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PREFACE

Thank you for purchasing and developing systems using Blackfin® pro-
cessors from Analog Devices, Inc. 

Purpose of This Manual 
ADSP-BF533 Blackfin Processor Hardware Reference contains information 
about the DSP architecture for the Blackfin processors. The architectural 
descriptions cover functional blocks, buses, and ports, including all fea-
tures and processes that they support. 

For programming information, see Blackfin Processor Programming Refer-
ence. For timing, electrical, and package specifications, see 
ADSP-BF531/ADSP-BF532/ADSP-BF533 Embedded Processor Data Sheet.

Intended Audience
The primary audience for this manual is a programmer who is familiar 
with Analog Devices processors. The manual assumes the audience has a 
working knowledge of the appropriate processor architecture and instruc-
tion set. Programmers who are unfamiliar with Analog Devices processors 
can use this manual, but should supplement it with other texts, such as 
hardware and programming reference manuals that describe their target 
architecture.
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Manual Contents
This manual contains:

• Chapter 1, Introduction
Provides a high level overview of the processor. Architectural 
descriptions include functional blocks, buses, and ports, including 
features and processes they support.

• Chapter 2, Computational Units
Describes the arithmetic/logic units (ALUs), multiplier/accumula-
tor units (MACs), shifter, and the set of video ALUs. The chapter 
also discusses data formats, data types, and register files.

• Chapter 3, Operating Modes and States
Describes the three operating modes of the processor: Emulation 
mode, Supervisor mode, and User mode. The chapter also 
describes Idle state and Reset state.

• Chapter 4, Program Sequencer
Describes the operation of the program sequencer, which controls 
program flow by providing the address of the next instruction to be 
executed. The chapter also discusses loops, subroutines, jumps, 
interrupts, and exceptions.

• Chapter 5, Data Address Generators
Describes the Data Address Generators (DAGs), addressing modes, 
how to modify DAG and Pointer registers, memory address align-
ment, and DAG instructions.

• Chapter 6, Memory
Describes L1 memories. In particular, details their memory archi-
tecture, memory model, memory transaction model, and 
memory-mapped registers (MMRs). Discusses the instruction, 
data, and scratchpad memory, which are part of the Blackfin pro-
cessor core.
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• Chapter 7, Chip Bus Hierarchy
Describes on-chip buses, including how data moves through the 
system. The chapter also discusses the system memory map, major 
system components, and the system interconnects.

• Chapter 8, Dynamic Power Management
Describes system reset and power-up configuration, system clock-
ing and control, and power management.

• Chapter 9, Direct Memory Access
Describes the peripheral DMA and Memory DMA controllers. The 
peripheral DMA section discusses direct, block data movements 
between a peripheral with DMA access and internal or external 
memory spaces. The Memory DMA section discusses mem-
ory-to-memory transfer capabilities among the processor memory 
spaces and the L1, external synchronous, and asynchronous 
memories.

• Chapter 10, SPI Compatible Port Controllers
Describes the Serial Peripheral Interface (SPI) port that provides an 
I/O interface to a variety of SPI compatible peripheral devices.

• Chapter 11, Parallel Peripheral Interface
Describes the Parallel Peripheral Interface (PPI) of the processor. 
The PPI is a half-duplex, bidirectional port accommodating up to 
16 bits of data and used for digital video and data converter 
applications.

• Chapter 12, Serial Port Controllers
Describes the two independent, synchronous Serial Port Control-
lers (SPORT0 and SPORT1) that provide an I/O interface to a 
variety of serial peripheral devices.

• Chapter 13, UART Port Controller
Describes the Universal Asynchronous Receiver/Transmitter 
(UART) port, which converts data between serial and parallel 
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formats and includes modem control and interrupt handling hard-
ware. The UART supports the half-duplex IrDA® SIR protocol as 
a mode-enabled feature.

• Chapter 14, Programmable Flags
Describes the programmable flags, or general-purpose I/O pins in 
the processor, including how to configure the pins as inputs and 
outputs, and how to generate interrupts.

• Chapter 15, Timers
Describes the three general-purpose timers that can be configured 
in any of three modes; the core timer that can generate periodic 
interrupts for a variety of timing functions; and the watchdog timer 
that can implement software watchdog functions, such as generat-
ing events to the Blackfin processor core.

• Chapter 16, Real-Time Clock
Describes a set of digital watch features of the processor, including 
time of day, alarm, and stopwatch countdown.

• Chapter 17, External Bus Interface Unit
Describes the External Bus Interface Unit of the processor. The 
chapter also discusses the asynchronous memory interface, the 
SDRAM controller (SDC), related registers, and SDC configura-
tion and commands.

• Chapter 18, System Design
Describes how to use the processor as part of an overall system. It 
includes information about interfacing the processor to external 
memory chips, bus timing and latency numbers, semaphores, and a 
discussion of the treatment of unused pins.

• Appendix A, Blackfin Processor Core MMR Assignments
Lists the core memory-mapped registers, their addresses, and 
cross-references to text.
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• Appendix B, System MMR Assignments
Lists the system memory-mapped registers, their addresses, and 
cross-references to text.

• Appendix C, Test Features
Describes test features for the processor; discusses the JTAG stan-
dard, boundary-scan architecture, instruction and boundary 
registers, and public instructions.

• Appendix D, Numeric Formats
Describes various aspects of the 16-bit data format. The chapter 
also describes how to implement a block floating-point format in 
software.

• Appendix G, Glossary
Contains definitions of terms used in this book, including 
acronyms.

What’s New in This Manual 
This is Revision 3.6 of ADSP-BF533 Blackfin Processor Hardware Refer-
ence. This revision corrects minor typographical errors and the following 
issues:

• Core Double Fault Reset Enable bit (DOUBLE_FAULT) set in the 
SWRST register and system reset code example in Chapter 3, “Oper-
ating Modes and States”

• RETI instructions need not be first in nested interrupts and com-
plete table of hardware conditions causing hardware interrupts in 
Chapter 4, “Program Sequencer”

• Core priority over DMA when accessing L1 SRAM in Chapter 7, 
“Chip Bus Hierarchy”
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• Note on programming the STOPCK bit and input and output delays 
in PLL_CTL diagram in Chapter 8, “Dynamic Power Management”

• Obsolete DMA error address range deleted in Chapter 9, “Direct 
Memory Access”

• Termination of SPI TX DMA operations in Chapter 10, “SPI 
Compatible Port Controllers”

• Behavior on startup when using an external clock and receiver and 
transmitter enable bit names standardized on RSPEN and TSPEN in 
Chapter 12, “Serial Port Controllers”

• Note on the TINT bit in the TCNTL register in Chapter 15, “Timers”

• Sampling the ARDY pin when it is asserted in and note on timing 
dependencies for the TRP and TRAS settings in the EBIU_SDGCTL reg-
ister in Chapter 17, “External Bus Interface Unit”

Technical Support
You can reach Analog Devices processors and DSP technical support in 
the following ways:

• Post your questions in the processors and DSP support community 
at EngineerZone®:
http://ez.analog.com/community/dsp

• Submit your questions to technical support directly at:
http://www.analog.com/support

• E-mail your questions about processors, DSPs, and tools develop-
ment software from CrossCore® Embedded Studio or 
VisualDSP++®:

http://ez.analog.com/community/dsp
http://www.analog.com/support
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Choose Help > Email Support. This creates an e-mail to
processor.tools.support@analog.com and automatically attaches 
your CrossCore Embedded Studio or VisualDSP++ version infor-
mation and license.dat file.

• E-mail your questions about processors and processor applications 
to: 
processor.support@analog.com or
processor.china@analog.com (Greater China support)

• In the USA only, call 1-800-ANALOGD (1-800-262-5643)

• Contact your Analog Devices sales office or authorized distributor. 
Locate one at:
www.analog.com/adi-sales

• Send questions by mail to:
Processors and DSP Technical Support
Analog Devices, Inc.
Three Technology Way
P.O. Box 9106
Norwood, MA 02062-9106
USA

Supported Processors
The name “Blackfin” refers to a family of 16-bit, embedded processors. 
Refer to the CCES or VisualDSP++ online help for a complete list of sup-
ported processors.

Product Information
Product information can be obtained from the Analog Devices Web site 
and the CCES or VisualDSP++ online help.

mailto:processor.tools.support@analog.com
mailto:processor.support@analog.com
mailto:processor.china@analog.com
http://www.analog.com/adi-sales 
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Analog Devices Web Site
The Analog Devices Web site, www.analog.com, provides information 
about a broad range of products—analog integrated circuits, amplifiers, 
converters, and digital signal processors.

To access a complete technical library for each processor family, go to 
http://www.analog.com/processors/technical_library. The manuals 
selection opens a list of current manuals related to the product as well as a 
link to the previous revisions of the manuals. When locating your manual 
title, note a possible errata check mark next to the title that leads to the 
current correction report against the manual. 

Also note, myAnalog is a free feature of the Analog Devices Web site that 
allows customization of a Web page to display only the latest information 
about products you are interested in. You can choose to receive weekly 
e-mail notifications containing updates to the Web pages that meet your 
interests, including documentation errata against all manuals. myAnalog 
provides access to books, application notes, data sheets, code examples, 
and more.

Visit myAnalog to sign up. If you are a registered user, just log on. Your 
user name is your e-mail address.

EngineerZone
EngineerZone is a technical support forum from Analog Devices, Inc. It 
allows you direct access to ADI technical support engineers. You can 
search FAQs and technical information to get quick answers to your 
embedded processing and DSP design questions.

Use EngineerZone to connect with other DSP developers who face similar 
design challenges. You can also use this open forum to share knowledge 
and collaborate with the ADI support team and your peers. Visit 
http://ez.analog.com to sign up. 

http://www.analog.com
http://www.analog.com/processors/technical_library/ 
http://www.analog.com/MyAnalog
http://www.analog.com/MyAnalog
http://www.analog.com/MyAnalog
http://ez.analog.com
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Notation Conventions
Text conventions in this manual are identified and described as follows. 

Example Description

Close command 
(File menu)

Titles in reference sections indicate the location of an item within the 
IDE environment’s menu system (for example, the Close command 
appears on the File menu).

{this | that} Alternative required items in syntax descriptions appear within curly 
brackets and separated by vertical bars; read the example as this or 
that. One or the other is required.

[this | that] Optional items in syntax descriptions appear within brackets and sepa-
rated by vertical bars; read the example as an optional this or that.

[this,…] Optional item lists in syntax descriptions appear within brackets delim-
ited by commas and terminated with an ellipsis; read the example as an 
optional comma-separated list of this.

.SECTION Commands, directives, keywords, and feature names are in text with 
letter gothic font.

filename Non-keyword placeholders appear in text with italic style format.

Note: For correct operation, ...
A Note provides supplementary information on a related topic. In the 
online version of this book, the word Note appears instead of this 

symbol.

Caution: Incorrect device operation may result if ...
Caution: Device damage may result if ... 
A Caution identifies conditions or inappropriate usage of the product 
that could lead to undesirable results or product damage. In the online 
version of this book, the word Caution appears instead of this symbol.

Warning: Injury to device users may result if ... 
A Warning identifies conditions or inappropriate usage of the product 
that could lead to conditions that are potentially hazardous for devices 
users. In the online version of this book, the word Warning appears 
instead of this symbol.






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Register Diagram Conventions
Register diagrams use the following conventions:

• The descriptive name of the register appears at the top, followed by 
the short form of the name in parentheses.

• If the register is read-only (RO), write-1-to-set (W1S), or 
write-1-to-clear (W1C), this information appears under the name. 
Read/write is the default and is not noted. Additional descriptive 
text may follow.

• If any bits in the register do not follow the overall read/write con-
vention, this is noted in the bit description after the bit name.

• If a bit has a short name, the short name appears first in the bit 
description, followed by the long name in parentheses. 

• The reset value appears in binary in the individual bits and in hexa-
decimal to the right of the register. 

• Bits marked x have an unknown reset value. Consequently, the 
reset value of registers that contain such bits is undefined or depen-
dent on pin values at reset.

• Shaded bits are reserved.

 To ensure upward compatibility with future implementations, 
write back the value that is read for reserved bits in a register, 
unless otherwise specified. 
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The following figure shows an example of these conventions.

Figure 1.  Register Diagram Example

00

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0

TMODE[1:0] (Timer Mode)

Reset = 0x00000

Timer Configuration Registers (TIMERx_CONFIG)

0 - Negative action pulse.
1 - Positive action pulse.

This bit must be set to 1, when operat-
ing the PPI in GP Output modes.
0 - Use system clock SCLK for counter.
1 - Use PWM_CLK to clock counter.

0 - The effective state of PULSE_HI 
is the programmed state.
1 - The effective state of PULSE_HI 
alternates each period.

00 - No error.
01 - Counter overflow error.
10 - Period register programming error.
11 - Pulse width register programming error.

00 - Reset state - unused.
01 - PWM_OUT mode.
10 - WDTH_CAP mode.
11 - EXT_CLK mode.

PULSE_HI

CLK_SEL (Timer Clock Select)

TOGGLE_HI (PWM_OUT PULSE_HI Toggle Mode)

ERR_TYP[1:0] (Error Type) - RO

PERIOD_CNT (Period 
Count)

0 - Interrupt request 
disable.
1 - Interrupt request enable

0 - Count to end of width.
1 - Count to end of period.

IRQ_ENA (Interrupt 
Request Enable)

0 - Sample TMRx pin or 
PF1 pin.
1 - Sample UART RX pin 
or PPI_CLK pin.

TIN_SEL (Timer Input 
Select)

0 - Enable pad in PWM_OUT mode.
1 - Disable pad in PWM_OUT mode.

OUT_DIS (Output Pad Disable)

0 - Timer counter stops during emulation.
1 - Timer counter runs during emulation.

EMU_RUN (Emulation Behavior Select)
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1  INTRODUCTION

The ADSP-BF533, ADSP-BF532, and ADSP-BF531 processors are 
enhanced members of the Blackfin processor family that offer significantly 
higher performance and lower power than previous Blackfin processors 
while retaining their ease-of-use and code compatibility benefits. The 
three new processors are completely pin compatible, differing only in their 
performance and on-chip memory, mitigating many risks associated with 
new product development.

The Blackfin processor core architecture combines a dual MAC signal 
processing engine, an orthogonal RISC-like microprocessor instruction 
set, flexible Single Instruction, Multiple Data (SIMD) capabilities, and 
multimedia features into a single instruction set architecture. 

Blackfin products feature dynamic power management. The ability to vary 
both the voltage and frequency of operation optimizes the power con-
sumption profile to the specific task.

Peripherals
The processor system peripherals include:

• Parallel Peripheral Interface (PPI)

• Serial Ports (SPORTs)

• Serial Peripheral Interface (SPI)

• General-purpose timers
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• Universal Asynchronous Receiver Transmitter (UART)

• Real-Time Clock (RTC)

• Watchdog timer

• General-purpose I/O (programmable flags)

These peripherals are connected to the core via several high bandwidth 
buses, as shown in Figure 1-1.

Figure 1-1. Processor Block Diagram
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All of the peripherals, except for general-purpose I/O, Real-Time Clock, 
and Timers, are supported by a flexible DMA structure. There are also 
two separate memory DMA channels dedicated to data transfers between 
the processor’s memory spaces, which include external SDRAM and asyn-
chronous memory. Multiple on-chip buses provide enough bandwidth to 
keep the processor core running even when there is also activity on all of 
the on-chip and external peripherals.

Core Architecture
The processor core contains two 16-bit multipliers, two 40-bit accumula-
tors, two 40-bit arithmetic logic units (ALUs), four 8-bit video ALUs, and 
a 40-bit shifter, shown in Figure 1-2. The computational units process 8-, 
16-, or 32-bit data from the register file.

The compute register file contains eight 32-bit registers. When perform-
ing compute operations on 16-bit operand data, the register file operates 
as 16 independent 16-bit registers. All operands for compute operations 
come from the multiported register file and instruction constant fields.

Each MAC can perform a 16- by 16-bit multiply per cycle, with accumu-
lation to a 40-bit result. Signed and unsigned formats, rounding, and 
saturation are supported.

The ALUs perform a traditional set of arithmetic and logical operations 
on 16-bit or 32-bit data. Many special instructions are included to acceler-
ate various signal processing tasks. These include bit operations such as 

field extract and population count, modulo 232 multiply, divide primi-
tives, saturation and rounding, and sign/exponent detection. The set of 
video instructions include byte alignment and packing operations, 16-bit 
and 8-bit adds with clipping, 8-bit average operations, and 8-bit sub-
tract/absolute value/accumulate (SAA) operations. Also provided are the 
compare/select and vector search instructions. For some instructions, two 
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16-bit ALU operations can be performed simultaneously on register pairs 
(a 16-bit high half and 16-bit low half of a compute register). By also 
using the second ALU, quad 16-bit operations are possible.

The 40-bit shifter can deposit data and perform shifting, rotating, normal-
ization, and extraction operations.

A program sequencer controls the instruction execution flow, including 
instruction alignment and decoding. For program flow control, the 
sequencer supports PC-relative and indirect conditional jumps (with static 
branch prediction) and subroutine calls. Hardware is provided to support 

Figure 1-2. Processor Core Architecture
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zero-overhead looping. The architecture is fully interlocked, meaning 
there are no visible pipeline effects when executing instructions with data 
dependencies.

The address arithmetic unit provides two addresses for simultaneous dual 
fetches from memory. It contains a multiported register file consisting of 
four sets of 32-bit Index, Modify, Length, and Base registers (for circular 
buffering) and eight additional 32-bit pointer registers (for C-style 
indexed stack manipulation).

Blackfin processors support a modified Harvard architecture in combina-
tion with a hierarchical memory structure. Level 1 (L1) memories typically 
operate at the full processor speed with little or no latency. At the L1 level, 
the instruction memory holds instructions only. The two data memories 
hold data, and a dedicated scratchpad data memory stores stack and local 
variable information.

In addition, multiple L1 memory blocks are provided, which may be con-
figured as a mix of SRAM and cache. The Memory Management Unit 
(MMU) provides memory protection for individual tasks that may be 
operating on the core and may protect system registers from unintended 
access.

The architecture provides three modes of operation: User, Supervisor, and 
Emulation. User mode has restricted access to a subset of system resources, 
thus providing a protected software environment. Supervisor and Emula-
tion modes have unrestricted access to the system and core resources.

The ADSP-BF53x Blackfin processor instruction set is optimized so that 
16-bit opcodes represent the most frequently used instructions. Complex 
DSP instructions are encoded into 32-bit opcodes as multifunction 
instructions. Blackfin products support a limited multi-issue capability, 
where a 32-bit instruction can be issued in parallel with two 16-bit 
instructions. This allows the programmer to use many of the core 
resources in a single instruction cycle.
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The ADSP-BF53x Blackfin processor assembly language uses an algebraic 
syntax. The architecture is optimized for use with the C compiler.

Memory Architecture
The Blackfin processor architecture structures memory as a single, unified 
4G byte address space using 32-bit addresses. All resources, including 
internal memory, external memory, and I/O control registers, occupy sep-
arate sections of this common address space. The memory portions of this 
address space are arranged in a hierarchical structure to provide a good 
cost/performance balance of some very fast, low latency on-chip memory 
as cache or SRAM, and larger, lower cost and lower performance off-chip 
memory systems. Table 1-1 shows the memory comparison for the 
ADSP-BF531, ADSP-BF532, and ADSP-BF533 processors.

The L1 memory system is the primary highest performance memory avail-
able to the core. The off-chip memory system, accessed through the 
External Bus Interface Unit (EBIU), provides expansion with SDRAM, 
flash memory, and SRAM, optionally accessing up to 132M bytes of phys-
ical memory.

Table 1-1. Memory Comparison 

Type of Memory ADSP-BF531 ADSP-BF532 ADSP-BF533

Instruction SRAM/Cache 16K byte 16K byte 16K byte

Instruction SRAM 16K byte 32K byte 64K byte

Data SRAM/Cache 16K byte 32K byte 32K byte

Data SRAM - - 32K byte

Scratchpad 4K byte 4K byte 4K byte

Total 84K byte 116K byte 148K byte
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The memory DMA controller provides high bandwidth data movement 
capability. It can perform block transfers of code or data between the 
internal memory and the external memory spaces.

Internal Memory
The processor has three blocks of on-chip memory that provide high 
bandwidth access to the core:

• L1 instruction memory, consisting of SRAM and a 4-way set-asso-
ciative cache. This memory is accessed at full processor speed.

• L1 data memory, consisting of SRAM and/or a 2-way set-associa-
tive cache. This memory block is accessed at full processor speed.

• L1 scratchpad RAM, which runs at the same speed as the L1 mem-
ories but is only accessible as data SRAM and cannot be configured 
as cache memory. 

External Memory
External (off-chip) memory is accessed via the External Bus Interface Unit 
(EBIU). This 16-bit interface provides a glueless connection to a bank of 
synchronous DRAM (SDRAM) and as many as four banks of asynchro-
nous memory devices including flash memory, EPROM, ROM, SRAM, 
and memory-mapped I/O devices.

The PC133-compliant SDRAM controller can be programmed to inter-
face to up to 128M bytes of SDRAM.

The asynchronous memory controller can be programmed to control up 
to four banks of devices. Each bank occupies a 1M byte segment regardless 
of the size of the devices used, so that these banks are only contiguous if 
each is fully populated with 1M byte of memory.
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I/O Memory Space
Blackfin processors do not define a separate I/O space. All resources are 
mapped through the flat 32-bit address space. Control registers for 
on-chip I/O devices are mapped into memory-mapped registers (MMRs) 
at addresses near the top of the 4G byte address space. These are separated 
into two smaller blocks: one contains the control MMRs for all core func-
tions and the other contains the registers needed for setup and control of 
the on-chip peripherals outside of the core. The MMRs are accessible only 
in Supervisor mode. They appear as reserved space to on-chip peripherals.

Event Handling
The event controller on the processor handles all asynchronous and syn-
chronous events to the processor. The processor event handling supports 
both nesting and prioritization. Nesting allows multiple event service rou-
tines to be active simultaneously. Prioritization ensures that servicing a 
higher priority event takes precedence over servicing a lower priority 
event. The controller provides support for five different types of events: 

• Emulation – Causes the processor to enter Emulation mode, allow-
ing command and control of the processor via the JTAG interface.

• Reset – Resets the processor.

• Nonmaskable Interrupt (NMI) – The software watchdog timer or 
the NMI input signal to the processor generates this event. The 
NMI event is frequently used as a power-down indicator to initiate 
an orderly shutdown of the system.

• Exceptions – Synchronous to program flow. That is, the exception 
is taken before the instruction is allowed to complete. Conditions 
such as data alignment violations and undefined instructions cause 
exceptions.
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• Interrupts – Asynchronous to program flow. These are caused by 
input pins, timers, and other peripherals.

Each event has an associated register to hold the return address and an 
associated return-from-event instruction. When an event is triggered, the 
state of the processor is saved on the supervisor stack.

The processor event controller consists of two stages: the Core Event Con-
troller (CEC) and the System Interrupt Controller (SIC). The CEC works 
with the SIC to prioritize and control all system events. Conceptually, 
interrupts from the peripherals arrive at the SIC and are routed directly 
into the general-purpose interrupts of the CEC.

Core Event Controller (CEC)
The Core Event Controller supports nine general-purpose interrupts 
(IVG15–7), in addition to the dedicated interrupt and exception events. 
Of these general-purpose interrupts, the two lowest priority interrupts 
(IVG15–14) are recommended to be reserved for software interrupt han-
dlers, leaving seven prioritized interrupt inputs to support peripherals.

System Interrupt Controller (SIC)
The System Interrupt Controller provides the mapping and routing of 
events from the many peripheral interrupt sources to the prioritized gen-
eral-purpose interrupt inputs of the CEC. Although the processor 
provides a default mapping, the user can alter the mappings and priorities 
of interrupt events by writing the appropriate values into the Interrupt 
Assignment Registers (IAR).
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DMA Support
The processor has multiple, independent DMA controllers that support 
automated data transfers with minimal overhead for the core. DMA trans-
fers can occur between the internal memories and any of its DMA-capable 
peripherals. Additionally, DMA transfers can be accomplished between 
any of the DMA-capable peripherals and external devices connected to the 
external memory interfaces, including the SDRAM controller and the 
asynchronous memory controller. DMA-capable peripherals include the 
SPORTs, SPI port, UART, and PPI. Each individual DMA-capable 
peripheral has at least one dedicated DMA channel.

The DMA controller supports both one-dimensional (1D) and 
two-dimensional (2D) DMA transfers. DMA transfer initialization can be 
implemented from registers or from sets of parameters called descriptor 
blocks.

The 2D DMA capability supports arbitrary row and column sizes up to 
64K elements by 64K elements, and arbitrary row and column step sizes 
up to +/- 32K elements. Furthermore, the column step size can be less 
than the row step size, allowing implementation of interleaved data-
streams. This feature is especially useful in video applications where data 
can be de-interleaved on the fly.

Examples of DMA types supported include:

• A single, linear buffer that stops upon completion

• A circular, auto-refreshing buffer that interrupts on each full or 
fractionally full buffer

• 1D or 2D DMA using a linked list of descriptors

• 2D DMA using an array of descriptors specifying only the base 
DMA address within a common page
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In addition to the dedicated peripheral DMA channels, there is a separate 
memory DMA channel provided for transfers between the various memo-
ries of the system. This enables transfers of blocks of data between any of 
the memories—including external SDRAM, ROM, SRAM, and flash 
memory—with minimal processor intervention. Memory DMA transfers 
can be controlled by a very flexible descriptor-based methodology or by a 
standard register-based autobuffer mechanism.

External Bus Interface Unit
The External Bus Interface Unit (EBIU) on the processor interfaces with a 
wide variety of industry-standard memory devices. The controller consists 
of an SDRAM controller and an asynchronous memory controller.

PC133 SDRAM Controller
The SDRAM controller provides an interface to a single bank of indus-
try-standard SDRAM devices or DIMMs. Fully compliant with the 
PC133 SDRAM standard, the bank can be configured to contain between 
16M and 128M bytes of memory.

A set of programmable timing parameters is available to configure the 
SDRAM bank to support slower memory devices. The memory bank is 
16 bits wide for minimum device count and lower system cost.

Asynchronous Controller
The asynchronous memory controller provides a configurable interface for 
up to four separate banks of memory or I/O devices. Each bank can be 
independently programmed with different timing parameters. This allows 
connection to a wide variety of memory devices, including SRAM, ROM, 
and flash EPROM, as well as I/O devices that interface with standard 
memory control lines. Each bank occupies a 1M byte window in the 
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processor address space, but if not fully populated, these are not made 
contiguous by the memory controller. The banks are 16 bits wide, for 
interfacing to a range of memories and I/O devices.

Parallel Peripheral Interface
The processor provides a Parallel Peripheral Interface (PPI) that can con-
nect directly to parallel A/D and D/A converters, ITU-R 601/656 video 
encoders and decoders, and other general-purpose peripherals. The PPI 
consists of a dedicated input clock pin, up to 3 frame synchronization 
pins, and up to 16 data pins. The input clock supports parallel data rates 
up to half the system clock rate.

In ITU-R 656 modes, the PPI receives and parses a data stream of 8-bit or 
10-bit data elements. On-chip decode of embedded preamble control and 
synchronization information is supported.

Three distinct ITU-R 656 modes are supported:

• Active Video Only – The PPI does not read in any data between 
the End of Active Video (EAV) and Start of Active Video (SAV) 
preamble symbols, or any data present during the vertical blanking 
intervals. In this mode, the control byte sequences are not stored to 
memory; they are filtered by the PPI.

• Vertical Blanking Only – The PPI only transfers Vertical Blanking 
Interval (VBI) data, as well as horizontal blanking information and 
control byte sequences on VBI lines.

• Entire Field – The entire incoming bitstream is read in through the 
PPI. This includes active video, control preamble sequences, and 
ancillary data that may be embedded in horizontal and vertical 
blanking intervals.



ADSP-BF533 Blackfin Processor Hardware Reference 1-13 
 

Introduction

Though not explicitly supported, ITU-R 656 output functionality can be 
achieved by setting up the entire frame structure (including active video, 
blanking, and control information) in memory and streaming the data out 
the PPI in a frame sync-less mode. The processor’s 2D DMA features 
facilitate this transfer by allowing the static frame buffer (blanking and 
control codes) to be placed in memory once, and simply updating the 
active video information on a per-frame basis.

The general-purpose modes of the PPI are intended to suit a wide variety 
of data capture and transmission applications. The modes are divided into 
four main categories, each allowing up to 16 bits of data transfer per 
PPI_CLK cycle:

• Data Receive with Internally Generated Frame Syncs

• Data Receive with Externally Generated Frame Syncs

• Data Transmit with Internally Generated Frame Syncs

• Data Transmit with Externally Generated Frame Syncs

These modes support ADC/DAC connections, as well as video communi-
cation with hardware signalling. Many of the modes support more than 
one level of frame synchronization. If desired, a programmable delay can 
be inserted between assertion of a frame sync and reception/transmission 
of data.

Serial Ports (SPORTs)
The processor incorporates two dual-channel synchronous serial ports 
(SPORT0 and SPORT1) for serial and multiprocessor communications. 
The SPORTs support these features:

• Bidirectional, I2S capable operation. Each SPORT has two sets of 
independent transmit and receive pins, enabling eight channels of 
I2S stereo audio.
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• Buffered (eight-deep) transmit and receive ports. Each port has a 
data register for transferring data words to and from other proces-
sor components and shift registers for shifting data in and out of 
the data registers.

• Clocking. Each transmit and receive port can either use an external 
serial clock or can generate its own in a wide range of frequencies.

• Word length. Each SPORT supports serial data words from 3 to 32 
bits in length, transferred in most significant bit first or least signif-
icant bit first format.

• Framing. Each transmit and receive port can run with or without 
frame sync signals for each data word. Frame sync signals can be 
generated internally or externally, active high or low, and with 
either of two pulse widths and early or late frame sync.

• Companding in hardware

Each SPORT can perform A-law or µ-law companding according 
to ITU recommendation G.711. Companding can be selected on 
the transmit and/or receive channel of the SPORT without addi-
tional latencies.

• DMA operations with single cycle overhead

Each SPORT can automatically receive and transmit multiple buf-
fers of memory data. The processor can link or chain sequences of 
DMA transfers between a SPORT and memory.

• Interrupts

Each transmit and receive port generates an interrupt upon com-
pleting the transfer of a data word or after transferring an entire 
data buffer or buffers through DMA.
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• Multichannel capability

Each SPORT supports 128 channels out of a 1024-channel win-
dow and is compatible with the H.100, H.110, MVIP-90, and 
HMVIP standards. 

Serial Peripheral Interface (SPI) Port
The processor has an SPI-compatible port that enables the processor to 
communicate with multiple SPI-compatible devices.

The SPI interface uses three pins for transferring data: two data pins and a 
clock pin. An SPI chip select input pin lets other SPI devices select the 
processor, and seven SPI chip select output pins let the processor select 
other SPI devices. The SPI select pins are reconfigured Programmable Flag 
pins. Using these pins, the SPI port provides a full-duplex, synchronous 
serial interface, which supports both master and slave modes and multi-
master environments. 

The SPI port’s baud rate and clock phase/polarities are programmable, 
and it has an integrated DMA controller, configurable to support either 
transmit or receive datastreams. The SPI’s DMA controller can only ser-
vice unidirectional accesses at any given time.

During transfers, the SPI port simultaneously transmits and receives by 
serially shifting data in and out of its two serial data lines. The serial clock 
line synchronizes the shifting and sampling of data on the two serial data 
lines.
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Timers
There are four general-purpose programmable timer units in the proces-
sor. Three timers have an external pin that can be configured either as a 
Pulse Width Modulator (PWM) or timer output, as an input to clock the 
timer, or as a mechanism for measuring pulse widths of external events. 
These timer units can be synchronized to an external clock input con-
nected to the PF1 pin, an external clock input to the PPI_CLK pin, or to the 
internal SCLK.

The timer units can be used in conjunction with the UART to measure 
the width of the pulses in the datastream to provide an autobaud detect 
function for a serial channel.

The timers can generate interrupts to the processor core to provide peri-
odic events for synchronization, either to the processor clock or to a count 
of external signals.

In addition to the three general-purpose programmable timers, a fourth 
timer is also provided. This extra timer is clocked by the internal processor 
clock and is typically used as a system tick clock for generation of operat-
ing system periodic interrupts.
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UART Port
The processor provides a full-duplex Universal Asynchronous 
Receiver/Transmitter (UART) port, which is fully compatible with 
PC-standard UARTs. The UART port provides a simplified UART inter-
face to other peripherals or hosts, providing full- or half-duplex, 
DMA-supported, asynchronous transfers of serial data. The UART port 
includes support for 5 to 8 data bits; 1 or 2 stop bits; and none, even, or 
odd parity. The UART port supports two modes of operation:

• Programmed I/O. The processor sends or receives data by writing 
or reading I/O-mapped UART registers. The data is double buff-
ered on both transmit and receive.

• Direct Memory Access (DMA). The DMA controller transfers 
both transmit and receive data. This reduces the number and fre-
quency of interrupts required to transfer data to and from memory. 
The UART has two dedicated DMA channels, one for transmit 
and one for receive. These DMA channels have lower priority than 
most DMA channels because of their relatively low service rates.

The UART port’s baud rate, serial data format, error code generation and 
status, and interrupts can be programmed to support:

• Wide range of bit rates

• Data formats from 7 to 12 bits per frame

• Generation of maskable interrupts to the processor by both trans-
mit and receive operations

In conjunction with the general-purpose timer functions, autobaud detec-
tion is supported.

The capabilities of the UART are further extended with support for the 

Infrared Data Association (IrDA®) Serial Infrared Physical Layer Link 
Specification (SIR) protocol.
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Real-Time Clock
The processor’s Real-Time Clock (RTC) provides a robust set of digital 
watch features, including current time, stopwatch, and alarm. The RTC is 
clocked by a 32.768 kHz crystal external to the processor. The RTC 
peripheral has dedicated power supply pins, so that it can remain powered 
up and clocked even when the rest of the processor is in a low power state. 
The RTC provides several programmable interrupt options, including 
interrupt per second, minute, hour, or day clock ticks, interrupt on pro-
grammable stopwatch countdown, or interrupt at a programmed alarm 
time.

The 32.768 kHz input clock frequency is divided down to a 1 Hz signal 
by a prescaler. The counter function of the timer consists of four counters: 
a 60 second counter, a 60 minute counter, a 24 hours counter, and a 
32768 day counter.

When enabled, the alarm function generates an interrupt when the output 
of the timer matches the programmed value in the alarm control register. 
There are two alarms. The first alarm is for a time of day. The second 
alarm is for a day and time of that day.

The stopwatch function counts down from a programmed value, with one 
minute resolution. When the stopwatch is enabled and the counter under-
flows, an interrupt is generated. 

Like the other peripherals, the RTC can wake up the processor from Sleep 
mode or Deep Sleep mode upon generation of any RTC wakeup event. An 
RTC wakeup event can also wake up the on-chip internal voltage regula-
tor from a powered down state.
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Watchdog Timer
The processor includes a 32-bit timer that can be used to implement a 
software watchdog function. A software watchdog can improve system 
availability by forcing the processor to a known state through generation 
of a hardware reset, nonmaskable interrupt (NMI), or general-purpose 
interrupt, if the timer expires before being reset by software. The pro-
grammer initializes the count value of the timer, enables the appropriate 
interrupt, then enables the timer. Thereafter, the software must reload the 
counter before it counts to zero from the programmed value. This protects 
the system from remaining in an unknown state where software that 
would normally reset the timer has stopped running due to an external 
noise condition or software error.

If configured to generate a hardware reset, the watchdog timer resets both 
the CPU and the peripherals. After a reset, software can determine if the 
watchdog was the source of the hardware reset by interrogating a status bit 
in the watchdog control register.

The timer is clocked by the system clock (SCLK), at a maximum frequency 
of fSCLK. 

Programmable Flags
The processor has 16 bidirectional programmable flag (PF) or general-pur-
pose I/O pins, PF[15:0]. Each pin can be individually configured using 
the flag control, status, and interrupt registers.

• Flag Direction Control register – Specifies the direction of each 
individual PFx pin as input or output.

• Flag Control and Status registers – The processor employs a 
“write-1-to-modify” mechanism that allows any combination of 
individual flags to be modified in a single instruction, without 
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affecting the level of any other flags. Four control registers are pro-
vided. One register is written in order to set flag values, one register 
is written in order to clear flag values, one register is written in 
order to toggle flag values, and one register is written in order to 
specify any number of flag values. Reading the Flag Status register 
allows software to interrogate the sense of the flags.

• Flag Interrupt Mask registers – The two Flag Interrupt Mask regis-
ters allow each individual PFx pin to function as an interrupt to the 
processor. Similar to the two Flag Control registers that are used to 
set and clear individual flag values, one Flag Interrupt Mask regis-
ter sets bits to enable interrupt function, and the other Flag 
Interrupt Mask register clears bits to disable interrupt function. 
The PFx pins defined as inputs can be configured to generate hard-
ware interrupts, while output PFx pins can be triggered by software 
interrupts.

• Flag Interrupt Sensitivity registers – The two Flag Interrupt Sensi-
tivity registers specify whether individual PFx pins are level- or 
edge-sensitive and specify—if edge-sensitive—whether just the ris-
ing edge or both the rising and falling edges of the signal are 
significant. One register selects the type of sensitivity, and one reg-
ister selects which edges are significant for edge sensitivity.

Clock Signals
The processor can be clocked by an external crystal, a sine wave input, or a 
buffered, shaped clock derived from an external clock oscillator.

This external clock connects to the processor’s CLKIN pin. The CLKIN input 
cannot be halted, changed, or operated below the specified frequency dur-
ing normal operation. This clock signal should be a TTL-compatible 
signal.
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The core clock (CCLK) and system peripheral clock (SCLK) are derived from 
the input clock (CLKIN) signal. An on-chip Phase Locked Loop (PLL) is 
capable of multiplying the CLKIN signal by a user-programmable (1x to 
63x) multiplication factor (bounded by specified minimum and maximum 
VCO frequencies). The default multiplier is 10x, but it can be modified by a 
software instruction sequence. On-the-fly frequency changes can be made 
by simply writing to the PLL_DIV register.

All on-chip peripherals are clocked by the system clock (SCLK). The system 
clock frequency is programmable by means of the SSEL[3:0] bits of the 
PLL_DIV register.

Dynamic Power Management
The processor provides four operating modes, each with a different perfor-
mance/power profile. In addition, Dynamic Power Management provides 
the control functions to dynamically alter the processor core supply volt-
age to further reduce power dissipation. Control of clocking to each of the 
peripherals also reduces power consumption. 
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Full On Mode (Maximum Performance)
In the Full On mode, the PLL is enabled, not bypassed, providing the 
maximum operational frequency. This is the normal execution state in 
which maximum performance can be achieved. The processor core and all 
enabled peripherals run at full speed.

Active Mode (Moderate Power Savings)
In the Active mode, the PLL is enabled, but bypassed. Because the PLL is 
bypassed, the processor’s core clock (CCLK) and system clock (SCLK) run at 
the input clock (CLKIN) frequency. In this mode, the CLKIN to VCO multi-
plier ratio can be changed, although the changes are not realized until the 
Full On mode is entered. DMA access is available to appropriately config-
ured L1 memories.

In the Active mode, it is possible to disable the PLL through the PLL 
Control register (PLL_CTL). If disabled, the PLL must be re-enabled before 
transitioning to the Full On or Sleep modes.

Sleep Mode (High Power Savings)
The Sleep mode reduces power dissipation by disabling the clock to the 
processor core (CCLK). The PLL and system clock (SCLK), however, con-
tinue to operate in this mode. Typically an external event or RTC activity 
will wake up the processor. When in the Sleep mode, assertion of any 
interrupt causes the processor to sense the value of the bypass bit (BYPASS) 
in the PLL Control register (PLL_CTL). If bypass is disabled, the processor 
transitions to the Full On mode. If bypass is enabled, the processor transi-
tions to the Active mode.

When in the Sleep mode, system DMA access to L1 memory is not 
supported.
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Deep Sleep Mode (Maximum Power Savings)
The Deep Sleep mode maximizes power savings by disabling the processor 
core and synchronous system clocks (CCLK and SCLK). Asynchronous sys-
tems, such as the RTC, may still be running, but cannot access internal 
resources or external memory. This powered-down mode can only be 
exited by assertion of the reset interrupt or by an asynchronous interrupt 
generated by the RTC. When in Deep Sleep mode, an RTC asynchronous 
interrupt causes the processor to transition to the Active mode. Assertion 
of RESET while in Deep Sleep mode causes the processor to transition to 
the Full On mode.

Hibernate State 
For lowest possible power dissipation, this state allows the internal supply 
(VDDINT) to be powered down, while keeping the I/O supply (VDDEXT) 
running. Although not strictly an operating mode like the four modes 
detailed above, it is illustrative to view it as such.

Voltage Regulation
The processor provides an on-chip voltage regulator that can generate 
internal voltage levels (0.8 V to 1.2 V) from an external 2.25 V to 3.6 V 
supply. Figure 1-3 shows the typical external components required to 
complete the power management system. The regulator controls the inter-
nal logic voltage levels and is programmable with the Voltage Regulator 
Control register (VR_CTL) in increments of 50 mV. To reduce standby 
power consumption, the internal voltage regulator can be programmed to 
remove power to the processor core while keeping I/O power supplied. 
While in this state, VDDEXT can still be applied, eliminating the need for 
external buffers. The regulator can also be disabled and bypassed at the 
user’s discretion.
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Boot Modes
The processor has two mechanisms for automatically loading internal L1 
instruction memory after a reset. A third mode is provided to execute from 
external memory, bypassing the boot sequence:

• Execute from 16-bit external memory – Execution starts from 
address 0x2000 0000 with 16-bit packing. The boot ROM is 
bypassed in this mode. All configuration settings are set for the 
slowest device possible (3-cycle hold time; 15-cycle R/W access 
times; 4-cycle setup).

• Boot from 8-bit or 16-bit external flash memory – The flash boot 
routine located in boot ROM memory space is set up using Asyn-
chronous Memory Bank 0. All configuration settings are set for the 
slowest device possible (3-cycle hold time; 15-cycle R/W access 
times; 4-cycle setup).

• Boot from SPI serial EEPROM (8-, 16-, or 24-bit addressable) – 
The SPI uses the PF2 output pin to select a single SPI EEPROM 
device, submits successive read commands at addresses 0x00, 
0x0000, and 0x000000 until a valid 8-, 16-, or 24-bit addressable 
EEPROM is detected, and begins clocking data into the beginning 
of L1 instruction memory.

Figure 1-3. Voltage Regulator Circuit
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• Boot from SPI host (slave mode) – A user-defined programmable 
flag pin is an output on the Blackfin processor and an input on the 
SPI host device. This flag allows the processor to hold off the host 
device from sending data during certain sections of the boot pro-
cess. When this flag is de-asserted, the host can continue to send 
bytes to the processor.

For each of the boot modes, a 10-byte header is first read from an external 
memory device. The header specifies the number of bytes to be transferred 
and the memory destination address. Multiple memory blocks may be 
loaded by any boot sequence. Once all blocks are loaded, program execu-
tion commences from the start of L1 instruction SRAM.

In addition, bit 4 of the Reset Configuration register can be set by applica-
tion code to bypass the normal boot sequence during a software reset. For 
this case, the processor jumps directly to the beginning of L1 instruction 
memory.

Instruction Set Description
The ADSP-BF53x processor family assembly language instruction set 
employs an algebraic syntax designed for ease of coding and readability. 
The instructions have been specifically tuned to provide a flexible, densely 
encoded instruction set that compiles to a very small final memory size. 
The instruction set also provides fully featured multifunction instructions 
that allow the programmer to use many of the processor core resources in 
a single instruction. Coupled with many features more often seen on 
microcontrollers, this instruction set is very efficient when compiling C 
and C++ source code. In addition, the architecture supports both user 
(algorithm/application code) and supervisor (O/S kernel, device drivers, 
debuggers, ISRs) modes of operation, allowing multiple levels of access to 
core resources.
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The assembly language, which takes advantage of the processor’s unique 
architecture, offers these advantages:

• Seamlessly integrated DSP/CPU features optimized for both 8-bit 
and 16-bit operations

• A multi-issue load/store modified Harvard architecture, which sup-
ports two 16-bit MAC or four 8-bit ALU + two load/store + two 
pointer updates per cycle

• All registers, I/O, and memory mapped into a unified 4G byte 
memory space, providing a simplified programming model

• Microcontroller features, such as arbitrary bit and bit field manipu-
lation, insertion, and extraction; integer operations on 8-, 16-, and 
32-bit data types; and separate user and supervisor stack pointers.

Code density enhancements include intermixing of 16- and 32-bit 
instructions with no mode switching or code segregation. Frequently used 
instructions are encoded in 16 bits.

Development Tools
• Create, compile, assemble, and link application programs written 

in C++, C, and assembly

• Load, run, step, halt, and set breakpoints in application programs

• Read and write data and program memory

• Read and write core and peripheral registers

• Plot memory
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The processor is supported by a complete set of software and hardware 
development tools, including Analog Devices’ emulators and the Cross-
Core Embedded Studio or VisualDSP++ development environment. (The 
emulator hardware that supports other Analog Devices processors also 
emulates the processor.)

The development environments support advanced application code devel-
opment and debug with features such as:

Analog Devices DSP emulators use the IEEE 1149.1 JTAG test access 
port to monitor and control the target board processor during emulation. 
The emulator provides full speed emulation, allowing inspection and 
modification of memory, registers, and processor stacks. Nonintrusive 
in-circuit emulation is assured by the use of the processor JTAG inter-
face—the emulator does not affect target system loading or timing. 

Software tools also include Board Support Packages (BSPs). Hardware 
tools also include standalone evaluation systems (boards and extenders). In 
addition to the software and hardware development tools available from 
Analog Devices, third parties provide a wide range of tools supporting the 
Blackfin processors. Third party software tools include DSP libraries, 
real-time operating systems, and block diagram design tools.



Development Tools

1-28 ADSP-BF533 Blackfin Processor Hardware Reference
 



ADSP-BF533 Blackfin Processor Hardware Reference 2-1 
 

2 COMPUTATIONAL UNITS

The processor’s computational units perform numeric processing for DSP 
and general control algorithms. The six computational units are two arith-
metic/logic units (ALUs), two multiplier/accumulator (multiplier) units, a 
shifter, and a set of video ALUs. These units get data from registers in the 
Data Register File. Computational instructions for these units provide 
fixed-point operations, and each computational instruction can execute 
every cycle.

The computational units handle different types of operations. The ALUs 
perform arithmetic and logic operations. The multipliers perform 
multiplication and execute multiply/add and multiply/subtract opera-
tions. The shifter executes logical shifts and arithmetic shifts and performs 
bit packing and extraction. The video ALUs perform Single Instruction, 
Multiple Data (SIMD) logical operations on specific 8-bit data operands.

Data moving in and out of the computational units goes through the Data 
Register File, which consists of eight registers, each 32 bits wide. In opera-
tions requiring 16-bit operands, the registers are paired, providing sixteen 
possible 16-bit registers.

The processor’s assembly language provides access to the Data Register 
File. The syntax lets programs move data to and from these registers and 
specify a computation’s data format at the same time. 

Figure 2-1 provides a graphical guide to the other topics in this chapter. 
An examination of each computational unit provides details about its 
operation and is followed by a summary of computational instructions. 
Studying the details of the computational units, register files, and data 
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buses leads to a better understanding of proper data flow for 
computations. Next, details about the processor’s advanced parallelism 
reveal how to take advantage of multifunction instructions.

Figure 2-1 shows the relationship between the Data Register File and the 
computational units—multipliers, ALUs, and shifter.

Single function multiplier, ALU, and shifter instructions have unrestricted 
access to the data registers in the Data Register File. Multifunction opera-
tions may have restrictions that are described in the section for that 
particular operation.

Figure 2-1. Processor Core Architecture
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Two additional registers, A0 and A1, provide 40-bit accumulator results. 
These registers are dedicated to the ALUs and are used primarily for mul-
tiply-and-accumulate functions.

The traditional modes of arithmetic operations, such as fractional and 
integer, are specified directly in the instruction. Rounding modes are set 
from the ASTAT register, which also records status and conditions for the 
results of the computational operations.

Using Data Formats
ADSP-BF53x processors are primarily 16-bit, fixed-point machines. Most 
operations assume a two’s-complement number representation, while oth-
ers assume unsigned numbers or simple binary strings. Other instructions 
support 32-bit integer arithmetic, with further special features supporting 
8-bit arithmetic and block floating point. For detailed information about 
each number format, see Appendix D, “Numeric Formats”

In the ADSP-BF53x processor family arithmetic, signed numbers are 
always in two’s-complement format. These processors do not use 
signed-magnitude, one’s-complement, binary-coded decimal (BCD), or 
excess-n formats. 

Binary String
The binary string format is the least complex binary notation; in it, 16 bits 
are treated as a bit pattern. Examples of computations using this format 
are the logical operations NOT, AND, OR, XOR. These ALU operations 
treat their operands as binary strings with no provision for sign bit or 
binary point placement.
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Unsigned
Unsigned binary numbers may be thought of as positive and having nearly 
twice the magnitude of a signed number of the same length. The processor 
treats the least significant words of multiple precision numbers as 
unsigned numbers.

Signed Numbers: Two’s-Complement
In ADSP-BF53x processor arithmetic, the word signed refers to 
two’s-complement numbers. Most ADSP-BF53x processor family opera-
tions presume or support two’s-complement arithmetic.

Fractional Representation: 1.15
ADSP-BF53x processor arithmetic is optimized for numerical values in a 
fractional binary format denoted by 1.15 (“one dot fifteen”). In the 1.15 
format, 1 sign bit (the Most Significant Bit (MSB)) and 15 fractional bits 
represent values from –1 to 0.999969.

Figure 2-2 shows the bit weighting for 1.15 numbers as well as some 
examples of 1.15 numbers and their decimal equivalents.

Figure 2-2. Bit Weighting for 1.15 Numbers
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Register Files
The processor’s computational units have three definitive register 
groups—a Data Register File, a Pointer Register File, and set of Data 
Address Generator (DAG) registers.

• The Data Register File receives operands from the data buses for 
the computational units and stores computational results. 

• The Pointer Register File has pointers for addressing operations. 

• The DAG registers are dedicated registers that manage zero-over-
head circular buffers for DSP operations.

For more information, see Chapter 5, “Data Address Generators”.

The processor register files appear in Figure 2-3.

Figure 2-3. Register Files
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 In the processor, a word is 32 bits long; H denotes the high order 
16 bits of a 32-bit register; L denotes the low order 16 bits of a 
32-bit register. For example, A0.W contains the lower 32 bits of the 
40-bit A0 register; A0.L contains the lower 16 bits of A0.W, and A0.H 
contains the upper 16 bits of A0.W.

Data Register File
The Data Register File consists of eight registers, each 32 bits wide. Each 
register may be viewed as a pair of independent 16-bit registers. Each is 
denoted as the low half or high half. Thus the 32-bit register R0 may be 
regarded as two independent register halves, R0.L and R0.H.

Three separate buses (two read, one write) connect the Register File to the 
L1 data memory, each bus being 32 bits wide. Transfers between the Data 
Register File and the data memory can move up to four 16-bit words of 
valid data in each cycle.

Accumulator Registers 
In addition to the Data Register File, the processor has two dedicated, 
40-bit accumulator registers. Each can be referred to as its 16-bit low half 
(An.L) or high half (An.H) plus its 8-bit extension (An.X). Each can also be 
referred to as a 32-bit register (An.W) consisting of the lower 32 bits, or as 
a complete 40-bit result register (An). 

Pointer Register File
The general-purpose Address Pointer registers, also called P-registers, are 
organized as:

• 6-entry, P-register files P[5:0]

• Frame Pointers (FP) used to point to the current procedure’s activa-
tion record
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• Stack Pointer registers (SP) used to point to the last used location 
on the runtime stack. See mode dependent registers in Chapter 3, 
“Operating Modes and States”.

P-registers are 32 bits wide. Although P-registers are primarily used for 
address calculations, they may also be used for general integer arithmetic 
with a limited set of arithmetic operations; for instance, to maintain coun-
ters. However, unlike the Data registers, P-register arithmetic does not 
affect the Arithmetic Status (ASTAT) register status flags.

DAG Register Set 
DSP instructions primarily use the Data Address Generator (DAG) regis-
ter set for addressing. The DAG register set consists of these registers:

• I[3:0] contain index addresses

• M[3:0] contain modify values

• B[3:0] contain base addresses

• L[3:0] contain length values

All DAG registers are 32 bits wide.

The I (Index) registers and B (Base) registers always contain addresses of 
8-bit bytes in memory. The Index registers contain an effective address. 
The M (Modify) registers contain an offset value that is added to one of 
the Index registers or subtracted from it.

The B and L (Length) registers define circular buffers. The B register con-
tains the starting address of a buffer, and the L register contains the length 
in bytes. Each L and B register pair is associated with the corresponding I 
register. For example, L0 and B0 are always associated with I0. However, 
any M register may be associated with any I register. For example, I0 may 
be modified by M3. For more information, see Chapter 5, “Data Address 
Generators”.
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Register File Instruction Summary
Table 2-1 lists the register file instructions. For more information about 
assembly language syntax, see Blackfin Processor Programming Reference. 

In Table 2-1, note the meaning of these symbols:

• Allreg denotes: R[7:0], P[5:0], SP, FP, I[3:0], M[3:0], 
B[3:0], L[3:0], A0.X, A0.W, A1.X, A1.W, ASTAT, RETS, RETI, 

RETX, RETN, RETE, LC[1:0], LT[1:0], LB[1:0], USP, SEQSTAT, 
SYSCFG, CYCLES, and CYCLES2.

• An denotes either ALU Result register A0 or A1.

• Dreg denotes any Data Register File register.

• Sysreg denotes the system registers: ASTAT, SEQSTAT, SYSCFG, RETI, 
RETX, RETN, RETE, or RETS, LC[1:0], LT[1:0], LB[1:0], CYCLES, and 
CYCLES2.

• Preg denotes any Pointer register, FP, or SP register.

• Dreg_even denotes R0,R2,R4, or R6.

• Dreg_odd denotes R1,R3,R5, or R7.

• DPreg denotes any Data Register File register or any Pointer regis-
ter, FP, or SP register.

• Dreg_lo denotes the lower 16 bits of any Data Register File 
register. 

• Dreg_hi denotes the upper 16 bits of any Data Register File 
register.

• An.L denotes the lower 16 bits of Accumulator A0.W or A1.W.

• An.H denotes the upper 16 bits of Accumulator A0.W or A1.W.
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• Dreg_byte denotes the low order 8 bits of each Data register.

• Option (X) denotes sign extended.

• Option (Z) denotes zero extended.

• * Indicates the flag may be set or cleared, depending on the result 
of the instruction.

• ** Indicates the flag is cleared.

• – Indicates no effect.

Table 2-1. Register File Instruction Summary  

Instruction ASTAT Status Flags

AZ AN AC0
AC0_COPY
AC1

AV0
AVS

AV1
AV1S

CC V
V_COPY
VS

allreg = allreg ; 1 – – – – – – –

An = An ; – – – – – – –

An = Dreg ; – – – – – – –

Dreg_even = A0 ; * * – – – – *

Dreg_odd = A1 ; * * – – – – *

Dreg_even = A0, 
Dreg_odd = A1 ;

* * – – – – *

Dreg_odd = A1, 
Dreg_even = A0 ;

* * – – – – *

IF CC DPreg = DPreg ; – – – – – – –

IF ! CC DPreg = DPreg ; – – – – – – –

Dreg = Dreg_lo (Z) ; * ** ** – – – **/–

Dreg = Dreg_lo (X) ; * * ** – – – **/–

An.X = Dreg_lo ; – – – – – – –

Dreg_lo = An.X ; – – – – – – –
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Data Types
The processor supports 32-bit words, 16-bit half words, and bytes. The 
32- and 16-bit words can be integer or fractional, but bytes are always 
integers. Integer data types can be signed or unsigned, but fractional data 
types are always signed.

Table 2-2 illustrates the formats for data that resides in memory, in the 
register file, and in the accumulators. In the table, the letter d represents 
one bit, and the letter s represents one signed bit.

An.L = Dreg_lo ; – – – – – – –

An.H = Dreg_hi ; – – – – – – –

Dreg_lo = A0 ; * * – – – – *

Dreg_hi = A1 ; * * – – – – *

Dreg_hi = A1 ; 
Dreg_lo = A0 ;

* * – – – – *

Dreg_lo = A0 ; 
Dreg_hi = A1 ;

* * – – – – *

Dreg = Dreg_byte (Z) ; * ** ** – – – **/–

Dreg = Dreg_byte (X) ; * * ** – – – **/–

1   Warning: Not all register combinations are allowed. For details, see the functional description of 
the Move Register instruction in Blackfin Processor Programming Reference.

Table 2-1. Register File Instruction Summary (Cont’d) 

Instruction ASTAT Status Flags

AZ AN AC0
AC0_COPY
AC1

AV0
AVS

AV1
AV1S

CC V
V_COPY
VS
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Some instructions manipulate data in the registers by sign-extending or 
zero-extending the data to 32 bits:

• Instructions zero-extend unsigned data

• Instructions sign-extend signed 16-bit half words and 8-bit bytes

Other instructions manipulate data as 32-bit numbers. In addition, two 
16-bit half words or four 8-bit bytes can be manipulated as 32-bit values. 
For details, refer to the instructions in Blackfin Processor Programming 
Reference.

In Table 2-2, note the meaning of these symbols:

• s = sign bit(s)

• d = data bit(s)

• “.” = decimal point by convention; however, a decimal point does 
not literally appear in the number.

• Italics denotes data from a source other than adjacent bits.

Table 2-2. Data Formats

Format Representation in Memory Representation in 32-bit Register

32.0 Unsigned 
Word

dddd dddd dddd dddd dddd 
dddd dddd dddd 

dddd dddd dddd dddd dddd dddd dddd 
dddd

32.0 Signed 
Word

sddd dddd dddd dddd dddd 
dddd dddd dddd

sddd dddd dddd dddd dddd dddd dddd 
dddd

16.0 Unsigned 
Half Word

dddd dddd dddd dddd 0000 0000 0000 0000 dddd dddd dddd 
dddd

16.0 Signed 
Half Word

sddd dddd dddd dddd ssss ssss ssss ssss sddd dddd dddd dddd

8.0 Unsigned 
Byte

dddd dddd 0000 0000 0000 0000 0000 0000 dddd 
dddd

8.0 Signed 
Byte

sddd dddd ssss ssss ssss ssss ssss ssss sddd dddd
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Endianess
Both internal and external memory are accessed in little endian byte order. 
For more information, see “Memory Transaction Model” on page -65. 

ALU Data Types
Operations on each ALU treat operands and results as either 16- or 32-bit 
binary strings, except the signed division primitive (DIVS). ALU result sta-
tus bits treat the results as signed, indicating status with the overflow flags 
(AV0, AV1) and the negative flag (AN). Each ALU has its own sticky over-
flow flag, AV0S and AV1S. Once set, these bits remain set until cleared by 
writing directly to the ASTAT register. An additional V flag is set or cleared 

0.16 Unsigned 
Fraction

.dddd dddd dddd dddd 0000 0000 0000 0000 .dddd dddd dddd 
dddd

1.15 Signed 
Fraction

s.ddd dddd dddd dddd ssss ssss ssss ssss s.ddd dddd dddd dddd

0.32 Unsigned 
Fraction

.dddd dddd dddd dddd dddd 
dddd dddd dddd

.dddd dddd dddd dddd dddd dddd dddd 
dddd

1.31 Signed 
Fraction

s.ddd dddd dddd dddd dddd 
dddd dddd dddd

s.ddd dddd dddd dddd dddd dddd dddd 
dddd

Packed 8.0 
Unsigned Byte

dddd dddd dddd dddd dddd 
dddd dddd dddd

dddd dddd dddd dddd dddd dddd dddd dddd

Packed 0.16 
Unsigned Frac-
tion

.dddd dddd dddd dddd .dddd 
dddd dddd dddd

.dddd dddd dddd dddd .dddd dddd dddd 
dddd

Packed 1.15 
Signed 
Fraction

s.ddd dddd dddd dddd s.ddd 
dddd dddd dddd

s.ddd dddd dddd dddd s.ddd dddd dddd dddd

Table 2-2. Data Formats (Cont’d)

Format Representation in Memory Representation in 32-bit Register
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depending on the transfer of the result from both accumulators to the 
register file. Furthermore, the sticky VS bit is set with the V bit and 
remains set until cleared. 

The logic of the overflow bits (V, VS, AV0, AV0S, AV1, AV1S) is based on 
two’s-complement arithmetic. A bit or set of bits is set if the Most Signifi-
cant Bit (MSB) changes in a manner not predicted by the signs of the 
operands and the nature of the operation. For example, adding two posi-
tive numbers must generate a positive result; a change in the sign bit 
signifies an overflow and sets AVn, the corresponding overflow flags. Add-
ing a negative and a positive number may result in either a negative or 
positive result, but cannot cause an overflow.

The logic of the carry bits (AC0, AC1) is based on unsigned magnitude 
arithmetic. The bit is set if a carry is generated from bit 16 (the MSB). 
The carry bits (AC0, AC1) are most useful for the lower word portions of a 
multiword operation.

ALU results generate status information. For more information about 
using ALU status, see “ALU Instruction Summary” on page 2-29.

Multiplier Data Types
Each multiplier produces results that are binary strings. The inputs are 
interpreted according to the information given in the instruction itself 
(whether it is signed multiplied by signed, unsigned multiplied by 
unsigned, a mixture, or a rounding operation). The 32-bit result from the 
multipliers is assumed to be signed; it is sign-extended across the full 
40-bit width of the A0 or A1 registers.

The processor supports two modes of format adjustment: the fractional 
mode for fractional operands (1.15 format with 1 sign bit and 15 frac-
tional bits) and the integer mode for integer operands (16.0 format).
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When the processor multiplies two 1.15 operands, the result is a 2.30        
(2 sign bits and 30 fractional bits) number. In the fractional mode, the 
multiplier automatically shifts the multiplier product left one bit before 
transferring the result to the multiplier result register (A0, A1). This shift of 
the redundant sign bit causes the multiplier result to be in 1.31 format, 
which can be rounded to 1.15 format. The resulting format appears in 
Figure 2-4.

In the integer mode, the left shift does not occur. For example, if the oper-
ands are in the 16.0 format, the 32-bit multiplier result would be in 32.0 
format. A left shift is not needed and would change the numerical 
representation. This result format appears in Figure 2-5.

Multiplier results generate status information when they update accumu-
lators or when they are transferred to a destination register in the register 
file. For more information, see “Multiplier Instruction Summary” on 
page 2-40.

Shifter Data Types
Many operations in the shifter are explicitly geared to signed (two’s-com-
plement) or unsigned values—logical shifts assume unsigned magnitude 
or binary string values, and arithmetic shifts assume two’s-complement 
values. 

The exponent logic assumes two’s-complement numbers. The exponent 
logic supports block floating point, which is also based on two’s-comple-
ment fractions.

Shifter results generate status information. For more information about 
using shifter status, see “Shifter Instruction Summary” on page 2-55. 
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Arithmetic Formats Summary
Table 2-3, Table 2-4, Table 2-5, and Table 2-6 summarize some of the 
arithmetic characteristics of computational operations.

Table 2-3. ALU Arithmetic Formats

Operation Operand Formats Result Formats

Addition Signed or unsigned Interpret flags

Subtraction Signed or unsigned Interpret flags

Logical Binary string Same as operands

Division Explicitly signed or unsigned Same as operands

Table 2-4. Multiplier Fractional Modes Formats

Operation Operand Formats Result Formats

Multiplication 1.15 explicitly signed or 
unsigned

2.30 shifted to 1.31

Multiplication/Addition 1.15 explicitly signed or 
unsigned

2.30 shifted to 1.31

Multiplication/Subtraction 1.15 explicitly signed or 
unsigned

2.30 shifted to 1.31

Table 2-5. Multiplier Arithmetic Integer Modes Formats

Operation Operand Formats Result Formats

Multiplication 16.0 explicitly signed or 
unsigned

32.0 not shifted

Multiplication/Addition 16.0 explicitly signed or 
unsigned

32.0 not shifted

Multiplication/Subtraction 16.0 explicitly signed or 
unsigned

32.0 not shifted
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Using Multiplier Integer and Fractional Formats
For multiply-and-accumulate functions, the processor provides two 
choices—fractional arithmetic for fractional numbers (1.15) and integer 
arithmetic for integers (16.0).

For fractional arithmetic, the 32-bit product output is format adjusted— 
sign-extended and shifted one bit to the left—before being added to accu-
mulator A0 or A1. For example, bit 31 of the product lines up with bit 32 
of A0 (which is bit 0 of A0.X), and bit 0 of the product lines up with bit 1 
of A0 (which is bit 1 of A0.W). The Least Significant Bit (LSB) is zero 
filled. The fractional multiplier result format appears in Figure 2-4.

For integer arithmetic, the 32-bit product register is not shifted before 
being added to A0 or A1. Figure 2-5 shows the integer mode result 
placement. 

With either fractional or integer operations, the multiplier output product 
is fed into a 40-bit adder/subtracter which adds or subtracts the new prod-
uct with the current contents of the A0 or A1 register to produce the final 
40-bit result.

Table 2-6. Shifter Arithmetic Formats

Operation Operand Formats Result Formats

Logical Shift Unsigned binary string Same as operands

Arithmetic Shift Signed Same as operands

Exponent Detect Signed Same as operands
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Figure 2-4. Fractional Multiplier Results Format

Figure 2-5. Integer Multiplier Results Format

31 31 31 31 31 31 31 31 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 167 6 5 4 3 2 1 0

P SIGN,
7 BITS MULTIPLIER  P  OUTPUT

A0.X A0.W

SHIFTED
OUT

ZERO
FILLED

31 31 31 31 31 31 31 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 1 1 1 167 6 5 4 3 2 1 0

P SIGN,
8 BITS MULTIPLIER  P OUTPUT

A0.X A0.W
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Rounding Multiplier Results
On many multiplier operations, the processor supports multiplier results 
rounding (RND option). Rounding is a means of reducing the precision of a 
number by removing a lower order range of bits from that number’s repre-
sentation and possibly modifying the remaining portion of the number to 
more accurately represent its former value. For example, the original num-
ber will have N bits of precision, whereas the new number will have only 
M bits of precision (where N>M). The process of rounding, then, removes 
N – M bits of precision from the number.

The RND_MOD bit in the ASTAT register determines whether the RND option 
provides biased or unbiased rounding. For unbiased rounding, set RND_MOD 
bit = 0. For biased rounding, set RND_MOD bit = 1. 

 For most algorithms, unbiased rounding is preferred.

Unbiased Rounding

The convergent rounding method returns the number closest to the origi-
nal. In cases where the original number lies exactly halfway between two 
numbers, this method returns the nearest even number, the one contain-
ing an LSB of 0. For example, when rounding the 3-bit, 
two’s-complement fraction 0.25 (binary 0.01) to the nearest 2-bit, 
two’s-complement fraction, the result would be 0.0, because that is the 
even-numbered choice of 0.5 and 0.0. Since it rounds up and down based 
on the surrounding values, this method is called unbiased rounding. 

Unbiased rounding uses the ALU’s capability of rounding the 40-bit result 
at the boundary between bit 15 and bit 16. Rounding can be specified as 
part of the instruction code. When rounding is selected, the output regis-
ter contains the rounded 16-bit result; the accumulator is never rounded.
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The accumulator uses an unbiased rounding scheme. The conventional 
method of biased rounding adds a 1 into bit position 15 of the adder 
chain. This method causes a net positive bias because the midway value 
(when A0.L/A1.L = 0x8000) is always rounded upward.

The accumulator eliminates this bias by forcing bit 16 in the result output 
to 0 when it detects this midway point. Forcing bit 16 to 0 has the effect 
of rounding odd A0.L/A1.L values upward and even values downward, 
yielding a large sample bias of 0, assuming uniformly distributed values.

The following examples use x to represent any bit pattern (not all zeros). 
The example in Figure 2-6 shows a typical rounding operation for A0; the 
example also applies for A1. 

The compensation to avoid net bias becomes visible when all lower 15 bits 
are 0 and bit 15 is 1 (the midpoint value) as shown in Figure 2-7. 

Figure 2-6. Typical Unbiased Multiplier Rounding

1 X X X X X X X X X X X X X X XX X X X X X X X 0 0 1 0 0 1 0 1X X X X X X X X

A0.X A0.W

1 . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .. . . . . . . .

0 X X X X X X X X X X X X X X XX X X X X X X X 0 0 1 0 0 1 1 0X X X X X X X X

UNROUNDED VALUE:

ADD 1 AND CARRY:

ROUNDED VALUE:
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In Figure 2-7, A0 bit 16 is forced to 0. This algorithm is employed on 
every rounding operation, but is evident only when the bit patterns shown 
in the lower 16 bits of the next example are present.

Biased Rounding

The round-to-nearest method also returns the number closest to the origi-
nal. However, by convention, an original number lying exactly halfway 
between two numbers always rounds up to the larger of the two. For 
example, when rounding the 3-bit, two’s-complement fraction 0.25 
(binary 0.01) to the nearest 2-bit, two’s-complement fraction, this method 
returns 0.5 (binary 0.1). The original fraction lies exactly midway between 
0.5 and 0.0 (binary 0.0), so this method rounds up. Because it always 
rounds up, this method is called biased rounding.

Figure 2-7. Avoiding Net Bias in Unbiased Multiplier Rounding

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0X X X X X X X X 0 1 1 0 0 1 1 0X X X X X X X X

UNROUNDED VALUE:

A0.X A0.W

1 . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .. . . . . . . .

ADD 1 AND CARRY:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0X X X X X X X X 0 1 1 0 0 1 1 0X X X X X X X X

ROUNDED VALUE:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0X X X X X X X X 0 1 1 0 0 1 1 1X X X X X X X X

A0 BIT 16 = 1:
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The RND_MOD bit in the ASTAT register enables biased rounding. When the 
RND_MOD bit is cleared, the RND option in multiplier instructions uses the 
normal, unbiased rounding operation, as discussed in “Unbiased Round-
ing” on page 2-18.

When the RND_MOD bit is set (=1), the processor uses biased rounding 
instead of unbiased rounding. When operating in biased rounding mode, 
all rounding operations with A0.L/A1.L set to 0x8000 round up, rather 
than only rounding odd values up. For an example of biased rounding, see 
Table 2-7.

Biased rounding affects the result only when the A0.L/A1.L register con-
tains 0x8000; all other rounding operations work normally. This mode 
allows more efficient implementation of bit specified algorithms that use 
biased rounding (for example, the Global System for Mobile Communica-
tions (GSM) speech compression routines). 

Truncation

Another common way to reduce the significant bits representing a number 
is to simply mask off the N – M lower bits. This process is known as trun-
cation and results in a relatively large bias. Instructions that do not 
support rounding revert to truncation. The RND_MOD bit in ASTAT has no 
effect on truncation.

Table 2-7. Biased Rounding in Multiplier Operation

A0/A1 Before RND Biased RND Result Unbiased RND Result

0x00 0000 8000 0x00 0001 8000 0x00 0000 0000

0x00 0001 8000 0x00 0002 0000 0x00 0002 0000

0x00 0000 8001 0x00 0001 0001 0x00 0001 0001

0x00 0001 8001 0x00 0002 0001 0x00 0002 0001

0x00 0000 7FFF 0x00 0000 FFFF 0x00 0000 FFFF

0x00 0001 7FFF 0x00 0001 FFFF 0x00 0001 FFFF
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Special Rounding Instructions
The ALU provides the ability to round the arithmetic results directly into 
a data register with biased or unbiased rounding as described above. It also 
provides the ability to round on different bit boundaries. The options 
RND12, RND, and RND20 extract 16-bit values from bit 12, bit 16 and bit 20, 
respectively, and perform biased rounding regardless of the state of the 
RND_MOD bit in ASTAT.

For example:

R3.L = R4 (RND) ;

performs biased rounding at bit 16, depositing the result in a half word.

R3.L = R4 + R5 (RND12) ;

performs an addition of two 32-bit numbers, biased rounding at bit 12, 
depositing the result in a half word.

R3.L = R4 + R5 (RND20) ;

performs an addition of two 32-bit numbers, biased rounding at bit 20, 
depositing the result in a half word.

Using Computational Status
The multiplier, ALU, and shifter update the overflow and other status 
flags in the processor’s Arithmetic Status (ASTAT) register. To use status 
conditions from computations in program sequencing, use conditional 
instructions to test the CC flag in the ASTAT register after the instruction 
executes. This method permits monitoring each instruction’s outcome. 
The ASTAT register is a 32-bit register, with some bits reserved. To ensure 
compatibility with future implementations, writes to this register should 
write back the values read from these reserved bits.
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ASTAT Register
Figure 2-8 describes the Arithmetic Status (ASTAT) register. The processor 
updates the status bits in ASTAT, indicating the status of the most recent 
ALU, multiplier, or shifter operation.

Arithmetic Logic Unit (ALU)
The two ALUs perform arithmetic and logical operations on fixed-point 
data. ALU fixed-point instructions operate on 16-, 32-, and 40-bit 
fixed-point operands and output 16-, 32-, or 40-bit fixed-point results. 
ALU instructions include:

• Fixed-point addition and subtraction of registers

• Addition and subtraction of immediate values

• Accumulation and subtraction of multiplier results

• Logical AND, OR, NOT, XOR, bitwise XOR, Negate

• Functions: ABS, MAX, MIN, Round, division primitives

ALU Operations
Primary ALU operations occur on ALU0, while parallel operations occur 
on ALU1, which performs a subset of ALU0 operations.
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Figure 2-8. Arithmetic Status Register

00 0

VS (Sticky Dreg Overflow)

00 0 0 0 0 0 0 0 0 0 0 0

Arithmetic Status Register (ASTAT)

0 - Last result written to A0
has not overflowed

1 - Last result written to A0
has overflowed

AV0 (A0 Overflow)

Reset = 0x0000 0000

Sticky version of AV0

AV0S (Sticky A0 Overflow)

0 - Last result written to A1
has not overflowed

1 - Last result written to A1
has overflowed

AV1 (A1 Overflow)

Sticky version of AV1
AV1S (Sticky A1 Overflow)

0 - Last result written from
ALU to Data Register File
register has not overflowed

1 - Last result has overflowed

V (Dreg Overflow)

Sticky version of V

AN (Negative Result)

AQ (Quotient)

AZ (Zero Result) 

RND_MOD (Rounding Mode)

AC1 (ALU1 Carry)

0 - Operation in ALU1 does not
generate a carry

1 - Operation generates a carry

AC0 (ALU0 Carry)

0 - Unbiased rounding
1 - Biased rounding

0 - Result from last ALU0,
ALU1, or shifter operation
is not zero

1 - Result is zero

0 - Result from last ALU0,
ALU1, or shifter operation
is not negative

1 - Result is negative

Multipurpose flag, used 
primarily to hold resolution of 
arithmetic comparisons. Also 
used by some shifter instruc-
tions to hold rotating bits.

Quotient bit

CC (Condition Code)

0 - Operation in ALU0 does not
generate a carry

1 - Operation generates a
carry

AC0_COPY

Identical to bit 12

V_COPY

Identical to bit 24

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
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Table 2-8 describes the possible inputs and outputs of each ALU.

Combining operations in both ALUs can result in four 16-bit results, two 
32-bit results, or two 40-bit results generated in a single instruction. 

Single 16-Bit Operations

In single 16-bit operations, any two 16-bit register halves may be used as 
the input to the ALU. An addition, subtraction, or logical operation pro-
duces a 16-bit result that is deposited into an arbitrary destination register 
half. ALU0 is used for this operation, because it is the primary resource for 
ALU operations.

For example:

R3.H = R1.H + R2.L (NS) ; 

adds the 16-bit contents of R1.H (R1 high half) to the contents of R2.L (R2 
low half) and deposits the result in R3.H (R3 high half) with no saturation.

Table 2-8. Inputs and Outputs of Each ALU

Input Output

Two or four 16-bit operands One or two 16-bit results

Two 32-bit operands One 32-bit result

32-bit result from the multiplier Combination of 32-bit result from the multiplier 
with a 40-bit accumulation result
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Dual 16-Bit Operations

In dual 16-bit operations, any two 32-bit registers may be used as the 
input to the ALU, considered as pairs of 16-bit operands. An addition, 
subtraction, or logical operation produces two 16-bit results that are 
deposited into an arbitrary 32-bit destination register. ALU0 is used for 
this operation, because it is the primary resource for ALU operations.

For example:

R3 = R1 +|– R2 (S) ; 

adds the 16-bit contents of R2.H (R2 high half) to the contents of R1.H (R1 
high half) and deposits the result in R3.H (R3 high half) with saturation. 

The instruction also subtracts the 16-bit contents of R2.L (R2 low half) 
from the contents of R1.L (R1 low half) and deposits the result in R3.L (R3 
low half) with saturation (see Figure 2-10).

Quad 16-Bit Operations

In quad 16-bit operations, any two 32-bit registers may be used as the 
inputs to ALU0 and ALU1, considered as pairs of 16-bit operands. A 
small number of addition or subtraction operations produces four 16-bit 
results that are deposited into two arbitrary, 32-bit destination registers. 
Both ALU0 and ALU1 are used for this operation. Because there are only 
two 32-bit data paths from the Data Register File to the arithmetic units, 
the same two pairs of 16-bit inputs are presented to ALU1 as to ALU0. 
The instruction construct is identical to that of a dual 16-bit operation, 
and input operands must be the same for both ALUs.

For example:

R3 = R0 +|+ R1, R2 = R0 –|– R1 (S) ;

performs four operations: 
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• Adds the 16-bit contents of R1.H (R1 high half) to the 16-bit con-
tents of R0.H (R0 high half) and deposits the result in R3.H with 
saturation.

• Adds R1.L to R0.L and deposits the result in R3.L with saturation. 

• Subtracts the 16-bit contents of R1.H (R1 high half) from the 16-bit 
contents of the R0.H (R0 high half) and deposits the result in R2.H 
with saturation.

• Subtracts R1.L from R0.L and deposits the result in R2.L with 
saturation.

Explicitly, the four equivalent instructions are:

R3.H = R0.H + R1.H (S) ;

R3.L = R0.L + R1.L (S) ;

R2.H = R0.H – R1.H (S) ;

R2.L = R0.L – R1.L (S) ;

Single 32-Bit Operations

In single 32-bit operations, any two 32-bit registers may be used as the 
input to the ALU, considered as 32-bit operands. An addition, subtrac-
tion, or logical operation produces a 32-bit result that is deposited into an 
arbitrary 32-bit destination register. ALU0 is used for this operation, 
because it is the primary resource for ALU operations. 

In addition to the 32-bit input operands coming from the Data Register 
File, operands may be sourced and deposited into the Pointer Register 
File, consisting of the eight registers P[5:0], SP, FP. 

 Instructions may not intermingle Pointer registers with Data 
registers.
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For example:

R3 = R1 + R2 (NS) ; 

adds the 32-bit contents of R2 to the 32-bit contents of R1 and deposits the 
result in R3 with no saturation.

R3 = R1 + R2 (S) ; 

adds the 32-bit contents of R1 to the 32-bit contents of R2 and deposits the 
result in R3 with saturation.

Dual 32-Bit Operations

In dual 32-bit operations, any two 32-bit registers may be used as the 
input to ALU0 and ALU1, considered as a pair of 32-bit operands. An 
addition or subtraction produces two 32-bit results that are deposited into 
two 32-bit destination registers. Both ALU0 and ALU1 are used for this 
operation. Because only two 32-bit data paths go from the Data Register 
File to the arithmetic units, the same two 32-bit input registers are pre-
sented to ALU0 and ALU1.

For example:

R3 = R1 + R2, R4 = R1 – R2 (NS) ; 

adds the 32-bit contents of R2 to the 32-bit contents of R1 and deposits the 
result in R3 with no saturation. 

The instruction also subtracts the 32-bit contents of R2 from that of R1 
and deposits the result in R4 with no saturation.

A specialized form of this instruction uses the ALU 40-bit result registers 
as input operands, creating the sum and differences of the A0 and A1 
registers.
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For example:

R3 = A0 + A1, R4 = A0 – A1 (S) ; 

transfers to the result registers two 32-bit, saturated, sum and difference 
values of the ALU registers.

ALU Instruction Summary
Table 2-9 lists the ALU instructions. For more information about assem-
bly language syntax and the effect of ALU instructions on the status flags, 
see Blackfin Processor Programming Reference. 

In Table 2-9, note the meaning of these symbols:

• Dreg denotes any Data Register File register.

• Preg denotes any Pointer register, FP, or SP register.

• Dreg_lo_hi denotes any 16-bit register half in any Data Register 
File register.

• Dreg_lo denotes the lower 16 bits of any Data Register File 
register.

• imm7 denotes a signed, 7-bit wide, immediate value. 

• An denotes either ALU Result register A0 or A1.

• DIVS denotes a Divide Sign primitive.

• DIVQ denotes a Divide Quotient primitive.

• MAX denotes the maximum, or most positive, value of the source 
registers.

• MIN denotes the minimum value of the source registers.
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• ABS denotes the absolute value of the upper and lower halves of a 
single 32-bit register. 

• RND denotes rounding a half word.

• RND12 denotes saturating the result of an addition or subtraction 
and rounding the result on bit 12.

• RND20 denotes saturating the result of an addition or subtraction 
and rounding the result on bit 20.

• SIGNBITS denotes the number of sign bits in a number, minus 
one. 

• EXPADJ denotes the lesser of the number of sign bits in a number 
minus one, and a threshold value.

• * Indicates the flag may be set or cleared, depending on the results 
of the instruction.

• ** Indicates the flag is cleared.

• – Indicates no effect.

• d indicates AQ contains the dividend MSB Exclusive-OR divisor 
MSB.

Table 2-9. ALU Instruction Summary

Instruction ASTAT Status Flags

AZ AN AC0
AC0_COPY 
AC1

AV0
AV0S

AV1
AV1S

V
V_COPY
VS

AQ

Preg = Preg + Preg ; – – – – – – –

Preg += Preg ; – – – – – – –

Preg –= Preg ; – – – – – – –

Dreg = Dreg + Dreg ; * * * – – * –
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Dreg = Dreg – Dreg (S) ; * * * – – * –

Dreg = Dreg + Dreg, 
Dreg = Dreg – Dreg ;

* * * – – * –

Dreg_lo_hi = Dreg_lo_hi + 
Dreg_lo_hi ;

* * * – – * –

Dreg_lo_hi = Dreg_lo_hi – 
Dreg_lo_hi (S) ;

* * * – – * –

Dreg = Dreg +|+ Dreg ; * * * – – * –

Dreg = Dreg +|– Dreg ; * * * – – * –

Dreg = Dreg –|+ Dreg ; * * * – – * –

Dreg = Dreg –|– Dreg ; * * * – – * –

Dreg = Dreg +|+Dreg, 
Dreg = Dreg –|– Dreg ;

* * – – – * –

Dreg = Dreg +|– Dreg, 
Dreg = Dreg –|+ Dreg ;

* * – – – * –

Dreg = An + An, 
Dreg = An – An ;

* * * – – * –

Dreg += imm7 ; * * * – – * –

Preg += imm7 ; – – – – – – –

Dreg = ( A0 += A1 ) ; * * * * – * –

Dreg_lo_hi = ( A0 += A1) ; * * * * – * –

A0 += A1 ; * * * * – – –

A0 –= A1 ; * * * * – – –

DIVS ( Dreg, Dreg ) ; * * * * – – d

DIVQ ( Dreg, Dreg ) ; * * * * – – d

Table 2-9. ALU Instruction Summary (Cont’d)

Instruction ASTAT Status Flags

AZ AN AC0
AC0_COPY 
AC1

AV0
AV0S

AV1
AV1S

V
V_COPY
VS

AQ



Arithmetic Logic Unit (ALU)

2-32 ADSP-BF533 Blackfin Processor Hardware Reference
 

Dreg = MAX ( Dreg, Dreg  ) 
(V) ;

* * – – – **/– –

Dreg = MIN ( Dreg, Dreg ) 
(V) ;

* * – – – **/– –

Dreg = ABS Dreg (V) ; * ** – – – * –

An = ABS An ; * ** – * * * –

An = ABS An, 
An = ABS An ;

* ** – * * * –

An = –An ; * * * * * * –

An = –An, An =– An ; * * * * * * –

An = An (S) ; * * – * * – –

An = An (S),  An = An (S) ; * * – * * – –

Dreg_lo_hi = Dreg (RND) ; * * – – – * –

Dreg_lo_hi = Dreg + Dreg 
(RND12) ;

* * – – – * –

Dreg_lo_hi = Dreg – Dreg 
(RND12) ;

* * – – – * –

Dreg_lo_hi = Dreg + Dreg 
(RND20) ;

* * – – – * –

Dreg_lo_hi = Dreg – Dreg 
(RND20) ;

* * – – – * –

Dreg_lo = SIGNBITS Dreg ; – – – – – – –

Dreg_lo = SIGNBITS 
Dreg_lo_hi ;

– – – – – – –

Dreg_lo = SIGNBITS An ; – – – – – – –

Dreg_lo = EXPADJ ( Dreg, 
Dreg_lo ) (V) ;

– – – – – – –

Table 2-9. ALU Instruction Summary (Cont’d)

Instruction ASTAT Status Flags

AZ AN AC0
AC0_COPY 
AC1

AV0
AV0S

AV1
AV1S

V
V_COPY
VS

AQ
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Dreg_lo = EXPADJ 
(Dreg_lo_hi, Dreg_lo);

– – – – – – –

Dreg = Dreg & Dreg ; * * ** – – **/– –

Dreg = ~ Dreg ; * * ** – – **/– –

Dreg = Dreg | Dreg ; * * ** – – **/– –

Dreg = Dreg ^ Dreg ; * * ** – – **/– –

Dreg =– Dreg ; * * * – – * –

Table 2-9. ALU Instruction Summary (Cont’d)

Instruction ASTAT Status Flags

AZ AN AC0
AC0_COPY 
AC1

AV0
AV0S

AV1
AV1S

V
V_COPY
VS

AQ
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ALU Data Flow Details
Figure 2-9 shows a more detailed diagram of the Arithmetic Units and the 
Data Register File, which appears in Figure 2-1 on page 2-2.

ALU0 is described here for convenience. ALU1 is very similar—a subset of 
ALU0.

Each ALU performs 40-bit addition for the accumulation of the multiplier 
results, as well as 32-bit and dual 16-bit operations. Each ALU has two 
32-bit input ports that can be considered a pair of 16-bit operands or a 

Figure 2-9. Register Files and ALUs
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single 32-bit operand. For single 16-bit operations, any of the four 
Possible 16-bit operands may be used with any of the other 16-bit oper-
ands presented at the input to the ALU.

As shown in Figure 2-10, for dual 16-bit operations, the high halves and 
low halves are paired, providing four possible combinations of addition 
and subtraction.

(A) H + H, L + L    (B) H + H, L – L 

(C) H – H, L + L    (D) H – H, L – L

Figure 2-10. Dual 16-Bit ALU Operations
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Dual 16-Bit Cross Options 

For dual 16-bit operations, the results may be crossed. “Crossing the 
results” changes the location in the result register for the result of a calcu-
lation. Usually, the result from the high side calculation is placed in the 
high half of the result register, and the result from the low side calculation 
is placed in the low half of the result register. With the cross option, the 
high result is placed in the low half of the destination register, and the low 
result is placed in the high half of the destination register (see 
Figure 2-11). This is particularly useful when dealing with complex math 
and portions of the Fast Fourier Transform (FFT). The cross option 
applies to ALU0 only.

ALU Status Signals

Each ALU generates six status signals: the zero (AZ) status, the negative 
(AN) status, the carry (ACn) status, the sticky overflow (AVnS) status, the 
immediate overflow (AVn) status, and the quotient (AQ) status. All arithme-
tic status signals are latched into the arithmetic status register (ASTAT) at 
the end of the cycle. For the effect of ALU instructions on the status flags, 
see Table 2-9 on page 2-30.

Figure 2-11. Cross Options for Dual 16-Bit ALU Operations
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Depending on the instruction, the inputs can come from the Data Regis-
ter File, the Pointer Register File, or the Arithmetic Result registers. 
Arithmetic on 32-bit operands directly support multiprecision operations 
in the ALU.

ALU Division Support Features
The ALU supports division with two special divide primitives. These 
instructions (DIVS, DIVQ) let programs implement a non-restoring, condi-
tional (error checking), addition/subtraction/division algorithm. 

The division can be either signed or unsigned, but both the dividend and 
divisor must be of the same type. Details about using division and pro-
gramming examples are available in the Blackfin Processor Programming 
Reference.

Special SIMD Video ALU Operations 
Four 8-bit Video ALUs enable the processor to process video information 
with high efficiency. Each Video ALU instruction may take from one to 
four pairs of 8-bit inputs and return one to four 8-bit results. The inputs 
are presented to the Video ALUs in two 32-bit words from the Data Reg-
ister File. The possible operations include:

• Quad 8-Bit Add or Subtract

• Quad 8-Bit Average

• Quad 8-Bit Pack or Unpack

• Quad 8-Bit Subtract-Absolute-Accumulate

• Byte Align

For more information about the operation of these instructions, see Black-
fin Processor Programming Reference.
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Multiply Accumulators (Multipliers)
The two multipliers (MAC0 and MAC1) perform fixed-point multiplica-
tion and multiply and accumulate operations. Multiply and accumulate 
operations are available with either cumulative addition or cumulative 
subtraction.

Multiplier fixed-point instructions operate on 16-bit fixed-point data and 
produce 32-bit results that may be added or subtracted from a 40-bit 
accumulator.

Inputs are treated as fractional or integer, unsigned or two’s-complement. 
Multiplier instructions include:

• Multiplication

• Multiply and accumulate with addition, rounding optional

• Multiply and accumulate with subtraction, rounding optional

• Dual versions of the above

Multiplier Operation
Each multiplier has two 32-bit inputs from which it derives the two 16-bit 
operands. For single multiply and accumulate instructions, these operands 
can be any Data registers in the Data Register File. Each multiplier can 
accumulate results in its Accumulator register, A1 or A0. The accumulator 
results can be saturated to 32 or 40 bits. The multiplier result can also be 
written directly to a 16- or 32-bit destination register with optional 
rounding.

Each multiplier instruction determines whether the inputs are either both 
in integer format or both in fractional format. The format of the result 
matches the format of the inputs. In MAC0, both inputs are treated as 
signed or unsigned. In MAC1, there is a mixed-mode option. 
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If both inputs are fractional and signed, the multiplier automatically shifts 
the result left one bit to remove the redundant sign bit. Unsigned frac-
tional, integer, and mixed modes do not perform a shift for sign bit 
correction. Multiplier instruction options specify the data format of the 
inputs. See “Multiplier Instruction Options” on page 2-42 for more 
information.

Placing Multiplier Results in Multiplier Accumulator Registers

As shown in Figure 2-9, each multiplier has a dedicated accumulator, A0 
or A1. Each Accumulator register is divided into three sections—
A0.L/A1.L (bits 15:0), A0.H/A1.H (bits 31:16), and A0.X/A1.X (bits 
39:32). 

When the multiplier writes to its result Accumulator registers, the 32-bit 
result is deposited into the lower bits of the combined Accumulator regis-
ter, and the MSB is sign-extended into the upper eight bits of the register 
(A0.X/A1.X). 

Multiplier output can be deposited not only in the A0 or A1 registers, but 
also in a variety of 16- or 32-bit Data registers in the Data Register File.

Rounding or Saturating Multiplier Results

On a multiply and accumulate operation, the accumulator data can be sat-
urated and, optionally, rounded for extraction to a register or register half. 
When a multiply deposits a result only in a register or register half, the sat-
uration and rounding works the same way. The rounding and saturation 
operations work as follows.

• Rounding is applied only to fractional results except for the IH 
option, which applies rounding and high half extraction to an inte-
ger result. For the IH option, the rounded result is obtained by 
adding 0x8000 to the accumulator (for MAC) or multiply result 
(for mult) and then saturating to 32-bits. For more information, 
see “Rounding Multiplier Results” on page 2-18.
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• If an overflow or underflow has occurred, the saturate operation 
sets the specified Result register to the maximum positive or nega-
tive value. For more information, see the following section.

Saturating Multiplier Results on Overflow 
The following bits in ASTAT indicate multiplier overflow status: 

• Bit 16 (AV0) and bit 18 (AV1) record overflow condition (whether 
the result has overflowed 32 bits) for the A0 and A1 accumulators, 
respectively. If the bit is cleared (=0), no overflow or underflow has 
occurred. If the bit is set (=1), an overflow or underflow has 
occurred. The AV0S and AV1S bits are sticky bits.

• Bit 24 (V) and bit 25 (VS) are set if overflow occurs in extracting the 
accumulator result to a register.

Multiplier Instruction Summary
Table 2-10 lists the multiplier instructions. For more information about 
assembly language syntax and the effect of multiplier instructions on the 
status flags, see Blackfin Processor Programming Reference. 

In Table 2-10, note the meaning of these symbols:

• Dreg denotes any Data Register File register.

• Dreg_lo_hi denotes any 16-bit register half in any Data Register 
File register.

• Dreg_lo denotes the lower 16 bits of any Data Register File 
register.

• Dreg_hi denotes the upper 16 bits of any Data Register File 
register. 

• An denotes either MAC Accumulator register A0 or A1.
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• * Indicates the flag may be set or cleared, depending on the results 
of the instruction.

• – Indicates no effect.

Multiplier instruction options are described in “Multiplier Instruction 
Options” on page 2-42.

Table 2-10. Multiplier Instruction Summary

Instruction ASTAT Status Flags

AV0
AV0S

AV1
AV1S

V
V_COPY
VS

Dreg_lo = Dreg_lo_hi * Dreg_lo_hi ; – – *

Dreg_hi = Dreg_lo_hi * Dreg_lo_hi ; – – *

Dreg = Dreg_lo_hi * Dreg_lo_hi ; – – *

An = Dreg_lo_hi * Dreg_lo_hi ; * * –

An += Dreg_lo_hi * Dreg_lo_hi ; * * –

An –= Dreg_lo_hi * Dreg_lo_hi ; * * –

Dreg_lo = ( A0 = Dreg_lo_hi * Dreg_lo_hi ) ; * * *

Dreg_lo = (  A0 += Dreg_lo_hi * Dreg_lo_hi  ) ; * * *

Dreg_lo = ( A0 –= Dreg_lo_hi * Dreg_lo_hi ) ; * * *

Dreg_hi = ( A1 = Dreg_lo_hi * Dreg_lo_hi ) ; * * *

Dreg_hi = ( A1 += Dreg_lo_hi * Dreg_lo_hi ) ; * * *

Dreg_hi = ( A1 –= Dreg_lo_hi * Dreg_lo_hi ) ; * * *

Dreg = ( An = Dreg_lo_hi * Dreg_lo_hi ) ; * * *

Dreg = ( An += Dreg_lo_hi * Dreg_lo_hi ) ; * * *

Dreg = ( An –= Dreg_lo_hi * Dreg_lo_hi ) ; * * *

Dreg *= Dreg ; – – –
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Multiplier Instruction Options

The following descriptions of multiplier instruction options provide an 
overview. Not all options are available for all instructions. For informa-
tion about how to use these options with their respective instructions, see 
Blackfin Processor Programming Reference.

default  No option; input data is signed fraction.

(IS)  Input data operands are signed integer. No shift 
correction is made.

(FU)    Input data operands are unsigned fraction. No shift 
correction is made.

(IU)  Input data operands are unsigned integer. No shift 
correction is made.

(T)    Input data operands are signed fraction. When 
copying to the destination half register, truncates 
the lower 16 bits of the Accumulator contents.

(TFU)  Input data operands are unsigned fraction. When 
copying to the destination half register, truncates 
the lower 16 bits of the Accumulator contents.

(ISS2) If multiplying and accumulating to a register:

Input data operands are signed integer. When copy-
ing to the destination register, Accumulator 
contents are scaled (multiplied x2 by a one-place 
shift-left). If scaling produces a signed value larger 
than 32 bits, the number is saturated to its maxi-
mum positive or negative value.

If multiplying and accumulating to a half register:
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When copying the lower 16 bits to the destination 
half register, the Accumulator contents are scaled. If 
scaling produces a signed value greater than 16 bits, 
the number is saturated to its maximum positive or 
negative value.

(IH)  This option indicates integer multiplication with 
high half word extraction. The Accumulator is satu-
rated at 32 bits, and bits [31:16] of the 
Accumulator are rounded, and then copied into the 
destination half register.

(W32)  Input data operands are signed fraction with no 
extension bits in the Accumulators at 32 bits. 
Left-shift correction of the product is performed, as 
required. This option is used for legacy GSM 
speech vocoder algorithms written for 32-bit Accu-
mulators. For this option only, this special case 
applies: 0x8000 x 0x8000 = 0x7FFF.

(M)    Operation uses mixed-multiply mode. Valid only 
for MAC1 versions of the instruction. Multiplies a 
signed fraction by an unsigned fractional operand 
with no left-shift correction. Operand one is signed; 
operand two is unsigned. MAC0 performs an 
unmixed multiply on signed fractions by default, or 
another format as specified. That is, MAC0 exe-
cutes the specified signed/signed or 
unsigned/unsigned multiplication. The (M) option 
can be used alone or in conjunction with one other 
format option.
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Multiplier Data Flow Details
Figure 2-12 shows the Register files and ALUs, along with the 
multiplier/accumulators.

Each multiplier has two 16-bit inputs, performs a 16-bit multiplication, 
and stores the result in a 40-bit accumulator or extracts to a 16-bit or 
32-bit register. Two 32-bit words are available at the MAC inputs, provid-
ing four 16-bit operands to chose from.

One of the operands must be selected from the low half or the high half of 
one 32-bit word. The other operand must be selected from the low half or 
the high half of the other 32-bit word. Thus, each MAC is presented with 
four possible input operand combinations. The two 32-bit words can 
pcontain the same register information, giving the options for squaring 
and multiplying the high half and low half of the same register. 
Figure 2-13 show these possible combinations. 

The 32-bit product is passed to a 40-bit adder/subtracter, which may add 
or subtract the new product from the contents of the Accumulator Result 
register or pass the new product directly to the Data Register File Results 
register. For results, the A0 and A1 registers are 40 bits wide. Each of these 
registers consists of smaller 32- and 8-bit registers—A0.W, A1.W, A0.X, and 
A1.X.
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Some example instructions:

A0 = R3.L * R4.H ; 

In this instruction, the MAC0 multiplier/accumulator performs a multiply 
and puts the result in the Accumulator register.

A1 += R3.H * R4.H ; 

In this instruction, the MAC1 multiplier/accumulator performs a multiply 
and accumulates the result with the previous results in the A1 
Accumulator.

Figure 2-12. Register Files and ALUs
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Multiply Without Accumulate
The multiplier may operate without the accumulation function. If accu-
mulation is not used, the result can be directly stored in a register from the 
Data Register File or the Accumulator register. The destination register 
may be 16 bits or 32 bits. If a 16-bit destination register is a low half, then 
MAC0 is used; if it is a high half, then MAC1 is used. For a 32-bit desti-
nation register, either MAC0 or MAC1 is used.

If the destination register is 16 bits, then the word that is extracted from 
the multiplier depends on the data type of the input.

• If the multiplication uses fractional operands or the IH option, then 
the high half of the result is extracted and stored in the 16-bit des-
tination registers (see Figure 2-14). 

Figure 2-13. Four Possible Combinations of MAC Operations
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• If the multiplication uses integer operands, then the low half of the 
result is extracted and stored in the 16-bit destination registers. 
These extractions provide the most useful information in the resul-
tant 16-bit word for the data type chosen (see Figure 2-15).

For example, this instruction uses fractional, unsigned operands:

R0.L = R1.L * R2.L (FU) ; 

The instruction deposits the upper 16 bits of the multiply answer with 
rounding and saturation into the lower half of R0, using MAC0. This 
instruction uses unsigned integer operands:

R0.H = R2.H * R3.H (IU) ; 

Figure 2-14. Multiplication of Fractional Operands

A0.X A0.H A0.L

A0 0000 0000 XXXX XXXX XXXX XXXXXXXX XXXX XXXX XXXX

XXXX XXXX XXXX XXXXXXXX XXXX XXXX XXXX
Destination 
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A1.X A1.H A1.L

A1 0000 0000 XXXX XXXX XXXX XXXXXXXX XXXX XXXX XXXX
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Destination 
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The instruction deposits the lower 16 bits of the multiply answer with any 
required saturation into the high half of R0, using MAC1.

R0 = R1.L * R2.L ; 

Regardless of operand type, the preceding operation deposits 32 bits of the 
multiplier answer with saturation into R0, using MAC0.

Special 32-Bit Integer MAC Instruction
The processor supports a multicycle 32-bit MAC instruction:

Dreg *= Dreg

The single instruction multiplies two 32-bit integer operands and provides 
a 32-bit integer result, destroying one of the input operands.

Figure 2-15. Multiplication of Integer Operands
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The instruction takes multiple cycles to execute. Refer to the product data 
sheet and the Blackfin Processor Programming Reference for more informa-
tion about the exact operation of this instruction. This macro function is 
interruptable and does not modify the data in either Accumulator register 
A0 or A1.

Dual MAC Operations
The processor has two 16-bit MACs. Both MACs can be used in the same 
operation to double the MAC throughput. The same two 32-bit input 
registers are offered to each MAC unit, providing each with four possible 
combinations of 16-bit input operands. Dual MAC operations are fre-
quently referred to as vector operations, because a program could store 
vectors of samples in the four input operands and perform vector 
computations.

An example of a dual multiply and accumulate instruction is

A1 += R1.H * R2.L, A0 += R1.L * R2.H ; 

This instruction represents two multiply and accumulate operations.

• In one operation (MAC1) the high half of R1 is multiplied by the 
low half of R2 and added to the contents of the A1 Accumulator.

• In the second operation (MAC0) the low half of R1 is multiplied by 
the high half of R2 and added to the contents of A0.

The results of the MAC operations may be written to registers in a num-
ber of ways: as a pair of 16-bit halves, as a pair of 32-bit registers, or as an 
independent 16-bit half register or 32-bit register.

For example:

R3.H = (A1 += R1.H * R2.L), R3.L = (A0 += R1.L * R2.L) ;
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In this instruction, the 40-bit Accumulator is packed into a 16-bit half 
register. The result from MAC1 must be transferred to a high half of a 
destination register and the result from MAC0 must be transferred to the 
low half of the same destination register.

The operand type determines the correct bits to extract from the Accumu-
lator and deposit in the 16-bit destination register. See “Multiply Without 
Accumulate” on page 2-46.

R3 = (A1 += R1.H * R2.L), R2 = (A0 += R1.L * R2.L) ;

In this instruction, the 40-bit Accumulators are packed into two 32-bit 
registers. The registers must be register pairs (R[1:0], R[3:2], R[5:4], 
R[7:6]).

R3.H = (A1 += R1.H * R2.L), A0 += R1.L * R2.L ;

This instruction is an example of one Accumulator—but not the other—
being transferred to a register. Either a 16- or 32-bit register may be speci-
fied as the destination register.

Barrel Shifter (Shifter)
The shifter provides bitwise shifting functions for 16-, 32-, or 40-bit 
inputs, yielding a 16-, 32-, or 40-bit output. These functions include 
arithmetic shift, logical shift, rotate, and various bit test, set, pack, 
unpack, and exponent detection functions. These shift functions can be 
combined to implement numerical format control, including full float-
ing-point representation.
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Shifter Operations
The shifter instructions (>>>, >>, <<, ASHIFT, LSHIFT, ROT) can be used var-
ious ways, depending on the underlying arithmetic requirements. The 
ASHIFT and >>> instructions represent the arithmetic shift. The LSHIFT, 
<<, and >> instructions represent the logical shift.

The arithmetic shift and logical shift operations can be further broken 
into subsections. Instructions that are intended to operate on 16-bit single 
or paired numeric values (as would occur in many DSP algorithms) can 
use the instructions ASHIFT and LSHIFT. These are typically three-operand 
instructions.

Instructions that are intended to operate on a 32-bit register value and use 
two operands, such as instructions frequently used by a compiler, can use 
the >>> and >> instructions.

Arithmetic shift, logical shift, and rotate instructions can obtain the shift 
argument from a register or directly from an immediate value in the 
instruction. For details about shifter related instructions, see “Shifter 
Instruction Summary” on page 2-55.

Two-Operand Shifts

Two-operand shift instructions shift an input register and deposit the 
result in the same register.

Immediate Shifts

An immediate shift instruction shifts the input bit pattern to the right 
(downshift) or left (upshift) by a given number of bits. Immediate shift 
instructions use the data value in the instruction itself to control the 
amount and direction of the shifting operation.
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The following example shows the input value downshifted.

R0 contains 0000 B6A3 ;

R0 >>= 0x04 ;

results in 

R0 contains 0000 0B6A ;

The following example shows the input value upshifted.

R0 contains 0000 B6A3 ;

R0 <<= 0x04 ;

results in 

R0 contains 000B 6A30 ;

Register Shifts

Register-based shifts use a register to hold the shift value. The entire 
32-bit register is used to derive the shift value, and when the magnitude of 
the shift is greater than or equal to 32, then the result is either 0 or –1.

The following example shows the input value upshifted.

R0 contains 0000 B6A3 ;

R2 contains 0000 0004 ;

R0 <<= R2 ;

results in 

R0 contains 000B 6A30 ;

Three-Operand Shifts

Three-operand shifter instructions shift an input register and deposit the 
result in a destination register. 
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Immediate Shifts

Immediate shift instructions use the data value in the instruction itself to 
control the amount and direction of the shifting operation.

The following example shows the input value downshifted.

R0 contains 0000 B6A3 ;

R1 = R0 >> 0x04 ;

results in
 
R1 contains 0000 0B6A ;

The following example shows the input value upshifted.

R0.L contains B6A3 ;

R1.H = R0.L << 0x04 ;

results in 

R1.H contains 6A30 ;

Register Shifts

Register-based shifts use a register to hold the shift value. When a register 
is used to hold the shift value (for ASHIFT, LSHIFT or ROT), then the shift 
value is always found in the low half of a register (Rn.L). The bottom six 
bits of Rn.L are masked off and used as the shift value.

The following example shows the input value upshifted.

R0 contains 0000 B6A3 ;

R2.L contains 0004 ;

R1 = R0 ASHIFT by R2.L ;

results in
 
R1 contains 000B 6A30 ;
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The following example shows the input value rotated. Assume the Condi-
tion Code (CC) bit is set to 0. For more information about CC, see 
“Condition Code Flag” on page 4-12.

R0 contains ABCD EF12 ;

R2.L contains 0004 ;

R1 = R0 ROT by R2.L ; 

results in
 
R1 contains BCDE F125 ; 

Note the CC bit is included in the result, at bit 3.

Bit Test, Set, Clear, Toggle

The shifter provides the method to test, set, clear, and toggle specific bits 
of a data register. All instructions have two arguments—the source register 
and the bit field value. The test instruction does not change the source 
register. The result of the test instruction resides in the CC bit. 

The following examples show a variety of operations.

BITCLR ( R0, 6 ) ;

BITSET ( R2, 9 ) ;

BITTGL ( R3, 2 ) ;

CC = BITTST ( R3, 0 ) ;

Field Extract and Field Deposit

If the shifter is used, a source field may be deposited anywhere in a 32-bit 
destination field. The source field may be from 1 bit to 16 bits in length. 
In addition, a 1- to 16-bit field may be extracted from anywhere within a 
32-bit source field.
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Two register arguments are used for these functions. One holds the 32-bit 
destination or 32-bit source. The other holds the extract/deposit value, its 
length, and its position within the source.

Shifter Instruction Summary
Table 2-11 lists the shifter instructions. For more information about 
assembly language syntax and the effect of shifter instructions on the sta-
tus flags, see Blackfin Processor Programming Reference.

In Table 2-11, note the meaning of these symbols:

• Dreg denotes any Data Register File register. 

• Dreg_lo denotes the lower 16 bits of any Data Register File 
register.

• Dreg_hi denotes the upper 16 bits of any Data Register File 
register.

• * Indicates the flag may be set or cleared, depending on the results 
of the instruction.

• * 0 Indicates versions of the instruction that send results to Accu-
mulator A0 set or clear AV0.

• * 1 Indicates versions of the instruction that send results to Accu-
mulator A1 set or clear AV1.

• ** Indicates the flag is cleared.

• *** Indicates CC contains the latest value shifted into it.

• – Indicates no effect.
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Table 2-11. Shifter Instruction Summary

Instruction ASTAT Status Flag

AZ AN AC0
AC0_COPY
AC1

AV0
AV0S

AV1
AV1S

CC V
V_COPY
VS

BITCLR ( Dreg, uimm5 ) ; * * ** – – – **/–

BITSET ( Dreg, uimm5 ) ; ** * ** – – – **/–

BITTGL ( Dreg, uimm5 ) ; * * ** – – – **/–

CC = 
BITTST ( Dreg, uimm5 ) ;

– – – – – * –

CC =  
!BITTST ( Dreg, uimm5 ) ;

– – – – – * –

Dreg = 
DEPOSIT ( Dreg, Dreg ) ;

* * ** – – – **/–

Dreg = 
EXTRACT ( Dreg, Dreg ) ; 

* * ** – – – **/–

BITMUX ( Dreg, Dreg, A0 ) ; – – – – – – –

Dreg_lo = ONES Dreg ; – – – – – – –

Dreg = PACK (Dreg_lo_hi, 
Dreg_lo_hi); 

– – – – – – –

Dreg >>>= uimm5 ; * * – – – – **/–

Dreg >>= uimm5 ; * * – – – – **/–

Dreg <<= uimm5 ; * * – – – – **/–

Dreg = Dreg >>> uimm5 ; * * – – – – **/–

Dreg = Dreg >> uimm5 ; * * – – – – **/–

Dreg = Dreg << uimm5 ; * * – – – – *

Dreg = Dreg >>> uimm4 (V) ; * * – – – – **/–

Dreg = Dreg >> uimm4 (V) ; * * – – – – **/–

Dreg = Dreg << uimm4 (V) ; * * – – – – *

An = An >>> uimm5 ; * * – ** 0/– ** 1/– – –
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An = An >> uimm5 ; * * – ** 0/– ** 1/– – –

An = An << uimm5 ; * * – * 0 * 1 – –

Dreg_lo_hi = Dreg_lo_hi >>> 
uimm4 ;

* * – – – – **/–

Dreg_lo_hi = Dreg_lo_hi >> 
uimm4 ;

* * – – – – **/–

Dreg_lo_hi = Dreg_lo_hi << 
uimm4 ;

* * – – – – *

Dreg >>>= Dreg ; * * – – – – **/–

Dreg >>= Dreg ; * * – – – – **/–

Dreg <<= Dreg ; * * – – – – **/–

Dreg = ASHIFT Dreg BY 
Dreg_lo ;

* * – – – – *

Dreg = LSHIFT Dreg BY 
Dreg_lo ;

* * – – – – **/–

Dreg = ROT Dreg BY imm6 ; – – – – – *** –

Dreg = ASHIFT Dreg BY 
Dreg_lo (V) ;

* * – – – – *

Dreg = LSHIFT Dreg BY 
Dreg_lo (V) ;

* * – – – – **/–

Dreg_lo_hi = ASHIFT 
Dreg_lo_hi BY Dreg_lo ;

* * – – – – *

Dreg_lo_hi = LSHIFT 
Dreg_lo_hi BY Dreg_lo ;

* * – – – – **/–

An = An ASHIFT BY Dreg _lo ; * * – * 0 * 1 – –

An = An ROT BY imm6 ; – – – – – *** –

Preg = Preg >> 1 ; – – – – – – –

Table 2-11. Shifter Instruction Summary (Cont’d)

Instruction ASTAT Status Flag

AZ AN AC0
AC0_COPY
AC1

AV0
AV0S

AV1
AV1S

CC V
V_COPY
VS



Barrel Shifter (Shifter)

2-58 ADSP-BF533 Blackfin Processor Hardware Reference
 

Preg = Preg >> 2 ; – – – – – – –

Preg = Preg << 1 ; – – – – – – –

Preg = Preg << 2 ; – – – – – – –

Dreg = ( Dreg + Dreg ) << 1 ; * * * – – – *

Dreg = ( Dreg + Dreg ) << 2 ; * * * – – – *

Preg = ( Preg + Preg ) << 1 ; – – – – – – –

Preg = ( Preg + Preg ) << 2 ; – – – – – – –

Preg = Preg + ( Preg  << 1 ) ; – – – – – – –

Preg = Preg + ( Preg  << 2 ) ; – – – – – – –

Table 2-11. Shifter Instruction Summary (Cont’d)

Instruction ASTAT Status Flag

AZ AN AC0
AC0_COPY
AC1

AV0
AV0S

AV1
AV1S

CC V
V_COPY
VS
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3 OPERATING MODES AND 
STATES 

The processor supports the following processor modes: 

• User mode

• Supervisor mode

• Emulation mode

Emulation and Supervisor modes have unrestricted access to the core 
resources. User mode has restricted access to certain system resources, thus 
providing a protected software environment.

User mode is considered the domain of application programs. Supervisor 
mode and Emulation mode are usually reserved for the kernel code of an 
operating system.

The processor mode is determined by the Event Controller. When servic-
ing an interrupt, a nonmaskable interrupt (NMI), or an exception, the 
processor is in Supervisor mode. When servicing an emulation event, the 
processor is in Emulation mode. When not servicing any events, the pro-
cessor is in User mode. 

The current processor mode may be identified by interrogating the IPEND 
memory-mapped register (MMR), as shown in Table 3-1.

 MMRs cannot be read while the processor is in User mode.
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In addition, the processor supports the following two non-processing 
states:

• Idle state

• Reset state

Figure 3-1 illustrates the processor modes and states as well as the transi-
tion conditions between them.

Table 3-1. Identifying the Current Processor Mode

Event Mode IPEND

Interrupt Supervisor  0x10
but IPEND[0], IPEND[1], IPEND[2], and 
IPEND[3] = 0.

Exception Supervisor  0x08
The core is processing an exception event if 
IPEND[0] = 0, IPEND[1] = 0, IPEND[2] = 0,
IPEND[3] = 1, and IPEND[15:4] are 0’s or 1’s. 

NMI Supervisor  0x04
The core is processing an NMI event if IPEND[0] 
= 0, IPEND[1] = 0, IPEND[2] = 1, and 
IPEND[15:2] are 0’s or 1’s.

Reset Supervisor  0x02
As the reset state is exited, IPEND is set to 0x02, and 
the reset vector runs in Supervisor mode.

Emulation Emulator  0x01
The processor is in Emulation mode if 
IPEND[0] = 1, regardless of the state of the 
remaining bits IPEND[15:1].

None User  0x00
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User Mode
The processor is in User mode when it is not in Reset or Idle state, and 
when it is not servicing an interrupt, NMI, exception, or emulation event. 
User mode is used to process application level code that does not require 
explicit access to system registers. Any attempt to access restricted system 
registers causes an exception event. Table 3-2 lists the registers that may 
be accessed in User mode.

Figure 3-1. Processor Modes and States

Interrupt
RTI,

Event

EMULATION
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IDLE

RESET

Application 
Level Code

System Code, 
Event Handlers

USER
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Event
Emulation 

RTX, RTNException

RTE

RST Inactive

Emulation Event (1)

(1) Normal exit from Reset is to Supervisor mode. However, emulation hardware may 
have initiated a reset. If so, exit from Reset is to Emulation.

RST
Active

IDLE
instruction

or

IDLE instruction

Wakeup

RTE

Interrupt
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Protected Resources and Instructions
System resources consist of a subset of processor registers, all MMRs, and 
a subset of protected instructions. These system and core MMRs are 
located starting at address 0xFFC0 0000. This region of memory is pro-
tected from User mode access. Any attempt to access MMR space in User 
mode causes an exception.

A list of protected instructions appears in Table 3-3. Any attempt to issue 
any of the protected instructions from User mode causes an exception 
event.

Table 3-2. Registers Accessible in User Mode

Processor Registers Register Names

Data Registers R[7:0], A[1:0]

Pointer Registers P[5:0], SP, FP, I[3:0], M[3:0], L[3:0], B[3:0]

Sequencer and Status Registers RETS, LC[1:0], LT[1:0], LB[1:0], ASTAT, CYCLES, 
CYCLES2

Table 3-3. Protected Instructions

Instruction Description

RTI Return from Interrupt

RTX Return from Exception

RTN Return from NMI

CLI Disable Interrupts

STI Enable Interrupts

RAISE Force Interrupt/Reset

RTE Return from Emulation
Causes an exception only if executed outside Emulation mode
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Protected Memory
Additional memory locations can be protected from User mode access. A 
Cacheability Protection Lookaside Buffer (CPLB) entry can be created 
and enabled. See “Memory Management Unit” on page 6-47 for further 
information.

Entering User Mode
When coming out of reset, the processor is in Supervisor mode because it 
is servicing a reset event. To enter User mode from the Reset state, two 
steps must be performed. First, a return address must be loaded into the 
RETI register. Second, an RTI must be issued. The following example code 
shows how to enter User mode upon reset. 

Example Code to Enter User Mode Upon Reset

Listing 3-1 provides code for entering User mode from reset.

Listing 3-1. Entering User Mode from Reset

P1.L = START ;   /* Point to start of user code */

P1.H = START ;

RETI = P1 ;

RTI ; /* Return from Reset Event */

START : /* Place user code here */
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Return Instructions That Invoke User Mode

Table 3-4 provides a summary of return instructions that can be used to 
invoke User mode from various processor event service routines. When 
these instructions are used in service routines, the value of the return 
address must be first stored in the appropriate event RETx register. In the 
case of an interrupt routine, if the service routine is interruptible, the 
return address is stored on the stack. For this case, the address can be 
found by popping the value from the stack into RETI. Once RETI has been 
loaded, the RTI instruction can be issued.

 Note the stack pop is optional. If the RETI register is not 
pushed/popped, then the interrupt service routine becomes 
non-interruptible, because the return address is not saved on the 
stack.

The processor remains in User mode until one of these events occurs:

• An interrupt, NMI, or exception event invokes Supervisor mode.

• An emulation event invokes Emulation mode.

• A reset event invokes the Reset state.

Table 3-4. Return Instructions That Can Invoke User Mode

Current Process Activity Return Instruction to Use Execution Resumes at Address 
in This Register

Interrupt Service Routine RTI RETI

Exception Service Routine RTX RETX

Nonmaskable Interrupt Service 
Routine

RTN RETN

Emulation Service Routine RTE RETE
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Supervisor Mode
The processor services all interrupt, NMI, and exception events in Super-
visor mode.

Supervisor mode has full, unrestricted access to all processor system 
resources, including all emulation resources, unless a CPLB has been 
configured and enabled. See “Memory Management Unit” on page 6-47 
for a further description. Only Supervisor mode can use the register alias 
USP, which references the User Stack Pointer in memory. This register 
alias is necessary because in Supervisor mode, SP refers to the kernel stack 
pointer rather than to the user stack pointer.

Normal processing begins in Supervisor mode from the Reset state. Deas-
serting the RESET signal switches the processor from the Reset state to 
Supervisor mode where it remains until an emulation event or Return 
instruction occurs to change the mode. Before the Return instruction is 
issued, the RETI register must be loaded with a valid return address.

Non-OS Environments
For non-OS environments, application code should remain in Supervisor 
mode so that it can access all core and system resources. When RESET is 
deasserted, the processor initiates operation by servicing the reset event. 
Emulation is the only event that can pre-empt this activity. Therefore, 
lower priority events cannot be processed.

One way of keeping the processor in Supervisor mode and still allowing 
lower priority events to be processed is to set up and force the lowest pri-
ority interrupt (IVG15). Events and interrupts are described further in 
“Events and Sequencing” on page 4-18. After the low priority interrupt 
has been forced using the RAISE 15 instruction, RETI can be loaded with a 
return address that points to user code that can execute until IVG15 is 
issued. After RETI has been loaded, the RTI instruction can be issued to 
return from the reset event.



Supervisor Mode

3-8 ADSP-BF533 Blackfin Processor Hardware Reference
 

The interrupt handler for IVG15 can be set to jump to the application code 
starting address. An additional RTI is not required. As a result, the proces-
sor remains in Supervisor mode because IPEND[15] remains set. At this 
point, the processor is servicing the lowest priority interrupt. This ensures 
that higher priority interrupts can be processed. 

Example Code for Supervisor Mode Coming Out of Reset

To remain in Supervisor mode when coming out of the Reset state, use 
code as shown in Listing 3-2.

Listing 3-2. Staying in Supervisor Mode Coming Out of Reset

P0.L = LO(EVT15) ;   /* Point to IVG15 in Event Vector Table */

P0.H = HI(EVT15) ;

P1.L = START ;   /* Point to start of User code */

P1.H = START ;

[P0] = P1 ;   /* Place the address of start code in IVG15 of EVT 

*/

P0.L = LO(IMASK) ;

R0 = [P0] ;

R1.L = EVT_IVG15 & 0xFFFF ;

R0 = R0 | R1 ;

[P0] = R0 ;   /* Set (enable) IVG15 bit in Interrupt Mask Register 

*/

RAISE 15 ;   /* Invoke IVG15 interrupt */

P0.L = WAIT_HERE ;

P0.H = WAIT_HERE ;

RETI = P0 ;   /* RETI loaded with return address */
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RTI ;   /* Return from Reset Event */

WAIT_HERE :   /* Wait here till IVG15 interrupt is serviced */

JUMP WAIT_HERE ;

START:   /* IVG15 vectors here */

[--SP] = RETI ;   /* Enables interrupts and saves return address 

to stack */

Emulation Mode
The processor enters Emulation mode if Emulation mode is enabled and 
either of these conditions is met:

• An external emulation event occurs.

• The EMUEXCPT instruction is issued. 

The processor remains in Emulation mode until the emulation service 
routine executes an RTE instruction. If no interrupts are pending when the 
RTE instruction executes, the processor switches to User mode. Otherwise, 
the processor switches to Supervisor mode to service the interrupt. 

 Emulation mode is the highest priority mode, and the processor 
has unrestricted access to all system resources.

Idle State
Idle state stops all processor activity at the user’s discretion, usually to 
conserve power during lulls in activity. No processing occurs during the 
Idle state. The Idle state is invoked by a sequential IDLE instruction. The 
IDLE instruction notifies the processor hardware that the Idle state is 
requested. 
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The processor remains in the Idle state until a peripheral or external 
device, such as a SPORT or the Real-Time Clock (RTC), generates an 
interrupt that requires servicing.

In Listing 3-3, core interrupts are disabled and the IDLE instruction is exe-
cuted. When all the pending processes have completed, the core disables 
its clocks. Since interrupts are disabled, Idle state can be terminated only 
by asserting a WAKEUP signal. For more information, see “SIC_IWR Regis-
ter” on page 4-25. (While not required, an interrupt could also be enabled 
in conjunction with the WAKEUP signal.) 

When the WAKEUP signal is asserted, the processor wakes up, and the STI 
instruction enables interrupts again.

Example Code for Transition to Idle State
To transition to the Idle state, use code shown in Listing 3-3.

Listing 3-3. Transitioning to Idle State

CLI R0 ; /* disable interrupts */

IDLE ; /* drain pipeline and send core into IDLE state */

STI R0 ; /* re-enable interrupts after wakeup */

Reset State
Reset state initializes the processor logic. During Reset state, application 
programs and the operating system do not execute. Clocks are stopped 
while in Reset state.

The processor remains in the Reset state as long as external logic asserts 
the external RESET signal. Upon deassertion, the processor completes the 
reset sequence and switches to Supervisor mode, where it executes code 
found at the reset event vector.
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Software in Supervisor or Emulation mode can invoke the Reset state 
without involving the external RESET signal. This can be done by issuing 
the Reset version of the RAISE instruction.

Application programs in User mode cannot invoke the Reset state, except 
through a system call provided by an operating system kernel. Table 3-5 
summarizes the state of the processor upon reset.

Table 3-5. Processor State Upon Reset 

Item Description of Reset State

Core

Operating Mode Supervisor mode in reset event, clocks stopped

Rounding Mode Unbiased rounding

Cycle Counters Disabled, zero

DAG Registers (I, L, B, M) Random values (must be cleared at initialization)

Data and Address Registers Random values (must be cleared at initialization)

IPEND, IMASK, ILAT Cleared, interrupts globally disabled with IPEND bit 4

CPLBs Disabled

L1 Instruction Memory SRAM (cache disabled)

L1 Data Memory SRAM (cache disabled)

Cache Validity Bits Invalid

System

Booting Methods Determined by the values of BMODE pins at reset

MSEL Clock Frequency Reset value = 10

PLL Bypass Mode Disabled

VCO/Core Clock Ratio Reset value = 1

VCO/System Clock Ratio Reset value = 5

Peripheral Clocks Disabled
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System Reset and Powerup 
Table 3-6 describes the five types of resets. Note all resets, except System 
Software, reset the core.

Table 3-6. Resets 

Reset Source Result

Hardware Reset The RESET pin causes a hard-
ware reset.

Resets both the core and the peripherals, 
including the Dynamic Power Management 
Controller (DPMC). 
Resets the No Boot on Software Reset bit in 
SYSCR. For more information, see “SYSCR 
Register” on page -14.

System Software 
Reset

Writing b#111 to bits [2:0] 
in the system MMR SWRST 
at address 0xFFC0 0100 
causes a System Software 
reset.

Resets only the peripherals, excluding the RTC 
(Real-Time Clock) block and most of the 
DPMC. The DPMC resets only the No Boot 
on Software Reset bit in SYSCR. Does not reset 
the core. Does not initiate a boot sequence.

Watchdog Timer 
Reset

Programming the watchdog 
timer appropriately causes a 
Watchdog Timer reset.

Resets both the core and the peripherals, 
excluding the RTC block and most of the 
DPMC. 
The Software Reset register (SWRST) can be read 
to determine whether the reset source was the 
watchdog timer. 
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Hardware Reset
The processor chip reset is an asynchronous reset event. The RESET input 
pin must be deasserted to perform a hardware reset. For more informa-
tion, see ADSP-BF531/ADSP-BF532/ADSP-BF533 Embedded Processor 
Data Sheet.

A hardware-initiated reset results in a system-wide reset that includes both 
core and peripherals. After the RESET pin is deasserted, the processor 
ensures that all asynchronous peripherals have recognized and completed a 
reset. After the reset, the processor transitions into the Boot mode 
sequence configured by the BMODE state.

The BMODE[1:0] pins are dedicated mode control pins. No other functions 
are shared with these pins, and they may be permanently strapped by tying 
them directly to either VDD or VSS. The pins and the corresponding bits 
in SYSCR configure the Boot mode that is employed after hardware reset or 
System Software reset. See “Reset” on page 4-39, and Table 4-11 on 
page 4-43 for further information.

Core Double- 
Fault Reset

If the core enters a dou-
ble-fault state, and the Core 
Double Fault Reset Enable 
bit (DOUBLE_FAULT) is 
set in the SWRST register, 
then a software reset occurs.

Resets both the core and the peripherals, 
excluding the RTC block and most of the 
DPMC.
The SWRST register can be read to determine 
whether the reset source was Core Double 
Fault. 

Core-Only Soft-
ware Reset

This reset is caused by exe-
cuting a RAISE1 instruction 
or by setting the Software 
Reset (SYSRST) bit in the 
core Debug Control register 
(DBGCTL) via emulation soft-
ware through the JTAG port. 
The DBGCTL register is not 
visible to the memory map. 

Resets only the core.
The peripherals do not recognize this reset.

Table 3-6. Resets  (Cont’d)

Reset Source Result
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SYSCR Register
The values sensed from the BMODE[1:0] pins are latched into the System 
Reset Configuration register (SYSCR) upon the deassertion of the RESET 
pin. The values are made available for software access and modification 
after the hardware reset sequence. Software can modify only the No Boot 
on Software Reset bit.

The various configuration parameters are distributed to the appropriate 
destinations from SYSCR (see Figure 3-2).

Figure 3-2. System Reset Configuration Register
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BMODE[1:0] (Boot Mode)- RO
 00 - Bypass boot ROM,

execute from 16-bit
external memory

 01 - Use boot ROM to load
from 8-bit or 16-bit flash

 10 - SPI slave mode boot via
a master (host)

 11 - Use boot ROM to configure
and load boot code from
SPI serial EEPROM
(8-, 16-, or 24-bit address
range)

0 0 0 0 0 0 0 0 X X Reset = dependent on pin 
values 

System Reset Configuration Register (SYSCR)
X - state is initialized from mode pins during hardware reset

No Boot on Software Reset
 0 - Use BMODE to determine

boot source
 1 - Start executing from the

beginning of on-chip L1 
memory or the beginning of
ASYNC Bank 0 when 
BMODE[1:0] = b#00

0xFFC0 0104
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Software Resets and Watchdog Timer
A software reset may be initiated in three ways: 

• By the watchdog timer, if appropriately configured 

• By setting the System Software Reset field in the Software Reset 
register (see Figure 3-3)

• By the RAISE1 instruction

The watchdog timer resets both the core and the peripherals. A System 
Software reset results in a reset of the peripherals without resetting the 
core and without initiating a booting sequence.

 The System Software reset must be performed while executing 
from Level 1 memory (either as cache or as SRAM).

When L1 instruction memory is configured as cache, make sure the Sys-
tem Software reset sequence has been read into the cache.

After either the watchdog or System Software reset is initiated, the proces-
sor ensures that all asynchronous peripherals have recognized and 
completed a reset. 

For a reset generated by the watchdog timer, the processors transitions 
into the Boot mode sequence. The Boot mode is configured by the state of 
the BMODE and the No Boot on Software Reset control bits. 

If the No Boot on Software Reset bit in SYSCR is cleared, the reset 
sequence is determined by the BMODE[1:0] control bits.
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SWRST Register
A software reset can be initiated by setting the System Software Reset field 
in the Software Reset register (SWRST). Bit 15 indicates whether a software 
reset has occurred since the last time SWRST was read. Bit 14 and Bit 13, 
respectively, indicate whether the Software Watchdog Timer or a Core 
Double Fault has generated a software reset. Bits [15:13] are read-only 
and cleared when the register is read. Bits [3:0] are read/write. 

When the BMODE pins are not set to b#00 and the No Boot on Software 
Reset bit in SYSCR is set, the processor starts executing from the start of 
on-chip L1 memory. In this configuration, the core begins fetching 
instructions from the beginning of on-chip L1 memory.

When the BMODE pins are set to b#00 the core begins fetching instructions 
from address 0x2000 0000 (the beginning of ASYNC Bank 0).

Figure 3-3. Software Reset Register
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Source - RO
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watchdog
 1 - SW reset generated by
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Enable
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 0 - No SW reset since last
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last SWRST read   0 - No reset caused by 

       Core Double Fault
  1 - Reset generated upon
       Core Double Fault
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Core-Only Software Reset
A Core-Only Software reset is initiated by executing the RAISE 1 instruc-
tion or by setting the Software Reset (SYSRST) bit in the core Debug 
Control register (DBGCTL) via emulation software through the JTAG port. 
(DBGCTL is not visible to the memory map.)

A Core-Only Software reset affects only the state of the core. Note the sys-
tem resources may be in an undetermined or even unreliable state, 
depending on the system activity during the reset period.

Core and System Reset
To perform a system and core reset, use the code sequence shown in 
Listing 3-4. As described in the code comments, the system soft reset takes 
five system clock cycles to complete, so a delay loop is needed. This code 
must reside in L1 memory for the system soft reset to work properly. 

Listing 3-4. Core and System Reset

/* Issue system soft reset */

P0.L = LO(SWRST) ;

P0.H = HI(SWRST) ;

R0.L = 0x0007 ;

W[P0] = R0 ;

SSYNC ;

   

/* Wait for System reset to complete (needs to be 5 SCLKs). */

/* Assuming a worst case CCLK:SCLK ratio (15:1), use 5*15 = 75 */

/* as the loop count. */

P1 = 75;

LSETUP(start, end) LCO = P1 ;

start:

end:
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NOP ;

   

/* Clear system soft reset */

R0.L = 0x0000 ;

W[P0] = R0 ;

SSYNC ;

   

/* Core reset - forces reboot */

RAISE 1 ;

Booting Methods
The internal boot ROM includes a small boot kernel that can either be 
bypassed or used to load user code from an external memory device. See 
Table 4-10 on page 4-40 for further information. The boot kernel reads 
the BMODE[1:0] pin state at reset to identify the download source (see 
Table 4-7 on page 4-23). When in Boot Mode 0, the processor is set to 
execute from 16-bit wide external memory at address 0x2000 0000 
(ASYNC Bank 0).

Several boot methods are available in which user code can be loaded from 
an external memory device or a host device (as in the case of SPI slave 
mode booting). For these modes, the boot kernel sets up the selected 
peripheral based on the BMODE[1:0] pin settings. 

For each Boot mode, user code read in from the memory device is placed 
at the starting location of L1 memory. Additional sections are read into 
internal memory as specified within headers in the loader file. The boot 
kernel terminates the boot process with a jump to the start of the L1 
instruction memory space. The processor then begins execution from this 
address.

