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PREFACE

Thank you for purchasing and developing systems using Blackfin® pro-
cessors from Analog Devices, Inc.

Purpose of This Manual

ADSP-BF533 Blackfin Processor Hardware Reference contains information
about the DSP architecture for the Blackfin processors. The architectural
descriptions cover functional blocks, buses, and ports, including all fea-
tures and processes that they support.

For programming information, see Blackfin Processor Programming Refer-
ence. For timing, electrical, and package specifications, see

ADSP-BF531/ADSP-BF532/ADSP-BF533 Embedded Processor Data Sheet.

Intended Audience

The primary audience for this manual is a programmer who is familiar
with Analog Devices processors. The manual assumes the audience has a
working knowledge of the appropriate processor architecture and instruc-
tion set. Programmers who are unfamiliar with Analog Devices processors
can use this manual, but should supplement it with other texts, such as

hardware and programming reference manuals that describe their target
architecture.
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Manual Contents

Manual Contents

This manual contains:

Chapter 1, Introduction

Provides a high level overview of the processor. Architectural
descriptions include functional blocks, buses, and ports, including
features and processes they support.

Chapter 2, Computational Units
Describes the arithmetic/logic units (ALUs), multiplier/accumula-
tor units (MACs), shifter, and the set of video ALUs. The chapter

also discusses data formats, data types, and register files.

Chapter 3, Operating Modes and States

Describes the three operating modes of the processor: Emulation
mode, Supervisor mode, and User mode. The chapter also
describes Idle state and Reset state.

Chapter 4, Program Sequencer

Describes the operation of the program sequencer, which controls
program flow by providing the address of the next instruction to be
executed. The chapter also discusses loops, subroutines, jumps,
interrupts, and exceptions.

Chapter 5, Data Address Generators

Describes the Data Address Generators (DAGs), addressing modes,
how to modify DAG and Pointer registers, memory address align-
ment, and DAG instructions.

Chapter 6, Memory

Describes L1 memories. In particular, details their memory archi-
tecture, memory model, memory transaction model, and
memory-mapped registers (MMRs). Discusses the instruction,
data, and scratchpad memory, which are part of the Blackfin pro-
cessor core.

XXXV
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e Chapter 7, Chip Bus Hierarchy
Describes on-chip buses, including how data moves through the
system. The chapter also discusses the system memory map, major
system components, and the system interconnects.

e Chapter 8, Dynamic Power Management
Describes system reset and power-up configuration, system clock-
ing and control, and power management.

e Chapter 9, Direct Memory Access
Describes the peripheral DMA and Memory DMA controllers. The
peripheral DMA section discusses direct, block data movements
between a peripheral with DMA access and internal or external
memory spaces. The Memory DMA section discusses mem-
ory-to-memory transfer capabilities among the processor memory
spaces and the L1, external synchronous, and asynchronous
memories.

e Chapter 10, SPI Compatible Port Controllers
Describes the Serial Peripheral Interface (SPI) port that provides an
I/O interface to a variety of SPI compatible peripheral devices.

* Chapter 11, Parallel Peripheral Interface
Describes the Parallel Peripheral Interface (PPI) of the processor.
The PPI is a half-duplex, bidirectional port accommodating up to
16 bits of data and used for digital video and data converter
applications.

e Chapter 12, Serial Port Controllers
Describes the two independent, synchronous Serial Port Control-

lers (SPORTO and SPORT1) that provide an I/O interface to a

variety of serial peripheral devices.

* Chapter 13, UART Port Controller
Describes the Universal Asynchronous Receiver/Transmitter
(UART) port, which converts data between serial and parallel
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formats and includes modem control and interrupt handling hard-
ware. The UART supports the half-duplex IrDA® SIR protocol as

a mode-enabled feature.

Chapter 14, Programmable Flags

Describes the programmable flags, or general-purpose I/O pins in
the processor, including how to configure the pins as inputs and
outputs, and how to generate interrupts.

Chapter 15, Timers

Describes the three general-purpose timers that can be configured
in any of three modes; the core timer that can generate periodic
interrupts for a variety of timing functions; and the watchdog timer
that can implement software watchdog functions, such as generat-
ing events to the Blackfin processor core.

Chapter 16, Real-Time Clock
Describes a set of digital watch features of the processor, including
time of day, alarm, and stopwatch countdown.

Chapter 17, External Bus Interface Unit
Describes the External Bus Interface Unit of the processor. The
chapter also discusses the asynchronous memory interface, the

SDRAM controller (SDC), related registers, and SDC configura-

tion and commands.

Chapter 18, System Design

Describes how to use the processor as part of an overall system. It
includes information about interfacing the processor to external
memory chips, bus timing and latency numbers, semaphores, and a
discussion of the treatment of unused pins.

Appendix A, Blackfin Processor Core MMR Assignments
Lists the core memory-mapped registers, their addresses, and
cross-references to text.

XxXXViii
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* Appendix B, System MMR Assignments
Lists the system memory-mapped registers, their addresses, and
cross-references to text.

* Appendix C, Test Features
Describes test features for the processor; discusses the JTAG stan-
dard, boundary-scan architecture, instruction and boundary
registers, and public instructions.

L Appendix D, Numeric Formats
Describes various aspects of the 16-bit data format. The chapter
also describes how to implement a block floating-point format in
software.

e Appendix G, Glossary
Contains definitions of terms used in this book, including
acronyms.

What's New in This Manual

This is Revision 3.6 of ADSP-BF533 Blackfin Processor Hardware Refer-
ence. This revision corrects minor typographical errors and the following
1ssues:

e Core Double Fault Reset Enable bit (DOUBLE_FAULT) set in the
SWRST register and system reset code example in Chapter 3, “Oper-
ating Modes and States”

* RETI instructions need not be first in nested interrupts and com-
plete table of hardware conditions causing hardware interrupts in
Chapter 4, “Program Sequencer”

* Core priority over DMA when accessing L1 SRAM in Chapter 7,
“Chip Bus Hierarchy”
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Note on programming the STOPCK bit and input and output delays
in PLL_CTL diagram in Chapter 8, “Dynamic Power Management”

Obsolete DMA error address range deleted in Chapter 9, “Direct

Memory Access”

Termination of SPI TX DMA operations in Chapter 10, “SPI
Compatible Port Controllers”

Behavior on startup when using an external clock and receiver and
transmitter enable bit names standardized on RSPEN and TSPEN in
Chapter 12, “Serial Port Controllers”

Note on the TINT bit in the TCNTL register in Chapter 15, “Timers”

Sampling the ARDY pin when it is asserted in and note on timing
dependencies for the TRP and TRAS settings in the EBIU_SDGCTL reg-
ister in Chapter 17, “External Bus Interface Unit”

Technical Support

You can reach Analog Devices processors and DSP technical support in
the following ways:

Post your questions in the processors and DSP support community
at EngineerZone™:
http://ez.analog.com/community/dsp

Submit your questions to technical support directly at:
http://www.analog.com/support

E-mail your questions about processors, DSPs, and tools develop-
ment software from CrossCore® Embedded Studio or
VisualDSP++®:

x|
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Choose Help > Email Support. This creates an e-mail to
processor.tools.support@analog.com and automatically attaches
your CrossCore Embedded Studio or Visual DSP++ version infor-
mation and 1icense.dat file.

* E-mail your questions about processors and processor applications
to:
processor.support@analog.com or
processor.china@analog.com (Greater China support)

* In the USA only, call 1-800-ANALOGD (1-800-262-5643)

* Contact your Analog Devices sales office or authorized distributor.
Locate one at:
www.analog.com/adi-sales

* Send questions by mail to:
Processors and DSP Technical Support
Analog Devices, Inc.
Three Technology Way
P.O. Box 9106
Norwood, MA 02062-9106
USA

Supported Processors

The name “Blackfin” refers to a family of 16-bit, embedded processors.
Refer to the CCES or VisualDSP++ online help for a complete list of sup-

ported processors.

Product Information

Product information can be obtained from the Analog Devices Web site

and the CCES or Visual DSP++ online help.
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Analog Devices Web Site

The Analog Devices Web site, www.analog.com, provides information
about a broad range of products—analog integrated circuits, amplifiers,
converters, and digital signal processors.

To access a complete technical library for each processor family, go to
http://www.analog.com/processors/technical_library. The manuals
selection opens a list of current manuals related to the product as well as a
link to the previous revisions of the manuals. When locating your manual
title, note a possible errata check mark next to the title that leads to the
current correction report against the manual.

Also note, myAnalog is a free feature of the Analog Devices Web site that
allows customization of a Web page to display only the latest information
about products you are interested in. You can choose to receive weekly
e-mail notifications containing updates to the Web pages that meet your
interests, including documentation errata against all manuals. myAnalog
provides access to books, application notes, data sheets, code examples,
and more.

Visit myAnalog to sign up. If you are a registered user, just log on. Your
user name is your e-mail address.

EngineerZone

EngineerZone is a technical support forum from Analog Devices, Inc. It
allows you direct access to ADI technical support engineers. You can
search FAQs and technical information to get quick answers to your
embedded processing and DSP design questions.

Use EngineerZone to connect with other DSP developers who face similar
design challenges. You can also use this open forum to share knowledge
and collaborate with the ADI support team and your peers. Visit
http://ez.analog.com to sign up.

xlii
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Notation Conventions

Text conventions in this manual are identified and described as follows.

Example

Description

Close command
(File menu)

Titles in reference sections indicate the location of an item within the
IDE environment’s menu system (for example, the Close command
appears on the File menu).

{this | that}

Alternative required items in syntax descriptions appear within curly
brackets and separated by vertical bars; read the example as this or
that. One or the other is required.

[this | that]

Optional items in syntax descriptions appear within brackets and sepa-
rated by vertical bars; read the example as an optional this or that.

[this,..] Optional item lists in syntax descriptions appear within brackets delim-
ited by commas and terminated with an ellipsis; read the example as an
optional comma-separated list of this.

.SECTION Commands, directives, keywords, and feature names are in text with
letter gothic font.

filename Non-keyword placeholders appear in text with italic style format.

Note: For correct operation, ...
A Note provides supplementary information on a related topic. In the
online version of this book, the word Note appears instead of this

symbol.

Caution: Incorrect device operation may result if ...

Caution: Device damage may result if ...

A Caution identifies conditions or inappropriate usage of the product

that could lead to undesirable results or product damage. In the online
version of this book, the word Caution appears instead of this symbol.

Warning: Injury to device users may result if ...

A Warning identifies conditions or inappropriate usage of the product
that could lead to conditions that are potentially hazardous for devices
users. In the online version of this book, the word Warning appears
instead of this symbol.
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Register Diagram Conventions

Register diagrams use the following conventions:

The descriptive name of the register appears at the top, followed by
the short form of the name in parentheses.

If the register is read-only (RO), write-1-to-set (W1S), or
write-1-to-clear (W1C), this information appears under the name.
Read/write is the default and is not noted. Additional descriptive
text may follow.

If any bits in the register do not follow the overall read/write con-
vention, this is noted in the bit description after the bit name.

If a bit has a short name, the short name appears first in the bit
description, followed by the long name in parentheses.

The reset value appears in binary in the individual bits and in hexa-
decimal to the right of the register.

Bits marked x have an unknown reset value. Consequently, the
reset value of registers that contain such bits is undefined or depen-
dent on pin values at reset.

Shaded bits are reserved.

To ensure upward compatibility with future implementations,
write back the value that is read for reserved bits in a register,
unless otherwise specified.

xliv
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The following figure shows an example of these conventions.

Timer Configuration Registers (TIMERx_CONFIG)

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
|o|0|o|o|o|o|o|o|o|o|o|o|0|o|0|0|Reset=0x0000

ERR_TYP[1:0] (Error Type) - RO TMODE[1:0] (Timer Mode)

00 - No error. 00 - Reset state - unused.

01 - Counter overflow error. 01 - PWM_OUT mode.

10 - Period register programming error. 10 - WDTH_CAP mode.

11 - Pulse width register programming error. 11 - EXT_CLK mode.
PULSE_HI

EMU_RUN (Emulation Behavior Select) 0 - Negative action pulse.

0 - Timer counter stops during emulation. 1 - Positive action pulse.

1 - Timer counter runs during emulation. L PERIOD_CNT (Period

TOGGLE_HI (PWM_OUT PULSE_HI Toggle Mode)— Count)

0 - The effective state of PULSE_HI 0 - Count to end of width.

is the programmed state. 1 - Count to end of period.

1 - The effective state of PULSE_HI IRQ_ENA (Interrupt

alternates each period. Request Enable)

CLK_SEL (Timer Clock Select) 0 - Interrupt request

This bit must be set to 1, when operat- disable.

ing the PPl in GP Output modes. 1 - Interrupt request enable

0 - Use system clock SCLK for counter. TIN_SEL (Timer Input

1 - Use PWM_CLK to clock counter. L Select)

OUT_DIS (Output Pad Disable) 0 - Sample TMRx pin or

0 - Enable pad in PWM_OUT mode. PF1 pin. )

1 - Disable pad in PWM_OUT mode. 1 - Sample UART RX pin

or PPI_CLK pin.

Figure 1. Register Diagram Example
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1 INTRODUCTION

The ADSP-BF533, ADSP-BF532, and ADSP-BF531 processors are
enhanced members of the Blackfin processor family that offer significantly
higher performance and lower power than previous Blackfin processors
while retaining their ease-of-use and code compatibility benefits. The
three new processors are completely pin compatible, differing only in their
performance and on-chip memory, mitigating many risks associated with
new product development.

The Blackfin processor core architecture combines a dual MAC signal
processing engine, an orthogonal RISC-like microprocessor instruction
set, flexible Single Instruction, Multiple Data (SIMD) capabilities, and

multimedia features into a single instruction set architecture.

Blackfin products feature dynamic power management. The ability to vary
both the voltage and frequency of operation optimizes the power con-
sumption profile to the specific task.

Peripherals

The processor system peripherals include:
* Parallel Peripheral Interface (PPI)
e Serial Ports (SPORTS)
 Serial Peripheral Interface (SPI)

* General-purpose timers

ADSP-BF533 Blackfin Processor Hardware Reference 1-1



Peripherals

* Universal Asynchronous Receiver Transmitter (UART)
* Real-Time Clock (RTC)

* Watchdog timer

* General-purpose I/O (programmable flags)

These peripherals are connected to the core via several high bandwidth
buses, as shown in Figure 1-1.

§ g

EVENT T
JTAG TEST AND
CONTROLLER/ ] K—j)‘ WATCHDOG TIMER |
EMULATION CORE TIMER [— |
4} A
N v

— VOLTAGE > REAL TIME CLOCK
REGULATOR

UART PORT
IrDA®

MEMORY

TIMERO, TIMER1,
TIMER2

CORE/SYSTEM BUS INTERFACE

o PPI/GPIO

K

[

i

~ DMA
CONTROLLER

SERIAL PORTS (2)

1l

SPI PORT

— BOOT ROM

EXTERNAL PORT
FLASH, SDRAM
CONTROL

gty 0 th

Figure 1-1. Processor Block Diagram

1-2 ADSP-BF533 Blackfin Processor Hardware Reference



Infroduction

All of the peripherals, except for general-purpose 1/O, Real-Time Clock,
and Timers, are supported by a flexible DMA structure. There are also
two separate memory DMA channels dedicated to data transfers between
the processor’s memory spaces, which include external SDRAM and asyn-
chronous memory. Multiple on-chip buses provide enough bandwidth to
keep the processor core running even when there is also activity on all of
the on-chip and external peripherals.

Core Architecture

The processor core contains two 16-bit multipliers, two 40-bit accumula-
tors, two 40-bit arithmetic logic units (ALUs), four 8-bit video ALUs, and
a 40-bit shifter, shown in Figure 1-2. The computational units process 8-,
16-, or 32-bit data from the register file.

The compute register file contains eight 32-bit registers. When perform-
ing compute operations on 16-bit operand data, the register file operates
as 16 independent 16-bit registers. All operands for compute operations
come from the multiported register file and instruction constant fields.

Each MAC can perform a 16- by 16-bit multiply per cycle, with accumu-
lation to a 40-bit result. Signed and unsigned formats, rounding, and
saturation are supported.

The ALUs perform a traditional set of arithmetic and logical operations
on 16-bit or 32-bit data. Many special instructions are included to acceler-
ate various signal processing tasks. These include bit operations such as

field extract and population count, modulo 232 multiply, divide primi-
tives, saturation and rounding, and sign/exponent detection. The set of
video instructions include byte alignment and packing operations, 16-bit
and 8-bit adds with clipping, 8-bit average operations, and 8-bit sub-
tract/absolute value/accumulate (SAA) operations. Also provided are the
compare/select and vector search instructions. For some instructions, two
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16-bit ALU operations can be performed simultaneously on register pairs
(a 16-bit high half and 16-bit low half of a compute register). By also
using the second ALU, quad 16-bit operations are possible.

[
|
|
| A A *
I P5 I3 L3 B3 M3 DAGO DAG1
| 12 L2 B2 M2
P4
|
|
|
|
|

m | o1 | Bl M1 | |
0 | Lo | BO Mo | |
P2 || s=auencer |
P1 y 1 | |
PO | |
ALIGN
AL K S S W S SR - : :
i — 9 T N
v * : j : DECODE :
: LOOP BUFFER :
|
\

CONTROL _
UNIT

ACC1
' |

77777777777 DATAARITHMETICUNIT — — — — — — — — — —

[
|
|
|
|
|
|
I R1 BARREL
| RO SHIFTER
|
|
|
|
|
!

Figure 1-2. Processor Core Architecture

The 40-bit shifter can deposit data and perform shifting, rotating, normal-
ization, and extraction operations.

A program sequencer controls the instruction execution flow, including
instruction alignment and decoding. For program flow control, the
sequencer supports PC-relative and indirect conditional jumps (with static
branch prediction) and subroutine calls. Hardware is provided to support
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zero-overhead looping. The architecture is fully interlocked, meaning
there are no visible pipeline effects when executing instructions with data
dependencies.

The address arithmetic unit provides two addresses for simultaneous dual
fetches from memory. It contains a multiported register file consisting of
four sets of 32-bit Index, Modify, Length, and Base registers (for circular
buffering) and eight additional 32-bit pointer registers (for C-style
indexed stack manipulation).

Blackfin processors support a modified Harvard architecture in combina-
tion with a hierarchical memory structure. Level 1 (L1) memories typically
operate at the full processor speed with little or no latency. At the L1 level,
the instruction memory holds instructions only. The two data memories
hold data, and a dedicated scratchpad data memory stores stack and local
variable information.

In addition, multiple L1 memory blocks are provided, which may be con-
figured as a mix of SRAM and cache. The Memory Management Unit
(MMU) provides memory protection for individual tasks that may be
operating on the core and may protect system registers from unintended
access.

The architecture provides three modes of operation: User, Supervisor, and
Emulation. User mode has restricted access to a subset of system resources,
thus providing a protected software environment. Supervisor and Emula-
tion modes have unrestricted access to the system and core resources.

The ADSP-BF53x Blackfin processor instruction set is optimized so that
16-bit opcodes represent the most frequently used instructions. Complex
DSP instructions are encoded into 32-bit opcodes as multifunction
instructions. Blackfin products support a limited multi-issue capability,
where a 32-bit instruction can be issued in parallel with two 16-bit
instructions. This allows the programmer to use many of the core
resources in a single instruction cycle.
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The ADSP-BF53x Blackfin processor assembly language uses an algebraic
syntax. The architecture is optimized for use with the C compiler.

Memory Architecture

The Blackfin processor architecture structures memory as a single, unified
4G byte address space using 32-bit addresses. All resources, including
internal memory, external memory, and I/O control registers, occupy sep-
arate sections of this common address space. The memory portions of this
address space are arranged in a hierarchical structure to provide a good
cost/performance balance of some very fast, low latency on-chip memory
as cache or SRAM, and larger, lower cost and lower performance off-chip
memory systems. Table 1-1 shows the memory comparison for the

ADSP-BF531, ADSP-BF532, and ADSP-BF533 processors.

Table 1-1. Memory Comparison

Type of Memory ADSP-BF531 ADSP-BF532 ADSP-BF533
Instruction SRAM/Cache 16K byte 16K byte 16K byte
Instruction SRAM 16K byte 32K byte 64K byte
Data SRAM/Cache 16K byte 32K byte 32K byte
Data SRAM - - 32K byte
Scratchpad 4K byte 4K byte 4K byte
Total 84K byte 116K byte 148K byte

The L1 memory system is the primary highest performance memory avail-
able to the core. The off-chip memory system, accessed through the
External Bus Interface Unit (EBIU), provides expansion with SDRAM,
flash memory, and SRAM, optionally accessing up to 132M bytes of phys-

ical memory.
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The memory DMA controller provides high bandwidth data movement
capability. It can perform block transfers of code or data between the
internal memory and the external memory spaces.

Internal Memory

The processor has three blocks of on-chip memory that provide high
bandwidth access to the core:

e L1 instruction memory, consisting of SRAM and a 4-way set-asso-
ciative cache. This memory is accessed at full processor speed.

e L1 data memory, consisting of SRAM and/or a 2-way set-associa-
tive cache. This memory block is accessed at full processor speed.

