (z);
[p5 + TIMERS5_PERIOD - TIMER_ENABLE] = r7;

[p5 + TIMER4_PERIOD - TIMER_ENABLE] = r7;

ffendif
r7.1 = TIMENS5 | TIMEN4;
wlp5] = r7;
(r7:7, p5:5) = [sp++]1;
rts;

timer45_signal_generation.end:

All subsequent examples use interrupts. Therefore, Listing 10-3 illustrates
how interrupts are generated and how interrupt service routines can be
registered. In this example, the timer 5 interrupt is assigned to the IVG12
interrupt channel of the CEC controller.

ADSP-BF51x Blackfin Processor Hardware Reference 10-49

Programming Examples

Listing 10-3. Interrupt Setup

timerb_interrupt_setup:
[--sp] = (r7:7, p5:5);
p5.h = hi(IMASK);
p5.1 = To(IMASK);
/* register interrupt service routine */
r7.h = hi(isr_timer5);
r7.1 = lo(isr_timer5);
[p5 + EVT12 - IMASK] = r7;
/* unmask IVG1l2 in CEC */
r7 = [p5];
bitset(r7, bitpos(EVT_IVG12));
[p5]1 = r7;
/* assign timer 5 IRQ (= IRQ37 in this example) to IVGl2 */

p5.h = hi(SIC_IAR4);
p5.1 = To(SIC_TAR4);
/*SIC_TAR register mapping is processor dependent*/
r7.h = OxFF5F;
r7.1 = OxFFFF;
[p5] = r7;

/* enable timer 5 IRQ */
p5.h = hi(SIC_IMASK1);
p5.1 = To(SIC_IMASK1);

/*STIC_IMASK register mapping is processor dependent*/
r7 = [p5];
bitset(r7, 5);

[pb] = r7;

/* enable interrupt nesting */
(r7:7, pb:5) = [sp++];
[--sp] = reti;
rts;

timer5_interrupt_setup.end:

10-50 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Timers

The example shown in Listing 10-4 does not drive the TMR pin. It gener-
ates periodic interrupt requests every 0x1000 SCLK cycles. If the
preprocessor constant SINGLE_PULSE was defined, timer 5 requests an
interrupt only once. Unlike in a real application, the purpose of the inter-
rupt service routine shown in this example is just the clearing of the
interrupt request and counting interrupt occurrences.

Listing 10-4. Periodic Interrupt Requests

// ffdefine SINGLE_PULSE
timer5_interrupt_generation:

[--sp]l = (r7:7, p5:5);

p5.h hi(TIMER_ENABLE);

p5.1 To(TIMER_ENABLE);
##ifdef SINGLE_PULSE

r7.1 = EMU_RUN | IRQ_ENA | OUT_DIS | PWM_OUT;
felse

r7.1 = EMU_RUN | IRQ_ENA | PERIOD_CNT | OUT_DIS | PWM_OUT;
ffendif

wlpb + TIMER5_CONFIG - TIMER_ENABLE] = r7;

r7 = 0x1000 (z);
ffifndef SINGLE_PULSE

[p5 + TIMER5_PERIOD - TIMER_ENABLE] = r7;

r7 = 0x1 (z);
ffendif

[p5 + TIMER5_WIDTH - TIMER_ENABLE] = r7;

r7.1 = TIMENG;

wlpb] = r7;

(r7:7, p5:5) = [sp++]1;
ro =0 (z);

rts;

timer5_interrupt_generation.end:
isr_timerb:
[--sp] = astat;

ADSP-BF51x Blackfin Processor Hardware Reference 10-51

Programming Examples

[--sp] =
p5.h
p5.1
r7.h
r7.1
[p5]
ro+= 1;
ssync;
(r7:7, pbh:
astat = [s
rti;

1

5

— > — =

(
(
o(
(
o(
r7;

r7:7, p5:5);
TIMER_STATUS) ;
TIMER_STATUS) ;
TIMILS);
TIMILS5);

5) =
p++1;

[sp++]1;

isr_timer5.end:

Listing 10-5 illustrates how two timers can generate two non-overlapping
clock pulses as typically required for break-before-make scenarios. Both

timers are running in PUM_0UT mode with PERIOD_CNT = 1 and

PULSE_HI = 1.

Figure 10-23 explains how the signal waveform represented by the period
P and the pulse width W translates to timer period and width values.
Table 10-3 summarizes the register writes.

Table 10-3. Register Writes for Non-Overlapping Clock Pulses

Register Before Enable |After At IRQ1 At IRQ2
Enable

TIMER5_PERIOD P/2

TIMER5_WIDTH P/2 -W/2 W/2 P/2-W/2 W/2

TIMER4_PERIOD P P/2

TIMER4_WIDTH P-W/2 Ww/2 P/2 - W-2

Since hardware only updates the written period and width values at the
end of periods, software can write new values immediately after the timers
have been enabled. Note that both timers’ period expires at exactly the

10-52

ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Timers

r q

TMR4

| |
| |
| |
1 |
Ipr2-wy2 |
—

P/2

|
| <
|
|
|
IA - >
|
|
-
|

Figure 10-23. Non-Overlapping Clock Pulses

same times with the exception of the first timer 5 interrupt (at IRQ1)
which is not visible to timer 4.

Listing 10-5. Non-Overlapping Clock Pulses

jtdefine P 0x1000 /* signal period */
jidefine W 0x0600 /* signal pulse width */
ffdefine N 4 /* number of pulses before disable */
timer45_toggle_hi:
[--sp] = (r7:1, p5:5);
p5.h hi(TIMER_ENABLE) ;
p5.1 To(TIMER_ENABLE) ;
/* config timers */
r7.1 = IRQ_ENA | PERIOD_CNT | TOGGLE_HI | PULSE_HI | PWM_OUT;
wlpb5 + TIMERS5_CONFIG - TIMER_ENABLE] = r7;
r7.1 PERIOD_CNT | TOGGLE_HI | PULSE_HI
wlp5 + TIMER4_CONFIG - TIMER_ENABLE] = r7;
/* calculate timers widths and period */
ro.1 = 1o(P);

PWM_OUT;

ADSP-BF51x Blackfin Processor Hardware Reference 10-53

Programming Examples

ro.h = hi(P);

rl.1 = lo(W);

rl.h = hi(W);

re =rl > 1; /* W/2 */

r3 =r0 > 1; /* P/2 */

r4é =r3 - r2; /* P/2 - W/2 */
r5 =r0 - r2; /* P - W/2 */

/* write values for initial period */

[p5 + TIMER4_PERIOD - TIMER_ENABLE] = rO;
[p5 + TIMER4A_WIDTH - TIMER_ENABLE] = rb;
[p5 + TIMER5_PERIOD - TIMER_ENABLE] = r3;
[p5 + TIMERS_WIDTH - TIMER_ENABLE] = r4;

/* start timers */
r7.1 = TIMEN5 | TIMEN4 ;

wlpb5 + TIMER_ENABLE - TIMER_ENABLE] = r7;
/* write values for second period */
[p5 + TIMER4_PERIOD - TIMER_ENABLE] = r3;

[p5 + TIMER5_WIDTH - TIMER_ENABLE] = r2;
/* r0 functions as signal period counter */
ro.h = hi(N * 2 - 1);
ro.1T = 1o(N * 2 - 1);
(r7:1, p5:5) = [sp++]1;
rts;
timerd45_toggle_hi.end:
isr_timerb:
[--spl
[--spl]

astat;
(r7:5, pb:5);
p5.h hi (TIMER_ENABLE) ;
p5.1 To(TIMER_ENABLE);
/* clear interrupt request */
r7.h hi(TIMIL5);
r7.1 10(TIMILS);
[p5 + TIMER_STATUS - TIMER_ENABLE] = r7;
/* toggle width values (width = period - width) */

10-54 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Timers

r7 [p5 + TIMER5_PERIOD - TIMER_ENABLE];
ré [p5 + TIMER5_WIDTH - TIMER_ENABLE];
r5 =r7 - r6;
[p5 + TIMER5_WIDTH - TIMER_ENABLE] = rb;
r5 = [p5 + TIMER4_WIDTH - TIMER_ENABLE]D;
r7 r7 - rb;
cc r7 < 0;
if CC r7 = rb6;
[p5 + TIMER4_WIDTH - TIMER_ENABLE] = r7;
/* disable after a certain number of periods */

ro+= -1;

CC =r0 == 0;

r5.1 = 0;

r7.1 = TIMDIS5 | TIMDIS4;

if ICC r7 = rb;
wlp5 + TIMER_DISABLE - TIMER_ENABLE] = r7;
(r7:5, p5:5) = [sp++];
astat = [sp++];
rti;
isr_timerb.end:

Listing 10-5 generates N pulses on both timer output pins. Disabling the
timers does not corrupt the generated pulse pattern anyhow.

Listing 10-6 configures timer 5 in WDTH_CAP mode. If looped back exter-
nally, this code might be used to receive N PWM patterns generated by
one of the other timers. Ensure that the PWM generator and consumer
both use the same PERIOD_CNT and PULSE_HI settings.

Listing 10-6. Timer Configured in WDTH_CAP Mode

.section Ll_data_a;
.align 4;

ffdefine N 1024

.var buffReceive[N*27;

ADSP-BF51x Blackfin Processor Hardware Reference 10-55

Programming Examples

.section L1_code;
timerb_capture:
[--sp]l = (r7:7, p5:5);
/* setup DAG2 */
r7. hi(buffReceive);
r7.1 lo(buffReceive);
i2 = r7;
b2 = r7;
12 = Tength(buffReceive)*4;
/* config timer for high pulses capture */
p5.h = hi(TIMER_ENABLE);

=
Il

p5.1 = To(TIMER_ENABLE);

r7.1 = EMU_RUN|IRQ_ENA|PERIOD_CNT|PULSE_HI|WDTH_CAP;
wlpb + TIMER5_CONFIG - TIMER_ENABLE] = r7;

r7.1 = TIMENG;

wlp5 + TIMER_ENABLE - TIMER_ ENABLE] = r7;

(r7:7, p5:5) = [sp++]1;
rts;
timer5_capture.end:
isr_timerb:
[--sp] = astat;
[--sp] (r7:7, pb:5);
/* clear interrupt request first */

p5.h = hi(TIMER_STATUS);

p5.1 = To(TIMER_STATUS);

r7.h = hi(TIMIL5);

r7.1 = 10(TIMILS5);

[p5] = r7;

r/7 = [p5 + TIMERS5_PERIOD - TIMER_STATUS];
[i2++] = r7;

r7 = [pb + TIMERS_WIDTH - TIMER_STATUS]T;
[i2++] = r7;

ssync;

(r7:7, p5:5) = [sp++]1;

10-56 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Timers

astat = [sp++];
rti;
isr_timer5.end:

Unique Information for the ADSP-BF51x
Processor

The ADSP-BF51x processor features one general-purpose timer module
that contains eight identical 32-bit timers. Each timer can be individually
configured to operate in various modes. Although the timers operate com-
pletely independently of each other, all of them can be started and stopped
simultaneously for synchronous operation.

Interface Overview

Figure 10-24 shows the ADSP-BF51x specific block diagram of the gen-

eral-purpose timer module.

External Interface

The TMRCLK input is common to all eight timers. The PPI unit is clocked
by the same pin; therefore any of the timers can be clocked by PPI_CLK.
Since timer 0 and timer 1 are often used in conjunction with the PPI, they
are internally looped back to the PPI module for frame sync generation.

The timer signals TMRO and TMR1 are multiplexed with the PPI frame syncs
when the frame syncs are applied externally. PPI modes requiring only one
frame sync free up TMR1. For details, see the Parallel Peripheral Interface
chapter.

ADSP-BF51x Blackfin Processor Hardware Reference 10-57

Unique Information for the ADSP-BF51x Processor

PAB BLACKFIN

SIC CONTROLLER |
A A

>
I
=

| |
1 1
! !
i sl 8 5 8 2 3 3 o i
! g g g g g g g g !
! GPTIMERS |
: | TIMER_STATUS | |
1
W W W W W W W a
i | TIMER_ENABLE | i
1
! L T T JI e [T J !
i | TIMER_DISABLE i
| wwlll wylll wylll welll wyl[Il wo[[{ ¥¥[[] ¥¥[I] |
i ~ © 10 «) ~ - o i
| o o o o o« o« i o« !
i u w u w w w w u !
i s = = s s S s s !
1 F | F |[&|] F F |[@& F |&| F | F |&| F |« !
E]]] ¥ |
1 N ©| 0 I ® N -] 1
| Mo 2 ofeld wflof® Helz| oflelX ofslH ==F oleld !
| |
| | POIRTICON:TRIOL | E
e o A A T A AT T YT YT T E

(o] ~ - © o < [2}onl o oo < O < M wmwm <

EE& g £ 2 3 gg EES ‘&Eg pEE g‘;t&g

= o o [o

= S Z e

=] 2 2 &

8 2 z g

o

Figure 10-24. Timer Block Diagram

If the PPI frame syncs are applied externally, timer 0 and timer 1
are still fully functional and can be used for other purposes not
involving the TMRx pins. Timer 0 and timer 1 must not drive their
TMRO and TMR1 pins. If operating in PWM_OUT mode, the OUT_DIS bit
in the TIMERO_CONFIG and TIMER1_CONFIG registers must be set.

10-58 ADSP-BF51x Blackfin Processor Hardware Reference

Core Timer

11 CORE TIMER

This chapter describes the core timer. Following an overview, functional
description, and consolidated register definitions, the chapter concludes
with a programming example.

Specific Information for the ADSP-BF51x

For details regarding the number of core timers for the ADSP-BF51x
product, refer to ADSP-BF512/BF514/BF516/BF518(F) Embedded Proces-
sor Data Sheet.

For Core Timer interrupt vector assignments, refer to Table 5-3 on
page 5-20 in Chapter 5, “System Interrupts”.

For a list of MMR addresses for each Core Timer, refer to Appendix A,
“System MMR Assignments”.

Core timer behavior for the ADSP-BF51x that differs from the general
information in this chapter can be found at the end of this chapter in the
section “Unique Information for the ADSP-BF51x Processor” on

page 11-9.

ADSP-BF51x Blackfin Processor Hardware Reference 11-1

Overview and Features

Overview and Features

The core timer is a programmable 32-bit interval timer which can gener-
ate periodic interrupts. Unlike other peripherals, the core timer resides
inside the Blackfin core and runs at the core clock (CCLK) rate. Core timer
features include:

* 32-bit timer with 8-bit prescaler
* Operates at core clock (CCLK) rate
* Dedicated high-priority interrupt channel

* Single-shot or continuous operation

Timer Overview

Figure 11-1 provides a block diagram of the core timer.

CORE REGISTER ACCESS BUS (RAB) ,
< va >

N "

TSCALE TCNTL TPERIOD
Y
-4
w |
@ 4
S| E COUNT REGISTER
= LOAD LOGIC
Y @ TIMER
TIMER ENABLE INTERRUPT
CCLK
~———»| AND PRESCALE [——| DEC TCOUNT ZERO >
LOGIC

Figure 11-1. Core Timer Block Diagram

11-2 ADSP-BF51x Blackfin Processor Hardware Reference

Core Timer

External Interfaces

The core timer does not directly interact with any pins of the chip.

Internal Interfaces

The core timer is accessed through the 32-bit register access bus (RAB).
The module is clocked by the core clock cCLK. The timer’s dedicated inter-
rupt request is a higher priority than requests from all other peripherals.

Description of Operation

The software should initialize the TCOUNT register before the timer is
enabled. The TCOUNT register can be written directly, but writes to the
TPERIOD register are also passed through to TCOUNT.

When the timer is enabled by setting the TMREN bit in the core timer con-
trol register (TCNTL), the TCOUNT register is decremented once every time
the prescaler TSCALE expires, that is, every TSCALE + 1 number of CCLK
clock cycles. When the value of the TCOUNT register reaches 0, an interrupt
is generated and the TINT bit is set in the TCNTL register.

If the TAUTORLD bit in the TCNTL register is set, then the TCOUNT register is
reloaded with the contents of the TPERIOD register and the count begins
again. If the TAUTORLD bit is not set, the timer stops operation.

The core timer can be put into low power mode by clearing the TMPWR bit
in the TCNTL register. Before using the timer, set the TMPWR bit. This
restores clocks to the timer unit. When TMPUR is set, the core timer may
then be enabled by setting the TMREN bit in the TCNTL register.

/ Hardware behavior is undefined if TMREN is set when TMPWR = 0.

ADSP-BF51x Blackfin Processor Hardware Reference 11-3

Core Timer Registers

Interrupt Processing

The timer’s dedicated interrupt request is a higher priority than requests
from all other peripherals. The request goes directly to the core event con-
troller (CEC) and does not pass through the system interrupt controller
(SIC). Therefore, the interrupt processing is also completely in the cCLK
domain.

The core timer interrupt request is edge-sensitive and cleared by
hardware automatically as soon as the interrupt is serviced.

The TINT bit in the TCNTL register indicates that an interrupt has been gen-
erated. Note that this is 7oz a W1C bit. Write a 0 to clear it. However, the
write is optional. It is not required to clear interrupt requests. The core
time module does not provide any further interrupt enable bit. When the
timer is enabled, interrupts can be masked in the CEC controller.

Core Timer Registers

The core timer includes four core memory-mapped registers, the timer
control register (TCNTL), the timer count register (TCOUNT), the timer
period register (TPERIOD), and the timer scale register (TSCALE). As with all
core MMREs, these registers are always accessed by 32-bit read and write
operations.

11-4 ADSP-BF51x Blackfin Processor Hardware Reference

Core Timer

Core Timer Control Register (TCNTL)

The TCNTL register, shown in Figure 11-2, functions as control and status
register.

Core Timer Control Register (TCNTL)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
PXDX DX D DX DX X T XX X []x] Reset = undefined

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
[ENESESES ENESENES ESENENES CHENEAT

TINT TMPWR
Sticky status bit 0 - Puts the timer in low
0 - Timer has not generated an interrupt power mode
1 - Timer has generated an interrupt 1- AC“;? statg. Tmer_r‘;j‘gé’ﬁ
TAUTORLD b oo using e
0 - Disable auto-reload feature. When TCOUNT
reaches zero, the timer generates an interrupt and halts —— TMREN
1 - Enable auto-reload feature. When TCOUNT reaches zero Meaningful only when
and the timer generates an interrupt, TCOUNT is TMPWR =1
automatically reloaded with the contents of TPERIOD 0 - Disable timer
and the timer continues to count 1 - Enable timer

Figure 11-2. Core Timer Control Register

Core Timer Count Register (TCOUNT)

The TCOUNT register, shown in Figure 11-3, decrements once every
TSCALE + 1 clock cycles. When the value of TCOUNT reaches 0, an interrupt
is generated and the TINT bit of the TCNTL register is set.

Values written to the TPERIOD register are automatically copied to the
TCOUNT register. Nevertheless, the TCOUNT register can be written directly.
In auto reload mode the value written to TCOUNT may differ from the
TPERIOD value to let the initial period be shorter or longer than following
periods. To do this, write to TPERIOD first and overwrite TCOUNT afterward.

ADSP-BF51x Blackfin Processor Hardware Reference 11-5

Core Timer Registers

Writes to TCOUNT are ignored once the timer is running.

Core Timer Count Register (TCOUNT)

31 30 20 28 27 26 25 24 23 22 21 20 19 18 17 16
|x|x|x |x|x |x |x |x|x|x |x |x|x|x|x|x| Reset = Undefined
|

Count Value[31:16]

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
HENENED CHENENED ENENEE) ENEREaE)
|

Count Value[15:0]

Figure 11-3. Core Timer Count Register

Core Timer Period Register (TPERIOD)

The TPERIOD register is shown in Figure 11-4. When auto-reload is
enabled, the TCOUNT register is reloaded with the value of the TPERIOD reg-
ister whenever TCOUNT reaches 0. Writes to TPERIOD are ignored when the
timer is running.

Core Timer Period Register (TPERIOD)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x| Reset = Undefined
|

Period Value[31:16]

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
ENESENES ENESENES ESENENES ENESENEY
| |

Period Value[15:0]

Figure 11-4. Core Timer Period Register

11-6 ADSP-BF51x Blackfin Processor Hardware Reference

Core Timer

Core Timer Scale Register (TSCALE)

The TSCALE register is shown in Figure 11-5. The register stores the scal-
ing value that is one less than the number of cycles between decrements of
TCOUNT. For example, if the value in the TSCALE register is 0, the counter
register decrements once every CCLK clock cycle. If TSCALE is 1, the counter
decrements once every two cycles.

Core Timer Scale Register (TSCALE)

31 30 20 28 27 26 25 24 23 22 21 20 19 18 17 16
|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x| Reset = Undefined

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
ENESESEY ENENENES ENENENES ENENEREY

|
‘—Scale Value[7:0]

Figure 11-5. Core Timer Scale Register

Programming Examples

Listing 11-1 configures the core timer in auto-reload mode. Assuming a
CCLK of 500 MHz, the resulting period is 1 second. The initial period is
twice as long as the others.

Listing 11-1. Core Timer Configuration

#include <defBF527.h>/*ADSP-BF527 product is used as an example*/
.section L1_code;
.global _main;
_main:
/* Register service routine at EVT6 and unmask interrupt */
pl.1 10(IMASK) ;
pl.h hi(IMASK);

ADSP-BF51x Blackfin Processor Hardware Reference 11-7

Programming Examples

r0.1 = lo(isr_core_timer);

r0.h = hi(isr_core_timer);

[pl + EVT6 - IMASK] = r0;

ro = [pll;

bitset(r0, bitpos(EVT_IVIMR));

[pl]l] = r0;
/* Prescaler = 50, Period = 10,000,000, First Period = 20,000,000
*/

pl.1 = To(TCNTL);
pl.h = hi(TCNTL);
r0 = 50 (z2);

[pl + TSCALE - TCNTL] = rO;
ro.1 10(10000000) ;

ro.h hi(10000000);

[pl + TPERIOD - TCNTL] = r0;
ro <<= 1;

[pl + TCOUNT - TCNTL] = r0;

/* R6 counts interrupts */
re =0 (z);

/* start in auto-reload mode */
r0 = TAUTORLD | TMPWR | TMREN (z);
[pl] = r0;

_main.forever:

jump _main.forever;
_main.end:
/* dinterrupt service routine simple increments R6 */
isr_core_timer:
[--sp] = astat;
ro+= 1;
astat = [sp++];
rti;
isr_core_timer.end:

11-8 ADSP-BF51x Blackfin Processor Hardware Reference

Core Timer

Unique Information for the ADSP-BF51x
Processor

None.