 If booting from Serial Peripheral Interface (SPI), general-purpose 
flag pin 2 is used as the SPI-chip select. This line must be con-
nected for proper operation. 
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Operating Modes and States

A Core-Only Software reset also vectors the core to the boot ROM. Only 
the core is reset with the Core-Only Software reset; this reset does not 
affect the rest of the system. The boot ROM kernel detects a No Boot on 
Software Reset condition in SYSCR to avoid initiating a download. If this 
bit is set on a software reset, the processor skips the normal boot sequence 
and jumps to the beginning of L1 memory and begins execution.

The boot kernel assumes these conditions for the Flash Boot mode 
(BMODE = 01):

• Asynchronous Memory Bank (AMB) 0 enabled

• 16-bit packing for AMB 0 enabled

• Bank 0 RDY is set to active high

• Bank 0 hold time (read/write deasserted to AOE deasserted) = 
3 cycles

• Bank 0 read/write access times = 15 cycles

For SPI master mode boot (BMODE = 11), the boot kernel assumes that the 
SPI baud rate is 500 kHz. SPI serial EEPROMs that are 8-bit, 16-bit, and 
24-bit addressable are supported. The SPI uses the PF2 output pin to select 
a single SPI EEPROM device. The SPI controller submits successive read 
commands at addresses 0x00, 0x0000, and 0x000000 until a valid 8-, 16-, 
or 24-bit addressable EEPROM is detected. It then begins clocking data 
into the beginning of L1 instruction memory.

 The MISO pin must be pulled high for SPI master mode booting 
(BMODE = 11).

For each of the boot modes, 10-byte headers are first read from an external 
memory device. The header specifies the number of bytes to be transferred 
and the memory destination address. Once all blocks are loaded, program 
execution commences from the start of L1 instruction SRAM.
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For SPI slave mode boot (BMODE = 10), the hardware configuration shown 
in Figure 3-4 is assumed.

The user defined programmable flag PFx is an output on the Blackfin pro-
cessor and an input on the host device. This flag allows the processor to 
hold off the host device from sending data during certain sections of the 
boot process. When this flag is de-asserted, the host can continue to send 
bytes to the processor.

Figure 3-4. SPI Slave Boot Mode

ADSP-BF533
ADSP-BF532
ADSP-BF531

HOST

SCLK

SPISS

MISO

PFx

MOSI

MASTER SLAVE
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4 PROGRAM SEQUENCER

In the processor, the program sequencer controls program flow, constantly 
providing the address of the next instruction to be executed by other parts 
of the processor. Program flow in the chip is mostly linear, with the pro-
cessor executing program instructions sequentially. 

The linear flow varies occasionally when the program uses nonsequential 
program structures, such as those illustrated in Figure 4-1. Nonsequential 
structures direct the processor to execute an instruction that is not at the 
next sequential address. These structures include: 

• Loops. One sequence of instructions executes several times with 
zero overhead.

• Subroutines. The processor temporarily interrupts sequential flow 
to execute instructions from another part of memory.

• Jumps. Program flow transfers permanently to another part of 
memory.

• Interrupts and Exceptions. A runtime event or instruction triggers 
the execution of a subroutine.

• Idle. An instruction causes the processor to stop operating and 
hold its current state until an interrupt occurs. Then, the processor 
services the interrupt and continues normal execution.
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The sequencer manages execution of these program structures by selecting 
the address of the next instruction to execute.

The fetched address enters the instruction pipeline, ending with the pro-
gram counter (PC). The pipeline contains the 32-bit addresses of the 
instructions currently being fetched, decoded, and executed. The PC cou-
ples with the RETn registers, which store return addresses. All addresses 
generated by the sequencer are 32-bit memory instruction addresses.

Figure 4-1. Program Flow Variations
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Program Sequencer

To manage events, the sequencer’s event controller handles interrupt and 
event processing, determines whether an interrupt is masked, and gener-
ates the appropriate event vector address.

In addition to providing data addresses, the data address generators 
(DAGs) can provide instruction addresses for the sequencer’s indirect 
branches.

The sequencer evaluates conditional instructions and loop termination 
conditions. The loop registers support nested loops. The memory-mapped 
registers (MMRs) store information used to implement interrupt service 
routines.

Sequencer Related Registers 
Table 4-1 lists the registers within the processor that are related to the 
sequencer. Except for the PC and SEQSTAT registers, all sequencer-related 
registers are directly readable and writable. Manually pushing or popping 
registers to or from the stack is done using the explicit instructions:

•  [––SP] = Rn (for push)

•  Rn = [SP++] (for pop)

Table 4-1. Sequencer-Related Registers

Register Name Description

SEQSTAT Sequencer Status register

RETX
RETN
RETI
RETE
RETS 

Return Address registers: See “Events and Sequencing” 
on page 4-18.
Exception Return 
NMI Return
Interrupt Return 
Emulation Return
Subroutine Return
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SEQSTAT Register
The Sequencer Status register (SEQSTAT) contains information about the 
current state of the sequencer as well as diagnostic information from the 
last event. SEQSTAT is a read-only register and is accessible only in Supervi-
sor mode.

Zero-Overhead Loop Registers (LC, LT, and LB)
Two sets of zero-overhead loop registers implement loops, using hardware 
counters instead of software instructions to evaluate loop conditions. After 
evaluation, processing branches to a new target address. Both sets of regis-
ters include the Loop Counter (LC), Loop Top (LT), and Loop Bottom 
(LB) registers.

LC0, LC1
LT0, LT1
LB0, LB1

Zero-Overhead Loop registers:
Loop Counters
Loop Tops
Loop Bottoms

FP, SP Frame Pointer and Stack Pointer: See “Frame and Stack 
Pointers” on page 5-5.

SYSCFG System Configuration register

CYCLES, CYCLES2 Cycle Counters

PC Program Counter

Table 4-1. Sequencer-Related Registers (Cont’d)

Register Name Description
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Program Sequencer

Table 4-2 describes the 32-bit loop register sets.

Figure 4-2. Sequencer Status Register

Table 4-2. Loop Registers 

Registers Description Function

LC0, LC1 Loop Counters Maintains a count of the remaining iterations of the loop

LT0, LT1 Loop Tops Holds the address of the first instruction within a loop

LB0, LB1 Loop Bottoms Holds the address of the last instruction of the loop

Sequencer Status Register (SEQSTAT)

EXCAUSE[5:0]
Holds information about 
the last executed excep-
tion. See Table 4-11.

Reset = 0x0000 0000

HWERRCAUSE[1:0]
Holds cause of last hard-
ware error generated by 
the core. Hardware errors 
trigger interrupt number 5 
(IVHW). See Table 4-13.

SFTRESET
0 - Last core reset was not a

reset triggered by software
1 - Last core reset was a reset

triggered by software, rather
than a hardware powerup reset

HWERRCAUSE[4:2]
See description under 
bits[1:0], below.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RO
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SYSCFG Register
The System Configuration register (SYSCFG) controls the configuration of 
the processor. This register is accessible only from the Supervisor mode.

Instruction Pipeline
The program sequencer determines the next instruction address by exam-
ining both the current instruction being executed and the current state of 
the processor. If no conditions require otherwise, the processor executes 
instructions from memory in sequential order by incrementing the look- 
ahead address. 

Figure 4-3. System Configuration Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

System Configuration Register (SYSCFG)

CCEN (Cycle Counter Enable) SSSTEP (Supervisor Sin-
gle Step)

When set, a Supervisor 
exception is taken after each 
instruction is executed. It 
applies only to User mode, or 
when processing interrupts in 
Supervisor mode. It is 
ignored if the core is pro-
cessing an exception or 
higher priority event. If pre-
cise exception timing is 
required, CSYNC must be 
used after setting this bit.

0 - Disable 64-bit, free-running
cycle counter

1 - Enable 64-bit, free-running
cycle counter

Reset = 0x0000 0030

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 1 1 0 0 0

SNEN (Self-Nesting Inter-
rupt Enable)

0 - Disable self-nesting of
core interrupts

1 - Enable self-nesting of
core interrupts



ADSP-BF533 Blackfin Processor Hardware Reference 4-7 
 

Program Sequencer

The processor has a ten-stage instruction pipeline, shown in Table 4-3.

Figure 4-4 shows a diagram of the pipeline.

The instruction fetch and branch logic generates 32-bit fetch addresses for 
the Instruction Memory Unit. The Instruction Alignment Unit returns 
instructions and their width information at the end of the IF3 stage.

Table 4-3. Stages of Instruction Pipeline 

Pipeline Stage Description

Instruction Fetch 1 (IF1) Issue instruction address to IAB bus, start compare tag of 
instruction cache

Instruction Fetch 2 (IF2) Wait for instruction data

Instruction Fetch 3 (IF3) Read from IDB bus and align instruction

Instruction Decode (DEC) Decode instructions

Address Calculation (AC) Calculation of data addresses and branch target address

Data Fetch 1 (DF1) Issue data address to DA0 and DA1 bus, start compare tag of 
data cache

Data Fetch 2 (DF2) Read register files

Execute 1 (EX1) Read data from LD0 and LD1 bus, start multiply and video 
instructions

Execute 2 (EX2) Execute/Complete instructions (shift, add, logic, and so on)

Write Back (WB) Writes back to register files, SD bus, and pointer updates (also 
referred to as the “commit” stage)

Figure 4-4. Processor Pipeline
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For each instruction type (16, 32, or 64 bits), the Instruction Alignment 
Unit ensures that the alignment buffers have enough valid instructions to 
be able to provide an instruction every cycle. Since the instructions can be 
16, 32, or 64 bits wide, the Instruction Alignment Unit may not need to 
fetch an instruction from the cache every cycle. For example, for a series of 
16-bit instructions, the Instruction Alignment Unit gets an instruction 
from the Instruction Memory Unit once in four cycles. The alignment 
logic requests the next instruction address based on the status of the align-
ment buffers. The sequencer responds by generating the next fetch address 
in the next cycle, provided there is no change of flow.

The sequencer holds the fetch address until it receives a request from the 
alignment logic or until a change of flow occurs. The sequencer always 
increments the previous fetch address by 8 (the next 8 bytes). If a change 
of flow occurs, such as a branch or an interrupt, data in the Instruction 
Alignment Unit is invalidated. The sequencer decodes and distributes 
instruction data to the appropriate locations such as the register file and 
data memory. 

The Execution Unit contains two 16-bit multipliers, two 40-bit ALUs, 
two 40-bit accumulators, one 40-bit shifter, a video unit (which adds 8-bit 
ALU support), and an 8-entry 32-bit Data Register File.

Register file reads occur in the DF2 pipeline stage (for operands). 

Register file writes occur in the WB stage (for stores). The multipliers and 
the video units are active in the EX1 stage, and the ALUs and shifter are 
active in the EX2 stage. The accumulators are written at the end of the 
EX2 stage. 

The program sequencer also controls stalling and invalidating the instruc-
tions in the pipeline. Multi-cycle instruction stalls occur between the IF3 
and DEC stages. DAG and sequencer stalls occur between the DEC and 
AC stages. Computation and register file stalls occur between the DF2 and 
EX1 stages. Data memory stalls occur between the EX1 and EX2 stages.
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 The sequencer ensures that the pipeline is fully interlocked and 
that all the data hazards are hidden from the programmer.

Multi-cycle instructions behave as multiple single-cycle instructions being 
issued from the decoder over several clock cycles. For example, the Push 
Multiple or Pop Multiple instruction can push or pop from 1 to 14 DREGS 
and/or PREGS, and the instruction remains in the decode stage for a num-
ber of clock cycles equal to the number of registers being accessed.

Multi-issue instructions are 64 bits in length and consist of one 32-bit 
instruction and two 16-bit instructions. All three instructions execute in 
the same amount of time as the slowest of the three.

Any nonsequential program flow can potentially decrease the processor’s 
instruction throughput. Nonsequential program operations include:

• Jumps

• Subroutine calls and returns

• Interrupts and returns

• Loops 

Branches and Sequencing
One type of nonsequential program flow that the sequencer supports is 
branching. A branch occurs when a JUMP or CALL instruction begins execu-
tion at a new location other than the next sequential address. For 
descriptions of how to use the JUMP and CALL instructions, see Blackfin 
Processor Programming Reference. Briefly:

• A JUMP or a CALL instruction transfers program flow to another 
memory location. The difference between a JUMP and a CALL is that 
a CALL automatically loads the return address into the RETS register. 
The return address is the next sequential address after the CALL 
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instruction. This push makes the address available for the CALL 
instruction’s matching return instruction, allowing easy return 
from the subroutine.

• A return instruction causes the sequencer to fetch the instruction at 
the return address, which is stored in the RETS register (for subrou-
tine returns). The types of return instructions include: return from 
subroutine (RTS), return from interrupt (RTI), return from excep-
tion (RTX), return from emulation (RTE), and return from 
nonmaskable interrupt (RTN). Each return type has its own register 
for holding the return address.

• A JUMP instruction can be conditional, depending on the status of 
the CC bit of the ASTAT register. These instructions are immediate 
and may not be delayed. The program sequencer can evaluate the 
CC status bit to decide whether to execute a branch. If no condition 
is specified, the branch is always taken.

• Conditional JUMP instructions use static branch prediction to 
reduce the branch latency caused by the length of the pipeline.

Branches can be direct or indirect. A direct branch address is determined 
solely by the instruction word (for example, JUMP 0x30), while an indirect 
branch gets its address from the contents of a DAG register (for example, 
JUMP(P3)).

All types of JUMPs and CALLs can be PC-relative. The indirect JUMP and 
CALL can be absolute or PC-relative.

Direct Short and Long Jumps
The sequencer supports both short and long jumps. The target of the 
branch is a PC-relative address from the location of the instruction, plus 
an offset. The PC-relative offset for the short jump is a 13-bit immediate 
value that must be a multiple of two (bit 0 must be a 0). The 13-bit value 
gives an effective dynamic range of –4096 to +4094 bytes.
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The PC-relative offset for the long jump is a 25-bit immediate value that 
must also be a multiple of two (bit 0 must be a 0). The 25-bit value gives 
an effective dynamic range of –16,777,216 to +16,777,214 bytes.

If, at the time of writing the program, the destination is known to be less 
than a 13-bit offset from the current PC value, then the JUMP.S 0xnnnn 

instruction may be used. If the destination requires more than a 13-bit 
offset, then the JUMP.L 0xnnnnnnn instruction must be used. If the desti-
nation offset is unknown and development tools must evaluate the offset, 
then use the instruction JUMP 0xnnnnnnn. Upon disassembly, the instruc-
tion is replaced by the appropriate JUMP.S or JUMP.L instruction.

Direct Call 
The CALL instruction is a branch instruction that copies the address of the 
instruction which would have executed next (had the CALL instruction not 
executed) into the RETS register. The direct CALL instruction has a 25-bit, 
PC-relative offset that must be a multiple of two (bit 0 must be a 0). The 
25-bit value gives an effective dynamic range of –16,777,216 to 
+16,777,214 bytes.

Indirect Branch and Call
The indirect JUMP and CALL instructions get their destination address from 
a data address generator (DAG) P-register. For the CALL instruction, the 
RETS register is loaded with the address of the instruction which would 
have executed next in the absence of the CALL instruction.

For example:

JUMP (P3) ;

CALL (P0) ;
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PC-Relative Indirect Branch and Call
The PC-relative indirect JUMP and CALL instructions use the contents of a 
P-register as an offset to the branch target. For the CALL instruction, the 
RETS register is loaded with the address of the instruction which would 
have executed next (had the CALL instruction not executed). 

For example:

JUMP (PC + P3) ;

CALL (PC + P0) ;

Condition Code Flag
The processor supports a Condition Code (CC) flag bit, which is used to 
resolve the direction of a branch. This flag may be accessed eight ways:

• A conditional branch is resolved by the value in CC.

• A Data register value may be copied into CC, and the value in CC 
may be copied to a Data register.

• The BITTST instruction accesses the CC flag.

• A status flag may be copied into CC, and the value in CC may be 
copied to a status flag.

• The CC flag bit may be set to the result of a Pointer register 
comparison.

• The CC flag bit may be set to the result of a Data register 
comparison. 

• Some shifter instructions (rotate or BXOR) use CC as a portion of the 
shift operand/result.

• Test and set instructions can set and clear the CC bit.



ADSP-BF533 Blackfin Processor Hardware Reference 4-13 
 

Program Sequencer

These eight ways of accessing the CC bit are used to control program flow. 
The branch is explicitly separated from the instruction that sets the arith-
metic flags. A single bit resides in the instruction encoding that specifies 
the interpretation for the value of CC. The interpretation is to “branch on 
true” or “branch on false.”

The comparison operations have the form CC = expr where expr involves a 
pair of registers of the same type (for example, Data registers or Pointer 
registers, or a single register and a small immediate constant). The small 
immediate constant is a 3-bit (–4 through 3) signed number for signed 
comparisons and a 3-bit (0 through 7) unsigned number for unsigned 
comparisons.

The sense of CC is determined by equal (==), less than (<), and less than or 
equal to (<=). There are also bit test operations that test whether a bit in a 
32-bit R-register is set.

Conditional Branches

The sequencer supports conditional branches. Conditional branches are 
JUMP instructions whose execution branches or continues linearly, depend-
ing on the value of the CC bit. The target of the branch is a PC-relative 
address from the location of the instruction, plus an offset. The PC-rela-
tive offset is an 11-bit immediate value that must be a multiple of two (bit 
0 must be a 0). This gives an effective dynamic range of –1024 to +1022 
bytes.

For example, the following instruction tests the CC flag and, if it is posi-
tive, jumps to a location identified by the label dest_address: 
IF CC JUMP dest_address ;
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Conditional Register Move

Register moves can be performed depending on whether the value of the 
CC flag is true or false (1 or 0). In some cases, using this instruction instead 
of a branch eliminates the cycles lost because of the branch. These 
conditional moves can be done between any R- or P-registers (including 
SP and FP). 

Example code: 
IF CC R0 = P0 ; 

Branch Prediction
The sequencer supports static branch prediction to accelerate execution of 
conditional branches. These branches are executed based on the state of 
the CC bit.

In the EX2 stage, the sequencer compares the actual CC bit value to the 
predicted value. If the value was mispredicted, the branch is corrected, and 
the correct address is available for the WB stage of the pipeline.

The branch latency for conditional branches is as follows.

• If prediction was “not to take branch,” and branch was actually not 
taken: 0 CCLK cycles.

• If prediction was “not to take branch,” and branch was actually 
taken: 8 CCLK cycles.

• If prediction was “to take branch,” and branch was actually taken: 
4 CCLK cycles.

• If prediction was “to take branch,” and branch was actually not 
taken: 8 CCLK cycles.
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For all unconditional branches, the branch target address computed in the 
AC stage of the pipeline is sent to the Instruction Fetch Address bus at the 
beginning of the DF1 stage. All unconditional branches have a latency of 
4 CCLK cycles.

Consider the example in Table 4-4.

Loops and Sequencing
The sequencer supports a mechanism of zero-overhead looping. The 
sequencer contains two loop units, each containing three registers. Each 
loop unit has a Loop Top register (LT0, LT1), a Loop Bottom register (LB0, 
LB1), and a Loop Count register (LC0, LC1).

When an instruction at address X is executed, and X matches the contents 
of LB0, then the next instruction executed will be from the address in LT0. 
In other words, when PC == LB0, then an implicit jump to LT0 is executed.

A loopback only occurs when the count is greater than or equal to 2. If the 
count is nonzero, then the count is decremented by 1. For example, con-
sider the case of a loop with two iterations. At the beginning, the count is 
2. Upon reaching the first loop end, the count is decremented to 1 and the 
program flow jumps back to the top of the loop (to execute a second 
time). Upon reaching the end of the loop again, the count is decremented 
to 0, but no loopback occurs (because the body of the loop has already 
been executed twice).

Table 4-4. Branch Prediction 

Instruction Description

If CC JUMP dest (bp) This instruction tests the CC flag, and if it is set, 
jumps to a location, identified by the label, dest. 
If the CC flag is set, the branch is correctly predicted 
and the branch latency is reduced. Otherwise, the 
branch is incorrectly predicted and the branch 
latency increases.
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Since there are two loop units, loop unit 1 is assigned higher priority so it 
can be used as the inner loop in a nested loop structure. In other words, a 
loopback caused by loop unit 1 on a particular instruction (PC == LB1, 
LC1 >= 2) will prevent loop unit 0 from looping back on that same 
instruction, even if the address matches. Loop unit 0 is allowed to loop 
back only after the loop count 1 is exhausted.

The LSETUP instruction can be used to load all three registers of a loop unit 
at once. Each loop register can also be loaded individually with a register 
transfer, but this incurs a significant overhead if the loop count is nonzero 
(the loop is active) at the time of the transfer.

The following code example shows a loop that contains two instructions 
and iterates 32 times.

Listing 4-1. Loop Example

P5 = 0x20 ;

LSETUP ( lp_start, lp_end ) LCO = P5 ;

lp_start:

R5 = R0 + R1(ns) || R2 = [P2++] || R3 = [I1++] ;

lp_end:  R5 = R5 + R2 ;

Two sets of loop registers are used to manage two nested loops:

• LC[1:0] – the Loop Count registers

• LT[1:0] – the Loop Top address registers

• LB[1:0] – the Loop Bottom address registers
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When executing an LSETUP instruction, the program sequencer loads the 
address of the loop’s last instruction into LBx and the address of the loop’s 
first instruction into LTx. The top and bottom addresses of the loop are 
computed as PC-relative addresses from the LSETUP instruction, plus an 
offset. In each case, the offset value is added to the location of the LSETUP 
instruction.

The LC0 and LC1 registers are unsigned 32-bit registers, each supporting 

232 –1 iterations through the loop. 

 When LCx = 0, the loop is disabled, and a single pass of the code 
executes.

The processor supports a four-location instruction loop buffer that 
reduces instruction fetches while in loops. If the loop code contains four 
or fewer instructions, then no fetches to instruction memory are necessary 
for any number of loop iterations, because the instructions are stored 
locally. The loop buffer effectively eliminates the instruction fetch time in 
loops with more than four instructions by allowing fetches to take place 
while instructions in the loop buffer are being executed.

A four-cycle latency occurs on the first loopback when the LSETUP specifies 
a nonzero start offset (lp_start). Therefore, zero start offsets are 
preferred.

The processor has no restrictions regarding which instructions can occur 
in a loop end position. Branches and calls are allowed in that position.

Table 4-5. Loop Registers 

First/Last Address of the 
Loop

PC-Relative Offset Used to 
Compute the Loop Start Address

Effective Range of the Loop Start 
Instruction

Top / First 5-bit signed immediate; must be 
a multiple of 2.

0 to 30 bytes away from LSETUP 
instruction.

Bottom / Last 11-bit signed immediate; must 
be a multiple of 2.

0 to 2046 bytes away from 
LSETUP instruction (the defined 
loop can be 2046 bytes long).
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Events and Sequencing
The Event Controller of the processor manages five types of activities or 
events:

• Emulation

• Reset

• Nonmaskable interrupts (NMI)

• Exceptions

• Interrupts 

Note the word event describes all five types of activities. The Event Con-
troller manages fifteen different events in all: Emulation, Reset, NMI, 
Exception, and eleven Interrupts.

An interrupt is an event that changes normal processor instruction flow 
and is asynchronous to program flow. In contrast, an exception is a soft-
ware initiated event whose effects are synchronous to program flow.

The event system is nested and prioritized. Consequently, several service 
routines may be active at any time, and a low priority event may be pre-
empted by one of higher priority.

The processor employs a two-level event control mechanism. The proces-
sor System Interrupt Controller (SIC) works with the Core Event 
Controller (CEC) to prioritize and control all system interrupts. The SIC 
provides mapping between the many peripheral interrupt sources and the 
prioritized general-purpose interrupt inputs of the core. This mapping is 
programmable, and individual interrupt sources can be masked in the 
SIC.
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The CEC supports nine general-purpose interrupts (IVG7 – IVG15) in 
addition to the dedicated interrupt and exception events that are described 
in Table 4-6. It is recommended that the two lowest priority interrupts 
(IVG14 and IVG15) be reserved for software interrupt handlers, leaving 
seven prioritized interrupt inputs (IVG7 – IVG13) to support the system. 
Refer to Table 4-6.

Table 4-6. System and Core Event Mapping  

Event Source Core Event Name

Core Events Emulation (highest priority) EMU

Reset RST

NMI NMI

Exception EVX

Reserved –

Hardware Error IVHW

Core Timer IVTMR
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Note the System Interrupt to Core Event mappings shown are the default 
values at reset and can be changed by software.

System Interrupts PLL Wakeup Interrupt
DMA Error (generic)
PPI Error Interrupt
SPORT0 Error Interrupt
SPORT1 Error Interrupt
SPI Error Interrupt
UART Error Interrupt

IVG7

Real-Time Clock Interrupts
DMA0 Interrupt (PPI)

IVG8

DMA1 Interrupt (SPORT0 RX)
DMA2 Interrupt (SPORT0 TX)
DMA3 Interrupt (SPORT1 RX)
DMA4 Interrupt (SPORT1 TX)

IVG9

DMA5 Interrupt (SPI)
DMA6 Interrupt (UART RX)
DMA7 Interrupt (UART TX)

IVG10

Timer0, Timer1, Timer2 Interrupts IVG11

Programmable Flags Interrupt A/B IVG12

DMA8/9 Interrupt (Memory DMA 
Stream 0)
DMA10/11 Interrupt (Memory DMA 
Stream 1)
Software Watchdog Timer

IVG13

Software Interrupt 1 IVG14

Software Interrupt 2 (lowest priority) IVG15

Table 4-6. System and Core Event Mapping (Cont’d) 

Event Source Core Event Name
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System Interrupt Processing
Referring to Figure 4-5, note when an interrupt (Interrupt A) is generated 
by an interrupt-enabled peripheral:

1. SIC_ISR logs the request and keeps track of system interrupts that 
are asserted but not yet serviced (that is, an interrupt service rou-
tine hasn’t yet cleared the interrupt).

2. SIC_IWR checks to see if it should wake up the core from an idled 
state based on this interrupt request.

3. SIC_IMASK masks off or enables interrupts from peripherals at the 
system level. If Interrupt A is not masked, the request proceeds to 
Step 4.

4. The SIC_IARx registers, which map the peripheral interrupts to a 
smaller set of general-purpose core interrupts (IVG7 – IVG15), 
determine the core priority of Interrupt A.

5. ILAT adds Interrupt A to its log of interrupts latched by the core 
but not yet actively being serviced.

6. IMASK masks off or enables events of different core priorities. If the 
IVGx event corresponding to Interrupt A is not masked, the process 
proceeds to Step 7.

7. The Event Vector Table (EVT) is accessed to look up the appropri-
ate vector for Interrupt A’s interrupt service routine (ISR).

8. When the event vector for Interrupt A has entered the core pipe-
line, the appropriate IPEND bit is set, which clears the respective 
ILAT bit. Thus, IPEND tracks all pending interrupts, as well as those 
being presently serviced.
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9. When the interrupt service routine (ISR) for Interrupt A has been 
executed, the RTI instruction clears the appropriate IPEND bit. 
However, the relevant SIC_ISR bit is not cleared unless the inter-
rupt service routine clears the mechanism that generated Interrupt 
A, or if the process of servicing the interrupt clears this bit.

It should be noted that emulation, reset, NMI, and exception events, as 
well as hardware error (IVHW) and core timer (IVTMR) interrupt requests, 
enter the interrupt processing chain at the ILAT level and are not affected 
by the system-level interrupt registers (SIC_IWR, SIC_ISR, SIC_IMASK, 
SIC_IARx).

If multiple interrupt sources share a single core interrupt, then the inter-
rupt service routine (ISR) must identify the peripheral that generated the 
interrupt. The ISR may then need to interrogate the peripheral to deter-
mine the appropriate action to take.

System Peripheral Interrupts
The processor system has numerous peripherals, which therefore require 
many supporting interrupts. Table 4-7 lists:

• The Peripheral Interrupt source

• The Peripheral Interrupt ID used in the System Interrupt Assign-
ment registers (SIC_IARx). See “System Interrupt Assignment 
Registers (SIC_IARx)” on page 4-29.

• The general-purpose interrupt of the core to which the interrupt 
maps at reset

• The Core Interrupt ID used in the System Interrupt Assignment 
registers (SIC_IARx). See “System Interrupt Assignment Registers 
(SIC_IARx)” on page 4-29.
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Figure 4-5. Interrupt Processing Block Diagram

Table 4-7. Peripheral Interrupt Source Reset State

Peripheral Interrupt Source Peripheral 
Interrupt ID

General-purpose 
Interrupt (Assignment 
at Reset)

Core 
Interrupt ID

PLL Wakeup Interrupt 0 IVG7 0

DMA Error (generic) 1 IVG7 0

PPI Error Interrupt 2 IVG7 0

SPORT0 Error Interrupt 3 IVG7 0

SPORT1 Error Interrupt 4 IVG7 0

SPI Error Interrupt 5 IVG7 0

UART Error Interrupt 6 IVG7 0

Real-Time Clock Interrupts (alarm, 
second, minute, hour, countdown)

7 IVG8 1

"INTERRUPT
A"

SYSTEM
INTERRUPT

MASK
(SIC_IMASK)

ASSIGN
SYSTEM

PRIORITY
(SIC_IAR0..2)

CORE EVENT CONTROLLERSYSTEM INTERRUPT CONTROLLER

NOTE: NAMES IN PARENTHESES ARE MEMORY-MAPPED REGISTERS.

EMU
RESET
NMI
EVX
IVTMR
IVHW

PERIPHERAL
INTERRUPT
REQUESTS

CORE
EVENT

VECTOR
TABLE

(EVT[15:0])

CORE
PENDING
(IPEND)

CORE
STATUS

(ILAT)

CORE
INTERRUPT

MASK
(IMASK)

SYSTEM
WAKEUP
(SIC_IWR)

SYSTEM
STATUS

(SIC_ISR)

TO DYNAMIC POWER
MANAGEMENT
CONTROLLER
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The peripheral interrupt structure of the processor is flexible. By default 
upon reset, multiple peripheral interrupts share a single, general-purpose 
interrupt in the core, as shown in Table 4-7.

An interrupt service routine that supports multiple interrupt sources must 
interrogate the appropriate system memory mapped registers (MMRs) to 
determine which peripheral generated the interrupt.

DMA 0 Interrupt (PPI) 8 IVG8 1

DMA 1 Interrupt (SPORT0 RX) 9 IVG9 2

DMA 2 Interrupt (SPORT0 TX) 10 IVG9 2

DMA 3 Interrupt (SPORT1 RX) 11 IVG9 2

DMA 4 Interrupt (SPORT1 TX) 12 IVG9 2

DMA 5 Interrupt (SPI) 13 IVG10 3

DMA 6 Interrupt (UART RX) 14 IVG10 3

DMA 7 Interrupt (UART TX) 15 IVG10 3

Timer0 Interrupt 16 IVG11 4

Timer1 Interrupt 17 IVG11 4

Timer2 Interrupt 18 IVG11 4

PF Interrupt A 19 IVG12 5

PF Interrupt B 20 IVG12 5

DMA 8/9 Interrupt (Memory DMA 
Stream 0)

21 IVG13 6

DMA 10/11 Interrupt (Memory 
DMA Stream 1)

22 IVG13 6

Software Watchdog Timer Interrupt 23 IVG13 6

Reserved 24-31 - -

Table 4-7. Peripheral Interrupt Source Reset State (Cont’d)

Peripheral Interrupt Source Peripheral 
Interrupt ID

General-purpose 
Interrupt (Assignment 
at Reset)

Core 
Interrupt ID
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If the default assignments shown in Table 4-7 are acceptable, then inter-
rupt initialization involves only:

• Initialization of the core Event Vector Table (EVT) vector address 
entries

• Initialization of the IMASK register

• Unmasking the specific peripheral interrupts in SIC_IMASK that the 
system requires

SIC_IWR Register
The System Interrupt Wakeup-Enable register (SIC_IWR) provides the 
mapping between the peripheral interrupt source and the Dynamic Power 
Management Controller (DPMC). Any of the peripherals can be config-
ured to wake up the core from its idled state to process the interrupt, 
simply by enabling the appropriate bit in the System Interrupt 
Wakeup-enable register (SIC_IWR, refer to Figure 4-6). If a peripheral 
interrupt source is enabled in SIC_IWR and the core is idled, the interrupt 
causes the DPMC to initiate the core wakeup sequence in order to process 
the interrupt. Note this mode of operation may add latency to interrupt 
processing, depending on the power control state. For further discussion 
of power modes and the idled state of the core, see Chapter 8, “Dynamic 
Power Management”.

By default, all interrupts generate a wakeup request to the core. However, 
for some applications it may be desirable to disable this function for some 
peripherals, such as for a SPORTx Transmit Interrupt.

The SIC_IWR register has no effect unless the core is idled. The bits in this 
register correspond to those of the System Interrupt Mask (SIC_IMASK) 
and Interrupt Status (SIC_ISR) registers.
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After reset, all valid bits of this register are set to 1, enabling the wakeup 
function for all interrupts that are not masked. Before enabling interrupts, 
configure this register in the reset initialization sequence. The SIC_IWR 
register can be read from or written to at any time. To prevent spurious or 
lost interrupt activity, this register should be written to only when all 
peripheral interrupts are disabled.

 Note the wakeup function is independent of the interrupt mask 
function. If an interrupt source is enabled in SIC_IWR but masked 
off in SIC_IMASK, the core wakes up if it is idled, but it does not 
generate an interrupt.

Figure 4-6. System Interrupt Wakeup-enable Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 1 1 1 1 1 1 1 1 1 1 1 1 1 1

System Interrupt Wakeup-enable Register (SIC_IWR)

Reset = 0xFFFF FFFF

Timer 2 Wakeup

For all bits, 0 - Wakeup function not enabled, 1 - Wakeup function enabled

PF Wakeup A

PF Wakeup B

Memory DMA Stream 1 Wakeup

Software Watchdog Timer Wakeup

PLL Wakeup

PPI Error Wakeup

SPORT0 Error Wakeup

SPORT1 Error Wakeup

SPI Error Wakeup

UART Error Wakeup

Real-Time Clock Wakeup

DMA7 Wakeup 
(UART TX)
DMA6 Wakeup 
(UART RX)
DMA5 Wakeup (SPI)

DMA4 Wakeup (SPORT1 TX)

DMA3 Wakeup (SPORT1 RX)
DMA2 Wakeup (SPORT0 TX)
DMA1 Wakeup (SPORT0 RX)

DMA0 Wakeup (PPI)

31 30 29 28 27 26 25 24 23 22 21 20 19 182 17 16

11 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Memory DMA Stream 0 Wakeup
Timer 1 Wakeup

Timer 0 Wakeup

DMA Error (generic) 
Wakeup

0xFFC0 0124
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SIC_ISR Register
The System Interrupt Controller (SIC) includes a read-only status regis-
ter, the System Interrupt Status register (SIC_ISR), shown in Figure 4-7. 
Each valid bit in this register corresponds to one of the peripheral inter-
rupt sources. The bit is set when the SIC detects the interrupt is asserted 
and cleared when the SIC detects that the peripheral interrupt input has 
been deasserted. Note for some peripherals, such as programmable flag 
asynchronous input interrupts, many cycles of latency may pass from the 
time an interrupt service routine initiates the clearing of the interrupt 
(usually by writing a system MMR) to the time the SIC senses that the 
interrupt has been deasserted.

Depending on how interrupt sources map to the general-purpose interrupt 
inputs of the core, the interrupt service routine may have to interrogate 
multiple interrupt status bits to determine the source of the interrupt. 
One of the first instructions executed in an interrupt service routine 
should read SIC_ISR to determine whether more than one of the peripher-
als sharing the input has asserted its interrupt output. The service routine 
should fully process all pending, shared interrupts before executing the 
RTI, which enables further interrupt generation on that interrupt input.

 When an interrupt’s service routine is finished, the RTI instruction 
clears the appropriate bit in the IPEND register. However, the rele-
vant SIC_ISR bit is not cleared unless the service routine clears the 
mechanism that generated the interrupt.

Many systems need relatively few interrupt-enabled peripherals, allowing 
each peripheral to map to a unique core priority level. In these designs, 
SIC_ISR will seldom, if ever, need to be interrogated.

The SIC_ISR register is not affected by the state of the System Interrupt 
Mask register (SIC_IMASK) and can be read at any time. Writes to the 
SIC_ISR register have no effect on its contents.
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SIC_IMASK Register
The System Interrupt Mask register (SIC_IMASK, shown in Figure 4-8) 
allows masking of any peripheral interrupt source at the System Interrupt 
Controller (SIC), independently of whether it is enabled at the peripheral 
itself.

A reset forces the contents of SIC_IMASK to all 0s to mask off all peripheral 
interrupts. Writing a 1 to a bit location turns off the mask and enables the 
interrupt.

Figure 4-7. System Interrupt Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

System Interrupt Status Register (SIC_ISR)

Reset = 0x0000 0000

For all bits, 0 - Deasserted, 1 - Asserted

Timer 2 Interrupt
PF Interrupt A

PF Interrupt B

Memory DMA Stream 1 Interrupt

Software Watchdog Timer Interrupt

PLL Wakeup Interrupt

PPI Error Interrupt

SPORT0 Error Interrupt

SPORT1 Error Interrupt

SPI Error Interrupt

UART Error Interrupt

Real-Time Clock Interrupts

DMA7 Interrupt 
(UART TX)
DMA6 Interrupt 
(UART RX)
DMA5 Interrupt (SPI)

DMA4 Interrupt (SPORT1 TX)

DMA3 Interrupt (SPORT1 RX)
DMA2 Interrupt (SPORT0 TX)
DMA1 Interrupt (SPORT0 RX)

DMA0 Interrupt (PPI)

Memory DMA Stream 0 Interrupt
Timer 1 Interrupt

Timer 0 Interrupt

DMA Error (generic) 
Interrupt

31 30 29 28 27 26 25 24 23 22 21 20 19 182 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 00xFFC0 0120
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Although this register can be read from or written to at any time (in 
Supervisor mode), it should be configured in the reset initialization 
sequence before enabling interrupts.

System Interrupt Assignment Registers (SIC_IARx)
The relative priority of peripheral interrupts can be set by mapping the 
peripheral interrupt to the appropriate general-purpose interrupt level in 
the core. The mapping is controlled by the System Interrupt Assignment 
register settings, as detailed in Figure 4-9, Figure 4-10, and Figure 4-11. 

Figure 4-8. System Interrupt Mask Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

System Interrupt Mask Register (SIC_IMASK)
For all bits, 0 - Interrupt masked, 1 - Interrupt enabled

PLL Wakeup Interrupt

PPI Error Interrupt

SPORT0 Error Interrupt

SPORT1 Error Interrupt

SPI Error Interrupt

UART Error Interrupt

Real-Time Clock Interrupts

DMA Error (generic) 
Interrupt

DMA7 Interrupt 
(UART TX)
DMA6 Interrupt 
(UART RX)
DMA5 Interrupt (SPI)

DMA4 Interrupt (SPORT1 TX)

DMA3 Interrupt (SPORT1 RX)
DMA2 Interrupt (SPORT0 TX)
DMA1 Interrupt (SPORT0 RX)

DMA0 Interrupt (PPI)

Timer 2 Interrupt
PF Interrupt A
PF Interrupt B

Timer 1 Interrupt

Timer 0 Interrupt

Memory DMA Stream 1 Interrupt

Software Watchdog Timer Interrupt

Memory DMA Stream 0 Interrupt

31 30 29 28 27 26 25 24 23 22 21 20 19 182 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 00xFFC0 010C Reset = 0x0000 0000
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If more than one interrupt source is mapped to the same interrupt, they 
are logically OR’ed, with no hardware prioritization. Software can priori-
tize the interrupt processing as required for a particular system 
application.

 For general-purpose interrupts with multiple peripheral interrupts 
assigned to them, take special care to ensure that software correctly 
processes all pending interrupts sharing that input. Software is 
responsible for prioritizing the shared interrupts.

Figure 4-9. System Interrupt Assignment Register 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

System Interrupt Assignment Register 0 (SIC_IAR0)

PLL Wakeup Interrupt
IVG select

SPORT0 Error Interrupt
IVG select

PPI Error Interrupt
IVG select

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 1 0 0 0 0 0 0 0 0 0 0 0

Real-Time Clock 
Interrupt
IVG select

UART Error Interrupt
IVG select

Reset = 0x1000 0000

SPORT1 Error Interrupt
IVG select

SPI Error Interrupt
IVG select

DMA Error (generic) Interrupt
IVG select

0xFFC0 0110
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Figure 4-10. System Interrupt Assignment Register 1

Figure 4-11. System Interrupt Assignment Register 2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 1 0 0 0 1 0 0 0 1 0 0 0 0

DMA0 (PPI) Interrupt
IVG select

DMA1 (SPORT0 RX) Interrupt
IVG select

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 1 1 0 0 1 1 0 0 1 1 0 0 1

DMA4 (SPORT1 TX) Interrupt
IVG select

DMA5 (SPI) Interrupt
IVG select

DMA7 (UART TX) 
Interrupt
IVG select

DMA3 (SPORT1 RX) 
Interrupt
IVG select

System Interrupt Assignment Register 1 (SIC_IAR1)

Reset = 0x3332 22210xFFC0 0114

DMA6 (UART RX) Interrupt
IVG select

DMA2 (SPORT0 TX) Interrupt
IVG select

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

10 1 1 0 0 1 1 0 0 1 1 0 0 1 0

System Interrupt Assignment Register 2 (SIC_IAR2)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 1 0 1 0 1 0 0 0 1 0 0 0 1 0

PF A Interrupt
IVG select

Timer 2 Interrupt
IVG select

PF B Interrupt
IVG select

Reset = 0x6665 5444

Timer 0 Interrupt
IVG select

Timer 1 Interrupt
IVG select

Memory DMA 
Stream 0 Interrupt
IVG select

Software Watchdog Timer 
Interrupt
IVG select

0xFFC0 0118

Memory DMA Stream 1 Interrupt
IVG select
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These registers can be read from or written to at any time in Supervisor 
mode. It is advisable, however, to configure them in the Reset interrupt 
service routine before enabling interrupts. To prevent spurious or lost 
interrupt activity, these registers should be written to only when all 
peripheral interrupts are disabled.

Table 4-8 defines the value to write in SIC_IARx to configure a peripheral 
for a particular IVG priority.

Table 4-8. IVG Select Definitions 

General-Purpose Interrupt Value in SIC_IAR

IVG7 0

IVG8 1

IVG9 2

IVG10 3

IVG11 4

IVG12 5

IVG13 6

IVG14 7

IVG15 8
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Core Event Controller Registers
The Event Controller uses three MMRs to coordinate pending event 
requests. In each of these MMRs, the 16 lower bits correspond to the 16 
event levels (for example, bit 0 corresponds to “Emulator mode”). The 
registers are:

• IMASK - interrupt mask 

• ILAT - interrupt latch

• IPEND - interrupts pending

These three registers are accessible in Supervisor mode only.

IMASK Register
The Core Interrupt Mask register (IMASK) indicates which interrupt levels 
are allowed to be taken. The IMASK register may be read and written in 
Supervisor mode. Bits [15:5] have significance; bits [4:0] are hard-coded 
to 1 and events of these levels are always enabled. If IMASK[N] == 1 and 
ILAT[N] == 1, then interrupt N will be taken if a higher priority is not 
already recognized. If IMASK[N] == 0, and ILAT[N] gets set by interrupt N, 
the interrupt will not be taken, and ILAT[N] will remain set.
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ILAT Register
Each bit in the Core Interrupt Latch register (ILAT) indicates that the cor-
responding event is latched, but not yet accepted into the processor (see 
Figure 4-13). The bit is reset before the first instruction in the corre-
sponding ISR is executed. At the point the interrupt is accepted, ILAT[N] 
will be cleared and IPEND[N] will be set simultaneously. The ILAT register 
can be read in Supervisor mode. Writes to ILAT are used to clear bits only 
(in Supervisor mode). To clear bit N from ILAT, first make sure that 
IMASK[N] == 0, and then write ILAT[N] = 1. This write functionality to 
ILAT is provided for cases where latched interrupt requests need to be 
cleared (cancelled) instead of serviced.

The RAISE instruction can be used to set ILAT[15] through ILAT[5], and 
also ILAT[2] or ILAT[1].

Only the JTAG TRST pin can clear ILAT[0].

Figure 4-12. Core Interrupt Mask Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 0 0 0 0 0 0 1 1 1 1

Core Interrupt Mask Register (IMASK)

IVHW (Hardware Error)
IVTMR (Core Timer)
IVG7
IVG8

IVG15
IVG14
IVG13
IVG12
IVG11
IVG10

IVG9

For all bits, 0 - Interrupt masked, 1 - Interrupt enabled

Reset = 0x0000 001F0xFFE0 2104
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IPEND Register
The Core Interrupt Pending register (IPEND) keeps track of all currently 
nested interrupts (see Figure 4-14). Each bit in IPEND indicates that the 
corresponding interrupt is currently active or nested at some level. It may 
be read in Supervisor mode, but not written. The IPEND[4] bit is used by 
the Event Controller to temporarily disable interrupts on entry and exit to 
an interrupt service routine.

When an event is processed, the corresponding bit in IPEND is set. The 
least significant bit in IPEND that is currently set indicates the interrupt 
that is currently being serviced. At any given time, IPEND holds the current 
status of all nested events.

Figure 4-13. Core Interrupt Latch Register

Core Interrupt Latch Register (ILAT)

RST (Reset) - RO
NMI (Nonmaskable Interrupt) - RO

EMU (Emulation) - RO

IVHW (Hardware Error)
EVX (Exception) - RO

IVTMR (Core Timer)
IVG7
IVG8

IVG15
IVG14
IVG13
IVG12
IVG11
IVG10
IVG9

Reset value for bit 0 is emulator-dependent. For all bits, 0 - Interrupt not latched, 1 - Interrupt latched

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000 000X0xFFE0 210C
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Global Enabling/Disabling of Interrupts
General-purpose interrupts can be globally disabled with the CLI Dreg 
instruction and re-enabled with the STI Dreg instruction, both of which 
are only available in Supervisor mode. Reset, NMI, emulation, and excep-
tion events cannot be globally disabled. Globally disabling interrupts 
clears IMASK[15:5] after saving IMASK’s current state. See “Enable Inter-
rupts” and “Disable Interrupts” in the External Event Management 
chapter in Blackfin Processor Programming Reference.

When program code is too time critical to be delayed by an interrupt, dis-
able the general-purpose interrupts, but be sure to re-enable them at the 
conclusion of the code sequence.

Figure 4-14. Core Interrupt Pending Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 1 0 0 0

Core Interrupt Pending Register (IPEND)

RST (Reset)
NMI (Nonmaskable Interrupt)

EMU (Emulation)

IVHW (Hardware Error)

EVX (Exception)

IVTMR (Core Timer)
IVG7
IVG8

IVG15
IVG14
IVG13
IVG12
IVG11
IVG10
IVG9

RO. For all bits except bit 4, 0 - No interrupt pending, 1 - Interrupt pending or active

Global Interrupt Disable
0 - Interrupts globally enabled
1 - Interrupts globally disabled
Set and cleared by Event Con-
troller only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000 00100xFFE0 2108
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Event Vector Table
The Event Vector Table (EVT) is a hardware table with sixteen entries 
that are each 32 bits wide. The EVT contains an entry for each possible 
core event. Entries are accessed as MMRs, and each entry can be pro-
grammed at reset with the corresponding vector address for the interrupt 
service routine. When an event occurs, instruction fetch starts at the 
address location in the EVT entry for that event.

The processor architecture allows unique addresses to be programmed into 
each of the interrupt vectors; that is, interrupt vectors are not determined 
by a fixed offset from an interrupt vector table base address. This approach 
minimizes latency by not requiring a long jump from the vector table to 
the actual ISR code.

Table 4-9 lists events by priority. Each event has a corresponding bit in 
the event state registers ILAT, IMASK, and IPEND.

Table 4-9. Core Event Vector Table

Event Number Event Class Name MMR Location Notes

EVT0 Emulation EMU 0xFFE0 2000 Highest priority. Vec-
tor address is provided 
by JTAG.

EVT1 Reset RST 0xFFE0 2004

EVT2 NMI NMI 0xFFE0 2008

EVT3 Exception EVX 0xFFE0 200C

EVT4 Reserved Reserved 0xFFE0 2010 Reserved vector

EVT5 Hardware Error IVHW 0xFFE0 2014

EVT6 Core Timer IVTMR 0xFFE0 2018

EVT7 Interrupt 7 IVG7 0xFFE0 201C

EVT8 Interrupt 8 IVG8 0xFFE0 2020

EVT9 Interrupt 9 IVG9 0xFFE0 2024
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Emulation
An emulation event causes the processor to enter Emulation mode, where 
instructions are read from the JTAG interface. It is the highest priority 
interrupt to the core.

For detailed information on emulation, see Chapter 21, “Debug”, in 
Blackfin Processor Programming Reference.

Reset
The reset interrupt (RST) can be initiated via the RESET pin or through 
expiration of the watchdog timer. The reset vector can be reconfigured to 
another address during runtime and therefore, an application can vector to 
an address other than 0xFFA0 0000 (ADSP-BF533) or 0xFFA0 8000 
(ADSP-BF531/ADSP-BF532) after a software reset. If the reset vector is 
modified during runtime, ensure that the reset vector address within the 
EVT1 register is a valid instruction address. This location differs from that 
of other interrupts in that its content is read-only. Writes to this address 
change the register but do not change where the processor vectors upon 
reset. The processor always vectors to the reset vector address upon reset. 
For more information, see “Reset State” on page 3-10 and “Booting 
Methods” on page 3-18.

EVT10 Interrupt 10 IVG10 0xFFE0 2028

EVT11 Interrupt 11 IVG11 0xFFE0 202C

EVT12 Interrupt 12 IVG12 0xFFE0 2030

EVT13 Interrupt 13 IVG13 0xFFE0 2034

EVT14 Interrupt 14 IVG14 0xFFE0 2038

EVT15 Interrupt 15 IVG15 0xFFE0 203C Lowest priority

Table 4-9. Core Event Vector Table (Cont’d)

Event Number Event Class Name MMR Location Notes
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The core has an output that indicates that a double fault has occurred. 
This is a nonrecoverable state. The system (via the SWRST register) can be 
programmed to send a reset request if a double fault condition is detected. 
Subsequently, the reset request forces a system reset for core and 
peripherals.

The reset vector is determined by the processor system. It points to the 
start of the on-chip boot ROM, or to the start of external asynchronous 
memory, depending on the state of the BMODE[1:0] pins. Refer to 
Table 4-10.

If the BMODE[1:0] pins indicate either booting from flash, SPI flash, SPI 
host, or serial EEPROM, the reset vector points to the start of the internal 
boot ROM, where a small bootstrap kernel resides. The bootstrap code 
reads the System Reset Configuration register (SYSCR) to determine the 
value of the BMODE[1:0] pins, which determine the appropriate boot 
sequence. For information about the boot ROM, see “Booting Methods” 
on page 3-18.

Table 4-10. Reset Vector Addresses 

Boot Source BMODE[1:0] Execution Start 
Address

Bypass boot ROM; execute from 16-bit wide exter-
nal memory (Async Bank 0)

00 0x2000 0000

Use boot ROM to boot from 8-bit or 16-bit flash 01 0xEF00 0000

Use boot ROM to boot from 8-bit SPI host device 10 0xEF00 0000

Use boot ROM to configure and load boot code 
from SPI serial EEPROM (8-, 16-, or 24-bit address 
range)

11 0xEF00 0000
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If the BMODE[1:0] pins indicate to bypass boot ROM, the reset vector 
points to the start of the external asynchronous memory region. In this 
mode, the internal boot ROM is not used. To support reads from this 
memory region, the External Bus Interface Unit (EBIU) uses the default 
external memory configuration that results from hardware reset.

NMI (Nonmaskable Interrupt)
The NMI entry is reserved for a nonmaskable interrupt, which can be gen-
erated by the Watchdog timer or by the NMI input signal to the 
processor. NMI is a level-sensitive pin; when not used, it should always be 
pulled low for ADSP-BF531/2/3 processors. Only events that require 
immediate processor attention are appropriate as an NMI entry. For 
example, a powerdown warning is an appropriate NMI event. 

 If an exception occurs in an event handler that is already servicing 
an Exception, NMI, Reset, or Emulation event, this will trigger a 
double fault condition, and the address of the excepting instruction 
will be written to RETX. 

Exceptions
Exceptions are synchronous to the instruction stream. In other words, a 
particular instruction causes an exception when it attempts to finish exe-
cution. No instructions after the offending instruction are executed before 
the exception handler takes effect.

Many of the exceptions are memory related. For example, an exception is 
given when a misaligned access is attempted, or when a cacheability pro-
tection lookaside buffer (CPLB) miss or protection violation occurs. 
Exceptions are also given when illegal instructions or illegal combinations 
of registers are executed. 
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An excepting instruction may or may not commit before the exception 
event is taken, depending on if it is a service type or an error type 
exception.

An instruction causing a service type event will commit, and the address 
written to the RETX register will be the next instruction after the excepting 
one. An example of a service type exception is the single step.

An instruction causing an error type event cannot commit, so the address 
written to the RETX register will be the address of the offending instruc-
tion. An example of an error type event is a CPLB miss.

 Usually the RETX register contains the correct address to return to. 
To skip over an excepting instruction, take care in case the next 
address is not simply the next linear address. This could happen 
when the excepting instruction is a loop end. In that case, the 
proper next address would be the loop top.

The EXCAUSE[5:0] field in the Sequencer Status register (SEQSTAT) is writ-
ten whenever an exception is taken, and indicates to the exception handler 
which type of exception occurred. Refer to Table 4-11 for a list of events 
that cause exceptions.

 If an exception occurs in an event handler that is already servicing 
an Exception, NMI, Reset, or Emulation event, this will trigger a 
double fault condition, and the address of the excepting instruction 
will be written to RETX. 
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Table 4-11. Events That Cause Exceptions

Exception EXCAUSE
[5:0]

Type:
(E) Error

(S) Service1

Notes/Examples

Force Exception 
instruction EXCPT 
with 4-bit m field

m field S Instruction provides 4 bits of EXCAUSE.

Single step 0x10 S When the processor is in single step mode, 
every instruction generates an exception. 
Primarily used for debugging.

Exception caused by a 
trace buffer full condi-
tion

0x11 S The processor takes this exception when 
the trace buffer overflows (only when 
enabled by the Trace Unit Control regis-
ter).

Undefined instruction 0x21 E May be used to emulate instructions that 
are not defined for a particular processor 
implementation.

Illegal instruction 
combination

0x22 E See section for multi-issue rules in the 
Blackfin Processor Programming Reference.

Data access CPLB pro-
tection violation

0x23 E Attempted read or write to Supervisor 
resource, or illegal data memory access. 
Supervisor resources are registers and 
instructions that are reserved for Supervi-
sor use: Supervisor only registers, all 
MMRs, and Supervisor only instructions. 
(A simultaneous, dual access to two MMRs 
using the data address generators generates 
this type of exception.) In addition, this 
entry is used to signal a protection viola-
tion caused by disallowed memory access, 
and it is defined by the Memory Manage-
ment Unit (MMU) cacheability protection 
lookaside buffer (CPLB).

Data access mis-
aligned address viola-
tion

0x24 E Attempted misaligned data memory or 
data cache access.

Unrecoverable event 0x25 E For example, an exception generated while 
processing a previous exception.
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Data access CPLB miss 0x26 E Used by the MMU to signal a CPLB miss 
on a data access.

Data access multiple 
CPLB hits

0x27 E More than one CPLB entry matches data 
fetch address.

Exception caused by 
an emulation watch-
point match

0x28 E There is a watchpoint match, and one of 
the EMUSW bits in the Watchpoint 
Instruction Address Control register 
(WPIACTL) is set.

Instruction fetch mis-
aligned address viola-
tion

0x2A E Attempted misaligned instruction cache 
fetch. On a misaligned instruction fetch 
exception, the return address provided in 
RETX is the destination address which is 
misaligned, rather than the address of the 
offending instruction. For example, if an 
indirect branch to a misaligned address 
held in P0 is attempted, the return address 
in RETX is equal to P0, rather than to the 
address of the branch instruction. (Note 
this exception can never be generated from 
PC-relative branches, only from indirect 
branches.)

Instruction fetch 
CPLB protection vio-
lation

0x2B E Illegal instruction fetch access (memory 
protection violation).

Instruction fetch 
CPLB miss

0x2C E CPLB miss on an instruction fetch.

Table 4-11. Events That Cause Exceptions (Cont’d)

Exception EXCAUSE
[5:0]

Type:
(E) Error

(S) Service1

Notes/Examples
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If an instruction causes multiple exceptions, only the exception with the 
highest priority is taken. Table 4-12 ranks exceptions by descending 
priority.

Instruction fetch mul-
tiple CPLB hits

0x2D E More than one CPLB entry matches 
instruction fetch address.

Illegal use of supervi-
sor resource

0x2E E Attempted to use a Supervisor register or 
instruction from User mode. Supervisor 
resources are registers and instructions that 
are reserved for Supervisor use: Supervisor 
only registers, all MMRs, and Supervisor 
only instructions.

1   For services (S), the return address is the address of the instruction that follows the exception. 
For errors (E), the return address is the address of the excepting instruction.

Table 4-12. Exceptions by Descending Priority

Priority Exception EXCAUSE

1 Unrecoverable Event 0x25

2 I-Fetch Multiple CPLB Hits 0x2D

3 I-Fetch Misaligned Access 0x2A

4 I-Fetch Protection Violation 0x2B

5 I-Fetch CPLB Miss 0x2C

6 I-Fetch Access Exception 0x29

7 Watchpoint Match 0x28

8 Undefined Instruction 0x21

9 Illegal Combination 0x22

10 Illegal Use of Protected Resource 0x2E

11 DAG0 Multiple CPLB Hits 0x27

Table 4-11. Events That Cause Exceptions (Cont’d)

Exception EXCAUSE
[5:0]

Type:
(E) Error

(S) Service1

Notes/Examples
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Exceptions While Executing an Exception Handler
While executing the exception handler, avoid issuing an instruction that 
generates another exception. If an exception is caused while executing 
code within the exception handler, the NMI handler, the reset vector, or 
in emulator mode:

• The excepting instruction is not committed. All writebacks from 
the instruction are prevented.

• The generated exception is not taken.

• The EXCAUSE field in SEQSTAT is updated with an unrecoverable 
event code.

• The address of the offending instruction is saved in RETX. Note if 
the processor were executing, for example, the NMI handler, the 
RETN register would not have been updated; the excepting instruc-
tion address is always stored in RETX.

12 DAG0 Misaligned Access 0x24

13 DAG0 Protection Violation 0x23

14 DAG0 CPLB Miss 0x26

15 DAG1 Multiple CPLB Hits 0x27

16 DAG1 Misaligned Access 0x24

17 DAG1 Protection Violation 0x23

18 DAG1 CPLB Miss 0x26

19 EXCPT Instruction m field

20 Single Step 0x10

21 Trace Buffer 0x11

Table 4-12. Exceptions by Descending Priority (Cont’d)

Priority Exception EXCAUSE
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To determine whether an exception occurred while an exception handler 
was executing, check SEQSTAT at the end of the exception handler for the 
code indicating an “unrecoverable event” (EXCAUSE = 0x25). If an unre-
coverable event occurred, register RETX holds the address of the most 
recent instruction to cause an exception. This mechanism is not intended 
for recovery, but rather for detection.

Hardware Error Interrupt
The Hardware Error Interrupt indicates a hardware error or system mal-
function. Hardware errors occur when logic external to the core, such as a 
memory bus controller, is unable to complete a data transfer (read or 
write) and asserts the core’s error input signal. Such hardware errors 
invoke the Hardware Error Interrupt (interrupt IVHW in the Event Vector 
Table (EVT) and ILAT, IMASK, and IPEND registers). The Hardware Error 
Interrupt service routine can then read the cause of the error from the 
5-bit HWERRCAUSE field appearing in the Sequencer Status register (SEQ-
STAT) and respond accordingly.

The Hardware Error Interrupt is generated by:

• Bus parity errors

• Internal error conditions within the core, such as Performance 
Monitor overflow

• Peripheral errors

• Bus timeout errors
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The list of supported hardware conditions, with their related HWERRCAUSE 
codes, appears in Table 4-13. The bit code for the most recent error 
appears in the HWERRCAUSE field. If multiple hardware errors occur simulta-
neously, only the last one can be recognized and serviced. The core does 
not support prioritizing, pipelining, or queuing multiple error codes. The 
Hardware Error Interrupt remains active as long as any of the error condi-
tions remain active. 

Core Timer
The Core Timer Interrupt (IVTMR) is triggered when the core timer value 
reaches zero. See Chapter 15, “Timers”.

Table 4-13. Hardware Conditions Causing Hardware Error Interrupts 

Hardware 
Condition

HWERRCAUSE 
(Binary)

HWERRCAUSE 
(Hexadecimal)

Notes/Examples

System MMR 
Error

0b00010 0x02 An error can occur if an invalid Sys-
tem MMR location is accessed, if a 
32-bit register is accessed with a 
16-bit instruction, or if a 16-bit 
register is accessed with a 32-bit 
instruction.

External Memory 
Addressing Error

0b00011 0x03 An access to reserved or uninitialized 
memory was attempted.

Performance 
Monitor 
Overflow

0b10010 0x12 Refer to “Performance Monitor Reg-
isters” on page A-9.

RAISE 5 
instruction

0b11000 0x18 Software issued a RAISE 5 instruction 
to invoke the Hardware Error Inter-
rupt (IVHW).

Reserved All other bit com-
binations.

All other values.
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General-Purpose Interrupts (IVG7-IVG15)
General-purpose interrupts are used for any event that requires processor 
attention. For instance, a DMA controller may use them to signal the end 
of a data transmission, or a serial communications device may use them to 
signal transmission errors.

Software can also trigger general-purpose interrupts by using the RAISE 
instruction. The RAISE instruction forces events for interrupts IVG15-IVG7, 
IVTMR, IVHW, NMI, and RST, but not for exceptions and emulation (EVX and 
EMU, respectively).

 It is recommended to reserve the two lowest priority interrupts 
(IVG15 and IVG14) for software interrupt handlers.

Servicing Interrupts
The Core Event Controller (CEC) has a single interrupt queueing element 
per event—a bit in the ILAT register. The appropriate ILAT bit is set when 
an interrupt rising edge is detected (which takes two core clock cycles) and 
cleared when the respective IPEND register bit is set. The IPEND bit indi-
cates that the event vector has entered the core pipeline. At this point, the 
CEC recognizes and queues the next rising edge event on the correspond-
ing interrupt input. The minimum latency from the rising edge transition 
of the general-purpose interrupt to the IPEND output assertion is three core 
clock cycles. However, the latency can be much higher, depending on the 
core’s activity level and state.

To determine when to service an interrupt, the controller logically ANDs 
the three quantities in ILAT, IMASK, and the current processor priority 
level.
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Servicing the highest priority interrupt involves these actions:

1. The interrupt vector in the Event Vector Table (EVT) becomes the 
next fetch address. On an interrupt, most instructions currently in 
the pipeline are aborted. On a service exception, all instructions 
after the excepting instruction are aborted. On an error exception, 
the excepting instruction and all instructions after it are aborted.

2. The return address is saved in the appropriate return register. The 
return register is RETI for interrupts, RETX for exceptions, RETN for 
NMIs, and RETE for debug emulation. The return address is the 
address of the instruction after the last instruction executed from 
normal program flow.

3. Processor mode is set to the level of the event taken. If the event is 
an NMI, exception, or interrupt, the processor mode is Supervisor. 
If the event is an emulation exception, the processor mode is 
Emulation. 

4. Before the first instruction starts execution, the corresponding 
interrupt bit in ILAT is cleared and the corresponding bit in IPEND 
is set. Bit IPEND[4] is also set to disable all interrupts until the 
return address in RETI is saved.

Nesting of Interrupts
Interrupts are handled either with or without nesting.

Non-Nested Interrupts
If interrupts do not require nesting, all interrupts are disabled during the 
interrupt service routine. Note, however, that emulation, NMI, and 
exceptions are still accepted by the system.
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When the system does not need to support nested interrupts, there is no 
need to store the return address held in RETI. Only the portion of the 
machine state used in the interrupt service routine must be saved in the 
Supervisor stack. To return from a non-nested interrupt service routine, 
only the RTI instruction must be executed, because the return address is 
already held in the RETI register.

Figure 4-15 shows an example of interrupt handling where interrupts are 
globally disabled for the entire interrupt service routine.

Nested Interrupts
If nested interrupts are desired, the return address to the interrupted point 
in the original interrupt service routine (ISR) must be explicitly saved and 
subsequently restored when execution of the nested ISR has completed. 

Figure 4-15. Non-Nested Interrupt Handling
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Nesting is enabled by pushing the return address currently held in RETI 
to the Supervisor stack ([--SP] = RETI), which is typically done early in 
the ISR prolog of the lower priority interrupt. This clears the global inter-
rupt disable bit IPEND[4], enabling interrupts. Next, all registers that are 
modified by the interrupt service routine are saved onto the Supervisor 
stack. Processor state is stored in the Supervisor stack, not in the User 
stack. Hence, the instructions to push RETI ([--SP] = RETI) and pop RETI 
(RETI = [SP++]) use the Supervisor stack.

Figure 4-16 illustrates that by pushing RETI onto the stack, interrupts can 
be re-enabled during an interrupt service routine, resulting in a short 
duration where interrupts are globally disabled.

Figure 4-16. Nested Interrupt Handling
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Example Prolog Code for Nested Interrupt Service Routine

Listing 4-2. Prolog Code for Nested ISR

/* Prolog code for nested interrupt service routine.

Push return address in RETI into Supervisor stack, ensuring that 

interrupts are back on. Until now, interrupts have been

suspended.*/

ISR:

[--SP] = RETI ; /* Enables interrupts and saves return address to 

stack */

[--SP] = ASTAT ;

[--SP] = FP ;

[-- SP] = (R7:0, P5:0) ;

/* Body of service routine. Note none of the processor resources 

(accumulators, DAGs, loop counters and bounds) have been saved. 

It is assumed this interrupt service routine does not use the 

processor resources. */

Example Epilog Code for Nested Interrupt Service Routine

Listing 4-3. Epilog Code for Nested ISR

/* Epilog code for nested interrupt service routine.

Restore ASTAT, Data and Pointer registers. Popping RETI from 

Supervisor stack ensures that interrupts are suspended between 

load of return address and RTI. */

(R7:0, P5:0) = [SP++] ;

FP    = [SP++] ;

ASTAT = [SP++] ;

RETI  = [SP++] ;
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/* Execute RTI, which jumps to return address, re-enables inter-

rupts, and switches to User mode if this is the last nested 

interrupt in service. */

RTI;

The RTI instruction causes the return from an interrupt. The return 
address is popped into the RETI register from the stack, an action that sus-
pends interrupts from the time that RETI is restored until RTI finishes 
executing. The suspension of interrupts prevents a subsequent interrupt 
from corrupting the RETI register.

Next, the RTI instruction clears the highest priority bit that is currently set 
in IPEND. The processor then jumps to the address pointed to by the value 
in the RETI register and re-enables interrupts by clearing IPEND[4].

Logging of Nested Interrupt Requests

The System Interrupt Controller (SIC) detects level-sensitive interrupt 
requests from the peripherals. The Core Event Controller (CEC) provides 
edge-sensitive detection for its general-purpose interrupts (IVG7-IVG15). 
Consequently, the SIC generates a synchronous interrupt pulse to the 
CEC and then waits for interrupt acknowledgement from the CEC. 

When the interrupt has been acknowledged by the core (via assertion of 
the appropriate IPEND output), the SIC generates another synchronous 
interrupt pulse to the CEC if the peripheral interrupt is still asserted. This 
way, the system does not lose peripheral interrupt requests that occur dur-
ing servicing of another interrupt. 

Multiple interrupt sources can map to a single core processor general-pur-
pose interrupt. Because of this, multiple pulse assertions from the SIC can 
occur simultaneously, before, or during interrupt processing for an inter-
rupt event that is already detected on this interrupt input. 
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For a shared interrupt, the IPEND interrupt acknowledge mechanism 
described above re-enables all shared interrupts. If any of the shared inter-
rupt sources are still asserted, at least one pulse is again generated by the 
SIC. The Interrupt Status registers indicate the current state of the shared 
interrupt sources.

Exception Handling
Interrupts and exceptions treat instructions in the pipeline differently.

• When an interrupt occurs, all instructions in the pipeline are 
aborted.

• When an exception occurs, all instructions in the pipeline after the 
excepting instruction are aborted. For error exceptions, the except-
ing instruction is also aborted.

Because exceptions, NMIs, and emulation events have a dedicated return 
register, guarding the return address is optional. Consequently, the PUSH 
and POP instructions for exceptions, NMIs, and emulation events do not 
affect the interrupt system. 

Note, however, the return instructions for exceptions (RTX, RTN, and RTE) 
do clear the Least Significant Bit (LSB) currently set in IPEND.

Deferring Exception Processing

Exception handlers are usually long routines, because they must discrimi-
nate among several exception causes and take corrective action 
accordingly. The length of the routines may result in long periods during 
which the interrupt system is, in effect, suspended.

To avoid lengthy suspension of interrupts, write the exception handler to 
identify the exception cause, but defer the processing to a low priority 
interrupt. To set up the low priority interrupt handler, use the Force 
Interrupt / Reset instruction (RAISE).
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 When deferring the processing of an exception to lower priority 
interrupt IVGx, the system must guarantee that IVGx is entered 
before returning to the application-level code that issued the excep-
tion. If a pending interrupt of higher priority than IVGx occurs, it is 
acceptable to enter the high priority interrupt before IVGx.

Example Code for an Exception Handler

Listing 4-4 is for an exception routine handler with deferred processing.

Listing 4-4. Exception Routine Handler With Deferred Processing

/* Determine exception cause by examining EXCAUSE field in SEQ-

STAT (first save contents of R0, P0, P1 and ASTAT in Supervisor 

SP) */

[--SP] = R0 ;

[--SP] = P0 ;

[--SP] = P1 ;

[--SP] = ASTAT ;

R0 = SEQSTAT ;

/* Mask the contents of SEQSTAT, and leave only EXCAUSE in R0 */

R0 <<= 26 ;

R0 >>= 26 ;

/* Using jump table EVTABLE, jump to the event pointed to by R0 

*/

P0 = R0 ;

P1 = _EVTABLE ;

P0 = P1 + ( P0 << 1 ) ;

R0 = W [ P0 ] (Z) ;

P1 = R0 ;

JUMP (PC + P1) ;

/* The entry point for an event is as follows. Here, processing 

is deferred to low priority interrupt IVG15. Also, parameter 

passing would typically be done here. */
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_EVENT1:

RAISE 15 ;

JUMP.S _EXIT ;

/* Entry for event at IVG14 */

_EVENT2:

RAISE 14 ;

JUMP.S _EXIT ;

/* Comments for other events */

/* At the end of handler, restore R0, P0, P1 and ASTAT, and 

return. */

_EXIT:

ASTAT = [SP++] ;

P1 = [SP++] ;

P0 = [SP++] ;

R0 = [SP++] ;

RTX ;

_EVTABLE:

.byte2 addr_event1;

.byte2 addr_event2;

...

.byte2 addr_eventN;

/* The jump table EVTABLE holds 16-bit address offsets for each 

event. With offsets, this code is position independent and the 

table is small.

+--------------+

| addr_event1  | _EVTABLE

+--------------+

| addr_event2  | _EVTABLE + 2

+--------------+

|     . . .    |

+--------------+

| addr_eventN  | _EVTABLE + 2N

+--------------+

*/
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Example Code for an Exception Routine

Listing 4-5 provides an example framework for an interrupt routine 
jumped to from an exception handler such as that described above.

Listing 4-5. Interrupt Routine for Handling Exception

[--SP] = RETI ;   /* Push return address on stack. */

/* Put body of routine here.*/

RETI = [SP++] ;   /* To return, pop return address and jump. */

RTI ;   /* Return from interrupt. */

Example Code for Using Hardware Loops in an ISR

Listing 4-6 shows the optimal method of saving and restoring when using 
hardware loops in an interrupt service routine.

Listing 4-6. Saving and Restoring With Hardware Loops

lhandler:
<Save other registers here>

[--SP] = LC0;  /* save loop 0 */

[--SP] = LB0;

[--SP] = LT0;

<Handler code here>
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/* If the handler uses loop 0, it is a good idea to have

it leave LC0 equal to zero at the end. Normally, this will

happen naturally as a loop is fully executed. If LC0 == 0,

then LT0 and LB0 restores will not incur additional cycles.

If LC0 != 0 when the following pops happen, each pop will

incur a ten-cycle “replay” penalty. Popping or writing LC0

always incurs the penalty. */

LT0 = [SP++];

LB0 = [SP++];

LC0 = [SP++];   /* This will cause a “replay,” that is, a 

ten-cycle refetch. */

<Restore other registers here>

RTI;

Additional Usability Issues
The following sections describe additional usability issues.

Executing RTX, RTN, or RTE in a Lower Priority Event

Instructions RTX, RTN, and RTE are designed to return from an exception, 
NMI, or emulator event, respectively. Do not use them to return from a 
lower priority event. To return from an interrupt, use the RTI instruction. 
Failure to use the correct instruction may produce unintended results.

In the case of RTX, bit IPEND[3] is cleared. In the case of RTI, the bit of the 
highest priority interrupt in IPEND is cleared.
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Allocating the System Stack

The software stack model for processing exceptions implies that the 
Supervisor stack must never generate an exception while the exception 
handler is saving its state. However, if the Supervisor stack grows past a 
CPLB entry or SRAM block, it may, in fact, generate an exception.

To guarantee that the Supervisor stack never generates an exception—
never overflows past a CPLB entry or SRAM block while executing the 
exception handler—calculate the maximum space that all interrupt service 
routines and the exception handler occupy while they are active, and then 
allocate this amount of SRAM memory. 

Latency in Servicing Events
In some processor architectures, if instructions are executed from external 
memory and an interrupt occurs while the instruction fetch operation is 
underway, then the interrupt is held off from being serviced until the cur-
rent fetch operation has completed. Consider a processor operating at 
300 MHz and executing code from external memory with 100 ns access 
times. Depending on when the interrupt occurs in the instruction fetch 
operation, the interrupt service routine may be held off for around 30 
instruction clock cycles. When cache line fill operations are taken into 
account, the interrupt service routine could be held off for many hundreds 
of cycles. 

In order for high priority interrupts to be serviced with the least latency 
possible, the processor allows any high latency fill operation to be com-
pleted at the system level, while an interrupt service routine executes from 
L1 memory. See Figure 4-17.
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If an instruction load operation misses the L1 instruction cache and gener-
ates a high latency line fill operation, then when an interrupt occurs, it is 
not held off until the fill has completed. Instead, the processor executes 
the interrupt service routine in its new context, and the cache fill opera-
tion completes in the background.

Note the interrupt service routine must reside in L1 cache or SRAM mem-
ory and must not generate a cache miss, an L2 memory access, or a 
peripheral access, as the processor is already busy completing the original 
cache line fill operation. If a load or store operation is executed in the 
interrupt service routine requiring one of these accesses, then the interrupt 
service routine is held off while the original external access is completed, 
before initiating the new load or store.

Figure 4-17. Minimizing Latency in Servicing an Interrupt Service Rou-
tine
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If the interrupt service routine finishes execution before the load operation 
has completed, then the processor continues to stall, waiting for the fill to 
complete.

This same behavior is also exhibited for stalls involving reads of slow data 
memory or peripherals.

Writes to slow memory generally do not show this behavior, as the writes 
are deemed to be single cycle, being immediately transferred to the write 
buffer for subsequent execution.

For detailed information about cache and memory structures, see 
Chapter 6, “Memory”.
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5 DATA ADDRESS 
GENERATORS

The Data Address Generators (DAGs) generate addresses for data moves 
to and from memory. By generating addresses, the DAGs let programs 
refer to addresses indirectly, using a DAG register instead of an absolute 
address. 

The DAG architecture, shown in Figure 5-1, supports several functions 
that minimize overhead in data access routines. These functions include:

• Supply address – Provides an address during a data access

• Supply address and post-modify – Provides an address during a 
data move and auto-increments/decrements the stored address for 
the next move

• Supply address with offset – Provides an address from a base with 
an offset without incrementing the original address pointer

• Modify address – Increments or decrements the stored address 
without performing a data move

• Bit-reversed carry address – Provides a bit-reversed carry address 
during a data move without reversing the stored address

The DAG subsystem comprises two DAG Arithmetic units, nine Pointer 
registers, four Index registers and four complete sets of related Modify, 
Base, and Length registers. These registers hold the values that the DAGs 
use to generate addresses. The types of registers are:
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• Index registers, I[3:0]. Unsigned 32-bit Index registers hold an 
address pointer to memory. For example, the instruction R3 = [I0] 
loads the data value found at the memory location pointed to by 
the register I0. Index registers can be used for 16- and 32-bit mem-
ory accesses.

• Modify registers, M[3:0]. Signed 32-bit Modify registers provide 
the increment or step size by which an Index register is post-modi-
fied during a register move. For example, the R0 = [I0 ++ M1] 
instruction directs the DAG to:

– Output the address in register I0
– Load the contents of the memory location pointed to by I0 into 
R0

– Modify the contents of I0 by the value contained in the M1 
register

• Base and Length registers, B[3:0] and L[3:0]. Unsigned 32-bit 
Base and Length registers set up the range of addresses and the 
starting address of a circular buffer. Each B, L pair is always coupled 
with a corresponding I-register, for example, I3, B3, L3. For more 
information on circular buffers, see “Addressing Circular Buffers” 
on page 5-6.

• Pointer registers, P[5:0], FP, USP, and SP. 32-bit Pointer registers 
hold an address pointer to memory. The P[5:0] field, FP (Frame 
Pointer) and SP/USP (Stack Pointer/User Stack Pointer) can be 
manipulated and used in various instructions. For example, the 
instruction R3 = [P0] loads the register R3 with the data value 
found at the memory location pointed to by the register P0. The 
Pointer registers have no effect on circular buffer addressing. They 
can be used for 8-, 16-, and 32-bit memory accesses. For added 
mode protection, SP is accessible only in Supervisor mode, while 
USP is accessible in User mode.
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 Do not assume the L-registers are automatically initialized to zero 
for linear addressing. The I-, M-, L-, and B-registers contain ran-
dom values after reset. For each I-register used, programs must 
initialize the corresponding L-registers to zero for linear addressing 
or to the buffer length for circular buffer addressing.

 Note all DAG registers must be initialized individually. Initializing 
a B-register does not automatically initialize the I-register.

Addressing With DAGs
The DAGs can generate an address that is incremented by a value or by a 
register. In post-modify addressing, the DAG outputs the I-register value 
unchanged; then the DAG adds an M-register or immediate value to the 
I-register. 

Figure 5-1. Processor DAG Registers
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In indexed addressing, the DAG adds a small offset to the value in the 
P-register, but does not update the P-register with this new value, thus 
providing an offset for that particular memory access.

The processor is byte addressed. All data accesses must be aligned to the 
data size. In other words, a 32-bit fetch must be aligned to 32 bits, but an 
8-bit store can be aligned to any byte. Depending on the type of data 
used, increments and decrements to the DAG registers can be by 1, 2, or 4 
to match the 8-, 16-, or 32-bit accesses.

For example, consider the following instruction:

R0 = [ P3++ ];

This instruction fetches a 32-bit word, pointed to by the value in P3, and 
places it in R0. It then post-increments P3 by four, maintaining alignment 
with the 32-bit access.

R0.L = W [ I3++ ];

This instruction fetches a 16-bit word, pointed to by the value in I3, and 
places it in the low half of the destination register, R0.L. It then 
post-increments I3 by two, maintaining alignment with the 16-bit access.

R0 = B [ P3++ ] (Z) ;

This instruction fetches an 8-bit word, pointed to by the value in P3, and 
places it in the destination register, R0. It then post-increments P3 by one, 
maintaining alignment with the 8-bit access. The byte value may be zero 
extended (as shown) or sign extended into the 32-bit data register.

Instructions using Index registers use an M-register or a small immediate 
value (+/– 2 or 4) as the modifier. Instructions using Pointer registers use 
a small immediate value or another P-register as the modifier. For details, 
see Table 5-3 on page 5-17. 
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Frame and Stack Pointers
In many respects, the Frame and Stack Pointer registers perform like the 
other P-registers, P[5:0]. They can act as general pointers in any of the 
load/store instructions, for example, R1 = B[SP] (Z). However, FP and SP 
have additional functionality.

The Stack Pointer registers include: 

• a User Stack Pointer (USP in Supervisor mode, SP in User mode)

• a Supervisor Stack Pointer (SP in Supervisor mode)

The User Stack Pointer register and the Supervisor Stack Pointer register 
are accessed using the register alias SP. Depending on the current proces-
sor operating mode, only one of these registers is active and accessible as 
SP: 

• In User mode, any reference to SP (for example, stack pop 
R0 = [ SP++ ] ;) implicitly uses the USP as the effective address.

• In Supervisor mode, the same reference to SP (for example, 
R0 = [ SP++ ] ;) implicitly uses the Supervisor Stack Pointer as 
the effective address. 

To manipulate the User Stack Pointer for code running in Supervi-
sor mode, use the register alias USP. When in Supervisor mode, a 
register move from USP (for example, R0 = USP ;) moves the cur-
rent User Stack Pointer into R0. The register alias USP can only be 
used in Supervisor mode.

Some load/store instructions use FP and SP implicitly: 

• FP-indexed load/store, which extends the addressing range for 
16-bit encoded load/stores

• Stack push/pop instructions, including those for pushing and pop-
ping multiple registers
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• Link/unlink instructions, which control stack frame space and 
manage the Frame Pointer register (FP) for that space

Addressing Circular Buffers
The DAGs support addressing circular buffers. Circular buffers are a range 
of addresses containing data that the DAG steps through repeatedly, 
wrapping around to repeat stepping through the same range of addresses 
in a circular pattern. 

The DAGs use four types of DAG registers for addressing circular buffers. 
For circular buffering, the registers operate this way:

• The Index (I) register contains the value that the DAG outputs on 
the address bus.

• The Modify (M) register contains the post-modify amount (posi-
tive or negative) that the DAG adds to the I-register at the end of 
each memory access. Any M-register can be used with any I-regis-
ter. The modify value can also be an immediate value instead of an 
M-register. The size of the modify value must be less than or equal 
to the length (L-register) of the circular buffer.

• The Length (L) register sets the size of the circular buffer and the 
address range through which the DAG circulates the I-register. L is 
positive and cannot have a value greater than 232 – 1. If an L-regis-
ter’s value is zero, its circular buffer operation is disabled.

• The Base (B) register or the B-register plus the L-register is the 
value with which the DAG compares the modified I-register value 
after each access.

To address a circular buffer, the DAG steps the Index pointer (I-register) 
through the buffer values, post-modifying and updating the index on each 
access with a positive or negative modify value from the M-register. 
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If the Index pointer falls outside the buffer range, the DAG subtracts the 
length of the buffer (L-register) from the value or adds the length of the 
buffer to the value, wrapping the Index pointer back to a point inside the 
buffer. 

The starting address that the DAG wraps around is called the buffer’s base 
address (B-register). There are no restrictions on the value of the base 
address for circular buffers that contains 8-bit data. Circular buffers that 
contain 16- and 32-bit data must be 16-bit aligned and 32-bit aligned, 
respectively. Exceptions can be made for video operations. For more infor-
mation, see “Memory Address Alignment” on page 5-13. Circular 
buffering uses post-modify addressing.

Figure 5-2. Circular Data Buffers
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As seen in Figure 5-2, on the first post-modify access to the buffer, the 
DAG outputs the I-register value on the address bus, then modifies the 
address by adding the modify value.

• If the updated index value is within the buffer length, the DAG 
writes the value to the I-register. 

• If the updated index value exceeds the buffer length, the DAG sub-
tracts (for a positive modify value) or adds (for a negative modify 
value) the L-register value before writing the updated index value 
to the I-register. 

In equation form, these post-modify and wraparound operations work as 
follows, shown for “I+M” operations.

• If M is positive:

Inew = Iold + M 
if Iold + M < buffer base + length (end of buffer)

Inew = Iold + M – L 
if Iold + M  buffer base + length (end of buffer)

• If M is negative:

Inew = Iold + M 
if Iold + M  buffer base (start of buffer)

Inew = Iold + M + L 
if Iold + M < buffer base (start of buffer)
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Addressing With Bit-Reversed Addresses
To obtain results in sequential order, programs need bit-reversed carry 
addressing for some algorithms, particularly Fast Fourier Transform 
(FFT) calculations. To satisfy the requirements of these algorithms, the 
DAG’s bit-reversed addressing feature permits repeatedly subdividing data 
sequences and storing this data in bit-reversed order. For detailed infor-
mation about bit-reversed addressing, see the Modify-Increment 
instruction in Blackfin Processor Programming Reference.

Indexed Addressing With Index and Pointer 
Registers

Indexed addressing uses the value in the Index or Pointer register as an 
effective address. This instruction can load or store 16- or 32-bit values. 
The default is a 32-bit transfer. If a 16-bit transfer is required, then the W 
designator is used to preface the load or store.

For example: 

R0 = [ I2 ] ;

loads a 32-bit value from an address pointed to by I2 and stores it in the 
destination register R0.

R0.H = W [ I2 ] ;

loads a 16-bit value from an address pointed to by I2 and stores it in the 
16-bit destination register R0.H.

[ P1 ] = R0 ;

is an example of a 32-bit store operation.
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Pointer registers can be used for 8-bit loads and stores. 

For example:

B [ P1++] = R0 ; 

stores the 8-bit value from the R0 register in the address pointed to by the 
P1 register, then increments the P1 register. 

Auto-Increment and Auto-Decrement Addressing
Auto-increment addressing updates the Pointer and Index registers after 
the access. The amount of increment depends on the word size. An access 
of 32-bit words results in an update of the Pointer by 4. A 16-bit word 
access updates the Pointer by 2, and an access of an 8-bit word updates the 
Pointer by 1. Both 8- and 16-bit read operations may specify either to 
sign-extend or zero-extend the contents into the destination register. 
Pointer registers may be used for 8-, 16-, and 32-bit accesses while Index 
registers may be used only for 16- and 32-bit accesses.

For example:

R0 = W [ P1++ ] (Z) ;

loads a 16-bit word into a 32-bit destination register from an address 
pointed to by the P1 Pointer register. The Pointer is then incremented by 
2 and the word is zero extended to fill the 32-bit destination register.

Auto-decrement works the same way by decrementing the address after 
the access. 

For example:

R0 = [ I2-- ] ;

loads a 32-bit value into the destination register and decrements the Index 
register by 4.
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Pre-Modify Stack Pointer Addressing
The only pre-modify instruction in the processor uses the Stack Pointer 
register, SP. The address in SP is decremented by 4 and then used as an 
effective address for the store. The instruction [ --SP ] = R0 ; is used for 
stack push operations and can support only a 32-bit word transfer.

Indexed Addressing With Immediate Offset
Indexed addressing allows programs to obtain values from data tables, 
with reference to the base of that table. The Pointer register is modified by 
the immediate field and then used as the effective address. The value of 
the Pointer register is not updated. 

 Alignment exceptions are triggered when a final address is 
unaligned.

For example, if P1 = 0x13, then [P1 + 0x11] would effectively be equal to 
[0x24], which is aligned for all accesses.

Post-Modify Addressing 
Post-modify addressing uses the value in the Index or Pointer registers as 
the effective address and then modifies it by the contents of another regis-
ter. Pointer registers are modified by other Pointer registers. Index 
registers are modified by Modify registers. Post-modify addressing does 
not support the Pointer registers as destination registers, nor does it sup-
port byte-addressing.

For example:

R5 = [ P1++P2 ] ;

loads a 32-bit value into the R5 register, found in the memory location 
pointed to by the P1 register. 
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The value in the P2 register is then added to the value in the P1 register.

For example:

R2 = W [ P4++P5 ] (Z) ;

loads a 16-bit word into the low half of the destination register R2 and 
zero-extends it to 32 bits. The value of the pointer P4 is incremented by 
the value of the pointer P5.

For example:

R2 = [ I2++M1 ] ;

loads a 32-bit word into the destination register R2. The value in the Index 
register, I2, is updated by the value in the Modify register, M1.

Modifying DAG and Pointer Registers
The DAGs support operations that modify an address value in an Index 
register without outputting an address. The operation, address-modify, is 
useful for maintaining pointers.

The address-modify operation modifies addresses in any DAG Index and 
Pointer register (I[3:0], P[5:0], FP, SP) without accessing memory. If the 
Index register’s corresponding B- and L-registers are set up for circular 
buffering, the address-modify operation performs the specified buffer 
wraparound (if needed).

The syntax is similar to post-modify addressing (index += modifier). For 
Index registers, an M-register is used as the modifier. For Pointer registers, 
another P-register is used as the modifier.

Consider the example, I1 += M2 ; 

This instruction adds M2 to I1 and updates I1 with the new value.
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Memory Address Alignment 
The processor requires proper memory alignment to be maintained for the 
data size being accessed. Unless exceptions are disabled, violations of 
memory alignment cause an alignment exception. Some instructions—for 
example, many of the Video ALU instructions—automatically disable 
alignment exceptions because the data may not be properly aligned when 
stored in memory. Alignment exceptions may be disabled by issuing the 
DISALGNEXPT instruction in parallel with a load/store operation.

Normally, the memory system requires two address alignments:

• 32-bit word load/stores are accessed on four-byte boundaries, 
meaning the two least significant bits of the address are b#00.

• 16-bit word load/stores are accessed on two-byte boundaries, 
meaning the least significant bit of the address must be b#0.

Table 5-1 summarizes the types of transfers and transfer sizes supported 
by the addressing modes.

 Be careful when using the DISALGNEXPT instruction, because it dis-
ables automatic detection of memory alignment errors. The 
DISALGNEXPT instruction only affects misaligned loads that use 
I-register indirect addressing. Misaligned loads using P-register 
addressing will still cause an exception.
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Table 5-1. Types of Transfers Supported and Transfer Sizes

Addressing Mode Types of Transfers 
Supported

Transfer Sizes

Auto-increment
Auto-decrement
Indirect
Indexed

To and from Data 
Registers

LOADS:
32-bit word
16-bit, zero extended half word
16-bit, sign extended half word
8-bit, zero extended byte
8-bit, sign extended byte
STORES:
32-bit word
16-bit half word
8-bit byte

To and from Pointer 
Registers

LOAD:
32-bit word
STORE:
32-bit word

Post-increment To and from Data 
Registers

LOADS:
32-bit word
16-bit half word to Data Register high half
16-bit half word to Data Register low half
16-bit, zero extended half word
16-bit, sign extended half word
STORES:
32-bit word
16-bit half word from Data Register high half
16-bit half word from Data Register low half
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Table 5-2 summarizes the addressing modes. In the table, an asterisk (*) 
indicates the processor supports the addressing mode.

Table 5-2. Addressing Modes

32-bit 
word

16-bit 
half-
word

8-bit byte Sign/zero 
extend

Data 
Register

Pointer 
register

Data 
Register 
Half

P Auto-inc
[P0++]

* * * * * *

P Auto-dec
[P0--]

* * * * * *

P Indirect
[P0]

* * * * * * *

P Indexed
[P0+im]

* * * * * *

FP indexed
[FP+im]

* * *

P Post-inc
[P0++P1]

* * * * *

I Auto-inc
[I0++]

* * * *

I Auto-dec
[I0--]

* * * *

I Indirect
[I0]

* * * *

I Post-inc
[I0++M0]

* *
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DAG Instruction Summary
Table 5-3 lists the DAG instructions. For more information on assembly 
language syntax, see Blackfin Processor Programming Reference. In 
Table 5-3, note the meaning of these symbols:

• Dreg denotes any Data Register File register. 

• Dreg_lo denotes the lower 16 bits of any Data Register File 
register. 

• Dreg_hi denotes the upper 16 bits of any Data Register File 
register.

• Preg denotes any Pointer register, FP, or SP register.

• Ireg denotes any DAG Index register.

• Mreg denotes any DAG Modify register.

• W denotes a 16-bit wide value.

• B denotes an 8-bit wide value.

• immA denotes a signed, A-bits wide, immediate value.

• uimmAmB denotes an unsigned, A-bits wide, immediate value that 
is an even multiple of B.

• Z denotes the zero-extension qualifier.

• X denotes the sign-extension qualifier.

• BREV denotes the bit-reversal qualifier.

Blackfin Processor Programming Reference more fully describes the options 
that may be applied to these instructions and the sizes of immediate fields.
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DAG instructions do not affect the ASTAT Status flags. 

Table 5-3. DAG Instruction Summary

Instruction

Preg = [ Preg ] ;

Preg = [ Preg ++ ] ;

Preg = [ Preg -- ] ;

Preg = [ Preg + uimm6m4 ] ;

Preg = [ Preg  + uimm17m4 ] ;

Preg =  [ Preg – uimm17m4 ] ;

Preg = [ FP – uimm7m4 ] ;

Dreg = [ Preg ] ;

Dreg = [ Preg ++ ] ;

Dreg = [ Preg -- ] ;

Dreg = [ Preg + uimm6m4 ] ;

Dreg = [ Preg  + uimm17m4 ] ;

Dreg =  [ Preg – uimm17m4 ] ;

Dreg = [ Preg ++ Preg ] ;

Dreg = [ FP – uimm7m4 ] ;

Dreg = [ Ireg ] ;

Dreg = [ Ireg ++ ] ;

Dreg = [ Ireg -- ] ;

Dreg = [ Ireg ++ Mreg ] ;

Dreg =W [ Preg ] (Z) ;

Dreg =W [ Preg ++ ] (Z) ;

Dreg =W [ Preg -- ] (Z) ;

Dreg =W [ Preg + uimm5m2 ] (Z) ;

Dreg =W [ Preg + uimm16m2 ] (Z) ; 
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Dreg =W [ Preg – uimm16m2 ] (Z) ;

Dreg =W [ Preg ++ Preg ] (Z) ;

Dreg = W [ Preg ] (X) ;

Dreg = W [ Preg ++] (X) ;

Dreg = W [ Preg -- ] (X) ;

Dreg =W [ Preg + uimm5m2 ] (X) ;

Dreg =W [ Preg + uimm16m2 ] (X) ; 

Dreg =W [ Preg – uimm16m2 ] (X) ;

Dreg =W [ Preg ++ Preg ] (X) ;

Dreg_hi = W [ Ireg ] ;

Dreg_hi = W [ Ireg ++ ] ;

Dreg_hi = W [ Ireg -- ] ;

Dreg_hi = W [ Preg ] ;

Dreg_hi = W [ Preg ++ Preg ] ;

Dreg_lo = W [ Ireg ] ;

Dreg_lo = W [ Ireg ++]  ;

Dreg_lo = W [ Ireg  -- ] ;

Dreg_lo = W [ Preg ] ;

Dreg_lo = W [ Preg ++ Preg ] ;

Dreg = B [ Preg ] (Z) ;

Dreg = B [ Preg ++ ] (Z) ;

Dreg = B [ Preg -- ] (Z) ;

Dreg = B [ Preg + uimm15 ] (Z) ;

Dreg = B [ Preg – uimm15 ] (Z) ;

Dreg = B [ Preg ] (X) ;

Dreg = B [ Preg ++ ] (X) ;

Table 5-3. DAG Instruction Summary (Cont’d)

Instruction
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Dreg = B [ Preg -- ] (X) ;

Dreg = B [ Preg + uimm15 ] (X) ;

Dreg = B [ Preg – uimm15 ] (X) ;

[ Preg ] = Preg ; 

[ Preg ++ ] = Preg ;

[ Preg -- ] = Preg ;

[ Preg + uimm6m4 ] = Preg ;

[ Preg + uimm17m4 ] = Preg ;

[ Preg – uimm17m4 ] = Preg ;

[ FP – uimm7m4 ] = Preg ;

[ Preg ] = Dreg ;

[ Preg ++ ] = Dreg ;

[ Preg -- ] = Dreg ;

[ Preg + uimm6m4 ] = Dreg ;

[ Preg + uimm17m4 ] = Dreg ;

[ Preg – uimm17m4 ] = Dreg ;

[ Preg ++ Preg ] = Dreg ;

[FP – uimm7m4 ] = Dreg ;

[ Ireg ] = Dreg ;

[ Ireg ++ ] = Dreg ;

[ Ireg -- ] = Dreg ;

[ Ireg ++ Mreg ] = Dreg ;

W [ Ireg ] = Dreg_hi ;

W [ Ireg ++ ] = Dreg_hi ; 

W [ Ireg -- ] = Dreg_hi ;

W [ Preg ] = Dreg_hi ;

Table 5-3. DAG Instruction Summary (Cont’d)

Instruction
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W [ Preg ++ Preg ] = Dreg_hi ;

W [ Ireg ] = Dreg_lo ;

W [ Ireg ++ ] = Dreg_lo ;

W [ Ireg -- ] = Dreg_lo ;

W [ Preg ] = Dreg_lo ;

W [ Preg ] = Dreg ;

W [ Preg ++ ] = Dreg ;

W [ Preg -- ] = Dreg ;

W [ Preg + uimm5m2 ] = Dreg ;

W [ Preg + uimm16m2 ] = Dreg ;

W [ Preg –  uimm16m2 ] = Dreg ;

W [ Preg ++ Preg ] = Dreg_lo ;

B [ Preg ] = Dreg ;

B [ Preg ++ ] = Dreg ;

B [ Preg -- ] = Dreg ;

B [ Preg + uimm15 ] = Dreg ;

B [ Preg – uimm15 ] = Dreg ;

Preg = imm7 (X) ;

Preg = imm16 (X) ;

Preg += Preg (BREV) ;

Ireg += Mreg (BREV) ;

Preg = Preg << 2 ;

Preg = Preg  >> 2 ;

Preg = Preg >> 1 ;

Preg = Preg + Preg << 1 ;

Preg = Preg + Preg << 2 ;

Table 5-3. DAG Instruction Summary (Cont’d)

Instruction
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Preg –= Preg ;

Ireg –= Mreg ;

Table 5-3. DAG Instruction Summary (Cont’d)

Instruction
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6 MEMORY

The processor supports a hierarchical memory model with different per-
formance and size parameters, depending on the memory location within 
the hierarchy. Level 1 (L1) memories are located on the chip and are faster 
than the Level 2 (L2) memory systems. The Level 2 (L2) memories are 
off-chip and have longer access latencies. The faster L1 memories, which 
are typically small scratchpad memory or cache memories, are found 
within the core itself. 

Memory Architecture
The processor has a unified 4G byte address range that spans a combina-
tion of on-chip and off-chip memory and memory-mapped I/O resources. 
Of this range, some of the address space is dedicated to internal, on-chip 
resources. The processor populates portions of this internal memory space 
with:

• L1 Static Random Access Memories (SRAM)

• A set of memory-mapped registers (MMRs)

• A boot Read-Only Memory (ROM) 

A portion of the internal L1 SRAM can also be configured to run as cache. 
The processor also provides support for an external memory space that 
includes asynchronous memory space and synchronous DRAM (SDRAM) 
space. See Chapter 17, “External Bus Interface Unit”, for a detailed dis-
cussion of each of these memory regions and the controllers that support 
them.



Memory Architecture

6-2 ADSP-BF533 Blackfin Processor Hardware Reference
 

Figure 6-1 provides an overview of the ADSP-BF533 processor system 
memory map. Figure 6-2 shows this information for the ADSP-BF532 
processor, and Figure 6-3 for the ADSP-BF531 processor. Note the archi-
tecture does not define a separate I/O space. All resources are mapped 
through the flat 32-bit address space. The memory is byte-addressable.

As shown in Table 6-1, the ADSP-BF533, ADSP-BF532, and 
ADSP-BF531 processors offer a variety of instruction and data memory 
configurations.

The upper portion of internal memory space is allocated to the core and 
system MMRs. Accesses to this area are allowed only when the processor is 
in Supervisor or Emulation mode (see Chapter 3, “Operating Modes and 
States”.)

The lowest 1K byte of internal memory space is occupied by the boot 
ROM. Depending on the booting option selected, the appropriate boot 
program is executed from this memory space when the processor is reset 
(see “Booting Methods” on page 3-18.)

Table 6-1. Memory Configurations 

Type of Memory ADSP-BF531 ADSP-BF532 ADSP-BF533

Instruction SRAM/Cache, lockable 
by Way or line

16K byte 16K byte 16K byte

Instruction SRAM 16K byte 32K byte 64K byte

Data SRAM/Cache 16K byte 32K byte 32K byte

Data SRAM - - 32K byte

Data Scratchpad SRAM 4K byte 4K byte 4K byte

Total 52K byte 84K byte 148K byte
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Within the external memory map, four banks of asynchronous memory 
space and one bank of SDRAM memory are available. Each of the asyn-
chronous banks is 1M byte and the SDRAM bank is up to 128M byte.

Figure 6-2. ADSP-BF532 Memory Map
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Figure 6-1. ADSP-BF533 Memory Map
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Figure 6-3. ADSP-BF531 Memory Map
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Overview of Internal Memory
The L1 memory system performance provides high bandwidth and low 
latency. Because SRAMs provide deterministic access time and very high 
throughput, DSP systems have traditionally achieved performance 
improvements by providing fast SRAM on the chip.

The addition of instruction and data caches (SRAMs with cache control 
hardware) provides both high performance and a simple programming 
model. Caches eliminate the need to explicitly manage data movement 
into and out of L1 memories. Code can be ported to or developed for the 
processor quickly without requiring performance optimization for the 
memory organization.

The L1 memory provides:

• A modified Harvard architecture, allowing up to four core memory 
accesses per clock cycle (one 64-bit instruction fetch, two 32-bit 
data loads, and one pipelined 32-bit data store)

• Simultaneous system DMA, cache maintenance, and core accesses 

• SRAM access at processor clock rate (CCLK) for critical DSP algo-
rithms and fast context switching

• Instruction and data cache options for microcontroller code, excel-
lent High Level Language (HLL) support, and ease of 
programming cache control instructions, such as PREFETCH and 
FLUSH

• Memory protection

 The L1 memories operate at the core clock frequency (CCLK).
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Figure 6-4. Processor Memory Architecture
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Overview of Scratchpad Data SRAM
The processor provides a dedicated 4K byte bank of scratchpad data 
SRAM. The scratchpad is independent of the configuration of the other 
L1 memory banks and cannot be configured as cache or targeted by DMA. 
Typical applications use the scratchpad data memory where speed is criti-
cal. For example, the User and Supervisor stacks should be mapped to the 
scratchpad memory for the fastest context switching during interrupt 
handling.

 The L1 memories operate at the core clock frequency (CCLK).

 Scratchpad data SRAM cannot be accessed by the DMA controller.

L1 Instruction Memory
L1 Instruction Memory consists of a combination of dedicated SRAM and 
banks which can be configured as SRAM or cache. For the 16K byte bank 
that can be either cache or SRAM, control bits in the IMEM_CONTROL regis-
ter can be used to organize all four subbanks of the L1 Instruction 
Memory as:

• A simple SRAM

• A 4-Way, set associative instruction cache

• A cache with as many as four locked Ways

 L1 Instruction Memory can be used only to store instructions.



ADSP-BF533 Blackfin Processor Hardware Reference 6-9 
 

Memory

IMEM_CONTROL Register
The Instruction Memory Control register (IMEM_CONTROL) contains con-
trol bits for the L1 Instruction Memory. By default after reset, cache and 
Cacheability Protection Lookaside Buffer (CPLB) address checking is dis-
abled (see “L1 Instruction Cache” on page 6-15).

When the LRUPRIORST bit is set to 1, the cached states of all CPLB_LRUPRIO 
bits (see “ICPLB_DATAx Registers” on page 6-55) are cleared. This 
simultaneously forces all cached lines to be of equal (low) importance. 
Cache replacement policy is based first on line importance indicated by 
the cached states of the CPLB_LRUPRIO bits, and then on LRU (least 
recently used). See “Instruction Cache Locking by Line” on page 6-21 for 
complete details. This bit must be 0 to allow the state of the CPLB_LRUPRIO 
bits to be stored when new lines are cached.

The ILOC[3:0] bits provide a useful feature only after code has been man-
ually loaded into cache. See “Instruction Cache Locking by Way” on 
page 6-22. These bits specify which Ways to remove from the cache 
replacement policy. This has the effect of locking code present in nonpar-
ticipating Ways. Code in nonparticipating Ways can still be removed from 
the cache using an IFLUSH instruction. If an ILOC[3:0] bit is 0, the corre-
sponding Way is not locked and that Way participates in cache 
replacement policy. If an ILOC[3:0] bit is 1, the corresponding Way is 
locked and does not participate in cache replacement policy.

The IMC bit reserves a portion of L1 instruction SRAM to serve as cache. 
Note reserving memory to serve as cache will not alone enable L2 memory 
accesses to be cached. CPLBs must also be enabled using the EN_ICPLB bit 
and the CPLB descriptors (ICPLB_DATAx and ICPLB_ADDRx registers) must 
specify desired memory pages as cache-enabled.
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Instruction CPLBs are disabled by default after reset. When disabled, only 
minimal address checking is performed by the L1 memory interface. This 
minimal checking generates an exception to the processor whenever it 
attempts to fetch an instruction from:

• Reserved (nonpopulated) L1 instruction memory space

• L1 data memory space

• MMR space

CPLBs must be disabled using this bit prior to updating their descriptors 
(DCPLB_DATAx and DCPLB_ADDRx registers). Note since load store ordering is 
weak (see “Ordering of Loads and Stores” on page 6-67), disabling of 
CPLBs should be proceeded by a CSYNC.

 When enabling or disabling cache or CPLBs, immediately follow 
the write to IMEM_CONTROL with a CSYNC to ensure proper behavior.

 To ensure proper behavior and future compatibility, all reserved 
bits in this register must be set to 0 whenever this register is 
written.
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Figure 6-5. L1 Instruction Memory Control Register
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L1 Instruction SRAM
The processor core reads the instruction memory through the 64-bit wide 
instruction fetch bus. All addresses from this bus are 64-bit aligned. Each 
instruction fetch can return any combination of 16-, 32- or 64-bit instruc-
tions (for example, four 16-bit instructions, two 16-bit instructions and 
one 32-bit instruction, or one 64-bit instruction).

The DAGs, which are described in Chapter 5, cannot access L1 Instruc-
tion Memory directly. A DAG reference to instruction memory SRAM 
space generates an exception (see “Exceptions” on page 4-41).

Write access to the L1 Instruction SRAM Memory must be made through 
the 64-bit wide system DMA port. Because the SRAM is implemented as a 
collection of single ported subbanks, the instruction memory is effectively 
dual ported.

Table 6-2 lists the memory start locations of the L1 Instruction Memory 
subbanks.

Table 6-2. L1 Instruction Memory Subbanks

Memory Subbank Memory Start 
Location, 
ADSP-BF533

Memory Start 
Location, 
ADSP-BF532

Memory Start 
Location, 
ADSP-BF531

0 0xFFA0 0000 0xFFA0 8000 0xFFA0 8000

1 0xFFA0 1000 0xFFA0 9000 0xFFA0 9000

2 0xFFA0 2000 0xFFA0 A000 0xFFA0 A000

3 0xFFA0 3000 0xFFA0 B000 0xFFA0 B000

4 0xFFA0 4000 0xFFA0 C000

5 0xFFA0 5000 0xFFA0 D000
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Figure 6-6 describes the bank architecture of the L1 Instruction Memory. 
As the figure shows, each 16K byte bank is made up of four 4K byte 
subbanks.

6 0xFFA0 6000 0xFFA0 E000

7 0xFFA0 7000 0xFFA0 F000

8 0xFFA0 8000

9 0xFFA0 9000

10 0xFFA0 A000

11 0xFFA0 B000

12 0xFFA0 C000

13 0xFFA0 D000

14 0xFFA0 E000

15 0xFFA0 F000

Table 6-2. L1 Instruction Memory Subbanks (Cont’d)

Memory Subbank Memory Start 
Location, 
ADSP-BF533

Memory Start 
Location, 
ADSP-BF532

Memory Start 
Location, 
ADSP-BF531
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Figure 6-6. L1 Instruction Memory Bank Architecture
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L1 Instruction Cache
For information about cache terminology, see “Terminology” on 
page 6-74.

The L1 Instruction Memory may also be configured to contain a, 4-Way 
set associative instruction 16K byte cache. To improve the average access 
latency for critical code sections, each Way or line of the cache can be 
locked independently. When the memory is configured as cache, it cannot 
be accessed directly.

When cache is enabled, only memory pages further specified as cacheable 
by the CPLBs will be cached. When CPLBs are enabled, any memory 
location that is accessed must have an associated page definition available, 
or a CPLB exception is generated. CPLBs are described in “Memory Pro-
tection and Properties” on page 6-47.

Figure 6-7 shows the overall Blackfin processor instruction cache 
organization.
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Cache Lines

As shown in Figure 6-7, the cache consists of a collection of cache lines. 
Each cache line is made up of a tag component and a data component.

• The tag component incorporates a 20-bit address tag, least recently 
used (LRU) bits, a Valid bit, and a Line Lock bit.

• The data component is made up of four 64-bit words of instruction 
data.

The tag and data components of cache lines are stored in the tag and data 
memory arrays, respectively.

The address tag consists of the upper 18 bits plus bits 11 and 10 of the 
physical address. Bits 12 and 13 of the physical address are not part of the 
address tag. Instead, these bits are used to identify the 4K byte memory 
subbank targeted for the access.

The LRU bits are part of an LRU algorithm used to determine which 
cache line should be replaced if a cache miss occurs.
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Figure 6-7. Blackfin Processor Instruction Cache Organization
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The Valid bit indicates the state of a cache line. A cache line is always 
valid or invalid.

• Invalid cache lines have their Valid bit cleared, indicating the line 
will be ignored during an address-tag compare operation. 

• Valid cache lines have their Valid bit set, indicating the line con-
tains valid instruction/data that is consistent with the source 
memory.

The tag and data components of a cache line are illustrated in Figure 6-8.

Cache Hits and Misses

A cache hit occurs when the address for an instruction fetch request from 
the core matches a valid entry in the cache. Specifically, a cache hit is 
determined by comparing the upper 18 bits and bits 11 and 10 of the 
instruction fetch address to the address tags of valid lines currently stored 
in a cache set. The cache set is selected, using bits 9 through 5 of the 
instruction fetch address. If the address-tag compare operation results in a 
match, a cache hit occurs. If the address-tag compare operation does not 
result in a match, a cache miss occurs.

Figure 6-8. Cache Line – Tag and Data Portions
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When a cache miss occurs, the instruction memory unit generates a cache 
line fill access to retrieve the missing cache line from memory that is exter-
nal to the core. The address for the external memory access is the address 
of the target instruction word. When a cache miss occurs, the core halts 
until the target instruction word is returned from external memory.

Cache Line Fills

A cache line fill consists of fetching 32 bytes of data from memory. The 
operation starts when the instruction memory unit requests a line-read 
data transfer (a burst of four 64-bit words of data) on its external 
read-data port. The address for the read transfer is the address of the target 
instruction word. When responding to a line-read request from the 
instruction memory unit, the external memory returns the target instruc-
tion word first. After it has returned the target instruction word, the next 
three words are fetched in sequential address order. This fetch wraps 
around if necessary, as shown in Table 6-3.

Line Fill Buffer

As the new cache line is retrieved from external memory, each 64-bit word 
is buffered in a four-entry line fill buffer before it is written to a 4K byte 
memory bank within L1 memory. The line fill buffer allows the core to 
access the data from the new cache line as the line is being retrieved from 
external memory, rather than having to wait until the line has been writ-
ten into the cache.

Table 6-3. Cache Line Word Fetching Order

Target Word Fetching Order for Next Three Words

WD0 WD0, WD1, WD2, WD3

WD1 WD1, WD2, WD3, WD0

WD2 WD2, WD3, WD0, WD1

WD3 WD3, WD0, WD1, WD2
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Cache Line Replacement

When the instruction memory unit is configured as cache, bits 9 through 
5 of the instruction fetch address are used as the index to select the cache 
set for the tag-address compare operation. If the tag-address compare 
operation results in a cache miss, the Valid and LRU bits for the selected 
set are examined by a cache line replacement unit to determine the entry 
to use for the new cache line, that is, whether to use Way0, Way1, Way2, 
or Way3. See Figure 6-7 on page 6-17.

The cache line replacement unit first checks for invalid entries (that is, 
entries having its Valid bit cleared). If only a single invalid entry is found, 
that entry is selected for the new cache line. If multiple invalid entries are 
found, the replacement entry for the new cache line is selected based on 
the following priority:

• Way0 first

• Way1 next

• Way2 next

• Way3 last

For example:

• If Way3 is invalid and Ways0, 1, 2 are valid, Way3 is selected for 
the new cache line. 

• If Ways0 and 1 are invalid and Ways2 and 3 are valid, Way0 is 
selected for the new cache line. 

• If Ways2 and 3 are invalid and Ways0 and 1 are valid, Way2 is 
selected for the new cache line.

When no invalid entries are found, the cache replacement logic uses an 
LRU algorithm.
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Instruction Cache Management

The system DMA controller and the core DAGs cannot access the instruc-
tion cache directly. By a combination of instructions and the use of core 
MMRs, it is possible to initialize the instruction tag and data arrays indi-
rectly and provide a mechanism for instruction cache test, initialization, 
and debug.

 The coherency of instruction cache must be explicitly managed. To 
accomplish this and ensure that the instruction cache fetches the 
latest version of any modified instruction space, invalidate instruc-
tion cache line entries, as required.

See “Instruction Cache Invalidation” on page 6-23.

Instruction Cache Locking by Line

The CPLB_LRUPRIO bits in the ICPLB_DATAx registers (see “Memory Protec-
tion and Properties” on page 6-47) are used to enhance control over which 
code remains resident in the instruction cache. When a cache line is filled, 
the state of this bit is stored along with the line’s tag. It is then used in 
conjunction with the LRU (least recently used) policy to determine which 
Way is victimized when all cache Ways are occupied when a new cache-
able line is fetched. This bit indicates that a line is of either “low” or 
“high” importance. In a modified LRU policy, a high can replace a low, 
but a low cannot replace a high. If all Ways are occupied by highs, an oth-
erwise cacheable low will still be fetched for the core, but will not be 
cached. Fetched highs seek to replace unoccupied Ways first, then least 
recently used lows next, and finally other highs using the LRU policy. 
Lows can only replace unoccupied Ways or other lows, and do so using 
the LRU policy. If all previously cached highs ever become less important, 
they may be simultaneously transformed into lows by writing to the LRU-
PRIRST bit in the IMEM_CONTROL register (on page 6-9). 
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Instruction Cache Locking by Way

The instruction cache has four independent lock bits (ILOC[3:0]) that 
control each of the four Ways of the instruction cache. When the cache is 
enabled, L1 Instruction Memory has four Ways available. Setting the lock 
bit for a specific Way prevents that Way from participating in the LRU 
replacement policy. Thus, a cached instruction with its Way locked can 
only be removed using an IFLUSH instruction, or a “back door” MMR 
assisted manipulation of the tag array. 

An example sequence is provided below to demonstrate how to lock down 
Way0:

• If the code of interest may already reside in the instruction cache, 
invalidate the entire cache first (for an example, see “Instruction 
Cache Management” on page 6-21).

• Disable interrupts, if required, to prevent interrupt service routines 
(ISRs) from potentially corrupting the locked cache.

• Set the locks for the other Ways of the cache by setting ILOC[3:1]. 
Only Way0 of the instruction cache can now be replaced by new 
code.

• Execute the code of interest. Any cacheable exceptions, such as exit 
code, traversed by this code execution are also locked into the 
instruction cache.

• Upon exit of the critical code, clear ILOC[3:1] and set ILOC[0]. 
The critical code (and the instructions which set ILOC[0]) is now 
locked into Way0.

• Re-enable interrupts, if required.

If all four Ways of the cache are locked, then further allocation into the 
cache is prevented.
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Instruction Cache Invalidation

The instruction cache can be invalidated by address, cache line, or com-
plete cache. The IFLUSH instruction can explicitly invalidate cache lines 
based on their line addresses. The target address of the instruction is gen-
erated from the P-registers. Because the instruction cache should not 
contain modified (dirty) data, the cache line is simply invalidated. 

In the following example, the P2 register contains the address of a valid 
memory location. If this address has been brought into cache, the corre-
sponding cache line is invalidated after the execution of this instruction. 

Example of ICACHE instruction:
iflush [ p2 ] ;   /* Invalidate cache line containing address 

that P2 points to */

Because the IFLUSH instruction is used to invalidate a specific address in 
the memory map, it is impractical to use this instruction to invalidate an 
entire Way or bank of cache. A second technique can be used to invalidate 
larger portions of the cache directly. This second technique directly inval-
idates Valid bits by setting the Invalid bit of each cache line to the invalid 
state. To implement this technique, additional MMRs (ITEST_COMMAND 
and ITEST_DATA[1:0]) are available to allow arbitrary read/write of all the 
cache entries directly. This method is explained in the next section.

For invalidating the complete instruction cache, a third method is avail-
able. By clearing the IMC bit in the IMEM_CONTROL register (see Figure 6-5 
on page 6-11), all Valid bits in the instruction cache are set to the invalid 
state. A second write to the IMEM_CONTROL register to set the IMC bit config-
ures the instruction memory as cache again. An SSYNC instruction should 
be run before invalidating the cache and a CSYNC instruction should be 
inserted after each of these operations.
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Instruction Test Registers
The Instruction Test registers allow arbitrary read/write of all L1 cache 
entries directly. They make it possible to initialize the instruction tag and 
data arrays and to provide a mechanism for instruction cache test, initial-
ization, and debug.

When the Instruction Test Command register (ITEST_COMMAND) is used, 
the L1 cache data or tag arrays are accessed, and data is transferred 
through the Instruction Test Data registers (ITEST_DATA[1:0]). The 
ITEST_DATAx registers contain either the 64-bit data that the access is to 
write to or the 64-bit data that was read during the access. The lower 32 
bits are stored in the ITEST_DATA[0] register, and the upper 32 bits are 
stored in the ITEST_DATA[1] register. When the tag arrays are accessed, 
ITEST_DATA[0] is used. Graphical representations of the ITEST registers 
begin with Figure 6-9.

The following figures describe the ITEST registers:

• Figure 6-9 on page 6-25

• Figure 6-10 on page 6-26

• Figure 6-11 on page 6-27 

Access to these registers is possible only in Supervisor or Emulation mode. 
When writing to ITEST registers, always write to the ITEST_DATAx registers 
first, then the ITEST_COMMAND register. When reading from ITEST registers, 
reverse the sequence—read the ITEST_COMMAND register first, then the 
ITEST_DATAx registers.
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ITEST_COMMAND Register
When the Instruction Test Command register (ITEST_COMMAND) is written 
to, the L1 cache data or tag arrays are accessed, and the data is transferred 
through the Instruction Test Data registers (ITEST_DATA[1:0]).

ITEST_DATA1 Register
Instruction Test Data registers (ITEST_DATA[1:0]) are used to access L1 
cache data arrays. They contain either the 64-bit data that the access is to 
write to or the 64-bit data that the access is to read from. The Instruction 
Test Data 1 register (ITEST_DATA1) stores the upper 32 bits.

Figure 6-9. Instruction Test Command Register

00 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0

0 00 0 0 0 0 00 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

000

Instruction Test Command Register (ITEST_COMMAND)

00 - Access subbank 0
01 - Access subbank 1
10 - Access subbank 2
11 - Access subbank 3
(Address bits [13:12] in 
SRAM)

SBNK[1:0] (Subbank 
Access)

Reset = 0x0000 0000

RW (Read/Write Access)

WAYSEL[1:0] (Access Way)
00 - Access Way0
01 - Access Way1
10 - Access Way2
11 - Access Way3
(Address bits [11:10] in SRAM)

0 - Read access
1 - Write access

TAGSELB (Array Access)
0 - Access tag array
1 - Access data array

DW[1:0] (Double Word 
Index)

Selects one of four 64-bit 
double words in a 256-bit 
line (Address bits [4:3] in 
SRAM)

SET[4:0] (Set Index)
Selects one of 32 sets 
(Address bits [9:5] in SRAM)

0

0xFFE0 1300
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ITEST_DATA0 Register
The Instruction Test Data 0 register (ITEST_DATA0) stores the lower 32 
bits of the 64-bit data to be written to or read from by the access. The 
ITEST_DATA0 register is also used to access tag arrays. This register also 
contains the Valid and Dirty bits, which indicate the state of the cache 
line.

Figure 6-10. Instruction Test Data 1 Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

XX X X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

XX X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Instruction Test Data 1 Register (ITEST_DATA1)

Reset = Undefined

Reset = Undefined

Data[63:48]

Data[47:32]

When accessing tag arrays, all bits are reserved.

Used to access L1 cache data arrays and tag arrays. When accessing a data array, stores 
the upper 32 bits of 64-bit words of instruction data to be written to or read from by the 
access. See “Cache Lines” on page 6-16.

0xFFE0 1404
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Figure 6-11. Instruction Test Data 0 Register

X X XX X XX X

XX X X X X X

X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X XX X X X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X

Instruction Test Data 0 Register (ITEST_DATA0)

Reset = UndefinedX

Tag[19:4]

Tag[3:2]

Tag[1:0]

X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

XX X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Data[31:16]

Data[15:0]

Used to access L1 cache data arrays and tag arrays. When accessing a data array, stores the lower 32 bits of 
64-bit words of instruction data to be written to or read from by the access. See “Cache Lines” on page 6-16.

Used to access the L1 cache tag arrays. The address tag consists of the upper 18 bits and bits 11 and 10 of the 
physical address. See “Cache Lines” on page 6-16.

Physical address

Physical address

Physical address

Reset = Undefined

Valid
0 - Cache line is not valid
1 - Cache line contains valid 
data
LRUPRIO
0 - LRUPRIO is cleared for 
this entry
1 - LRUPRIO is set for this 
entry. See “ICPLB_DATAx 
Registers” on page 6-55 and 
“IMEM_CONTROL Register” 
on page 6-9.

0xFFE0 1400
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L1 Data Memory
The L1 data SRAM/cache is constructed from single-ported subsections, 
but organized to reduce the likelihood of access collisions. This organiza-
tion results in apparent multi-ported behavior. When there are no 
collisions, this L1 data traffic could occur in a single core clock cycle:

• Two 32-bit DAG loads

• One pipelined 32-bit DAG store

• One 64-bit DMA IO

• One 64-bit cache fill/victim access

 L1 Data Memory can be used only to store data.

DMEM_CONTROL Register
The Data Memory Control register (DMEM_CONTROL) contains control bits 
for the L1 Data Memory.

The PORT_PREF1 bit selects the data port used to process DAG1 
non-cacheable L2 fetches. Cacheable fetches are always processed by the 
data port physically associated with the targeted cache memory. Steering 
DAG0, DAG1, and cache traffic to different ports optimizes performance 
by keeping the queue to L2 memory full.

The PORT_PREF0 bit selects the data port used to process DAG0 
non-cacheable L2 fetches. Cacheable fetches are always processed by the 
data port physically associated with the targeted cache memory. Steering 
DAG0, DAG1, and cache traffic to different ports optimizes performance 
by keeping the queue to L2 memory full.
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Figure 6-12. L1 Data Memory Control Register

0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 10 0 0 0 0 000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0

Data Memory Control Register (DMEM_CONTROL)

Reset = 0x0000 1001

ENDCPLB (Data Cacheability 
Protection Lookaside Buffer 
Enable)
0 - CPLBs disabled. Minimal

address checking only
1 - CPLBs enabled
DMC[1:0] (L1 Data Memory 
Configure) 

DCBS (L1 Data Cache Bank Select) 

PORT_PREF1 (DAG1 Port 
Preference)
0 - DAG1 non-cacheable fetches

use port A
1 - DAG1 non-cacheable fetches

use port B

PORT_PREF0 (DAG0 Port 
Preference)
0 - DAG0 non-cacheable fetches

use port A
1 - DAG0 non-cacheable fetches

use port B

Valid only when DMC[1:0] = 11, for ADSP-BF532 
and ADSP-BF533. Determines whether Address 
bit A[14] or A[23] is used to select the L1 data 
cache bank.
0 - Address bit 14 is used to select Bank A or B 

for cache access. If bit 14 of address is 1,
select L1 Data Memory Data Bank A; if bit 14
of address is 0, select L1 Data Memory Data
Bank B.

1 - Address bit 23 is used to select Bank A or B for
cache access. If bit 23 of address is 1, select
L1 Data Memory Data Bank A; if bit 23 of
address is 0, select L1 Data Memory Data
Bank B. 

See “Example of Mapping Cacheable Address 
Space” on page 6-35.

For ADSP-BF533:
00 - Both data banks are

SRAM, also invalidates all 

cache lines if previously
configured as cache

01 - Reserved
10 - Data Bank A is lower

16K byte SRAM, upper
16K byte cache
Data Bank B is SRAM

11 - Both data banks are
lower 16K byte SRAM,
upper 16K byte cache

For ADSP-BF532:
00 - Both data banks are

SRAM, also invalidates all 
cache lines if previously
configured as cache

01 - Reserved
10 - Data Bank A is cache,

Data Bank B is SRAM
11 - Both data banks are

cache
For ADSP-BF531:
00 - Data Bank A is SRAM,

also invalidates all cache
lines if previously
configured as cache

01 - Reserved
10 - Data Bank A is cache
11 - Reserved

0xFFE0 0004
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 For optimal performance with dual DAG reads, DAG0 and DAG1 
should be configured for different ports. For example, if 
PORT_PREF0 is configured as 1, then PORT_PREF1 should be pro-
grammed to 0.

The DCBS bit provides some control over which addresses alias into the 
same set. This bit can be used to affect which addresses tend to remain res-
ident in cache by avoiding victimization of repetitively used sets. It has no 
affect unless both Data Bank A and Data Bank B are serving as cache (bits 
DMC[1:0] in this register are set to 11).

The ENDCPLB bit is used to enable/disable the 16 Cacheability Protection 
Lookaside Buffers (CPLBs) used for data (see “L1 Data Cache” on 
page 6-34). Data CPLBs are disabled by default after reset. When dis-
abled, only minimal address checking is performed by the L1 memory 
interface. This minimal checking generates an exception when the 
processor:

• Addresses nonexistent (reserved) L1 memory space

• Attempts to perform a nonaligned memory access

• Attempts to access MMR space either using DAG1 or when in 
User mode

CPLBs must be disabled using this bit prior to updating their descriptors 
(registers DCPLB_DATAx and DCPLB_ADDRx). Note that since load store order-
ing is weak (see “Ordering of Loads and Stores” on page 6-67), disabling 
CPLBs should be preceded by a CSYNC instruction.

 When enabling or disabling cache or CPLBs, immediately follow 
the write to DMEM_CONTROL with a SSYNC to ensure proper behavior.
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By default after reset, all L1 Data Memory serves as SRAM. The DMC[1:0] 
bits can be used to reserve portions of this memory to serve as cache 
instead. Reserving memory to serve as cache does not enable L2 memory 
accesses to be cached. To do this, CPLBs must also be enabled (using the 
ENDCPLB bit) and CPLB descriptors (registers DCPLB_DATAx and 
DCPLB_ADDRx) must specify chosen memory pages as cache-enabled.

By default after reset, cache and CPLB address checking is disabled.

 To ensure proper behavior and future compatibility, all reserved 
bits in this register must be set to 0 whenever this register is 
written.

L1 Data SRAM
Accesses to SRAM do not collide unless all of the following are true: the 
accesses are to the same 32-bit word polarity (address bits 2 match), the 
same 4K byte subbank (address bits 13 and 12 match), the same 16K byte 
half bank (address bits 16 match), and the same bank (address bits 21 and 
20 match). When an address collision is detected, access is nominally 
granted first to the DAGs, then to the store buffer, and finally to the 
DMA and cache fill/victim traffic. To ensure adequate DMA bandwidth, 
DMA is given highest priority if it has been blocked for more than 16 
sequential core clock cycles, or if a second DMA I/O is queued before the 
first DMA I/O is processed.

Table 6-4 shows how the subbank organization is mapped into memory.

Table 6-4. L1 Data Memory SRAM Subbank Start Addresses

Memory Bank 
and Subbank

ADSP-BF533 ADSP-BF532 ADSP-BF531

Data Bank A, 
Subbank 0

0xFF80 0000 - -

Data Bank A, 
Subbank 1

0xFF80 1000 - -
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Figure 6-13 shows the L1 Data Memory architecture.

Data Bank A, 
Subbank 2

0xFF80 2000 - -

Data Bank A, 
Subbank 3

0xFF80 3000 - -

Data Bank A, 
Subbank 4

0xFF80 4000 0xFF80 4000 0xFF80 4000

Data Bank A, 
Subbank 5

0xFF80 5000 0xFF80 5000 0xFF80 5000

Data Bank A, 
Subbank 6

0xFF80 6000 0xFF80 6000 0xFF80 6000

Data Bank A, 
Subbank 7

0xFF80 7000 0xFF80 7000 0xFF80 7000

Data Bank B, 
Subbank 0

0xFF90 0000 - -

Data Bank B, 
Subbank 1

0xFF90 1000 - -

Data Bank B, 
Subbank 2

0xFF90 2000 - -

Data Bank B, 
Subbank 3

0xFF90 3000 - -

Data Bank B, 
Subbank 4

0xFF90 4000 0xFF90 4000 -

Data Bank B, 
Subbank 5

0xFF90 5000 0xFF90 5000 -

Data Bank B, 
Subbank 6

0xFF90 6000 0xFF90 6000 -

Data Bank B, 
Subbank 7

0xFF90 7000 0xFF90 7000 -

Table 6-4. L1 Data Memory SRAM Subbank Start Addresses (Cont’d)

Memory Bank 
and Subbank

ADSP-BF533 ADSP-BF532 ADSP-BF531
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Figure 6-13. L1 Data Memory Architecture
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L1 Data Cache
For definitions of cache terminology, see “Terminology” on page 6-74.

When data cache is enabled (controlled by bits DMC[1:0] in the 
DMEM_CONTROL register), either 16K byte of Data Bank A or 16K byte of 
both Data Bank A and Data Bank B can be set to serve as cache. For the 
ADSP-BF533, the upper 16K byte is used. For the ADSP-BF531, only 
Data Bank A is available. Unlike instruction cache, which is 4-Way set 
associative, data cache is 2-Way set associative. When two banks are avail-
able and enabled as cache, additional sets rather than Ways are created. 
When both Data Bank A and Data Bank B have memory serving as cache, 
the DCBS bit in the DMEM_CONTROL register may be used to control which 
half of all address space is handled by which bank of cache memory. The 
DCBS bit selects either address bit 14 or 23 to steer traffic between the 
cache banks. This provides some control over which addresses alias into 
the same set. It may therefore be used to affect which addresses tend to 
remain resident in cache by avoiding victimization of repetitively used 
sets.

Accesses to cache do not collide unless they are to the same 4K byte sub-
bank, the same half bank, and to the same bank. Cache has less apparent 
multi-ported behavior than SRAM due to the overhead in maintaining 
tags. When cache addresses collide, access is granted first to the DTEST reg-
ister accesses, then to the store buffer, and finally to cache fill/victim 
traffic.

Three different cache modes are available.

• Write-through with cache line allocation only on reads

• Write-through with cache line allocation on both reads and writes

• Write-back which allocates cache lines on both reads and writes



ADSP-BF533 Blackfin Processor Hardware Reference 6-35 
 

Memory

Cache mode is selected by the DCPLB descriptors (see “Memory Protection 
and Properties” on page 6-47). Any combination of these cache modes can 
be used simultaneously since cache mode is selectable for each memory 
page independently.

If cache is enabled (controlled by bits DMC[1:0] in the DMEM_CONTROL regis-
ter), data CPLBs should also be enabled (controlled by ENDCPLB bit in the 
DMEM_CONTROL register). Only memory pages specified as cacheable by data 
CPLBs will be cached. The default behavior when data CPLBs are dis-
abled is for nothing to be cached.

 Erroneous behavior can result when MMR space is configured as 
cacheable by data CPLBs, or when data banks serving as L1 SRAM 
are configured as cacheable by data CPLBs.

Example of Mapping Cacheable Address Space

An example of how the cacheable address space maps into two data banks 
follows.

When both banks are configured as cache on the ADSP-BF533 or 
ADSP-BF532, they operate as two independent, 16K byte, 2-Way set 
associative caches that can be independently mapped into the Blackfin 
processor address space. 

If both data banks are configured as cache, the DCBS bit in the 
DMEM_CONTROL register designates Address bit A[14] or A[23] as the cache 
selector. Address bit A[14] or A[23] selects the cache implemented by 
Data Bank A or the cache implemented by Data Bank B.

• If DCBS = 0, then A[14] is part of the address index, and all 
addresses in which A[14] = 0 use Data Bank B. All addresses in 
which A[14] = 1 use Data Bank A.