* L1 scratchpad RAM, which runs at the same speed as the L1 mem-
ories but is only accessible as data SRAM and cannot be configured
as cache memory.

External Memory

External (off-chip) memory is accessed via the External Bus Interface Unit
(EBIU). This 16-bit interface provides a glueless connection to a bank of
synchronous DRAM (SDRAM) and as many as four banks of asynchro-
nous memory devices including flash memory, EPROM, ROM, SRAM,

and memory-mapped I/O devices.

The PC133-compliant SDRAM controller can be programmed to inter-
face to up to 128M bytes of SDRAM.

The asynchronous memory controller can be programmed to control up
to four banks of devices. Each bank occupies a IM byte segment regardless
of the size of the devices used, so that these banks are only contiguous if
each is fully populated with 1M byte of memory.
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I/0 Memory Space

Blackfin processors do not define a separate I/O space. All resources are
mapped through the flat 32-bit address space. Control registers for
on-chip I/O devices are mapped into memory-mapped registers (MMRys)
at addresses near the top of the 4G byte address space. These are separated
into two smaller blocks: one contains the control MMRs for all core func-
tions and the other contains the registers needed for setup and control of
the on-chip peripherals outside of the core. The MMRs are accessible only

in Supervisor mode. They appear as reserved space to on-chip peripherals.

Event Handling

The event controller on the processor handles all asynchronous and syn-
chronous events to the processor. The processor event handling supports
both nesting and prioritization. Nesting allows multiple event service rou-
tines to be active simultaneously. Prioritization ensures that servicing a
higher priority event takes precedence over servicing a lower priority
event. The controller provides support for five different types of events:

* Emulation — Causes the processor to enter Emulation mode, allow-
ing command and control of the processor via the JTAG interface.

e Reset — Resets the processor.

* Nonmaskable Interrupt (NMI) — The software watchdog timer or
the NMI input signal to the processor generates this event. The
NMI event is frequently used as a power-down indicator to initiate
an orderly shutdown of the system.

* Exceptions — Synchronous to program flow. That is, the exception
is taken before the instruction is allowed to complete. Conditions
such as data alignment violations and undefined instructions cause
exceptions.

1-8
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* Interrupts — Asynchronous to program flow. These are caused by
input pins, timers, and other peripherals.

Each event has an associated register to hold the return address and an
associated return-from-event instruction. When an event is triggered, the
state of the processor is saved on the supervisor stack.

The processor event controller consists of two stages: the Core Event Con-
troller (CEC) and the System Interrupt Controller (SIC). The CEC works
with the SIC to prioritize and control all system events. Conceptually,
interrupts from the peripherals arrive at the SIC and are routed directly
into the general-purpose interrupts of the CEC.

Core Event Controller (CEC)

The Core Event Controller supports nine general-purpose interrupts
(IVG15-7), in addition to the dedicated interrupt and exception events.
Of these general-purpose interrupts, the two lowest priority interrupts
(IVG15-14) are recommended to be reserved for software interrupt han-
dlers, leaving seven prioritized interrupt inputs to support peripherals.

System Interrupt Controller (SIC)

The System Interrupt Controller provides the mapping and routing of
events from the many peripheral interrupt sources to the prioritized gen-
eral-purpose interrupt inputs of the CEC. Although the processor
provides a default mapping, the user can alter the mappings and priorities
of interrupt events by writing the appropriate values into the Interrupt
Assignment Registers (IAR).
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DMA Support

The processor has multiple, independent DMA controllers that support
automated data transfers with minimal overhead for the core. DMA trans-
fers can occur between the internal memories and any of its DMA-capable
peripherals. Additionally, DMA transfers can be accomplished between
any of the DMA-capable peripherals and external devices connected to the
external memory interfaces, including the SDRAM controller and the
asynchronous memory controller. DMA-capable peripherals include the
SPORTs, SPI port, UART, and PPI. Each individual DMA-capable
peripheral has at least one dedicated DMA channel.

The DMA controller supports both one-dimensional (1D) and
two-dimensional (2D) DMA transfers. DMA transfer initialization can be
implemented from registers or from sets of parameters called descriptor

blocks.

The 2D DMA capability supports arbitrary row and column sizes up to
64K elements by 64K elements, and arbitrary row and column step sizes
up to +/- 32K elements. Furthermore, the column step size can be less
than the row step size, allowing implementation of interleaved data-
streams. This feature is especially useful in video applications where data
can be de-interleaved on the fly.

Examples of DMA types supported include:
* A single, linear buffer that stops upon completion

* A circular, auto-refreshing buffer that interrupts on each full or
fractionally full buffer

e 1D or 2D DMA using a linked list of descriptors

e 2D DMA using an array of descriptors specifying only the base
DMA address within a common page
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In addition to the dedicated peripheral DMA channels, there is a separate
memory DMA channel provided for transfers between the various memo-
ries of the system. This enables transfers of blocks of data between any of
the memories—including external SDRAM, ROM, SRAM, and flash
memory—with minimal processor intervention. Memory DMA transfers
can be controlled by a very flexible descriptor-based methodology or by a
standard register-based autobuffer mechanism.

External Bus Interface Unit

The External Bus Interface Unit (EBIU) on the processor interfaces with a
wide variety of industry-standard memory devices. The controller consists
of an SDRAM controller and an asynchronous memory controller.

PC133 SDRAM Controller

The SDRAM controller provides an interface to a single bank of indus-
try-standard SDRAM devices or DIMMs. Fully compliant with the
PC133 SDRAM standard, the bank can be configured to contain between
16M and 128M bytes of memory.

A set of programmable timing parameters is available to configure the
SDRAM bank to support slower memory devices. The memory bank is
16 bits wide for minimum device count and lower system cost.

Asynchronous Controller

The asynchronous memory controller provides a configurable interface for
up to four separate banks of memory or I/O devices. Each bank can be
independently programmed with different timing parameters. This allows
connection to a wide variety of memory devices, including SRAM, ROM,
and flash EPROM, as well as I/O devices that interface with standard

memory control lines. Each bank occupies a 1M byte window in the
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processor address space, but if not fully populated, these are not made
contiguous by the memory controller. The banks are 16 bits wide, for
interfacing to a range of memories and I/O devices.

Parallel Peripheral Interface

The processor provides a Parallel Peripheral Interface (PPI) that can con-
nect directly to parallel A/D and D/A converters, ITU-R 601/656 video
encoders and decoders, and other general-purpose peripherals. The PPI
consists of a dedicated input clock pin, up to 3 frame synchronization
pins, and up to 16 data pins. The input clock supports parallel data rates
up to half the system clock rate.

In ITU-R 656 modes, the PPI receives and parses a data stream of 8-bit or
10-bit data elements. On-chip decode of embedded preamble control and
synchronization information is supported.

Three distinct ITU-R 656 modes are supported:

Active Video Only — The PPI does not read in any data between
the End of Active Video (EAV) and Start of Active Video (SAV)
preamble symbols, or any data present during the vertical blanking
intervals. In this mode, the control byte sequences are not stored to
memory; they are filtered by the PPI.

Vertical Blanking Only — The PPI only transfers Vertical Blanking
Interval (VBI) data, as well as horizontal blanking information and
control byte sequences on VBI lines.

Entire Field — The entire incoming bitstream is read in through the
PPI. This includes active video, control preamble sequences, and
ancillary data that may be embedded in horizontal and vertical
blanking intervals.
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Though not explicitly supported, ITU-R 656 output functionality can be
achieved by setting up the entire frame structure (including active video,
blanking, and control information) in memory and streaming the data out
the PPI in a frame sync-less mode. The processor’s 2D DMA features
facilitate this transfer by allowing the static frame buffer (blanking and
control codes) to be placed in memory once, and simply updating the
active video information on a per-frame basis.

The general-purpose modes of the PPI are intended to suit a wide variety
of data capture and transmission applications. The modes are divided into
four main categories, each allowing up to 16 bits of data transfer per
PPI_CLK cycle:

* Data Receive with Internally Generated Frame Syncs
e Data Receive with Externally Generated Frame Syncs
e Data Transmit with Internally Generated Frame Syncs
e Data Transmit with Externally Generated Frame Syncs

These modes support ADC/DAC connections, as well as video communi-
cation with hardware signalling. Many of the modes support more than
one level of frame synchronization. If desired, a programmable delay can
be inserted between assertion of a frame sync and reception/transmission
of data.

Serial Ports (SPORTs)

The processor incorporates two dual-channel synchronous serial ports
(SPORTO0 and SPORTY1) for serial and multiprocessor communications.
The SPORTSs support these features:

e Bidirectional, I?S capable operation. Each SPORT has two sets of
independent transmit and receive pins, enabling eight channels of
I2S stereo audio.
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Serial Ports (SPORTSs)

Buffered (eight-deep) transmit and receive ports. Each port has a
data register for transferring data words to and from other proces-
sor components and shift registers for shifting data in and out of
the data registers.

Clocking. Each transmit and receive port can either use an external
serial clock or can generate its own in a wide range of frequencies.

Word length. Each SPORT supports serial data words from 3 to 32
bits in length, transferred in most significant bit first or least signif-
icant bit first format.

Framing. Each transmit and receive port can run with or without
frame sync signals for each data word. Frame sync signals can be
generated internally or externally, active high or low, and with
either of two pulse widths and early or late frame sync.

Companding in hardware

Each SPORT can perform A-law or p-law companding according
to ITU recommendation G.711. Companding can be selected on
the transmit and/or receive channel of the SPORT without addi-
tional latencies.

DMA operations with single cycle overhead

Each SPORT can automatically receive and transmit multiple buf-
fers of memory data. The processor can link or chain sequences of

DMA transfers between a SPORT and memory.

Interrupts

Each transmit and receive port generates an interrupt upon com-
pleting the transfer of a data word or after transferring an entire

data buffer or buffers through DMA.
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* Multichannel capability

Each SPORT supports 128 channels out of a 1024-channel win-
dow and is compatible with the H.100, H.110, MVIP-90, and
HMVIP standards.

Serial Peripheral Interface (SPI) Port

The processor has an SPI-compatible port that enables the processor to
communicate with multiple SPI-compatible devices.

The SPI interface uses three pins for transferring data: two data pins and a
clock pin. An SPI chip select input pin lets other SPI devices select the
processor, and seven SPI chip select output pins let the processor select
other SPI devices. The SPI select pins are reconfigured Programmable Flag
pins. Using these pins, the SPI port provides a full-duplex, synchronous
serial interface, which supports both master and slave modes and multi-
master environments.

The SPI port’s baud rate and clock phase/polarities are programmable,
and it has an integrated DMA controller, configurable to support either
transmit or receive datastreams. The SPI’s DMA controller can only ser-
vice unidirectional accesses at any given time.

During transfers, the SPI port simultaneously transmits and receives by
serially shifting data in and out of its two serial data lines. The serial clock
line synchronizes the shifting and sampling of data on the two serial data
lines.
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Timers

There are four general-purpose programmable timer units in the proces-
sor. Three timers have an external pin that can be configured either as a
Pulse Width Modulator (PWM) or timer output, as an input to clock the
timer, or as a mechanism for measuring pulse widths of external events.
These timer units can be synchronized to an external clock input con-
nected to the PF1 pin, an external clock input to the PPI_CLK pin, or to the
internal SCLK.

The timer units can be used in conjunction with the UART to measure
the width of the pulses in the datastream to provide an autobaud detect
function for a serial channel.

The timers can generate interrupts to the processor core to provide peri-
odic events for synchronization, either to the processor clock or to a count
of external signals.

In addition to the three general-purpose programmable timers, a fourth
timer is also provided. This extra timer is clocked by the internal processor
clock and is typically used as a system tick clock for generation of operat-
ing system periodic interrupts.
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UART Port

The processor provides a full-duplex Universal Asynchronous
Receiver/Transmitter (UART) port, which is fully compatible with
PC-standard UARTSs. The UART port provides a simplified UART inter-
face to other peripherals or hosts, providing full- or half-duplex,
DMA-supported, asynchronous transfers of serial data. The UART port
includes support for 5 to 8 data bits; 1 or 2 stop bits; and none, even, or
odd parity. The UART port supports two modes of operation:

e Programmed I/O. The processor sends or receives data by writing
or reading I/O-mapped UART registers. The data is double buff-

ered on both transmit and receive.

e Direct Memory Access (DMA). The DMA controller transfers
both transmit and receive data. This reduces the number and fre-
quency of interrupts required to transfer data to and from memory.
The UART has two dedicated DMA channels, one for transmit
and one for receive. These DMA channels have lower priority than
most DMA channels because of their relatively low service rates.

The UART port’s baud rate, serial data format, error code generation and
status, and interrupts can be programmed to support:

* Wide range of bit rates
* Data formats from 7 to 12 bits per frame

* Generation of maskable interrupts to the processor by both trans-
mit and receive operations

In conjunction with the general-purpose timer functions, autobaud detec-
tion is supported.

The capabilities of the UART are further extended with support for the

Infrared Data Association (IrDA®) Serial Infrared Physical Layer Link
Specification (SIR) protocol.
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Real-Time Clock

The processor’s Real-Time Clock (RTC) provides a robust set of digital
watch features, including current time, stopwatch, and alarm. The RTC is
clocked by a 32.768 kHz crystal external to the processor. The RTC
peripheral has dedicated power supply pins, so that it can remain powered
up and clocked even when the rest of the processor is in a low power state.
The RTC provides several programmable interrupt options, including
interrupt per second, minute, hour, or day clock ticks, interrupt on pro-
grammable stopwatch countdown, or interrupt at a programmed alarm
time.

The 32.768 kHz input clock frequency is divided down to a 1 Hz signal
by a prescaler. The counter function of the timer consists of four counters:
a 60 second counter, a 60 minute counter, a 24 hours counter, and a

32768 day counter.

When enabled, the alarm function generates an interrupt when the output
of the timer matches the programmed value in the alarm control register.
There are two alarms. The first alarm is for a time of day. The second
alarm is for a day and time of that day.

The stopwatch function counts down from a programmed value, with one
minute resolution. When the stopwatch is enabled and the counter under-
flows, an interrupt is generated.

Like the other peripherals, the RT'C can wake up the processor from Sleep
mode or Deep Sleep mode upon generation of any RTC wakeup event. An
RTC wakeup event can also wake up the on-chip internal voltage regula-
tor from a powered down state.
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Watchdog Timer

The processor includes a 32-bit timer that can be used to implement a
software watchdog function. A software watchdog can improve system
availability by forcing the processor to a known state through generation
of a hardware reset, nonmaskable interrupt (NMI), or general-purpose
interrupt, if the timer expires before being reset by software. The pro-
grammer initializes the count value of the timer, enables the appropriate
interrupt, then enables the timer. Thereafter, the software must reload the
counter before it counts to zero from the programmed value. This protects
the system from remaining in an unknown state where software that
would normally reset the timer has stopped running due to an external
noise condition or software error.

If configured to generate a hardware reset, the watchdog timer resets both
the CPU and the peripherals. After a reset, software can determine if the
watchdog was the source of the hardware reset by interrogating a status bit
in the watchdog control register.

The timer is clocked by the system clock (SCLK), at a maximum frequency
Of fSCLK'

Programmable Flags

The processor has 16 bidirectional programmable flag (PF) or general-pur-
pose I/O pins, PF[15:0]. Each pin can be individually configured using
the flag control, status, and interrupt registers.

* Flag Direction Control register — Specifies the direction of each
individual PFx pin as input or output.

* Flag Control and Status registers — The processor employs a
“write-1-to-modify” mechanism that allows any combination of
individual flags to be modified in a single instruction, without
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affecting the level of any other flags. Four control registers are pro-
vided. One register is written in order to set flag values, one register
is written in order to clear flag values, one register is written in
order to toggle flag values, and one register is written in order to
specify any number of flag values. Reading the Flag Status register
allows software to interrogate the sense of the flags.

* Flag Interrupt Mask registers — The two Flag Interrupt Mask regis-
ters allow each individual PFx pin to function as an interrupt to the
processor. Similar to the two Flag Control registers that are used to
set and clear individual flag values, one Flag Interrupt Mask regis-
ter sets bits to enable interrupt function, and the other Flag
Interrupt Mask register clears bits to disable interrupt function.
The PFx pins defined as inputs can be configured to generate hard-
ware interrupts, while output PFx pins can be triggered by software
interrupts.

* Flag Interrupt Sensitivity registers — The two Flag Interrupt Sensi-
tivity registers specify whether individual PFx pins are level- or
edge-sensitive and specify—if edge-sensitive—whether just the ris-
ing edge or both the rising and falling edges of the signal are
significant. One register selects the type of sensitivity, and one reg-
ister selects which edges are significant for edge sensitivity.

Clock Signals

The processor can be clocked by an external crystal, a sine wave input, or a
buffered, shaped clock derived from an external clock oscillator.

This external clock connects to the processor’s CLKIN pin. The CLKIN input
cannot be halted, changed, or operated below the specified frequency dur-
ing normal operation. This clock signal should be a TTL-compatible
signal.
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The core clock (CCLK) and system peripheral clock (SCLK) are derived from
the input clock (CLKIN) signal. An on-chip Phase Locked Loop (PLL) is
capable of multiplying the CLKIN signal by a user-programmable (1x to
63x) multiplication factor (bounded by specified minimum and maximum
VO frequencies). The default multiplier is 10x, but it can be modified by a
software instruction sequence. On-the-fly frequency changes can be made
by simply writing to the PLL_DIV register.

All on-chip peripherals are clocked by the system clock (SCLK). The system
clock frequency is programmable by means of the SSEL[3:0] bits of the
PLL_DIV register.

Dynamic Power Management

The processor provides four operating modes, each with a different perfor-
mance/power profile. In addition, Dynamic Power Management provides
the control functions to dynamically alter the processor core supply volt-
age to further reduce power dissipation. Control of clocking to each of the
peripherals also reduces power consumption.
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Full On Mode (Maximum Performance)

In the Full On mode, the PLL is enabled, not bypassed, providing the
maximum operational frequency. This is the normal execution state in
which maximum performance can be achieved. The processor core and all

enabled peripherals run at full speed.

Active Mode (Moderate Power Savings)

In the Active mode, the PLL is enabled, but bypassed. Because the PLL is
bypassed, the processor’s core clock (CCLK) and system clock (SCLK) run at
the input clock (CLKIN) frequency. In this mode, the CLKIN to VCO multi-
plier ratio can be changed, although the changes are not realized until the
Full On mode is entered. DMA access is available to appropriately config-
ured L1 memories.

In the Active mode, it is possible to disable the PLL through the PLL
Control register (PLL_CTL). If disabled, the PLL must be re-enabled before
transitioning to the Full On or Sleep modes.

Sleep Mode (High Power Savings)

The Sleep mode reduces power dissipation by disabling the clock to the
processor core (CCLK). The PLL and system clock (SCLK), however, con-
tinue to operate in this mode. Typically an external event or RTC activity
will wake up the processor. When in the Sleep mode, assertion of any
interrupt causes the processor to sense the value of the bypass bit (BYPASS)
in the PLL Control register (PLL_CTL). If bypass is disabled, the processor
transitions to the Full On mode. If bypass is enabled, the processor transi-
tions to the Active mode.

When in the Sleep mode, system DMA access to L1 memory is not
supported.
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Deep Sleep Mode (Maximum Power Savings)

The Deep Sleep mode maximizes power savings by disabling the processor
core and synchronous system clocks (CCLK and SCLK). Asynchronous sys-
tems, such as the RTC, may still be running, but cannot access internal
resources or external memory. This powered-down mode can only be
exited by assertion of the reset interrupt or by an asynchronous interrupt
generated by the RTC. When in Deep Sleep mode, an RTC asynchronous
interrupt causes the processor to transition to the Active mode. Assertion
of RESET while in Deep Sleep mode causes the processor to transition to

the Full On mode.

Hibernate State

For lowest possible power dissipation, this state allows the internal supply
(VppInT) to be powered down, while keeping the I/O supply (VppexT)

running. Although not strictly an operating mode like the four modes
detailed above, it is illustrative to view it as such.

Voltage Regulation

The processor provides an on-chip voltage regulator that can generate
internal voltage levels (0.8 V to 1.2 V) from an external 2.25 V to 3.6 V
supply. Figure 1-3 shows the typical external components required to
complete the power management system. The regulator controls the inter-
nal logic voltage levels and is programmable with the Voltage Regulator
Control register (VR_CTL) in increments of 50 mV. To reduce standby
power consumption, the internal voltage regulator can be programmed to
remove power to the processor core while keeping I/O power supplied.
While in this state, VppgxT can still be applied, eliminating the need for

external buffers. The regulator can also be disabled and bypassed at the
user’s discretion.
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Figure 1-3. Voltage Regulator Circuit

Boot Modes

The processor has two mechanisms for automatically loading internal L1

instruction memory after a reset. A third mode is provided to execute from
external memory, bypassing the boot sequence:

Execute from 16-bit external memory — Execution starts from
address 0x2000 0000 with 16-bit packing. The boot ROM is
bypassed in this mode. All configuration settings are set for the
slowest device possible (3-cycle hold time; 15-cycle R/W access
times; 4-cycle setup).