ADSP-BF51x Blackfin Processor Hardware Reference 11-9

Unique Information for the ADSP-BF51x Processor

11-10 ADSP-BF51x Blackfin Processor Hardware Reference

Watchdog Timer

12 WATCHDOG TIMER

This chapter describes the watchdog timer. Following an overview, func-
tional description, and consolidated register definitions, the chapter
concludes with programming examples.

Specific Information for the ADSP-BF51x

For details regarding the number of watchdog timers for the ADSP-BF51x
product, refer to ADSP-BF512/BF514/BF516/BF518(F) Embedded Proces-
sor Data Sheet.

For Watchdog Timer interrupt vector assignments, refer to Table 5-3 on
page 5-20 in Chapter 5, “System Interrupts”.

For a list of MMR addresses for each Watchdog Timer, refer to
Appendix A, “System MMR Assignments”.

Watchdog timer behavior for the ADSP-BF51x that differs from the gen-
eral information in this chapter can be found at the end of this chapter in
the section “Unique Information for the ADSP-BF51x Processor” on
page 12-11.

ADSP-BF51x Blackfin Processor Hardware Reference 12-1

Overview and Features

Overview and Features

The processor includes a 32-bit timer that can be used to implement a
software watchdog function. A software watchdog can improve system
reliability by generating an event to the processor core if the watchdog
expires before being updated by software.

Watchdog timer key features include:
* 32-bit watchdog timer
* 8-bit disable bit pattern
e System reset on expire option
* NMI on expire option
* General-purpose interrupt option

Typically, the watchdog timer is used to supervise stability of the system
software. When used in this way, software reloads the watchdog timer in a
regular manner so that the downward counting timer never expires (never
becomes 0). An expiring timer then indicates that system software might
be out of control. At this point a special error handler may recover the sys-
tem. For safety, however, it is often better to reset and reboot the system
directly by hardware control.

Especially in slave boot configurations, a processor reset cannot automati-
cally force the Blackfin device to be rebooted. In this case, the processor
may reset without booting again and may negotiate with the host device
by the time program execution starts. Alternatively, a watchdog event can
cause an NMI event. The NMI service routine may request the host device
reset and/or reboot the Blackfin processor.

The watchdog timer is often programmed to let the processor wake up
from sleep mode after a programmable period of time.

12-2 ADSP-BF51x Blackfin Processor Hardware Reference

Interface Overview

Watchdog Timer

Figure 12-1 provides a block diagram of the watchdog timer.

SCLK —»

Figure 12-1. Watchdog Timer Block Diagram

External Interface

PAB

For easier debugging, the watchdog timer does not decrement
(even if enabled) when the processor is in emulation mode.

VAN
16 L
% { \'A: WDEN
¢ -
WDOG_CNT h— > < > WDOG_CTL
32|
WDRO WDEV
- RELOAD @anne
4 READ A
WDOG_STAT 4 EXPIRE

EVENT

AV 4

> coNTROL

— RESET
—— NMI
—— IRQ

The watchdog timer does not directly interact with any pins of the chip.

Internal Interface

The watchdog timer is clocked by the system clock SCLK. Its registers are
accessed through the 16-bit peripheral access bus (PAB). The 32-bit regis-

ADSP-BF51x Blackfin Processor Hardware Reference

12-3

Description of Operation

ters WDOG_CNT and WDOG_STAT must always be accessed by 32-bit read/write
operations. Hardware ensures that those accesses are atomic.

When the counter expires, one of three event requests can be generated.
Either a reset or an NMI request is issued to the core event controller
(CEC) or a general-purpose interrupt request is passed to the system inter-

rupt controller (SIC).

Description of Operation

If enabled, the 32-bit watchdog timer counts downward every SCLK cycle.
If it becomes 0, one of three event requests can be issued to either the
CEC or the SIC. Depending on how the WDEV bit field in the WDOG_CTL
register is programmed, the event that is generated may be a reset, a
non-maskable interrupt, or a general-purpose interrupt.

The counter value can be read through the 32-bit WDOG_STAT register. The
WDOG_STAT register cannot, however, be written directly. Rather, software
writes the watchdog period value into the 32-bit WDOG_CNT register before
the watchdog is enabled. Once the watchdog is started, the period value
cannot be altered.

To start the watchdog timer:

1. Set the count value for the watchdog timer by writing the count
value into the watchdog count register (WDOG_CNT). Since the
watchdog timer is not enabled yet, the write to the WDOG_CNT regis-
ters automatically pre-loads the WDOG_STAT register as well.

2. In the watchdog control register (WD0OG_CTL), select the event to be
generated upon timeout.

3. Enable the watchdog timer in WDOG_CTL. The watchdog timer then
begins counting down, decrementing the value in the WDOG_STAT
register.

12-4 ADSP-BF51x Blackfin Processor Hardware Reference

Watchdog Timer

If software does not service the watchdog in time, WDOG_STAT continues
decrementing until it reaches 0. Then, the programmed event is gener-
ated. The counter stops decrementing and remains at zero. Additionally,
the WDRO latch bit in the WDOG_CTL register is set and can be interrogated by
software in case event generation is not enabled.

When the watchdog is programmed to generate a reset, it resets the pro-
cessor core and peripherals. If the NOBOOT bit in the SYSCR register was set
by the time the watchdog resets the part, the chip is not rebooted. This is
recommended behavior in slave boot configurations. The reset handler
may evaluate the RESET_WDOG bit in the software reset register SWRST to
detect a reset caused by the watchdog. For details, see the System Reser and
Booting chapter.

To prevent the watchdog from expiring, software services the watchdog by
performing dummy writes to the WDOG_STAT register. The values written
are ignored, but the write commands cause the WDOG_STAT register to be
reloaded from the WDOG_CNT register.

If the watchdog is enabled with a zero value loaded to the counter and the
WDRO bit was cleared, the WDRO bit of the watchdog control register is set
immediately and the counter remains at zero without further decrements.
If, however, the WDRO bit was set by the time the watchdog is enabled, the
counter decrements to OxFFFF FFFF and continues operation.

Software can disable the watchdog timer only by writing a 0xAD value to
the WDEN field in the WDOG_CTL register.

Register Definitions

The watchdog timer is controlled by three registers.

ADSP-BF51x Blackfin Processor Hardware Reference 12-5

Register Definitions

Watchdog Count (WDOG_CNT) Register

The WDOG_CNT register, shown in Figure 12-2, holds the 32-bit unsigned
count value. The WDOG_CNT register must always be accessed with 32-bit
read/writes.

A valid write to the WDOG_CNT register also preloads the watchdog counter.
For added safety, the WDOG_CNT register can be updated only when the
watchdog timer is disabled. A write to the WDOG_CNT register while the
timer is enabled does not modify the contents of this register.

Watchdog Count Register (WDOG_CNT)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
|o |o |o |o |o |o |o |o |o |o |o |o |o |o |o |0| Reset = 0x0000 0000
|
| Watchdog Count[31:16]
15 14 13 12 11 10 9 8

[TeTe o ToTo T O DEE0 B0E |§||

| Watchdog Count[15:0]

Figure 12-2. Watchdog Count Register

Watchdog Status (WDOG_STAT) Register

The 32-bit WDOG_STAT register, shown in Figure 12-3, contains the current
count value of the watchdog timer. Reads to WDOG_STAT return the current
count value. Values cannot be stored directly in WDOG_STAT, but are instead
copied from WDOG_CNT. This can happen in two ways.

e While the watchdog timer is disabled, writing the WDOG_CNT register
pre-loads the WDOG_STAT register.

e While the watchdog timer is enabled, but not rolled over yet,
writes to the WDOG_STAT register load it with the value in WDOG_CNT.

12-6 ADSP-BF51x Blackfin Processor Hardware Reference

Watchdog Timer

Enabling the watchdog timer does not automatically reload
WDOG_STAT from WDOG_CNT.

The WDOG_STAT register is a 32-bit unsigned system MMR that must be
accessed with 32-bit reads and writes.

Watchdog Status Register (WDOG_STAT)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
|o|o|o|0|0|o|o|o|o|0 |o|o|o|o|0|o| Reset = 0x0000 0000

| Watchdog Status[31:16]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[ofefolefolofofo]ofofofofolofo]o]
|

Watchdog Status[15:0]

Figure 12-3. Watchdog Status Register

Watchdog Control (WDOG_CTL) Register

The WDOG_CTL register, shown in Figure 12-4, is a 16-bit system MMR
used to control the watchdog timer.

The watchdog event (WDEV[1:01) bit field is used to select the event that is
generated when the watchdog timer expires. Note that if the general-pur-
pose interrupt option is selected, the SIC_IMASK register that holds the
watchdog timer mask bit should be appropriately configured to unmask
that interrupt. If the generation of watchdog events is disabled, the watch-
dog timer operates as described, except that no event is generated when
the watchdog timer expires.

The watchdog enable (WDENL7:01) bit field is used to enable and disable
the watchdog timer. Writing any value other than the disable key (0xAD)
into this field enables the watchdog timer. This multibit disable key mini-
mizes the chance of inadvertently disabling the watchdog timer.

ADSP-BF51x Blackfin Processor Hardware Reference 12-7

Programming Examples

Software can determine whether the watchdog has expired by interrogat-
ing the WDRO status bit of the WDOG_CTL register. This is a sticky bit that is
set whenever the watchdog timer count reaches 0. It can be cleared only by
writing a “1” to the bit when the watchdog has been disabled first.

Watchdog Control Register (WDOG_CTL)

1514 1312 1110 9 8 7 6 5 4 3 2 1 0
Io |o |o |o 1 |0 |1 |o|1 |1 |0 |1 |0 |0 |0 |0 IReset:OxOADO
| |

I— WDEVI[1:0]

WDRO - W1iC
0 - Watchdog timer has not expired 00 - Generate reset event
1 - Watchdog timer has expired 01 - Generate NMI

10 - Generate GP interrupt
11 - Disable event
generation

WDEN[7:0]

0xAD - Counter disabled
All other values - Counter
enabled

Figure 12-4. Watchdog Control Register

Programming Examples

Listing 12-1 shows how to configure the watchdog timer so that it resets
the chip when it expires. At startup, the code evaluates whether the recent
reset event has been caused by the watchdog. Additionally, the example
sets the NOBOOT bit to prevent the memory from being rebooted.

Listing 12-1. Watchdog Timer Configuration

ffinclude <defBF527.h>/*ADSP-BF527 product is used as an example*/
f#define WDOGPERIOD 0x00200000

.section L1_code;
.global _reset;
_reset:

12-8 ADSP-BF51x Blackfin Processor Hardware Reference

Watchdog Timer

/* optionally, test whether reset was caused by watchdog */
p0.h=hi(SWRST);
p0.T1=10(SWRST);
ré wlp0]l (z);
cC bittst(r6, bitpos(RESET_WDOG));
if 1CC jump _reset.no_watchdog_reset;

/* optionally, warn at system level or host device here */

_reset.no_watchdog_reset:
/* optionally, set NOBOOT bit to avoid reboot in case */
p0.h=hi(SYSCR);
p0.1=10(SYSCR);
r0 = wlp0l(z);
bitset(r0,bitpos(NOBOOT));
wlp0] = r0;

/* start watchdog timer, reset if expires */

pO.h = hi(WDOG_CNT);
p0.1 = To(WDOG_CNT);
r0.h = hi(WDOGPERIOD);
r0.1 = 10(WDOGPERIOD) ;
[p0] = r0;

pO0.1T = To(WDOG_CTL);
r0.1 = WDEN | WDEV_RESET;
wlp0]l = r0;

jump _main;
_reset.end:

The subroutine shown in Listing 12-2 can be called by software to service
the watchdog. Note that the value written to the WDOG_STAT register does
not matter.

ADSP-BF51x Blackfin Processor Hardware Reference 12-9

Programming Examples

Listing 12-2. Service Watchdog

service_watchdog:
[--sp] = pb;
p5.h = hi(WDOG_STAT);

p5.1 = To(WDOG_STAT);
[p5] = r0;

p5 = [sp++];

rts;

service_watchdog.end:

Listing 12-3 is an interrupt service routine that restarts the watchdog.

Note that the watchdog must be disabled first.

Listing 12-3. Watchdog Restarted by Interrupt Service Routine

isr_watchdog:
[--sp] = astat;
[--sp] (pb:b5, r7:7);
p5.h = hi(WDOG_CTL);
p5.1 = To(WDOG_CTL);

r7.1 = WDDIS;

wlpb] = r7;

bitset(r7, bitpos(WDR0O));
wlpb] = r7;

r7 = [p5 + WDOG_CNT - WDOG_CTLI;
[p5 + WDOG_CNT - WDOG_CTL] = r7;
r7.1 = WDEN | WDEV_GPI;
wlpb] = r7;
(p5:5, r7:7) = [sp++]1;
astat = [sp++];
rti;
isr_watchdog.end:

12-10 ADSP-BF51x Blackfin Processor Hardware Reference

Watchdog Timer

Unique Information for the ADSP-BF51x
Processor

None.

ADSP-BF51x Blackfin Processor Hardware Reference 12-11

Unique Information for the ADSP-BF51x Processor

12-12 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Counter

13 GENERAL-PURPOSE
COUNTER

This chapter describes the general-purpose up/down counter. The counter
provides support for manually controlled rotary controllers, such as the
volume wheel on a radio device. This unit also supports industrial encod-
ers. Following the overview and list of key features is a description of the
operating modes.

This chapter concludes with a programming model, consolidated register
definitions, and programming examples.

Specific Information for the ADSP-BF51x

For details regarding the number of GP counters for the ADSP-BF51x
product, refer to ADSP-BF512/BF514/BF516/BF518(F) Embedded Proces-
sor Data Sheet.

For GP counter interrupt vector assignments, refer to Table 5-3 on
page 5-20 in Chapter 5, “System Interrupts”.

To determine how each of the GP counters is multiplexed with other
functional pins, refer to Table 9-2 on page 9-5 through Table 9-4 on
page 9-7 in Chapter 9, “General-Purpose Ports”.

ADSP-BF51x Blackfin Processor Hardware Reference 13-1

Overview

For a list of MMR addresses for each GP counter, refer to Appendix A,
“System MMR Assignments”.

GP counter behavior for the ADSP-BF51x that differs from the general
information in this chapter can be found at the end of this chapter in the
section “Unique Information for the ADSP-BF51x Processor” on

page 13-38

Overview

The purpose of this interface is to convert pulses from incremental posi-
tion encoders into data that is representative of the actual position. This is
done by integrating (counting) pulses on one or two inputs. Since integra-
tion provides relative position, some devices also feature a zero position
input (zero marker) that can be used to establish a reference point to verify
that the acquired position does not drift over time.

In addition, the incremental position information can be used to deter-
mine speed, if the time intervals are measured.

The GP counter provides flexible ways to establish position information.
When used in conjunction with the GP timer block, the GP counter
allows for the acquisition of coherent position/time-stamp information
that enables speed calculation.

Features

The GP counter includes the following features:
* 32-bit up/down counter
* Quadrature encoder mode (Gray code)

* Binary encoder mode

13-2 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Counter

* Alternative frequency-direction mode

* Timed direction and up/down counting modes

e Zero marker/push button support

e Capture event timing in association with general purpose timer
* Boundary comparison and boundary setting features

* Input pin noise filtering (debouncing)

* Flexible error detection/signaling

Interface Overview

A block diagram of the GP counter is shown in Figure 13-1. There are
two input pins, the count up and direction (CUD) pin and the count down
and gate (CDG) pin, that accept various forms of incremental inputs and are
processed by the 32-bit counter. The third input, count zero marker (CzM),
is the zero marker input. The module interfaces to the processor by way of
the peripheral access bus (PAB) and can optionally generate an interrupt

ADSP-BF51x Blackfin Processor Hardware Reference 13-3

Description of Operation

request through the IRQ line. There is also an output that can be used by
the timer module to generate time-stamps on certain events.

CuD » >
32-BIT
CDG —»| PROGRAMMABLE »
> NOISE FILTERING i QUADRATURE
COUNTER

czMm ——)

y A\

v

A4

CONTROL BLOCK
AND

PROCESSOR <

INTERFACE

BOUNDARY DETECTION
LOGIC AND EVENT |———7p TO GP TIMER
GENERATION OUTPUT

v

AN

IRQ PAB BUS

v

Figure 13-1. Block Diagram of the GP Counter Interface

Description of Operation

The GP counter has five modes of operation that are described in this
section.

With the exception of the timed direction mode, the GP counter can
operate with the GP timer block to capture additional timing information
(time-stamps) associated with events detected by this block.

The third input (CZM) may be used as a zero marker or to sense the press-
ing of a push button. Refer to “Zero Marker (Push Button) Operation” on
page 13-9 for more details.

The three input pins may be filtered (debounced) before being evaluated
by the GP counter. Refer to “Input Noise Filtering (Debouncing)” on
page 13-8 for more details.

13-4 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Counter

The GP counter also features a flexible boundary comparison. In all of the
operating modes, the counter can be compared to an upper and lower
limit. A variety of actions can be taken when these limits are reached.
Refer to “Boundary Comparison Modes” on page 13-11 for more details.

Quadrature Encoder Mode

In this mode, the CUD and CDG inputs expect a quadrature-encoded signal
that is interpreted as a 2-bit Gray code. The order of transitions of the CUD
and CDG inputs determines whether the counter increments or decrements.
The CNT_COUNTER register contains the number of transitions that have
occurred. Refer to Table 13-1 for more details.

Optionally, an interrupt is generated if both inputs change within one
SCLK cycle. Such transitions are not allowed by Gray coding. Therefore,
the CNT_COUNTER register remains unchanged and an error condition is

signaled.

Table 13-1. Quadrature Events and Counting Mechanism

CNT_COUNTER Register Value -4 (-3 |2 |-1 |0 +1 [+2 |43 |+4

CDG:CUD Inputs 00 (01 |11 |10 |00 [O1 |11 |10 |00

It is possible to reverse the count direction of the Gray coded signal. This
can be achieved by enabling the polarity inverter of either the CUD pin or
the CDG pin. Inverting both pins will not alter the behavior. This feature
can be enabled with the CDGINV and CUDINV bits in the CNT_CONFIG register.

As an example, if the CDG:CUD inputs are 00 respectively and the next tran-
sition is to 01, this would normally increment the counter as is shown in
Table 13-1. If the CUD polarity is inverted this generates a received input of
01 followed by 00. This will result in a decrement of the counter, altering
the behavior of the connected hardware.

ADSP-BF51x Blackfin Processor Hardware Reference 13-5

Description of Operation

Binary Encoder Mode

This mode is almost identical to the previous mode, with the exception
that the CUD and CDG inputs expect a binary-encoded signal. The order of
transitions of the CUD and CDG inputs determines whether the counter
increments or decrements. The CNT_COUNTER register contains the number
of transitions that have occurred. Refer to Table 13-2.

Optionally, an interrupt is generated if the detected code steps by more
than 1 (in binary arithmetic) within one SCLK cycle. Such transitions are
considered erroneous. Therefore, the CNT_COUNTER register remains
unchanged and an error condition is signaled.

Table 13-2. Binary Events and Counting Mechanism

CNT_COUNTER Register Value -4 |-3 |-2 |-1 |0 +1 |+2 |+3 |+4

CDG:CUD Inputs 00 (01 |10 |11 |00 |O1 |10 |11 |00

Reversing the CUD and CDG pin polarity has a different effect for the binary
encoder mode than for the quadrature encoder mode. Inverting the polar-
ity of the CUD pin only, or inverting both the CUD and DG pins, will result
in reversing the count direction.

Up/Down Counter Mode

In this mode, the counter is incremented or decremented at every active
edge of the input pins.

If an active edge is detected at the CUD input, the counter increments. The
active edge can be selected by the CUDINV bit in the CNT_CONFIG register. If
this bit is cleared, a rising edge will increment the counter. If this bit is set,
a falling edge will increment the counter.

If an active edge is detected at the CDG input, the counter decrements. The
active edge can be selected by the CDGINV bit in the CNT_CONFIG register. If

13-6 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Counter

this bit is cleared, a rising edge will decrement the counter. If this bit is
set, a falling edge will decrement the counter.

If simultaneous edges occur on pin CDG and pin CUD, the counter remains
unchanged and both up-count and down-count events are signaled in the
CNT_STATUS register.

Direction Counter Mode

In this mode, the counter is incremented or decremented at every active
edge of the CDG input pin.

The state of the CUD input determines whether the counter increments or
decrements. The polarity can be selected by the CUDINV bit in the
CNT_CONFIG register. If this bit is cleared, a high CUD input will increment,
a low input will decrement. If this bit is set, the polarity is inverted.

If an active edge is detected at the CDG input, the counter value changes by
one in the selected direction. The active edge can be selected by the
CDGINV bit in the CNT_CONFIG register. If this bit is cleared, a rising edge
will decrement the counter. If this bit is set, a falling edge will decrement
the counter.

Timed Direction Mode

In this mode, the counter is incremented or decremented at each SCLK
cycle.

The state of the CUD input determines whether the counter increments or
decrements. The polarity can be selected by the CUDINV bit in the
CNT_CONFIG register. If this bit is cleared, a high cUD input will increment
the counter, a low input will decrement it. If this bit is set, the polarity is
inverted.

ADSP-BF51x Blackfin Processor Hardware Reference 13-7

Functional Description

The CDG pin can be used to gate the clock. The polarity can be selected by
the CDGINV bit in the CNT_CONFIG register. If this bit is cleared, a high cDG
input will enable the counter, a low input will stop it. If this bit is set, the
polarity is inverted.

Functional Description

The following sections describe the various functions in more detail.

Input Noise Filtering (Debouncing)

In all modes, the three input pins can be filtered to present clean signals to
the GP counter logic. This filtering can be enabled or disabled by the DEBE
bit in the CNT_CONFIG register. Figure 13-2 shows the filtering operation
for the CUD pin.

Yilter
—— NOISY EDGES

e

CUD FILTERED

Figure 13-2. Programmable Noise Filtering

The filtering mechanism is implemented using counters for each pin. The
counter for each pin is initialized from the DPRESCALE field of the
CNT_DEBOUNCE register. When a transition is detected on a pin, the corre-
sponding counter starts counting up to the programmed number of SCLK
cycles. The state of the pin is latched after time tg)., and passed on to the
GP counter logic.

13-8 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Counter

The 5-bit DPRESCALE field in the CNT_DEBOUNCE register programs the
desired number of cycles and therefore the debouncing time. The number
of SCLK cycles for each pin can be selected in 18 steps ranging from 1 x
128 SCLK periods to 131072 x 128 SCLK periods (see Figure 13-9 on

page 13-25).

The time tg), is determined, given SCLK and the DPRESCALE value con-
tained in the CNT_DEBOUNCE register, by the following formula:

itrer = 128 % (2VPRESHALE L SCLK)

where DPRESCALE can contain values from 0 (minimum filtering) to 17
(maximum filtering).