In this case, A[23] is treated as merely another bit in the address 
that is stored with the tag in the cache and compared for hit/miss 
processing by the cache.
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• If DCBS = 1, then A[23] is part of the address index, and all 
addresses where A[23] = 0 use Data Bank B. All addresses where 
A[23] = 1 use Data Bank A.

In this case, A[14] is treated as merely another bit in the address 
that is stored with the tag in the cache and compared for hit/miss 
processing by the cache. 

The result of choosing DCBS = 0 or DCBS = 1 is:

• If DCBS = 0, A[14] selects Data Bank A instead of Data Bank B.

Alternating 16K byte pages of memory map into each of the two 
16K byte caches implemented by the two data banks. 
Consequently:

• Any data in the first 16K byte of memory could be stored 
only in Data Bank B.

• Any data in the next address range (16K byte through 32K 
byte) – 1 could be stored only in Data Bank A.

• Any data in the next range (32K byte through 48K byte) – 1 
would be stored in Data Bank B.

• Alternate mapping would continue.

As a result, the cache operates as if it were a single, contiguous, 
2-Way set associative 32K byte cache. Each Way is 16K byte long, 
and all data elements with the same first 14 bits of address index to 
a unique set in which up to two elements can be stored (one in each 
Way).

• If DCBS = 1, A[23] selects Data Bank A instead of Data Bank B.

With DCBS = 1, the system functions more like two independent 
caches, each a 2-Way set associative 16K byte cache. Each Bank 
serves an alternating set of 8M byte blocks of memory. 
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For example, Data Bank B caches all data accesses for the first 8M 
byte of memory address range. That is, every 8M byte of range vies 
for the two line entries (rather than every 16K byte repeat). Like-
wise, Data Bank A caches data located above 8M byte and below 
16M byte.

For example, if the application is working from a data set that is 
1M byte long and located entirely in the first 8M byte of memory, 
it is effectively served by only half the cache, that is, by Data Bank 
B (a 2-Way set associative 16K byte cache). In this instance, the 
application never derives any benefit from Data Bank A.

 For most applications, it is best to operate with DCBS = 0.

However, if the application is working from two data sets, located in two 
memory spaces at least 8M byte apart, closer control over how the cache 
maps to the data is possible. For example, if the program is doing a series 
of dual MAC operations in which both DAGs are accessing data on every 
cycle, by placing DAG0’s data set in one block of memory and DAG1’s 
data set in the other, the system can ensure that:

• DAG0 gets its data from Data Bank A for all of its accesses and 

• DAG1 gets its data from Data Bank B.

This arrangement causes the core to use both data buses for cache line 
transfer and achieves the maximum data bandwidth between the cache 
and the core.

Figure 6-14 shows an example of how mapping is performed when 
DCBS = 1.

 The DCBS selection can be changed dynamically; however, to ensure 
that no data is lost, first flush and invalidate the entire cache.
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Data Cache Access

The Cache Controller tests the address from the DAGs against the tag 
bits. If the logical address is present in L1 cache, a cache hit occurs, and 
the data is accessed in L1. If the logical address is not present, a cache miss 
occurs, and the memory transaction is passed to the next level of memory 
via the system interface. The line index and replacement policy for the 
Cache Controller determines the cache tag and data space that are allo-
cated for the data coming back from external memory.

A data cache line is in one of three states: invalid, exclusive (valid and 
clean), and modified (valid and dirty). If valid data already occupies the 
allocated line and the cache is configured for write-back storage, the con-
troller checks the state of the cache line and treats it accordingly:

• If the state of the line is exclusive (clean), the new tag and data 
write over the old line. 

Figure 6-14. Data Cache Mapping When DCBS = 1

WAY0 WAY1

WAY0 WAY1

8MB

8MB

8MB

8MB

DATA BANK B

DATA BANK B
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• If the state of the line is modified (dirty), then the cache contains 
the only valid copy of the data. If the line is dirty, the current con-
tents of the cache are copied back to external memory before the 
new data is written to the cache.

The processor provides victim buffers and line fill buffers. These buffers 
are used if a cache load miss generates a victim cache line that should be 
replaced. The line fill operation goes to external memory. The data cache 
performs the line fill request to the system as critical (or requested) word 
first, and forwards that data to the waiting DAG as it updates the cache 
line. In other words, the cache performs critical word forwarding.

The data cache supports hit-under-a-store miss, and hit-under-a-prefetch 
miss. In other words, on a write-miss or execution of a PREFETCH instruc-
tion that misses the cache (and is to a cacheable region), the instruction 
pipeline incurs a minimum of a 4-cycle stall. Furthermore, a subsequent 
load or store instruction can hit in the L1 cache while the line fill 
completes.

Interrupts of sufficient priority (relative to the current context) cancel a 
stalled load instruction. Consequently, if the load operation misses the L1 
Data Memory cache and generates a high latency line fill operation on the 
system interface, it is possible to interrupt the core, causing it to begin 
processing a different context. The system access to fill the cache line is 
not cancelled, and the data cache is updated with the new data before any 
further cache miss operations to the respective data bank are serviced. For 
more information see “Exceptions” on page 4-41.

Cache Write Method

Cache write memory operations can be implemented by using either a 
write-through method or a write-back method:

• For each store operation, write-through caches initiate a write to 
external memory immediately upon the write to cache.
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If the cache line is replaced or explicitly flushed by software, the 
contents of the cache line are invalidated rather than written back 
to external memory.

• A write-back cache does not write to external memory until the line 
is replaced by a load operation that needs the line.

The L1 Data Memory employs a full cache line width copyback buffer on 
each data bank. In addition, a two-entry write buffer in the L1 Data 
Memory accepts all stores with cache inhibited or store-through protec-
tion. An SSYNC instruction flushes the write buffer.

IPRIO Register and Write Buffer Depth

The Interrupt Priority register (IPRIO) can be used to control the size of 
the write buffer on Port A (see “L1 Data Memory Architecture” on 
page 6-33).

The IPRIO[3:0] bits can be programmed to reflect the low priority inter-
rupt watermark. When an interrupt occurs, causing the processor to 
vector from a low priority interrupt service routine to a high priority inter-
rupt service routine, the size of the write buffer increases from two to eight 
32-bit words deep. This allows the interrupt service routine to run and 
post writes without an initial stall, in the case where the write buffer was 
already filled in the low priority interrupt routine. This is most useful 
when posted writes are to a slow external memory device. When returning 
from a high priority interrupt service routine to a low priority interrupt 
service routine or user mode, the core stalls until the write buffer has 
completed the necessary writes to return to a two-deep state. By default, 
the write buffer is a fixed two-deep FIFO.
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Data Cache Control Instructions

The processor defines data cache control instructions that are accessible in 
User and Supervisor modes. They are PREFETCH, FLUSH, and FLUSHINV.

• PREFETCH (Data Cache Prefetch) attempts to allocate a line into the 
L1 cache. If the prefetch hits in the cache, generates an exception, 
or addresses a cache inhibited region, PREFETCH functions as a NOP. 

• FLUSH (Data Cache Flush) causes the data cache to synchronize the 
specified cache line with external memory. If the cached data line is 
dirty, the instruction writes the line out and marks the line clean in 
the data cache. If the specified data cache line is already clean or 
does not exist, FLUSH functions like a NOP. 

Figure 6-15. Interrupt Priority Register

0 00 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0

Interrupt Priority Register (IPRIO)

Reset = 0x0000 0000

IPRIO_MARK (Priority 
Watermark)
0000 - Default, all interrupts

are low priority
0001 - Interrupts 15 through 1

are low priority, interrupt
0 is considered high
priority

0010 - Interrupts 15 through 2
are low priority, 
interrupts 1 and 0 are
considered high priority

...
1110 - Interrupts 15 and 14

are low priority, 
interrupts 13 through 0
are considered high
priority

1111 - Interrupt 15 is low 
priority, all others are
considered high priority

0xFFE0 2110
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• FLUSHINV (Data Cache Line Flush and Invalidate) causes the data 
cache to perform the same function as the FLUSH instruction and 
then invalidate the specified line in the cache. If the line is in the 
cache and dirty, the cache line is written out to external memory. 
The Valid bit in the cache line is then cleared. If the line is not in 
the cache, FLUSHINV functions like a NOP.

If software requires synchronization with system hardware, place an SSYNC 
instruction after the FLUSH instruction to ensure that the flush operation 
has completed. If ordering is desired to ensure that previous stores have 
been pushed through all the queues, place an SSYNC instruction before the 
FLUSH.

Data Cache Invalidation

Besides the FLUSHINV instruction, explained in the previous section, two 
additional methods are available to invalidate the data cache when flush-
ing is not required. The first technique directly invalidates Valid bits by 
setting the Invalid bit of each cache line to the invalid state. To implement 
this technique, additional MMRs (DTEST_COMMAND and DTEST_DATA[1:0]) 
are available to allow arbitrary reads/writes of all the cache entries directly. 
This method is explained in the next section.

For invalidating the complete data cache, a second method is available. By 
clearing the DMC[1:0] bits in the DMEM_CONTROL register (see Figure 6-12 
on page 6-29), all Valid bits in the data cache are set to the invalid state. A 
second write to the DMEM_CONTROL register to set the DMC[1:0] bits to their 
previous state then configures the data memory back to its previous 
cache/SRAM configuration. An SSYNC instruction should be run before 
invalidating the cache and a CSYNC instruction should be inserted after 
each of these operations.
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Data Test Registers
Like L1 Instruction Memory, L1 Data Memory contains additional 
MMRs to allow arbitrary reads/writes of all cache entries directly. The reg-
isters provide a mechanism for data cache test, initialization, and debug.

When the Data Test Command register (DTEST_COMMAND) is written to, the 
L1 cache data or tag arrays are accessed and data is transferred through the 
Data Test Data registers (DTEST_DATA[1:0]). The DTEST_DATA[1:0] regis-
ters contain the 64-bit data to be written, or they contain the destination 
for the 64-bit data read. The lower 32 bits are stored in the DTEST_DATA[0] 
register and the upper 32 bits are stored in the DTEST_DATA[1] register. 
When the tag arrays are being accessed, then the DTEST_DATA[0] register is 
used.

 A CSYNC instruction is required after writing the DTEST_COMMAND 
MMR.

These figures describe the DTEST registers.

• Figure 6-16 on page 6-44 

• Figure 6-17 on page 6-45 

• Figure 6-18 on page 6-46 

Access to these registers is possible only in Supervisor or Emulation mode. 
When writing to DTEST registers, always write to the DTEST_DATA registers 
first, then the DTEST_COMMAND register.
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DTEST_COMMAND Register
When the Data Test Command register (DTEST_COMMAND) is written to, the 
L1 cache data or tag arrays are accessed, and the data is transferred 
through the Data Test Data registers (DTEST DATA[1:0]).

 The Data/Instruction Access bit allows direct access via the 
DTEST_COMMAND MMR to L1 instruction SRAM.

Figure 6-16. Data Test Command Register

X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

X XX X X X X X X XX X X X X

Data Test Command Register (DTEST_COMMAND)

00 - Access subbank 0
01 - Access subbank 1
10 - Access subbank 2
11 - Access subbank 3

Subbank Access[1:0] 
(SRAM ADDR[13:12])

Reset = Undefined

Read/Write Access

Access Way/Instruction 
Address Bit 11
0 - Access Way0/Instruction bit 11 = 0
1 - Access Way1/Instruction bit 11 = 1

Data/Instruction Access
0 - Access Data
1 - Access Instruction

0 - Read access
1 - Write access
Array Access
0 - Access tag array
1 - Access data array

Double Word Index[1:0]
Selects one of four 64-bit
double words in a 256-bit line

Set Index[5:0]
Selects one of 64 sets

Data Bank Access
For ADSP-BF533:
0 - Access Data Bank A/Instr Memory 0xFFA0 0000
1 - Access Data Bank B/Instr Memory 0xFFA0 8000
For ADSP-BF532:
0 - Access Data Bank A
1 - Access Data Bank B/Instr Memory 0xFFA0 8000
For ADSP-BF531:
0 - Access Data Bank A (Valid when Data/Instruction Access = 0
1 - Instr Memory 0xFFA0 8000 (Valid when Data/Instruction Access = 1)

Data Cache Select/
Address Bit 14

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

0xFFE0 0300

0 - Reserved/Instruction bit 14 = 0
1 - Select Data Cache Bank/Instruction bit 14 = 1
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DTEST_DATA1 Register
Data Test Data registers (DTEST_DATA[1:0]) contain the 64-bit data to be 
written, or they contain the destination for the 64-bit data read. The Data 
Test Data 1 register (DTEST_DATA1) stores the upper 32 bits.

DTEST_DATA0 Register
The Data Test Data 0 register (DTEST_DATA0) stores the lower 32 bits of 
the 64-bit data to be written, or it contains the lower 32 bits of the desti-
nation for the 64-bit data read. The DTEST_DATA0 register is also used to 
access the tag arrays and contains the Valid and Dirty bits, which indicate 
the state of the cache line.

Figure 6-17. Data Test Data 1 Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

XX X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Data Test Data 1 Register (DTEST_DATA1)

Reset = Undefined

XX X X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
Reset = Undefined

Data[63:48]

Data[47:32]

When accessing tag arrays, all bits are reserved.

0xFFE0 0404
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External Memory
The external memory space is shown in Figure 6-1. One of the memory 
regions is dedicated to SDRAM support. The size of the SDRAM bank is 
programmable and can range in size from 16M byte to 128M byte. The 
start address of the bank is 0x0000 0000.

Figure 6-18. Data Test Data 0 Register

X XX X X X X X

10 9 8 7 6 5 4 3 2

X X X

XX X X X X X

X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X XX X X X

15 14 13 12 11 1 0

X X X

Data Test Data 0 Register (DTEST_DATA0)

Reset = Undefined

Valid
0 - Cache line invalid
1 - Cache line valid

X

Tag[19:4]

Tag[3:2]

Tag

Dirty
0 - Cache line unmodified

since it was copied from
source memory

1 - Cache line modified
after it was copied
from source memory

X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

XX X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Data[31:16]

Data[15:0]

Used to access the L1 cache tag arrays. The address tag consists of the upper 18 bits 
and bit 11 of the physical address. See “Cache Lines” on page 6-16.

Physical address

Physical address

Physical address
LRU
0 - Way0 is the least 
recently used
1 - Way1 is the least 
recently used

Reset = Undefined0xFFE0 0400
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Each of the next four banks contains 1M byte and is dedicated to support 
asynchronous memories. The start address of the asynchronous memory 
bank is 0x2000 0000.

Memory Protection and Properties
This section describes the Memory Management Unit (MMU), memory 
pages, CPLB management, MMU management, and CPLB registers.

Memory Management Unit
The Blackfin processor contains a page based Memory Management Unit 
(MMU). This mechanism provides control over cacheability of memory 
ranges, as well as management of protection attributes at a page level. The 
MMU provides great flexibility in allocating memory and I/O resources 
between tasks, with complete control over access rights and cache 
behavior.

The MMU is implemented as two 16-entry Content Addressable Memory 
(CAM) blocks. Each entry is referred to as a Cacheability Protection Loo-
kaside Buffer (CPLB) descriptor. When enabled, every valid entry in the 
MMU is examined on any fetch, load, or store operation to determine 
whether there is a match between the address being requested and the page 
described by the CPLB entry. If a match occurs, the cacheability and pro-
tection attributes contained in the descriptor are used for the memory 
transaction with no additional cycles added to the execution of the 
instruction. 

Because the L1 memories are separated into instruction and data memo-
ries, the CPLB entries are also divided between instruction and data 
CPLBs. Sixteen CPLB entries are used for instruction fetch requests; these 
are called ICPLBs. Another sixteen CPLB entries are used for data transac-
tions; these are called DCPLBs. The ICPLBs and DCPLBs are enabled by 
setting the appropriate bits in the L1 Instruction Memory Control 
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(IMEM_CONTROL) and L1 Data Memory Control (DMEM_CONTROL) registers, 
respectively. These registers are shown in Figure 6-5 and Figure 6-12, 
respectively.

Each CPLB entry consists of a pair of 32-bit values. For instruction 
fetches:

• ICPLB_ADDR[n] defines the start address of the page described by 
the CPLB descriptor.

• ICPLB_DATA[n] defines the properties of the page described by the 
CPLB descriptor.

For data operations:

• DCPLB_ADDR[m] defines the start address of the page described by 
the CPLB descriptor.

• DCPLB_DATA[m] defines the properties of the page described by the 
CPLB descriptor.

There are two default CPLB descriptors for data accesses to the scratchpad 
data memory and to the system and core MMR space. These default 
descriptors define the above space as non-cacheable, so that additional 
CPLBs do not need to be set up for these regions of memory.

 If valid CPLBs are set up for this space, the default CPLBs are 
ignored.
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Memory Pages
The 4G byte address space of the processor can be divided into smaller 
ranges of memory or I/O referred to as memory pages. Every address 
within a page shares the attributes defined for that page. The architecture 
supports four different page sizes:

• 1K byte

• 4K byte

• 1M byte

• 4M byte

Different page sizes provide a flexible mechanism for matching the map-
ping of attributes to different kinds of memory and I/O. 

Memory Page Attributes

Each page is defined by a two-word descriptor, consisting of an address 
descriptor word xCPLB_ADDR[n] and a properties descriptor word 
xCPLB_DATA[n]. The address descriptor word provides the base address of 
the page in memory. Pages must be aligned on page boundaries that are an 
integer multiple of their size. For example, a 4M byte page must start on 
an address divisible by 4M byte; whereas a 1K byte page can start on any 
1K byte boundary. The second word in the descriptor specifies the other 
properties or attributes of the page. These properties include:

• Page size. 1K byte, 4K byte, 1M byte, 4M byte

• Cacheable/non-cacheable: Accesses to this page use the L1 cache or 
bypass the cache.

• If cacheable: write-through/write-back. Data writes propagate 
directly to memory or are deferred until the cache line is reallo-
cated. If write-through, allocate on read only, or read and write.



Memory Protection and Properties

6-50 ADSP-BF533 Blackfin Processor Hardware Reference
 

• Dirty/modified. The data in this page in memory has changed 
since the CPLB was last loaded.

• Supervisor write access permission. Enables or disables writes to 
this page when in Supervisor mode, for data pages only.

• User write access permission. Enables or disables writes to this page 
when in User mode, for data pages only.

• User read access permission. Enables or disables reads from this 
page when in User mode.

• Valid. Check this bit to determine whether this is valid CPLB data.

• Lock. Keep this entry in MMR; do not participate in CPLB 
replacement policy.

Page Descriptor Table
For memory accesses to utilize the cache when CPLBs are enabled for 
instruction access, data access, or both, a valid CPLB entry must be avail-
able in an MMR pair. The MMR storage locations for CPLB entries are 
limited to 16 descriptors for instruction fetches and 16 descriptors for 
data load and store operations.

For small and/or simple memory models, it may be possible to define a set 
of CPLB descriptors that fit into these 32 entries, cover the entire address-
able space, and never need to be replaced. This type of definition is 
referred to as a static memory management model.

However, operating environments commonly define more CPLB descrip-
tors to cover the addressable memory and I/O spaces than will fit into the 
available on-chip CPLB MMRs. When this happens, a memory-based 
data structure, called a Page Descriptor Table, is used; in it can be stored 
all the potentially required CPLB descriptors. The specific format for the 
Page Descriptor Table is not defined as part of the Blackfin processor 
architecture. Different operating systems, which have different memory 
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management models, can implement Page Descriptor Table structures 
that are consistent with the OS requirements. This allows adjustments to 
be made between the level of protection afforded versus the performance 
attributes of the memory-management support routines.

CPLB Management
When the Blackfin processor issues a memory operation for which no 
valid CPLB (cacheability protection lookaside buffer) descriptor exists in 
an MMR pair, an exception occurs that places the processor into 
Supervisor mode and vectors to the MMU exception handler 
(see “Exceptions” on page 4-41 for more information). The handler is typ-
ically part of the operating system (OS) kernel that implements the CPLB 
replacement policy. 

 Before CPLBs are enabled, valid CPLB descriptors must be in place 
for both the Page Descriptor Table and the MMU exception han-
dler. The LOCK bits of these CPLB descriptors are commonly set so 
they are not inadvertently replaced in software.

The handler uses the faulting address to index into the Page Descriptor 
Table structure to find the correct CPLB descriptor data to load into one 
of the on-chip CPLB register pairs. If all on-chip registers contain valid 
CPLB entries, the handler selects one of the descriptors to be replaced, 
and the new descriptor information is loaded. Before loading new descrip-
tor data into any CPLBs, the corresponding group of sixteen CPLBs must 
be disabled using:

• The Enable DCPLB (ENDCPLB) bit in the DMEM_CONTROL register for 
data descriptors, or 

• The Enable ICPLB (ENICPLB) bit in the IMEM_CONTROL register for 
instruction descriptors 
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The CPLB replacement policy and algorithm to be used are the responsi-
bility of the system MMU exception handler. This policy, which is 
dictated by the characteristics of the operating system, usually implements 
a modified LRU (Least Recently Used) policy, a round robin scheduling 
method, or pseudo random replacement.

After the new CPLB descriptor is loaded, the exception handler returns, 
and the faulting memory operation is restarted. this operation should now 
find a valid CPLB descriptor for the requested address, and it should pro-
ceed normally.

A single instruction may generate an instruction fetch as well as one or 
two data accesses. It is possible that more than one of these memory oper-
ations references data for which there is no valid CPLB descriptor in an 
MMR pair. In this case, the exceptions are prioritized and serviced in this 
order:

• Instruction page miss

• A page miss on DAG0

• A page miss on DAG1

MMU Application
Memory management is an optional feature in the Blackfin processor 
architecture. Its use is predicated on the system requirements of a given 
application. Upon reset, all CPLBs are disabled, and the Memory Man-
agement Unit (MMU) is not used.

If all L1 memory is configured as SRAM, then the data and instruction 
MMU functions are optional, depending on the application’s need for 
protection of memory spaces either between tasks or between User and 
Supervisor modes. To protect memory between tasks, the operating sys-
tem can maintain separate tables of instruction and/or data memory pages 
available for each task and make those pages visible only when the relevant 
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task is running. When a task switch occurs, the operating system can 
ensure the invalidation of any CPLB descriptors on chip that should not 
be available to the new task. It can also preload descriptors appropriate to 
the new task. 

For many operating systems, the application program is run in User mode 
while the operating system and its services run in Supervisor mode. It is 
desirable to protect code and data structures used by the operating system 
from inadvertent modification by a running User mode application. This 
protection can be achieved by defining CPLB descriptors for protected 
memory ranges that allow write access only when in Supervisor mode. If a 
write to a protected memory region is attempted while in User mode, an 
exception is generated before the memory is modified. Optionally, the 
User mode application may be granted read access for data structures that 
are useful to the application. Even Supervisor mode functions can be 
blocked from writing some memory pages that contain code that is not 
expected to be modified. Because CPLB entries are MMRs that can be 
written only while in Supervisor mode, user programs cannot gain access 
to resources protected in this way.

If either the L1 Instruction Memory or the L1 Data Memory is configured 
partially or entirely as cache, the corresponding CPLBs must be enabled. 
When an instruction generates a memory request and the cache is enabled, 
the processor first checks the ICPLBs to determine whether the address 
requested is in a cacheable address range. If no valid ICPLB entry in an 
MMR pair corresponds to the requested address, an MMU exception is 
generated to obtain a valid ICPLB descriptor to determine whether the 
memory is cacheable or not. As a result, if the L1 Instruction Memory is 
enabled as cache, then any memory region that contains instructions must 
have a valid ICPLB descriptor defined for it. These descriptors must either 
reside in MMRs at all times or be resident in a memory-based Page 
Descriptor Table that is managed by the MMU exception handler. Like-
wise, if either or both L1 data banks are configured as cache, all potential 
data memory ranges must be supported by DCPLB descriptors.
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 Before caches are enabled, the MMU and its supporting data struc-
tures must be set up and enabled.

Examples of Protected Memory Regions
In Figure 6-19, a starting point is provided for basic CPLB allocation for 
Instruction and Data CPLBs. Note some ICPLBs and DCPLBs have com-
mon descriptors for the same address space.

Figure 6-19. Examples of Protected Memory Regions

INSTRUCTION CPLB SETUP

DATA CPLB SETUP

ASYNC: CACHEABLE
TWO 1MB PAGES

L1 INSTRUCTION:
NON-CACHEABLE 1MB PAGE

SDRAM: CACHEABLE
EIGHT 4MB PAGES

ASYNC: NON-CACHEABLE
ONE 1MB PAGE

L1 DATA:
NON-CACHEABLE ONE 4MB PAGE

ASYNC: CACHEABLE
ONE 1MB PAGE

SDRAM: CACHEABLE
EIGHT 4MB PAGES

ASYNC: NON-CACHEABLE
ONE 1MB PAGE
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ICPLB_DATAx Registers
Figure 6-20 describes the ICPLB Data registers (ICPLB_DATAx).

 To ensure proper behavior and future compatibility, all reserved 
bits in this register must be set to 0 whenever this register is 
written.

Figure 6-20. ICPLB Data Registers

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ICPLB Data Registers (ICPLB_DATAx)

00 - 1K byte page size
01 - 4K byte page size
10 - 1M byte page size
11 - 4M byte page size

PAGE_SIZE[1:0]

Reset = 0x0000 0000

CPLB_LOCK

CPLB_VALID

CPLB_L1_CHBL

Clear this bit whenever L1 memory 
is configured as SRAM
0 - Non-cacheable in L1
1 - Cacheable in L1

0 - Invalid (disabled) CPLB
entry

1 - Valid (enabled) CPLB
entry

Can be used by software in 
CPLB replacement algorithms
0 - Unlocked, CPLB entry can

be replaced
1 - Locked, CPLB entry

should not be replaced

0 - User mode read access
generates protection
violation exception

1 - User mode read access
permitted

CPLB_USER_RD

CPLB_LRUPRIO
See “Instruction Cache Locking by Line” on page 6-21.
0 - Low importance
1 - High importance

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

For Memory- 
mapped 
addresses, see 
Table 6-5.
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Table 6-5. ICPLB Data Register Memory-Mapped Addresses 

Register Name Memory-Mapped Address

ICPLB_DATA0 0xFFE0 1200

ICPLB_DATA1 0xFFE0 1204

ICPLB_DATA2 0xFFE0 1208

ICPLB_DATA3 0xFFE0 120C

ICPLB_DATA4 0xFFE0 1210

ICPLB_DATA5 0xFFE0 1214

ICPLB_DATA6 0xFFE0 1218

ICPLB_DATA7 0xFFE0 121C

ICPLB_DATA8 0xFFE0 1220

ICPLB_DATA9 0xFFE0 1224

ICPLB_DATA10 0xFFE0 1228

ICPLB_DATA11 0xFFE0 122C

ICPLB_DATA12 0xFFE0 1230

ICPLB_DATA13 0xFFE0 1234

ICPLB_DATA14 0xFFE0 1238

ICPLB_DATA15 0xFFE0 123C
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DCPLB_DATAx Registers
Figure 6-21 shows the DCPLB Data registers (DCPLB_DATAx).

Figure 6-21. DCPLB Data Registers

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DCPLB Data Registers (DCPLB_DATAx)

00 - 1K byte page size
01 - 4K byte page size
10 - 1M byte page size
11 - 4M byte page size

PAGE_SIZE[1:0]

Reset = 0x0000 0000

CPLB_DIRTY

CPLB_WT
Operates only in cache mode
0 - Write back
1 - Write through

CPLB_L1_CHBL

Clear this bit when L1 memory is 
configured as SRAM
0 - Non-cacheable in L1
1 - Cacheable in L1

CPLB_L1_AOW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Valid only if write 
through cacheable 
(CPLB_VALID = 1, 
CPLB_WT = 1)
0 - Allocate cache lines

on reads only
1 - Allocate cache lines

on reads and writes 

Valid only if write back cacheable (CPLB_VALID = 1, 
CPLB_WT = 0, and CPLB_L1_CHBL = 1)
0 - Clean
1 - Dirty
A protection violation exception is generated on store 
accesses to this page when this bit is 0. The state of 
this bit is modified only by writes to this register. The 
exception service routine must set this bit.

CPLB_LOCK

CPLB_USER_WR

CPLB_VALID
0 - Invalid (disabled) CPLB entry
1 - Valid (enabled) CPLB entry

Can be used by software in 
CPLB replacement algorithms
0 - Unlocked, CPLB entry can 

be replaced
1 - Locked, CPLB entry should

not be replaced

0 - User mode read access 
generates protection 
violation exception

1 - User mode read access
permitted

CPLB_USER_RD

0 - User mode write access 
generates protection 
violation exception

1 - User mode write access
permitted

CPLB_SUPV_WR
0 - Supervisor mode write

access generates protection
violation exception

1 - Supervisor mode write
access permitted

For Memory- 
mapped 
addresses, see 
Table 6-6.
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 To ensure proper behavior and future compatibility, all reserved 
bits in this register must be set to 0 whenever this register is 
written.

Table 6-6. DCPLB Data Register Memory-Mapped Addresses 

Register Name Memory-Mapped Address

DCPLB_DATA0 0xFFE0 0200

DCPLB_DATA1 0xFFE0 0204

DCPLB_DATA2 0xFFE0 0208

DCPLB_DATA3 0xFFE0 020C

DCPLB_DATA4 0xFFE0 0210

DCPLB_DATA5 0xFFE0 0214

DCPLB_DATA6 0xFFE0 0218

DCPLB_DATA7 0xFFE0 021C

DCPLB_DATA8 0xFFE0 0220

DCPLB_DATA9 0xFFE0 0224

DCPLB_DATA10 0xFFE0 0228

DCPLB_DATA11 0xFFE0 022C

DCPLB_DATA12 0xFFE0 0230

DCPLB_DATA13 0xFFE0 0234

DCPLB_DATA14 0xFFE0 0238

DCPLB_DATA15 0xFFE0 023C
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DCPLB_ADDRx Registers
Figure 6-22 shows the DCPLB Address registers (DCPLB_ADDRx).

Figure 6-22. DCPLB Address Registers

Table 6-7. DCPLB Address Register Memory-Mapped Addresses

Register Name Memory-Mapped Address

DCPLB_ADDR0 0xFFE0 0100

DCPLB_ADDR1 0xFFE0 0104

DCPLB_ADDR2 0xFFE0 0108

DCPLB_ADDR3 0xFFE0 010C

DCPLB_ADDR4 0xFFE0 0110

DCPLB_ADDR5 0xFFE0 0114

DCPLB_ADDR6 0xFFE0 0118

DCPLB_ADDR7 0xFFE0 011C

DCPLB_ADDR8 0xFFE0 0120

DCPLB_ADDR9 0xFFE0 0124

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DCPLB Address Registers (DCPLB_ADDRx)

Upper Bits of Address for 
Match[21:6]

Reset = 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

X0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Upper Bits of Address for 
Match[5:0]

For Memory- 
mapped 
addresses, see 
Table 6-7.
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ICPLB_ADDRx Registers
Figure 6-23 shows the ICPLB Address registers (ICPLB_ADDRx).

DCPLB_ADDR10 0xFFE0 0128

DCPLB_ADDR11 0xFFE0 012C

DCPLB_ADDR12 0xFFE0 0130

DCPLB_ADDR13 0xFFE0 0134

DCPLB_ADDR14 0xFFE0 0138

DCPLB_ADDR15 0xFFE0 013C

Figure 6-23. ICPLB Address Registers

Table 6-7. DCPLB Address Register Memory-Mapped Addresses (Cont’d)

Register Name Memory-Mapped Address

00 0 0 0 0 0 000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0

ICPLB Address Registers (ICPLB_ADDRx)

Upper Bits of Address for 
Match[21:6]

Reset = 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Upper Bits of Address for 
Match[5:0]

For Memory- 
mapped 
addresses, see 
Table 6-8.
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DCPLB_STATUS and ICPLB_STATUS Registers
Bits in the DCPLB Status register (DCPLB_STATUS) and ICPLB Status reg-
ister (ICPLB_STATUS) identify the CPLB entry that has triggered 
CPLB-related exceptions. The exception service routine can infer the 
cause of the fault by examining the CPLB entries.

 The DCPLB_STATUS and ICPLB_STATUS registers are valid only while 
in the faulting exception service routine.

Table 6-8. ICPLB Address Register Memory-Mapped Addresses 

Register Name Memory-Mapped Address

ICPLB_ADDR0 0xFFE0 1100

ICPLB_ADDR1 0xFFE0 1104

ICPLB_ADDR2 0xFFE0 1108

ICPLB_ADDR3 0xFFE0 110C

ICPLB_ADDR4 0xFFE0 1110

ICPLB_ADDR5 0xFFE0 1114

ICPLB_ADDR6 0xFFE0 1118

ICPLB_ADDR7 0xFFE0 111C

ICPLB_ADDR8 0xFFE0 1120

ICPLB_ADDR9 0xFFE0 1124

ICPLB_ADDR10 0xFFE0 1128

ICPLB_ADDR11 0xFFE0 112C

ICPLB_ADDR12 0xFFE0 1130

ICPLB_ADDR13 0xFFE0 1134

ICPLB_ADDR14 0xFFE0 1138

ICPLB_ADDR15 0xFFE0 113C
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Bits FAULT_DAG, FAULT_USERSUPV and FAULT_RW in the DCPLB Status regis-
ter (DCPLB_STATUS) are used to identify the CPLB entry that has triggered 
the CPLB-related exception (see Figure 6-24). 

Bit FAULT_USERSUPV in the ICPLB Status register (ICPLB_STATUS) is used 
to identify the CPLB entry that has triggered the CPLB-related exception 
(see Figure 6-25). 

Figure 6-24. DCPLB Status Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X 0 X X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DCPLB Status Register (DCPLB_STATUS)

0 - Access was read
1 - Access was write

FAULT_RW

Reset = Undefined

FAULT[15:0]

FAULT_ILLADDR

0 - No fault
1 - Attempted access to nonexistent memory

FAULT_DAG

0 - Access was made by DAG0
1 - Access was made by DAG1

Each bit indicates the hit/miss 
status of the associated CPLB 
entry

0 - Access was made in User
mode

1 - Access was made in
Supervisor mode

FAULT_USERSUPV

0xFFE0 0008
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DCPLB_FAULT_ADDR and ICPLB_FAULT_ADDR 
Registers

The DCPLB Address register (DCPLB_FAULT_ADDR) and ICPLB Fault 
Address register (ICPLB_FAULT_ADDR) hold the address that has caused a 
fault in the L1 Data Memory or L1 Instruction Memory, respectively. See 
Figure 6-26 and Figure 6-27.

 The DCPLB_FAULT_ADDR and ICPLB_FAULT_ADDR registers are valid 
only while in the faulting exception service routine.

Figure 6-25. ICPLB Status Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

X X0X X X X X X X X X X X X X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ICPLB Status Register (ICPLB_STATUS)

Reset = Undefined

FAULT[15:0]

FAULT_ILLADDR

0 - No fault
1 - Attempted access to nonexistent memory

Each bit indicates hit/miss 
status of associated CPLB 
entry

0 - Access was made in User
mode

1 - Access was made in
Supervisor mode

FAULT_USERSUPV

0xFFE0 1008
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Figure 6-26. DCPLB Address Register

Figure 6-27. ICPLB Fault Address Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

DCPLB Address Register (DCPLB_FAULT_ADDR)

Reset = Undefined

FAULT_ADDR[15:0]
Data address that has caused 
a fault in the L1 Data Memory

FAULT_ADDR[31:16]
Data address that has caused 
a fault in L1 Data Memory

0xFFE0 000C

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

ICPLB Fault Address Register (ICPLB_FAULT_ADDR)

Reset = Undefined

FAULT_ADDR[15:0]

FAULT_ADDR[31:16]
Instruction address that has 
caused a fault in the L1 
Instruction Memory

Instruction address that has 
caused a fault in the L1 
Instruction Memory

0xFFE0 100C
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Memory Transaction Model
Both internal and external memory locations are accessed in little endian 
byte order. Figure 6-28 shows a data word stored in register R0 and in 
memory at address location addr. B0 refers to the least significant byte of 
the 32-bit word.

Figure 6-29 shows 16- and 32-bit instructions stored in memory. The dia-
gram on the left shows 16-bit instructions stored in memory with the 
most significant byte of the instruction stored in the high address (byte B1 
in addr+1) and the least significant byte in the low address (byte B0 in 
addr). 

The diagram on the right shows 32-bit instructions stored in memory. 
Note the most significant 16-bit half word of the instruction (bytes B3 
and B2) is stored in the low addresses (addr+1 and addr), and the least sig-
nificant half word (bytes B1 and B0) is stored in the high addresses 
(addr+3 and addr+2).

Figure 6-28. Data Stored in Little Endian Order

Figure 6-29. Instructions Stored in Little Endian Order

R0

DATA IN REGISTER DATA IN MEMORY

B3 B2 B1 B0 B3 B2 B1 B0

addr+3 addr+2 addr+1 addr

16-BIT INSTRUCTIONS IN MEMORY 32-BIT INSTRUCTIONS IN MEMORY

B1 B0 B1 B0 B1 B0 B3 B2

addr+3 addr+2 addr+1 addraddr+3 addr+2 addr+1 addr

16-BIT INSTRUCTIONS 32-BIT INSTRUCTIONS

B1 B0 B3 B2 B1 B0

INST 0 INST 0
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Load/Store Operation
The Blackfin processor architecture supports the RISC concept of a 
Load/Store machine. This machine is the characteristic in RISC architec-
tures whereby memory operations (loads and stores) are intentionally 
separated from the arithmetic functions that use the targets of the memory 
operations. The separation is made because memory operations, particu-
larly instructions that access off-chip memory or I/O devices, often take 
multiple cycles to complete and would normally halt the processor, pre-
venting an instruction execution rate of one instruction per cycle. 

Separating load operations from their associated arithmetic functions 
allows compilers or assembly language programmers to place unrelated 
instructions between the load and its dependent instructions. If the value 
is returned before the dependent operation reaches the execution stage of 
the pipeline, the operation completes in one cycle. 

In write operations, the store instruction is considered complete as soon as 
it executes, even though many cycles may execute before the data is actu-
ally written to an external memory or I/O location. This arrangement 
allows the processor to execute one instruction per clock cycle, and it 
implies that the synchronization between when writes complete and when 
subsequent instructions execute is not guaranteed. Moreover, this syn-
chronization is considered unimportant in the context of most memory 
operations.

Interlocked Pipeline
In the execution of instructions, the Blackfin processor architecture imple-
ments an interlocked pipeline. When a load instruction executes, the 
target register of the read operation is marked as busy until the value is 
returned from the memory system. If a subsequent instruction tries to 
access this register before the new value is present, the pipeline will stall 
until the memory operation completes. This stall guarantees that 
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instructions that require the use of data resulting from the load do not use 
the previous or invalid data in the register, even though instructions are 
allowed to start execution before the memory read completes. 

This mechanism allows the execution of independent instructions between 
the load and the instructions that use the read target without requiring the 
programmer or compiler to know how many cycles are actually needed for 
the memory-read operation to complete. If the instruction immediately 
following the load uses the same register, it simply stalls until the value is 
returned. Consequently, it operates as the programmer expects. However, 
if four other instructions are placed after the load but before the instruc-
tion that uses the same register, all of them execute, and the overall 
throughput of the processor is improved.

Ordering of Loads and Stores
The relaxation of synchronization between memory access instructions 
and their surrounding instructions is referred to as weak ordering of loads 
and stores. Weak ordering implies that the timing of the actual comple-
tion of the memory operations—even the order in which these events 
occur—may not align with how they appear in the sequence of the pro-
gram source code. All that is guaranteed is:

• Load operations will complete before the returned data is used by a 
subsequent instruction. 

• Load operations using data previously written will use the updated 
values.

• Store operations will eventually propagate to their ultimate 
destination. 

Because of weak ordering, the memory system is allowed to prioritize 
reads over writes. In this case, a write that is queued anywhere in the pipe-
line, but not completed, may be deferred by a subsequent read operation, 
and the read is allowed to be completed before the write. Reads are 
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prioritized over writes because the read operation has a dependent 
operation waiting on its completion, whereas the processor considers the 
write operation complete, and the write does not stall the pipeline if it 
takes more cycles to propagate the value out to memory. This behavior 
could cause a read that occurs in the program source code after a write in 
the program flow to actually return its value before the write has been 
completed. This ordering provides significant performance advantages in 
the operation of most memory instructions. However, it can cause side 
effects that the programmer must be aware of to avoid improper system 
operation.

When writing to or reading from nonmemory locations such as I/O device 
registers, the order of how read and write operations complete is often sig-
nificant. For example, a read of a status register may depend on a write to 
a control register. If the address is the same, the read would return a value 
from the write buffer rather than from the actual I/O device register, and 
the order of the read and write at the register may be reversed. Both these 
effects could cause undesirable side effects in the intended operation of the 
program and peripheral. To ensure that these effects do not occur in code 
that requires precise (strong) ordering of load and store operations, syn-
chronization instructions (CSYNC or SSYNC) should be used. 

Synchronizing Instructions
When strong ordering of loads and stores is required, as may be the case 
for sequential writes to an I/O device for setup and control, use the core or 
system synchronization instructions, CSYNC or SSYNC, respectively.

The CSYNC instruction ensures all pending core operations have completed 
and the core buffer (between the processor core and the L1 memories) has 
been flushed before proceeding to the next instruction. Pending core oper-
ations may include any pending interrupts, speculative states (such as 
branch predictions), or exceptions.
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Consider the following example code sequence:

IF CC JUMP away_from_here

csync;

r0 = [p0];

away_from_here:

In the preceding example code, the CSYNC instruction ensures:

• The conditional branch (IF CC JUMP away_from_here) is resolved, 
forcing stalls into the execution pipeline until the condition is 
resolved and any entries in the processor store buffer have been 
flushed. 

• All pending interrupts or exceptions have been processed before 
CSYNC completes.

• The load is not fetched from memory speculatively. 

The SSYNC instruction ensures that all side effects of previous operations 
are propagated out through the interface between the L1 memories and 
the rest of the chip. In addition to performing the core synchronization 
functions of CSYNC, the SSYNC instruction flushes any write buffers 
between the L1 memory and the system domain and generates a sync 
request to the system that requires acknowledgement before SSYNC 
completes.

Speculative Load Execution
Load operations from memory do not change the state of the memory 
value. Consequently, issuing a speculative memory-read operation for a 
subsequent load instruction usually has no undesirable side effect. In some 
code sequences, such as a conditional branch instruction followed by a 
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load, performance may be improved by speculatively issuing the read 
request to the memory system before the conditional branch is resolved. 
For example,

IF CC JUMP away_from_here

RO = [P2];

…

away_from_here:

If the branch is taken, then the load is flushed from the pipeline, and any 
results that are in the process of being returned can be ignored. Con-
versely, if the branch is not taken, the memory will have returned the 
correct value earlier than if the operation were stalled until the branch 
condition was resolved.

However, in the case of an I/O device, this could cause an undesirable side 
effect for a peripheral that returns sequential data from a FIFO or from a 
register that changes value based on the number of reads that are 
requested. To avoid this effect, use synchronizing instructions (CSYNC or 
SSYNC) to guarantee the correct behavior between read operations.

Store operations never access memory speculatively, because this could 
cause modification of a memory value before it is determined whether the 
instruction should have executed.

Conditional Load Behavior
The synchronization instructions force all speculative states to be resolved 
before a load instruction initiates a memory reference. However, the load 
instruction itself may generate more than one memory-read operation, 
because it is interruptible. If an interrupt of sufficient priority occurs 
between the completion of the synchronization instruction and the com-
pletion of the load instruction, the sequencer cancels the load instruction. 
After execution of the interrupt, the interrupted load is executed again. 
This approach minimizes interrupt latency. However, it is possible that a 
memory-read cycle was initiated before the load was canceled, and this 
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would be followed by a second read operation after the load is executed 
again. For most memory accesses, multiple reads of the same memory 
address have no side effects. However, for some memory-mapped devices, 
such as peripheral data FIFOs, reads are destructive. Each time the device 
is read, the FIFO advances, and the data cannot be recovered and re-read. 

 When accessing memory-mapped devices that have state dependen-
cies on the number of read operations on a given address location, 
disable interrupts before performing the load operation.

Working With Memory
This section contains information about alignment of data in memory and 
memory operations that support semaphores between tasks. It also con-
tains a brief discussion of MMR registers and a core MMR programming 
example.

Alignment
Nonaligned memory operations are not directly supported. A nonaligned 
memory reference generates a Misaligned Access exception event (see 
“Exceptions” on page 4-41). However, because some datastreams (such as 
8-bit video data) can properly be nonaligned in memory, alignment excep-
tions may be disabled by using the DISALGNEXCPT instruction. Moreover, 
some instructions in the quad 8-bit group automatically disable alignment 
exceptions.

Cache Coherency
For shared data, software must provide cache coherency support as 
required. To accomplish this, use the FLUSH instruction (see “Data Cache 
Control Instructions” on page 6-41), and/or explicit line invalidation 
through the core MMRs (see “Data Test Registers” on page 6-43).
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Atomic Operations
The processor provides a single atomic operation: TESTSET. Atomic opera-
tions are used to provide noninterruptible memory operations in support 
of semaphores between tasks. The TESTSET instruction loads an indirectly 
addressed memory half word, tests whether the low byte is zero, and then 
sets the most significant bit (MSB) of the low memory byte without 
affecting any other bits. If the byte is originally zero, the instruction sets 
the CC bit. If the byte is originally nonzero, the instruction clears the CC 
bit. The sequence of this memory transaction is atomic—hardware bus 
locking insures that no other memory operation can occur between the 
test and set portions of this instruction. The TESTSET instruction can be 
interrupted by the core. If this happens, the TESTSET instruction is exe-
cuted again upon return from the interrupt.

The TESTSET instruction can address the entire 4G byte memory space, 
but should not target on-core memory (L1 or MMR space) since atomic 
access to this memory is not supported. 

The memory architecture always treats atomic operations as cache inhib-
ited accesses even if the CPLB descriptor for the address indicates cache 
enabled access. However, executing TESTSET operations on cacheable 
regions of memory is not recommended since the architecture cannot 
guarantee a cacheable location of memory is coherent when the TESTSET 
instruction is executed. 

Memory-Mapped Registers
The MMR reserved space is located at the top of the memory space 
(0xFFC0 0000). This region is defined as non-cacheable and is divided 
between the system MMRs (0xFFC0 0000–0xFFE0 0000) and core 
MMRs (0xFFE0 0000–0xFFFF FFFF). 
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 If strong ordering is required, place a synchronization instruction 
after stores to MMRs. For more information, see “Load/Store 
Operation” on page 6-66.

All MMRs are accessible only in Supervisor mode. Access to MMRs in 
User mode generates a protection violation exception. Attempts to access 
MMR space using DAG1 also generates a protection violation exception.

All core MMRs are read and written using 32-bit aligned accesses. How-
ever, some MMRs have fewer than 32 bits defined. In this case, the 
unused bits are reserved. System MMRs may be 16 bits.

Accesses to nonexistent MMRs generate an illegal access exception. The 
system ignores writes to read-only MMRs. 

Appendix A, “Blackfin Processor Core MMR Assignments” provides a 
summary of all Core MMRs. Appendix B, “System MMR Assignments” 
provides a summary of all System MMRs. 

Core MMR Programming Code Example
Core MMRs may be accessed only as aligned 32-bit words. Nonaligned 
access to MMRs generates an exception event. Listing 6-1 shows the 
instructions required to manipulate a generic core MMR.

Listing 6-1. Core MMR Programming

CLI R0; /*  stop interrupts and save IMASK */

P0 = MMR_BASE;   /*  32-bit instruction to load base of MMRs */

R1 = [P0 + TIMER_CONTROL_REG];   /*  get value of control reg */

BITSET R1, #N;   /*  set bit N */

[P0 + TIMER_CONTROL_REG] = R1;   /*  restore control reg */

CSYNC; /*  assures that the control reg is written */

STI R0; /*  enable interrupts */
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 The CLI instruction saves the contents of the IMASK register and 
disables interrupts by clearing IMASK. The STI instruction restores 
the contents of the IMASK register, thus enabling interrupts. The 
instructions between CLI and STI are not interruptible.

Terminology
The following terminology is used to describe memory.

cache block. The smallest unit of memory that is transferred to/from the 
next level of memory from/to a cache as a result of a cache miss.

cache hit. A memory access that is satisfied by a valid, present entry in the 
cache.

cache line. Same as cache block. In this chapter, cache line is used for 
cache block.

cache miss. A memory access that does not match any valid entry in the 
cache.

direct-mapped. Cache architecture in which each line has only one place 
in which it can appear in the cache. Also described as 1-Way associative.

dirty or modified. A state bit, stored along with the tag, indicating 
whether the data in the data cache line has been changed since it was cop-
ied from the source memory and, therefore, needs to be updated in that 
source memory.

exclusive, clean. The state of a data cache line, indicating that the line is 
valid and that the data contained in the line matches that in the source 
memory. The data in a clean cache line does not need to be written to 
source memory before it is replaced.

fully associative. Cache architecture in which each line can be placed any-
where in the cache.
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index. Address portion that is used to select an array element (for example, 
a line index).

invalid. Describes the state of a cache line. When a cache line is invalid, a 
cache line match cannot occur.

least recently used (LRU) algorithm. Replacement algorithm, used by 
cache, that first replaces lines that have been unused for the longest time.

Level 1 (L1) memory. Memory that is directly accessed by the core with 
no intervening memory subsystems between it and the core.

little endian. The native data store format of the Blackfin processor. 
Words and half words are stored in memory (and registers) with the least 
significant byte at the lowest byte address and the most significant byte in 
the highest byte address of the data storage location.

replacement policy. The function used by the processor to determine 
which line to replace on a cache miss. Often, an LRU algorithm is 
employed.

set. A group of N-line storage locations in the Ways of an N-Way cache, 
selected by the INDEX field of the address (see Figure 6-7).

set associative. Cache architecture that limits line placement to a number 
of sets (or Ways).

tag. Upper address bits, stored along with the cached data line, to identify 
the specific address source in memory that the cached line represents.

valid. A state bit, stored with the tag, indicating that the corresponding 
tag and data are current and correct and can be used to satisfy memory 
access requests.

victim. A dirty cache line that must be written to memory before it can be 
replaced to free space for a cache line allocation.
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Way. An array of line storage elements in an N-Way cache (see 
Figure 6-7).

write back. A cache write policy, also known as copyback. The write data is 
written only to the cache line. The modified cache line is written to source 
memory only when it is replaced. Cache lines are allocated on both reads 
and writes.

write through. A cache write policy (also known as store through). The 
write data is written to both the cache line and to the source memory. The 
modified cache line is not written to the source memory when it is 
replaced. Cache lines must be allocated on reads, and may be allocated on 
writes (depending on mode).
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7 CHIP BUS HIERARCHY

This chapter discusses on-chip buses, how data moves through the system, 
and factors that determine the system organization. The chapter also 
describes the system internal chip interfaces and discusses the system 
interconnects and associated system buses.

Internal Interfaces
Figure 7-1 shows the core processor and system boundaries as well as the 
interfaces between them.

Internal Clocks
The core processor clock (CCLK) rate is highly programmable with respect 
to CLKIN. The CCLK rate is divided down from the Phase Locked Loop 
(PLL) output rate. This divider ratio is set using the CSEL parameter of the 
PLL Divide register.

The Peripheral Access Bus (PAB), the DMA Access Bus (DAB), the Exter-
nal Access Bus (EAB), the DMA Core Bus (DCB), the DMA External Bus 
(DEB), the External Port Bus (EPB), and the External Bus Interface Unit 
(EBIU) run at system clock frequency (SCLK domain). This divider ratio is 
set using the SSEL parameter of the PLL Divide register and must be set so 
that these buses run as specified in the processor data sheet, and slower 
than or equal to the core clock frequency.
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These buses can also be cycled at a programmable frequency to reduce 
power consumption, or to allow the core processor to run at an optimal 
frequency. Note all synchronous peripherals derive their timing from the 
SCLK. For example, the UART clock rate is determined by further divid-
ing this clock frequency.

Core Overview
For the purposes of this discussion, Level 1 memories (L1) are included in 
the description of the core; they have full bandwidth access from the pro-
cessor core with a 64-bit instruction bus and two 32-bit data buses.

Figure 7-1. Processor Bus Hierarchy
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Figure 7-2 shows the core processor and its interfaces to the peripherals 
and external memory resources.

The core can generate up to three simultaneous off-core accesses per cycle. 

The core bus structure between the processor and L1 memory runs at the 
full core frequency and has data paths up to 64 bits.

Figure 7-2. Core Block Diagram
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When the instruction request is filled, the 64-bit read can contain a single 
64-bit instruction or any combination of 16-, 32-, or 64-bit (partial) 
instructions.

When cache is enabled, four 64-bit read requests are issued to support 
32-byte line fill burst operations. These requests are pipelined so that each 
transfer after the first is filled in a single, consecutive cycle.

System Overview
The system includes the controllers for system interrupts, test/emulation, 
and clock and power management. Synchronous clock domain conversion 
is provided to support clock domain transactions between the core and the 
system.

System Interfaces
The processor system includes:

• The peripheral set (Timers, Real-Time Clock, programmable flags, 
UART, SPORTs, PPI, Watchdog timer, and SPI)

• The external memory controller (EBIU)

• The DMA controller

• The interfaces between these, the system, and the optional external 
(off-chip) resources

See Figure 7-2.
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The following sections describe the on-chip interfaces between the system 
and the peripherals:

• Peripheral Access Bus (PAB)

• DMA Access Bus (DAB)

• DMA Core Bus (DCB)

• DMA External Bus (DEB)

• External Access Bus (EAB)

The External Bus Interface Unit (EBIU) is the primary chip pin bus. The 
EBIU is discussed in Chapter 17, “External Bus Interface Unit”.

Peripheral Access Bus (PAB)
The processor has a dedicated peripheral bus. A low latency peripheral bus 
keeps core stalls to a minimum and allows for manageable interrupt laten-
cies to time-critical peripherals. All peripheral resources accessed through 
the PAB are mapped into the system MMR space of the processor memory 
map. The core can access system MMR space through the PAB bus.

The core processor has byte addressability, but the programming model is 
restricted to only 32-bit (aligned) access to the system MMRs. Byte access 
to this region is not supported.

PAB Arbitration

The core is the only master on this bus. No arbitration is necessary.

PAB Performance

For the PAB, the primary performance criteria is latency, not throughput. 
Transfer latencies for both read and write transfers on the PAB are 2 SCLK 
cycles.
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For example, the core can transfer up to 32 bits per access to the PAB 
slaves. With the core clock running at 2x the frequency of the system 
clock, the first and subsequent system MMR read or write accesses take 4 
core clocks (CCLK) of latency.

The PAB has a maximum frequency of SCLK.

PAB Agents (Masters, Slaves)

The processor core can master bus operations on the PAB. All peripherals 
have a peripheral bus slave interface which allows the core to access con-
trol and status state. These registers are mapped into the system MMR 
space of the memory map. Appendix B lists system MMR addresses. 

The slaves on the PAB bus are:

• Event Controller

• Clock and Power Management Controller

• Watchdog Timer

• Real-Time Clock (RTC)

• Timer 0, 1, and 2

• SPORT0

• SPORT1

• SPI

• Programmable Flags

• UART

• PPI

• Asynchronous Memory Controller (AMC)
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• SDRAM Controller (SDC)

• DMA Controller

DMA Access Bus (DAB), DMA Core Bus (DCB), DMA 
External Bus (DEB)

The DAB, DCB, and DEB buses provide a means for DMA-capable 
peripherals to gain access to on-chip and off-chip memory with little or no 
degradation in core bandwidth to memory.

DAB Arbitration

There are six DMA-capable peripherals in the processor system, including 
the Memory DMA controller. Twelve DMA channels and bus masters 
support these devices. The peripheral DMA controllers can transfer data 
between peripherals and internal or external memory. Both the read and 
write channels of the Memory DMA controller access their descriptor lists 
through the DAB.

The DCB has priority over the core processor on arbitration into L1 con-
figured as data SRAM, whereas the core processor has priority over the 
DCB on arbitration into L1 instruction SRAM. For off-chip memory, the 
core (by default) has priority over the DEB for accesses to the EPB. The 
processor has a programmable priority arbitration policy on the DAB. 
Table 7-1 shows the default arbitration priority. In addition, by setting 
the CDPRIO bit in the EBIU_AMGCTL register, all DEB transactions to the 
EPB have priority over core accesses to external memory. Use of this bit is 
application-dependent. For example, if you are polling a peripheral 
mapped to asynchronous memory with long access times, by default the 
core will “win” over DMA requests. By setting the CDPRIO bit, the core 
would be held off until DMA requests were serviced. 
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DAB, DCB, and DEB Performance

The processor DAB supports data transfers of 16 bits or 32 bits. The data 
bus has a 16-bit width with a maximum frequency as specified in 
ADSP-BF531/ADSP-BF532/ADSP-BF533 Embedded Processor Data Sheet.

The DAB has a dedicated port into L1 memory. No stalls occur as long as 
the core access and the DMA access are not to the same memory bank (4K 
byte size for L1). If there is a conflict when accessing data memory, DMA 
is the highest priority requester, followed by the core. If the conflict 
occurs when accessing instruction memory, the core is the highest priority 
requester, followed by DMA.

Note that a locked transfer by the core processor (for example, execution 
of a TESTSET instruction) effectively disables arbitration for the addressed 
memory bank or resource until the memory lock is deasserted. DMA con-
trollers cannot perform locked transfers.

Table 7-1. DAB, DCB, and DEB Arbitration Priority

DAB, DCB, DEB Master Default Arbitration Priority

PPI 0 - highest

SPORT0 RCV DMA Controller 1

SPORT1 RCV DMA Controller 3

SPORT0 XMT DMA Controller 2

SPORT1 XMT DMA Controller 4

SPI DMA Controller 5

UART RCV Controller 6

UART XMT Controller 7

Memory DMA0 (dest) Controller 8

Memory DMA0 (source) Controller 9

Memory DMA1 (dest) Controller 10

Memory DMA1 (source) Controller 11 - lowest
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DMA access to L1 memory can only be stalled by an access already in 
progress from another DMA channel. Latencies caused by these stalls are 
in addition to any arbitration latencies.

 The core processor and the DAB must arbitrate for access to exter-
nal memory through the EBIU. This additional arbitration latency 
added to the latency required to read off-chip memory devices can 
significantly degrade DAB throughput, potentially causing periph-
eral data buffers to underflow or overflow. If you use DMA 
peripherals other than the Memory DMA controller, and you tar-
get external memory for DMA accesses, you need to carefully 
analyze your specific traffic patterns. Make sure that isochronous 
peripherals targeting internal memory have enough allocated band-
width and the appropriate maximum arbitration latencies.

DAB Bus Agents (Masters)

All peripherals capable of sourcing a DMA access are masters on this bus, 
as shown in Table 7-1. A single arbiter supports a programmable priority 
arbitration policy for access to the DAB.

When two or more DMA master channels are actively requesting the 
DAB, bus utilization is considerably higher due to the DAB’s pipelined 
design. Bus arbitration cycles are concurrent with the previous DMA 
access’s data cycles.

External Access Bus (EAB)
The EAB provides a way for the processor core to directly access off-chip 
memory.
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Arbitration of the External Bus
Arbitration for use of external port bus interface resources is required 
because of possible contention between the potential masters of this bus. A 
fixed-priority arbitration scheme is used. That is, core accesses via the 
EAB will be of higher priority than those from the DMA External Bus 
(DEB).

DEB/EAB Performance
The DEB and the EAB support single word accesses of either 8-bit or 
16-bit data types. The DEB and the EAB operate at the same frequency as 
the PAB and the DAB, up to the maximum SCLK frequency specified in 
ADSP-BF531/ADSP-BF532/ADSP-BF533 Embedded Processor Data Sheet.

Memory DMA transfers can result in repeated accesses to the same mem-
ory location. Because the memory DMA controller has the potential of 
simultaneously accessing on-chip and off-chip memory, considerable 
throughput can be achieved. The throughput rate for an on-chip/off-chip 
memory access is limited by the slower of the two accesses.

In the case where the transfer is from on-chip to on-chip memory or from 
off-chip to off-chip memory, the burst accesses cannot occur simultane-
ously. The transfer rate is then determined by adding each transfer plus an 
additional cycle between each transfer.

Table 7-2 shows many types of 16-bit memory DMA transfers. In the 
table, it is assumed that no other DMA activity is conflicting with ongoing 
operations. The numbers in the table are theoretical values. These values 
may be higher when they are measured on actual hardware due to a variety 
of reasons relating to the device that is connected to the EBIU.
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For non-DMA accesses (for example, a core access via the EAB), a 32-bit 
access to SDRAM (of the form R0 = [P0]; where P0 points to an address 
in SDRAM) will always be more efficient than executing two 16-bit 
accesses (of the form R0 = W[P0++]; where P0 points to an address in 
SDRAM). In this example, a 32-bit SDRAM read will take 10 SCLK cycles 
while 2 16-bit reads will take 9 SCLK cycles each.

Table 7-2. Performance of DMA Access to External Memory 

Source Destination Approximate SCLKs For n Words 
(from start of DMA to interrupt at 
end)

16-bit SDRAM L1 Data memory n + 14

L1 Data memory 16-bit SDRAM n + 11

16-bit Async memory L1 Data memory xn + 12, where x is the number of 
wait states + setup/hold SCLK cycles 
(minimum x = 2)

L1 Data memory 16-bit Async memory xn + 9, where x is the number of wait 
states + setup/hold SCLK cycles (min-
imum x = 2)

16-bit SDRAM 16-bit SDRAM 10 + (17n/7)

16-bit Async memory 16-bit Async memory 10 + 2xn, where x is the number of 
wait states + setup/hold SCLK cycles 
(minimum x = 2)

L1 Data memory L1 Data memory 2n + 12
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8 DYNAMIC POWER 
MANAGEMENT

This chapter describes the Dynamic Power Management functionality of 
the processor. This functionality includes:

• Clocking

• Phase Locked Loop (PLL)

• Dynamic Power Management Controller

• Operating Modes

• Voltage Control

Clocking
The input clock into the processor, CLKIN, provides the necessary clock 
frequency, duty cycle, and stability to allow accurate internal clock multi-
plication by means of an on-chip Phase Locked Loop (PLL) module. 
During normal operation, the user programs the PLL with a multiplica-
tion factor for CLKIN. The resulting, multiplied signal is the Voltage 
Controlled Oscillator (VCO) clock. A user-programmable value then 
divides the VCO clock signal to generate the core clock (CCLK). 

A user-programmable value divides the VCO signal to generate the system 
clock (SCLK). The SCLK signal clocks the Peripheral Access Bus (PAB), 
DMA Access Bus (DAB), External Access Bus (EAB), and the External 
Bus Interface Unit (EBIU).
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 These buses run at the PLL frequency divided by 1–15 (SCLK 
domain). Using the SSEL parameter of the PLL Divide register, 
select a divider value that allows these buses to run at or below the 
maximum SCLK rate specified in 
ADSP-BF531/ADSP-BF532/ADSP-BF533 Embedded Processor 
Data Sheet.

To optimize performance and power dissipation, the processor allows the 
core and system clock frequencies to be changed dynamically in a “coarse 
adjustment.” For a “fine adjustment,” the PLL clock frequency can also be 
varied.

Phase Locked Loop and Clock Control
To provide the clock generation for the core and system, the processor 
uses an analog PLL with programmable state machine control.

The PLL design serves a wide range of applications. It emphasizes embed-
ded and portable applications and low cost, general-purpose processors, in 
which performance, flexibility, and control of power dissipation are key 
features. This broad range of applications requires a wide range of fre-
quencies for the clock generation circuitry. The input clock may be a 
crystal, a crystal oscillator, or a buffered, shaped clock derived from an 
external system clock oscillator.

The PLL interacts with the Dynamic Power Management Controller 
(DPMC) block to provide power management functions for the processor. 
For information about the DPMC, see “Dynamic Power Management 
Controller” on page 8-12.
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PLL Overview

Subject to the maximum VCO frequency, the PLL supports a wide range of 
multiplier ratios and achieves multiplication of the input clock, CLKIN. To 
achieve this wide multiplication range, the processor uses a combination 
of programmable dividers in the PLL feedback circuit and output configu-
ration blocks.

Figure 8-1 illustrates a conceptual model of the PLL circuitry, configura-
tion inputs, and resulting outputs. In the figure, the VCO is an intermediate 
clock from which the core clock (CCLK) and system clock (SCLK) are 
derived. 

PLL Clock Multiplier Ratios
The PLL Control register (PLL_CTL) governs the operation of the PLL. For 
details about the PLL_CTL register, see “PLL_CTL Register” on page 8-7.

Figure 8-1. PLL Block Diagram
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The Divide Frequency (DF) bit and Multiplier Select (MSEL[5:0]) field 
configure the various PLL clock dividers: 

• DF enables the input divider

• MSEL[5:0] controls the feedback dividers

The reset value of MSEL is 0xA. This value can be reprogrammed at 
startup in the boot code.

Table 8-1 illustrates the VCO multiplication factors for the various MSEL 
and DF settings. In this table, the value x represents the input clock (CLKIN) 
frequency.

As shown in the table, different combinations of MSEL[5:0] and DF can 
generate the same VCO frequencies. For a given application, one combina-
tion may provide lower power or satisfy the VCO maximum frequency. 
Under normal conditions, setting DF to 1 typically results in lower power 
dissipation. See ADSP-BF531/ADSP-BF532/ADSP-BF533 Embedded Pro-
cessor Data Sheet for maximum and minimum frequencies for CLKIN, CCLK, 
and VCO. 

Table 8-1. MSEL Encodings

Signal name
MSEL[5:0]

VCO Frequency
DF = 0 DF = 1

0 64x 32x

1 1x 0.5x

2 2x 1x

N = 3–62 Nx 0.5Nx

63 63x 31.5x
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Core Clock/System Clock Ratio Control

Table 8-2 describes the programmable relationship between the VCO fre-
quency and the core clock. Table 8-3 shows the relationship of the VCO 
frequency to the system clock. Note the divider ratio must be chosen to 
limit the SCLK to a frequency specified in 
ADSP-BF531/ADSP-BF532/ADSP-BF533 Embedded Processor Data Sheet. 
The SCLK drives all synchronous, system-level logic.

The divider ratio control bits, CSEL and SSEL, are in the PLL Divide regis-
ter (PLL_DIV). For information about this register, see “PLL_DIV 
Register” on page 8-7. Appendix B, “System MMR Assignments” shows 
the register addresses.

The reset value of CSEL[1:0] is 0x0 (/1), and the reset value of SSEL[3:0] 
is 0x5. These values can be reprogrammed at startup by the boot code. 

By writing the appropriate value to PLL_DIV, you can change the CSEL and 
SSEL value dynamically. Note the divider ratio of the core clock can never 
be greater than the divider ratio of the system clock. If the PLL_DIV register 
is programmed to illegal values, the SCLK divider is automatically increased 
to be greater than or equal to the core clock divider.

The PLL_DIV register can be programmed at any time to change the CCLK 
and SCLK divide values without entering the Idle state. 

Table 8-2. Core Clock Ratio

Signal Name
CSEL[1:0]

Divider Ratio
VCO/CCLK

Example Frequency Ratios (MHz)
VCO CCLK

00 1 300 300

01 2 600 300

10 4 600 150

11 8 400 50



Clocking

8-6 ADSP-BF533 Blackfin Processor Hardware Reference
 

As long as the MSEL and DF control bits in the PLL Control register 
(PLL_CTL) remain constant, the PLL is locked.

 If changing the clock ratio via writing a new SSEL value into 
PLL_DIV, take care that the enabled peripherals do not suffer data 
loss due to SCLK frequency changes.

PLL Registers
The user interface to the PLL is through four memory-mapped registers 
(MMRs): 

• The PLL Divide register (PLL_DIV)

• The PLL Control register (PLL_CTL)

• The PLL Status register (PLL_STAT)

• The PLL Lock Count register (PLL_LOCKCNT) 

All four registers are 16-bit MMRs and must be accessed with aligned 
16-bit reads/writes.

Table 8-3. System Clock Ratio

Signal Name
SSEL[3:0]

Divider Ratio
VCO/SCLK

Example Frequency Ratios (MHz)
VCO SCLK

0000 Reserved N/A N/A

0001 1:1 100 100

0010 2:1 200 100

0011 3:1 400 133

0100 4:1 500 125

0101 5:1 600 120

0110 6:1 600 100

N = 7–15 N:1 600 600/N
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PLL_DIV Register

The PLL Divide register (PLL_DIV) divides the PLL output clock to create 
the processor Core Clock (CCLK) and the System Clock (SCLK). These val-
ues can be independently changed during processing to reduce power 
dissipation without changing the PLL state. The only restrictions are the 
resulting CCLK frequency must be greater than or equal to the SCLK fre-
quency, and SCLK must fall within the allowed range specified in 
ADSP-BF531/ADSP-BF532/ADSP-BF533 Embedded Processor Data Sheet. 
If the CCLK and SCLK divide values are programmed otherwise, the SCLK 
value is automatically adjusted to be slower than or equal to the core 
clock. Figure 8-2, “PLL Divide Register,”  on page 8-7 shows the bits in 
the PLL_DIV register.

PLL_CTL Register

The PLL Control register (PLL_CTL) controls operation of the PLL (see 
Figure 8-3). Note changes to the PLL_CTL register do not take effect imme-
diately. In general, the PLL_CTL register is first programmed with new 
values, and then a specific PLL programming sequence must be executed 
to implement the changes. See “PLL Programming Sequence” on 
page 8-20.

Figure 8-2. PLL Divide Register

PLL Divide Register (PLL_DIV)
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1

0 - Reserved 
1-15  - SCLK = VCO / X

CSEL[1:0] (Core Select)

0 0 0 0 0 0 0 0 0 0 0 0 1 0

00 - CCLK = VCO /1
01 - CCLK = VCO / 2
10 - CCLK = VCO / 4
11 - CCLK = VCO / 8

SSEL[3:0] (System Select)

Reset = 0x000500xFFC0 0004
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The following fields of the PLL_CTL register are used to control the PLL:

• SPORT_HYS] – This bit is used to add 250 mV of hysteresis to the 
SPORT input pins to provide better immunity to system noise on 
SPORT clock and frame sync signals configured as inputs.

• MSEL[5:0] – The Multiplier Select (MSEL) field defines the input 
clock to VCO clock (CLKIN to VCO) multiplier.

• BYPASS – This bit is used to bypass the PLL. When BYPASS is set, 
CLKIN is passed directly to the core and peripheral clocks. 

• OUT_DELAY – This bit is used to add approximately 200ps of delay 
to external memory output signals.

Figure 8-3. The PLL Control Register
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00 0 1 0 1 0 0 0 0 0 0 0 0

PLL Control Register (PLL_CTL)

BYPASS
0 - Do not bypass PLL
1 - Bypass PLL

MSEL[5:0] 
(Multiplier Select)

DF (Divide Frequency)
0 - Pass CLKIN to PLL
1 - Pass CLKIN/2 to PLL
PLL_OFF
0 - Enable power to PLL
1 - Disable power to PLL

STOPCK (Stop Clock)
0 - CCLK on
1 - CCLK off

PDWN (Power Down)
0 - All internal clocks on
1 - All internal clocks off

Reset = 0x14000xFFC0 0000

IN_DELAY
0 - Do not add output delay
1 - Add approximately 200 ps

of delay to external memory
output signals

OUT_DELAY
0 - Do not add input delay
1 - Add approximately 200 ps

of delay to the time when
inputs are latched on the
external memory interface

SPORT_HYS
0 - No added hysteresis to 
SPORT input pins
1 - Add 250 mV of hysteresis to 
SPORT input pins

See Table 8-1 on page 8-4 for 
CLKIN/VCO multiplication 
factors.
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• IN_DELAY – This bit is used to add approximately 200ps of delay to 
the time when inputs are latched on the external memory interface. 

• PDWN – The Power Down (PDWN) bit is used to place the processor in 
the Deep Sleep operating mode.

For information about operating modes, see “Operating Modes” 
on page 8-12.

• STOPCK – The Stop Clock (STOPCK) bit is used to enable/disable the 
core clock, CCLK.

• PLL_OFF – This bit is used to enable/disable power to the PLL.

• DF – The Divide Frequency (DF) bit determines whether CLKIN is 
passed directly to the PLL or CLKIN/2 is passed.

PLL_STAT Register

The PLL Status register (PLL_STAT) indicates the operating mode of the 
PLL and processor (see Figure 8-4). For more information about operat-
ing modes, see “Operating Modes” on page 8-12. 

Figure 8-4. PLL Status Register
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The following fields are used in the PLL_STAT register:

• VSTAT (Voltage Regulator Status) – This bit indicates whether the 
voltage regulator has reached the programmed voltage.

When changing voltage levels, the core must be put into an Idle 
operating state to allow the PLL to lock with the new voltage level. 
See “PLL Programming Sequence” on page 8-20.

• CORE_IDLE – This bit is set to 1 when the Blackfin processor core is 
idled; that is, an IDLE instruction has executed, and the core is 
awaiting a wakeup signal.

• PLL_LOCKED – This field is set to 1 when the internal PLL lock 
counter has incremented to the value set in the PLL Lock Count 
register (PLL_LOCKCNT). For more information, see 
“PLL_LOCKCNT Register” on page 8-11. 

• SLEEP – This field is set to 1 when the processor is in Sleep operat-
ing mode.

• DEEP_SLEEP – This field is set to 1 when the processor is in Deep 
Sleep operating mode.

• ACTIVE_PLLDISABLED – This field is set to 1 when the processor is in 
Active operating mode with the PLL powered down. 

• FULL_ON – This field is set to 1 when the processor is in Full On 
operating mode.

• ACTIVE_PLLENABLED – This field is set to 1 when the processor is in 
Active operating mode with the PLL powered up. 
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PLL_LOCKCNT Register

When changing clock frequencies in the PLL, the PLL requires time to 
stabilize and lock to the new frequency. 

The PLL Lock Count register (PLL_LOCKCNT) defines the number of CLKIN 
cycles that occur before the processor sets the PLL_LOCKED bit in the 
PLL_STAT register. When executing the PLL programming sequence, the 
internal PLL lock counter begins incrementing upon execution of the IDLE 
instruction. The lock counter increments by 1 each CLKIN cycle. When the 
lock counter has incremented to the value defined in the PLL_LOCKCNT reg-
ister, the PLL_LOCKED bit is set. 

See ADSP-BF531/ADSP-BF532/ADSP-BF533 Embedded Processor Data 
Sheet for more information about PLL stabilization time and programmed 
values for this register. For more information about operating modes, see 
“Operating Modes” on page 8-12. For further information about the PLL 
programming sequence, see “PLL Programming Sequence” on page 8-20.

Figure 8-5. PLL Lock Count Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0

LOCKCNT
Number of SCLK cycles 
before PLL Lock Count 
timer expires.

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 Reset = 0x0200

PLL Lock Count Register (PLL_LOCKCNT)

0xFFC0 0010
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Dynamic Power Management Controller
The Dynamic Power Management Controller (DPMC) works in conjunc-
tion with the PLL, allowing the user to control the processor’s 
performance characteristics and power dissipation dynamically. The 
DPMC provides these features that allow the user to control performance 
and power:

• Multiple operating modes – The processor works in four operating 
modes, each with different performance characteristics and power 
dissipation profiles. See “Operating Modes” on page 8-12.

• Peripheral clocks – Clocks to each peripheral are disabled automat-
ically when the peripheral is disabled. 

• Voltage control – The processor provides an on-chip switching reg-
ulator controller which, with some external components, can 
generate internal voltage levels from the external Vdd (VDDEXT) 
supply. 

Depending on the needs of the system, the voltage level can be 
reduced to save power. See “VR_CTL Register” on page 8-26. 

Operating Modes
The processor works in four operating modes, each with unique perfor-
mance and power saving benefits. Table 8-4 summarizes the operational 
characteristics of each mode. 
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Dynamic Power Management Controller States
Power management states are synonymous with the PLL control state. 
The state of the DPMC/PLL can be determined by reading the PLL Status 
register (see “PLL_STAT Register” on page 8-9). In all modes except 
Sleep and Deep Sleep, the core can either execute instructions or be in Idle 
core state. If the core is in the Idle state, it can be awakened.

In all modes except Active, the SCLK frequency is determined by the 
SSEL-specified ratio to VCO. In Sleep mode, although the core clock is dis-
abled, SCLK continues to run at the specified SSEL ratio.

The following sections describe the DPMC/PLL states in more detail, as 
they relate to the power management controller functions.

Full On Mode 

Full On mode is the maximum performance mode. In this mode, the PLL 
is enabled and not bypassed. Full On mode is the normal execution state 
of the processor, with the processor and all enabled peripherals running at 
full speed. DMA access is available to L1 memories. From Full On mode, 
the processor can transition directly to Active, Sleep, or Deep Sleep 
modes, as shown in Figure 8-6. 

Table 8-4. Operational Characteristics

Operating 
Mode

Power
Savings

PLL
Status Bypassed

CCLK SCLK Allowed 
DMA 
Access

Full On None Enabled No Enabled Enabled L1

Active Medium Enabled 1 Yes Enabled Enabled L1

Sleep High Enabled No Disabled Enabled –

Deep Sleep Maximum Disabled – Disabled Disabled –

1   PLL can also be disabled in this mode.
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Active Mode 

In Active mode, the PLL is enabled but bypassed. Because the PLL is 
bypassed, the processor’s core clock (CCLK) and system clock (SCLK) run at 
the input clock (CLKIN) frequency. DMA access is available to appropri-
ately configured L1 memories.

In Active mode, it is possible not only to bypass, but also to disable the 
PLL. If disabled, the PLL must be re-enabled before transitioning to Full 
On or Sleep modes.

From Active mode, the processor can transition directly to Full On, Sleep, 
or Deep Sleep modes.

Sleep Mode 

Sleep mode significantly reduces power dissipation by idling the core pro-
cessor. The CCLK is disabled in this mode; however, SCLK continues to run 
at the speed configured by MSEL and SSEL bit settings. As CCLK is disabled, 
DMA access is available only to external memory in Sleep mode. From 
Sleep mode, a wakeup event causes the processor to transition to one of 
these modes:

• Active mode if the BYPASS bit in the PLL_CTL register is set

• Full On mode if the BYPASS bit is cleared

The processor resumes execution from the program counter value present 
immediately prior to entering sleep mode.

 The STOPCK bit is not a status bit and is therefore unmodified by 
hardware when the wakeup occurs. Software must explicitly clear 
STOPCK in the next write to PLL_CTL to avoid going back into sleep 
mode.
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Deep Sleep Mode 

Deep Sleep mode maximizes power savings by disabling the PLL, CCLK, 
and SCLK. In this mode, the processor core and all peripherals except the 
Real-Time Clock (RTC) are disabled. DMA is not supported in this 
mode.

Deep Sleep mode can be exited only by an RTC interrupt or hardware 
reset event. An RTC interrupt causes the processor to transition to Active 
mode; a hardware reset begins the hardware reset sequence. For more 
information about hardware reset, see “Hardware Reset” on page 3-13. 

Note an RTC interrupt in Deep Sleep mode automatically resets some 
fields of the PLL Control register (PLL_CTL). See Table 8-5.

 When in Deep Sleep operating mode, clocking to the SDRAM is 
turned off. Before entering Deep Sleep mode, software should 
ensure either that important information in SDRAM is saved to a 
non-volatile memory, or that SDRAM is placed in Self-Refresh 
mode.

Table 8-5. Control Register Values after RTC Wakeup Interrupt 

Field Value

PLL_OFF 0

STOPCK 0

PDWN 0

BYPASS 1
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Hibernate State 

For lowest possible power dissipation, this state allows the internal supply 
(VDDINT) to be powered down, while keeping the I/O supply (VDDEXT) 
running. Although not strictly an operating mode like the four modes 
detailed above, it is illustrative to view it as such in the diagram of 
Figure 8-6. Since this feature is coupled to the on-chip switching regulator 
controller, it is discussed in detail in “Powering Down the Core (Hiber-
nate State)” on page 8-30.

Operating Mode Transitions
Figure 8-6 graphically illustrates the operating modes and transitions. In 
the diagram, ellipses represent operating modes. Arrows between the 
ellipses show the allowed transitions into and out of each mode. 

The text next to each transition arrow shows the fields in the PLL Control 
register (PLL_CTL) that must be changed for the transition to occur. For 
example, the transition from Full On mode to Sleep mode indicates that 
the STOPCK bit must be set to 1 and the PDWN bit must be set to 0. For 
information about how to effect mode transitions, see “Programming 
Operating Mode Transitions” on page 8-20.

In addition to the mode transitions shown in Figure 8-6, the PLL can be 
modified while in Active operating mode. Power to the PLL can be 
applied and removed, and new clock-in to VCO clock (CLKIN to VCO) multi-
plier ratios can be programmed. Described in detail below, these changes 
to the PLL do not take effect immediately. As with operating mode transi-
tions, the PLL programming sequence must be executed for these changes 
to take effect (see “PLL Programming Sequence” on page 8-20).
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Figure 8-6. Operating Mode Transitions
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• PLL Disabled: In addition to being bypassed in the Active mode, 
power to the PLL can be removed.

When power is removed from the PLL, additional power savings 
are achieved although they are relatively small. To remove power to 
the PLL, set the PLL_OFF bit in the PLL_CTL register, and then exe-
cute the PLL programming sequence.

• PLL Enabled: When the PLL is powered down, power can be reap-
plied later when additional performance is required.

Power to the PLL must be reapplied before transitioning to Full 
On or Sleep operating modes. To apply power to the PLL, clear the 
PLL_OFF bit in the PLL_CTL register, and then execute the PLL pro-
gramming sequence.

• New Multiplier Ratio in Active Mode: New clock-in to VCO clock 
(CLKIN to VCO) multiplier ratios can be programmed while in Active 
mode.

Although the CLKIN to VCO multiplier changes are not realized in 
Active mode, forcing the PLL to lock to the new ratio in Active 
mode before transitioning to Full On mode reduces the transition 
time, because the PLL is already locked to the new ratio. Note the 
PLL must be powered up to lock to the new ratio. To program a 
new CLKIN to VCO multiplier, write the new MSEL[5:0] and/or DF 
values to the PLL_CTL register; then execute the PLL programming 
sequence.
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• New Multiplier Ratio in Full On Mode: The multiplier ratio can 
also be changed while in Full On mode. 

In this case, the PLL state automatically transitions to Active mode 
while the PLL is locking. After locking, the PLL returns to Full On 
state. To program a new CLKIN to VCO multiplier, write the new 
MSEL[5:0] and/or DF values to the PLL_CTL register; then execute 
the PLL programming sequence (see on page 8-20).

Table 8-6 summarizes the allowed operating mode transitions.

 Attempting to cause mode transitions other than those shown in 
Table 8-6 causes unpredictable behavior. 

Table 8-6. Allowed Operating Mode Transitions

New Mode

Current Mode

Full On Active Sleep Deep Sleep

Full On – Allowed Allowed –

Active Allowed – Allowed Allowed

Sleep Allowed Allowed – –

Deep Sleep Allowed Allowed – –
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Programming Operating Mode Transitions

The operating mode is defined by the state of the PLL_OFF, BYPASS, 
STOPCK, and PDWN bits of the PLL Control register (PLL_CTL). Merely mod-
ifying the bits of the PLL_CTL register does not change the operating mode 
or the behavior of the PLL. Changes to the PLL_CTL register are realized 
only after executing a specific code sequence, which is shown in 
Listing 8-1. This code sequence first brings the processor to a known, 
idled state. Once in this idled state, the PLL recognizes and implements 
the changes made to the PLL_CTL register. After the changes take effect, the 
processor operates with the new settings, including the new operating 
mode, if one is programmed.

PLL Programming Sequence

If new values are assigned to MSEL or DF in the PLL Control register 
(PLL_CTL), the instruction sequence shown in Listing 8-1 puts those 
changes into effect. The PLL programming sequence is also executed 
when transitioning between operating states.

 Changes to the divider-ratio bits, CSEL and SSEL, can be made 
dynamically; they do not require execution of the PLL program-
ming sequence.

Listing 8-1. PLL Programming Sequence

CLI R0 ; /* disable interrupts */

IDLE ; /* drain pipeline and send core into IDLE state */

STI R0 ; /* re-enable interrupts after wakeup */

The first two instructions in the sequence take the core to an idled state 
with interrupts disabled; the interrupt mask (IMASK) is saved to the R0 reg-
ister, and the instruction pipeline is halted. The PLL state machine then 
loads the PLL_CTL register changes into the PLL.
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If the PLL_CTL register changes include a new CLKIN to VCO multiplier or 
the changes reapply power to the PLL, the PLL needs to relock. To relock, 
the PLL lock counter is first cleared, and then it begins incrementing, 
once per SCLK cycle. After the PLL lock counter reaches the value pro-
grammed into the PLL Lock Count register (PLL_LOCKCNT), the PLL sets 
the PLL_LOCKED bit in the PLL Status register (PLL_STAT), and the PLL 
asserts the PLL wakeup interrupt.

Depending on how the PLL_CTL register is programmed, the processor 
proceeds in one of the following four ways:

• If the PLL_CTL register is programmed to enter either Active or Full 
On operating mode, the PLL generates a wakeup signal, and then 
the processor continues with the STI instruction in the sequence, as 
described in “PLL Programming Sequence Continues” on 
page 8-22. 

When the state change enters Full On mode from Active mode or 
Active from Full On, the PLL itself generates a wakeup signal that 
can be used to exit the idled core state. The wakeup signal is gener-
ated by the PLL itself or another peripheral, watchdog or other 
timer, RTC, or other source. For more information about events 
that cause the processor to wakeup from being idled, see 
“SIC_IWR Register” on page 4-25. 

• If the PLL_CTL register is programmed to enter the Sleep operating 
mode, the processor immediately transitions to the Sleep mode and 
waits for a wakeup signal before continuing.

When the wakeup signal has been asserted, the instruction 
sequence continues with the STI instruction, as described in the 
section, “PLL Programming Sequence Continues” on page 8-22, 
causing the processor to transition to:
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• Active mode if BYPASS in the PLL_CTL register is set

• Full On mode if the BYPASS bit is cleared 

• If the PLL_CTL register is programmed to enter Deep Sleep operat-
ing mode, the processor immediately transitions to Deep Sleep 
mode and waits for an RTC interrupt or hardware reset signal:

• An RTC interrupt causes the processor to enter Active oper-
ating mode and continue with the STI instruction in the 
sequence, as described below.

• A hardware reset causes the processor to execute the reset 
sequence, as described in “Hardware Reset” on page 3-13. 

• If no operating mode transition is programmed, the PLL generates 
a wakeup signal, and the processor continues with the STI instruc-
tion in the sequence, as described in the following section.

PLL Programming Sequence Continues

The instruction sequence shown in Listing 8-1 then continues with the 
STI instruction. Interrupts are re-enabled, IMASK is restored, and normal 
program flow resumes.

 To prevent spurious activity, DMA should be suspended while exe-
cuting this instruction sequence. 
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Examples

The following code examples illustrate how to effect various operating 
mode transitions. Some setup code has been removed for clarity, and the 
following assumptions are made:

• P0 points to the PLL Control register (PLL_CTL). P1 points to the 
PLL Divide register.

• The PLL wakeup interrupt is enabled as a wakeup signal.

• MSEL[5:0] and DF in PLL_CTL are set to (b#011111) and (b#0) 
respectively, signifying a CLKIN to VCO multiplier of 31x.

Active Mode to Full On Mode

Listing 8-2 provides code for transitioning from Active operating mode to 
Full On mode.

Listing 8-2. Transitioning From Active Mode to Full On Mode

CLI R2; /* disable interrupts, copy IMASK to R2 */

R1.L = 0x3E00;   /* clear BYPASS bit */

W[P0] = R1; /* and write to PLL_CTL */

IDLE; /* drain pipeline, enter idled state, wait for 

PLL wakeup */

STI R2; /* after PLL wakeup occurs, restore interrupts 

and IMASK */

... /* processor is now in Full On mode */

Full On Mode to Active Mode

Listing 8-3 provides code for transitioning from Full On operating mode 
to Active mode.
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Listing 8-3. Transitioning From Full On Mode to Active Mode

CLI R2; /* disable interrupts, copy IMASK to R2 */

R1.L = 0x3F00;   /* set BYPASS bit */

W[P0] = R1; /* and write to PLL_CTL */

IDLE; /* drain pipeline, enter idled state, wait for 

PLL wakeup */

STI R2; /* after PLL wakeup occurs, restore interrupts 

and IMASK */

... /* processor is now in Active mode */

In the Full On Mode, Change CLKIN to VCO Multiplier From 31x to 2x

Listing 8-4 provides code for changing CLKIN to VCO multiplier from 31x 
to 2x in Full On operating mode.

Listing 8-4. Changing CLKIN to VCO Multiplier

CLI R2; /* disable interrupts, copy IMASK to R2 */

R1.L = 0x0400; /* change VCO multiplier to 2x */

W[P0] = R1; /* by writing to PLL_CTL */

IDLE; /* drain pipeline, enter idled state, wait for 

PLL wakeup */

STI R2; /* after PLL wakeup occurs, restore interrupts 

and IMASK */

... /* processor is now in Full On mode, with the 

CLKIN to VCO multiplier set to 2x */
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Dynamic Supply Voltage Control
In addition to clock frequency control, the processor provides the capabil-
ity to run the core processor at different voltage levels. As power 
dissipation is proportional to the voltage squared, significant power reduc-
tions can be accomplished when lower voltages are used.

The processor uses three power domains. These power domains are shown 
in Table 8-7. Each power domain has a separate VDD supply. Note the 
internal logic of the processor and much of the processor I/O can be run 
over a range of voltages. See ADSP-BF531/ADSP-BF532/ADSP-BF533 
Embedded Processor Data Sheet for details on the allowed voltage ranges for 
each power domain and power dissipation data.

Power Supply Management
The processor provides an on-chip switching regulator controller which, 
with some external hardware, can generate internal voltage levels from the 
external VDDEXT supply with an external power transistor as shown in 
Figure 8-7. This voltage level can be reduced to save power, depending 
upon the needs of the system.

Table 8-7. Power Domains 

Power Domain VDD Range

All internal logic except RTC Variable

Real-Time Clock I/O and internal logic Variable

All other I/O Variable
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 When increasing the VDDINT voltage, the external FET will switch 
on for a longer period. The VDDEXT supply should have appropri-
ate capacitive bypassing to enable it to provide sufficient current 
without drooping the supply voltage.

VR_CTL Register

The on-chip core voltage regulator controller manages the internal logic 
voltage levels for the VDDINT supply. The Voltage Regulator Control reg-
ister (VR_CTL) controls the regulator (see Figure 8-8). Writing to VR_CTL 
initiates a PLL relock sequence.

Figure 8-7. Processor Voltage Regulator

Figure 8-8. Voltage Regulator Control Register
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Voltage Regulator Control Register (VR_CTL)

Reset = 0x00DB

VLEV[3:0] (Internal Voltage Level)
See Table 8-8 for encodings.

FREQ[1:0] (Voltage Frequency)
Controls the switching oscillator
frequency for the voltage regulator.
See Table 8-10 for encodings.

GAIN[1:0] (Voltage Level Gain)
Controls how quickly the voltage
output settles on its final value.
See Table 8-9 for encodings.

0 11

WAKE (RTC Wakeup Enable)

0 - RTC wakeup disabled
1 - RTC wakeup enabled

0xFFC0 0008
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The following fields of the VR_CTL register are used to control internal 
logic voltage levels:

• WAKE — The Wakeup-enable (WAKE) control bit allows the voltage 
regulator to be awakened from powerdown (FREQ=00) upon an 
interrupt from the RTC.

• VLEV[3:0] – The Voltage Level (VLEV) field identifies the nominal 
internal voltage level. Refer to 
ADSP-BF531/ADSP-BF532/ADSP-BF533 Embedded Processor 
Data Sheet for the applicable VLEV voltage range and associated 
voltage tolerances.

• FREQ[1:0] – The Frequency (FREQ) field controls the switching 
oscillator frequency for the voltage regulator. A higher frequency 
setting allows for smaller switching capacitor and inductor values, 
while potentially generating more EMI (electromagnetic 
interference).

 To bypass onboard regulation, program a value of b#00 in the FREQ 
field and leave the VROUT pins floating.

• GAIN[1:0] – The Gain (GAIN) field controls the internal loop gain 
of the switching regulator loop; this bit controls how quickly the 
voltage output settles on its final value. In general, higher gain 
allows for quicker settling times but causes more overshoot in the 
process.
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Table 8-8 lists the voltage level values for VLEV[3:0].

 For legal VLEV values with respect to voltage tolerance, consult the 
appropriate processor-specific data sheet.

Table 8-9 lists the switching frequency values configured by FREQ[1:0].

Table 8-8. VLEV Encodings 

VLEV Voltage

0000–0101 Reserved

0110 .85 volts

0111 .90 volts

1000 .95 volts

1001 1.00 volts

1010 1.05 volts

1011 1.10 volts

1100 1.15 volts

1101 1.20 volts

1110 1.25 volts

1111 1.30 volts

Table 8-9. FREQ Encodings

FREQ Value

00 Powerdown/Bypass onboard regulation

01 333 kHz

10 667 kHz

11 1MHz
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Table 8-10 lists the gain levels configured by GAIN[1:0].

Changing Voltage

Minor changes in operating voltage can be accommodated without requir-
ing special consideration or action by the application program. See 
ADSP-BF531/ADSP-BF532/ADSP-BF533 Embedded Processor Data Sheet 
for more information about voltage tolerances and allowed rates of 
change.

 Reducing the processor’s operating voltage to greatly conserve 
power or raising the operating voltage to greatly increase perfor-
mance will probably require significant changes to the operating 
voltage level. To ensure predictable behavior when varying the 
operating voltage, the processor should be brought to a known and 
stable state before the operating voltage is modified.

The recommended procedure is to follow the PLL programming sequence 
when varying the voltage. After changing the voltage level in the VR_CTL 
register, the PLL will automatically enter the Active mode when the pro-
cessor enters the Idle state. At that point the voltage level will change and 
the PLL will relock with the new voltage. After the PLL_LOCKCNT has 
expired, the part will return to the Full On state. When changing voltages, 
a larger PLL_LOCKCNT value may be necessary than when changing just the 
PLL frequency. See ADSP-BF531/ADSP-BF532/ADSP-BF533 Embedded 
Processor Data Sheet for details.

Table 8-10. GAIN Encodings

GAIN Value

00 5

01 10

10 20

11 50
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After the voltage has been changed to the new level, the processor can 
safely return to any operational mode so long as the operating parameters, 
such as core clock frequency (CCLK), are within the limits specified in 
ADSP-BF531/ADSP-BF532/ADSP-BF533 Embedded Processor Data Sheet 
for the new operating voltage level.

Powering Down the Core (Hibernate State)

The internal supply regulator for the processor can be shut off by writing 
b#00 to the FREQ bits of the VR_CTL register. This disables both CCLK and 
SCLK. Furthermore, it sets the internal power supply voltage (VDDINT) to 
0 V, eliminating any leakage currents from the processor. The internal 
supply regulator can be woken up either by a Real-Time Clock wakeup or 
by asserting the RESET pin.

If the on-chip supply controller is bypassed, so that VDDINT is sourced 
externally, the only way to power down the core is to remove the external 
VDDINT voltage source.

 When the core is powered down, VDDINT is set to 0 V, and thus 
the internal state of the processor is not maintained. Therefore, any 
critical information stored internally (memory contents, register 
contents, and so on) must be written to a non-volatile storage 
device prior to removing power.

Powering down VDDINT does not affect VDDEXT. While VDDEXT is still 
applied to the processor, external pins are maintained at a tristate level, 
unless otherwise specified.
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To power down the internal supply: 

1. Write 0 to the SIC_IWR register to prevent peripheral resources 
from interrupting the Hibernate process.

2. Write to VR_CTL, setting the FREQ bits to b#00. If the Real-Time 
Clock is being used to wake up from Hibernate, also set the WAKE 
bit to 1.

3. Execute this code sequence:

CLI R0 ;

IDLE ;

4. When the Idle state is reached, VDDINT will transition to 0 V.

5. When the processor is woken up, whether by RTC or by a reset 
interrupt, the PLL relocks and the boot sequence defined by the 
BMODE[1:0] pin settings takes effect. 

 Failure to allow VDDINT to complete the transition to 0 V before 
waking up the processor can cause undesired results.
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9 DIRECT MEMORY ACCESS

The processor uses Direct Memory Access (DMA) to transfer data within 
memory spaces or between a memory space and a peripheral. The proces-
sor can specify data transfer operations and return to normal processing 
while the fully integrated DMA controller carries out the data transfers 
independent of processor activity.

The DMA controller can perform several types of data transfers:

• Between memory and memory (MDMA) 
(“Memory DMA” on page 9-48)

• Between memory and the Serial Peripheral Interface (SPI) 
(Chapter 10, “SPI Compatible Port Controllers”)

• Between memory and a Serial Port (SPORT) 
(Chapter 12, “Serial Port Controllers”)

• Between memory and the UART Port 
(Chapter 13, “UART Port Controller”)

• Between memory and the Parallel Peripheral Interface (PPI) 
(Chapter 11, “Parallel Peripheral Interface”)

The system includes six DMA-capable peripherals, including the Memory 
DMA controller (MDMA). The following twelve DMA channels support 
these devices:

• PPI Receive/Transmit DMA Controller

• SPORT0 Receive DMA Controller
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• SPORT0 Transmit DMA Controller

• SPORT1 Receive DMA Controller

• SPORT1 Transmit DMA Controller

• SPI Receive/Transmit DMA Controller

• UART Receive DMA Controller

• UART Transmit DMA Controller

• MDMA Stream 1 Transmit (Destination)

• MDMA Stream 1 Receive (Source)

• MDMA Stream 0 Transmit (Destination)

• MDMA Stream 0 Receive (Source)

This chapter describes the features common to all the DMA channels, as 
well as how DMA operations are set up. For specific peripheral features, 
see the appropriate peripheral chapter for additional information. Perfor-
mance and bus arbitration for DMA operations can be found in “DAB, 
DCB, and DEB Performance” on page 7-8.

DMA transfers on the processor can be descriptor-based or register-based. 
Descriptor-based DMA transfers require a set of parameters stored within 
memory to initiate a DMA sequence. This sort of transfer allows the 
chaining together of multiple DMA sequences. In descriptor-based DMA 
operations, a DMA channel can be programmed to automatically set up 
and start another DMA transfer after the current sequence completes. 
Register-based DMA allows the processor to directly program DMA con-
trol registers to initiate a DMA transfer. On completion, the control 
registers may be automatically updated with their original setup values for 
continuous transfer, if needed.
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DMA and Memory DMA Registers
For convenience, discussions in this chapter use generic (non-peripheral 
specific) DMA and Memory DMA register names.

• Generic DMA register names are listed in Table 9-1.

• Generic Memory DMA register names are listed in Table 9-3 on 
page 9-7.

DMA registers fall into three categories: 

• Parameter registers, such as DMAx_CONFIG and DMAx_X_COUNT

Only Parameter registers can be loaded directly from descriptor ele-
ments; descriptor elements are listed in Table 9-2 on page 9-6.

 The letter x in DMAx represents a specific DMA-capable periph-
eral. For example, for DMA with default channel mapping, 
DMA6_CONFIG represents the DMA_CONFIG register for the UART RX 
peripheral. For default DMA channel mappings, see Table 9-16 on 
page 9-30.

• Current registers, such as DMAx_CURR_ADDR and DMAx_CURR_X_COUNT

• Control/Status registers, such as DMAx_IRQ_STATUS and 
DMAx_PERIPHERAL_MAP

Table 9-1 lists the generic names of the DMA registers. For each register, 
the table also shows the MMR offset, a brief description of the register, 
the register category, and reset value.
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Table 9-1. Generic Names of the DMA Memory-Mapped 
Registers

MMR 
Offset

Generic MMR Name MMR Description Register 
Category

0x00 NEXT_DESC_PTR Link pointer to next descriptor Parameter

0x04 START_ADDR Start address of current buffer Parameter

0x08 DMA_CONFIG DMA Configuration register, including 
enable bit

Parameter

0x0C Reserved Reserved

0x10 X_COUNT Inner loop count Parameter

0x14 X_MODIFY Inner loop address increment, in bytes Parameter

0x18 Y_COUNT Outer loop count (2D only) Parameter

0x1C Y_MODIFY Outer loop address increment, in bytes Parameter

0x20 CURR_DESC_PTR Current Descriptor Pointer Current

0x24 CURR_ADDR Current DMA Address Current

0x28 IRQ_STATUS Interrupt Status register:
Contains Completion and DMA Error 
Interrupt status and channel state 
(Run/Fetch/Paused)

Control/
Status

0x2C PERIPHERAL_MAP Peripheral to DMA Channel Mapping:
Contains a 4-bit value specifying the 
peripheral to associate with this DMA 
channel (Read-only for MDMA channels)

Control/
Status

0x30 CURR_X_COUNT Current count (1D) or intra-row X count 
(2D); counts down from X_COUNT

Current

0x34 Reserved Reserved

0x38 CURR_Y_COUNT Current row count (2D only); counts 
down from Y_COUNT

Current

0x3C Reserved Reserved
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All DMA registers can be accessed as 16-bit entities. However, the follow-
ing registers may also be accessed as 32-bit registers:

• NEXT_DESC_PTR 

• START_ADDR 

• CURR_DESC_PTR 

• CURR_ADDR 

 When these four registers are accessed as 16-bit entities, only the 
lower 16 bits can be accessed.

Naming Conventions for DMA MMRs
Because confusion might arise between descriptor element names and 
generic DMA register names, this chapter uses the naming conventions in 
Table 9-2, where: 

• The left column lists the generic name of the MMR, which is used 
when discussing the general operation of the DMA engine.

 Note the generic names in the left column are not actually mapped 
to resources in the processor.

• The middle column lists the specific MMR name. Only specific 
MMR names are mapped to processor resources.

In DMAx, the letter x represents the number of the DMA channel. 
For instance, DMA3_IRQ_STATUS is the IRQ_STATUS MMR for DMA 
Channel #3.
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The channel number can be assigned by default or can be pro-
grammed. For the DMA channel numbers and the default 
peripheral mapping, see Table 9-16 on page 9-30.

• The last column lists the macro assigned to each descriptor element 
in memory.

The macro name in the last column serves only to clarify the dis-
cussion of how the DMA engine operates.

Table 9-2. Naming Conventions: DMA MMRs and Descriptor 
Elements 

Generic MMR Name Specific MMR Name 
(x = DMA Channel Number)

Name of Corresponding 
Descriptor Element in 
Memory

DMA_CONFIG DMAx_CONFIG DMACFG

NEXT_DESC_PTR DMAx_NEXT_DESC_PTR NDPH (upper 16 bits), 
NDPL (lower 16 bits)

START_ADDR DMAx_START_ADDR SAH (upper 16 bits), 
SAL (lower 16 bits)

X_COUNT DMAx_X_COUNT XCNT

Y_COUNT DMAx_Y_COUNT YCNT

X_MODIFY DMAx_X_MODIFY XMOD

Y_MODIFY DMAx_Y_MODIFY YMOD

CURR_DESC_PTR DMAx_CURR_DESC_PTR N/A

CURR_ADDR DMAx_CURR_ADDR N/A

CURR_X_COUNT DMAx_CURR_X_COUNT N/A

CURR_Y_COUNT DMAx_CURR_Y_COUNT N/A

IRQ_STATUS DMAx_IRQ_STATUS N/A

PERIPHERAL_MAP DMAx_PERIPHERAL_MAP N/A
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Naming Conventions for Memory DMA Registers
The names of Memory DMA registers differ somewhat from the names of 
other DMA registers. Memory DMA streams cannot be reassigned to dif-
ferent channels, whereas the peripherals associated with DMA can be 
mapped to any DMA channel between 0 and 7.

Table 9-3 shows the naming conventions for Memory DMA registers. In 
each name, the letters yy have four possible values:

• S0, Memory DMA Source Stream 0

• D0, Memory DMA Destination Stream 0

• S1, Memory DMA Source Stream 1

• D1, Memory DMA Destination Stream 1

Table 9-3. Naming Conventions for Memory DMA Registers

Generic MMR Name Memory DMA MMR Name
(yy = S0, S1, D0, or D1)

Name of Corresponding 
Descriptor Element in 
Memory

DMA_CONFIG MDMA_yy_CONFIG DMACFG

NEXT_DESC_PTR MDMA_yy_NEXT_DESC_PTR NDPH (upper 16 bits), 
NDPL (lower 16 bits)

START_ADDR MDMA_yy_START_ADDR SAH (upper 16 bits), 
SAL (lower 16 bits)

X_COUNT MDMA_yy_X_COUNT XCNT

Y_COUNT MDMA_yy_Y_COUNT YCNT

X_MODIFY MDMA_yy_X_MODIFY XMOD

Y_MODIFY MDMA_yy_Y_MODIFY YMOD

CURR_DESC_PTR MDMA_yy_CURR_DESC_PTR N/A

CURR_ADDR MDMA_yy_CURR_ADDR N/A

CURR_X_COUNT MDMA_yy_CURR_X_COUNT N/A
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DMAx_NEXT_DESC_PTR/MDMA_yy_NEXT_DESC_PTR 
Register

The Next Descriptor Pointer register 
(DMAx_NEXT_DESC_PTR/MDMA_yy_NEXT_DESC_PTR) specifies where to look for 
the start of the next descriptor block when the DMA activity specified by 
the current descriptor block finishes. This register is used in small and 
large descriptor list modes. At the start of a descriptor fetch in either of 
these modes, the 32-bit NEXT_DESC_PTR register is copied into the 
CURR_DESC_PTR register. Then, during the descriptor fetch, the 
CURR_DESC_PTR register increments after each element of the descriptor is 
read in. 

 In small and large descriptor list modes, the NEXT_DESC_PTR regis-
ter, and not the CURR_DESC_PTR register, must be programmed 
directly via MMR access before starting DMA operation.

In Descriptor Array mode, the Next Descriptor Pointer register is disre-
garded, and fetching is controlled only by the CURR_DESC_PTR register.

CURR_Y_COUNT MDMA_yy_CURR_Y_COUNT N/A

IRQ_STATUS MDMA_yy_IRQ_STATUS N/A

PERIPHERAL_MAP MDMA_yy_PERIPHERAL_MAP N/A

Table 9-3. Naming Conventions for Memory DMA Registers (Cont’d)

Generic MMR Name Memory DMA MMR Name
(yy = S0, S1, D0, or D1)

Name of Corresponding 
Descriptor Element in 
Memory
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Figure 9-1. Next Descriptor Pointer Register

Table 9-4. Next Descriptor Pointer Register Memory-Mapped Addresses 

Register Name Memory-Mapped Address

DMA0_NEXT_DESC_PTR 0xFFC0 0C00

DMA1_NEXT_DESC_PTR 0xFFC0 0C40

DMA2_NEXT_DESC_PTR 0xFFC0 0C80

DMA3_NEXT_DESC_PTR 0xFFC0 0CC0

DMA4_NEXT_DESC_PTR 0xFFC0 0D00

DMA5_NEXT_DESC_PTR 0xFFC0 0D40

DMA6_NEXT_DESC_PTR 0xFFC0 0D80

DMA7_NEXT_DESC_PTR 0xFFC0 0DC0

MDMA_D0_NEXT_DESC_PTR 0xFFC0 0E00

MDMA_S0_NEXT_DESC_PTR 0xFFC0 0E40

MDMA_D1_NEXT_DESC_PTR 0xFFC0 0E80

MDMA_S1_NEXT_DESC_PTR 0xFFC0 0EC0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

X

Next Descriptor 
Pointer[31:16]

X X X X X X X X X X X X X X X

Next Descriptor Pointer Register (DMAx_NEXT_DESC_PTR/MDMA_yy_NEXT_DESC_PTR)
R/W prior to enabling channel; RO after enabling channel

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X

Next Descriptor 
Pointer[15:0]

X X X X X X X X X X X X X X X

For Memory- 
mapped 
addresses, see 
Table 9-4.

Reset = Undefined



DMA and Memory DMA Registers

9-10 ADSP-BF533 Blackfin Processor Hardware Reference
 

DMAx_START_ADDR/MDMA_yy_START_ADDR 
Register

The Start Address register (DMAx_START_ADDR/MDMA_yy_START_ADDR), 
shown in Figure 9-2, contains the start address of the data buffer currently 
targeted for DMA.

Figure 9-2. Start Address Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

X

DMA Start 
Address[31:16]

X X X X X X X X X X X X X X X

Start Address Register (DMAx_START_ADDR/ MDMA_yy_START_ADDR)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X

DMA Start 
Address[15:0]

X X X X X X X X X X X X X X X

Reset = Undefined

R/W prior to enabling channel; RO after enabling channel

For Memory- 
mapped 
addresses, see 
Table 9-5.
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Table 9-5. Start Address Register Memory-Mapped Addresses

Register Name Memory-Mapped Address

DMA0_START_ADDR 0xFFC0 0C04

DMA1_START_ADDR 0xFFC0 0C44

DMA2_START_ADDR 0xFFC0 0C84

DMA3_START_ADDR 0xFFC0 0CC4

DMA4_START_ADDR 0xFFC0 0D04

DMA5_START_ADDR 0xFFC0 0D44

DMA6_START_ADDR 0xFFC0 0D84

DMA7_START_ADDR 0xFFC0 0DC4

MDMA_D0_START_ADDR 0xFFC0 0E04

MDMA_S0_START_ADDR 0xFFC0 0E44

MDMA_D1_START_ADDR 0xFFC0 0E84

MDMA_S1_START_ADDR 0xFFC0 0EC4
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DMAx_CONFIG/MDMA_yy_CONFIG Register
The DMA Configuration register (DMAx_CONFIG/MDMA_yy_CONFIG), shown 
in Figure 9-3, is used to set up DMA parameters and operating modes. 
Note that writing the DMA_CONFIG register while DMA is already running 
will cause a DMA error unless writing with the DMAEN bit set to 0.

Figure 9-3. Configuration Register

0 00

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0

DI_EN (Data Interrupt Enable)
0 - Do not allow completion of

work unit to generate an
interrupt

1 - Allow completion of work unit
to generate a data interrupt

0x0 - Stop
0x1 - Autobuffer mode
0x4 - Descriptor array
0x6 - Descriptor list (small model)
0x7 - Descriptor list (large model)

Configuration Register (DMAx_CONFIG/MDMA_yy_CONFIG)

NDSIZE[3:0] (Flex Descriptor Size)
Size of next descriptor
0000 - Required if in Stop or Autobuffer mode
0001 - 1001 - Descriptor size
1010 - 1111 - Reserved

FLOW[2:0] (Next 
Operation)

DMAEN (DMA 
Channel Enable)
0 - Disable DMA channel
1 - Enable DMA channel
WNR (DMA Direction)
0 - DMA is a memory read

(source) operation
1 - DMA is a memory write

(destination) operation

WDSIZE [1:0](Transfer Word 
Size)
00 - 8-bit transfers
01 - 16-bit transfers
10 - 32-bit transfers
11 - Reserved
DMA2D (DMA Mode)
0 - Linear (One-dimensional)
1 - Two-dimensional (2D)

Reset = 0x0000

DI_SEL (Data Interrupt Timing Select)
Applies only when DMA2D = 1
0 - Interrupt after completing

whole buffer (outer loop)
1 - Interrupt after completing

each row (inner loop)

R/W prior to enabling channel; RO after enabling channel

RESTART (DMA Buffer Clear)
0 - Retain DMA FIFO data

between work units
1 - Discard DMA FIFO before

beginning work unit

For Memory- 
mapped 
addresses, 
see Table 9-6.
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The fields of the DMAx_CONFIG register are used to set up DMA parameters 
and operating modes.

• FLOW[2:0] (Next Operation). This field specifies the type of DMA 
transfer to follow the present one. The flow options are:

• 0x0 - Stop. When the current work unit completes, the 
DMA channel stops automatically, after signaling an inter-
rupt (if selected). The DMA_RUN status bit in the 
DMAx_IRQ_STATUS register changes from 1 to 0, while the 
DMAEN bit in the DMAx_CONFIG register is unchanged. In this 
state, the channel is paused. Peripheral interrupts are still 
filtered out by the DMA unit. The channel may be restarted 
simply by another write to the DMAx_CONFIG register specify-
ing the next work unit, in which the DMAEN bit is set to 1.

Table 9-6. Configuration Register Memory-Mapped Addresses 

Register Name Memory-Mapped Address

DMA0_CONFIG 0xFFC0 0C08

DMA1_CONFIG 0xFFC0 0C48

DMA2_CONFIG 0xFFC0 0C88

DMA3_CONFIG 0xFFC0 0CC8

DMA4_CONFIG 0xFFC0 0D08

DMA5_CONFIG 0xFFC0 0D48

DMA6_CONFIG 0xFFC0 0D88

DMA7_CONFIG 0xFFC0 0DC8

MDMA_D0_CONFIG 0xFFC0 0E08

MDMA_S0_CONFIG 0xFFC0 0E48

MDMA_D1_CONFIG 0xFFC0 0E88

MDMA_S1_CONFIG 0xFFC0 0EC8
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• 0x1 - Autobuffer Mode. In this mode, no descriptors in 
memory are used. Instead, DMA is performed in a continu-
ous circular buffer fashion based on user-programmed 
DMAx MMR settings. Upon completion of the work unit, 
the Parameter registers are reloaded into the Current regis-
ters, and DMA resumes immediately with zero overhead. 
Autobuffer mode is stopped by a user write of 0 to the DMAEN 
bit in the DMAx_CONFIG register.

• 0x4 - Descriptor Array Mode. This mode fetches a descrip-
tor from memory that does not include the NDPH or NDPL 
elements. Because the descriptor does not contain a Next 
Descriptor Pointer entry, the DMA engine defaults to using 
the CURR_DESC_PTR register to step through descriptors, thus 
allowing a group of descriptors to follow one another in 
memory like an array.

• 0x6 - Descriptor List (Small Model) Mode. This mode 
fetches a descriptor from memory that includes NDPL, but 
not NDPH. Therefore, the high 16 bits of the Next Descriptor 
Pointer field are taken from the upper 16 bits of the 
NEXT_DESC_PTR register, thus confining all descriptors to a 
specific 64K page in memory.

• 0x7 - Descriptor List (Large Model) Mode. This mode 
fetches a descriptor from memory that includes NDPH and 
NDPL, thus allowing maximum flexibility in locating descrip-
tors in memory.

• NDSIZE[3:0] (Flex Descriptor Size). This field specifies the num-
ber of descriptor elements in memory to load. This field must be 0 
if in Stop or Autobuffer mode. If NDSIZE and FLOW specify a 
descriptor that extends beyond YMOD, a DMA error results.

• DI_EN (Data Interrupt Enable). This bit specifies whether to allow 
completion of a work unit to generate a data interrupt.
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• DI_SEL (Data Interrupt Timing Select). This bit specifies the tim-
ing of a data interrupt—after completing the whole buffer or after 
completing each row of the inner loop. This bit is used only in 2D 
DMA operation.

• RESTART (DMA Buffer Clear). This bit specifies whether receive 
data held in the channel’s data FIFO should be preserved 
(RESTART = 0) or discarded (RESTART = 1) before beginning the 
next work unit. Receive data is automatically discarded when the 
DMAEN bit changes from 0 to 1, typically when a channel is first 
enabled. Received FIFO data should usually be retained between 
work units if the work units make up a continuous datastream. If, 
however, a new work unit starts a new datastream, the RESTART bit 
should be set to 1 to clear out any previously received data.

 The RESTART bit applies only to memory write DMA channels. It is 
reserved in the cases of memory read DMA channels and MDMA 
channels, and must be 0 in those cases.

 In memory write DMA channels, the RESTART bit only affects the 
first work unit initiated by a write to the DMAx_CONFIG register. The 
RESTART bit has no effect if it is set in DMACFG elements of DMA 
descriptors.

• DMA2D (DMA Mode). This bit specifies whether DMA mode 
involves only X_COUNT and X_MODIFY (one-dimensional DMA) or 
also involves Y_COUNT and Y_MODIFY (two-dimensional DMA).

• WDSIZE[1:0] (Transfer Word Size). The DMA engine supports 
transfers of 8-, 16-, or 32-bit items. Each request/grant results in a 
single memory access (although two cycles are required to transfer 
32-bit data through a 16-bit memory port or through the 16-bit 
DMA Access bus). The DMA Address Pointer registers’ increment 
sizes (strides) must be a multiple of the transfer unit size—1 for 
8-bit, 2 for 16-bit, 4 for 32-bit.
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• WNR (DMA Direction). This bit specifies DMA direction—memory 
read (0) or memory write (1).

• DMAEN (DMA Channel Enable). This bit specifies whether to enable 
a given DMA channel.

 When a peripheral DMA channel is enabled, interrupts from the 
peripheral denote DMA requests. When a channel is disabled, the 
DMA unit ignores the peripheral interrupt and passes it directly to 
the interrupt controller. To avoid unexpected results, take care to 
enable the DMA channel before enabling the peripheral, and to 
disable the peripheral before disabling the DMA channel.

DMAx_X_COUNT/MDMA_yy_X_COUNT Register
For 2D DMA, the Inner Loop Count register 
(DMAx_X_COUNT/MDMA_yy_X_COUNT), shown in Figure 9-4, contains the 
inner loop count. For 1D DMA, it specifies the number of elements to 
read in. For details, see “Two-Dimensional DMA” on page 9-45. A value 
of 0 in X_COUNT corresponds to 65,536 elements.

Figure 9-4. Inner Loop Count Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X

X_COUNT[15:0] (Inner 
Loop Count)

X X X X X X X X X X X X X X X

Inner Loop Count Register (DMAx_X_COUNT/MDMA_yy_X_COUNT)
R/W prior to enabling channel; RO after enabling channel

Reset = Undefined

The number of elements to 
read in (1D); the number of 
rows in the inner loop (2D)

For Memory- 
mapped 
addresses, see 
Table 9-7.
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DMAx_X_MODIFY/MDMA_yy_X_MODIFY Register
The Inner Loop Address Increment register 
(DMAx_X_MODIFY/MDMA_yy_X_MODIFY) contains a signed, two’s-complement 
byte-address increment. In 1D DMA, this increment is the stride that is 
applied after transferring each element.

 Note X_MODIFY is specified in bytes, regardless of the DMA transfer 
size.

In 2D DMA, this increment is applied after transferring each element in 
the inner loop, up to but not including the last element in each inner 
loop. After the last element in each inner loop, the Y_MODIFY register is 
applied instead, except on the very last transfer of each work unit. The 
X_MODIFY register is always applied on the last transfer of a work unit.

Table 9-7. Inner Loop Count Register Memory-Mapped 
Addresses

Register Name Memory-Mapped Address

DMA0_X_COUNT 0xFFC0 0C10

DMA1_X_COUNT 0xFFC0 0C50

DMA2_X_COUNT 0xFFC0 0C90

DMA3_X_COUNT 0xFFC0 0CD0

DMA4_X_COUNT 0xFFC0 0D10

DMA5_X_COUNT 0xFFC0 0D50

DMA6_X_COUNT 0xFFC0 0D90

DMA7_X_COUNT 0xFFC0 0DD0

MDMA_D0_X_COUNT 0xFFC0 0E10

MDMA_S0_X_COUNT 0xFFC0 0E50

MDMA_D1_X_COUNT 0xFFC0 0E90

MDMA_S1_X_COUNT 0xFFC0 0ED0
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The X_MODIFY field may be set to 0. In this case, DMA is performed 
repeatedly to or from the same address. This is useful, for example, in 
transferring data between a data register and an external memory-mapped 
peripheral.

Figure 9-5. Inner Loop Address Increment Register

Table 9-8. Inner Loop Address Increment Register Memory-Mapped 
Addresses 

Register Name Memory-Mapped Address

DMA0_X_MODIFY 0xFFC0 0C14

DMA1_X_MODIFY 0xFFC0 0C54

DMA2_X_MODIFY 0xFFC0 0C94

DMA3_X_MODIFY 0xFFC0 0CD4

DMA4_X_MODIFY 0xFFC0 0D14

DMA5_X_MODIFY 0xFFC0 0D54

DMA6_X_MODIFY 0xFFC0 0D94

DMA7_X_MODIFY 0xFFC0 0DD4

MDMA_D0_X_MODIFY 0xFFC0 0E14

MDMA_S0_X_MODIFY 0xFFC0 0E54

MDMA_D1_X_MODIFY 0xFFC0 0E94

MDMA_S1_X_MODIFY 0xFFC0 0ED4

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X

X_MODIFY[15:0] (Inner 
Loop Address Increment)

X X X X X X X X X X X X X X X

Inner Loop Address Increment Register (DMAx_X_MODIFY/MDMA_yy_X_MODIFY)
R/W prior to enabling channel; RO after enabling channel

Reset = Undefined

Stride (in bytes) to take after 
each decrement of 
CURR_X_COUNT

For Memory- 
mapped 
addresses, see 
Table 9-8.
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DMAx_Y_COUNT/MDMA_yy_Y_COUNT Register
For 2D DMA, the Outer Loop Count register 
(DMAx_Y_COUNT/MDMA_yy_Y_COUNT) contains the outer loop count. It is not 
used in 1D DMA mode. This register contains the number of rows in the 
outer loop of a 2D DMA sequence. For details, see “Two-Dimensional 
DMA” on page 9-45.

Figure 9-6. Outer Loop Count Register

Table 9-9. Outer Loop Count Register Memory-Mapped 
Addresses

Register Name Memory-Mapped Address

DMA0_Y_COUNT 0xFFC0 0C18

DMA1_Y_COUNT 0xFFC0 0C58

DMA2_Y_COUNT 0xFFC0 0C98

DMA3_Y_COUNT 0xFFC0 0CD8

DMA4_Y_COUNT 0xFFC0 0D18

DMA5_Y_COUNT 0xFFC0 0D58

DMA6_Y_COUNT 0xFFC0 0D98

DMA7_Y_COUNT 0xFFC0 0DD8

MDMA_D0_Y_COUNT 0xFFC0 0E18

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X

Y_COUNT[15:0] 
(Outer Loop Count)

X X X X X X X X X X X X X X X

Outer Loop Count Register (DMAx_Y_COUNT/MDMA_yy_Y_COUNT)
R/W prior to enabling channel; RO after enabling channel

Reset = Undefined

The number of rows in
the outer loop of a 2D
DMA sequence

For Memory- 
mapped 
addresses, see 
Table 9-9.
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DMAx_Y_MODIFY/MDMA_yy_Y_MODIFY Register
The Outer Loop Address Increment register 
(DMAx_Y_MODIFY/MDMA_yy_Y_MODIFY) contains a signed, two’s-complement 
value. This byte-address increment is applied after each decrement of the 
CURR_Y_COUNT register except for the last item in the 2D array where the 
CURR_Y_COUNT also expires. The value is the offset between the last word of 
one “row” and the first word of the next “row.” For details, see 
“Two-Dimensional DMA” on page 9-45.

 Note Y_MODIFY is specified in bytes, regardless of the DMA transfer 
size.

MDMA_S0_Y_COUNT 0xFFC0 0E58

MDMA_D1_Y_COUNT 0xFFC0 0E98

MDMA_S1_Y_COUNT 0xFFC0 0ED8

Figure 9-7. Outer Loop Address Increment Register

Table 9-9. Outer Loop Count Register Memory-Mapped 
Addresses (Cont’d)

Register Name Memory-Mapped Address

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X

Y_MODIFY[15:0]
(Outer Loop Address 
Increment)

X X X X X X X X X X X X X X X

Outer Loop Address Increment Register (DMAx_Y_MODIFY/ MDMA_yy_Y_MODIFY)
R/W prior to enabling channel; RO after enabling channel

Reset = Undefined

Stride to take after each
decrement of 
CURR_Y_COUNT

For Memory- 
mapped 
addresses, see 
Table 9-10.
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DMAx_CURR_DESC_PTR/MDMA_yy_CURR_DESC_PTR 
Register

The Current Descriptor Pointer register 
(DMAx_CURR_DESC_PTR/MDMA_yy_CURR_DESC_PTR) contains the memory 
address for the next descriptor element to be loaded. For FLOW mode set-
tings that involve descriptors (FLOW = 4, 6, or 7), this register is used to 
read descriptor elements into appropriate MMRs before a DMA work 
block begins. For Descriptor List modes (FLOW = 6 or 7), this register is 
initialized from the NEXT_DESC_PTR register before loading each descriptor. 
Then, the address in the CURR_DESC_PTR register increments as each 
descriptor element is read in. 

When the entire descriptor has been read, the CURR_DESC_PTR register con-
tains this value:

Table 9-10. Outer Loop Address Increment Register Memory-Mapped 
Addresses 

Register Name Memory-Mapped Address

DMA0_Y_MODIFY 0xFFC0 0C1C

DMA1_Y_MODIFY 0xFFC0 0C5C

DMA2_Y_MODIFY 0xFFC0 0C9C

DMA3_Y_MODIFY 0xFFC0 0CDC

DMA4_Y_MODIFY 0xFFC0 0D1C

DMA5_Y_MODIFY 0xFFC0 0D5C

DMA6_Y_MODIFY 0xFFC0 0D9C

DMA7_Y_MODIFY 0xFFC0 0DDC

MDMA_D0_Y_MODIFY 0xFFC0 0E1C

MDMA_S0_Y_MODIFY 0xFFC0 0E5C

MDMA_D1_Y_MODIFY 0xFFC0 0E9C

MDMA_S1_Y_MODIFY 0xFFC0 0EDC
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Descriptor Start Address + Descriptor Size (# of elements)

 For Descriptor Array mode (FLOW = 4), this register, and not the 
NEXT_DESC_PTR register, must be programmed by MMR access 
before starting DMA operation.

Figure 9-8. Current Descriptor Pointer Register

Table 9-11. Current Descriptor Pointer Register Memory-Mapped 
Addresses

Register Name Memory-Mapped Address

DMA0_CURR_DESC_PTR 0xFFC0 0C20

DMA1_CURR_DESC_PTR 0xFFC0 0C60

DMA2_CURR_DESC_PTR 0xFFC0 0CA0

DMA3_CURR_DESC_PTR 0xFFC0 0CE0

DMA4_CURR_DESC_PTR 0xFFC0 0D20

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

X

Current Descriptor 
Pointer[31:16]

X X X X X X X X X X X X X X X

Current Descriptor Pointer Register (DMAx_CURR_DESC_PTR/
MDMA_yy_CURR_DESC_PTR)
R/W prior to enabling channel; RO after enabling channel

Reset = Undefined

Upper 16 bits of
memory address of
the next descriptor
element

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

Current Descriptor 
Pointer[15:0]

Lower 16 bits of
memory address of
the next descriptor
element

For Memory- 
mapped 
addresses, see 
Table 9-11.
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DMAx_CURR_ADDR/MDMA_yy_CURR_ADDR 
Register

The Current Address register (DMAx_CURR_ADDR/MDMA_yy_CURR_ADDR), 
shown in Figure 9-9, contains the present DMA transfer address for a 
given DMA session. At the start of a DMA session, the CURR_ADDR register 
is loaded from the START_ADDR register, and it is incremented as each trans-
fer occurs. The Current Address register contains 32 bits.

DMA5_CURR_DESC_PTR 0xFFC0 0D60

DMA6_CURR_DESC_PTR 0xFFC0 0DA0

DMA7_CURR_DESC_PTR 0xFFC0 0DE0

MDMA_D0_CURR_DESC_PTR 0xFFC0 0E20

MDMA_S0_CURR_DESC_PTR 0xFFC0 0E60

MDMA_D1_CURR_DESC_PTR 0xFFC0 0EA0

MDMA_S1_CURR_DESC_PTR 0xFFC0 0EE0

Table 9-11. Current Descriptor Pointer Register Memory-Mapped 
Addresses (Cont’d)

Register Name Memory-Mapped Address
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Figure 9-9. Current Address Register

Table 9-12. Current Address Register Memory-Mapped Addresses 

Register Name Memory-Mapped Address

DMA0_CURR_ADDR 0xFFC0 0C24

DMA1_CURR_ADDR 0xFFC0 0C64

DMA2_CURR_ADDR 0xFFC0 0CA4

DMA3_CURR_ADDR 0xFFC0 0CE4

DMA4_CURR_ADDR 0xFFC0 0D24

DMA5_CURR_ADDR 0xFFC0 0D64

DMA6_CURR_ADDR 0xFFC0 0DA4

DMA7_CURR_ADDR 0xFFC0 0DE4

MDMA_D0_CURR_ADDR 0xFFC0 0E24

MDMA_S0_CURR_ADDR 0xFFC0 0E64

MDMA_D1_CURR_ADDR 0xFFC0 0EA4

MDMA_S1_CURR_ADDR 0xFFC0 0EE4

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

X

Current Address[31:16]

X X X X X X X X X X X X X X X

Current Address Register (DMAx_CURR_ADDR/MDMA_yy_CURR_ADDR)
R/W prior to enabling channel; RO after enabling channel

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X

Current Address[15:0]

X X X X X X X X X X X X X X X

Reset = Undefined

Upper 16 bits of present
DMA transfer address for 
a given DMA session

Lower 16 bits of present
DMA transfer address for 
a given DMA session

For Memory- 
mapped 
addresses, see 
Table 9-12.
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DMAx_CURR_X_COUNT/MDMA_yy_CURR_X_COUNT 
Register

The Current Inner Loop Count register 
(DMAx_CURR_X_COUNT/MDMA_yy_CURR_X_COUNT) is loaded by the X_COUNT 
register at the beginning of each DMA session (for 1D DMA) and also 
after the end of DMA for each row (for 2D DMA). Otherwise it is decre-
mented each time an element is transferred. Expiration of the count in this 
register signifies that DMA is complete. In 2D DMA, the CURR_X_COUNT 
register value is 0 only when the entire transfer is complete. Between rows 
it is equal to the value of the X_COUNT register.

Figure 9-10. Current Inner Loop Count Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X

CURR_X_COUNT[15:0] 
(Current Inner Loop
Count)

X X X X X X X X X X X X X X X

Current Inner Loop Count Register (DMAx_CURR_X_COUNT/ 

R/W prior to enabling channel; RO after enabling channel

Reset = Undefined

Loaded by X_COUNT
at the beginning of each
DMA session (1D DMA),
or at the beginning of
each row (2D DMA)

For Memory- 
mapped 
addresses, see 
Table 9-13.
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DMAx_CURR_Y_COUNT/MDMA_yy_CURR_Y_COUNT 
Register

The Current Outer Loop Count register 
(DMAx_CURR_Y_COUNT/MDMA_yy_CURR_Y_COUNT) is loaded by the Y_COUNT 
register at the beginning of each 2D DMA session. It is not used for 1D 
DMA. This register is decremented each time the CURR_X_COUNT register 
expires during 2D DMA operation (1 to X_COUNT or 1 to 0 transition), sig-
nifying completion of an entire row transfer. After a 2D DMA session is 
complete, CURR_Y_COUNT = 1 and CURR_X_COUNT = 0.

Table 9-13. Current Inner Loop Count Register Memory-Mapped 
Addresses

Register Name Memory-Mapped Address

DMA0_CURR_X_COUNT 0xFFC0 0C30

DMA1_CURR_X_COUNT 0xFFC0 0C70

DMA2_CURR_X_COUNT 0xFFC0 0CB0

DMA3_CURR_X_COUNT 0xFFC0 0CF0

DMA4_CURR_X_COUNT 0xFFC0 0D30

DMA5_CURR_X_COUNT 0xFFC0 0D70

DMA6_CURR_X_COUNT 0xFFC0 0DB0

DMA7_CURR_X_COUNT 0xFFC0 0DF0

MDMA_D0_CURR_X_COUNT 0xFFC0 0E30

MDMA_S0_CURR_X_COUNT 0xFFC0 0E70

MDMA_D1_CURR_X_COUNT 0xFFC0 0EB0

MDMA_S1_CURR_X_COUNT 0xFFC0 0EF0
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Figure 9-11. Current Outer Loop Count Register

Table 9-14. Current Outer Loop Count Register Memory-Mapped 
Addresses 

Register Name Memory-Mapped Address

DMA0_CURR_Y_COUNT 0xFFC0 0C38

DMA1_CURR_Y_COUNT 0xFFC0 0C78

DMA2_CURR_Y_COUNT 0xFFC0 0CB8

DMA3_CURR_Y_COUNT 0xFFC0 0CF8

DMA4_CURR_Y_COUNT 0xFFC0 0D38

DMA5_CURR_Y_COUNT 0xFFC0 0D78

DMA6_CURR_Y_COUNT 0xFFC0 0DB8

DMA7_CURR_Y_COUNT 0xFFC0 0DF8

MDMA_D0_CURR_Y_COUNT 0xFFC0 0E38

MDMA_S0_CURR_Y_COUNT 0xFFC0 0E78

MDMA_D1_CURR_Y_COUNT 0xFFC0 0EB8

MDMA_S1_CURR_Y_COUNT 0xFFC0 0EF8

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X

CURR_Y_COUNT[15:0]
(Current Outer Loop 
Count)

X X X X X X X X X X X X X X X

Current Outer Loop Count Register (DMAx_CURR_Y_COUNT/
MDMA_yy_CURR_Y_COUNT)
R/W prior to enabling channel; RO after enabling channel

Reset = Undefined

Loaded by Y_COUNT
at the beginning of each
2D DMA session; not 
used for 1D DMA

For Memory- 
mapped 
addresses, see 
Table 9-14.
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DMAx_PERIPHERAL_MAP/MDMA_yy_PERIPHERAL_M
AP Register

Each DMA channel’s Peripheral Map register 
(DMAx_PERIPHERAL_MAP/MDMA_yy_PERIPHERAL_MAP) contains bits that:

• Map the channel to a specific peripheral.