Boot from 8-bit or 16-bit external flash memory — The flash boot
routine located in boot ROM memory space is set up using Asyn-
chronous Memory Bank 0. All configuration settings are set for the
slowest device possible (3-cycle hold time; 15-cycle R/W access
times; 4-cycle setup).

Boot from SPI serial EEPROM (8-, 16-, or 24-bit addressable) —
The SPI uses the PF2 output pin to select a single SPI EEPROM
device, submits successive read commands at addresses 0x00,
0x0000, and 0x000000 until a valid 8-, 16-, or 24-bit addressable
EEPROM is detected, and begins clocking data into the beginning

of L1 instruction memory.
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* Boot from SPI host (slave mode) — A user-defined programmable
flag pin is an output on the Blackfin processor and an input on the
SPI host device. This flag allows the processor to hold off the host
device from sending data during certain sections of the boot pro-
cess. When this flag is de-asserted, the host can continue to send
bytes to the processor.

For each of the boot modes, a 10-byte header is first read from an external
memory device. The header specifies the number of bytes to be transferred
and the memory destination address. Multiple memory blocks may be
loaded by any boot sequence. Once all blocks are loaded, program execu-
tion commences from the start of L1 instruction SRAM.

In addition, bit 4 of the Reset Configuration register can be set by applica-
tion code to bypass the normal boot sequence during a software reset. For
this case, the processor jumps directly to the beginning of L1 instruction
memory.

Instruction Set Description

The ADSP-BF53x processor family assembly language instruction set
employs an algebraic syntax designed for ease of coding and readability.
The instructions have been specifically tuned to provide a flexible, densely
encoded instruction set that compiles to a very small final memory size.
The instruction set also provides fully featured multifunction instructions
that allow the programmer to use many of the processor core resources in
a single instruction. Coupled with many features more often seen on
microcontrollers, this instruction set is very efficient when compiling C
and C++ source code. In addition, the architecture supports both user
(algorithm/application code) and supervisor (O/S kernel, device drivers,
debuggers, ISRs) modes of operation, allowing multiple levels of access to
core resources.
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The assembly language, which takes advantage of the processor’s unique
architecture, offers these advantages:

e Seamlessly integrated DSP/CPU features optimized for both 8-bit
and 16-bit operations

* A multi-issue load/store modified Harvard architecture, which sup-
ports two 16-bit MAC or four 8-bit ALU + two load/store + two
pointer updates per cycle

e All registers, I/O, and memory mapped into a unified 4G byte
memory space, providing a simplified programming model

* Microcontroller features, such as arbitrary bit and bit field manipu-
lation, insertion, and extraction; integer operations on 8-, 16-, and
32-bit data types; and separate user and supervisor stack pointers.

Code density enhancements include intermixing of 16- and 32-bit
instructions with no mode switching or code segregation. Frequently used
instructions are encoded in 16 bits.

Development Tools

e Create, compile, assemble, and link application programs written
in C++, C, and assembly

* Load, run, step, halt, and set breakpoints in application programs
* Read and write data and program memory
* Read and write core and peripheral registers

* Plot memory

1-26 ADSP-BF533 Blackfin Processor Hardware Reference



Infroduction

The processor is supported by a complete set of software and hardware
development tools, including Analog Devices” emulators and the Cross-
Core Embedded Studio or VisualDSP++ development environment. (The
emulator hardware that supports other Analog Devices processors also
emulates the processor.)

The development environments support advanced application code devel-
opment and debug with features such as:

Analog Devices DSP emulators use the IEEE 1149.1 JTAG test access
port to monitor and control the target board processor during emulation.
The emulator provides full speed emulation, allowing inspection and
modification of memory, registers, and processor stacks. Nonintrusive
in-circuit emulation is assured by the use of the processor JTAG inter-
face—the emulator does not affect target system loading or timing,.

Software tools also include Board Support Packages (BSPs). Hardware
tools also include standalone evaluation systems (boards and extenders). In
addition to the software and hardware development tools available from
Analog Devices, third parties provide a wide range of tools supporting the
Blackfin processors. Third party software tools include DSP libraries,
real-time operating systems, and block diagram design tools.
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2 COMPUTATIONAL UNITS

The processor’s computational units perform numeric processing for DSP
and general control algorithms. The six computational units are two arith-
metic/logic units (ALUs), two multiplier/accumulator (multiplier) units, a
shifter, and a set of video ALUs. These units get data from registers in the
Data Register File. Computational instructions for these units provide
fixed-point operations, and each computational instruction can execute
every cycle.

The computational units handle different types of operations. The ALUs
perform arithmetic and logic operations. The multipliers perform
multiplication and execute multiply/add and multiply/subtract opera-
tions. The shifter executes logical shifts and arithmetic shifts and performs
bit packing and extraction. The video ALUs perform Single Instruction,
Multiple Data (SIMD) logical operations on specific 8-bit data operands.

Data moving in and out of the computational units goes through the Data
Register File, which consists of eight registers, each 32 bits wide. In opera-
tions requiring 16-bit operands, the registers are paired, providing sixteen
possible 16-bit registers.

The processor’s assembly language provides access to the Data Register
File. The syntax lets programs move data to and from these registers and
specify a computation’s data format at the same time.

Figure 2-1 provides a graphical guide to the other topics in this chapter.
An examination of each computational unit provides details about its
operation and is followed by a summary of computational instructions.
Studying the details of the computational units, register files, and data
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buses leads to a better understanding of proper data flow for
computations. Next, details about the processor’s advanced parallelism
reveal how to take advantage of multifunction instructions.

Figure 2-1 shows the relationship between the Data Register File and the
computational units—multipliers, ALUs, and shifter.
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Figure 2-1. Processor Core Architecture

Single function multiplier, ALU, and shifter instructions have unrestricted
access to the data registers in the Data Register File. Multifunction opera-
tions may have restrictions that are described in the section for that
particular operation.
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Two additional registers, AO and Al, provide 40-bit accumulator results.
These registers are dedicated to the ALUs and are used primarily for mul-
tiply-and-accumulate functions.

The traditional modes of arithmetic operations, such as fractional and
integer, are specified directly in the instruction. Rounding modes are set
from the ASTAT register, which also records status and conditions for the
results of the computational operations.

Using Data Formats

ADSP-BF53x processors are primarily 16-bit, fixed-point machines. Most
operations assume a two’s-complement number representation, while oth-
ers assume unsigned numbers or simple binary strings. Other instructions
support 32-bit integer arithmetic, with further special features supporting
8-bit arithmetic and block floating point. For detailed information about
each number format, see Appendix D, “Numeric Formats”

In the ADSP-BF53x processor family arithmetic, signed numbers are
always in two’s-complement format. These processors do not use
signed-magnitude, one’s-complement, binary-coded decimal (BCD), or
excess-n formats.

Binary String

The binary string format is the least complex binary notation; in it, 16 bits
are treated as a bit pattern. Examples of computations using this format
are the logical operations NOT, AND, OR, XOR. These ALU operations
treat their operands as binary strings with no provision for sign bit or
binary point placement.
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Unsigned

Unsigned binary numbers may be thought of as positive and having nearly
twice the magnitude of a signed number of the same length. The processor
treats the least significant words of multiple precision numbers as
unsigned numbers.

Signed Numbers: Two’s-Complement

In ADSP-BF53x processor arithmetic, the word signed refers to
two’s-complement numbers. Most ADSP-BF53x processor family opera-
tions presume or support two’s-complement arithmetic.

Fractional Representation: 1.15

ADSP-BF53x processor arithmetic is optimized for numerical values in a
fractional binary format denoted by 1.15 (“one dot fifteen”). In the 1.15
format, 1 sign bit (the Most Significant Bit (MSB)) and 15 fractional bits
represent values from —1 to 0.999969.

Figure 2-2 shows the bit weighting for 1.15 numbers as well as some
examples of 1.15 numbers and their decimal equivalents.

1.15 NUMBER DECIMAL

(HEXADECIMAL) EQUIVALENT
0x0001 0.000031
OX7FFF 0.999969
OxFFFF —0.000031
0x8000 -1.000000

20 271 272 | 23| 24| 25| 26 | 27 | 28 | 2-9 | 2-10 o—11| 2-12| 2-13 [ 2—14 | 2—15

Figure 2-2. Bit Weighting for 1.15 Numbers
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Register Files

The processor’s computational units have three definitive register
groups—a Data Register File, a Pointer Register File, and set of Data
Address Generator (DAG) registers.

e The Data Register File receives operands from the data buses for
the computational units and stores computational results.

e The Pointer Register File has pointers for addressing operations.

e The DAG registers are dedicated registers that manage zero-over-
head circular buffers for DSP operations.

For more information, see Chapter 5, “Data Address Generators”.

The processor register files appear in Figure 2-3.

Data Registers Data Address Generator Registers (DAGs)
RO| RoH | Rol / o | Lo | BoO MO PO \
R1| RiH | RIL n| u | B M1 P1
R2 R2.H R2.L 12 L2 B2 M2 P2
R3| R3H | R3L 3 | L3 | B3 M3 P3
R4 R4.H R4.L P4
R5| R5.H R5.L P5

R6 | ReH R6.L

M
At[arx| Atw K /

Figure 2-3. Register Files
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Register Files

In the processor, a word is 32 bits long; H denotes the high order
16 bits of a 32-bit register; L denotes the low order 16 bits of a
32-bit register. For example, A0.W contains the lower 32 bits of the
40-bit A0 register; AO. L contains the lower 16 bits of A0.W, and A0.H
contains the upper 16 bits of A0. W.

Data Register File

The Data Register File consists of eight registers, each 32 bits wide. Each
register may be viewed as a pair of independent 16-bit registers. Each is
denoted as the low half or high half. Thus the 32-bit register R0 may be
regarded as two independent register halves, RO. L and RO.H.

Three separate buses (two read, one write) connect the Register File to the
L1 data memory, each bus being 32 bits wide. Transfers between the Data
Register File and the data memory can move up to four 16-bit words of
valid data in each cycle.

Accumulator Registers

In addition to the Data Register File, the processor has two dedicated,
40-bit accumulator registers. Each can be referred to as its 16-bit low half
(An. L) or high half (An.H) plus its 8-bit extension (An.X). Each can also be
referred to as a 32-bit register (An.W) consisting of the lower 32 bits, or as
a complete 40-bit result register (An).

Pointer Register File

The general-purpose Address Pointer registers, also called P-registers, are
organized as:

* G-entry, P-register files P[5:0]

* Frame Pointers (FP) used to point to the current procedure’s activa-
tion record
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 Stack Pointer registers (SP) used to point to the last used location
on the runtime stack. See mode dependent registers in Chapter 3,
“Operating Modes and States”.

P-registers are 32 bits wide. Although P-registers are primarily used for
address calculations, they may also be used for general integer arithmetic
with a limited set of arithmetic operations; for instance, to maintain coun-
ters. However, unlike the Data registers, P-register arithmetic does not
affect the Arithmetic Status (ASTAT) register status flags.

DAG Register Set

DSP instructions primarily use the Data Address Generator (DAG) regis-
ter set for addressing. The DAG register set consists of these registers:

* 1[3:0] contain index addresses
* M[3:0] contain modify values
* B[3:0] contain base addresses
* L[3:0] contain length values
All DAG registers are 32 bits wide.

The I (Index) registers and B (Base) registers always contain addresses of
8-bit bytes in memory. The Index registers contain an effective address.
The M (Modify) registers contain an offset value that is added to one of
the Index registers or subtracted from it.

The B and L (Length) registers define circular buffers. The B register con-
tains the starting address of a buffer, and the L register contains the length
in bytes. Each L and B register pair is associated with the corresponding I
register. For example, L0 and B0 are always associated with 10. However,
any M register may be associated with any I register. For example, 10 may
be modified by M3. For more information, see Chapter 5, “Data Address
Generators”.
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Register File Instruction Summary

Table 2-1 lists the register file instructions. For more information about
assembly language syntax, see Blackfin Processor Programming Reference.

In Table 2-1, note the meaning of these symbols:

Allreg denotes: R[7:01, P[5:01, SP, FP, 1[3:0], M[3:0],
B[3:0], L[3:01, AO.X, AO.W, A1.X, Al.W, ASTAT, RETS, RETI,
RETX, RETN, RETE, LC[1:0], LT[1:0J, LB[1:0], USP, SEQSTAT,
SYSCFG, CYCLES, and CYCLES2.

An denotes either ALU Result register A0 or Al.
Dreg denotes any Data Register File register.

Sysreg denotes the system registers: ASTAT, SEQSTAT, SYSCFG, RETI,
RETX, RETN, RETE, or RETS, LC[1:0], LT[1:01, LB[1:01, CYCLES, and
CYCLES?.

Preg denotes any Pointer register, FP, or SP register.
Dreg_even denotes R0O,R2,R4, or R6.
Dreg_odd denotes R1,R3,R5, or R7.

DPreg denotes any Data Register File register or any Pointer regis-
ter, FP, or SP register.

Dreg_lo denotes the lower 16 bits of any Data Register File
register.

Dreg_hi denotes the upper 16 bits of any Data Register File

register.
An.L denotes the lower 16 bits of Accumulator A0.W or Al .W.

An.H denotes the upper 16 bits of Accumulator A0.W or AL.W.

2-8
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* Dreg_byte denotes the low order 8 bits of each Data register.

* Option (X) denotes sign extended.

* Option (Z) denotes zero extended.

e *Indicates the flag may be set or cleared, depending on the result

of the instruction.

e **Indicates the flag is cleared.

¢ _— Indicates no effect.

Table 2-1. Register File Instruction Summary

Instruction

ASTAT Status Flags

AZ

AN

ACO
AC0_COPY
AC1

AV0
AVS

AVl
AV1S

CC

allreg = allreg ; 1

An=An;

An = Dreg ;

Dreg_even = A0 ;

Dreg_odd = Al ;

Dreg_even = A0,
Dreg_odd = Al ;

Dreg_odd = Al,
Dreg_even = A0 ;

IF CC DPreg = DPreg ;

IF ! CC DPreg = DPreg ;

Dreg = Dreg_lo (Z) ;

*k

*k [

Dreg = Dreg_lo (X) ;

*k

**/_

AnX = Dreg_lo;

Dreg_lo = An.X;

ADSP-BF533 Blackfin Processor Hardware Reference
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Table 2-1. Register File Instruction Summary (Cont'd)

Instruction ASTAT Status Flags
AZ AN ACO AV0 |AV1 CC \'
AC0_COPY [AVS |AVIS V_COPY
AC1 A
An.L = Dreg_lo; - - - - - — _
AnH = Dreg_hi; - - - - - _ _
Dreg_lo = A0 ; * * - - - - *
Dreg_hi=Al; * * - - _ _ *
Dreg_hi=Al; * * — — — _ *
Dreg_lo = A0 ;
Dreg_lo = A0 ; * * - — _ _ *
Dreg_hi=Al;
Dreg = Dreg_byte (Z) ; * x *x - - _ k[
Dreg = Dreg_byte (X) ; * * ok - - — **[_

1 Warning: Not all register combinations are allowed. For details, see the functional description of

the Move Register instruction in Blackfin Processor Programming Reference.

Data Types

The processor supports 32-bit words, 16-bit half words, and bytes. The
32- and 16-bit words can be integer or fractional, but bytes are always
integers. Integer data types can be signed or unsigned, but fractional data
types are always signed.

Table 2-2 illustrates the formats for data that resides in memory, in the
register file, and in the accumulators. In the table, the letter & represents
one bit, and the letter s represents one signed bit.

2-10
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Some instructions manipulate data in the registers by sign-extending or
zero-extending the data to 32 bits:

* Instructions zero-extend unsigned data
 Instructions sign-extend signed 16-bit half words and 8-bit bytes

Other instructions manipulate data as 32-bit numbers. In addition, two
16-bit half words or four 8-bit bytes can be manipulated as 32-bit values.

For details, refer to the instructions in Blackfin Processor Programming
Reference.

In Table 2-2, note the meaning of these symbols:
* s =sign bit(s)
e d = data bit(s)

« »

e “.” = decimal point by convention; however, a decimal point does
not literally appear in the number.

* Italics denotes data from a source other than adjacent bits.

Table 2-2. Data Formats

Format Representation in Memory Representation in 32-bit Register

32.0 Unsigned | dddd dddd dddd dddd dddd dddd dddd dddd dddd dddd dddd dddd
Word dddd dddd dddd dddd

32.0 Signed sddd dddd dddd dddd dddd sddd dddd dddd dddd dddd dddd dddd
Word dddd dddd dddd dddd

16.0 Unsigned | dddd dddd dddd dddd 0000 0000 0000 0000 dddd dddd dddd
Half Word dddd

16.0 Signed sddd dddd dddd dddd ssss ssss ssss ssss sddd dddd dddd dddd
Half Word

8.0 Unsigned | dddd dddd 0000 0000 0000 0000 0000 0000 dddd
Byte dddd

8.0 Signed sddd dddd ssss ssss ssss ssss ssss ssss sddd dddd

Byte
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Table 2-2. Data Formats (Cont’d)

Format Representation in Memory Representation in 32-bit Register

0.16 Unsigned | .dddd dddd dddd dddd 0000 0000 0000 0000 .dddd dddd dddd
Fraction dddd

1.15 Signed s.ddd dddd dddd dddd ssss ssss ssss ssss s.ddd dddd dddd dddd
Fraction

0.32 Unsigned | .dddd dddd dddd dddd dddd .dddd dddd dddd dddd dddd dddd dddd
Fraction dddd dddd dddd dddd

1.31 Signed s.ddd dddd dddd dddd dddd s.ddd dddd dddd dddd dddd dddd dddd
Fraction dddd dddd dddd dddd

Packed 8.0 dddd dddd dddd dddd dddd dddd dddd dddd dddd dddd dddd dddd dddd
Unsigned Byte | dddd dddd dddd

Packed 0.16 .dddd dddd dddd dddd .dddd .dddd dddd dddd dddd .dddd dddd dddd
Unsigned Frac- | dddd dddd dddd dddd

tion

Packed 1.15 s.ddd dddd dddd dddd s.ddd s.ddd dddd dddd dddd s.ddd dddd dddd dddd
Signed dddd dddd dddd

Fraction

Endianess

Both internal and external memory are accessed in little endian byte order.
For more information, see “Memory Transaction Model” on page -65.

ALU Data Types

Operations on each ALU treat operands and results as either 16- or 32-bit
binary strings, except the signed division primitive (D1VS). ALU result sta-
tus bits treat the results as signed, indicating status with the overflow flags
(Av0, AV1) and the negative flag (AN). Each ALU has its own sticky over-
flow flag, AV0S and AV1S. Once set, these bits remain set until cleared by
writing directly to the ASTAT register. An additional V flag is set or cleared
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depending on the transfer of the result from both accumulators to the
register file. Furthermore, the sticky VS bit is set with the v bit and
remains set until cleared.

The logic of the overflow bits (V, VS, AVO, AV0S, AV1, AV1S) is based on
two’s-complement arithmetic. A bit or set of bits is set if the Most Signifi-
cant Bit (MSB) changes in a manner not predicted by the signs of the
operands and the nature of the operation. For example, adding two posi-
tive numbers must generate a positive result; a change in the sign bit
signifies an overflow and sets AVn, the corresponding overflow flags. Add-
ing a negative and a positive number may result in either a negative or
positive result, but cannot cause an overflow.

The logic of the carry bits (AC0, AC1) is based on unsigned magnitude
arithmetic. The bit is set if a carry is generated from bit 16 (the MSB).
The carry bits (AC0, AC1) are most useful for the lower word portions of a
multiword operation.

ALU results generate status information. For more information about
using ALU status, see “ALU Instruction Summary” on page 2-29.

Multiplier Data Types

Each multiplier produces results that are binary strings. The inputs are
interpreted according to the information given in the instruction itself
(whether it is signed multiplied by signed, unsigned multiplied by
unsigned, a mixture, or a rounding operation). The 32-bit result from the
multipliers is assumed to be signed; it is sign-extended across the full
40-bit width of the A0 or Al registers.

The processor supports two modes of format adjustment: the fractional
mode for fractional operands (1.15 format with 1 sign bit and 15 frac-
tional bits) and the integer mode for integer operands (16.0 format).
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When the processor multiplies two 1.15 operands, the result is a 2.30

(2 sign bits and 30 fractional bits) number. In the fractional mode, the
multiplier automatically shifts the multiplier product left one bit before
transferring the result to the multiplier result register (A0, A1). This shift of
the redundant sign bit causes the multiplier result to be in 1.31 format,
which can be rounded to 1.15 format. The resulting format appears in
Figure 2-4.

In the integer mode, the left shift does not occur. For example, if the oper-
ands are in the 16.0 format, the 32-bit multiplier result would be in 32.0
format. A left shift is not needed and would change the numerical
representation. This result format appears in Figure 2-5.

Multiplier results generate status information when they update accumu-
lators or when they are transferred to a destination register in the register
file. For more information, see “Multiplier Instruction Summary” on

page 2-40.