Assuming an SCLK frequency of 133 MHz, the filter time range is shown
by the following equations:

DPRESCALE = 0b0000
lrer— 128*1*7.5ns = 960ns = (approx.) 1ps

DPRESCALE = 0b10001
lrer— 128%(131072)*7.5ns = 1258295 = (approx.) 126ms

Zero Marker (Push Button) Operation

The CzM input pin can be used to sense the zero marker output of a rotary
device or to detect the pressing of a push button. There are four program-
ming schemes which are functional in all counter modes:

* Push button mode-This mode is enabled by setting the CZMIE bit
in the CNT_IMASK register. An active edge at the CZM input will set
the CZMIT bit in the CNT_STATUS register. If enabled at the

ADSP-BF51x Blackfin Processor Hardware Reference 13-9

Functional Description

system interrupt controller, this will generate an interrupt request.
The active edge is selected by the CZMINV bit in the CNT_CONFIG reg-
ister (rising edge if cleared, falling edge if set to one).

Zero-marker-zeros-counter mode—This mode is enabled by setting
the ZMzC bit in the CNT_CONFIG register. An active level at the CzM
input clears the CNT_COUNTER register and holds it until the CZM pin
is deactivated. In addition, if enabled by the CZMZIE bit in the
CNT_IMASK register, it will set the CZMZIT bit in the CNT_STATUS reg-
ister. If enabled by the peripheral interrupt controller, this will
generate an interrupt request. The active level is selected by the
CZMINV bit in the CNT_CONFIG register (active high if cleared, active
low if set to one).

Zero-marker-error mode—This mode is used to detect discrepan-
cies between counter value and the zero marker output of certain
rotary encoder devices. It is enabled by setting the CZMEIE bit in the
CNT_IMASK register. When an active edge is detected at the CZM
input pin, the four LSBs of the CNT_COUNTER register are compared
to zero. If they are not zero, a mismatch is signaled by way of the
CZMEII bit in the CNT_STATUS register. If enabled by the peripheral
interrupt controller, this will generate an interrupt request. The
active edge is selected by the CZMINV bit in the CNT_CONFIG register:
(rising edge if cleared, falling edge if set to one).

Zero-once mode-This mode is used to perform an initial reset of
the counter value when an active zero marker is detected. After
that, the zero marker is ignored (the counter is not reset anymore).
This mode is enabled by setting the W1ZMONCE bit in the
CNT_COMMAND register. The CNT_COUNTER register and the W1ZMONCE
bit are cleared on the next active edge on the CzM pin. Thus, the
W1ZMONCE bit can be read to check whether the event has already
occurred, if desired. The active edge of the CZM pin is selected by
the CZMINV bit in the CNT_CONFIG register (rising edge if cleared,
falling edge if set to one).

13-10

ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Counter

Boundary Comparison Modes

The GP counter includes two boundary registers, CNT_MIN (lower) and
CNT_MAX (upper). The counter value is compared to the lower and upper
boundary. Depending on which mode is selected, different actions are
taken if the count value reaches either of the boundary values.

There are four boundary modes:

Boundary-compare mode—The two boundary registers are simply
compared to the CNT_COUNTER register. If, after incrementing,
CNT_COUNTER equals CNT_MAX then the MAXCIT bit in the CNT_STATUS
register is set. If the MAXCIE bit in the CNT_IMASK register is set, an
interrupt request is generated. Similarly if, after decrementing,
CNT_COUNTER equals CNT_MIN then the MINCIT status bit is set. If the
MINCIE bit in the CNT_IMASK register is set, an interrupt request is
generated. The MAXCIT and MINCII bits are not set if the CNT_MAX
and CNT_MIN registers are updated by software.

Boundary-zero mode—This mode is similar to the boundary-com-
pare mode. In addition to setting the status bits and requesting
interrupts, the counter value in the CNT_COUNTER register is also set
to zero.

Boundary auto-extend mode-In this mode, the boundary registers
are modified by hardware whenever the counter value reaches
either of them. The CNT_MAX register is loaded with the current
CNT_COUNTER value if the latter increments beyond the CNT_MAX
value. Similarly, the CNT_MIN register is loaded with the
CNT_COUNTER value if the latter decrements below the CNT_MIN
value. This mode may be used to keep track of the widest angle the
wheel ever reported, even if the software did not serve interrupts.
At startup, the application software should set both boundary regis-

ADSP-BF51x Blackfin Processor Hardware Reference 13-11

Functional Description

ters to the initial CNT_COUNTER value. The MAXCIT and MINCIT status
bits are still set when the counter value matches the boundary
register.

* Boundary-capture mode—In this mode, the CNT_COUNTER value is
latched into the CNT_MIN register at one detected edge of the CzM
input pin, and latched into CNT_MAX at the opposite edge. If the
CZMINV bit in the CNT_CONFIG register is cleared, a rising edge cap-
tures into CNT_MIN and a falling edge into CNT_MAX. If the CZMINV bit
is set, the edges are inverted. The MAXCIT and MINCII status bits
report the capture event.

The comparison is performed with signed arithmetic. The boundary regis-
ters and the counter value are all treated as signed integer values.

Control and Signaling Events

Eleven events can be signaled to the processor using status information
and optional interrupt requests. The interrupts are enabled by the respec-
tive bits in the CNT_IMASK register. Dedicated bits in the CNT_STATUS
register report events. When an interrupt from the GP counter is acknowl-
edged, the application software is responsible for correct interpretation of
the events. It is recommended to logically AND the content of the
CNT_IMASK and CNT_STATUS registers to identify pending interrupts. Inter-
rupt requests are cleared by write-one-to-clear (W1C) operations to the
CNT_STATUS register. Hardware does not clear the status bits automatically,
unless the counter module is disabled.

lllegal Gray/Binary Code Events

When the illegal transitions described in “Quadrature Encoder Mode” on
page 13-5 or “Binary Encoder Mode” on page 13-6 occur, the ICIT bit in
the CNT_STATUS register is set. If enabled by the ICIE bit in the CNT_IMASK
register, an interrupt request is generated. The ICIE bit should only be set
in the quadrature encoder or binary encoder modes.

13-12 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Counter

Up/Down Count Events

The UCIT bit in the CNT_STATUS register indicates whether the counter has
been incremented. Similarly, the DCI1 bit reports decrements. The two
events are independent. For instance, if the counter first increments by
one and then decrements by two, both bits remain set, even though the
resulting counter value shows a decrement by one. In up/down counter
mode, hardware may detect simultaneous active edges on the CUD and DG
inputs. In that case, the CNT_COUNTER remains unchanged, but both the
UCIT and DCIT bits are set.

Interrupt requests for these events may be enabled through the UCIE and
DCIE bits. This feature should be used carefully when the counter is
clocked at high rates. This is especially critical when the counter operates
in DIR_TMR mode, as interrupts would be generated every SCLK cycle.

These events can also be used for additional push buttons, if GP counter
features are not needed. When up/down counter mode is enabled, these
count events can be used to report interrupts from push buttons that con-
nect to the CUD and CDG inputs.

Zero-Count Events

The CZEROIT status bit indicates that the CNT_COUNTER has reached a value
equal to 0x0000 0000 after an increment or decrement. This bit is not set
when the counter value is set to zero by a write to CNT_COUNTER or by set-
ting the WILCNT_ZERO bit in the CNT_COMMAND register. If enabled by the
CZEROIE bit, an interrupt request is generated.

Overflow Events

There are two status bits that indicate whether the signed counter register
has overflowed from a positive to a negative value or vice versa.

The COV3111 bit reports that the 32-bit CNT_COUNT register has either incre-
mented from 0x7FFF FEFFF to 0x8000 0000, or decremented from

ADSP-BF51x Blackfin Processor Hardware Reference 13-13

Functional Description

0x8000 0000 to 0x7FFF FFFF. If enabled by the COV311IE bit, an interrupt
request is generated.

Similarly, in applications where only the lower 16 bits of the counter are
of interest, the COV1511 status bit reports counter transitions from
0xXXXX 7FFF to 0xXXXX 8000, or from 0xXXXX 8000 to

0xXXXX 7FFF. If enabled by the COV15IE bit, an interrupt request is
generated.

Boundary Match Events

The MINCIT and MAXCII status bits report boundary events as described in
“Boundary Comparison Modes” on page 13-11. These bits are not set if
the CNT_COUNTER, CNT_MAX or CNT_MIN registers are updated by software or
the CNT_COMMAND register is written to.

The MINCIE and MAXCIE bits in the CNT_IMASK register enable interrupt
generation on boundary events.

Zero Marker Events

There are three status bits CZMII, CZMEII and CZMZI1 associated with zero
marker events, as described in “Zero Marker (Push Button) Operation” on
page 13-9. Each of these events can optionally generate an interrupt
request, if enabled by the corresponding CZMIE, CZMEIE and CZMZIE bits in
the CNT_IMASK register.

Capturing Timing Information

To calculate speed, many applications may wish to measure the time
between two count events—in addition to accurately counting encoder
pulses. For more accuracy, particularly at very low speeds, it is also neces-
sary to obtain the time that has elapsed since the last count event. This
additional information allows for estimating how much the GP counter
has advanced since the last counter event.

13-14 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Counter

For this purpose, the GP counter has an internal signal that connects to
the alternate capture input (TACIx) of one of the GP timers. It is func-
tional in all modes, with the exception of the timed direction mode. Refer
to “Internal Interfaces” section of Chapter 9, “General-Purpose Ports” for
information regarding which GP timer(s) are associated with which GP
counter module(s) for your device.

In order to use the timing measurements, the associated GP timer must be
used in the WDTH_CAP mode. The alternate capture input is selected by set-
ting the TIN_SEL bit in the GP timer’s TIMER_CONFIG register. For more
information about the GP timers and their operating modes, refer to the
General-Purpose Timer chapter.

Capturing Time Interval Between
Successive Counter Events

When the only timing information of interest is the interval between suc-
cessive count events, the associated timer should be programmed in
WDTH_CAP mode with PULSE_HI = 1, PERIOD_CNT = 1 and TIN_SEL = 1. Typ-
ically, this information is sufficient if the speed of GP counter events is
known not to reach very low values. Figure 13-3 shows the operation of
the GP counter and the GP timer in this mode. TO generates a pulse
every time a count event occurs. The GP timer will update its
TIMER_PERIOD register with the period (measured from rising edge to rising
edge) of the TO signal. The TIMER_PERIOD register is updated at every ris-
ing edge of the TO signal and contains the number of system clock (SCLK)
cycles that have elapsed since the previous rising edge.

Incidentally, the TIMER_WIDTH register is also updated at the same time,
but is generally of no interest in this mode of operation. If no reads of the
CNT_COUNTER register occur between counter events, the TIMER_WIDTH regis-
ter only contains the width of the TO pulse. If a read of CNT_COUNTER has
occurred between events, the TIMER_WIDTH register will contain the time
between the read of CNT_COUNTER and the next event.

ADSP-BF51x Blackfin Processor Hardware Reference 13-15

Functional Description

This mode can also be used with PULSE_HI = 0. In this case, the period of
TO is measured between falling edges. It will result in the same values as
in the previous case, only the latching occurs one SCLK cycle later.

cuoj -

CDG

TIMER_PERIOD
Sniy T
CNT_COUNTER :>< X 2 X 3 X 4 X 5
D000 000000000000000
TIMER_PERIOD BUFFER :>< 10 X
TIMER_WIDTH BUFFER :>< 1 X
TIMER_PERIOD :>< 10 ><
TIMER_WIDTH :>< 1 ><

Measurement T
reports available

Figure 13-3. Operation With GP Timer Module

w

7

-

-

— o > > X
— o > > X
S UG

Capturing Counter Interval and
CNT_COUNTER Read Timing

It is possible to also capture the time elapsed since the last count event. In
this mode, the associated timer should be programmed in WDTH_CAP mode
with PULSE_HI = 0, PERIOD_CNT = 0 and TIN_SEL = 1. Typically, this addi-
tional information is used to estimate the advancement of the GP counter

13-16 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Counter

since the last count event, when the speed is very low. Figure 13-4 shows
the operation of the GP counter module and the GP timer module in this
mode. TO generates a pulse every time a count event occurs.

SCLK
CUDJ

CDG

CNT_COUNTER READ

TIMER_PERIOD
—>
oL L] L]
CNT?COUNTER:>< 1 X 2 X 3 X 4 X 5 >< 6
i 0.0.000.0000000.000 0000
TIMER_PERIOD BUFFER X X 12 X 2 X 3 X 3 X 8
TIMER_WIDTH BUFFER:>< 1" X 1 X 2 X 2 X 4 X 1

TIMER?PERIOD:>< X >< 12 >< 2 >< 3 X 3 W
nmen_wmm:x 1 X 1 X 2 X 2 X 4 ><1_

Measurement T
report of interest
due to read of
CNT_COUNTER

Figure 13-4. Capturing Counter Interval

In addition, when the processor reads the CNT_COUNTER register, the TO
signal presents a pulse which is extended (high) until the next count event.

ADSP-BF51x Blackfin Processor Hardware Reference 13-17

Programming Model

The GP timer will update its TIMER_PERIOD register with the period (mea-
sured from falling edge to falling edge, because PULSE_HI = 0) of the TO
signal. The TIMER_WIDTH register is updated with the pulse width (the por-
tion where TO is low, again because PULSE_HI = 0). Both registers are
updated at every rising edge of the TO signal (because PERIOD_CNT = 0).
Therefore, the TIMER_PERIOD register contains the period between the last
two count events and the TIMER_WIDTH register contains the time since the
last count event and the read of the CNT_COUNTER register, both measured
in number of SCLK cycles.

The result is that when reading the CNT_COUNTER register, the two time
measurements are also latched and the user has a coherent triplet of infor-
mation to calculate speed and position.

@ Restrictions apply to the use of the TO signal in terms of speed.

Therefore, the user must take care to not operate at very high count
events. For instance, if CNT_COUNTER is incremented/decremented
every SCLK cycle (timed direction mode), the TO signal is
incorrect.

Programming Model

In a typical application, the user will initialize the GP counter for the
desired mode, without enabling it. Normally the events of interest will be
processed using interrupts rather than polling the status bit. In that case,
clear all status bits and activate the generation of interrupt requests with
the CNT_IMASK register. Set up the system interrupt controller and core
interrupts. If timing information is required, set up the relevant GP timer
in WDTH_CAP mode with the settings described in the “Capturing Timing
Information” on page 13-14. Then, enable the interrupts and the periph-
eral itself.

13-18 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Counter

Registers

The GP counter interface has eight memory-mapped registers (MMRys)
that regulate its operation. Descriptions and bit diagrams for MMRs is
provided in the sections that follow.

Counter Module Register Overview

Refer to Table 13-3 for an overview of all MMRs associated with the GP

counter interface.

Table 13-3. Counter Module Register Overview

Register Name Width PAB Operation |Reset Value
CNT_CONFIG 16 bits R/W 0x0000
CNT_IMASK 16 bits R/W 0x0000
CNT_STATUS 16 bits R/W1C 0x0000
CNT_COMMAND | 16 bits R/WI1A 0x0000
CNT_DEBOUNCE | 16 bits R/W 0x0000
CNT_COUNTER 32 bits R/W (16/32 bits) | 0x0000 0000
CNT_MAX 32 bits R/W (16/32 bits) | 0x0000 0000
CNT_MIN 32 bits R/W (16/32 bits) | 0x0000 0000

ADSP-BF51x Blackfin Processor Hardware Reference 13-19

Registers

Counter Configuration Register (CNT_CONFIG)

This register is used to configure counter modes and input pins, as well as
to enable the peripheral. It can be accessed at any time with 16-bit read
and write operations.

Counter Configuration (CNT_CONFIG) Register

15 14 13 12 11

10 9

7 6 5 4 3 2 1 0
ofofofefofefe]e]

|o|o!o|o!o!o|o|3!

INPDIS (CUD and
CDG Input
Disable)

0 = Enabled

1 = Disabled

BNDMODE

(Boundary Register Mode)
00: BND_COMP

01: BIN_ENC

10: BND_CAPT

11: BND_AEXT

ZMZC (CZM Zeroes Counter
Enable)

Level sensitive - active CZM
pin zeroes CNT_COUNTER

CNTMODE (Counter Operating Mode)
000: QUAD_ENC - quadrature encoder mode
001: BIN_ENC - binary encoder mode

010: UD_CNT - up/down counter mode

011: Reserved

100: DIR_CNT - direction counter mode
101: DIR_TMR - direction timer mode

110: Reserved
111: Reserved

Figure 13-5. Counter Configuration Register

Reset = 0x0000

CNTE (Counter
Enable)

0 = Disabled

1 = Enabled

DEBE (Debounce
Enable)

0 = Disabled
1 = Enabled

CDGINV (CDG Pin

Polarity Invert)

0 = Active high, rising
edge

1 = Active low, falling
edge

CUDINV (CUD Pin

Polarity Invert)

0 = Active high, rising
edge

1 = Active low, falling
edge

CZMINV (CZM Pin

Polarity Invert)

0 = Active high, rising
edge

1 = Active low, falling
edge

13-20

ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Counter

Counter Interrupt Mask Register (CNT_IMASK)

This register is used to enable interrupt request generation from each of
the eleven events. It can be accessed at any time with 16-bit read and write
operations. For explanations of the register bits, refer to “Control and Sig-
naling Events” on page 13-12.

Counter Interrupt Mask (CNT_IMASK) Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

|o|o|o|o|o|o|o|0|0|0|o|0|0|0|o|0| Reset = 0x0000
CZMZIE ICIE
(Counter zeroed by zero marker (Illegal Gray/binary code interrupt
interrupt enable) enable)
UCIE
CZMEIE (Upcount interrupt enable)
(Zero marker error interrupt enable)
DCIE
CZMIE (Downcount interrupt enable)
(CZM pin interrupt enable/push-button interrupt)
MINCIE
CZEROIE (Min count interrupt enable)
(CNT_COUNTER counts to zero interrupt enable
MAXCIE
COVISIE (Max count interrupt enable)
COV31IE

Bit 15 flow int t enabl
(Bi overflow interrupt enable) (Bit 31 overflow interrupt enable)

For all bits:
0 = Interrupt disabled
1 = Interrupt enabled

Figure 13-6. Counter Interrupt Mask Register

Counter Status Register (CNT_STATUS)

This register provides status information for each of the eleven events
where 0 = no interrupt pending and 1 = interrupt pending. When an event
is detected, the corresponding bit in this register is set. It remains set until
either software writes a “1” to the bit (write-1-to-clear) or the GP counter
is disabled. For explanations of the register bits, refer to “Control and Sig-
naling Events” on page 13-12.

ADSP-BF51x Blackfin Processor Hardware Reference 13-21

Registers

Counter Status (CNT_STATUS) Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|0| Reset = 0x0000
CZMZIE * IClI
(Counter zeroed by zero marker) (W1C) (Illegal Gray/binary code
CZMEII interrupt) (W1C)
(Zero marker error interrupt) (W1C) ucl
czmi (Upcount interrupt) (W1C)
(CZM pin interrupt/ Push-button interrupt) (W1C) DCll
CZEROII (Downcount interrupt) (W1C)
(CNT_COUNTER counts to zero interrupt) (W1C) L MINCI
covislil (Min interrupt) (W1C)
(Bit 15 overflow interrupt) (W1C) MAXCII
(Max interrupt) (W1C)
covasill
(Bit 31 overflow
For all bits: interrupt) (W1C)

0 = No Interrupt pending
1 = Interrupt pending

Figure 13-7. Counter Status Register

Counter Command Register (CNT_COMMAND)

The CNT_COMMAND register (shown in Figure 13-8) configures the GP coun-
ter, enabling operations such as zeroing a counter register and copying or

swapping boundary registers. These actions are taken by writing a “one” to
the appropriate bit.

Read operations from this register will not return meaningful values, with
the exception of the W1ZONCE bit, where a “1” indicates that the bit has
been set by software before, but no zero marker event has been detected on
the CzM pin yet. Refer to “Zero Marker (Push Button) Operation” on
page 13-9 for more details.

The CNT_COUNTER, CNT_MIN and CNT_MAX registers can be initialized to zero
by writing a “one” to the WILCNT_ZERO, WILMIN_ZERO and W1LMAX_ZERO
fields. In addition to clearing registers, CNT_COMMAND allows the boundary
registers to be modified in a number of ways. The current counter value in
CNT_COUNT can be captured and loaded into either of the two boundary

13-22 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Counter

registers CNT_MAX and CNT_MIN to create new boundary limits. This is per-
formed by setting the W1LMAX_CNT and W1LMIN_CNT bits. Alternatively, the
counter can be loaded from CNT_MAX or CNT_MIN via the W1LCNT_MAX and
WILCNT_MIN bits. It is also possible to transfer the current CNT_MAX value
into CNT_MIN (or vice versa) through the WILMIN_MAX and W1LMAX_MIN bits.
The final supported operation is the ability to only have the zero marker
clear the CNT_COUNT register once, as described in “Zero Marker (Push But-
ton) Operation” on page 13-9.

It is possible for multiple actions to be performed simultaneously by set-
ting multiple bits in the CNT_COMMAND register. However, there are
restrictions. The bits associated with each command have been grouped
together such that all bits that involve a write to the CNT_COUNTER register
are located within bits 3:0 of the CNT_COMMAND register. All commands that
involve a write to the CNT_MIN register are located within bits 7:4 of the
CNT_COMMAND register, and all commands that involve a write to the
CNT_MAX register are located within bits 11:8 of the CNT_COMMAND register.

A maximum of three commands can be issued at any one time,
excluding the W1ZMONCE command. Note that (WILCNT_MIN,
WILCNT_MAX and WILCNT_ZERO) have to be used exclusively. Never
set more than one of them at the same time. The same rule applies
for (WLLMAX_MIN, WLLMAX_CNT and W1LMAX_ZERO) and for
(WILMIN_MAX, WILMIN_CNT, and W1LMIN_ZERO).