• Identify whether the channel is a Peripheral DMA channel or a 
Memory DMA channel.

 Note a 1:1 mapping should exist between DMA channels and 
peripherals. The user is responsible for ensuring that multiple 
DMA channels are not mapped to the same peripheral and that 
multiple peripherals are not mapped to the same DMA port. If 
multiple channels are mapped to the same peripheral, only one 
channel is connected (the lowest priority channel). If a nonexistent 
peripheral (for example, 0xF in the PMAP field) is mapped to a chan-
nel, that channel is disabled—DMA requests are ignored, and no 
DMA grants are issued. The DMA requests are also not forwarded 
from the peripheral to the interrupt controller.

Follow these steps to swap the DMA channel priorities of two channels. 
Assume that channels 6 and 7 are involved.

1. Make sure DMA is disabled on channels 6 and 7.

2. Write DMA6_PERIPHERAL_MAP with 0x7000 and 
DMA7_PERIPHERAL_MAP with 0x6000.

3. Enable DMA on channels 6 and/or 7.
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Figure 9-12. Peripheral Map Register

Table 9-15. Peripheral Map Register Memory-Mapped Addresses 

Register Name Memory-Mapped Address

DMA0_PERIPHERAL_MAP 0xFFC0 0C2C

DMA1_PERIPHERAL_MAP 0xFFC0 0C6C

DMA2_PERIPHERAL_MAP 0xFFC0 0CAC

DMA3_PERIPHERAL_MAP 0xFFC0 0CEC

DMA4_PERIPHERAL_MAP 0xFFC0 0D2C

DMA5_PERIPHERAL_MAP 0xFFC0 0D6C

DMA6_PERIPHERAL_MAP 0xFFC0 0DAC

DMA7_PERIPHERAL_MAP 0xFFC0 0DEC

MDMA_D0_PERIPHERAL_MAP 0xFFC0 0E2C

MDMA_S0_PERIPHERAL_MAP 0xFFC0 0E6C

MDMA_D1_PERIPHERAL_MAP 0xFFC0 0EAC

MDMA_S1_PERIPHERAL_MAP 0xFFC0 0EEC

X XXX

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X X X X X X X

0x0 - PPI
0x1 - SPORT0 RX
0x2 - SPORT0 TX
0x3 - SPORT1 RX
0x4 - SPORT1 TX
0x5 - SPI
0x6 - UART RX
0x7 - UART TX

Peripheral Map Register (DMAx_PERIPHERAL_MAP/MDMA_yy_PERIPHERAL_MAP)

PMAP[3:0] (Peripheral 
Mapped to This 
Channel)

CTYPE (DMA Channel Type)              
- RO
0 - Peripheral DMA
1 - Memory DMA

R/W prior to enabling channel; RO after enabling channel

For Memory- 
mapped 
addresses, see 
Table 9-15.

Reset: See Table
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Table 9-16 lists the binary peripheral map settings for each DMA-capable 
peripheral.

DMAx_IRQ_STATUS/MDMA_yy_IRQ_STATUS Register
The Interrupt Status register (DMAx_IRQ_STATUS/MDMA_yy_IRQ_STATUS), 
shown in Figure 9-13, contains bits that record whether the DMA 
channel:

• Is enabled and operating, enabled but stopped, or disabled.

• Is fetching data or a DMA descriptor.

Table 9-16. Peripheral Mapping 

DMA 
Channel

Default Peripheral Mapping Default PERIPHERAL_MAP 
Setting (Binary)

Comments

0 (highest 
priority)

PPI b#0000 0000 0000 0000

1 SPORT0 RX b#0001 0000 0000 0000

2 SPORT0 TX b#0010 0000 0000 0000

3 SPORT1 RX b#0011 0000 0000 0000

4 SPORT1 TX b#0100 0000 0000 0000

5 SPI b#0101 0000 0000 0000

6 UART RX b#0110 0000 0000 0000

7 UART TX b#0111 0000 0000 0000

8 Mem DMA Stream 0 Desti-
nation

b#0000 0000 0100 0000 Not reassignable

9 Mem DMA Stream 0 Source b#0000 0000 0100 0000 Not reassignable

10 Mem DMA Stream 1 Desti-
nation

b#0000 0000 0100 0000 Not reassignable

11 (lowest 
priority)

Mem DMA Stream 1 Source b#0000 0000 0100 0000 Not reassignable
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• Has detected that a global DMA interrupt or a channel interrupt is 
being asserted.

• Has logged occurrence of a DMA error.

Note the DMA_DONE interrupt is asserted when the last memory access (read 
or write) has completed. 

 For a memory transfer to a peripheral, there may be up to four data 
words in the channel’s DMA FIFO when the interrupt occurs. At 
this point, it is normal to immediately start the next work unit. If, 
however, the application needs to know when the final data item is 
actually transferred to the peripheral, the application can test or 
poll the DMA_RUN bit. As long as there is undelivered transmit data 
in the FIFO, the DMA_RUN bit is 1.

 For a memory write DMA channel, the state of the DMA_RUN bit has 
no meaning after the last DMA_DONE event has been signaled. It does 
not indicate the status of the DMA FIFO.

 For MemDMA transfers where it is not desired to use an interrupt 
to notify when the DMA operation has ended, software should poll 
the DMA_DONE bit, and not the DMA_RUN bit, to determine when the 
transaction has completed.
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Figure 9-13. Interrupt Status Register

Table 9-17. Interrupt Status Register Memory-Mapped 
Addresses

Register Name Memory-Mapped Address

DMA0_IRQ_STATUS 0xFFC0 0C28

DMA1_IRQ_STATUS 0xFFC0 0C68

DMA2_IRQ_STATUS 0xFFC0 0CA8

DMA3_IRQ_STATUS 0xFFC0 0CE8

DMA4_IRQ_STATUS 0xFFC0 0D28

DMA5_IRQ_STATUS 0xFFC0 0D68

DMA6_IRQ_STATUS 0xFFC0 0DA8

DMA7_IRQ_STATUS 0xFFC0 0DE8

00

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0

This bit is set to 1 automatically when
the DMA_CONFIG register is written
0 - This DMA channel is disabled, or it

is enabled but paused (FLOW
mode 0)

1 - This DMA channel is enabled and
operating, either transferring data
or fetching a DMA descriptor

Interrupt Status Register (DMAx_IRQ_STATUS/MDMA_yy_IRQ_STATUS)

DFETCH (DMA Descriptor
 Fetch) - RO

DMA_RUN (DMA Channel 
Running) - RO 

DMA_DONE (DMA Comple-
tion Interrupt Status) - W1C
0 - No interrupt is being

asserted for this channel
1 - DMA work unit has

completed, and this DMA
channel’s interrupt is being
asserted

DMA_ERR (DMA Error Inter-
rupt Status) - W1C
0 - No DMA error has

occurred
1 - A DMA error has occurred,

and the global DMA Error
interrupt is being asserted.
After this error occurs,
the contents of the DMA
Current registers are
unspecified. Control/
Status and Parameter
registers are unchanged.

Reset = 0x0000

This bit is set to 1 automatically when
the DMA_CONFIG register is written
with FLOW modes 4–7
0 - This DMA channel is disabled, or it

is enabled but stopped (FLOW
mode 0)

1 - This DMA channel is enabled and
presently fetching a DMA descriptor

For Memory- 
mapped 
addresses, see 
Table 9-17.
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The processor supports a flexible interrupt control structure with three 
interrupt sources. 

• Data driven interrupts (see Table 9-18)

• Peripheral Error interrupts

• DMA Error interrupts (for example, Bad Descriptor or Bus Error)

Separate Interrupt Request (IRQ) levels are allocated for Data and Periph-
eral Error interrupts, and DMA Error interrupts.

All DMA channels are OR’ed together into one system-level DMA Error 
interrupt. The individual IRQ_STATUS words of each channel can be read 
to identify the channel that caused the DMA Error interrupt.

MDMA_D0_IRQ_STATUS 0xFFC0 0E28

MDMA_S0_IRQ_STATUS 0xFFC0 0E68

MDMA_D1_IRQ_STATUS 0xFFC0 0EA8

MDMA_S1_IRQ_STATUS 0xFFC0 0EE8

Table 9-18. Data Driven Interrupts

Interrupt Name Description

No Interrupt Interrupts can be disabled for a given work unit.

Peripheral Interrupt These are peripheral (non-DMA) interrupts.

Row Completion DMA Interrupts can occur on the completion of a row 
(CURR_X_COUNT expiration). 

Buffer Completion DMA Interrupts can occur on the completion of an entire buf-
fer (when CURR_X_COUNT and CURR_Y_COUNT expire).

Table 9-17. Interrupt Status Register Memory-Mapped 
Addresses (Cont’d)

Register Name Memory-Mapped Address
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 Note the DMA_DONE and DMA_ERR interrupt indicators are 
write-one-to-clear (W1C).

 When switching a peripheral from DMA to non-DMA mode, the 
peripheral’s interrupts should be disabled during the mode switch 
(via the appropriate peripheral registers or SIC_IMASK) so that no 
unintended interrupt is generated on the shared DMA/interrupt 
request line.

Flex Descriptor Structure
DMA flex descriptors are variable sized data structures whose contents are 
loaded into DMA Parameter registers. The sequence of registers in the 
descriptor is essentially fixed (among three similar variations), but the 
length of the descriptor is completely programmable. The DMA channel 
registers are ordered so that the registers that are most commonly reloaded 
per work unit are at the lowest MMR addresses. The user may choose 
whether or not to use descriptors. If not using descriptors, the user can 
write the DMA MMRs directly to start DMA, and use either Autobuffer 
mode for continuous operation or Stop mode for single-buffer operation.

To use descriptors, the user programs the NDSIZE field of the DMAx_CONFIG 
register with the number of DMA registers to load from the descriptor, 
starting with the lowest MMR address. The user may select a descriptor 
size from one entry (the lower 16 bits of START_ADDR) to nine entries (all 
the DMA parameters).
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The three variations of the descriptor value sequences depend on whether 
a Next Descriptor Pointer is included and, if so, what kind.

• None included (Descriptor Array mode)

• The lower 16 bits of the Next Descriptor Pointer (Descriptor List, 
Small Model)

• All 32 bits of the Next Descriptor Pointer (Descriptor List, Large 
Model)

All the other registers not loaded from the descriptor retain their prior val-
ues, although the CURR_ADDR, CURR_X_COUNT, and CURR_Y_COUNT registers 
are reloaded between the descriptor fetch and the start of DMA operation.

There are certain DMA settings that are not allowed to change from one 
descriptor to the next in a chain (Small or Large List and Array modes). 
These are DMA Direction, Word Size, and Memory Space (that is, 
switching between internal and external memory).

A single descriptor chain cannot control the transfer of a sequence of data 
buffers which reside in different memory spaces. Instead, group the data 
buffers into chains of buffers in the same space, but do not link the chains 
together. Transfer the first chain, wait for its final interrupt, and then start 
the next chain with an MMR write to the DMA_CONFIG register.

Note that while the user must locate each chain’s data buffers in the same 
memory space, the descriptor structures themselves may be placed in any 
memory space, and they may link from a descriptor in one space to a 
descriptor in another space without restriction.
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Table 9-19 shows the offsets for descriptor elements in the three modes 
described above. Note the names in the table list the descriptor elements 
in memory, not the actual MMRs into which they are eventually loaded.

Table 9-19. Parameter Registers and Descriptor Offsets

Descriptor 
Offset

Descriptor Array 
Mode

Small Descriptor List 
Mode

Large Descriptor List 
Mode

0x0 SAL NDPL NDPL

0x2 SAH SAL NDPH

0x4 DMACFG SAH SAL

0x6 XCNT DMACFG SAH

0x8 XMOD XCNT DMACFG

0xA YCNT XMOD XCNT

0xC YMOD YCNT XMOD

0xE YMOD YCNT

0x10 YMOD
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DMA Operation Flow
Figure 9-14 and Figure 9-15 describe the DMA Flow.

Figure 9-14. DMA Flow, From DMA Controller’s Point of View (1 of 2)

COPY FLOW, NDSIZE FROM DMA_CONFIG
INTO TEMPORARY DESCRIPTOR FETCH COUNTERS

B 

COPY NEXT DESCRIPTOR POINTER
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REGISTERS, AND THEN WRITES DMA_CONFIG

SET DFETCH IN IRQ_STATUS

SET DMA_RUN IN IRQ_STATUS
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TEST DMA_EN 

TEST FLOW 

TEST FLOW 

Y

N

DMA ERROR

DMA_EN = 1

DMA_EN = 0

FLOW = 4, 6, OR  7

DMA STOPPED.
CLEAR DMA_RUN IN
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A 

C 

DI_EN = 0 OR
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FLOW = 4
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Figure 9-15. DMA Flow, From DMA Controller’s Point of View (2 of 2)
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DMA Startup
This section discusses starting DMA “from scratch.” This is similar to 
starting it after it has been paused by FLOW = 0 mode.

 Before initiating DMA for the first time on a given channel, be 
sure to initialize all Parameter registers. Be especially careful to ini-
tialize the upper 16 bits of the NEXT_DESC_PTR and START_ADDR 
registers, because they might not otherwise be accessed, depending 
on the chosen FLOW mode of operation.

To start DMA operation on a given channel, some or all of the DMA 
Parameter registers must first be written directly. At a minimum, the 
NEXT_DESC_PTR register (or CURR_DESC_PTR register in FLOW = 4 mode) 
must be written at this stage, but the user may wish to write other DMA 
registers that might be static throughout the course of DMA activity (for 
example, X_MODIFY, Y_MODIFY). The contents of NDSIZE and FLOW in 
DMA_CONFIG indicate which registers, if any, are fetched from descriptor 
elements in memory. After the descriptor fetch, if any, is completed, 
DMA operation begins, initiated by writing DMA_CONFIG with DMAEN = 1.

When DMA_CONFIG is written directly, the DMA controller recognizes this 
as the special startup condition that occurs when starting DMA for the 
first time on this channel or after the engine has been stopped (FLOW = 0).

When the descriptor fetch is complete and DMAEN = 1, the DMACFG descrip-
tor element that was read into DMA_CONFIG assumes control. Before this 
point, the direct write to DMA_CONFIG had control. In other words, the 
WDSIZE, DI_EN, DI_SEL, RESTART, and DMA2D fields will be taken from the 
DMACFG value in the descriptor read from memory, while these field values 
initially written to the DMA_CONFIG register are ignored.
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As Figure 9-14 and Figure 9-15 show, at startup the FLOW and NDSIZE bits 
in DMA_CONFIG determine the course of the DMA setup process. The FLOW 
value determines whether to load more Current registers from descriptor 
elements in memory, while the NDSIZE bits detail how many descriptor 
elements to fetch before starting DMA. DMA registers not included in the 
descriptor are not modified from their prior values.

If the FLOW value specifies Small or Large Descriptor List modes, the 
NEXT_DESC_PTR is copied into CURR_DESC_PTR. Then, fetches of new 
descriptor elements from memory are performed, indexed by 
CURR_DESC_PTR, which is incremented after each fetch. If NDPL and/or NDPH 
is part of the descriptor, then these values are loaded into NEXT_DESC_PTR, 
but the fetch of the current descriptor continues using CURR_DESC_PTR. 
After completion of the descriptor fetch, CURR_DESC_PTR points to the next 
16-bit word in memory past the end of the descriptor.

If neither NDPH nor NDPL are part of the descriptor (that is, in Descriptor 
Array mode, FLOW = 4), then the transfer from NDPH/NDPL into 
CURR_DESC_PTR does not occur. Instead, descriptor fetch indexing begins 
with the value in CURR_DESC_PTR.

If DMACFG is not part of the descriptor, the previous DMA_CONFIG settings (as 
written by MMR access at startup) control the work unit operation. If 
DMACFG is part of the descriptor, then the DMA_CONFIG value programmed 
by the MMR access controls only the loading of the first descriptor from 
memory. The subsequent DMA work operation is controlled by the low 
byte of the descriptor’s DMACFG and by the Parameter registers loaded from 
the descriptor. The bits DI_EN, DI_SEL, DMA2D, WDSIZE, and WNR in the value 
programmed by the MMR access are disregarded.

The DMA_RUN and DFETCH status bits in the IRQ_STATUS register indicate the 
state of the DMA channel. After a write to DMA_CONFIG, the DMA_RUN and 
DFETCH bits can be automatically set to 1. No data interrupts are signaled 
as a result of loading the first descriptor from memory.
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After the above steps, the Current registers are loaded automatically from 
the appropriate descriptor elements, overwriting their previous contents, 
as follows.

• START_ADDR is copied to CURR_ADDR

• X_COUNT is copied to CURR_X_COUNT

• Y_COUNT is copied to CURR_Y_COUNT

Then DMA data transfer operation begins, as shown in Figure 9-15.

DMA Refresh
On completion of a work unit, the DMA controller:

• Completes the transfer of all data between memory and the DMA 
unit.

• If enabled by DI_EN, signals an interrupt to the core and sets the 
DMA_DONE bit in the channel’s IRQ_STATUS register.

• If FLOW = 0 (Stop) only:

Stops operation by clearing the DMA_RUN bit in IRQ_STATUS after any 
data in the channel’s DMA FIFO has been transferred to the 
peripheral.

• During the fetch in FLOW modes 4, 6, and 7, the DMA controller 
sets the DFETCH bit in IRQ_STATUS to 1. At this point, the DMA 
operation depends on whether FLOW = 4, 6, or 7, as follows:

If FLOW = 4 (Descriptor Array):

Loads a new descriptor from memory into DMA registers via the 
contents of CURR_DESC_PTR, while incrementing CURR_DESC_PTR. 
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The descriptor size comes from the NDSIZE field of the DMA_CONFIG 
value prior to the beginning of the fetch.

If FLOW = 6 (Descriptor List Small):

Copies the 32-bit NEXT_DESC_PTR into CURR_DESC_PTR. Next, 
fetches a descriptor from memory into DMA registers via the new 
contents of CURR_DESC_PTR, while incrementing CURR_DESC_PTR. 
The first descriptor element loaded is a new 16-bit value for the 
lower 16 bits of NEXT_DESC_PTR, followed by the rest of the descrip-
tor elements. The high 16 bits of NEXT_DESC_PTR will retain their 
former value. This supports a shorter, more efficient descriptor 
than the Descriptor List Large model, suitable whenever the appli-
cation can place the channel’s descriptors in the same 64K byte 
range of memory.

If FLOW = 7 (Descriptor List Large): 

Copies the 32-bit NEXT_DESC_PTR into CURR_DESC_PTR. Next, 
fetches a descriptor from memory into DMA registers via the new 
contents of CURR_DESC_PTR, while incrementing CURR_DESC_PTR. 
The first descriptor element loaded is a new 32-bit value for the 
full NEXT_DESC_PTR, followed by the rest of the descriptor elements. 
The high 16 bits of NEXT_DESC_PTR may differ from their former 
value. This supports a fully flexible descriptor list which can be 
located anywhere in internal memory or external memory.

• Note if it is necessary to link from a descriptor chain whose 
descriptors are in one 64K byte area to another chain whose 
descriptors are outside that area, only one descriptor needs to use 
FLOW = 7—just the descriptor which contains the link leaving the 
64K byte range. All the other descriptors located together in the 
same 64K byte areas may use FLOW = 6.
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• If FLOW = 1, 4, 6, or 7 (Autobuffer, Descriptor Array, Descriptor 
List Small, or Descriptor List Large, respectively):

(Re)loads the Current registers:
CURR_ADDR loaded from START_ADDR
CURR_X_COUNT loaded from X_COUNT
CURR_Y_COUNT loaded from Y_COUNT

The DFETCH bit in IRQ_STATUS is then cleared, after which the DMA 
transfer begins again, as shown in Figure 9-15.

To Stop DMA Transfers
In FLOW = 0 mode, DMA stops automatically after the work unit is 
complete.

If a list or array of descriptors is used to control DMA, and if every 
descriptor contains a DMACFG element, then the final DMACFG element 
should have a FLOW = 0 setting to gracefully stop the channel. 

In Autobuffer (FLOW = 1) mode, or if a list or array of descriptors without 
DMACFG elements is used, then the DMA transfer process must be termi-
nated by an MMR write to the DMAx_CONFIG register with a value whose 
DMAEN bit is 0. A write of 0 to the entire register will always terminate 
DMA gracefully (without DMA Abort).

Before enabling the channel again, make sure that any slow memory read 
operations that may have started are completed (for example, reads from 
slow external memory). Do not enable the channel again until any such 
reads are complete.
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To Trigger DMA Transfers
If a DMA has been stopped in FLOW = 0 mode, the DMA_RUN bit in the 
DMA Interrupt Status register remains set until the content of the internal 
DMA FIFOs has been completely processed. Once the DMA_RUN bit clears, 
it is safe to restart the DMA by simply writing again to the DMA Config-
uration register. The DMA sequence is repeated with the previous 
settings.

Similarly, a descriptor-based DMA sequence that has been stopped tem-
porarily with a FLOW = 0 descriptor can be continued with a new write to 
the Configuration register. When the DMA controller detects the FLOW = 0 
condition by loading the DMACFG field from memory, it has already 
updated the Next Descriptor pointer, regardless of whether operating in 
Descriptor Array mode or Descriptor List mode.

The Next Descriptor pointer remains valid, if the DMA halts and is 
restarted. As soon as the DMA_RUN bit clears, software can restart the DMA 
and force the DMA controller to fetch the next descriptor. To accomplish 
this, the software writes a value with the DMAEN bit set and with proper val-
ues in the FLOW and NDSIZE fields into the Configuration register. The next 
descriptor is fetched if FLOW equals 0x4, 0x6, or 0x7. In this mode of opera-
tion, the NDSIZE field should at least span up to the DMACFG field to 
overwrite the Configuration register immediately.

If all DMACFG fields in a descriptor chain have the FLOW and NDSIZE fields set 
to zero, the individual DMA sequences do not start until triggered by soft-
ware. This is useful when the DMAs need to be synchronized with other 
events in the system, and it is typically performed by interrupt service rou-
tines. A single MMR write is required to trigger the next DMA sequence.
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Especially when applied to MemDMA channels, such scenarios play an 
important role. Usually, the timing of MemDMAs cannot be controlled. 
By halting descriptor chains or rings this way, the whole DMA transaction 
can be broken into pieces that are individually triggered by software.

 Source and destination channels of a MemDMA may differ in 
descriptor structure. However, the total work count must match 
when the DMA stops. Whenever a MemDMA is stopped, destina-
tion and source channels should both provide the same FLOW = 0 
mode after exactly the same number of words. Accordingly, both 
channels need to be started afterward.

Two-Dimensional DMA
Two-dimensional (2D) DMA supports arbitrary row and column sizes up 
to 64 K x 64 K elements, as well as arbitrary X_MODIFY and Y_MODIFY val-
ues up to ±32 K bytes. Furthermore, Y_MODIFY can be negative, allowing 
implementation of interleaved datastreams. The X_COUNT and Y_COUNT val-
ues specify the row and column sizes, where X_COUNT must be 2 or greater.

The start address and modify values are in bytes, and they must be aligned 
to a multiple of the DMA transfer word size (WDSIZE[1:0] in DMA_CONFIG). 
Misalignment causes a DMA error.

The X_MODIFY value is the byte-address increment that is applied after each 
transfer that decrements the CURR_X_COUNT register. The X_MODIFY value is 
not applied when the inner loop count is ended by decrementing 
CURR_X_COUNT from 1 to 0, except that it is applied on the final transfer 
when CURR_Y_COUNT is 1 and CURR_X_COUNT decrements from 1 to 0.

The Y_MODIFY value is the byte-address increment that is applied after each 
decrement of CURR_Y_COUNT. However, the Y_MODIFY value is not applied 
to the last item in the array on which the outer loop count (CURR_Y_COUNT) 
also expires by decrementing from 1 to 0.
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After the last transfer completes, CURR_Y_COUNT = 1, CURR_X_COUNT = 0, 
and CURR_ADDR is equal to the last item’s address plus X_MODIFY. Note if 
the DMA channel is programmed to refresh automatically (Autobuffer 
mode), then these registers will be loaded from X_COUNT, Y_COUNT, and 
START_ADDR upon the first data transfer.

Examples
Example 1: Retrieve a 16  8 block of bytes from a video frame buffer of 
size (N  M) pixels:

X_MODIFY = 1

X_COUNT = 16

Y_MODIFY = N–15 (offset from the end of one row to the start of 

another)

Y_COUNT = 8 

This produces the following address offsets from the start address:

0,1,2,...15, 

N,N + 1, ... N + 15, 

2N, 2N + 1,... 2N + 15, ...

7N, 7N + 1,... 7N + 15, 

Example 2: Receive a video datastream of bytes, 
(R,G,B pixels)  (N  M image size): 

X_MODIFY = (N * M)

X_COUNT = 3

Y_MODIFY = 1 – 2(N * M) (negative)

Y_COUNT = (N * M)
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This produces the following address offsets from the start address:

0, (N * M), 2(N * M), 

1, (N * M) + 1, 2(N * M) + 1, 

2, (N * M) + 2, 2(N * M) + 2,

...

(N * M) – 1, 2(N * M) – 1, 3(N * M) – 1,

More 2D DMA Examples
Examples of DMA styles supported by flex descriptors include:

• A single linear buffer that stops on completion (FLOW = Stop mode)

• A linear buffer with stride greater than 1 (X_MODIFY > 1)

• A circular, auto-refreshing buffer that interrupts on each full buffer

• A similar buffer that interrupts on fractional buffers (for example, 
1/2, 1/4) (2D DMA)

• 1D DMA, using a set of identical ping-pong buffers defined by a 
linked ring of 3-word descriptors, each containing { link pointer, 
32-bit address }

• 1D DMA, using a linked list of 5-word descriptors containing 
{ link pointer, 32-bit address, length, config } (ADSP-2191 style)

• 2D DMA, using an array of 1-word descriptors, specifying only the 
base DMA address within a common data page

• 2D DMA, using a linked list of 9-word descriptors, specifying 
everything 
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Memory DMA
This section describes the Memory DMA (MDMA) controller, which pro-
vides memory-to-memory DMA transfers among the various memory 
spaces. These include L1 memory and external synchronous/ asynchro-
nous memories.

Each MDMA controller contains a DMA FIFO, an 8-word by 16-bit 
FIFO block used to transfer data to and from either L1 or the External 
Access Bus (EAB). Typically, it is used to transfer data between external 
memory and internal memory. It will also support DMA from Boot ROM 
on the EAB bus. The FIFO can be used to hold DMA data transferred 
between two L1 memory locations or between two external memory 
locations.

The processor provides four MDMA channels:

• Two source channels (for reading from memory)

• Two destination channels (for writing to memory) 

Each source/destination channel forms a “stream,” and these two streams 
are hardwired for DMA priorities 8 through 11. 

• Priority 8: Memory DMA Destination Stream D0

• Priority 9: Memory DMA Source Stream D0

• Priority 10: Memory DMA Destination Stream D1

• Priority 11: Memory DMA Source Stream D1

Memory DMA Stream 0 takes precedence over Memory DMA Stream 1, 
unless round robin scheduling is used. Note it is illegal to program a 
source stream for memory write or a destination stream for memory read.
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The channels support 8-, 16-, and 32-bit Memory DMA transfers, but 
both ends of the MDMA transfer must be programmed to the same word 
size. In other words, the MDMA transfer does not perform packing or 
unpacking of data; each read results in one write. Both ends of the 
MDMA FIFO for a given stream are granted priority at the same time. 
Each pair shares an 8-word-deep 16-bit FIFO. The source DMA engine 
fills the FIFO, while the destination DMA engine empties it. The FIFO 
depth allows the burst transfers of the External Access Bus (EAB) and 
DMA Access Bus (DAB) to overlap, significantly improving throughput 
on block transfers between internal and external memory. Two separate 
descriptor blocks are required to supply the operating parameters for each 
MDMA pair, one for the source channel and one for the destination 
channel. 

Because the source and destination DMA engines share a single FIFO buf-
fer, the descriptor blocks must be configured to have the same data size. It 
is possible to have a different mix of descriptors on both ends as long as 
the total count is the same.

To start an MDMA transfer operation, the MMRs for the source and des-
tination streams are written, each in a manner similar to peripheral DMA.

 Note the DMA_CONFIG register for the source stream must be written 
before the DMA_CONFIG register for the destination stream.

When the destination DMA_CONFIG register is written, MDMA operation 
starts, after a latency of 3 SCLK cycles.

First, if either MDMA stream has been selected to use descriptors, the 
descriptors are fetched from memory. The destination stream descriptors 
are fetched first. Then, after a latency of 4 SCLK cycles after the last 
descriptor word is returned from memory (or typically 8 SCLK cycles after 
the fetch of the last descriptor word, due to memory pipelining), the 
source MDMA stream begins fetching data from the source buffer. The 
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resulting data is deposited in the MDMA stream’s 8-location FIFO, and 
then after a latency of 2 SCLK cycles, the destination MDMA stream begins 
writing data to the destination memory buffer.

MDMA Bandwidth
If source and destination are in different memory spaces (one internal and 
one external), the internal and external memory transfers are typically 
simultaneous and continuous, maintaining 100% bus utilization of the 
internal and external memory interfaces. This performance is affected by 
core-to-system clock frequency ratios. At ratios below about 2.5:1, syn-
chronization and pipeline latencies result in lower bus utilization in the 
system clock domain. At a clock ratio of 2:1, for example, DMA typically 
runs at 2/3 of the system clock rate. At higher clock ratios, full bandwidth 
is maintained.

If source and destination are in the same memory space (both internal or 
both external), the MDMA stream typically prefetches a burst of source 
data into the FIFO, and then automatically turns around and delivers all 
available data from the FIFO to the destination buffer. The burst length is 
dependent on traffic, and is equal to 3 plus the memory latency at the 
DMA in SCLKs (which is typically 7 for internal transfers and 6 for exter-
nal transfers).

DMA Performance Optimization
The DMA system is designed to provide maximum throughput per chan-
nel and maximum utilization of the internal buses, while accommodating 
the inherent latencies of memory accesses.

A key feature of the DMA architecture is the separation of the activity on 
the peripheral DMA bus (the DMA Access Bus (DAB)) from the activity 
on the buses between the DMA and memory (the DMA Core Bus (DCB) 
and the DMA External Bus (DEB)). Each peripheral DMA channel has its 
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own data FIFO which lies between the DAB bus and the memory buses. 
These FIFOs automatically prefetch data from memory for transmission 
and buffer received data for later memory writes. This allows the periph-
eral to be granted a DMA transfer with very low latency compared to the 
total latency of a pipelined memory access, permitting the repeat rate 
(bandwidth) of each DMA channel to be as fast as possible.

Peripheral DMA channels have a maximum transfer rate of one 16-bit 
word per two system clocks, per channel, in either direction.

MDMA channels have a maximum transfer rate of one 16-bit word per 
one system clock (SCLK), per channel.

When all DMA channels’ traffic is taken in the aggregate:

• Transfers between the peripherals and the DMA unit have a maxi-
mum rate of one 16-bit transfer per system clock.

• Transfers between the DMA unit and internal memory (L1) have a 
maximum rate of one 16-bit transfer per system clock.

• Transfers between the DMA unit and external memory have a 
maximum rate of one 16-bit transfer per system clock.

Some considerations which limit the actual performance include:

• Accesses to internal or external memory which conflict with core 
accesses to the same memory. This can cause delays, for example, 
for accessing the same L1 bank, for opening/closing SDRAM 
pages, or while filling cache lines.

• Each direction change from RX to TX on the DAB bus imposes a 
one SCLK cycle delay.

• Direction changes on the DCB bus (for example, write followed by 
read) to the same bank of internal memory can impose delays.
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• Direction changes (for example, read followed by write) on the 
DEB bus to external memory can each impose a several-cycle delay.

• MMR accesses to DMA registers other than DMAx_CONFIG, 
DMAx_IRQSTAT, or DMAx_PERIPHERAL_MAP will stall all DMA activity 
for one cycle per 16-bit word transferred. In contrast, MMR 
accesses to the Control/Status registers do not cause stalls or wait 
states.

• Reads from DMA registers other than Control/Status registers use 
one PAB bus wait state, delaying the core for several core clocks.

• Descriptor fetches consume one DMA memory cycle per 16-bit 
word read from memory, but do not delay transfers on the DAB 
bus.

• Initialization of a DMA channel stalls DMA activity for one cycle. 
This occurs when DMAEN changes from 0 to 1 or when the RESTART 
bit is set to 1 in the DMAx_CONFIG register.

Several of these factors may be minimized by proper design of the applica-
tion software. It is often possible to structure the software to avoid 
internal and external memory conflicts by careful allocation of data buffers 
within banks and pages, and by planning for low cache activity during 
critical DMA operations. Furthermore, unnecessary MMR accesses can be 
minimized, especially by using descriptors or autobuffering.

Efficiency loss caused by excessive direction changes (thrashing) can be 
minimized by the processor’s traffic control features, described in the next 
section.

Prioritization and Traffic Control 
DMA channels are ordinarily granted service strictly according to their 
priority. The priority of a channel is simply its channel number, where 
lower priority numbers are granted first. Thus, peripherals with high data 
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rates or low latency requirements should be assigned to lower numbered 
(higher priority) channels using the DMAx_PERIPHERAL_MAP registers. The 
Memory DMA streams are always lower priority than the peripherals, but 
as they request service continuously, they ensure that any time slots 
unused by peripheral DMA are applied to MDMA transfers. By default, 
when more than one MDMA stream is enabled and ready, only the high-
est priority MDMA stream is granted. If it is desirable for the MDMA 
streams to share the available bandwidth, however, the 
MDMA_ROUND_ROBIN_PERIOD may be programmed to select each stream in 
turn for a fixed number of transfers.

In the processor DMA, there are two completely separate but simultane-
ous prioritization processes—the DAB bus prioritization and the memory 
bus (DCB and DEB) prioritization. Peripherals that are requesting DMA 
via the DAB bus, and whose data FIFOs are ready to handle the transfer, 
compete with each other for DAB bus cycles. Similarly but separately, 
channels whose FIFOs need memory service (prefetch or post-write) com-
pete together for access to the memory buses. MDMA streams compete 
for memory access as a unit, and source and destination may be granted 
together if their memory transfers do not conflict. In this way, inter-
nal-to-external or external-to-internal memory transfers may occur at the 
full system clock rate (SCLK). Examples of memory conflict include simul-
taneous access to the same memory space and simultaneous attempts to 
fetch descriptors. Special processing may occur if a peripheral is requesting 
DMA but its FIFO is not ready (for example, an empty transmit FIFO or 
full receive FIFO). For more information, see “Urgent DMA Transfers” 
on page 9-59.

Traffic control is an important consideration in optimizing use of DMA 
resources. Traffic control is a way to influence how often the transfer 
direction on the data buses may change, by automatically grouping same 
direction transfers together. The DMA block provides a traffic control 
mechanism controlled by the DMA_TC_PER and DMA_TC_CNT registers. This 
mechanism performs the optimization without real-time processor inter-
vention, and without the need to program transfer bursts into the DMA 
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work unit streams. Traffic can be independently controlled for each of the 
three buses (DAB, DCB, and DEB) with simple counters. In addition, 
alternation of transfers among MDMA streams can be controlled with the 
MDMA_ROUND_ROBIN_COUNT field of the DMA_TC_CNT register. See “MDMA 
Priority and Scheduling” on page 9-57.

Using the traffic control features, the DMA system preferentially grants 
data transfers on the DAB or memory buses which are going in the same 
read/write direction as the previous transfer, until either the traffic control 
counter times out, or until traffic stops or changes direction on its own. 
When the traffic counter reaches zero, the preference is changed to the 
opposite flow direction. These directional preferences work as if the prior-
ity of the opposite direction channels were decreased by 16.

For example, if channels 3 and 5 were requesting DAB access, but lower 
priority channel 5 is going “with traffic” and higher priority channel 3 is 
going “against traffic,” then channel 3’s effective priority becomes 19, and 
channel 5 would be granted instead. If, on the next cycle, only channels 3 
and 6 were requesting DAB transfers, and these transfer requests were 
both “against traffic,” then their effective priorities would become 19 and 
22, respectively. One of the channels (channel 3) is granted, even though 
its direction is opposite to the current flow. No bus cycles are wasted, 
other than any necessary delay required by the bus turnaround.

This type of traffic control represents a trade-off of latency to improve uti-
lization (efficiency). Higher traffic timeouts might increase the length of 
time each request waits for its grant, but it often dramatically improves the 
maximum attainable bandwidth in congested systems, often to above 
90%.

To disable preferential DMA prioritization, program the DMA_TC_PER reg-
ister to 0x0000.
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DMA_TC_PER and DMA_TC_CNT Registers

The DMA Traffic Control Counter Period register (DMA_TC_PER) and the 
DMA Traffic Control Counter register (DMA_TC_CNT) work with other 
DMA registers to define traffic control.

The MDMA_ROUND_ROBIN_COUNT field shows the current transfer count 
remaining in the MDMA round robin period. It initializes to 
MDMA_ROUND_ROBIN_PERIOD whenever DMA_TC_PER is written, whenever a 
different MDMA stream is granted, or whenever every MDMA stream is 
idle. It then counts down to 0 with each MDMA transfer. When this 
count decrements from 1 to 0, the next available MDMA stream is 
selected.

The DAB_TRAFFIC_COUNT field shows the current cycle count remaining in 
the DAB traffic period. It initializes to DAB_TRAFFIC_PERIOD whenever 
DMA_TC_PER is written, or whenever the DAB bus changes direction or 
becomes idle. It then counts down from DAB_TRAFFIC_PERIOD to 0 on each 
system clock (except for DMA stalls). While this count is nonzero, same 
direction DAB accesses are treated preferentially. When this count decre-
ments from 1 to 0, the opposite direction DAB access is treated 
preferentially, which may result in a direction change. When this count is 
0 and a DAB bus access occurs, the count is reloaded from 
DAB_TRAFFIC_PERIOD to begin a new burst.

The DEB_TRAFFIC_COUNT field shows the current cycle count remaining in 
the DEB traffic period. It initializes to DEB_TRAFFIC_PERIOD whenever 
DMA_TC_PER is written, or whenever the DEB bus changes direction or 
becomes idle. It then counts down from DEB_TRAFFIC_PERIOD to 0 on each 
system clock (except for DMA stalls). While this count is nonzero, same 
direction DEB accesses are treated preferentially. When this count decre-
ments from 1 to 0, the opposite direction DEB access is treated 
preferentially, which may result in a direction change. When this count is 
0 and a DEB bus access occurs, the count is reloaded from 
DEB_TRAFFIC_PERIOD to begin a new burst.
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The DCB_TRAFFIC_COUNT field shows the current cycle count remaining in 
the DCB traffic period. It initializes to DCB_TRAFFIC_PERIOD whenever 
DMA_TC_PER is written, or whenever the DCB bus changes direction or 
becomes idle. It then counts down from DCB_TRAFFIC_PERIOD to 0 on each 
system clock (except for DMA stalls). While this count is nonzero, same 
direction DCB accesses are treated preferentially. When this count decre-
ments from 1 to 0, the opposite direction DCB access is treated 
preferentially, which may result in a direction change. When this count is 
0 and a DCB bus access occurs, the count is reloaded from 
DCB_TRAFFIC_PERIOD to begin a new burst.

Figure 9-16. DMA Traffic Control Counter Period Register

0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0

Maximum length of MDMA round 
robin bursts. If not zero, any MDMA 
stream which receives a grant is 
allowed up to that number of DMA 
transfers, to the exclusion of the other 
MDMA streams.

DMA Traffic Control Counter Period Register (DMA_TC_PER)

DAB_TRAFFIC_PERIOD[2:0] 

000 -  No DAB bus transfer grouping performed
Other - Preferred length of unidirectional bursts 
on the DAB bus between the DMA and the 
peripherals

MDMA_ROUND_ROBIN_
PERIOD[4:0] 

DCB_TRAFFIC_PERIOD[3:0]

DEB_TRAFFIC_PERIOD[3:0]

Reset = 0x0000

000 -  No DCB bus transfer 
grouping performed
Other - Preferred length of uni-
directional bursts on the DCB 
bus between the DMA and 
internal L1 memory

000 -  No DEB bus transfer 
grouping performed
Other - Preferred length of uni-
directional bursts on the DEB 
bus between the DMA and 
external memory
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MDMA Priority and Scheduling
All MDMA operations have lower precedence than any peripheral DMA 
operations. MDMA thus makes effective use of any memory bandwidth 
unused by peripheral DMA traffic.

If two MDMA streams are used (S0-D0 and S1-D1), the user may choose 
to allocate bandwidth either by fixed stream priority or by a round robin 
scheme. This is selected by programming the MDMA_ROUND_ROBIN_PERIOD 
field in the DMA_TC_PER register (see “Prioritization and Traffic Control” 
on page 9-52).

If this field is set to 0, then MDMA is scheduled by fixed priority. 
MDMA Stream 0 takes precedence over MDMA Stream 1 whenever 
Stream 0 is ready to perform transfers. Since an MDMA Stream is typi-
cally capable of transferring data on every available cycle, this could cause 
MDMA Stream 1 traffic to be delayed for an indefinite time until any and 
all MDMA Stream 0 operations are complete. This scheme could be 
appropriate in systems where low duration but latency sensitive data buf-
fers need to be moved immediately, interrupting long duration, low 
priority background transfers.

Figure 9-17. DMA Traffic Control Counter Register
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00 0 0 0 0 0 0 0 0 0 0 0

Current transfer count remaining in 
the MDMA round robin period

DMA Traffic Control Counter Register (DMA_TC_CNT)

DAB_TRAFFIC_COUNT[2:0] 

Current cycle count remaining in the 
DAB traffic period

MDMA_ROUND_ROBIN_
COUNT[4:0] 

DCB_TRAFFIC_COUNT[3:0]

DEB_TRAFFIC_COUNT[3:0]

Reset = 0x0000

Current cycle count remaining 
in the DCB traffic period

Current cycle count remaining 
in the DEB traffic period
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If the MDMA_ROUND_ROBIN_PERIOD field is set to some nonzero value in the 
range 1 <= P <= 31, then a round robin scheduling method is used. The 
two MDMA streams are granted bus access in alternation in bursts of up 
to P data transfers. This could be used in systems where two transfer pro-
cesses need to coexist, each with a guaranteed fraction of the available 
bandwidth. For example, one stream might be programmed for inter-
nal-to-external moves while the other is programmed for 
external-to-internal moves, and each would be allocated approximately 
equal data bandwidth.

In round robin operation, the MDMA stream selection at any time is 
either “free” or “locked.” Initially, the selection is free. On any free cycle 
available to MDMA (when no peripheral DMA accesses take precedence), 
if either or both MDMA streams request access, the higher precedence 
stream will be granted (Stream 0 in case of conflict), and that stream’s 
selection is then “locked.” The MDMA_ROUND_ROBIN_COUNT counter field in 
the DMA_TC_CNT register is loaded with the period P from 
MDMA_ROUND_ROBIN_PERIOD, and MDMA transfers begin. The counter is 
decremented on every data transfer (as each data word is written to mem-
ory). After the transfer corresponding to a count of 1, the MDMA stream 
selection is passed automatically to the other stream with zero overhead, 
and the MDMA_ROUND_ROBIN_COUNT counter is reloaded with the period 
value P from MDMA_ROUND_ROBIN_PERIOD. In this cycle, if the other MDMA 
stream is ready to perform a transfer, the stream selection is locked on the 
new MDMA stream. If the other MDMA stream is not ready to perform a 
transfer, then no transfer is performed, and on the next cycle the stream 
selection unlocks and becomes free again.

If round robin operation is used when only one MDMA stream is active, 
one idle cycle will occur for each P MDMA data cycles, slightly lowering 
bandwidth by a factor of 1/(P+1). If both MDMA streams are used, how-
ever, memory DMA can operate continuously with zero additional 
overhead for alternation of streams (other than overhead cycles normally 
associated with reversal of read/write direction to memory, for example). 
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By selection of various round robin period values P which limit how often 
the MDMA streams alternate, maximal transfer efficiency can be 
maintained.

Urgent DMA Transfers
Typically, DMA transfers for a given peripheral occur at regular intervals. 
Generally, the shorter the interval, the higher the priority that should be 
assigned to the peripheral. If the average bandwidth of all the peripherals 
is not too large a fraction of the total, then all peripherals’ requests should 
be granted as required.

Occasionally, instantaneous DMA traffic might exceed the available band-
width, causing congestion. This may occur if L1 or external memory is 
temporarily stalled, perhaps for an SDRAM page swap or a cache line fill. 
Congestion might also occur if one or more DMA channels initiates a 
flurry of requests, perhaps for descriptor fetches or to fill a FIFO in the 
DMA or in the peripheral.

If congestion persists, lower priority DMA peripherals may become 
starved for data. Even though the peripheral’s priority is low, if the neces-
sary data transfer does not take place before the end of the peripheral’s 
regular interval, system failure may result. To minimize this possibility, 
the DMA unit detects peripherals whose need for data has become urgent, 
and preferentially grants them service at the highest priority.

A DMA channel’s request for memory service is defined as “urgent” if 
both:

• The channel’s FIFO is not ready for a DAB bus transfer (that is, a 
transmit FIFO is empty or a receive FIFO is full), and

• The peripheral is asserting its DMA request line.
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Descriptor fetches may be urgent, if they are necessary to initiate or con-
tinue a DMA work unit chain for a starving peripheral. DMA requests 
from an MDMA channel are never urgent.

When one or more DMA channels express an urgent memory request, two 
events occur:

• All non-urgent memory requests are decreased in priority by 32, 
guaranteeing that only an urgent request will be granted. The 
urgent requests compete with each other, if there is more than one, 
and directional preference among urgent requests is observed.

• The resulting memory transfer is marked for expedited processing 
in the targeted memory system (L1 or external), and so are all prior 
incomplete memory transfers ahead of it in that memory system. 
This may cause a series of external memory core accesses to be 
delayed for a few cycles so that a peripheral’s urgent request may be 
accommodated.

The preferential handling of urgent DMA transfers is completely auto-
matic. No user controls are required for this function to operate.

Software Management of DMA 
Several synchronization and control methods are available for use in devel-
opment of software tasks which manage DMA and MDMA (see also 
“Memory DMA” on page 9-48). Such software needs to be able to accept 
requests for new DMA transfers from other software tasks, integrate these 
transfers into existing transfer queues, and reliably notify other tasks when 
the transfers are complete.

In the processor, it is possible for each DMA peripheral and MDMA 
stream to be managed by a separate task or to be managed together with 
any other stream. Each DMA channel has independent, orthogonal con-
trol registers, resources, and interrupts, so that the selection of the control 
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scheme for one channel does not affect the choice of control scheme on 
other channels. For example, one peripheral can use a linked-descrip-
tor-list, interrupt-driven scheme while another peripheral can 
simultaneously use a demand-driven, buffer-at-a-time scheme synchro-
nized by polling of the IRQ_STATUS register. 

Synchronization of Software and DMA
A critical element of software DMA management is synchronization of 
DMA buffer completion with the software. This can best be done using 
interrupts, polling of IRQ_STATUS, or a combination of both. Polling for 
address or count can only provide synchronization within loose tolerances 
comparable to pipeline lengths.

Interrupt-based synchronization methods must avoid interrupt overrun, 
or the failure to invoke a DMA channel’s interrupt handler for every inter-
rupt event due to excessive latency in processing of interrupts. Generally, 
the system design must either ensure that only one interrupt per channel is 
scheduled (for example, at the end of a descriptor list), or that interrupts 
are spaced sufficiently far apart in time that system processing budgets can 
guarantee every interrupt is serviced. Note since every interrupt channel 
has its own distinct interrupt, interaction among the interrupts of differ-
ent peripherals is much simpler to manage.

Polling of the CURR_ADDR, CURR_DESC_PTR, or CURR_X/Y_COUNT registers is 
not recommended as a method of precisely synchronizing DMA with data 
processing, due to DMA FIFOs and DMA/memory pipelining. The Cur-
rent Address, Pointer, and Count registers change several cycles in advance 
of the completion of the corresponding memory operation, as measured 
by the time at which the results of the operation would first be visible to 
the core by memory read or write instructions. For example, in a DMA 
memory write operation to external memory, assume a DMA write by 
channel A is initiated that causes the SDRAM to perform a page open 
operation which will take many system clock cycles. The DMA engine 
may then move on to another DMA operation by channel B which does 
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not in itself incur latency, but will be stalled behind the slow operation by 
channel A. Software monitoring channel B could not safely conclude 
whether the memory location pointed to by channel B’s CURR_ADDR has or 
has not been written, based on examination of the CURR_ADDR register 
contents.

Polling of the Current Address, Pointer, and Count registers can permit 
loose synchronization of DMA with software, however, if allowances are 
made for the lengths of the DMA/memory pipeline. The length of the 
DMA FIFO for a peripheral DMA channel is four locations (either four 8- 
or 16-bit data elements, or two 32-bit data elements) and for an MDMA 
FIFO is eight locations (four 32-bit data elements). The DMA will not 
advance Current Address/Pointer/Count registers if these FIFOs are filled 
with incomplete work (including reads that have been started but not yet 
finished). 

Additionally, the length of the combined DMA and L1 pipelines to inter-
nal memory is approximately six 8- or 16-bit data elements. The length of 
the DMA and External Bus Interface Unit (EBIU) pipelines is approxi-
mately three data elements, when measured from the point where a DMA 
register update is visible to an MMR read to the point where DMA and 
core accesses to memory become strictly ordered. If the DMA FIFO 
length and the DMA/memory pipeline length are added, an estimate can 
be made of the maximum number of incomplete memory operations in 
progress at one time. (Note this is a maximum, as the DMA/memory 
pipeline may include traffic from other DMA channels.) 

For example, assume a peripheral DMA channel is transferring a work 
unit of 100 data elements into internal memory and its CURR_X_COUNT reg-
ister reads a value of 60 remaining elements, so that processing of the first 
40 elements has at least been started. The total pipeline length is no 
greater than the sum of 4 (for the PDMA FIFO) plus 6 (for the 
DMA/memory pipeline), or 10 data elements, so it is safe to conclude that 
the DMA transfer of the first 40-10 = 30 data elements is complete.
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For precise synchronization, software should either wait for an interrupt 
or consult the channel’s IRQ_STATUS register to confirm completion of 
DMA, rather than polling Current Address/Pointer/Count registers. 
When the DMA system issues an interrupt or changes an IRQ_STATUS bit, 
it guarantees that the last memory operation of the work unit has been 
completed and will definitely be visible to DSP code. For memory read 
DMA, the final memory read data will have been safely received in the 
DMA’s FIFO; for memory write DMA, the DMA unit will have received 
an acknowledge from L1 memory or the EBIU that the data has been 
written.

The following examples show methods of synchronizing software with 
several different styles of DMA.

Single-Buffer DMA Transfers

Synchronization is simple if a peripheral’s DMA activity consists of iso-
lated transfers of single buffers. DMA activity is initiated by software 
writes to the channel’s Control registers. The user may choose to use a 
single descriptor in memory, in which case the software only needs to 
write the DMA_CONFIG and the NEXT_DESC_PTR registers. Alternatively, the 
user may choose to write all the MMR registers directly from software, 
ending with the write to the DMA_CONFIG register.

The simplest way to signal completion of DMA is by an interrupt. This is 
selected by the DI_EN bit in the DMA_CONFIG register, and by the necessary 
setup of the System Interrupt Controller. If it is desirable not to use an 
interrupt, the software can poll for completion by reading the IRQ_STATUS 
register and testing the DMA_RUN bit. If this bit is zero, the buffer transfer 
has completed.
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Continuous Transfers Using Autobuffering

If a peripheral’s DMA data consists of a steady, periodic stream of signal 
data, DMA autobuffering (FLOW = 1) may be an effective option. Here, 
DMA is transferred from or to a memory buffer with a circular addressing 
scheme, using either one- or two-dimensional indexing with zero proces-
sor and DMA overhead for looping. Synchronization options include:

• 1D, interrupt-driven—software is interrupted at the conclusion of 
each buffer. The critical design consideration is that the software 
must deal with the first items in the buffer before the next DMA 
transfer, which might overwrite or re-read the first buffer location 
before it is processed by software. This scheme may be workable if 
the system design guarantees that the data repeat period is longer 
than the interrupt latency under all circumstances.

• 2D, interrupt-driven (double buffering)—the DMA buffer is parti-
tioned into two or more sub-buffers, and interrupts are selected 
(set DI_SEL = 1 in DMA_CONFIG) to be signaled at the completion of 
each DMA inner loop. In this way, a traditional double buffer or 
“ping-pong” scheme could be implemented.

For example, two 512-word sub-buffers inside a 1K word buffer 
could be used to receive 16-bit peripheral data with these settings:

START_ADDR = buffer base address
1DMA_CONFIG = 0x10D7 (FLOW = 1, DI_EN = 1, DI_SEL = 1, 
DMA2D = 1, WDSIZE = 01, WNR = 1, DMAEN = 1)
X_COUNT =  512

X_MODIFY = 2 for 16-bit data
Y_COUNT =  2 for two sub-buffers
Y_MODIFY = 2, same as X_MODIFY for contiguous sub-buffers

• 2D, polled—if interrupt overhead is unacceptable but the loose 
synchronization of address/count register polling is acceptable, a 
2D multibuffer synchronization scheme may be used. For example, 
assume receive data needs to be processed in packets of sixteen 
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32-bit elements. A four-part 2D DMA buffer can be allocated 
where each of the four sub-buffers can hold one packet with these 
settings:

START_ADDR =  buffer base address
DMA_CONFIG = 0x101B (FLOW = 1, DI_EN = 0, DMA2D = 1, 
WDSIZE = 10, WNR = 1, DMAEN = 1)
X_COUNT = 16

X_MODIFY = 4 for 32-bit data
Y_COUNT = 4 for four sub-buffers
Y_MODIFY = 4, same as X_MODIFY for contiguous sub-buffers

The synchronization core might read Y_COUNT to determine which 
sub-buffer is currently being transferred, and then allow one full 
sub-buffer to account for pipelining. For example, if a read of 
Y_COUNT shows a value of 3, then the software should assume that 
sub-buffer 3 is being transferred, but some portion of sub-buffer 2 
may not yet be received. The software could, however, safely pro-
ceed with processing sub-buffers 1 or 0.

• 1D unsynchronized FIFO—if a system’s design guarantees that         
the processing of a peripheral’s data and the DMA rate of the data 
will remain correlated in the steady state, but that short-term 
latency variations must be tolerated, it may be appropriate to build 
a simple FIFO. Here, the DMA channel may be programmed using 
1D Autobuffer mode addressing without any interrupts or polling. 
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Descriptor Structures

DMA descriptors may be used to transfer data to or from memory data     
structures that are not simple 1D or 2D arrays. For example, if a packet     
of data is to be transmitted from several different locations in memory 
(a header from one location, a payload from a list of several blocks of 
memory managed by a memory pool allocator, and a small trailer contain-
ing a checksum), a separate DMA descriptor can be prepared for each 
memory area, and the descriptors can be grouped in either an array or list 
as desired by selecting the appropriate FLOW setting in DMA_CONFIG.

The software can synchronize with the progress of the structure’s transfer 
by selecting interrupt notification for one or more of the descriptors. For 
example, the software might select interrupt notification for the header’s 
descriptor and for the trailer’s descriptor, but not for the payload blocks’ 
descriptors.

It is important to remember the meaning of the various fields in the     
DMA_CONFIG descriptor elements when building a list or array of DMA 
descriptors. In particular:

• The lower byte of DMA_CONFIG specifies the DMA transfer to be per-
formed by the current descriptor (for example, interrupt-enable, 
2D mode)

• The upper byte of DMA_CONFIG specifies the format of the next 
descriptor in the chain. The NDSIZE and FLOW fields in a given 
descriptor do not correspond to the format of the descriptor itself; 
they specify the link to the next descriptor, if any.

On the other hand, when the DMA unit is being restarted, both bytes of 
the DMA_CONFIG value written to the DMA channel’s DMA_CONFIG register 
should correspond to the current descriptor. At a minimum, the FLOW, 
NDSIZE, WNR, and DMAEN fields must all agree with the current descriptor; 
the WDSIZE, DI_EN, DI_SEL, RESTART, and DMA2D fields will be taken from 
the DMA_CONFIG value in the descriptor read from memory (and the field 
values initially written to the register are ignored).
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Descriptor Queue Management

A system designer might want to write a DMA Manager facility which     
accepts DMA requests from other software. The DMA Manager software 
does not know in advance when new work requests will be received or 
what these requests might contain. The software could manage these 
transfers using a circular linked list of DMA descriptors, where each 
descriptor’s NDPH and NDPL members point to the next descriptor, and the 
last descriptor points to the first.

The code that writes into this descriptor list could use the processor’s cir-
cular addressing modes (I, L, M, and B registers), so that it does not need to 
use comparison and conditional instructions to manage the circular struc-
ture. In this case, the NDPH and NDPL members of each descriptor could 
even be written once at startup, and skipped over as each descriptor’s new 
contents are written.

The recommended method for synchronization of a descriptor queue is 
through the use of an interrupt. The descriptor queue is structured so that 
at least the final valid descriptor is always programmed to generate an 
interrupt.

There are two general methods for managing a descriptor queue using 
interrupts:

• Interrupt on every descriptor

• Interrupt minimally - only on the last descriptor

Descriptor Queue Using Interrupts on Every Descriptor

In this system, the DMA Manager software synchronizes with the DMA 
unit by enabling an interrupt on every descriptor. This method should 
only be used if system design can guarantee that each interrupt event will 
be serviced separately (no interrupt overrun).
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To maintain synchronization of the descriptor queue, the non-interrupt 
software maintains a count of descriptors added to the queue, while the 
interrupt handler maintains a count of completed descriptors removed 
from the queue. The counts are equal only when the DMA channel is 
paused after having processed all the descriptors.

When each new work request is received, the DMA Manager software ini-
tializes a new descriptor, taking care to write a DMA_CONFIG value with a 
FLOW value of 0. Next, the software compares the descriptor counts to 
determine if the DMA channel is running or not. If the DMA channel is 
paused (counts equal), the software increments its count and then starts 
the DMA unit by writing the new descriptor’s DMA_CONFIG value to the 
DMA channel’s DMA_CONFIG register.

If the counts are unequal, the software instead modifies the next-to-last     
descriptor’s DMA_CONFIG value so that its upper half (FLOW and NDSIZE) now     
describes the newly queued descriptor. This operation does not disrupt the 
DMA channel, provided the rest of the descriptor data structure is initial-
ized in advance. It is necessary, however, to synchronize the software to 
the DMA to correctly determine whether the new or the old DMA_CONFIG 
value was read by the DMA channel.

This synchronization operation should be performed in the interrupt     
handler. First, upon interrupt, the handler should read the channel’s     
IRQ_STATUS register. If the DMA_RUN status bit is set, then the channel has 
moved on to processing another descriptor, and the interrupt handler may 
increment its count and exit. If the DMA_RUN status bit is not set, however, 
then the channel has paused, either because there are no more descriptors 
to process, or because the last descriptor was queued too late (that is, the 
modification of the next-to-last descriptor’s DMA_CONFIG element occurred 
after that element was read into the DMA unit.) In this case, the interrupt 
handler should write the DMA_CONFIG value appropriate for the last descrip-
tor to the DMA channel’s DMA_CONFIG register, increment the completed 
descriptor count, and exit.
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Again, this system can fail if the system’s interrupt latencies are large     
enough to cause any of the channel’s DMA interrupts to be dropped. An     
interrupt handler capable of safely synchronizing multiple descriptors’     
interrupts would need to be complex, performing several MMR accesses to 
ensure robust operation. In such a system environment, a minimal inter-
rupt synchronization method is preferred.

Descriptor Queue Using Minimal Interrupts

In this system, only one DMA interrupt event is possible in the queue at 
any time. The DMA interrupt handler for this system can also be 
extremely short. Here, the descriptor queue is organized into an “active” 
and a “waiting” portion, where interrupts are enabled only on the last 
descriptor in each portion.

When each new DMA request is processed, the software’s non-interrupt 
code fills in a new descriptor’s contents and adds it to the waiting portion 
of the queue. The descriptor’s DMA_CONFIG word should have a FLOW value 
of zero. If more than one request is received before the DMA queue com-
pletion interrupt occurs, the non-interrupt code should queue later 
descriptors, forming a waiting portion of the queue that is disconnected 
from the active portion of the queue being processed by the DMA unit. In 
other words, all but the last active descriptors contain FLOW values >= 4 
and have no interrupt enable set, while the last active descriptor contains a 
FLOW of 0 and an interrupt enable bit DI_EN set to 1. Also, all but the last 
waiting descriptors contain FLOW values >= 4 and no interrupt enables set, 
while the last waiting descriptor contains a FLOW of 0 and an interrupt 
enable bit set to 1. This ensures that the DMA unit can automatically pro-
cess the whole active queue and then issue one interrupt. Also, this 
arrangement makes it easy to start the waiting queue within the interrupt 
handler by a single DMA_CONFIG register write.
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After queuing a new waiting descriptor, the non-interrupt software should 
leave a message for its interrupt handler in a memory mailbox location 
containing the desired DMA_CONFIG value to use to start the first waiting 
descriptor in the waiting queue (or 0 to indicate no descriptors are     
waiting.)

It is critical that the software not modify the contents of the active     
descriptor queue directly, once its processing by the DMA unit has been     
started, unless careful synchronization measures are taken. In the most     
straightforward implementation of a descriptor queue, the DMA Manager 
software would never modify descriptors on the active queue; instead, the 
DMA Manager waits until the DMA queue completion interrupt indicates 
the processing of the entire active queue is complete.

When a DMA queue completion interrupt is received, the interrupt han-
dler reads the mailbox from the non-interrupt software and writes the 
value in it to the DMA channel’s DMA_CONFIG register. This single register 
write restarts the queue, effectively transforming the waiting queue to an 
active queue. The interrupt handler should then pass a message back to 
the non-interrupt software indicating the location of the last descriptor 
accepted into the active queue. If, on the other hand, the interrupt han-
dler reads its mailbox and finds a DMA_CONFIG value of zero, indicating 
there is no more work to perform, then it should pass an appropriate mes-
sage (for example, zero) back to the non-interrupt software indicating that 
the queue has stopped. This simple handler should be able to be coded in 
a very small number of instructions.

The non-interrupt software which accepts new DMA work requests needs 
to synchronize the activation of new work with the interrupt handler. If 
the queue has stopped (that is, if the mailbox from the interrupt software 
is zero), the non-interrupt software is responsible for starting the queue 
(writing the first descriptor’s DMA_CONFIG value to the channel’s 
DMA_CONFIG register). If the queue is not stopped, however, the 
non-interrupt software must not write the DMA_CONFIG register 
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(which would cause a DMA error), but instead it should queue the 
descriptor onto the waiting queue and update its mailbox directed to the 
interrupt handler.

DMA Errors (Aborts)
The DMA controller flags conditions that cause the DMA process to end 
abnormally (that is, abort). This functionality is provided as a tool for sys-
tem development and debug, as a way to detect DMA-related 
programming errors. DMA errors (aborts) are detected by the DMA chan-
nel module in the cases listed below. When a DMA error occurs, the 
channel is immediately stopped (DMA_RUN goes to 0) and any prefetched 
data is discarded. In addition, a DMA_ERROR interrupt is asserted.

There is only one DMA_ERROR interrupt for the whole DMA controller, 
which is asserted whenever any of the channels has detected an error 
condition.

The DMA_ERROR interrupt handler must do these things for each channel:

• Read each channel’s IRQ_STATUS register to look for a channel with 
the DMA_ERR bit set (bit 1).

• Clear the problem with that channel (for example, fix register 
values).

• Clear the DMA_ERR bit (write IRQ_STATUS with bit 1 = 1).
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The following error conditions are detected by the DMA hardware and 
result in a DMA Abort interrupt.

• The Configuration register contains invalid values:

- Incorrect WDSIZE value (WDSIZE = b#11)
- Bit 15 not set to 0
- Incorrect FLOW value (FLOW = 2, 3, or 5)
- NDSIZE value does not agree with FLOW. See Table 9-20.

• A disallowed register write occurred while the channel was run-
ning. Only the DMA_CONFIG and IRQ_STATUS registers can be written 
when DMA_RUN = 1.

• An address alignment error occurred during any memory access. 
For example, DMA_CONFIG register WDSIZE = 1 (16 bit) but the least 
significant bit (LSB) of the address is not equal to 0, or WDSIZE = 2 
(32 bit) but the two LSBs of the address are not equal to 00.

• A memory space transition was attempted (internal-to-external or 
vice versa).

• A memory access error occurred. Either an access attempt was 
made to an internal address not populated or defined as cache, or 
an external access caused an error (signaled by the external memory 
interface).

Some prohibited situations are not detected by the DMA hardware. No 
DMA abort is signaled for these situations:

• DMA_CONFIG Direction bit (WNR) does not agree with the direction of 
the mapped peripheral.

• DMA_CONFIG Direction bit does not agree with the direction of the 
MDMA channel.

• DMA_CONFIG Word Size (WDSIZE) is not supported by the mapped 
peripheral.
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• DMA_CONFIG Word Size in source and destination of the MDMA 
stream are not equal.

• Descriptor chain indicates data buffers that are not in the same 
internal/external memory space.

• In 2D DMA, X_COUNT = 1.

Table 9-20. Legal NDSIZE Values

FLOW NDSIZE Note

0 0

1 0

4 0 < NDSIZE <= 7 Descriptor array, no 
descriptor pointer 
fetched

6 0 < NDSIZE <= 8 Descriptor list, small 
descriptor pointer 
fetched

7 0 < NDSIZE <= 9 Descriptor list, large 
descriptor pointer 
fetched
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10 SPI COMPATIBLE PORT 
CONTROLLERS

The processor has a Serial Peripheral Interface (SPI) port that provides an 
I/O interface to a wide variety of SPI compatible peripheral devices.

With a range of configurable options, the SPI port provides a glueless 
hardware interface with other SPI compatible devices. SPI is a four-wire 
interface consisting of two data pins, a device select pin, and a clock pin. 
SPI is a full-duplex synchronous serial interface, supporting master modes, 
slave modes, and multimaster environments. The SPI compatible periph-
eral implementation also supports programmable baud rate and clock 
phase/polarities. The SPI features the use of open drain drivers to support 
the multimaster scenario and to avoid data contention.

Typical SPI compatible peripheral devices that can be used to interface to 
the SPI compatible interface include:

• Other CPUs or microcontrollers

• Codecs

• A/D converters

• D/A converters

• Sample rate converters

• SP/DIF or AES/EBU digital audio transmitters and receivers

• LCD displays
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• Shift registers

• FPGAs with SPI emulation

The SPI is an industry-standard synchronous serial link that supports 
communication with multiple SPI compatible devices. The SPI peripheral 
is a synchronous, four-wire interface consisting of two data pins (MOSI and 
MISO), one device select pin (SPISS), and a gated clock pin (SCK). With the 
two data pins, it allows for full-duplex operation to other SPI compatible 
devices. The SPI also includes programmable baud rates, clock phase, and 
clock polarity.

The SPI can operate in a multimaster environment by interfacing with 
several other devices, acting as either a master device or a slave device. In a 
multimaster environment, the SPI interface uses open drain outputs to 
avoid data bus contention.

Figure 10-1 provides a block diagram of the SPI. The interface is essen-
tially a shift register that serially transmits and receives data bits, one bit at 
a time at the SCK rate, to and from other SPI devices. SPI data is transmit-
ted and received at the same time through the use of a shift register. When 
an SPI transfer occurs, data is simultaneously transmitted (shifted serially 
out of the shift register) as new data is received (shifted serially into the 
other end of the same shift register). The SCK synchronizes the shifting and 
sampling of the data on the two serial data pins.

During SPI data transfers, one SPI device acts as the SPI link master, 
where it controls the data flow by generating the SPI serial clock and 
asserting the SPI device select signal (SPISS). The other SPI device acts as 
the slave and accepts new data from the master into its shift register, while 
it transmits requested data out of the shift register through its SPI trans-
mit data pin. Multiple processors can take turns being the master device, 
as can other microcontrollers or microprocessors. 
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One master device can also simultaneously shift data into multiple slaves 
(known as Broadcast mode). However, only one slave may drive its output 
to write data back to the master at any given time. This must be enforced 
in Broadcast mode, where several slaves can be selected to receive data 
from the master, but only one slave at a time can be enabled to send data 
back to the master.

In a multimaster or multidevice environment where multiple processors 
are connected via their SPI ports, all MOSI pins are connected together, all 
MISO pins are connected together, and all SCK pins are connected together.

For a multislave environment, the processor can make use of seven pro-
grammable flags, PF1–PF7, that are dedicated SPI slave select signals for 
the SPI slave devices.

 At reset, the SPI is disabled and configured as a slave.

Figure 10-1. SPI Block Diagram
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Interface Signals
The following section discusses the SPI signals.

Serial Peripheral Interface Clock Signal (SCK) 
The SCK signal is the SPI clock signal. This control signal is driven by the 
master and controls the rate at which data is transferred. The master may 
transmit data at a variety of baud rates. The SCK signal cycles once for each 
bit transmitted. It is an output signal if the device is configured as a mas-
ter, and an input signal if the device is configured as a slave.

The SCK is a gated clock that is active during data transfers only for the 
length of the transferred word. The number of active clock edges is equal 
to the number of bits driven on the data lines. Slave devices ignore the 
serial clock if the Serial Peripheral Slave Select Input (SPISS) is driven 
inactive (high). 

The SCK is used to shift out and shift in the data driven on the MISO and 
MOSI lines. Clock polarity and clock phase relative to data are programma-
ble in the SPI Control register (SPI_CTL) and define the transfer format 
(see “SPI Transfer Formats” on page 10-21).
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Serial Peripheral Interface Slave Select Input 
Signal

The SPISS signal is the SPI Serial Peripheral Slave Select Input signal. 
This is an active-low signal used to enable a processor when it is config-
ured as a slave device. This input-only pin behaves like a chip select and is 
provided by the master device for the slave devices. For a master device, it 
can act as an error signal input in case of the multimaster environment. In 
multimaster mode, if the SPISS input signal of a master is asserted 
(driven low), and the PSSE bit in the SPI_CTL register is enabled, 
an error has occurred. This means that another device is also trying to be 
the master device.

 The SPISS signal is the same pin as the PF0 pin.

Master Out Slave In (MOSI)
The MOSI pin is the Master Out Slave In pin, one of the bidirectional I/O 
data pins. If the processor is configured as a master, the MOSI pin becomes 
a data transmit (output) pin, transmitting output data. If the processor is 
configured as a slave, the MOSI pin becomes a data receive (input) pin, 
receiving input data. In an SPI interconnection, the data is shifted out 
from the MOSI output pin of the master and shifted into the MOSI input(s) 
of the slave(s).
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Master In Slave Out (MISO)
The MISO pin is the Master In Slave Out pin, one of the bidirectional I/O 
data pins. If the processor is configured as a master, the MISO pin becomes 
a data receive (input) pin, receiving input data. If the processor is config-
ured as a slave, the MISO pin becomes a data transmit (output) pin, 
transmitting output data. In an SPI interconnection, the data is shifted 
out from the MISO output pin of the slave and shifted into the MISO input 
pin of the master.

 Only one slave is allowed to transmit data at any given time.

The SPI configuration example in Figure 10-2 illustrates how the proces-
sor can be used as the slave SPI device. The 8-bit host microcontroller is 
the SPI master.

 The processor can be booted via its SPI interface to allow user 
application code and data to be downloaded before runtime.

Figure 10-2. ADSP-BF533 as Slave SPI Device

8-BIT HOST
MICROCONTROLLER

BLACKFIN PROCESSOR
SLAVE SPI DEVICE

SCLK

MOSI

MISO MISO

SCK

MOSI

SPISSS_SEL



ADSP-BF533 Blackfin Processor Hardware Reference 10-7 
 

SPI Compatible Port Controllers

Interrupt Output
The SPI has two interrupt output signals: a data interrupt and an error 
interrupt.

The behavior of the SPI data interrupt signal depends on the Transfer Ini-
tiation mode bit field (TIMOD) in the SPI Control register. In DMA mode 
(TIMOD = 1X), the data interrupt acts as a DMA request and is generated 
when the DMA FIFO is ready to be written to (TIMOD = 11) or read from 
(TIMOD = 10). In non-DMA mode (TIMOD = 0X), a data interrupt is gener-
ated when the SPI_TDBR is ready to be written to (TIMOD = 01) or when the 
SPI_RDBR is ready to be read from (TIMOD = 00).

An SPI Error interrupt is generated in a master when a Mode Fault Error 
occurs, in both DMA and non-DMA modes. An error interrupt can also 
be generated in DMA mode when there is an underflow (TXE when 
TIMOD = 11) or an overflow (RBSY when TIMOD = 10) error condition. In 
non-DMA mode, the underflow and overflow conditions set the TXE and 
RBSY bits in the SPI_STAT register, respectively, but do not generate an 
error interrupt.

For more information about this interrupt output, see the discussion of 
the TIMOD bits in “SPI_CTL Register” on page 10-9.

SPI Registers
The SPI peripheral includes a number of user-accessible registers. Some of 
these registers are also accessible through the DMA bus. Four registers 
contain control and status information: SPI_BAUD, SPI_CTL, SPI_FLG, and 
SPI_STAT. Two registers are used for buffering receive and transmit data: 
SPI_RDBR and SPI_TDBR. For information about DMA-related registers, see 
Chapter 9, “Direct Memory Access”. The shift register, SFDR, is internal to 
the SPI module and is not directly accessible.
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See “Error Signals and Flags” on page 10-29 for more information about 
how the bits in these registers are used to signal errors and other condi-
tions. See “Register Functions” on page 10-20 for more information about 
SPI register and bit functions.

SPI_BAUD Register
The SPI Baud Rate register (SPI_BAUD) is used to set the bit transfer rate 
for a master device. When configured as a slave, the value written to this 
register is ignored. The serial clock frequency is determined by this 
formula:

SCK Frequency = (Peripheral clock frequency SCLK)/(2 x SPI_BAUD)

Writing a value of 0 or 1 to the register disables the serial clock. There-
fore, the maximum serial clock rate is one-fourth the system clock rate.

Table 10-1 lists several possible baud rate values for SPI_BAUD.

Figure 10-3. SPI Baud Rate Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Baud Rate
SCLK / (2 SPI_BAUD)

Reset = 0x0000

SPI Baud Rate Register (SPI_BAUD)

0xFFC0 0514
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SPI_CTL Register
The SPI Control register (SPI_CTL) is used to configure and enable the SPI 
system. This register is used to enable the SPI interface, select the device as 
a master or slave, and determine the data transfer format and word size.

The term “word” refers to a single data transfer of either 8 bits or 16 bits, 
depending on the word length (SIZE) bit in SPI_CTL. There are two special 
bits which can also be modified by the hardware: SPE and MSTR.

The TIMOD field is used to specify the action that initiates transfers to/from 
the receive/transmit buffers. When set to 00, a SPI port transaction is 
begun when the receive buffer is read. Data from the first read will need to 
be discarded since the read is needed to initiate the first SPI port transac-
tion. When set to 01, the transaction is initiated when the transmit buffer 
is written. A value of 10 selects DMA Receive mode and the first transac-
tion is initiated by enabling the SPI for DMA Receive mode. Subsequent 
individual transactions are initiated by a DMA read of the SPI_RDBR. A 
value of 11 selects DMA Transmit mode and the transaction is initiated 
by a DMA write of the SPI_TDBR.

The PSSE bit is used to enable the SPISS input for master. When not used, 
SPISS can be disabled, freeing up a chip pin as general-purpose I/O. 

Table 10-1. SPI Master Baud Rate Example 

SPI_BAUD Decimal Value SPI Clock (SCK) Divide 
Factor

Baud Rate for 
SCLK at 100 MHz

0 N/A N/A

1 N/A N/A

2 4 25 MHz

3 6 16.7 MHz

4 8 12.5 MHz

65,535 (0xFFFF) 131,070 763 Hz
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The EMISO bit enables the MISO pin as an output. This is needed in an 
environment where the master wishes to transmit to various slaves at one 
time (broadcast). Only one slave is allowed to transmit data back to the 
master. Except for the slave from whom the master wishes to receive, all 
other slaves should have this bit cleared.

The SPE and MSTR bits can be modified by hardware when the MODF bit of 
the Status register is set. See “Mode Fault Error (MODF)” on page 10-29.

Figure 10-4 provides the bit descriptions for SPI_CTL.

SPI_FLG Register
If the SPI is enabled as a master, the SPI uses the SPI Flag register 
(SPI_FLG) to enable up to seven general-purpose programmable flag pins 
to be used as individual slave select lines. In Slave mode, the SPI_FLG bits 
have no effect, and each SPI uses the SPISS input as a slave select. 
Figure 10-5 shows the SPI_FLG register diagram.

The SPI_FLG register consists of two sets of bits that function as follows.

• Slave Select Enable (FLSx) bits

Each FLSx bit corresponds to a Programmable Flag (PFx) pin. 
When a FLSx bit is set, the corresponding PFx pin is driven as a 
slave select. For example, if FLS1 is set in SPI_FLG, PF1 is driven as a 
slave select (SPISEL1). Table 10-2 shows the association of the FLSx 
bits and the corresponding PFx pins.

If the FLSx bit is not set, the general-purpose programmable flag 
registers (FIO_DIR and others) configure and control the corre-
sponding PFx pin.
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Figure 10-4. SPI Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 1 0 0 0 0 0 0 0 0 00

TIMOD (Transfer Initiation Mode)
00 - Start transfer with read of

SPI_RDBR, interrupt when
SPI_RDBR is full

01 - Start transfer with write of
SPI_TDBR, interrupt when
SPI_TDBR is empty

10 - Start transfer with DMA read
of SPI_RDBR, request further 
DMA reads as long as SPI DMA
FIFO is not empty

11 - Start transfer with DMA write
of SPI_TDBR, request further
DMA writes as long as SPI DMA
FIFO is not full

SZ (Send Zero)
Send zero or last word when
SPI_TDBR is empty
0 - Send last word
1 - Send zeros

GM (Get More Data)
When SPI_RDBR is full, get
data or discard incoming data
0 - Discard incoming data
1 - Get more data, overwrite

previous data

PSSE (Slave Select Enable)
0 - Disable
1 - Enable

EMISO (Enable MISO)
0 - MISO disabled
1 - MISO enabled

Reset = 0x0400

SPE (SPI Enable)
0 - Disabled
1 - Enabled

WOM (Write Open Drain 
Master)
0 - Normal
1 - Open drain

MSTR (Master)
Sets the SPI module as
master or slave
0 - Slave
1 - Master

CPOL (Clock Polarity)
0 - Active high SCK
1 - Active low SCK

CPHA (Clock Phase)
Selects transfer format and 
operation mode
0 - SCLK toggles from middle

of the first data bit, slave select
pins controlled by hardware.

1 - SCLK toggles from beginning
of first data bit, slave select
pins controller by user software.

LSBF (LSB First)
0 - MSB sent/received first
1 - LSB sent/received first

SIZE (Size of Words)
0 - 8 bits
1 - 16 bits

SPI Control Register (SPI_CTL)

0xFFC0 0500
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Figure 10-5. SPI Flag Register

Reset = 0xFF00

FLS1 (Slave Select Enable 1)
0 - SPISEL1 disabled
1 - SPISEL1 enabled

FLS2 (Slave Select Enable 2)
0 - SPISEL2 disabled
1 - SPISEL2 enabled

FLS3 (Slave Select Enable 3)
0 - SPISEL3 disabled
1 - SPISEL3 enabled

FLS4 (Slave Select Enable 4)
0 - SPISEL4 disabled
1 - SPISEL4 enabled

FLS5 (Slave Select Enable 5)
0 - SPISEL5 disabled
1 - SPISEL5 enabled

FLS6 (Slave Select Enable 6)
0 - SPISEL6 disabled
1 - SPISEL6 enabled

FLS7 (Slave Select Enable 7)
0 - SPISEL7 disabled
1 - SPISEL7 enabled

FLG7 (Slave 
Select Value 7)
SPISEL7 value

FLG6 (Slave Select 
Value 6)
SPISEL6 value

FLG5 (Slave Select 
Value 5)
SPISEL5 value

FLG4 (Slave Select
 Value 4)
SPISEL4 value

FLG3 (Slave Select Value 3)
SPISEL3 value

FLG2 (Slave Select Value 2)
SPISEL2 value

FLG1 (Slave Select Value 1)
SPISEL1 value

SPI Flag Register (SPI_FLG)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

01 1 1 1 1 1 1 1 0 0 0 0 0 0 00xFFC0 0504
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• Slave Select Value (FLGx) bits

• When a PFx pin is configured as a slave select output, the FLGx bits 
can determine the value driven onto the output. If the CPHA bit in 
SPI_CTL is set, the output value is set by software control of the 
FLGx bits. The SPI protocol permits the slave select line to either 
remain asserted (low) or be deasserted between transferred words. 
The user must set or clear the appropriate FLGx bits. For example, 
to drive PF3 as a slave select, FLS3 in SPI_FLG must be set. Clearing 
FLG3 in SPI_FLG drives PF3 low; setting FLG3 drives PF3 high. The 
PF3 pin can be cycled high and low between transfers by setting 
and clearing FLG3. Otherwise, PF3 remains active (low) between 
transfers.

If CPHA = 0, the SPI hardware sets the output value and the FLGx 
bits are ignored. The SPI protocol requires that the slave select be 
deasserted between transferred words. In this case, the SPI hard-
ware controls the pins. For example, to use PF3 as a slave select pin, 
it is only necessary to set the FLS3 bit in SPI_FLG. It is not necessary 
to write to the FLG3 bit, because the SPI hardware automatically 
drives the PF3 pin.
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Slave Select Inputs

If the SPI is in Slave mode, SPISS acts as the slave select input. When 
enabled as a master, SPISS can serve as an error detection input for the SPI 
in a multimaster environment. The PSSE bit in SPI_CTL enables this fea-
ture. When PSSE = 1, the SPISS input is the master mode error input. 
Otherwise, SPISS is ignored.

Table 10-2. SPI_FLG Bit Mapping to PFx Pins 

Bit Name Function PFx Pin Default

0 Reserved 0

1 FLS1 SPISEL1 Enable PF1 0

2 FLS2 SPISEL2 Enable PF2 0

3 FLS3 SPISEL3 Enable PF3 0

4 FLS4 SPISEL4 Enable PF4 0

5 FLS5 SPISEL5 Enable PF5 0

6 FLS6 SPISEL6 Enable PF6 0

7 FLS7 SPISEL7 Enable PF7 0

8 Reserved 1

9 FLG1 SPISEL1 Value PF1 1

10 FLG2 SPISEL2 Value PF2 1

11 FLG3 SPISEL3 Value PF3 1

12 FLG4 SPISEL4 Value PF4 1

13 FLG5 SPISEL5 Value PF5 1

14 FLG6 SPISEL6 Value PF6 1

15 FLG7 SPISEL7 Value PF7 1
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Use of FLS Bits in SPI_FLG for Multiple Slave SPI Systems

The FLSx bits in the SPI_FLG register are used in a multiple slave SPI envi-
ronment. For example, if there are eight SPI devices in the system 
including a processor master, the master processor can support the SPI 
mode transactions across the other seven devices. This configuration 
requires only one master processor in this multislave environment. For 
example, assume that the SPI is the master. The seven flag pins (PF1–PF7) 
on the processor master can be connected to each of the slave SPI device’s 
SPISS pins. In this configuration, the FLSx bits in SPI_FLG can be used in 
three cases.

In cases 1 and 2, the processor is the master and the seven microcon-
trollers/peripherals with SPI interfaces are slaves. The processor can:

1. Transmit to all seven SPI devices at the same time in a broadcast 
mode. Here, all FLSx bits are set. 

2. Receive and transmit from one SPI device by enabling only one 
slave SPI device at a time. 

In case 3, all eight devices connected via SPI ports can be other 
processors.

3. If all the slaves are also processors, then the requester can receive 
data from only one processor (enabled by clearing the EMISO bit in 
the six other slave processors) at a time and transmit broadcast data 
to all seven at the same time. This EMISO feature may be available in 
some other microcontrollers. Therefore, it is possible to use the 
EMISO feature with any other SPI device that includes this 
functionality.

Figure 10-6 shows one processor as a master with three processors (or 
other SPI compatible devices) as slaves.
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SPI_STAT Register
The SPI Status register (SPI_STAT) is used to detect when an SPI transfer is 
complete or if transmission/reception errors occur. The SPI_STAT register 
can be read at any time.

Some of the bits in SPI_STAT are read-only and other bits are sticky. Bits 
that provide information only about the SPI are read-only. These bits are 
set and cleared by the hardware. Sticky bits are set when an error condi-
tion occurs. These bits are set by hardware and must be cleared by 
software. To clear a sticky bit, the user must write a 1 to the desired bit 
position of SPI_STAT. For example, if the TXE bit is set, the user must write 
a 1 to bit 2 of SPI_STAT to clear the TXE error condition. This allows the 
user to read SPI_STAT without changing its value.

 Sticky bits are cleared on a reset, but are not cleared on an SPI 
disable.

Figure 10-6. Single-Master, Multiple-Slave Configuration
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SLAVE DEVICE

SCK MOSIMISO SCK MOSIMISO SCK
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The transmit buffer becomes full after it is written to. It becomes empty 
when a transfer begins and the transmit value is loaded into the shift regis-
ter. The receive buffer becomes full at the end of a transfer when the shift 
register value is loaded into the receive buffer. It becomes empty when the 
receive buffer is read.

 The SPIF bit is set when the SPI port is disabled.

 Upon entering DMA mode, the transmit buffer and the receive 
buffer become empty. That is, the TXS bit and the RXS bit are ini-
tially cleared upon entering DMA mode.

Figure 10-7. SPI Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0001

SPIF (SPI Finished) - RO
Set when SPI single word
transfer complete

MODF (Mode Fault Error) - 
W1C
Set in a master device when
some other device tries to
become the master

TXE (Transmission Error) - 
W1C
Set when transmission
occurred with no new data in
SPI_TDBR

SPI Status Register (SPI_STAT)

TXCOL (Transmit Collision Error) - W1C
When set, corrupt data may 
have been transmitted

RXS (RX Data Buffer Status) - RO
0 - Empty
1 - Full

RBSY (Receive Error) - W1C
Set when data is received with 
receive buffer full

TXS (SPI_TDBR Data Buffer Status) - RO
0 - Empty
1 - Full

0xFFC0 0508
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 When using DMA for SPI transmit, the DMA_DONE interrupt signi-
fies that the DMA FIFO is empty. However, at this point there 
may still be data in the SPI DMA FIFO waiting to be transmitted. 
Therefore, software needs to poll TXS in the SPI_STAT register until 
it goes low for 2 successive reads, at which point the SPI DMA 
FIFO will be empty. When the SPIF bit subsequently goes high, 
the last word has been transferred.

SPI_TDBR Register
The SPI Transmit Data Buffer register (SPI_TDBR) is a 16-bit read-write 
register. Data is loaded into this register before being transmitted. Just 
prior to the beginning of a data transfer, the data in SPI_TDBR is loaded 
into the Shift Data register (SFDR). A read of SPI_TDBR can occur at any 
time and does not interfere with or initiate SPI transfers.

When the DMA is enabled for transmit operation, the DMA engine loads 
data into this register for transmission just prior to the beginning of a data 
transfer. A write to SPI_TDBR should not occur in this mode because this 
data will overwrite the DMA data to be transmitted.

When the DMA is enabled for receive operation, the contents of SPI_TDBR 
are repeatedly transmitted. A write to SPI_TDBR is permitted in this mode, 
and this data is transmitted.

If the Send Zeros control bit (SZ in the SPI_CTL register) is set, SPI_TDBR 
may be reset to 0 under certain circumstances.

If multiple writes to SPI_TDBR occur while a transfer is already in progress, 
only the last data written is transmitted. None of the intermediate values 
written to SPI_TDBR are transmitted. Multiple writes to SPI_TDBR are pos-
sible, but not recommended.
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SPI_RDBR Register
The SPI Receive Data Buffer register (SPI_RDBR) is a 16-bit read-only reg-
ister. At the end of a data transfer, the data in the shift register is loaded 
into SPI_RDBR. During a DMA receive operation, the data in SPI_RDBR is 
automatically read by the DMA. When SPI_RDBR is read via software, the 
RXS bit is cleared and an SPI transfer may be initiated (if TIMOD = 00). 

SPI_SHADOW Register
The SPI RDBR Shadow register (SPI_SHADOW), has been provided for use 
in debugging software. This register is at a different address than the 
receive data buffer, SPI_RDBR, but its contents are identical to that of 
SPI_RDBR. When a software read of SPI_RDBR occurs, the RXS bit in 
SPI_STAT is cleared and an SPI transfer may be initiated (if TIMOD = 00 in 

SPI_CTL). No such hardware action occurs when the SPI_SHADOW register is 
read. The SPI_SHADOW register is read-only. 

Figure 10-8. SPI Transmit Data Buffer Register

Figure 10-9. SPI Receive Data Buffer Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

Transmit Data Buffer

SPI Transmit Data Buffer Register (SPI_TDBR)

0xFFC0 050C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

Receive Data Buffer

SPI Receive Data Buffer Register (SPI_RDBR)
RO

0xFFC0 0510



SPI Registers

10-20 ADSP-BF533 Blackfin Processor Hardware Reference
 

Register Functions
Table 10-3 summarizes the functions of the SPI registers.

Figure 10-10. SPI RDBR Shadow Register

Table 10-3. SPI Register Mapping 

Register Name Function Notes

SPI_CTL SPI port control SPE and MSTR bits can also be modified by 
hardware (when MODF is set)

SPI_FLG SPI port flag Bits 0 and 8 are reserved

SPI_STAT SPI port status SPIF bit can be set by clearing SPE in SPI_CTL

SPI_TDBR SPI port transmit 
data buffer

Register contents can also be modified by hard-
ware (by DMA and/or when SZ = 1 in 
SPI_CTL)

SPI_RDBR SPI port receive 
data buffer

When register is read, hardware events are trig-
gered

SPI_BAUD SPI port baud 
control

Value of 0 or 1 disables the serial clock

SPI_SHADOW SPI port data Register has the same contents as SPI_RDBR, 
but no action is taken when it is read

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

SPI_RDBR Shadow

SPI RDBR Shadow Register (SPI_SHADOW)
RO

0xFFC0 0518
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SPI Transfer Formats
The SPI supports four different combinations of serial clock phase and 
polarity (SPI modes 0-3). These combinations are selected using the CPOL 
and CPHA bits in SPI_CTL, as shown in Figure 10-11.

Figure 10-12 and Figure 10-13 demonstrate the two basic transfer formats 
as defined by the CPHA bit. Two waveforms are shown for SCK—one for 
CPOL = 0 and the other for CPOL = 1. The diagrams may be interpreted as 
master or slave timing diagrams since the SCK, MISO, and MOSI pins are 
directly connected between the master and the slave. The MISO signal is the 
output from the slave (slave transmission), and the MOSI signal is the out-
put from the master (master transmission). The SCK signal is generated by 
the master, and the SPISS signal is the slave device select input to the slave 
from the master. The diagrams represent an 8-bit transfer (SIZE = 0) with 
the Most Significant Bit (MSB) first (LSBF = 0). Any combination of the 
SIZE and LSBF bits of SPI_CTL is allowed. For example, a 16-bit transfer 
with the Least Significant Bit (LSB) first is another possible configuration.

Figure 10-11. SPI Modes of Operation
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The clock polarity and the clock phase should be identical for the master 
device and the slave device involved in the communication link. The 
transfer format from the master may be changed between transfers to 
adjust to various requirements of a slave device.

When CPHA = 0, the slave select line, SPISS, must be inactive (high) 
between each serial transfer. This is controlled automatically by the SPI 
hardware logic. When CPHA = 1, SPISS may either remain active (low) 
between successive transfers or be inactive (high). This must be controlled 
by the software via manipulation of SPI_FLG.

Figure 10-12 shows the SPI transfer protocol for CPHA = 0. Note SCK starts 
toggling in the middle of the data transfer, SIZE = 0, and LSBF = 0.

Figure 10-13 shows the SPI transfer protocol for CPHA = 1. Note SCK starts 
toggling at the beginning of the data transfer, SIZE = 0, and LSBF = 0.

Figure 10-12. SPI Transfer Protocol for CPHA = 0
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SPI General Operation
The SPI can be used in a single master as well as multimaster environ-
ment. The MOSI, MISO, and the SCK signals are all tied together in both 
configurations. SPI transmission and reception are always enabled simul-
taneously, unless the Broadcast mode has been selected. In Broadcast 
mode, several slaves can be enabled to receive, but only one of the slaves 
must be in Transmit mode driving the MISO line. If the transmit or receive 
is not needed, it can simply be ignored. This section describes the clock 
signals, SPI operation as a master and as a slave, and error generation.

Precautions must be taken to avoid data corruption when changing the 
SPI module configuration. The configuration must not be changed during 
a data transfer. The clock polarity should only be changed when no slaves 
are selected. An exception to this is when an SPI communication link con-
sists of a single master and a single slave, CPHA = 1, and the slave select 
input of the slave is always tied low. In this case, the slave is always 
selected and data corruption can be avoided by enabling the slave only 
after both the master and slave devices are configured.

Figure 10-13. SPI Transfer Protocol for CPHA = 1
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In a multimaster or multislave SPI system, the data output pins (MOSI and 
MISO) can be configured to behave as open drain outputs, which prevents 
contention and possible damage to pin drivers. An external pull-up resis-
tor is required on both the MOSI and MISO pins when this option is 
selected.

The WOM bit controls this option. When WOM is set and the SPI is config-
ured as a master, the MOSI pin is three-stated when the data driven out on 
MOSI is a logic high. The MOSI pin is not three-stated when the driven data 
is a logic low. Similarly, when WOM is set and the SPI is configured as a 
slave, the MISO pin is three-stated if the data driven out on MISO is a logic 
high.

Clock Signals
The SCK signal is a gated clock that is only active during data transfers for 
the duration of the transferred word. The number of active edges is equal 
to the number of bits driven on the data lines. The clock rate can be as 
high as one-fourth of the SCLK rate. For master devices, the clock rate is 
determined by the 16-bit value of SPI_BAUD. For slave devices, the value in 
SPI_BAUD is ignored. When the SPI device is a master, SCK is an output sig-
nal. When the SPI is a slave, SCK is an input signal. Slave devices ignore 
the serial clock if the slave select input is driven inactive (high).

The SCK signal is used to shift out and shift in the data driven onto the 
MISO and MOSI lines. The data is always shifted out on one edge of the 
clock and sampled on the opposite edge of the clock. Clock polarity and 
clock phase relative to data are programmable into SPI_CTL and define the 
transfer format.
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Master Mode Operation
When the SPI is configured as a master (and DMA mode is not selected), 
the interface operates in the following manner.

1. The core writes to SPI_FLG, setting one or more of the SPI Flag 
Select bits (FLSx). This ensures that the desired slaves are properly 
deselected while the master is configured.

2. The core writes to the SPI_BAUD and SPI_CTL registers, enabling the 
device as a master and configuring the SPI system by specifying the 
appropriate word length, transfer format, baud rate, and other nec-
essary information.

3. If CPHA = 1, the core activates the desired slaves by clearing one or 
more of the SPI flag bits (FLGx) of SPI_FLG.

4. The TIMOD bits in SPI_CTL determine the SPI Transfer Initiate 
mode. The transfer on the SPI link begins upon either a data write 
by the core to the transmit data buffer (SPI_TDBR) or a data read of 
the receive data buffer (SPI_RDBR).

5. The SPI then generates the programmed clock pulses on SCK and 
simultaneously shifts data out of MOSI and shifts data in from MISO. 
Before a shift, the shift register is loaded with the contents of the 
SPI_TDBR register. At the end of the transfer, the contents of the 
shift register are loaded into SPI_RDBR.

6. With each new Transfer Initiate command, the SPI continues to 
send and receive words, according to the SPI Transfer Initiate 
mode.
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If the transmit buffer remains empty or the receive buffer remains full, the 
device operates according to the states of the SZ and GM bits in SPI_CTL. If 
SZ = 1 and the transmit buffer is empty, the device repeatedly transmits 0s 
on the MOSI pin. One word is transmitted for each new Transfer Initiate 
command. If SZ = 0 and the transmit buffer is empty, the device 
repeatedly transmits the last word it transmitted before the transmit buffer 
became empty. If GM = 1 and the receive buffer is full, the device contin-
ues to receive new data from the MISO pin, overwriting the older data in 
the SPI_RDBR buffer. If GM = 0 and the receive buffer is full, the incoming 
data is discarded, and SPI_RDBR is not updated.

Transfer Initiation From Master (Transfer Modes)
When a device is enabled as a master, the initiation of a transfer is defined 
by the two TIMOD bits of SPI_CTL. Based on those two bits and the status of 
the interface, a new transfer is started upon either a read of SPI_RDBR or a 
write to SPI_TDBR. This is summarized in Table 10-4.

 If the SPI port is enabled with TIMOD = 01 or TIMOD = 11, the hard-
ware immediately issues a first interrupt or DMA request.
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Slave Mode Operation
When a device is enabled as a slave (and DMA mode is not selected), the 
start of a transfer is triggered by a transition of the SPISS select signal to 
the active state (low), or by the first active edge of the clock (SCK), depend-
ing on the state of CPHA.

Table 10-4. Transfer Initiation

TIMOD Function Transfer Initiated Upon Action, Interrupt

00 Transmit and 
Receive

Initiate new single word trans-
fer upon read of SPI_RDBR 
and previous transfer com-
pleted.

Interrupt active when receive 
buffer is full.

Read of SPI_RDBR clears 
interrupt.

01 Transmit and 
Receive

Initiate new single word trans-
fer upon write to SPI_TDBR 
and previous transfer com-
pleted.

Interrupt active when transmit 
buffer is empty.

Writing to SPI_TDBR clears 
interrupt.

10 Receive with 
DMA

Initiate new multiword trans-
fer upon enabling SPI for DMA 
mode. Individual word trans-
fers begin with a DMA read of 
SPI_RDBR, and last transfer 
completed.

Request DMA reads as long as 
SPI DMA FIFO is not empty.

11 Transmit with 
DMA

Initiate new multiword trans-
fer upon enabling SPI for DMA 
mode. Individual word trans-
fers begin with a DMA write to 
SPI_TDBR, and last transfer 
completed.

Request DMA writes as long as 
SPI DMA FIFO is not full.
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These steps illustrate SPI operation in the Slave mode:

1. The core writes to SPI_CTL to define the mode of the serial link to 
be the same as the mode setup in the SPI master.

2. To prepare for the data transfer, the core writes data to be trans-
mitted into SPI_TDBR.

3. Once the SPISS falling edge is detected, the slave starts shifting 
data out on MISO and in from MOSI on SCK edges, depending on the 
states of CPHA and CPOL.

4. Reception/transmission continues until SPISS is released or until 
the slave has received the proper number of clock cycles.

5. The slave device continues to receive/transmit with each new fall-
ing edge transition on SPISS and/or SCK clock edge.

If the transmit buffer remains empty or the receive buffer remains full, the 
device operates according to the states of the SZ and GM bits in SPI_CTL. If 
SZ = 1 and the transmit buffer is empty, the device repeatedly transmits 0s 
on the MISO pin. If SZ = 0 and the transmit buffer is empty, it repeatedly 
transmits the last word it transmitted before the transmit buffer became 
empty. If GM = 1 and the receive buffer is full, the device continues to 
receive new data from the MOSI pin, overwriting the older data in 
SPI_RDBR. If GM = 0 and the receive buffer is full, the incoming data is dis-
carded, and SPI_RDBR is not updated.
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Slave Ready for a Transfer
When a device is enabled as a slave, the actions shown in Table 10-5 are 
necessary to prepare the device for a new transfer.

Error Signals and Flags
The status of a device is indicated by the SPI_STAT register. See 
“SPI_STAT Register” on page 10-16 for more information.

Mode Fault Error (MODF)
The MODF bit is set in SPI_STAT when the SPISS input pin of a device 
enabled as a master is driven low by some other device in the system. This 
occurs in multimaster systems when another device is also trying to be the 
master. To enable this feature, the PSSE bit in SPI_CTL must be set. This 
contention between two drivers can potentially damage the driving pins. 
As soon as this error is detected, these actions occur:

Table 10-5. Transfer Preparation

TIMOD Function Action, Interrupt

00 Transmit and 
Receive

Interrupt active when receive buffer is full.

Read of SPI_RDBR clears interrupt.

01 Transmit and 
Receive

Interrupt active when transmit buffer is empty.

Writing to SPI_TDBR clears interrupt.

10 Receive with 
DMA

Request DMA reads as long as SPI DMA FIFO is not empty.

11 Transmit with 
DMA

Request DMA writes as long as SPI DMA FIFO is not full.
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• The MSTR control bit in SPI_CTL is cleared, configuring the SPI 
interface as a slave

• The SPE control bit in SPI_CTL is cleared, disabling the SPI system

• The MODF status bit in SPI_STAT is set

• An SPI Error interrupt is generated

These four conditions persist until the MODF bit is cleared by software. 
Until the MODF bit is cleared, the SPI cannot be re-enabled, even as a slave. 
Hardware prevents the user from setting either SPE or MSTR while MODF is 
set.

When MODF is cleared, the interrupt is deactivated. Before attempting to 
re-enable the SPI as a master, the state of the SPISS input pin should be 
checked to make sure the pin is high. Otherwise, once SPE and MSTR are 
set, another Mode Fault Error condition immediately occurs.

When SPE and MSTR are cleared, the SPI data and clock pin drivers (MOSI, 
MISO, and SCK) are disabled. However, the slave select output pins revert to 
being controlled by the programmable flag registers. This could lead to 
contention on the slave select lines if these lines are still driven by the pro-
cessor. To ensure that the slave select output drivers are disabled once an 
MODF error occurs, the program must configure the programmable flag reg-
isters appropriately.

When enabling the MODF feature, the program must configure as inputs all 
of the PFx pins that will be used as slave selects. Programs can do this by 
configuring the direction of the PFx pins prior to configuring the SPI. 
This ensures that, once the MODF error occurs and the slave selects are auto-
matically reconfigured as PFx pins, the slave select output drivers are 
disabled.
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Transmission Error (TXE)
The TXE bit is set in SPI_STAT when all the conditions of transmission are 
met, and there is no new data in SPI_TDBR (SPI_TDBR is empty). In this 
case, the contents of the transmission depend on the state of the SZ bit in 
SPI_CTL. The TXE bit is sticky (W1C).

Reception Error (RBSY)
The RBSY flag is set in the SPI_STAT register when a new transfer is com-
pleted, but before the previous data can be read from SPI_RDBR. The state 
of the GM bit in the SPI_CTL register determines whether SPI_RDBR is 
updated with the newly received data. The RBSY bit is sticky (W1C).

Transmit Collision Error (TXCOL)
The TXCOL flag is set in SPI_STAT when a write to SPI_TDBR coincides with 
the load of the shift register. The write to SPI_TDBR can be via software or 
the DMA. The TXCOL bit indicates that corrupt data may have been loaded 
into the shift register and transmitted. In this case, the data in SPI_TDBR 
may not match what was transmitted. This error can easily be avoided by 
proper software control. The TXCOL bit is sticky (W1C).

Beginning and Ending an SPI Transfer
The start and finish of an SPI transfer depend on whether the device is 
configured as a master or a slave, whether the CPHA mode is selected, and 
whether the Transfer Initiation mode (TIMOD) is selected. For a master SPI 
with CPHA = 0, a transfer starts when either SPI_TDBR is written to or 
SPI_RDBR is read, depending on TIMOD. At the start of the transfer, the 
enabled slave select outputs are driven active (low). However, the SCK sig-
nal remains inactive for the first half of the first cycle of SCK. For a slave 
with CPHA = 0, the transfer starts as soon as the SPISS input goes low.
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For CPHA = 1, a transfer starts with the first active edge of SCK for both 
slave and master devices. For a master device, a transfer is considered fin-
ished after it sends the last data and simultaneously receives the last data 
bit. A transfer for a slave device ends after the last sampling edge of SCK.

The RXS bit defines when the receive buffer can be read. The TXS bit 
defines when the transmit buffer can be filled. The end of a single word 
transfer occurs when the RXS bit is set, indicating that a new word has just 
been received and latched into the receive buffer, SPI_RDBR. For a master 
SPI, RXS is set shortly after the last sampling edge of SCK. For a slave SPI, 
RXS is set shortly after the last SCK edge, regardless of CPHA or CPOL. The 
latency is typically a few SCLK cycles and is independent of TIMOD and the 
baud rate. If configured to generate an interrupt when SPI_RDBR is full 
(TIMOD = 00), the interrupt goes active one SCLK cycle after RXS is set. 
When not relying on this interrupt, the end of a transfer can be detected 
by polling the RXS bit.

To maintain software compatibility with other SPI devices, the SPIF bit is 
also available for polling. This bit may have a slightly different behavior 
from that of other commercially available devices. For a slave device, SPIF 
is cleared shortly after the start of a transfer (SPISS going low for 
CPHA = 0, first active edge of SCK on CPHA = 1), and is set at the same time 
as RXS. For a master device, SPIF is cleared shortly after the start of a 
transfer (either by writing the SPI_TDBR or reading the SPI_RDBR, 
depending on TIMOD), and is set one-half SCK period after the last SCK edge, 
regardless of CPHA or CPOL.

The time at which SPIF is set depends on the baud rate. In general, SPIF is 
set after RXS, but at the lowest baud rate settings (SPI_BAUD < 4). The 
SPIF bit is set before RXS is set, and consequently before new data is 
latched into SPI_RDBR, because of the latency. Therefore, for 
SPI_BAUD = 2 or SPI_BAUD = 3, RXS must be set before SPIF to read 
SPI_RDBR. For larger SPI_BAUD settings, RXS is guaranteed to be set before 
SPIF is set.
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If the SPI port is used to transmit and receive at the same time, or to 
switch between receive and transmit operation frequently, then the 
TIMOD = 00 mode may be the best operation option. In this mode, software 
performs a dummy read from the SPI_RDBR register to initiate the first 
transfer. If the first transfer is used for data transmission, software should 
write the value to be transmitted into the SPI_TDBR register before per-
forming the dummy read. If the transmitted value is arbitrary, it is good 
practice to set the SZ bit to ensure zero data is transmitted rather than ran-
dom values. When receiving the last word of an SPI stream, software 
should ensure that the read from the SPI_RDBR register does not initiate 
another transfer. It is recommended to disable the SPI port before the 
final SPI_RDBR read access. Reading the SPI_SHADOW register is not suffi-
cient as it does not clear the interrupt request.

In master mode with the CPHA bit set, software should manually assert the 
required slave select signal before starting the transaction. After all data 
has been transferred, software typically releases the slave select again. If the 
SPI slave device requires the slave select line to be asserted for the com-
plete transfer, this can be done in the SPI interrupt service routine only 
when operating in TIMOD = 00 or TIMOD = 10 mode. With TIMOD = 01 or 
TIMOD = 11, the interrupt is requested while the transfer is still in progress.

DMA
The SPI port also can use Direct Memory Access (DMA). For more infor-
mation on DMA, see “DMA and Memory DMA Registers” on page 9-3.

DMA Functionality
The SPI has a single DMA engine which can be configured to support 
either an SPI transmit channel or a receive channel, but not both simulta-
neously. Therefore, when configured as a transmit channel, the received 
data will essentially be ignored. 
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When configured as a receive channel, what is transmitted is irrelevant. A 
16-bit by four-word FIFO (without burst capability) is included to 
improve throughput on the DMA Access Bus (DAB).

 When using DMA for SPI transmit, the DMA_DONE interrupt signi-
fies that the DMA FIFO is empty. However, at this point there 
may still be data in the SPI DMA FIFO waiting to be transmitted. 
Therefore, software needs to poll TXS in the SPI_STAT register until 
it goes low for 2 successive reads, at which point the SPI DMA 
FIFO will be empty. When the SPIF bit subsequently gets set, the 
last word has been transferred.

 The four-word FIFO is cleared when the SPI port is disabled.

Master Mode DMA Operation
When enabled as a master with the DMA engine configured to transmit or 
receive data, the SPI interface operates as follows.

1. The processor core writes to the appropriate DMA registers to 
enable the SPI DMA Channel and to configure the necessary work 
units, access direction, word count, and so on. For more informa-
tion, see “DMA and Memory DMA Registers” on page 9-3.

2. The processor core writes to the SPI_FLG register, setting one or 
more of the SPI flag select bits (FLSx).

3. The processor core writes to the SPI_BAUD and SPI_CTL registers, 
enabling the device as a master and configuring the SPI system by 
specifying the appropriate word length, transfer format, baud rate, 
and so on. The TIMOD field should be configured to select either 
“Receive with DMA” (TIMOD = 10) or “Transmit with DMA” 
(TIMOD = 11) mode.
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4. If configured for receive, a receive transfer is initiated upon 
enabling of the SPI. Subsequent transfers are initiated as the SPI 
reads data from the SPI_RDBR register and writes to the SPI DMA 
FIFO. The SPI then requests a DMA write to memory. Upon a 
DMA grant, the DMA engine reads a word from the SPI DMA 
FIFO and writes to memory. 

If configured for transmit, the SPI requests a DMA read from 
memory. Upon a DMA grant, the DMA engine reads a word from 
memory and writes to the SPI DMA FIFO. As the SPI writes data 
from the SPI DMA FIFO into the SPI_TDBR register, it initiates a 
transfer on the SPI link.

5. The SPI then generates the programmed clock pulses on SCK and 
simultaneously shifts data out of MOSI and shifts data in from MISO. 
For receive transfers, the value in the shift register is loaded into 
the SPI_RDBR register at the end of the transfer. For transmit trans-
fers, the value in the SPI_TDBR register is loaded into the shift 
register at the start of the transfer.

6. In Receive mode, as long as there is data in the SPI DMA FIFO 
(the FIFO is not empty), the SPI continues to request a DMA 
write to memory. The DMA engine continues to read a word from 
the SPI DMA FIFO and writes to memory until the SPI DMA 
Word Count register transitions from 1 to 0. The SPI continues 
receiving words until SPI DMA mode is disabled. 

In Transmit mode, as long as there is room in the SPI DMA FIFO 
(the FIFO is not full), the SPI continues to request a DMA read 
from memory. The DMA engine continues to read a word from 
memory and write to the SPI DMA FIFO until the SPI DMA 
Word Count register transitions from 1 to 0. The SPI continues 
transmitting words until the SPI DMA FIFO is empty.
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For receive DMA operations, if the DMA engine is unable to keep up with 
the receive datastream, the receive buffer operates according to the state of 
the GM bit. If GM = 1 and the DMA FIFO is full, the device continues to 
receive new data from the MISO pin, overwriting the older data in the 
SPI_RDBR register. If GM = 0, and the DMA FIFO is full, the incoming 
data is discarded, and the SPI_RDBR register is not updated. While per-
forming receive DMA, the transmit buffer is assumed to be empty (and 
TXE is set). If SZ = 1, the device repeatedly transmits 0s on the MOSI pin. If 
SZ = 0, it repeatedly transmits the contents of the SPI_TDBR register. The 
TXE underrun condition cannot generate an error interrupt in this mode.

For transmit DMA operations, the master SPI initiates a word transfer 
only when there is data in the DMA FIFO. If the DMA FIFO is empty, 
the SPI waits for the DMA engine to write to the DMA FIFO before start-
ing the transfer. All aspects of SPI receive operation should be ignored 
when configured in Transmit DMA mode, including the data in the 
SPI_RDBR register, and the status of the RXS and RBSY bits. The RBSY 
overrun conditions cannot generate an error interrupt in this mode. The 
TXE underrun condition cannot happen in this mode (master DMA TX 
mode), because the master SPI will not initiate a transfer if there is no data 
in the DMA FIFO.

Writes to the SPI_TDBR register during an active SPI transmit DMA opera-
tion should not occur because the DMA data will be overwritten. Writes 
to the SPI_TDBR register during an active SPI receive DMA operation are 
allowed. Reads from the SPI_RDBR register are allowed at any time.

DMA requests are generated when the DMA FIFO is not empty (when 
TIMOD = 10), or when the DMA FIFO is not full (when TIMOD = 11).

Error interrupts are generated when there is an RBSY overflow error condi-
tion (when TIMOD = 10).

A master SPI DMA sequence may involve back-to-back transmission 
and/or reception of multiple DMA work units. The SPI controller sup-
ports such a sequence with minimal core interaction.
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Slave Mode DMA Operation
When enabled as a slave with the DMA engine configured to transmit or 
receive data, the start of a transfer is triggered by a transition of the SPISS 
signal to the active-low state or by the first active edge of SCK, depending 
on the state of CPHA.

The following steps illustrate the SPI receive or transmit DMA sequence 
in an SPI slave (in response to a master command).

1. The processor core writes to the appropriate DMA registers to 
enable the SPI DMA Channel and configure the necessary work 
units, access direction, word count, and so on. For more informa-
tion, see “DMA and Memory DMA Registers” on page 9-3.

2. The processor core writes to the SPI_CTL register to define the 
mode of the serial link to be the same as the mode setup in the SPI 
master. The TIMOD field will be configured to select either “Receive 
with DMA” (TIMOD = 10) or “Transmit with DMA” (TIMOD = 11) 
mode.

3. If configured for receive, once the slave select input is active, the           
slave starts receiving and transmitting data on SCK edges. The value 
in the shift register is loaded into the SPI_RDBR register at the end 
of the transfer. As the SPI reads data from the SPI_RDBR register 
and writes to the SPI DMA FIFO, it requests a DMA write to 
memory. Upon a DMA grant, the DMA engine reads a word from 
the SPI DMA FIFO and writes to memory. 

If configured for transmit, the SPI requests a DMA read from 
memory. Upon a DMA grant, the DMA engine reads a word from 
memory and writes to the SPI DMA FIFO. The SPI then reads 
data from the SPI DMA FIFO and writes to the SPI_TDBR register, 
awaiting the start of the next transfer. 
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Once the slave select input is active, the slave starts receiving and 
transmitting data on SCK edges. The value in the SPI_TDBR register 
is loaded into the shift register at the start of the transfer.

4. In Receive mode, as long as there is data in the SPI DMA FIFO 
(FIFO not empty), the SPI slave continues to request a DMA write 
to memory. The DMA engine continues to read a word from the 
SPI DMA FIFO and writes to memory until the SPI DMA Word 
Count register transitions from 1 to 0. The SPI slave continues 
receiving words on SCK edges as long as the slave select input is 
active. 

In Transmit mode, as long as there is room in the SPI DMA FIFO 
(FIFO not full), the SPI slave continues to request a DMA read 
from memory. The DMA engine continues to read a word from 
memory and write to the SPI DMA FIFO until the SPI DMA 
Word Count register transitions from 1 to 0. The SPI slave contin-
ues transmitting words on SCK edges as long as the slave select input 
is active.

For receive DMA operations, if the DMA engine is unable to keep up with 
the receive datastream, the receive buffer operates according to the state of 
the GM bit. If GM = 1 and the DMA FIFO is full, the device continues to 
receive new data from the MOSI pin, overwriting the older data in the 
SPI_RDBR register. If GM = 0 and the DMA FIFO is full, the incoming data 
is discarded, and the SPI_RDBR register is not updated. While performing 
receive DMA, the transmit buffer is assumed to be empty and TXE is set. If 
SZ = 1, the device repeatedly transmits 0s on the MISO pin. If SZ = 0, it 
repeatedly transmits the contents of the SPI_TDBR register. The TXE under-
run condition cannot generate an error interrupt in this mode.
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For transmit DMA operations, if the DMA engine is unable to keep up 
with the transmit stream, the transmit port operates according to the state 
of the SZ bit. If SZ = 1 and the DMA FIFO is empty, the device repeat-
edly transmits 0s on the MISO pin. If SZ = 0 and the DMA FIFO is empty, 
it repeatedly transmits the last word it transmitted before the DMA buffer 
became empty. All aspects of SPI receive operation should be ignored 
when configured in Transmit DMA mode, including the data in the 
SPI_RDBR register, and the status of the RXS and RBSY bits. The RBSY over-
run conditions cannot generate an error interrupt in this mode.

Writes to the SPI_TDBR register during an active SPI transmit DMA opera-
tion should not occur because the DMA data will be overwritten. Writes 
to the SPI_TDBR register during an active SPI receive DMA operation are 
allowed. Reads from the SPI_RDBR register are allowed at any time.

DMA requests are generated when the DMA FIFO is not empty (when 
TIMOD = 10), or when the DMA FIFO is not full (when TIMOD = 11).

Error interrupts are generated when there is an RBSY overflow error condi-
tion (when TIMOD = 10), or when there is a TXE underflow error condition 
(when TIMOD = 11).

Timing
The enable lead time (T1), the enable lag time (T2), and the sequential 
transfer delay time (T3) each must always be greater than or equal to 
one-half the SCK period. See Figure 10-14. The minimum time between 
successive word transfers (T4) is two SCK periods. This is measured from 
the last active edge of SCK of one word to the first active edge of SCK of the 
next word. This is independent of the configuration of the SPI (CPHA, 
MSTR, and so on).
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For a master device with CPHA = 0, the slave select output will be inactive 
(high) for at least one-half the SCK period. In this case, T1 and T2 will 
each always be equal to one-half the SCK period.

Figure 10-14. SPI Timing

T1 T2

SPISS
(TO SLAVE)

SCK
(CPOL =1)

T4
T3



ADSP-BF533 Blackfin Processor Hardware Reference 11-1 
 

11 PARALLEL PERIPHERAL 
INTERFACE

The Parallel Peripheral Interface (PPI) is a half-duplex, bidirectional port 
accommodating up to 16 bits of data. It has a dedicated clock pin, three 
multiplexed frame sync pins, and four dedicated data pins. Up to 12 addi-
tional data pins are available by reconfiguring the PF pins. The highest 
system throughput is achieved with 8-bit data, since two 8-bit data sam-
ples can be packed as a single 16-bit word. In such a case, the earlier 
sample is placed in the 8 least significant bits (LSBs).

The PPI_CLK pin can accept an external clock input up to SCLK/2. It can-
not source a clock internally. Table 11-1 shows the pin interface for the 
PPI.

If a programmable flag pin is configured for PPI use, its bit position in 
programmable flag MMRs will read back as 0.

Table 11-1. PPI Pins

Signal Name Function Direction Alternate Function

PPI15 Data Bidirectional PF4, SPI Enable Output 

PPI14 Data Bidirectional PF5, SPI Enable Output

PPI13 Data Bidirectional PF6, SPI Enable Output

PPI12 Data Bidirectional PF7, SPI Enable Output

PPI11 Data Bidirectional PF8

PPI10 Data Bidirectional PF9

PPI9 Data Bidirectional PF10

PPI8 Data Bidirectional PF11
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PPI Registers
The PPI has five memory-mapped registers (MMRs) that regulate its oper-
ation. These registers are the PPI Control register (PPI_CONTROL), the PPI 
Status register (PPI_STATUS), the Delay Count register (PPI_DELAY), the 
Transfer Count register (PPI_COUNT), and the Lines Per Frame register 
(PPI_FRAME). 

Descriptions and bit diagrams for each of these MMRs are provided in the 
following sections.

PPI7 Data Bidirectional PF12

PPI6 Data Bidirectional PF13

PPI5 Data Bidirectional PF14

PPI4 Data Bidirectional PF15

PPI3 Data Bidirectional N/A 

PPI2 Data Bidirectional N/A

PPI1 Data Bidirectional N/A

PPI0 Data Bidirectional N/A

PPI_FS3 Frame Sync3/Field Bidirectional PF3, SPI Enable Output

PPI_FS2 Frame Sync2/VSYNC Bidirectional Timer 2

PPI_FS1 Frame Sync1/HSYNC Bidirectional Timer 1

PPI_CLK Up to SCLK/2 Input Clock N/A

Table 11-1. PPI Pins (Cont’d)

Signal Name Function Direction Alternate Function
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PPI_CONTROL Register
The PPI Control register (PPI_CONTROL) configures the PPI for operating 
mode, control signal polarities, and data width of the port. See 
Figure 11-1 for a bit diagram of this MMR.

The POLC and POLS bits allow for selective signal inversion of the PPI_CLK 
and PPI_FS1/PPI_FS2 signals, respectively. This provides a mechanism to 
connect to data sources and receivers with a wide array of control signal 
polarities. Often, the remote data source/receiver also offers configurable 
signal polarities, so the POLC and POLS bits simply add increased flexibility.

The DLEN[2:0] field is programmed to specify the width of the PPI port in 
any mode. Note any width from 8 to 16 bits is supported, with the excep-
tion of a 9-bit port width. Any PF pins that are unused by the PPI as a 
result of the DLEN setting are free to be used in their normal PF capacity.

 In ITU-R 656 modes, the DLEN field should not be configured for 
anything greater than a 10-bit port width. If it is, the PPI will 
reserve extra pins, making them unusable by other peripherals.

The SKIP_EN bit, when set, enables the selective skipping of data elements 
being read in through the PPI. By ignoring data elements, the PPI is able 
to conserve DMA bandwidth.

When the SKIP_EN bit is set, the SKIP_EO bit allows the PPI to ignore 
either the odd or the even elements in an input datastream. This is useful, 
for instance, when reading in a color video signal in YCbCr format (Cb, 
Y, Cr, Y, Cb, Y, Cr, Y...). Skipping every other element allows the PPI to 
only read in the luma (Y) or chroma (Cr or Cb) values. This could also be 
useful when synchronizing two processors to the same incoming video 
stream. One processor could handle luma processing and the other (whose 
SKIP_EO bit is set differently from the first processor’s) could handle 
chroma processing. This skipping feature is valid in ITU-R 656 modes 
and RX modes with external frame syncs.
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Figure 11-1. PPI Control Register
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PPI Control Register (PPI_CONTROL)

0 - PPI disabled
1 - PPI enabled

FLD_SEL (Active Field Select)

PORT_DIR (Direction)
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PORT_CFG[1:0] (Port 
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PORT_EN (Enable)
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100 - 13 bits
101 - 14 bits
110 - 15 bits
111 - 16 bits

POLS

0 - PPI in Receive mode (input)
1 - PPI in Transmit mode

(output)

In Input mode:
00 - ITU-R 656, Active Field Only
01 - ITU-R 656, Entire Field
10 - ITU-R 656, Vertical Blanking

Only
11 - Non-ITU-R 656 mode
In Output mode:
00, 01, 10 - Sync-less Output

mode
11 - Output mode with 1, 2, or

3 frame syncs

Reset = 0x0000

In ITU-R 656 modes, when XFR_TYPE = 00:
0 - Field 1
1 - Fields 1 and 2
In RX mode with external frame sync, when PORT_CFG = 11:
0 - External trigger
1 - Internal trigger

0 - PPI_FS1 and
PPI_FS2 are treated 
as rising edge asserted 

1 - PPI_FS1 and
PPI_FS2 are treated
as falling edge
asserted 

ALT_TIMING

SKIP_EO (Skip Even Odd)
In ITU-R 656 and GP Input modes:
0 - Skip odd-numbered elements
1 - Skip even-numbered elements

In ITU-R 656 and GP Input modes:
0 - Skipping disabled
1 - Skipping enabled

PACK_EN (Packing Mode Enable)
0 - Disabled
1 - Output mode, unpacking enabled;

Input mode, packing enabled

In non-ITU-R 656 Input modes 
(PORT_DIR = 0, XFR_TYPE = 11):
00 - 1 external frame sync
01 - 2 or 3 internal frame syncs 
10 - 2 or 3 external frame syncs
11 - 0 frame syncs, triggered
In Output modes with frame syncs 
(PORT_DIR = 1, XFR_TYPE = 11):
00 - 1 frame sync
01 - 2 or 3 frame syncs
10 - Reserved
11 - Sync PPI_FS3 to assertion of

PPI_FS2 rather than of
PPI_FS1.

0xFFC0 1000

POLC
0 - PPI samples data on rising edge 
 and drives data on falling
 edge of PPI_CLK
1 - PPI samples data on falling edge

 and drives data on rising edge
of PPI_CLK 

0

0 - Data/frame sync sampled 
on opposite edges
1 - Data/frame sync sampled 
on same edge

SKIP_EN (Skip Enable)
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The ALT_TIMING bit provides the capability to have the frame sync and 
data pins sampled on the same PPI clock edge, rather than on opposite 
PPI clock edges, which is the default behavior. The PACK_EN bit only has 
meaning when the PPI port width (selected by DLEN[2:0]) is 8 bits. Every 
PPI_CLK-initiated event on the DMA bus (that is, an input or output oper-
ation) handles 16-bit entities. In other words, an input port width of 10 
bits still results in a 16-bit input word for every PPI_CLK; the upper 6 bits 
are 0s. Likewise, a port width of 8 bits also results in a 16-bit input word, 
with the upper 8 bits all 0s. In the case of 8-bit data, it is usually more effi-
cient to pack this information so that there are two bytes of data for every 
16-bit word. This is the function of the PACK_EN bit. When set, it enables 
packing for all RX modes.

Consider this data transported into the PPI via DMA:

0xCE, 0xFA, 0xFE, 0xCA....

• With PACK_EN set:

This is read into the PPI, configured for an 8-bit port width: 0xCE, 
0xFA, 0xFE, 0xCA...

This is transferred onto the DMA bus: 0xFACE, 0xCAFE, ...

• With PACK_EN cleared:

This is read into the PPI: 0xCE, 0xFA, 0xFE, 0xCA, ...

This is transferred onto the DMA bus: 0x00CE, 0x00FA, 0x00FE, 
0x00CA, ...

For TX modes, setting PACK_EN enables unpacking of bytes. Consider this 
data in memory, to be transported out through the PPI via DMA:

0xFACE CAFE....  (0xFA and 0xCA are the two Most Significant Bits 
(MSBs) of their respective 16-bit words)
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• With PACK_EN set:

This is DMAed to the PPI:0xFACE, 0xCAFE, ...

This is transferred out through the PPI, configured for an 8-bit 
port width (note LSBs are transferred first):0xCE, 0xFA, 0xFE, 
0xCA, ...

• With PACK_EN cleared:

This is DMAed to the PPI:0xFACE, 0xCAFE, ...

This is transferred out through the PPI, configured for an 8-bit 
port width:0xCE, 0xFE, ...

The FLD_SEL bit is used primarily in the Active Field Only ITU-R 656 
mode. The FLD_SEL bit determines whether to transfer in only Field 1 of 
each video frame, or both Fields 1 and 2. Thus, it allows a savings in 
DMA bandwidth by transferring only every other field of active video.

The PORT_CFG[1:0] field is used to configure the operating mode of the 
PPI. It operates in conjunction with the PORT_DIR bit, which sets the 
direction of data transfer for the port. The XFR_TYPE[1:0] field is also 
used to configure operating mode and is discussed below. See Table 11-2 
for the possible operating modes for the PPI.
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Table 11-2. PPI Possible Operating Modes 

PPI Mode # of 
Syncs

PORT_
DIR

PORT_
CFG

XFR_T
YPE

POLC POLS FLD_ 
SEL

RX mode, 0 frame syncs, 
external trigger

0 0 11 11 0 or 1 0 or 1 0

RX mode, 0 frame syncs, 
internal trigger

0 0 11 11 0 or 1 0 or 1 1

RX mode, 1 external frame 
sync

1 0 00 11 0 or 1 0 or 1 X

RX mode, 2 or 3 external 
frame syncs

3 0 10 11 0 or 1 0 or 1 X

RX mode, 2 or 3 internal 
frame syncs

3 0 01 11 0 or 1 0 or 1 X

RX mode, ITU-R 656, 
Active Field Only

embed-
ded

0 XX 00 0 or 1 0 0 or 1

RX mode, ITU-R 656, Ver-
tical Blanking Only

embed-
ded

0 XX 10 0 or 1 0 X

RX mode, ITU-R 656, 
Entire Field

embed-
ded

0 XX 01 0 or 1 0 X

TX mode, 0 frame syncs 0 1 XX 00, 01, 
10

0 or 1 0 or 1 X

TX mode, 1 internal or 
external frame sync

1 1 00 11 0 or 1 0 or 1 X

TX mode, 2 external frame 
syncs

2 1 01 11 0 or 1 0 or 1 X

TX mode, 2 or 3 internal 
frame syncs, FS3 sync’ed to 
FS1 assertion

3 1 01 11 0 or 1 0 or 1 X

TX mode, 2 or 3 internal 
frame syncs, FS3 sync’ed to 
FS2 assertion

3 1 11 11 0 or 1 0 or 1 X
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The XFR_TYPE[1:0] field configures the PPI for various modes of opera-
tion. Refer to Table 11-2 to see how XFR_TYPE[1:0] interacts with other 
bits in PPI_CONTROL to determine the PPI operating mode.

The PORT_EN bit, when set, enables the PPI for operation. 

 Note that, when configured as an input port, the PPI does not start 
data transfer after being enabled until the appropriate synchroniza-
tion signals are received. If configured as an output port, transfer 
(including the appropriate synchronization signals) begins as soon 
as the frame syncs (Timer units) are enabled, so all frame syncs 
must be configured before this happens. Refer to the section 
“Frame Synchronization in GP Modes” on page 11-27 for more 
information.

PPI_STATUS Register
The PPI Status register (PPI_STATUS) contains bits that provide informa-
tion about the current operating state of the PPI. 

The ERR_DET bit is a sticky bit that denotes whether or not an error was 
detected in the ITU-R 656 control word preamble. The bit is valid only in 
ITU-R 656 modes. If ERR_DET = 1, an error was detected in the preamble. 
If ERR_DET = 0, no error was detected in the preamble.

The ERR_NCOR bit is sticky and is relevant only in ITU-R 656 modes. If 
ERR_NCOR = 0 and ERR_DET = 1, all preamble errors that have occurred 
have been corrected. If ERR_NCOR = 1, an error in the preamble was 
detected but not corrected. This situation generates a PPI Error interrupt, 
unless this condition is masked off in the SIC_IMASK register.

The FT_ERR bit is sticky and indicates, when set, that a Frame Track Error 
has occurred. It is valid for RX modes only. In this condition, the pro-
grammed number of lines per frame in PPI_FRAME does not match up with 
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the “frame start detect” condition (see the information note on 
on page 11-12). A Frame Track Error generates a PPI Error interrupt, 
unless this condition is masked off in the SIC_IMASK register.

The FLD bit is set or cleared at the same time as the change in state of F (in 
ITU-R 656 modes) or PPI_FS3 (in other RX modes). It is valid for Input 
modes only. The state of FLD reflects the current state of the F or PPI_FS3 
signals. In other words, the FLD bit always reflects the current video field 
being processed by the PPI.

The OVR bit is sticky and indicates, when set, that the PPI FIFO has over-
flowed and can accept no more data. A FIFO Overflow Error generates a 
PPI Error interrupt, unless this condition is masked off in the SIC_IMASK 
register.

 The PPI FIFO is 16 bits wide and has 16 entries. 

The UNDR bit is sticky and indicates, when set, that the PPI FIFO has 
underrun and is data-starved. A FIFO Underrun Error generates a PPI 
Error interrupt, unless this condition is masked off in the SIC_IMASK 
register.
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PPI_DELAY Register
The Delay Count register (PPI_DELAY) can be used in all configurations 
except ITU-R 656 modes and GP modes with 0 frame syncs. It contains a 
count of how many PPI_CLK cycles to delay after assertion of PPI_FS1 
before starting to read in or write out data.

 Note in TX modes using at least one frame sync, there is a 
one-cycle delay beyond what is specified in the PPI_DELAY register.

Figure 11-2. PPI Status Register

Figure 11-3. Delay Count Register

PPI Status Register (PPI_STATUS)

0 - Field 1
1 - Field 2

FT_ERR - W1C (Frame Track Error)

OVR - W1C (FIFO Overflow)

FLD (Field Indicator)

ERR_DET - W1C 
(Error Detected)

Used only in ITU-R 656 modes
0 - No preamble error detected
1 - Preamble error detected

ERR_NCOR - W1C 
(Error Not Corrected)

0 - No interrupt
1 - Frame Track Error 

interrupt occurred

Reset = 0x0000

Used only in ITU-R 656 
modes
0 - No uncorrected 

preamble error 
has occurred

1 - Preamble error 
detected but not
corrected 0 - No interrupt

1 - FIFO Overflow Error 
interrupt occurred

UNDR - W1C (FIFO Underrun)
0 - No interrupt
1 - FIFO Underrun Error 

interrupt occurred

0xFFC0 1004

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Delay Count Register (PPI_DELAY)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PPI_DELAY[15:0] 

Reset = 0x0000

Number of PPI_CLK cycles to 
delay after assertion of 
PPI_FS1 before latching in or 
sending out data

0xFFC0 100C
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PPI_COUNT Register
The Transfer Count register (PPI_COUNT) is used only in cases where recur-
ring hardware frame syncs (either externally or internally generated) are 
involved. It is not needed in ITU-R 656 modes or modes with 0 frame 
syncs. For RX modes, this register holds the number of samples to read 
into the PPI per line, minus one. For TX modes, it holds the number of 
samples to write out through the PPI per line, minus one. The register 
itself does not actually decrement with each transfer. Thus, at the begin-
ning of a new line of data, there is no need to rewrite the value of this 
register. For example, to receive or transmit 100 samples through the PPI, 
set PPI_COUNT to 99.