Shifter Data Types

Many operations in the shifter are explicitly geared to signed (two’s-com-
plement) or unsigned values—logical shifts assume unsigned magnitude
or binary string values, and arithmetic shifts assume two’s-complement
values.

The exponent logic assumes two’s-complement numbers. The exponent
logic supports block floating point, which is also based on two’s-comple-
ment fractions.

Shifter results generate status information. For more information about
using shifter status, see “Shifter Instruction Summary” on page 2-55.
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Computational Units

Table 2-3, Table 2-4, Table 2-5, and Table 2-6 summarize some of the

arithmetic characteristics of computational operations.

Table 2-3. ALU Arithmetic Formats

Operation

Operand Formats

Result Formats

Addition

Signed or unsigned

Interpret flags

Subtraction

Signed or unsigned

Interpret flags

Logical

Division

Binary string

Same as operands

Explicitly signed or unsigned

Same as operands

Table 2-4. Multiplier Fractional Modes Formats

Operation

Operand Formats

Result Formats

Multiplication

1.15 explicitly signed or
unsigned

2.30 shifted to 1.31

Multiplication/Addition

1.15 explicitly signed or
unsigned

2.30 shifted to 1.31

Multiplication/Subtraction

1.15 explicitly signed or
unsigned

2.30 shifted to 1.31

Table 2-5. Multiplier Arithmetic Integer Modes Formats

Operation

Operand Formats

Result Formats

Multiplication

16.0 explicitly signed or
unsigned

32.0 not shifted

Multiplication/Addition

16.0 explicitly signed or
unsigned

32.0 not shifted

Multiplication/Subtraction

16.0 explicitly signed or
unsigned

32.0 not shifted

ADSP-BF533 Blackfin Processor Hardware Reference
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Table 2-6. Shifter Arithmetic Formats

Operation Operand Formats Result Formats

Logical Shift Unsigned binary string Same as operands
Arithmetic Shift Signed Same as operands
Exponent Detect Signed Same as operands

Using Multiplier Integer and Fractional Formats

For multiply-and-accumulate functions, the processor provides two
choices—fractional arithmetic for fractional numbers (1.15) and integer
arithmetic for integers (16.0).

For fractional arithmetic, the 32-bit product output is format adjusted—
sign-extended and shifted one bit to the left—Dbefore being added to accu-
mulator A0 or Al. For example, bit 31 of the product lines up with bit 32
of A0 (which is bit 0 of A0.X), and bit 0 of the product lines up with bit 1
of A0 (which is bit 1 of A0.W). The Least Significant Bit (LSB) is zero
filled. The fractional multiplier result format appears in Figure 2-4.

For integer arithmetic, the 32-bit product register is not shifted before
being added to A0 or Al. Figure 2-5 shows the integer mode result
placement.

With either fractional or integer operations, the multiplier output product
is fed into a 40-bit adder/subtracter which adds or subtracts the new prod-

uct with the current contents of the A0 or Al register to produce the final
40-bit result.
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ZERO
FILLED

MULTIPLIER P OUTPUT

A
I

31| 31|31]31|31|31| 31|31} 31

30|29|28|27 26|25|24 23)22|21|20, 19|18|17 16|15|14 13|12 1" 10| 9|8|7]|6|5]4]|3|2|1]0

31|30|29 28|27 26|25 24 23|22 21|20|19]18]17| 16|15|14 13|12|11|10|9|8|7|6]|5|4|3|2]|1]|0

A0.X

I
——

A0.W

Figure 2-4. Fractional Multiplier Results Format
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A

31131|31)31|31|31|31|31

31 30|29 28|27 26|25

24|23|22|21 201918|1716|15|14131211 10]9|8|7|6|5]4]|3|2]|1]0

24

N

31]30]29|28

27 26|25

A0.X

3]22|21|20] 1 | 1 116|15|14131211109 8|7]|6|5]|4|3]|2|1]|0

Figure 2-5. Integer Multiplier Results Format
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Rounding Multiplier Results

On many multiplier operations, the processor supports multiplier results
rounding (RND option). Rounding is a means of reducing the precision of a
number by removing a lower order range of bits from that number’s repre-
sentation and possibly modifying the remaining portion of the number to
more accurately represent its former value. For example, the original num-
ber will have N bits of precision, whereas the new number will have only
M bits of precision (where N>M). The process of rounding, then, removes
N — M bits of precision from the number.

The RND_MOD bit in the ASTAT register determines whether the RND option
provides biased or unbiased rounding. For unbiased rounding, set RND_MOD
bit = 0. For biased rounding, set RND_MOD bit = 1.

@ For most algorithms, unbiased rounding is preferred.

Unbiased Rounding

The convergent rounding method returns the number closest to the origi-
nal. In cases where the original number lies exactly halfway between two
numbers, this method returns the nearest even number, the one contain-
ing an LSB of 0. For example, when rounding the 3-bit,
two’s-complement fraction 0.25 (binary 0.01) to the nearest 2-bit,
two’s-complement fraction, the result would be 0.0, because that is the
even-numbered choice of 0.5 and 0.0. Since it rounds up and down based
on the surrounding values, this method is called unbiased rounding.

Unbiased rounding uses the ALU’s capability of rounding the 40-bit result
at the boundary between bit 15 and bit 16. Rounding can be specified as
part of the instruction code. When rounding is selected, the output regis-
ter contains the rounded 16-bit result; the accumulator is never rounded.
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The accumulator uses an unbiased rounding scheme. The conventional
method of biased rounding adds a 1 into bit position 15 of the adder
chain. This method causes a net positive bias because the midway value
(when A0.L/Al.L = 0x8000) is always rounded upward.

The accumulator eliminates this bias by forcing bit 16 in the result output
to 0 when it detects this midway point. Forcing bit 16 to 0 has the effect
of rounding odd A0.L/Al.L values upward and even values downward,
yielding a large sample bias of 0, assuming uniformly distributed values.

The following examples use x to represent any bit pattern (not all zeros).
The example in Figure 2-6 shows a typical rounding operation for A0; the
example also applies for Al.

UNROUNDED VALUE:

ADD 1 AND CARRY:

ROUNDED VALUE:

A0.X A0.W
Figure 2-6. Typical Unbiased Multiplier Rounding

The compensation to avoid net bias becomes visible when all lower 15 bits
are 0 and bit 15 is 1 (the midpoint value) as shown in Figure 2-7.
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In Figure 2-7, A0 bit 16 is forced to 0. This algorithm is employed on
every rounding operation, but is evident only when the bit patterns shown
in the lower 16 bits of the next example are present.

UNROUNDED VALUE:

ADD 1 AND CARRY:

AOBIT16=1:

ROUNDED VALUE:

A0.X A0.W

Figure 2-7. Avoiding Net Bias in Unbiased Multiplier Rounding

Biased Rounding

The round-to-nearest method also returns the number closest to the origi-
nal. However, by convention, an original number lying exactly halfway
between two numbers always rounds up to the larger of the two. For
example, when rounding the 3-bit, two’s-complement fraction 0.25
(binary 0.01) to the nearest 2-bit, two’s-complement fraction, this method
returns 0.5 (binary 0.1). The original fraction lies exactly midway between
0.5 and 0.0 (binary 0.0), so this method rounds up. Because it always
rounds up, this method is called biased rounding.
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The RND_MOD bit in the ASTAT register enables biased rounding. When the
RND_MOD bit is cleared, the RND option in multiplier instructions uses the

normal, unbiased rounding operation, as discussed in “Unbiased Round-
ing” on page 2-18.

When the RND_MOD bit is set (=1), the processor uses biased rounding
instead of unbiased rounding. When operating in biased rounding mode,
all rounding operations with A0.L/A1.L set to 0x8000 round up, rather
than only rounding odd values up. For an example of biased rounding, see

Table 2-7.

Table 2-7. Biased Rounding in Multiplier Operation

A0/A1 Before RND Biased RND Result Unbiased RND Result

0x00 0000 8000

0x00 0001 8000

0x00 0000 0000

0x00 0001 8000

0x00 0002 0000

0x00 0002 0000

0x00 0000 8001

0x00 0001 0001

0x00 0001 0001

0x00 0001 8001

0x00 0002 0001

0x00 0002 0001

0x00 0000 7FFF

0x00 0000 FFFF

0x00 0000 FFFF

0x00 0001 7FFF

0x00 0001 FFFF

0x00 0001 FFFF

Biased rounding affects the result only when the A0.L/A1.L register con-
tains 0x8000; all other rounding operations work normally. This mode
allows more efficient implementation of bit specified algorithms that use
biased rounding (for example, the Global System for Mobile Communica-
tions (GSM) speech compression routines).

Truncation

Another common way to reduce the significant bits representing a number
is to simply mask off the N — M lower bits. This process is known as zrun-
cation and results in a relatively large bias. Instructions that do not

support rounding revert to truncation. The RND_MOD bit in ASTAT has no
effect on truncation.
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Special Rounding Instructions

The ALU provides the ability to round the arithmetic results directly into
a data register with biased or unbiased rounding as described above. It also
provides the ability to round on different bit boundaries. The options
RND12, RND, and RND20 extract 16-bit values from bit 12, bit 16 and bit 20,
respectively, and perform biased rounding regardless of the state of the
RND_MOD bit in ASTAT.

For example:

R3.L = R4 (RND) ;

performs biased rounding at bit 16, depositing the result in a half word.

R3.L = R4 + R5 (RND12) ;

performs an addition of two 32-bit numbers, biased rounding at bit 12,
depositing the result in a half word.

R3.L = R4 + R5 (RND20) ;

performs an addition of two 32-bit numbers, biased rounding at bit 20,
depositing the result in a half word.

Using Computational Status

The multiplier, ALU, and shifter update the overflow and other status
flags in the processor’s Arithmetic Status (ASTAT) register. To use status
conditions from computations in program sequencing, use conditional
instructions to test the CC flag in the ASTAT register after the instruction
executes. This method permits monitoring each instruction’s outcome.
The ASTAT register is a 32-bit register, with some bits reserved. To ensure
compatibility with future implementations, writes to this register should
write back the values read from these reserved bits.
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ASTAT Register

Figure 2-8 describes the Arithmetic Status (ASTAT) register. The processor
updates the status bits in ASTAT, indicating the status of the most recent
ALU, multiplier, or shifter operation.

Arithmetic Logic Unit (ALU)

The two ALUs perform arithmetic and logical operations on fixed-point
data. ALU fixed-point instructions operate on 16-, 32-, and 40-bit
fixed-point operands and output 16-, 32-, or 40-bit fixed-point results.
ALU instructions include:

Fixed-point addition and subtraction of registers
Addition and subtraction of immediate values
Accumulation and subtraction of multiplier results
Logical AND, OR, NOT, XOR, bitwise XOR, Negate
Functions: ABS, MAX, MIN, Round, division primitives

ALU Operations

Primary ALU operations occur on ALUO, while parallel operations occur
on ALU1, which performs a subset of ALUO operations.
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Arithmetic Status Register (ASTAT)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

|o |o |o |o |o |o |o |o |o |o |o |o |o |o |o |0| Reset = 0x0000 0000

VS (Sticky Dreg Overflow) g

Sticky version of V

V (Dreg Overflow)

0 - Last result written from
ALU to Data Register File
register has not overflowed

1 - Last result has overflowed

AV1S (Sticky A1 Overflow)

Sticky version of AV1

15 14 13 12 11

|— AVO0 (A0 Overflow)
0 - Last result written to A0
has not overflowed
1 - Last result written to AO
has overflowed
AVO0S (Sticky A0 Overflow)

Sticky version of AVO

AV1 (A1 Overflow)

0 - Last result written to A1
has not overflowed

1 - Last result written to A1
has overflowed

10 9 8 7 6 5 4 3 2 1 0
[ofofofofofofofofofofofofofofo]e]

AC1 (ALU1 Carry) 4|

0 - Operation in ALU1 does not
generate a carry
1 - Operation generates a carry

ACO (ALUO Carry)

0 - Operation in ALUO does not
generate a carry

1 - Operation generates a
carry

RND_MOD (Rounding Mode)

0 - Unbiased rounding
1 - Biased rounding

AQ (Quotient)

Quotient bit

Figure 2-8. Arithmetic Status Register

|— AZ (Zero Result)

0 - Result from last ALUO,
ALU1, or shifter operation
is not zero

1 - Result is zero

AN (Negative Result)

0 - Result from last ALUO,
ALUT1, or shifter operation
is not negative

1 - Result is negative

ACO_COPY
Identical to bit 12
V_COPY
Identical to bit 24

CC (Condition Code)

Multipurpose flag, used
primarily to hold resolution of
arithmetic comparisons. Also
used by some shifter instruc-
tions to hold rotating bits.

2-24 ADSP-BF533 Blackfin Processor Hardware Reference



Computational Units

Table 2-8 describes the possible inputs and outputs of each ALU.

Table 2-8. Inputs and Outputs of Each ALU

Input Output
Two or four 16-bit operands One or two 16-bit results
Two 32-bit operands One 32-bit result

32-bit result from the multiplier | Combination of 32-bit result from the multiplier
with a 40-bit accumulation result

Combining operations in both ALUs can result in four 16-bit results, two
32-bit results, or two 40-bit results generated in a single instruction.

Single 14-Bit Operations

In single 16-bit operations, any two 16-bit register halves may be used as
the input to the ALU. An addition, subtraction, or logical operation pro-
duces a 16-bit result that is deposited into an arbitrary destination register
half. ALUO is used for this operation, because it is the primary resource for
ALU operations.

For example:

R3.H = R1.H + R2.L (NS)

adds the 16-bit contents of R1.H (R1 high half) to the contents of R2.L (R2
low half) and deposits the result in R3.H (R3 high half) with no saturation.
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Dual 16-Bit Operations

In dual 16-bit operations, any two 32-bit registers may be used as the
input to the ALU, considered as pairs of 16-bit operands. An addition,
subtraction, or logical operation produces two 16-bit results that are
deposited into an arbitrary 32-bit destination register. ALUO is used for
this operation, because it is the primary resource for ALU operations.

For example:

R3 = Rl +|- R2 (S) ;

adds the 16-bit contents of R2.H (R2 high half) to the contents of R1.H (R1
high half) and deposits the result in R3.H (R3 high half) with saturation.

The instruction also subtracts the 16-bit contents of R2.L (R2 low half)
from the contents of R1.L (R1 low half) and deposits the result in R3.L (R3
low half) with saturation (see Figure 2-10).

Quad 16-Bit Operations

In quad 16-bit operations, any two 32-bit registers may be used as the
inputs to ALUO and ALU1, considered as pairs of 16-bit operands. A
small number of addition or subtraction operations produces four 16-bit
results that are deposited into two arbitrary, 32-bit destination registers.
Both ALUO and ALUT are used for this operation. Because there are only
two 32-bit data paths from the Data Register File to the arithmetic units,
the same two pairs of 16-bit inputs are presented to ALU1 as to ALUO.
The instruction construct is identical to that of a dual 16-bit operation,
and input operands must be the same for both ALUs.

For example:

R3 = RO +|+ R1, R2 = RO -|- Rl (S) ;

performs four operations:
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* Adds the 16-bit contents of R1.H (R1 high half) to the 16-bit con-
tents of RO.H (RO high half) and deposits the result in R3.H with
saturation.

e AddsR1.L to RO.L and deposits the result in R3.L with saturation.

» Subtracts the 16-bit contents of R1.H (R1 high half) from the 16-bit
contents of the R0.H (RO high half) and deposits the result in R2.H
with saturation.

e Subtracts R1.L from RO.L and deposits the result in R2. L with
saturation.

Explicitly, the four equivalent instructions are:

R3.H = RO.H + RI.H (S)
R3.L = RO.L + RI.L (S)
R2.H = RO.H - RI.H (S) ;
R2.L = RO.L - RI.L (S)

Single 32-Bit Operations

In single 32-bit operations, any two 32-bit registers may be used as the
input to the ALU, considered as 32-bit operands. An addition, subtrac-
tion, or logical operation produces a 32-bit result that is deposited into an
arbitrary 32-bit destination register. ALUO is used for this operation,
because it is the primary resource for ALU operations.

In addition to the 32-bit input operands coming from the Data Register
File, operands may be sourced and deposited into the Pointer Register
File, consisting of the eight registers P[5:01, SP, FP.

Instructions may not intermingle Pointer registers with Data
registers.
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For example:

R3 = R1 + R2 (NS) ;

adds the 32-bit contents of R2 to the 32-bit contents of R1 and deposits the
result in R3 with no saturation.

R3 = R1 + R2 (S) ;

adds the 32-bit contents of R1 to the 32-bit contents of R2 and deposits the
result in R3 with saturation.

Dual 32-Bit Operations

In dual 32-bit operations, any two 32-bit registers may be used as the
input to ALUO and ALUI, considered as a pair of 32-bit operands. An
addition or subtraction produces two 32-bit results that are deposited into
two 32-bit destination registers. Both ALUO and ALU1 are used for this
operation. Because only two 32-bit data paths go from the Data Register
File to the arithmetic units, the same two 32-bit input registers are pre-
sented to ALUO and ALUI.

For example:

R3 = Rl + R2, R4 = RI - RZ2 (NS) ;

adds the 32-bit contents of R2 to the 32-bit contents of R1 and deposits the
result in R3 with no saturation.

The instruction also subtracts the 32-bit contents of R2 from that of R1
and deposits the result in R4 with no saturation.

A specialized form of this instruction uses the ALU 40-bit result registers
as input operands, creating the sum and differences of the A0 and Al
registers.
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For example:

R3 = A0 + A1, R4 = A0 - A1l (S) ;

transfers to the result registers two 32-bit, saturated, sum and difference
values of the ALU registers.

ALU Instruction Summary

Table 2-9 lists the ALU instructions. For more information about assem-
bly language syntax and the effect of ALU instructions on the status flags,
see Blackfin Processor Programming Reference.

In Table 2-9, note the meaning of these symbols:

Dreg denotes any Data Register File register.
Preg denotes any Pointer register, FP, or SP register.

Dreg lo_hi denotes any 16-bit register half in any Data Register
File register.

Dreg_lo denotes the lower 16 bits of any Data Register File
register.

imm?7 denotes a signed, 7-bit wide, immediate value.
An denotes either ALU Result register A0 or Al.
DIVS denotes a Divide Sign primitive.

DIVQ denotes a Divide Quotient primitive.

MAX denotes the maximum, or most positive, value of the source
registers.

MIN denotes the minimum value of the source registers.
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* ABS denotes the absolute value of the upper and lower halves of a
single 32-bit register.

e RND denotes rounding a half word.

e RNDI2 denotes saturating the result of an addition or subtraction
and rounding the result on bit 12.

e RND20 denotes saturating the result of an addition or subtraction
and rounding the result on bit 20.

e SIGNBITS denotes the number of sign bits in a number, minus
one.

e EXPADJ denotes the lesser of the number of sign bits in a number
minus one, and a threshold value.

* * Indicates the flag may be set or cleared, depending on the results
of the instruction.

e **Indicates the flag is cleared.
¢ — Indicates no effect.

e dindicates AQ contains the dividend MSB Exclusive-OR divisor
MSB.