ADSP-BF51x Blackfin Processor Hardware Reference 13-23

Registers

Counter Command (CNT_COMMAND) Register

15 14 13 12 11 10

9 8 6 5 3 0
(oo o o [o o o o o o o o o o o]o]

Reset = 0x0000

W1ZMONCE
(Write one to enable single Zero
marker clear CNT_COUNT

action (WI1A/R)
W1LMAX_MIN

(Write one to copy former CNT_MIN

to new CNT MAX) (W1A)
W1LMAX_CNT

(Write one to capture CNT_COUNTER to
CNT_MAX Register) (W1A)

W1LMAX_ZERO
(Write one to zero CNT_MAX Register) (W1A)
W1LMIN_MAX

(Write one to copy former CNT _MAX
to new CNT_MIN (W1A)

Figure 13-8. Counter Command Register

W1LCNT_ZERO

(Write one to zero
CNT_COUNTER) (W1A)
W1LCNT_MIN

(Write one to zero
CNT_COUNTER (W1A)
W1LCNT_MAX

(Write one to load
CNT_COUNTER

from CNT_MAX) (W1A)
W1LMIN_ZERO

(Write one to zero CNT_MIN
Register) (W1A)
W1LMIN_CNT

(Write one to capture
CNT_COUNTER to CNT_MIN
Register) (W1A)

Counter Debounce Register (CNT_DEBOUNCE)

This register is used to select the noise filtering characteristic of the three
input pins (see “Input Noise Filtering (Debouncing)” on page 13-8). Bits
[4:0] determine the filter time. The register can be accessed at any time
with 16-bit read and write operations.

tﬁlter

= 128 (2

DPRESCALE

+SCLK)

13-24

ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Counter

Counter Debounce (CNT_DEBOUNCE) Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|o|o|o|o|o|o|o|o|o|o|o|o|o|0|o|o| Reset = 0x0000

PRESCALE (DEBOUNCE DELAY)
00000: 1 x 128 SCLK cycles
00001: 2 x 128 SCLK cycles
00010: 4 x 128 SCLK cycles
00011: 8 x 128 SCLK cycles
00100: 16 x 128 SCLK cycles
00101: 32 x 128 SCLK cycles
00110: 64 x 128 SCLK cycles
00111: 128 x 128 SCLK cycles
01000: 256 x 128 SCLK cycles
01001: 512 x 128 SCLK cycles
01010: 1024 x 128 SCLK cycles
01011: 2048 x 128 SCLK cycles
01100: 4096 x 128 SCLK cycles
01101: 8192 x 128 SCLK cycles
01110: 16384 x 128 SCLK cycles
01111: 32768 x 128 SCLK cycles
10000: 65536 x 128 SCLK cycles
10001: 131072 x 128 SCLK cycles
Others: Reserved

Figure 13-9. Counter Debounce Register

Counter Count Value Register (CNT_COUNTER)

This register holds the 32-bit, twos-complement, count value. It can be
read and written at any time. Hardware ensures that reads and write are
atomic, by providing respective shadow registers. This register can be
accessed with either 32-bit or 16-bit operations. This allows use of the GP
counter as a 16-bit counter if sufficient for the application.

ADSP-BF51x Blackfin Processor Hardware Reference 13-25

Registers

Counter Count Value (CNT_COUNTER) Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
|o|o|o|o|o|o|o|0|0|o|o|0|o|0|o|0| Reset = 0x0000 0000
| |

Count Value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[ofefofofofeefofo oo o oo e]
L |

Figure 13-10. Counter Count Value Register

Count Value

Counter Boundary Registers (CNT_MIN and
CNT_MAX)

These registers hold the 32-bit, twos-complement, lower and upper
boundary values. They can be read and written at any time. Hardware
ensures that reads and write are atomic, by providing respective shadow
registers. This register can be accessed with either 32-bit or 16-bit opera-
tions. This allows for using the GP counter as a 16-bit counter if sufficient
for the application.

13-26 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Counter

Counter Maximal Count (CNT_MAX) Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
|o|o|o|o|o|o|o|0|0|o|o|0|o|0|o|0| Reset = 0x0000 0000
[|

‘ CNT_MAX
(Counter Max)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[ofefofefofofefofofefefofo o] e]
| |

| CNT_MAX
(Counter Max)

Figure 13-11. Counter Maximal Count Register

Counter Minimal Count (CNT_MIN) Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
|o|o|o|o|o|o|o|o|o|o|o|o|0|o|o|o| Reset = 0x0000 0000
| I

| CNT_MIN[31:16]
(Counter Min)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[ofefofofofefefofo e oo o oo e]
| |

‘ CNT_MIN[15:0]
(Counter Min)

Figure 13-12. Counter Minimal Count Register

ADSP-BF51x Blackfin Processor Hardware Reference 13-27

Programming Examples

Programming Examples

Listing 13-1 illustrates how to initialize the GP counter for various modes.
The required interrupts are first unmasked. The GP counter is then con-
figured for the required mode of operation. Note that at this point we do
not yet enable the counter. Finally, some GP counter MMRs are cleared,
as well as any interrupts that may be pending in the CNT_STATUS register.

Listing 13-1. Initializing the GP Counter

/* Setup Counter Interrupts */

P5.H = hi(CNT_IMASK);
P5.L = To(CNT_IMASK):
RS = nCZMZIE /* Counter zeroed by zero marker interrupt */
| CZMEIE /* Zero marker error interrupt */
| CZMIE /* CZM pin interrupt (push-button) */
| CZEROIE /* Counts to zero interrupt */
| nCOVISIE /* Counter bit 15 overflow interrupt */
| nCOV31IE /* Counter bit 31 overflow interrupt */
| MAXCIE /* Max count interrupt */
| MINCIE /* Min count interrupt */
| DCIE /* Downcount interrupt */
| UCIE /* Upcount interrupt */
| ICIE (z); /* I11legal gray/binary code interrupt */
wlP5] = R5;

/* Configure the GP Counter mode of operation */
P5.H = hi(CNT_CONFIG);
P5.L = 10(CNT_CONFIG);

R5 = nINPDIS /* Enable CUD and CDG inputs */
| BNDMODE_COMP /* Boundary compare mode */
| nZMZC /* Disable Zero Counter Enable */
| CNTMODE_QUADENC /* Quadrature Encoder Mode */
| CZMINV /* Polarity of CZM pin */

13-28 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Counter

| nCUDINV /* Polarity of CUD pin */

| nCDGINV /* Polarity of CDG Pin */

| nDEBE /* Disable the debounce */

| nCNTE (2); /* Disable the counter */
wlP5] =

/* Zero the CNT_COUNT, CNT_MIN and CNT_MAX registers

This is optional as after reset they are default to zero */
P5.H = hi(CNT_COMMAND) ;

P5.L = To(CNT_COMMAND) ;

R6 = WILCNT_ZERO | WILMIN_ZERO | W1LMAX_ZERQO (z);

wlP5] = Rb;

/* Clear any identified interrupts */

P5.H = hi(CNT_STATUS);

P5.L To(CNT_STATUS) ;

R6.L ICII /* I1legal Gray/Binary Code Interrupt Identifier
*/

UCTI /* Up count Interrupt Identifier */

DCII /* Down count Interrupt Identifier */

MINCII /* Min Count Interrupt Identifier */

MAXCIT /* Max Count Interrupt Identifier */

COV31II /* Bit 31 Overflow Interrupt Identifier */
COVISII /* Bit 15 Overflow Interrupt Identifier */
CZEROIT /* Count to Zero Interrupt Identifier */
CZMII /* CZM Pin Interrupt Identifier */

CZMEII /* CZM Error Interrupt Identifier */

CZIMZI1; /* CZM Zeroes Counter Interrupt Identifier */
w[P5] =

Listing 13-2 illustrates how to set up the peripheral and core interrupts for
the GP counter. This example assumes the counter interrupts are gener-
ated on IRQ27, which is assumed to be mapped to the IVG11 interrupt.
Finally, the system and peripheral interrupts are unmasked, and then the

ADSP-BF51x Blackfin Processor Hardware Reference 13-29

Programming Examples

GP counter is enabled. This example can be easily tailored to processors

with different SIC register mappings.
Listing 13-2. Setting Up the Interrupts for the GP Counter

/* Assign the CNT interrupt to IVG11l */

P5.H = hi(SIC_IAR3);
P5.L = To(SIC_IAR3);
R6.H = hi(OxFFFF4FFF);
R6.L = T0(OxFFFF4FFF);
R7.H = hi(0x00000000);
R7.L = 10(0x00000000) ;
R5 = [P5];

RS = R5 & R6; /* zero the counter interrupt field */
R5 = R5 | R7; /* set Counter interrupt to required priority */
[P5] = Rb;

/* Set up the interrupt vector for the counter */
Ro.H = hi(_IVGll_handler);
R5.L = 1o(_IVGl1_handler);

P5.H = hi(EVT11);
P5.L = To(EVT11);
[P5] = Rb;

/* Unmask IVG1l interrupt in the IMASK register */
P5.H = hi(IMASK);

P5.L = 1o0(IMASK);

R5 [P5];

bitset(R5, bitpos(EVT_IVG11));

[P5] = R5;

/* Unmask interrupt 27 generated by the counter */
P5.H = hi(SIC_IMASKO);
P5.L = 1o(SIC_IMASKO);

13-30 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Counter

RS = [P5];
bitset(R5, bitpos(IRQ_CNT));
[P5] = R5;

/* Enable the counter */
P5.H hi(CNT_CONFIG);
P5.L To(CNT_CONFIG);

R5 wlP5](z);

bitset(R5, bitpos(CNTE));
w[P5] = R5.L;

Using the same assumptions from the previous example, Listing 13-3
illustrates a sample interrupt handler that is responsible for servicing the
GP counter interrupts. On entry to the handler, the SIC_ISRO register is
interrogated to determine if the counter is waiting for an interrupt to be
serviced. If so, the handler responsible for processing all counter interrupts
is called.

Listing 13-3. Sample Interrupt Handler for GP Counter Interrupts

_IVG11_handler:
/* Stack management */

[--SP] = RETS;
[--SP] = ASTAT;
[--SP] = (R7:0, P5:0);

/* Was it a counter interrupt? */
P5.H hi(SIC_ISRO);

P5.L 10(SIC_ISRO);

R = [P51];

cC bittst(R5, bitpos(IRQ_CNT));

IF ICC JUMP _IVGl1l_handler.completed;
CALL _IVGl1_handler.counter;

_IVGl11_handler.completed:

ADSP-BF51x Blackfin Processor Hardware Reference 13-31

Programming Examples

SSYNC;

/* Restore from stack */

(R7:0, P5:0) = [SP++];

ASTAT = [SP++1];

RETS = [SP++];

RTI; /* Exit the interrupt service routine */
_IVGl11_handler.end:

_IVG11_handler.counter:
/* Stack management */
[--SP] RETS;
[--SP] (R7:0, P5:0);

/* Determine what counter interrupts we wish to service */

RS = w[lP5](z);
P5.H = hi(CNT_IMASK);
P5.L = To(CNT_IMASK);

RS = wlP5](z);

P5.H = hi(CNT_STATUS);
P5.L = To(CNT_STATUS);
R6 = wlP5](z);
R5 = R5 & R6;

/* Interrupt handlers for all GP counter interrupts */
_IVGll_handler.counter.illegal_code:

CC = bittst(R5, bitpos(ICII));

IF ICC JUMP _IVGl1l_handler.counter.up_count;

/* Clear the serviced request */
R6 = ICII (z);
w[P5] = R6;

13-32 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Counter

/* insert illegal code handler here */
_IVGll_handler.counter.illegal_code.end:
_IVG11_handler.counter.up_count:

CC = bittst(R5, bitpos(UCII));

IF ICC JUMP _IVG11_handler.counter.down_count;

/* Clear the serviced request */

R6 = UCII (z);

w[P5] = R6;

/* dinsert up count handler here */
_IVGl1_handler.counter.up_count.end:
_IVGll_handler.counter.down_count:

CC = bittst(R5, bitpos(DCII));

IF ICC JUMP _IVGll_handler.counter.min_count;

/* Clear the serviced request */

R6 = DCII (z);

w[P5] = R6;

/* insert down count handler here */
_IVGl1l_handler.counter.down_count.end:
_IVGll_handler.counter.min_count:

CC = bittst(R5, bitpos(MINCII));

IF ICC JUMP _IVGll_handler.counter.max_count;

/* Clear the serviced request */

ADSP-BF51x Blackfin Processor Hardware Reference 13-33

Programming Examples

R6 = MINCII (z);
w[P5] = R6;

/* insert min count handler here */
_IVGll_handler.counter.min_count.end:
_IVGll_handler.counter.max_count:

CC = bittst(R5, bitpos(MAXCII));

IF ICC JUMP _IVGll_handler.counter.b31_overflow;

/* Clear the serviced request */

R6 = MAXCII (z);

w[P5] = R6;

/* insert max count handler here */
_IVGl1l_handler.counter.max_count.end:
_IVGll_handler.counter.b31_overflow:

CC = bittst(R5, bitpos(COV31II));

IF ICC JUMP _IVGll_handler.counter.bl5 overflow;

/* Clear the serviced request */

R6 = COV31II (z);

w[P5] = R6;

/* insert bit 31 overflow handler here */

_IVGll_handler.counter.b31_overflow.end:

_IVGll_handler.counter.bl5 overflow:
CC = bittst(R5, bitpos(COV1I5SII));

13-34 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Counter

IF !'CC JUMP _IVGll_handler.counter.count_to_zero;

/* Clear the serviced request */

R6 = COVISII (z);

w[P5] = R6;

/* insert bit 15 overflow handler here */
_IVGll_handler.counter.bl5 overflow.end:
_IVGll_handler.counter.count_to_zero:

CC = bittst(R5, bitpos(CZEROII));

IF !'CC JUMP _IVGll_handler.counter.czm;

/* Clear the serviced request */

R6 = CZEROII (z);

w[P5] = R6;

/* insert count to zero handler here */
_IVGll_handler.counter.count_to_zero.end:
_IVGll_handler.counter.czm:

CC = bittst(R5, bitpos(CZMII));

IF !'CC JUMP _IVGll_handler.counter.czm_error;

/* Clear the serviced request */

R6 = CZIMII (z);

w[P5] = R6;

/* insert czm handler here */

_IVGll_handler.counter.czm.end:

ADSP-BF51x Blackfin Processor Hardware Reference 13-35

Programming Examples

_IVGl1l_handler.counter.czm_error:
CC = bittst(Rb, bitpos(CZMEIT));
IF ICC JUMP _IVGll_handler.counter.czm_zeroes_counter;

/* Clear the serviced request */
R6 = CZMEII (z);
w[P5] = R6;

/* insert czm error handler here */
_IVGll_handler.counter.czm_error.end:
_IVGll_handler.counter.czm_zeroes_counter:

CC = bittst(R5, bitpos(CZMZII));

IF !'CC JUMP _IVGll_handler.counter.all_serviced;

/* Clear the serviced request */

R6 = CZIMZII (z);

w[P5] = R6;

/* insert czm zeroes counter handler here */
_IVGll_handler.counter.czm_zeroes_counter.end:
_IVGll_handler.counter.all_serviced:

/* Restore from stack */

(R7:0, P5:0) = [SP++];

RETS = [SP++1;

RTS;
_IVGll_handler.counter.end:

13-36 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Counter

Listing 13-4 shows how to set up timer 7 (as an example) to capture the
period of counter events. Refer to "Internal Interfaces" in Chapter 9,
“General-Purpose Ports” for information regarding which GP timer(s) are
associated with which GP counter module(s) for your device. The timer is
configured for WDTH_CAP mode, and the period between the last two suc-
cessive counter events is read from within the up count interrupt handler
that was provided in Listing 13-3 on page 13-31.

Listing 13-4. Setting Up Timer 7 for Counter Event Period Capture

/* configure the timer for WDTH_CAP mode */

P5.H = hi(TIMER7_CONFIG);

P5.1 = To(TIMER7_CONFIG);

R5 PULSE_HI | PERIOD_CNT | TIN_SEL | WDTH_CAP (z);
w[P5] = R5.7;

/* Enable Timer 7

P5.H = hi(TIMER_ENABLEOQ);
P5.L = To(TIMER_ENABLEOQ);
R5 = TIMEN7 (z);

w[P5] = R5.L;

_IVGI11_handler.counter.up_count:
CC = bittst(R5, bitpos(UCII));
IF !'CC JUMP _IVGll_handler.counter.down_count;

/* Clear the serviced request */
R6 = UCII (z);
wlP5] = R6;

/* insert up count handler here */

ADSP-BF51x Blackfin Processor Hardware Reference 13-37

Unique Information for the ADSP-BF51x Processor

/* Read the period between the last two successive events */
P5.H = hi(TIMER7_PERIOD);
P5.L = To(TIMER7_PERIOD);

R = [P5];
P5.H = hi(_event_period);
P5.L = To(_event_period);
[P5] = Rb;

_IVGl1_handler.counter.up_count.end:

Unique Information for the ADSP-BF51x
Processor

None.

13-38 ADSP-BF51x Blackfin Processor Hardware Reference

PWM Controller

14 PWM CONTROLLER

This chapter describes the PWM controller module. Following an over-
view and a list of key features is a description of operation and functional
modes of operation. The chapter concludes with a programming model
discussion and consolidated register definitions.

Specific Information for the ADSP-BF51x

For details regarding the number of PWMs for the ADSP-BF51x product,
refer to ADSP-BF512/BF514/BF516/BF518(F) Embedded Processor Data
Sheet.

For PWM Controller interrupt vector assignments, refer to Table 5-3 on
page 5-20 in Chapter 5, “System Interrupts”.

To determine how the PWM Controller is multiplexed with other func-
tional pins, refer to Table 9-2 on page 9-5 through Table 9-4 on page 9-7
in Chapter 9, “General-Purpose Ports”.

For a list of MMR addresses for the PWM Controller, refer to
Appendix A, “System MMR Assignments”.

ADSP-BF51x Blackfin Processor Hardware Reference 14-1

Overview

Overview

The PWM controller is a flexible, programmable, three-phase PWM
waveform generator that can be programmed to generate the required
switching patterns to drive a three-phase voltage source inverter for ac

induction motor (ACIM) or permanent magnet synchronous motor
(PMSM) control.

In addition, the PWM block contains functions that considerably simplify
the generation of the required PWM switching patterns for control of

electronically commutated motors (ECMs) or brushless dc motors
(BDCMs).

Programming the PUM_SRMODE bit of the PUM_CTRL register to 0 enables a
special mode used for switched reluctance motors (SRMs). Figure 14-1
shows a block diagram that represents the main functional blocks of the

PWM Controller.

The following six blocks control the generation of the six output PWM
signals (PUM_AH, PWM_AL, PWM_BH, PWM_BL, PWM_CH, and PWM_CL):

e Three-Phase PWM Timing Unit. As the core of the PWM

Controller, this block generates three pairs of complemented,
center-based PWM signals and PUM_SYNC coordination.

* Dead Time Control Unit. This block inserts emergency dead time
after the “ideal” PWM output pair, including crossover, is
generated.

* Output Control Unit. This block permits the redirection of the
outputs of the Three-Phase Timing Unit for each channel to the
high-side or the low-side output. In addition, the Output Control
Unit allows individual enabling/disabling of each of the six PWM

output signals.

14-2 ADSP-BF51x Blackfin Processor Hardware Reference

PWM Controller

PWM PWM DUTY PWM_STAT2
CONFIGURATION ~ CYCLE
REGISTERS REGISTERS
PABBUS _ |PWM_TM PWM_CHA PWM_DT
— PWM_CHB PWM_SEG[5:0] | |PWM_GATE
PWM_CTRL PWM _GHC PWM_SEG[8:6]
P > 2 — PWM_AH
* bEAD > > L PWM_AL
mcerase [t o —| ome [rumon
UNIT > 33:‘47“0'- > UNIT » o oaT | Pwm BL
J N > — PWM_CH
> SYNC » SR_POL CLK[—*>PWM_CL
SYNC SR RESET CLK 1 + 1t
A A
CLK
PWM_SRMODE
PWM_POLARITY
PWM_SYNCWT
{5 PWM [« PWM_TRIPB
SHUTDOWN

"| AND INTERRUPT

PWM
SYNC PULSE CONTROL
CONTROL UNIT
UNIT

l«——FIO_COMP_TRIPB
— PWM_TRIP_IRQ
—> PWM_SYNC_IRQ

RESETB

Figure 14-1. PWM Controller Block Diagram

Gate Drive Unit. This block provides the correct polarity output
PWM signals, based on the state of the PUM_POLARITY bit of the
PWM_CTRL register. The Gate Drive Unit also permits the generation
of the high-frequency chopping waveform and its subsequent mix-

ing with the PWM output signals.

ADSP-BF51x Blackfin Processor Hardware Reference

14-3

Overview

e PWM Shutdown & Interrupt Control Unit. This block takes care
of the various PWM shutdown modes (via the PWUM_TRIPB pin and
the PWM_CTRL register). This unit generates the correct reset signal
for the Three-Phase PWM Timing Unit and interrupt signals for
the Interrupt Control Unit

e PWM Sync Pulse Control Unit. This block generates the internal
PWM synchronization pulse and also controls whether an external
PWM_SYNC pulse is used.

The PWM Controller is driven by a clock, whose period is tgc . The

PWM generator produces three pairs (PUM_AH, PUM_AL, PUM_BH, PWUM_BL,
PWM_CH, and PUM_CL) of PWM signals on the six PWM output pins. There
are three high-side drive signals (PUM_AH, PWM_BH, and PWM_CH) and three
low-side drive signals (PWM_AL, PWM_BL, and PWM_CL). The polarity of the
generated PWM signals may be programmed by the PWM_POLARITY bit of
the PUM_CTRL register to generate active high or active low PWM patterns.
The switching frequency and dead time of the generated PWM patterns
are programmable via the PWM_TM and PWM_DT registers. In addition, three
duty-cycle control registers (PWM_CHA, PWM_CHB, and PWM_CHC) directly con-
trol the duty cycles of the three pairs of PWM signals.

Each of the six PWM output signals can be enabled or disabled via sepa-
rate output enable bits of the PUM_SEG register. In addition, three control
bits of the PWM_SEG register permit independent crossover of the two sig-
nals of a PWM pair for easy control of ECMs or BDCMs. In crossover
mode, the PWM signal destined for the high-side switch is diverted to the
complementary low-side output, and the signal destined for the low-side
switch is diverted to the corresponding high-side output signal for ECM
or BDCM modes of operation. A typical configuration for these types of
motors is shown in Figure 14-2.

In common three-phase inverters, it is necessary to insert a so-called “dead
time” between turning off one switch and turning on the other switch in
the same leg, to prevent shoot-through. This dead time is inserted by an

emergency dead-time insertion circuit, which enforces a dead time defined

14-4 ADSP-BF51x Blackfin Processor Hardware Reference

PWM Controller

+PWMTM/2 0 -PWMTM/2 0 +PWMTM/2

|
PWNCHA=PWNCHB I
: |

| T

COUNT
| PWMCHA=PWIICHB

PWM_AH

PWM_AL

e

: |
|

+
[
L |
o

|
WMDT |

PWM_BH

2*P!

|
)
}
}
|
PWM_BL |
1

—

PWM_CH

PWM_CL

Figure 14-2. Active Low PWM Signals for ECM Control

by the PWM_DT register between the high- and low-side drive signals of each
PWM channel. This ensures that the correct dead time occurs at the
power inverter.