 Take care to ensure that the number of samples programmed into 
PPI_COUNT is in keeping with the number of samples expected dur-
ing the “horizontal” interval specified by PPI_FS1.

Figure 11-4. Transfer Count Register

Transfer Count Register (PPI_COUNT)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PPI_COUNT[15:0] 

Reset = 0x0000

In RX modes, holds one less 
than the number of samples to 
read in to the PPI per line. In 
TX modes, holds one less 
than the number of samples to 
write out through the PPI per 
line.

0xFFC0 1008
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PPI_FRAME Register
The Lines Per Frame (PPI_FRAME) register is used in all TX and RX modes 
with external frame syncs. For ITU-R 656 modes, this register holds the 
number of lines expected per frame of data, where a frame is defined as 
Field 1 and Field 2 combined, designated by the F indicator in the ITU-R 
stream. Here, a line is defined as a complete ITU-R 656 SAV-EAV cycle.

For non-ITU-R 656 modes with external frame syncs, a frame is defined 
as the data bounded between PPI_FS2 assertions, regardless of the state of 
PPI_FS3. A line is defined as a complete PPI_FS1 cycle. In these modes, 
PPI_FS3 is used only to determine the original "frame start" each time the 
PPI is enabled. It is ignored on every subsequent field and frame, and its 
state (high or low) is not important except during the original frame start.

If the start of a new frame (or field, for ITU-R 656 mode) is detected 
before the number of lines specified by PPI_FRAME have been trans-
ferred, a Frame Track Error results, and the FT_ERR bit in PPI_STATUS is 
set. However, the PPI still automatically reinitializes to count to the value 
programmed in PPI_FRAME, and data transfer continues.

 In ITU-R 656 modes, a frame start detect happens on the falling 
edge of F, the Field indicator. This occurs at the start of Field 1.

 In RX mode with 3 external frame syncs, a frame start detect refers 
to a condition where a PPI_FS2 assertion is followed by an assertion 
of PPI_FS1 while PPI_FS3 is low. This occurs at the start of Field 1.

Note that PPI_FS3 only needs to be low when PPI_FS1 is asserted, 
not when PPI_FS2 asserts. Also, PPI_FS3 is only used to synchro-
nize to the start of the very first frame after the PPI is enabled. It is 
subsequently ignored.

 When using RX mode with 3 external frame syncs, and only 2 
syncs are needed, configure the PPI for three-frame-sync operation 
and provide an external pull-down to GND for the PPI_FS3 pin.
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ITU-R 656 Modes
The PPI supports three input modes for ITU-R 656-framed data. These 
modes are described in this section. Although the PPI does not explicitly 
support an ITU-R 656 output mode, recommendations for using the PPI 
for this situation are provided as well.

ITU-R 656 Background
According to the ITU-R 656 recommendation (formerly known as 
CCIR-656), a digital video stream has the characteristics shown in 
Figure 11-6 and Figure 11-7 for 525/60 (NTSC) and 625/50 (PAL) sys-
tems. The processor supports only the Bit-parallel mode of ITU-R 656. 
Both 8- and 10-bit video element widths are supported.

In this mode, the Horizontal (H), Vertical (V), and Field (F) signals are 
sent as an embedded part of the video datastream in a series of bytes that 
form a control word. The Start of Active Video (SAV) and End of Active 
Video (EAV) signals indicate the beginning and end of data elements to 
read in on each line. SAV occurs on a 1-to-0 transition of H, and EAV 
begins on a 0-to-1 transition of H. An entire field of video is comprised of 
Active Video + Horizontal Blanking (the space between an EAV and SAV 
code) and Vertical Blanking (the space where V = 1). A field of video 
commences on a transition of the F bit. The “odd field” is denoted by a 

Figure 11-5. Lines Per Frame Register

Lines Per Frame Register (PPI_FRAME)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PPI_FRAME[15:0] 

Reset = 0x0000

Holds the number of lines 
expected per frame of data

0xFFC0 1010
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value of F = 0, whereas F = 1 denotes an even field. Progressive video 
makes no distinction between Field 1 and Field 2, whereas interlaced 
video requires each field to be handled uniquely, because alternate rows of 
each field combine to create the actual video image.

Figure 11-7. Typical Video Frame Partitioning for NTSC/PAL Systems for 
ITU-R BT.656-4

LINE 4

FIELD 1
ACTIVE VIDEO 

FIELD 1
ACTIVE VIDEO 

FIELD 2
ACTIVE VIDEO 

FIELD 2
ACTIVE VIDEO 

FIELD 1

FIELD 2

LINE 266

LINE 313

LINE 625

LINE 3

LINE 1

EAV SAV

EAV SAV

1

20

264

283

525

1 

23

 

311

336

624  

625

LINE
NUMBER

LINE
NUMBER

F H
(SAV)

H
(EAV)

H
(SAV)

H
(EAV)

F

V

V

1-3,
266-282

4-19,
264-265

20-263

283-525

1-22,
311-312

23-310

313-335,
624-625

336-623

1

1 1

1

1

1

1

1

0

0 0

0

0

0

0

0

0

0

0

01

1

1

1

1

1

0

0

1

1

0

0

LINE #

VERTICAL
BLANKING

VERTICAL
BLANKING

VERTICAL
BLANKING

VERTICAL
BLANKING

VERTICAL
BLANKING

H
O

R
IZ

O
N

T
A

L
B

L
A

N
K

IN
G

H
O

R
IZ

O
N

T
A

L
B

L
A

N
K

IN
G

FIELD 1

FIELD 2



ADSP-BF533 Blackfin Processor Hardware Reference 11-15 
 

Parallel Peripheral Interface

Figure 11-6. ITU-R 656 8-Bit Parallel Data Stream for NTSC (PAL) 
Systems

4 268 (280 FOR PAL) 4 1440

F
F

0
0

0
0

X
Y

8
0

1
0

8
0

1
0

8
0

1
0

F
F

0
0

0
0

X
Y

C
B

Y C
R

Y C
B

Y C
R

Y C
R

Y F
F

DIGITAL
VIDEO
STREAM

START OF
NEXT LINE

EAV
CODE
(H = 1)

SAV
CODE
(H = 0)

HORIZONTAL
BLANKING

END OF ACTIVE VIDEO START OF ACTIVE VIDEO

1716 (1728 FOR PAL)



ITU-R 656 Modes

11-16 ADSP-BF533 Blackfin Processor Hardware Reference
 

The SAV and EAV codes are shown in more detail in Table 11-3 on 
page 11-17. Note there is a defined preamble of three bytes (0xFF, 0x00, 
0x00), followed by the XY Status word, which, aside from the F (Field), V 
(Vertical Blanking) and H (Horizontal Blanking) bits, contains four pro-
tection bits for single-bit error detection and correction. Note F and V are 
only allowed to change as part of EAV sequences (that is, transition from 
H = 0 to H = 1). The bit definitions are as follows:

• F = 0 for Field 1

• F = 1 for Field 2

• V = 1 during Vertical Blanking

• V = 0 when not in Vertical Blanking

• H = 0 at SAV

• H = 1 at EAV

• P3 = V XOR H

• P2 = F XOR H

• P1 = F XOR V

• P0 = F XOR V XOR H

In many applications, video streams other than the standard NTSC/PAL 
formats (for example, CIF, QCIF) can be employed. Because of this, the 
processor interface is flexible enough to accommodate different row and 
field lengths. In general, as long as the incoming video has the proper 
EAV/SAV codes, the PPI can read it in. In other words, a CIF image 
could be formatted to be “656-compliant,” where EAV and SAV values 
define the range of the image for each line, and the V and F codes can be 
used to delimit fields and frames.
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ITU-R 656 Input Modes
Figure 11-8 shows a general illustration of data movement in the ITU-R 
656 input modes. In the figure, the clock CLK is either provided by the 
video source or supplied externally by the system.

There are three submodes supported for ITU-R 656 inputs: Entire Field, 
Active Video Only, and Vertical Blanking Interval Only. Figure 11-9 
shows these three submodes.

Table 11-3. Control Byte Sequences for 8-Bit and 10-Bit ITU-R 656 
Video 

8-bit Data 10-bit Data

D9
(MSB)

D8 D7 D6 D5 D4 D3 D2 D1 D0

Preamble 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Control Byte 1 F V H P3 P2 P1 P0 0 0

Figure 11-8. ITU-R 656 Input Modes

PPIx

PPI_CLK

PPI

CLK

'656
COMPATIBLE

VIDEOSOURCE

ITU-R 656 INPUT MODE

8- OR 10-BIT DATA WITH
EMBEDDED CONTROL
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Entire Field

In this mode, the entire incoming bitstream is read in through the PPI. 
This includes Active Video as well as control byte sequences and ancillary 
data that may be embedded in Horizontal and Vertical Blanking Intervals. 
Data transfer starts immediately after synchronization to Field 1 occurs, 
but does not include the first EAV code that contains the F = 0 
assignment.

 Note the first line transferred in after enabling the PPI will be miss-
ing its first 4-byte preamble. However, subsequent lines and frames 
should have all control codes intact.

One side benefit of this mode is that it enables a “loopback” feature 
through which a frame or two of data can be read in through the PPI and 
subsequently output to a compatible video display device. Of course, this 
requires multiplexing on the PPI pins, but it enables a convenient way to 
verify that 656 data can be read into and written out from the PPI.

Figure 11-9. ITU-R 656 Input Submodes
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Active Video Only

This mode is used when only the active video portion of a field is of inter-
est, and not any of the blanking intervals. The PPI ignores (does not read 
in) all data between EAV and SAV, as well as all data present when V = 1. 
In this mode, the control byte sequences are not stored to memory; they 
are filtered out by the PPI. After synchronizing to the start of Field 1, the 
PPI ignores incoming samples until it sees an SAV. 

 In this mode, the user specifies the number of total (active plus ver-
tical blanking) lines per frame in the PPI_FRAME MMR.

Vertical Blanking Interval (VBI) Only

In this mode, data transfer is only active while V = 1 is in the control byte 
sequence. This indicates that the video source is in the midst of the Verti-
cal Blanking Interval (VBI), which is sometimes used for ancillary data 
transmission. The ITU-R 656 recommendation specifies the format for 
these ancillary data packets, but the PPI is not equipped to decode the 
packets themselves. This task must be handled in software. Horizontal 
blanking data is logged where it coincides with the rows of the VBI. Con-
trol byte sequence information is always logged. The user specifies the 
number of total lines (Active plus Vertical Blanking) per frame in the 
PPI_FRAME MMR.

Note the VBI is split into two regions within each field. From the PPI’s 
standpoint, it considers these two separate regions as one contiguous 
space. However, keep in mind that frame synchronization begins at the 
start of Field 1, which doesn’t necessarily correspond to the start of Verti-
cal Blanking. For instance, in 525/60 systems, the start of Field 1 (F = 0) 
corresponds to Line 4 of the VBI. 
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ITU-R 656 Output Mode
The PPI does not explicitly provide functionality for framing an ITU-R 
656 output stream with proper preambles and blanking intervals. 
However, with the TX mode with 0 frame syncs, this process can be sup-
ported manually. Essentially, this mode provides a streaming operation 
from memory out through the PPI. Data and control codes can be set up 
in memory prior to sending out the video stream. With the 2D DMA 
engine, this could be performed in a number of ways. For instance, one 
line of blanking (H + V) could be stored in a buffer and sent out N times 
by the DMA controller when appropriate, before proceeding to DMA 
active video. Alternatively, one entire field (with control codes and blank-
ing) can be set up statically in a buffer while the DMA engine transfers 
only the active video region into the buffer, on a frame-by-frame basis.

Frame Synchronization in ITU-R 656 Modes
Synchronization in ITU-R 656 modes always occurs at the falling edge of 
F, the field indicator. This corresponds to the start of Field 1. Conse-
quently, up to two fields might be ignored (for example, if Field 1 just 
started before the PPI-to-camera channel was established) before data is 
received into the PPI.

Because all H and V signalling is embedded in the datastream in ITU-R 
656 modes, the PPI_COUNT register is not necessary. However, the 
PPI_FRAME register is used in order to check for synchronization errors. 
The user programs this MMR for the number of lines expected in each 
frame of video, and the PPI keeps track of the number of EAV-to-SAV 
transitions that occur from the start of a frame until it decodes the 
end-of-frame condition (transition from F = 1 to F = 0). At this time, the 
actual number of lines processed is compared against the value in 
PPI_FRAME. If there is a mismatch, the FT_ERR bit in the PPI_STATUS regis-
ter is asserted. For instance, if an SAV transition is missed, the current 
field will only have NUM_ROWS – 1 rows, but resynchronization will reoccur 
at the start of the next frame.
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Upon completing reception of an entire field, the Field Status bit is tog-
gled in the PPI_STATUS register. This way, an interrupt service routine 
(ISR) can discern which field was just read in.

General-Purpose PPI Modes
The General-Purpose (GP) PPI modes are intended to suit a wide variety 
of data capture and transmission applications. Table 11-4 summarizes 
these modes. If a particular mode shows a given PPI_FSx frame sync not 
being used, this implies that the pin is available for its alternate, multi-
plexed processor function (that is, as a timer or flag pin). The exception to 
this is that when the PPI is configured for a 2-frame-sync mode, PPI_FS3 
cannot be used as a general-purpose flag, even though it is not used by the 
PPI.

Table 11-4. General-Purpose PPI Modes 

GP PPI Mode PPI_FS1 
Direction

PPI_FS2 
Direction

PPI_FS3 
Direction

Data 
Direction

RX mode, 0 frame syncs, external 
trigger

Input Not used Not used Input

RX mode, 0 frame syncs, internal 
trigger

Not used Not used Not used Input

RX mode, 1 external frame sync Input Not used Not used Input

RX mode, 2 or 3 external frame syncs Input Input Input Input

RX mode, 2 or 3 internal frame syncs Output Output Output Input

TX mode, 0 frame syncs Not used Not used Not used Output

TX mode, 1 external frame sync Input Not used Not used Output

TX mode, 2 external frame syncs Input Input Output Output

TX mode, 1 internal frame sync Output Not used Not used Output

TX mode, 2 or 3 internal frame syncs Output Output Output Output
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Figure 11-10 illustrates the general flow of the GP modes. The top of the 
diagram shows an example of RX mode with 1 external frame sync. After 
the PPI receives the hardware frame sync pulse (PPI_FS1), it delays for the 
duration of the PPI_CLK cycles programmed into PPI_DELAY. The DMA 
controller then transfers in the number of samples specified by PPI_COUNT. 
Every sample that arrives after this, but before the next PPI_FS1 frame 
sync arrives, is ignored and not transferred onto the DMA bus.

 If the next PPI_FS1 frame sync arrives before the specified 
PPI_COUNT samples have been read in, the sample counter reinitial-
izes to 0 and starts to count up to PPI_COUNT again. This situation 
can cause the DMA channel configuration to lose synchronization 
with the PPI transfer process.

The bottom of Figure 11-10 shows an example of TX mode, 1 internal 
frame sync. After PPI_FS1 is asserted, there is a latency of 1 PPI_CLK cycle, 
and then there is a delay for the number of PPI_CLK cycles programmed 
into PPI_DELAY. Next, the DMA controller transfers out the number of 
samples specified by PPI_COUNT. No further DMA takes place until the 
next PPI_FS1 sync and programmed delay occur.

 If the next PPI_FS1 frame sync arrives before the specified 
PPI_COUNT samples have been transferred out, the sync has priority 
and starts a new line transfer sequence. This situation can cause the 
DMA channel configuration to lose synchronization with the PPI 
transfer process.

Data Input (RX) Modes
The PPI supports several modes for data input. These modes differ chiefly 
by the way the data is framed. Refer to Table 11-2 on page 11-7 for infor-
mation on how to configure the PPI for each mode.
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No Frame Syncs

These modes cover the set of applications where periodic frame syncs are 
not generated to frame the incoming data. There are two options for start-
ing the data transfer, both configured by the PPI_CONTROL register. 

• External trigger: An external source sends a single frame sync (tied 
to PPI_FS1) at the start of the transaction, when FLD_SEL = 0 and 
PORT_CFG = b#11.

• Internal trigger: Software initiates the process by setting 
PORT_EN = 1 with FLD_SEL = 1 and PORT_CFG = b#11.

Figure 11-10. General Flow for GP Modes (Assumes Positive Assertion of 
PPI_FS1)

INPUT

OUTPUT

PPI_COUNT

PPI_COUNT1 CYCLE
DELAY

PROG
DELAY

(PPI_DELAY)

PROG
DELAY

(PPI_DELAY)

FRAME
SYNC

(PPI_FS1)

FRAME
SYNC

(PPI_FS1)

SAMPLES
IGNORED



General-Purpose PPI Modes

11-24 ADSP-BF533 Blackfin Processor Hardware Reference
 

All subsequent data manipulation is handled via DMA. For example, an 
arrangement could be set up between alternating 1K memory buffers. 
When one fills up, DMA continues with the second buffer, at the same 
time that another DMA operation is clearing the first memory buffer for 
reuse.

 Due to clock domain synchronization in RX modes with no frame 
syncs, there may be a delay of at least 2 PPI_CLK cycles between 
when the mode is enabled and when valid data is received. There-
fore, detection of the start of valid data should be managed by 
software.

1, 2, or 3 External Frame Syncs

The 1-sync mode is intended for analog-to-digital converter (ADC) appli-
cations. The top part of Figure 11-11 shows a typical illustration of the 
system setup for this mode.

Figure 11-11. RX Mode, External Frame Syncs
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The 3-sync mode shown at the bottom of Figure 11-11 supports video 
applications that use hardware signalling (HSYNC, VSYNC, FIELD) in accor-
dance with the ITU-R 601 recommendation. The mapping for the frame 
syncs in this mode is PPI_FS1 = HSYNC, PPI_FS2 = VSYNC, 
PPI_FS3 = FIELD. Refer to “Frame Synchronization in GP Modes” on 
page 11-27 for more information about frame syncs in this mode.

A 2-sync mode is implicitly supported by pulling PPI_FS3 to GND by an 
external resistor when configured in 3-sync mode.

2 or 3 Internal Frame Syncs

This mode can be useful for interfacing to video sources that can be slaved 
to a master processor. In other words, the processor controls when to read 
from the video source by asserting PPI_FS1 and PPI_FS2, and then reading 
data into the PPI. The PPI_FS3 frame sync provides an indication of 
which field is currently being transferred, but since it is an output, it can 
simply be left floating if not used. Figure 11-12 shows a sample applica-
tion for this mode.

Data Output (TX) Modes
The PPI supports several modes for data output. These modes differ 
chiefly by the way the data is framed. Refer to Table 11-2 on page 11-7 
for information on how to configure the PPI for each mode.

Figure 11-12. RX Mode, Internal Frame Syncs
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No Frame Syncs

In this mode, data blocks specified by the DMA controller are sent out 
through the PPI with no framing. That is, once the DMA channel is con-
figured and enabled, and the PPI is configured and enabled, data transfers 
will take place immediately, synchronized to PPI_CLK. See Figure 11-13 
for an illustration of this mode.

 In this mode, there is a delay of up to 16 SCLK cycles (for > 8-bit 
data) or 32 SCLK cycles (for 8-bit data) between enabling the PPI 
and transmission of valid data. Furthermore, DMA must be config-
ured to transmit at least 16 samples (for > 8-bit data) or 32 samples 
(for 8-bit data).

1 or 2 External Frame Syncs

In these modes, an external receiver can frame data sent from the PPI. 
Both 1-sync and 2-sync modes are supported. The top diagram in 
Figure 11-14 shows the 1-sync case, while the bottom diagram illustrates 
the 2-sync mode.

 There is a mandatory delay of 1.5 PPI_CLK cycles, plus the value 
programmed in PPI_DELAY, between assertion of the external frame 
sync(s) and the transfer of valid data out through the PPI.

Figure 11-13. TX Mode, 0 Frame Syncs
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1, 2, or 3 Internal Frame Syncs

The 1-sync mode is intended for interfacing to digital-to-analog convert-
ers (DACs) with a single frame sync. The top part of Figure 11-15 shows 
an example of this type of connection.

The 3-sync mode is useful for connecting to video and graphics displays, 
as shown in the bottom part of Figure 11-15. A 2-sync mode is implicitly 
supported by leaving PPI_FS3 unconnected in this case.

Frame Synchronization in GP Modes
Frame synchronization in GP modes operates differently in modes with 
internal frame syncs than in modes with external frame syncs.

Figure 11-14. TX Mode, 1 or 2 External Frame Syncs
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Modes with Internal Frame Syncs

In modes with internal frame syncs, PPI_FS1 and PPI_FS2 link directly to 
the Pulsewidth Modulation (PWM) circuits of Timer 1 and Timer 2, 
respectively. This allows for arbitrary pulse widths and periods to be pro-
grammed for these signals using the existing TIMERx registers. This 
capability accommodates a wide range of timing needs. Note these PWM 
circuits are clocked by PPI_CLK, not by SCLK or PF1 (as during conven-
tional Timer PWM operation). If PPI_FS2 is not used in the configured 
PPI mode, Timer 2 operates as it normally would, unrestricted in func-
tionality. The state of PPI_FS3 depends completely on the state of PPI_FS1 
and/or PPI_FS2, so PPI_FS3 has no inherent programmability.

Figure 11-15. PPI GP Output
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 To program PPI_FS1 and/or PPI_FS2 for operation in an internal 
frame sync mode:

1. Configure and enable DMA for the PPI. See “DMA Operation” on 
page 11-30.

2. Configure the width and period for each frame sync signal via 
TIMER1_WIDTH and TIMER1_PERIOD (for PPI_FS1), or TIMER2_WIDTH 
and TIMER2_PERIOD (for PPI_FS2).

3. Set up TIMER1_CONFIG for PWM_OUT mode (for PPI_FS1). If used, 
configure TIMER2_CONFIG for PWM_OUT mode (for PPI_FS2). This 
includes setting CLK_SEL = 1 and TIN_SEL = 1 for each timer.

4. Write to PPI_CONTROL to configure and enable the PPI.

5. Write to TIMER_ENABLE to enable Timer 1 and/or Timer 2.

 It is important to guarantee proper frame sync polarity between the 
PPI and Timer peripherals. To do this, make sure that if 
PPI_CONTROL[15:14] = b#10 or b#11, the PULSE_HI bit is cleared in 
TIMER1_CONFIG and TIMER2_CONFIG. Likewise, if 
PPI_CONTROL[15:14] = b#00 or b#01, the PULSE_HI bit should be 
set in TIMER1_CONFIG and TIMER2_CONFIG.

To switch to another PPI mode not involving internal frame syncs:

1. Disable the PPI (using PPI_CONTROL).

2. Disable the timers (using TIMER_DISABLE).

Modes with External Frame Syncs

In RX modes with external frame syncs, the PPI_FS1 and PPI_FS2 pins 
become edge-sensitive inputs. In such a mode, Timers 1 and 2 can be used 
for a purpose not involving the TMR1 and TMR2 pins. However, timer access 
to a TMRx pin is disabled when the PPI is using that pin for a PPI_FSx 
frame sync input function. For modes that do not require PPI_FS2, 
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Timer 2 is not restricted in functionality and can be operated as if the PPI 
were not being used (that is, the TMR2 pin becomes available for timer use 
as well). For more information on configuring and using the timers, refer 
to Chapter 15, “Timers”.

 In RX Mode with 3 external frame syncs, the start of frame detec-
tion occurs where a PPI_FS2 assertion is followed by an assertion of 
PPI_FS1 while PPI_FS3 is low. This happens at the start of Field 1.

Note that PPI_FS3 only needs to be low when PPI_FS1 is asserted, 
not when PPI_FS2 asserts. Also, PPI_FS3 is only used to synchro-
nize to the start of the very first frame after the PPI is enabled. It is 
subsequently ignored.

In TX modes with external frame syncs, the PPI_FS1 and PPI_FS2 pins are 
treated as edge-sensitive inputs. In this mode, it is not necessary to config-
ure the timer(s) associated with the frame sync(s) as input(s), or to enable 
them via the TIMER_ENABLE register. Additionally, the actual timers them-
selves are available for use, even though the timer pin(s) are taken over by 
the PPI. In this case, there is no requirement that the timebase (configured 
by TIN_SEL in TIMERx_CONFIG) be PPI_CLK. 

However, if using a timer whose pin is connected to an external frame 
sync, be sure to disable the pin via the OUT_DIS bit in TIMERx_CONFIG. 
Then the timer itself can be configured and enabled for non-PPI use with-
out affecting PPI operation in this mode. For more information, see 
Chapter 15, “Timers”.

DMA Operation
The PPI must be used with the processor’s DMA engine. This section dis-
cusses how the two interact. For additional information about the DMA 
engine, including explanations of DMA registers and DMA operations, 
refer to Chapter 9, “Direct Memory Access”.
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The PPI DMA channel can be configured for either transmit or receive 
operation, and it has a maximum throughput of (PPI_CLK) x  

(16 bits/transfer). In modes where data lengths are greater than 8 bits, 
only one element can be clocked in per PPI_CLK cycle, and this results in 
reduced bandwidth (since no packing is possible). The highest throughput 
is achieved with 8-bit data and PACK_EN = 1 (packing mode enabled). 
Note for 16-bit packing mode, there must be an even number of data 
elements.

Configuring the PPI’s DMA channel is a necessary step toward using the 
PPI interface. It is the DMA engine that generates interrupts upon com-
pletion of a row, frame, or partial-frame transfer. It is also the DMA 
engine that coordinates the origination or destination point for the data 
that is transferred through the PPI.

The processor’s 2D DMA capability allows the processor to be interrupted 
at the end of a line or after a frame of video has been transferred, as well as 
if a DMA Error occurs. In fact, the specification of the DMAx_XCOUNT and 
DMAx_YCOUNT MMRs allows for flexible data interrupt points. For example, 
assume the DMA registers XMODIFY = YMODIFY = 1. Then, if a data frame 
contains 320 x 240 bytes (240 rows of 320 bytes each), these conditions 
hold:

• Setting XCOUNT = 320, YCOUNT = 240, and DI_SEL = 1 (the DI_SEL 
bit is located in DMAx_CONFIG) will interrupt on every row trans-
ferred, for the entire frame.

• Setting XCOUNT = 320, YCOUNT = 240, and DI_SEL = 0 will inter-
rupt only on the completion of the frame (when 240 rows of 320 
bytes have been transferred).

• Setting XCOUNT = 38,400 (320 x 120), YCOUNT = 2, and DI_SEL = 1 
will cause an interrupt when half of the frame has been transferred, 
and again when the whole frame has been transferred.
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Following is the general procedure for setting up DMA operation with the 
PPI. Refer to “DMA and Memory DMA Registers” on page 9-3 for details 
regarding configuration of DMA.

1. Configure DMA registers as appropriate for desired DMA operat-
ing mode.

2. Enable the DMA channel for operation.

3. Configure appropriate PPI registers.

4. Enable the PPI by writing a 1 to bit 0 in PPI_CONTROL.

Data Transfer Scenarios
Figure 11-16 shows two possible ways to use the PPI to transfer in video. 
These diagrams are very generalized, and bandwidth calculations must be 
made only after factoring in the exact PPI mode and settings (for example, 
transfer Field 1 only, transfer odd and even elements). 

The top part of the diagram shows a situation appropriate for, as an exam-
ple, JPEG compression. The first N rows of video are DMAed into L1 
memory via the PPI. Once in L1, the compression algorithm operates on 
the data and sends the compressed result out from the processor via the 
SPORT. Note that no SDRAM access was necessary in this approach.

The bottom part of the diagram takes into account a more formidable 
compression algorithm, such as MPEG-2 or MPEG-4. Here, the raw 
video is transferred directly into SDRAM. Independently, a Memory 
DMA channel transfers data blocks between SDRAM and L1 memory for 
intermediate processing stages. Finally, the compressed video exits the 
processor via the SPORT. 
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Figure 11-16. PPI Possible Data Transfer Scenarios
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12 SERIAL PORT CONTROLLERS

The processor has two identical synchronous serial ports, or SPORTs. 
These support a variety of serial data communications protocols and can 
provide a direct interconnection between processors in a multiprocessor 
system.

The serial ports (SPORT0 and SPORT1) provide an I/O interface to a 
wide variety of peripheral serial devices. SPORTs provide synchronous 
serial data transfer only; the processor provides asynchronous RS-232 data 
transfer via the UART. Each SPORT has one group of pins (primary data, 
secondary data, clock, and frame sync) for transmit and a second set of 
pins for receive. The receive and transmit functions are programmed sepa-
rately. Each SPORT is a full duplex device, capable of simultaneous data 
transfer in both directions. The SPORTs can be programmed for bit rate, 
frame sync, and number of bits per word by writing to memory-mapped 
registers.

 In this text, the naming conventions for registers and pins use a 
lower case x to represent a digit. In this chapter, for example, the 
name RFSx pins indicates RFS0 and RFS1 (corresponding to 
SPORT0 and SPORT1, respectively). In this chapter, LSB refers to 
least significant bit, and MSB refers to most significant bit.

Both SPORTs have the same capabilities and are programmed in the same 
way. Each SPORT has its own set of control registers and data buffers.

The SPORTs use frame sync pulses to indicate the beginning of each word 
or packet, and the bit clock marks the beginning of each data bit. External 
bit clock and frame sync are available for the TX and RX buffers.
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With a range of clock and frame synchronization options, the SPORTs 
allow a variety of serial communication protocols, including H.100, and 
provide a glueless hardware interface to many industry-standard data con-
verters and codecs.

The SPORTs can operate at up to an SCLK/2 clock rate with an externally 
generated clock, or 1/2 the system clock rate for an internally generated 
serial port clock. The SPORT external clock must always be less than the 
SCLK frequency. Independent transmit and receive clocks provide greater 
flexibility for serial communications.

SPORT clocks and frame syncs can be internally generated by the system 
or received from an external source. The SPORTs can operate with a 
transmission format of LSB first or MSB first, with word lengths select-
able from 3 to 32 bits. They offer selectable transmit modes and optional 
-law or A-law companding in hardware. SPORT data can be automati-
cally transferred between on-chip and off-chip memories using DMA 
block transfers. Additionally, each of the SPORTs offers a TDM 
(Time-Division-Multiplexed) Multichannel mode.

Each of the SPORTs offers these features and capabilities:

• Provides independent transmit and receive functions.

• Transfers serial data words from 3 to 32 bits in length, either MSB 
first or LSB first.

• Provides alternate framing and control for interfacing to I2S serial 
devices, as well as other audio formats (for example, left-justified 
stereo serial data).

• Has FIFO plus double buffered data (both receive and transmit 
functions have a data buffer register and a Shift register), providing 
additional time to service the SPORT.
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• Provides two synchronous transmit and two synchronous receive 
data pins and buffers in each SPORT to double the total supported 
datastreams.

• Performs A-law and -law hardware companding on transmitted 
and received words. (See “Companding” on page 12-35 for more 
information.)

• Internally generates serial clock and frame sync signals in a wide 
range of frequencies or accepts clock and frame sync input from an 
external source.

• Operates with or without frame synchronization signals for each 
data word, with internally generated or externally generated frame 
signals, with active high or active low frame signals, and with either 
of two configurable pulse widths and frame signal timing.

• Performs interrupt-driven, single word transfers to and from 
on-chip memory under processor control.

• Provides Direct Memory Access transfer to and from memory 
under DMA Master control. DMA can be autobuffer-based (a 
repeated, identical range of transfers) or descriptor-based (individ-
ual or repeated ranges of transfers with differing DMA parameters).

• Executes DMA transfers to and from on-chip memory. Each 
SPORT can automatically receive and transmit an entire block of 
data.

• Permits chaining of DMA operations for multiple data blocks.

• Has a multichannel mode for TDM interfaces. Each SPORT can 
receive and transmit data selectively from a Time-Division-Multi-
plexed serial bitstream on 128 contiguous channels from a stream 
of up to 1024 total channels. This mode can be useful as a network 
communication scheme for multiple processors. The 128 channels 
available to the processor can be selected to start at any channel 
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location from 0 to 895 = (1023 – 128). Note the Multichannel 
Select registers and the WSIZE register control which subset of the 
128 channels within the active region can be accessed.

Table 12-1 shows the pins for each SPORT. 

A SPORT receives serial data on its DRxPRI and DRxSEC inputs and trans-
mits serial data on its DTxPRI and DTxSEC outputs. It can receive and 
transmit simultaneously for full-duplex operation. For transmit, the data 
bits (DTxPRI and DTxSEC) are synchronous to the transmit clock (TSCLKx). 
For receive, the data bits (DRxPRI and DRxSEC) are synchronous to the 
receive clock (RSCLKx). The serial clock is an output if the processor gener-
ates it, or an input if the clock is externally generated. Frame 
synchronization signals RFSx and TFSx are used to indicate the start of a 
serial data word or stream of serial words.

Table 12-1. Serial Port (SPORT) Pins 

Pin1

1   A lowercase x within a pin name represents a possible value of 0 or 1 (corresponding to SPORT0 
or SPORT1).

Description

DTxPRI Transmit Data Primary

DTxSEC Transmit Data Secondary

TSCLKx Transmit Clock

TFSx Transmit Frame Sync

DRxPRI Receive Data Primary

DRxSEC Receive Data Secondary

RSCLKx Receive Clock

RFSx Receive Frame Sync
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The primary and secondary data pins provide a method to increase the 
data throughput of the serial port. They do not behave as totally separate 
SPORTs; rather, they operate in a synchronous manner (sharing clock and 
frame sync) but on separate data. The data received on the primary and 
secondary pins is interleaved in main memory and can be retrieved by set-
ting a stride in the Data Address Generators (DAG) unit. For more 
information about DAGs, see Chapter 5, “Data Address Generators”. 
Similarly, for TX, data should be written to the TX register in an alternat-
ing manner—first primary, then secondary, then primary, then secondary, 
and so on. This is easily accomplished with the processor’s powerful 
DAGs.

In addition to the serial clock signal, data must be signalled by a frame 
synchronization signal. The framing signal can occur either at the begin-
ning of an individual word or at the beginning of a block of words.

The following figure shows a simplified block diagram of a single SPORT. 
Data to be transmitted is written from an internal processor register to the 
SPORT’s SPORTx_TX register via the peripheral bus. This data is optionally 
compressed by the hardware and automatically transferred to the TX Shift 
register. The bits in the Shift register are shifted out on the SPORT’s DTx-
PRI/DTxSEC pin, MSB first or LSB first, synchronous to the serial clock on 
the TSCLKx pin. The receive portion of the SPORT accepts data from the 
DRxPRI/DRxSEC pin synchronous to the serial clock on the RSCLKx pin. 
When an entire word is received, the data is optionally expanded, then 
automatically transferred to the SPORT’s SPORTx_RX register, and then 
into the RX FIFO where it is available to the processor.
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Figure 12-1. SPORT Block Diagram
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Figure 12-2 shows a possible port connection for the SPORTs. Note serial 
devices A and B must be synchronous, as they share common frame syncs 
and clocks. The same is true for serial devices C and D.

Figure 12-2. SPORT Connections
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Figure 12-3 shows an example of a stereo serial device with three transmit 
and two receive channels connected to the processor.

Figure 12-3. Stereo Serial Connection
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SPORT Operation
This section describes general SPORT operation, illustrating the most 
common use of a SPORT. Since the SPORT functionality is configurable, 
this description represents just one of many possible configurations.

Writing to a SPORT’s SPORTx_TX register readies the SPORT for trans-
mission. The TFS signal initiates the transmission of serial data. Once 
transmission has begun, each value written to the SPORTx_TX register is 
transferred through the FIFO to the internal Transmit Shift register. The 
bits are then sent, beginning with either the MSB or the LSB as specified 
in the SPORTx_TCR1 register. Each bit is shifted out on the driving edge of 
TSCLKx. The driving edge of TSCLKx can be configured to be rising or fall-
ing. The SPORT generates the transmit interrupt or requests a DMA 
transfer as long as there is space in the TX FIFO.

As a SPORT receives bits, they accumulate in an internal receive register. 
When a complete word has been received, it is written to the SPORT 
FIFO register and the receive interrupt for that SPORT is generated or a 
DMA transfer is initiated. Interrupts are generated differently if DMA 
block transfers are performed. For information about DMA, see Chapter 
9, “Direct Memory Access.” 

SPORT Disable
The SPORTs are automatically disabled by a processor hardware or soft-
ware reset. A SPORT can also be disabled directly by clearing the 
SPORT’s transmit or receive enable bits (TSPEN in the SPORTx_TCR1 regis-
ter and RSPEN in the SPORTx_RCR1 register, respectively). Each method has 
a different effect on the SPORT.
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A processor reset disables the SPORTs by clearing the SPORTx_TCR1, 
SPORTx_TCR2, SPORTx_RCR1, and SPORTx_RCR2 registers (including the 
TSPEN and RSPEN enable bits) and the SPORTx_TCLKDIV, SPORTX_RCLKDIV, 
SPORTx_TFSDIVx, and SPORTx_RFSDIVx Clock and Frame Sync Divisor reg-
isters. Any ongoing operations are aborted.

Clearing the TSPEN and RSPEN enable bits disables the SPORTs and aborts 
any ongoing operations. Status bits are also cleared. Configuration bits 
remain unaffected and can be read by the software in order to be altered or 
overwritten. To disable the SPORT output clock, set the SPORT to be 
disabled. 

 Note that disabling a SPORT via TSPEN/RSPEN may shorten any 
currently active pulses on the TFSx/RFSx and TSCLKx/RSCLKx pins, if 
these signals are configured to be generated internally.

When disabling the SPORT from multichannel operation, first disable 
TSPEN and then disable RSPEN. Note both TSPEN and RSPEN must be dis-
abled before reenabling. Disabling only TX or RX is not allowed.

Setting SPORT Modes
SPORT configuration is accomplished by setting bit and field values in 
configuration registers. Each SPORT must be configured prior to being 
enabled. Once the SPORT is enabled, further writes to the SPORT Con-
figuration registers are disabled (except for SPORTx_RCLKDIV, 
SPORTx_TCLKDIV, and Multichannel Mode Channel Select registers). To 
change values in all other SPORT Configuration registers, disable the 
SPORT by clearing TSPEN in SPORTx_TCR1 and/or RSPEN in SPORTx_RCR1.

Each SPORT has its own set of control registers and data buffers. These 
registers are described in detail in the following sections. All control and 
status bits in the SPORT registers are active high unless otherwise noted.
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Register Writes and Effective Latency
When the SPORT is disabled (TSPEN and RSPEN cleared), SPORT register 
writes are internally completed at the end of the SCLK cycle in which they 
occurred, and the register reads back the newly-written value on the next 
cycle.

When the SPORT is enabled to transmit (TSPEN set) or receive (RSPEN set), 
corresponding SPORT Configuration register writes are disabled (except 
for SPORTx_RCLKDIV, SPORTx_TCLKDIV, and Multichannel Mode Channel 
Select registers). The SPORTx_TX register writes are always enabled; 
SPORTx_RX, SPORTx_CHNL, and SPORTx_STAT are read-only registers.

After a write to a SPORT register, while the SPORT is disabled, any 
changes to the control and mode bits generally take effect when the 
SPORT is re-enabled.

 Most configuration registers can only be changed while the 
SPORT is disabled (TSPEN/RSPEN = 0). Changes take effect after 
the SPORT is re-enabled. The only exceptions to this rule are the 
TCLKDIV/RCLKDIV registers and Multichannel Select registers.

SPORTx_TCR1 and SPORTx_TCR2 
Registers

The main control registers for the transmit portion of each SPORT are 
the Transmit Configuration registers, SPORTx_TCR1 and SPORTx_TCR2.

A SPORT is enabled for transmit if Bit 0 (TSPEN) of the Transmit Config-
uration 1 register is set to 1. This bit is cleared during either a hard reset 
or a soft reset, disabling all SPORT transmission.
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When the SPORT is enabled to transmit (TSPEN set), corresponding 
SPORT Configuration register writes are not allowed except for 
SPORTx_TCLKDIV and Multichannel Mode Channel Select registers. Writes 
to disallowed registers have no effect. While the SPORT is enabled, 
SPORTx_TCR1 is not written except for bit 0 (TSPEN). For example:

write (SPORTx_TCR1, 0x0001) ; /* SPORT TX Enabled */

write (SPORTx_TCR1, 0xFF01) ; /* ignored, no effect */

write (SPORTx_TCR1, 0xFFF0) ; /* SPORT disabled, SPORTx_TCR1                        

still equal to 0x0000 */

Figure 12-4. SPORTx Transmit Configuration 1 Register
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SPORTx Transmit Configuration 1 Register (SPORTx_TCR1)

0 - Transmit disabled
1 - Transmit enabled

ITFS (Internal Transmit 
Frame Sync Select)

ITCLK (Internal Transmit 
Clock Select)

TDTYPE[1:0] (Data Format-
ting Type Select)

TLSBIT (Transmit Bit Order)

TSPEN (Transmit Enable)

LTFS (Low Transmit
Frame Sync Select)

LATFS (Late Transmit
 Frame Sync)
0 - Early frame syncs
1 - Late frame syncs

TCKFE (Clock Falling 
Edge Select)

0 -External transmit clock
selected

1 - Internal transmit clock
selected

00 - Normal operation
01 - Reserved
10 - Compand using -law
11 - Compand using A-law

0 - Transmit MSB first
1 - Transmit LSB first

Reset = 0x0000

0 - External TFS used
1 - Internal TFS used

0 - Drive data and internal 
frame syncs with rising 
edge of TSCLK. Sample
external frame syncs with
falling edge of TSCLK.

1 - Drive data and internal 
frame syncs with falling 
edge of TSCLK. Sample
external frame syncs 
with rising edge of TSCLK.

0 - Active high TFS
1 - Active low TFS

TFSR (Transmit Frame Sync 
Required Select)

DITFS (Data-Independent 
Transmit Frame Sync Select)
0 - Data-dependent TFS generated
1 - Data-independent TFS generated

0 - Does not require TFS for
every data word

1 - Requires TFS for every
data word

SPORT0: 
0xFFC0 0800

SPORT1: 
0xFFC0 0900
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Additional information for the SPORTx_TCR1 and SPORTx_TCR2 Transmit 
Configuration register bits includes:

• Transmit Enable (TSPEN). This bit selects whether the SPORT is 
enabled to transmit (if set) or disabled (if cleared).

Setting TSPEN causes an immediate assertion of a SPORT TX inter-
rupt, indicating that the TX data register is empty and needs to be 
filled. This is normally desirable because it allows centralization of 
the transmit data write code in the TX interrupt service routine 
(ISR). For this reason, the code should initialize the ISR and be 
ready to service TX interrupts before setting TSPEN.

Similarly, if DMA transfers will be used, DMA control should be 
configured correctly before setting TSPEN. Set all DMA control reg-
isters before setting TSPEN.

Clearing TSPEN causes the SPORT to stop driving data, TSCLK, and 
frame sync pins; it also shuts down the internal SPORT circuitry. 
In low power applications, battery life can be extended by clearing 
TSPEN whenever the SPORT is not in use.

Figure 12-5. SPORTx Transmit Configuration 2 Register
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SPORTx Transmit Configuration 2 Register (SPORTx_TCR2)

SLEN[4:0] (SPORT Word 
Length)

TSFSE (Transmit Stereo 
Frame Sync Enable)

TRFST (Left/Right Order)
00000 - Illegal value
00001 - Illegal value
Serial word length is value in 
this field plus 1

Reset = 0x0000

0 - Left stereo channel first
1 - Right stereo channel first

0 - Normal mode
1 - Frame sync becomes L/R clock

TXSE (TxSEC Enable)

0 - Secondary side disabled
1 - Secondary side enabled

SPORT0: 
0xFFC0 0804

SPORT1: 
0xFFC0 0904
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 All SPORT control registers should be programmed before TSPEN is 
set. Typical SPORT initialization code first writes all control regis-
ters, including DMA control if applicable. The last step in the code 
is to write SPORTx_TCR1 with all of the necessary bits, including 
TSPEN.

• Internal Transmit Clock Select. (ITCLK). This bit selects the inter-
nal transmit clock (if set) or the external transmit clock on the 
TSCLK pin (if cleared). The TCLKDIV MMR value is not used when 
an external clock is selected.

• Data Formatting Type Select. The two TDTYPE bits specify data 
formats used for single and multichannel operation.

• Bit Order Select. (TLSBIT). The TLSBIT bit selects the bit order of 
the data words transmitted over the SPORT.

• Serial Word Length Select. (SLEN). The serial word length (the 
number of bits in each word transmitted over the SPORTs) is cal-
culated by adding 1 to the value of the SLEN field:

 Serial Word Length = SLEN + 1;

The SLEN field can be set to a value of 2 to 31; 0 and 1 are illegal 
values for this field. Three common settings for the SLEN field are 
15, to transmit a full 16-bit word; 7, to transmit an 8-bit byte; and 
23, to transmit a 24-bit word. The processor can load 16- or 32-bit 
values into the transmit buffer via DMA or an MMR write 
instruction; the SLEN field tells the SPORT how many of those bits 
to shift out of the register over the serial link. The serial port trans-
fers bits [SLEN:0] from the transmit buffer.
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 The frame sync signal is controlled by the SPORTx_TFSDIV and 
SPORTx_RFSDIV registers, not by SLEN. To produce a frame sync 
pulse on each byte or word transmitted, the proper frame sync 
divider must be programmed into the Frame Sync Divider register; 
setting SLEN to 7 does not produce a frame sync pulse on each byte 
transmitted.

• Internal Transmit Frame Sync Select. (ITFS). This bit selects 
whether the SPORT uses an internal TFS (if set) or an external TFS 
(if cleared).

• Transmit Frame Sync Required Select. (TFSR). This bit selects 
whether the SPORT requires (if set) or does not require (if cleared) 
a Transmit Frame Sync for every data word.

 The TFSR bit is normally set during SPORT configuration. A frame 
sync pulse is used to mark the beginning of each word or data 
packet, and most systems need a frame sync to function properly.

• Data-Independent Transmit Frame Sync Select. (DITFS). This bit 
selects whether the SPORT generates a data-independent TFS (sync 
at selected interval) or a data-dependent TFS (sync when data is 
present in SPORTx_TX) for the case of internal frame sync select 
(ITFS = 1). The DITFS bit is ignored when external frame syncs are 
selected.

The frame sync pulse marks the beginning of the data word. If 
DITFS is set, the frame sync pulse is issued on time, whether the 
SPORTx_TX register has been loaded or not; if DITFS is cleared, the 
frame sync pulse is only generated if the SPORTx_TX data register has 
been loaded. If the receiver demands regular frame sync pulses, 
DITFS should be set, and the processor should keep loading the 
SPORTx_TX register on time. If the receiver can tolerate occasional 
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late frame sync pulses, DITFS should be cleared to prevent the 
SPORT from transmitting old data twice or transmitting garbled 
data if the processor is late in loading the SPORTx_TX register.

• Low Transmit Frame Sync Select. (LTFS). This bit selects an active 
low TFS (if set) or active high TFS (if cleared).

• Late Transmit Frame Sync. (LATFS). This bit configures late frame 
syncs (if set) or early frame syncs (if cleared).

• Clock Drive/Sample Edge Select. (TCKFE). This bit selects which 
edge of the TCLKx signal the SPORT uses for driving data, for driv-
ing internally generated frame syncs, and for sampling externally 
generated frame syncs. If set, data and internally generated frame 
syncs are driven on the falling edge, and externally generated frame 
syncs are sampled on the rising edge. If cleared, data and internally 
generated frame syncs are driven on the rising edge, and externally 
generated frame syncs are sampled on the falling edge.

• TxSec Enable. (TXSE). This bit enables the transmit secondary side 
of the serial port (if set).

• Stereo Serial Enable. (TSFSE). This bit enables the Stereo Serial 
operating mode of the serial port (if set). By default this bit is 
cleared, enabling normal clocking and frame sync.

• Left/Right Order. (TRFST). If this bit is set, the right channel is 
transmitted first in Stereo Serial operating mode. By default this 
bit is cleared, and the left channel is transmitted first.
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SPORTx_RCR1 and SPORTx_RCR2 
Registers

The main control registers for the receive portion of each SPORT are the 
Receive Configuration registers, SPORTx_RCR1 and SPORTx_RCR2.

A SPORT is enabled for receive if Bit 0 (RSPEN) of the Receive Configura-
tion 1 register is set to 1. This bit is cleared during either a hard reset or a 
soft reset, disabling all SPORT reception.

When the SPORT is enabled to receive (RSPEN set), corresponding 
SPORT Configuration register writes are not allowed except for 
SPORTx_RCLKDIV and Multichannel Mode Channel Select registers. Writes 
to disallowed registers have no effect. While the SPORT is enabled, 
SPORTx_RCR1 is not written except for bit 0 (RSPEN). For example:

write (SPORTx_RCR1, 0x0001) ;  /* SPORT RX Enabled */

write (SPORTx_RCR1, 0xFF01) ;  /* ignored, no effect */

write (SPORTx_RCR1, 0xFFF0) ;  /* SPORT disabled, SPORTx_RCR1       

still equal to 0x0000 */
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Figure 12-6. SPORTx Receive Configuration 1 Register

Figure 12-7. SPORTx Receive Configuration 2 Register
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SPORTx Receive Configuration 1 Register (SPORTx_RCR1)

0 - Receive disabled
1 - Receive enabled

IRFS (Internal Receive Frame 
Sync Select)

IRCLK (Internal Receive 
Clock Select)

RDTYPE[1:0] (Data Format-
ting Type Select)

RLSBIT (Receive Bit Order)

RSPEN (Receive Enable)

LRFS (Low Receive Frame 
Sync Select)

LARFS (Late Receive 
Frame Sync)
0 - Early frame syncs
1 - Late frame syncs

RCKFE (Clock Falling 
Edge Select)

0 -External receive clock
selected

1 - Internal receive clock
selected

00 - Zero fill
01 - Sign-extend
10 - Compand using -law
11 - Compand using A-law

0 - Receive MSB first
1 - Receive LSB first

Reset = 0x0000

0 - External RFS used
1 - Internal RFS used

0 - Drive internal frame sync
on rising edge of RSCLK.
Sample data and external
frame sync with falling 
edge of RSCLK.

1 - Drive internal frame sync
on falling edge of RSCLK.
Sample data and external 
frame sync with rising
edge of RSCLK.

0 - Active high RFS
1 - Active low RFS

RFSR (Receive Frame Sync 
Required Select)
0 - Does not require RFS for

every data word
1 - Requires RFS for every data

word

SPORT0: 
0xFFC0 0820

SPORT1: 
0xFFC0 0920
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SPORTx Receive Configuration 2 Register (SPORTx_RCR2)

SLEN[4:0] (SPORT Word 
Length)

RSFSE (Receive Stereo 
Frame Sync Enable)

RRFST (Left/Right Order)
00000 - Illegal value
00001 - Illegal value
Serial word length is value in 
this field plus 1

Reset = 0x0000

0 - Left stereo channel first
1 - Right stereo channel first

0 - Normal mode
1 - Frame sync becomes L/R clock

RXSE (RxSEC Enable)

0 - Secondary side disabled
1 - Secondary side enabled

SPORT0: 
0xFFC0 0824

SPORT1: 
0xFFC0 0924
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Additional information for the SPORTx_RCR1 and SPORTxRCR2 Receive Con-
figuration register bits:

• Receive Enable. (RSPEN). This bit selects whether the SPORT is 
enabled to receive (if set) or disabled (if cleared). Setting the RSPEN 
bit turns on the SPORT and causes it to sample data from the data 
receive pins as well as the receive bit clock and Receive Frame Sync 
pins if so programmed. 

Setting RSPEN enables the SPORTx receiver, which can generate a 
SPORTx RX interrupt. For this reason, the code should initialize 
the ISR and the DMA control registers, and should be ready to ser-
vice RX interrupts before setting RSPEN. Setting RSPEN also 
generates DMA requests if DMA is enabled and data is received. 
Set all DMA control registers before setting RSPEN.

• Clearing RSPEN causes the SPORT to stop receiving data; it also 
shuts down the internal SPORT receive circuitry. In low power 
applications, battery life can be extended by clearing RSPEN when-
ever the SPORT is not in use.

 All SPORT control registers should be programmed before RSPEN is 
set. Typical SPORT initialization code first writes all control regis-
ters, including DMA control if applicable. The last step in the code 
is to write SPORTx_RCR1 with all of the necessary bits, including 
RSPEN.

• Internal Receive Clock Select. (IRCLK). This bit selects the internal 
receive clock (if set) or external receive clock (if cleared). The RCLK-
DIV MMR value is not used when an external clock is selected.

• Data Formatting Type Select. (RDTYPE). The two RDTYPE bits spec-
ify one of four data formats used for single and multichannel 
operation.
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• Bit Order Select. (RLSBIT). The RLSBIT bit selects the bit order of 
the data words received over the SPORTs.

• Serial Word Length Select. (SLEN). The serial word length (the 
number of bits in each word received over the SPORTs) is calcu-
lated by adding 1 to the value of the SLEN field. The SLEN field can 
be set to a value of 2 to 31; 0 and 1 are illegal values for this field.

 The frame sync signal is controlled by the SPORTx_TFSDIV and 
SPORTx_RFSDIV registers, not by SLEN. To produce a frame sync 
pulse on each byte or word transmitted, the proper frame sync 
divider must be programmed into the Frame Sync Divider register; 
setting SLEN to 7 does not produce a frame sync pulse on each byte 
transmitted.

• Internal Receive Frame Sync Select. (IRFS). This bit selects 
whether the SPORT uses an internal RFS (if set) or an external RFS 
(if cleared).

• Receive Frame Sync Required Select. (RFSR). This bit selects 
whether the SPORT requires (if set) or does not require (if cleared) 
a Receive Frame Sync for every data word.

• Low Receive Frame Sync Select. (LRFS). This bit selects an active 
low RFS (if set) or active high RFS (if cleared).

• Late Receive Frame Sync. (LARFS). This bit configures late frame 
syncs (if set) or early frame syncs (if cleared).
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• Clock Drive/Sample Edge Select. (RCKFE). This bit selects which 
edge of the RSCLK clock signal the SPORT uses for sampling data, 
for sampling externally generated frame syncs, and for driving 
internally generated frame syncs. If set, internally generated frame 
syncs are driven on the falling edge, and data and externally gener-
ated frame syncs are sampled on the rising edge. If cleared, 
internally generated frame syncs are driven on the rising edge, and 
data and externally generated frame syncs are sampled on the fall-
ing edge.

• RxSec Enable. (RXSE). This bit enables the receive secondary side of 
the serial port (if set).

• Stereo Serial Enable. (RSFSE). This bit enables the Stereo Serial 
operating mode of the serial port (if set). By default this bit is 
cleared, enabling normal clocking and frame sync.

• Left/Right Order. (RRFST). If this bit is set, the right channel is 
received first in Stereo Serial operating mode. By default this bit is 
cleared, and the left channel is received first.

Data Word Formats
The format of the data words transferred over the SPORTs is configured 
by the combination of transmit SLEN and receive SLEN; RDTYPE; TDTYPE; 
RLSBIT; and TLSBIT bits of the SPORTx_TCR1, SPORTx_TCR2, SPORTx_RCR1, 
and SPORTx_RCR2 registers.
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SPORTx_TX Register
The SPORTx Transmit Data register (SPORTx_TX) is a write-only register. 
Reads produce a Peripheral Access Bus (PAB) error. Writes to this register 
cause writes into the transmitter FIFO. The 16-bit wide FIFO is 8 deep 
for word length <= 16 and 4 deep for word length > 16. The FIFO is com-
mon to both primary and secondary data and stores data for both. Data 
ordering in the FIFO is shown in the Figure 12-8.

It is important to keep the interleaving of primary and secondary data in 
the FIFO as shown. This means that PAB/DMA writes to the FIFO must 
follow an order of primary first, and then secondary, if secondary is 
enabled. DAB/PAB writes must match their size to the data word length. 
For word length up to and including 16 bits, use a 16-bit write. Use a 
32-bit write for word length greater than 16 bits.

When transmit is enabled, data from the FIFO is assembled in the TX 
Hold register based on TXSE and SLEN, and then shifted into the primary 
and secondary shift registers. From here, the data is shifted out serially on 
the DTPRI and DTSEC pins.

Figure 12-8. SPORT Transmit FIFO Data Ordering
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The SPORT TX interrupt is asserted when TSPEN = 1 and the TX FIFO 
has room for additional words. This interrupt does not occur if SPORT 
DMA is enabled. For DMA operation, see Chapter 9, “Direct Memory 
Access”.

The Transmit Underflow Status bit (TUVF) is set in the SPORT Status reg-
ister when a Transmit Frame Sync occurs and no new data has been 
loaded into the serial shift register. In Multichannel Mode (MCM), TUVF 
is set whenever the serial shift register is not loaded, and transmission 
begins on the current enabled channel. The TUVF status bit is a sticky 
write-1-to-clear (W1C) bit and is also cleared by disabling the serial port 
(writing TSPEN = 0).

If software causes the core processor to attempt a write to a full TX FIFO 
with a SPORTx_TX write, the new data is lost and no overwrites occur to 
data in the FIFO. The TOVF status bit is set and a SPORT error interrupt 
is asserted. The TOVF bit is a sticky bit; it is only cleared by disabling the 
SPORT TX. To find out whether the core processor can access the 
SPORTx_TX register without causing this type of error, read the register’s 
status first. The TXF bit in the SPORT Status register is 0 if space is avail-
able for another word in the FIFO.

The TXF and TOVF status bits in the SPORTx Status register are updated 
upon writes from the core processor, even when the SPORT is disabled.

SPORTx_RX Register
The SPORTx Receive Data register (SPORTx_RX) is a read-only register. 
Writes produce a PAB error. The same location is read for both primary 
and secondary data. Reading from this register space causes reading of the 
receive FIFO. This 16-bit FIFO is 8 deep for receive word length <= 16 
and 4 deep for length > 16 bits. The FIFO is shared by both primary and 
secondary receive data. The order for reading using PAB/DMA reads is 
important since data is stored in differently depending on the setting of 
the SLEN and RXSE configuration bits.
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Data storage and data ordering in the FIFO is shown in Figure 12-10.

When reading from the FIFO for both primary and secondary data, read 
primary first, followed by secondary. DAB/PAB reads must match their 
size to the data word length. For word length up to and including 16 bits, 
use a 16-bit read. Use a 32-bit read for word length greater than 16 bits.

When receiving is enabled, data from the DRPRI pin is loaded into the RX 
primary shift register, while data from the DRSEC pin is loaded into the RX 
secondary shift register. At transfer completion of a word, data is shifted 
into the RX Hold registers for primary and secondary data, respectively. 
Data from the Hold registers is moved into the FIFO based on RXSE and 
SLEN.

The SPORT RX interrupt is generated when RSPEN = 1 and the RX FIFO 
has received words in it. When the core processor has read all the words in 
the FIFO, the RX interrupt is cleared. The SPORT RX interrupt is set 
only if SPORT RX DMA is disabled; otherwise, the FIFO is read by 
DMA reads.

Figure 12-9. SPORTx Transmit Data Register

SPORTx Transmit Data Register (SPORTx_TX)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Transmit Data[31:16]

Reset = 0x0000 0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Transmit Data[15:0]

SPORT0: 
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Figure 12-10. SPORT Receive FIFO Data Ordering

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

W7

0

PRIMARY AND
SECONDARY ENABLED

DATA LENGTH <= 16 BITS

PRIMARY AND
SECONDARY ENABLED

DATA LENGTH > 16 BITS

15

W6
W5

W4

W3

W2
W1

W0

W3 LOW

015

W3 HIGH
W2 LOW

W2 HIGH

W1 LOW

W1 HIGH
W0 LOW

W0 HIGH

SECONDARY W3

015

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY
PRIMARY

PRIMARY

PRIMARY

SECONDARY

SECONDARY

SECONDARY

W3
W2

W2

W1

W1
W0

W0

SECONDARY W1 LOW

015

SECONDARY

SECONDARY

SECONDARY

W1 HIGH
W1 LOW

W1 HIGH

W0 LOW

W0 HIGH
W0 LOW

W0 HIGH

4 WORDS OF
PRIMARY DATA AND

4 WORDS OF
SECONDARY DATA

IN FIFO

2 WORDS OF
PRIMARY DATA AND

2 WORDS OF
SECONDARY DATA

IN FIFO

FROM Rx HOLD REGISTER

TO
PAB/DAB
BUSES

TO
PAB/DAB
BUSES

TO
PAB/DAB
BUSES

TO
PAB/DAB
BUSES

FROM Rx HOLD REGISTER

FROM Rx HOLD REGISTER

FROM Rx HOLD REGISTER

ONLY PRIMARY ENABLED
DATA LENGTH <= 16 BITS

ONLY PRIMARY ENABLED
DATA LENGTH > 16 BITS

8 WORDS OF
PRIMARY DATA

IN FIFO

4 WORDS OF
PRIMARY DATA

IN FIFO



ADSP-BF533 Blackfin Processor Hardware Reference 12-27 
 

Serial Port Controllers

If the program causes the core processor to attempt a read from an empty 
RX FIFO, old data is read, the RUVF flag is set in the SPORTx_STAT register, 
and the SPORT error interrupt is asserted. The RUVF bit is a sticky bit and 
is cleared only when the SPORT is disabled. To determine if the core can 
access the RX registers without causing this error, first read the RX FIFO 
status (RXNE in the SPORTx Status register). The RUVF status bit is 
updated even when the SPORT is disabled.

The ROVF status bit is set in the SPORTx_STAT register when a new word is 
assembled in the RX Shift register and the RX Hold register has not 
moved the data to the FIFO. The previously written word in the Hold 
register is overwritten. The ROVF bit is a sticky bit; it is only cleared by dis-
abling the SPORT RX.

Figure 12-11. SPORTx Receive Data Register

SPORTx Receive Data Register (SPORTx_RX)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Receive Data[31:16]

Reset = 0x0000 0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Receive Data[15:0]

SPORT0: 
0xFFC0 0818

SPORT1: 
0xFFC0 0918
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SPORTx_STAT Register
The SPORT Status register (SPORTx_STAT) is used to determine if the 
access to a SPORT RX or TX FIFO can be made by determining their full 
or empty status.

The TXF bit in the SPORT Status register indicates whether there is room 
in the TX FIFO. The RXNE status bit indicates whether there are words in 
the RX FIFO. The TXHRE bit indicates if the TX Hold register is empty.

The Transmit Underflow Status bit (TUVF) is set whenever the TFS signal 
occurs (from either an external or internal source) while the TX Shift reg-
ister is empty. The internally generated TFS may be suppressed whenever 
SPORTx_TX is empty by clearing the DITFS control bit in the SPORT Con-
figuration register. The TUVF status bit is a sticky write-1-to-clear (W1C) 
bit and is also cleared by disabling the serial port (writing TSPEN = 0). 

For continuous transmission (TFSR = 0), TUVF is set at the end of a trans-
mitted word if no new word is available in the TX Hold register.

Figure 12-12. SPORTx Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 1 0 0 0 0 0

SPORTx Status Register (SPORTx_STAT)

0 - Disabled
1 - Enabled

RUVF (Sticky Receive Under-
flow Status) - W1C

RXNE (Receive FIFO Not 
Empty Status)

ROVF (Sticky Receive Over-
flow Status) - W1C

TUVF (Sticky Transmit Underflow Status) - W1C 0 - Disabled
1 - Enabled

0 - Empty
1 - Data present in FIFO

Reset = 0x0040

0 - Disabled
1 - Enabled

TOVF (Sticky Transmit Overflow Status) - W1C
0 - Disabled
1 - Enabled

TXF (Transmit FIFO Full Status)
0 - Not full
1 - Full

TXHRE (Transmit Hold Register Empty)
0 - Not empty
1 - Empty

SPORT0: 
0xFFC0 0830

SPORT1:
 0xFFC0 0930
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The TOVF bit is set when a word is written to the TX FIFO when it is full. 
It is a sticky W1C bit and is also cleared by writing TSPEN = 0. Both TXF 
and TOVF are updated even when the SPORT is disabled.

When the SPORT RX Hold register is full, and a new receive word is 
received in the Shift register, the Receive Overflow Status bit (ROVF) is set 
in the SPORT Status register. It is a sticky W1C bit and is also cleared by 
disabling the serial port (writing RSPEN = 0).

The RUVF bit is set when a read is attempted from the RX FIFO and it is 
empty. It is a sticky W1C bit and is also cleared by writing RSPEN = 0. 
The RUVF bit is updated even when the SPORT is disabled.

SPORT RX, TX, and Error Interrupts
The SPORT RX interrupt is asserted when RSPEN is enabled and any 
words are present in the RX FIFO. If RX DMA is enabled, the SPORT 
RX interrupt is turned off and DMA services the RX FIFO.

The SPORT TX interrupt is asserted when TSPEN is enabled and the TX 
FIFO has room for words. If TX DMA is enabled, the SPORT TX inter-
rupt is turned off and DMA services the TX FIFO.

The SPORT Error interrupt is asserted when any of the sticky status bits 
(ROVF, RUVF, TOVF, TUVF) are set. The ROVF and RUVF bits are cleared by 
writing 0 to RSPEN. The TOVF and TUVF bits are cleared by writing 0 to 
TSPEN.

PAB Errors
The SPORT generates a PAB error for illegal register read or write opera-
tions. Examples include:

• Reading a write-only register (for example, SPORT_TX)

• Writing a read-only register (for example, SPORT_RX)
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• Writing or reading a register with the wrong size (for example, 
32-bit read of a 16-bit register)

• Accessing reserved register locations

SPORTx_TCLKDIV and SPORTx_RCLKDIV 
Registers

The frequency of an internally generated clock is a function of the system 
clock frequency (as seen at the SCLK pin) and the value of the 16-bit serial 
clock divide modulus registers (the SPORTx Transmit Serial Clock 
Divider register, SPORTx_TCLKDIV, and the SPORTx Receive Serial Clock 
Divider register, SPORTx_RCLKDIV).

Figure 12-13. SPORTx Transmit Serial Clock Divider Register

Figure 12-14. SPORTx Receive Serial Clock Divider Register

SPORTx Transmit Serial Clock Divider Register (SPORTx_TCLKDIV)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Serial Clock Divide 
Modulus[15:0]

Reset = 0x0000
SPORT0: 

0xFFC0 0808
SPORT1:

0xFFC0 0908

SPORTx Receive Serial Clock Divider Register (SPORTx_RCLKDIV)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Serial Clock Divide 
Modulus[15:0]

Reset = 0x0000
SPORT0: 

0xFFC0 0828
SPORT1: 

0xFFC0 0928
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SPORTx_TFSDIV and SPORTx_RFSDIV 
Register

The 16-bit SPORTx Transmit Frame Sync Divider register 
(SPORTx_TFSDIV) and the SPORTx Receive Frame Sync Divider register 
(SPORTx_RFSDIV) specify how many transmit or receive clock cycles are 
counted before generating a TFS or RFS pulse when the frame sync is inter-
nally generated. In this way, a frame sync can be used to initiate periodic 
transfers. The counting of serial clock cycles applies to either internally or 
externally generated serial clocks.

Figure 12-15. SPORTx Transmit Frame Sync Divider Register

Figure 12-16. SPORTx Receive Frame Sync Divider Register

SPORTx Transmit Frame Sync Divider Register (SPORTx_TFSDIV)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Frame Sync Divider[15:0] 

Reset = 0x0000

Number of transmit clock 
cycles counted before gener-
ating TFS pulse

SPORT0:
 0xFFC0 080C

SPORT1: 
0xFFC0 090C

SPORTx Receive Frame Sync Divider Register (SPORTx_RFSDIV)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Frame Sync Divider[15:0] 

Reset = 0x0000

Number of receive clock 
cycles counted before gener-
ating RFS pulse

SPORT0: 
0xFFC0 082C

SPORT1: 
0xFFC0 092C
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Clock and Frame Sync Frequencies
The maximum serial clock frequency (for either an internal source or an 
external source) is SCLK/2. The frequency of an internally generated clock 
is a function of the system clock frequency (SCLK) and the value of the 
16-bit serial clock divide modulus registers, SPORTx_TCLKDIV and 
SPORTx_RCLKDIV.

SPORTx_TCLK frequency = 

(SCLK frequency)/(2 x (SPORTx_TCLKDIV + 1))

SPORTx_RCLK frequency = 

(SCLK frequency)/(2 x (SPORTx_RCLKDIV + 1))

If the value of SPORTx_TCLKDIV or SPORTx_RCLKDIV is changed while the 
internal serial clock is enabled, the change in TSCLK or RSCLK frequency 
takes effect at the start of the drive edge of TSCLK or RSCLK that follows the 
next leading edge of TFS or RFS.

When an internal frame sync is selected (ITFS = 1 in the SPORTx_TCR1 reg-
ister or IRFS = 1 in the SPORTx_RCR1 register) and frame syncs are not 
required, the first frame sync does not update the clock divider if the value 
in SPORTx_TCLKDIV or SPORTx_RCLKDIV has changed. The second frame 
sync will cause the update.

The SPORTx_TFSDIV and SPORTx_RFSDIV registers specify the number of 
transmit or receive clock cycles that are counted before generating a TFS or 
RFS pulse (when the frame sync is internally generated). This enables a 
frame sync to initiate periodic transfers. The counting of serial clock 
cycles applies to either internally or externally generated serial clocks.

The formula for the number of cycles between frame sync pulses is:

# of transmit serial clocks between frame sync assertions = 

TFSDIV + 1

# of receive serial clocks between frame sync assertions = 

RFSDIV + 1
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Use the following equations to determine the correct value of TFSDIV or 
RFSDIV, given the serial clock frequency and desired frame sync frequency:

SPORTxTFS frequency = (TSCLKx frequency)/(SPORTx_TFSDIV + 1)

SPORTxRFS frequency = (RSCLKx frequency)/(SPORTx_RFSDIV + 1)

The frame sync would thus be continuously active (for transmit if 
TFSDIV = 0 or for receive if RFSDIV = 0). However, the value of TFSDIV 
(or RFSDIV) should not be less than the serial word length minus 1 (the 
value of the SLEN field in SPORTx_TCR2 or SPORTx_RCR2). A smaller value 
could cause an external device to abort the current operation or have other 
unpredictable results. If a SPORT is not being used, the TFSDIV (or 
RFSDIV) divisor can be used as a counter for dividing an external clock or 
for generating a periodic pulse or periodic interrupt. The SPORT must be 
enabled for this mode of operation to work.

Maximum Clock Rate Restrictions
Externally generated late Transmit Frame Syncs also experience a delay 
from arrival to data output, and this can limit the maximum serial clock 
speed. See ADSP-BF531/ADSP-BF532/ADSP-BF533 Embedded Processor 
Data Sheet for exact timing specifications. 

Frame Sync and Clock Example

The following code fragment is a brief example of setting up the clocks 
and frame sync.

r0 = 0x00FF;

p0.l = SPORT0_RFSDIV & 0xFFFF;

p0.h = (SPORT0_RFSDIV >> 16) & 0xFFFF;

w[p0] = r0.l; ssync;

p0.l = SPORT0_TFSDIV & 0xFFFF;

w[p0] = r0.l; ssync;
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Word Length
Each SPORT channel (transmit and receive) independently handles word 
lengths of 3 to 32 bits. The data is right-justified in the SPORT data reg-
isters if it is fewer than 32 bits long, residing in the LSB positions. The 
value of the serial word length (SLEN) field in the SPORTx_TCR2 and 
SPORTx_RCR2 registers of each SPORT determines the word length accord-
ing to this formula:

Serial Word Length = SLEN + 1

 The SLEN value should not be set to 0 or 1; values from 2 to 31 are 
allowed. Continuous operation (when the last bit of the current 
word is immediately followed by the first bit of the next word) is 
restricted to word sizes of 4 or longer (so SLEN  3).

Bit Order
Bit order determines whether the serial word is transmitted MSB first or 
LSB first. Bit order is selected by the RLSBIT and TLSBIT bits in the 
SPORTx_RCR1 and SPORTx_TCR1 registers. When RLSBIT (or TLSBIT) = 0, 
serial words are received (or transmitted) MSB first. When RLSBIT (or 
TLSBIT) = 1, serial words are received (or transmitted) LSB first.

Data Type
The TDTYPE field of the SPORTx_TCR1 register and the RDTYPE field of the 
SPORTx_RCR1 register specify one of four data formats for both single and 
multichannel operation. See Table 12-2.
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These formats are applied to serial data words loaded into the SPORTx_RX 
and SPORTx_TX buffers. SPORTx_TX data words are not actually zero filled or 
sign extended, because only the significant bits are transmitted.

Companding
Companding (a contraction of COMpressing and exPANDing) is the pro-
cess of logarithmically encoding and decoding data to minimize the 
number of bits that must be sent. The SPORTs support the two most 
widely used companding algorithms,  -law and A-law. The processor 
compands data according to the CCITT G.711 specification. The type of 
companding can be selected independently for each SPORT.

When companding is enabled, valid data in the SPORTx_RX register is the 
right-justified, expanded value of the eight LSBs received and sign 
extended to 16 bits. A write to SPORTx_TX causes the 16-bit value to be 
compressed to eight LSBs (sign extended to the width of the transmit 
word) and written to the internal transmit register. Although the com-
panding standards support only 13-bit (A-law) or 14-bit (-law) 
maximum word lengths, up to 16-bit word lengths can be used. If the 
magnitude of the word value is greater than the maximum allowed, the 
value is automatically compressed to the maximum positive or negative 
value.

Lengths greater than 16 bits are not supported for companding operation.

Table 12-2. TDTYPE, RDTYPE, and Data Formatting 

TDTYPE or 
RDTYPE

SPORTx_TCR1 Data Formatting SPORTx_RCR1 Data Formatting

00 Normal operation Zero fill

01 Reserved Sign extend

10 Compand using -law Compand using -law

11 Compand using A-law Compand using A-law
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Clock Signal Options
Each SPORT has a transmit clock signal (TSCLK) and a receive clock signal 
(RSCLK). The clock signals are configured by the TCKFE and RCKFE bits of 
the SPORTx_TCR1 and SPORTx_RCR1 registers. Serial clock frequency is con-
figured in the SPORTx_TCLKDIV and SPORTx_RCLKDIV registers.

 The receive clock pin may be tied to the transmit clock if a single 
clock is desired for both receive and transmit.

Both transmit and receive clocks can be independently generated inter-
nally or input from an external source. The ITCLK bit of the SPORTx_TCR1 
Configuration register and the IRCLK bit in the SPORTx_RCR1 Configura-
tion register determines the clock source.

When IRCLK or ITCLK = 1, the clock signal is generated internally by the 
core, and the TSCLK or RSCLK pin is an output. The clock frequency is 
determined by the value of the serial clock divisor in the SPORTx_RCLKDIV 
register.

When IRCLK or ITCLK = 0, the clock signal is accepted as an input on the 
TSCLK or RSCLK pins, and the serial clock divisors in the 
SPORTx_TCLKDIV/SPORTx_RCLKDIV registers are ignored. The externally gen-
erated serial clocks do not need to be synchronous with the core system 
clock or with each other. The core system clock must have a higher fre-
quency than RSCLK and TSCLK.

 When the SPORT uses external clocks, it must be enabled for a 
minimal number of stable clock pulses before the first active frame 
sync is sampled. Failure to allow for these clocks may result in a 
SPORT malfunction. See the processor data sheet for details.

The first internal frame sync will occur one frame sync delay after the 
SPORTs are ready. External frame syncs can occur as soon as the SPORT 
is ready.
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Frame Sync Options
Framing signals indicate the beginning of each serial word transfer. The 
framing signals for each SPORT are TFS (Transmit Frame Sync) and RFS 
(Receive Frame Sync). A variety of framing options are available; these 
options are configured in the SPORT Configuration registers 
(SPORTx_TCR1, SPORTx_TCR2, SPORTx_RCR1 and SPORTx_RCR2). The TFS 
and RFS signals of a SPORT are independent and are separately configured 
in the control registers.

Framed Versus Unframed
The use of multiple frame sync signals is optional in SPORT communica-
tions. The TFSR (Transmit Frame Sync Required Select) and RFSR (Receive 
Frame Sync Required Select) control bits determine whether frame sync 
signals are required. These bits are located in the SPORTx_TCR1 and 
SPORTx_RCR1 registers.

When TFSR = 1 or RFSR = 1, a frame sync signal is required for every data 
word. To allow continuous transmitting by the SPORT, each new data 
word must be loaded into the SPORTx_TX Hold register before the previous 
word is shifted out and transmitted.

When TFSR = 0 or RFSR = 0, the corresponding frame sync signal is not 
required. A single frame sync is needed to initiate communications but is 
ignored after the first bit is transferred. Data words are then transferred 
continuously, unframed.

 With frame syncs not required, interrupt or DMA requests may 
not be serviced frequently enough to guarantee continuous 
unframed data flow. Monitor status bits or check for a SPORT 
Error interrupt to detect underflow or overflow of data.
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Figure 12-17 illustrates framed serial transfers, which have these 
characteristics:

• TFSR and RFSR bits in the SPORTx_TCR1 and SPORTx_RCR1 registers 
determine framed or unframed mode.

• Framed mode requires a framing signal for every word. Unframed 
mode ignores a framing signal after the first word.

• Unframed mode is appropriate for continuous reception.

• Active low or active high frame syncs are selected with the LTFS and 
LRFS bits of the SPORTx_TCR1 and SPORTx_RCR1 registers.

See “Timing Examples” on page 12-66 for more timing examples.

Internal Versus External Frame Syncs
Both Transmit and Receive Frame Syncs can be independently generated 
internally or can be input from an external source. The ITFS and IRFS bits 
of the SPORTx_TCR1 and SPORTx_RCR1 registers determine the frame sync 
source.

Figure 12-17. Framed Versus Unframed Data
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When ITFS = 1 or IRFS = 1, the corresponding frame sync signal is gener-
ated internally by the SPORT, and the TFS pin or RFS pin is an output. 
The frequency of the frame sync signal is determined by the value of the 
frame sync divisor in the SPORTx_TFSDIV or SPORTx_RFSDIV register.

When ITFS = 0 or IRFS = 0, the corresponding frame sync signal is 
accepted as an input on the TFS pin or RFS pin, and the frame sync divisors 
in the SPORTx_TFSDIV/SPORTx_RFSDIV registers are ignored.

All of the frame sync options are available whether the signal is generated 
internally or externally.

Active Low Versus Active High Frame Syncs
Frame sync signals may be either active high or active low (in other words, 
inverted). The LTFS and LRFS bits of the SPORTx_TCR1 and SPORTx_RCR1 
registers determine frame sync logic levels:

• When LTFS = 0 or LRFS = 0, the corresponding frame sync signal 
is active high.

• When LTFS = 1 or LRFS = 1, the corresponding frame sync signal 
is active low.

Active high frame syncs are the default. The LTFS and LRFS bits are initial-
ized to 0 after a processor reset.

Sampling Edge for Data and Frame Syncs
Data and frame syncs can be sampled on either the rising or falling edges 
of the SPORT clock signals. The TCKFE and RCKFE bits of the SPORTx_TCR1 
and SPORTx_RCR1 registers select the driving and sampling edges of the 
serial data and frame syncs.
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For the SPORT transmitter, setting TCKFE = 1 in the SPORTx_TCR1 register 
selects the falling edge of TSCLKx to drive data and internally generated 
frame syncs and selects the rising edge of TSCLKx to sample externally gen-
erated frame syncs. Setting TCKFE = 0 selects the rising edge of TSCLKx to 
drive data and internally generated frame syncs and selects the falling edge 
of TSCLKx to sample externally generated frame syncs.

For the SPORT receiver, setting RCKFE = 1 in the SPORTx_RCR1 register 
selects the falling edge of RSCLKx to drive internally generated frame syncs 
and selects the rising edge of RSCLKx to sample data and externally gener-
ated frame syncs. Setting RCKFE = 0 selects the rising edge of RSCLKx to 
drive internally generated frame syncs and selects the falling edge of 
RSCLKx to sample data and externally generated frame syncs.

 Note externally generated data and frame sync signals should 
change state on the opposite edge than that selected for sampling. 
For example, for an externally generated frame sync to be sampled 
on the rising edge of the clock (TCKFE = 1 in the SPORTx_TCR1 reg-
ister), the frame sync must be driven on the falling edge of the 
clock.

The transmit and receive functions of two SPORTs connected together 
should always select the same value for TCKFE in the transmitter and RCKFE 
in the receiver, so that the transmitter drives the data on one edge and the 
receiver samples the data on the opposite edge.

In Figure 12-18, TCKFE = RCKFE = 0 and transmit and receive are con-
nected together to share the same clock and frame syncs.
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In Figure 12-19, TCKFE = RCKFE = 1 and transmit and receive are con-
nected together to share the same clock and frame syncs.

Figure 12-18. Example of TCKFE = RCKFE = 0, Transmit and Receive 
Connected

Figure 12-19. Example of TCKFE = RCKFE = 1, Transmit and Receive 
Connected
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Early Versus Late Frame Syncs (Normal Versus 
Alternate Timing)

Frame sync signals can occur during the first bit of each data word (late) 
or during the serial clock cycle immediately preceding the first bit (early). 
The LATFS and LARFS bits of the SPORTx_TCR1 and SPORTx_RCR1 registers 
configure this option.

When LATFS = 0 or LARFS = 0, early frame syncs are configured; this is 
the normal mode of operation. In this mode, the first bit of the transmit 
data word is available and the first bit of the receive data word is sampled 
in the serial clock cycle after the frame sync is asserted, and the frame sync 
is not checked again until the entire word has been transmitted or 
received. In multichannel operation, this corresponds to the case when 
multichannel frame delay is 1.

If data transmission is continuous in early framing mode (in other words, 
the last bit of each word is immediately followed by the first bit of the next 
word), then the frame sync signal occurs during the last bit of each word. 
Internally generated frame syncs are asserted for one clock cycle in early 
framing mode. Continuous operation is restricted to word sizes of 4 or 
longer (SLEN  3).

When LATFS = 1 or LARFS = 1, late frame syncs are configured; this is the 
alternate mode of operation. In this mode, the first bit of the transmit data 
word is available and the first bit of the receive data word is sampled in the 
same serial clock cycle that the frame sync is asserted. In multichannel 
operation, this is the case when frame delay is 0. Receive data bits are sam-
pled by serial clock edges, but the frame sync signal is only checked during 
the first bit of each word. Internally generated frame syncs remain asserted 
for the entire length of the data word in late framing mode. Externally 
generated frame syncs are only checked during the first bit.
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Figure 12-20 illustrates the two modes of frame signal timing. In 
summary:

• For the LATFS or LARFS bits of the SPORTx_TCR1 or SPORTx_RCR1 reg-
isters: LATFS = 0 or LARFS = 0 for early frame syncs, LATFS = 1 or 
LARFS = 1 for late frame syncs.

• For early framing, the frame sync precedes data by one cycle. For 
late framing, the frame sync is checked on the first bit only.

• Data is transmitted MSB first (TLSBIT = 0 or RLSBIT = 0) or LSB 
first (TLSBIT = 1 or RLSBIT = 1).

• Frame sync and clock are generated internally or externally.

See “Timing Examples” on page 12-66 for more examples. 

Figure 12-20. Normal Versus Alternate Framing
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Data Independent Transmit Frame Sync
Normally the internally generated Transmit Frame Sync signal (TFS) is 
output only when the SPORTx_TX buffer has data ready to transmit. The 
Data-Independent Transmit Frame Sync Select bit (DITFS) allows the 
continuous generation of the TFS signal, with or without new data. The 
DITFS bit of the SPORTx_TCR1 register configures this option.

When DITFS = 0, the internally generated TFS is only output when a new 
data word has been loaded into the SPORTx_TX buffer. The next TFS is 
generated once data is loaded into SPORTx_TX. This mode of operation 
allows data to be transmitted only when it is available.

When DITFS = 1, the internally generated TFS is output at its programmed 
interval regardless of whether new data is available in the SPORTx_TX buf-
fer. Whatever data is present in SPORTx_TX is transmitted again with each 
assertion of TFS. The TUVF (Transmit Underflow Status) bit in the 
SPORTx_STAT register is set when this occurs and old data is retransmitted. 
The TUVF status bit is also set if the SPORTx_TX buffer does not have new 
data when an externally generated TFS occurs. Note that in this mode of 
operation, data is transmitted only at specified times.

If the internally generated TFS is used, a single write to the SPORTx_TX data 
register is required to start the transfer.

Moving Data Between SPORTs and 
Memory

Transmit and receive data can be transferred between the SPORTs and 
on-chip memory in one of two ways: with single word transfers or with 
DMA block transfers.
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If no SPORT DMA channel is enabled, the SPORT generates an interrupt 
every time it has received a data word or needs a data word to transmit. 
SPORT DMA provides a mechanism for receiving or transmitting an 
entire block or multiple blocks of serial data before the interrupt is gener-
ated. The SPORT’s DMA controller handles the DMA transfer, allowing 
the processor core to continue running until the entire block of data is 
transmitted or received. Interrupt service routines (ISRs) can then operate 
on the block of data rather than on single words, significantly reducing 
overhead.

For information about DMA, see Chapter 9, “Direct Memory Access”.

Stereo Serial Operation
Several Stereo Serial modes can be supported by the SPORT, including 

the popular I2S format. To use these modes, set bits in the SPORT_RCR2 or 
SPORT_TCR2 registers. Setting RSFSE or TSFSE in SPORT_RCR2 or SPORT_TCR2 
changes the operation of the frame sync pin to a left/right clock as 

required for I2S and left-justified stereo serial data. Setting this bit enables 
the SPORT to generate or accept the special LRCLK-style frame sync. All 
other SPORT control bits remain in effect and should be set appropri-
ately. Figure 12-21 and Figure 12-22 show timing diagrams for Stereo 
Serial mode operation.

Table 12-3 shows several modes that can be configured using bits in 
SPORTx_TCR1 and SPORTx_RCR1. The table shows bits for the receive side of 
the SPORT, but corresponding bits are available for configuring the trans-
mit portion of the SPORT. A control field which may be either set or 
cleared depending on the user’s needs, without changing the standard, is 
indicated by an “X.”
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Note most bits shown as a 0 or 1 may be changed depending on the user’s 
preference, creating many other “almost standard” modes of stereo serial 
operation. These modes may be of use in interfacing to codecs with 
slightly non-standard interfaces. The settings shown in Table 12-3 pro-
vide glueless interfaces to many popular codecs.

Note RFSDIV or TFSDIV must still be greater than or equal to SLEN. For I2S 
operation, RFSDIV or TFSDIV is usually 1/64 of the serial clock rate. With 
RSFSE set, the formulas to calculate frame sync period and frequency (dis-
cussed in “Clock and Frame Sync Frequencies” on page 12-32) still apply, 
but now refer to one half the period and twice the frequency. For instance, 
setting RFSDIV or TFSDIV = 31 produces an LRCLK that transitions every 32 
serial clock cycles and has a period of 64 serial clock cycles.

Table 12-3. Stereo Serial Settings 

Bit Field Stereo Audio Serial Scheme

I2S Left-Justified DSP Mode

RSFSE 1 1 0

RRFST 0 0 0

LARFS 0 1 0

LRFS 0 1 0

RFSR 1 1 1

RCKFE 1 0 0

SLEN 2 – 31 2 – 31 2 – 31

RLSBIT 0 0 0

RFSDIV
(If internal FS is selected.)

2 – Max 2 – Max 2 – Max

RXSE
(Secondary Enable is available for RX and TX.)

X X X
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The LRFS bit determines the polarity of the RFS or TFS frame sync pin for 
the channel that is considered a “right” channel. Thus, setting LRFS = 0 
(meaning that it is an active high signal) indicates that the frame sync is 
high for the “right” channel, thus implying that it is low for the “left” 
channel. This is the default setting.

The RRFST and TRFST bits determine whether the first word received or 
transmitted is a left or a right channel. If the bit is set, the first word 
received or transmitted is a right channel. The default is to receive or 
transmit the left channel word first.

The secondary DRxSEC and DTxSEC pins are useful extensions of the serial 

port which pair well with Stereo Serial mode. Multiple I2S streams of data 
can be transmitted or received using a single SPORT. Note the primary 
and secondary pins are synchronous, as they share clock and LRCLK (Frame 

Figure 12-21. SPORT Stereo Serial Modes, Transmit
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3. TSCLKx FREQUENCY IS NORMALLY 64 x TFS BUT MAY BE OPERATED IN BURST MODE.
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Sync) pins. The transmit and receive sides of the SPORT need not be syn-
chronous, but may share a single clock in some designs. See Figure 12-3 
on page 12-8, which shows multiple stereo serial connections being made 
between the processor and an AD1836 codec.

The Blackfin processor’s SPORTs are designed such that in I2S master 
mode, the LRCLK signal is held at the last driven logic level. The LRCLK sig-
nal does not transition (provide an edge) after the final data word is driven 

out. While transmitting a fixed number of words to an I2S receiver that 
expects an LRCLK edge to receive the incoming data word, the SPORT 
should send a dummy word after transmitting the fixed number of words. 
The transmission of this dummy word toggles LRCLK, generating an edge. 

Transmission of the dummy word is not required when the I2S receiver is 
a Blackfin processor SPORT.

Figure 12-22. SPORT Stereo Serial Modes, Receive
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Multichannel Operation
The SPORTs offer a Multichannel mode of operation which allows the 
SPORT to communicate in a Time-Division-Multiplexed (TDM) serial 
system. In multichannel communications, each data word of the serial bit-
stream occupies a separate channel. Each word belongs to the next 
consecutive channel so that, for example, a 24-word block of data contains 
one word for each of 24 channels.

The SPORT can automatically select words for particular channels while 
ignoring the others. Up to 128 channels are available for transmitting or 
receiving; each SPORT can receive and transmit data selectively from any 
of the 128 channels. These 128 channels can be any 128 out of the 1024 
total channels. RX and TX must use the same 128-channel region to selec-
tively enable channels. The SPORT can do any of the following on each 
channel:

• Transmit data

• Receive data

• Transmit and receive data

• Do nothing

Data companding and DMA transfers can also be used in multichannel 
mode.

The DTPRI pin is always driven (not three-stated) if the SPORT is enabled 
(TSPEN = 1 in the SPORTx_TCR1 register), unless it is in Multichannel mode 
and an inactive time slot occurs. The DTSEC pin is always driven (not 
three-stated) if the SPORT is enabled and the secondary transmit is 
enabled (TXSE = 1 in the SPORTx_TCR2 register), unless the SPORT is in 
Multichannel mode and an inactive time slot occurs.
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In multichannel mode, RSCLK can either be provided externally or gener-
ated internally by the SPORT, and it is used for both transmit and receive 
functions. Leave TSCLK disconnected if the SPORT is used only in multi-
channel mode. If RSCLK is externally or internally provided, it will be 
internally distributed to both the receiver and transmitter circuitry.

 The SPORT Multichannel Transmit Select register and the 
SPORT Multichannel Receive Select register must be programmed 
before enabling SPORTx_TX or SPORTx_RX operation for Multichan-
nel Mode. This is especially important in “DMA data unpacked 
mode,” since SPORT FIFO operation begins immediately after 
RSPEN and TSPEN are set, enabling both RX and TX. The MCMEN bit 
(in SPORTx_MCMC2) must be enabled prior to enabling SPORTx_TX or 
SPORTx_RX operation. When disabling the SPORT from multichan-
nel operation, first disable TSPEN and then disable RSPEN. Note both 
TSPEN and RSPEN must be disabled before reenabling. Disabling 
only TX or RX is not allowed.

Figure 12-23 shows example timing for a multichannel transfer that has 
these characteristics:

• Use TDM method where serial data is sent or received on different 
channels sharing the same serial bus

• Can independently select transmit and receive channels

• RFS signals start of frame

• TFS is used as “Transmit Data Valid” for external logic, true only 
during transmit channels

• Receive on channels 0 and 2, transmit on channels 1 and 2

• Multichannel frame delay is set to 1

See “Timing Examples” on page -66 for more examples.
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SPORTx_MCMCn Registers
There are two SPORTx Multichannel Configuration registers 
(SPORTx_MCMCn) for each SPORT. The SPORTx_MCMCn registers are used to 
configure the multichannel operation of the SPORT. The two control 
registers are shown in Figure 12-24 and Figure 12-25. 

Figure 12-23. Multichannel Operation

Figure 12-24. SPORTx Multichannel Configuration Register 1
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WSIZE[3:0] (Window Size) WOFF[9:0] (Window Offset)
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SPORT0: 
0xFFC0 0838

SPORT1: 
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Multichannel Enable
Setting the MCMEN bit in the SPORTx_MCM2 register enables Multichannel 
mode. When MCMEN = 1, multichannel operation is enabled; when 
MCMEN = 0, all multichannel operations are disabled.

 Setting the MCMEN bit enables multichannel operation for both the 
receive and transmit sides of the SPORT. Therefore, if a receiving 
SPORT is in Multichannel mode, the transmitting SPORT must 
also be in Multichannel mode.

 When in multichannel mode, do not enable the stereo serial frame 
sync modes or the late frame sync feature, as these features are 
incompatible with multichannel mode.

Figure 12-25. SPORTx Multichannel Configuration Register 2
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Table 12-4 shows the dependencies of bits in the SPORT Configuration 
register when the SPORT is in Multichannel Mode.

Frame Syncs in Multichannel Mode
All receiving and transmitting devices in a multichannel system must have 
the same timing reference. The RFS signal is used for this reference, indi-
cating the start of a block or frame of multichannel data words.

Table 12-4. Multichannel Mode Configuration 

SPORTx_RCR1 or 
SPORTx_RCR2

SPORTx_TCR1 or 
SPORTx_TCR2

Notes

RSPEN TSPEN Set or clear both

IRCLK - Independent

- ITCLK Ignored

RDTYPE TDTYPE Independent

RLSBIT TLSBIT Independent

IRFS - Independent

- ITFS Ignored

RFSR TFSR Ignored

- DITFS Ignored

LRFS LTFS Independent

LARFS LATFS Both must be 0

RCKFE TCKFE Set or clear both to same value

SLEN SLEN Set or clear both to same value

RXSE TXSE Independent

RSFSE TSFSE Both must be 0

RRFST TRFST Ignored
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When Multichannel mode is enabled on a SPORT, both the transmitter 
and the receiver use RFS as a frame sync. This is true whether RFS is 
generated internally or externally. The RFS signal is used to synchronize 
the channels and restart each multichannel sequence. Assertion of RFS 
indicates the beginning of the channel 0 data word.

Since RFS is used by both the SPORTx_TX and SPORTx_RX channels of the 
SPORT in Multichannel mode configuration, the corresponding bit pairs 
in SPORTx_RCR1 and SPORTx_TCR1, and in SPORTx_RCR2 and SPORTx_TCR2, 
should always be programmed identically, with the possible exception of 
the RXSE and TXSE pair and the RDTYPE and TDTYPE pair. This is true even if 
SPORTx_RX operation is not enabled.

In Multichannel mode, RFS timing similar to late (alternative) frame mode 
is entered automatically; the first bit of the transmit data word is available 
and the first bit of the receive data word is sampled in the same serial clock 
cycle that the frame sync is asserted, provided that MFD is set to 0.

The TFS signal is used as a transmit data valid signal which is active during 
transmission of an enabled word. The SPORT’s data transmit pin is 
three-stated when the time slot is not active, and the TFS signal serves as an 
output-enabled signal for the data transmit pin. The SPORT drives TFS in 
Multichannel mode whether or not ITFS is cleared. The TFS pin in Multi-
channel mode still obeys the LTFS bit. If LTFS is set, the transmit data valid 
signal will be active low—a low signal on the TFS pin indicates an active 
channel.

Once the initial RFS is received, and a frame transfer has started, all other 
RFS signals are ignored by the SPORT until the complete frame has been 
transferred.

If MFD > 0, the RFS may occur during the last channels of a previous frame. 
This is acceptable, and the frame sync is not ignored as long as the delayed 
channel 0 starting point falls outside the complete frame.
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In Multichannel mode, the RFS signal is used for the block or frame start 
reference, after which the word transfers are performed continuously with 
no further RFS signals required. Therefore, internally generated frame 
syncs are always data independent.

The Multichannel Frame
A multichannel frame contains more than one channel, as specified by the 
window size and window offset. A complete multichannel frame consists 
of 1 – 1024 channels, starting with channel 0. The particular channels of 
the multichannel frame that are selected for the SPORT are a combination 
of the window offset, the window size, and the Multichannel Select 
registers.

Figure 12-26. Relationships for Multichannel Parameters
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Multichannel Frame Delay
The 4-bit MFD field in SPORTx_MCMC2 specifies a delay between the frame 
sync pulse and the first data bit in Multichannel mode. The value of MFD is 
the number of serial clock cycles of the delay. Multichannel frame delay 
allows the processor to work with different types of interface devices.

A value of 0 for MFD causes the frame sync to be concurrent with the first 
data bit. The maximum value allowed for MFD is 15. A new frame sync may 
occur before data from the last frame has been received, because blocks of 
data occur back-to-back.

Window Size
The window size (WSIZE[3:0]) defines the number of channels that can be 
enabled/disabled by the Multichannel Select registers. This range of words 
is called the active window. The number of channels can be any value in 
the range of 0 to 15, corresponding to active window size of 8 to 128, in 
increments of 8; the default value of 0 corresponds to a minimum active 
window size of 8 channels. To calculate the active window size from the 
WSIZE register, use this equation:

Number of words in active window = 8 x (WSIZE + 1)

Since the DMA buffer size is always fixed, it is possible to define a smaller 
window size (for example, 32 words), resulting in a smaller DMA buffer 
size (in this example, 32 words instead of 128 words) to save DMA band-
width. The window size cannot be changed while the SPORT is enabled.

Multichannel select bits that are enabled but fall outside the window 
selected are ignored.
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Window Offset
The window offset (WOFF[9:0]) specifies where in the 1024-channel range 
to place the start of the active window. A value of 0 specifies no offset and 
896 is the largest value that permits using all 128 channels. As an example, 
a program could define an active window with a window size of 8 
(WSIZE = 0) and an offset of 93 (WOFF = 93). This 8-channel window 
would reside in the range from 93 to 100. Neither the window offset nor 
the window size can be changed while the SPORT is enabled.

If the combination of the window size and the window offset would place 
any portion of the window outside of the range of the channel counter, 
none of the out-of-range channels in the frame are enabled.

SPORTx_CHNL Register
The 10-bit CHNL field in the SPORTx Current Channel register 
(SPORTx_CHNL)  indicates which channel is currently being serviced during 
multichannel operation. This field is a read-only status indicator. The 
CHNL[9:0] field increments by one as each channel is serviced. The coun-
ter stops at the upper end of the defined window. The Channel Select 
register restarts at 0 at each frame sync. As an example, for a window size 
of 8 and an offset of 148, the counter displays a value between 0 and 156.

Once the window size has completed, the channel counter resets to 0 in 
preparation for the next frame. Because there are synchronization delays 
between RSCLK and the processor clock, the Channel register value is 
approximate. It is never ahead of the channel being served, but it may lag 
behind. 
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Other Multichannel Fields in SPORTx_MCMC2
The FSDR bit in the SPORTx_MCMC2 register changes the timing relationship 
between the frame sync and the clock received. This change enables the 
SPORT to comply with the H.100 protocol.

Normally (When FSDR = 0), the data is transmitted on the same edge that 
the TFS is generated. For example, a positive edge on TFS causes data to be 
transmitted on the positive edge of the TSCLK—either the same edge or the 
following one, depending on when LATFS is set.

When the frame sync/data relationship is used (FSDR = 1), the frame sync 
is expected to change on the falling edge of the clock and is sampled on 
the rising edge of the clock. This is true even though data received is sam-
pled on the negative edge of the receive clock.

Channel Selection Register
A channel is a multibit word from 3 to 32 bits in length that belongs to 
one of the TDM channels. Specific channels can be individually enabled 
or disabled to select which words are received and transmitted during mul-
tichannel communications. Data words from the enabled channels are 
received or transmitted, while disabled channel words are ignored. Up to 
128 contiguous channels may be selected out of 1024 available channels. 

Figure 12-27. SPORTx Current Channel Register
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The SPORTx_MRCSn and SPORTx_MTCSn Multichannel Select registers are 
used to enable and disable individual channels; the SPORTx_MRCSn registers 
specify the active receive channels, and the SPORTx_MTCSn registers specify 
the active transmit channels.

Four registers make up each Multichannel Select register. Each of the four 
registers has 32 bits, corresponding to 32 channels. Setting a bit enables 
that channel, so the SPORT selects its word from the multiple word block 
of data (for either receive or transmit).

Channel Select bit 0 always corresponds to the first word of the active 
window. To determine a channel’s absolute position in the frame, add the 
window offset words to the channel select position. For example, setting 
bit 7 in MCS2 selects word 71 of the active window to be enabled. Setting 
bit 2 in MCS1 selects word 34 of the active window, and so on.

Setting a particular bit in the SPORTx_MTCSn register causes the SPORT to 
transmit the word in that channel’s position of the datastream. Clearing 
the bit in the SPORTx_MTCSn register causes the SPORT’s data transmit pin 
to three-state during the time slot of that channel.

Setting a particular bit in the SPORTx_MRCSn register causes the SPORT to 
receive the word in that channel’s position of the datastream; the received 
word is loaded into the SPORTx_RX buffer. Clearing the bit in the 
SPORTx_MRCSn register causes the SPORT to ignore the data.

Figure 12-28. Multichannel Select Registers
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Companding may be selected for all channels or for no channels. A-law or 
-law companding is selected with the TDTYPE field in the SPORTx_TCR1 
register and the RDTYPE field in the SPORTx_RCR1 register, and applies to all 
active channels. (See “Companding” on page 12-35 for more information 
about companding.)

SPORTx_MRCSn Registers

The Multichannel Selection registers are used to enable and disable indi-
vidual channels. The SPORTx Multichannel Receive Select registers 
(SPORTx_MRCSn) specify the active receive channels. There are four regis-
ters, each with 32 bits, corresponding to the 128 channels. Setting a bit 
enables that channel so that the serial port selects that word for receive 
from the multiple word block of data. For example, setting bit 0 selects 
word 0, setting bit 12 selects word 12, and so on.

Setting a particular bit in the SPORTx_MRCSn register causes the serial port 
to receive the word in that channel’s position of the datastream; the 
received word is loaded into the RX buffer. Clearing the bit in the 
SPORTx_MRCSn register causes the serial port to ignore the data.
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Figure 12-29. SPORTx Multichannel Receive Select Registers
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SPORTx_MTCSn Registers

The Multichannel Selection registers are used to enable and disable indi-
vidual channels. The four SPORTx Multichannel Transmit Select 
registers (SPORTx_MTCSn) specify the active transmit channels. There are 
four registers, each with 32 bits, corresponding to the 128 channels. Set-
ting a bit enables that channel so that the serial port selects that word for 
transmit from the multiple word block of data. For example, setting bit 0 
selects word 0, setting bit 12 selects word 12, and so on.

Setting a particular bit in a SPORTx_MTCSn register causes the serial port to 
transmit the word in that channel’s position of the datastream. Clearing 
the bit in the SPORTx_MTCSn register causes the serial port’s data transmit 
pin to three-state during the time slot of that channel.

Table 12-5. SPORTx Multichannel Receive Select Register 
Memory-Mapped Addresses

Register Name Memory-Mapped Address

SPORT0_MRCS0 0xFFC0 0850

SPORT0_MRCS1 0xFFC0 0854

SPORT0_MRCS2 0xFFC0 0858

SPORT0_MRCS3 0xFFC0 085C

SPORT1_MRCS0 0xFFC0 0950

SPORT1_MRCS1 0xFFC0 0954

SPORT1_MRCS2 0xFFC0 0958

SPORT1_MRCS3 0xFFC0 095C
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Figure 12-30. SPORTx Multichannel Transmit Select Registers

SPORTx Multichannel Transmit Select Registers (SPORTx_MTCSn)
For all bits, 0 - Channel disabled, 1 - Channel enabled, so SPORT selects that word from multiple 
word block of data.
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Channel number

Bit number in register

Channel number

Bit number in register

Channel number

Bit number in register

For Memory-mapped 
addresses, see 
Table 12-6.

0 00 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0

0 00 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0

0 00 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0

0 00 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0
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Multichannel DMA Data Packing
Multichannel DMA data packing and unpacking are specified with the 
MCDTXPE and MCDRXPE bits in the SPORTx_MCMC2 Multichannel Configura-
tion register.

If the bits are set, indicating that data is packed, the SPORT expects the 
data contained by the DMA buffer corresponds only to the enabled 
SPORT channels. For example, if an MCM frame contains 10 enabled 
channels, the SPORT expects the DMA buffer to contain 10 consecutive 
words for each frame. It is not possible to change the total number of 
enabled channels without changing the DMA buffer size, and reconfigur-
ing is not allowed while the SPORT is enabled.

If the bits are cleared (the default, indicating that data is not packed), the 
SPORT expects the DMA buffer to have a word for each of the channels 
in the active window, whether enabled or not, so the DMA buffer size 
must be equal to the size of the window. For example, if channels 1 and 10 
are enabled, and the window size is 16, the DMA buffer size would have 
to be 16 words. The data to be transmitted or received would be placed at 
addresses 1 and 10 of the buffer, and the rest of the words in the DMA 

Table 12-6. SPORTx Multichannel Transmit Select Register 
Memory-Mapped Addresses

Register Name Memory-Mapped Address

SPORT0_MTCS0 0xFFC0 0840

SPORT0_MTCS1 0xFFC0 0844

SPORT0_MTCS2 0xFFC0 0848

SPORT0_MTCS3 0xFFC0 084C

SPORT1_MTCS0 0xFFC0 0940

SPORT1_MTCS1 0xFFC0 0944

SPORT1_MTCS2 0xFFC0 0948

SPORT1_MTCS3 0xFFC0 094C
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buffer would be ignored. This mode allows changing the number of 
enabled channels while the SPORT is enabled, with some caution. First 
read the Channel register to make sure that the active window is not being 
serviced. If the channel count is 0, then the Multichannel Select registers 
can be updated.

Support for H.100 Standard Protocol
The processor supports the H.100 standard protocol. The following 
SPORT parameters must be set to support this standard.

• Set for external frame sync. Frame sync generated by external bus 
master.

• TFSR/RFSR set (frame syncs required)

• LTFS/LRFS set (active low frame syncs)

• Set for external clock

• MCMEN set (Multichannel mode selected)

• MFD = 0 (no frame delay between frame sync and first data bit)

• SLEN = 7 (8-bit words)

• FSDR = 1 (set for H.100 configuration, enabling half-clock-cycle 
early frame sync)

2X Clock Recovery Control
The SPORTs can recover the data rate clock from a provided 2X input 
clock. This enables the implementation of H.100 compatibility modes for 
MVIP-90 (2 Mbps data) and HMVIP (8 Mbps data), by recovering 
2 MHz from 4 MHz or 8 MHz from the 16 MHz incoming clock with 
the proper phase relationship. A 2-bit mode signal (MCCRM[1:0] in the 
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SPORTx_MCMC2 register) chooses the applicable clock mode, which includes 
a non-divide or bypass mode for normal operation. A value of MCCRM = 00 
chooses non-divide or bypass mode (H.100-compatible), MCCRM = 10 
chooses MVIP-90 clock divide (extract 2 MHz from 4 MHz), and 
MCCRM = 11 chooses HMVIP clock divide (extract 8 MHz from 16 MHz).

SPORT Pin/Line Terminations
The processor has very fast drivers on all output pins, including the 
SPORTs. If connections on the data, clock, or frame sync lines are longer 
than six inches, consider using a series termination for strip lines on 
point-to-point connections. This may be necessary even when using low 
speed serial clocks, because of the edge rates.

Timing Examples
Several timing examples are included within the text of this chapter (in the 
sections “Framed Versus Unframed” on page 12-37, “Early Versus Late 
Frame Syncs (Normal Versus Alternate Timing)” on page 12-42, and 
“Frame Syncs in Multichannel Mode” on page 12-53). This section con-
tains additional examples to illustrate other possible combinations of the 
framing options.

These timing examples show the relationships between the signals but are 
not scaled to show the actual timing parameters of the processor. Consult 
ADSP-BF531/ADSP-BF532/ADSP-BF533 Embedded Processor Data Sheet 
for actual timing parameters and values.

These examples assume a word length of four bits (SLEN = 3). Framing 
signals are active high (LRFS = 0 and LTFS = 0).

Figure 12-31 through Figure 12-36 show framing for receiving data.
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In Figure 12-31 and Figure 12-32, the normal framing mode is shown for 
non-continuous data (any number of TSCLK or RSCLK cycles between 
words) and continuous data (no TSCLK or SCLK cycles between words). 

Figure 12-33 and Figure 12-34 show non-continuous and continuous 
receiving in the alternate framing mode. These four figures show the input 
timing requirement for an externally generated frame sync and also the 
output timing characteristic of an internally generated frame sync. Note 

Figure 12-31. SPORT Receive, Normal Framing

Figure 12-32. SPORT Continuous Receive, Normal Framing

B3B3 B2 B1 B0 B2 B1 B0

SPORT CONTROL REGISTER:
BOTH INTERNAL FRAMING OPTION AND EXTERNAL FRAMING OPTION SHOWN.
DR REPRESENTS DRxPRI AND/OR DRxSEC, DEPENDING ON DESIRED CONFIGURATION.

RSCLK

RFS OUTPUT

DR

RFS INPUT

RSCLK

RFS OUTPUT

RFS INPUT

DR B3 B2 B1 B0 B3 B2 B1 B0 B3 B2

SPORT CONTROL REGISTER:
BOTH INTERNAL FRAMING OPTION AND EXTERNAL FRAMING OPTION SHOWN
DR REPRESENTS DRxPRI AND/OR DRxSEC, DEPENDING ON DESIRED CONFIGURATION.

:
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the output meets the input timing requirement; therefore, with two 
SPORT channels used, one SPORT channel could provide RFS for the 
other SPORT channel.

Figure 12-35 and Figure 12-36 show the receive operation with normal 
framing and alternate framing, respectively, in the unframed mode. A sin-
gle frame sync signal occurs only at the start of the first word, either one 
RSCLK before the first bit (in normal mode) or at the same time as the first 
bit (in alternate mode). This mode is appropriate for multiword bursts 
(continuous reception).

Figure 12-33. SPORT Receive, Alternate Framing

Figure 12-34. SPORT Continuous Receive, Alternate Framing

B3B3 B2 B1 B0 B2 B1 B0

SPORT CONTROL REGISTER:
BOTH INTERNAL FRAMING OPTION AND EXTERNAL FRAMING OPTION SHOWN.
DR REPRESENTS DRxPRI AND/OR DRxSEC, DEPENDING ON DESIRED CONFIGURATION.

RSCLK

RFS OUTPUT

DR

RFS INPUT

RSCLK

RFS OUTPUT

RFS INPUT

DR B3 B2 B1 B0 B3 B2 B1 B0

SPORT CONTROL REGISTER:
BOTH INTERNAL FRAMING OPTION AND EXTERNAL FRAMING OPTION SHOWN
DR REPRESENTS DRxPRI AND/OR DRxSEC, DEPENDING ON DESIRED CONFIGURATION.
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Figure 12-37 through Figure 12-42 show framing for transmitting data 
and are very similar to Figure 12-31 through Figure 12-36. In 
Figure 12-37 and Figure 12-38, the normal framing mode is shown for 
non-continuous data (any number of TSCLK cycles between words) and 
continuous data (no TSCLK cycles between words). Figure 12-39 and 
Figure 12-40 show non-continuous and continuous transmission in the 
alternate framing mode. As noted previously for the receive timing dia-
grams, the RFS output meets the RFS input timing requirement.

Figure 12-35. SPORT Receive, Unframed Mode, Normal Framing

Figure 12-36. SPORT Receive, Unframed Mode, Alternate Framing

RSCLK

RFS

DR B3 B2 B1 B0 B3 B2 B1 B0 B2B3

DR REPRESENTS DRxPRI AND/OR DRxSEC, DEPENDING ON DESIRED CONFIGURATION.

RSCLK

RFS

DR B3 B2 B1 B0 B3 B2 B1 B0 B2B3

DR REPRESENTS DRxPRI AND/OR DRxSEC, DEPENDING ON DESIRED CONFIGURATION.
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Figure 12-37. SPORT Transmit, Normal Framing

Figure 12-38. SPORT Continuous Transmit, Normal Framing

TSCLK

TFS OUTPUT

DT B2 B1 B0B3 B2 B1 B0B3

TFS INPUT

SPORT CONTROL REGISTER:
BOTH INTERNAL FRAMING OPTION AND EXTERNAL FRAMING OPTION SHOWN.
DT REPRESENTS DTxPRI AND/OR DTxSEC, DEPENDING ON DESIRED CONFIGURATION.

B2 B1 B0B3 B2 B1 B0B3 B3 B2

TSCLK

TFS OUTPUT

TFS INPUT

TR

SPORT CONTROL REGISTER:
BOTH INTERNAL FRAMING OPTION AND EXTERNAL FRAMING OPTION SHOWN
DT REPRESENTS DTxPRI AND/OR DTxSEC, DEPENDING ON DESIRED CONFIGURATION.
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Figure 12-41 and Figure 12-42 show the transmit operation with normal 
framing and alternate framing, respectively, in the unframed mode. A sin-
gle frame sync signal occurs only at the start of the first word, either one 
TSCLK before the first bit (in normal mode) or at the same time as the first 
bit (in alternate mode).

Figure 12-39. SPORT Transmit, Alternate Framing

Figure 12-40. SPORT Continuous Transmit, Alternate Framing

B2 B1 B0B3 B2 B1 B0B3

SPORT CONTROL REGISTER:
BOTH INTERNAL FRAMING OPTION AND EXTERNAL FRAMING OPTION SHOWN.
DT REPRESENTS DTxPRI AND/OR DTxSEC, DEPENDING ON DESIRED CONFIGURATION.

TSCLK

TFS OUTPUT

DT

TFS INPUT

B2 B1 B0B3 B0B3 B2 B1

TSCLK

TFS OUTPUT

TFS INPUT

TR

SPORT CONTROL REGISTER:
BOTH INTERNAL FRAMING OPTION AND EXTERNAL FRAMING OPTION SHOWN
DT REPRESENTS DTxPRI AND/OR DTxSEC, DEPENDING ON DESIRED CONFIGURATION.
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Figure 12-41. SPORT Transmit, Unframed Mode, Normal Framing

Figure 12-42. SPORT Transmit, Unframed Mode, Alternate Framing

TSCLK

TFS

DT B3 B3B0B1B2 B1 B0 B3B2 B2

DT REPRESENTS DTxPRI AND/OR DTxSEC, DEPENDING ON DESIRED CONFIGURATION.

TSCLK

TFS

DT B3 B3B0B1B2 B1 B0 B3B2 B2

DT REPRESENTS DTxPRI AND/OR DTxSEC, DEPENDING ON DESIRED CONFIGURATION.
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The Universal Asynchronous Receiver/Transmitter (UART) is a 
full-duplex peripheral compatible with PC-style industry-standard 
UARTs. The UART converts data between serial and parallel formats. 
The serial communication follows an asynchronous protocol that supports 
various word length, stop bits, and parity generation options. The UART 
includes interrupt handling hardware. Interrupts can be generated from 
12 different events.

The UART supports the half-duplex IrDA® (Infrared Data Association) 
SIR (9.6/115.2 Kbps rate) protocol. This is a mode-enabled feature. 

 Modem status and control functionality is not supported by the 
UART module, but may be implemented using General-Purpose 
I/O (GPIO) pins.

The UART is a DMA-capable peripheral with support for separate TX 
and RX DMA master channels. It can be used in either DMA or pro-
grammed non-DMA mode of operation. The non-DMA mode requires 
software management of the data flow using either interrupts or polling. 
The DMA method requires minimal software intervention as the DMA 
engine itself moves the data. See Chapter 9, “Direct Memory Access” for 
more information on DMA.

Either one of the peripheral timers can be used to provide a hardware 
assisted autobaud detection mechanism for use with the UART. See 
Chapter 15, “Timers” for more information.
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Serial Communications
The UART follows an asynchronous serial communication protocol with 
these options:

• 5 – 8 data bits

• 1, 1½, or 2 stop bits 

• None, even, or odd parity

• Baud rate = SCLK/(16  Divisor), where SCLK is the system clock 
frequency and Divisor can be a value from 1 to 65536

All data words require a start bit and at least one stop bit. With the 
optional parity bit, this creates a 7- to 12-bit range for each word. The for-
mat of received and transmitted character frames is controlled by the Line 
Control register (UART_LCR). Data is always transmitted and received least 
significant bit (LSB) first.

Figure 13-1 shows a typical physical bitstream measured on the TX pin.

Figure 13-1. Bitstream on the TX Pin

DATA BITS STOP BIT(S)

START BIT LSB PARITY BIT (OPTIONAL, ODD OR EVEN)

D0 D1 D2 D3 D4 D5 D6 D7
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UART Control and Status Registers
The processor provides a set of PC-style industry-standard control and 
status registers for each UART. These Memory-mapped Registers 
(MMRs) are byte-wide registers that are mapped as half words with the 
most significant byte zero filled.

Consistent with industry-standard interfaces, multiple registers are 
mapped to the same address location. The Divisor Latch registers 
(UART_DLH and UART_DLL) share their addresses with the Transmit Holding 
register (UART_THR), the Receive Buffer register (UART_RBR), and the Inter-
rupt Enable register (UART_IER). The Divisor Latch Access bit (DLAB) in 
the Line Control Register (UART_LCR) controls which set of registers is 
accessible at a given time. Software must use 16-bit word load/store 
instructions to access these registers.

Transmit and receive channels are both buffered. The UART_THR register 
buffers the Transmit Shift register (TSR) and the UART_RBR register buffers 
the Receive Shift register (RSR). The shift registers are not directly accessi-
ble by software.

UART_LCR Register
The UART Line Control register (UART_LCR) controls the format of 
received and transmitted character frames. The SB bit functions even when 
the UART clock is disabled. Since the TX pin normally drives high, it can 
be used as a flag output pin, if the UART is not used. 
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UART_MCR Register
The Modem Control register (UART_MCR) controls the UART port, as 
shown in Figure 13-3. Even if modem functionality is not supported, the 
Modem Control register is available in order to support the loopback 
mode.

Figure 13-2. UART Line Control Register

Figure 13-3. UART Modem Control Register

DLAB (Divisor Latch Access)
1 - Enables access to UART_DLL

and UART_DLH
0 - Enables access to UART_THR,

UART_RBR, and UART_IER

SB (Set Break)
0 - No force
1 - Force TX pin to 0

STP (Stick Parity)
Forces parity to defined value if set and PEN = 1
EPS = 1, parity transmitted and checked as 0
EPS = 0, parity transmitted and checked as 1

EPS (Even Parity Select)
1 - Even parity
0 - Odd parity when PEN = 1 and STP = 0

WLS[1:0] (Word Length Select)
00 - 5-bit word
01 - 6-bit word
10 - 7-bit word
11 - 8-bit word

STB (Stop Bits)
1 - 2 stop bits for non-5-bit 

word length or 1 1/2 stop 
bits for 5-bit word length

0 - 1 stop bit

PEN (Parity Enable)
1 - Transmit and check parity
0 - Parity not transmitted or

checked

UART Line Control Register (UART_LCR)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x00000xFFC0 040C

LOOP_ENA (Loopback mode enable)
Disconnects RX from RSR

UART Modem Control Register (UART_MCR)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x00000xFFC0 0410
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Loopback mode disconnects the receiver’s input from the RX pin, but 
redirects it to the transmit output internally.

UART_LSR Register
The UART Line Status register (UART_LSR) contains UART status infor-
mation as shown in Figure 13-4.

The Break Interrupt (BI), Overrun Error (OE), Parity Error (PE) and Fram-
ing Error (FE) bits are cleared when the UART Line Status register 
(UART_LSR) is read. The Data Ready (DR) bit is cleared when the UART 
Receive Buffer register (UART_RBR) is read.

 Because of the destructive nature of these read operations, special 
care should be taken. For more information, see “Speculative Load 
Execution” on page 6-69 and “Conditional Load Behavior” on 
page 6-70.

Figure 13-4. UART Line Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 1 1 0 0 0 0

DR (Data Ready)TEMT (TSR and UART_THR Empty)

UART Line Status Register (UART_LSR)

0 - Full
1 - Both empty

0 - THR not empty
1 - THR empty

0 - No break interrupt
1 - Break interrupt; this 

indicates RX was held low
for more than the maximum
word length

BI (Break Interrupt)

THRE (THR Empty)

FE (Framing Error)

0 - No new data
1 - UART_RBR holds new data

OE (Overrun Error)
0 - No overrun
1 - UART_RBR overwritten

before read

PE (Parity Error)
0 - No parity error
1 - Parity error

0 - No error
1 - Invalid stop bit error

Reset = 0x00600xFFC0 0414

RO
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The THRE bit indicates that the UART transmit channel is ready for new 
data and software can write to UART_THR. Writes to UART_THR clear the THRE 
bit. It is set again when data is copied from UART_THR to the Transmit Shift 
register (TSR). The TEMT bit can be evaluated to determine whether a 
recently initiated transmit operation has been completed.

UART_THR Register
A write to the UART Transmit Holding register (UART_THR) initiates the 
transmit operation. The data is moved to the internal Transmit Shift reg-
ister (TSR) where it is shifted out at a baud rate equal to 
SCLK/(16  Divisor) with start, stop, and parity bits appended as 
required. All data words begin with a 1-to-0-transition start bit. The 
transfer of data from UART_THR to the Transmit Shift register sets the 
Transmit Holding Register Empty (THRE) status flag in the UART Line 
Status register (UART_LSR).

The write-only UART_THR register is mapped to the same address as the 
read-only UART_RBR and UART_DLL registers. To access UART_THR, the DLAB 
bit in UART_LCR must be cleared. When the DLAB bit is cleared, writes to 
this address target the UART_THR register, and reads from this address 
return the UART_RBR register.

Note data is transmitted and received least significant bit (LSB) first (bit 
0) followed by the most significant bits (MSBs).

Figure 13-5. UART Transmit Holding Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Transmit Hold[7:0]

UART Transmit Holding Register (UART_THR)
WO

Reset = 0x00000xFFC0 0400
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UART_RBR Register
The receive operation uses the same data format as the transmit configura-
tion, except that the number of stop bits is always assumed to be 1. After 
detection of the start bit, the received word is shifted into the Receive 
Shift register (RSR) at a baud rate of SCLK/(16 x Divisor). After the 
appropriate number of bits (including stop bit) is received, the data and 
any status are updated and the Receive Shift register is transferred to the 
UART Receive Buffer register (UART_RBR), shown in Figure 13-6. After the 
transfer of the received word to the UART_RBR buffer and the appropriate 
synchronization delay, the Data Ready (DR) status flag is updated.

A sampling clock equal to 16 times the baud rate samples the data as close 
to the midpoint of the bit as possible. Because the internal sample clock 
may not exactly match the asynchronous receive data rate, the sampling 
point drifts from the center of each bit. The sampling point is synchro-
nized again with each start bit, so the error accumulates only over the 
length of a single word. A receive filter removes spurious pulses of less 
than two times the sampling clock period.

The read-only UART_RBR register is mapped to the same address as the 
write-only UART_THR and UART_DLL registers. To access UART_RBR, the DLAB 
bit in UART_LCR must be cleared. When the DLAB bit is cleared, writes to 
this address target the UART_THR register, while reads from this address 
return the UART_RBR register.

Figure 13-6. UART Receive Buffer Register

Receive Buffer[7:0]

UART Receive Buffer Register (UART_RBR)
RO

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x00000xFFC0 0400
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UART_IER Register
The UART Interrupt Enable register (UART_IER) is used to enable requests 
for system handling of empty or full states of UART data registers. Unless 
polling is used as a means of action, the ERBFI and/or ETBEI bits in this 
register are normally set.

Setting this register without enabling system DMA causes the UART to 
notify the processor of data inventory state by means of interrupts. For 
proper operation in this mode, system interrupts must be enabled, and 
appropriate interrupt handling routines must be present. For backward 
compatibility, the UART_IIR still reflects the correct interrupt status.

 The UART features three separate interrupt channels to handle 
data transmit, data receive, and line status events independently, 
regardless whether DMA is enabled or not.

With system DMA enabled, the UART uses DMA to transfer data to or 
from the processor. Dedicated DMA channels are available to receive and 
transmit operation. Line error handling can be configured completely 
independently from the receive/transmit setup.

The UART_IER register is mapped to the same address as UART_DLH. To 
access UART_IER, the DLAB bit in UART_LCR must be cleared.

UART’s DMA is enabled by first setting up the system DMA control reg-
isters and then enabling the UART ERBFI and/or ETBEI interrupts in the 
UART_IER register. This is because the interrupt request lines double as 
DMA request lines. Depending on whether DMA is enabled or not, upon 
receiving these requests, the DMA control unit either generates a direct 
memory access or passes the UART interrupt on to the system interrupt 
handling unit. However, UART’s error interrupt goes directly to the sys-
tem interrupt handling unit, bypassing the DMA unit completely.
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The ELSI bit enables interrupt generation on an independent interrupt 
channel when any of the following conditions are raised by the respective 
bit in the UART Line Status register (UART_LSR):

• Receive Overrun Error (OE)

• Receive Parity Error (PE)

• Receive Framing Error (FE)

• Break Interrupt (BI)

When the ETBEI bit is set in the UART_IER register, the UART module 
immediately issues an interrupt or DMA request. When initiating the 
transmission of a string, no special handling of the first character is 
required. Set the ETBEI bit and let the interrupt service routine load the 
first character from memory and write it to the UART_THR register in the 
normal manner. Accordingly, the ETBEI bit should be cleared if the string 
transmission has completed.

Figure 13-7. UART Interrupt Enable Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ERBFI (Enable Receive Buf-
fer Full Interrupt)

UART Interrupt Enable Register (UART_IER)

ETBEI (Enable Transmit 
Buffer Empty Interrupt)

ELSI (Enable RX Status Interrupt)

0 - No interrupt
1 - Generate RX interrupt if

DR bit in UART_LSR is set

0 - No interrupt
1 - Generate TX interrupt if

THRE bit in UART_LSR is
set

0 - No interrupt
1 - Generate line status interrupt if 
any of UART_LSR[4:1] is set

Reset = 0x00000xFFC0 0404
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UART_IIR Register
For legacy reasons, the UART Interrupt Identification register (UART_IIR) 
still reflects the UART interrupt status. Legacy operation may require 
bundling all UART interrupt sources to a single interrupt channel and ser-
vicing them all by the same software routine. This can be established by 
globally assigning all UART interrupts to the same interrupt priority, by 
using the System Interrupt Controller (SIC).

When cleared, the Pending Interrupt bit (NINT) signals that an interrupt is 
pending. The STATUS field indicates the highest priority pending inter-
rupt. The receive line status has the highest priority; the UART_THR empty 
interrupt has the lowest priority. In the case where both interrupts are sig-
nalling, the UART_IIR reads 0x06.

When a UART interrupt is pending, the interrupt service routine (ISR) 
needs to clear the interrupt latch explicitly. The following figure shows 
how to clear any of the three latches. 

The TX interrupt request is cleared by writing new data to the UART_THR 
register or by reading the UART_IIR register. Note the special role of the 
UART_IIR register read in the case where the service routine does not want 
to transmit further data.

Figure 13-8. UART Interrupt Identification Register

NINT (Pending interrupt)

UART Interrupt Identification Register (UART_IIR)
RO

STATUS[1:0]
0 - Interrupt pending
1 - No interrupt pending

00 - Reserved
01 - UART_THR empty. Write UART_THR or read UART_IIR to clear

interrupt request.
10 - Receive data ready. Read UART RBR to clear interrupt request.
11 - Receive line status. Read UART_LSR to clear interrupt request.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x00010xFFC0 0408
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If software stops transmission, it must read the UART_IIR register to reset 
the interrupt request. As long as the UART_IIR register reads 0x04 or 0x06 
(indicating that another interrupt of higher priority is pending), the 
UART_THR empty latch cannot be cleared by reading UART_IIR.

 If either the Line Status interrupt or the Receive Data interrupt has 
been assigned a lower interrupt priority by the SIC, a deadlock 
condition can occur. To avoid this, always assign the lowest prior-
ity of the enabled UART interrupts to the UART_THR empty event.

 Because of the destructive nature of these read operations, special 
care should be taken. For more information, see “Speculative Load 
Execution” on page 6-69 and “Conditional Load Behavior” on 
page 6-70.

UART_DLL and UART_DLH Registers
The bit rate is characterized by the system clock (SCLK) and the 16-bit 
Divisor. The Divisor is split into the UART Divisor Latch Low Byte regis-
ter (UART_DLL) and the UART Divisor Latch High Byte register 
(UART_DLH). These registers form a 16-bit Divisor. The baud clock is 
divided by 16 so that:

BAUD RATE = SCLK/(16 x Divisor)

Divisor = 65,536 when UART_DLL = UART_DLH = 0
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The UART_DLL register is mapped to the same address as the UART_THR and 
UART_RBR registers. The UART_DLH register is mapped to the same address as 
the Interrupt Enable register (UART_IER). The DLAB bit in UART_LCR must 
be set before the UART Divisor Latch registers can be accessed.

 Note the 16-bit Divisor formed by UART_DLH and UART_DLL resets to 
0x0001, resulting in the highest possible clock frequency by 
default. If the UART is not used, disabling the UART clock will 
save power. The UART_DLH and UART_DLL registers can be pro-
grammed by software before or after setting the UCEN bit.

Figure 13-9. UART Divisor Latch Registers

Divisor Latch Low Byte[7:0]

Divisor Latch High Byte[15:8]

UART Divisor Latch Low Byte Register (UART_DLL)

UART Divisor Latch High Byte Register (UART_DLH)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0001

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

0xFFC0 0400

0xFFC0 0404
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Table 13-1 provides example divide factors required to support most stan-
dard baud rates.

 Careful selection of SCLK frequencies, that is, even multiples of 
desired baud rates, can result in lower error percentages.

UART_SCR Register
The contents of the 8-bit UART Scratch register (UART_SCR) is reset to 
0x00. It is used for general-purpose data storage and does not control the 
UART hardware in any way.

Table 13-1. UART Baud Rate Examples With 100 MHz SCLK

Baud Rate DL Actual % Error

2400 2604 2400.15 .006

4800 1302 4800.31 .007

9600 651 9600.61 .006

19200 326 19171.78 .147

38400 163 38343.56 .147

57600 109 57339.45 .452

115200 54 115740.74 .469

921600 7 892857.14 3.119

6250000 1 6250000 -

Figure 13-10. UART Scratch Register

Scratch[7:0]

UART Scratch Register (UART_SCR)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x00000xFFC0 041C
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UART_GCTL Register
The UART Global Control register (UART_GCTL) contains the enable bit 
for internal UART clocks and for the IrDA mode of operation of the 
UART.

Note that the UCEN bit was not present in previous UART implementa-
tions. It has been introduced to save power if the UART is not used. 
When porting code, be sure to enable this bit.

The IrDA TX Polarity Change bit and the IrDA RX Polarity Change bit 
are effective only in IrDA mode. The two force error bits, FPE and FFE, are 
intended for test purposes. They are useful for debugging software, espe-
cially in loopback mode.

Figure 13-11. UART Global Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

UCEN (Enable UART Clocks)
1 - Enable UART clocks
0 - Disable UART clocks

Reset = 0x0000

IREN (Enable IrDA Mode)
1 - Enable IrDA
0 - Disable IrDA

FPE (Force Parity Error on Transmit)
1 - Force error
0 - Normal operation

FFE (Force Framing Error on Transmit)
1 - Force error
0 - Normal operation

UART Global Control Register (UART_GCTL)

0xFFC0 0424

TPOLC (IrDA TX Polarity 
Change)
1 - Serial line idles high
0 - Serial line idles low

RPOLC (IrDA RX Polarity Change)
1 - Serial line idles high
0 - Serial line idles low
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Non-DMA Mode
In non-DMA mode, data is moved to and from the UART by the proces-
sor core. To transmit a character, load it into UART_THR. Received data can 
be read from UART_RBR. The processor must write and read one character 
at time.

To prevent any loss of data and misalignments of the serial datastream, the 
UART Line Status register (UART_LSR) provides two status flags for hand-
shaking—THRE and DR.

The THRE flag is set when UART_THR is ready for new data and cleared when 
the processor loads new data into UART_THR. Writing UART_THR when it is 
not empty overwrites the register with the new value and the previous 
character is never transmitted.

The DR flag signals when new data is available in UART_RBR. This flag is 
cleared automatically when the processor reads from UART_RBR. Reading 
UART_RBR when it is not full returns the previously received value. When 
UART_RBR is not read in time, newly received data overwrites UART_RBR and 
the Overrun (OE) flag is set.