Table 2-9. ALU Instruction Summary

Instruction ASTAT Status Flags
AZ |AN |ACO AVO0 [AV1 |V AQ
AC0_COPY |AVOS |AVIS |V_COPY
AC1 \'S)

Preg = Preg + Preg ; - - - _ — — _

Preg += Preg ; - - - - - - _
Preg —= Preg ; - - - - - - —
Dreg = Dreg + Dreg ; * * * - - * _
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Table 2-9. ALU Instruction Summary (Contd)

Instruction ASTAT Status Flags
AZ |AN |ACO AV0 |AV1 |V AQ

AC0_COPY |AVO0S [AV1S |V_COPY

AC1 VS
Dreg = Dreg — Dreg (S) ; * * * - - * _
Dreg = Dreg + Dreg, * * * - - * _
Dreg = Dreg — Dreg ;
Dreg_lo_hi = Dreg_lo_hi + * * * - - * -
Dreg_lo_hi ;
Dreg_lo_hi = Dreg_lo_hi — * * * - - * -
Dreg_lo_hi (S) ;
Dreg = Dreg +|+ Dreg ; * * * - - * _
Dreg = Dreg +|- Dreg ; * * * — — * —
Dreg = Dreg —|+ Dreg ; * * * — - * _
Dreg = Dreg —|- Dreg ; * * * — — * _
Dreg = Dreg +|+Dreg, * * — — — * _
Dreg = Dreg —|- Dreg ;
Dreg = Dreg +|- Dreg, * * - - - * _
Dreg = Dreg —|+ Dreg ;
Dreg = An + An, * * * _ _ * _
Dreg = An—An;
Dreg += imm7 ; * * * — — * _
Preg += imm7 ; - - - - — — _
Dreg = (A0 += Al ) ; * * * * - * _
Dreg_lo_hi = (A0 += Al) ; * * * * - * -
A0 += Al ; * * * * - — —
A0 —= Al ; * * * * _ _ _
DIVS ( Dreg, Dreg ) ; * * * * — — d
DIVQ ( Dreg, Dreg ) ; * * * * - — d
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Table 2-9. ALU Instruction Summary (Contd)

V)

Instruction ASTAT Status Flags
AZ |AN |ACO AV0 |AV1 \' AQ
AC0_COPY |AVOS |AVIS |V_COPY
AC1 A
Dreg = MAX ( Dreg, Dreg ) | * * - - - ok -
V)
Dreg = MIN ( Dreg, Dreg ) * * — — — *x[_ —

Dreg = ABS Dreg (V) ;

*k

An=ABS An;

*k

An = ABS An,
An=ABS An ;

*k

An=-An;

An=—-An, An=—An;

An=An(S);

An=An(S), An=An(S);

Dreg_lo_hi = Dreg (RND) ;

Dreg_lo_hi = Dreg + Dreg
(RND12) ;

Dreg_lo_hi = Dreg — Dreg
(RND12) ;

Dreg_lo_hi = Dreg + Dreg
(RND20) ;

Dreg_lo_hi = Dreg — Dreg
(RND20) ;

Dreg_lo = SIGNBITS Dreg ;

Dreg_lo = SIGNBITS
Dreg_lo_hi ;

Dreg_lo = SIGNBITS An ;

Dreg_lo = EXPAD] ( Dreg,
Dreg_lo) (V) ;
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Table 2-9. ALU Instruction Summary (Contd)

Instruction ASTAT Status Flags
AZ |AN |ACO AVO |AV1 |V AQ
AC0_COPY |AVOS |AVIS |V_COPY
AC1 VS

Dreg_lo = EXPAD] - - — _ _
(Dreg_lo_hi, Dreg_lo);

Dreg = Dreg & Dreg ; * * *x — — fy —
Dreg = -~ Dreg ; * * ok - - k[ _
Dreg = Dreg | Dreg ; * * ok - - ok -
Dreg = Dreg A Dreg ; * * *x — — - —
Dreg =— Dreg ; * * * — - * _
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ALU Data Flow Details

Figure 2-9 shows a more detailed diagram of the Arithmetic Units and the
Data Register File, which appears in Figure 2-1 on page 2-2.

TO MEMORY
A ALUs
¥
{32b 32b T }32b
vY \A 4
OPERAND OPERAND
m RO.H RO.L \ SELECTION SELECTION
R1| R1H R1.L
MAC1 MACO
R2 | R2H R2.L
R3 | R3H R3.L
R4 | RaH R4.L ol A0
R5 | R5.H R5.L SHIFTER

R6 | R6.H R6.L

w R7.H R7.L /

3 \32b v

32b

FROM MEMORY
Figure 2-9. Register Files and ALUs

ALUO is described here for convenience. ALU1 is very similar—a subset of

ALUO.

Each ALU performs 40-bit addition for the accumulation of the multiplier
results, as well as 32-bit and dual 16-bit operations. Each ALU has two
32-bit input ports that can be considered a pair of 16-bit operands or a
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Possible 16-bit operands may be used with any of the other 16-bit oper-

ands presented at the input to the ALU.

As shown in Figure 2-10, for dual 16-bit operations, the high halves and
low halves are paired, providing four possible combinations of addition

and subtraction.

(A) H+H, L +L
(C) H-H, L+L

A 5
[ ™
:
|| Lo |Rp
I%%Rn
C 4

Rm

:

Rp

@:

Rn

, L - L
, L - L

[+ 1] m

Rn

[T o

Figure 2-10. Dual 16-Bit ALU Operations

Rn
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Dual 16-Bit Cross Options

For dual 16-bit operations, the results may be crossed. “Crossing the
results” changes the location in the result register for the result of a calcu-
lation. Usually, the result from the high side calculation is placed in the
high half of the result register, and the result from the low side calculation
is placed in the low half of the result register. With the cross option, the
high result is placed in the low half of the destination register, and the low
result is placed in the high half of the destination register (see

Figure 2-11). This is particularly useful when dealing with complex math
and portions of the Fast Fourier Transform (FFT). The cross option
applies to ALUO only.

31

R
| P

Figure 2-11. Cross Options for Dual 16-Bit ALU Operations

ALU Status Signals

Each ALU generates six status signals: the zero (AZ) status, the negative
(AN) status, the carry (ACn) status, the sticky overflow (AVnS) status, the
immediate overflow (AVn) status, and the quotient (AQ) status. All arithme-
tic status signals are latched into the arithmetic status register (ASTAT) at
the end of the cycle. For the effect of ALU instructions on the status flags,
see Table 2-9 on page 2-30.

2-36 ADSP-BF533 Blackfin Processor Hardware Reference



Computational Units

Depending on the instruction, the inputs can come from the Data Regis-
ter File, the Pointer Register File, or the Arithmetic Result registers.
Arithmetic on 32-bit operands directly support multiprecision operations

in the ALU.

ALU Division Support Features

The ALU supports division with two special divide primitives. These
instructions (DIVS, DIVQ) let programs implement a non-restoring, condi-
tional (error checking), addition/subtraction/division algorithm.

The division can be either signed or unsigned, but both the dividend and
divisor must be of the same type. Details about using division and pro-
gramming examples are available in the Blackfin Processor Programming

Reference.

Special SIMD Video ALU Operations

Four 8-bit Video ALUs enable the processor to process video information
with high efficiency. Each Video ALU instruction may take from one to
four pairs of 8-bit inputs and return one to four 8-bit results. The inputs
are presented to the Video ALUs in two 32-bit words from the Data Reg-
ister File. The possible operations include:

* Quad 8-Bit Add or Subtract

* Quad 8-Bit Average

* Quad 8-Bit Pack or Unpack

* Quad 8-Bit Subtract-Absolute-Accumulate
e Byte Align

For more information about the operation of these instructions, see Black-
fin Processor Programming Reference.
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Multiply Accumulators (Multipliers)

The two multipliers (MACO and MAC1) perform fixed-point multiplica-
tion and multiply and accumulate operations. Multiply and accumulate
operations are available with either cumulative addition or cumulative
subtraction.

Multiplier fixed-point instructions operate on 16-bit fixed-point data and
produce 32-bit results that may be added or subtracted from a 40-bit
accumulator.

Inputs are treated as fractional or integer, unsigned or two’s-complement.
Multiplier instructions include:

e  Multiplication
e Multiply and accumulate with addition, rounding optional
*  Multiply and accumulate with subtraction, rounding optional

e Dual versions of the above

Multiplier Operation

Each multiplier has two 32-bit inputs from which it derives the two 16-bit
operands. For single multiply and accumulate instructions, these operands
can be any Data registers in the Data Register File. Each multiplier can
accumulate results in its Accumulator register, Al or A0. The accumulator
results can be saturated to 32 or 40 bits. The multiplier result can also be
written directly to a 16- or 32-bit destination register with optional
rounding.

Each multiplier instruction determines whether the inputs are either both
in integer format or both in fractional format. The format of the result
matches the format of the inputs. In MACO, both inputs are treated as
signed or unsigned. In MACI, there is a mixed-mode option.
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If both inputs are fractional and signed, the multiplier automatically shifts
the result left one bit to remove the redundant sign bit. Unsigned frac-
tional, integer, and mixed modes do not perform a shift for sign bit
correction. Multiplier instruction options specify the data format of the
inputs. See “Multiplier Instruction Options” on page 2-42 for more
information.

Placing Multiplier Results in Multiplier Accumulator Registers

As shown in Figure 2-9, each multiplier has a dedicated accumulator, A0
or Al. Each Accumulator register is divided into three sections—
AO.L/AL.L (bits 15:0), A0.H/AL.H (bits 31:16), and A0.X/A1l.X (bits
39:32).

When the multiplier writes to its result Accumulator registers, the 32-bit
result is deposited into the lower bits of the combined Accumulator regis-
ter, and the MSB is sign-extended into the upper eight bits of the register
(AO.X/AL.X).

Multiplier output can be deposited not only in the A0 or Al registers, but
also in a variety of 16- or 32-bit Data registers in the Data Register File.

Rounding or Saturating Multiplier Results

On a multiply and accumulate operation, the accumulator data can be sat-
urated and, optionally, rounded for extraction to a register or register half.
When a multiply deposits a result only in a register or register half, the sat-
uration and rounding works the same way. The rounding and saturation
operations work as follows.

* Rounding is applied only to fractional results except for the IH
option, which applies rounding and high half extraction to an inte-
ger result. For the IH option, the rounded result is obtained by
adding 0x8000 to the accumulator (for MAC) or multiply result
(for mult) and then saturating to 32-bits. For more information,
see “Rounding Multiplier Results” on page 2-18.
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If an overflow or underflow has occurred, the saturate operation
sets the specified Result register to the maximum positive or nega-
tive value. For more information, see the following section.

Saturating Multiplier Results on Overflow

The following bits in ASTAT indicate multiplier overflow status:

Bit 16 (Av0) and bit 18 (AV1) record overflow condition (whether
the result has overflowed 32 bits) for the A0 and A1l accumulators,
respectively. If the bit is cleared (=0), no overflow or underflow has
occurred. If the bit is set (=1), an overflow or underflow has
occurred. The AV0S and AV1S bits are sticky bits.

Bit 24 (V) and bit 25 (VS) are set if overflow occurs in extracting the
accumulator result to a register.

Multiplier Instruction Summary

Table 2-10 lists the multiplier instructions. For more information about
assembly language syntax and the effect of multiplier instructions on the
status flags, see Blackfin Processor Programming Reference.

In Table 2-10, note the meaning of these symbols:

Dreg denotes any Data Register File register.

Dreg_lo_hi denotes any 16-bit register half in any Data Register
File register.

Dreg_lo denotes the lower 16 bits of any Data Register File
register.

Dreg_hi denotes the upper 16 bits of any Data Register File

register.

An denotes either MAC Accumulator register A0 or Al.
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* *Indicates the flag may be set or cleared, depending on the results
of the instruction.

e _— Indicates no effect.

Multiplier instruction options are described in “Multiplier Instruction
Options” on page 2-42.

Table 2-10. Multiplier Instruction Summary

Instruction ASTAT Status Flags
AV0 AV1 \%
AVO0S AV1S V_COPY
VS
Dreg_lo = Dreg_lo_hi * Dreg_lo_hi ; - - *
Dreg_hi = Dreg_lo_hi * Dreg_lo_hi ; - - *
Dreg = Dreg_lo_hi * Dreg_lo_hi ; - - *
An = Dreg_lo_hi * Dreg_lo_hi; * * -
An += Dreg_lo_hi * Dreg_lo_hi ; * * -
An —= Dreg_lo_hi * Dreg_lo_hi ; * * -
Dreg_lo = (A0 = Dreg_lo_hi * Dreg_lo_hi) ; * * *
Dreg_lo = ( A0 += Dreg_lo_hi * Dreg_lo_hi ); |* * *
Dreg lo = (A0 —= Dreg_lo_hi * Dreg_lo_hi); |* * *
Dreg_hi = (Al = Dreg_lo_hi * Dreg lo_hi ) ; * * *
Dreg_hi = (Al += Dreg lo_hi * Dreg lo_hi); |* * *
Dreg_hi = (Al —= Dreg_lo_hi * Dreg_lo_hi) ; * * *
Dreg = (An = Dreg_lo_hi * Dreg_lo_hi ) ; * * *
Dreg = ( An += Dreg_lo_hi * Dreg_lo_hi ) ; * * *
Dreg = ( An —= Dreg_lo_hi * Dreg lo_hi ) ; * * *
Dreg *= Dreg ; - - -
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Multiplier Instruction Options

The following descriptions of multiplier instruction options provide an
overview. Not all options are available for all instructions. For informa-
tion about how to use these options with their respective instructions, see
Blackfin Processor Programming Reference.

default

(IS)

(FU)

(Iy)

(T

(TFU)

(ISS2)

No option; input data is signed fraction.

Input data operands are signed integer. No shift
correction is made.

Input data operands are unsigned fraction. No shift
correction is made.

Input data operands are unsigned integer. No shift
correction is made.

Input data operands are signed fraction. When
copying to the destination half register, truncates
the lower 16 bits of the Accumulator contents.

Input data operands are unsigned fraction. When
copying to the destination half register, truncates
the lower 16 bits of the Accumulator contents.

If multiplying and accumulating to a register:

Input data operands are signed integer. When copy-
ing to the destination register, Accumulator
contents are scaled (multiplied x2 by a one-place
shift-left). If scaling produces a signed value larger
than 32 bits, the number is saturated to its maxi-
mum positive or negative value.

If multiplying and accumulating to a half register:
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When copying the lower 16 bits to the destination
half register, the Accumulator contents are scaled. If
scaling produces a signed value greater than 16 bits,
the number is saturated to its maximum positive or
negative value.

(IH) This option indicates integer multiplication with
high half word extraction. The Accumulator is satu-
rated at 32 bits, and bits [31:16] of the
Accumulator are rounded, and then copied into the
destination half register.

(W32) Input data operands are signed fraction with no
extension bits in the Accumulators at 32 bits.
Left-shift correction of the product is performed, as
required. This option is used for legacy GSM
speech vocoder algorithms written for 32-bit Accu-
mulators. For this option only, this special case
applies: 0x8000 x 0x8000 = Ox7FFF.

(M) Operation uses mixed-multiply mode. Valid only
for MACI versions of the instruction. Multiplies a
signed fraction by an unsigned fractional operand
with no left-shift correction. Operand one is signed;
operand two is unsigned. MACO performs an
unmixed multiply on signed fractions by default, or
another format as specified. That is, MACO exe-
cutes the specified signed/signed or
unsigned/unsigned multiplication. The (M) option
can be used alone or in conjunction with one other
format option.
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Multiplier Data Flow Details

Figure 2-12 shows the Register files and ALUs, along with the
multiplier/accumulators.

Each multiplier has two 16-bit inputs, performs a 16-bit multiplication,
and stores the result in a 40-bit accumulator or extracts to a 16-bit or
32-bit register. Two 32-bit words are available at the MAC inputs, provid-
ing four 16-bit operands to chose from.

One of the operands must be selected from the low half or the high half of
one 32-bit word. The other operand must be selected from the low half or
the high half of the other 32-bit word. Thus, each MAC is presented with
four possible input operand combinations. The two 32-bit words can
pcontain the same register information, giving the options for squaring
and multiplying the high half and low half of the same register.

Figure 2-13 show these possible combinations.

The 32-bit product is passed to a 40-bit adder/subtracter, which may add
or subtract the new product from the contents of the Accumulator Result
register or pass the new product directly to the Data Register File Results
register. For results, the A0 and A1 registers are 40 bits wide. Each of these
registers consists of smaller 32- and 8-bit registers—A0.W, A1.W, A0.X, and
Al.X.
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FROM MEMORY

Figure 2-12. Register Files and ALUs

Some example instructions:

A0 = R3.L * R4.H ;

In this instruction, the MACO multiplier/accumulator performs a multiply
and puts the result in the Accumulator register.

Al += R3.H * R4.H ;

In this instruction, the MAC1 multiplier/accumulator performs a multiply
and accumulates the result with the previous results in the Al
Accumulator.
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31 31

1 1
| Rm Rm
| 1 |

1 | Rp Rp
''y§y MACO ' MACO
- P

| a0 | o

Figure 2-13. Four Possible Combinations of MAC Operations

Multiply Without Accumulate

The multiplier may operate without the accumulation function. If accu-
mulation is not used, the result can be directly stored in a register from the
Data Register File or the Accumulator register. The destination register
may be 16 bits or 32 bits. If a 16-bit destination register is a low half, then
MACO is used; if it is a high half, then MACI1 is used. For a 32-bit desti-
nation register, either MACO or MACI1 is used.

If the destination register is 16 bits, then the word that is extracted from
the multiplier depends on the data type of the input.

 If the multiplication uses fractional operands or the IH option, then
the high half of the result is extracted and stored in the 16-bit des-
tination registers (see Figure 2-14).
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 If the multiplication uses integer operands, then the low half of the
result is extracted and stored in the 16-bit destination registers.
These extractions provide the most useful information in the resul-
tant 16-bit word for the data type chosen (see Figure 2-15).

A0.X AO.H AO.L
AO 0000 0000 | XXXX XXXX XXXX XXXX ‘ XXXX XXXX XXXX XXXX |

—

DESHINAION | XXX XXXX XXXX XXXX | XHXXHK XXXX XXX XXXX |
gister
A1.X A1H AlL

A1 0000 0000 | XXXX XXXX XXXX XXXX ‘ XXXX XXXX XXXX XXXX |

!

XK XXXX XXX XXXX | XXX XXXX XXXX XXXX |

Destination
Register

Figure 2-14. Multiplication of Fractional Operands
For example, this instruction uses fractional, unsigned operands:

RO.L = R1.L * RZ.L (FU)

The instruction deposits the upper 16 bits of the multiply answer with
rounding and saturation into the lower half of R0, using MACO. This
instruction uses unsigned integer operands:

RO.H = R2.H * R3.H (IU)
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The instruction deposits the lower 16 bits of the multiply answer with any

required saturation into the high half of R0, using MACI.

RO = Rl1.L * R2.L ;
Regardless of operand type, the preceding operation deposits 32 bits of the

multiplier answer with saturation into R0, using MACO.

AO.X AO.H AO.L
AO| 00000000 | XXXX XXXX XXXX XXXX | XXXX XXXX XXXX XXXX_|

l

| XXXX XXXX XXXX XXXX | XXXX XXXX XXXX XXXX |

Destination
Register

A1.X A1H A1L
A1 0000 0000 | XXXXXXXX XXXX XXXX ‘ XXXX XXXX XXXX XXXX |

K\J

| XXX XXXX XXXX XXXX | XXXX XXXX XXXX XXXX |

Destination
Register

Figure 2-15. Multiplication of Integer Operands

Special 32-Bit Integer MAC Instruction

The processor supports a multicycle 32-bit MAC instruction:

Dreg *= Dreg

The single instruction multiplies two 32-bit integer operands and provides
a 32-bit integer result, destroying one of the input operands.
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The instruction takes multiple cycles to execute. Refer to the product data
sheet and the Blackfin Processor Programming Reference for more informa-
tion about the exact operation of this instruction. This macro function is
interruptable and does not modify the data in either Accumulator register
AO or Al.

Dual MAC Operations

The processor has two 16-bit MACs. Both MACs can be used in the same
operation to double the MAC throughput. The same two 32-bit input
registers are offered to each MAC unit, providing each with four possible
combinations of 16-bit input operands. Dual MAC operations are fre-
quently referred to as vector operations, because a program could store
vectors of samples in the four input operands and perform vector
computations.

An example of a dual multiply and accumulate instruction is

Al 4= R1.H * R2.L, A0 += R1.L * RZ.H ;
This instruction represents two multiply and accumulate operations.

* In one operation (MAC1) the high half of R1 is multiplied by the
low half of R?2 and added to the contents of the A1 Accumulator.

* In the second operation (MACO) the low half of R1 is multiplied by
the high half of R2 and added to the contents of A0.

The results of the MAC operations may be written to registers in a num-
ber of ways: as a pair of 16-bit halves, as a pair of 32-bit registers, or as an
independent 16-bit half register or 32-bit register.

For example:

R3.H = (Al += RI.H * R2.L), R3.L = (A0 += R1.L * R2.L) ;
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In this instruction, the 40-bit Accumulator is packed into a 16-bit half
register. The result from MAC1 must be transferred to a high half of a
destination register and the result from MACO must be transferred to the
low half of the same destination register.

The operand type determines the correct bits to extract from the Accumu-
lator and deposit in the 16-bit destination register. See “Multiply Without
Accumulate” on page 2-46.

R3 = (Al += R1.H * R2.L), R2 = (A0 += R1.L * RZ2.L) ;

In this instruction, the 40-bit Accumulators are packed into two 32-bit
registers. The registers must be register pairs (R[1:01, R[3:21, R[5:417,
R[7:61]).

R3.H = (Al += R1.H * R2.L), A0 += R1.L * R2.L ;

This instruction is an example of one Accumulator—but not the other—
being transferred to a register. Either a 16- or 32-bit register may be speci-
fied as the destination register.

Barrel Shifter (Shifter)

The shifter provides bitwise shifting functions for 16-, 32-, or 40-bit
inputs, yielding a 16-, 32-, or 40-bit output. These functions include
arithmetic shift, logical shift, rotate, and various bit test, set, pack,
unpack, and exponent detection functions. These shift functions can be
combined to implement numerical format control, including full float-
ing-point representation.
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Shifter Operations

The shifter instructions (>>>, >>, <<, ASHIFT, LSHIFT, ROT) can be used var-
ious ways, depending on the underlying arithmetic requirements. The
ASHIFT and >>> instructions represent the arithmetic shift. The LSHIFT,
<<, and >> instructions represent the logical shift.

The arithmetic shift and logical shift operations can be further broken
into subsections. Instructions that are intended to operate on 16-bit single
or paired numeric values (as would occur in many DSP algorithms) can
use the instructions ASHIFT and LSHIFT. These are typically three-operand
instructions.

Instructions that are intended to operate on a 32-bit register value and use
two operands, such as instructions frequently used by a compiler, can use
the >>> and >> instructions.