In many applications, there is a need to provide an isolation barrier in the
gate-drive circuits that turn on the power devices of the inverter. In gen-
eral, there are two common isolation techniques: optical isolation using
opto-isolators, and transformer isolation using pulse transformers. The
PWM Controller permits the mixing of the output PWM signals with a
high-frequency chopping signal, which provides an simple interface to

ADSP-BF51x Blackfin Processor Hardware Reference 14-5

Overview

pulse transformers. The features of gate-drive-chopping mode are con-
trolled by the PWM_GATE register. An 8-bit value (GDCLK) within the
PWM_GATE register directly controls the chopping frequency. In addition,
high-frequency chopping can be independently enabled for the high- and
low-side outputs using separate control bits in the PUM_GATE register. In
addition, all PWM outputs require sufficient sink and source capability to
directly drive most opto-isolators.

The PWM generator is capable of operating in two distinct modes:

* Single-Update Mode. In single-update mode, duty cycle values are
programmable only once per PWM period; resultant PWM pat-
terns are symmetrical about the mid-point of the PWM period.

* Double-Update Mode. In double-update mode, a second updating
of the PWM registers is implemented at the midpoint of the PWM
period. In double-update mode, it is possible to produce asymmet-
rical PWM patterns that produce lower harmonic distortion in
three-phase PWM inverters. This technique also permits
closed-loop controllers to change the average voltage applied to the
machine windings at a faster rate, thus permitting faster

closed-loop bandwidths to be achieved.

The operating mode of the PWM block (single- or double-update mode)
is selected by the PWM_DBL bit in the PWM_CTRL register. Setting PWM_DBL
to 1 selects double-update mode, and 0 selects single-update mode.

The PWM generator can provide an internal synchronization pulse on the
PWM_SYNC pin that is synchronized to the PWM switching frequency. In
single-update mode, a PUM_SYNC pulse is produced at the start of each
PWM period. In double-update mode, an additional PUM_SYNC pulse is
also produced at the midpoint of each PWM period. The width of the
PWM_SYNC pulse is programmable through the PWM_SYNCWT register.

The PWM generator can also accept an external synchronization pulse on
the PWM_SYNC pin. External synchronization is selected by setting the
PWM_EXTSYNC bit in the PWM_CTRL register. The PWM_SYNC input timing can

14-6 ADSP-BF51x Blackfin Processor Hardware Reference

PWM Controller

be synchronized to the internal system clock, which is selected by setting
the PWM_SYNCSEL bit of the PWM_CTRL register. If the external synchroniza-
tion pulse from the chip pin is asynchronous to the internal system clock
(typical case), the external PWM_SYNC is considered asynchronous and
should be synchronized. If the PWM_SYNC is actually received from another
PWM on the same chip controlled by the same system clock, the PUM_SYNC
can usually be considered synchronous. Synchronization logic will add
latency and jitter from the external sync pulse to the actual PWM outputs.
If the same asynchronous external sync pulse is received by two indepen-
dent PWM Controllers, synchronization of PUM_SYNC is also done
independently and the jitter between the PWM Controllers will not be in
unison. The size of the sync pulse on PUM_SYNC must be greater than two
system clock periods.

The produced PWM output signals can be shut off via:

* Hardware. A dedicated asynchronous PWM shutdown pin
(PWM_TRIPB) that when brought low (provided it is not disabled by
the PWMTRIP_DSBL bit of the PWM_CTRL register) instantaneously
places all six PWM outputs in the “off” state (as determined by the
state of the PUM_POLARITY bit of the PWM_CTRL register). This hard-
ware shutdown mechanism is asynchronous so that the associated
PWM disable circuitry does not go through any clocked logic,
thereby ensuring correct PWM shutdown even in the event of a
loss of the processor system clock. A trip shutdown in hardware
resets the PWM_EN bit in the PUM_CTRL register, but all the other pro-
grammable registers maintain their current state.

* Software. The PWM system may be shut down in software by
disabling the PUM_ENABLE bit in the PWM_CTRL register.

ADSP-BF51x Blackfin Processor Hardware Reference 14-7

General Operation

On many processors, the PWM pins are multiplexed with other
functionality. Because they can be in a high-impedance state before
the PORTx_MUX registers are programmed to select the PWM func-
tionality, there should be external pull-down logic for the
PWM_TRIPB pin in these cases. For these and other questions about
pin multiplexing, see ADSP-BF512/BF514/BF516/BF518(F)
Embedded Processor Data Sheet.

The PWM unit is capable of generating two different interrupt types. One
interrupt (PWM_SYNCINT) is generated on the occurrence of a rising edge on
the PWM_SYNC pulse, which is internally generated. The other interrupt
(PWM_TRIPINT) is generated on the occurrence of PWM_TRIPB, the PWM
shut-down action. Both interrupts are generated only when the corre-
sponding enable bits (PWMSYNCINT_EN and PWMTRIPINT_EN) are set in the
PWM_CTRL register.

The PWM_STAT register provides status information about the PWM sys-
tem. In particular, the state of the PWM_TRIPB pin (PWM_TRIP bit),
PWM_POLARITY (PWM_POL bit), and PWM_SRMODE (PWM_SR bit) are available, as
well as a status bit (PWM_PHASE) that indicates whether operation is in the
first half or the second half of the PWM period. The PWM_STAT register
also reflects the status of the PUM_SYNCINT and PWM_TRIPINT interrupts,
which are set if enabled in the PWM_CTRL register. The latter two bits are
sticky; hence, the interrupt service routine must write-1-to-clear (W1C)
these bits.

General Operation

Typically, the PUM_SYNCINT interrupt is used to periodically execute an
interrupt service routine (ISR) to update the three PWM channel duties,
according to a control algorithm based on expected motor operation and
sampled data of the existing motor operation. PWM_SYNC can also trigger
the ADC to sample data for use during the ISR. During processor boot,
the PWM Controller is initialized and program flow enters a wait loop.

14-8 ADSP-BF51x Blackfin Processor Hardware Reference

PWM Controller

When a PUM_SYNCINT interrupt occurs, the ADC samples data, the data is
algorithmically interpreted, and then the new PWM channel duties are
calculated and written to the PWM registers. More sophisticated imple-
mentations include different start-up, run-time, and shut-down
algorithms to determine PWM channel duties, based on expected behavior
and further features.

During initialization, the PWM_TM register is written to define the PWM
period, and the PWM_CHA, PWM_CHB and PWUM_CHC registers are written to
define the initial channel pulse widths. The PUM_SYNCWT, PUM_GATE,
PWM_SEG, PWM_CHAL, PWM_CHBL and PWM_CHCL registers are written, depend-
ing on the system configuration and modes. The PUM_STAT register can be
read to determine polarity, and whether switched reluctance (SR) mode
(PWM_SR bit) is enabled, and whether an external trip situation is prevent-
ing the correct start-up of the PWM Controller. An active external trip
event must be resolved prior to PWM startup. The PWM_CTRL register is
then written to define the major operating mode and to enable the PWM
outputs and PWM sync pulse.

During the PWM_SYNCINT interrupt-driven control loop, only the PWM_CHx
duty values are updated typically. The PUM_SEG register may also be
updated for other system implementations requiring output crossover.

During an external trip event (if not disabled), the PWM outputs will be
turned off (that is, set to the opposite of the “on” polarity configured by
the PUM_POLARITY bit of the PWM_CTRL register), and the PWM sync pulse
will continue to operate if already enabled. A PWM_TRIPINT interrupt will
occur if unmasked, notifying the software of this event. To handle cases
where clock signal integrity is an issue, external trips will turn off the
PWM outputs, with or without clocks.

ADSP-BF51x Blackfin Processor Hardware Reference 14-9

Functional Description

Functional Description

This section describes the function of the following PWM features:

“Three-Phase PWM Timing Unit and Dead Time Control Unit”
on page 14-11

“PWM Switching Frequency (PWM_TM) Register” on
page 14-11

“PWM Switching Dead Time (PWM_DT) Register” on
page 14-12

“PWM Operating Mode (PWM_CTRL and PWM_STAT) Regis-
ters” on page 14-13

“PWM Duty Cycle (PWM_CHA, PWM_CHB, and PWM_CHC)
Registers” on page 14-15

“Special Consideration for PWM Operation in Over-Modulation”
on page 14-20

“Three-Phase PWM Timing Unit Operation” on page 14-23
“Effective PWM Accuracy” on page 14-23

“Switched Reluctance Mode” on page 14-25

“Output Control Unit” on page 14-25

“Switched Reluctance (SR) Mode” on page 14-32

“PWM Sync Operation” on page 14-35

“PWM Shutdown and Interrupt Control Unit” on page 14-37

14-10

ADSP-BF51x Blackfin Processor Hardware Reference

PWM Controller

Three-Phase PWM Timing Unit and Dead Time
Control Unit

The 16-bit Three-Phase PWM Timing Unit is the core of the PWM Con-
troller and produces three pairs of pulse-width modulated signals with
high resolution and minimal processor overhead. The outputs of this unit
are such that a low level is interpreted as a command to turn on
(active-low) the associated power device. Three configuration registers
(PWM_CTRL, PWM_TM, and PWM_DT) determine the fundamental characteristics
of the PWM outputs. These registers, in conjunction with the three 16-bit
duty cycle registers (PWM_CHA, PWM_CHB, and PWM_CHC), control the output
of the Three-Phase PWM Timing Unit.

PWM Switching Frequency (PWM_TM) Register

The 16-bit read/write PWM period register (PUM_TM) controls the PWM
switching frequency. The fundamental timing unit of the PWM
Controller is tgcy k. Therefore, for a 100 MHz system clock (SCLK), fgcp ko

the fundamental time increment (tgcp) is 10 ns. The value written to the
PWM_TM register is effectively the number of tgcy clock increments in half

a PWM period. The required PWM_TM value as a function of the desired
PWM switching frequency (fpywp) is given by:

PWM. M = TSCLE_
2% fowm

ADSP-BF51x Blackfin Processor Hardware Reference 14-11

Functional Description

Therefore, the PWM switching period (T) can be written as:

Ty =2xPWM_TMX tgr;x

For example, for an fgcx of 100 MHz and a desired PWM switching fre-
quency (fpypp) of 10 kHz (T = 100 ps), the correct value to load into the

PWM_TM register is:

6
pwn M = 00X10 54500

3
2x10x 10
The largest value that can be written to the 16-bit PUM_TM register is

O0xFFFF = 65,535, which, at an fgcp g of 100 MHz, corresponds to a min-
imum PWM switching frequency of:
~ 100 % 10°
Jrwaming = 3 65535
@ PWM_TM values of 0 and 1 are not defined and should not be used
when the PWM outputs or PWM sync is enabled.

= 762Hz

PWM Switching Dead Time (PWM_DT) Register

The second important parameter that must be set up in the initial config-
uration of the PWM Controller is the switching dead time. This is a short
delay introduced between turning off one PWM signal (for example, AH)
and turning on the complementary signal (for example, AL). This short
time delay permits the power switch being turned off (AH in this case) to
completely recover its blocking capability before the complementary
switch is turned on. This time delay prevents a potentially destructive
short-circuit condition from developing across the dc link capacitor of a
typical voltage source inverter.

14-12 ADSP-BF51x Blackfin Processor Hardware Reference

PWM Controller

The 10-bit, read/write PUM_DT register controls the dead time. This register
controls the dead time inserted into the three pairs of PWM output sig-
nals. Dead time (Ty) is related to the value in the PWM_DT register by:

T,= PWM_DTX2Xtscr

Therefore, a PUM_DT value of 0x00A introduces a 200 ns delay (for a SCLK
of 100 MHz) between turning off any PWM signal (for example, AH) and
then turning on its complementary signal (for example, AL). The length of
the dead time can therefore be programmed in increments of 2 x tgcyk
(or 20 ns for an SCLK of 100 MHz). The PUM_DT register is a 10-bit register
whose maximum value of 0x3FF (1023 decimal) corresponds to a maxi-
mum programmed dead time of:

T fomary = 1023 %X 2% tcppe = 1023 x2x 10 x 107 = 20.5ps

for an fgcy i rate of 100 MHz. The dead time can be programmed to be
zero by writing 0 to the PWM_DT register.

PWM Operating Mode (PWM_CTRL and PWM_STAT)
Registers

The PWM Controller can operate in two distinct modes: single-update
mode and double-update mode. The mode is determined by the state of
PWM_DBL bit of the PUM_CTRL register. When this bit is cleared, the PWM
Controller operates in single-update mode. Setting the PWM_DBL bit places
the PWM Controller in double-update mode. Following a peripheral reset
or power on, the PWM_DBL bit is cleared; thus, PWM Controller operation
defaults to single-update mode.

In single-update mode, a PUM_SYNC pulse is produced during each PWM
period. The rising edge of this signal marks the start of a new PWM cycle
and is used to latch new values from the PWM configuration registers
(PWM_TM, PWM_DT, and PUM_SYNCWT), and the PWM duty cycle registers

ADSP-BF51x Blackfin Processor Hardware Reference 14-13

Functional Description

(PWM_CHA, PWM_CHB, PWM_CHC, PWM_CHAL, PWM_CHBL, and PWM_CHCL) into the
Three-Phase PWM Timing Unit. In addition, the PWM_SEG register is also
latched into the Output Control Unit on the rising edge of the PUM_SYNC
pulse. In effect, this means that the characteristics and resultant duty
cycles of the PWM signals can be updated only once per PWM period at
the start of each cycle. This results in PWM patterns that are symmetrical
about the midpoint of the switching period.

In double-update mode, an additional PWM_SYNC pulse is produced at the
midpoint of each PWM period. The rising edge of this second PWM_SYNC
pulse is again used to latch new values of the PWM configuration regis-
ters, duty cycle registers, and the PWM_SEG register. As a result, it is possible
to alter both the characteristics (switching frequency, dead time, and
PWM_SYNC pulse width) and the output duty cycles at the midpoint of each
PWM cycle. Consequently, it is possible to produce PWM switching pat-
terns that are no longer symmetrical about the midpoint of the period
(asymmetrical PWM patterns).

In double-update mode, it may be necessary to know whether operation at
any point in time is in the first or second half of the PWM cycle. This
information is provided by the PWM_PHASE bit of the PWM_STAT register,
which is cleared during operation in the first half of each PWM period
(between the rising edge of the original PWM_SYNC pulse and the rising edge
of the second PWM_SYNC pulse introduced in double-update mode). The
PWM_PHASE bit is set during operation in the second half of each PWM
period. This status bit allows determination of the particular half-cycle
during implementation of the PWM_SYNC interrupt service routine.

The advantage of double-update mode is that the PWM process can pro-
duce lower harmonic voltages, and faster control bandwidths are possible.
However, for a given PWM switching frequency, PUM_SYNC pulses occur at
twice the rate in double-update mode. Since new duty cycle values are
computed in each PUM_SYNCINT interrupt service routine, double-update
mode places a larger computational burden on the processor.

14-14 ADSP-BF51x Blackfin Processor Hardware Reference

PWM Controller

Alternatively, the same PWM update rate may be maintained at half the
switching frequency, yielding lower switching losses.

The PWM_STAT? status register is provided for software simulation. This
register contains the output values of all the three pairs of PWM signals
(PWM_AH, PHM_AL, PWM_BH, PWM_BL, PWM_CH, and PWM_CL).

PWM Duty Cycle (PWM_CHA, PWM_CHB, and
PWM_CHC) Registers

Three 16-bit read/write duty cycle registers (PWM_CHA, PWM_CHB, and
PWM_CHC) control the duty cycles of the six PWM output signals on the
PWM_AH, PWM_AL, PWM_BH, PWM_BL, PWM_CH, and PWM_CL pins when not in
switched reluctance mode. The two’s complement integer value in the
PWM_CHA register controls the duty cycle of the signals on the PWM_AH and
PWM_AL outputs; in PUM_CHB, it controls the duty cycle of the signals on
PWM_BH and PWM_BL; in PWM_CHC, it controls the duty cycle of the signals on
PWM_CH and PWM_CL. The duty cycle registers are programmed in two’s
complement integer counts of the fundamental time unit (tgcy k) and
define the desired on-time of the high-side PWM signal produced by the
Three-Phase PWM Timing Unit over half the PWM period.

Each duty cycle register range is from (-PWMTM/2 - PWMDT) to
(+PWMTM/2 + PWMDT), which, by definition, is scaled such that a
value of 0 represents a 50% PWM duty cycle.

The switching signals produced by the Three-Phase PWM Timing Unit
are also adjusted to incorporate the programmed dead time value in the
PWM_DT register by programming active low polarity in PWM_CTRL. The
Three-Phase PWM Timing Unit produces active-low signals to turn on
the associated power device.

Figure 14-3 shows a typical pair of PWM outputs (in this case, for PUM_AH
and PWM_AL) from the Three-Phase PWM Timing Unit for operation in
single-update mode. All illustrated time values indicate the integer value

ADSP-BF51x Blackfin Processor Hardware Reference 14-15

Functional Description

in the associated register and can be converted to time by multiplying by
the fundamental time increment (tgcy) and comparing to the two’s com-
plement counter.

+PWMTM/2 0 -PWMTM/2 +PWMTM/2
COUNT |
. —
PWM_AH |

—

0
I | |
PWMCHA | | PWMCHA
| |
]]
| |

L

PWM_AL

| —

, 2'PWMDT

——

2'PWMDT

:

PWM_PHASE

I

T

I

1

1

I

T

T

I

I

N H |

PWMSYNC_OUT |

I

T

1

M

I

I

| |

| |

| |

Figure 14-3. Typical PWM Outputs of Three-Phase Timing Unit
in Single-Update Mode (Active-Low Waveforms)

Notice that the switching patterns are perfectly symmetrical about the
midpoint of the switching period in single-update mode, since the same
values of PWM_CHA, PUM_TM, and PWM_DT are used to define the signals in
both half cycles of the period.

14-16 ADSP-BF51x Blackfin Processor Hardware Reference

PWM Controller

As implied by Figure 14-3, the programmed duty cycles are adjusted to
incorporate the desired dead time into the resultant pair of PWM signals
by moving the switching instants of both PWM signals (PWM_AH and
PWM_AL) away from the instant set by the PWM_CHA register. Both switching
edges are moved by an equal amount (PWMDT*tgcy k) to preserve the sym-
metrical output patterns. Figure 14-3 shows the PUM_SYNC pulse whose
rising edge denotes the beginning of the switching period and whose
width is set by the PUM_SYNCWT register. Also shown is the PWM_PHASE bit of
the PWM_STAT register, which indicates whether operation is in the first half
cycle or second half cycle of the PWM period.

The resultant on-times (active low) of the PWM signals over the full
PWM period (two half periods) produced by the Three-Phase PWM Tim-
ing Unit and illustrated in Figure 14-3, may be written as:

Ty = (PWMTM+2 x (PWMCHA~ PWMDT)) X tgcy

Range of T ;7 = [0, 2x PWMTM X t¢r;]

T, = (PWMTM-2x(PWMCHA+ PWMDT)) X tec g

Range of Ty, = [0, 2x PWMTM X tgcy 4]

ADSP-BF51x Blackfin Processor Hardware Reference 14-17

Functional Description

The corresponding duty cycles are:

“an Tg 2 PWMTM

Tyy 1 PWMCHA+PWMDT

L Tg 2 PWMTM

Obviously, negative values of T ypy and Ty are not permitted, and the
minimal permissible value is zero (corresponding to a 0% duty cycle). In a
similar fashion, the maximal value is T, which is the PWM switching
period that corresponds to a 100% duty cycle.

Figure 14-4 shows the output signals from the Three-Phase PWM Timing
Unit in double-update mode. This figure illustrates a completely general
case in which the switching frequency, dead time, and duty cycle are
changed in the second half of the PWM period. Of course, the same value
for any or all of these quantities may be used in both halves of the PWM
cycle. However, it can be seen that there is no guarantee that a symmetri-
cal PWM signal will be produced by the Three-Phase PWM Timing Unit
in double-update mode. Additionally, it is seen that the dead time is
inserted into the PWM signals similarly to single-update mode.

In general, the on-times (active low) of the PWM signals over the full
PWM period in double-update mode can be defined as:

PWMTM, PWMTM,
AH = (+

. + PWMCHA, + PWMCHA, — PWMDT, — PWMD Tz) X Lecr i

PWMTM, PWMTM,
AL = (+

: —— ~ PWMCHA, - PWMCHA, ~ PWMDT, —PWMDTZ) X toor i

14-18 ADSP-BF51x Blackfin Processor Hardware Reference

PWM Controller

-PWMTM, /2
+PWMTM, /2 0 -PWMTM,/2 +PWMTM,/2
|
COUNT | PWNICHA, | | PWNCHA, |
PWM_AH 1 | | II_—I
, :
I ; I T
:| ' ST
PWM_AL : ' :
K | T
I L
*PW | 2 PWMDT

MDT,

PWMSYNC_OUT

[S U T S S S ———]

PWMTM PWMTM,

PWM_PHASE

I
|

Figure 14-4. Typical PWM Outputs of Three-Phase Timing Unit
in Double-Update Mode (Active Low Waveforms)

Tg = (PWMTM, + PWMTM,) X teop i

where subscript 1 refers to the value of that register during the first half
cycle and subscript 2 refers to the value during the second half cycle. The
corresponding duty cycles are:

Ty (PWMCHA, + PWMCHA, - PWMDT, - PWMDT,)

= == = —+
“an T (PWMTM, + PWMTM,)

[\

ADSP-BF51x Blackfin Processor Hardware Reference 14-19

Functional Description

T
dy; - AL _

(PWMCHA, + PWMCHA, + PWMDT, + PWMDT,)
L T -
S

(PWMTM, + PWMTM,)

NI

since for the completely general case in double-update mode, the switch-
ing period is given by:

Tg = (PWMTM, + PWMTM,) x tr; ¢

Again, the values of T y1y and Ty are constrained to lie between zero
and T,. Similar PWM signals to those illustrated in Figure 14-2 on

page 14-5 and in Figure 14-3 on page 14-16 can be produced on the BH,
BL, CH, and CL outputs by programming the PWM_CHB and PWM_CHC registers
in a manner identical to that described for PUM_CHA.

Special Consideration for PWM Operation in
Over-Modulation

The Three-Phase PWM Timing Unit can produce PWM signals with
variable duty-cycle values at the PWM output pins. At the extremities of
the modulation process, both 0% and 100% modulation (termed

full off mode and full on mode, respectively) are possible. In between, for

other duty cycle values, the operation is termed normal modulation.

* Full On Mode. The PWM for any pair of PWM signals is said to
operate in full on mode when the desired high side output of the
Three-Phase PWM Timing Unit is in the “on” state (low or high as
specified by PWM_POLARITY bit of the PWM_CTRL register) between
successive PWM_SYNC rising edges. This state may be entered by vir-
tue of the commanded duty cycle values (in conjunction with the
PWM_DT register).