With interrupts disabled, these status flags can be polled to determine 
when data is ready to move. Note that because polling is processor inten-
sive, it is not typically used in real-time signal processing environments. 
Software can write up to two words into the UART_THR register before 
enabling the UART clock. As soon as the UCEN bit is set, those two words 
are sent.

Alternatively, UART writes and reads can be accomplished by interrupt 
service routines (ISRs). Separate interrupt lines are provided for UART 
TX, UART RX, and UART Error. The independent interrupts can be 
enabled individually by the UART_IER register.
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The ISRs can evaluate the Status bit field within the UART Interrupt 
Identification register (UART_IIR) to determine the signalling interrupt 
source. If more than one source is signalling, the status field displays the 
one with the highest priority. Interrupts also must be assigned and 
unmasked by the processor’s interrupt controller. The ISRs must clear the 
interrupt latches explicitly. See Figure 13-8.

DMA Mode
In this mode, separate receive (RX) and transmit (TX) DMA channels 
move data between the UART and memory. The software does not have 
to move data, it just has to set up the appropriate transfers either through 
the descriptor mechanism or through Autobuffer mode.

No additional buffering is provided in the UART DMA channel, so the 
latency requirements are the same as in non-DMA mode. However, the 
latency is determined by the bus activity and arbitration mechanism and 
not by the processor loading and interrupt priorities. For more informa-
tion, see Chapter 9, “Direct Memory Access”.

DMA interrupt routines must explicitly write 1s to the corresponding 
DMA IRQ status registers to clear the latched request of the pending 
interrupt.

The UART’s DMA is enabled by first setting up the system DMA control 
registers and then enabling the UART ERBFI and/or ETBEI interrupts in 
the UART_IER register. This is because the interrupt request lines double as 
DMA request lines. Depending on whether DMA is enabled or not, upon 
receiving these requests, the DMA control unit either generates a direct 
memory access or passes the UART interrupt on to the system interrupt 
handling unit. However, the UART’s error interrupt goes directly to the 
system interrupt handling unit, bypassing the DMA unit completely.

The UART’s DMA supports 8-bit operation.
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Mixing Modes
Non-DMA and DMA modes use different synchronization mechanisms. 
Consequently, any serial communication must be complete before switch-
ing from non-DMA to DMA mode or vice versa. In other words, before 
switching from non-DMA transmission to DMA transmission, make sure 
both UART_THR and the internal Transmit Shift register (TSR) are empty by 
testing the THRE and the TEMT status bits in UART_LSR.

When switching from DMA to non-DMA operation, make sure both the 
receive (RX) and transmit (TX) DMA channels have completely trans-
ferred their data, including data contained in the DMA FIFOs. While the 
DMA RX interrupt indicates the last data word has been written to mem-
ory (and has left the DMA FIFO), the DMA TX interrupt indicates the 
last data word has left memory (and has entered the DMA FIFO). The 
processor must wait until the TX FIFO is empty, by testing that the 
DMA_RUN status bit in the TX channel’s IRQ_STATUS register is clear, before 
it is safe to disable the DMA channel.

IrDA Support
Aside from the standard UART functionality, the UART also supports 
half-duplex serial data communication via infrared signals, according to 
the recommendations of the Infrared Data Association (IrDA). The physi-
cal layer known as IrDA SIR (9.6/115.2 Kbps rate) is based on 
return-to-zero-inverted (RZI) modulation. Pulse position modulation is 
not supported.

Using the 16x data rate clock, RZI modulation is achieved by inverting 
and modulating the non-return-to-zero (NRZ) code normally transmitted 
by the UART. On the receive side, the 16x clock is used to determine an 
IrDA pulse sample window, from which the RZI-modulated NRZ code is 
recovered.
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IrDA support is enabled by setting the IREN bit in the UART Global Con-
trol register. The IrDA application requires external transceivers.

IrDA Transmitter Description
To generate the IrDA pulse transmitted by the UART, the normal NRZ 
output of the transmitter is first inverted, so a 0 is transmitted as a high 
pulse of 16 UART clock periods and a 1 is transmitted as a low pulse for 
16 UART clock periods. The leading edge of the pulse is then delayed by 
six UART clock periods. Similarly, the trailing edge of the pulse is trun-
cated by eight UART clock periods. This results in the final representation 
of the original 0 as a high pulse of only 3/16 clock periods in a 16-cycle 
UART clock period. The pulse is centered around the middle of the bit 
time, as shown in Figure 13-12. The final IrDA pulse is fed to the off-chip 
infrared driver. 

This modulation approach ensures a pulse width output from the UART 
of three cycles high out of every 16 UART clock cycles. As shown in 
Table 13-1, the error terms associated with the baud rate generator are 
very small and well within the tolerance of most infrared transceiver 
specifications. 

Figure 13-12. IrDA Transmit Pulse

    0   1     0

8/16

9/167/16

16/16

NRZ

INVERTED

FINAL
IrDA

8/16

9/167/16

16/16
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IrDA Receiver Description
The IrDA receiver function is more complex than the transmit function. 
The receiver must discriminate the IrDA pulse and reject noise. To do 
this, the receiver looks for the IrDA pulse in a narrow window centered 
around the middle of the expected pulse.

Glitch filtering is accomplished by counting 16 system clocks from the 
time an initial pulse is seen. If the pulse is absent when the counter 
expires, it is considered a glitch. Otherwise, it is interpreted as a 0. This is 
acceptable because glitches originating from on-chip capacitive cross-cou-
pling typically do not last for more than a fraction of the system clock 
period. Sources outside of the chip and not part of the transmitter can be 
avoided by appropriate shielding. The only other source of a glitch is the 
transmitter itself. The processor relies on the transmitter to perform 
within specification. If the transmitter violates the specification, unpre-
dictable results may occur. The 4-bit counter adds an extra level of 
protection at a minimal cost. Note because the system clock can change 
across systems, the longest glitch tolerated is inversely proportional to the 
system clock frequency.

The receive sampling window is determined by a counter that is clocked at 
the 16x bit-time sample clock. The sampling window is re-synchronized 
with each start bit by centering the sampling window around the start bit.
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The polarity of receive data is selectable, using the IRPOL bit. Figure 13-13 
gives examples of each polarity type.

• IRPOL = 0 assumes that the receive data input idles 0 and each 
active 1 transition corresponds to a UART NRZ value of 0.

• IRPOL = 1 assumes that the receive data input idles 1 and each 
active 0 transition corresponds to a UART NRZ value of 0. 

Figure 13-13. IrDA Receiver Pulse Detection

 0   1

16/16

PULSE
DETECTOR

OUTPUT

SAMPLING
WINDOW

8/16 16/16

RECOVERED
NRZ INPUT 1   0

8/16

 0   1

RECEIVED
IrDA

PULSE
IR POL = 1

RECEIVED
IrDA

PULSE
IR POL = 0
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14 PROGRAMMABLE FLAGS

The processor supports 16 bidirectional programmable flags (PFx) or gen-
eral-purpose I/O pins, PF[15:0]. Each pin can be individually configured 
as either an input or an output by using the Flag Direction register 
(FIO_DIR). When configured as output, the Flag Data register 
(FIO_FLAG_D) can be directly written to specify the state of all PFx pins. 
When configured as an output, the state written to the Flag Set 
(FIO_FLAG_S), Flag Clear (FIO_FLAG_C), and Flag Toggle (FIO_FLAG_T) reg-
isters determines the state driven by the output PFx pin. Regardless of how 
the pins are configured, as an input or an output, reading any of these reg-
isters (FIO_FLAG_D, FIO_FLAG_S, FIO_FLAG_C, FIO_FLAG_T) returns the state 
of each pin.

Each PFx pin can be configured to generate an interrupt. When a PFx pin 
is configured as an input, an interrupt can be generated according to the 
state of the pin (either high or low), an edge transition (low to high or 
high to low), or on both edge transitions (low to high and high to low). 
Input sensitivity is defined on a per-bit basis by the Flag Polarity register 
(FIO_POLAR), the Flag Interrupt Sensitivity register (FIO_EDGE) and the 
Flag Set on Both Edges register (FIO_BOTH). Input polarity is defined on a 
per-bit basis by the Flag Polarity register. When the PFx inputs are enabled 
and a PFx pin is configured as an output, enabling interrupts for the pin 
allows an interrupt to be generated by setting the PFx pin.
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The processor provides two independent interrupt channels for the PFx 
pins. Identical in functionality, these are called Interrupt A and Interrupt 
B. Each interrupt channel has four mask registers associated with it, a Flag 
Interrupt Mask Data register (FIO_MASKx_D), a Flag Interrupt Mask Set 
register (FIO_MASKx_S), a Flag Interrupt Mask Clear register 
(FIO_MASKx_C), and a Flag Interrupt Mask Toggle register (FIO_MASKx_T).

Each PFx pin is represented by a bit in each of these eight registers. Writ-
ing a 1 to a bit in a Mask Set register enables interrupt generation for that 
PFx pin, while writing a 1 to a bit in a Mask Clear register disables inter-
rupt generation for that PFx pin.

The interrupt masking can be toggled by writing a 1 to a bit in the Mask 
Toggle register. Additionally, the mask bits can be directly written by 
writing to the Mask Data register. This flexible mechanism allows each bit 
to generate Flag Interrupt A, Flag Interrupt B, both Flag Interrupts A and 
B, or neither. 

When a PF pin is not used in a system, the input buffer can be disabled so 
that no external pull-ups or pull-downs are required on the unused pins. 
By default, the input buffers are disabled. They can be enabled via bits in 
the Flag Input Enable register (FIO_INEN).

The PFx pins are multiplexed for use by the Parallel Peripheral Interface 
(PPI), Timers, and Serial Peripheral Interface (SPI). Table 14-1 shows the 
programmable flag pins and their multiplexed functionality.
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Table 14-2 describes how to use the peripheral function that shares the PF 
pin.

Table 14-1. Programmable Flag Pins and Functionality

PF Pin
Peripheral That Shares the PF Pin

PPI SPI Timers 0, 1, 2

0 Slave Select Input 
(SPISS)

1 Slave Select Enable 1 
(SPISEL1)

Input clock

2 Slave Select Enable 2 
(SPISEL2)

3 Frame Sync 3 Slave Select Enable 3 
(SPISEL3)

4 I/O #15 Slave Select Enable 4 
(SPISEL4)

5 I/O #14 Slave Select Enable 5 
(SPISEL5)

6 I/O #13 Slave Select Enable 6 
(SPISEL6)

7 I/O #12 Slave Select Enable 7 
(SPISEL7)

8 I/O #11

9 I/O #10

10 I/O #9

11 I/O #8

12 I/O #7

13 I/O #6

14 I/O #5

15 I/O #4
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Table 14-2. Using Peripheral Function That Shares the PF Pin

PF Pin
To Use the Peripheral Function That Shares the PF Pin…                                                                
(Assuming Peripheral is Enabled)

PPI SPI Timers 0,1,2

0 Write ‘1’ to PSSE in SPI_CTL

1 Write ‘1’ to FLS1 in SPI_FLG Write ‘1’ to 
CLK_SEL in 
TIMERx_
CONFIG

2 Write ‘1’ to FLS2 in SPI_FLG

3 Write ‘01’ to PORT_CFG in 
PPI_CTL (if 
PORT_DIR = ‘1’), or write 
‘10’ to PORT_CFG (if 
PORT_DIR = ‘0’)

Write ‘1’ to FLS3 in SPI_FLG

4 Write ‘111’ to DLEN in 
PPI_CTL

Write ‘1’ to FLS4 in SPI_FLG

5 Write ‘110’ to DLEN in 
PPI_CTL

Write ‘1’ to FLS5 in SPI_FLG

6 Write ‘101’ to DLEN in 
PPI_CTL

Write ‘1’ to FLS6 in SPI_FLG

7 Write ‘100’ to DLEN in 
PPI_CTL

Write ‘1’ to FLS7 in SPI_FLG

8 Write ‘011’ to DLEN in 
PPI_CTL

9 Write ‘010’ to DLEN in 
PPI_CTL

10 Write ‘001’ to DLEN in 
PPI_CTL

11 Write ‘001’ to DLEN in 
PPI_CTL

12 Always enabled when PPI 
enabled
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For more information, see Chapter 11, “Parallel Peripheral Interface”, 
Chapter 10, “SPI Compatible Port Controllers”, and Chapter 15, 
“Timers”.

Programmable Flag Registers (MMRs)
The programmable flag registers are part of the system memory-mapped 
registers (MMRs). The addresses of the programmable flag MMRs appear 
in Appendix B, “System MMR Assignments”. Core access to the Flag 
Configuration registers is through the system bus.

FIO_DIR Register
The Flag Direction register (FIO_DIR) is a read-write register. Each bit 
position corresponds to a PFx pin. A logic 1 configures a PFx pin as an out-
put, driving the state contained in the FIO_FLAG_D register. A logic 0 
configures a PFx pin as an input. The reset value of this register is 0x0000, 
making all PF pins inputs upon reset.

13 Always enabled when PPI 
enabled

14 Always enabled when PPI 
enabled

15 Always enabled when PPI 
enabled

Table 14-2. Using Peripheral Function That Shares the PF Pin (Cont’d)

PF Pin
To Use the Peripheral Function That Shares the PF Pin…                                                                
(Assuming Peripheral is Enabled)

PPI SPI Timers 0,1,2
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 Note when using the PFx pin as an input, the corresponding bit 
should also be set in the Flag Input Enable register. 

Flag Value Registers Overview
The processor has four Flag Value registers:

• Flag Data register (FIO_FLAG_D)

• Flag Set register (FIO_FLAG_S)

• Flag Clear register (FIO_FLAG_C)

• Flag Toggle Direct register (FIO_FLAG_T)

These registers are used to:

• Sense the value of the PFx pins defined as inputs

• Specify the state of PFx pins defined as outputs

• Clear interrupts generated by the PFx pins 

Figure 14-1. Flag Direction Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Flag Direction Register (FIO_DIR)

PF0 Direction

PF12 Direction

PF13 Direction

PF14 Direction

PF15 Direction

PF1 Direction

PF2 Direction

PF3 Direction

PF4 Direction

PF5 Direction

For all bits, 0 - Input, 1 - Output

PF6 Direction

PF7 Direction

PF11 Direction

PF10 Direction

PF9 Direction

PF8 Direction

Reset = 0x00000xFFC0 0730
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Each PFx pin is represented by a bit in each of the four registers.

Reading any of the Flag Data, Flag Set, Flag Clear, or Flag Toggle regis-
ters returns the value of the PFx pins. The value returned shows the state 
of the PFx pins defined as outputs and the sense of PFx pins defined as 
inputs, based on the polarity and sensitivity settings of each pin.

Reading the Flag Data, Flag Set, Flag Clear, or Flag Toggle register after 
reset results in 0x0000, because although the pins are inputs, the input 
buffers are not enabled. See Table 14-3 for guidance on how to interpret a 
value read from one of these registers, based on the settings of the 
FIO_POLAR, FIO_EDGE, and FIO_BOTH registers.

 For pins configured as edge-sensitive, a readback of 1 from one of 
these registers is sticky. That is, once it is set it remains set until 
cleared by user code. For level-sensitive pins, the pin state is 
checked every cycle, so the readback value will change when the 
original level on the pin changes.

For more information about Flag Set, Flag Clear, and Flag Toggle regis-
ters, see “FIO_FLAG_S, FIO_FLAG_C, and FIO_FLAG_T Registers”.

Table 14-3. Flag Value Register Pin Interpretation

FIO_POLAR FIO_EDGE FIO_BOTH Effect of MMR Settings

0 0 X Pin that is high reads as 1; pin that is low 
reads as 0

0 1 0 If rising edge occurred, pin reads as 1; 
otherwise, pin reads as 0

1 0 X Pin that is low reads as 1; pin that is high 
reads as 0

1 1 0 If falling edge occurred, pin reads as 1; 
otherwise, pin reads as 0

X 1 1 If any edge occurred, pin reads as 1; oth-
erwise, pin reads as 0
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FIO_FLAG_D Register
When written, the Flag Data register (FIO_FLAG_D), shown in Figure 14-2, 
directly specifies the state of all PFx pins. When read, the register returns 
the value of the PFx pins. 

FIO_FLAG_S, FIO_FLAG_C, and FIO_FLAG_T 
Registers

The Flag Set register (FIO_FLAG_S), Flag Clear register (FIO_FLAG_C), and 
Flag Toggle register (FIO_FLAG_T) are used to:

• Set, clear or toggle the output state associated with each output PFx 
pin

• Clear the latched interrupt state captured from each input PFx pin 

This mechanism is used to avoid the potential issues with more traditional 
read-modify-write mechanisms. Reading any of the these registers shows 
the flag pin state.

Figure 14-2. Flag Data Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Flag Data Register (FIO_FLAG_D)

Program PF0

Program PF12

Program PF13

Program PF14

Program PF15

Program PF1

Program PF2

Program PF3

Program PF4

Program PF5

1 - Set, 0 - Clear

Program PF6

Program PF7

Program PF11

Program PF10

Program PF9

Program PF8

Reset = 0x00000xFFC0 0700
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Figure 14-3 and Figure 14-4 represent the Flag Set and Flag Clear regis-
ters, respectively. Figure 14-5 represents the Flag Toggle register. 

Figure 14-3. Flag Set Register

Figure 14-4. Flag Clear Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Flag Set Register (FIO_FLAG_S)

Set PF0

Set PF12

Set PF13

Set PF14

Set PF15

Set PF1

Set PF2

Set PF3

Set PF4

Set PF5

Write-1-to-set

Set PF6

Set PF7

Set PF11
Set PF10

Set PF9

Set PF8

Reset = 0x00000xFFC0 0708

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Flag Clear Register (FIO_FLAG_C)

Clear PF0

Clear PF12

Clear PF13

Clear PF14

Clear PF15

Clear PF1

Clear PF2

Clear PF3

Clear PF4

Clear PF5

Write-1-to-clear

Clear PF6

Clear PF7

Clear PF11

Clear PF10

Clear PF9

Clear PF8

Reset = 0x00000xFFC0 0704
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As an example of how these registers work, assume that PF[0] is config-
ured as an output. Writing 0x0001 to the Flag Set register drives a logic 1 
on the PF[0] pin without affecting the state of any other PFx pins. Writing 
0x0001 to the Flag Clear register drives a logic 0 on the PF[0] pin without 
affecting the state of any other PFx pins. Writing a 0x0001 to the Flag 
Toggle register changes the pin state on PF[0] from logic 0 to logic 1 or 
from logic 1 to logic 0, depending upon the existing pin state. 

 Writing a 0 to the Flag Set, Flag Clear, or Flag Toggle register has 
no effect on the value of the flag pin and is, therefore, ignored.

Reading the Flag Set or Flag Clear register shows: 

• 0s for PFx pins defined as outputs and driven low

• 1s for pins (including PF[0] in the example above) defined as out-
puts and driven high

• The present sense of PFx pins defined as inputs 

Input sense is based on FIO_POLAR and FIO_EDGE settings, as well as the 
logic level at each pin.

Figure 14-5. Flag Toggle Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Flag Toggle Register (FIO_FLAG_T)

Toggle PF0

Toggle PF12

Toggle PF13

Toggle PF14

Toggle PF15

Toggle PF1

Toggle PF2

Toggle PF3

Toggle PF4

Toggle PF5

Write-1-to-toggle

Toggle PF6

Toggle PF7

Toggle PF11

Toggle PF10

Toggle PF9

Toggle PF8

Reset = 0x00000xFFC0 070C
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FIO_MASKA_D, FIO_MASKA_C, FIO_MASKA_S, 
FIO_MASKA_T, FIO_MASKB_D, FIO_MASKB_C, 
FIO_MASKB_S, FIO_MASKB_T Registers

The Flag Mask Interrupt registers (FIO_MASKA_D, FIO_MASKA_C, 
FIO_MASKA_S, FIO_MASKA_T, FIO_MASKB_D, FIO_MASKB_C, FIO_MASKB_S, and 
FIO_MASKB_T) are implemented as complementary pairs of write-1-to-set, 
write-1-to-clear, and write-1-to-toggle registers. This implementation pro-
vides the ability to enable or disable a PFx pin to act as a processor 
interrupt without requiring read-modify-write accesses—or to directly 
specify the mask value with the data register.

Both Flag Interrupt A and Flag Interrupt B are supported by a set of four 
dedicated registers:

• Flag Mask Interrupt Data register

• Flag Mask Interrupt Set register 

• Flag Mask Interrupt Clear register

• Flag Interrupt Toggle register 

For diagrams of the registers that support Flag Interrupt A, see 
“FIO_MASKA_D, FIO_MASKA_C, FIO_MASKA_S, FIO_MASKA_T 
Registers”. 

For diagrams of the registers that support Flag Interrupt B, see 
“FIO_MASKB_D, FIO_MASKB_C, FIO_MASKB_S, FIO_MASKB_T 
Registers”.

Each PFx pin is represented by a bit in each of the eight registers. 
Table 14-4 shows the effect of writing 1 to a bit in a Mask Set, Mask 
Clear, or Mask Toggle register. 

Reading any of the [A&B] mask data, set, clear, or toggle registers returns 
the value of the current mask [A&B] data.
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Interrupt A and Interrupt B operate independently. For example, writing 
1 to a bit in the Flag Mask Interrupt A Set register does not affect Flag 
Interrupt B. This facility allows PFx pins to generate Flag Interrupt A, Flag 
Interrupt B, both Flag Interrupts A and B, or neither.

 Note a Flag Interrupt is generated by a logical OR of all unmasked 
PF pins for that interrupt. For example, if PF[0] and PF[1] are both 
unmasked for Flag Interrupt A, Flag Interrupt A will be generated 
when triggered by PF[0] or PF[1].

 When using either rising or falling edge-triggered interrupts, the 
interrupt condition must be cleared each time a corresponding 
interrupt is serviced by writing 1 to the appropriate FIO_FLAG_C bit.

At reset, all interrupts are masked.

Flag Interrupt Generation Flow

Figure 14-6 shows the process by which a Flag Interrupt A or a Flag Inter-
rupt B event can be generated. Note the flow is shown for only one 
programmable flag, “FlagN.” However, a Flag Interrupt is generated by a 
logical OR of all unmasked PFx pins for that interrupt. For example, if 
only PF[0] and PF[1] are unmasked for Flag Interrupt A, this interrupt is 
generated when triggered by either PF[0] or PF[1].

Table 14-4. Effect of Writing 1 to a Bit

Register Effect of Writing 1 to a Bit in the Register

Mask Set Enables interrupt generation for that PFx pin

Mask Clear Disables interrupt generation for that PFx pin

Mask Toggle Changes the state of interrupt generation capability
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Programmable Flags

Figure 14-6. Flag Interrupt Generation Flow
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FIO_MASKA_D, FIO_MASKA_C, FIO_MASKA_S, FIO_MASKA_T 
Registers

The following four registers support Flag Interrupt A. For details, see 
on page 14-11.

Figure 14-7. Flag Mask Interrupt A Data Register

Figure 14-8. Flag Mask Interrupt A Set Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Flag Mask Interrupt A Data Register (FIO_MASKA_D)

Enable PF0 Interrupt Mask

Enable PF12 Interrupt Mask

Enable PF13 Interrupt Mask

Enable PF14 Interrupt 
Mask

Enable PF15 Inter-
rupt Mask

Enable PF1 Interrupt Mask

Enable PF2 Interrupt Mask

Enable PF3 Interrupt Mask

Enable PF4 Interrupt Mask

Enable PF5 Interrupt Mask

For all bits, 1 - Enable

Enable PF6 Interrupt Mask

Enable PF7 Interrupt Mask

Enable PF11 Interrupt Mask

Enable PF10 Interrupt Mask

Enable PF9 Interrupt Mask

Enable PF8 Interrupt Mask

Reset = 0x00000xFFC0 0710

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Flag Mask Interrupt A Set Register (FIO_MASKA_S)

Set PF0 Interrupt Mask

Set PF12 Interrupt Mask

Set PF13 Interrupt Mask

Set PF14 Interrupt Mask

Set PF15 Interrupt Mask

Set PF1 Interrupt Mask

Set PF2 Interrupt Mask

Set PF3 Interrupt Mask

Set PF4 Interrupt Mask

Set PF5 Interrupt Mask

For all bits, 1 - Set

Set PF6 Interrupt Mask

Set PF7 Interrupt Mask

Set PF11 Interrupt Mask

Set PF10 Interrupt Mask

Set PF9 Interrupt Mask

Set PF8 Interrupt Mask

Reset = 0x00000xFFC0 0718
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Figure 14-9. Flag Mask Interrupt A Clear Register

Figure 14-10. Flag Mask Interrupt A Toggle Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Flag Mask Interrupt A Clear Register (FIO_MASKA_C)

Clear PF0 Interrupt Mask

Clear PF12 Interrupt Mask

Clear PF13 Interrupt Mask

Clear PF14 Interrupt Mask

Clear PF15 Interrupt Mask

Clear PF1 Interrupt Mask

Clear PF2 Interrupt Mask

Clear PF3 Interrupt Mask

Clear PF4 Interrupt Mask

Clear PF5 Interrupt Mask

For all bits, 1 - Clear

Clear PF6 Interrupt Mask

Clear PF7 Interrupt Mask

Clear PF11 Interrupt Mask

Clear PF10 Interrupt Mask

Clear PF9 Interrupt Mask

Clear PF8 Interrupt Mask

Reset = 0x00000xFFC0 0714

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Flag Mask Interrupt A Toggle Register (FIO_MASKA_T)

Toggle PF0 Interrupt Mask

Toggle PF12 Interrupt Mask

Toggle PF13 Interrupt Mask

Toggle PF14 
Interrupt Mask

Toggle PF15
Interrupt Mask

Toggle PF1 Interrupt Mask

Toggle PF2 Interrupt Mask

Toggle PF3 Interrupt Mask

Toggle PF4 Interrupt Mask

Toggle PF5 Interrupt Mask

For all bits, 1 - Toggle

Toggle PF6 Interrupt Mask

Toggle PF7 Interrupt Mask

Toggle PF11 Interrupt Mask

Toggle PF10 Interrupt Mask

Toggle PF9 Interrupt Mask

Toggle PF8 Interrupt Mask

Reset = 0x00000xFFC0 071C
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FIO_MASKB_D, FIO_MASKB_C, FIO_MASKB_S, FIO_MASKB_T 
Registers

The following four registers support Flag Interrupt B. For details, see 
on page 14-11.

Figure 14-11. Flag Mask Interrupt B Data Register

Figure 14-12. Flag Mask Interrupt B Set Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Flag Mask Interrupt B Data Register (FIO_MASKB_D)

Enable PF0 Interrupt Mask

Enable PF12 Interrupt Mask

Enable PF13 Interrupt Mask

Enable PF14 Interrupt 
Mask

Enable PF15
Interrupt Mask

Enable PF1 Interrupt Mask

Enable PF2 Interrupt Mask

Enable PF3 Interrupt Mask

Enable PF4 Interrupt Mask

Enable PF5 Interrupt Mask

For all bits, 1 - Enable

Enable PF6 Interrupt Mask

Enable PF7 Interrupt Mask

Enable PF11 Interrupt Mask

Enable PF10 Interrupt Mask

Enable PF9 Interrupt Mask

Enable PF8 Interrupt Mask

Reset = 0x00000xFFC0 0720

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Flag Mask Interrupt B Set Register (FIO_MASKB_S)

Set PF0 Interrupt Mask

Set PF12 Interrupt Mask

Set PF13 Interrupt Mask

Set PF14 Interrupt Mask

Set PF15 Interrupt Mask

Set PF1 Interrupt Mask

Set PF2 Interrupt Mask

Set PF3 Interrupt Mask

Set PF4 Interrupt Mask

Set PF5 Interrupt Mask

For all bits, 1 - Set

Set PF6 Interrupt Mask

Set PF7 Interrupt Mask

Set PF11 Interrupt Mask

Set PF10 Interrupt Mask

Set PF9 Interrupt Mask

Set PF8 Interrupt Mask

Reset = 0x00000xFFC0 0728
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Figure 14-13. Flag Mask Interrupt B Clear Register

Figure 14-14. Flag Mask Interrupt B Toggle Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Flag Mask Interrupt B Clear Register (FIO_MASKB_C)

Clear PF0 Interrupt Mask

Clear PF12 Interrupt Mask

Clear PF13 Interrupt Mask

Clear PF14 Interrupt Mask

Clear PF15 Interrupt Mask

Clear PF1 Interrupt Mask

Clear PF2 Interrupt Mask

Clear PF3 Interrupt Mask

Clear PF4 Interrupt Mask

Clear PF5 Interrupt Mask

For all bits, 1 - Clear

Clear PF6 Interrupt Mask

Clear PF7 Interrupt Mask

Clear PF11 Interrupt Mask

Clear PF10 Interrupt Mask

Clear PF9 Interrupt Mask

Clear PF8 Interrupt Mask

Reset = 0x00000xFFC0 0724

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Flag Mask Interrupt B Toggle Register (FIO_MASKB_T)

Toggle PF0 Interrupt Mask

Toggle PF12 Interrupt Mask

Toggle PF13 Interrupt Mask

Toggle PF14
Interrupt Mask

Toggle PF15 
Interrupt Mask

Toggle PF1 Interrupt Mask

Toggle PF2 Interrupt Mask

Toggle PF3 Interrupt Mask

Toggle PF4 Interrupt Mask

Toggle PF5 Interrupt Mask

For all bits, 1 - Toggle

Toggle PF6 Interrupt Mask

Toggle PF7 Interrupt Mask

Toggle PF11 Interrupt Mask

Toggle PF10 Interrupt Mask

Toggle PF9 Interrupt Mask

Toggle PF8 Interrupt Mask

Reset = 0x00000xFFC0 072C
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FIO_POLAR Register
The Flag Polarity register (FIO_POLAR) is used to configure the polarity of 
the flag input source. To select active high or rising edge, set the bits in 
this register to 0. To select active low or falling edge, set the bits in this 
register to 1. 

This register has no effect on PFx pins that are defined as outputs. The 
contents of this register are cleared at reset, defaulting to active high 
polarity.

FIO_EDGE Register
The Flag Interrupt Sensitivity register (FIO_EDGE) is used to configure each 
of the flags as either a level-sensitive or an edge-sensitive source. When 
using an edge-sensitive mode, an edge detection circuit is used to prevent 
a situation where a short event is missed because of the system clock rate. 
This register has no effect on PFx pins that are defined as outputs.

The contents of this register are cleared at reset, defaulting to level 
sensitivity.

Figure 14-15. Flag Polarity Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Flag Polarity Register (FIO_POLAR)

PF0 Polarity

PF12 Polarity

PF13 Polarity

PF14 Polarity

PF15 Polarity

PF1 Polarity

PF2 Polarity

PF3 Polarity

PF4 Polarity

PF5 Polarity

For all bits, 0 - Active high or rising edge, 1 - Active low or falling edge

PF6 Polarity

PF7 Polarity

PF11 Polarity

PF10 Polarity

PF9 Polarity

PF8 Polarity

Reset = 0x00000xFFC0 0734
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FIO_BOTH Register
The Flag Set on Both Edges register (FIO_BOTH) is used to enable interrupt 
generation on both rising and falling edges.

When a given PFx pin has been set to edge-sensitive in the Flag Interrupt 
Sensitivity register, setting the PFx pin’s bit in the Flag Set on Both Edges 
register to Both Edges results in an interrupt being generated on both the 
rising and falling edges. This register has no effect on PFx pins that are 
defined as level-sensitive or as outputs.

Figure 14-16. Flag Interrupt Sensitivity Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Flag Interrupt Sensitivity Register (FIO_EDGE)

PF0 Sensitivity

PF12 Sensitivity

PF13 Sensitivity

PF14 Sensitivity

PF15 Sensitivity

PF1 Sensitivity

PF2 Sensitivity

PF3 Sensitivity

PF4 Sensitivity

PF5 Sensitivity

For all bits, 0 - Level, 1 - Edge

PF6 Sensitivity

PF7 Sensitivity

PF11 Sensitivity

PF10 Sensitivity

PF9 Sensitivity

PF8 Sensitivity

Reset = 0x00000xFFC0 0738
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FIO_INEN Register
The Flag Input Enable register (FIO_INEN) is used to enable the input buf-
fers on any flag pin that is being used as an input. Leaving the input buffer 
disabled eliminates the need for pull-ups and pull-downs when a particu-
lar PFx pin is not used in the system. By default, the input buffers are 
disabled. 

 Note that if the PFx pin is being used as an input, the correspond-
ing bit in the Flag Input Enable register must be set. Otherwise, 
changes at the flag pins will not be recognized by the processor.

Figure 14-17. Flag Set on Both Edges Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Flag Set on Both Edges Register (FIO_BOTH)

PF0 Both Edges

PF12 Both Edges

PF13 Both Edges

PF14 Both Edges

PF15 Both Edges

PF1 Both Edges

PF2 Both Edges

PF3 Both Edges

PF4 Both Edges

PF5 Both Edges

For all bits when enabled for edge-sensitivity, 0 - Single edge, 1 - Both edges

PF6 Both Edges

PF7 Both Edges

PF11 Both Edges

PF10 Both Edges

PF9 Both Edges

PF8 Both Edges

Reset = 0x00000xFFC0 073C
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Performance/Throughput
The PFx pins are synchronized to the system clock (SCLK). When config-
ured as outputs, the programmable flags can transition once every system 
clock cycle.

When configured as inputs, the overall system design should take into 
account the potential latency between the core and system clocks. Changes 
in the state of PFx pins have a latency of 3 SCLK cycles before being detect-
able by the processor. When configured for level-sensitive interrupt 
generation, there is a minimum latency of 4 SCLK cycles between the time 
the flag is asserted and the time that program flow is interrupted. When 
configured for edge-sensitive interrupt generation, an additional SCLK 
cycle of latency is introduced, giving a total latency of 5 SCLK cycles 
between the time the edge is asserted and the time that the core program 
flow is interrupted.

Figure 14-18. Flag Input Enable Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Flag Input Enable Register (FIO_INEN)

PF0 Input Enable

PF12 Input Enable

PF13 Input Enable

PF14 Input Enable

PF15 Input Enable

PF1 Input Enable

PF2 Input Enable

PF3 Input Enable

PF4 Input Enable

PF5 Input Enable

For all bits, 0 - Input Buffer Disabled, 1 - Input Buffer Enabled

PF6 Input Enable

PF7 Input Enable

PF11 Input Enable

PF10 Input Enable

PF9 Input Enable

PF8 Input Enable

Reset = 0x00000xFFC0 0740
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15 TIMERS

The processor features three identical 32-bit general-purpose timers, a 
core timer, and a watchdog timer. 

The general-purpose timers can be individually configured in any of three 
modes:

• Pulse Width Modulation (PWM_OUT) mode

• Pulse Width Count and Capture (WDTH_CAP) mode

• External Event (EXT_CLK) mode

The core timer is available to generate periodic interrupts for a variety of 
system timing functions.

The watchdog timer can be used to implement a software watchdog func-
tion. A software watchdog can improve system availability by generating 
an event to the Blackfin processor core if the timer expires before being 
updated by software.

General-Purpose Timers
Each general-purpose timer has one dedicated bidirectional chip pin, 
TMRx. This pin functions as an output pin in the PWM_OUT mode and as an 
input pin in the WDTH_CAP and EXT_CLK modes. To provide these func-
tions, each timer has four registers. For range and precision, the Timer 
Counter (TIMERx_COUNTER), Timer Period (TIMERx_PERIOD), and Timer 
Pulse Width (TIMERx_WIDTH) registers are 32 bits wide. See Figure 15-1.



General-Purpose Timers

15-2 ADSP-BF533 Blackfin Processor Hardware Reference
 

The registers for each general-purpose timer are:

• Timer Configuration (TIMERx_CONFIG) registers

• Timer Counter (TIMERx_COUNTER) registers

• Timer Period (TIMERx_PERIOD) registers

• Timer Pulse Width (TIMERx_WIDTH) registers

When clocked internally, the clock source is the processor’s peripheral 
clock (SCLK). Assuming the peripheral clock is running at 133 MHz, the 

maximum period for the timer count is ((232-1) / 133 MHz) = 
32.2 seconds.

Figure 15-1. Timer Block Diagram
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(32 BIT)
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3232
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The Timer Enable (TIMER_ENABLE) register can be used to enable all three 
timers simultaneously. The register contains three “write-1-to-set” control 
bits, one for each timer. Correspondingly, the Timer Disable 
(TIMER_DISABLE) register contains three “write-1-to-clear” control bits to 
allow simultaneous or independent disabling of the three timers. Either 
the Timer Enable or the Timer Disable register can be read back to check 
the enable status of the timers. A 1 indicates that the corresponding timer 
is enabled. The timer starts counting three SCLK cycles after the TIMENx bit 
is set.

The Timer Status (TIMER_STATUS) register contains an Interrupt Latch bit 
(TIMILx) and an Overflow/Error Indicator bit (TOVF_ERRx) for each timer. 
These sticky bits are set by the timer hardware and may be polled by soft-
ware. They need to be cleared by software explicitly, by writing a 1 to the 
bit.

To enable a timer’s interrupts, set the IRQ_ENA bit in the timer’s Configu-
ration (TIMERx_CONFIG) register and unmask the timer’s interrupt by 
setting the corresponding bits of the IMASK and SIC_IMASK registers. With 
the IRQ_ENA bit cleared, the timer does not set its Timer Interrupt latch 
(TIMILx) bits. To poll the TIMILx bits without permitting a timer inter-
rupt, programs can set the IRQ_ENA bit while leaving the timer’s interrupt 
masked.

With interrupts enabled, make sure that the interrupt service routine 
(ISR) clears the TIMILx latch before the RTI instruction, to ensure that the 
interrupt is not reissued. To make sure that no timer event is missed, the 
latch should be reset at the very beginning of the interrupt routine when 
in External Clock (EXT_CLK) mode. To enable timer interrupts, set the 
IRQ_ENA bit in the proper Timer Configuration (TIMERx_CONFIG) register.
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Timer Registers
The timer peripheral module provides general-purpose timer functional-
ity. It consists of three identical timer units.

Each timer provides four registers:

• TIMERx_CONFIG[15:0] – Timer Configuration register

• TIMERx_WIDTH[31:0] – Timer Pulse Width register

• TIMERx_PERIOD[31:0] – Timer Period register

• TIMERx_COUNTER[31:0] – Timer Counter register

Three registers are shared between the three timers:

• TIMER_ENABLE[15:0] – Timer Enable register

• TIMER_DISABLE[15:0] – Timer Disable register

• TIMER_STATUS[15:0] – Timer Status register

The size of accesses is enforced. A 32-bit access to a Timer Configuration 
register or a 16-bit access to a Timer Pulse Width, Timer Period, or Timer 
Counter register results in a Memory-Mapped Register (MMR) error. 
Both 16- and 32-bit accesses are allowed for the Timer Enable, Timer Dis-
able, and Timer Status registers. On a 32-bit read, the upper word returns 
all 0s.
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TIMER_ENABLE Register
The Timer Enable register (TIMER_ENABLE) allows all three timers to be 
enabled simultaneously in order to make them run completely synchro-
nously. For each timer there is a single W1S control bit. Writing a 1 
enables the corresponding timer; writing a 0 has no effect. The three bits 
can be set individually or in any combination. A read of the Timer Enable 
register shows the status of the enable for the corresponding timer. A 1 
indicates that the timer is enabled. All unused bits return 0 when read.

TIMER_DISABLE Register
The Timer Disable register (TIMER_DISABLE) allows all three timers to be 
disabled simultaneously. For each timer there is a single W1C control bit. 
Writing a 1 disables the corresponding timer; writing a 0 has no effect. 
The three bits can be cleared individually or in any combination. A read of 
the Timer Disable register returns a value identical to a read of the Timer 
Enable register. A 1 indicates that the timer is enabled. All unused bits 
return 0 when read.

Figure 15-2. Timer Enable Register

000 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 Reset = 0x00000

Timer Enable Register (TIMER_ENABLE)

TIMEN0 (Timer0 Enable) 

TIMEN1 (Timer1 Enable) 

1 - Enable timer
Read as 1 when enabled

1 - Enable timer
Read as 1 when enabled

TIMEN2 (Timer2 Enable)
1 - Enable timer
Read as 1 when enabled

0xFFC0 0640
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In PWM_OUT mode, a write of a 1 to TIMER_DISABLE does not stop the corre-
sponding timer immediately. Rather, the timer continues running and 
stops cleanly at the end of the current period (if PERIOD_CNT = 1) or pulse 
(if PERIOD_CNT = 0). If necessary, the processor can force a timer in 
PWM_OUT mode to stop immediately by first writing a 1 to the correspond-
ing bit in TIMER_DISABLE, and then writing a 1 to the corresponding TRUNx 
bit in TIMER_STATUS. See “Stopping the Timer in PWM_OUT Mode” on 
page 15-20.

In WDTH_CAP and EXT_CLK modes, a write of a 1 to TIMER_DISABLE stops the 
corresponding timer immediately.

TIMER_STATUS Register
The Timer Status register (TIMER_STATUS) indicates the status of all three 
timers and is used to check the status of all three timers with a single read. 
Status bits are sticky and W1C. The TRUNx bits can clear themselves, 
which they do when a PWM_OUT mode timer stops at the end of a period. 
During a Status Register read access, all reserved or unused bits return a 0.

Each Timer generates a unique interrupt request signal, which is gated by 
the corresponding IRQ_ENA bit in the TIMERx_CONFIG register. The shared 
Timer Status register (TIMER_STATUS) latches these interrupts so the user 

Figure 15-3. Timer Disable Register

000 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 Reset = 0x00000

Timer Disable Register (TIMER_DISABLE)

TIMDIS0 (Timer0 Disable) 

TIMDIS1 (Timer1 Disable)

1 - Disable timer
Read as 1 if this timer is enabled

1 - Disable timer
Read as 1 if this timer is enabled

TIMDIS2 (Timer2 Disable)
1 - Disable timer
Read as 1 if this timer is enabled

0xFFC0 0644
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can determine the interrupt source without reference to the unique inter-
rupt signal (for example, in the case where all three timers have been 
assigned to the same interrupt priority). Interrupt bits are sticky and must 
be cleared by the interrupt service routine (ISR) to assure that the inter-
rupt is not reissued.

The TIMILx bits work along with the IRQ_ENA bit of the Timer Configura-
tion register to indicate interrupt requests. If an interrupt condition or 
error occurs and IRQ_ENA is set, then the TIMILx bit is set and the interrupt 
to the core is asserted. This interrupt may be masked by the system inter-
rupt controller. If an interrupt condition or error occurs and IRQ_ENA is 
cleared, then the TIMILx bit is not set and the interrupt is not asserted. If 
TIMILx is already set and IRQ_ENA is written to 0, TIMILx stays set and the 
interrupt stays asserted. See Figure 15-24.

The read value of the TRUNx bits reflects the timer slave enable status in all 
modes—TRUNx set indicates running and TRUNx cleared indicates stopped. 
While reading the TIMENx or TIMDISx bits in the TIMER_ENABLE and 
TIMER_DISABLE registers will reflect whether a timer is enabled, the TRUNx 
bits indicate whether the timer is actually running. In WDTH_CAP and 
EXT_CLK modes, reads from TIMENx and TRUNx always return the same 
value. 

A W1C operation to the TIMER_DISABLE register disables the correspond-
ing timer in all modes. In PWM_OUT mode, a disabled timer continues 
running until the ongoing period (PERIOD_CNT = 1) or pulse 
(PERIOD_CNT = 0) completes. During this final period the TIMENx bit 
returns 0, but the TRUNx bit still reads as a 1. See Figure 15-10. In this 
state only, TRUNx becomes a W1C bit. During this final period with the 
timer disabled, writing a 1 to TRUNx clears TRUNx and stops the timer 
immediately without waiting for the timer counter to reach the end of its 
current cycle. 

Writing the TRUNx bits has no effect in other modes or when a timer has 
not been enabled. Writing the TRUNx bits to 1 in PWM_OUT mode has no 
effect on a timer that has not first been disabled.
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TIMERx_CONFIG Registers
The operating mode for each timer is specified by its Timer Configuration 
register (TIMERx_CONFIG). The TIMERx_CONFIG register may be written only 
when the timer is not running. After disabling the timer in PWM_OUT mode, 
make sure the timer has stopped running by checking its TRUNx bit in 
TIMER_STATUS before attempting to reprogram TIMERx_CONFIG. The 
TIMERx_CONFIG registers may be read at any time. The ERR_TYP field is 
read-only. It is cleared at reset and when the timer is enabled. Each time 
TOVF_ERRx is set, ERR_TYP[1:0] is loaded with a code that identifies the 
type of error that was detected. This value is held until the next error or 
timer enable occurs. For an overview of error conditions, see Table 15-1. 
The TIMERx_CONFIG register also controls the behavior of the TMRx pin, 
which becomes an output in PWM_OUT mode (TMODE = 01) when the 
OUT_DIS bit is cleared.

Figure 15-4. Timer Status Register

000 00

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0

TIMIL0 (Timer0 Interrupt) 
W1C

Reset = 0x00000

Timer Status Register (TIMER_STATUS)

1 = stop timer immediately in 
PWM_OUT mode

Indicates an interrupt 
request when IRQ_ENA is 
set
TIMIL1 (Timer1 Interrupt)- 
W1C

TRUN2 (Timer2 Slave 
Enable Status) W1C

TIMIL2 (Timer2 Interrupt) 
W1C

Indicates that an error or an 
overflow occurred

TOVF_ERR0 (Timer0 
Counter Overflow) W1C

1 = stop timer immediately in 
PWM_OUT mode

TRUN1 (Timer1 Slave 
Enable Status) W1C

1 = stop timer immediately in 
PWM_OUT mode

TRUN0 (Timer0 Slave Enable 
Status) W1C

TOVF_ERR1 (Timer1 
Counter Overflow) W1C

TOVF_ERR2 (Timer2 
Counter Overflow) W1C

Indicates an interrupt 
request when IRQ_ENA is 
set

Indicates an interrupt 
request when IRQ_ENA is 
set

Indicates that an error or an 
overflow occurred

Indicates that an error or an 
overflow occurred

0xFFC0 0648
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TIMERx_COUNTER Registers
These read-only registers retain their state when disabled. When enabled, 
the Timer Counter register (TIMERx_COUNTER) is reinitialized by hardware 
based on configuration and mode. The Timer Counter register may be 
read at any time (whether the timer is running or stopped), and it returns 
a coherent 32-bit value. Depending on the operation mode, the incre-
menting counter can be clocked by four different sources: SCLK, the TMRx 
pin, the Programmable Flag pin PF1, or the parallel port clock PPI_CLK.

Figure 15-5. Timer Configuration Registers

0 00

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0

TMODE[1:0] (Timer Mode)

Reset = 0x00000

Timer Configuration Registers (TIMERx_CONFIG)

0 - Negative action pulse
1 - Positive action pulse

This bit must be set to 1 when operat-
ing the PPI in GP Output modes with
internal frame syncs.
0 - Use system clock SCLK for counter
1 - Use PWM_CLK to clock counter

0 - The effective state of PULSE_HI
is the programmed state

1 - The effective state of PULSE_HI
alternates each period

00 - No error
01 - Counter overflow error
10 - Period register programming error
11 - Pulse width register programming error

00 - Reset state - unused
01 - PWM_OUT mode
10 - WDTH_CAP mode
11 - EXT_CLK mode

PULSE_HI

CLK_SEL (Timer Clock Select)

TOGGLE_HI (PWM_OUT PULSE_HI 
Toggle Mode)

ERR_TYP[1:0] (Error 
Type) - RO

PERIOD_CNT (Period 
Count)

0 - Interrupt request disable
1 - Interrupt request enable

0 - Count to end of width
1 - Count to end of period

IRQ_ENA (Interrupt 
Request Enable)

0 - Sample TMRx pin
or PF1 pin

1 - Sample UART RX pin
or PPI_CLK pin

TIN_SEL (Timer Input 
Select)

0 - Enable pad in
PWM_OUT mode

1 - Disable pad in
PWM_OUT mode

OUT_DIS (Output Pad 
Disable)

0 - Timer counter stops during emulation
1 - Timer counter runs during emulation

EMU_RUN (Emulation Behavior Select)

Timer0: 
0xFFC0 0600

Timer1: 
0xFFC0 0610

Timer2: 
0xFFC0 0620
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While the processor core is being accessed by an external emulator debug-
ger, all code execution stops. By default, the TIMERx_COUNTER also halts its 
counting during an emulation access in order to remain synchronized with 
the software. While stopped, the count does not advance—in PWM_OUT 
mode, the TMRx pin waveform is “stretched”; in WDTH_CAP mode, measured 
values are incorrect; in EXT_CLK mode, input events on TMRx may be 
missed. All other timer functions such as register reads and writes, inter-
rupts previously asserted (unless cleared), and the loading of 
TIMERx_PERIOD and TIMERx_WIDTH in WDTH_CAP mode remain active during 
an emulation stop.

Some applications may require the timer to continue counting asynchro-
nously to the emulation-halted processor core. Set the EMU_RUN bit in 
TIMERx_CONFIG to enable this behavior.

TIMERx_PERIOD and TIMERx_WIDTH Registers

 When a timer is enabled and running, and the software writes new 
values to the Timer Period register and the Timer Pulse Width reg-
ister, the writes are buffered and do not update the registers until 
the end of the current period (when the Timer Counter register 
equals the Timer Period register).

Figure 15-6. Timer Counter Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Timer Counter[15:0]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Timer Counter[31:16]

Reset = 0x0000 0001

Timer Counter Registers (TIMERx_COUNTER)

Timer0: 
0xFFC0 0604

Timer1: 
0xFFC0 0614

Timer2: 
0xFFC0 0624
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Usage of the Timer Period register (TIMERx_PERIOD) and the Timer Pulse 
Width register (TIMERx_WIDTH) varies depending on the mode of the timer:

• In Pulse Width Modulation mode (PWM_OUT), both the Timer 
Period and Timer Pulse Width register values can be updated 
“on-the-fly” since the Timer Period and Timer Pulse Width (duty 
cycle) register values change simultaneously.

• In Pulse Width and Period Capture mode (WDTH_CAP), the Timer 
Period and Timer Pulse Width buffer values are captured at the 
appropriate time. The Timer Period and Timer Pulse Width regis-
ters are then updated simultaneously from their respective buffers. 
Both registers are read-only in this mode.

• In External Event Capture mode (EXT_CLK), the Timer Period reg-
ister is writable and can be updated “on-the-fly.” The Timer Pulse 
Width register is not used.

If new values are not written to the Timer Period register or the Timer 
Pulse Width register, the value from the previous period is reused. Writes 
to the 32-bit Timer Period register and Timer Pulse Width register are 
atomic; it is not possible for the high word to be written without the low 
word also being written.

Values written to the Timer Period registers or Timer Pulse Width regis-
ters are always stored in the buffer registers. Reads from the Timer Period 
or Timer Pulse Width registers always return the current, active value of 
period or pulse width. Written values are not read back until they become 
active. When the timer is enabled, they do not become active until after 
the Timer Period and Timer Pulse Width registers are updated from their 
respective buffers at the end of the current period. See Figure 15-1.
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When the timer is disabled, writes to the buffer registers are immediately 
copied through to the Timer Period or Timer Pulse Width register so that 
they will be ready for use in the first timer period. For example, to change 
the values for the Timer Period and/or Timer Pulse Width registers in 
order to use a different setting for each of the first three timer periods after 
the timer is enabled, the procedure to follow is:

1. Program the first set of register values.

2. Enable the timer.

3. Immediately program the second set of register values.

4. Wait for the first timer interrupt.

5. Program the third set of register values.

Each new setting is then programmed when a timer interrupt is received.

 In PWM_OUT mode with very small periods (less than 10 counts), 
there may not be enough time between updates from the buffer 
registers to write both the Timer Period register and the Timer 
Pulse Width register. The next period may use one old value and 
one new value. In order to prevent Pulse Width >= Period errors, 
write the Timer Pulse Width register before the Timer Period reg-
ister when decreasing the values, and write the Timer Period 
register before the Timer Pulse Width register when increasing the 
value.
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Using the Timer
To enable an individual timer, set that timer’s TIMEN bit in the 
TIMER_ENABLE register. To disable an individual timer, set that timer’s 
TIMDIS bit in the TIMER_DISABLE register. To enable all three timers in par-
allel, set all three TIMEN bits in the TIMER_ENABLE register.

Figure 15-7. Timer Period Registers

Figure 15-8. Timer Width Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Timer Period[15:0]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Timer Period[31:16]

Reset = 0x0000 0000

Timer Period Registers (TIMERx_PERIOD)

Timer0: 
0xFFC0 0608

Timer1: 
0xFFC0 0618

Timer2: 
0xFFC0 0628

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Timer Width[15:0]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Timer Width[31:16]

Reset = 0x0000 0000

Timer Width Registers (TIMERx_WIDTH)

Timer0: 
0xFFC0 060C

Timer1: 
0xFFC0 061C

Timer2: 
0xFFC0 062C
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Before enabling a timer, always program the corresponding Timer Config-
uration (TIMERx_CONFIG) register. This register defines the timer operating 
mode, the polarity of the TMRx pin, and the timer interrupt behavior. Do 
not alter the operating mode while the timer is running.

Examples of timer enable and disable timing appear in Figure 15-9, 
Figure 15-10, and Figure 15-11.

Figure 15-9. Timer Enable Timing
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TIMERx_PERIOD 4 4 4

EXAMPLE TIMER ENABLE TIMING (PWM_OUT MODE, PERIOD_CNT = 1)

1 1 1
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TIMENx

TRUNx

TMRx, PULSE_HI = 0 

TMRx, PULSE_HI = 1 

W1S TO
TIMER_ENABLE
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Figure 15-10. Timer Disable Timing

Figure 15-11. Timer Enable and Automatic Disable Timing
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EXAMPLE TIMER DISABLE TIMING (PWM_OUT MODE, PERIOD_CNT = 1)
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TIMERx_PERIOD

TIMERx_WIDTH
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EXAMPLE TIMER ENABLE AND AUTOMATIC DISABLE TIMING
(PWM_OUT MODE, PERIOD_CNT = 0)
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TIMERx_WIDTH
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TIMENx
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W1S TO
TIMER_ENABLE
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When timers are disabled, the Timer Counter registers retain their state; 
when a timer is re-enabled, the Timer Counter is reinitialized based on the 
operating mode. The Timer Counter registers are read-only. Software can-
not overwrite or preset the Timer Counter value directly.

Pulse Width Modulation (PWM_OUT) Mode
Setting the TMODE field to b#01 in the Timer Configuration 
(TIMERx_CONFIG) register enables PWM_OUT mode. In PWM_OUT mode, the 
timer TMRx pin is an output. The output can be disabled by setting the 
OUT_DIS bit in the Timer Configuration register.

In PWM_OUT mode, the bits PULSE_HI, PERIOD_CNT, IRQ_ENA, OUT_DIS, 
CLK_SEL, EMU_RUN, and TOGGLE_HI enable orthogonal functionality. They 
may be set individually or in any combination, although some combina-
tions are not useful (such as TOGGLE_HI = 1 with OUT_DIS = 1 or 
PERIOD_CNT = 0).

Once a timer has been enabled, the Timer Counter register is loaded with 
a starting value. If CLK_SEL = 0, the Timer Counter starts at 0x1. If 
CLK_SEL = 1, it is reset to 0x0 as in EXT_CLK mode. The timer counts 
upward to the value of the Timer Period register. For either setting of 
CLK_SEL, when the Timer Counter equals the Timer Period, the Timer 
Counter is reset to 0x1 on the next clock.

In PWM_OUT mode, the PERIOD_CNT bit controls whether the timer generates 
one pulse or many pulses. When PERIOD_CNT is cleared (PWM_OUT single 
pulse mode), the timer uses the TIMERx_WIDTH register, generates one 
asserting and one deasserting edge, then generates an interrupt (if enabled) 
and stops. When PERIOD_CNT is set (PWM_OUT continuous pulse mode), the 
timer uses both the TIMERx_PERIOD and TIMERx_WIDTH registers and gener-
ates a repeating (and possibly modulated) waveform. It generates an 
interrupt (if enabled) at the end of each period and stops only after it is 
disabled. A setting of PERIOD_CNT = 0 counts to the end of the Width; a 
setting of PERIOD_CNT = 1 counts to the end of the Period.
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 The TIMERx_PERIOD and TIMERx_WIDTH registers are read-only in 
some operation modes. Be sure to set the TMODE field in the 
TIMERx_CONFIG register to b#01 before writing to these registers.

Figure 15-12. Timer Flow Diagram, PWM_OUT Mode
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Output Pad Disable

The output pin can be disabled in PWM_OUT mode by setting the OUT_DIS   
bit in the Timer Configuration register. The TMRx pin is then three-stated 
regardless of the setting of PULSE_HI and TOGGLE_HI. This can reduce 
power consumption when the output signal is not being used.

Single Pulse Generation

If the PERIOD_CNT bit is cleared, the PWM_OUT mode generates a single pulse 
on the TMRx pin. This mode can also be used to implement a precise delay. 
The pulse width is defined by the Timer Pulse Width register, and the 
Timer Period register is not used.

At the end of the pulse, the Timer Interrupt latch bit TIMILx gets set, and 
the timer is stopped automatically. If the PULSE_HI bit is set, an active high 
pulse is generated on the TMRx pin. If PULSE_HI is not set, the pulse is 
active low.

Pulse Width Modulation Waveform Generation

If the PERIOD_CNT bit is set, the internally clocked timer generates rectan-
gular signals with well-defined period and duty cycle. This mode also 
generates periodic interrupts for real-time signal processing. 

The 32-bit Timer Period (TIMERx_PERIOD) and Timer Pulse Width 
(TIMERx_WIDTH) registers are programmed with the values of the timer 
count period and pulse width modulated output pulse width.

When the timer is enabled in this mode, the TMRx pin is pulled to a deas-
serted state each time the Timer Counter equals the value of the Timer 
Pulse Width register, and the pin is asserted again when the period expires 
(or when the timer gets started).
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To control the assertion sense of the TMRx pin, the PULSE_HI bit in the cor-
responding TIMERx_CONFIG register is used. For a low assertion level, clear 
this bit. For a high assertion level, set this bit. When the timer is disabled 
in PWM_OUT mode, the TMRx pin is driven to the deasserted level.

If enabled, a timer interrupt is generated at the end of each period. An 
interrupt service routine (ISR) must clear the Interrupt Latch bit (TIMILx) 
and might alter period and/or width values. In pulse width modulation 
(PWM) applications, the software needs to update period and pulse width 
values while the timer is running. When software updates either period or 
pulse width registers, the new values are held by special buffer registers 
until the period expires. Then the new period and pulse width values 
become active simultaneously. New Timer Period and Timer Pulse Width 
register values are written while the old values are being used. The new 
values are loaded in to be used when the Timer Counter value equals the 
current Timer Period value. Reads from Timer Period and Timer Pulse 
Width registers return the old values until the period expires.

The TOVF_ERRx status bit signifies an error condition in PWM_OUT mode. 
The TOVF_ERRx bit is set if TIMERx_PERIOD = 0 or TIMERx_PERIOD = 1 at 
startup, or when the Timer Counter register rolls over. It is also set when 
the Timer Counter register rolls over if the Timer Pulse Width register is 
greater than or equal to the Timer Period register. The ERR_TYP bits are set 
when the TOVF_ERRx bit is set.

To generate the maximum frequency on the TMRx output pin, set the 
period value to 2 and the pulse width to 1. This makes TMRx toggle each 
SCLK clock, producing a duty cycle of 50%. The period may be pro-

grammed to any value from 2 to (232 – 1), inclusive. The pulse width may 
be programmed to any value from 1 to (Period – 1), inclusive. When 
PERIOD_CNT = 0, the pulse width may be programmed to any value from 1 

to (232 – 1), inclusive.
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Although the hardware reports an error if the TIMERx_WIDTH value equals 
the TIMERx_PERIOD value, this is still a valid operation to implement PWM 
patterns with 100% duty cycle. If doing so, software must generally ignore 
the TOVL_ERRx flags. Pulse width values greater than the period value are 
not recommended. Similarly, TIMERx_WIDTH = 0 is not a valid operation. 
Duty cycles of 0% are not supported.

Stopping the Timer in PWM_OUT Mode

In all PWM_OUT mode variants, the timer treats a disable operation (W1C to 
TIMER_DISABLE) as a “stop is pending” condition. When disabled, it auto-
matically completes the current waveform and then stops cleanly. This 
prevents truncation of the current pulse and unwanted PWM patterns at 
the TMRx pin. The processor can determine when the timer stops running 
by polling for the corresponding TRUNx bit in the TIMER_STATUS register to 
read 0 or by waiting for the last interrupt (if enabled). Note the timer can-
not be reconfigured (TIMERx_CONFIG cannot be written to a new value) 
until after the timer stops and TRUNx reads 0.

In PWM_OUT single pulse mode (PERIOD_CNT = 0), it is not necessary to 
write TIMER_DISABLE to stop the timer. At the end of the pulse, the timer 
stops automatically, the corresponding bit in TIMER_ENABLE (and 
TIMER_DISABLE) is cleared, and the corresponding TRUNx bit is cleared. 
See Figure 15-11. To generate multiple pulses, write a 1 to TIMER_ENABLE, 
wait for the timer to stop, then write another 1 to TIMER_ENABLE.

If necessary, the processor can force a timer in PWM_OUT mode to stop 
immediately. Do this by first writing a 1 to the corresponding bit in 
TIMER_DISABLE, and then writing a 1 to the corresponding TRUNx bit in 
TIMER_STATUS. This stops the timer whether the pending stop was waiting 
for the end of the current period (PERIOD_CNT = 1) or the end of the cur-
rent pulse width (PERIOD_CNT = 0). This feature may be used to regain 
immediate control of a timer during an error recovery sequence.

 Use this feature carefully, because it may corrupt the PWM pattern 
generated at the TMRx pin. 
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In PWM_OUT continuous pulse mode (PERIOD_CNT = 1), each timer samples 
its TIMENx bit at the end of each period. It stops cleanly at the end of the 
first period when TIMENx is low. This implies (barring any W1C to TRUNx) 
that a timer that is disabled and then re-enabled all before the end of the 
current period will continue to run as if nothing happened. Typically, 
software should disable a PWM_OUT timer and then wait for it to stop itself. 
The timer will always stop at the end of the first pulse when 
PERIOD_CNT = 0.

Externally Clocked PWM_OUT

By default, the timer is clocked internally by SCLK. Alternatively, if the 
CLK_SEL bit in the Timer Configuration (TIMERx_CONFIG) register is set, 
then the timer is clocked by PWM_CLK. The PWM_CLK is normally input from 
the PF1 pin, but may be taken from the PPI_CLK pin when the timers are 
configured to work with the PPI. Different timers may receive different 
signals on their PWM_CLK inputs, depending on configuration. As selected 
by the PERIOD_CNT bit, the PWM_OUT mode either generates pulse width 
modulation waveforms or generates a single pulse with pulse width 
defined by the TIMERx_WIDTH register.

When CLK_SEL is set, the counter resets to 0x0 at startup and increments 
on each rising edge of PWM_CLK. The TMRx pin transitions on rising edges 
of PWM_CLK. There is no way to select the falling edges of PWM_CLK. In this 
mode, the PULSE_HI bit controls only the polarity of the pulses produced. 
The timer interrupt may occur slightly before the corresponding edge on 
the TMRx pin (the interrupt occurs on an SCLK edge, the pin transitions on 
a later PWM_CLK edge). It is still safe to program new period and pulse 
width values as soon as the interrupt occurs. After a period expires, the 
counter rolls over to a value of 0x1.

The PWM_CLK clock waveform is not required to have a 50% duty cycle, but 
the minimum PWM_CLK clock low time is one SCLK period, and the mini-
mum PWM_CLK clock high time is one SCLK period. This implies the 
maximum PWM_CLK clock frequency is SCLK/2.
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The PF1 pin can only clock the timer when PF1 functions as an input pin. 
When any timer is in PWM_OUT mode with CLK_SEL = 1 and TIN_SEL = 0, 
then the PF1 bit in the FIO_DIR register is ignored and PF1 is forced to be 
an input.

PULSE_HI Toggle Mode

The waveform produced in PWM_OUT mode with PERIOD_CNT = 1 normally 
has a fixed assertion time and a programmable deassertion time (via the 
TIMERx_WIDTH register). When two timers are running synchronously by 
the same period settings, the pulses are aligned to the asserting edge as 
shown in Figure 15-13.

The TOGGLE_HI mode enables control of the timing of both the asserting 
and deasserting edges of the output waveform produced. The phase 
between the asserting edges of two timer outputs is programmable. The 
effective state of the PULSE_HI bit alternates every period. The adjacent 
active low and active high pulses, taken together, create two halves of a 
fully arbitrary rectangular waveform. The effective waveform is still active 
high when PULSE_HI is set and active low when PULSE_HI is cleared. The 
value of TOGGLE_HI has no effect unless the mode is PWM_OUT and 
PERIOD_CNT = 1.

Figure 15-13. Timers With Pulses Aligned to Asserting Edge
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In TOGGLE_HI mode, when PULSE_HI is set, an active low pulse is generated 
in the first, third, and all odd-numbered periods, and an active high pulse 
is generated in the second, fourth, and all even-numbered periods. When 
PULSE_HI is cleared, an active high pulse is generated in the first, third, 
and all odd-numbered periods, and an active low pulse is generated in the 
second, fourth, and all even-numbered periods.

The deasserted state at the end of one period matches the asserted state at 
the beginning of the next period, so the output waveform only transitions 
when Count = Pulse Width. The net result is an output waveform pulse 
that repeats every two counter periods and is centered around the end of 
the first period (or the start of the second period).

Figure 15-14 shows an example with all three timers running with the 
same period settings. When software does not alter the PWM settings at 
runtime, the duty cycle is 50%. The values of the TIMERx_WIDTH registers 
control the phase between the signals.

Figure 15-14. Three Timers With Same Period Settings
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Similarly, two timers can generate non-overlapping clocks, by cen-
ter-aligning the pulses while inverting the signal polarity for one of the 
timers (See Figure 15-15).

When TOGGLE_HI = 0, software updates the Timer Period and Timer Pulse 
Width registers once per waveform period. When TOGGLE_HI = 1, soft-
ware updates the Timer Period and Timer Pulse Width registers twice per 
waveform period with values that are half as large. In odd-numbered peri-
ods, write (Period – Width) instead of Width to the Timer Pulse Width 
register in order to obtain center-aligned pulses. 

For example, if the pseudo-code when TOGGLE_HI = 0 is:

int period, width ;

for (;;) {

period = generate_period(...) ;

width = generate_width(...) ;

waitfor (interrupt) ;

Figure 15-15. Two Timers With Non-Overlapping Clocks
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write(TIMERx_PERIOD, period) ;

write(TIMERx_WIDTH, width) ;

}

Then when TOGGLE_HI = 1, the pseudo-code would be:

int period, width ;

int per1, per2, wid1, wid2 ;

for (;;)  {

period = generate_period(...) ;

width = generate_width(...) ;

per1 = period/2 ;

wid1 = width/2 ;

per2 = period/2 ;

wid2 = width/2 ;

waitfor (interrupt) ;

write(TIMERx_PERIOD, per1) ;

write(TIMERx_WIDTH, per1 - wid1) ;

waitfor (interrupt) ;

write(TIMERx_PERIOD, per2) ;

write(TIMERx_WIDTH, wid2) ;

}

As shown in this example, the pulses produced do not need to be symmet-
ric (wid1 does not need to equal wid2). The period can be offset to adjust 
the phase of the pulses produced (per1 does not need to equal per2).
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The Timer Slave Enable bit (TRUNx bit in the TIMER_STATUS register) is 
updated only at the end of even-numbered periods in TOGGLE_HI mode. 
When TIMER_DISABLE is written to 1, the current pair of counter periods 
(one waveform period) completes before the timer is disabled.

As when TOGGLE_HI = 0, errors are reported if:

TIMERx_WIDTH >= TIMERx_PERIOD, TIMERx_PERIOD = 0, or 
TIMERx_PERIOD = 1

Pulse Width Count and Capture (WDTH_CAP) Mode
In WDTH_CAP mode, the TMRx pin is an input pin. The internally clocked 
timer is used to determine the period and pulse width of externally applied 
rectangular waveforms. Setting the TMODE field to b#10 in the 
TIMERx_CONFIG (Timer Configuration register) enables this mode.

When enabled in this mode, the timer resets the count in the 
TIMERx_COUNTER register to 0x0000 0001 and does not start counting until 
it detects a leading edge on the TMRx pin.

When the timer detects the first leading edge, it starts incrementing. 
When it detects a trailing edge of a waveform, the timer captures the cur-
rent 32-bit value of the TIMERx_COUNTER register into the width buffer 
register. At the next leading edge, the timer transfers the current 32-bit 
value of the TIMERx_COUNTER register into the period buffer register. The 
count register is reset to 0x0000 0001 again, and the timer continues 
counting and capturing until it is disabled.

In this mode, software can measure both the pulse width and the pulse 
period of a waveform. To control the definition of leading edge and trail-
ing edge of the TMRx pin, the PULSE_HI bit in the TIMERx_CONFIG register is 
set or cleared.
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If the PULSE_HI bit is cleared, the measurement is initiated by a falling 
edge, the Timer Counter register is captured to the Timer Pulse Width 
buffer register on the rising edge, and the Timer Period is captured on the 
next falling edge. When the PULSE_HI bit is set, the measurement is initi-
ated by a rising edge, the Timer Counter register is captured to the Timer 
Pulse Width buffer register on the falling edge, and the Timer Period is 
captured on the next rising edge.

Figure 15-16. Timer Flow Diagram, WDTH_CAP Mode
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In WDTH_CAP mode, these three events always occur at the same time as one 
unit:

1. The TIMERx_PERIOD register is updated from the period buffer 
register.

2. The TIMERx_WIDTH register is updated from the width buffer 
register.

3. The Timer Interrupt latch bit (TIMILx) gets set (if enabled) but 
does not generate an error.

The PERIOD_CNT bit in the TIMERx_CONFIG register controls the point in 
time at which this set of transactions is executed. Taken together, these 
three events are called a measurement report. The Timer Counter Over-
flow error latch bit (TOVF_ERRx) does not get set at a measurement report. 
A measurement report occurs at most once per input signal period.

The current timer counter value is always copied to the width buffer and 
period buffer registers at the trailing and leading edges of the input signal, 
respectively, but these values are not visible to software. A measurement 
report event samples the captured values into visible registers and sets the 
timer interrupt to signal that TIMERx_PERIOD and TIMERx_WIDTH are ready 
to be read. When the PERIOD_CNT bit is set, the measurement report occurs 
just after the period buffer register captures its value (at a leading edge). 
When the PERIOD_CNT bit is cleared, the measurement report occurs just 
after the width buffer register captures its value (at a trailing edge).

If the PERIOD_CNT bit is set and a leading edge occurred (See 
Figure 15-17), then the TIMERx_PERIOD and TIMERx_WIDTH registers report 
the pulse period and pulse width measured in the period that just ended. 
If the PERIOD_CNT bit is cleared and a trailing edge occurred (See 
Figure 15-18), then the TIMERx_WIDTH register reports the pulse width 
measured in the pulse that just ended, but the TIMERx_PERIOD register 
reports the pulse period measured at the end of the previous period.
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Figure 15-17. Example of Period Capture Measurement Report Timing 
(WDTH_CAP Mode, PERIOD_CNT = 1)
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Figure 15-18. Example of Width Capture Measurement Report Timing 
(WDTH_CAP Mode, PERIOD_CNT = 0)
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If the PERIOD_CNT bit is cleared and the first trailing edge occurred, then 
the first period value has not yet been measured at the first measurement 
report, so the period value is not valid. Reading the TIMERx_PERIOD value 
in this case returns 0, as shown in Figure 15-18. To measure the pulse 
width of a waveform that has only one leading edge and one trailing edge, 
set PERIOD_CNT = 0. If PERIOD_CNT = 1 for this case, no period value is cap-
tured in the period buffer register. Instead, an error report interrupt is 
generated (if enabled) when the counter range is exceeded and the counter 
wraps around. In this case, both TIMERx_WIDTH and TIMERx_PERIOD read 0 
(because no measurement report occurred to copy the value captured in 
the width buffer register to TIMERx_WIDTH). See the first interrupt in 
Figure 15-19.

 When using the PERIOD_CNT = 0 mode described above to measure 
the width of a single pulse, it is recommended to disable the timer 
after taking the interrupt that ends the measurement interval. If 
desired, the timer can then be reenabled as appropriate in prepara-
tion for another measurement. This procedure prevents the timer 
from free-running after the width measurement and logging errors 
generated by the timer count overflowing.

A timer interrupt (if enabled) is generated if the Timer Counter register 
wraps around from 0xFFFF FFFF to 0 in the absence of a leading edge. At 
that point, the TOVF_ERRx bit in the TIMER_STATUS register and the ERR_TYP 
bits in the TIMERx_CONFIG register are set, indicating a count overflow due 
to a period greater than the counter’s range. This is called an error report. 
When a timer generates an interrupt in WDTH_CAP mode, either an error has 
occurred (an error report) or a new measurement is ready to be read (a 
measurement report), but never both at the same time. The 
TIMERx_PERIOD and TIMERx_WIDTH registers are never updated at the time 
an error is signaled. Refer to Figure 15-19 and Figure 15-20 for more 
information.
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Figure 15-19. Example Timing for Period Overflow Followed by Period 
Capture (WDTH_CAP Mode, PERIOD_CNT = 1)
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Both TIMILx and TOVF_ERRx are sticky bits, and software has to explicitly 
clear them. If the timer overflowed and PERIOD_CNT = 1, neither the 
TIMERx_PERIOD nor the TIMERx_WIDTH register were updated. If the timer 

Figure 15-20. Example Timing for Width Capture Followed by Period 
Overflow (WDTH_CAP Mode, PERIOD_CNT = 0)
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overflowed and PERIOD_CNT = 0, the TIMERx_PERIOD and TIMERx_WIDTH 
registers were updated only if a trailing edge was detected at a previous 
measurement report.

Software can count the number of error report interrupts between mea-
surement report interrupts to measure input signal periods longer than 

0xFFFF FFFF. Each error report interrupt adds a full 232 SCLK counts to 
the total for the period, but the width is ambiguous. For example, in 
Figure 15-19 the period is 0x1 0000 0004 but the pulse width could be 
either 0x0 0000 0002 or 0x1 0000 0002.

The waveform applied to the TMRx pin is not required to have a 50% duty 
cycle, but the minimum TMRx low time is one SCLK period and the mini-
mum TMRx high time is one SCLK period. This implies the maximum TMRx 
input frequency is SCLK/2 with a 50% duty cycle. Under these conditions, 
the WDTH_CAP mode timer would measure Period = 2 and 
Pulse Width = 1.

Autobaud Mode

Any one of the three timers may provide autobaud detection for the Uni-
versal Asynchronous Receiver/Transmitter (UART). The Timer Input 
Select (TIN_SEL) bit in the TIMERx_CONFIG register causes the timer to sam-
ple the UART port receive data (RX) pin instead of the TMRx pin when 
enabled for WDTH_CAP mode. 

 Do not enable the UART until after autobaud detection is 
complete. 

A software routine can detect the pulse widths of serial stream bit cells. 
Because the sample base of the timers is synchronous with the UART 
operation—all derived from the Phase Locked Loop (PLL) clock—the 
pulse widths can be used to calculate the baud rate divider for the UART.

DIVISOR = ((TIMERx_WIDTH) / (16 x Number of captured UART bits))
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In order to increase the number of timer counts and therefore the resolu-
tion of the captured signal, it is recommended not to measure just the 
pulse width of a single bit, but to enlarge the pulse of interest over more 
bits. Typically a NULL character (ASCII 0x00) is used in autobaud detec-
tion, as shown in Figure 15-21.

Because the example frame in Figure 15-21 encloses 8 data bits and 1 start 
bit, apply the formula:

DIVISOR = TIMERx_WIDTH/(16 x 9)

Real UART RX signals often have asymmetrical falling and rising edges, 
and the sampling logic level is not exactly in the middle of the signal volt-
age range. At higher bit rates, such pulse width-based autobaud detection 
might not return adequate results without additional analog signal condi-
tioning. Measuring signal periods works around this issue and is strongly 
recommended. 

For example, predefine ASCII character “@” (40h) as an autobaud detec-
tion byte and measure the period between two subsequent falling edges. 
As shown in Figure 15-22, measure the period between the falling edge of 
the start bit and the falling edge after bit 6. Since this period encloses 8 
bits, apply the formula:

DIVISOR = TIMERx_PERIOD/(16 x 8)

Figure 15-21. Autobaud Detection Character 0x00
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External Event (EXT_CLK) Mode
In EXT_CLK mode, the TMRx pin is an input. The timer works as a counter 
clocked by an external source, which can also be asynchronous to the sys-
tem clock. The current count in TIMERx_COUNTER represents the number 
of leading edge events detected. Setting the TMODE field to b#11 in the 
TIMERx_CONFIG register enables this mode. The TIMERx_PERIOD register is 
programmed with the value of the maximum timer external count.

The waveform applied to the TMRx pin is not required to have a 50% duty 
cycle, but the minimum TMRx low time is one SCLK period, and the mini-
mum TMRx high time is one SCLK period. This implies the maximum TMRx 
input frequency is SCLK/2.

Period may be programmed to any value from 1 to (232 – 1), inclusive.

After the timer has been enabled, it resets the Timer Counter register to 
0x0 and then waits for the first leading edge on the TMRx pin. This edge 
causes the Timer Counter register to be incremented to the value 0x1. 
Every subsequent leading edge increments the count register. After reach-
ing the period value, the TIMILx bit is set, and an interrupt is generated. 
The next leading edge reloads the Timer Counter register again with 0x1. 
The timer continues counting until it is disabled. The PULSE_HI bit deter-
mines whether the leading edge is rising (PULSE_HI set) or falling 
(PULSE_HI cleared).

Figure 15-22. Autobaud Detection Character 0x40

PERIOD

STOPS 1 2 3 4 5 6 7



ADSP-BF533 Blackfin Processor Hardware Reference 15-37 
 

Timers

The configuration bits, TIN_SEL and PERIOD_CNT, have no effect in this 
mode. The TOVF_ERRx and ERR_TYP bits are set if the Timer Counter regis-
ter wraps around from 0xFFFF FFFF to 0 or if Period = 0 at startup or 
when the Timer Counter register rolls over (from Count = Period to 
Count = 0x1). The Timer Pulse Width register is unused.

Using the Timers With the PPI
Up to two timers are used to generate frame sync signals for certain PPI 
modes. For detailed instructions on how to configure the timers for use 
with the PPI, refer to “Frame Synchronization in GP Modes” on 
page 11-27 of the PPI chapter.

Figure 15-23. Timer Flow Diagram, EXT_CLK Mode
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Interrupts
Each of the three timers can generate a single interrupt. The three result-
ing interrupt signals are routed to the System Interrupt Controller block 
for prioritization and masking. The Timer Status (TIMER_STATUS) register 
latches the timer interrupts to provide a means for software to determine 
the interrupt source. These bits are W1C and must be cleared prior to a 
RTI to assure that the interrupt is not reissued.

To enable interrupt generation, set the IRQ_ENA bit and unmask the inter-
rupt source in the System Interrupt Mask register (SIC_IMASK). To poll the 
TIMILx bit without interrupt generation, set IRQ_ENA but leave the inter-
rupt masked. If enabled by IRQ_ENA, interrupt requests are also generated 
by error conditions.

The system interrupt controller enables flexible interrupt handling. All 
timers may or may not share the same interrupt channel, so that a single 
interrupt routine services more than one timer. In PWM mode, more tim-
ers may run with the same period settings and issue their interrupt 
requests simultaneously. In this case, the service routine might clear all 
TIMILx latch bits at once by writing 0x07 to the TIMER_STATUS register.

If interrupts are enabled, make sure that the interrupt service routine 
(ISR) clears the TIMILx bit in the TIMERx_STATUS register before the RTI 
instruction executes. This ensures that the interrupt is not reissued. 
Remember that writes to system registers are delayed. If only a few 
instructions separate the TIMILx clear command from the RTI instruction, 
an extra SSYNC instruction may be inserted. In EXT_CLK mode, reset the 
TIMILx bit in the TIMERx_STATUS register at the very beginning of the 
interrupt service routine (ISR) to avoid missing any timer events.
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Figure 15-24. Timers Interrupt Structure
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Illegal States
For Table 15-1, these definitions are used:

• Startup. The first clock period during which the timer counter is 
running after the timer is enabled by writing TIMER_ENABLE.

• Rollover. The time when the current count matches the value in 
TIMERx_PERIOD and the counter is reloaded with the value 1.

• Overflow. The timer counter was incremented instead of doing a 
rollover when it was holding the maximum possible count value of 
0xFFFF FFFF. The counter does not have a large enough range to 
express the next greater value and so erroneously loads a new value 
of 0x0000 0000.

• Unchanged. No new error. 

• When ERR_TYP is unchanged, it displays the previously 
reported error code or 00 if there has been no error since 
this timer was enabled. 

• When TOVF_ERR is unchanged, it reads 0 if there has been no 
error since this timer was enabled, or if software has per-
formed a W1C to clear any previous error. If a previous 
error has not been acknowledged by software, TOVF_ERR 
reads 1.

Software should read TOVF_ERR to check for an error. If TOVF_ERR is set, 
software can then read ERR_TYP for more information. Once detected, 
software should write 1 to clear TOVF_ERR to acknowledge the error.

Table 15-1 can be read as: “In mode __ at event __, if TIMERx_PERIOD 
is __ and TIMERx_WIDTH is __, then ERR_TYP is __ and 
TOVF_ERR is __.”
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 Startup error conditions do not prevent the timer from starting. 
Similarly, overflow and rollover error conditions do not stop the 
timer. Illegal cases may cause unwanted behavior of the TMRx pin.

Table 15-1. Overview of Illegal States

Mode Event TIMERx_
PERIOD

TIMERx_
WIDTH

ERR_TYP TOVF_ERR

PWM_OUT, 
PERIOD_
CNT = 1

Startup 
(No boundary 
condition tests 
performed on 
TIMERx_
WIDTH)

== 0 Anything b#10 Set

== 1 Anything b#10 Set

>= 2 Anything Unchanged Unchanged

Rollover == 0 Anything b#10 Set

== 1 Anything b#11 Set

>= 2 == 0 b#11 Set

>= 2 < TIMERx_
PERIOD

Unchanged Unchanged

>= 2 >= TIMERx_
PERIOD

b#11 Set

Overflow, not 
possible unless 
there is also 
another error, 
such as 
TIMERx_
PERIOD == 0.

Anything Anything b#01 Set



Using the Timer

15-42 ADSP-BF533 Blackfin Processor Hardware Reference
 

PWM_OUT, 
PERIOD_
CNT = 0

Startup Anything == 0 b#01 Set

This case is not detected at startup, but results in an overflow 
error once the counter counts through its entire range.

Anything >= 1 Unchanged Unchanged

Rollover Rollover is not possible in this mode.

Overflow, not 
possible unless 
there is also 
another error, 
such as 
TIMERx_
WIDTH == 0.

Anything Anything b#01 Set

WDTH_CAP Startup TIMERx_PERIOD and TIMERx_WIDTH are read-only in 
this mode, no error possible.

Rollover TIMERx_PERIOD and TIMERx_WIDTH are read-only in 
this mode, no error possible.

Overflow Anything Anything b#01 Set

EXT_CLK Startup == 0 Anything b#10 Set

>= 1 Anything Unchanged Unchanged

Rollover == 0 Anything b#10 Set

>= 1 Anything Unchanged Unchanged

Overflow, not 
possible unless 
there is also 
another error, 
such as 
TIMERx_
PERIOD == 0.

Anything Anything b#01 Set

Table 15-1. Overview of Illegal States (Cont’d)

Mode Event TIMERx_
PERIOD

TIMERx_
WIDTH

ERR_TYP TOVF_ERR
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Summary
Table 15-2 summarizes control bit and register usage in each timer mode.

Table 15-2. Control Bit and Register Usage Chart

Bit / Register PWM_OUT Mode WDTH_CAP Mode EXT_CLK Mode

TIMER_ENABLE 1 - Enable timer
0 - No effect

1 - Enable timer
0 - No effect

1 - Enable timer
0 - No effect

TIMER_DISABLE 1 - Disable timer at end 
of period
0 - No effect

1 - Disable timer
0 - No effect

1 - Disable timer
0 - No effect

TMODE b#01 b#10 b#11

PULSE_HI 1 - Generate high width
0 - Generate low width

1 - Measure high width
0 - Measure low width

1 - Count rising edges
0 - Count falling edges

PERIOD_CNT 1 - Generate PWM
0 - Single width pulse

1 - Interrupt after mea-
suring period
0 - Interrupt after mea-
suring width

Unused

IRQ_ENA 1 - Enable interrupt
0 - Disable interrupt

1 - Enable interrupt
0 - Disable interrupt

1 - Enable interrupt
0 - Disable interrupt

TIN_SEL Depends on CLK_SEL:

If CLK_SEL = 1,
1 - Count PPI_CLKs
0 - Count PF1 clocks

If CLK_SEL = 0,
Unused

1 - Select RX input
0 - Select TMRx input

Unused

OUT_DIS 1 - Disable TMRx pin
0 - Enable TMRx pin

Unused Unused

CLK_SEL 1 - PWM_CLK clocks 
timer
0 - SCLK clocks timer

Unused Unused
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TOGGLE_HI 1 - One waveform 
period every two coun-
ter periods
0 - One waveform 
period every one coun-
ter period

Unused Unused

ERR_TYP Reports b#00, b#01, 
b#10, or b#11, as 
appropriate

Reports b#00 or b#01, 
as appropriate

Reports b#00, b#01, or 
b#10, as appropriate

EMU_RUN 0 - Halt during 
emulation
1 - Count during 
emulation

0 - Halt during 
emulation
1 - Count during 
emulation

0 - Halt during 
emulation
1 - Count during 
emulation

TMR Pin Depends on 
OUT_DIS:
1 - Three-state
0 - Output

Depends on TIN_SEL:
1 - Unused
0 - Input

Input

Period R/W: Period value RO: Period value R/W: Period value

Width R/W: Width value RO: Width value Unused

Counter RO: Counts up on 
SCLK or PWM_CLK

RO: Counts up on 
SCLK

RO: Counts up on 
event

TRUNx Read: Timer slave 
enable status
Write:
1 - Stop timer if dis-
abled
0 - No effect

Read: Timer slave 
enable status
Write:
1 - No effect
0 - No effect

Read: Timer slave 
enable status
Write:
1 - No effect
0 - No effect

Table 15-2. Control Bit and Register Usage Chart (Cont’d)

Bit / Register PWM_OUT Mode WDTH_CAP Mode EXT_CLK Mode
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Core Timer
The Core timer is a programmable interval timer which can generate peri-
odic interrupts. The Core timer runs at the core clock (CCLK) rate. The 
timer includes four core Memory-Mapped Registers (MMRs), the Timer 
Control register (TCNTL), the Timer Count register (TCOUNT), the Timer 
Period register (TPERIOD), and the Timer Scale register (TSCALE).

Figure 15-25 provides a block diagram of the Core timer.

TOVF_ERR Set at startup or roll-
over if period = 0 or 1
Set at rollover if width 
>= Period
Set if counter wraps

Set if counter wraps Set if counter wraps or 
set at startup or roll-
over if period = 0

IRQ Depends on 
IRQ_ENA:
1 - Set when 
TOVF_ERR set or 
when counter equals 
period and 
PERIOD_CNT = 1 or 
when counter equals 
width and 
PERIOD_CNT = 0
0 - Not set

Depends on 
IRQ_ENA:
1 - Set when 
TOVF_ERR set or 
when counter captures 
period and 
PERIOD_CNT = 1 or 
when counter captures 
width and 
PERIOD_CNT = 0
0 - Not set

Depends on 
IRQ_ENA:
1 - Set when counter 
equals period or 
TOVF_ERR set
0 - Not set

Table 15-2. Control Bit and Register Usage Chart (Cont’d)

Bit / Register PWM_OUT Mode WDTH_CAP Mode EXT_CLK Mode
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TCNTL Register
When the timer is enabled by setting the TMREN bit in the Core Timer 
Control register (TCNTL), the TCOUNT register is decremented once every 
TSCALE + 1 number of clock cycles. When the value of the TCOUNT register 
reaches 0, an interrupt is generated and the TINT bit is set in the TCNTL reg-
ister. If the TAUTORLD bit in the TCNTL register is set, then the TCOUNT 
register is reloaded with the contents of the TPERIOD register and the count 
begins again.

 The TINT bit in the TCNTL register indicates that an interrupt has 
been generated. Note that this is not a W1C bit. Write a 0 to clear 
it. However, the write is optional. It is not required to clear inter-
rupt requests. The core timer module does not provide any further 
interrupt enable bit. When the timer is enabled, interrupts can be 
masked in the CEC controller.

Figure 15-25. Core Timer Block Diagram
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The Core timer can be put into low power mode by clearing the TMPWR bit 
in the TCNTL register. Before using the timer, set the TMPWR bit. This 
restores clocks to the timer unit. When TMPWR is set, the Core timer may 
then be enabled by setting the TMREN bit in the TCNTL register.

 Hardware behavior is undefined if TMREN is set when TMPWR = 0.

Figure 15-26. Core Timer Control Register
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and the timer continues to count

0xFFE0 3000



Core Timer

15-48 ADSP-BF533 Blackfin Processor Hardware Reference
 

TCOUNT Register
The Core Timer Count register (TCOUNT) decrements once every 
TSCALE + 1 clock cycles. When the value of TCOUNT reaches 0, an interrupt 
is generated and the TINT bit of the TCNTL register is set.

TPERIOD Register
When auto-reload is enabled, the TCOUNT register is reloaded with the 
value of the Core Timer Period register (TPERIOD) whenever TCOUNT 
reaches 0.

 To ensure that there is valid data in the TPERIOD register, the TPE-
RIOD and TCOUNT registers are initialized simultaneously on the first 
write to either register. If a different value is desired for the first 
count period, write the data to TCOUNT after writing to TPERIOD.

Figure 15-27. Core Timer Count Register

Core Timer Count Register (TCOUNT)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X Reset = Undefined

Count Value[31:16]

Count Value[15:0]

0xFFE0 300C
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TSCALE Register
The Core Timer Scale register (TSCALE) stores the scaling value that is one 
less than the number of cycles between decrements of TCOUNT. For exam-
ple, if the value in the TSCALE register is 0, the counter register decrements 
once every clock cycle. If TSCALE is 1, the counter decrements once every 
two cycles.

Figure 15-28. Core Timer Period Register

Figure 15-29. Core Timer Scale Register

Core Timer Period Register (TPERIOD)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X Reset = Undefined

Period Value[31:16]

Period Value[15:0]

0xFFE0 3004

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

Core Timer Scale Register (TSCALE)

Reset = Undefined

Scale Value

0xFFE0 3008
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Watchdog Timer
The processor includes a 32-bit timer that can be used to implement a 
software watchdog function. A software watchdog can improve system 
reliability by generating an event to the processor core if the timer expires 
before being updated by software. Depending on how the watchdog timer 
is programmed, the event that is generated may be a reset, a nonmaskable 
interrupt, or a general-purpose interrupt. The watchdog timer is clocked 
by the system clock (SCLK).

Watchdog Timer Operation
To use the watchdog timer:

1. Set the count value for the watchdog timer by writing the count 
value into the Watchdog Count register (WDOG_CNT). Note that 
loading the WDOG_CNT register while the watchdog timer is not 
enabled will also pre-load the WDOG_STAT register.

2. In the Watchdog Control register (WDOG_CTL), select the event to be 
generated upon timeout.

3. Enable the watchdog timer in WDOG_CTL. The watchdog timer then 
begins counting down, decrementing the value in the WDOG_STAT 
register. When the WDOG_STAT reaches 0, the programmed event is 
generated. To prevent the event from being generated, software 
must reload the count value from WDOG_CNT to WDOG_STAT by exe-
cuting a write (of any value) to WDOG_STAT, or must disable the 
watchdog timer in WDOG_CTL before the watchdog timer expires.
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WDOG_CNT Register
The Watchdog Count register (WDOG_CNT) holds the 32-bit unsigned count 
value. The WDOG_CNT register must be accessed with 32-bit read/writes 
only.

The Watchdog Count register holds the programmable count value. A 
valid write to the Watchdog Count register also preloads the Watchdog 
counter. For added safety, the Watchdog Count register can be updated 
only when the watchdog timer is disabled. A write to the Watchdog 
Count register while the timer is enabled does not modify the contents of 
this register.

Figure 15-30. Watchdog Count Register

Watchdog Count Register (WDOG_CNT)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000 0000

Watchdog Count[31:16]

Watchdog Count[15:0]

0xFFC0 0204
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WDOG_STAT Register
The 32-bit Watchdog Status register (WDOG_STAT) contains the current 
count value of the watchdog timer. Reads to WDOG_STAT return the current 
count value. When the watchdog timer is enabled, WDOG_STAT is decre-
mented by 1 on each SCLK cycle. When WDOG_STAT reaches 0, the watchdog 
timer stops counting and the event selected in the Watchdog Control reg-
ister (WDOG_CTL) is generated.

Values cannot be stored directly in WDOG_STAT, but are instead copied from 
WDOG_CNT. This can happen in two ways. 

• While the watchdog timer is disabled, writing the WDOG_CNT register 
pre-loads the WDOG_STAT register.

• While the watchdog timer is enabled, writing the WDOG_STAT regis-
ter loads it with the value in WDOG_CNT.

When the processor executes a write (of an arbitrary value) to WDOG_STAT, 
the value in WDOG_CNT is copied into WDOG_STAT. Typically, software sets 
the value of WDOG_CNT at initialization, then periodically writes to 
WDOG_STAT before the watchdog timer expires. This reloads the watchdog 
timer with the value from WDOG_CNT and prevents generation of the 
selected event.

The WDOG_STAT register is a 32-bit unsigned system memory-mapped regis-
ter that must be accessed with 32-bit reads and writes.

If the user does not reload the counter before SCLK * Count register cycles, 
a Watchdog interrupt or reset is generated and the WDRO bit in the Watch-
dog Control register is set. When this happens the counter stops 
decrementing and remains at zero.

If the counter is enabled with a zero loaded to the counter, the WDRO bit of 
the Watchdog Control register is set immediately and the counter remains 
at zero and does not decrement.
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WDOG_CTL Register
The Watchdog Control register (WDOG_CTL) is a 16-bit system mem-
ory-mapped register used to control the watchdog timer.

The WDEV[1:0] field is used to select the event that is generated when the 
watchdog timer expires. Note that if the general-purpose interrupt option 
is selected, the System Interrupt Mask register (SIC_IMASK) should be 
appropriately configured to unmask that interrupt. If the generation of 
watchdog events is disabled, the watchdog timer operates as described, 
except that no event is generated when the watchdog timer expires.

The WDEN[7:0] field is used to enable and disable the watchdog timer. 
Writing any value other than the disable value into this field enables the 
watchdog timer. This multibit disable key minimizes the chance of inad-
vertently disabling the watchdog timer. 

Software can determine whether the timer has rolled over by interrogating 
the WDRO status bit of the Watchdog Control register. This is a sticky bit 
that is set whenever the watchdog timer count reaches 0 and cleared only 
by disabling the watchdog timer and then writing a 1 to the bit. 

Figure 15-31. Watchdog Status Register

Watchdog Status Register (WDOG_STAT)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reset = 0x0000 0000

Watchdog Status[31:16]

Watchdog Status[15:0]

0xFFC0 0208
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 Note that when the processor is in Emulation mode, the watchdog 
timer counter will not decrement even if it is enabled.

Figure 15-32. Watchdog Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 1 0 1 0 1 1 0 1 0 0 0

Watchdog Control Register (WDOG_CTL)

WDEV[1:0]
00 - Generate reset event
01 - Generate NMI
10 - Generate GP interrupt
11 - Disable event

generation

WDEN[7:0]
0xAD - Counter disabled
All other values - Counter 
enabled

WDRO - W1C
0 - Watchdog timer has not expired
1 - Watchdog timer has expired

Reset = 0x0AD00xFFC0 0200
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16 REAL-TIME CLOCK

The Real-Time Clock (RTC) provides a set of digital watch features to the 
processor, including time of day, alarm, and stopwatch countdown. It is 
typically used to implement either a real-time watch or a life counter.

The RTC watch features are clocked by a 32.768 kHz crystal external to 
the processor. The RTC uses dedicated power supply pins and is indepen-
dent of any reset, which enables it to maintain functionality even when 
the rest of the processor is powered down. 

The RTC input clock is divided down to a 1 Hz signal by a prescaler, 
which can be bypassed. When bypassed, the RTC is clocked at the 
32.768 kHz crystal rate. In normal operation, the prescaler is enabled. 

The primary function of the RTC is to maintain an accurate day count 
and time of day. The RTC accomplishes this by means of four counters: 

• 60-second counter

• 60-minute counter

• 24-hour counter

• 32768-day counter

The RTC increments the 60-second counter once per second and incre-
ments the other three counters when appropriate. The 32768-day counter 
is incremented each day at midnight (0 hours, 0 minutes, 0 seconds). 
Interrupts can be issued periodically, either every second, every minute, 
every hour, or every day. Each of these interrupts can be independently 
controlled.
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The RTC provides two alarm features, programmed with the RTC Alarm 
register (RTC_ALARM). The first is a time of day alarm (hour, minute, and 
second). When the alarm interrupt is enabled, the RTC generates an inter-
rupt each day at the time specified. The second alarm feature allows the 
application to specify a day as well as a time. When the day alarm inter-
rupt is enabled, the RTC generates an interrupt on the day and time 
specified. The alarm interrupt and day alarm interrupt can be enabled or 
disabled independently.

The RTC provides a stopwatch function that acts as a countdown timer. 
The application can program a second count into the RTC Stopwatch 
Count register (RTC_SWCNT). When the stopwatch interrupt is enabled and 
the specified number of seconds have elapsed, the RTC generates an 
interrupt.

Interfaces
The RTC external interface consists of two clock pins, which together 
with the external components form the reference clock circuit for the 
RTC. The RTC interfaces internally to the processor system through the 
Peripheral Access bus (PAB), and through the interrupt interface to the 
SIC (System Interrupt Controller).

The RTC has dedicated power supply pins that power the clock functions 
at all times, including when the core power supply is turned off.

RTC Clock Requirements
The RTC timer is clocked by a 32.768 kHz crystal external to the proces-
sor. The RTC system memory-mapped registers (MMRs) are clocked by 
this crystal. When the prescaler is disabled, the RTC MMRs are clocked at 
the 32.768 kHz crystal frequency. When the prescaler is enabled, the 
RTC MMRs are clocked at the 1 Hz rate.
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There is no way to disable the RTC counters from software. If a given sys-
tem does not require the RTC functionality, then it may be disabled with 
hardware tieoffs. Tie the RTXI pin to EGND, tie the RTCVDD pin to EVDD, and 
leave the RTXO pin unconnected.

Figure 16-1. RTC Block Diagram
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RTC Programming Model
The RTC programming model consists of a set of system MMRs. Soft-
ware can configure the RTC and can determine the status of the RTC 
through reads and writes to these registers. The RTC Interrupt Control 
register (RTC_ICTL) and the RTC Interrupt Status register (RTC_ISTAT) 
provide RTC interrupt management capability.

Note that software cannot disable the RTC counting function. However, 
all RTC interrupts can be disabled, or masked. At reset, all interrupts are 
disabled. The RTC state can be read via the system MMR status registers 
at any time.

The primary Real-Time Clock functionality, shown in Figure 16-1, con-
sists of registers and counters that are powered by an independent RTC 
Vdd supply. This logic is never reset; it comes up in an unknown state 
when RTC Vdd is first powered on.

The RTC also contains logic powered by the same internal Vdd as the pro-
cessor core and other peripherals. This logic contains some control 
functionality, holding registers for PAB write data, and prefetched PAB 
read data shadow registers for each of the five RTC Vdd-powered registers. 
This logic is reset by the same system reset and clocked by the same SCLK 
as the other peripherals.

Figure 16-2 shows the connections between the RTC Vdd-powered RTC 
MMRs and their corresponding internal Vdd-powered write holding regis-
ters and read shadow registers. In the figure, “REG” means each of the 
RTC_STAT, RTC_ALARM, RTC_SWCNT, RTC_ICTL, and RTC_PREN registers. The 
RTC_ISTAT register connects only to the PAB.

The rising edge of the 1 Hz RTC clock is the “1 Hz tick”. Software can 
synchronize to the 1 Hz tick by waiting for the Seconds Event flag to set 
or by waiting for the Seconds Interrupt (if enabled).
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Register Writes
Writes to all RTC MMRs, except the RTC Interrupt Status register 
(RTC_ISTAT), are saved in write holding registers and then are synchro-
nized to the RTC 1 Hz clock. The Write Pending Status bit in RTC_ISTAT 
indicates the progress of the write. The Write Pending Status bit is set 
when a write is initiated and is cleared when all writes are complete. The 
falling edge of the Write Pending Status bit causes the Write Complete 
flag in RTC_ISTAT to be set. This flag can be configured in RTC_ICTL to 
cause an interrupt. 

Figure 16-2. RTCT Register Architecture
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Software does not have to wait for writes to one RTC MMR to complete 
before writing to another RTC MMR. The Write Pending Status bit is set 
if any writes are in progress, and the Write Complete flag is set only when 
all writes are complete.

 Any writes in progress when peripherals are reset will be aborted. 
Do not stop SCLK (enter Deep Sleep mode) or remove Internal Vdd 
power until all RTC writes have completed.

 Do not attempt another write to the same register without waiting 
for the previous write to complete. Subsequent writes to the same 
register are ignored if the previous write is not complete.

 Reading a register that has been written before the Write Complete 
flag is set will return the old value. Always check the Write Pending 
Status bit before attempting a read or write.

Write Latency
Writes to the RTC MMRs are synchronized to the 1 Hz RTC clock. 
When setting the time of day, do not factor in the delay when writing to 
the RTC MMRs. The most accurate method of setting the Real-Time 
Clock is to monitor the Seconds (1 Hz) Event flag or to program an inter-
rupt for this event and then write the current time to the RTC Status 
register (RTC_STAT) in the interrupt service routine (ISR). The new value is 
inserted ahead of the incrementer. Hardware adds one second to the writ-
ten value (with appropriate carries into minutes, hours and days) and 
loads the incremented value at the next 1 Hz tick, when it represents the 
then-current time. 

Writes posted at any time are properly synchronized to the 1 Hz clock. 
Writes complete at the rising edge of the 1 Hz clock. A write posted just 
before the 1 Hz tick may not be completed until the 1 Hz tick one second 
later. Any write posted in the first 990 ms after a 1 Hz tick will complete 
on the next 1 Hz tick, but the simplest, most predictable and 
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recommended technique is to only post writes to RTC_STAT, RTC_ALARM, 
RTC_SWCNT, RTC_ICTL, or RTC_PREN immediately after a Seconds Interrupt 
or Event. All five registers may be written in the same second.

W1C bits in the RTC_ISTAT register take effect immediately. 

Register Reads
There is no latency when reading RTC MMRs, as the values come from 
the read shadow registers. The shadows are updated and ready for reading 
by the time any RTC interrupts or Event flags for that second are asserted. 
Once the internal Vdd logic completes its initialization sequence after SCLK 
starts, there is no point in time when it is unsafe to read the RTC MMRs 
for synchronization reasons. They always return coherent values, although 
the values may be unknown.

Deep Sleep
When the Dynamic Power Management Controller (DPMC) state is 
Deep Sleep, all clocks in the system (except RTXI and the RTC 1 Hz tick) 
are stopped. In this state, the RTC Vdd counters continue to increment. 
The internal Vdd shadow registers are not updated, but neither can they be 
read.

During Deep Sleep state, all bits in RTC_ISTAT are cleared. Events that 
occur during Deep Sleep are not recorded in RTC_ISTAT. The internal Vdd 
RTC control logic generates a virtual 1 Hz tick within one RTXI period 
(30.52 s) after SCLK restarts. This loads all shadow registers with 
up-to-date values and sets the Seconds Event flag. Other Event flags may 
also be set. When the system wakes up from Deep Sleep, whether by an 
RTC event or a hardware reset, all of the RTC events that occurred during 
that second (and only that second) are reported in RTC_ISTAT.
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When the system wakes up from Deep Sleep state, software does not need 
to W1C the bits in RTC_ISTAT. All W1C bits are already cleared by hard-
ware. The Seconds Event flag is set when the RTC internal Vdd logic has 
completed its restart sequence. Software should wait until the Seconds 
Event flag is set and then may begin reading or writing any RTC register.

Prescaler Enable
The single active bit of the RTC Prescaler Enable register (RTC_PREN) is 
written using a synchronization path. Clearing of the bit is synchronized 
to the 32.768 kHz clock. This faster synchronization allows the module to 
be put into high-speed mode (bypassing the prescaler) without waiting the 
full 1 second for the write to complete that would be necessary if the mod-
ule were already running with the prescaler enabled.

When setting the RTC_PREN bit, the first positive edge of the 1 Hz clock 
occurs 1 to 2 cycles of the 32.768 kHz clock after the prescaler is enabled. 
The Write Complete Status/Interrupt works as usual when enabling or 
disabling the prescale counter. The new RTC clock rate is in effect before 
the Write Complete Status is set.

Event Flags

 The unknown values in the registers at powerup can cause Event 
flags to set before the correct value is written into each of the regis-
ters. By catching the 1 Hz clock edge, the write to RTC_STAT can 
occur a full second before the write to RTC_ALARM. This would cause 
an extra second of delay between the validity of RTC_STAT and 
RTC_ALARM, if the value of the RTC_ALARM out of reset is the same as 
the value written to RTC_STAT. Wait for the writes to complete on 
these registers before using the flags and interrupts associated with 
their values.
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The following is a list of flags along with the conditions under which they 
are valid:

• Seconds (1 Hz) Event flag 

Always set on the positive edge of the 1 Hz clock and after shadow 
registers have updated after waking from Deep Sleep. This is valid 
as long as the RTC 1 Hz clock is running. Use this flag or interrupt 
to validate the other flags.

• Write Complete

Always valid.

• Write Pending Status 

Always valid.

• Minutes Event flag 

Valid only after the second field in RTC_STAT is valid. Use the Write 
Complete and Write Pending Status flags or interrupts to validate 
the RTC_STAT value before using this flag value or enabling the 
interrupt.

• Hours Event flag 

Valid only after the minute field in RTC_STAT is valid. Use the 
Write Complete and Write Pending Status flags or interrupts to 
validate the RTC_STAT value before using this flag value or enabling 
the interrupt.
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• 24 Hours Event flag 

Valid only after the hour field in RTC_STAT is valid. Use the Write 
Complete and Write Pending Status flags or interrupts to validate 
the RTC_STAT value before using this flag value or enabling the 
interrupt.

• Stopwatch Event flag 

Valid only after the RTC_SWCNT register is valid. Use the Write 
Complete and Write Pending Status flags or interrupts to validate 
the RTC_SWCNT value before using this flag value or enabling the 
interrupt.

• Alarm Event flag 

Valid only after the RTC_STAT and RTC_ALARM registers are valid. Use 
the Write Complete and Write Pending Status flags or interrupts 
to validate the RTC_STAT and RTC_ALARM values before using this flag 
value or enabling its interrupt.

• Day Alarm Event flag 

Same as Alarm.

Writes posted together at the beginning of the same second take effect 
together at the next 1 Hz tick. The following sequence is safe and does not 
result in any spurious interrupts from a previous state.

1. Wait for 1 Hz tick.

2. Write 1s to clear the RTC_ISTAT flags for Alarm, Day Alarm, Stop-
watch, and/or per-interval.

3. Write new values for RTC_STAT, RTC_ALARM, and/or RTC_SWCNT.
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4. Write new value for RTC_ICTL with Alarm, Day Alarm, Stopwatch, 
and/or per-interval interrupts enabled.

5. Wait for 1 Hz tick.

6. New values have now taken effect simultaneously.

Interrupts
The RTC can provide interrupts at several programmable intervals, 
including:

• Per second

• Per minute

• Per hour

• Per day

• On countdown from a programmable value

• Daily at a specific time

• On a specific day and time

The RTC can be programmed to provide an interrupt at the completion 
of all pending writes to any of the 1 Hz registers (RTC_STAT, RTC_ALARM, 
RTC_SWCNT, RTC_ICTL, and RTC_PREN). Interrupts can be individually 
enabled or disabled using the RTC Interrupt Control register (RTC_ICTL). 
Interrupt status can be determined by reading the RTC Interrupt Status 
register (RTC_ISTAT).

The RTC interrupt is set whenever an event latched into the RTC_ISTAT 
register is enabled in the RTC_ICTL register. The pending RTC interrupt is 
cleared whenever all enabled and set bits in RTC_ISTAT are cleared, or when 
all bits in RTC_ICTL corresponding to pending events are cleared.
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As shown in Figure 16-3, the RTC generates an interrupt request (IRQ) 
to the processor core for event handling and wakeup from a Sleep state. 
The RTC generates a separate signal for wakeup from a Deep Sleep or 
from an internal Vdd power-off state. The Deep Sleep wakeup signal is 
asserted at the 1 Hz tick when any RTC interval event enabled in 
RTC_ICTL occurs. The assertion of the Deep Sleep wakeup signal causes the 
processor core clock (CCLK) and the system clock (SCLK) to restart. Any 
enabled event that asserts the RTC Deep Sleep wakeup signal also causes 
the RTC IRQ to assert once SCLK restarts.

Figure 16-3. RTC Interrupt Structure
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RTC_STAT Register
The RTC Status register (RTC_STAT) is used to read or write the current 
time. Reads return a 32-bit value that always reflects the current state of 
the days, hours, minutes, and seconds counters. Reads and writes must be 
32-bit transactions; attempted 16-bit transactions result in an MMR 
error. Reads always return a coherent 32-bit value. The hours, minutes, 
and seconds fields are usually set to match the real time of day. The day 
counter value is incremented every day at midnight to record how many 
days have elapsed since it was last modified. Its value does not correspond 
to a particular calendar day. The 15-bit day counter provides a range of 89 
years, 260 or 261 days (depending on leap years) before it overflows.

After the 1 Hz tick, program RTC_STAT with the current time. At the next 
1 Hz tick, RTC_STAT takes on the new, incremented value. For example:

1. Wait for 1 Hz tick.

2. Read RTC_STAT, get 10:45:30.

3. Write RTC_STAT to current time, 13:10:59.

4. Read RTC_STAT, still get old time 10:45:30.

5. Wait for 1 Hz tick.

6. Read RTC_STAT, get new current time, 13:11:00.
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Figure 16-4. RTC Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
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(0-23)

Reset = Undefined

RTC Status Register (RTC_STAT)

0xFFC0 0300
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RTC_ICTL Register
The eight RTC interrupt events can be individually masked or enabled by 
the RTC Interrupt Control register (RTC_ICTL). The seconds interrupt is 
generated on each 1 Hz clock tick, if enabled. The minutes interrupt is 
generated at the 1 Hz clock tick that advances the seconds counter from 
59 to 0. The hour interrupt is generated at the 1 Hz clock tick that 
advances the minute counter from 59 to 0. The 24-hour interrupt occurs 
once per 24-hour period at the 1 Hz clock tick that advances the time to 
midnight (00:00:00). Any of these interrupts can generate a wakeup 
request to the processor, if enabled. All implemented bits are read/write. 

 This register is only partially cleared at reset, so some events may 
appear to be enabled initially. However, the RTC Interrupt and the 
RTC Wakeup to the PLL are handled specially and are masked 
(forced low) until after the first write to the RTC_ICTL register is 
complete. Therefore, all interrupts act as if they were disabled at 
system reset (as if all bits of RTC_ICTL were zero), even thought 
some bits of RTC_ICTL may read as nonzero. If no RTC interrupts 
are needed immediately after reset, it is recommended to write 
RTC_ICTL to 0x0000 so that later read-modify-write accesses will 
function as intended. 

Figure 16-5. RTC Interrupt Control Register
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Stopwatch Interrupt 
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Enable

Minutes Interrupt 
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Write Complete 
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Day Alarm Interrupt Enable
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24 Hours Interrupt Enable

Hours Interrupt Enable

0 - Interrupt disabled, 1 - Interrupt enabled

Reset = 0x00XX

RTC Interrupt Control Register (RTC_ICTL)

0xFFC0 0304
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RTC_ISTAT Register
The RTC Interrupt Status register (RTC_ISTAT) provides the status of all 
RTC interrupts. These bits are sticky. Once set by the corresponding 
event, each bit remains set until cleared by a software write to this register. 
Event flags are always set; they are not masked by the interrupt enable bits 
in RTC_ICTL. Values are cleared by writing a 1 to the respective bit loca-
tion, except for the Write Pending Status bit, which is read-only. Writes 
of 0 to any bit of the register have no effect. This register is cleared at reset 
and during Deep Sleep.

Figure 16-6. RTC Interrupt Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Stopwatch Event Flag
0 - No event
1 - Event occurred

Alarm Event Flag
0 - No event
1 - Event occurred

Seconds (1 Hz) Event Flag
0 - No event
1 - Event occurred

Minutes Event Flag
0 - No event
1 - Event occurred

Hours Event Flag
0 - No event
1 - Event occurred

Write Complete
0 - Writes (if any) not yet

complete
1 - All pending writes

complete

Write Pending 
Status (RO)
0 - No writes pending
1 - At least one write 

pending

Day Alarm Event Flag
0 - No event
1 - Event occurred

24 Hours Event Flag
0 - No event
1 - Event occurred

Reset = 0x0000

RTC Interrupt Status Register (RTC_ISTAT)
All bits are write-1-to-clear, except bit 14

0xFFC0 0308
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RTC_SWCNT Register
The RTC Stopwatch Count register (RTC_SWCNT) contains the countdown 
value for the stopwatch. The stopwatch counts down seconds from the 
programmed value and generates an interrupt (if enabled) when the count 
reaches 0. The counter stops counting at this point and does not resume 
counting until a new value is written to RTC_SWCNT. Once running, the 
counter may be overwritten with a new value. This allows the stopwatch 
to be used as a watchdog timer with a precision of one second. Writing the 
running stopwatch to 0 forces it to stop and interrupt early. The Stop-
watch Event flag is set at the 1 Hz tick at which any of these occur:

• The stopwatch counter decrements to 0x0000

• A write of 0x0000 to RTC_SWCNT completes and the stopwatch was 
running (current stopwatch count was greater than 0)

• A write of 0x0000 to RTC_SWCNT completes and the stopwatch was 
stopped (current stopwatch count was equal to 0)

The register can be programmed to any value between 0 and (216 – 1) sec-
onds. This is a range of 18 hours, 12 minutes, and 15 seconds.

Typically, software should wait for a 1 Hz tick, then write RTC_SWCNT. One 
second later, RTC_SWCNT changes to the new value and begins decrement-
ing. Because the register write occupies nearly one second, the time from 
writing a value of N until the stopwatch interrupt is nearly N + 1 seconds. 
To produce an exact delay, software can compensate by writing N – 1 to 
get a delay of nearly N seconds. This implies that you cannot achieve a 
delay of 1 second with the stopwatch. Writing a value of 1 immediately 
after a 1 Hz tick results in a stopwatch interrupt nearly two seconds later. 
To wait one second, software should just wait for the next 1 Hz tick.

The RTC Stopwatch Count register is not reset. After initial powerup, it 
may be running. When the stopwatch is not used, writing it to 0 to force 
it to stop saves a small amount of power.



RTC_ALARM Register

16-18 ADSP-BF533 Blackfin Processor Hardware Reference
 

RTC_ALARM Register
The RTC Alarm register (RTC_ALARM) is programmed by software for the 
time (in hours, minutes, and seconds) the alarm interrupt occurs. Reads 
and writes can occur at any time. The alarm interrupt occurs whenever the 
hour, minute, and second fields first match those of the RTC Status regis-
ter. The day interrupt occurs whenever the day, hour, minute, and second 
fields first match those of the RTC Status register.

Figure 16-7. RTC Stopwatch Count Register

Figure 16-8. RTC Alarm Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

Stopwatch Count 
(0 to 65,535)

Reset = Undefined

RTC Stopwatch Count Register (RTC_SWCNT)

0xFFC0 030C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

Hours[4] 
(0 to 23)

Day[14:0] 
(0 to 32767)

Seconds[5:0] 
(0 to 59)

Minutes[5:0] 
(0 to 59)

Hours[3:0]
(0 to 23)

Reset = Undefined

RTC Alarm Register (RTC_ALARM)

0xFFC0 0310
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RTC_PREN Register
The RTC Prescaler Enable register (RTC_PREN) has one active bit. When 
this bit is set, the prescaler is enabled, and the RTC runs at a frequency of 
1 Hz. When this bit is cleared, the prescaler is disabled, and the RTC runs 
at the 32.768 kHz crystal frequency.

In order for the RTC to operate at the proper rate, software must set the 
Prescaler Enable bit after initial powerup. Write RTC_PREN and then wait 
for the Write Complete event before programming the other registers. It is 
safe to write RTC_PREN to 1, once the power is reapplied to the RTC. The 
first time sets the bit, and subsequent writes will have no effect, as no state 
is changed.

 Do not disable the prescaler by clearing the bit in RTC_PREN with-
out making sure that there are no writes to RTC MMRs in 
progress. Do not switch between fast and slow mode during normal 
operation by setting and clearing this bit, as this disrupts the accu-
rate tracking of real time by the counters. To avoid these potential 
errors, initialize the RTC during startup via RTC_PREN and do not 
dynamically alter the state of the prescaler during normal 
operation.

Running without the prescaler enabled is provided primarily as a test 
mode. All functionality works, just 32,768 times as fast. Typical software 
should never program RTC_PREN to 0. The only reason to do so is to syn-
chronize the 1 Hz tick to a more precise external event, as the 1 Hz tick 
predictably occurs a few RTXI cycles after a 0  1 transition of RTC_PREN. 
Use the following sequence to achieve synchronization to within 100 s.
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1. Write RTC_PREN to 0.

2. Wait for the write to complete.

3. Wait for the external event.

4. Write RTC_PREN to 1.

5. Wait for the write to complete.

6. Reprogram the time into RTC_STAT.

State Transitions Summary
Table 16-1 shows how each RTC MMR is affected by the system states. 
The phase locked loop (PLL) states (Reset, Full On, Active, Sleep, and 
Deep Sleep) are defined in Chapter 8, “Dynamic Power Management”. 
“No Power” means none of the processor power supply pins are connected 
to a source of energy. “Off” means the processor core, peripherals, and 
memory are not powered (Internal Vdd is off), while the RTC is still pow-
ered and running. External Vdd may still be powered. Registers described 
as “As written” are holding the last value software wrote to the register. If 
the register has not been written since RTC Vdd power was applied, then 
the state is unknown (for all bits of RTC_STAT, RTC_ALARM, and RTC_SWCNT, 
and for some bits of RTC_ISTAT, RTC_PREN, and RTC_ICTL).

Figure 16-9. Prescaler Enable Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Prescaler Enable (PREN)

Prescaler Enable Register (RTC_PREN)

Reset = Undefined0xFFC0 0314
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Table 16-2 summarizes software’s responsibilities with respect to the RTC 
at various system state transition events.

Table 16-1. Effect of States on RTC MMRs 

RTC 
Vdd

IVdd System 
State

RTC_ICTL RTC_ISTAT RTC_STAT
RTC_SWCNT

RTC_ALARM
RTC_PREN

Off Off No 
Power

X X X X

On On Reset As written 0 Counting As written

On On Full On As written Events Counting As written

On On Sleep As written Events Counting As written

On On Active As written Events Counting As written

On On Deep 
Sleep

As written 0 Counting As written

On Off Off As written X Counting As written

Table 16-2. RTC System State Transition Events

At This Event: Execute This Sequence:

Power On from No Power Write RTC_PREN = 1.
Wait for Write Complete.
Write RTC_STAT to current time.
Write RTC_ALARM, if needed.
Write RTC_SWCNT.
Write RTC_ISTAT to clear any pending RTC events.
Write RTC_ICTL to enable any desired RTC interrupts 
or to disable all RTC interrupts.

Full On after Reset
or
Full On after Power On from Off

Wait for Seconds Event, or write RTC_PREN = 1 and 
wait for Write Complete.
Write RTC_ISTAT to clear any pending RTC events.
Write RTC_ICTL to enable any desired RTC interrupts 
or to disable all RTC interrupts.
Read RTC MMRs as required.
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Wake from Deep Sleep Wait for Seconds Event flag to set.
Write RTC_ISTAT to acknowledge RTC Deep Sleep 
wakeup.
Read RTC MMRs as required. 
The PLL state is now Active. Transition to Full On as 
needed.

Wake from Sleep If wakeup came from RTC, Seconds Event flag will be set. 
In this case, write RTC_ISTAT to acknowledge RTC 
wakeup IRQ.
Always, read RTC MMRs as required.

Before Going to Sleep If wakeup by RTC is desired:
Write RTC_ALARM and/or RTC_SWCNT as needed to 
schedule a wakeup event.
Write RTC_ICTL to enable the desired RTC interrupt 
sources for wakeup.
Wait for Write Complete.
Enable RTC for wakeup in the System Interrupt 
Wakeup-Enable register (SIC_IWR).

Before Going to Deep Sleep Write RTC_ALARM and/or RTC_SWCNT as needed to 
schedule a wakeup event.
Write RTC_ICTL to enable the desired RTC event 
sources for Deep Sleep wakeup.
Wait for Write Complete.

Before Going to Off Write RTC_ALARM and/or RTC_SWCNT as needed to 
schedule a wakeup event.
Write RTC_ICTL to enable any desired RTC event 
sources for powerup wakeup.
Wait for Write Complete.
Set the Wake bit in the Voltage Regulator Control register 
(VR_CTL).

Table 16-2. RTC System State Transition Events (Cont’d)

At This Event: Execute This Sequence:
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17 EXTERNAL BUS INTERFACE 
UNIT

The External Bus Interface Unit (EBIU) provides glueless interfaces to 
external memories. The processor supports synchronous DRAM 
(SDRAM) and is compliant with the PC100 and PC133 SDRAM stan-
dards. The EBIU also supports asynchronous interfaces such as SRAM, 
ROM, FIFOs, flash memory, and ASIC/FPGA designs.

Overview
The EBIU services requests for external memory from the core or from a 
DMA channel. The priority of the requests is determined by the External 
Bus Controller. The address of the request determines whether the request 
is serviced by the EBIU SDRAM Controller or the EBIU Asynchronous 
Memory Controller.

The EBIU is clocked by the system clock (SCLK). All synchronous memo-
ries interfaced to the processor operate at the SCLK frequency. The ratio 
between core frequency and SCLK frequency is programmable using a 
phase-locked loop (PLL) system memory-mapped register (MMR). For 
more information, see “Core Clock/System Clock Ratio Control” on 
page 8-5.

The external memory space is shown in Figure 17-1. One memory region 
is dedicated to SDRAM support. SDRAM interface timing and the size of 
the SDRAM region are programmable. The SDRAM memory space can 
range in size from 16 to 128M byte. 



Overview

17-2 ADSP-BF533 Blackfin Processor Hardware Reference
 

 For information on how to connect to SDRAMs smaller than 
16M byte, see “Using SDRAMs Smaller Than 16M Byte” on 
page 18-8.

The start address of the SDRAM memory space is 0x0000 0000. The area 
from the end of the SDRAM memory space up to address 0x2000 0000 is 
reserved.

The next four regions are dedicated to supporting asynchronous memo-
ries. Each asynchronous memory region can be independently 
programmed to support different memory device characteristics. Each 
region has its own memory select output pin from the EBIU.

The next region is reserved memory space. References to this region do 
not generate external bus transactions. Writes have no effect on external 
memory values, and reads return undefined values. The EBIU generates 
an error response on the internal bus, which will generate a hardware 
exception for a core access or will optionally generate an interrupt from a 
DMA channel.



ADSP-BF533 Blackfin Processor Hardware Reference 17-3 
 

External Bus Interface Unit

Figure 17-1. External Memory Map

0x0000 0000

ASYNC MEMORY BANK 0 (1 MByte)

ASYNC MEMORY BANK 1 (1 MByte)

SDRAM MEMORY
(16 MByte–128 MByte)

0x2000 0000

0x2010 0000

EXTERNAL MEMORY MAP

0x2040 FFFF

ASYNC MEMORY BANK 2 (1 MByte)
0x2020 0000

0x2030 0000

0xEEFF FFFF

NOTE: RESERVED OFF-CHIP MEMORY AREAS ARE LABELED IN THE DIAGRAM
ABOVE. ALL OTHER OFF-CHIP SYSTEM RESOURCES ARE ADDRESSABLE BY 
BOTH THE CORE AND THE SYSTEM.

ASYNC MEMORY BANK 3 (1 MByte)

RESERVED

RESERVED 
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Block Diagram
Figure 17-2 is a conceptual block diagram of the EBIU and its interfaces. 
Signal names shown with an overbar are active low signals.

Since only one external memory device can be accessed at a time, control, 
address, and data pins for each memory type are multiplexed together at 
the pins of the device. The Asynchronous Memory Controller (AMC) and 
the SDRAM Controller (SDC) effectively arbitrate for the shared pin 
resources.

Internal Memory Interfaces
The EBIU functions as a slave on three buses internal to the processor:

• External Access Bus (EAB), mastered by the core memory manage-
ment unit on behalf of external bus requests from the core

Figure 17-2. External Bus Interface Unit (EBIU)
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• DMA External Bus (DEB), mastered by the DMA controller on 
behalf of external bus requests from any DMA channel

• Peripheral Access Bus (PAB), mastered by the core on behalf of sys-
tem MMR requests from the core

These are synchronous interfaces, clocked by SCLK, as are the EBIU and 
Pads registers. The EAB provides access to both asynchronous external 
memory and synchronous DRAM external memory. The external access is 
controlled by either the Asynchronous Memory Controller (AMC) or the 
SDRAM Controller (SDC), depending on the internal address used to 
access the EBIU. Since the AMC and SDC share the same interface to the 
external pins, access is sequential and must be arbitrated based on requests 
from the EAB.

The third bus (PAB) is used only to access the memory-mapped control 
and status registers of the EBIU. The PAB connects separately to the 
AMC and SDC; it does not need to arbitrate with or take access cycles 
from the EAB bus.

The External Bus Controller (EBC) logic must arbitrate access requests for 
external memory coming from the EAB and DEB buses. The EBC logic 
routes read and write requests to the appropriate memory controller based 
on the bus selects. The AMC and SDC compete for access to the shared 
resources in the Pads logic. This competition is resolved in a pipelined 
fashion, in the order dictated by the EBC arbiter. Transactions from the 
core have priority over DMA accesses in most circumstances. However, if 
the DMA controller detects an excessive backup of transactions, it can 
request its priority to be temporarily raised above the core.

External Memory Interfaces
Both the AMC and the SDC share the external interface address and data 
pins, as well as some of the control signals. These pins are shared:
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• ADDR[19:1], address bus

• DATA[15:0], data bus

• ABE[1:0]/SDQM[1:0], AMC byte enables/SDC data masks

• BR, BG, BGH, external bus access control signals

No other signals are multiplexed between the two controllers.

The following tables describe the signals associated with each interface.

Table 17-1. Asynchronous Memory Interface Signals

Pad Pin Type 1 

1   Pin Types: I = Input, O = Output

Description

DATA[15:0] I/O External Data Bus

ADDR[19:1] O External Address Bus

AMS[3:0] O Asynchronous Memory Selects

AWE O Asynchronous Memory Write Enable

ARE O Asynchronous Memory Read Enable

AOE O Asynchronous Memory Output Enable
In most cases, the AOE pin should be con-
nected to the OE pin of an external mem-
ory-mapped asynchronous device. Refer to 
ADSP-BF531/ADSP-BF532/ADSP-BF533 
Embedded Processor Data Sheet for specific tim-
ing information between the AOE and ARE sig-
nals to determine which interface signal 
should be used in your system.

ARDY I Asynchronous Memory Ready Response
Note this is a synchronous input

ABE[1:0]/SDQM[1:0] O Byte Enables
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Table 17-2. SDRAM Interface Signals

Pad Pin Type 1 Description

DATA[15:0] I/O External Data Bus

ADDR[19:18], 
ADDR[16:1]

O External Address Bus
Connect to SDRAM Address pins. Bank address is out-
put on ADDR[19:18] and should be connected to 
SDRAM BA[1:0] pins.

SRAS O SDRAM Row Address Strobe pin
Connect to SDRAM’s RAS pin.

SCAS O SDRAM Column Address Strobe pin
Connect to SDRAM’s CAS pin.

SWE O SDRAM Write Enable pin
Connect to SDRAM’s WE pin.

ABE[1:0]/
SDQM[1:0]

O SDRAM Data Mask pins
Connect to SDRAM’s DQM pins.

SMS O Memory Select pin of external memory bank config-
ured for SDRAM
Connect to SDRAM’s CS (Chip Select) pin. Active 
Low.

SA10 O SDRAM A10 pin
SDRAM interface uses this pin to be able to do 
refreshes while the AMC is using the bus. Connect to 
SDRAM’s A[10] pin.

SCKE O SDRAM Clock Enable pin
Connect to SDRAM’s CKE pin.

CLKOUT O SDRAM Clock Output pin
Switches at system clock frequency. Connect to the 
SDRAM’s CLK pin.

1   Pin Types: I = Input, O = Output
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EBIU Programming Model
This section describes the programming model of the EBIU. This model is 
based on system memory-mapped registers used to program the EBIU.

There are six control registers and one status register in the EBIU. They 
are:

• Asynchronous Memory Global Control register (EBIU_AMGCTL)

• Asynchronous Memory Bank Control 0 register (EBIU_AMBCTL0)

• Asynchronous Memory Bank Control 1 register (EBIU_AMBCTL1)

• SDRAM Memory Global Control register (EBIU_SDGCTL)

• SDRAM Memory Bank Control register (EBIU_SDBCTL)

• SDRAM Refresh Rate Control register (EBIU_SDRRC)

• SDRAM Control Status register (EBIU_SDSTAT)

Each of these registers is described in detail in the AMC and SDC sections 
later in this chapter.

Error Detection
The EBIU responds to any bus operation which addresses the range of 
0x0000 0000 – 0xEEFF FFFF, even if that bus operation addresses 
reserved or disabled memory or functions. It responds by completing the 
bus operation (asserting the appropriate number of acknowledges as speci-
fied by the bus master) and by asserting the bus error signal for these error 
conditions:

• Any access to reserved off-chip memory space

• Any access to a disabled external memory bank

• Any access to an unpopulated area of an SDRAM memory bank
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If the core requested the faulting bus operation, the bus error response 
from the EBIU is gated into the HWE interrupt internal to the core (this 
interrupt can be masked off in the core). If a DMA master requested the 
faulting bus operation, then the bus error is captured in that controller 
and can optionally generate an interrupt to the core.

Asynchronous Memory Interface
The asynchronous memory interface allows a glueless interface to a variety 
of memory and peripheral types. These include SRAM, ROM, EPROM, 
flash memory, and FPGA/ASIC designs. Four asynchronous memory 
regions are supported. Each has a unique memory select associated with it, 
shown in Table 17-3. 

Asynchronous Memory Address Decode
The address range allocated to each asynchronous memory bank is fixed at 
1M byte; however, not all of an enabled memory bank need be populated. 
Unlike the SDRAM memory, which may need to support very large mem-
ory structures spanning multiple memory banks, it should be relatively 
easy to constrain code and data structures to fit within one of the sup-
ported asynchronous memory banks, because of the nature of the types of 
code or data that is stored here.

Table 17-3. Asynchronous Memory Bank Address Range

Memory Bank Select Address Start Address End

AMS[3] 2030 0000 203F FFFF

AMS[2] 2020 0000 202F FFFF

AMS[1] 2010 0000 201F FFFF

AMS[0] 2000 0000 200F FFFF
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 Note accesses to unpopulated memory of partially populated AMC 
banks do not result in a bus error and will alias to valid AMC 
addresses.

The asynchronous memory signals are defined in Table 17-1. The timing 
of these pins is programmable to allow a flexible interface to devices of dif-
ferent speeds. For example interfaces, see Chapter 18, “System Design”

EBIU_AMGCTL Register
The Asynchronous Memory Global Control register (EBIU_AMGCTL) con-
figures global aspects of the controller. It contains bank enables and other 
information as described in this section. This register should not be 
programmed while the AMC is in use. The EBIU_AMGCTL register should be 
the last control register written to when configuring the processor to 
access external memory-mapped asynchronous devices.