Arithmetic shift, logical shift, and rotate instructions can obtain the shift
argument from a register or directly from an immediate value in the
instruction. For details about shifter related instructions, see “Shifter
Instruction Summary” on page 2-55.

Two-Operand Shifts

Two-operand shift instructions shift an input register and deposit the
result in the same register.

Immediate Shifts

An immediate shift instruction shifts the input bit pattern to the right
(downshift) or left (upshift) by a given number of bits. Immediate shift
instructions use the data value in the instruction itself to control the
amount and direction of the shifting operation.
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The following example shows the input value downshifted.

RO contains 0000 B6A3
RO >>= 0x04

results in

RO contains 0000 OBG6A ;
The following example shows the input value upshifted.

RO contains 0000 B6A3
RO <<= 0x04

’

results in

RO contains 000B 6A30

Register Shifts

Register-based shifts use a register to hold the shift value. The entire
32-bit register is used to derive the shift value, and when the magnitude of
the shift is greater than or equal to 32, then the result is either 0 or —1.

The following example shows the input value upshifted.

RO contains 0000 B6A3
R2 contains 0000 0004
RO <K= R2

’

results in
RO contains 000B 6A30

Three-Operand Shifts

Three-operand shifter instructions shift an input register and deposit the
result in a destination register.

2-52 ADSP-BF533 Blackfin Processor Hardware Reference



Computational Units

Immediate Shifts

Immediate shift instructions use the data value in the instruction itself to
control the amount and direction of the shifting operation.

The following example shows the input value downshifted.

RO contains 0000 B6A3
R1 = RO >> 0x04

results in

R1 contains 0000 0B6A ;
The following example shows the input value upshifted.

RO.L contains B6A3 ;
R1.H = RO.L << 0x04 ;

results in

R1.H contains 6A30

Register Shifts

Register-based shifts use a register to hold the shift value. When a register
is used to hold the shift value (for ASHIFT, LSHIFT or ROT), then the shift
value is always found in the low half of a register (Rn.L). The bottom six
bits of Rn. L are masked off and used as the shift value.

The following example shows the input value upshifted.

RO contains 0000 B6A3
R2.L contains 0004 ;
R1 = RO ASHIFT by R2.L ;

results in

R1 contains 000B 6A30
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The following example shows the input value rotated. Assume the Condi-
tion Code (CC) bit is set to 0. For more information about CC, see
“Condition Code Flag” on page 4-12.

RO contains ABCD EF12 ;
R2.L contains 0004 ;
R1 = RO ROT by R2.L ;

results in

R1 contains BCDE F125 ;

Note the cC bit is included in the result, at bit 3.

Bit Test, Set, Clear, Toggle

The shifter provides the method to test, set, clear, and toggle specific bits
of a data register. All instructions have two arguments—the source register
and the bit field value. The test instruction does not change the source
register. The result of the test instruction resides in the CC bit.

The following examples show a variety of operations.

BITCLR ( RO, 6 ) ;
BITSET ( RZ2, 9 ) ;
BITTGL ( R3, 2 )

CC = BITTST ( R3, 0 ) ;

Field Extract and Field Deposit

If the shifter is used, a source field may be deposited anywhere in a 32-bit
destination field. The source field may be from 1 bit to 16 bits in length.

In addition, a 1- to 16-bit field may be extracted from anywhere within a
32-bit source field.
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Two register arguments are used for these functions. One holds the 32-bit
destination or 32-bit source. The other holds the extract/deposit value, its
length, and its position within the source.

Shifter Instruction Summary

Table 2-11 lists the shifter instructions. For more information about
assembly language syntax and the effect of shifter instructions on the sta-
tus flags, see Blackfin Processor Programming Reference.

In Table 2-11, note the meaning of these symbols:

Dreg denotes any Data Register File register.

Dreg lo denotes the lower 16 bits of any Data Register File
register.

Dreg_hi denotes the upper 16 bits of any Data Register File

register.

* Indicates the flag may be set or cleared, depending on the results
of the instruction.

* 0 Indicates versions of the instruction that send results to Accu-
mulator A0 set or clear AVO.

* 1 Indicates versions of the instruction that send results to Accu-
mulator Al set or clear AV1.

** Indicates the flag is cleared.
*** Indicates CC contains the latest value shifted into it.

— Indicates no effect.
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Table 2-11. Shifter Instruction Summary

Instruction ASTAT Status Flag

AZ |AN |ACO AV0 |AV1 CC |V

AC0_COPY |AVOS |AV1S V_COPY
AC1 VS

BITCLR ( Dreg, uimm5 ) ; * * o - — _ e
BITSET ( Dreg, uimm5 ) ; A o - - — e
BITTGL ( Dreg, uimm5 ) ; * * o - — _ ok
CC = - |- |- - - * -
BITTST ( Dreg, uimm5 ) ;
CC-= - |- |- - - * -
IBITTST ( Dreg, uimm5 ) ;
Dreg = * * . _ _ _ e
DEPOSIT ( Dreg, Dreg ) ;
Dreg = * * . _ _ A
EXTRACT ( Dreg, Dreg ) ;
BITMUX ( Dreg, Dreg, A0 ) ; - - - — - _ _
Dreg_lo = ONES Dreg ; - |- |- - - - |-
Dreg = PACK (Dreg_lo_hi, - |- |- - — - |-
Dreg_lo_hi);
Dreg >>>= uimm5 ; * * - - — - ok |
Dreg >>= uimm5 ; * * - - _ - ok |
Dreg <<= uimms5 ; I _ - N S
Dreg = Dreg >>> uimm5 ; * * - - - - ok
Dreg = Dreg >> uimmS5 ; * * - - - - |-
Dreg = Dreg << uimmS5 ; * * - - - - |
Dreg = Dreg >>> uimm4 (V) ; * * - - - _ *ok |
Dreg = Dreg >> uimm4 (V) ;  |* |* |- _ _ — [
Dreg = Dreg << uimm4 (V); | * |* |- _ _ e
An = An >>> uimmb5 ; * * - a7 Rl VAR -
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Table 2-11. Shifter Instruction Summary (Cont'd)

Instruction

ASTAT Status Flag

AZ

AN

ACO
AC0_COPY
AC1

AV0
AVO0S

AVl
AV1S

CC

An = An >> uimm5 ;

%X O/_

%X 1/_

An = An << uimm5 ;

*0

*1

Dreg_lo_hi = Dreg_lo_hi >>>
uimm4 ;

Dreg_lo_hi = Dreg_lo_hi >>
uimm4 ;

Dreg_lo_hi = Dreg_lo_hi <<

uimm4 ;

Dreg >>>= Dreg ;

**/_

Dreg >>= Dreg ;

*ok [

Dreg <<= Dreg ;

*ok [

Dreg = ASHIFT Dreg BY
Dreg_lo ;

Dreg = LSHIFT Dreg BY
Dreg_lo;

**/_

Dreg = ROT Dreg BY imm6 ;

Dreg = ASHIFT Dreg BY
Dreg_lo (V) ;

Dreg = LSHIFT Dreg BY
Dreg_lo (V) ;

**/_

Dreg_lo_hi = ASHIFT
Dreg_lo_hi BY Dreg_lo ;

Dreg_lo_hi = LSHIFT
Dreg_lo_hi BY Dreg_lo ;

ok |

An = An ASHIFT BY Dreg _lo ;

*0

*1

An = An ROT BY imm6 ;

Preg = Preg >> 1;
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Table 2-11. Shifter Instruction Summary (Contd)

Instruction

ASTAT Status Flag

AZ

AN

ACO
AC0_COPY
AC1

AV0
AVO0S

AVl
AV1S

CC

Preg = Preg >> 2 ;

Preg = Preg << 1;

Preg = Preg << 2 ;

Dreg = ( Dreg + Dreg ) << 1;

Dreg = ( Dreg + Dreg ) << 2 ;

Preg = ( Preg + Preg ) << 1 ;

Preg = ( Preg + Preg) << 2

Preg = Preg + ( Preg << 1) ;

Preg = Preg + (Preg << 2);
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3 OPERATING MODES AND
STATES

The processor supports the following processor modes:
e User mode
* Supervisor mode
* Emulation mode

Emulation and Supervisor modes have unrestricted access to the core
resources. User mode has restricted access to certain system resources, thus
providing a protected software environment.

User mode is considered the domain of application programs. Supervisor
mode and Emulation mode are usually reserved for the kernel code of an
operating system.

The processor mode is determined by the Event Controller. When servic-
ing an interrupt, a nonmaskable interrupt (NMI), or an exception, the
processor is in Supervisor mode. When servicing an emulation event, the
processor is in Emulation mode. When not servicing any events, the pro-
cessor is in User mode.

The current processor mode may be identified by interrogating the IPEND
memory-mapped register (MMR), as shown in Table 3-1.

@ MMRs cannot be read while the processor is in User mode.
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Table 3-1. Identifying the Current Processor Mode

Event Mode IPEND

Interrupt Supervisor > 0x10
but IPEND[O], IPEND[11], IPEND[2], and
IPEND[3] = 0.

Exception Supervisor > 0x08

The core is processing an exception event if
IPEND[LO] = 0, IPEND[1] = 0, IPEND[2] = O,
IPEND[3] = 1,and IPEND[15:4] are O’s or 1.

NMI Supervisor > 0x04

The core is processing an NMI event if IPEND[0]
= 0, IPEND[1] = 0, IPEND[2] = 1, and
IPEND[15:2] are O’s or 1’s.

Reset Supervisor = 0x02

As the reset state is exited, IPEND is set to 0x02, and
the reset vector runs in Supervisor mode.

Emulation Emulator = 0x01

The processor is in Emulation mode if
IPEND[O] = 1, regardless of the state of the
remaining bits IPEND[15:1].

None User = 0x00

In addition, the processor supports the following two non-processing
states:

e Idle state
e Reset state

Figure 3-1 illustrates the processor modes and states as well as the transi-
tion conditions between them.
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IDLE instruction
o( USER
4 Application

—A Level Code

Interrupt
or
Exception

System Code,

RTI, Event Handlers
RTX, RTN

|
|
| IDLE
|
|

instruction (" SUPERVISOR Emulation | |RTE
Event
Emulation
Event

Interrupt

| RST Inactive

RST
Active

)

Y

; EMULATION
I Emulation Event (1)

(1) Normal exit from Reset is to Supervisor mode. However, emulation hardware may
have initiated a reset. If so, exit from Reset is to Emulation.

Figure 3-1. Processor Modes and States

User Mode

The processor is in User mode when it is not in Reset or Idle state, and
when it is not servicing an interrupt, NMI, exception, or emulation event.
User mode is used to process application level code that does not require
explicit access to system registers. Any attempt to access restricted system
registers causes an exception event. Table 3-2 lists the registers that may
be accessed in User mode.
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Table 3-2. Registers Accessible in User Mode

Processor Registers

Register Names

Data Registers

R[7:01, A[1:01]

Pointer Registers

P[5:0], SP, FP, I[3:0], M[3:0], L[3:0], B[3:0]

Sequencer and Status Registers RETS, LC[1:0], LT[1:01, LB[1:0], ASTAT, CYCLES,

CYCLES2

Protected Resources and Instructions

System resources consist of a subset of processor registers, all MMRs, and
a subset of protected instructions. These system and core MMRs are
located starting at address 0xFFCO 0000. This region of memory is pro-
tected from User mode access. Any attempt to access MMR space in User
mode causes an exception.

A list of protected instructions appears in Table 3-3. Any attempt to issue
any of the protected instructions from User mode causes an exception

event.

Table 3-3. Protected Instructions

Instruction Description

RTI Return from Interrupt

RTX Return from Exception

RTN Return from NMI

CLI Disable Interrupts

STI Enable Interrupts

RAISE Force Interrupt/Reset

RTE Return from Emulation

Causes an exception only if executed outside Emulation mode
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Protected Memory

Additional memory locations can be protected from User mode access. A
Cacheability Protection Lookaside Buffer (CPLB) entry can be created
and enabled. See “Memory Management Unit” on page 6-47 for further
information.

Entering User Mode

When coming out of reset, the processor is in Supervisor mode because it
is servicing a reset event. To enter User mode from the Reset state, two
steps must be performed. First, a return address must be loaded into the
RETI register. Second, an RTI must be issued. The following example code
shows how to enter User mode upon reset.

Example Code to Enter User Mode Upon Reset

Listing 3-1 provides code for entering User mode from reset.

Listing 3-1. Entering User Mode from Reset

P1.L = START ; /* Point to start of user code */
P1.H = START ;

RETI = P1 ;

RTI /* Return from Reset Event */

START /* Place user code here */
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Return Instructions That Invoke User Mode

Table 3-4 provides a summary of return instructions that can be used to
invoke User mode from various processor event service routines. When
these instructions are used in service routines, the value of the return
address must be first stored in the appropriate event RETx register. In the
case of an interrupt routine, if the service routine is interruptible, the
return address is stored on the stack. For this case, the address can be

found by popping the value from the stack into RETI. Once RETI has been
loaded, the RTI instruction can be issued.

Note the stack pop is optional. If the RETI register is not
pushed/popped, then the interrupt service routine becomes

non-interruptible, because the return address is not saved on the
stack.

The processor remains in User mode until one of these events occurs:
* An interrupt, NMI, or exception event invokes Supervisor mode.
¢ An emulation event invokes Emulation mode.

e A reset event invokes the Reset state.

Table 3-4. Return Instructions That Can Invoke User Mode

Current Process Activity Return Instruction to Use Execution Resumes at Address
in This Register

Interrupt Service Routine RTI RETI

Exception Service Routine RTX RETX

Nonmaskable Interrupt Service | RTN RETN

Routine

Emulation Service Routine RTE RETE

3-6
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Supervisor Mode

The processor services all interrupt, NMI, and exception events in Super-
visor mode.

Supervisor mode has full, unrestricted access to all processor system
resources, including all emulation resources, unless a CPLB has been
configured and enabled. See “Memory Management Unit” on page 6-47
for a further description. Only Supervisor mode can use the register alias
USP, which references the User Stack Pointer in memory. This register
alias is necessary because in Supervisor mode, SP refers to the kernel stack
pointer rather than to the user stack pointer.

Normal processing begins in Supervisor mode from the Reset state. Deas-
serting the RESET signal switches the processor from the Reset state to
Supervisor mode where it remains until an emulation event or Return
instruction occurs to change the mode. Before the Return instruction is
issued, the RETI register must be loaded with a valid return address.

Non-OS Environments

For non-OS environments, application code should remain in Supervisor
mode so that it can access all core and system resources. When RESET is
deasserted, the processor initiates operation by servicing the reset event.
Emulation is the only event that can pre-empt this activity. Therefore,
lower priority events cannot be processed.

One way of keeping the processor in Supervisor mode and still allowing
lower priority events to be processed is to set up and force the lowest pri-
ority interrupt (IVG15). Events and interrupts are described further in
“Events and Sequencing” on page 4-18. After the low priority interrupt
has been forced using the RAISE 15 instruction, RETI can be loaded with a
return address that points to user code that can execute until 1VG15 is
issued. After RETI has been loaded, the RTI instruction can be issued to
return from the reset event.
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The interrupt handler for 1VG15 can be set to jump to the application code
starting address. An additional RTI is not required. As a result, the proces-
sor remains in Supervisor mode because IPEND[15] remains set. At this
point, the processor is servicing the lowest priority interrupt. This ensures
that higher priority interrupts can be processed.

Example Code for Supervisor Mode Coming Out of Reset

To remain in Supervisor mode when coming out of the Reset state, use
code as shown in Listing 3-2.

Listing 3-2. Staying in Supervisor Mode Coming Out of Reset

PO.L = LOCEVT15) ; /* Point to IVG15 in Event Vector Table */
PO.H = HI(EVT15) ;

P1.L = START ; /* Point to start of User code */

P1.H = START ;

[PO] = P1 ; /* PTlace the address of start code in IVG15 of EVT
*/

PO.L = LO(CIMASK)

RO = [PO] ;

R1.L = EVT_IVG15 & OxFFFF

RO = RO | RL ;

[PO] = RO ; /* Set (enable) IVG15 bit in Interrupt Mask Register
*/

RAISE 15 ; /* Invoke IVG15 interrupt */

PO.L = WAIT_HERE

PO.H = WAIT_HERE ;

RETI = PO ; /* RETI loaded with return address */

3-8
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RTI ; /* Return from Reset Event */
WAIT_HERE : /* Wait here till IVGL5 interrupt is serviced */

JUMP WAIT_HERE

START: /* IVG15 vectors here */
[--SP] = RETI ; /* Enables interrupts and saves return address
to stack */

Emulation Mode

The processor enters Emulation mode if Emulation mode is enabled and
either of these conditions is met:

e An external emulation event occurs.
e The EMUEXCPT instruction is issued.

The processor remains in Emulation mode until the emulation service
routine executes an RTE instruction. If no interrupts are pending when the
RTE instruction executes, the processor switches to User mode. Otherwise,
the processor switches to Supervisor mode to service the interrupt.

Emulation mode is the highest priority mode, and the processor
has unrestricted access to all system resources.

Idle State

Idle state stops all processor activity at the user’s discretion, usually to
conserve power during lulls in activity. No processing occurs during the
Idle state. The Idle state is invoked by a sequential IDLE instruction. The
IDLE instruction notifies the processor hardware that the Idle state is
requested.
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Reset State

The processor remains in the Idle state until a peripheral or external
device, such as a SPORT or the Real-Time Clock (RTC), generates an

interrupt that requires servicing.

In Listing 3-3, core interrupts are disabled and the IDLE instruction is exe-
cuted. When all the pending processes have completed, the core disables
its clocks. Since interrupts are disabled, Idle state can be terminated only
by asserting a WAKEUP signal. For more information, see “SIC_IWR Regis-
ter” on page 4-25. (While not required, an interrupt could also be enabled
in conjunction with the WAKEUP signal.)

When the WAKEUP signal is asserted, the processor wakes up, and the STI
instruction enables interrupts again.

Example Code for Transition to Idle State
To transition to the Idle state, use code shown in Listing 3-3.

Listing 3-3. Transitioning to Idle State

CLI RO ; /* disable interrupts */
IDLE ; /* drain pipeline and send core into IDLE state */
STI RO /* re-enable interrupts after wakeup */

Reset State

Reset state initializes the processor logic. During Reset state, application
programs and the operating system do not execute. Clocks are stopped
while in Reset state.

The processor remains in the Reset state as long as external logic asserts
the external RESET signal. Upon deassertion, the processor completes the
reset sequence and switches to Supervisor mode, where it executes code
found at the reset event vector.
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Operating Modes and States

Software in Supervisor or Emulation mode can invoke the Reset state
without involving the external RESET signal. This can be done by issuing
the Reset version of the RAISE instruction.

Application programs in User mode cannot invoke the Reset state, except
through a system call provided by an operating system kernel. Table 3-5
summarizes the state of the processor upon reset.

Table 3-5. Processor State Upon Reset

Item ‘Description of Reset State
Core
Operating Mode Supervisor mode in reset event, clocks stopped

Rounding Mode Unbiased rounding

Cycle Counters Disabled, zero

DAG Registers (I, L, B, M)

Random values (must be cleared at initialization)

Data and Address Registers

Random values (must be cleared at initialization)

IPEND, IMASK, ILAT

Cleared, interrupts globally disabled with IPEND bit 4

CPLBs

Disabled

L1 Instruction Memory

SRAM (cache disabled)

L1 Data Memory

SRAM (cache disabled)

Cache Validity Bits

Invalid

System

Booting Methods

Determined by the values of BMODE pins at reset

MSEL Clock Frequency

Reset value = 10

PLL Bypass Mode

Disabled

VCO/Core Clock Ratio

Reset value = 1

VCO/System Clock Ratio

Reset value = 5

Peripheral Clocks

Disabled
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System Reset and Powerup

System Reset and Powerup

Table 3-6 describes the five types of resets. Note all resets, except System

Software, reset the core.

Table 3-6. Resets

Reset Source

Result

Hardware Reset | The RESET pin causes a hard-

ware reset.

Resets both the core and the peripherals,
including the Dynamic Power Management
Controller (DPMC).

Resets the No Boot on Software Reset bit in
SYSCR. For more information, see “SYSCR
Register” on page -14.

System Software | Writing b#111 to bits [2:0]

Resets only the peripherals, excluding the RTC

Reset in the system MMR SWRST | (Real-Time Clock) block and most of the
at address 0xFFC0 0100 DPMC. The DPMC resets only the No Boot
causes a System Software on Software Reset bit in SYSCR. Does not reset
reset. the core. Does not initiate a boot sequence.

Watchdog Timer | Programming the watchdog | Resets both the core and the peripherals,

Reset timer appropriately causes a | excluding the RT'C block and most of the

Watchdog Timer reset.

DPMC.

The Software Reset register (SWRST) can be read
to determine whether the reset source was the
watchdog timer.
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Table 3-6. Resets (Cont’d)

Reset Source Result
Core Double- If the core enters a dou- Resets both the core and the peripherals,
Fault Reset ble-fault state, and the Core | excluding the RT'C block and most of the

Double Fault Reset Enable DPMC.

bit (DOUBLE_FAULT) is The SWRST register can be read to determine
set in the SWRST register, whether the reset source was Core Double
then a software reset occurs. | Fault.