14-20 ADSP-BF51x Blackfin Processor Hardware Reference

PWM Controller

* Full Off Mode. The PWM for any pair of PWM signals is said to
operate in full off mode when the desired high side output of the
Three-Phase PWM Timing Unit is in the “off” state (high or low as
specified by the PUM_POLARITY bit of the PUM_CTRL register) between
successive PWM_SYNC pulses. This state may be entered by virtue of
the commanded duty cycle values (in conjunction with the PuM_DT
register).

e Normal Modulation. The PWM for any pair of PWM signals is
said to operate in normal modulation when the desired output duty
cycle is other than 0% or 100% between successive PWM_SYNC
pulses.

Certain situations exist whereby it is necessary to transition into or out of
full on mode or full off mode in order to insert additional “emergency
dead time” delays to prevent potential shoot-through conditions in the
inverter. Crossover usage also can potentially cause outputs to violate
shoot-through condition criteria, as described in “Crossover Feature” on
page 14-25. These transitions are detected automatically and, if appropri-
ate for safety, emergency dead-time is inserted to prevent shoot-through
conditions.

The insertion of additional emergency dead time into one of the PWM
signals of a given pair during these transitions is necessary only when both
PWM signals are required to toggle within a dead time of each other.
The additional emergency dead time delay is inserted into the PWM sig-
nal that is toggling into the “on” state. In effect, the turn on (if turning on
during this dead time region) of this signal is delayed by an amount
(2*PUM_DT*tgcr) from the rising edge of the opposite output. After this

delay, the PWM signal is allowed to turn on, provided the desired output
is still scheduled to be in the on state after the emergency dead time delay.

Figure 14-5 illustrates two examples of such transitions. In the top half
(marked A) of Figure 14-5, no special action (dead time) is needed when
transitioning from normal modulation to full on mode at the half cycle
boundary in double-update mode. However, in the bottom half

ADSP-BF51x Blackfin Processor Hardware Reference 14-21

Functional Description

(marked B) of Figure 14-5, when transitioning from normal modulation
into full off mode at the same boundary, it can be seen that an additional
emergency dead time is necessary (inserted by the PWM Controller).
Clearly, this inserted dead time is different from the normal dead time as
it is impossible to move one of the switching events back in time, because
this would take it into the previous modulation cycle. Therefore, the
entire emergency dead time is inserted by delaying the turn on of the
appropriate signal by the full amount.

+PWMTM/2 0 -PWMTM/2 +PWMTM/2

COUNT | |

PWM_AH
A
PWM_AL

_ PWMCHA, I

|

|
|
| DEADTIME INSERTED HERE

0
|
|
|
]
|
1
|
|
|
|
|
|
|
1
|
|
|
|
|
T

!
2{PWMDT
PWM_AH
|
|
| |
B |
| .
|=—
| i"PWMDEI'
PWM_AL I
|

Figure 14-5. Examples of Transitioning from Normal Modulation to

Full On Mode (A) or Full Off Mode (B)

14-22 ADSP-BF51x Blackfin Processor Hardware Reference

PWM Controller

Three-Phase PWM Timing Unit Operation

The internal operation of the PWM Controller is controlled by the
Three-Phase PWM Timing Unit, which is clocked at the system clock rate
with period tgcp k- The operation of the Three-Phase PWM Timing Unit
over one full PWM period is illustrated in Figure 14-6.

During the first half cycle (when the PWM_PHASE bit of the PUM_STAT
register is cleared), the Three-Phase PWM Timing Unit decrements from
+PWMTM/2 to -PWMTM/2 using a two’s complement count. Then the
count direction changes, and the unit increments from -PWMTM/2 to

the +PWMTM/2 value.

Figure 14-6 also shows the PWM SYNC pulses during single-update
mode and double-update mode. Clearly, an additional PWM SYNC pulse
is generated at the midpoint of the PWM cycle in double-update mode. If
the value of the PUM_TM register is altered at the midpoint in double-update
mode, the duration of the second half period (when the PUM_PHASE bit of
the PWM_STAT register is set) may differ from that of the first half cycle.
PWM_TM is double-buffered; a change in one half of the PWM switching
period will only take effect in the next half period.

Effective PWM Accuracy

The PWM Controller has 16-bit resolution, but accuracy depends on the
PWM period. In single-update mode, the same values of PWM_CHA,
PWM_CHB, and PWM_CHC define the on-times in both half cycles of the PWM
period. As a result, the effective accuracy of the PWM generation process
is 2 X tgck (20 ns for a 100 MHz fgcp k). Incrementing one of the duty
cycle registers by 1 changes the resultant on-time of the associated PWM
signals by tgcp g in each half period (2 x tgc for the full period). In dou-
ble-update mode, improved accuracy is possible since different values of
the duty cycles registers are used to specify the on-times in both the first
half and second half of the PWM period. As a result, it is possible to

adjust the on-time over the entire period in increments of tgcy k. This

ADSP-BF51x Blackfin Processor Hardware Reference 14-23

Functional Description

PWM TIMER DECREMENTS FROM PWM TIMER INCREMENTS FROM
PWMTM:2TO -PWMTM+2 -PWMTM+2TO PWMTM=2

PWMTM+2

-PWMTM+2

PWM_SYNC_OUT
SINGLE-UPDATE MODE

PWM_SYNC_OUT
DOUBLE_UPDATE MODE

PWM_PHASE

Figure 14-6. Operation of Internal PWM Timer

corresponds to an effective PWM accuracy of tgcy i in double-update
mode (10 ns for a 100 MHz fycy). The minimum achievable PWM
switching frequency at a given PWM accuracy is shown in Table 14-1 for
SCLK = 100 MHz.

14-24 ADSP-BF51x Blackfin Processor Hardware Reference

PWM Controller

Table 14-1. Minimum Achievable PWM Frequency Versus
Bit Resolution for SCLK = 100 MHz

Resolution (bits) PWM Frequency (kHz) in PWM Frequency (kHz) in
Single-Update Mode Double-Update Mode

8 195.3 390.6

9 97.7 195.3

10 48.8 97.7

11 24.4 48.8

12 12.2 24.4

13 6.1 12.2

14 3.05 6.1

Switched Reluctance Mode

A general-purpose mode utilizing independent edge placement of upper
and lower signals of each of the three PWM channels is incorporated into
the Three-Phase PWM Timing Unit. This mode is provided for SR motor

operation and is described in detail in “Switched Reluctance (SR) Mode”
on page 14-32.

Output Control Unit

The operation of the Output Control Unit is controlled by the 9-bit
read/write PWUM_SEG register (on page 14-46) that controls two distinct
features that are useful in the control of ECMs or BDCMs.

Crossover Feature

The PWM_SEG register contains three crossover bits—one for each pair of
PWM outputs. Setting the AHAL_XOVR bit of the PUM_SEG register enables
crossover mode for the AH/AL pair of PWM signals, setting BHBL_XOVR
enables crossover on the BH/BL pair, and setting CHCL_XOVR enables

ADSP-BF51x Blackfin Processor Hardware Reference 14-25

Functional Description

crossover on the CH/CL pair. If crossover mode is enabled for any pair of
PWM signals, the high-side PWM signal (for example, AH) from the
Three-Phase PWM Timing Unit is diverted to the associated low-side out-
put of the Output Control Unit so that the signal ultimately appears at
the AL pin. The corresponding low-side output of the Three-Phase PWM
Timing Unit is also diverted to the complementary high-side output of
the Output Control Unit so that the signal appears at the AH pin. Follow-
ing a reset, the three crossover bits are cleared, disabling crossover mode
on all three pairs of PWM signals. Even though crossover is considered an
output control feature, dead time insertion occurs after crossover transi-
tions (as necessary to eliminate shoot-through safety issues).

Mode Bits (POLARITY and SRMODE)

PWM_POLARITY and PWM_SRMODE are programmable bits of the PWM_CTRL
register.

® The incorrect programming of these two mode-select signals can

have destructive consequences on the external power inverter con-
nected to the PWM unit. Since PWUM_POLARITY and PWM_SRMODE are
software programmable bits, accidental power inverter
shoot-through current may occur from incorrect programming.

Output Enable Function

The PWM_SEG register also contains six bits (bits 0 to 5) that can be used to
individually enable or disable each of the six PWM outputs. The PWM
signal of the AL pin is enabled by clearing the AL_EN bit of the PWM_SEG reg-
ister, the AH_EN bit controls AH, the BL_EN bit controls BL, the BH_EN bit
controls BH, the CL_EN bit controls CL, and the CH_EN bit controls the CH
output. If the associated bit of the PWM_SEG register is set, the correspond-
ing PWM output is disabled irrespective of the value of the corresponding
duty cycle register. This PWM output signal will remain in the off state as
long as the corresponding enable/disable bit of the PWM_SEG register is set.
This output enable function is implemented after the crossover function.

14-26 ADSP-BF51x Blackfin Processor Hardware Reference

PWM Controller

Following a reset, all six enable bits of the PWM_SEG register are cleared so
that all PWM outputs are enabled by default. In a manner identical to the
duty cycle registers, the PWM_SEG register is latched on the rising edge of
the PUM_SYNC signal so that changes to this register only become effective
at the start of each PWM cycle in single-update mode. In double-update
mode, the PUM_SEG register can also be updated at the midpoint of the
PWM cycle.

Brushless DC Motor (Electronically Commutated Motor)
Control

In the control of an electronically commutated motor (ECM), only two
inverter legs are switched at any time. Often, the high-side device in one
leg must be switched on at the same time as the low-side driver in a second
leg. Therefore, by programming identical duty cycles values for two PWM
channels (for example, PUM_CHA = PWM_CHB) and setting the BHBL_XOVR bit
of the PWM_SEG register to crossover the BH/BL pair if PWM signals, it is
possible to turn on the high-side switch of phase A and the low-side
switch of phase B at the same time.

In ECM control, usually the third inverter leg (phase C in this example) is
disabled for a number of PWM cycles. This is implemented by disabling
the CH and CL outputs by setting the CH_EN and CL_EN bits of the PUM_SEG
register.

This is illustrated in Figure 14-7 where it can be seen that both the AH and
BL signals are identical (since PWM_CHA = PWM_CHB and the crossover bit for
phase B is set). In addition, the other four signals (AL, BH, CH, and CL) are
disabled by setting the appropriate enable/disable bits of the PWM_SEG
register.

ADSP-BF51x Blackfin Processor Hardware Reference 14-27

Functional Description

+PWMTM/2 0 -PWMTM/2 0 +PWMTM/2

|
PWMCHA=PWNCHB I

4—:»' .

COUNT
| PWNCHA=PWIICHB

—

B

PWM_AH

PWM_AL

~——
2:PWMDT

e

PWM_BH

PWM_BL

PWM_CH

PWM_CL

—

Figure 14-7. Example of Active Low Signals for ECM Control

For the situation illustrated in Figure 14-7, an appropriate value for the
PWM_SEG register is 0xO0A7. In normal ECM operation, each inverter leg is
disabled for certain lengths of time, such that the PUM_SEG register is
changed, based upon the position of the rotor shaft (motor commutation).

Gate Drive Unit

The Gate Drive Unit is described in the following sections:
* “High-Frequency Chopping” on page 14-29
* “PWM Polarity Control” on page 14-31

14-28 ADSP-BF51x Blackfin Processor Hardware Reference

PWM Controller

High-Frequency Chopping

The Gate Drive Unit of the PWM Controller simplifies the design of
isolated gate drive circuits for PWM inverters. If a transformer-coupled
power device gate drive amplifier is used, the active PWM signal must be
chopped at a high frequency. The 10-bit read/write PWM_GATE register
allows you to specify this high-frequency chopping mode.

Chopped active PWM signals may be required for high-side drivers only,
for low-side drivers only, or for both high-side and low-side switches.
Therefore, independent control of this mode for both high- and low-side
switches is included with two separate control bits (CHOPHI and CHOPLO) in
the PWM_GATE register.

Typical PWM output signals with high-frequency chopping enabled on
both high- and low-side signals are shown in Figure 14-8. Chopping the
high-side PWM outputs (AH, BH, and CH) is enabled by setting the CHOPHI
bit of the PWM_GATE register; chopping the low-side PWM outputs (AL, BL,
and CL) is enabled by setting the CHOPLO bit of the PWMGATE register. The
high-frequency chopping frequency is controlled by the 8-bit word placed
in bits 0 to 7 (GDCLK) of the PUM_GATE register. The period of this high-fre-
quency carrier is:

T

chop = [4x (GDCLK+1)] X tgr1 ke

and the chopping frequency is therefore an integral subdivision of the
system clock frequency:

ADSP-BF51x Blackfin Processor Hardware Reference 14-29

Functional Description

o= Iscrx
chop 14 x (GDCLK+1)]

14-30 ADSP-BF51x Blackfin Processor Hardware Reference

PWM Controller

The GDCLK value may range from 0 to 255, which corresponds to a pro-
grammable chopping frequency rate from 97.7 kHz to 25 MHz for a
100 MHz fg rate. The gate drive features must be programmed before

operation of the PWM Controller and typically are not changed during
normal operation of the PWM Controller. Following a reset, all bits of the

PWM_GATE register are cleared so that high-frequency chopping is disabled,
by default.

+PWMTM/2 0 -PWMTM/2 0 +PWMTM/2

| |
COUNT | PWMCHA |PWMCHA |
R —

HHHHHHWHHHW

L

|

2pwmpT !
Do |

|

|

—1

| |

PWN_AL | |
| .
L

T
|
|
PWMDT |
: : |
|

Figure 14-8. Example of Active Low PWM Signals for Gate Chopping

PWM Polarity Control

The polarity of the PWM signals produced at output pins AH to CL can be
programmed via the PWM_POLARITY bit of the PWM_CTRL register. Setting
this bit to 0 selects active low PWM outputs, such that a low level is inter-
preted as a command to turn on the associated power device. Conversely,
setting the PUM_POLARITY bit to 1 selects active high PWM outputs, such
that a high level at the PWM outputs turns on the associated power
devices. The status of the polarity may be read from the PWM_POL bit of the
PWM_STAT register, where a zero indicates a measured low level at the
PWM_POLARITY bit.

ADSP-BF51x Blackfin Processor Hardware Reference 14-31

Functional Description

Output Control Feature Precedence

It is important to understand the order in which output control features
are applied to the PWM signal. The following hierarchy indicates the
order (from most important to least important) in which signal features

are applied to the PWM output signal.

1. Channel duty generation

2. Channel crossover

3. Low-side invert

4. Output enable

5. Emergency dead time insertion
6. Active signal chopping

7. Polarity

Switched Reluctance (SR) Mode

The PWM Controller provides a switched reluctance (SR) mode that is
enabled by setting the PWM_SRMODE bit in the PWM_CTRL register to 0. This
mode is not enabled by default. The state of this switched reluctance mode
may be read from the PWM_SR bit of the PUM_STAT register. If the
PWM_SRMODE bit is high (such that SR mode is disabled) the PUM_SR bit of
the PWM_STAT register is set (indicating that the mode is disabled). Con-
versely, if the PUM_SRMODE bit is low and SR mode is enabled, the PWM_SR
bit of PWM_STAT register is cleared.

® Since this is a software programmable bit, be careful not to write it

to an active state in a non-SR mode system and cause
shoot-through at the power inverters, possibly leading to an unsafe
situation.

14-32 ADSP-BF51x Blackfin Processor Hardware Reference

PWM Controller

In the typical power converter configuration for switched or variable
reluctance motors, the motor winding is connected between the two
power switches of a given inverter leg. Therefore, to allow for a complete
circuit in the motor winding, it is necessary to turn on both switches at
the same time.

SR mode provides four mode types: hard chop, alternate chop, soft
chop-bottom on, and soft chop-top on (see Table 14-2 on page 14-35).
Three registers (PWM_CHAL, PWM_CHBL, and PWM_CHCL) are used to define
edge placement of the low side of the channel. The PUM_DT register, which
is not used, is internally forced to 0 by hardware when SR mode is active.
The four switched reluctance (SR) chop modes are specified via three bits
(PWM_SR_LSI_A, PWM_SR_LSI_B, and PWM_SR_LSI_C) of the PWM_LSI register,
full on mode, and full off mode.

The PWM_CHA and PWM_CHAL registers are programmed independently;
PWM_CHA specifies edge placement for the high side of the channel, and
PWM_CHAL specifies edge placement for the low side of the channel.
Similarly, the PWM_CHB and PWM_CHBL pair, and the PWM_CHC and PWM_CHCL
pair, respectively, specify high-side and low-side edge placement.

ADSP-BF51x Blackfin Processor Hardware Reference 14-33

Functional Description

Figure 14-9 shows the four SR mode types as active-high PWM output
signals, and Table 14-2 describes the four mode types.

+PWMTM/2 0 -PWMTM/2 0 +PWMTM/2
COUNT | PWMCHA, | I I |
i | |PWMCHA, :
pwm_AH | — . | I
| |
HARD I I ' ! :
CHOP |
| PWMCHAL, | | lpwmcHAL, |
PWM_AL . 0
| | |
I ! ' I
| PWNCHA, | | |PWNCHA, |
| PR
PWM_AH | | J——— :
ALTER- | , \
NATE } }
CHOP | PWMCHAL, I | IPWMCHALz |
PWM_AL I—I._,| "li |
I : . |
|
PWMCHA, | | | PWMCHA, |
pwm_aH | D | I
SOFT | | |
CHOP-]]
BOTTOM | I | 1
ON PWM_AL | t 1 |
I | | I 1
|
PWM_AH |] I I |
SOFT ATk I 0
CHOP- | | |
TOP | |
ON | PWMCHAL, | PWMCHAL, |
PWM_AL | I
| |) \ |
} |
|

1 |
PWMTM, PWMTM,

Figure 14-9. Four SR Mode Types

14-34 ADSP-BF51x Blackfin Processor Hardware Reference

PWM Controller

Table 14-2. Switched Reduction Mode (SR Mode) Types

Mode Description
Hard Contains independently programmed rising edges of channels” high and low signals
chop in the same PWM half cycle, and both contain independently programmed falling

edges in the next PWM half cycle. The PWM_CHA duty register is used for the high
channel, and the PWM_CHAL duty register is used for the low channel. A similar
structure is present for the B and C channels.

Alternate Similar to normal PWM operation, but the PWM channel high and low signal
chop edges are opposite and are independently programmed. The PUM_CHA duty register
is used for the high channel, and the PWM_CHAL duty register is used for the low
channel. A similar structure is present for the B and C channels. The PWM_CTRL
and PWM_LST registers are used to independently invert the low side of each PWM
channel. The low-side invert is the only difference between hard chop mode and
alternate chop mode

Soft chop- | Utilizes a 100% duty on the low side of the channel. Similar to hard chop mode,
bottom on the PWM_CHA duty register is used for the high channel and the PWM_CHAL duty reg-
ister is used for the low channel. A similar structure is present for the B and C
channels.

Soft chop- | Utilizes a 100% duty on the high side of the channel. Similar to hard chop mode,
top on the PWM_CHA duty register is used for the high channel and the PWM_CHAL duty reg-
ister is used for the low channel. A similar structure is present for the B and C
channels.

PWM Sync Operation

The PWM sync can be internally generated as a function of the PWM_TM
and PWM_SYNCWT register values, or the PWM sync can be input externally.
Multiple PWM configurations can be established, each of which can oper-
ate with its own independent PWM sync (or from its own external PWM
sync signal or a shared external PWM sync signal). The external PWM
sync can be synchronous to the internal clock, as in the case of a primary
PWM Controller generating an internal PWM_SYNC signal that drives a
secondary PWM Controller's PUM_SYNC pin. The external PWM sync can
also be asynchronous to the internal clock, as is typically the case of an
off-chip PUM_SYNC signal used to drive each PWM Controller’s PUM_SYNC

pin.

ADSP-BF51x Blackfin Processor Hardware Reference 14-35

Functional Description

Internal PWM SYNC Generation

The PWM Controller produces an output PWM synchronization pulse at
a rate equal to the PWM switching frequency in single-update mode and

at twice the PWM frequency in double-update mode. This pulse is avail-

able for external use at the PWM_SYNC pin. The width of this PWM SYNC
pulse is programmable by the 10-bit read/write PUM_SYNCWT register. The

width of the PWM SYNC pulse (TPWUM_SYNC) is given by:

so that the width of the pulse is programmable from tgcy g to 1024%tgc k¢
(corresponding to 10 ns to 10.24 ps for an fgcy i rate of 100 MHz).
Following a reset, the PWM_SYNCWT register contains 0x3FF (1023 decimal)
so that the default PWM_SYNC width is 10.24 ps, again for an fgop g of

100 MHz.

External PWM SYNC Generation

By setting the PWM_EXTSYNC bit of the PWM_CTRL register, the PWM is set up
in a mode to expect an external PWM SYNC on the PUM_SYNC pin. The
external sync should be synchronized by setting the PWM_SYNCSEL bit of the
PWM_CTRL register to 0, which assumes the selected external PWM SYNC is
asynchronous.

The external PWM SYNC period is expected to be an integer multiple of
the internal PWM SYNC period. When the rising edge of the external
PWM_SYNC is detected, the PWM Controller is restarted at the beginning of
the PWM cycle. If the external PWM SYNC period is not an integer mul-
tiple of the internal PWM SYNC, the behavior of the PWM channel
outputs will be clipping. Note that a small amount of jitter inherent in the
synchronization logic cannot be avoided when the external PWM SYNC
is synchronized.

14-36 ADSP-BF51x Blackfin Processor Hardware Reference

PWM Controller

The latency from PUM_SYNC to the effect in PWM outputs is 3 SCLK cycles
in synchronous mode and 5 SCLK cycles in asynchronous mode.

In external sync pulse mode, do not allow changes in PWM_SYNCSEL
(which selects between asynchronous/synchronous external sync
pulse) + 10 SCLK cycles of the toggling of an external sync pulse. If
this rule is not followed, unexpected behavior may occur.

PWM Shutdown and Interrupt Control Unit

In the event of an external fault condition, it is essential that the PWM
Controller be shut down instantaneously in a safe fashion. A falling edge
on the PWM_TRIPB pin (assuming it is not disabled by the PWM_TRIP_DSBL
bit of the PWM_CTRL register) provides an instantaneous, asynchronous
(independent of the processor clock) shutdown of the PWM controller.
All six PWM outputs are placed in the off state (as defined by the
PWM_POLARITY bit of the PWM_CTRL register). However, the PWM_SYNC pulse
occurs if it was previously enabled, and the associated interrupt is also not

stopped.

The processor’s PWM_TRIPB signal should have an external
pull-down resistor; if the pin becomes disconnected, the PWM
Controller will be disabled. The state of the PWM_TRIPB pin can be
read from the PWM_TRIP bit of the PWMSTAT register.