Figure 17-3. Asynchronous Memory Global Control Register 

00 0

Asynchronous Memory Global Control Register (EBIU_AMGCTL)

AMBEN[2:0]

AMCKEN

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 1 1 1 1 0 1

0 - Disable CLKOUT for 
asynchronous memory
region accesses

1 - Enable CLKOUT for 
asynchronous memory 
region accesses

Enable asynchronous memory 
banks
000 - All banks disabled
001 - Bank0 enabled
010 - Bank0 and Bank1 enabled
011 - Bank0, Bank1, and Bank2

enabled
1xx - All banks (Bank0, Bank1,

Bank2, Bank3) enabled

Reset = 0x00F20xFFC0 0A00

CDPRIO
0 - Core has priority over DMA 

for external accesses
1 - DMA has priority over core 

for external accesses 
For more information, see 
Chapter 7, “Chip Bus Hierarchy”
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If a bus operation accesses a disabled asynchronous memory bank, the 
EBIU responds by acknowledging the transfer and asserting the error sig-
nal on the requesting bus. The error signal propagates back to the 
requesting bus master. This generates a hardware exception to the core, if 
it is the requester. For DMA mastered requests, the error is captured in 
the respective status register. If a bank is not fully populated with mem-
ory, then the memory likely aliases into multiple address regions within 
the bank. This aliasing condition is not detected by the EBIU, and no 
error response is asserted.

For external devices that need a clock, CLKOUT can be enabled by setting 
the AMCKEN bit in the EBIU_AMGCTL register. In systems that do not use 
CLKOUT, set the AMCKEN bit to 0.

EBIU_AMBCTL0 and EBIU_AMBCTL1 Registers
The EBIU asynchronous memory controller has two Asynchronous Mem-
ory Bank Control registers (EBIU_AMBCTL0 and EBIU_AMBCTL1). They 
contain bits for counters for setup, strobe, and hold time; bits to deter-
mine memory type and size; and bits to configure use of ARDY. These 
registers should not be programmed while the AMC is in use.

The timing characteristics of the AMC can be programmed using these 
four parameters:

• Setup: the time between the beginning of a memory cycle (AMS[x] 
low) and the read-enable assertion (ARE low) or write-enable asser-
tion (AWE low)

• Read Access: the time between read-enable assertion (ARE low) and 
deassertion (ARE high)
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• Write Access: the time between write-enable assertion (AWE low) 
and deassertion (AWE high)

• Hold: the time between read-enable deassertion (ARE high) or 
write-enable deassertion (AWE high) and the end of the memory 
cycle (AMS[x] high)

Each of these parameters can be programmed in terms of EBIU clock 
cycles. In addition, there are minimum values for these parameters:

• Setup  1 cycle

• Read Access   1 cycle

• Write Access   1 cycle

• Hold  0 cycles
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Figure 17-4. Asynchronous Memory Bank Control 0 Register

Asynchronous Memory Bank Control 0 Register (EBIU_AMBCTL0)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

01 1 1 1 1 1 1 1 1 1 0 0 0 0 1

B1RDYPOL

B1TT[1:0]

B1ST[1:0]

B1RDYEN

B1HT[1:0]

B1RAT[3:0]

B1WAT[3:0]
Bank 1 write access time (number of 
cycles AWE is held asserted)
0000 - Not supported
0001 to 1111 - 1 to 15 cycles

Bank 1 read access time (number of 
cycles ARE is held asserted)
0000 - Not supported
0001 to 1111 - 1 to 15 cycles

Bank 1 hold time (number of cycles between AWE or 
ARE deasserted, and AMS1 deasserted)
00 - 0 cycles
01 - 1 cycle
10 - 2 cycles
11 - 3 cycles

Bank 1 setup time (number of cycles after AMS1 
asserted, before AWE or ARE asserted)
00 - 4 cycles
01 - 1 cycle
10 - 2 cycles
11 - 3 cycles

Bank 1 memory transition time 
(number of cycles inserted after a 
read access to this bank, and 
before a write access to this bank 
or a read access to another bank)
00 - 4 cycles for bank transition
01 - 1 cycle for bank transition
10 - 2 cycles for bank transition
11 - 3 cycles for bank transition

Bank 1 ARDY polarity
0 - Transaction completes if

ARDY sampled low
1 - Transition completes if ARDY

sampled high

Bank 1 ARDY enable
0 - Ignore ARDY for accesses to

this memory bank
1 - After access time countdown,

use state of ARDY to deter-
mine completion of access

Reset = 0xFFC2 FFC2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

01 1 1 1 1 1 1 1 1 1 0 0 0 0 1

B0RDYPOL

B0TT[1:0]

B0ST[1:0]

B0RDYEN

B0HT[1:0]

B0RAT[3:0]

B0WAT[3:0]
Bank 0 write access time (number of 
cycles AWE is held asserted)
0000 - Not supported
0001 to 1111 - 1 to 15 cycles

Bank 0 read access time (number of 
cycles ARE is held asserted)
0000 - Not supported
0001 to 1111 - 1 to 15 cycles

Bank 0 hold time (number of cycles between AWE or 
ARE deasserted, and AMS0 deasserted)
00 - 0 cycles
01 - 1 cycle
10 - 2 cycles
11 - 3 cycles

Bank 0 setup time (number of cycles after  AMS0 
asserted, before AWE or ARE asserted)
00 - 4 cycles
01 - 1 cycle
10 - 2 cycles
11 - 3 cycles

Bank 0 memory transition time 
(number of cycles inserted after a 
read access to this bank, and 
before a write access to this bank 
or a read access to another bank)
00 - 4 cycles for bank transition
01 - 1 cycle for bank transition
10 - 2 cycles for bank transition
11 - 3 cycles for bank transition

Bank 0 ARDY polarity
0 - Transaction completes if

ARDY sampled low
1 - Transition completes if ARDY

sampled high

Bank 0 ARDY enable
0 - Ignore ARDY for accesses to

this memory bank
1 - After access time countdown,

use state of ARDY to deter-
mine completion of access

0xFFC0 0A04
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Figure 17-5. Asynchronous Memory Bank Control 1 Register

Asynchronous Memory Bank Control 1 Register (EBIU_AMBCTL1)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

01 1 1 1 1 1 1 1 1 1 0 0 0 0 1

B3RDYPOL

B3TT[1:0]

B3ST[1:0]

B3RDYEN

B3HT[1:0]

B3RAT[3:0]

B3WAT[3:0]
Bank 3 write access time (number of 
cycles AWE is held asserted)
0000 - Not supported
0001 to 1111 - 1 to 15 cycles

Bank 3 read access time (number of 
cycles ARE is held asserted)
0000 - Not supported
0001 to 1111 - 1 to 15 cycles

Bank 3 hold time (number of cycles between AWE or 
ARE deasserted, and AMS3 deasserted)
00 - 0 cycles
01 - 1 cycle
10 - 2 cycles
11 - 3 cycles

Bank 3 setup time (number of cycles after AMS3 
asserted, before AWE or ARE asserted)
00 - 4 cycles
01 - 1 cycle
10 - 2 cycles
11 - 3 cycles

Bank 3 memory transition time 
(number of cycles inserted after a 
read access to this bank, and 
before a write access to this bank 
or a read access to another bank)
00 - 4 cycles for bank transition
01 - 1 cycle for bank transition
10 - 2 cycles for bank transition
11 - 3 cycles for bank transition

Bank 3 ARDY polarity
0 - Transaction completes if

ARDY sampled low
1 - Transition completes if ARDY

sampled high

Bank 3 ARDY enable
0 - Ignore ARDY for accesses to

this memory bank
1 - After access time countdown,

use state of ARDY to deter-
mine completion of access

Reset = 0xFFC2 FFC2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

01 1 1 1 1 1 1 1 1 1 0 0 0 0 1

B2RDYPOL

B2TT[1:0]

B2ST[1:0]

B2RDYEN

B2HT[1:0]

B2RAT[3:0]

B2WAT[3:0]
Bank 2 write access time (number of 
cycles AWE is held asserted)
0000 - Not supported
0001 to 1111 - 1 to 15 cycles

Bank 2 read access time (number of 
cycles ARE is held asserted)
0000 - Not supported
0001 to 1111 - 1 to 15 cycles

Bank 2 hold time (number of cycles between AWE or 
ARE deasserted, and AMS2 deasserted)
00 - 0 cycles
01 - 1 cycle
10 - 2 cycles
11 - 3 cycles

Bank 2 setup time (number of cycles after AMS2 
asserted, before AWE or ARE asserted)
00 - 4 cycles
01 - 1 cycle
10 - 2 cycles
11 - 3 cycles

Bank 2 memory transition time 
(number of cycles inserted after a 
read access to this bank, and 
before a write access to this bank 
or a read access to another bank)
00 - 4 cycles for bank transition
01 - 1 cycle for bank transition
10 - 2 cycles for bank transition
11 - 3 cycles for bank transition

Bank 2 ARDY polarity
0 - Transaction completes if

ARDY sampled low
1 - Transition completes if ARDY

sampled high

Bank 2 ARDY enable
0 - Ignore ARDY for accesses to

this memory bank
1 - After access time countdown,

use state of ARDY to deter-
mine completion of access

0xFFC0 0A08



ADSP-BF533 Blackfin Processor Hardware Reference 17-15 
 

External Bus Interface Unit

Avoiding Bus Contention
Because the three-stated data bus is shared by multiple devices in a system, 
be careful to avoid contention. Contention causes excessive power dissipa-
tion and can lead to device failure. Contention occurs during the time one 
device is getting off the bus and another is getting on. If the first device is 
slow to three-state and the second device is quick to drive, the devices 
contend.

There are two cases where contention can occur. The first case is a read 
followed by a write to the same memory space. In this case, the data bus 
drivers can potentially contend with those of the memory device addressed 
by the read. The second case is back-to-back reads from two different 
memory spaces. In this case, the two memory devices addressed by the two 
reads could potentially contend at the transition between the two read 
operations.

To avoid contention, program the turnaround time (Bank Transition 
Time) appropriately in the Asynchronous Memory Bank Control regis-
ters. This feature allows software to set the number of clock cycles 
between these types of accesses on a bank-by-bank basis. Minimally, the 
EBIU provides one cycle for the transition to occur.

ARDY Input Control

Each bank can be programmed to sample the ARDY input after the read or 
write access timer has counted down or to ignore this input signal. If 
enabled and disabled at the sample window, ARDY can be used to extend 
the access time as required. Note ARDY is synchronously sampled, 
therefore:

• Assertion and deassertion of ARDY to the processor must meet the 
data sheet setup and hold times. Failure to meet these synchronous 
specifications could result in meta-stable behavior internally. The 
processor’s CLKOUT signal should be used to ensure synchronous 
transitions of ARDY.
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• The ARDY pin must be stable (either asserted or deasserted) at the 
external interface on the cycle before the internal bank counter 
reaches 0; that is, more than one CLKOUT cycle before the scheduled 
rising edge of AWE or ARE. This will determine whether the access is 
extended or not.

• Once the transaction has been extended as a result of ARDY being 
sampled in the “busy” state, the transaction will then complete in 
the cycle after ARDY is subsequently sampled in the “ready” state.

The polarity of ARDY is programmable on a per-bank basis. Since ARDY is 
not sampled until an access is in progress to a bank in which the ARDY 
enable is asserted, ARDY does not need to be driven by default. For more 
information, see “Adding Additional Wait States” on page 17-20.

Programmable Timing Characteristics
This section describes the programmable timing characteristics for the 
EBIU. Timing relationships depend on the programming of the AMC, 
whether initiation is from the core or from Memory DMA (MemDMA), 
and the sequence of transactions (read followed by read, read followed by 
write, and so on).

Asynchronous Accesses by Core Instructions

Some external memory accesses are caused by core instructions of the type:

R0.L = W[P0++] ; /* Read from external memory, where P0 points 

to a location in external memory */

or:

W[P0++] = R0.L ; /* Write to external memory */
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Asynchronous Reads

Figure 17-6 shows an asynchronous read bus cycle with timing pro-
grammed as setup = 2 cycles, read access = 2 cycles, hold = 1 cycle, and 
transition time = 1 cycle.

Asynchronous read bus cycles proceed as follows.

1. At the start of the setup period, AMS[x], the address bus, and 
ABE[1:0] become valid, and AOE asserts.

2. At the beginning of the read access period and after the 2 setup 
cycles, ARE asserts.

3. At the beginning of the hold period, read data is sampled on the 
rising edge of the EBIU clock. The ARE pin deasserts after this ris-
ing edge.

4. At the end of the hold period, AOE deasserts unless this bus cycle is 
followed by another asynchronous read to the same memory space. 
Also, AMS[x] deasserts unless the next cycle is to the same memory 
bank.

5. Unless another read of the same memory bank is queued internally, 
the AMC appends the programmed number of memory transition 
time cycles.
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Read access is completed with the AMSx and AOE signals getting de-asserted. 
There are a few idle cycles before the next read operation starts. The num-
ber of idle cycles is a function of the CCLK/SCLK ratio. The number of idle 
cycles is 6 for a CCLK/SCLK ratio of 3, 4 for a CCLK/SCLK ratio of 5, and 3 
for a CCLK/SCLK ratio of 10.

Figure 17-6. Asynchronous Read Bus Cycles
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Asynchronous Writes

Figure 17-7 shows an asynchronous write bus cycle followed by an asyn-
chronous read cycle to the same bank, with timing programmed as setup = 
2 cycles, write access = 2 cycles, read access = 3 cycles, hold = 1 cycle, and 
transition time = 1 cycle.

Asynchronous write bus cycles proceed as follows.

1. At the start of the setup period, AMS[x], the address bus, data buses, 
and ABE[1:0] become valid.

2. At the beginning of the write access period, AWE asserts.

3. At the beginning of the hold period, AWE deasserts.

Asynchronous read bus cycles proceed as follows.

1. At the start of the setup period, AMS[x], the address bus, and 
ABE[1:0] become valid, and AOE asserts.

2. At the beginning of the read access period, ARE asserts.

3. At the beginning of the hold period, read data is sampled on the 
rising edge of the EBIU clock. The ARE signal deasserts after this 
rising edge.

4. At the end of the hold period, AOE deasserts unless this bus cycle is 
followed by another asynchronous read to the same memory space. 
Also, AMS[x] deasserts unless the next cycle is to the same memory 
bank.

5. Unless another read of the same memory bank is queued internally, 
the AMC appends the programmed number of memory transition 
time cycles. 
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Adding Additional Wait States

The ARDY pin is used to insert extra wait states. The input is sampled syn-
chronously with the EBIU internal clock. The EBIU starts sampling ARDY 
on the clock cycle before the end of the programmed strobe period. If 
ARDY is sampled as deasserted, the access period is extended. The ARDY pin 
is then sampled on each subsequent clock edge. Read data is latched on 
the clock edge after ARDY is sampled as asserted. The read- or write-enable 
remains asserted for one clock cycle after ARDY is sampled as asserted. An 

Figure 17-7. Asynchronous Write and Read Bus Cycles
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example of this behavior is shown in Figure 17-8, where setup = 2 cycles, 
read access = 4 cycles, and hold = 1 cycle. Note the read access period 
must be programmed to a minimum of two cycles to make use of the ARDY 
input.

Figure 17-8. Inserting Wait States Using ARDY
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Byte Enables

The ABE[1:0] pins are both low during all asynchronous reads and 16-bit 
asynchronous writes. When an asynchronous write is made to the upper 
byte of a 16-bit memory, ABE1 = 0 and ABE0 = 1. When an asynchronous 
write is made to the lower byte of a 16-bit memory, ABE1 = 1 and ABE0 = 0.

SDRAM Controller (SDC)
The SDRAM Controller (SDC) enables the processor to transfer data to 
and from Synchronous DRAM (SDRAM) with a maximum frequency 
specified in ADSP-BF531/ADSP-BF532/ADSP-BF533 Embedded Proces-
sor Data Sheet. The processor supports a glueless interface with one 
external bank of standard SDRAMs of 64 Mbit to 512 Mbit, with config-
urations x4, x8, and x16, up to a maximum total capacity of 128M bytes 
of SDRAM. This bank is controlled by the SMS Memory Select pin. The 
interface includes timing options to support additional buffers between 
the processor and SDRAM, to handle the capacitive loads of large memory 
arrays.

All inputs are sampled and all outputs are valid on the rising edge of the 
SDRAM clock output CLKOUT.

The EBIU SDC provides a glueless interface with standard SDRAMs. The 
SDRAM controller:

• Supports SDRAMs of 64M bit, 128M bit, 256M bit, and 512M 
bit with configurations of x4, x8, and x16

• Supports up to 128M byte of SDRAM in external SDRAM

• Supports SDRAM page sizes of 512 bytes, 1K byte, 2K byte, and 
4K byte

• Supports four internal banks within the SDRAM
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• Uses a programmable refresh counter to coordinate between vary-
ing clock frequencies and the SDRAM’s required refresh rate

• Provides multiple timing options to support additional buffers 
between the processor and SDRAM

• Uses a separate pin (SA10) that enables the SDC to precharge 
SDRAM before issuing an Auto-Refresh or Self-Refresh command 
while the asynchronous memory controller has control of the EBIU 
port

• Supports self-refresh for standard SDRAMs and partial array 
self-refresh for mobile SDRAMs

• Provides two SDRAM powerup options

• Supports interleaved SDRAM bank accesses

Definition of Terms
The following are definitions used in the remainder of this chapter.

Bank Activate Command

The Bank Activate command causes the SDRAM to open an internal bank 
(specified by the bank address) in a row (specified by the row address). 
When the Bank Activate command is issued to the SDRAM, the SDRAM 
opens a new row address in the dedicated bank. The memory in the open 
internal bank and row is referred to as the open page. The Bank Activate 
command must be applied before a read or write command.
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Burst Length

The burst length determines the number of words that the SDRAM device 
stores or delivers after detecting a single write or read command, respec-
tively. The burst length is selected by writing certain bits in the SDRAM’s 
Mode register during the SDRAM powerup sequence.

 Although the SDC supports only Burst Length = 1 mode, during a 
burst to SDRAM, the SDC applies the read or write command 
every cycle and keeps accessing the data. Therefore, the effective 
burst length is much greater than 1. In other words, setting Burst 
Length = 1 does not reduce the performance throughput.

Burst Stop Command

The Burst Stop command is one of several ways to terminate or interrupt a 
burst read or write operation. 

 Since the SDRAM burst length is always hardwired to be 1, the 
SDC does not support the Burst Stop command.

Burst Type

The burst type determines the address order in which the SDRAM deliv-
ers burst data after detecting a read command or stores burst data after 
detecting a write command. The burst type is programmed in the 
SDRAM during the SDRAM powerup sequence.

 Since the SDRAM burst length is always programmed to be 1, the 
burst type does not matter. However, the SDC always sets the 
burst type to sequential-accesses-only during the SDRAM powerup 
sequence.
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CAS Latency (CL)

The Column Address Strobe (CAS) latency is the delay in clock cycles 
between when the SDRAM detects the read command and when it pro-
vides the data at its output pins. The CAS latency is programmed in the 
SDRAM Mode register during the powerup sequence.

The speed grade of the SDRAM and the application’s clock frequency 
determine the value of the CAS latency. The SDC can support CAS 
latency of two or three clock cycles. The selected CAS latency value must 
be programmed into the SDRAM Memory Global Control register 
(EBIU_SDGCTL) before the SDRAM powerup sequence. See 
“EBIU_SDGCTL Register” on page 17-33.

CBR (CAS Before RAS) Refresh or Auto-Refresh

When the SDC refresh counter times out, the SDC precharges all four 
banks of SDRAM and then issues an Auto-Refresh command to them. 
This causes the SDRAMs to generate an internal CBR refresh cycle. When 
the internal refresh completes, all four internal SDRAM banks are 
precharged. 

DQM Pin Mask Function

The SDQM[1:0] pins provide a byte-masking capability on 8-bit writes to 
SDRAM. The DQM pins are used to block the input buffer of the SDRAM 
during partial write operations. The SDQM[1:0] pins are not used to mask 
data on partial read cycles. For write cycles, the data masks have a latency 
of zero cycles, permitting data writes when the corresponding SDQM[x]] 
pin is sampled low and blocking data writes when the SDQM[x] pin is sam-
pled high on a byte-by-byte basis.
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Internal Bank

There are several internal memory banks on a given SDRAM. The SDC 
supports interleaved accesses among the internal banks. The bank address 
can be thought of as part of the row address. The SDC assumes that all 
SDRAMs to which it interfaces have four internal banks and allows each 
activated bank to have a unique row address.

Mode Register

SDRAM devices contain an internal configuration register which allows 
specification of the SDRAM device’s functionality. After powerup and 
before executing a read or write to the SDRAM memory space, the appli-
cation must trigger the SDC to write the SDRAM’s Mode register. The 
write of the SDRAM’s Mode register is triggered by writing a 1 to the 
PSSE bit in the SDRAM Memory Global Control register (EBIU_SDGCTL) 
and then issuing a read or write transfer to the SDRAM address space. The 
initial read or write triggers the SDRAM powerup sequence to be run, 
which programs the SDRAM’s Mode register with the CAS latency from 
the EBIU_SDGCTL register. This initial read or write to SDRAM takes many 
cycles to complete.

 Note for most applications, the SDRAM powerup sequence and 
writing of the Mode register needs to be done only once. Once the 
powerup sequence has completed, the PSSE bit should not be set 
again unless a change to the Mode register is desired. In this case, 
refer to “Managing SDRAM Refresh During PLL Transitions” on 
page 18-8.

Low power SDRAM devices may also contain an Extended Mode register. 
The EBIU enables programming of the Extended Mode register during 
powerup via the EMREN bit in the EBIU_SDGCTL register.
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Page Size

Page size is the amount of memory which has the same row address and 
can be accessed with successive read or write commands without needing 
to activate another row. The page size can be calculated for 16-bit 
SDRAM banks with this formula:

• 16-bit SDRAM banks: page size = 2(CAW + 1)

where CAW is the column address width of the SDRAM, plus 1 because the 
SDRAM bank is 16 bits wide (1 address bit = 2 bytes).

Precharge Command

The Precharge command closes a specific internal bank in the active page 
or all internal banks in the page.

SDRAM Bank

The SDRAM bank is a region of memory that can be configured to 16M 
byte, 32M byte, 64M byte, or 128M byte and is selected by the SMS pin.

 Do not confuse the “SDRAM internal banks” which are internal to 
the SDRAM and are selected with the bank address, with the 
“SDRAM bank” or “external bank” that is enabled by the SMS pin.

Self-Refresh

When the SDRAM is in Self-Refresh mode, the SDRAM’s internal timer 
initiates Auto-Refresh cycles periodically, without external control input. 
The SDC must issue a series of commands including the Self-Refresh 
command to put the SDRAM into this low power mode, and it must issue 
another series of commands to exit Self-Refresh mode. 
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Entering Self-Refresh mode is programmable in the SDRAM Memory 
Global Control register (EBIU_SDGCTL) and any access to the SDRAM 
address space causes the SDC to exit the SDRAM from Self-Refresh 
mode. See “Entering and Exiting Self-Refresh Mode (SRFS)” on 
page 17-38.

tRAS

This is the required delay between issuing a Bank Activate command and 
issuing a Precharge command, and between the Self-Refresh command 
and the exit from Self-Refresh. The TRAS bit field in the SDRAM Memory 
Global Control register (EBIU_SDGCTL) is 4 bits wide and can be pro-
grammed to be 1 to 15 clock cycles long. See “Selecting the Bank Activate 
Command Delay (TRAS)” on page 17-41.

tRC

This is the required delay between issuing successive Bank Activate com-
mands to the same SDRAM internal bank. This delay is not directly 
programmable. The tRC delay must be satisfied by programming the TRAS 
and TRP fields to ensure that tRAS + tRP  tRC.

tRCD

This is the required delay between a Bank Activate command and the start 
of the first Read or Write command. The TRCD bit field in the SDRAM 
Memory Global Control register (EBIU_SDGCTL) is three bits wide and can 
be programmed to be from 1 to 7 clock cycles long.
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tRFC

This is the required delay between issuing an Auto-Refresh command and 
a Bank Activate command and between issuing successive Auto-Refresh 
commands. This delay is not directly programmable and is assumed to be 
equal to tRC. The tRC delay must be satisfied by programming the TRAS 
and TRP fields to ensure that tRAS + tRP  tRC.

tRP

This is the required delay between issuing a Precharge command and:

• issuing a Bank Activate command

• issuing an Auto-Refresh command

• issuing a Self-Refresh command

The TRP bit field in the SDRAM Memory Global Control register 
(EBIU_SDGCTL) is three bits wide and can be programmed to be 1 to 7 clock 
cycles long. See “Selecting the Precharge Delay (TRP)” on page 17-42.

tRRD

This is the required delay between issuing a Bank A Activate command 
and a Bank B Activate command. This delay is not directly programmable 
and is assumed to be tRCD + 1.

tWR

This is the required delay between a Write command (driving write data) 
and a Precharge command. The TWR bit field in the SDRAM Memory 
Global Control register (EBIU_SDGCTL) is two bits wide and can be pro-
grammed to be from 1 to 3 clock cycles long.
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tXSR

This is the required delay between exiting Self-Refresh mode and issuing 
the Auto-Refresh command. This delay is not directly programmable and 
is assumed to be equal to tRC. The tRC delay must be satisfied by program-
ming the TRAS and TRP fields to ensure that tRAS + tRP  tRC.

SDRAM Configurations Supported
Table 17-4 shows all possible bank sizes, bank widths and SDRAM dis-
crete component configurations that can be gluelessly interfaced to the 
SDC.

Table 17-4. SDRAM Discrete Component Configurations Supported  

Bank Size
(M byte)

Bank Width
(Bits)

SDRAM

Size (M bit) Configuration Number of 
Chips

16 16 32 2M x 4 x 4 banks 4

16 16 64 2M x 8 x 4 banks 2

16 16 128 2M x 16 x 4 banks 1

32 16 64 4M x 4 x 4 banks 4

32 16 128 4M x 8 x 4 banks 2

32 16 256 4M x 16 x 4 banks 1

64 16 128 8M x 4 x 4 banks 4

64 16 256 8M x 8 x 4 banks 2

64 16 512 8M x 16 x 4 banks 1

128 16 256 16M x 4 x 4 banks 4

128 16 512 16M x 8 x 4 banks 2

128 16 1024 16M x 16 x 4 banks 1
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Example SDRAM System Block Diagrams
Figure 17-9 shows a block diagram of the SDRAM interface. In this exam-
ple, the SDRAM interface connects to two 64 Mbit (x8) SDRAM devices 
to form one external bank of 16M bytes of memory. The same address and 
control bus feeds both SDRAM devices.

The SDC includes a separate address pin (SA10) to enable the execution 
of Auto-Refresh commands in parallel with any asynchronous memory 
access. This separate pin allows the SDC to issue a Precharge command to 
the SDRAM before it issues an Auto-Refresh command. 

In addition, the SA10 pin allows the SDC to enter and exit Self-Refresh 
mode in parallel with any asynchronous memory access. The SA10 pin 
(instead of the ADDR[11] pin) should be directly connected to the 
SDRAM’s A10 pin. During the Precharge command, SA10 is used to 
indicate that a Precharge All should be done. During a Bank Activate 
command, SA10 outputs the internal row address bit, which should be 
multiplexed to the A10 SDRAM input. During Read and Write com-
mands, SA10 is used to disable the auto-precharge function of SDRAMs.

 SDRAM systems do not use the ADDR[11] pin.

Executing a Parallel Refresh Command

The SDC includes a separate address pin (SA10) to enable the execution of 
Auto-Refresh commands in parallel with any asynchronous memory 
access. This separate pin allows the SDC to issue a Precharge command to 
the SDRAM before it issues an Auto-Refresh command. In addition, the 
SA10 pin allows the SDC to enter and exit Self-Refresh mode in parallel 
with any asynchronous memory access. 
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Figure 17-9. 16M Byte SDRAM System Example
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The SA10 pin should be directly connected to the A10 pin of the SDRAM 
(instead of to the ADDR[10] pin). During the Precharge command, SA10 is 
used to indicate that a Precharge All should be done. During a Bank Acti-
vate command, SA10 outputs the internal row address bit, which should be 
multiplexed to the A10 SDRAM input. During Read and Write com-
mands, SA10 is used to disable the auto-precharge function of SDRAMs.

EBIU_SDGCTL Register
The SDRAM Memory Global Control register (EBIU_SDGCTL) includes all 
programmable parameters associated with the SDRAM access timing and 
configuration. Figure 17-10 shows the EBIU_SDGCTL register bit 
definitions.

 When using the hibernate state with the intent of preserving 
SDRAM contents during power-down, an application may issue an 
immediate read from SDRAM after enabling the controller. If this 
is the case, the write to this register should be followed by an SSYNC 
instruction to prevent the subsequent read from happening before 
the controller is properly initialized.

The SCTLE bit is used to enable or disable the SDC. If SCTLE is disabled, 
any access to SDRAM address space generates an internal bus error, and 
the access does not occur externally. For more information, see “Error 
Detection” on page 17-8. When SCTLE is disabled, all SDC control pins 
are in their inactive states and the SDRAM clock is not running. The 
SCTLE bit must be enabled for SDC operation and is enabled by default at 
reset.
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Figure 17-10. SDRAM Memory Global Control Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

01 1 1 0 0 0 0 0 0 0 0 0 1 0 0

SDRAM Memory Global Control Register (EBIU_SDGCTL)

TWR[1:0]

PSM

PSSE

TRCD[2:1]
CDDBG

EBUFE

SRFS

Control disable during bus grant
0 - Continue driving SDRAM 

controls during bus grant
1 - Three-state SDRAM controls 

during bus grant

SDRAM timing for external buffering 
of address and control
0 - External buffering timing disabled
1 - External buffering timing enabled

SDRAM self-refresh enable
0 - Disable self-refresh
1 - Enable self-refresh during inactivity

SDRAM tRCD in SCLK cycles
000 - Reserved
001-111 - 1 to 7 cycles

SDRAM tWR in SCLK cycles
00 - Reserved
01-11 - 1 to 3 cycles

SDRAM powerup sequence
0 - Precharge, 8 CBR refresh

cycles, mode register set
1 - Precharge, mode register

set, 8 CBR refresh cycles

SDRAM powerup sequence 
start enable. Always reads 0
0 - No effect
1 - Enables SDRAM powerup

sequence on next SDRAM
access

Reset = 0xE008 8849

CL[1:0]

PASR[1:0]

SCTLE

TRAS[3:0]

TRP[2:0]

TRCD
SDRAM tRCD in SCLK cycles
000 - Reserved
001-111 - 1 to 7 cycles

Enable CLKOUT, SRAS, 
SCAS, SWE, SDQM[1:0]
0 - Disabled
1 - Enabled

SDRAM tRP in SCLK cycles
000 - No effect
001-111 - 1 to 7 cycles

SDRAM tRAS in SCLK cycles
0000 - No effect
0001-1111 - 1 to 15 cycles

SDRAM CAS latency
00–01 - Reserved
10 - 2 cycles
11 - 3 cycles

Partial array self-refresh in 
extended mode register
00 - All 4 banks refreshed
01 - Int banks 0, 1 refreshed
10 - Int bank 0 only refreshed
11 - Reserved

FBBRW
Fast back-to-back read to write
0 - Disabled
1 - Enabled

EMREN
Extended mode register enable
0 - Disabled
1 - Enabled

TCSR
Temperature compensated self-refresh 
value in extended mode register
0 - 45 degrees C
1 - 85 degrees C

PUPSD
Powerup start delay
0 - No extra delay added

before first Precharge
command

1 - Fifteen SCLK cycles of
delay before first 
Precharge command

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 0 0 0 1 0 0 0 0 1 0 0 1 0 0

0xFFC0 0A10
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The CAS Latency (CL), SDRAM tRAS Timing (TRAS), SDRAM tRP Tim-
ing (TRP), SDRAM tRCD Timing (TRCD), and SDRAM tWR Timing (TWR) 
bits should be programmed based on the system clock frequency and the 
timing specifications of the SDRAM used.

 The user must ensure that tRAS + tRP >= max(tRC,tRFC,tXSR).

The PSM and PSSE bits work together to specify and trigger an SDRAM 
powerup (initialization) sequence. If the PSM bit is set to 1, the SDC does a 
Precharge All command, followed by a Load Mode Register command, 
and then does eight Auto-Refresh cycles. If the PSM bit is cleared, the SDC 
does a Precharge All command, followed by eight Auto-Refresh cycles, 
and then a Load Mode Register command. Two events must occur before 
the SDC does the SDRAM powerup sequence:

• The PSSE bit must be set to 1 to enable the SDRAM powerup 
sequence.

• A read or write access must be done to enabled SDRAM address 
space in order to have the external bus granted to the SDC so that 
the SDRAM powerup sequence may occur.

The SDRAM powerup sequence occurs and is followed immediately by 
the read or write transfer to SDRAM that was used to trigger the SDRAM 
powerup sequence. Note there is a latency for this first access to SDRAM 
because the SDRAM powerup sequence takes many cycles to complete. 

 Before executing the SDC powerup sequence, ensure that the 
SDRAM receives stable power and is clocked for the proper 
amount of time, as specified by the SDRAM specification.
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The Powerup Start Delay bit (PUPSD) optionally delays the powerup start 
sequence for 15 SCLK cycles. This is useful for multiprocessor systems shar-
ing an external SDRAM. If the bus has been previously granted to the 
other processor before powerup and Self-Refresh mode is used when 
switching bus ownership, then the PUPSD bit can be used to guarantee a 
sufficient period of inactivity from self-refresh to the first Precharge com-
mand in the powerup sequence in order to meet the exit self-refresh time 
(tXSR) of the SDRAM.

When the SRFS bit is set to 1, Self-Refresh mode is triggered. Once the 
SDC completes any active transfers, the SDC executes the sequence of 
commands to put the SDRAM into Self-Refresh mode. The next access to 
an enabled SDRAM bank causes the SDC to execute the commands to 
exit the SDRAM from Self-Refresh and execute the access. See “Entering 
and Exiting Self-Refresh Mode (SRFS)” on page 17-38 for more informa-
tion about the SRFS bit.

The EBUFE bit is used to enable or disable external buffer timing. When 
buffered SDRAM modules or discrete register-buffers are used to drive the 
SDRAM control inputs, EBUFE should be set to 1. Using this setting adds a 
cycle of data buffering to read and write accesses. See “Setting the 
SDRAM Buffering Timing Option (EBUFE)” on page 17-39 for more 
information about the EBUFE bit.

The FBBRW bit enables an SDRAM read followed by write to occur on con-
secutive cycles. In many systems, this is not possible because the turn-off 
time of the SDRAM data pins is too long, leading to bus contention with 
the succeeding write from the processor. When this bit is 0, a clock cycle is 
inserted between read accesses followed immediately by write accesses.

The EMREN bit enables programming of the Extended Mode register during 
startup. The Extended Mode register is used to control SDRAM power 
consumption in certain mobile low power SDRAMs. If the EMREN bit is 
enabled, then the TCSR and PASR[1:0] bits control the value written to the 
Extended Mode register. The PASR bits determine how many SDRAM 
internal banks are refreshed during Self-Refresh. The TCSR bit signals to 
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the SDRAM the worst case temperature range for the system, and thus 
how often the SDRAM internal banks need to be refreshed during 
Self-Refresh.

The CDDBG bit is used to enable or disable the SDRAM control signals 
when the external memory interface is granted to an external controller. If 
this bit is set to a 1, then the control signals are three-stated when bus 
grant is active. Otherwise, these signals continue to be driven during 
grant. If the bit is set and the external bus is granted, all SDRAM internal 
banks are assumed to have been changed by the external controller. This 
means a precharge is required on each bank prior to use after control of 
the external bus is re-established. The control signals affected by this pin 
are SRAS, SCAS, SWE, SMS, SA10, SCKE, and CLKOUT.

Note all reserved bits in this register must always be written with 0s.

Setting the SDRAM Clock Enable (SCTLE)

The SCTLE bit allows software to disable all SDRAM control pins. These 
pins are SDQM[3:0], SCAS, SRAS, SWE, SCKE, and CLKOUT.

• SCTLE = 0 

Disable all SDRAM control pins (control pins negated, CLKOUT 
low)

• SCTLE = 1 

Enable all SDRAM control pins (CLKOUT toggles)

Note the CLKOUT function is also shared with the AMC. Even if SCTLE is 
disabled, CLKOUT can be enabled independently by the CLKOUT enable in the 
AMC (AMCKEN in the EBIU_AMGCTL register).

If the system does not use SDRAM, SCTLE should be set to 0.



SDRAM Controller (SDC)

17-38 ADSP-BF533 Blackfin Processor Hardware Reference
 

If an access occurs to the SDRAM address space while SCTLE is 0, the 
access generates an internal bus error and the access does not occur exter-
nally. For more information, see “Error Detection” on page 17-8. With 
careful software control, the SCTLE bit can be used in conjunction with 
Self-Refresh mode to further lower power consumption. However, SCTLE 
must remain enabled at all times when the SDC is needed to generate 
Auto-Refresh commands to SDRAM.

Entering and Exiting Self-Refresh Mode (SRFS)

The SDC supports SDRAM Self-Refresh mode. In Self-Refresh mode, the 
SDRAM performs refresh operations internally—without external con-
trol—reducing the SDRAM’s power consumption.

The SRFS bit in EBIU_SDGCTL enables the start of Self-Refresh mode:

• SRFS = 0 

Disable Self-Refresh mode

• SRFS = 1 

Enable Self-Refresh mode

When SRFS is set to 1, once the SDC enters an idle state it issues a Pre-
charge command if necessary, and then issues a Self-Refresh command. If 
an internal access is pending, the SDC delays issuing the Self-Refresh 
command until it completes the pending SDRAM access and any subse-
quent pending access requests. Refer to “SDC Commands” on page 17-56 
for more information.

Once the SDRAM device enters into Self-Refresh mode, the SDRAM 
controller asserts the SDSRA bit in the SDRAM Control Status register 
(EBIU_SDSTAT).
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The SDRAM device exits Self-Refresh mode only when the SDC receives 
a core or DMA access request. In conjunction with the SRFS bit, 2 possi-
bilities are given to exit the self-refresh mode:

• If SRFS bit is set before the request, the SDC exits self-refresh and 
remains in auto-refresh mode.

• If SRFS bit is cleared before the request, the SDC exits self-refresh 
only for a single request and returns back to self-refresh mode until 
a new request is coming.

Note once the SRFS bit is set to 1, the SDC enters Self-Refresh mode when 
it finishes pending accesses. There is no way to cancel the entry into-
Self-Refresh mode.

Setting the SDRAM Buffering Timing Option (EBUFE)

To meet overall system timing requirements, systems that employ several 
SDRAM devices connected in parallel may require buffering between the 
processor and multiple SDRAM devices. This buffering generally consists 
of a register and driver.

To meet such timing requirements and to allow intermediary registration, 
the SDC supports pipelining of SDRAM address and control signals.

The EBUFE bit in the EBIU_SDGCTL register enables this mode:

• EBUFE = 0 

Disable external buffering timing

• EBUFE = 1 

Enable external buffering timing
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When EBUFE = 1, the SDRAM controller delays the data in write accesses 
by one cycle, enabling external buffer registers to latch the address and 
controls. In read accesses, the SDRAM controller samples data one cycle 
later to account for the one-cycle delay added by the external buffer regis-
ters. When external buffering timing is enabled, the latency of all accesses 
is increased by one cycle.

Selecting the CAS Latency Value (CL)

The CAS latency value defines the delay, in number of clock cycles, 
between the time the SDRAM detects the Read command and the time it 
provides the data at its output pins.

CAS latency does not apply to write cycles.

The CL bits in the SDRAM Memory Global Control register 
(EBIU_SDGCTL) select the CAS latency value:

• CL = 00 

Reserved

• CL = 01 

Reserved

• CL = 10 

2 clock cycles

• CL = 11 

3 clock cycles

Generally, the frequency of operation determines the value of the CAS 
latency. For specific information about setting this value, consult the 
SDRAM device documentation.
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Selecting the Bank Activate Command Delay (TRAS)

The tRAS value (Bank Activate command delay) defines the required delay, 
in number of clock cycles, between the time the SDC issues a Bank Acti-
vate command and the time it issues a Precharge command. The SDRAM 
must also remain in Self-Refresh mode for at least the time period speci-
fied by tRAS. The tRP and tRAS values define the tRFC, tRC, and tXSR 
values. For more information, see “tRAS” on page 17-28.

The tRAS parameter allows the processor to adapt to the timing require-
ments of the system’s SDRAM devices.

The TRAS bits in the SDRAM Memory Global Control register 
(EBIU_SDGCTL) select the tRAS value. Any value between 1 and 15 clock 
cycles can be selected. For example:

• TRAS = 0000 

No effect

• TRAS = 0001 

1 clock cycle

• TRAS = 0010 

2 clock cycles

• TRAS = 1111 

15 clock cycles

For specific information on setting this value, consult the SDRAM device 
documentation. 
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Selecting the RAS to CAS Delay (TRCD)

The tRCD value (RAS to CAS delay) defines the delay for the first read or 
write command after a row activate command, in number of clock cycles. 
The tRCD parameter allows the processor to adapt to the timing require-
ments of the system’s SDRAM devices.

The tRCD bits in the SDRAM Memory Global Control register 
(EBIU_SDGCTL) select the tRCD value. Any value between 1 and 7 clock 
cycles may be selected. For example:

• TRCD = reserved

No effect

• TRCD = 001

1 clock cycle

• TRCD = 010

2 clock cycles

• TRCD = 111

7 clock cycles

Selecting the Precharge Delay (TRP)

The tRP value (Precharge delay) defines the required delay, in number of 
clock cycles, between the time the SDC issues a Precharge command and 
the time it issues a Bank Activate command. The tRP also specifies the 
time required between Precharge and Auto-Refresh, and between Pre-
charge and Self-Refresh. The tRP and tRAS values define the tRFC, tRC, and 
tXSR values.
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This parameter enables the application to accommodate the SDRAM’s 
timing requirements. 

The TRP bits in the SDRAM Memory Global Control register 
(EBIU_SDGCTL) select the tRP value. Any value between 1 and 7 clock 
cycles may be selected. For example:

• TRP = 000 

No effect

• TRP = 001 

1 clock cycle

• TRP = 010 

2 clock cycles

• TRP = 111 

7 clock cycles

Selecting the Write to Precharge Delay (TWR)

The tWR value defines the required delay, in number of clock cycles, 
between the time the SDC issues a Write command (drives write data) and 
a Precharge command.

This parameter enables the application to accommodate the SDRAM’s 
timing requirements. 

The TWR bits in the SDRAM Memory Global Control register 
(EBIU_SDGCTL) select the tWR value. 
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Any value between 1 and 3 clock cycles may be selected. For example:

• TWR = 00 

Reserved

• TWR = 01 

1 clock cycle

• TWR = 10 

2 clock cycles

• TWR = 11 

3 clock cycles

EBIU_SDBCTL Register
The SDRAM Memory Bank Control register (EBIU_SDBCTL) includes 
external bank-specific programmable parameters. It allows software to 
control some parameters of the SDRAM. The external bank can be config-
ured for a different size of SDRAM. It uses the access timing parameters 
defined in the SDRAM Memory Global Control register (EBIU_SDGCTL). 
The EBIU_SDBCTL register should be programmed before powerup and 
should be changed only when the SDC is idle.

The EBIU_SDBCTL register stores the configuration information for the 
SDRAM bank interface. The EBIU supports 64 Mbit, 128 Mbit, 
256 Mbit, and 512 Mbit SDRAM devices with x4, x8, x16 configura-
tions. Table 17-4 maps SDRAM density and I/O width to the supported 
EBSZ encodings. See “SDRAM External Memory Size” on page 17-50 for 
more information on bank starting address decodes.
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The SDC determines the internal SDRAM page size from the EBCAW 
parameters. Page sizes of 512 B, 1K byte, 2K byte, and 4K byte are sup-
ported. Table 17-5 shows the page size and breakdown of the internal 
address (IA[31:0], as seen from the core or DMA) into the row, bank, col-
umn, and byte address. The column address and the byte address together 
make up the address inside the page.

The EBE bit in the EBIU_SDBCTL register is used to enable or disable the 
external SDRAM bank. If the SDRAM is disabled, any access to the 
SDRAM address space generates an internal bus error, and the access does 
not occur externally. For more information, see “Error Detection” on 
page 17-8.

Figure 17-11. SDRAM Memory Bank Control Register

SDRAM Memory Bank Control Register (EBIU_SDBCTL)

EBSZ

EBCAW

EBE
SDRAM external bank enable
0 - Disabled
1 - Enabled

SDRAM external bank size
00 - 16M byte
01 - 32M byte
10 - 64M byte
11 - 128M byte

SDRAM external bank column 
address width
00 - 8 bits
01 - 9 bits
10 - 10 bits
11 - 11 bits

Reset = 0x0000
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 00xFFC0 0A14



SDRAM Controller (SDC)

17-46 ADSP-BF533 Blackfin Processor Hardware Reference
 

 For information on how to connect to SDRAMs smaller than 
16M byte, see “Using SDRAMs Smaller Than 16M Byte” on 
page 18-8.

Table 17-5. Internal Address Mapping  
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16 128 11 4 IA[26:25] IA[24:12] A[11:1] IA[0]

16 128 10 2 IA[26:25] IA[24:11] IA[10:1] IA[0]

16 128 9 1 1A[26:25] IA[24:10] IA[9:1] IA[0]

16 128 8 .5 IA[26:25] IA[24:9] IA[8:1] IA[0]

16 64 11 4 IA[25:24] IA[23:12] IA[11:1] IA[0]

16 64 10 2 IA[25:24] IA[23:11] IA[0]IA[10:1]

16 64 9 1 IA[25:24] IA[23:10] IA[9:1] IA[0]

16 64 8 .5 IA[25:24] IA[23:9] IA[8:1] IA[0]

16 32 11 4 IA[24:23] IA[22:12] IA[11:1] IA[0]

16 32 10 2 IA[24:23] IA[22:11] IA[0]IA[10:1]

16 32 9 1 IA[24:23] IA[22:10] IA[9:1] IA[0]

16 32 8 .5 IA[24:23] IA[22:9] IA[8:1] IA[0]

16 16 11 4 IA[23:22] IA[21:12] IA[11:1] IA[0]

16 16 10 2 IA[23:22] IA[21:11] IA[10:1] IA[0]

16 16 9 1 IA[23:22] IA[21:10] IA[9:1] IA[0]

16 16 8 .5 IA[23:22] IA[21:9] IA[8:1] IA[0]
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EBIU_SDSTAT Register
The SDRAM Control Status register (EBIU_SDSTAT) provides information 
on the state of the SDC. This information can be used to determine when 
it is safe to alter SDC control parameters or it can be used as a debug aid. 
The SDEASE bit of this register is sticky. Once it has been set, software 
must explicitly write a 1 to the bit to clear it. Writes have no effect on the 
other status bits, which are updated by the SDC only. This SDC MMR is 
16 bits wide.

Figure 17-12. SDRAM Control Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 1 0 0

SDRAM Control Status Register (EBIU_SDSTAT)

SDSRA

SDPUA

SDCI

SDRS

SDEASE - W1C
SDRAM EAB sticky error status. Write 1 
to this bit to clear it.
0 - No error detected
1 - EAB access generated an error

0 - Will not power up on next SDRAM
access (SDRAM already powered up)

1 - Will power up on next SDRAM
access if SDRAM enabled

SDRAM controller idle
0 - SDC is busy performing

an access or an Auto-
Refresh

1 - SDC is idle

SDRAM self-refresh active
0 - SDRAMs not in self-

refresh mode
1 - SDRAMs in self-refresh

mode

SDRAM powerup active
0 - SDC not in powerup

sequence
1 - SDC in powerup

sequence

Reset = 0x0008

BGSTAT
Bus grant status
0 - Bus not granted
1 - Bus granted

0xFFC0 0A1C
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EBIU_SDRRC Register
The SDRAM Refresh Rate Control register (EBIU_SDRRC) provides a flexi-
ble mechanism for specifying the Auto-Refresh timing. Since the clock 
supplied to the SDRAM can vary, the SDC provides a programmable 
refresh counter, which has a period based on the value programmed into 
the RDIV field of this register. This counter coordinates the supplied clock 
rate with the SDRAM device’s required refresh rate.

The desired delay (in number of SDRAM clock cycles) between consecu-
tive refresh counter time-outs must be written to the RDIV field. A refresh 
counter time-out triggers an Auto-Refresh command to all external 
SDRAM devices. Write the RDIV value to the EBIU_SDRRC register before 
the SDRAM powerup sequence is triggered. Change this value only when 
the SDC is idle.

To calculate the value that should be written to the EBIU_SDRRC register, 
use the following equation:

RDIV = ((fSCLK  tREF) / NRA) – (tRAS + tRP)

Where:

• fSCLK = SDRAM clock frequency (system clock frequency)

• tREF = SDRAM refresh period

• NRA = Number of row addresses in SDRAM (refresh cycles to 
refresh whole SDRAM)

Figure 17-13. SDRAM Refresh Rate Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 1 0 0 0 0 0 0 1 1 0 1

SDRAM Refresh Rate Control Register (EBIU_SDRRC)

RDIV

Reset = 0x081A0xFFC0 0A18
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• tRAS = Active to Precharge time (TRAS in the SDRAM Memory 
Global Control register) in number of clock cycles

• tRP = RAS to Precharge time (TRP in the SDRAM Memory Global 
Control register) in number of clock cycles

This equation calculates the number of clock cycles between required 
refreshes and subtracts the required delay between Bank Activate com-
mands to the same internal bank (tRC = tRAS + tRP). The tRC value is 
subtracted, so that in the case where a refresh time-out occurs while an 
SDRAM cycle is active, the SDRAM refresh rate specification is guaran-
teed to be met. The result from the equation should always be rounded 
down to an integer.

Below is an example of the calculation of RDIV for a typical SDRAM in a 
system with a 133 MHz clock:

• fSCLK = 133 MHz

• tREF = 64 ms

• NRA = 4096 row addresses

• tRAS = 2

• tRP = 2

The equation for RDIV yields:

RDIV = ( (133 x 106  64  10-3) /  4096) – (2 + 2) = 2074 clock cycles

This means RDIV is 0x81A (hex) and the SDRAM Refresh Rate Control 
register should be written with 0x081A.
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Note RDIV must be programmed to a nonzero value if the SDRAM con-
troller is enabled. When RDIV = 0, operation of the SDRAM controller is 
not supported and can produce undesirable behavior. Values for RDIV can 
range from 0x001 to 0xFFF.

 Refer to “Managing SDRAM Refresh During PLL Transitions” on 
page 18-8 for a detailed discussion of the process for changing the 
PLL frequency when using SDRAM.

SDRAM External Memory Size
The total amount of external SDRAM memory addressed by the processor 
is controlled by the EBSZ bits of the EBIU_SDBCTL register (see Table 17-6). 
Accesses above the range shown for a specialized EBSZ value results in an 
internal bus error and the access does not occur. For more information, 
see “Error Detection” on page 17-8. 

Table 17-6. Bank Size Encodings

EBSZ Bank Size 
(Mbyte)

Valid SDRAM Addresses

00 16 0x0000 0000 – 0x00FF FFFF

01 32 0x0000 0000 – 0x01FF FFFF

10 64 0x0000 0000 – 0x03FF FFFF

11 128 0x0000 0000 – 0x07FF FFFF
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SDRAM Address Mapping
To access SDRAM, the SDC multiplexes the internal 32-bit non-multi-
plexed address into a row address, a column address, a bank address, and 
the byte data masks for the SDRAM device. See Figure 17-14. The lowest 
bit is mapped to byte data masks, the next bits are mapped into the col-
umn address, the next bits are mapped into the row address, and the final 
two bits are mapped into the bank address. This mapping is based on the 
EBSZ and EBCAW parameters programmed into the SDRAM Memory Bank 
Control register. 

16-Bit Wide SDRAM Address Muxing

Table 17-7 shows the connection of the address pins with the SDRAM 
device pins.

Figure 17-14. Multiplexed SDRAM Addressing Scheme

Internal 32-bit Address

31 26 0

Bank 
Address

Column 
Address

Row 
Address

Byte 
Mask
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Data Mask (SDQM[1:0]) Encodings
During write transfers to SDRAM, the SDQM[1:0] pins are used to mask 
writes to bytes that are not accessed. Table 17-8 shows the SDQM[1:0] 
encodings for 16-bit wide SDRAM based on the internal transfer address 
bit IA[0] and the transfer size.

Table 17-7. SDRAM Address Connections for 16-Bit Banks

External Address Pin SDRAM Address Pin

ADDR[19] BA[1]

ADDR[18] BA[0]

ADDR[16] A[15]

ADDR[15] A[14]

ADDR[14] A[13]

ADDR[13] A[12]

ADDR[12] A[11]

SA[10] A[10]

ADDR[10] A[9]

ADDR[9] A[8]

ADDR[8] A[7]

ADDR[7] A[6]

ADDR[6] A[5]

ADDR[5] A[4]

ADDR[4] A[3]

ADDR[3] A[2]

ADDR[2] A[1]

ADDR[1] A[0]
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During read transfers to SDRAM banks, reads are always done of all bytes 
in the bank regardless of the transfer size. This means for 16-bit SDRAM 
banks, SDQM[1:0] are all 0s.

The only time that the SDQM[1:0] pins are high is when bytes are masked 
during write transfers to the SDRAM. At all other times, the SDQM[1:0] 
pins are held low.

SDC Operation 
The SDC uses a burst length = 1 for read and write operations. Whenever 
a page miss occurs, the SDC executes a Precharge command followed by a 
Bank Activate command before executing the Read or Write command. If 
there is a page hit, the Read or Write command can be given immediately 
without requiring the Precharge command.

For SDRAM Read commands, there is a latency from the start of the Read 
command to the availability of data from the SDRAM, equal to the CAS 
latency. This latency is always present for any single read transfer. Subse-
quent reads do not have latency.

A programmable refresh counter is provided. It can be programmed to 
generate background Auto-Refresh cycles at the required refresh rate based 
on the clock frequency used. The refresh counter period is specified with 
the RDIV field in the SDRAM Refresh Rate Control register. 

Table 17-8. SDQM[1:0] Encodings During Writes

Internal Address
IA[0]

Internal Transfer Size

byte 2 bytes 4 bytes

0 SDQM[1] = 1
SDQM[0] = 0

SDQM[1] = 0
SDQM[0] = 0

SDQM[1] = 0
SDQM[0] = 0

1 SDQM[1] = 0
SDQM[0] = 1
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To allow Auto-Refresh commands to execute in parallel with any AMC 
access, a separate A10 pin (SA10) is provided. All the SDRAM internal 
banks are precharged before issuing an Auto-Refresh command.

The internal 32-bit non-multiplexed address is multiplexed into a row 
address, a column address, a bank select address, and data masks. Bit0 for 
16-bit wide SDRAMs is used to generate the data masks. The next lowest 
bits are mapped into the column address, next bits are mapped into the 
row address, and the final two bits are mapped into the internal bank 
address. This mapping is based on the EBCAW and EBSZ values programmed 
into the SDRAM Memory Bank Control register.

SDC Configuration
After a processor’s hardware or software reset, the SDC clocks are enabled; 
however, the SDC must be configured and initialized. Before program-
ming the SDC and executing the powerup sequence, ensure the clock to 
the SDRAM is enabled after the power has stabilized for the proper 
amount of time (as specified by the SDRAM). In order to set up the SDC 
and start the SDRAM powerup sequence for the SDRAMs, the SDRAM 
Refresh Rate Control register (EBIU_SDRRC), the SDRAM Memory Bank 
Control register (EBIU_SDBCTL), and SDRAM Memory Global Control 
register (EBIU_SDGCTL) must be written, and a transfer must be started to 
SDRAM address space. The SDRS bit of the SDRAM Control Status regis-
ter can be checked to determine the current state of the SDC. If this bit is 
set, the SDRAM powerup sequence has not been initiated.

The RDIV field of the EBIU_SDRRC register should be written to set the 
SDRAM refresh rate. 

The EBIU_SDBCTL register should be written to describe the sizes and 
SDRAM memory configuration used (EBSZ and EBCAW) and to enable the 
external bank (EBE). Note until the SDRAM powerup sequence has been 
started, any access to SDRAM address space, regardless of the state of the 
EBE bit, generates an internal bus error, and the access does not occur 



ADSP-BF533 Blackfin Processor Hardware Reference 17-55 
 

External Bus Interface Unit

externally. For more information, see “Error Detection” on page 17-8. 
After the SDRAM powerup sequence has completed, if the external bank 
is disabled, any transfer to it results in a hardware error interrupt, and the 
SDRAM transfer does not occur.

The EBIU_SDGCTL register is written:

• to set the SDRAM cycle timing options (CL, TRAS, TRP, TRCD, TWR, 
EBUFE)

• to enable the SDRAM clock (SCTLE)

• to select and enable the start of the SDRAM powerup sequence 
(PSM, PSSE)

Note if SCTLE is disabled, any access to SDRAM address space generates an 
internal bus error and the access does not occur externally. For more infor-
mation, see “Error Detection” on page 17-8. 

Once the PSSE bit in the EBIU_SDGCTL register is set to 1, and a transfer 
occurs to enabled SDRAM address space, the SDC initiates the SDRAM 
powerup sequence. The exact sequence is determined by the PSM bit in the 
EBIU_SDGCTL register. The transfer used to trigger the SDRAM powerup 
sequence can be either a read or a write. This transfer occurs when the 
SDRAM powerup sequence has completed. This initial transfer takes 
many cycles to complete since the SDRAM powerup sequence must take 
place.
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SDC Commands
This section provides a description of each of the commands that the SDC 
uses to manage the SDRAM interface. These commands are initiated 
automatically upon a memory read or memory write. A summary of the 
various commands used by the on-chip controller for the SDRAM inter-
face is as follows.

• Precharge All: Precharges all banks

• Single Precharge: Precharges a single bank

• Bank Activate: Activates a page in the required SDRAM internal 
bank

• Load Mode Register: Initializes the SDRAM operation parameters 
during the powerup sequence

• Load Extended Mode Register: Initializes mobile SDRAM opera-
tion parameters during the powerup sequence

• Read/Write

• Auto-Refresh: Causes the SDRAM to execute a CAS before RAS 
refresh

• Self-Refresh: Places the SDRAM in self-refresh mode, in which the 
SDRAM powers down and controls its refresh operations internally

• NOP/Command Inhibit: No operation

Table 17-9 shows the SDRAM pin state during SDC commands.
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Precharge Commands

The Precharge All command is given to precharge all internal banks at the 
same time before executing an auto-refresh. For a page miss during reads 
or writes in a specific internal SDRAM bank, the SDC uses the Single Pre-
charge command to that bank.

Table 17-9. Pin State During SDC Commands

Command SMS SCAS SRAS SWE SCKE SA10

Precharge All low high low low high high

Single 
Precharge

low high low low high low

Bank Activate low high low high high

Load Mode 
Register

low low low low high

Load Extended 
Mode Register

low low low low high low

Read low low high high high low

Write low low high low high low

Auto-Refresh low low low high high

Self-Refresh low low low high low

NOP low high high high high

Command 
Inhibit

high high high high high
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Bank Activate Command

The Bank Activate command is required if the next data access is in a dif-
ferent page. The SDC executes the Precharge command, followed by a 
Bank Activate command, to activate the page in the desired SDRAM 
internal bank.

 The SDC supports bank interleaving (opening up to 4 internal 
SDRAM banks at a time). This results in an effective size of 4 
pages. The address mapping indicates the start address of each 
internal bank.

 Bank interleaving is accomplished by switching between 4 internal 
SDRAM banks without any stalls between the pages.

Load Mode Register Command

The Load Mode Register command initializes SDRAM operation parame-
ters. This command is a part of the SDRAM powerup sequence. The Load 
Mode Register command uses the address bus of the SDRAM as data 
input. The powerup sequence is initiated by writing 1 to the PSSE bit in 
the SDRAM Memory Global Control register (EBIU_SDGCTL) and then 
writing or reading from any enabled address within the SDRAM address 
space to trigger the powerup sequence. The exact order of the powerup 
sequence is determined by the PSM bit of the EBIU_SDGCTL register.

The Load Mode Register command initializes these parameters:

• Burst length = 1, bits 2–0, always 0

• Wrap type = sequential, bit 3, always 0

• Ltmode = latency mode (CAS latency), bits 6–4, programmable in 
the EBIU_SDGCTL register

• Bits 14–7, always 0
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While executing the Load Mode Register command, the unused address 
pins are set to 0. During the two clock cycles following the Load Mode 
Register command, the SDC issues only NOP commands.

For low power mobile SDRAMs that include an Extended Mode register, 
this register is programmed during powerup sequence if the EMREN bit is 
set in the EBIU_SDGCTL register.

The Extended Mode register is initialized with these parameters:

• Partial Array Self-Refresh, bits 2–0, bit 2 always 0, bits 1–0 pro-
grammable in EBIU_SDGCTL

• Temperature Compensated Self-Refresh, bits 4–3, bit 3 always 1, 
bit 4 programmable in EBIU_SDGCTL

• Bits 12–5, always 0, and bit 13 always 1

Read/Write Command

A Read/Write command is executed if the next read/write access is in the 
present active page. During the Read command, the SDRAM latches the 
column address. The delay between Activate and Read commands is deter-
mined by the tRCD parameter. Data is available from the SDRAM after 
the CAS latency has been met.

In the Write command, the SDRAM latches the column address. The 
write data is also valid in the same cycle. The delay between Activate and 
Write commands is determined by the tRCD parameter.

The SDC does not use the auto-precharge function of SDRAMs, which is 
enabled by asserting SA10 high during a Read or Write command.
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Auto-Refresh Command

The SDRAM internally increments the refresh address counter and causes 
a CAS before RAS (CBR) refresh to occur internally for that address when 
the Auto-Refresh command is given. The SDC generates an Auto-Refresh 
command after the SDC refresh counter times out. The RDIV value in the 
SDRAM Refresh Rate Control register must be set so that all addresses are 
refreshed within the tREF period specified in the SDRAM timing specifi-
cations. This command is issued to the external bank whether or not it is 
enabled (EBE in the SDRAM Memory Global Control register). Before 
executing the Auto-Refresh command, the SDC executes a Precharge All 
command to the external bank. The next Activate command is not given 
until the tRFC specification (tRFC = tRAS + tRP) is met.

Auto-Refresh commands are also issued by the SDC as part of the pow-
erup sequence and also after exiting Self-Refresh mode.

Self-Refresh Command

The Self-Refresh command causes refresh operations to be performed 
internally by the SDRAM, without any external control. This means that 
the SDC does not generate any Auto-Refresh cycles while the SDRAM is 
in Self-Refresh mode. Before executing the Self-Refresh command, all 
internal banks are precharged. Self-Refresh mode is enabled by writing a 1 
to the SRFS bit of the SDRAM Memory Global Control register 
(EBIU_SDGCTL). After issuing the Self-Refresh command, the SDC drives 
SCKE low. This puts the SDRAM into a power down mode (SCKE = 0, 
SRAS/SMS/SCAS/SWE = 1) Before exiting Self-Refresh mode, the SDC asserts 
SCKE. The SDRAM remains in Self-Refresh mode for at least tRAS and 
until an internal access to SDRAM space occurs. When an internal access 
occurs causing the SDC to exit the SDRAM from Self-Refresh mode, the 
SDC waits to meet the tXSR specification (tXSR = tRAS + tRP) and then 
issues an Auto-Refresh command. After the Auto-Refresh command, the 
SDC waits for the tRFC specification (tRFC = tRAS + tRP) to be met before 
executing the Activate command for the transfer that caused the SDRAM 
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to exit Self-Refresh mode. Therefore, the latency from when a transfer is 
received by the SDC while in Self-Refresh mode, until the Activate com-
mand occurs for that transfer, is 2  (tRAS + tRP).

Note CLKOUT is not disabled by the SDC during Self-Refresh mode. How-
ever, software may disable the clock by clearing the SCTLE bit in 
EBIU_SDGCTL. The application software should ensure that all applicable 
clock timing specifications are met before the transfer to SDRAM address 
space which causes the controller to exit Self-Refresh mode. If a transfer 
occurs to SDRAM address space when the SCTLE bit is cleared, an internal 
bus error is generated, and the access does not occur externally, leaving the 
SDRAM in Self-Refresh mode. For more information, see “Error Detec-
tion” on page 17-8.

No Operation/Command Inhibit Commands

The No Operation (NOP) command to the SDRAM has no effect on 
operations currently in progress. The Command Inhibit command is the 
same as a NOP command; however, the SDRAM is not chip-selected. 
When the SDC is actively accessing the SDRAM but needs to insert addi-
tional commands with no effect, the NOP command is given. When the 
SDC is not accessing the SDRAM, the Command Inhibit command is 
given.

SDRAM Timing Specifications
To support key timing requirements and powerup sequences for different 
SDRAM vendors, the SDC provides programmability for tRAS, tRP, tRCD, 
tWR, and the powerup sequence mode. (For more information, see 
“EBIU_SDGCTL Register” on page 17-33.) CAS latency should be pro-
grammed in the EBIU_SDGCTL register based on the frequency of operation. 
(Refer to the SDRAM vendor’s data sheet for more information.)



SDRAM Controller (SDC)

17-62 ADSP-BF533 Blackfin Processor Hardware Reference
 

For other parameters, the SDC assumes:

• Bank Cycle Time: tRC = tRAS + tRP

• Refresh Cycle Time: tRFC = tRAS + tRP

• Exit Self-Refresh Time: tXSR = tRAS + tRP

• Load Mode Register to Activate Time: tMRD or tRSC = 3 clock 
cycles

• Page-Miss Penalty =  tRP + tRCD

• Row (Bank A) to Row (Bank B) Active Time: tRRD= tRCD +1 

SDRAM Performance 
Table 7-2 on page 7-11 lists the data throughput rates for the core or 
DMA read/write accesses to 16-bit wide SDRAM. For this example, 
assume all cycles are SCLK cycles and the following SCLK frequency and 
SDRAM parameters are used:

• SCLK frequency = 133 MHz

• CAS latency = 2 cycles (CL = 2)

• No SDRAM buffering (EBUFE = 0)

• RAS precharge (tRP) = 2 cycles (TRP = 2)

• RAS to CAS delay (tRCD) = 2 cycles (TRCD = 2)

• Active command time (tRAS) = 5 cycles (TRAS = 5)

When the external buffer timing (EBUFE = 1 in the SDRAM Memory 
Global Control register) and/or CAS latency of 3 (CL = 11 in the SDRAM 
Memory Global Control register) is used, all accesses take one extra cycle 
for each feature selected.
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Bus Request and Grant
The processor can relinquish control of the data and address buses to an 
external device. The processor three-states its memory interface to allow 
an external controller to access either external asynchronous or synchro-
nous memory parts.

Operation
When the external device requires access to the bus, it asserts the Bus 
Request (BR) signal. The BR signal is arbitrated with EAB requests. If no 
internal request is pending, the external bus request will be granted. The 
processor initiates a bus grant by:

• Three-stating the data and address buses and the asynchronous 
memory control signals. The synchronous memory control signals 
can optionally be three-stated.

• Asserting the Bus Grant (BG) signal.

The processor may halt program execution if the bus is granted to an 
external device and an instruction fetch or data read/write request is made 
to external memory. When the external device releases BR, the processor 
deasserts BG and continues execution from the point at which it stopped.

The processor asserts the BGH pin when it is ready to start another external 
port access, but is held off because the bus was previously granted.

When the bus has been granted, the BGSTAT bit in the SDSTAT register is 
set. This bit can be used by the processor to check the bus status to avoid 
initiating a transaction that would be delayed by the external bus grant.
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18 SYSTEM DESIGN

This chapter provides hardware, software, and system design information 
to aid users in developing systems based on the Blackfin processor. The 
design options implemented in a system are influenced by cost, perfor-
mance, and system requirements. In many cases, design issues cited here 
are discussed in detail in other sections of this manual. In such cases, a ref-
erence appears to the corresponding section of the text, instead of 
repeating the discussion in this chapter.

Pin Descriptions
Refer to ADSP-BF531/ADSP-BF532/ADSP-BF533 Embedded Processor 
Data Sheet for pin information, including pin numbers for the 160-lead 
PBGA package.

Recommendations for Unused Pins
Refer to ADSP-BF531/ADSP-BF532/ADSP-BF533 Embedded Processor 
Data Sheet for detailed pin descriptions.

Resetting the Processor
In addition to the Hardware Reset mode provided via the RESET pin, the 
processor supports several software reset modes. For detailed information 
on the various modes, see “System Reset and Powerup” on page 3-12.

The processor state after reset is described in “Reset State” on page 3-10.
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Booting the Processor
The processor can be booted via a variety of methods. These include exe-
cuting from external 16-bit memory, booting from a ROM configured to 
load code from 8-bit flash memory, or booting from a serial ROM (8-bit, 
16-bit, or 24-bit address range). For more information on boot modes, see 
“Booting Methods” on page 3-18.

Figure 18-1 and Figure 18-2 show the connections necessary for 8-bit and 
16-bit booting, respectively. Notice that the address connections are made 
in the same manner for both 8- and 16-bit peripherals. Only the lower 
byte of each 16-bit word is accessed if byte-wide memory is used.

For example, on core reads of the form:

R0 = W[P0] (Z) ; //P0 points to a 16-bit aligned ASYNC memory 

location

only the lower 8 bits of R0 contain the actual value read from the 8-bit 
device.

For core writes of the form:

W[P0] = R0.L ; //P0 points to a 16-bit aligned ASYNC memory 

location

The 8-bit value to be written to the 8-bit device should be first loaded into 
the lower byte of R0.
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Figure 18-1. Interface to 8-Bit SRAM or Flash

Figure 18-2. Interface to 16-Bit SRAM or Flash
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Managing Clocks
Systems can drive the clock inputs with a crystal oscillator or a buffered, 
shaped clock derived from an external clock oscillator. The external clock 
connects to the processor’s CLKIN pin. It is not possible to halt, change, or 
operate CLKIN below the specified frequency during normal operation. The 
processor uses the clock input (CLKIN) to generate on-chip clocks. These 
include the core clock (CCLK) and the peripheral clock (SCLK).

Managing Core and System Clocks
The processor produces a multiplication of the clock input provided on 
the CLKIN pin to generate the PLL VCO clock. This VCO clock is divided to 
produce the core clock (CCLK) and the system clock (SCLK). The core clock 
is based on a divider ratio that is programmed via the CSEL bit settings in 
the PLL_DIV register. The system clock is based on a divider ratio that is 
programmed via the SSEL bit settings in the PLL_DIV register. For detailed 
information about how to set and change CCLK and SCLK frequencies, see 
Chapter 8, “Dynamic Power Management”.

Configuring and Servicing Interrupts
A variety of interrupts are available. They include both core and periph-
eral interrupts. The processor assigns default core priorities to system-level 
interrupts. However, these system interrupts can be remapped via the Sys-
tem Interrupt Assignment registers (SIC_IARx). For more information, see 
“System Interrupt Assignment Registers (SIC_IARx)” on page 4-29.

The processor core supports nested and non-nested interrupts, as well as 
self-nested interrupts. For explanations of the various modes of servicing 
events, see “Nesting of Interrupts” on page 4-50.



ADSP-BF533 Blackfin Processor Hardware Reference 18-5 
 

System Design

Semaphores
Semaphores provide a mechanism for communication between multiple 
processors or processes/threads running in the same system. They are used 
to coordinate resource sharing. For instance, if a process is using a particu-
lar resource and another process requires that same resource, it must wait 
until the first process signals that it is no longer using the resource. This 
signalling is accomplished via semaphores.

Semaphore coherency is guaranteed by using the Test and Set Byte 
(Atomic) instruction (TESTSET). The TESTSET instruction performs these 
functions.

• Loads the half word at memory location pointed to by a P-register. 
The P-register must be aligned on a half-word boundary.

• Sets CC if the value is equal to zero.

• Stores the value back in its original location (but with the most sig-
nificant bit (MSB) of the low byte set to 1).

The events triggered by TESTSET are atomic operations. The bus for the 
memory where the address is located is acquired and not relinquished 
until the store operation completes. In multithreaded systems, the 
TESTSET instruction is required to maintain semaphore consistency. 

To ensure that the store operation is flushed through any store or write 
buffers, issue an SSYNC instruction immediately after semaphore release.

The TESTSET instruction can be used to implement binary semaphores or 
any other type of mutual exclusion method. The TESTSET instruction sup-
ports a system-level requirement for a multicycle bus lock mechanism.

The processor restricts use of the TESTSET instruction to the external mem-
ory region only. Use of the TESTSET instruction to address any other area 
of the memory map may result in unreliable behavior.
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Example Code for Query Semaphore
Listing 18-1 provides an example of a query semaphore that checks the 
availability of a shared resource.

Listing 18-1. Query Semaphore

/* Query semaphore. Denotes "Busy" if its value is nonzero. Wait 

until free (or reschedule thread-- see note below). P0 holds 

address of semaphore. */

QUERY:

TESTSET ( P0 ) ;

IF !CC JUMP QUERY ;

/* At this point, semaphore has been granted to current thread, 

and all other contending threads are postponed because semaphore 

value at [P0] is nonzero. Current thread could write thread_id to 

semaphore location to indicate current owner of resource. */

R0.L = THREAD_ID ;

B[P0] = R0 ;

/* When done using shared resource, write a zero byte to [P0] */

R0 = 0 ;

B[P0] = R0 ;

SSYNC ;

/* NOTE: Instead of busy idling in the QUERY loop, one can use an 

operating system call to reschedule the current thread. */

Data Delays, Latencies and Throughput
For detailed information on latencies and performance estimates on the 
DMA and External Memory buses, refer to Chapter 7, “Chip Bus 
Hierarchy”.
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Bus Priorities
For an explanation of prioritization between the various internal buses, 
refer to Chapter 7, “Chip Bus Hierarchy”.

External Memory Design Issues
This section describes design issues related to external memory.

Example Asynchronous Memory Interfaces
This section shows glueless connections to 16-bit wide SRAM. Note this 
interface does not require external assertion of ARDY, since the internal wait 
state counter is sufficient for deterministic access times of memories.

Figure 18-3 shows the system interconnect required to support 16-bit 
memories. The programming model must ensure that data is only accessed 
on 16-bit boundaries.

Figure 18-3. Interface to 16-Bit SRAM

ADDR[N+1:2]

DATA[15:0]

ARDY

CE

OE

R/W

SRAM

BE[1:0]

A[N:1]

D[15:0]

ADDR[1]

ADSP-BF533
ADSP-BF532
ADSP-BF531

A[0]

AWE

AOE

AMS[X]

ARE

ABE[1:0]



External Memory Design Issues

18-8 ADSP-BF533 Blackfin Processor Hardware Reference
 

Using SDRAMs Smaller Than 16M Byte
It is possible to use SDRAMs smaller than 16M byte on the 
ADSP-BF531/ADSP-BF532/ADSP-BF533, as long as it is understood 
how the resulting memory map is altered. Figure 18-4 shows an example 
where a 2M byte SDRAM (512K x 16 bits x 2 banks) is mapped to the 
external memory interface. In this example, there are 11 row addresses and 
8 column addresses per bank. Referring to Table 17-5, the lowest available 
bank size (16M byte) for a device with 8 column addresses has 2 Bank 
Address lines (IA[23:22]) and 13 Row Address lines (IA[21:9]). Therefore, 
1 processor Bank Address line and 2 Row Address lines are unused when 
hooking up to the SDRAM in the example. This causes aliasing in the 
processor’s external memory map, which results in the SDRAM being 
mapped into noncontiguous regions of the processor’s memory space.

Referring to the table in Figure 18-4, note that each line in the table cor-

responds to 219 bytes, or 512K byte. Thus, the mapping of the 2M byte 
SDRAM is noncontiguous in Blackfin memory, as shown by the memory 
mapping in the left side of the figure.

Managing SDRAM Refresh During PLL Transitions
Since the processor’s SDRAM refresh rate is based on the SCLK frequency, 
lowering SCLK after configuring SDRAM can result in an improper refresh 
rate, which could compromise the data stored in SDRAM. Raising SCLK 
after configuring SDRAM, however, would merely result in a less efficient 
use of SDRAM, since the processor would just refresh the memory at an 
unnecessarily fast rate.
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Figure 18-4. Using Small SDRAMs
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In systems where SDRAM is used, the recommended procedure for chang-
ing the PLL VCO frequency is:

1. Issue an SSYNC instruction to ensure all pending memory opera-
tions have completed.

2. Set the SDRAM to Self-Refresh mode by writing a 1 to the SRFS bit 
of EBIU_SDGCTL.

3. Execute the desired PLL programming sequence (refer to 
Chapter 8, “Dynamic Power Management” for details).

4. After the wakeup occurs that signifies the PLL has settled to the 
new VCO frequency, reprogram the SDRAM Refresh Rate Control 
register (EBIU_SDRRC) with a value appropriate to the new SCLK 
frequency.

5. Bring the SDRAM out of Self-Refresh mode by clearing the SRFS 
bit of EBIU_SDGCTL. If it is desired to change the SDRAM Mode 
register, write these changes to EBIU_SDGCTL as well, making sure 
the PSSE bit is set.

Changing the SCLK frequency using the SSEL bits in PLL_DIV, as opposed 
to actually changing the VCO frequency, should be done using these steps:

1. Issue an SSYNC instruction to ensure all pending memory opera-
tions have completed.

2. Set the SDRAM to Self-Refresh mode by writing a 1 to the SRFS bit 
of EBIU_SDGCTL.

3. Execute the desired write to the SSEL bits.
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4. Reprogram the SDRAM Refresh Rate Control register 
(EBIU_SDRRC) with a value appropriate to the new SCLK frequency.

5. Bring the SDRAM out of Self-Refresh mode by clearing the SRFS 
bit of EBIU_SDGCTL. If it is desired to change the SDRAM Mode 
register, write these changes to EBIU_SDGCTL as well, making sure 
the PSSE bit is set.

Note steps 2 and 4 are not strictly necessary if changing SCLK to a higher 
value, but they should always be performed when decreasing SCLK. 

For more information on SDRAM refresh, refer to “SDRAM Controller 
(SDC)” in Chapter 17, External Bus Interface Unit.

Avoiding Bus Contention 
Because the three-stated data bus is shared by multiple devices in a system, 
be careful to avoid contention. Contention causes excessive power dissipa-
tion and can lead to device failure. Contention occurs during the time one 
device is getting off the bus and another is getting on. If the first device is 
slow to three-state and the second device is quick to drive, the devices 
contend.

Contention can occur in two cases. The first case is a read followed by a 
write to the same memory space. In this case, the data bus drivers can 
potentially contend with those of the memory device addressed by the 
read. The second case is back-to-back reads from two different memory 
spaces. In this case, the two memory devices addressed by the two reads 
can potentially contend at the transition between the two read operations.

To avoid contention, program the turnaround time (Bank Transition 
Time) appropriately in the Asynchronous Memory Bank Control regis-
ters. This feature allows software to set the number of clock cycles 
between these types of accesses on a bank-by-bank basis. Minimally, the 
External Bus Interface Unit (EBIU) provides one cycle for the transition 
to occur.
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High Frequency Design Considerations
Because the processor can operate at very fast clock frequencies, signal 
integrity and noise problems must be considered for circuit board design 
and layout. The following sections discuss these topics and suggest various 
techniques to use when designing and debugging signal processing 
systems.

Point-to-Point Connections on Serial Ports
Although the serial ports may be operated at a slow rate, the output drivers 
still have fast edge rates and for longer distances the drivers may require 
source termination.

You can add a series termination resistor near the pin for point-to-point 
connections. Typically, serial port applications use this termination 
method when distances are greater than 6 inches. For details, see the refer-
ence source in “Recommended Reading” on page 18-15 for suggestions on 
transmission line termination. Also, see the processor data sheet for rise 
and fall time data for the output drivers.

Signal Integrity
The capacitive loading on high-speed signals should be reduced as much 
as possible. Loading of buses can be reduced by using a buffer for devices 
that operate with wait states (for example, DRAMs). This reduces the 
capacitance on signals tied to the zero-wait-state devices, allowing these 
signals to switch faster and reducing noise-producing current spikes.

Signal run length (inductance) should also be minimized to reduce ring-
ing. Extra care should be taken with certain signals such as external 
memory, read, write, and acknowledge strobes. 
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Other recommendations and suggestions to promote signal integrity:

• Use more than one ground plane on the Printed Circuit Board 
(PCB) to reduce crosstalk. Be sure to use lots of vias between the 
ground planes. These planes should be in the center of the PCB.

• Keep critical signals such as clocks, strobes, and bus requests on a 
signal layer next to a ground plane and away from or laid out per-
pendicular to other non-critical signals to reduce crosstalk. 

• Design for lower transmission line impedances to reduce crosstalk 
and to allow better control of impedance and delay.

• Experiment with the board and isolate crosstalk and noise issues 
from reflection issues. This can be done by driving a signal wire 
from a pulse generator and studying the reflections while other 
components and signals are passive.

Decoupling Capacitors and Ground Planes
Ground planes must be used for the ground and power supplies. The 
capacitors should be placed very close to the VDDEXT and VDDINT pins of the 
package as shown in Figure 18-5. Use short and fat traces for this. The 
ground end of the capacitors should be tied directly to the ground plane 
inside the package footprint of the processor (underneath it, on the bot-
tom of the board), not outside the footprint. A surface-mount capacitor is 
recommended because of its lower series inductance. 
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Connect the power plane to the power supply pins directly with minimum 
trace length. The ground planes must not be densely perforated with vias 
or traces as their effectiveness is reduced. In addition, there should be sev-
eral large tantalum capacitors on the board.

 Designs can use either bypass placement case or combinations of 
the two. Designs should try to minimize signal feedthroughs that 
perforate the ground plane.

Figure 18-5. Bypass Capacitor Placement

CASE 1:
BYPASS CAPACITORS ON NON-
COMPONENT (BOTTOM) SIDE OF
BOARD, BENEATH PACKAGE

a

B
ADSP -BF533

CASE 2:
BYPASS CAPACITORS ON
COMPONENT (TOP) SIDE OF
BOARD, AROUND PACKAGE
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Oscilloscope Probes
When making high-speed measurements, be sure to use a “bayonet” type 
or similarly short (< 0.5 inch) ground clip, attached to the tip of the oscil-
loscope probe. The probe should be a low-capacitance active probe 
with 3 pF or less of loading. The use of a standard ground clip with 
4 inches of ground lead causes ringing to be seen on the displayed trace 
and makes the signal appear to have excessive overshoot and undershoot. 
To see the signals accurately, a 1 GHz or better sampling oscilloscope is 
needed.

Recommended Reading
 For more information, refer to High-Speed Digital Design: A Handbook of 
Black Magic, Johnson & Graham, Prentice Hall, Inc., ISBN 
0-13-395724-1.

This book is a technical reference that covers the problems encountered in 
state of the art, high-frequency digital circuit design. It is an excellent 
source of information and practical ideas. Topics covered in the book 
include:

• High-speed Properties of Logic Gates

• Measurement Techniques

• Transmission Lines

• Ground Planes and Layer Stacking

• Terminations

• Vias

• Power Systems

• Connectors
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• Ribbon Cables

• Clock Distribution

• Clock Oscillators
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A BLACKFIN PROCESSOR 
CORE MMR ASSIGNMENTS

The Blackfin processor’s memory-mapped registers (MMRs) are in the 
address range 0xFFE0 0000 – 0xFFFF FFFF. 

 All core MMRs must be accessed with a 32-bit read or write access.

This appendix lists core MMR addresses and register names. To find more 
information about an MMR, refer to the page shown in the “See Section” 
column. When viewing the PDF version of this document, click a refer-
ence in the “See Section” column to jump to additional information about 
the MMR.

L1 Data Memory Controller Registers
L1 Data Memory Controller registers (0xFFE0 0000 – 0xFFE0 0404)

Table A-1. L1 Data Memory Controller Registers

Memory-Mapped 
Address

Register Name See Section

0xFFE0 0004 DMEM_CONTROL “DMEM_CONTROL Register” on 
page 6-28

0xFFE0 0008 DCPLB_STATUS “DCPLB_STATUS and ICPLB_STATUS 
Registers” on page -61

0xFFE0 000C DCPLB_FAULT_ADDR “DCPLB_FAULT_ADDR and 
ICPLB_FAULT_ADDR Registers” on 
page 6-63

0xFFE0 0100 DCPLB_ADDR0 “DCPLB_ADDRx Registers” on page 6-59



L1 Data Memory Controller Registers

A-2 ADSP-BF533 Blackfin Processor Hardware Reference
 

0xFFE0 0104 DCPLB_ADDR1 “DCPLB_ADDRx Registers” on page 6-59

0xFFE0 0108 DCPLB_ADDR2 “DCPLB_ADDRx Registers” on page 6-59

0xFFE0 010C DCPLB_ADDR3 “DCPLB_ADDRx Registers” on page 6-59

0xFFE0 0110 DCPLB_ADDR4 “DCPLB_ADDRx Registers” on page 6-59

0xFFE0 0114 DCPLB_ADDR5 “DCPLB_ADDRx Registers” on page 6-59

0xFFE0 0118 DCPLB_ADDR6 “DCPLB_ADDRx Registers” on page 6-59

0xFFE0 011C DCPLB_ADDR7 “DCPLB_ADDRx Registers” on page 6-59

0xFFE0 0120 DCPLB_ADDR8 “DCPLB_ADDRx Registers” on page 6-59

0xFFE0 0124 DCPLB_ADDR9 “DCPLB_ADDRx Registers” on page 6-59

0xFFE0 0128 DCPLB_ADDR10 “DCPLB_ADDRx Registers” on page 6-59

0xFFE0 012C DCPLB_ADDR11 “DCPLB_ADDRx Registers” on page 6-59

0xFFE0 0130 DCPLB_ADDR12 “DCPLB_ADDRx Registers” on page 6-59

0xFFE0 0134 DCPLB_ADDR13 “DCPLB_ADDRx Registers” on page 6-59

0xFFE0 0138 DCPLB_ADDR14 “DCPLB_ADDRx Registers” on page 6-59

0xFFE0 013C DCPLB_ADDR15 “DCPLB_ADDRx Registers” on page 6-59

0xFFE0 0200 DCPLB_DATA0 “DCPLB_DATAx Registers” on page 6-57

0xFFE0 0204 DCPLB_DATA1 “DCPLB_DATAx Registers” on page 6-57

0 xFFE0 0208 DCPLB_DATA2 “DCPLB_DATAx Registers” on page 6-57

0xFFE0 020C DCPLB_DATA3 “DCPLB_DATAx Registers” on page 6-57

0xFFE0 0210 DCPLB_DATA4 “DCPLB_DATAx Registers” on page 6-57

0xFFE0 0214 DCPLB_DATA5 “DCPLB_DATAx Registers” on page 6-57

0xFFE0 0218 DCPLB_DATA6 “DCPLB_DATAx Registers” on page 6-57

0xFFE0 021C DCPLB_DATA7 “DCPLB_DATAx Registers” on page 6-57

0xFFE0 0220 DCPLB_DATA8 “DCPLB_DATAx Registers” on page 6-57

0xFFE0 0224 DCPLB_DATA9 “DCPLB_DATAx Registers” on page 6-57

Table A-1. L1 Data Memory Controller Registers (Cont’d)

Memory-Mapped 
Address

Register Name See Section
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L1 Instruction Memory Controller 
Registers

L1 Instruction Memory Controller registers (0xFFE0 1004 –
0xFFE0 1404)

0xFFE0 0228 DCPLB_DATA10 “DCPLB_DATAx Registers” on page 6-57

0xFFE0 022C DCPLB_DATA11 “DCPLB_DATAx Registers” on page 6-57

0xFFE0 0230 DCPLB_DATA12 “DCPLB_DATAx Registers” on page 6-57

0xFFE0 0234 DCPLB_DATA13 “DCPLB_DATAx Registers” on page 6-57

0xFFE0 0238 DCPLB_DATA14 “DCPLB_DATAx Registers” on page 6-57

0xFFE0 023C DCPLB_DATA15 “DCPLB_DATAx Registers” on page 6-57

0xFFE0 0300 DTEST_COMMAND “DTEST_COMMAND Register” on 
page 6-44

0xFFE0 0400 DTEST_DATA0 “DTEST_DATA0 Register” on page 6-45

0xFFE0 0404 DTEST_DATA1 “DTEST_DATA1 Register” on page 6-45

Table A-2. L1 Instruction Memory Controller Registers

Memory-Mapped 
Address

Register Name See Section

0xFFE0 1004 IMEM_CONTROL “IMEM_CONTROL Register” on page 6-9

0xFFE0 1008 ICPLB_STATUS “DCPLB_STATUS and ICPLB_STATUS 
Registers” on page 6-61

0xFFE0 100C ICPLB_FAULT_ADDR “DCPLB_FAULT_ADDR and 
ICPLB_FAULT_ADDR Registers” on 
page 6-63

0xFFE0 1100 ICPLB_ADDR0 “ICPLB_ADDRx Registers” on page 6-60

Table A-1. L1 Data Memory Controller Registers (Cont’d)

Memory-Mapped 
Address

Register Name See Section
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0xFFE0 1104 ICPLB_ADDR1 “ICPLB_ADDRx Registers” on page 6-60

0xFFE0 1108 ICPLB_ADDR2 “ICPLB_ADDRx Registers” on page 6-60

0xFFE0 110C ICPLB_ADDR3 “ICPLB_ADDRx Registers” on page 6-60

0xFFE0 1110 ICPLB_ADDR4 “ICPLB_ADDRx Registers” on page 6-60

0xFFE0 1114 ICPLB_ADDR5 “ICPLB_ADDRx Registers” on page 6-60

0xFFE0 1118 ICPLB_ADDR6 “ICPLB_ADDRx Registers” on page 6-60

0xFFE0 111C ICPLB_ADDR7 “ICPLB_ADDRx Registers” on page 6-60

0xFFE0 1120 ICPLB_ADDR8 “ICPLB_ADDRx Registers” on page 6-60

0xFFE0 1124 ICPLB_ADDR9 “ICPLB_ADDRx Registers” on page 6-60

0xFFE0 1128 ICPLB_ADDR10 “ICPLB_ADDRx Registers” on page 6-60

0xFFE0 112C ICPLB_ADDR11 “ICPLB_ADDRx Registers” on page 6-60

0xFFE0 1130 ICPLB_ADDR12 “ICPLB_ADDRx Registers” on page 6-60

0xFFE0 1134 ICPLB_ADDR13 “ICPLB_ADDRx Registers” on page 6-60

0xFFE0 1138 ICPLB_ADDR14 “ICPLB_ADDRx Registers” on page 6-60

0xFFE0 113C ICPLB_ADDR15 “ICPLB_ADDRx Registers” on page 6-60

0xFFE0 1200 ICPLB_DATA0 “ICPLB_DATAx Registers” on page 6-55

0xFFE0 1204 ICPLB_DATA1 “ICPLB_DATAx Registers” on page 6-55

0xFFE0 1208 ICPLB_DATA2 “ICPLB_DATAx Registers” on page 6-55

0xFFE0 120C ICPLB_DATA3 “ICPLB_DATAx Registers” on page 6-55

0xFFE0 1210 ICPLB_DATA4 “ICPLB_DATAx Registers” on page 6-55

0xFFE0 1214 ICPLB_DATA5 “ICPLB_DATAx Registers” on page 6-55

0xFFE0 1218 ICPLB_DATA6 “ICPLB_DATAx Registers” on page 6-55

0xFFE0 121C ICPLB_DATA7 “ICPLB_DATAx Registers” on page 6-55

0xFFE0 1220 ICPLB_DATA8 “ICPLB_DATAx Registers” on page 6-55

0xFFE0 1224 ICPLB_DATA9 “ICPLB_DATAx Registers” on page 6-55

Table A-2. L1 Instruction Memory Controller Registers (Cont’d)

Memory-Mapped 
Address

Register Name See Section
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Interrupt Controller Registers
Interrupt Controller registers (0xFFE0 2000 – 0xFFE0 2110)

0xFFE0 1228 ICPLB_DATA10 “ICPLB_DATAx Registers” on page 6-55

0xFFE0 122C ICPLB_DATA11 “ICPLB_DATAx Registers” on page 6-55

0xFFE0 1230 ICPLB_DATA12 “ICPLB_DATAx Registers” on page 6-55

0xFFE0 1234 ICPLB_DATA13 “ICPLB_DATAx Registers” on page 6-55

0xFFE0 1238 ICPLB_DATA14 “ICPLB_DATAx Registers” on page 6-55

0xFFE0 123C ICPLB_DATA15 “ICPLB_DATAx Registers” on page 6-55

0xFFE0 1300 ITEST_COMMAND “ITEST_COMMAND Register” on page -25

0XFFE0 1400 ITEST_DATA0 “ITEST_DATA0 Register” on page -26

0XFFE0 1404 ITEST_DATA1 “ITEST_DATA1 Register” on page 6-25

Table A-3. Interrupt Controller Registers

Memory-Mapped 
Address

Register Name See Section

0xFFE0 2000 EVT0
(EMU) 

“Core Event Vector Table” on page 4-38

0xFFE0 2004 EVT1
(RST) 

“Core Event Vector Table” on page 4-38

0xFFE0 2008 EVT2
(NMI)

“Core Event Vector Table” on page 4-38

0xFFE0 200C EVT3
(EVX) 

“Core Event Vector Table” on page 4-38

0xFFE0 2010 EVT4 “Core Event Vector Table” on page 4-38

Table A-2. L1 Instruction Memory Controller Registers (Cont’d)

Memory-Mapped 
Address

Register Name See Section
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0xFFE0 2014 EVT5
(IVHW)

“Core Event Vector Table” on page 4-38

0xFFE0 2018 EVT6
(TMR)

“Core Event Vector Table” on page 4-38

0xFFE0 201C EVT7
(IVG7)

“Core Event Vector Table” on page 4-38

0xFFE0 2020 EVT8
(IVG8)

“Core Event Vector Table” on page 4-38

0xFFE0 2024 EVT9
(IVG9)

“Core Event Vector Table” on page 4-38

0xFFE0 2028 EVT10
(IVG10)

“Core Event Vector Table” on page 4-38

0xFFE0 202C EVT11
(IVG11)

“Core Event Vector Table” on page 4-38

0xFFE0 2030 EVT12
(IVG12)

“Core Event Vector Table” on page 4-38

0xFFE0 2034 EVT13
(IVG13)

“Core Event Vector Table” on page 4-38

0xFFE0 2038 EVT14
(IVG14)

“Core Event Vector Table” on page 4-38

0xFFE0 203C EVT15
(IVG15)

“Core Event Vector Table” on page 4-38

0xFFE0 2104 IMASK “IMASK Register” on page 4-33

0xFFE0 2108 IPEND “IPEND Register” on page 4-36

0xFFE0 2110 IPRIO “IPRIO Register and Write Buffer Depth” on 
page 6-40

0xFFE0 210C ILAT “ILAT Register” on page 4-34

Table A-3. Interrupt Controller Registers (Cont’d)

Memory-Mapped 
Address

Register Name See Section
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Core Timer Registers
Core Timer registers (0xFFE0 3000 – 0xFFE0 300C)

Debug, MP, and Emulation Unit Registers
Debug, MP, and Emulation Unit registers (0xFFE0 5000 –
0xFFE0 5008)

For further details about these registers, see Chapter 21, “Debug” of the 
Blackfin Processor Programming Reference.

Table A-4. Core Timer Registers 

Memory-Mapped 
Address

Register Name See Section

0xFFE0 3000 TCNTL “TCNTL Register” on page 15-46

0xFFE0 3004 TPERIOD “TPERIOD Register” on page 15-48

0xFFE0 3008 TSCALE “TSCALE Register” on page 15-49

0xFFE0 300C TCOUNT “TCOUNT Register” on page 15-48

Table A-5. Debug and Emulation Unit Registers 

Memory-Mapped 
Address

Register Name

0xFFE0 5000 DSPID
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Trace Unit Registers
Trace Unit registers (0xFFE0 6000 – 0xFFE0 6100)

For further details about these registers, see Chapter 21, “Debug” of the 
Blackfin Processor Programming Reference.

Watchpoint and Patch Registers
Watchpoint and Patch registers (0xFFE0 7000 – 0xFFE0 7200) 

For further details about these registers, see Chapter 21, “Debug” of the 
Blackfin Processor Programming Reference.

Table A-6. Trace Unit Registers 

Memory-Mapped 
Address

Register Name

0xFFE0 6000 TBUFCTL

0xFFE0 6004 TBUFSTAT

0xFFE0 6100 TBUF

Table A-7. Watchpoint and Patch Registers

Memory-Mapped 
Address

Register Name

0xFFE0 7000 WPIACTL

0xFFE0 7040 WPIA0

0xFFE0 7044 WPIA1

0xFFE0 7048 WPIA2

0xFFE0 704C WPIA3

0xFFE0 7050 WPIA4

0xFFE0 7054 WPIA5
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Performance Monitor Registers
Performance Monitor registers (0xFFE0 8000 – 0xFFE0 8104) 

For further details about these registers, see Chapter 21, “Debug” of the 
Blackfin Processor Programming Reference.

0xFFE0 7080 WPIACNT0

0xFFE0 7084 WPIACNT1

0xFFE0 7088 WPIACNT2

0xFFE0 708C WPIACNT3

0xFFE0 7090 WPIACNT4

0xFFE0 7094 WPIACNT5

0xFFE0 7100 WPDACTL

0xFFE0 7140 WPDA0

0xFFE0 7144 WPDA1

0xFFE0 7180 WPDACNT0

0xFFE0 7184 WPDACNT1

0xFFE0 7200 WPSTAT

Table A-8. Performance Monitor Registers 

Memory-Mapped 
Address

Register Name

0xFFE0 8000 PFCTL

0xFFE0 8100 PFCNTR0

0xFFE0 8104 PFCNTR1

Table A-7. Watchpoint and Patch Registers (Cont’d)

Memory-Mapped 
Address

Register Name
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B SYSTEM MMR ASSIGNMENTS

These notes provide general information about the system mem-
ory-mapped registers (MMRs):

• The system MMR address range is 0xFFC0 0000 – 0xFFDF FFFF.

• All system MMRs are either 16 bits or 32 bits wide. MMRs that are 
16 bits wide must be accessed with 16-bit read or write operations. 
MMRs that are 32 bits wide must be accessed with 32-bit read or 
write operations. Check the description of the MMR to determine 
whether a 16-bit or a 32-bit access is required.

• All system MMR space that is not defined in this appendix is 
reserved for internal use only.

This appendix lists MMR addresses and register names. To find more 
information about an MMR, refer to the page shown in the “See Section” 
column. When viewing the PDF version of this document, click a refer-
ence in the “See Section” column to jump to additional information about 
the MMR.
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Dynamic Power Management Registers
Dynamic Power Management registers (0xFFC0 0000 – 0xFFC0 00FF)

System Reset and Interrupt Control 
Registers

System Reset and Interrupt Controller registers (0xFFC0 0100 –
0xFFC0 01FF)

Table B-1. Dynamic Power Management Registers

Memory-Mapped 
Address

Register Name See Section

0xFFC0 0000 PLL_CTL “PLL_CTL Register” on page 8-7

0xFFC0 0004 PLL_DIV “PLL_DIV Register” on page 8-7

0xFFC0 0008 VR_CTL “VR_CTL Register” on page 8-26

0xFFC0 000C PLL_STAT “PLL_STAT Register” on page 8-9

0xFFC0 0010 PLL_LOCKCNT “PLL_LOCKCNT Register” on page 8-11

Table B-2. System Interrupt Controller Registers

Memory-Mapped 
Address

Register Name See Section

0xFFC0 0100 SWRST “SWRST Register” on page 3-16

0xFFC0 0104 SYSCR “SYSCR Register” on page 3-14

0xFFC0 010C SIC_IMASK “SIC_IMASK Register” on page 4-28

0xFFC0 0110 SIC_IAR0 “System Interrupt Assignment Registers 
(SIC_IARx)” on page 4-29

0xFFC0 0114 SIC_IAR1 “System Interrupt Assignment Registers 
(SIC_IARx)” on page 4-29
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Watchdog Timer Registers
Watchdog Timer registers (0xFFC0 0200 – 0xFFC0 02FF)

Real-Time Clock Registers
Real-Time Clock registers (0xFFC0 0300 – 0xFFC0 03FF) 

0xFFC0 0118 SIC_IAR2 “System Interrupt Assignment Registers 
(SIC_IARx)” on page 4-29

0xFFC0 0120 SIC_ISR “SIC_ISR Register” on page 4-27

0xFFC0 0124 SIC_IWR “SIC_IWR Register” on page 4-25

Table B-3. Watchdog Timer Registers 

Memory-Mapped 
Address

Register Name See Section

0xFFC0 0200 WDOG_CTL “WDOG_CTL Register” on page 15-53

0xFFC0 0204 WDOG_CNT “WDOG_CNT Register” on page 15-51

0xFFC0 0208 WDOG_STAT “WDOG_STAT Register” on page 15-52

Table B-4. Real-Time Clock Registers

Memory-Mapped 
Address

Register Name See Section

0xFFC0 0300 RTC_STAT “RTC_STAT Register” on page 16-13

0xFFC0 0304 RTC_ICTL “RTC_ICTL Register” on page 16-15

0xFFC0 0308 RTC_ISTAT “RTC_ISTAT Register” on page 16-16

Table B-2. System Interrupt Controller Registers (Cont’d)

Memory-Mapped 
Address

Register Name See Section
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Parallel Peripheral Interface (PPI) 
Registers

Parallel Peripheral Interface (PPI) registers (0xFFC0 1000 –
0xFFC0 10FF)

0xFFC0 030C RTC_SWCNT “RTC_SWCNT Register” on page 16-17

0xFFC0 0310 RTC_ALARM “RTC_ALARM Register” on page 16-18

0xFFC0 0314 RTC_PREN “RTC_PREN Register” on page 16-19

Table B-5. Parallel Peripheral Interface (PPI) Registers

Memory-Mapped 
Address

Register Name See Section

0xFFC0 1000 PPI_CONTROL “PPI_CONTROL Register” on page 11-3

0xFFC0 1004 PPI_STATUS “PPI_STATUS Register” on page 11-8

0xFFC0 1008 PPI_COUNT “PPI_COUNT Register” on page 11-11

0xFFC0 100C PPI_DELAY “PPI_DELAY Register” on page 11-10

0xFFC0 1010 PPI_FRAME “PPI_FRAME Register” on page 11-12

Table B-4. Real-Time Clock Registers (Cont’d)

Memory-Mapped 
Address

Register Name See Section
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UART Controller Registers
UART Controller registers (0xFFC0 0400 – 0xFFC0 04FF)

SPI Controller Registers
SPI Controller registers (0xFFC0 0500 – 0xFFC0 05FF) 

Table B-6. UART Controller Registers 

Memory-Mapped 
Address

Register Name See Section

0xFFC0 0400 UART_THR “UART_THR Register” on page 13-6

0xFFC0 0400 UART_RBR “UART_RBR Register” on page 13-7

0xFFC0 0400 UART_DLL “UART_DLL and UART_DLH Registers” on 
page 13-11

0xFFC0 0404 UART_DLH “UART_DLL and UART_DLH Registers” on 
page 13-11

0xFFC0 0404 UART_IER “UART_IER Register” on page 13-8

0xFFC0 0408 UART_IIR “UART_IIR Register” on page 13-10

0xFFC0 040C UART_LCR “UART_LCR Register” on page 13-3

0xFFC0 0410 UART_MCR “UART_MCR Register” on page 13-4

0xFFC0 0414 UART_LSR “UART_LSR Register” on page 13-5

0xFFC0 041C UART_SCR “UART_SCR Register” on page 13-13

0xFFC0 0424 UART_GCTL “UART_GCTL Register” on page 13-14

Table B-7. SPI Controller Registers

Memory-Mapped 
Address

Register Name See Section

0xFFC0 0500 SPI_CTL “SPI_CTL Register” on page 10-9

0xFFC0 0504 SPI_FLG “SPI_FLG Register” on page 10-10
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Timer Registers
Timer registers (0xFFC0 0600 – 0xFFC0 06FF) 

0xFFC0 0508 SPI_STAT “SPI_STAT Register” on page 10-16

0xFFC0 050C SPI_TDBR “SPI_TDBR Register” on page 10-18

0xFFC0 0510 SPI_RDBR “SPI_RDBR Register” on page 10-19

0xFFC0 0514 SPI_BAUD “SPI_BAUD Register” on page 10-8

0xFFC0 0518 SPI_SHADOW “SPI_SHADOW Register” on page 10-19

Table B-8. Timer Registers

Memory-Mapped 
Address

Register Name See Section

0xFFC0 0600 TIMER0_CONFIG “TIMERx_CONFIG Registers” on page 15-8

0xFFC0 0604 TIMER0_COUNTER “TIMERx_COUNTER Registers” on 
page 15-9

0xFFC0 0608 TIMER0_PERIOD “TIMERx_PERIOD and TIMERx_WIDTH 
Registers” on page 15-10

0xFFC0 060C TIMER0_WIDTH “TIMERx_PERIOD and TIMERx_WIDTH 
Registers” on page 15-10

0xFFC0 0610 TIMER1_CONFIG “TIMERx_CONFIG Registers” on page 15-8

0xFFC0 0614 TIMER1_COUNTER “TIMERx_COUNTER Registers” on 
page 15-9

0xFFC0 0618 TIMER1_PERIOD “TIMERx_PERIOD and TIMERx_WIDTH 
Registers” on page 15-10

0xFFC0 061C TIMER1_WIDTH “TIMERx_PERIOD and TIMERx_WIDTH 
Registers” on page 15-10

0xFFC0 0620 TIMER2_CONFIG “TIMERx_CONFIG Registers” on page 15-8

Table B-7. SPI Controller Registers (Cont’d)

Memory-Mapped 
Address

Register Name See Section
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System MMR Assignments

Programmable Flag Registers
Programmable Flag registers (0xFFC0 0700 – 0xFFC0 07FF)

0xFFC0 0624 TIMER2_COUNTER “TIMERx_COUNTER Registers” on 
page 15-9

0xFFC0 0628 TIMER2_PERIOD “TIMERx_PERIOD and TIMERx_WIDTH 
Registers” on page 15-10

0xFFC0 062C TIMER2_WIDTH “TIMERx_PERIOD and TIMERx_WIDTH 
Registers” on page 15-10

0xFFC0 0640 TIMER_ENABLE “TIMER_ENABLE Register” on page 15-5

0xFFC0 0644 TIMER_DISABLE “TIMER_DISABLE Register” on page 15-5

0xFFC0 0648 TIMER_STATUS “TIMER_STATUS Register” on page 15-6

Table B-9. Programmable Flags Registers

Memory-Mapped 
Address

Register Name See Section

0xFFC0 0700 FIO_FLAG_D “FIO_FLAG_D Register” on page 14-8

0xFFC0 0704 FIO_FLAG_C “FIO_FLAG_S, FIO_FLAG_C, and 
FIO_FLAG_T Registers” on page 14-8

0xFFC0 0708 FIO_FLAG_S “FIO_FLAG_S, FIO_FLAG_C, and 
FIO_FLAG_T Registers” on page 14-8

0xFFC0 070C FIO_FLAG_T “FIO_FLAG_S, FIO_FLAG_C, and 
FIO_FLAG_T Registers” on page 14-8

0xFFC0 0710 FIO_MASKA_D “FIO_MASKA_D, FIO_MASKA_C, 
FIO_MASKA_S, FIO_MASKA_T, 
FIO_MASKB_D, FIO_MASKB_C, 
FIO_MASKB_S, FIO_MASKB_T Registers” 
on page 14-11

Table B-8. Timer Registers (Cont’d)

Memory-Mapped 
Address

Register Name See Section
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0xFFC0 0714 FIO_MASKA_C “FIO_MASKA_D, FIO_MASKA_C, 
FIO_MASKA_S, FIO_MASKA_T, 
FIO_MASKB_D, FIO_MASKB_C, 
FIO_MASKB_S, FIO_MASKB_T Registers” 
on page 14-11

0xFFC0 0718 FIO_MASKA_S “FIO_MASKA_D, FIO_MASKA_C, 
FIO_MASKA_S, FIO_MASKA_T, 
FIO_MASKB_D, FIO_MASKB_C, 
FIO_MASKB_S, FIO_MASKB_T Registers” 
on page 14-11

0xFFC0 071C FIO_MASKA_T “FIO_MASKA_D, FIO_MASKA_C, 
FIO_MASKA_S, FIO_MASKA_T, 
FIO_MASKB_D, FIO_MASKB_C, 
FIO_MASKB_S, FIO_MASKB_T Registers” 
on page 14-11

0xFFC0 0720 FIO_MASKB_D “FIO_MASKA_D, FIO_MASKA_C, 
FIO_MASKA_S, FIO_MASKA_T, 
FIO_MASKB_D, FIO_MASKB_C, 
FIO_MASKB_S, FIO_MASKB_T Registers” 
on page 14-11

0xFFC0 0724 FIO_MASKB_C “FIO_MASKA_D, FIO_MASKA_C, 
FIO_MASKA_S, FIO_MASKA_T, 
FIO_MASKB_D, FIO_MASKB_C, 
FIO_MASKB_S, FIO_MASKB_T Registers” 
on page 14-11

0xFFC0 0728 FIO_MASKB_S “FIO_MASKA_D, FIO_MASKA_C, 
FIO_MASKA_S, FIO_MASKA_T, 
FIO_MASKB_D, FIO_MASKB_C, 
FIO_MASKB_S, FIO_MASKB_T Registers” 
on page 14-11

0xFFC0 072C FIO_MASKB_T “FIO_MASKA_D, FIO_MASKA_C, 
FIO_MASKA_S, FIO_MASKA_T, 
FIO_MASKB_D, FIO_MASKB_C, 
FIO_MASKB_S, FIO_MASKB_T Registers” 
on page 14-11

Table B-9. Programmable Flags Registers (Cont’d)

Memory-Mapped 
Address

Register Name See Section
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System MMR Assignments

SPORT0 Controller Registers
SPORT0 Controller registers (0xFFC0 0800 – 0xFFC0 08FF) 

0xFFC0 0730 FIO_DIR “FIO_DIR Register” on page 14-5

0xFFC0 0734 FIO_POLAR “FIO_POLAR Register” on page 14-18

0xFFC0 0738 FIO_EDGE “FIO_EDGE Register” on page 14-18

0xFFC0 073C FIO_BOTH “FIO_BOTH Register” on page 14-19

0xFFC0 0740 FIO_INEN “FIO_INEN Register” on page 14-20

Table B-10. SPORT0 Controller Registers

Memory-Mapped 
Address

Register Name See Section

0xFFC0 0800 SPORT0_TCR1 “SPORTx_TCR1 and SPORTx_TCR2 Regis-
ters” on page 12-12

0xFFC0 0804 SPORT0_TCR2 “SPORTx_TCR1 and SPORTx_TCR2 Regis-
ters” on page 12-12

0xFFC0 0808 SPORT0_TCLKDIV “SPORTx_TCLKDIV and 
SPORTx_RCLKDIV Registers” on page 12-30

0xFFC0 080C SPORT0_TFSDIV “SPORTx_TFSDIV and SPORTx_RFSDIV 
Register” on page 12-31

0xFFC0 0810 SPORT0_TX “SPORTx_TX Register” on page 12-23

0xFFC0 0818 SPORT0_RX “SPORTx_RX Register” on page 12-24

0xFFC0 0820 SPORT0_RCR1 “SPORTx_RCR1 and SPORTx_RCR2 Regis-
ters” on page 12-18

0xFFC0 0824 SPORT0_RCR2 “SPORTx_RCR1 and SPORTx_RCR2 Regis-
ters” on page 12-18

Table B-9. Programmable Flags Registers (Cont’d)

Memory-Mapped 
Address

Register Name See Section
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0xFFC0 0828 SPORT0_RCLKDIV “SPORTx_TCLKDIV and 
SPORTx_RCLKDIV Registers” on page 12-30

0xFFC0 082C SPORT0_RFSDIV “SPORTx_TFSDIV and SPORTx_RFSDIV 
Register” on page 12-31

0xFFC0 0830 SPORT0_STAT “SPORTx_STAT Register” on page 12-28

0xFFC0 0834 SPORT0_CHNL “SPORTx_CHNL Register” on page 12-57

0xFFC0 0838 SPORT0_MCMC1 “SPORTx_MCMCn Registers” on page 12-51

0xFFC0 083C SPORT0_MCMC2 “SPORTx_MCMCn Registers” on page 12-51

0xFFC0 0840 SPORT0_MTCS0 “SPORTx_MTCSn Registers” on page 12-62

0xFFC0 0844 SPORT0_MTCS1 “SPORTx_MTCSn Registers” on page 12-62

0xFFC0 0848 SPORT0_MTCS2 “SPORTx_MTCSn Registers” on page 12-62

0xFFC0 084C SPORT0_MTCS3 “SPORTx_MTCSn Registers” on page 12-62

0xFFC0 0850 SPORT0_MRCS0 “SPORTx_MRCSn Registers” on page 12-60

0xFFC0 0854 SPORT0_MRCS1 “SPORTx_MRCSn Registers” on page 12-60

0xFFC0 0858 SPORT0_MRCS2 “SPORTx_MRCSn Registers” on page 12-60

0xFFC0 085C SPORT0_MRCS3 “SPORTx_MRCSn Registers” on page 12-60

Table B-10. SPORT0 Controller Registers (Cont’d)

Memory-Mapped 
Address

Register Name See Section
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System MMR Assignments

SPORT1 Controller Registers
SPORT1 Controller registers (0xFFC0 0900 – 0xFFC0 09FF)

Table B-11. SPORT 1 Controller Registers

Memory-Mapped 
Address

Register Name See Section

0xFFC0 0900 SPORT1_TCR1 “SPORTx_TCR1 and SPORTx_TCR2 Regis-
ters” on page 12-12

0xFFC0 0904 SPORT1_TCR2 “SPORTx_TCR1 and SPORTx_TCR2 Regis-
ters” on page 12-12

0xFFC0 0908 SPORT1_TCLKDIV “SPORTx_TCLKDIV and 
SPORTx_RCLKDIV Registers” on page 12-30

0xFFC0 090C SPORT1_TFSDIV “SPORTx_TFSDIV and SPORTx_RFSDIV 
Register” on page 12-31

0xFFC0 0910 SPORT1_TX “SPORTx_TX Register” on page 12-23

0xFFC0 0918 SPORT1_RX “SPORTx_RX Register” on page 12-24

0xFFC0 0920 SPORT1_RCR1 “SPORTx_RCR1 and SPORTx_RCR2 Regis-
ters” on page 12-18

0xFFC0 0924 SPORT1_RCR2 “SPORTx_RCR1 and SPORTx_RCR2 Regis-
ters” on page 12-18

0xFFC0 0928 SPORT1_RCLKDIV “SPORTx_TCLKDIV and 
SPORTx_RCLKDIV Registers” on page 12-30

0xFFC0 092C SPORT1_RFSDIV “SPORTx_TFSDIV and SPORTx_RFSDIV 
Register” on page 12-31

0xFFC0 0930 SPORT1_STAT “SPORTx_STAT Register” on page 12-28

0xFFC0 0934 SPORT1_CHNL “SPORTx_CHNL Register” on page 12-57

0xFFC0 0938 SPORT1_MCMC1 “SPORTx_MCMCn Registers” on page 12-51

0xFFC0 093C SPORT1_MCMC2 “SPORTx_MCMCn Registers” on page 12-51

0xFFC0 0940 SPORT1_MTCS0 “SPORTx_MRCSn Registers” on page 12-60

0xFFC0 0944 SPORT1_MTCS1 “SPORTx_MRCSn Registers” on page 12-60

0xFFC0 0948 SPORT1_MTCS2 “SPORTx_MRCSn Registers” on page 12-60
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DMA/Memory DMA Control Registers
DMA Control registers (0xFFC0 0B00 – 0xFFC0 0FFF)

Since each DMA channel has an identical MMR set, with fixed offsets 
from the base address associated with that DMA channel, it is convenient 
to view the MMR information as provided in Table B-13 and Table B-14. 
Table B-13 identifies the base address of each DMA channel, as well as the 
register prefix that identifies the channel. Table B-14 then lists the register 
suffix and provides its offset from the Base Address.

As an example, the DMA Channel 0 Y_MODIFY register is called 
DMA0_Y_MODIFY, and its address is 0xFFC0 0C1C. Likewise, the Memory 
DMA Stream 0 Source Current Address register is called 
MDMA_S0_CURR_ADDR, and its address is 0xFFC0 0E64.

0xFFC0 094C SPORT1_MTCS3 “SPORTx_MRCSn Registers” on page 12-60

0xFFC0 0950 SPORT1_MRCS0 “SPORTx_MRCSn Registers” on page 12-60

0xFFC0 0954 SPORT1_MRCS1 “SPORTx_MRCSn Registers” on page 12-60

0xFFC0 0958 SPORT1_MRCS2 “SPORTx_MRCSn Registers” on page 12-60

0xFFC0 095C SPORT1_MRCS3 “SPORTx_MRCSn Registers” on page 12-60

Table B-12. DMA Traffic Control Registers

Memory-Mapped 
Address

Register Name See Section

0xFFC0 0B0C DMA_TC_PER “DMA_TC_PER and DMA_TC_CNT Regis-
ters” on page 9-55

0xFFC0 0B10 DMA_TC_CNT “DMA_TC_PER and DMA_TC_CNT Regis-
ters” on page 9-55

Table B-11. SPORT 1 Controller Registers (Cont’d)

Memory-Mapped 
Address

Register Name See Section
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System MMR Assignments

Table B-13. DMA Channel Base Addresses

DMA Channel 
Identifier

MMR Base Address Register Prefix

0 0xFFC0 0C00 DMA0_

1 0xFFC0 0C40 DMA1_

2 0xFFC0 0C80 DMA2_

3 0xFFC0 0CC0 DMA3_

4 0xFFC0 0D00 DMA4_

5 0xFFC0 0D40 DMA5_

6 0xFFC0 0D80 DMA6_

7 0xFFC0 0DC0 DMA7_

Mem DMA Stream 
0 Destination

0xFFCO 0E00 MDMA_D0_

Mem DMA Stream 
0 Source

0xFFC0 0E40 MDMA_S0_

Mem DMA Stream 
1 Destination

0xFFCO 0E80 MDMA_D1_

Mem DMA Stream 
1 Source

0xFFC0 0EC0 MDMA_S1_

Table B-14. DMA Register Suffix and Offset

Register Suffix Offset From 
Base

See Section

NEXT_DESC_PTR 0x00 “DMAx_NEXT_DESC_PTR/MDMA_yy_NEXT_DES
C_PTR Register” on page 9-8

START_ADDR 0x04 “DMAx_START_ADDR/MDMA_yy_START_ADDR 
Register” on page 9-10

CONFIG 0x08 “DMAx_CONFIG/MDMA_yy_CONFIG Register” on 
page 9-12

X_COUNT 0x10 “DMAx_X_COUNT/MDMA_yy_X_COUNT Regis-
ter” on page 9-16
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External Bus Interface Unit Registers
External Bus Interface Unit registers (0xFFC0 0A00 – 0xFFC0 0AFF) 

X_MODIFY 0x14 “DMAx_X_MODIFY/MDMA_yy_X_MODIFY Regis-
ter” on page 9-17

Y_COUNT 0x18 “DMAx_Y_COUNT/MDMA_yy_Y_COUNT Regis-
ter” on page 9-19

Y_MODIFY 0x1C “DMAx_Y_MODIFY/MDMA_yy_Y_MODIFY Regis-
ter” on page 9-20

CURR_DESC_PTR 0x20 “DMAx_CURR_DESC_PTR/MDMA_yy_CURR_DE
SC_PTR Register” on page 9-21

CURR_ADDR 0x24 “DMAx_CURR_ADDR/MDMA_yy_CURR_ADDR 
Register” on page 9-23

IRQ_STATUS 0x28 “DMAx_IRQ_STATUS/MDMA_yy_IRQ_STATUS 
Register” on page 9-30

PERIPHERAL_MAP 0x2C “DMAx_PERIPHERAL_MAP/MDMA_yy_PERIPHER
AL_MAP Register” on page 9-28

CURR_X_COUNT 0x30 “DMAx_CURR_X_COUNT/MDMA_yy_CURR_X_C
OUNT Register” on page 9-25

CURR_Y_COUNT 0x38 “DMAx_CURR_Y_COUNT/MDMA_yy_CURR_Y_C
OUNT Register” on page 9-26

Table B-15. External Bus Interface Unit Registers

Memory-Mapped 
Address

Register Name See Section

0xFFC0 0A00 EBIU_AMGCTL “EBIU_AMGCTL Register” on page 17-10

0xFFC0 0A04 EBIU_AMBCTL0 “EBIU_AMBCTL0 and EBIU_AMBCTL1 
Registers” on page 17-11

Table B-14. DMA Register Suffix and Offset (Cont’d)

Register Suffix Offset From 
Base

See Section
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System MMR Assignments

0xFFC0 0A08 EBIU_AMBCTL1 “EBIU_AMBCTL0 and EBIU_AMBCTL1 
Registers” on page 17-11

0xFFC0 0A10 EBIU_SDGCTL “EBIU_SDGCTL Register” on page 17-33

0xFFC0 0A14 EBIU_SDBCTL “EBIU_SDBCTL Register” on page 17-44

0xFFC0 0A18 EBIU_SDRRC “EBIU_SDRRC Register” on page 17-48

0xFFC0 0A1C EBIU_SDSTAT “EBIU_SDSTAT Register” on page 17-47

Table B-15. External Bus Interface Unit Registers (Cont’d)

Memory-Mapped 
Address

Register Name See Section
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C TEST FEATURES

This chapter discusses the test features of the processor.

JTAG Standard
The processor is fully compatible with the IEEE 1149.1 standard, also 
known as the Joint Test Action Group (JTAG) standard. 

The JTAG standard defines circuitry that may be built to assist in the test, 
maintenance, and support of assembled printed circuit boards.The cir-
cuitry includes a standard interface through which instructions and test 
data are communicated. A set of test features is defined, including a 
Boundary-Scan register, such that the component can respond to a mini-
mum set of instructions designed to help test printed circuit boards.

The standard defines test logic that can be included in an integrated cir-
cuit to provide standardized approaches to:

• Testing the interconnections between integrated circuits once they 
have been assembled onto a printed circuit board

• Testing the integrated circuit itself

• Observing or modifying circuit activity during normal component 
operation

The test logic consists of a Boundary-Scan register and other building 
blocks. The test logic is accessed through a Test Access Port (TAP).
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Full details of the JTAG standard can be found in the document IEEE 
Standard Test Access Port and Boundary-Scan Architecture, ISBN 
1-55937-350-4.

Boundary-Scan Architecture
The boundary-scan test logic consists of:

• A TAP comprised of five pins (see Table C-1)

• A TAP controller that controls all sequencing of events through the 
test registers

• An Instruction register (IR) that interprets 5-bit instruction codes 
to select the test mode that performs the desired test operation

• Several data registers defined by the JTAG standard

The TAP controller is a synchronous, 16-state, finite-state machine con-
trolled by the TCK and TMS pins. Transitions to the various states in the 
diagram occur on the rising edge of TCK and are defined by the state of the 
TMS pin, here denoted by either a logic 1 or logic 0 state. For full details of 
the operation, see the JTAG standard.

Table C-1. Test Access Port Pins

Pin Name Input/Output Description

TDI Input Test Data Input

TMS Input Test Mode Select

TCK Input Test Clock

TRST Input Test Reset

TDO Output Test Data Out
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Test Features

Figure C-1 shows the state diagram for the TAP controller. 

Note:

• The TAP controller enters the Test-Logic-Reset state when TMS is 
held high after five TCK cycles.

• The TAP controller enters the Test-Logic-Reset state when TRST is 
asynchronously asserted. 

Figure C-1. TAP Controller State Diagram

Test-Logic_Reset

Run-Test/Idle Select-DR-Scan

Capture-DR

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Update-DR

Select-IR-Scan

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-IR

1

1 1 1

1

1

1

1

1

1 1

1

1

1

1

1

0

0
0 0

0 0
0 0

0 0

0

0 0

0
0

0



Boundary-Scan Architecture

C-4 ADSP-BF533 Blackfin Processor Hardware Reference
 

• An external system reset does not affect the state of the TAP con-
troller, nor does the state of the TAP controller affect an external 
system reset. 

Instruction Register
The Instruction register is five bits wide and accommodates up to 32 
boundary-scan instructions.

The Instruction register holds both public and private instructions. The 
JTAG standard requires some of the public instructions; other public 
instructions are optional. Private instructions are reserved for the manu-
facturer’s use.

The binary decode column of Table C-2 lists the decode for the public 
instructions. The register column lists the serial scan paths.

Figure C-2 shows the instruction bit scan ordering for the paths shown in 
Table C-2. 

Table C-2. Decode for Public JTAG-Scan Instructions

Instruction Name Binary Decode
01234

Register

EXTEST 00000 Boundary-Scan

SAMPLE/PRELOAD 10000 Boundary-Scan

BYPASS 11111 Bypass
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Public Instructions
The following sections describe the public JTAG scan instructions.

EXTEST – Binary Code 00000

The EXTEST instruction selects the Boundary-Scan register to be connected 
between the TDI and TDO pins. This instruction allows testing of on-board 
circuitry external to the device. 

Figure C-2. Serial Scan Paths
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The EXTEST instruction allows internal data to be driven to the boundary 
outputs and external data to be captured on the boundary inputs. 

 To protect the internal logic when the boundary outputs are over-
driven or signals are received on the boundary inputs, make sure 
that nothing else drives data on the processor’s output pins.

SAMPLE/PRELOAD – Binary Code 10000 

The SAMPLE/PRELOAD instruction performs two functions and selects the 
Boundary-Scan register to be connected between TDI and TDO. The 
instruction has no effect on internal logic. 

The SAMPLE part of the instruction allows a snapshot of the inputs and 
outputs captured on the boundary-scan cells. Data is sampled on the ris-
ing edge of TCK. 

The PRELOAD part of the instruction allows data to be loaded on the device 
pins and driven out on the board with the EXTEST instruction. Data is pre-
loaded on the pins on the falling edge of TCK. 

BYPASS – Binary Code 11111

The BYPASS instruction selects the BYPASS register to be connected to TDI 
and TDO. The instruction has no effect on the internal logic. No data 
inversion should occur between TDI and TDO.

Boundary-Scan Register
The Boundary-Scan register is selected by the EXTEST and SAMPLE/PRELOAD 
instructions. These instructions allow the pins of the processor to be con-
trolled and sampled for board-level testing. 
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D NUMERIC FORMATS

ADSP-BF53x Blackfin family processors support 8-, 16-, 32-, and 40-bit 
fixed-point data in hardware. Special features in the computation units 
allow support of other formats in software. This appendix describes vari-
ous aspects of these data formats. It also describes how to implement a 
block floating-point format in software.

Unsigned or Signed: Two’s-Complement 
Format

Unsigned integer numbers are positive, and no sign information is con-
tained in the bits. Therefore, the value of an unsigned integer is 
interpreted in the usual binary sense. The least significant words of multi-
ple-precision numbers are treated as unsigned numbers.

Signed numbers supported by the ADSP-BF53x Blackfin family are in 
two’s-complement format. Signed-magnitude, one’s-complement, 
binary-coded decimal (BCD) or excess-n formats are not supported.

Integer or Fractional
The ADSP-BF53x Blackfin family supports both fractional and integer 
data formats. In an integer, the radix point is assumed to lie to the right of 
the least significant bit (LSB), so that all magnitude bits have a weight of 1 
or greater. This format is shown in Figure D-1. Note in two’s-comple-
ment format, the sign bit has a negative weight.
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In a fractional format, the assumed radix point lies within the number, so 
that some or all of the magnitude bits have a weight of less than 1. In the 
format shown in Figure D-2, the assumed radix point lies to the left of the 
three LSBs, and the bits have the weights indicated.

The native formats for the Blackfin processor family are a signed fractional 
1.M format and an unsigned fractional 0.N format, where N is the num-
ber of bits in the data word and M = N – 1.

The notation used to describe a format consists of two numbers separated 
by a period (.); the first number is the number of bits to the left of the 
radix point, the second is the number of bits to the right of the radix 
point. For example, 16.0 format is an integer format; all bits lie to the left 
of the radix point. The format in Figure D-2 is 13.3.

Figure D-1. Integer Format

Signed Integer

Unsigned Integer

Bit

Weight

Sign Bit

Radix Point

01215 14 13

. . . 202122213214- (215)

Bit

Weight

Sign Bit

Radix Point

01215 14 13

. . . 202122213214215
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Numeric Formats

Table D-1 shows the ranges of signed numbers representable in the frac-
tional formats that are possible with 16 bits. 

Figure D-2. Example of Fractional Format

Signed Fractional (13.3)

Bit

Weight

Sign Bit

Radix Point

01215 14 13

. . . 2-32-22-1210211- (212)

34

2021

Unsigned Fractional (13.3)

Bit

Weight

Sign Bit

Radix Point

01215 14 13

. . . 2-32-22-1210211212

34

2021
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Binary Multiplication
In addition and subtraction, both operands must be in the same format 
(signed or unsigned, radix point in the same location), and the result for-
mat is the same as the input format. Addition and subtraction are 
performed the same way whether the inputs are signed or unsigned.

Table D-1. Fractional Formats and Their Ranges

Format # of 
Integer 
Bits

# of 
Fractional 
Bits

Max Positive Value 
(0x7FFF) In Decimal

Max Negative 
Value (0x8000) 
In Decimal

Value of 1 LSB     
(0x0001) In Decimal

1.15 1 15 0.999969482421875 –1.0 0.000030517578125

2.14 2 14 1.999938964843750 –2.0 0.000061035156250

3.13 3 13 3.999877929687500 –4.0 0.000122070312500

4.12 4 12 7.999755859375000 –8.0 0.000244140625000

5.11 5 11 15.999511718750000 –16.0 0.000488281250000

6.10 6 10 31.999023437500000 –32.0 0.000976562500000

7.9 7 9 63.998046875000000 –64.0 0.001953125000000

8.8 8 8 127.996093750000000 –128.0 0.003906250000000

9.7 9 7 255.992187500000000 –256.0 0.007812500000000

10.6 10 6 511.984375000000000 –512.0 0.015625000000000

11.5 11 5 1023.968750000000000 –1024.0 0.031250000000000

12.4 12 4 2047.937500000000000 –2048.0 0.062500000000000

13.3 13 3 4095.875000000000000 –4096.0 0.125000000000000

14.2 14 2 8191.750000000000000 –8192.0 0.250000000000000

15.1 15 1 16383.500000000000000 –16384.0 0.500000000000000

16.0 16 0 32767.000000000000000 –32768.0 1.000000000000000
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In multiplication, however, the inputs can have different formats, and the 
result depends on their formats. The ADSP-BF53x Blackfin family assem-
bly language allows you to specify whether the inputs are both signed, 
both unsigned, or one of each (mixed-mode). The location of the radix 
point in the result can be derived from its location in each of the inputs. 
This is shown in Figure D-3. The product of two 16-bit numbers is a 
32-bit number. If the inputs’ formats are M.N and P.Q, the product has 
the format (M + P).(N + Q). For example, the product of two 13.3 num-
bers is a 26.6 number. The product of two 1.15 numbers is a 2.30 
number.

Fractional Mode And Integer Mode
A product of 2 two’s-complement numbers has two sign bits. Since one of 
these bits is redundant, you can shift the entire result left one bit. Addi-
tionally, if one of the inputs was a 1.15 number, the left shift causes the 
result to have the same format as the other input (with 16 bits of 
additional precision). For example, multiplying a 1.15 number by a 5.11 
number yields a 6.26 number. When shifted left one bit, the result is a 
5.27 number, or a 5.11 number plus 16 LSBs.

Figure D-3. Format of Multiplier Result

General Rule 4-bit Example 16-bit Examples

M.N
x  P.Q

(M + P).(N + Q)

1.111  (1.3 Format)
x  11.11  (2.2 Format)

1111
1111

1111
1111

111.00001 (3.5 Format = (1 + 2).(2 + 3) )

5.3
x  5.3

10.6

1.15
x  1.15

2.30
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The ADSP-BF53x Blackfin family provides a means (a signed fractional 
mode) by which the multiplier result is always shifted left one bit before 
being written to the result register. This left shift eliminates the extra sign 
bit when both operands are signed, yielding a result that is correctly 
formatted.

When both operands are in 1.15 format, the result is 2.30 (30 fractional 
bits). A left shift causes the multiplier result to be 1.31 which can be 
rounded to 1.15. Thus, if you use a signed fractional data format, it is 
most convenient to use the 1.15 format.

For more information about data formats, see the data formats listed in 
Table 2-2 on page 2-11.
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Block Floating-Point Format
A block floating-point format enables a fixed-point processor to gain some 
of the increased dynamic range of a floating-point format without the 
overhead needed to do floating-point arithmetic. However, some addi-
tional programming is required to maintain a block floating-point format.

A floating-point number has an exponent that indicates the position of the 
radix point in the actual value. In block floating-point format, a set 
(block) of data values share a common exponent. A block of fixed-point 
values can be converted to block floating-point format by shifting each 
value left by the same amount and storing the shift value as the block 
exponent. 

Typically, block floating-point format allows you to shift out non-signifi-
cant MSBs (most significant bits), increasing the precision available in 
each value. Block floating-point format can also be used to eliminate the 
possibility of a data value overflowing. See Figure D-4. Each of the three 
data samples shown has at least two non-significant, redundant sign bits. 
Each data value can grow by these two bits (two orders of magnitude) 
before overflowing. These bits are called guard bits. 