Core-Only Soft- | This reset is caused by exe- | Resets only the core.

ware Reset cuting a RAISEL instruction | The peripherals do not recognize this reset.
or by setting the Software
Reset (SYSRST) bit in the
core Debug Control register
(DBGCTL) via emulation soft-
ware through the JTAG port.
The DBGCTL register is not
visible to the memory map.

Hardware Reset

The processor chip reset is an asynchronous reset event. The RESET input
pin must be deasserted to perform a hardware reset. For more informa-
tion, see ADSP-BF531/ADSP-BF532/ADSP-BF533 Embedded Processor
Data Sheet.

A hardware-initiated reset results in a system-wide reset that includes both
core and peripherals. After the RESET pin is deasserted, the processor
ensures that all asynchronous peripherals have recognized and completed a
reset. After the reset, the processor transitions into the Boot mode
sequence configured by the BMODE state.

The BMODE[1:0] pins are dedicated mode control pins. No other functions
are shared with these pins, and they may be permanently strapped by tying
them directly to either Vpp or Vgg. The pins and the corresponding bits
in SYSCR configure the Boot mode that is employed after hardware reset or
System Software reset. See “Reset” on page 4-39, and Table 4-11 on

page 4-43 for further information.
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SYSCR Register

The values sensed from the BMODE[1:0] pins are latched into the System
Reset Configuration register (SYSCR) upon the deassertion of the RESET
pin. The values are made available for software access and modification
after the hardware reset sequence. Software can modify only the No Boot
on Software Reset bit.

The various configuration parameters are distributed to the appropriate
destinations from SYSCR (see Figure 3-2).

System Reset Configuration Register (SYSCR)
X - state is initialized from mode pins during hardware reset

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0xFF000104|o |o |o |o |o |o |o |o|o |o |o |o |o X |x |o | Reset = dependent on pin

| values
No Boot on Software Reset BMODE[1:0] (Boot Mode)- RO
0 - Use BMODE to determine 00 - Bypass boot ROM,
boot source execute from 16-bit
1 - Start executing from the external memory
beginning of on-chip L1 01 - Use boot ROM to load
memory or the beginning of from 8-bit or 16-bit flash
ASYNC Bank 0 when 10 - SPI slave mode boot via
BMODE[1:0] = b#00 a master (host)

11 - Use boot ROM to configure
and load boot code from
SPI serial EEPROM
(8-, 16-, or 24-bit address
range)

Figure 3-2. System Reset Configuration Register
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Software Resets and Watchdog Timer

A software reset may be initiated in three ways:
* By the watchdog timer, if appropriately configured

* By setting the System Software Reset field in the Software Reset
register (see Figure 3-3)

* By the RAISEI instruction

The watchdog timer resets both the core and the peripherals. A System
Software reset results in a reset of the peripherals without resetting the
core and without initiating a booting sequence.

The System Software reset must be performed while executing
from Level 1 memory (either as cache or as SRAM).

When L1 instruction memory is configured as cache, make sure the Sys-
tem Software reset sequence has been read into the cache.

After either the watchdog or System Software reset is initiated, the proces-
sor ensures that all asynchronous peripherals have recognized and
completed a reset.

For a reset generated by the watchdog timer, the processors transitions
into the Boot mode sequence. The Boot mode is configured by the state of
the BMODE and the No Boot on Software Reset control bits.

If the No Boot on Software Reset bit in SYSCR is cleared, the reset
sequence is determined by the BMODE[1:0] control bits.
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System Reset and Powerup

SWRST Register

A software reset can be initiated by setting the System Software Reset field
in the Software Reset register (SWRST). Bit 15 indicates whether a software
reset has occurred since the last time SWRST was read. Bit 14 and Bit 13,
respectively, indicate whether the Software Watchdog Timer or a Core
Double Fault has generated a software reset. Bits [15:13] are read-only
and cleared when the register is read. Bits [3:0] are read/write.

When the BMODE pins are not set to b#00 and the No Boot on Software
Reset bit in SYSCR is set, the processor starts executing from the start of
on-chip L1 memory. In this configuration, the core begins fetching
instructions from the beginning of on-chip L1 memory.

When the BMODE pins are set to b#00 the core begins fetching instructions
from address 0x2000 0000 (the beginning of ASYNC Bank 0).

Software Reset Register (SWRST)

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
0xFFCO0 0100 |o |0 |o |o |o |o |0 |o |o |o |o |0 |0 |o |o |o |Reset=0x0000
System Software Reset
Software Reset 0x0 — 0x6 - No SW reset
Status - RO 0x7 - Triggers SW reset
0 - No SW reset since last L Core Double Fault Reset
SWRST read Enable
1 - SW reset occurred since
last SWRST read 0 - No reset caused by
Software Watchdog Timer- 1 ggrseetho:nbelfa't::cL!”Ltjpon
Source-RO —— | .
0 - SW reset not generated by Core Double Fault
watchdog
1 - SW reset generated by
watchdog
Core Double Fault Reset - RO

0 - SW reset not generated by double fault
1 - SW reset generated by double fault

Figure 3-3. Software Reset Register
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Core-Only Software Reset

A Core-Only Software reset is initiated by executing the RAISE 1 instruc-
tion or by setting the Software Reset (SYSRST) bit in the core Debug
Control register (DBGCTL) via emulation software through the JTAG port.
(DBGCTL is not visible to the memory map.)

A Core-Only Software reset affects only the state of the core. Note the sys-
tem resources may be in an undetermined or even unreliable state,

depending on the system activity during the reset period.

Core and System Reset

To perform a system and core reset, use the code sequence shown in
Listing 3-4. As described in the code comments, the system soft reset takes
five system clock cycles to complete, so a delay loop is needed. This code
must reside in L1 memory for the system soft reset to work properly.

Listing 3-4. Core and System Reset

/* Issue system soft reset */

PO.L = LOCSWRST) ;
PO.H = HI(SWRST)
RO.L = 0x0007
WLPO] = RO ;

SSYNC

/* Wait for System reset to complete (needs to be 5 SCLKs). */
/* Assuming a worst case CCLK:SCLK ratio (15:1), use 5*15 = 75 *x/
/* as the Tloop count. */

Pl = 75;

LSETUP(start, end) LCO = P1

start:

end:
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NOP ;

/* Clear system soft reset */
RO.L = 0x0000 ;

WLPO] = RO ;

SSYNC ;

/* Core reset - forces reboot */
RAISE 1 ;

Booting Methods

The internal boot ROM includes a small boot kernel that can either be
bypassed or used to load user code from an external memory device. See
Table 4-10 on page 4-40 for further information. The boot kernel reads
the BMODE[1:0] pin state at reset to identify the download source (see
Table 4-7 on page 4-23). When in Boot Mode 0, the processor is set to
execute from 16-bit wide external memory at address 0x2000 0000
(ASYNC Bank 0).

Several boot methods are available in which user code can be loaded from
an external memory device or a host device (as in the case of SPI slave
mode booting). For these modes, the boot kernel sets up the selected
peripheral based on the BMODE[1:0] pin settings.

For each Boot mode, user code read in from the memory device is placed
at the starting location of L1 memory. Additional sections are read into
internal memory as specified within headers in the loader file. The boot
kernel terminates the boot process with a jump to the start of the L1
instruction memory space. The processor then begins execution from this

address.

If booting from Serial Peripheral Interface (SPI), general-purpose
flag pin 2 is used as the SPI-chip select. This line must be con-
nected for proper operation.
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A Core-Only Software reset also vectors the core to the boot ROM. Only
the core is reset with the Core-Only Software reset; this reset does not
affect the rest of the system. The boot ROM kernel detects a No Boot on
Software Reset condition in SYSCR to avoid initiating a download. If this
bit is set on a software reset, the processor skips the normal boot sequence
and jumps to the beginning of L1 memory and begins execution.

The boot kernel assumes these conditions for the Flash Boot mode
(BMODE = 01):

* Asynchronous Memory Bank (AMB) 0 enabled
* 16-bit packing for AMB 0 enabled
e Bank 0 RDY is set to active high

* Bank 0 hold time (read/write deasserted to AOE deasserted) =
3 cycles

e Bank 0 read/write access times = 15 cycles

For SPI master mode boot (BMODE = 11), the boot kernel assumes that the
SPI baud rate is 500 kHz. SPI serial EEPROMs that are 8-bit, 16-bit, and
24-bit addressable are supported. The SPI uses the PF2 output pin to select
a single SPI EEPROM device. The SPI controller submits successive read
commands at addresses 0x00, 0x0000, and 0x000000 until a valid 8-, 16-,
or 24-bit addressable EEPROM is detected. It then begins clocking data
into the beginning of L1 instruction memory.

The MI1S0 pin must be pulled high for SPI master mode booting
(BMODE = 11).

For each of the boot modes, 10-byte headers are first read from an external
memory device. The header specifies the number of bytes to be transferred
and the memory destination address. Once all blocks are loaded, program
execution commences from the start of L1 instruction SRAM.
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For SPI slave mode boot (BMODE = 10), the hardware configuration shown
in Figure 3-4 is assumed.

MASTER SLAVE
HOST ADSP-BF533
ADSP-BF532
ADSP-BF531
SCLK
SPISS
_ MIso
MOSI o
PFx

Figure 3-4. SPI Slave Boot Mode

The user defined programmable flag PFx is an output on the Blackfin pro-
cessor and an input on the host device. This flag allows the processor to
hold off the host device from sending data during certain sections of the
boot process. When this flag is de-asserted, the host can continue to send
bytes to the processor.
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4 PROGRAM SEQUENCER

In the processor, the program sequencer controls program flow, constantly
providing the address of the next instruction to be executed by other parts
of the processor. Program flow in the chip is mostly linear, with the pro-
cessor executing program instructions sequentially.

The linear flow varies occasionally when the program uses nonsequential

program structures, such as those illustrated in Figure 4-1. Nonsequential
structures direct the processor to execute an instruction that is not at the

next sequential address. These structures include:

Loops. One sequence of instructions executes several times with
zero overhead.

Subroutines. The processor temporarily interrupts sequential flow
to execute instructions from another part of memory.

Jumps. Program flow transfers permanently to another part of
memory.

Interrupts and Exceptions. A runtime event or instruction triggers
the execution of a subroutine.

Idle. An instruction causes the processor to stop operating and
hold its current state until an interrupt occurs. Then, the processor
services the interrupt and continues normal execution.

ADSP-BF533 Blackfin Processor Hardware Reference 4-1



LINEAR FLOW LOOP JUMP

ADDRESS:N [INSTRUCTION Loop JUMP
N +1|INSTRUCTION INSTRUCTION INSTRUCTION
N + 2| INSTRUCTION INSTRUCTION INSTRUCTION
N + 3| INSTRUCTION INSTRUCTION | N TIMES INSTRUCTION
N+ 4|INSTRUCTION INSTRUCTION INSTRUCTION
N + 5| INSTRUCTION INSTRUCTION INSTRUCTION
SUBROUTINE INTERRUPT IDLE
IRQ
CALL —{ INSTRUCTION IDLE D)
—» INSTRUCTION —»{ INSTRUCTION INSTRUCTION| WAITING
FOR IRQ
INSTRUCTION INSTRUCTION INSTRUCTION| OR
VECTOR WAKEUP
INSTRUCTION
INSTRUCTION
INSTRUCTION INSTRUCTION INSTRUCTION
INSTRUCTION INSTRUCTION INSTRUCTION
INSTRUCTION INSTRUCTION INSTRUCTION
L1 Rrs L RTI

Figure 4-1. Program Flow Variations

The sequencer manages execution of these program structures by selecting
the address of the next instruction to execute.

The fetched address enters the instruction pipeline, ending with the pro-
gram counter (PC). The pipeline contains the 32-bit addresses of the
instructions currently being fetched, decoded, and executed. The PC cou-
ples with the RETn registers, which store return addresses. All addresses
generated by the sequencer are 32-bit memory instruction addresses.

4-2
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Program Sequencer

To manage events, the sequencer’s event controller handles interrupt and
event processing, determines whether an interrupt is masked, and gener-
ates the appropriate event vector address.

In addition to providing data addresses, the data address generators
(DAGsS) can provide instruction addresses for the sequencer’s indirect
branches.

The sequencer evaluates conditional instructions and loop termination
conditions. The loop registers support nested loops. The memory-mapped
registers (MMRs) store information used to implement interrupt service
routines.

Sequencer Related Registers

Table 4-1 lists the registers within the processor that are related to the
sequencer. Except for the PC and SEQSTAT registers, all sequencer-related
registers are directly readable and writable. Manually pushing or popping
registers to or from the stack is done using the explicit instructions:

* [--SP] = Rn (for push)

* Rn = [SP++] (for pop)

Table 4-1. Sequencer-Related Registers

Register Name Description

SEQSTAT Sequencer Status register
Return Address registers: See “Events and Sequencing”
on page 4-18.

RETX Exception Return

RETN NMI Return

RETI Interrupt Return

RETE Emulation Return

RETS Subroutine Return
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Sequencer Related Registers

Table 4-1. Sequencer-Related Registers (Cont’d)

Register Name Description

Zero-Overhead Loop registers:

LCO, LC1 Loop Counters

LTo, LT1 Loop Tops

LBO, LB1 Loop Bottoms

FP, SP Frame Pointer and Stack Pointer: See “Frame and Stack
Pointers” on page 5-5.

SYSCEG System Configuration register

CYCLES, CYCLES2 Cycle Counters

PC Program Counter

SEQSTAT Register

The Sequencer Status register (SEQSTAT) contains information about the
current state of the sequencer as well as diagnostic information from the
last event. SEQSTAT is a read-only register and is accessible only in Supervi-
sor mode.

Zero-Overhead Loop Registers (LC, LT, and LB)

Two sets of zero-overhead loop registers implement loops, using hardware
counters instead of software instructions to evaluate loop conditions. After
evaluation, processing branches to a new target address. Both sets of regis-
ters include the Loop Counter (LC), Loop Top (LT), and Loop Bottom
(LB) registers.
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RO

HWERRCAUSE[1:0]
Holds cause of last hard-

Program Sequencer

Sequencer Status Register (SEQSTAT)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

fofofofofofofofofofooofo]o]e]e

Reset = 0x0000 0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

o fo o fofofo]ofofofo]ofofefo]o]o
L

ware error generated by
the core. Hardware errors
trigger interrupt number 5
(IVHW). See Table 4-13.

SFTRESET

0 - Last core reset was not a
reset triggered by software

1 - Last core reset was a reset
triggered by software, rather
than a hardware powerup reset

Figure 4-2. Sequencer Status Register

Table 4-2 describes the 32-bit loop register sets.

Table 4-2. Loop Registers

HWERRCAUSE[4:2]
See description under
bits[1:0], below.

EXCAUSE[5:0]

Holds information about
the last executed excep-
tion. See Table 4-11.

Registers Description Function

LCo, LC1 Loop Counters Maintains a count of the remaining iterations of the loop
LTo, LT1 Loop Tops Holds the address of the first instruction within a loop
LBO, LB1 Loop Bottoms Holds the address of the last instruction of the loop
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Instruction Pipeline

SYSCFG Register

The System Configuration register (SYSCFG) controls the configuration of
the processor. This register is accessible only from the Supervisor mode.

System Configuration Register (SYSCFG)

31 30 20 28 27 26 25 24 23 22 21 20 19 18 17 16
|o |o |o |o |o |o |o |o Io |o |o |o |o |o |o |o I Reset = 0x0000 0030

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0

CHENENEN CNCNENEN ENCNENEN CRONENEY

CCEN (Cycle Counter Enable) ‘ LSSSTEP (Supervisor Sin-
0 - Disable 64-bit, free-running gle Step)
cycle counter SNEN (Self-Nesting Inter- .
1 - Enable 64-bit, free-running rupt Enable) Z\igzntisoer:‘i: t?allj(gﬁr:ff::each
cycle counter 0 - Disable self-nesting of instrLE)ction is executed. It
core interrupts applies only to User mode, or
1 - Enable self-nesting of when processing interrupts in
core interrupts Supervisor mode. It is

ignored if the core is pro-
cessing an exception or
higher priority event. If pre-
cise exception timing is
required, CSYNC must be
used after setting this bit.

Figure 4-3. System Configuration Register

Instruction Pipeline

The program sequencer determines the next instruction address by exam-
ining both the current instruction being executed and the current state of
the processor. If no conditions require otherwise, the processor executes
instructions from memory in sequential order by incrementing the look-

ahead address.
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Program Sequencer

The processor has a ten-stage instruction pipeline, shown in Table 4-3.

Table 4-3. Stages of Instruction Pipeline

Pipeline Stage

Description

Instruction Fetch 1 (IF1)

Issue instruction address to IAB bus, start compare tag of
instruction cache

Instruction Fetch 2 (IF2)

Wait for instruction data

Instruction Fetch 3 (IF3)

Read from IDB bus and align instruction

Instruction Decode (DEC)

Decode instructions

Address Calculation (AC)

Calculation of data addresses and branch target address

Data Fetch 1 (DF1)

Issue data address to DAO and DA1 bus, start compare tag of
data cache

Data Fetch 2 (DF2)

Read register files

Execute 1 (EX1)

Read data from LDO and LD1 bus, start multiply and video
instructions

Execute 2 (EX2)

Execute/Complete instructions (shift, add, logic, and so on)

Write Back (WB)

Writes back to register files, SD bus, and pointer updates (also
referred to as the “commit” stage)

Figure 4-4 shows a diagram of the pipeline.

Instr Instr

Instr

Instr Addr | Data Data Ex1 Ex2 wWB

Fetch | Fetch | Fetch [Decode| Calc Fetch | Fetch

1 2 3 1 2
Instr Instr Instr Instr Addr | Data Data Ex1 Ex2 WB
Fetch | Fetch [ Fetch |[Decode| Calc Fetch | Fetch
1 2 3 1 2

Figure 4-4. Processor Pipeline

The instruction fetch and branch logic generates 32-bit fetch addresses for
the Instruction Memory Unit. The Instruction Alignment Unit returns
instructions and their width information at the end of the IF3 stage.
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Instruction Pipeline

For each instruction type (16, 32, or 64 bits), the Instruction Alignment
Unit ensures that the alignment buffers have enough valid instructions to
be able to provide an instruction every cycle. Since the instructions can be
16, 32, or 64 bits wide, the Instruction Alignment Unit may not need to
fetch an instruction from the cache every cycle. For example, for a series of
16-bit instructions, the Instruction Alignment Unit gets an instruction
from the Instruction Memory Unit once in four cycles. The alignment
logic requests the next instruction address based on the status of the align-
ment buffers. The sequencer responds by generating the next fetch address
in the next cycle, provided there is no change of flow.

The sequencer holds the fetch address until it receives a request from the
alignment logic or until a change of flow occurs. The sequencer always
increments the previous fetch address by 8 (the next 8 bytes). If a change
of flow occurs, such as a branch or an interrupt, data in the Instruction
Alignment Unit is invalidated. The sequencer decodes and distributes
instruction data to the appropriate locations such as the register file and
data memory.

The Execution Unit contains two 16-bit multipliers, two 40-bit ALUs,
two 40-bit accumulators, one 40-bit shifter, a video unit (which adds 8-bit
ALU support), and an 8-entry 32-bit Data Register File.

Register file reads occur in the DF2 pipeline stage (for operands).

Register file writes occur in the WB stage (for stores). The multipliers and
the video units are active in the EX1 stage, and the ALUs and shifter are

active in the EX2 stage. The accumulators are written at the end of the
EX2 stage.

The program sequencer also controls stalling and invalidating the instruc-
tions in the pipeline. Multi-cycle instruction stalls occur between the IF3
and DEC stages. DAG and sequencer stalls occur between the DEC and
AC stages. Computation and register file stalls occur between the DF2 and
EXI1 stages. Data memory stalls occur between the EX1 and EX2 stages.
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The sequencer ensures that the pipeline is fully interlocked and
that all the data hazards are hidden from the programmer.

Multi-cycle instructions behave as multiple single-cycle instructions being
issued from the decoder over several clock cycles. For example, the Push
Multiple or Pop Multiple instruction can push or pop from 1 to 14 DREGS
and/or PREGS, and the instruction remains in the decode stage for a num-
ber of clock cycles equal to the number of registers being accessed.

Multi-issue instructions are 64 bits in length and consist of one 32-bit
instruction and two 16-bit instructions. All three instructions execute in
the same amount of time as the slowest of the three.