On the occurrence of a PWM shutdown command (or from a signal on
the PWM_TRIPB pin), a PWM_TRIP interrupt will be generated if enabled.

In addition, if PUM_SYNC_EN is enabled in the PWM_CTRL register, the
PWM_SYNC pulse will continue to appear at the output pin. Following a
PWM shutdown, the PWM can be re-enabled (by a PWM_TRIP interrupt
service routine, for example) by writing to the PWM_EN bit of the PUM_CTRL
register. The PWM Controller will restart in a manner identical to that
prior to the PWM shutdown, provided that the external fault has been
cleared and PWM_TRIPB returned to a high level. That is, except for the

ADSP-BF51x Blackfin Processor Hardware Reference 14-37

PWM Registers

PWM_EN bit in the PWM_CTRL register, all PWM registers retain their values
during the PWM shutdown.

The dead time counters will be reset when a trip occurs, and the
user is expected to restart the PWM only after waiting the required
dead time. If restarting a PWM immediately after trip, for high
dead time period cases, the dead time will not be met.

Do not allow changes in the PUM_TRIP_DSBL bit of the PWM_CTRL
register (which is to select between trip enable and disable) + 10
SCLK cycles of the toggling of an external trip pulse. If this rule is
not followed, unexpected behavior may occur.

Between the time that the PWM_EN bit is written to 0 and the time the
waveforms are disabled, the latency is 2 SCLK cycles. After enabling the

PWM_EN bit, output waveforms will begin to appear from the next PWM
pulse.

PWM Registers

Descriptions and bit diagrams for each of the PWM memory-mapped
registers (MMRs) are provided in the following sections.

Table 14-3. PWM Registers

Name Description

PWM_CTRL PWM control register on page 14-39
PWM_STAT PWM status register on page 14-41
PWM_TM PWM period register on page 14-42
PWM_DT PWM dead time register on page 14-43
PWM_GATE PWM chopping control on page 14-43
PWM_CHA PWM channel A duty control on page 14-44
PWM_CHB PWM channel B duty control on page 14-44

14-38 ADSP-BF51x Blackfin Processor Hardware Reference

PWM Controller

Table 14-3. PWM Registers (Continued)

Name Description
PWM_CHC PWM channel C duty control on page 14-44
PWM_SEG PWM crossover and output enable on page 14-46

PWM_SYNCWT PWM sync pulse width control on page 14-48

PWM_CHAL PWM channel AL duty control (SR mode only) on page 14-48
PWM_CHBL PWM channel BL duty control (SR mode only) on page 14-48
PWM_CHCL PWM channel CL duty control (SR mode only) on page 14-48
PWM_LSI PWM low side invert (SR mode only) on page 14-50
PWM_STAT2 PWM simulation status register on page 14-51

PWM Control (PWM_CTRL) Register

The PWM_CTRL register is used for configuration of the PWM block. Bit
diagrams and descriptions are provided in Figure 14-10 and Table 14-4.

PWM Control Register (PWM_CTRL)

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
Io |o |o |0 Io |o |o |o|o|1 |1 |1 Io Io |0 Iol Reset = 0x0070

PWM_EN
PWMTRIP_DSBL PWM_SYNC_EN
PWM_DBL
PWM_EXTSYNC
PWM_SYNCSEL
PWM_POLARITY
PWM_SRMODE

PWMTRIPINT_EN
PWMSYNCINT_EN

Figure 14-10. PWM Control Register

ADSP-BF51x Blackfin Processor Hardware Reference 14-39

PWM Registers

Table 14-4. PWM_CTRL Register

Bit Name Function Type Default
0 PWM_EN PWM enable RW 0
Hardware modifiable bit. 0 = disabled
1 = enabled
reset by PWM_TRIPB
1 PWM_SYNC_EN PWM sync enable RW 0
0 = disabled
1 = enabled
2 PWM_DBL Double-update mode RW 0

0 = single-update mode
1 = double-update mode

3 PWM_EXTSYNC External sync RW 0
0 = internal sync
1 = external sync

4 PWM_SYNCSEL External sync select RW 1
0 = asynchronous
1 = synchronous

5 PWM_POLARITY PWM output polarity RW 1
1 = active high
0 = active low

6 PWM_SRMODE PWM SR Mode RW 1
0 = enabled
1 = disabled

7 PWMTRIPINT_EN Interrupt enable for trip RW 0
1 = enabled
0 = disabled

8 PWMSYNCINT_EN Interrupt enable for sync RW 0
1 = enabled
0 = disabled

9 PWMTRIP_DSBL Disable for trip input RW 0
1 = disabled
0 = enabled

15:10 Reserved 0

14-40 ADSP-BF51x Blackfin Processor Hardware Reference

PWM Controller

PWM Status (PWM_STAT) Register
The PUM_STAT register provides status information regarding PWM opera-

tion. Bit diagrams and descriptions are provided in Figure 14-11 and

Table 14-5.

PWM Status Register (PWM_STAT)

15 14 13 12 11 10 9 3 2 1 0
Io |o |o |0 Io |o |o Io Io |0 |o |o 0 |1 |1 Io I Reset = 0x0006
Reserved
PWM_SYNCINT PWM_PHASE
PWM_TRIPINT PWM_POL
PWM_SR
PWM_TRIP
Reserved
Figure 14-11. PWM Status Register
Table 14-5. PWM_STAT Register
Bit Name Function Type Default
0 PWM_PHASE PWM phase RO 0

0 = first half
1 = second half

1 PWM_POL PWM polarity RO 1
1 = active high

0 = active low

2 PWM_SR PWM SR mode RO 1
0 = active
1 = inactive

3 PWM_TRIP PWM trip RO 0
7:4 Reserved 0
8 PWM_TRIPINT PWM trip interrupt R/W1C|0

(via hardware pin or software)

ADSP-BF51x Blackfin Processor Hardware Reference 14-41

PWM Registers

Table 14-5. PWM_STAT Register (Continued)

Bit Name Function Type |Default
9 PWM_SYNCINT PWM sync interrupt R/WIC|0
15:10 Reserved 0

PWM Period (PWM_TM) Register

The PWM_TM register controls the switching frequency of the generated
PWM patterns. Bit diagrams and descriptions are provided in
Figure 14-12 and Table 14-6.

PWM Period Register (PWM_TM)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|o |o |o |o |o |o |o |o |o |o |o |o |o |o |o |o | Reset = 0x0000
| |

pwM_TM @ —]

Figure 14-12. PWM Period Register

Table 14-6. PWM_TM Register

Bit Name Function Type Default

15:0 PWM_TM PWM period (unsigned) RW 0

14-42 ADSP-BF51x Blackfin Processor Hardware Reference

PWM Controller

PWM Dead Time (PWM_DT) Register

The PWM_DT register controls the dead time interval of the generated PWM
patterns. Bit diagrams and descriptions are provided in Figure 14-13 and

Table 14-7.

PWM Dead Time Register (PWM_DT)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[oToJofo]oJofoofo]eJofo]oo]o]o Reset = 0x0000
| I

Reserved] |_ PWM_DT

Figure 14-13. PWM Dead Time Register

Table 14-7. PWM_DT Register

Bit Name Function Type Default
9:0 PWM_DT PWM dead time (unsigned) | RW 0
15:10 Reserved 0

PWM Chopping Control (PWM_GATE) Register

The PWM controller permits the mixing of the output PWM signals with
a high-frequency chopping signal. The features of gate-drive-chopping
mode are controlled by the PUM_GATE register. Bit diagrams and descrip-
tions are provided in Figure 14-14 and Table 14-8.

ADSP-BF51x Blackfin Processor Hardware Reference 14-43

PWM Registers

PWM Chopping Control Register (PWM_GATE)

15 14 13 12 11 10 9 8

7 6 5 4 3 2 10

[eTeToTooTo e TofeTe Tofo o ToToTo] meset=oxoono
| J | J

Reserved 1] [GDpCLK

CHOPLO
CHOPHI

Figure 14-14. PWM Chopping Control Register

Table 14-8. PWM_GATE Register

Bit Name Function Type |Default
7:0 GDCLK PWM gate chopping period (unsigned) | RW 0
8 CHOPHI Gate chopping enable high side RW 0
9 CHOPLO Gate chopping enable low side RW 0
15:10 Reserved 0

PWM Channel A, B, C Duty Control
(PWM_CHA, PWM_CHB, PWM_CHC) Registers

The three duty-cycle control registers (PWM_CHA , PUM_CHB, and PWM_CHC)
directly control the duty cycles of the three pairs of PWM signals. Bit dia-

grams and descriptions for each are provided in Figure 14-15 through
Figure 14-17, and Table 14-9 through Table 14-11.

PWM Channel A Duty Control Register (PWM_CHA)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[To o [o [o fo JoToofo Jo[o o oo o] meset=oxoo
| |
PWMCHA g

Figure 14-15. PWM Channel A Duty Control Register

14-44 ADSP-BF51x Blackfin Processor Hardware Reference

PWM Controller

Table 14-9. PWM_CHA Register

Bit Name Function Type |Default

15:0 PWMCHA Channel A duty (two’s complement) | RW 0

PWM Channel B Duty Control Register (PWM_CHB)

15 14 1312 11 10 9 8 7 6 5 4 3 2 1
|o|o|o|o|0|o|o|o|o|o |0|o|o|o|o|o| Reset = 0x0000
|

PWMCHB g

Figure 14-16. PWM Channel B Duty Control Register

Table 14-10. PWM_CHB Register

Bit Name Function Type Default

15:0 PWMCHB Channel B duty (two’s complement) | RW 0

PWM Channel C Duty Control Register (PWM_CHC)

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
|o|o|0|0|o|o|o|o|o|o |o|o|o|0|0|0| Reset = 0x0000
| |

pwmche — |

Figure 14-17. PWM Channel C Duty Control Register

Table 14-11. PWM_CHC Register

Bit Name Function Type |Default

15:0 PWMCHC Channel C duty (two’s complement) | RW 0

ADSP-BF51x Blackfin Processor Hardware Reference 14-45

PWM Registers

PWM Crossover and Output Enable (PWM_SEG)
Register

The PWM_SEG register controls output enabling of the high-side and
low-side PWM outputs, and it also permits configuration of crossover

mode for each output pair. Bit diagrams and descriptions are provided in
Figure 14-18 and Table 14-12.

PWM Crossover and Output Enable Register (PWM_SEG)

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
|o|o|o|o|o|o|o|0|0|o|o|o|o|0|0|0| Reset = 0x0000

L J
Reserved]
CH_EN
CL_EN

BH_EN
BL_EN
AH_EN
AL_EN
CHCL_XOVR
BHBL_XOVR
AHAL_XOVR

Figure 14-18. PWM Crossover and Output Enable Register

Table 14-12. PWM_SEG Register

Bit Name Function Type Default

0 CH_EN CH output enable RW 0
1 = disabled
0 = enabled

1 CL_EN CL output enable RW 0
1 = disabled
0 = enabled

2 BH_EN BH output enable RW 0
1 = disabled
0 = enabled

14-46 ADSP-BF51x Blackfin Processor Hardware Reference

PWM Controller

Table 14-12. PWM_SEG Register (Continued)

Bit Name Function Type Default

3 BL_EN BL output enable RW 0
1 = disabled
0 = enabled

4 AH_EN AH output enable RW 0
1 = disabled
0 = enabled

5 AL_EN AL output enable RW 0
1 = disabled
0 = enabled

6 CHCL_XOVR Channel C output crossover | RW 0
1 = XOVR
0 = not XOVR

7 BHBL_XOVR Channel B output crossover | RW 0
1 = XOVR
0 = not XOVR

8 AHAL_XOVR Channel A output crossover | RW 0
1 = XOVR
0 = not XOVR

15:9 Reserved 0

ADSP-BF51x Blackfin Processor Hardware Reference 14-47

PWM Registers

PWM Sync Pulse Width Control (PWM_SYNCWT)

Register

The PWM_SYNCWT register allows programming of the PWM_SYNC pulse

width. Bit diagrams and descriptions are provided in Figure 14-19 and
Table 14-13.

PWM Sync Pulse Width Control Register (PWM_SYNCWT)

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

| CHENENEN ENEN ENEN ENENENEN ENENERE
| I

]

L PWMSYNCWT

Reset = 0x03FF

Figure 14-19. PWM Sync Pulse Width Control Register

Table 14-13. PWM_SYNCWT Register

Bit

Name Function Type |Default
9:0 PWMSYNCWT PWM sync pulse width (unsigned) | RW 0x03FF
15:10 Reserved 0

PWM Channel AL, BL, CL Duty Control
(PWM_CHAL, PWM_CHBL, PWM_CHCL) Registers

These registers are used to program duty cycle for a low-side channel in
SR (switched reluctance) mode only. Bit diagrams and descriptions for

each register are provided in Figure 14-20 through Figure 14-22, and
Table 14-14 through Table 14-16.

14-48

ADSP-BF51x Blackfin Processor Hardware Reference

PWM Controller

PWM Channel AL Duty Control Register (PWM_CHAL)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[oJofoJooJofoJoJoJoJoJoJoJoJofo] Reset=oxo000
| |

PWM CHAL —]

Figure 14-20. PWM Channel AL Duty Control Register

Table 14-14. PWM_CHAL Register

Bit Name Function Type Default

15:0 PWM_CHAL Channel A duty (two’s complement) | RW 0

PWM Channel BL Duty Control Register (PWM_CHBL)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[oJofoJooJofoJoJoJofoJoJoJoofo] Reset=oxo000
| |

PWM CHBL —]

Figure 14-21. PWM Channel BL Duty Control Register

Table 14-15. PWM_CHBL Register

Bit Name Function Type Default

15:0 PWM_CHBL Channel B duty (two’s complement) | RW 0

PWM Channel CL Duty Control Register (PWM_CHCL)

15 14 1312 1110 9 8 7 6 5 4 3 2 1 0
|o|o|o|o|0|o|o|o|o|0 |o|o|o|o|0|o| Reset = 0x0000
| |

PWM_CHCL — |

Figure 14-22. PWM Channel CL Duty Control Register

ADSP-BF51x Blackfin Processor Hardware Reference 14-49

PWM Registers

Table 14-16. PWM_CHCL Register

Bit Name Function Type |Default

15:0 PWM_CHCL

Channel C duty (two’s complement) | RW 0

PWM Low Side Invert (PWM_LSI) Register

The PWM_LST register is used for specifying switched reluctance (SR) chop
modes. Bit diagrams and descriptions are provided in Figure 14-23 and

Table 14-17.

PWM Low Side Invert Register (PWM_LSI)

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
|o|o|o|o|o|o|o|o|o|o|o|o|o|0|0|o| Reset = 0x0000

| |
Reserved |
PWM_SR_LSI_A

PWM_SR_LSI_B
PWM_SR_LSI_C

Figure 14-23. PWM Low Side Invert Register

Table 14-17. PWM_LSI Register

Bit Name Function Type Default

0 PWM_SR_LSI_A | PWM SR mode low side invert channel A | RW 0

1 PWM_SR_LSI_B PWM SR mode low side invert channel B | RW 0

2 PWM_SR_LSI_C | PWM SR mode low side invert channel C| RW 0

15:3 Reserved 0
14-50

ADSP-BF51x Blackfin Processor Hardware Reference

PWM Controller

PWM Simulation Status (PWM_STAT2) Register

The PUM_STAT?2 register provides a way to observe the status of the PWM
high-side and low-side output channels via software. This can be useful for

debug operation. Bit diagrams and descriptions are provided in
Figure 14-24 and Table 14-18.

PWM Simulation Status Register (PWM_STAT2)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|o|o|o|o|o|o|o|o|o|o |o|o|o|o|o|o| Reset = 0x0000

| |
Reserved |
PWM_AL

PWM_AH
PWM_BL
PWM_BH
PWM_CL
PWM_CH

Figure 14-24. PWM Simulation Status Register

Table 14-18. PWM_STAT2 Register

Bit Name Function Type |Default
0 PWM_AL | PWM_AL output signal for S/W observation RO

1 PWM_AH | PWM_AH output signal for S/W observation RO 0

2 PWM_BL PWM_BL output signal for S/W observation RO 0

3 PWM_BH PWM_BH output signal for S/W observation RO 0

4 PWM_CL | PWM_CL output signal for S/W observation RO 0

5 PWM_CH | PWM_CH output signal for S/W observation RO 0

15:6 | Reserved 0

ADSP-BF51x Blackfin Processor Hardware Reference 14-51

Unique Information for the ADSP-BF51x Processor

Unique Information for the ADSP-BF51x
Processor

None

14-52 ADSP-BF51x Blackfin Processor Hardware Reference

UART Port Controllers

15 UART PORT CONTROLLERS

This chapter describes the universal asynchronous receiver/transmitter
(UART) module. Following an overview and a list of key features is a
description of operation. The chapter concludes with a programming
model, consolidated register definitions, and programming examples.

Specific Information for the ADSP-BF51x

For details regarding the number of UARTS for the ADSP-BF51x prod-
uct, refer to ADSP-BF512/BF514/BF516/BF518(F) Embedded Processor
Data Sheet.

For UART DMA channel assignments, refer to Table 6-7 on page 6-103
in Chapter 6, “Direct Memory Access”.

For UART interrupt vector assignments, refer to Table 5-3 on page 5-20
in Chapter 5, “System Interrupts”.

To determine how each of the UARTS is multiplexed with other func-
tional pins, refer to Table 9-2 on page 9-5 through Table 9-4 on page 9-7
in Chapter 9, “General-Purpose Ports”.

For a list of MMR addresses for each UART, refer to Appendix A, “Sys-
tem MMR Assignments”.

ADSP-BF51x Blackfin Processor Hardware Reference 15-1

Overview

UART behavior for the ADSP-BF51x that differs from the general infor-
mation in this chapter can be found at the end of this chapter in the
section “Unique Information for the ADSP-BF51x Processor” on

page 15-42.

Overview

The UART module is a full-duplex peripheral compatible with PC-style
industry-standard UARTS, sometimes called serial controller interfaces
(SCI). UARTS convert data between serial and parallel formats. The serial
communication follows an asynchronous protocol that supports various
word length, stop bits, bit rate, and parity generation options.

Features

Each UART includes these features:
* 5 - 8 data bits
* 1 or 2 stop bits (1%2 in 5-bit mode)
* Even, odd, and sticky parity bit options
* 3 interrupt outputs for reception, transmission, and status
* Independent DMA operation for receive and transmit
e SIR IrDA operation mode
* Internal loop back

The UART is logically compliant to EIA-232E, EIA-422, EIA-485 and
LIN standards, but usually requires an external transceiver device to meet
electrical requirements. In [rDA® (Infrared Data Association) mode, the

UART meets the half-duplex IrDA SIR (9.6/115.2 Kbps rate) protocol.

15-2 ADSP-BF51x Blackfin Processor Hardware Reference

UART Port Controllers

Interface Overview

Figure 15-1 shows a simplified block diagram of a UART module and

how it interconnects to the Blackfin architecture and to the outside world.

AN

UART_IIR

e

UART_DLH D UART_IER

UART_DLL ’—D7 _:I UART_THR |_>| TSR |_,
4—1 UART_RBR |<—| RSR |<-
-

BLACKFIN |

== SIC CONTROLLER |

|

T 1 |

|

|

> DMA CONTROLLER |

|

E m 8‘ 8 8 |
= < o o« o

a x| X o |

' S ui |

8 8| UART |

|

|

|

|

|

|

!

TRANSCEIVER

1/0 PORT

!

UART_LSR

UART_GCTL

Ij | UART_LCR

Bl

UART_SCR UART_MCR

Figure 15-1. UART Block Diagram

External Interface

Each UART features an RX and a TX pin. These two pins usually connect
to an external transceiver device that meets the electrical requirements of
full duplex (for example, EIA-232, EIA-422, 4-wire EIA-485) or half
duplex (for example, 2-wire EIA-485, LIN) standards.

ADSP-BF51x Blackfin Processor Hardware Reference 15-3

Description of Operation

The RX and TX pins do not need to be used together. If only receive or
transmit functionality of a UART module is needed, the unused pin may
be used for an alternate function, depending on the port multiplexing
scheme of a specific processor. For more details on functionality multi-

plexed with the UART pins, see Chapter 9, “General-Purpose Ports”.

Modem status and control functionality is not supported by the
UART modules, but may be implemented using GPIO pins.

Internal Interface

UARTSs are DMA-capable peripherals with support for separate TX and
RX DMA master channels. They can be used in either DMA or pro-
grammed non-DMA mode of operation. The non-DMA mode requires
software management of the data flow using either interrupts or polling.
The DMA method requires minimal software intervention as the DMA
engine itself moves the data. Each UART has its own separate transmit
and receive DMA channels. For more information on DMA, see the
Direct Memory Access chapter.

All UART registers are eight bits wide. They connect to the peripheral
bus. However, some registers share their address as controlled by the DLAB
bit in the UART_LCR register. The UART_RBR and UART_THR registers also
connect to the DAB bus

A hardware-assisted autobaud detection mechanism is accomplished by
coupling a specific GP Timer with a specific UART. For information on
GP Timer - UART pairings for autobaud detection, see General-Purpose
Ports chapter.

Description of Operation

The following sections describe the operation of the UART.

15-4 ADSP-BF51x Blackfin Processor Hardware Reference

UART Port Controllers

UART Transfer Protocol

UART communication follows an asynchronous serial protocol, consisting
of individual data words. A word has 5 to 8 data bits.

All data words require a start bit and at least one stop bit. With the
optional parity bit, this creates a 7- to 12-bit range for each word. The for-
mat of received and transmitted character frames is controlled by the line

control register (JART_LCR). Data is always transmitted and received least
significant bit (LSB) first.

Figure 15-2 shows a typical physical bitstream measured on one of the TX
pins.

Aside from the standard UART functionality, the UART also supports
half-duplex serial data communication via infrared signals, according to
the recommendations of the Infrared Data Association (IrDA). The physi-
cal layer known as IrDA SIR (9.6/115.2 Kbps rate) is based on
return-to-zero-inverted (RZI) modulation. Pulse position modulation is
not supported.

Using the 16x data rate clock, RZI modulation is achieved by inverting

and modulating the non-return-to-zero (NRZ) code normally transmitted
by the UART. On the receive side, the 16x clock is used to determine an
[rDA pulse sample window, from which the RZI-modulated NRZ code is

recovered.
DATA BITS STOP BIT(S)
—
!
_‘DO D1|D2 D3|D4|D5|DG|D7 |
(. f
START BIT LSB PARITY BIT (OPTIONAL, ODD OR EVEN)

Figure 15-2. Bitstream on a TX Pin Transmitting an “S” Character (0x53)

ADSP-BF51x Blackfin Processor Hardware Reference 15-5

Description of Operation

IrDA support is enabled by setting the IREN bit in the UART_GCTL register.
The IrDA application requires external transceivers.