Figure D-4. Data With Guard Bits

Sign Bit

2 Guard Bits

0x0FFF  =  0 0 0 0   1 1 1 1   1 1 1 1   1 1 1 1

0x1FFF  =  0 0 0 1   1 1 1 1   1 1 1 1   1 1 1 1

0x07FF  =  0 0 0 0   0 1 1 1   1 1 1 1   1 1 1 1

To detect bit growth into two guard bits, set SB = –2



Block Floating-Point Format
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If it is known that a process will not cause any value to grow by more than 
the two guard bits, then the process can be run without loss of data. Later, 
however, the block must be adjusted to replace the guard bits before the 
next process.

Figure D-5 shows the data after processing but before adjustment. The 
block floating-point adjustment is performed as follows.

• Assume the output of the SIGNBITS instruction is SB and SB is used 
as an argument in the EXPADJ instruction (see Blackfin Processor 
Programming Reference for the usage and syntax of these instruc-
tions). Initially, the value of SB is +2, corresponding to the two 
guard bits. During processing, each resulting data value is 
inspected by the EXPADJ instruction, which counts the number of 
redundant sign bits and adjusts SB if the number of redundant sign 
bits is less than two. In this example, SB = +1 after processing, 
indicating the block of data must be shifted right one bit to main-
tain the two guard bits. 

• If SB were 0 after processing, the block would have to be shifted 
two bits right. In either case, the block exponent is updated to 
reflect the shift.
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Figure D-5. Block Floating-Point Adjustment

Sign Bit

One Guard Bit

0x1FFF  =  0 0 0 1   1 1 1 1   1 1 1 1   1 1 1 1

0x3FFF  =  0 0 1 1   1 1 1 1   1 1 1 1   1 1 1 1

0x07FF  =  0 0 0 0   0 1 1 1   1 1 1 1   1 1 1 1

2. Shift right to restore guard bits

Sign Bit

Two Guard Bits

0x0FFF  =  0 0 0 0   1 1 1 1   1 1 1 1   1 1 1 1

0x1FFF  =  0 0 0 1   1 1 1 1   1 1 1 1   1 1 1 1

0x03FF  =  0 0 0 0   0 0 1 1   1 1 1 1   1 1 1 1

1. Check for bit growth

Exponent = +2, SB = +2

Exponent = +1, SB = +1

Exponent = +4, SB = +1

EXPADJ instruction checks 
exponent, adjusts SB
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ALU.

See Arithmetic/Logic Unit

AMC (Asynchronous Memory Controller).

A configurable memory controller supporting multiple banks of asynchro-
nous memory including SRAM, ROM, and flash, where each bank can be 
independently programmed with different timing parameters.

Arithmetic/Logic Unit (ALU).

A processor component that performs arithmetic, comparative, and logical 
functions.

Bank Activate command.

The Bank Activate command causes the SDRAM to open an internal bank 
(specified by the bank address) in a row (specified by the row address). 
When the Bank Activate command is issued to the SDRAM, the SDRAM 
opens a new row address in the dedicated bank. The memory in the open 
internal bank and row is referred to as the open page. The Bank Activate 
command must be applied before a read or write command.

base address.

The starting address of a circular buffer.
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Base register.

A Data Address Generator (DAG) register that contains the starting 
address for a circular buffer.

bit-reversed addressing.

The addressing mode in which the Data Address Generator (DAG) pro-
vides a bit-reversed address during a data move without reversing the 
stored address.

Boot memory space.

Internal memory space designated for a program that is executed immedi-
ately after powerup or after a software reset.

burst length.

The burst length determines the number of words that the SDRAM device 
stores or delivers after detecting a single write or read command, respec-
tively. The burst length is selected by writing certain bits in the SDRAM’s 
Mode register during the SDRAM powerup sequence.

Burst Stop command.

The Burst Stop command is one of several ways to terminate a burst read 
or write operation.

burst type.

The burst type determines the address order in which the SDRAM deliv-
ers burst data after detecting a read command, or stores burst data after 
detecting a write command. The burst type is programmed in the 
SDRAM during the SDRAM powerup sequence.

cache block.

The smallest unit of memory that is transferred to/from the next level of 
memory from/to a cache as a result of a cache miss.
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cache hit. 

A memory access that is satisfied by a valid, present entry in the cache.

cache line.

Same as cache block. In this document, cache line is used for cache block.

cache miss. 

A memory access that does not match any valid entry in the cache.

cache tag. 

Upper address bits, stored along with the cached data line, to identify the 
specific address source in memory that the cached line represents.

Cacheability Protection Lookaside Buffer (CPLB).

Storage area that describes the access characteristics of the core memory 
map.

CAM (Content Addressable Memory). 

Also called Associative Memory. A memory device that includes compari-
son logic with each bit of storage. A data value is broadcast to all words in 
memory; it is compared with the stored values; and values that match are 
flagged.

CAS (Column Address Strobe). 

A signal sent from the SDC to a DRAM device to indicate that the col-
umn address lines are valid.

CAS latency (also tAA, tCAC, CL). 

The Column Address Strobe (CAS) latency is the delay in clock cycles 
between when the SDRAM detects the read command and when it pro-
vides the data at its output pins.
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CBR (CAS Before RAS) memory refresh.

DRAM devices have a built-in counter for the refresh row address. By 
activating Column Address Strobe (CAS) before activating Row Address 
Strobe (RAS), this counter is selected to supply the row address instead of 
the address inputs. 

CEC.

See Core Event Controller

circular addressing.

The process by which the Data Address Generator (DAG) “wraps around” 
or repeatedly steps through a range of registers.

companding.

(Compressing/expanding). The process of logarithmically encoding and 
decoding data to minimize the number of bits that must be sent.

conditional branches.

Jump or call/return instructions whose execution is based on defined 
conditions.

core.

The core consists of these functional blocks: CPU, L1 memory, Event 
Controller, core timer, and Performance Monitoring registers.

Core Event Controller (CEC). 

The CEC works with the System Interrupt Controller (SIC) to prioritize 
and control all system interrupts. The CEC handles general-purpose inter-
rupts and interrupts routed from the SIC.

CPLB.

See Cacheability Protection Lookaside Buffer
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DAB.

See DMA Access Bus

DAG.

See Data Address Generator

Data Address Generator (DAG).

Processing component that provides memory addresses when data is trans-
ferred between memory and registers.

Data Register File.

A set of data registers that is used to transfer data between computation 
units and memory while providing local storage for operands.

data registers (Dreg).

Registers located in the data arithmetic unit that hold operands and results 
for multiplier, ALU, or shifter operations.

DCB.

See DMA Core Bus

DEB.

See DMA External Bus

descriptor block, DMA.

A set of parameters used by the direct memory access (DMA) controller to 
describe a set of DMA sequences.
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descriptor loading, DMA.

The process in which the direct memory access (DMA) controller down-
loads a DMA descriptor from data memory and autoinitializes the DMA 
parameter registers.

DFT (Design For Testability).

A set of techniques that helps designers of digital systems ensure that those 
systems will be testable.

Digital Signal Processor (DSP).

An integrated circuit designated for high-speed manipulation of analog 
information that has been converted into digital form.

direct branches.

Jump or call/return instructions that use absolute addresses that do not 
change at runtime (such as a program label), or they use a PC-relative 
address.

direct-mapped. 

Cache architecture where each line has only one place that it can appear in 
the cache. Also described as 1-Way associative.

Direct Memory Access (DMA).

A way of moving data between system devices and memory in which the 
data is transferred through a DMA port without involving the processor.

dirty, modified.

A state bit, stored along with the tag, indicating whether the data in the 
data cache line has been changed since it was copied from the source 
memory and, therefore, needs to be updated in that source memory.
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DMA. 

See Direct Memory Access

DMA Access Bus (DAB).

A bus that provides a means for DMA channels to be accessed by the 
peripherals.

DMA chaining.

The linking or chaining of multiple direct memory access (DMA) 
sequences. In chained DMA, the I/O processor loads the next DMA 
descriptor into the DMA parameter registers when the current DMA fin-
ishes and autoinitializes the next DMA sequence.

DMA Core Bus (DCB).

A bus that provides a means for DMA channels to gain access to on-chip 
memory.

DMA descriptor registers.

Registers that hold the initialization information for a direct memory 
access (DMA) process.

DMA External Bus (DEB).

A bus that provides a means for DMA channels to gain access to off-chip 
memory.

DPMC (Dynamic Power Management Controller).

A processor’s control block that allows the user to dynamically control the 
processor’s performance characteristics and power dissipation.

DQM Data I/O Mask Function.

The SDQM[1:0] pins provide a byte-masking capability on 8-bit writes to 
SDRAM.



G-8 ADSP-BF533 Blackfin Processor Hardware Reference
 

DRAM (Dynamic Random Access Memory). 

A type of semiconductor memory in which the data is stored as electrical 
charges in an array of cells, each consisting of a capacitor and a transistor. 
The cells are arranged on a chip in a grid of rows and columns. Since the 
capacitors discharge gradually—and the cells lose their information—the 
array of cells has to be refreshed periodically.

DSP.

See Digital Signal Processor

EAB.

See External Access Bus

EBC.

See External Bus Controller

EBIU.

See External Bus Interface Unit 

edge-sensitive interrupt.

A signal or interrupt the processor detects if the input signal is high (inac-
tive) on one cycle and low (active) on the next cycle when sampled on the 
rising edge of CLKIN.

Endian format.

The ordering of bytes in a multibyte number.

EPB.

See External Port Bus
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EPROM (Erasable Programmable Read-Only Memory). 

A type of semiconductor memory in which the data is stored as electrical 
charges in isolated (“floating”) transistor gates that retain their charges 
almost indefinitely without an external power supply. An EPROM is pro-
grammed by “injecting” charge into the floating gates—a process that 
requires relatively high voltage (usually 12V – 25V). Ultraviolet light, 
applied to the chip’s surface through a quartz window in the package, will 
discharge the floating gates, allowing the chip to be reprogrammed.

EVT (Event Vector Table).

A table stored in memory that contains sixteen 32-bit entries; each entry 
contains a vector address for an interrupt service routine (ISR). When an 
event occurs, instruction fetch starts at the address location in the corre-
sponding EVT entry. See ISR.

exclusive, clean.

The state of a data cache line indicating the line is valid and the data con-
tained in the line matches that in the source memory. The data in a clean 
cache line does not need to be written to source memory before it is 
replaced.

External Access Bus (EAB).

A bus mastered by the core memory management unit to access external 
memory.

External Bus Controller (EBC).

A component that provides arbitration between the External Access Bus 
(EAB) and the DMA External Bus (DEB), granting at most one requester 
per cycle.
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External Bus Interface Unit (EBIU).

A component that provides glueless interfaces to external memories. It ser-
vices requests for external memory from the core or from a DMA channel.

external port.

A channel or port that extends the processor’s internal address and data 
buses off-chip, providing the processor’s interface to off-chip memory and 
peripherals.

External Port Bus (EPB).

A bus that connects the output of the EBIU to external devices.

FFT (Fast Fourier Transform).

An algorithm for computing the Fourier transform of a set of discrete data 
values. The FFT expresses a finite set of data points, for example a peri-
odic sampling of a real-world signal, in terms of its component 
frequencies. Or conversely, the FFT reconstructs a signal from the fre-
quency data. The FFT can also be used to multiply two polynomials.

FIFO (First In, First Out). 

A hardware buffer or data structure from which items are taken out in the 
same order they were put in.

flash memory. 

A type of single transistor cell, erasable memory in which erasing can only 
be done in blocks or for the entire chip.

fully associative. 

Cache architecture where each line can be placed anywhere in the cache.

glueless.

No external hardware is required. 
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Harvard architecture.

A processor memory architecture that uses separate buses for program and 
data storage. The two buses let the processor fetch a data word and an 
instruction word simultaneously.

HLL (High Level Language).

A programming language that provides some level of abstraction above 
assembly language, often using English-like statements, where each com-
mand or statement corresponds to several machine instructions. 

IDLE.

An instruction that causes the processor to cease operations, holding its 
current state until an interrupt occurs. Then, the processor services the 
interrupt and continues normal execution.

index.

Address portion that is used to select an array element (for example, line 
index).

Index registers.

A Data Address Generator (DAG) register that holds an address and acts 
as a pointer to memory.

indirect branches.

Jump or call/return instructions that use a dynamic address from the data 
address generator, evaluated at runtime.

input clock. 

Device that generates a steady stream of timing signals to provide the fre-
quency, duty cycle, and stability to allow accurate internal clock 
multiplication via the phase locked loop (PLL) module.
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internal memory bank.

There are several internal memory banks within a given SDRAM. Each of 
the internal banks can be active (open) simultaneously.

The SDC assumes that all SDRAMs to which it interfaces have four inter-
nal banks.

interrupt.

An event that suspends normal processing and temporarily diverts the flow 
of control through an interrupt service routine (ISR). See ISR.

invalid.

Describes the state of a cache line. When a cache line is invalid, a cache 
line match cannot occur.

IrDA (Infrared Data Association). 

A nonprofit trade association that established standards for ensuring the 
quality and interoperability of devices using the infrared spectrum. 

isochronous.

Processes where data must be delivered within certain time constraints.

ISR (Interrupt Service Routine). 

Software that is executed when a specific interrupt occurs. A table stored 
in low memory contains pointers, also called vectors, that direct the pro-
cessor to the corresponding ISR. See EVT.

JTAG (Joint Test Action Group).

An IEEE Standards working group that defines the IEEE 1149.1 standard 
for a test access port for testing electronic devices.
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JTAG port.

A channel or port that supports the IEEE standard 1149.1 JTAG standard 
for system test. This standard defines a method for serially scanning the 
I/O status of each component in a system.

jump.

A permanent transfer of the program flow to another part of program 
memory.

latency.

The overhead time used to find the correct place for memory access and 
preparing to access it.

Least Recently Used algorithm.

Replacement algorithm used by cache that first replaces lines that have 
been unused for the longest time.

Least Significant Bit (LSB). 

The last or rightmost bit in the normal representation of a binary num-
ber—the bit of a binary number giving the number of ones. 

Length registers.

A Data Address Generator (DAG) register that specifies the range of 
addresses in a circular buffer.

Level 1 (L1) memory.

Memory that is directly accessed by the core with no intervening memory 
subsystems between it and the core.
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Level 2 (L2) memory.

Memory that is at least one level removed from the core. L2 memory has a 
larger capacity than L1 memory, but it requires additional latency to 
access.

level-sensitive interrupts.

A signal or interrupt that the processor detects if the input signal is low 
(active) when sampled on the rising edge of CLKIN. 

LIFO (Last In, First Out). 

A data structure from which the next item taken out is the most recent 
item put in.

little endian.

The native data store format of the processor. Words and half words are 
stored in memory (and registers) with the least significant byte at the low-
est byte address and the most significant byte at the highest byte address of 
the data storage location.

loop.

A sequence of instructions that executes several times.

LRU.

See Least Recently Used algorithm. 

LSB.

See Least Significant Bit. 

MAC (Multiply/Accumulate).

A mathematical operation that multiplies two numbers and then adds a 
third to get the result (see Multiply Accumulator).
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Memory Management Unit (MMU).

A component of the processor that supports protection and selective cach-
ing of memory by using Cacheability Protection Lookaside Buffers 
(CPLBs).

Mode Register.

Internal configuration registers within SDRAM devices which allow speci-
fication of the SDRAM device’s functionality.

modified addressing.

The process whereby the Data Address Generator (DAG) produces an 
address that is incremented by a value or the contents of a register. 

Modify register.

A Data Address Generator (DAG) register that provides the increment or 
step size by which an index register is pre- or post-modified during a regis-
ter move.

MMR (Memory-Mapped Register). 

A specific location in main memory used by the processor as if it were a 
register.

MMU.

See Memory Management Unit

MSB (Most Significant Bit). 

The first or leftmost bit in the normal representation of a binary num-
ber—the bit of a binary number with the greatest weight (2(n-1)). 
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multifunction computations.

The parallel execution of multiple computational instructions. These 
instructions complete in a single cycle, and they combine parallel 
operation of the computational units and memory accesses. The multiple 
operations perform the same as if they were in corresponding single func-
tion computations.

multiplier.

A computational unit that performs fixed-point multiplication and exe-
cutes fixed-point multiply/add and multiply/subtract operations.

NMI (Nonmaskable Interrupt).

A high priority interrupt that cannot be disabled by another interrupt. 

NRZ (Non-return-to-Zero).

A binary encoding scheme in which a 1 is represented by a change in the 
signal and a 0 by no change—there is no return to a reference (0) voltage 
between encoded bits. This method eliminates the need for a clock signal.

NRZI (Non-return-to-Zero Inverted). 

A binary encoding scheme in which a 0 is represented by a change in the 
signal and a 1 is represented by no change—there is no return to a refer-
ence (0) voltage between encoded bits. This method eliminates the need 
for a clock signal.

orthogonal.

The characteristic of being independent. An orthogonal instruction set 
allows any register to be used in an instruction that references a register.

PAB.

See Peripheral Access Bus
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page size.

The amount of memory which has the same row address and can be 
accessed with successive read or write commands without needing to acti-
vate another row.

PC (Program Counter). 

A register that contains the address of the next instruction to be executed.

peripheral.

Functional blocks not included as part of the core, and typically used to 
support system level operations.

Peripheral Access Bus (PAB). 

A bus used to provide access to EBIU memory-mapped registers.

PF (Programmable Flag).

General-purpose I/O pins. Each PF pin can be individually configured as 
either an input or an output pin, and each PF pin can be further config-
ured to generate an interrupt.

Phase Locked Loop (PLL). 

An on-chip frequency synthesizer that produces a full speed master clock 
from a lower frequency input clock signal.

PLL.

See Phase Locked Loop.

precision.

The number of bits after the binary point in the storage format for the 
number.
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post-modify addressing.

The process in which the Data Address Generator (DAG) provides an 
address during a data move and auto-increments after the instruction is 
executed.

Precharge command.

The Precharge command closes a specific internal bank in the active page 
or all internal banks in the page.

pre-modify addressing.

The process in which the Data Address Generator (DAG) provides an 
address during a data move and auto-increments before the instruction is 
executed.

PWM (Pulse Width Modulation).

Also called Pulse Duration Modulation (PDM), PWM is a pulse modula-
tion technique in which the duration of the pulses is varied by the 
modulating voltage.

RAS (Row Address Strobe).

A signal sent from the SDC to a DRAM device to indicate validity of row 
address lines.

Real-Time Clock (RTC).

A component that generates timing pulses for the digital watch features of 
the processor, including time of day, alarm, and stopwatch countdown 
features. 

ROM (Read-Only Memory).

A data storage device manufactured with fixed contents. This term is most 
often used to refer to non-volatile semiconductor memory. 
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RTC.

See Real-Time Clock

RZ (Return-to-Zero modulation).

A binary encoding scheme in which two signal pulses are used for every 
bit. A 0 is represented by a change from the low voltage level to the high 
voltage level; a 1 is represented by a change from the high voltage level to 
the low voltage level. A return to a reference (0) voltage is made between 
encoded bits.

RZI (Return-to-Zero-Inverted modulation).

A binary encoding scheme in which two signal pulses are used for every 
bit. A 1 is represented by a change from the low voltage level to the high 
voltage level; a 0 is represented by a change from the high voltage level to 
the low voltage level. A return to a reference (0) voltage is made between 
encoded bits.

saturation (ALU saturation mode).

A state in which all positive fixed-point overflows return the maximum 
positive fixed-point number, and all negative overflows return the maxi-
mum negative number.

SDC (SDRAM Controller).

A configurable memory controller supporting a bank of synchronous 
memory consisting of SDRAM.

SDRAM (Synchronous Dynamic Random Access Memory).

A form of DRAM that includes a clock signal with its other control sig-
nals. This clock signal allows SDRAM devices to support “burst” access 
modes that clock out a series of successive bits.
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SDRAM bank.

Region of external memory that can be configured to be 16M bytes, 32M 
bytes, 64M bytes, or 128M bytes and is selected by the SMS pin.

Self-Refresh. 

When the SDRAM is in Self-Refresh mode, the SDRAM’s internal timer 
initiates Auto-Refresh cycles periodically, without external control input. 
The SDRAM Controller (SDC) must issue a series of commands includ-
ing the Self-Refresh command to put SDRAM into low power mode, and 
it must issue another series of commands to exit Self-Refresh mode. Enter-
ing Self-Refresh mode is programmed in the SDRAM Memory Global 
Control register (EBIU_SDGCTL) and any access to the SDRAM address 
space causes the SDC to exit SDRAM from Self-Refresh mode. See 
“Entering and Exiting Self-Refresh Mode (SRFS)” on page 17-38.

Serial Peripheral Interface (SPI). 

A synchronous serial protocol used to connect integrated circuits.

serial ports (SPORTs).

A high speed synchronous input/output device on the processor. The pro-
cessor uses two synchronous serial ports that provide inexpensive 
interfaces to a wide variety of digital and mixed-signal peripheral devices.

set. 

A group of N-line storage locations in the Ways of an N-Way cache, 
selected by the Index field of the address.

set associative.

Cache architecture that limits line placement to a number of sets (or 
Ways).
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shifter.

A computational unit that completes logical and arithmetic shifts.

SIC (System Interrupt Controller). 

Part of the processor’s two-level event control mechanism. The SIC works 
with the Core Event Controller (CEC) to prioritize and control all system 
interrupts. The SIC provides mapping between the peripheral interrupt 
sources and the prioritized general-purpose interrupt inputs of the core.

SIMD (Single Instruction, Multiple Data). 

A parallel computer architecture in which multiple data operands are pro-
cessed simultaneously using one instruction. 

SP (Stack Pointer).

A register that points to the top of the stack. 

SPI. 

See Serial Peripheral Interface

SRAM.

See Static Random Access Memory

stack.

A data structure for storing items that are to be accessed in last in, first out 
(LIFO) order. When a data item is added to the stack, it is “pushed”; 
when a data item is removed from the stack, it is “popped.” 

Static Random Access Memory (SRAM). 

Very fast read/write memory that does not require periodic refreshing.
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system.

The system includes the peripheral set (Timers, Real-Time Clock, pro-
grammable flags, UART, SPORTs, PPI, and SPIs), the external memory 
controller (EBIU), the Memory DMA controller, as well as the interfaces 
between these peripherals, and the optional, external (off-chip) resources.

System clock (SCLK).

A component that delivers clock pulses at a frequency determined by a 
programmable divider ratio within the PLL. 

System Interrupt Controller (SIC). 

Component that maps and routes events from peripheral interrupt sources 
to the prioritized, general-purpose interrupt inputs of the Core Event 
Controller (CEC).

TAP (Test Access Port).

See JTAG port

TDM.

See Time Division Multiplexing

Time Division Multiplexing (TDM).

A method used for transmitting separate signals over a single channel. 
Transmission time is broken into segments, each of which carries one ele-
ment. Each word belongs to the next consecutive channel so that, for 
example, a 24-word block of data contains one word for each of the 24 
channels.

UART. 

See Universal Asynchronous Receiver Transmitter
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Universal Asynchronous Receiver Transmitter (UART).

A module that contains both the receiving and transmitting circuits 
required for asynchronous serial communication.

Valid.

A state bit (stored along with the tag) that indicates the corresponding tag 
and data are current and correct and can be used to satisfy memory access 
requests.

victim. 

A dirty cache line that must be written to memory before it can be 
replaced to free space for a cache line allocation.

Von Neumann architecture.

The architecture used by most non-DSP microprocessors. This architec-
ture uses a single address and data bus for memory access.

Way. 

An array of line storage elements in an N-Way cache.

W1C.

See Write-1-to-Clear

W1S.

See Write-1-to-Set

Write-1-to-Clear (W1C) bit.

A control or status bit that can be cleared (= 0) by being written to with 1.
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Write-1-to-Set (W1S) bit. 

A control or status bit that is set by writing 1 to it. It cannot be cleared by 
writing 0 to it.

write back.

A cache write policy (also known as copyback). The write data is written 
only to the cache line. The modified cache line is written to source mem-
ory only when it is replaced.

write through.

A cache write policy (also known as store through). The write data is writ-
ten to both the cache line and to source memory. The modified cache line 
is not written to the source memory when it is replaced.                                                                                                                                                                                                                                
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A
A1-0 (accumulator result) registers, 2-6, 

2-38, 2-39, 2-44
A10 (SDRAM address) pin, 17-33
aborts, DMA, 9-71
AC (address calculation) stage, 4-7
accumulator result (A1-0) registers, 2-6, 

2-38, 2-44
active descriptor queue, and DMA 

synchronization, 9-70
active field select (FLD_SEL) bit, 11-6
active low/high frame syncs, serial port, 

12-39
active mode, 1-22, 8-14
ACTIVE_PLLDISABLED bit, 8-10
ACTIVE_PLLENABLED bit, 8-10
active video only mode, PPI, 11-19
address bus, 17-63
address calculation (AC) stage, 4-7
addressing

See also auto-decrement; auto-increment; 
bit-reversed; circular-buffer; indexed; 
indirect; modified; post-increment; 
post-modify; pre-modify; data address 
generators

circular buffers, 9-67
modes, 5-15
transfer types supported, 5-13

address mapping, SDRAM, 17-51
address pointer registers. See pointer 

registers
address-tag compare operation, 6-18

alarm clock, RTC, 16-2
A-law companding, 12-2, 12-35, 12-60
alignment exceptions, 6-71
alignment of memory operations, 6-71
alternate frame sync mode, 12-42
alternate timing, serial port, 12-42
ALU, 1-3, 2-1, 2-23 to 2-37

arithmetic, 2-13
arithmetic formats, 2-15
data flow, 2-34
data types, 2-12
functions, 2-23
inputs and outputs, 2-25
instructions, 2-25, 2-29, 2-37
instructions (summary), 2-29
operations, 2-23 to 2-29
status, 2-22
status signals, 2-36

AMBEN (asynchronous memory bank 
enable) field, 17-10

AMC (asynchronous memory controller), 
1-7, 17-4

EBIU block diagram, 17-4
programming, 17-11
timing parameters, 17-11

AMCKEN (asynchronous memory 
CLKOUT enable) bit, 17-11

AMS, 17-9
AND, logical, 2-23
arbitration

congestion on DMA channels, 9-59
DAB, 7-7
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arbitration (continued)
DCB, 7-7
DEB, 7-7
EAB, 7-10
latency, 7-9

architecture, processor core, 2-2
ARDY pin, 17-15, 17-20
arithmetic formats summary, 2-15 to 2-16
arithmetic logic unit (ALU). See ALU
arithmetic operations, 2-23
arithmetic shift (ASHIFT) instruction, 

2-50
arithmetic shifts, 2-1, 2-14
arithmetic status (ASTAT) register, 2-23
ASHIFT (arithmetic shift) instruction, 

2-50
ASIC/FPGA designs, 17-1
assembly language, 2-1
ASTAT (arithmetic status) register, 2-23
asynchronous accesses, by core, 17-16
asynchronous controller, 1-12
asynchronous interfaces supported, 17-1
asynchronous memory, 17-2, 17-9
asynchronous memory bank address range 

(table), 17-9
asynchronous memory bank control 0 

(EBIU_AMBCTL0) register, 17-13
asynchronous memory bank control 1 

(EBIU_AMBCTL1) register, 17-14
asynchronous memory bank control 

(EBIU_AMBCTLx) registers, 17-11
asynchronous memory bank enable 

(AMBEN) field, 17-10
asynchronous memory CLKOUT enable 

(AMCKEN) bit, 17-11
asynchronous memory controller (AMC), 

17-4
asynchronous memory controller. See AMC
asynchronous memory global control 

(EBIU_AMGCTL) register, 17-10

asynchronous read, 17-17
asynchronous serial communications, 13-2
asynchronous write, 17-19
ASYNC memory banks, 17-3
atomic operations, 6-72
audience, intended, -xxxv
autobaud, and general-purpose timers, 

15-34
autobaud detection, 13-1, 15-34
auto-decrement addressing, 5-10
auto-increment addressing, 5-10
auto-refresh

command, 17-60
timing, 17-48

B
B3-0 (base) registers, 2-7, 5-2, 5-6
bandwidth, memory DMA operations, 

9-57
bank activate command, 17-23, 17-41, 

17-58
bank address, EBIU, 17-46
bank n ARDY enable bit, 17-13
bank n ARDY polarity bit, 17-13
bank n memory transition time field, 17-13
bank n read access time field, 17-13
bank n setup time field, 17-13
bank n write access time field, 17-13
bank size encodings (table), 17-50
bank sizes

EBIU, 17-46
SDRAM, 17-30

bank widths
EBIU, 17-46
SDRAM, 17-30

barrel-shifter. See shifter
base (B3-0) registers, 2-7, 5-2, 5-6
baud rate, UART, 13-6, 13-7, 13-13
baud rate values, SPI, 10-8
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BGSTAT (bus grant status) bit, 17-47, 
17-63

biased rounding, 2-18
BI (break interrupt) bit, 13-5, 13-9
binary decode, C-4
binary multiplication, D-4
binary numbers, 2-3
bit clear (BITCLR) instruction, 2-54
BITCLR (bit clear) instruction, 2-54
bit manipulation

bit clearbits, 2-54
bit set, 2-54
bit test, 2-54
bit toggle, 2-54

bit order, selecting, 12-34
bit-reversed addressing, 5-9
bit-reversed carry addressing, 5-1
bit. See specific bit by name
BITSET (bit set) instruction, 2-54
bit set (BITSET) instruction, 2-54
BITTGL (bit toggle) instruction, 2-54
bit toggle (BITTGL) instruction, 2-54
Blackfin processors

core architecture, 1-1
dynamic power management, 1-1
instruction set, 1-5
I/O memory space, 1-8
memory architecture, 1-6
native formats, D-2

block diagrams
bus hierarchy, 7-1
core, 7-3
core timer, 15-45
EBIU, 17-4
interrupt processing, 4-22
PLL, 8-3
processor, 1-2
RTC, 16-2
SDRAM, 17-30

block diagrams (continued)
SPI, 10-2
SPORT, 12-5

block floating-point format, D-7
BMODE

bits, 3-14
pins, 4-40
state, 3-13

BnRAT, 17-13
BnRDYEN bit, 17-13
BnRDYPOL bit, 17-13
BnST field, 17-13
BnTT field, 17-13
BnWAT field, 17-13
booting, 18-2
boot kernel, 3-18
boot modes, 1-24
boot ROM

loading user code, 3-18
reading in user code, 3-18

boundary-scan architecture, C-2
boundary-scan register, C-6
branch, conditional, 4-13
branching, 4-9
branch latency, 4-10

conditional branches, 4-14
unconditional branches, 4-15

branch prediction, 4-14
branch target, 4-12
branch target address for unconditional 

branches, 4-15
break interrupt (BI) bit, 13-5, 13-9
B-registers (base), 2-7, 5-2, 5-6
broadcast mode, 10-3, 10-15, 10-23
buffers

cacheability protection lookaside buffers 
(CPLBs), 6-15, 6-47, 6-48

timing, external, 17-62
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burst length
defined, 17-24
SDC, 17-53

burst stop command, 17-24
burst type, defined, 17-24
bus agents

DAB, 7-9
PAB, 7-6

bus contention, avoiding, 17-15, 18-11
bus error, EBIU, 17-9
buses

See also DAB, DCB, DEB, EAB, PAB
diagram, 7-1
DMA usage, 9-50
hierarchy, 7-1
loading, 18-12
on-chip, 7-1
peripheral, 7-5
prioritization and DMA, 9-53

bus grant status (BGSTAT) bit, 17-47, 
17-63

bus request and grant, 17-63
BYPASS field, 8-8
BYPASS instruction, C-6
bypass mode, 3-18
bypass register, C-6
byte address, EBIU, 17-46
byte enables, 17-22
byte order, 2-12

C
cache

cache line validity, 6-18
coherency support, 6-71
mapping into data banks, 6-35

cacheability protection lookaside buffers 
(CPLBs), 6-15, 6-47, 6-48

cache block (definition), 6-74

cache hit
address-tag compare, 6-18
data cache access, 6-38
definition, 6-18, 6-74

cache inhibited accesses, 6-72
cache line

components, 6-16
definition, 6-74
states, 6-38

cache miss
definition, 6-38, 6-74
replacement policy, 6-20

CALL instruction, 4-9, 4-11
CAM (content-addressable memory), 6-47
capacitive loads, 17-22, 18-12
capacitors, recommendations, 18-13
carry status, 2-36
CAS before RAS, 17-25
CAS latency, 17-25, 17-40
CAW (column address width), EBIU, 

17-46
CBR refresh, 17-25
CC (condition code) bit, 2-54, 4-10, 4-12
CCIR-656. See ITU-R 656
CCITT G.711 specification, 12-35
CCLK (core clock), 8-5

disabling, 8-30
status by operating mode, 8-13

CDDBG (control disable during bus grant) 
bit, 17-37

CDPRIO (core-DMA priority) bit, 17-10
CEC (core event controller), 1-9
channels

defined, serial, 12-58
serial port TDM, 12-58
serial select offset, 12-58

CHNL (current channel indicator) field, 
12-57

circuit boards, testing, C-1, C-5
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circular buffer addressing, 5-6, 9-67
registers, 5-6
wraparound, 5-8

clean (definition), 6-74
clear bit (BITCLR) instruction, 2-54
clear PFn bits, 14-9
clear PFn interrupt mask bit, 14-15
CLI (disable interrupts) instruction, 6-74
CLKIN (input clock), 8-1, 8-3
CLKIN to VCO, changing the multiplier, 

8-21
CLK_SEL (timer clock select) bit, 15-9, 

15-16, 15-21
clock divide modulus register, 12-30
clock falling edge select (RCKFE) bit, 

12-22, 12-36, 12-39
clock falling edge select (TCKFE) bit, 

12-17, 12-36, 12-39
clocking, 8-1 to 8-11
clock input (CLKIN) pin, 18-4
clock phase, SPI, 10-22
clock phase (CPHA) bit, 10-10, 10-31, 

10-33, 10-37
clock polarity, SPI, 10-21
clock polarity (CPOL) bit, 10-10, 10-32
clock rate

core timer, 15-45
SPORT, 12-2

2x clock recovery mode (MCCRM) field, 
12-51

clocks
EBIU, 17-1
frequency for SPORT, 12-30
managing, 18-4
RTC, 16-2
set up example, 12-33
source for general-purpose timers, 15-2
types of, 18-4

clock signal, SPI, 10-4

CL (SDRAM CAS latency) field, 17-35, 
17-40

code examples
active mode to full on mode, 8-23
control register restoration, 6-73
epilog code for nested ISR, 4-53
full on mode to active mode, 8-23
interrupt enabling and disabling, 6-73
load base of MMRs, 6-73
loop, 4-16
modification of PLL, 8-20
prolog code for nested ISR, 4-53

column address
EBIU, 17-46
strobe latency, 17-25

command inhibit command, 17-61
commands

auto-refresh, 17-48, 17-60
bank activate, 17-23, 17-41, 17-58
burst stop, 17-24
command inhibit, 17-61
load mode register, 17-58
no operation, 17-61
parallel refresh, 17-31
precharge, 17-27, 17-42, 17-57
read/write, 17-59
SDC, 17-56
self-refresh, 17-27, 17-60
transfer initiate, 10-25

companding, 12-49
A-law, 12-2, 12-35
defined, 12-35
lengths supported, 12-35
multichannel operations, 12-60
µ-law, 12-2, 12-35

computational instructions, 2-1
computational status, 2-22
computational units, 2-1 to 2-58
conditional branches, 4-13, 4-14, 6-69, 

6-70
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conditional instructions, 2-22, 4-3
conditional JUMP instruction, 4-10
condition code (CC) bit, 2-54, 4-10, 4-12
configuration

L1 instruction SRAM, 6-1, 6-15
SDC, 17-54
SDRAM, 17-22
SPORT, 12-11

content-addressable memory (CAM), 6-47
contention, bus (avoiding), 17-15
control bit summary, general-purpose 

timers, 15-43
control disable during bus grant (CDDBG) 

bit, 17-37
control register

data memory, 6-28
EBIU, 17-8
instruction memory, 6-9
restoration, 6-73

convergent rounding, 2-18
core

access to flag configuration, 14-5
architecture, 1-3 to 1-6, 2-2
block diagram, 7-3
core clock/system clock ratio control, 8-5
double-fault condition, 4-40
double-fault reset, 3-13
powering down, 8-30

core clock (CCLK), 8-5
core-DMA priority (CDPRIO) bit, 17-10
core event controller (CEC), 1-9, 4-18
core events

event vector table, 4-38
MMR location, 4-38

CORE_IDLE bit, 8-10
core instructions, asynchronous accesses, 

17-16
core interrupt latch (ILAT) register, 4-34
core interrupt mask (IMASK) register, 

4-33, 15-3

core interrupt pending (IPEND) register, 
3-1, 4-36

core-only software reset, 3-13, 3-17, 3-19
core timer, 15-45 to 15-49
core timer control (TCNTL) register, 

15-46
core timer count (TCOUNT) register, 

15-48
core timer period (TPERIOD) register, 

15-46, 15-48
core timers

block diagram, 15-45
clock rate, 15-45
register list, A-7
scaling, 15-49

core timer scale (TSCALE) register, 15-49
counters

cycle, 4-4
RTC, 16-1

count value fields, 15-48
CPHA (clock phase) bit, 10-10, 10-31, 

10-33, 10-37
CPOL (clock polarity) bit, 10-10, 10-32
CROSSCORE software, 1-27
cross options, 2-36
crosstalk, reducing, 18-13
CSYNC instruction, 6-68
current address registers

DMAx_CURR_ADDR, 9-23
MDMA_yy_CURR_ADDR, 9-23

current channel indicator (CHNL) field, 
12-57

current descriptor pointer registers
DMAx_CURR_DESC_PTR, 9-21
MDMA_yy_CURR_DESC_PTR, 9-21

current inner loop count registers
DMAx_CURR_X_COUNT, 9-25
MDMA_yy_CURR_X_COUNT, 9-25
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current outer loop count registers
DMAx_CURR_Y_COUNT, 9-26
MDMA_yy_CURR_Y_COUNT, 9-26

cycle counters, 4-4

D
DAB (DMA access bus), 9-55

arbitration, 7-7
bus agents (masters), 7-9
latencies, 7-9
performance, 7-8

DAB_TRAFFIC_COUNT field, 9-55
DAG0 CPLB miss, 4-46
DAG0 misaligned access, 4-46
DAG0 multiple CPLB hits, 4-45
DAG0 port preference (PORT_PREF0) 

bit, 6-28
DAG0 protection violation, 4-46
DAG1 CPLB miss, 4-46
DAG1 misaligned access, 4-46
DAG1 multiple CPLB hits, 4-46
DAG1 port preference (PORT_PREF1) 

bit, 6-28
DAG1 protection violation, 4-46
DAG. See data address generators (DAGs)
data address generators (DAGs), 5-1 to 

5-21
addressing modes, 5-15
branching support, 4-3
exceptions, 4-45
instructions, 5-16
register modification, 5-12
registers, 2-5, 2-7

data bus, 17-63
data cache, control instructions, 6-41
data cacheability protection lookaside 

buffer enable (ENDCPLB) bit, 6-30
data cache flush (FLUSH) instruction, 6-41
data cache line flush and invalidate 

(FLUSHINV) instruction, 6-42

data cache prefetch (PREFETCH) 
instruction, 6-41

data corruption, avoiding with SPI, 10-23
data-driven interrupts, 9-33
data flow, 2-1
data formats, 2-3 to 2-4, 2-11

binary multiplication, D-4
SPORT, 12-34

data formatting type select (RDTYPE) 
field, 12-20, 12-34, 12-60

data formatting type select (TDTYPE) bits, 
12-15, 12-34, 12-60

data-independent transmit frame sync 
select (DITFS) bit, 12-16, 12-28, 
12-44

data input modes, PPI, 11-22 to 11-25
data interrupt enable (DI_EN) bit, 9-14
data interrupt timing select (DI_SEL) bit, 

9-15
data length (DLEN) field, 11-3
data mask encodings, 17-52
data memory, L1, 6-28 to 6-42
data memory control 

(DMEM_CONTROL) register, 
6-28, 6-48

data move, serial port operations, 12-44
data operations, CPLB, 6-48
data output modes, PPI, 11-25 to 11-27
data overflow, 12-37
data ready (DR) bit, 13-5, 13-7, 13-15
data register file, 2-5, 2-6
data registers, 2-5, 3-4
data sampling, serial, 12-39
data SRAM, L1, 6-31
data store format, 6-75
data test command 

(DTEST_COMMAND) register, 
6-44

data test data (DTEST_DATAx) registers, 
6-45
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data test registers, 6-43 to 6-45
data transfers

data register file, 2-6
DMA, 7-8, 9-1
serial, 12-1
SPI, 10-2

data types, 2-10 to 2-21, 12-34
data underflow, 12-37
data word

serial data formats, 12-22
UART, 13-6

DBGCTL (debug control) register, 3-17
DCB (DMA core bus), 7-7, 9-56
DCBS (L1 data cache bank select) bit, 

6-30, 6-36
DCB_TRAFFIC_COUNT field, 9-56
DCB_TRAFFIC_PERIOD field, 9-56
DCPLB address (DCPLB_ADDRx) 

registers, 6-59
DCPLB_ADDRx (DCPLB address) 

registers, 6-59
DCPLB data (DCPLB_DATAx) registers, 

6-57
DCPLB_DATAx (DCPLB data) registers, 

6-57
DCPLB_FAULT_ADDR (DCPLB fault 

address) register, 6-63
DCPLB fault address 

(DCPLB_FAULT_ADDR) register, 
6-63

DCPLB_STATUS (DCPLB status) 
register, 6-62

DCPLB status (DCPLB_STATUS) 
register, 6-62

DEB (DMA external bus), 7-7, 9-55
arbitration, 7-7
frequency, 7-10
performance, 7-10

DEB_TRAFFIC_COUNT field, 9-55
DEB_TRAFFIC_PERIOD field, 9-55

debug
registers, A-7

debug control (DBGCTL) register, 3-17
DEC (instruction decode) stage, 4-7
DEEP_SLEEP bit, 8-10
deep sleep mode, 1-23, 8-15
deep sleep state, RTC, 16-7
deep sleep wakeup, 16-12
deferring exception processing, 4-55
delay count (PPI_DELAY) register, 11-10
descriptor queue, 9-67
descriptor structures, DMA, 9-66
destination channels, memory DMA, 9-48
development tools, 1-27
DF (divide frequency) bit, 8-4, 8-9
DI_EN (data interrupt enable) bit, 9-14
direction (PORT_DIR) bit, 11-6
direct-mapped (definition), 6-74
direct memory access. See DMA
dirty (definition), 6-74
disable interrupts (CLI) instruction, 6-74
disabling

general-purpose timers, 15-5, 15-13
PLL, 8-18
RTC prescaler, 16-19

DISALGNEXPT instruction, 5-13
discrete SDRAM components supported, 

17-30
DI_SEL (data interrupt timing select) bit, 

9-15
DITFS (data-independent transmit frame 

sync select) bit, 12-16, 12-28, 12-44
divide frequency (DF) bit, 8-4, 8-9
divide primitives (DIVS, DIVQ), 2-12, 

2-37
divisor, UART, 13-11
divisor latch access (DLAB) bit, 13-3, 13-6, 

13-7, 13-8
divisor latch high byte, 13-12
divisor latch low byte, 13-12
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divisor reset, UART, 13-12
DIVQ instruction, 2-37
DIVS (division primitives), 2-12
DIVS instruction, 2-37
DLAB (divisor latch access) bit, 13-3, 13-6, 

13-7, 13-8
DLEN (data length) field, 11-3
DMA, 9-1 to 9-73

1D interrupt-driven, 9-64
1D unsynchronized FIFO, 9-65
2D, polled, 9-64
2D interrupt-driven, 9-64
autobuffer mode, 9-34, 9-43
buffer size, multichannel SPORT, 12-64
channel registers, 9-34
channels, 9-50
channels and control schemes, 9-60
continuous transfers using autobuffering, 

9-64
descriptor array, 9-41
descriptor elements, 9-6
descriptor lists, 9-42
descriptor queue management, 9-67
descriptor structures, 9-66
direction, 9-16
DMA-capable peripherals, 9-1
double buffer scheme, 9-64
errors, 9-71
errors not detected, 9-72
flex descriptor structure, 9-34
flow chart, 9-37
memory DMA, 9-48 to 9-50
memory DMA streams, 9-48
operation flow, 9-37
overview, 1-10
performance considerations, 9-51
polling registers, 9-61
PPI, 11-30
prioritization and traffic control, 9-52 to 

9-54

DMA (continued)
refresh, 9-41
register naming conventions, 9-5
serial port block transfers, 12-44
single-buffer transfers, 9-63
software management, 9-60
SPI, 10-33 to 10-39
SPI data transmission, 10-18, 10-19
SPI master, 10-34
SPI slave, 10-37
SPI transmit, 10-18
SPORT, 12-3
startup, 9-39
stopping, 9-43
synchronization, 9-60 to 9-71
synchronization with PPI, 11-22
triggering transfers, 9-44
two-dimensional (2D), 9-45 to 9-47
UART, 13-8, 13-16

DMA2D (DMA mode) bit, 9-15
DMA buffer clear (RESTART) bit, 9-15
DMA bus. See DAB
DMA channel enable (DMA_EN) bit, 

9-16
DMA configuration registers

DMAx_CONFIG, 9-12
MDMA_yy_CONFIG, 9-12

DMA controller, 9-1
DMA control registers

list, B-12
DMA core bus. See DCB
DMA direction (WNR) bit, 9-16
DMA_EN (DMA channel enable) bit, 

9-16
DMA_ERROR interrupt, 9-71
DMA error interrupts, 9-33
DMA external bus. See DEB
DMA mode (DMA2D) bit, 9-15
DMA performance optimization, 9-50 to 

9-60
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DMA queue completion interrupt, 9-70
DMA_TC_CNT (DMA traffic control 

counter) register, 9-55
DMA_TC_PER (DMA traffic control 

counter period) register, 9-55
DMA traffic control counter 

(DMA_TC_CNT) register, 9-55
DMA traffic control counter period 

(DMA_TC_PER) register, 9-55
DMA traffic exceeding available 

bandwidth, 9-59
DMA_TRAFFIC_PERIOD field, 9-55
DMA transfers, urgent, 9-59
DMAx_CONFIG (DMA configuration) 

registers, 9-12
DMAx_CURR_ADDR (current address) 

registers, 9-23
DMAx_CURR_DESC_PTR (current 

descriptor pointer) registers, 9-21
DMAx_CURR_X_COUNT (current 

inner loop count) registers, 9-25
DMAx_CURR_Y_COUNT (current 

outer loop count) registers, 9-26
DMAx_IRQ_STATUS (interrupt status) 

registers, 9-30
DMAx_NEXT_DESC_PTR (next 

descriptor pointer) registers, 9-8
DMAx_PERIPHERAL_MAP (peripheral 

map) registers, 9-28
DMAx_START_ADDR (start address) 

registers, 9-10
DMAx_X_COUNT (inner loop count) 

registers, 9-16
DMAx_X_MODIFY (inner loop address 

increment) registers, 9-17
DMAx_Y_COUNT (outer loop count) 

registers, 9-19
DMAx_Y_MODIFY (outer loop address 

increment) registers, 9-20

DMC (L1 data memory configure) field, 
6-31

DMEM_CONTROL (data memory 
control) register, 6-28, 6-48

double-fault condition, 4-40
DPMC (dynamic power management 

controller), 8-2, 8-12 to 8-31
DQM pin mask function, 17-25
DQM pins, 17-25
DR (data ready) bit, 13-5, 13-7, 13-15
DRxPRI SPORT input, 12-4
DRxSEC SPORT input, 12-4
DTEST_COMMAND (data test 

command) register, 6-44
DTEST_DATAx (data test data) registers, 

6-45
DTxPRI SPORT output, 12-4
DTxSEC SPORT output, 12-4
dual 16-bit operations, 2-26
dynamic power management, 1-1, 1-21, 

8-1 to 8-31
dynamic power management controller 

(DPMC), 8-2, 8-12 to 8-31
dynamic power management registers

list, B-2

E
EAB (external access bus), 7-9

arbitration, 7-10
EBIU usage, 17-4
frequency, 7-10
performance, 7-10

early frame sync, 12-42
EBCAW (SDRAM external bank column 

address width) field, 17-45
EBE (SDRAM external bank enable) bit, 

17-45, 17-54
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EBIU, 17-1 to 17-63
asynchronous interfaces supported, 17-1
block diagram, 17-4
bus error, 17-9
byte enables, 17-22
clock, 17-1
clocking, 8-1
control registers, 17-8
overview, 17-1
programmable timing characteristics, 

17-16
registers, 17-8
request priority, 17-1
SDRAM devices supported, 17-44
slave operation, 17-4
status register, 17-8

EBIU_AMBCTLx (asynchronous memory 
bank control) registers, 17-11, 17-13, 
17-14

EBIU_AMGCTL (asynchronous memory 
global control) register, 17-10

EBIU (external bus interface unit), 1-11
list of registers, B-14

EBIU_SDBCTL (SDRAM memory global 
control) register, 17-44

EBIU_SDGCTL (SDRAM memory global 
control) register, 17-33

EBIU_SDRRC (SDRAM refresh rate 
control) register, 17-48

EBIU_SDSTAT (SDRAM control status) 
register, 17-47

EBSZ (SDRAM external bank size) field, 
17-45, 17-50

EBUFE (external buffering timing enable) 
bit, 17-36, 17-39

ELSI (enable status RX interrupt) bit, 13-9
EMISO (enable MISO) bit, 10-10
EMREN (extended mode register enable) 

bit, 17-36

emulation, and timer counter, 15-10
emulation behavior select (EMU_RUN) 

bit, 15-9, 15-10, 15-16, 15-44
emulation events, 4-39
emulation mode, 3-9, 4-39
emulation registers, A-7
emulator mode, 1-5
EMU_RUN (emulation behavior select) 

bit, 15-9, 15-10, 15-16, 15-44
enable interrupts (STI) instruction, 6-73, 

6-74, 8-22
enable IrDA mode (IREN) bit, 13-14, 

13-18
enable MISO (EMISO) bit, 10-10
enable PFn interrupt mask bit, 14-14
enable (PORT_EN) bit, 11-8
enable receive buffer full interrupt (ERBFI) 

bit, 13-8, 13-16
enable status RX interrupt (ELSI) bit, 13-9
enable transmit buffer empty interrupt 

(ETBEI) bit, 13-8, 13-9, 13-16
enable UART clocks (UCEN) bit, 13-12, 

13-14, 13-15
ENDCPLB (data cacheability protection 

lookaside buffer enable) bit, 6-30
endianess, 2-12
endian format, data and instruction storage, 

6-65
entire field mode, PPI, 11-18
environments, non-OS, 3-7
EPROM, 1-7
ERBFI (enable receive buffer full interrupt) 

bit, 13-8, 13-16
ERR_DET (error detected) bit, 11-8
ERR_NCOR (error not corrected) bit, 

11-8
error detected (ERR_DET) bit, 11-8
error not corrected (ERR_NCOR) bit, 

11-8
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errors
bus parity, 4-47
bus timeout, 4-47
data misalignment, 6-71
DMA, 9-71
hardware, 4-47
hardware conditions causing, 4-48
internal core, 4-47
multiple hardware, 4-48
not detected by DMA hardware, 9-72
peripheral, 4-47

error signals, SPI, 10-29 to 10-31
error type (ERR_TYP) field, 15-8, 15-9, 

15-19, 15-44
ERR_TYP (error type) field, 15-8, 15-9, 

15-19, 15-44
ETBEI (enable transmit buffer empty 

interrupt) bit, 13-8, 13-9, 13-16
event controller, 3-1, 4-18

MMRs, 4-33
sequencer, 4-3

event flags, RTC, 16-8
event handling, 1-8
events

definition, 4-18
exception, 4-41
handling, 4-18
latency in servicing, 4-60
nested, 4-36
processing, 4-3
unrecoverable, 4-45

event vector table (EVT), 4-38
EVT (event vector table), 4-38
EX1 (execute 1) stage, 4-7
EX2 (execute 2) stage, 4-7
EX3 (execute 3) stage, 4-7
EX4 (execute 4) stage, 4-7
exception events, 3-4
exception return (RETX) register, 3-6
exception routine, example code, 4-58

exceptions
deferring, 4-55
events, 4-41
events causing, 4-43
handler, executing, 4-46
handling instructions in pipeline, 4-55
multiple, 4-45
nonsequential structures, 4-1
table by descending priority, 4-45
trace buffer, 4-46
watchpoint matches, 4-45
while exception handler executing, 4-47

exclusive (definition), 6-74
EXCPT instruction, 4-46
execute 1 (EX1) stage, 4-7
execute 2 (EX2) stage, 4-7
execute 3 (EX3) stage, 4-7
execute 4 (EX4) stage, 4-7
execution unit, components, 4-8
EXT_CLK mode, 15-36 to 15-37
extended mode register enable (EMREN) 

bit, 17-36
external access bus. See EAB
external buffering timing enable (EBUFE) 

bit, 17-36, 17-39
external buffer timing, 17-62
external bus interface unit (EBIU), 1-11, 

B-14
external bus interface unit (EBIU). See 

EBIU
external event mode, 15-3
external event mode. See EXT_CLK mode
external memory, 1-7, 6-46 to 6-47

design issues, 18-7
interfaces, 17-5
interfacing to, 17-1
map (diagram), 17-3

external SDRAM memory, 17-50
EXTEST instruction, C-5
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F
fast back-to-back read to write (FBBRW) 

bit, 17-36
Fast Fourier Transform, 2-36, 5-9
FBBRW (fast back-to-back read to write) 

bit, 17-36
FE (framing error) bit, 13-5, 13-9
fetch address, 4-2, 4-7, 4-8
FFE (force framing error on transmit) bit, 

13-14
field indicator (FLD) bit, 11-9
FIFO, EBIU, 17-1
FIFO overflow (OVR) bit, 11-9
FIFO underrun (UNDR) bit, 11-9
FIO_BOTH (flag set on both edges) 

register, 14-7, 14-19
FIO_DIR (flag direction) register, 14-1, 

14-5
FIO_EDGE (flag interrupt sensitivity) 

register, 14-7, 14-18
FIO_FLAG_C (flag clear) register, 14-1, 

14-8
FIO_FLAG_D (flag data) register, 14-1, 

14-8
FIO_FLAG_S (flag set) register, 14-1, 14-8
FIO_FLAG_T (flag toggle) register, 14-1, 

14-8, 14-9
FIO_INEN (flag input enable) register, 

14-2, 14-20
FIO_MASKx_C (interrupt mask clear) 

registers, 14-2, 14-11
FIO_MASKx_D (interrupt mask data) 

registers, 14-2, 14-11
FIO_MASKx_S (interrupt mask set) 

registers, 14-2, 14-11
FIO_MASKx_T (interrupt mask toggle) 

registers, 14-2, 14-11
FIO_POLAR (flag polarity) register, 14-7, 

14-18

flag clear (FIO_FLAG_C) register, 14-1, 
14-8

flag configuration registers, 14-1, 14-5
flag data (FIO_FLAG_D) register, 14-1, 

14-8
flag direction (FIO_DIR) register, 14-1, 

14-5
flag input enable (FIO_INEN) register, 

14-2, 14-20
flag interrupts, flowchart, 14-13
flag interrupt sensitivity (FIO_EDGE) 

register, 14-7, 14-18
flag mask interrupt registers, 14-11
flag polarity (FIO_POLAR) register, 14-7, 

14-18
flags

 See also programmable flags
interrupt generation, 14-1, 14-12
overflow, 2-12
programmable, 14-1
UART, 13-15

flag set (FIO_FLAG_S) register, 14-1, 14-8
flag set on both edges (FIO_BOTH) 

register, 14-7, 14-19
flag toggle (FIO_FLAG_T) register, 14-1, 

14-8, 14-9
flag value registers, 14-6
flash memory, 1-7, 17-1
FLD (field indicator) bit, 11-9
FLD_SEL (active field select) bit, 11-6
flex descriptors, 9-34, 9-47
flex descriptor size (NDSIZE) field, 9-14, 

9-72
FLGx (slave select value) bits, 10-10, 10-13
FLOW (next operation) field, 9-13, 9-66
FLSx (slave select enable) bits, 10-10
FLUSH (data cache flush) instruction, 6-41
FLUSHINV (data cache line flush and 

invalidate) instruction, 6-42
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force framing error on transmit (FFE) bit, 
13-14

force interrupt/reset (RAISE) instruction, 
3-11

force parity error on transmit (FPE) bit, 
13-14

formats, serial data words, 12-22
FPE (force parity error on transmit) bit, 

13-14
FP (frame pointer) register, 4-4, 5-5
fractional data format, D-1
fractional mode, 2-13, D-5
fractional multiplier results format, 2-16
fractional representation, 2-4
fractions, multiplication, 2-48
framed serial transfers, characteristics, 

12-38
framed/unframed data, 12-37
frame pointer (FP) register, 4-4, 5-5
frame start detect, PPI, 11-12
frame sync, 12-1

active high/low, 12-39
early, 12-42
early/late, 12-42
external/internal, 12-38
internal, 12-32
internally generated, 12-31
late, 12-42
multichannel mode, 12-53
sampling edge, 12-39
set up example, 12-33
SPORT options, 12-37

frame synchronization
PPI in GP modes, 11-27
SPORT usage, 12-3

frame sync polarity, between PPI and timer, 
11-29

frame sync pulse
use of, 12-16
when issued, 12-16

frame sync signal, control of, 12-16, 12-21
frame sync to data relationship (FSDR) bit, 

12-51, 12-58
frame track error (FT_ERR) bit, 11-8, 

11-12
frame track errors, 11-8, 11-12
framing

continuous data, 12-67
examples of, 12-69
non-continuous data, 12-67

framing error (FE) bit, 13-5, 13-9
frequencies, clock and frame sync, 12-32
frequency

DEB, 7-10
EAB, 7-10

FREQ (voltage frequency) field, 8-27, 8-28
FSDR (frame sync to data relationship) bit, 

12-51, 12-58
F signal, 11-9
FT_ERR (frame track error) bit, 11-8, 

11-12
full duplex, 10-1, 12-1, 12-4
FULL_ON bit, 8-10
full on mode, 1-22, 8-13
FU (unsigned fraction) option, 2-42

G
GAIN (voltage level gain) field, 8-27, 8-29
general-purpose interrupts, 4-18, 4-30, 

4-49
general-purpose I/O (GPIO) pins, 14-1
general-purpose modes, PPI, 11-21
general-purpose (PFx) pins, 14-1
general-purpose timers, 15-1 to 15-43

autobaud mode, 15-34
clock source, 15-2
control bit summary, 15-43
disabling, 15-5, 15-13
enabling, 15-5, 15-13
enabling simultaneously, 15-3



ADSP-BF533 Blackfin Processor Hardware Reference I-15

Index

general-purpose timers (continued)
interrupts, 15-3, 15-6, 15-19, 15-38
modes, 15-1
output pad disable, 15-18
PPI usage, 15-37
PULSE_HI toggle mode, 15-22
registers, 15-2
single pulse generation, 15-18
size of register accesses, 15-4
stopping in PWM_OUT mode, 15-20
waveform generation, 15-18

get more data (GM) bit, 10-28, 10-36, 
10-38

glitch filtering, UART, 13-19
global enabling and disabling interrupts, 

4-37
glossary, G-1
GM (get more data) bit, 10-28, 10-36, 

10-38
GPIO (general-purpose I/O) pins, 14-1
ground plane, recommendations, 18-13
GSM speech-compression routines, 2-21
GSM speech vocoder algorithms, 2-43

H
H.100 protocol, 12-2, 12-58, 12-65
handshaking, status flags, 13-15
hardware conditions and error interrupts, 

4-48
hardware error (HWE) interrupt, 4-47
hardware error interrupts, 4-47, 4-48
hardware errors, multiple, 4-48
hardware reset, 3-12
Harvard architecture, 6-6
hibernate state, 1-23, 8-16, 8-30
hierarchical memory structure, 1-5
high frequency design considerations, 

18-12
HMVIP, 12-65
HWE (hardware error interrupt), 4-47

I
I2S serial devices, 12-2
I3-0 (index) registers, 2-7, 5-2, 5-6
ICPLB address (ICPLB_ADDRx) registers, 

6-60
ICPLB_ADDRx (ICPLB address) registers, 

6-60
ICPLB data (ICPLB_DATAx) registers, 

6-55
ICPLB_DATAx (ICPLB data) registers, 

6-55
ICPLB fault address 

(ICPLB_FAULT_ADDR) register, 
6-63

ICPLB_FAULT_ADDR (ICPLB fault 
address) register, 6-63

ICPLB_STATUS (ICPLB status) register, 
6-62

ICPLB status (ICPLB_STATUS) register, 
6-62

idle state, 3-9, 4-1
IEEE 1149.1 standard. See JTAG standard
IF1 (instruction fetch 1) stage, 4-7
IF2 (instruction fetch 2) stage, 4-7
IF3 (instruction fetch 3) stage, 4-7
I-fetch access exception, 4-45
I-fetch CPLB miss, 4-45
I-fetch misaligned access, 4-45
I-fetch multiple CPLB hits, 4-45
I-fetch protection violation, 4-45
IH (integer high-half extraction) option, 

2-43
ILAT (core interrupt latch) register, 4-34
illegal combination, 4-45
illegal use protected resource, 4-45
IMASK (core interrupt mask) register, 

4-33, 15-3
IMEM_CONTROL (instruction memory 

control) register, 6-9, 6-48
immediate offset, 5-11
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immediate overflow status, 2-36
index (definition), 6-75
indexed addressing, 5-9, 5-11
index (I3-0) registers, 2-7, 5-2, 5-6
inductance (run length), 18-12
inner loop address increment registers

DMAx_X_MODIFY, 9-17
MDMA_yy_X_MODIFY, 9-17

inner loop count registers
DMAx_X_COUNT, 9-16
MDMA_yy_X_COUNT, 9-16

input clock (CLKIN), 8-1, 8-3
input delay bit, 8-9
inputs and outputs, 2-25
instruction address, 4-3
instruction alignment unit, 4-7
instruction-bit scan ordering, C-4
instruction cache

coherency, 6-21
invalidation, 6-23
management, 6-21 to 6-23

instruction decode (DEC) stage, 4-7
instruction fetch 1 (IF1) stage, 4-7
instruction fetch 2 (IF2) stage, 4-7
instruction fetch 3 (IF3) stage, 4-7
instruction fetches, 6-48
instruction fetch time loop, 4-17
instruction (IR) register, C-2
instruction loop buffer, 4-17
instruction memory control 

(IMEM_CONTROL) register, 6-9, 
6-48

instruction memory unit, 4-7
instruction pipeline, 4-2, 4-6, 4-7
instructions

ALU, 2-29, 2-30
conditional, 2-22, 4-3
DAG, 5-16
DAG, summary, 5-17
data cache control, 6-41

instructions (continued)
in pipeline when interrupt occurs, 4-55
instruction set, 1-25
interlocked pipeline, 6-66
load/store, 6-66
multiple exceptions, 4-45
multiplier, 2-40
protected, 3-4
register file, 2-8
shifter, summary of, 2-55
stored in memory, 6-65
synchronizing, 6-68
width, 4-8

instruction set, 1-5, 1-25
instruction test command 

(ITEST_COMMAND) register, 6-25
instruction test data (ITEST_DATAx) 

registers, 6-25
instruction test registers, 6-24 to 6-26
instruction width, 4-8
integer data format, D-1
integer high-half extraction (IH) option, 

2-43
integer mode, 2-14, D-5
integer multiplier results format, 2-16
integers, multiplication, 2-48
interfaces

external memory, 17-5
internal, 7-1
internal memory, 17-5
on-chip, 7-5
RTC, 16-2
system, 7-4

interleaving data, 12-5, 12-23
internal address mapping (table), 17-45
internal/external frame syncs. See frame 

sync
internal memory, 1-7, 6-6, 17-5
internal receive clock select (IRCLK) bit, 

12-20
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internal receive frame sync select (IRFS) bit, 
12-21, 12-38

internal supply regulator, shutting off, 8-30
internal transmit clock select (ITCLK) bit, 

12-15
internal transmit frame sync select (ITFS) 

bit, 12-16, 12-38, 12-54
internal voltage level (VLEV) field, 8-27, 

8-28
interrupt channels, 13-8, 14-2
interrupt conditions, UART, 13-9
interrupt controller registers, A-5, B-2
interrupt handling

DMA synchronization, 9-68
instructions in pipeline, 4-55

interrupt mask clear (FIO_MASKx_C) 
registers, 14-2, 14-11

interrupt mask data (FIO_MASKx_D) 
registers, 14-2, 14-11

interrupt mask set (FIO_MASKx_S) 
registers, 14-2, 14-11

interrupt mask toggle (FIO_MASKx_T) 
registers, 14-2, 14-11

interrupt output, SPI, 10-7
interrupt priority (IPRIO) register, 6-40
interrupt request enable (IRQ_ENA) bit, 

15-3, 15-6, 15-7, 15-9, 15-16
interrupts

assigning priority for UART, 13-11
configuring and servicing, 18-4
control of system, 4-18
data-driven, 9-33
definition, 4-18
disabling generation of, 14-2
DMA errors, 9-33
DMA queue completion, 9-70
enabling and disabling, 6-73
enabling generation of, 14-2
general-purpose, 4-18, 4-49

interrupts (continued)
general-purpose timers, 15-3, 15-19, 

15-38
generated by peripherals, 4-21
global enabling and disabling, 4-37
hardware conditions (table), 4-48
hardware error, 4-47
managing descriptor queues, 9-67
masking, 14-2
multiple sources, 4-22
nested, 4-36
non-nested, 4-50
nonsequential structures, 4-1
peripheral, 4-18
peripheral errors, 9-33
PF pins, 14-1
priority watermark, 6-40
processing, 4-3, 4-21
processor, 14-11
RTC, 16-11, 16-12
servicing, 4-49
shared, 4-30
sources, peripheral, 4-27
SPI errors, 10-7
SPORT error, 12-29
SPORT RX, 12-25, 12-29
SPORT TX, 12-24, 12-29
timers, 15-6

interrupt service routines. See ISRs
interrupt status registers, 13-17

DMAx_IRQ_STATUS, 9-30
MDMA_yy_IRQ_STATUS, 9-30

invalidation, instruction cache, 6-23
invalid cache line (definition), 6-75
I/O interface to peripheral serial device, 

12-1
I/O memory space, 1-8
I/O pins, general-purpose, 14-1
IPEND (core interrupt pending) register, 

3-1, 4-36
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IPRIO (interrupt priority) register, 6-40
IRCLK (internal receive clock select) bit, 

12-20
IrDA

receiver, 13-19
SIR protocol, 13-1
transmitter, 13-18
UART, 13-17

IrDA mode, 13-14
IrDA RX polarity change (RPOLC) bit, 

13-14
IrDA SIR, 13-17
IrDA TX polarity change (TPOLC) bit, 

13-14
I-registers (index), 2-7
IREN (enable IrDA mode) bit, 13-14, 

13-18
IRFS (internal receive frame sync select) bit, 

12-21, 12-38
IR (instruction) register, C-2
IRPOL bit, 13-20
IRQ_ENA (interrupt request enable) bit, 

15-3, 15-6, 15-7, 15-9, 15-16
ISR and multiple interrupt sources, 4-22
ISRs

clearing interrupt bits, 15-7
determining source of interrupt, 4-27
UART, 13-15

ISS2 (signed integer scale) option, 2-42
IS (signed integer) option, 2-42
ITCLK (internal transmit clock select) bit, 

12-15
ITEST_COMMAND (instruction test 

command) register, 6-25
ITEST_DATAx (instruction test data) 

registers, 6-25
ITEST (instruction test) registers, 6-24
ITFS (internal transmit frame sync select) 

bit, 12-16, 12-38, 12-54
ITU-R 601/656, 1-12

ITU-R 656 modes, 11-6, 11-8, 11-13
DLEN field, 11-3
frame start detect, 11-12
frame synchronization, 11-20
output, 11-20

IU (unsigned integer) option, 2-42
IVHW interrupt, 4-47

J
JPEG compression, PPI, 11-32
JTAG

port, 3-17
standard, C-1, C-2, C-4

JUMP instruction, 4-9
conditional, 4-10
range, 4-10

jumps, nonsequential structures, 4-1

L
L1 data cache bank select (DCBS) bit, 

6-30, 6-36
L1 data memory configure (DMC) field, 

6-31
L1 data memory controller registers, A-1
L1 data SRAM, 6-31
L1 instruction memory controller registers, 

A-3
L1 memory. See level 1 (L1) memory; level 

1 (L1) data memory; level 1 (L1) 
instruction memory

L3-0 (length) registers, 2-7, 5-2, 5-6
LARFS (late receive frame sync) bit, 12-21, 

12-42
latched interrupt request, 4-34
late frame sync, 12-42, 12-52
latency

DAB, 7-9
programmable flags, 14-21
SDRAM, 17-35
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latency (continued)
SDRAM read command, 17-53
servicing events, 4-60
setting CAS value, 17-40
when servicing interrupts, 4-49

late receive frame sync (LARFS) bit, 12-21, 
12-42

late transmit frame select (LATFS) bit, 
12-17, 12-42, 12-58

LATFS (late transmit frame select) bit, 
12-17, 12-42, 12-58

LBx (loop bottom) registers, 4-4
LCx (loop counter) registers, 4-4
least recently used algorithm (LRU) 

(definition), 6-75
left-right order (RRFST) bit, 12-22
left-right order (TRFST) bit, 12-17
length (L3-0) registers, 2-7, 5-2, 5-6
level 1 (L1) data memory, 6-28 to 6-42

subbanks, 6-31
traffic, 6-28

level 1 (L1) instruction memory, 6-8 to 
6-23

configuration, 6-15
DAG reference exception, 6-12
instruction cache, 6-15
organization, 6-15
subbank organization, 6-8
subbanks, 6-12

level 1 (L1) memory, 1-5, 6-6
See also level 1 (L1) data memory; level 1 

(L1) instruction memory
address alignment, 6-12
definition, 6-75
scratchpad data SRAM, 6-8

level 2 (L2) memory, 6-46
life counter, 16-1
lines per frame (PPI_FRAME) register, 

11-12
line terminations, SPORT, 12-66

little endian (definition), 6-75
load, speculative execution, 6-69
load mode register command, 17-58
load operation, 6-66
load ordering, 6-67
load/store instructions, 5-5
locked transfers, DMA, 7-8
logging nested interrupts, 4-54
logical operations, 2-23
logical shift (LSHIFT) instruction, 2-50
logical shifts, 2-1, 2-14
long jump (JUMP.L) instruction, 4-11
loopback mode, force error bits, 13-14
loopback mode enable (LOOP) bit, 13-4
loop bottom (LBx) registers, 4-4
loop conditions, evaluation, 4-4
loop counter (LCx) registers, 4-4
LOOP (loopback mode enable) bit, 13-4
loops

buffer, 4-17
disabling, 4-17
instruction fetch time, 4-17
nonsequential structures, 4-1
registers, 4-4, 4-5
termination conditions, 4-3
top and bottom addresses, 4-17

loop top (LTx) registers, 4-4
low receive frame sync select (LRFS) bit, 

12-21, 12-38, 12-39
low transmit frame sync select (LTFS) bit, 

12-17, 12-38, 12-39, 12-54
L-registers (length), 2-7
LRFS (low receive frame sync select) bit, 

12-21, 12-38, 12-39
LSB first (LSBF) bit, 10-10
LSBF (LSB first) bit, 10-10
LSHIFT (logical shift) instruction, 2-50
LTFS (low transmit frame sync select) bit, 

12-17, 12-38, 12-39, 12-54
LTx (loop top) registers, 4-4
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M
M3-0 (modify) registers, 2-7, 5-2, 5-6
MACs (multiplier-accumulators), 2-38 to 

2-50
See also multiply without accumulate
dual operations, 2-49
multicycle 32-bit instruction, 2-48

manual
contents, -xxxvi
new in this edition, -xxxix

master in slave out (MISO) pin, 10-3, 10-4, 
10-6, 10-21, 10-23, 10-24

master (MSTR) bit, 10-10
master out slave in (MOSI) pin, 10-3, 10-4, 

10-5, 10-21, 10-23, 10-24
masters

DAB, 7-9
PAB, 7-6

MCCRM (2x clock recovery mode) field, 
12-51

MCCRM (mode) signal, 12-65
MCDRXPE (multichannel DMA receive 

packing) bit, 12-51, 12-64
MCDTXPE (multichannel DMA transmit 

packing) bit, 12-51, 12-64
MCMEN (multichannel frame mode 

enable) bit, 12-51, 12-52
MDMA_ROUND_ROBIN_COUNT 

field, 9-55, 9-58
MDMA_ROUND_ROBIN_PERIOD 

field, 9-55, 9-57, 9-58
MDMA_yy_CONFIG (DMA 

configuration) registers, 9-12
MDMA_yy_CURR_ADDR (current 

address) registers, 9-23
MDMA_yy_CURR_DESC_PTR (current 

descriptor pointer) registers, 9-21
MDMA_yy_CURR_X_COUNT (current 

inner loop count) registers, 9-25

MDMA_yy_CURR_Y_COUNT (current 
outer loop count) registers, 9-26

MDMA_yy_IRQ_STATUS (interrupt 
status) registers, 9-30

MDMA_yy_NEXT_DESC_PTR (next 
descriptor pointer) registers, 9-8

MDMA_yy_PERIPHERAL_MAP 
(peripheral map) registers, 9-28

MDMA_yy_START_ADDR (start 
address) registers, 9-10

MDMA_yy_X_COUNT (inner loop 
count) registers, 9-16

MDMA_yy_X_MODIFY (inner loop 
address increment) registers, 9-17

MDMA_yy_Y_COUNT (outer loop 
count) register, 9-19

MDMA_yy_Y_MODIFY (outer loop 
address increment) registers, 9-20

memory
See also cache; level 1 (L1) memory; level 

1 (L1) data memory; level 1 (L1) 
instruction memory; level 2 (L2) 
memory

address alignment, 5-13
architecture, 1-6, 6-1 to 6-8
asynchronous interface, 18-7
asynchronous region, 17-2
configurations, 6-2
external, 1-7, 6-46 to 6-47, 17-5
external SDRAM, 17-50
instructions storage, 6-65
internal, 1-7
internal memory banks, 17-26
L1 data, 6-28 to 6-42
L1 data SRAM, 6-31
management, 6-47
map, 6-3
moving data between SPORT, 12-44
nonaligned operations, 6-71
off-chip, 1-7
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memory (continued)
on-chip, 1-7
page descriptor table, 6-50
protected, 3-5
protection and properties, 6-47 to 6-63
start locations of L1 instruction memory 

subbanks, 6-12
terminology, 6-74 to 6-76
transaction model, 6-65
unpopulated, 17-10

memory DMA, 9-48 to 9-50
bandwidth, 9-50
channels, 9-48
priority, 9-57
register naming conventions, 9-7
scheduling, 9-57
transfer operation, starting, 9-49
transfer performance, 7-10
word size, 9-49

memory management unit (MMU), 1-5, 
6-47

memory map, external (diagram), 17-3
memory-mapped registers (MMRs), 6-72 

to 6-74
memory page, 6-49
memory structure, 1-5
MFD (multichannel frame delay) field, 

12-54, 12-56
MISO (master in slave out) pin, 10-3, 10-4, 

10-6, 10-21, 10-23, 10-24
mixed multiply (M) option, 2-43
µ-law companding, 12-2, 12-35, 12-60
M (mixed multiply mode) option, 2-43
MMR location of core events, 4-38
MMRs (memory-mapped registers), B-1
MMU (memory management unit), 1-5, 

6-47
mode fault error (MODF) bit, 10-16, 

10-29
mode fault errors, 10-7

mode register, 17-26
modes

active video only mode, 11-19
addressing, 5-15
autobaud, 15-34
boot, 1-24, 3-18
broadcast, 10-3, 10-15, 10-23
bypass, 3-18
emulation, 4-39
emulator, 1-5
external event, 15-3
full on, 8-13
general-purpose (PPI), 11-21
general-purpose timers, 15-1
IrDA, 13-14
multichannel, 12-49
operating, 8-12
operation, 1-5
processor reset, 18-1
self-refresh, 17-27
serial port, 12-11
SPI as master, 10-25
SPI master, 10-2
SPI slave, 10-2, 10-27
supervisor, 1-5
TDM multichannel, 12-2
time-division-multiplexed (TDM) 

mode, 12-49
UART DMA, 13-16
UART non-DMA, 13-15
user, 1-5
VBI only, 11-19

MODF (mode fault error) bit, 10-16, 
10-29

modified addressing, 5-3
modified (definition), 6-74
modify address, 5-1
modify (M3-0) registers, 2-7, 5-2, 5-6
MOSI (master out slave in) pin, 10-3, 10-4, 

10-5, 10-21, 10-23, 10-24
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moving data, serial port, 12-44
MPEG compression, PPI, 11-32
MP registers, A-7
MSEL (multiplier select) field, 8-4, 8-8
MSTR (master) bit, 10-10
µ-law companding, 12-2, 12-35, 12-60
multichannel configuration 

(SPORTx_MCMC2) register, 12-58, 
12-64

multichannel DMA receive packing 
(MCDRXPE) bit, 12-51, 12-64

multichannel DMA transmit packing 
(MCDTXPE) bit, 12-51, 12-64

multichannel frame, 12-55
multichannel frame delay (MFD) field, 

12-54, 12-56
multichannel frame mode enable 

(MCMEN) bit, 12-51, 12-52
multichannel mode, 12-49

enable/disable, 12-52
frame syncs, 12-53
SPORT, 12-53

multichannel operation, SPORT, 12-49 to 
12-65

multichannel selection registers, 12-60
multimaster environment, SPI, 10-2
multiple interrupt sources, 4-22, 4-54
multiple-slave SPI systems, 10-15
multiplexed SDRAM addressing scheme 

(figure), 17-51
multiplier, 2-1

accumulator result (A1-0) registers, 2-38, 
2-39

arithmetic integer modes formats, 2-15
data types, 2-13
fractional modes format, 2-15
instruction options, 2-42
instructions, 2-40
operands for input, 2-38
operations, 2-38

multiplier (continued)
results, 2-39, 2-40, 2-44
rounding, 2-39
saturation, 2-40
status, 2-22
status bits, 2-40
theory of operation, 2-44

multiplier select (MSEL) field, 8-4, 8-8
multiply without accumulate, 2-46
multiprocessor systems, shared SDRAM, 

17-36
MVIP-90, 12-65

N
NDSIZE (flex descriptor size) field, 9-14, 

9-72
negative status, 2-36
nested interrupts, 4-36

handling (table), 4-52
logging, 4-54

nested ISRs
example epilog code, 4-53
example prolog code, 4-53

next descriptor pointer registers
DMAx_NEXT_DESC_PTR register, 

9-8
MDMA_yy_NEXT_DESC_PTR 

register, 9-8
next operation (FLOW) field, 9-13, 9-66
NINT (pending interrupt) bit, 13-10
NMI (nonmaskable interrupt), 4-41
nonaligned memory operations, 6-71
nonmaskable interrupts, 4-41
non-nested interrupts, 4-50, 4-51
non-OS environments, 3-7
nonsequential program operation, 4-9
nonsequential program structures, 4-1
no operation command, 17-61
NOP command, 17-61
normal frame sync mode, 12-42
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normal timing, serial port, 12-42
NOT, logical, 2-23
NRZ modulation, 13-17
numbers

binary, 2-3
data formats, 2-11
fractional representation, 2-4
two’s-complement, 2-4
unsigned, 2-4

numeric formats, D-1 to D-8
binary multiplication, D-4
block floating-point, D-7
integer mode, D-5
two’s-complement, D-1

O
OE (overrun error) bit, 13-5, 13-9, 13-15
off-chip memory, 1-7
on-chip memory, 1-7
open drain drivers, 10-1
open drain outputs, 10-24
open page, defined, 17-23
operating modes, 3-1 to 3-19, 8-12

active, 1-22
active mode, 8-14
deep sleep, 1-23
deep sleep mode, 8-15
full on, 1-22, 8-13
hibernate state, 1-23, 8-16
PPI, 11-6
sleep, 1-22
sleep mode, 8-14
transition, 8-16

16-bit operations, 2-25, 2-26, 2-36
32-bit operations, 2-27, 2-28
optimization, DMA performance, 9-50 to 

9-60
OR, logical, 2-23

ordering
loads and stores, 6-67
weak and strong, 6-67

orthogonal functionality, 15-16
oscilloscope probes, 18-15
OUT_DIS (output pad disable) bit, 15-8, 

15-9, 15-16, 15-18
outer loop address increment registers

DMAx_Y_MODIFY register, 9-20
MDMA_yy_Y_MODIFY registers, 9-20

outer loop count registers
DMAx_Y_COUNT register, 9-19
MDMA_yy_Y_COUNT register, 9-19

output, PF pin configured as, 14-1
output, PPI, 1 sync mode, 11-25
output delay bit, 8-8
output pad disable, timer, 15-18
output pad disable (OUT_DIS) bit, 15-8, 

15-9, 15-16, 15-18
overflow, data, 12-37
overflow, saturation of multiplier results, 

2-40
overflow-error indicator (TOVF_ERRx) 

bit, 15-3, 15-8, 15-19, 15-45
overflow flags, 2-12
overrun error (OE) bit, 13-5, 13-9, 13-15
OVR (FIFO overflow) bit, 11-9

P
PAB (peripheral access bus), 7-5

arbitration, 7-5
bus agents (masters, slaves), 7-6
clocking, 8-1
EBIU usage, 17-5
errors generated by SPORT, 12-29
performance, 7-5

PACK_EN (packing mode enable) bit, 
11-5

packing, serial port, 12-64
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packing mode enable (PACK_EN) bit, 
11-5

page descriptor table, 6-50
page size, 17-27, 17-46
parallel peripheral interface (PPI). See PPI
parallel refresh command, 17-31
parity enable (PEN) bit, 13-3
parity error (PE) bit, 13-5, 13-9
partial array self-refresh (PASR) field, 

17-34, 17-36
PASR (partial array self-refresh) field, 

17-34, 17-36
patch registers, A-8
PC100 SDRAM standard, 17-1
PC133 SDRAM controller, 1-11
PC133 SDRAM standard, 17-1
PC (program counter) register, 4-2
PC-relative offset, 4-11
PDWN (power down) bit, 8-9, 8-16
pending interrupt (NINT) bit, 13-10
PEN (parity enable) bit, 13-3
PE (parity error) bit, 13-5, 13-9
performance

DAB, 7-8
DEB, 7-10
DMA, 9-51
EAB, 7-10
memory DMA, 7-10, 9-50
PAB, 7-5
programmable flags, 14-21
SDRAM, 17-62

performance monitor registers, A-9
performance optimization, DMA, 9-50 to 

9-60
PERIOD_CNT (period count) bit, 15-6, 

15-9, 15-16, 15-18, 15-21
period count (PERIOD_CNT) bit, 15-6, 

15-9, 15-16, 15-18, 15-21
period value fields, 15-49
peripheral access bus (PAB), 12-29

peripheral bus. See PAB
peripheral DMA channels, 9-50
peripheral error interrupts, 9-33
peripheral interrupts, 4-18

relative priority, 4-29
source masking, 4-28

peripheral map registers
DMAx_PERIPHERAL_MAP register, 

9-28
MDMA_yy_PERIPHERAL_MAP 

register, 9-28
peripherals, 1-1 to 1-3

configuring for an IVG priority, 4-32
interrupts generated by, 4-21
interrupt sources, 4-27
programmable flag pins, 14-4
SPI-compatible, 10-1
timing, 7-2

PFn both edges bit, 14-20
PFn input enable bit, 14-21
PFn polarity bit, 14-18
PFn (programmable flag direction) bits, 

14-5
PFn sensitivity bit, 14-19
PF (programmable flag) pins, shared with 

PPI, 11-1
PF (programmable flag) registers, B-7
PF. See programmable flags
PFx (general-purpose) pins, 14-1
PFx (programmable flag) pins, 10-10
pins

 See alsoblock diagrams
See specific pin by name
SPORT, 12-4
unused, 18-1

pin terminations, SPORT, 12-66
pipeline

diagram, 4-7
instructions, 4-2, 4-6
instruction stages, 4-7
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pipeline (continued)
interlocked, 6-66
interrupt usage, 4-55
lengths of, 9-62

pipelining, SDC supported, 17-39
PLL

active mode, 8-14, 8-21
applying power to the PLL, 8-18
block diagram, 8-3
BYPASS bit, 8-14, 8-22
CCLK derivation, 8-3
changing CLKIN-to-VCO multiplier, 

8-18
clock counter, 8-11
clock dividers, 8-4
clock frequencies, changing, 8-11
clocking to SDRAM, 8-15
clock multiplier ratios, 8-3
code examples, 8-23, 8-24
configuration, 8-3
control bits, 8-16
deep sleep mode, 8-22
disabled, 8-18
divide frequency (DF) bit, 8-4
DMA access, 8-13, 8-14, 8-22
dynamic power management controller 

(DPMC), 8-12
enabled, 8-18
enabled but bypassed, 8-14
full on mode, 8-21
lock counter, 8-11
maximum performance mode, 8-13
modification, activating changes to DF 

or MSEL, 8-20
modification in active mode, 8-16
multiplier select (MSEL) field, 8-4
new multiplier ratio, 8-18
operating modes, operational 

characteristics, 8-12
operating mode transitions (table), 8-19

PLL (continued)
PDWN (power down) bit, 8-16
PLL_LOCKED bit, 8-21
PLL_OFF bit, 8-18
PLL status (table), 8-12
power domains, 8-25
powering down core, 8-30
power savings by operating mode (table), 

8-13
processing during PLL programming 

sequence, 8-21
programming sequence, 8-20
relocking after changes, 8-21
removing power to the PLL, 8-18
RTC interrupt, 8-15, 8-22
SCLK derivation, 8-1, 8-3
sleep mode, 8-14, 8-21
STOPCK (stop clock) bit, 8-16
transitions, 18-8
voltage control, 8-12, 8-29
wakeup signal, 8-21

PLL control (PLL_CTL) register, 8-7
PLL_CTL (PLL control) register, 8-7
PLL divide (PLL_DIV) register, 8-7
PLL_DIV (PLL divide) register, 8-7
PLL_LOCKCNT (PLL lock count) 

register, 8-11
PLL lock count (PLL_LOCKCNT) 

register, 8-11
PLL_LOCKED bit, 8-10
PLL_OFF bit, 8-9
PLL status (PLL_STAT) register, 8-9
pointer register file, 2-5
pointer register modification, 5-12
pointer registers, 2-6, 3-4
point-to-point connections, 18-12
polarity, 10-21

programmable flags, 14-18
SPI, 10-21

POLC bit, 11-3
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polling DMA registers, 9-61
POLS bit, 11-3
popping, manual, 4-3
PORT_CFG (port configuration) field, 

11-6
port configuration (PORT_CFG) field, 

11-6
port connection, SPORT, 12-7
PORT_DIR (direction) bit, 11-6
PORT_EN (enable) bit, 11-8
PORT_PREF0 (DAG0 port preference) 

bit, 6-28
PORT_PREF1 (DAG1 port preference) 

bit, 6-28
port width, PPI, 11-5
post-modify addressing, 5-1, 5-3, 5-7, 5-11
post-modify buffer access, 5-8
power dissipation, 8-25
power domains, 8-25
power down (PDWN) bit, 8-9, 8-16
powerdown warning, as NMI, 4-41
powering down core, 8-30
power management, 1-21, 8-1 to 8-31
power reduction, PWM_OUT mode, 

15-18
powerup

mode register, 17-26
sequence, 17-35, 17-58, 17-61

powerup start delay (PUPSD) bit, 17-36
PPI, 11-1 to 11-32

active video only mode, 11-19
beginning data transfers, 11-8
clock input, 11-1
control signal polarities, 11-3
data input modes, 11-22 to 11-25
data output modes, 11-25 to 11-27
data width, 11-3
delay before starting, 11-10
DMA operation, 11-30
edge-sensitive inputs, 11-29

PPI (continued)
enabling, 11-8
entire field modes, 11-18
FIFO, 11-9
frame start detect, 11-12
frame synchronization with ITU-R 656, 

11-20
frame sync polarity with timer 

peripherals, 11-29
frame track errors, 11-8, 11-12
general-purpose modes, 11-21
general-purpose timers, 15-37
GP modes, frame synchronization, 11-27
ITU-R 656 modes, 11-13, 11-20
MMRs, 11-2
number of samples, 11-11
operating modes, 11-3, 11-6
output, 1 sync mode, 11-25
pins, 11-1
port width, 11-5
registers, B-4
synchronization with DMA, 11-22
timer pins, 11-29
vertical blanking interval only mode, 

11-19
video data transfer, 11-32
video processing, 11-13

PPI_CLK signal, 11-3
PPI_CONTROL (PPI control) register, 

11-3
PPI control (PPI_CONTROL) register, 

11-3
PPI_COUNT (transfer count) register, 

11-11
PPI_DELAY (delay count) register, 11-10
PPI_FRAME (lines per frame) register, 

11-12
PPI_FS1 signal, 11-3
PPI_FS2 signal, 11-3
PPI_FS3 signal, 11-9
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PPI_STATUS (PPI status) register, 11-8
PPI status (PPI_STATUS) register, 11-8
precharge command, 17-27, 17-57
precharge delay, selecting, 17-42
PREFETCH (data cache prefetch) 

instruction, 6-41
PRELOAD instruction, C-6
pre-modify instruction, 5-11
pre-modify stack pointer addressing, 5-11
prescaler, RTC, 16-1, 16-19
prioritization

DMA, 9-52 to 9-54
memory DMA operations, 9-57
peripheral DMA operations, 9-57

private instructions, C-4
probes, oscilloscope, 18-15
processor modes

determining, 3-1
diagram, 3-2
emulation, 3-9
identifying, 3-2
IPEND interrogation, 3-1
supervisor mode, 3-7
user mode, 3-3

processors
addressing modes, 5-15
block diagram, 1-2
booting, 18-2
bus hierarchy diagram, 7-1
core architecture, 2-2
core block diagram, 7-3
resetting, 18-1

processor states
idle, 3-9
reset, 3-10

program counter (PC) register, 4-2
PC-relative JUMP/CALL, 4-12
PC-relative offset, 4-10

program flow, 4-1

programmable flag direction (PFx) bits, 
14-5

programmable flag (FIO_x) registers, B-7
programmable flag (PFx) pins, 10-10, 14-8

functionality, 14-3
peripherals, 14-3
used for PPI, 11-1

programmable flags, 1-19, 14-1 to 14-21
edge sensitive, 14-18
latency, 14-21
level sensitive, 14-18
multiplexed (table), 14-2
performance, 14-21
pins, interrupt, 14-1
polarity, 14-18
slave select, 10-10
system MMRs, 14-5
throughput, 14-21

programming model
cache memory, 6-6
EBIU, 17-8

program operation, nonsequential, 4-9
program sequencer, 4-1 to 4-62
program structures, nonsequential, 4-1
protected instructions, 3-4
protected resources, 3-4
PSM (SDRAM powerup sequence) bit, 

17-35, 17-55
PSSE (SDRAM powerup sequence start 

enable) bit, 17-35
PSSE (slave select enable) bit, 10-9
public instructions, C-4, C-5
PULSE_HI bit, 15-9, 15-16, 15-18, 15-19, 

15-22
PULSE_HI toggle mode, 15-22
pulse width count and capture mode. See 

WDTH_CAP mode
pulse width modulation mode, 15-6
pulse width modulation mode. See 

PWM_OUT mode
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PUPSD (powerup start delay) bit, 17-36
pushing, manual, 4-3
PWM_CLK, 15-21
PWM_OUT mode, 15-16 to 15-26

externally clocked, 15-21
flow diagram, 15-17
PULSE_HI toggle mode, 15-22
stopping the timer, 15-20

PWM_OUT PULSE_HI toggle mode 
(TOGGLE_HI) bit, 15-9, 15-16, 
15-22, 15-44

Q
quad 16-bit operations, 2-26
query semaphore, 18-6
quotient status, 2-36

R
radix point, D-1
RAISE (force interrupt/reset) instruction, 

3-11
range

CALL instruction, 4-11
conditional branches, 4-13
JUMP instruction, 4-10

RBSY (receive error) bit, 10-16, 10-31, 
10-39

RCKFE (clock falling edge select) bit, 
12-22, 12-36, 12-39

RDIV field, 17-48, 17-53, 17-54
RDTYPE (data formatting type select) 

field, 12-20, 12-34, 12-60
read, asynchronous, 17-17
read command, 17-59
read transfers to SDRAM banks, 17-53
real-time clock. See RTC
receive bit order (RLSBIT) bit, 12-21
receive buffer, 13-7
receive clock (RSCLK) signal, 12-36

receive configuration (SPORTx_RCRx) 
registers, 12-18, 12-60

receive enable (RSPEN) bit, 12-10, 12-18, 
12-20, 12-29

receive error (RBSY) bit, 10-16, 10-31, 
10-39

receive FIFO, SPORT, 12-24
receive FIFO not empty status (RXNE) bit, 

12-28
receive frame sync required select (RFSR) 

bit, 12-21, 12-37
receive frame sync (RFS) signal, 12-53, 

12-54
receive sampling window, UART, 13-19
receive secondary side of SPORT (RXSE) 

bit, 12-22
receive shift (RSR) register, 13-3, 13-7
receive stereo frame sync enable (RSFSE) 

bit, 12-22
reception error, SPI, 10-31
refresh, parallel, 17-31
refresh rate, SDRAM, 18-8
register file instructions, 2-8
register files, 2-5 to 2-10
register instructions, conditional branch, 

4-10
register move, 4-14
registers

See also specific register by name
accessible in user mode, 3-4
core, A-1 to A-9
flag mask interrupt, 14-11
flag value, 14-6
general-purpose timers, 15-2
memory-mapped, core, A-1 to A-9
multichannel selection, 12-60
return address, 4-3
stack pointer, 5-5
system, B-1 to B-15

replacement policy, 6-38, 6-75
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reserved SDRAM, 17-2
reset

core double-fault, 3-13
core-only software, 3-13, 3-17, 3-19
effect on memory configuration, 6-30
effect on SPI, 10-3
hardware, 3-12, 8-15
initialization sequence, 4-29
interrupt programming, 4-29
system software, 3-12, 3-15
watchdog timer, 3-12, 3-15

reset interrupt (RST), 4-39
reset modes, 18-1
RESET signal, 3-10
reset state, 3-10
reset vector, 4-41
reset vector addresses (table), 4-40
resources, protected, 3-4
resource sharing, with semaphores, 18-5
RESTART (DMA buffer clear) bit, 9-15
RETS register, 4-11
return address, 4-2, 4-9
return address registers, 4-3
return from emulation (RTE) instruction, 

4-10
return from exception (RTX) instruction, 

4-10
return from interrupt (RTI) instruction, 

4-10, 15-3
return from nonmaskable interrupt (RTN) 

instruction, 4-10
return from subroutine (RTS) instruction, 

4-10
return instructions, 4-10
RETX (exception return) register, 3-6
RFS pins, 12-37
RFS (receive frame sync) signal, 12-53, 

12-54
RFSR (receive frame sync required select) 

bit, 12-21, 12-37

RLSBIT (receive bit order) bit, 12-21
RND_MOD (rounding mode) bit, 2-18, 

2-21
ROM (read only memory), 1-7, 17-1
rounding

biased, 2-18, 2-20
convergent, 2-18
instructions, 2-18, 2-22
round-to-nearest method, 2-20
unbiased, 2-18

rounding mode (RND_MOD) bit, 2-18, 
2-21

round robin scheduling, memory DMA, 
9-58

round-to-nearest, 2-20
ROVF (sticky receive overflow status) bit, 

12-27, 12-29
row address, EBIU, 17-46
RPOLC (IrDA RX polarity change) bit, 

13-14
RRFST (left-right order) bit, 12-22
RSCLK (receive clock) signal, 12-36
RSCLKx pins, 12-36
RSFSE (receive stereo frame sync enable) 

bit, 12-22
RSPEN (receive enable) bit, 12-10, 12-18, 

12-20, 12-29
RSR (receive shift) register, 13-3, 13-7
RST (reset interrupt), 4-39
RTC, 1-18, 16-1 to 16-21

alarm clock features, 16-2
architecture, 16-4
block diagram, 16-2
clock requirements, 16-2
counters, 16-1
digital watch features, 16-1
disabling, 16-3
event flags, 16-8
flags (list), 16-9
interfaces, 16-2
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RTC (continued)
interrupts, 16-11
interrupt structure, 16-12
prescaler, 16-1
programming model, 16-4
registers, B-3
state transitions, 16-20
stopwatch function, 16-2
write latency, 16-6

RTC_ALARM (RTC alarm) register, 16-2, 
16-18

RTC alarm (RTC_ALARM) register, 16-2, 
16-18

RTC_ICTL (RTC interrupt control) 
register, 16-4, 16-15

RTC interrupt control (RTC_ICTL) 
register, 16-4, 16-15

RTC interrupt status (RTC_ISTAT) 
register, 16-4, 16-5, 16-16

RTC_ISTAT (RTC interrupt status) 
register, 16-4, 16-5, 16-16

RTC_PREN (RTC prescaler enable) 
register, 16-8, 16-19

RTC prescaler enable (RTC_PREN) 
register, 16-8, 16-19

RTC (real-time clock), 1-18
RTC_STAT (RTC status) register, 16-8, 

16-13
RTC status (RTC_STAT) register, 16-8, 

16-13
RTC stopwatch count (RTC_SWCNT) 

register, 16-2, 16-17
RTC_SWCNT (RTC stopwatch count) 

register, 16-2, 16-17
RTE (return from emulation) instruction, 

4-10
RTI (return from interrupt) instruction, 

4-10, 4-59, 15-3
RTN (return from nonmaskable interrupt) 

instruction, 4-10

RTS (return from subroutine) instruction, 
4-10

RTX (return from exception) instruction, 
4-10

RUVF (sticky receive underflow status) bit, 
12-27, 12-29

RX data buffer status (RXS) bit, 10-16, 
10-32, 10-39

RX hold registers, 12-25
RXNE (receive FIFO not empty status) bit, 

12-28
RXSE (receive secondary side of SPORT) 

bit, 12-22
RXS (RX data buffer status) bit, 10-16, 

10-32, 10-39
RZI modulation, 13-17

S
SA10 pin, 17-31
SAMPLE instruction, C-6
sampling clock period, UART, 13-7
sampling edge, SPORT, 12-39
sampling point, UART, 13-7
SB (set break) bit, 13-3
scale value field, 15-49
scaling, of core timer, 15-49
scan paths, C-4
scheduling, memory DMA, 9-57
SCK (SPI clock) signal, 10-4, 10-21, 

10-23, 10-24, 10-37
SCLK (system clock), 8-1, 8-5

changing frequency, 18-10
derivation, 8-1
disabling, 8-30
EBIU, 17-1
frequency, 8-13
status by operating mode (table), 8-13

SCLK (system clock) pin, 12-30
SCRATCH field, 13-13
scratchpad SRAM, 6-8
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SCTLE (SDRAM enable clockout) bit, 
17-33, 17-37

SDC, 17-22 to 17-62
commands, 17-56
component configurations (table), 17-30
configuration, 17-54
glueless interface features, 17-22
operation, 17-53
pin states, 17-57
set up, 17-54

SDCI (SDRAM controller idle) bit, 17-47
SDC (SDRAM controller), 17-4
SDEASE (SDRAM EAB sticky error status) 

bit, 17-47
SDPUA (SDRAM powerup active) bit, 

17-47
SDQM1-0 encodings during writes (table), 

17-53
SDQM pins, 17-52
SDRAM, 1-7

A10 pin, 17-33
address mapping, 17-51
auto-refresh, 17-60
banks, 6-46, 17-27
bank size, 17-1
block diagram, 17-30
buffering timing option (EBUFE), 

setting, 17-39
components supported, 17-30
configuration, 17-22
devices supported, 17-44
external memory, 6-1, 17-50
interface commands, 17-56
interface signals (table), 17-7
latency, 17-35
memory banks, 17-3
no operation command, 17-61
operation parameters, initializing, 17-58
performance, 17-62
powerup sequence, 17-35

SDRAM (continued)
read command latency, 17-53
read transfers, 17-53
read/write, 17-59
refresh during PLL transitions, 18-8
refresh rate, 18-8
reserved, 17-2
sharing external, 17-36
size configuration, 17-44
sizes supported, 6-46, 17-22
smaller than 16M byte, 18-8
start addresses, 17-1
timing specifications, 17-61

16-bit SDRAM bank, 17-52
SDRAM CAS latency (CL) field, 17-35, 

17-40
SDRAM clock enables, setting, 17-37
SDRAM clock enables, set up, 17-37
SDRAM controller idle (SDCI) bit, 17-47
SDRAM controller. See SDC
SDRAM control status (EBIU_SDSTAT) 

register, 17-47
SDRAM EAB sticky error status (SDEASE) 

bit, 17-47
SDRAM enable clockout (SCTLE) bit, 

17-33, 17-37
SDRAM external bank column address 

width (EBCAW) field, 17-45
SDRAM external bank enable (EBE) bit, 

17-45, 17-54
SDRAM external bank size (EBSZ) field, 

17-45, 17-50
SDRAM memory bank control 

(EBIU_SDBCTL) register, 17-44
SDRAM memory global control 

(EBIU_SDGCTL) register, 17-33
SDRAM powerup active (SDPUA) bit, 

17-47
SDRAM powerup sequence (PSM) bit, 

17-35, 17-55
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SDRAM powerup sequence start enable 
(PSSE) bit, 17-35

SDRAM refresh rate control 
(EBIU_SDRRC) register, 17-48

SDRAM self-refresh active (SDSRA) bit, 
17-38, 17-47

SDRAM self-refresh enable (SRFS) bit, 
17-36, 17-38

SDRAM tRAS (TRAS) field, 17-28, 17-29, 
17-35, 17-41

SDRAM tRCD (TRCD) field, 17-28, 
17-34, 17-42

SDRAM tRP (TRP) field, 17-28, 17-29, 
17-35, 17-42, 17-43

SDRAM tWR (TWR) field, 17-29, 17-35, 
17-43

SDRS bit, 17-47, 17-54
SDSRA (SDRAM self-refresh active) bit, 

17-38, 17-47
self-refresh command, 17-27, 17-60
self-refresh mode, 17-27

entering, 17-38
exiting, 17-38

semaphores
example code, 18-6
query, 18-6
uses, 18-5

send zero (SZ) bit, 10-28, 10-33, 10-38
sensitivity, programmable flags, 14-18
SEQSTAT (sequencer status) register, 4-3, 

4-4
sequencer registers, 3-4
sequencer status (SEQSTAT) register, 4-3, 

4-4
serial clock frequency, 10-8, 12-32
serial clock phase, SPI, 10-21
serial communications, 13-2
serial data transfer, 12-1
serial peripheral interface (SPI). See SPI

serial peripheral slave select input (SPISS) 
signal, 10-5, 10-14, 10-15, 10-21

serial ports. See SPORT
serial scan paths, C-4
servicing interrupts, 4-49
set associative (definition), 6-75
set bit (BITSET) instruction, 2-54
set break (SB) bit, 13-3
set (definition), 6-75
set PFn bits, 14-9
set PFn interrupt mask bit, 14-14
shared interrupts, 4-30, 4-55
shared resources, checking availability of, 

18-6
shifter, 1-3, 2-1, 2-50 to 2-58

arithmetic formats, 2-16
data types, 2-14
immediate shifts, 2-51, 2-53
operations, 2-51
register shifts, 2-52, 2-53
status flags, 2-55
three-operand shifts, 2-52
two-operand shifts, 2-51

shifts, 2-1
short jump (JUMP.S) instruction, 4-11
SIC, 4-27
SIC_IAR0 (system interrupt assignment 0) 

register, 4-30
SIC_IAR1 (system interrupt assignment 1) 

register), 4-30
SIC_IARx (system interrupt assignment) 

registers, 4-29
SIC_IMASK (system interrupt mask) 

register, 4-28, 15-3
SIC_ISR (system interrupt status) register, 

4-27
SIC_IWR (system interrupt wakeup 

enable) register, 4-25
SIC (system interrupt controller), 1-9, 

4-18, 13-10
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signal integrity, 18-12
signed integer (IS) option, 2-42
signed integer scale (ISS2) option, 2-42
signed numbers, 2-3, D-1, D-3
sign-extending data, 2-11
SIMD video ALU operations, 2-37
single 16-bit operations, 2-25
single pulse generation, timer, 15-18
single step exception, 4-46
size of accesses, timer registers, 15-4
size of words (SIZE) bit, 10-9
SIZE (size of words) bit, 10-9
skip enable (SKIP_EN) bit, 11-3
SKIP_EN (skip enable) bit, 11-3
SKIP_EO (skip even odd) bit, 11-3
skip even odd (SKIP_EO) bit, 11-3
slaves

EBIU, 17-4
PAB, 7-6

slave select, SPI, 10-10
slave select enable (FLSx) bits, 10-10
slave select enable (PSSE) bit, 10-9
slave select value (FLGx) bits, 10-10, 10-13
slave SPI devices, 10-6
SLEEP bit, 8-10
sleep mode, 1-22, 8-14
SLEN (SPORT word length) field, 12-15, 

12-21
restrictions, 12-34
word length formula, 12-34

software interrupt handlers, 4-19
software management of DMA, 9-60
software reset (SWRST) register, 3-16
software watchdog timer, 15-50
source channels, memory DMA, 9-48
speculative load execution, 6-69
speech compression routines, 2-21
SPE (SPI enable) bit, 10-10

SPI, 10-1 to 10-40
beginning transfers, 10-31
block diagram, 10-2
clock phase, 10-22, 10-24
clock polarity, 10-21, 10-24
clock signal, 10-2
compatible peripherals, 10-1
data corruption, avoiding, 10-23
data interrupts, 10-7
data transfer, 10-2
detecting transfer complete, 10-16
DMA, 10-33 to 10-39
effect of reset, 10-3
ending transfers, 10-31
error interrupts, 10-7
error signals, 10-29 to 10-31
general operation, 10-23 to 10-29
interface signals, 10-4 to 10-7
interrupt outputs, 10-7
master mode, 10-2, 10-25
master mode booting, 3-19
master mode DMA operation, 10-34
mode fault error, 10-29
multimaster environment, 10-2
multiple-slave systems, 10-15
ports, 1-15
reception error, 10-31
registers (list), 10-20
SCK (SPI clock) signal, 10-4
serial clock phase, 10-21
slave devices, 10-6
slave mode, 10-2, 10-27
slave mode booting, 3-18, 3-20
slave mode DMA operation, 10-37
slave-select function, 10-10
slave transfer preparation, 10-29
SPI_FLG mapping to PFx pins, 10-13
switching between transmit and receive, 

10-33
timing, 10-39
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SPI (continued)
transfer formats, 10-21 to 10-22
transfer initiate command, 10-25
transfer mode, 10-26
transmission errors, 10-31
transmission/reception errors, 10-16
transmit collision error, 10-31
using DMA, 10-18
word length, 10-9

SPI baud rate (SPI_BAUD) register, 10-8, 
10-20

SPI_BAUD (SPI baud rate) register, 10-8, 
10-20

SPI clock (SCK) signal, 10-21, 10-23, 
10-24, 10-37

SPI controller registers, B-5
SPI control (SPI_CTL) register, 10-9, 

10-20
SPI_CTL (SPI control) register, 10-9, 

10-20
SPI enable (SPE) bit, 10-10
SPI finished (SPIF) bit, 10-16, 10-32
SPI flag (SPI_FLG) register, 10-10, 10-20
SPI_FLG (SPI flag) register, 10-10, 10-20
SPIF (SPI finished) bit, 10-16, 10-32
SPI_RDBR (SPI receive data buffer) 

register, 10-19, 10-20, 10-33, 10-37
SPI receive data buffer shadow 

(SPI_SHADOW) register, 10-19, 
10-20, 10-33

SPI receive data buffer (SPI_RDBR) 
register, 10-19, 10-20, 10-33, 10-37

SPI slave select, 10-10
SPISS (serial peripheral slave select input) 

signal, 10-5, 10-14, 10-15, 10-21
SPI_STAT (SPI status) register, 10-16, 

10-20
SPI status (SPI_STAT) register, 10-16, 

10-20

SPI_TDBR data buffer status (TXS) bit, 
10-16, 10-32

SPI_TDBR (SPI transmit data buffer) 
register, 10-18, 10-20, 10-33, 10-37

SPI transmit data buffer (SPI_TDBR) 
register, 10-18, 10-20, 10-33, 10-37

SPORT, 12-1 to 12-71
active low vs. active high frame syncs, 

12-39
block diagram, 12-5
channels, 12-49
clock, 12-36
clock frequency, 12-30, 12-32
clock rate, 12-2
clock rate restrictions, 12-33
clock recovery control, 12-65
companding, 12-35
configuration, 12-11
data formats, 12-34
data word formats, 12-22
disabling, 12-11
DMA block transfers, 12-2
DMA data packing, 12-64
enable/disable, 12-10
enabling multichannel mode, 12-52
framed serial transfers, 12-38
framed vs. unframed, 12-37
frame sync, 12-38, 12-42
frame sync frequencies, 12-32
frame sync pulses, 12-1
framing signals, 12-37
general operation, 12-10
H.100 standard protocol, 12-65
initialization code, 12-20
interleaved data, 12-5
internal memory access, 12-44
internal vs. external frame syncs, 12-38
late frame sync, 12-52
modes, 12-11
moving data to memory, 12-44
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SPORT (continued)
multichannel frame, 12-55
multichannel operation, 12-49 to 12-65
PAB errors, 12-29
packing data, multichannel DMA, 12-64
pins, 12-1, 12-4
point-to-point connections, 18-12
port connection, 12-7
receive and transmit functions, 12-1
receive clock signal, 12-36
receive FIFO, 12-24
receive word length, 12-25
register writes, 12-12
RX hold registers, 12-25
sampling, 12-39
selecting bit order, 12-34
shortened active pulses, 12-11
single clock for both receive and 

transmit, 12-36
single word transfers, 12-44
stereo serial connections, 12-8
stereo serial frame sync modes, 12-52
support for standard protocols, 12-65
termination, 12-66
timing, 12-66
transmit clock signal, 12-36
transmitter FIFO, 12-23
transmit word length, 12-23
TX hold register, 12-23
TX interrupt, 12-24
unpacking data, multichannel DMA, 

12-64
window offset, 12-57
word length, 12-34

SPORT controller registers, B-9, B-11
SPORT error interrupt, 12-29
SPORT FIFO, 12-23
SPORT RX interrupt, 12-25, 12-29
SPORTs. See SPORT
SPORT TX interrupt, 12-29

SPORT word length (SLEN) field, 12-15, 
12-21

restrictions, 12-34
word length formula, 12-34

SPORTx_CHNL (SPORTx current 
channel) registers, 12-57

SPORTx current channel 
(SPORTx_CHNL) registers, 12-57

SPORTx_MCMC2 (multichannel 
configuration) register, 12-58, 12-64

SPORTx_MCMCn (SPORTx 
multichannel configuration) registers, 
12-51

SPORTx_MRCSn (SPORTx 
multichannel receive select) registers, 
12-59, 12-60

SPORTx_MTCSn (SPORTx 
multichannel transmit select) registers, 
12-59, 12-62

SPORTx multichannel configuration 
(SPORTx_MCMCn) registers, 12-51

SPORTx multichannel receive select 
(SPORTx_MRCSn) registers, 12-59, 
12-60

SPORTx multichannel transmit select 
(SPORTx_MTCSn) registers, 12-59, 
12-62

SPORTx_RCLKDIV (SPORTx receive 
serial clock divider) registers, 12-30

SPORTx_RCR1 (receive configuration) 
registers, 12-18, 12-60

SPORTx_RCR1 (SPORTx receive 
configuration 1) register, 12-20

SPORTx_RCR2 (receive configuration) 
register, 12-18

SPORTx_RCR2 (SPORTx receive 
configuration 2) register, 12-20

SPORTx receive configuration 1 
(SPORTx_RCR1) register, 12-20
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SPORTx receive configuration 2 
(SPORTx_RCR2) register, 12-20

SPORTx receive data (SPORTx_RX) 
registers, 12-54

SPORTx receive frame sync divider 
(SPORTx_RFSDIV) registers, 12-31

SPORTx receive serial clock divider 
(SPORTx_RCLKDIV) registers, 
12-30

SPORTx_RFSDIV (SPORTx receive 
frame sync divider) registers, 12-31

SPORTx_RX (SPORTx receive data) 
registers, 12-24, 12-54

SPORTx_STAT (SPORTx status) 
registers, 12-28

SPORTx status (SPORTx_STAT) 
registers, 12-28

SPORTx_TCLKDIV (SPORTx transmit 
serial clock divider) registers, 12-30

SPORTx_TCR1 (transmit configuration) 
registers, 12-12

SPORTx_TCR2 (transmit configuration) 
registers, 12-12

SPORTx_TFSDIV (SPORTx transmit 
frame sync divider) registers, 12-31

SPORTx transmit data (SPORTx_TX) 
registers, 12-23, 12-44, 12-54

SPORTx transmit frame sync divider 
(SPORTx_TFSDIV) registers, 12-31

SPORTx transmit serial clock divider 
(SPORTx_TCLKDIV) registers, 
12-30

SPORTx_TX (SPORTx transmit data) 
registers, 12-23, 12-44, 12-54

SP (stack pointer) register, 4-4, 5-5
SRAM, 1-7

EBIU, 17-1
glueless connection, 18-7
interface, 18-7
L1 data, 6-31

SRAM (continued)
L1 instruction access, 6-12
scratchpad, 6-8

SRFS (SDRAM self-refresh enable) bit, 
17-36, 17-38

SSEL (system select) bit, 7-1
SSYNC instruction, 6-68
stack, pushing and popping, 4-3
stack pointer registers, 5-5
stack pointer (SP) register, 4-4, 5-5
stalls, pipeline, 6-66
start address registers

DMAx_START_ADDR register, 9-10
MDMA_yy_START_ADDR register, 

9-10
states, BMODE, 3-13
state transitions, RTC, 16-20
STATUS field, 13-10, 13-16
status signals, 2-36
STB (stop bits) bit, 13-3
stereo serial data, 12-2
stereo serial device, SPORT connections, 

12-8
stereo serial frame sync modes, 12-52
sticky overflow status, 2-36
sticky overflow transmit status (TOVF) bit, 

12-24, 12-29
sticky parity (STP) bit, 13-3
sticky receive overflow status (ROVF) bit, 

12-27, 12-29
sticky receive underflow status (RUVF) bit, 

12-27, 12-29
sticky transmit underflow status (TUVF) 

bit, 12-24, 12-28, 12-29, 12-44
STI (enable interrupts) instruction, 6-73, 

6-74, 8-22
stop bits (STB) bit, 13-3
STOPCK (stop clock) bit, 8-9, 8-16
stop clock (STOPCK) bit, 8-9, 8-16
stopwatch function, RTC, 16-2
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store operation, 6-66
store ordering, 6-67
STP (sticky parity) bit, 13-3
streams, memory DMA, 9-48
strong ordering requirement, 6-73
subroutines, nonsequential structures, 4-1
supervisor mode, 1-5, 3-7
supply addressing, 5-1
supply addressing with offset, 5-1
SWRST (software reset) register, 3-16
synchronization

descriptor queue, 9-67
DMA, 9-60 to 9-71
interrupt-based methods, 9-61

synchronization instructions, 6-68
synchronous serial data transfer, 12-1
SYSCFG (system configuration) register, 

4-6
SYSCR (system reset configuration) 

register, 3-14
system and core event mapping (table), 

4-19
system clock (SCLK), 8-1
system clock (SCLK) pin, 12-30
system clock (SYSCLK), 8-5
system configuration (SYSCFG) register, 

4-6
system design, 18-1 to 18-16

high frequency considerations, 18-12
point-to-point connections, 18-12
recommendations and suggestions, 

18-13
recommended reading, 18-15

system internal interfaces, 7-1
system interrupt assignment 0 (SIC_IAR0) 

register, 4-30
system interrupt assignment 1 (SIC_IAR1) 

register, 4-30
system interrupt assignment (SIC_IARx) 

registers, 4-29

system interrupt controller (SIC), 1-9, 
4-18, 13-10

system interrupt mask (SIC_IMASK) 
register, 4-28, 15-3

system interrupt processing, 4-21
system interrupts, 4-18
system interrupt status (SIC_ISR) register, 

4-27
system interrupt wakeup enable 

(SIC_IWR), 4-25
system MMRs (memory mapped registers), 

B-1
system reset configuration (SYSCR) 

register, 3-14
system reset registers, B-2
system select (SSEL) bit, 7-1
system software reset, 3-12, 3-15
system stack, allocation recommendation, 

4-60
SZ (send zero) bit, 10-28, 10-33, 10-38

T
tag (definition), 6-75
TAP registers, C-2

boundary-scan, C-6
bypass, C-6

TAP (test access port), C-1, C-2
TAUTORLD bit, 15-46
TCKFE (clock falling edge select) bit, 

12-17, 12-36, 12-39
TCK (test clock), C-6
TCNTL (core timer control) register), 

15-46
TCOUNT (core timer count) register, 

15-48
TCSR (temperature compensated 

self-refresh) bit, 17-34, 17-36
TDM interfaces, 12-3
TDM multichannel mode, 12-2
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TDTYPE (data formatting type select) bits, 
12-15, 12-34, 12-60

technical support, -xl
temperature compensated self-refresh 

(TCSR) bit, 17-34, 17-36
TEMT (TSR and UART_THR empty) 

bit, 13-5, 13-17
terminations, SPORT pin/line, 12-66
terms (definitions), G-1
test access port (TAP), C-1, C-2
test and set byte (TESTSET) instruction, 

6-72, 7-8, 18-5
test clock (TCK), C-6
test features, C-1 to C-6
testing, circuit boards, C-1, C-5
test-logic-reset state, C-3
TESTSET (test and set byte) instruction, 

6-72, 7-8, 18-5
TFSR (transmit frame sync required select) 

bit, 12-16, 12-37
TFS (transmit frame sync) pins, 12-37
TFS (transmit frame sync) signal, 12-28, 

12-44, 12-54, 12-58
TFU (truncate unsigned fraction) option, 

2-42
THR empty (THRE) bit, 13-5, 13-6, 

13-15, 13-17
THRE (THR empty) bit, 13-5, 13-6, 

13-15, 13-17
throughput

achieved by interlocked pipeline, 6-66
achieved by SRAM, 6-6
DAB, 7-9
DMA system, 9-50
programmable flags, 14-21
SPORT, 12-5

TIMDISx (timer n disable) bits, 15-5
time-division-multiplexed (TDM) mode, 

12-49
See also SPORT, multichannel operation

TIMENx (timer n enable) bits, 15-5
timer clock select (CLK_SEL) bit, 15-9, 

15-16, 15-21
timer configuration (TIMERx_CONFIG) 

registers, 15-2, 15-8
timer counter (TIMERx_COUNTER) 

registers, 15-2, 15-9
TIMER_DISABLE (timer disable) register, 

15-3, 15-5
timer disable (TIMER_DISABLE) register, 

15-3, 15-5
TIMER_ENABLE (timer enable) register, 

15-3, 15-5
timer enable (TIMER_ENABLE) register, 

15-3, 15-5
timer input select (TIN_SEL) bit, 15-9, 

15-34
timer interrupt latch (TIMILx) bit, 15-3, 

15-7
timer mode (TMODE) field, 15-8, 15-9, 

15-16
timer n disable (TIMDISx) bits, 15-5
timer n enable (TIMENx) bits, 15-5
timer n slave enable status (TRUNx) bit, 

15-6, 15-7, 15-20, 15-26, 15-44
timer period fields, 15-13
timer period (TIMERx_PERIOD) 

registers, 15-2, 15-10
timer pulse width (TIMERx_WIDTH) 

registers, 15-2, 15-10
timer registers, B-6
timers, 1-16, 15-1 to 15-54

core, 15-45 to 15-49
disabling, 15-3
enabling, 15-3
EXT_CLK mode, 15-36 to 15-37
forcing an immediate stop, 15-20
general-purpose, 15-1 to 15-43
illegal states, 15-40
modes (summary), 15-43



ADSP-BF533 Blackfin Processor Hardware Reference I-39

Index

timers (continued)
PWM_OUT mode, 15-16 to 15-26
stopping, 15-20
UART, 13-1
watchdog, 1-19, 15-50 to 15-54
WDTH_CAP mode, 15-26 to 15-35

TIMER_STATUS (timer status) register, 
15-3, 15-6

timer status (TIMER_STATUS) register, 
15-3, 15-6

timer width fields, 15-13
TIMERx_CONFIG (timer configuration) 

registers, 15-2, 15-8
TIMERx_COUNTER (timer counter) 

registers, 15-2, 15-9
TIMERx_PERIOD (timer period) 

registers, 15-2, 15-10
TIMERx_WIDTH (timer pulse width) 

registers, 15-2, 15-10
TIMILx (timer interrupt latch) bit, 15-3, 

15-7
timing

auto-refresh, 17-48
examples for SPORTs, 12-66
external buffer, 17-62
peripherals, 7-2
SDRAM specifications, 17-61
SPI, 10-39

TIMOD (transfer initiation mode) field, 
10-7, 10-9, 10-26, 10-33, 10-36, 
10-37

TIN_SEL (timer input select) bit, 15-9, 
15-34

TINT bit, 15-46
TLSBIT (transmit bit order) bit, 12-15
TMODE (timer mode) field, 15-8, 15-9, 

15-16
TMPWR bit, 15-47
TMREN bit, 15-46
TMR pin, 15-44

TMRx pin, 15-1
toggle bit (BITTGL) instruction, 2-54
TOGGLE_HI (PWM_OUT PULSE_HI 

toggle mode) bit, 15-9, 15-16, 15-22, 
15-44

toggle PFn bits, 14-10
toggle PFn interrupt mask bit, 14-15
tools, development, 1-27
TOVF_ERRx (overflow-error indicator) 

bit, 15-3, 15-8, 15-19, 15-45
TOVF (sticky overflow transmit status) bit, 

12-24, 12-29
TPERIOD (core timer period) register, 

15-46, 15-48
TPOLC (IrDA TX polarity change) bit, 

13-14
trace buffer exception, 4-46
trace unit registers, A-8
traffic control, DMA, 9-52 to 9-54
transfer count (PPI_COUNT) register, 

11-11
transfer initiate command, 10-25
transfer initiation from SPI master, 10-26
transfer initiation mode (TIMOD) field, 

10-7, 10-9, 10-26, 10-33, 10-36, 
10-37

transfer rate
memory DMA channels, 9-51
peripheral DMA channels, 9-51

transfer type (XFR_TYPE) field, 11-6
transfer word size (WDSIZE1-0) field, 

9-15
transitions, operating mode, 8-16, 8-20
transmission errors, SPI, 10-31
transmission error (TXE) bit, 10-16, 10-31, 

10-38
transmission format, SPORT, 12-2
transmit bit order (TLSBIT) bit, 12-15
transmit clock (TSCLK) signal, 12-36, 

12-58
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transmit collision error, SPI, 10-31
transmit collision error (TXCOL) bit, 

10-16, 10-31
transmit configuration (SPORTx_TCR1) 

registers, 12-12
transmit configuration (SPORTx_TCR2) 

registers, 12-12
transmit enable (TSPEN) bit, 12-10, 

12-12, 12-14, 12-24, 12-29
transmit FIFO full status (TXF) bit, 12-24, 

12-28
transmit frame sync required select (TFSR) 

bit, 12-16, 12-37
transmit frame sync (TFS) pins, 12-37
transmit frame sync (TFS) signal, 12-28, 

12-44, 12-54, 12-58
transmit hold field, 13-6
transmit hold register empty (TXHRE) bit, 

12-28
transmit secondary side enable (TXSE) bit, 

12-17
transmit shift (TSR) register, 13-3, 13-6, 

13-17
transmit stereo frame sync enable (TSFSE) 

bit, 12-17
TRAS (SDRAM tRAS) field, 17-28, 17-29, 

17-35, 17-41
tRAS timing parameter, 17-28
TRCD (SDRAM tRCD) field, 17-28, 

17-34, 17-42
tRCD timing parameter, 17-28
tRC timing parameter, 17-28
tRFC timing parameter, 17-28
TRFST (left-right order) bit, 12-17
triggering DMA transfers, 9-44
TRP (SDRAM tRP) field, 17-28, 17-29, 

17-35, 17-42, 17-43
tRP timing parameter, 17-29
tRRD timing parameter, 17-29

truncate (T) option, 2-42
truncate unsigned fraction (TFU) option, 

2-42
truncation, 2-21
TRUNx (timer n slave enable status) bit, 

15-6, 15-7, 15-20, 15-26, 15-44
TSCALE (core timer scale) register, 15-49
TSCLK (transmit clock) signal, 12-36, 

12-58
TSFSE (transmit stereo frame sync enable) 

bit, 12-17
TSPEN (transmit enable) bit, 12-10, 

12-12, 12-14, 12-24, 12-29
TSR and UART_THR empty (TEMT) 

bit, 13-5, 13-17
TSR (transmit shift) register, 13-3, 13-6, 

13-17
T (truncate) option, 2-42
TUVF (sticky transmit underflow status) 

bit, 12-24, 12-28, 12-29, 12-44
two’s-complement format, D-1
TWR (SDRAM tWR) field, 17-29, 17-35, 

17-43
tWR timing parameter, 17-29
TXCOL (transmit collision error) bit, 

10-16, 10-31
TXE (transmission error) bit, 10-16, 10-31, 

10-38
TXF (transmit FIFO full status) bit, 12-24, 

12-28
TX hold register, 12-23
TXHRE (transmit hold register empty) bit, 

12-28
TXSE (transmit secondary side enable) bit, 

12-17
tXSR timing parameter, 17-29
TXS (SPI_TDBR data buffer status) bit, 

10-16, 10-32
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U
UART, 13-1 to 13-20

assigning interrupt priority, 13-11
autobaud detection, 15-34
baud rate, 13-6, 13-7
baud rate examples, 13-13
clearing interrupt latches, 13-10
clock rate, 7-2
data word, 13-6
divisor, 13-11
divisor reset, 13-12
DMA channel latency requirement, 

13-16
DMA channels, 13-16
DMA mode, 13-16
glitch filtering, 13-19
interrupt channels, 13-8
interrupt conditions, 13-9
IrDA mode, 13-14
IrDA receiver, 13-19
IrDA support, 13-17
IrDA transmit pulse, 13-18
IrDA transmitter, 13-18
ISRs, 13-16
mixing modes, 13-17
non-DMA mode, 13-15
port, 1-17
receive sampling window, 13-19
sampling clock period, 13-7
sampling point, 13-7
standard, 13-1
switching from DMA to non-DMA, 

13-17
system DMA, 13-8
timers, 13-1

UART controller registers, B-5
UART divisor latch high byte 

(UART_DLH) register, 13-3, 13-8, 
13-11

UART divisor latch low byte 
(UART_DLL) register, 13-3, 13-6

UART divisor latch registers, 13-3
UART_DLH, 13-11
UART_DLL, 13-11

UART_DLH (UART divisor latch high 
byte) register, 13-3, 13-8, 13-11

UART_DLL (UART divisor latch low 
byte) register, 13-3, 13-6

UART_GCTL (UART global control) 
register, 13-14, 13-18

UART global control (UART_GCTL) 
register, 13-14, 13-18

UART_IER (UART interrupt enable) 
register, 13-3, 13-8, 13-16

UART_IIR (UART interrupt 
identification) register, 13-10

UART interrupt enable (UART_IER) 
register, 13-3, 13-8, 13-16

UART interrupt identification 
(UART_IIR) register, 13-10

UART_LCR (UART line control) register, 
13-2, 13-3, 13-8

UART line control (UART_LCR) register, 
13-2, 13-3, 13-8

UART line status (UART_LSR register), 
13-5, 13-6, 13-9, 13-15, 13-17

UART_LSR (UART line status) register, 
13-5, 13-6, 13-9, 13-15, 13-17

UART_MCR (UART modem control) 
register, 13-4

UART modem control (UART_MCR) 
register, 13-4

UART_RBR (UART receive buffer) 
register, 13-3, 13-5, 13-6, 13-7

UART receive buffer (UART_RBR) 
register, 13-3, 13-5, 13-6, 13-7

UART scratch (UART_SCR) register, 
13-13
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UART_SCR (UART scratch) register, 
13-13

UART_THR (UART transmit holding) 
register, 13-3, 13-6, 13-9, 13-10, 
13-17

UART transmit holding (UART_THR) 
register, 13-3, 13-6, 13-9, 13-10, 
13-17

UCEN (enable UART clocks) bit, 13-12, 
13-14, 13-15

unbiased rounding, 2-18
unconditional branches

branch latency, 4-15
branch target address, 4-15

undefined instruction, 4-45
underflow, data, 12-37
UNDR (FIFO underrun) bit, 11-9
unframed/framed, serial data, 12-37
universal asynchronous receiver transmitter 

(UART) port, 1-17
unpopulated memory, 17-10
unrecoverable events, 4-45
unsigned fraction (FU) option, 2-42
unsigned integer (IU) option, 2-42
unsigned integers, D-1
unsigned numbers, 2-4, 2-11
unused pins, handling, 18-1
user mode, 1-5

accessible registers, 3-3
entering, 3-5
leaving, 3-6
protected instructions, 3-4

user stack pointer (USP) register, 3-7, 5-5
USP (user stack pointer) register, 3-7, 5-5

V
valid bit

cache line replacement, 6-20
clearing, 6-42
diagram, 6-26
function, 6-18
instruction cache invalidation, 6-23

valid (definition), 6-75
VBI only mode, 11-19
VCO, changing frequency, 18-10
VCO (voltage-controlled oscillator), 8-3
vertical blanking interval only mode, PPI, 

11-19
victim (definition), 6-75
video ALU

instructions, 5-13
operations, 2-37

video data transfers, using PPI, 11-32
VLEV (internal voltage level) field, 8-27, 

8-28
voltage, 8-25

changing, 8-29
control, 8-12
dynamic control, 8-25

voltage-controlled oscillator (VCO), 8-3
voltage frequency (FREQ) field, 8-27, 8-28
voltage level gain (GAIN) field, 8-27, 8-29
voltage regulator, 1-23
voltage regulator control (VR_CTL) 

register, 8-26
voltage regulator status (VSTAT) bit, 8-10
VR_CTL (voltage regulator control) 

register, 8-26
VSTAT (voltage regulator status) bit, 8-10
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W
W32 option, 2-43
wait states, adding additional, 17-20
wakeup enable (WAKE) bit, 8-27
wakeup signal, 3-10, 8-21
WAKE (wakeup enable) bit, 8-27
watchdog control (WDOG_CTL) register, 

15-50, 15-53
watchdog counter enable (WDEN) field, 

15-53
watchdog count (WDOG_CNT) register, 

15-50, 15-51
watchdog event (WDEV) field, 15-53
watchdog status (WDOG_STAT) register, 

15-50, 15-52
watchdog timer, 1-19, 15-50 to 15-54

functionality, 1-19
operation, 15-50
registers, 15-50, B-3
reset, 3-12, 3-15

watchdog timer expired (WDRO) bit, 
15-52, 15-54

watchpoint match exceptions, 4-45
watchpoint registers, A-8
waveform generation, pulse width 

modulation, 15-18
ways

1-way associative (direct-mapped), 6-74
definition, 6-76
priority in cache line replacement, 6-20

WB (write back) stage, 4-7
WDEN (watchdog counter enable) field, 

15-53
WDEV (watchdog event) field, 15-53
WDOG_CNT (watchdog count) register, 

15-50, 15-51

WDOG_CTL (watchdog control) register, 
15-50, 15-53

WDOG_STAT (watchdog status) register, 
15-50, 15-52

WDRO (watchdog timer expired) bit, 
15-52, 15-54

WDSIZE1-0 (transfer word size) field, 
9-15

WDTH_CAP mode, 15-26 to 15-35
window offset (WOFF) field, 12-51, 12-57
window size (WSIZE) field, 12-51, 12-56
WLS (word length select) field, 13-3
WNR (DMA direction) bit, 9-16
WOFF (window offset) field, 12-51, 12-57
WOM (write open drain master) bit, 

10-10, 10-24
word (definition), 2-6
word length

SPI, 10-9
SPORT, 12-34
SPORT receive data, 12-25
SPORT transmission, 12-2
SPORT transmit data, 12-23

word length select (WLS) field, 13-3
wraparound buffer, 5-8
write, asynchronous, 17-19
write back (definition), 6-76
write back (WB) stage, 4-7
write buffer depth, 6-40
write command, 17-59
write complete bit, 16-5, 16-8
write open drain master (WOM) bit, 

10-10, 10-24
write pending status bit, 16-5
write through (definition), 6-76
write to precharge delay, selecting, 17-43
WSIZE (window size) field, 12-51, 12-56
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X
XFR_TYPE (transfer type) field, 11-6
XOR, logical, 2-23

Y
YCbCr format, 11-3

Z
zero-extending data, 2-11
zero-overhead loop registers, 4-4
zero status, 2-36
µ-law companding, 12-2, 12-35, 12-60
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