UART Transmit Operation

Receive and transmit paths operate independently except that the bit rate
and the frame format are identical for both transfer directions.

Transmission is initiated by writes to the UART_THR register. If no former
operation is pending, the data is immediately passed from the UART_THR
register to the internal TSR register where it is shifted out at a bit rate equal
to SCLK/(16 x Divisor) (see “Bit Rate Generation” on page 15-12 for
information about the divisor) with start, stop, and parity bits appended
as defined the UART_LCR register. The least significant bit (LSB) is always
transmitted first. This is bit 0 of the value written to UART_THR.

Writes to the UART_THR register clear the THRE flag. Transfers of data from
UART_THR to the transmit shift registers (TSR) set this status flag in
UART_LSR again.

When enabled by the ETBET bit in the UART_IER register, a 0 to 1 transition
of the THRE flag requests an interrupt on the dedicated TXREQ output. This
signal is routed through the DMA controller. If the associated DMA chan-
nel is enabled, the TXREQ signal functions as a DMA request, otherwise the
DMA controller simply forwards it to the system interrupt controller

(SIC).

The UART_THR register and the internal TSR register can be seen as a
two-stage transmit buffer. When data is pending in either one of these reg-
isters, the TEMT flag is low. As soon as the data has left the TSR register, the
TEMT bit goes high again and indicates that all pending transmit operation
has finished. At that time it is safe to disable the UCEN bit or to three-state
off-chip line drivers.

15-6 ADSP-BF51x Blackfin Processor Hardware Reference

UART Port Controllers

UART Receive Operation

The receive operation uses the same data format as the transmit configura-
tion, except that one valid stop bit is always sufficient. That is, the STB bit
has no impact to the receiver.

After detection of the start bit, the received word is shifted into the inter-
nal shift register (RSR) at a bit rate of SCLK/(16 x Divisor). Once the
appropriate number of bits (including one stop bit) is received, the con-
tent of the RSR register is transferred to the UART_RBR registers, shown in
Figure 15-11 on page 15-26. Finally, the data ready (DR) bit and the status
flags are updated in the UART_LSR register, to signal data reception, parity,
and also error conditions, if required.

The RSR and the UART_RBR registers can be seen as almost a two-stage
receive buffer. If the stop bit of a second byte is received before software
reads the first byte from the UART_RBR register, an overrun error is reported
and the first byte is overwritten.

If enabled by the ERBFI bit in the UART_IER register, a O to 1 transition of
the DR flag requests an interrupt on the dedicated RXREQ output. This sig-
nal is routed through the DMA controller. If the associated DMA channel
is enabled, the RXREQ signal functions as a DMA request, otherwise the
DMA controller simply forwards it to the system interrupt controller.

If errors are detected during reception, an interrupt can be requested to a
separate error interrupt output. This error request goes directly to the sys-
tem interrupt controller. However, it is hard-wired with the error requests
of other modules. The error handler routine may need to interrogate mul-
tiple modules as to whether they requested the event. Error requests must
be enabled by the ELST bit in the UART_IER register. The following error
situations are detected. Every error has an indicating bit in the UART_LSR
register.

e Opverrun error (0E bit)

* Parity error (PE bit)

ADSP-BF51x Blackfin Processor Hardware Reference 15-7

Description of Operation

* Framing error/Invalid stop bit (FE bit)
* Break indicator (BI bit)

Reception is started when a falling edge is detected on the RX input pin.
The receiver attempts to see a start bit. For better immunity against noise
and hazards on the line, the receiver oversamples every bit 16 times and
does a majority decision based on the middle three samples. The data is
shifted immediately into the internal RSR register. After the 9th sample of
the first stop bit is processed, the received data is copied to the UART_RBR
register and the receiver recovers itself for further data.

The sampling clock, equal to 16 times the bit rate, samples the data bits
close to their midpoint. Because the receiver clock is usually asynchronous
to the transmitter’s data rate, the sampling point may drift relative to the
center of the data bits. The sampling point is synchronized again with
each start bit, so the error accumulates only over the length of a single
word. A receive filter removes spurious pulses of less than two times the
sampling clock period.

IrDA Transmit Operation

To generate the IrDA pulse transmitted by the UART, the normal NRZ
output of the transmitter is first inverted if the TPOLC bit is cleared, so a 0
is transmitted as a high pulse of 16 UART clock periods and a 1 is trans-
mitted as a low pulse for 16 UART clock periods. The leading edge of the
pulse is then delayed by six UART clock periods. Similarly, the trailing
edge of the pulse is truncated by eight UART clock periods. This results in
the final representation of the original 0 as a high pulse of only 3 clock
periods out of 16 clock periods in the cycle. The pulse is centered around
the middle of the bit time, as shown in Figure 15-3. The final IrDA pulse
is fed to the off-chip infrared driver.

15-8 ADSP-BF51x Blackfin Processor Hardware Reference

UART Port Controllers

8/16 16/16 16/16 8/16

Figure 15-3. IrDA Transmit Pulse

This modulation approach ensures a pulse width output from the UART
of three cycles high out of every 16 UART clock cycles. As shown in
Table 15-1 on page 15-13, the error terms associated with the bit rate gen-
erator are very small and well within the tolerance of most infrared
transceiver specifications.

IrDA Receive Operation

The IrDA receiver function is more complex than the transmit function.
The receiver must discriminate the IrDA pulse and reject noise. To do
this, the receiver looks for the IrDA pulse in a narrow window centered
around the middle of the expected pulse.

Glitch filtering is accomplished by counting 16 system clocks from the
time an initial pulse is seen. If the pulse is absent when the counter
expires, it is considered a glitch. Otherwise, it is interpreted as a 0. This is
acceptable because glitches originating from on-chip capacitive cross-cou-
pling typically do not last for more than a fraction of the system clock
period. Sources outside of the chip and not part of the transmitter can be
avoided by appropriate shielding. The only other source of a glitch is the
transmitter itself. The processor relies on the transmitter to perform
within specification. If the transmitter violates the specification, unpre-
dictable results may occur. The 4-bit counter adds an extra level of
protection at a minimal cost. Note that because the system clock can

ADSP-BF51x Blackfin Processor Hardware Reference 15-9

Description of Operation

change across systems, the longest glitch tolerated is inversely proportional
to the system clock frequency.

The receive sampling window is determined by a counter that is clocked at
the 16x bit-time sample clock. The sampling window is re-synchronized
with each start bit by centering the sampling window around the start bit.

The polarity of receive data is selectable, using the IRPOL bit. Figure 15-4
gives examples of each polarity type.

* IRPOL = 0 assumes that the receive data input idles 0 and each
active 1 transition corresponds to a UART NRZ value of 0.

* IRPOL = 1 assumes that the receive data input idles 1 and each
active 0 transition corresponds to a UART NRZ value of 0.

RECEIVED ' :
IrDA

S\

RECEIVED
IrDA
PULSE
IRPOL=0

1 I 1
L L L
1 I 1
1 I 1
1 1 1
1 I 1
1 I 1
1 I 1
1 I 1
1 I 1
1 I 1
1 I 1
1 I 1

WINDOW

PULSE
DETECT
OR
OUTPUT

RECOVERED

A
NRZINPUT | | 0

Figure 15-4. IrDA Receiver Pulse Detection

1
1
1
1
1
1
1
1
r
1
1
1
1

SAMPLING
1
1
r
1
1
1
1
1
L
1
1
1
1

15-10 ADSP-BF51x Blackfin Processor Hardware Reference

UART Port Controllers

Interrupt Processing

Each UART module has three interrupt outputs. One is dedicated for
transmission, one for reception, and the third is used to report line status.
As shown in Figure 15-1 on page 15-3, the transmit and receive requests
are routed through the DMA controller. The status request goes directly
to the system interrupt controller after being ORed with interrupt signals
from other modules.

If the associated DMA channel is enabled, the request functions as a DMA
request. If the DMA channel is disabled, it simply forwards the request to
the system interrupt controller. Note that a DMA channel must be associ-
ated with the UART module to enable TX and RX interrupts. Otherwise,
the transmit and receive requests cannot be forwarded. Refer to the
description of the peripheral map registers in the Direct Memory Access
chapter.

Transmit interrupts are enabled by the ETBEI bit in the UART_IER register.
If set, the transmit request is asserted when the THRE bit in the UART_LSR
register transitions from 0 to 1, indicating that the TX buffer is ready for
new data.

Note that the THRE bit resets to 1. When the ETBEI bit is set in the
UART_IER register, the UART module immediately issues an interrupt or
DMA request. In this way, no special handling of the first character is
required when transmission of a string is initiated. Simply set the ETBEI
bit and let the interrupt service routine load the first character from mem-
ory and write it to the UART_THR register in the normal manner.
Accordingly, the ETBEI bit can be cleared if the string transmission has
completed. For more information, see “DMA Mode” on page 15-17.

The THRE bit is cleared by hardware when new data is written to the
UART_THR register. These writes also clear the TX interrupt request. How-
ever, they also initiate further transmission. If software doesn’t want to
continue transmission, the TX request can alternatively be cleared by
either clearing the ETBEI bit or by reading the UART_IIR register.

ADSP-BF51x Blackfin Processor Hardware Reference 15-11

Description of Operation

Receive interrupts are enabled by the ERBFI bit in the UART_IER register. If
set, the receive request is asserted when the DR bit in the UART_LSR register
transitions from 0 to 1, indicating that new data is available in the
UART_RBR register. When software reads the UART_RBR, hardware clears the
DR bit again. Reading UART_RBR also clears the RX interrupt request.

Status interrupts are enabled by the ELSI bit in the UART_IER register. If
set, the status interrupt request is asserted when any error bit in the
UART_LSR register transitions from 0 to 1. Refer to “UART Line Status
(UART_LSR) Register” on page 15-24 for details. Reading the UART_LSR
register clears the error bits destructively. These reads also clear the status
interrupt request.

For legacy reasons, the UART_IIR registers still reflect the UART interrupt
status. Legacy operation may require bundling all UART interrupt sources
to a single interrupt channel and servicing them all by the same software
routine. This can be established by globally assigning all UART interrupts
to the same interrupt priority, by using the system interrupt controller.

If either the line status interrupt or the receive data interrupt has
been assigned a lower interrupt priority by the system interrupt
controller, a deadlock condition can occur. To avoid this, always
assign the lowest priority of the enabled UART interrupts to the
UART_THR empty event.

Bit Rate Generation
The UART clock is enabled by the UCEN bit in the UART_GCTL register.

The bit rate is characterized by the system clock (SCLK) and the 16-bit
divisor. The divisor is split into the UART_DLL and the UART_DLH registers.
These registers form a 16-bit divisor. The bit clock is divided by 16 so
that:

bit rate = SCLK/(16 x divisor)
divisor = 65536 when UART_DLL = UART_DLH =0

15-12 ADSP-BF51x Blackfin Processor Hardware Reference

UART Port Controllers

Table 15-1 provides example divide factors required to support most stan-

dard baud rates.

Table 15-1. UART Bit Rate Examples With 100 MHz SCLK

Bit Rate DL Actual % Error
2400 2604 2400.15 0.006
4800 1302 4800.31 0.007
9600 651 9600.61 0.006
19200 326 19171.78 0.147
38400 163 38343.56 0.147
57600 109 57339.45 0.452
115200 54 115740.74 0.469
921600 7 892857.14 3.119
6250000 1 6250000 -

Careful selection of SCLK frequencies, that is, even multiples of
desired bit rates, can result in lower error percentages.

Note that the UART module is clocked 16 times faster than the bit clock.

This is required to oversample bits on reception and to generate RZI code
in IrDA mode.

Autobaud Detection

At the chip level, the UART RX pin is routed to the alternate capture
input (TACIx) of a general purpose timer. When working in WDTH_CAP
mode this timer can be used to automatically detect the bit rate applied to
the RX pin by an external device. For more information, see Chapter 9,
“General-Purpose Ports”.

The capture capabilities of the timers are often used to supervise the bit
rate at runtime. If the Blackfin UART talks to a device supplied by a weak

ADSP-BF51x Blackfin Processor Hardware Reference 15-13

Description of Operation

clock oscillator that drifts over time, the Blackfin can re-adjust its UART
bit rate dynamically.

Often, autobaud detection is used for initial bit rate negotiations. In this
case, the Blackfin processor is most likely a slave device waiting for the
host to send a predefined autobaud character (see below). This is the sce-
nario used for UART booting. In this scenario, the UART clock enable bit
UCEN should not be enabled while autobaud detection is performed. This
prevents the UART from starting reception with incorrect bit rate match-
ing. Alternatively, the UART can be disconnected from the RX pin by
setting the LOOP_ENA bit.

A software routine can detect the pulse widths of serial stream bit cells.
Because the sample base of the timers is synchronous with the UART
operation—all derived from SCLKk—the pulse widths can be used to calcu-

late the baud rate divider for the UART.
divisor = TIMER_WIDTH/(16 x number of captured UART bits)

In order to increase the number of timer counts and therefore the resolu-
tion of the captured signal, it is recommended not to measure just the
pulse width of a single bit, but to enlarge the pulse of interest over more

bits. Traditionally, a NULL character (ASCII 0x00) was used in autobaud
detection, as shown in Figure 15-5.

S 0 1 2 3 4 5 6 7 STOP

1 I
: FRAME WIDTH :
1 1

Figure 15-5. Autobaud Detection Character 0x00

Because the example frame in Figure 15-5 encloses 8 data bits and 1 start
bit, apply the formula:

divisor = TIMER_WIDTH/(16 x 9)

15-14 ADSP-BF51x Blackfin Processor Hardware Reference

UART Port Controllers

Real UART RX signals often have asymmetrical falling and rising edges,
and the sampling logic level is not exactly in the middle of the signal volt-
age range. At higher bit rates, such pulse width-based autobaud detection
might not return adequate results without additional analog signal condi-
tioning. Measuring signal periods works around this issue and is strongly
recommended.

For example, predefine ASCII character “@” (0x40) as the autobaud
detection character and measure the period between two subsequent fall-
ing edges. As shown in Figure 15-6, measure the period between the
falling edge of the start bit and the falling edge after bit 6. Since this
period encloses eight bits, apply the formula:

divisor = TIMER_PERIOD> > 7

S 0 1 2 3 4 5 6 7 STOP

I I
: PERIOD :
1 1

Figure 15-6. Autobaud Detection Character 0x40

An example is provided in Listing 15-2 on page 15-33.

Programming Model

The following sections describe a programming model for the UART.

Non-DMA Mode

In non-DMA mode, data is moved to and from the UART by the proces-
sor core. To transmit a character, load it into UART_THR. Received data can
be read from UART_RBR. The processor must write and read one character
at time.

ADSP-BF51x Blackfin Processor Hardware Reference 15-15

Programming Model

To prevent any loss of data and misalignments of the serial datastream, the
UART_LSR register provides two status flags for handshaking—THRE and DR.

The THRE flag is set when UART_THR is ready for new data and cleared when
the processor loads new data into UART_THR. Writing UART_THR when it is
not empty overwrites the register with the new value and the previous
character is never transmitted.

The DR flag signals when new data is available in UART_RBR. This flag is
cleared automatically when the processor reads from UART_RBR. Reading
UART_RBR when it is not full returns the previously received value. When
UART_RBR is not read in time, newly received data overwrites UART_RBR and
the OE flag is set.

With interrupts disabled, these status flags can be polled to determine
when data is ready to move. Note that because polling is processor inten-
sive, it is not typically used in real-time signal processing environments.
Be careful if transmit and receive are served by different software threads,
because read operations on the UART_LSR and UART_IIR registers are
destructive. Polling the SIC_ISR register without enabling the interrupts
by SIC_MASK is an alternate method of operation to consider. Software can
write up to two words into the UART_THR register before enabling the
UART clock. As soon as the UCEN bit is set, those two words are sent.

Alternatively, UART writes and reads can be accomplished by interrupt
service routines. Separate interrupt lines are provided for UART TX,
UART RX, and UART error/status. The independent interrupts can be
enabled individually by the UART_IER register.

The ISRs can evaluate the status bit field within the UART_IIR register to
determine the signalling interrupt source. If more than one source is sig-
nalling, the status field displays the one with the highest priority.
Interrupts also must be assigned and unmasked by the processor’s inter-
rupt controller. The ISRs must clear the interrupt latches explicitly. See
Figure 15-13 on page 15-29.

15-16 ADSP-BF51x Blackfin Processor Hardware Reference

UART Port Controllers

DMA Mode

In this mode, separate receive (RX) and transmit (TX) DMA channels
move data between the UART and memory. The software does not have
to move data, it just has to set up the appropriate transfers either through
the descriptor mechanism or through autobuffer mode.

DMA channels provide a 4-deep FIFO, resulting in total buffer capabili-
ties of 6 words at both the transmit and receive sides. In DMA mode, the
latency is determined by the bus activity and arbitration mechanism and

not by the processor loading and interrupt priorities.

DMA interrupt routines must explicitly write “1” to the corresponding
DMA_IRQ_STATUS registers to clear the latched request of the pending
interrupt.

The UART’s DMA is enabled by first setting up the system DMA control
registers and then enabling the UART ERBFI and/or ETBEI interrupts in
the UART_IER register. This is because the interrupt request lines double as
DMA request lines. Depending on whether DMA is enabled or not, upon
receiving these requests, the DMA control unit either generates a direct
memory access or passes the UART interrupt on to the system interrupt
handling unit. The UART’s error interrupt goes directly to the system
interrupt handling unit, bypassing the DMA unit completely.

For transmit DMA, it is recommended that the SYNC bit in the DMA_CONFIG
register be set. With this bit set, the interrupt generation is delayed until
the entire DMA FIFO has been drained to the UART module. The
UART TX DMA interrupt service routine is allowed to start another
DMA sequence or to clear the ETBEI control bit only when the SYNC bit is
set.

If another DMA is started while data is still pending in the UART trans-
mitter, there is no need to pulse the ETBEI bit to initiate the second DMA.
If, however, the recent byte has already been loaded into the TSR registers

ADSP-BF51x Blackfin Processor Hardware Reference 15-17

Programming Model

(that is, the THRE bit is set), then the ETBEI bit must be cleared and set
again to let the second DMA start.

In DMA transmit mode, the ETBEI bit enables the peripheral request to
the DMA FIFO. The strobe on the memory side is still enabled by the
DMAEN bit. If the DMA count is less than the DMA FIFO depth, which
is 4, then the DMA interrupt might be requested before the ETBEI bit is
set. If this is not wanted, set the SYNC bit in the DMA_CONFIG register.

Regardless of the SYNC setting, the DMA stream has not left the
UART transmitter completely at the time the interrupt is gener-
ated. If the UART clock was disabled without additional polling of
the TEMT bit, transmission may abort in the middle of the stream—
causing data loss.

The UART’s DMA supports 8-bit and 16-bit operation, but not 32-bit

operation. Sign extension is not supported.

Mixing Modes

Especially on the transmit side, switching from DMA mode to non-DMA
operation on the fly requires some thought. By default, the interrupt tim-
ing of the DMA is synchronized with the memory side of the DMA
FIFOs. The TX DMA completion interrupt is generated after the last byte
has been copied from the memory into the DMA FIFO. The TX DMA
interrupt service routine is not yet permitted to start other DMA
sequences or to switch to non-DMA transmission. The interrupt is
requested by the time the DMA_DONE bit is set. The DMA_RUN bit, however,
remains set until the data has completely left the TX DMA FIFO.

Therefore, when planning to switch from DMA to non-DMA of opera-
tion, always set the SYNC bit in the DMA_CONF1G word of the last descriptor
or work unit before handing over control to non-DMA mode. Then, after
the interrupt occurs, software can write new data into the UART_THR regis-
ter as soon as the THRE bit permits. If the SYNC bit cannot be set, software
can poll the DMA_RUN bit instead.

15-18 ADSP-BF51x Blackfin Processor Hardware Reference

UART Port Controllers

When switching from non-DMA to DMA operation, take care that the
very first DMA request is issued properly. If the DMA is enabled while the
UART is still transmitting, no precaution is required. If, however, the
DMA is enabled after the TEMT bit became high, the ETBET bit should be

pulsed to initiate DMA transmission.

UART Registers

The processor provides a set of PC-style industry-standard control and
status registers for each UART. These memory-mapped registers (MMRs)
are byte-wide registers that are mapped as half words with the most signif-
icant byte zero filled. Table 15-2 provides an overview of the UART
registers.

Consistent with industry-standard devices, multiple registers are mapped
to the same address location. The UART_DLH and UART_DLL registers share
their addresses with the UART_THR registers, the UART_RBR registers, and the
UART_IER registers. The DLAB bit in the UART_LCR register controls which
set of registers is accessible at a given time. Software must use 16-bit word
load/store instructions to access these registers.

Transmit and receive channels are both buffered. The UART_THR registers
buffer the transmit shift register (TSR) and the UART_RBR registers buffer
the receive shift register (LSR). The shift registers are not directly accessible
by software.

ADSP-BF51x Blackfin Processor Hardware Reference 15-19

UART Registers

Table 15-2. UART Register Overview

Name Address |DLAB |Operation Reset |Function

Offset |Bit Value

Setting

UART_RBR 0x0000 | O R 0x00 | Receive buffer register
UART_THR | 0x0000 |0 \\4 0x00 | Transmit holding register
UART_DLL | 0x0000 |1 R/W 0x01 | Divisor latch low byte
UART_IER 0x0004 |0 R/W 0x00 | Interrupt enable register
UART_DLH | 0x0004 |1 R/W 0x00 | Divisor latch high byte
UART_IIR 0x0008 | X R 0x01 | Interrupt identification register

Read operations
are destructive

UART_LCR 0x000C | X R/W 0x00 | Line control register
UART_MCR | 0x0010 |X R/W 0x00 | Modem control register
UART_LSR 0x0014 | X R 0x60 | Line status register

Read operations
are destructive

UART_SCR 0x001C | X R/W 0x00 | Scratch register
UART_GCTL | 0x0024 | X R/W 0x00 | Global control register

15-20 ADSP-BF51x Blackfin Processor Hardware Reference

UART Port Controllers

UART Line Control (UART_LCR) Register

The UART_LCR register, shown in Figure 15-7, controls the format of
received and transmitted character frames.

UART Line Control Register (UART_LCR)

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
|o|o|o|o|o|o|o|o|o|oIololoIolololﬁeset=0x0000

DLAB (Divisor Latch Access) —— WLS[1:0] (Word Length Select)
0 - Enables access to UART_THR, 00 - 5-bit word
UART_RBR, and UART_IER 01 - 6-bit word
1 - Enables access to UART_DLL 10 - 7-bit word
and UART_DLH 11 - 8-bit word
SB (Set Break) ——