Any nonsequential program flow can potentially decrease the processor’s
instruction throughput. Nonsequential program operations include:

* Jumps
¢ Subroutine calls and returns
e Interrupts and returns

* Loops

Branches and Sequencing

One type of nonsequential program flow that the sequencer supports is
branching. A branch occurs when a JUMP or CALL instruction begins execu-
tion at a new location other than the next sequential address. For
descriptions of how to use the JUMP and CALL instructions, see Blackfin
Processor Programming Reference. Briefly:

* A JUMP or a CALL instruction transfers program flow to another
memory location. The difference between a JUMP and a CALL is that
a CALL automatically loads the return address into the RETS register.
The return address is the next sequential address after the CALL
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Branches and Sequencing

instruction. This push makes the address available for the CALL
instruction’s matching return instruction, allowing easy return
from the subroutine.

e A return instruction causes the sequencer to fetch the instruction at
the return address, which is stored in the RETS register (for subrou-
tine returns). The types of return instructions include: return from
subroutine (RTS), return from interrupt (RTI), return from excep-
tion (RTX), return from emulation (RTE), and return from
nonmaskable interrupt (RTN). Each return type has its own register
for holding the return address.

* A JUMP instruction can be conditional, depending on the status of
the CC bit of the ASTAT register. These instructions are immediate
and may not be delayed. The program sequencer can evaluate the
CC status bit to decide whether to execute a branch. If no condition
is specified, the branch is always taken.

* Conditional JUMP instructions use static branch prediction to
reduce the branch latency caused by the length of the pipeline.

Branches can be direct or indirect. A direct branch address is determined
solely by the instruction word (for example, JUMP 0x30), while an indirect
branch gets its address from the contents of a DAG register (for example,
JUMP(P3)).

All types of JUMPs and CALLs can be PC-relative. The indirect JUMP and
CALL can be absolute or PC-relative.

Direct Short and Long Jumps

The sequencer supports both short and long jumps. The target of the
branch is a PC-relative address from the location of the instruction, plus
an offset. The PC-relative offset for the short jump is a 13-bit immediate
value that must be a multiple of two (bit 0 must be a 0). The 13-bit value
gives an effective dynamic range of —4096 to +4094 bytes.
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The PC-relative offset for the long jump is a 25-bit immediate value that
must also be a multiple of two (bit 0 must be a 0). The 25-bit value gives
an effective dynamic range of —16,777,216 to +16,777,214 bytes.

If, at the time of writing the program, the destination is known to be less
than a 13-bit offset from the current PC value, then the JUMP.S 0Oxnnnn
instruction may be used. If the destination requires more than a 13-bit
offset, then the JUMP.L Oxnnnnnnn instruction must be used. If the desti-
nation offset is unknown and development tools must evaluate the offset,
then use the instruction JUMP Oxnnnnnnn. Upon disassembly, the instruc-
tion is replaced by the appropriate JUMP.S or JUMP. L instruction.

Direct Call

The CALL instruction is a branch instruction that copies the address of the
instruction which would have executed next (had the CALL instruction not
executed) into the RETS register. The direct CALL instruction has a 25-bit,
PC-relative offset that must be a multiple of two (bit 0 must be a 0). The
25-bit value gives an effective dynamic range of =16,777,216 to
+16,777,214 bytes.

Indirect Branch and Call

The indirect JUMP and CALL instructions get their destination address from
a data address generator (DAG) P-register. For the CALL instruction, the
RETS register is loaded with the address of the instruction which would
have executed next in the absence of the CALL instruction.

For example:

JUMP (P3)
CALL (P0O) ;
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PC-Relative Indirect Branch and Call

The PC-relative indirect JUMP and CALL instructions use the contents of a
P-register as an offset to the branch target. For the CALL instruction, the
RETS register is loaded with the address of the instruction which would
have executed next (had the CALL instruction not executed).

For example:
JUMP (PC + P3)
CALL (PC + PO) ;

Condition Code Flag

The processor supports a Condition Code (cC) flag bit, which is used to
resolve the direction of a branch. This flag may be accessed eight ways:

* A conditional branch is resolved by the value in cC.

e A Data register value may be copied into CC, and the value in CC
may be copied to a Data register.

e The BITTST instruction accesses the CC flag.

* A status flag may be copied into CC, and the value in CC may be
copied to a status flag.

e The cc flag bit may be set to the result of a Pointer register
comparison.

* The cc flag bit may be set to the result of a Data register
comparison.

* Some shifter instructions (rotate or BXOR) use CC as a portion of the
shift operand/result.

e Test and set instructions can set and clear the CC bit.
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These eight ways of accessing the CC bit are used to control program flow.
The branch is explicitly separated from the instruction that sets the arith-
metic flags. A single bit resides in the instruction encoding that specifies
the interpretation for the value of cC. The interpretation is to “branch on
true” or “branch on false.”

The comparison operations have the form CC = expr where expr involves a
pair of registers of the same type (for example, Data registers or Pointer
registers, or a single register and a small immediate constant). The small
immediate constant is a 3-bit (—4 through 3) signed number for signed
comparisons and a 3-bit (0 through 7) unsigned number for unsigned
comparisons.

The sense of CC is determined by equal (==), less than (<), and less than or
equal to (<=). There are also bit test operations that test whether a bit in a
32-bit R-register is set.

Conditional Branches

The sequencer supports conditional branches. Conditional branches are
JUMP instructions whose execution branches or continues linearly, depend-
ing on the value of the cC bit. The target of the branch is a PC-relative
address from the location of the instruction, plus an offset. The PC-rela-
tive offset is an 11-bit immediate value that must be a multiple of two (bit
0 must be a 0). This gives an effective dynamic range of ~1024 to +1022
bytes.

For example, the following instruction tests the CC flag and, if it is posi-
tive, jumps to a location identified by the label dest_address:
IF CC JUMP dest_address
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Conditional Register Move

Register moves can be performed depending on whether the value of the
CC flag is true or false (1 or 0). In some cases, using this instruction instead
of a branch eliminates the cycles lost because of the branch. These
conditional moves can be done between any R- or P-registers (including
SP and FP).

Example code:

IF CC RO = PO ;

Branch Prediction

The sequencer supports static branch prediction to accelerate execution of
conditional branches. These branches are executed based on the state of
the CC bit.

In the EX2 stage, the sequencer compares the actual CC bit value to the
predicted value. If the value was mispredicted, the branch is corrected, and
the correct address is available for the WB stage of the pipeline.

The branch latency for conditional branches is as follows.

* If prediction was “not to take branch,” and branch was actually not
taken: 0 CCLK cycles.

e If prediction was “not to take branch,” and branch was actually
taken: 8 CCLK cycles.

e If prediction was “to take branch,” and branch was actually taken:
4 CCLK cycles.

e If prediction was “to take branch,” and branch was actually not
taken: 8 CCLK cycles.
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For all unconditional branches, the branch target address computed in the
AC stage of the pipeline is sent to the Instruction Fetch Address bus at the
beginning of the DF1 stage. All unconditional branches have a latency of
4 CCLK cycles.

Consider the example in Table 4-4.

Table 4-4. Branch Prediction

Instruction Description

If CC JUMP dest (bp) This instruction tests the CC flag, and if it is set,
jumps to a location, identified by the label, dest.

If the CC flag is set, the branch is correctly predicted
and the branch latency is reduced. Otherwise, the
branch is incorrectly predicted and the branch
latency increases.

Loops and Sequencing

The sequencer supports a mechanism of zero-overhead looping. The
sequencer contains two loop units, each containing three registers. Each
loop unit has a Loop Top register (LT0, LT1), a Loop Bottom register (LBO,
LB1), and a Loop Count register (LCO, LC1).

When an instruction at address X is executed, and X matches the contents
of LBO, then the next instruction executed will be from the address in LTO.
In other words, when PC == LBO0, then an implicit jump to LT0 is executed.

A loopback only occurs when the count is greater than or equal to 2. If the
count is nonzero, then the count is decremented by 1. For example, con-
sider the case of a loop with two iterations. At the beginning, the count is
2. Upon reaching the first loop end, the count is decremented to 1 and the
program flow jumps back to the top of the loop (to execute a second
time). Upon reaching the end of the loop again, the count is decremented
to 0, but no loopback occurs (because the body of the loop has already
been executed twice).
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Since there are two loop units, loop unit 1 is assigned higher priority so it
can be used as the inner loop in a nested loop structure. In other words, a
loopback caused by loop unit 1 on a particular instruction (PC == LB,
Lcl >= 2) will prevent loop unit 0 from looping back on that same
instruction, even if the address matches. Loop unit 0 is allowed to loop
back only after the loop count 1 is exhausted.

The LSETUP instruction can be used to load all three registers of a loop unit
at once. Each loop register can also be loaded individually with a register
transfer, but this incurs a significant overhead if the loop count is nonzero
(the loop is active) at the time of the transfer.

The following code example shows a loop that contains two instructions
and iterates 32 times.

Listing 4-1. Loop Example

P5 = 0x20 ;

LSETUP ( Tp_start, 1p_end ) LCO = P5

Ip_start:

R5 = RO + Rl(ns) || R2 = [P2++] || R3 = [I1++] ;

Ip_end: R5 = R5 + R2

Two sets of loop registers are used to manage two nested loops:
* LC[1:0] — the Loop Count registers
e LT[1:0] — the Loop Top address registers

* LB[1:0] — the Loop Bottom address registers
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Table 4-5. Loop Registers

First/Last Address of the |PC-Relative Offset Used to Effective Range of the Loop Start
Loop Compute the Loop Start Address |Instruction
Top / First 5-bit signed immediate; must be | 0 to 30 bytes away from LSETUP
a multiple of 2. instruction.
Bottom / Last 11-bit signed immediate; must | 0 to 2046 bytes away from
be a multiple of 2. LSETUP instruction (the defined
loop can be 2046 bytes long).

When executing an LSETUP instruction, the program sequencer loads the
address of the loop’s last instruction into LBx and the address of the loop’s
first instruction into LTx. The top and bottom addresses of the loop are
computed as PC-relative addresses from the LSETUP instruction, plus an

offset. In each case, the offset value is added to the location of the LSETUP
instruction.

The LC0 and LC1 registers are unsigned 32-bit registers, each supporting
232 _1 iterations through the loop.

When LCx = 0, the loop is disabled, and a single pass of the code

executes.

The processor supports a four-location instruction loop buffer that
reduces instruction fetches while in loops. If the loop code contains four
or fewer instructions, then no fetches to instruction memory are necessary
for any number of loop iterations, because the instructions are stored
locally. The loop buffer effectively eliminates the instruction fetch time in
loops with more than four instructions by allowing fetches to take place
while instructions in the loop buffer are being executed.

A four-cycle latency occurs on the first loopback when the LSETUP specifies
a nonzero start offset (1p_start). Therefore, zero start offsets are

preferred.

The processor has no restrictions regarding which instructions can occur
in a loop end position. Branches and calls are allowed in that position.
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Events and Sequencing

The Event Controller of the processor manages five types of activities or
events:

*  Emulation

* Reset

* Nonmaskable interrupts (NMI)
* Exceptions

* Interrupts

Note the word event describes all five types of activities. The Event Con-
troller manages fifteen different events in all: Emulation, Reset, NMI,
Exception, and eleven Interrupts.

An interrupt is an event that changes normal processor instruction flow
and is asynchronous to program flow. In contrast, an exception is a soft-
ware initiated event whose effects are synchronous to program flow.

The event system is nested and prioritized. Consequently, several service
routines may be active at any time, and a low priority event may be pre-
empted by one of higher priority.

The processor employs a two-level event control mechanism. The proces-
sor System Interrupt Controller (SIC) works with the Core Event
Controller (CEC) to prioritize and control all system interrupts. The SIC
provides mapping between the many peripheral interrupt sources and the
prioritized general-purpose interrupt inputs of the core. This mapping is
programmable, and individual interrupt sources can be masked in the

SIC.
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The CEC supports nine general-purpose interrupts (I1VG7 — IVG15) in
addition to the dedicated interrupt and exception events that are described
in Table 4-6. It is reccommended that the two lowest priority interrupts
(Iv614 and 1VG15) be reserved for software interrupt handlers, leaving

seven prioritized interrupt inputs (IVG7 — IVG13) to support the system.
Refer to Table 4-6.

Table 4-6. System and Core Event Mapping

Event Source Core Event Name
Core Events Emulation (highest priority) EMU

Reset RST

NMI NMI

Exception EVX

Reserved -

Hardware Error IVHW

Core Timer IVTMR
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Table 4-6. System and Core Event Mapping (Cont'd)

Event Source

Core Event Name

System Interrupts

PLL Wakeup Interrupt
DMA Error (generic)
PPI Error Interrupt
SPORTO Error Interrupt
SPORTT1 Error Interrupt
SPI Error Interrupt
UART Error Interrupt

IVG7

Real-Time Clock Interrupts
DMAO Interrupt (PPI)

IVGS

DMAL Interrupt (SPORT0 RX)
DMA2 Interrupt (SPORT0 TX)
DMAS3 Interrupt (SPORT1 RX)
DMAA4 Interrupt (SPORT1 TX)

IVG9

DMAS Interrupt (SPI)
DMAG Interrupt (UART RX)
DMAY7 Interrupt (UART TX)

IVG10

Timer0, Timerl, Timer2 Interrupts

IVG11

Programmable Flags Interrupt A/B

IVG12

DMAS/9 Interrupt (Memory DMA
Stream 0)

DMAT10/11 Interrupt (Memory DMA
Stream 1)

Software Watchdog Timer

IVG13

Software Interrupt 1

IVG14

Software Interrupt 2 (lowest priority)

IVG15

Note the System Interrupt to Core Event mappings shown are the default
values at reset and can be changed by software.
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System Interrupt Processing

Referring to Figure 4-5, note when an interrupt (Interrupt A) is generated
by an interrupt-enabled peripheral:

1.

SIC_ISR logs the request and keeps track of system interrupts that
are asserted but not yet serviced (that is, an interrupt service rou-
tine hasn’t yet cleared the interrupt).

SIC_IWR checks to see if it should wake up the core from an idled
state based on this interrupt request.

SIC_IMASK masks off or enables interrupts from peripherals at the
system level. If Interrupt A is not masked, the request proceeds to

Step 4.

The SIC_IARx registers, which map the peripheral interrupts to a
smaller set of general-purpose core interrupts (IVG7 - IVG15),
determine the core priority of Interrupt A.

ILAT adds Interrupt A to its log of interrupts latched by the core
but not yet actively being serviced.

IMASK masks off or enables events of different core priorities. If the
IVGx event corresponding to Interrupt A is not masked, the process

proceeds to Step 7.
The Event Vector Table (EVT) is accessed to look up the appropri-

ate vector for Interrupt A’s interrupt service routine (ISR).

When the event vector for Interrupt A has entered the core pipe-
line, the appropriate IPEND bit is set, which clears the respective
ILAT bit. Thus, IPEND tracks all pending interrupts, as well as those
being presently serviced.
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9. When the interrupt service routine (ISR) for Interrupt A has been
executed, the RTI instruction clears the appropriate IPEND bit.
However, the relevant SIC_ISR bit is not cleared unless the inter-
rupt service routine clears the mechanism that generated Interrupt
A, or if the process of servicing the interrupt clears this bit.

It should be noted that emulation, reset, NMI, and exception events, as
well as hardware error (1VHW) and core timer (IVTMR) interrupt requests,
enter the interrupt processing chain at the ILAT level and are not affected
by the system-level interrupt registers (SIC_IWR, SIC_ISR, SIC_IMASK,
SIC_IARX).

If multiple interrupt sources share a single core interrupt, then the inter-
rupt service routine (ISR) must identify the peripheral that generated the
interrupt. The ISR may then need to interrogate the peripheral to deter-
mine the appropriate action to take.

System Peripheral Interrupts

The processor system has numerous peripherals, which therefore require
many supporting interrupts. Table 4-7 lists:

e The Peripheral Interrupt source

* The Peripheral Interrupt ID used in the System Interrupt Assign-
ment registers (SIC_IARx). See “System Interrupt Assignment

Registers (SIC_IARx)” on page 4-29.

e The general-purpose interrupt of the core to which the interrupt
maps at reset

e The Core Interrupt ID used in the System Interrupt Assignment

registers (SIC_IARx). See “System Interrupt Assignment Registers
(SIC_IARx)” on page 4-29.

4-22 ADSP-BF533 Blackfin Processor Hardware Reference



Program Sequencer

EMU
RESET
I NMI
| EVX
"INTERRUPT IVTMR
A" | IVHW
(5 PERIPHERAL |
5 INTERRUPT | CORE CORE
REQUESTS SYSTEM ASSIGN CORE INTERRUPT EVENT
INTERRUPT :> SYSTEM ||::> STATUS :> MASK VECTOR
MASK PRIORITY (ILAT) TABLE
(SIC_IMASK) (SIC_IARO..2)| | (IMASK) (EVT[15:0])
| 7y
|
|
SYSTEM SYSTEM : CORE
WAKEUP STATUS PENDING
(SIC_IWR) (SIC_ISR) I (IPEND)
|
|
TO DYNAMIC POWER I
— MANAGEMENT |
CONTROLLER I
|
SYSTEM INTERRUPT CONTROLLER | CORE EVENT CONTROLLER
|
NOTE: NAMES IN PARENTHESES ARE MEMORY-MAPPED REGISTERS.
Figure 4-5. Interrupt Processing Block Diagram
Table 4-7. Peripheral Interrupt Source Reset State
Peripheral Interrupt Source Peripheral General-purpose Core
Interrupt ID Interrupt (Assignment |Interrupt ID
at Reset)
PLL Wakeup Interrupt 0 IVG7 0
DMA Error (generic) 1 IVG7 0
PPI Error Interrupt 2 IvVG7 0
SPORTO Error Interrupt 3 IvVG7 0
SPORTT1 Error Interrupt 4 IVG7 0
SPI Error Interrupt 5 IVG7 0
UART Error Interrupt 6 IVG7 0
Real-Time Clock Interrupts (alarm, 7 IVGS8 1
second, minute, hour, countdown)
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Table 4-7. Peripheral Interrupt Source Reset State (Contd)

Peripheral Interrupt Source Peripheral General-purpose Core
Interrupt ID Interrupt (Assignment |Interrupt ID
at Reset)
DMA 0 Interrupt (PPI) 8 IVGS8 1
DMA 1 Interrupt (SPORT0 RX) 9 IVG9 2
DMA 2 Interrupt (SPORTO TX) 10 IVGY 2
DMA 3 Interrupt (SPORT1 RX) 11 1IVG9 2
DMA 4 Interrupt (SPORT1 TX) 12 1IVG9 2
DMA 5 Interrupt (SPI) 13 IVG10 3
DMA 6 Interrupt (UART RX) 14 IVG10 3
DMA 7 Interrupt (UART TX) 15 IVG10 3
TimerO Interrupt 16 IVG11 4
Timerl Interrupt 17 IVG11 4
Timer2 Interrupt 18 IVG11 4
PF Interrupt A 19 IVG12 5
PF Interrupt B 20 IVG12 5
DMA 8/9 Interrupt (Memory DMA | 21 IVG13 6
Stream 0)
DMA 10/11 Interrupt (Memory 22 IVG13 6
DMA Stream 1)
Software Watchdog Timer Interrupt | 23 IVG13 6
Reserved 24-31 - -

The peripheral interrupt structure of the processor is flexible. By default
upon reset, multiple peripheral interrupts share a single, general-purpose
interrupt in the core, as shown in Table 4-7.

An interrupt service routine that supports multiple interrupt sources must
interrogate the appropriate system memory mapped registers (MMRs) to
determine which peripheral generated the interrupt.
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If the default assignments shown in Table 4-7 are acceptable, then inter-
rupt initialization involves only:

* Initialization of the core Event Vector Table (EVT) vector address
entries

* Initialization of the IMASK register

e Unmasking the specific peripheral interrupts in SIC_IMASK that the
system requires

SIC_IWR Register

The System Interrupt Wakeup-Enable register (SIC_IWR) provides the
mapping between the peripheral interrupt source and the Dynamic Power
Management Controller (DPMC). Any of the peripherals can be config-
ured to wake up the core from its idled state to process the interrupt,
simply by enabling the appropriate bit in the System Interrupt
Wakeup-enable register (SIC_IWR, refer to Figure 4-6). If a peripheral
interrupt source is enabled in SIC_IWR and the core is idled, the interrupt
causes the DPMC to initiate the core wakeup sequence in order to process
the interrupt. Note this mode of operation may add latency to interrupt
processing, depending on the power control state. For further discussion
of power modes and the idled state of the core, see Chapter 8, “Dynamic
Power Management”.

By default, all interrupts generate a wakeup request to the core. However,
for some applications it may be desirable to disable this function for some
peripherals, such as for a SPORTx Transmit Interrupt.

The SIC_IWR register has no effect unless the core is idled. The bits in this
register correspond to those of the System Interrupt Mask (SIC_IMASK)
and Interrupt Status (SIC_ISR) registers.
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After reset, all valid bits of this register are set to 1, enabling the wakeup
function for all interrupts that are not masked. Before enabling interrupts,
configure this register in the reset initialization sequence. The SIC_IWR
register can be read from or written to at any time. To prevent spurious or
lost interrupt activity, this register should be written to only when all
peripheral interrupts are disabled.

Note the wakeup function is independent of the interrupt mask
function. If an interrupt source is enabled in SIC_IWR but masked
off in STC_IMASK, the core wakes up if it is idled, but it does not
generate an interrupt.

System Interrupt Wakeup-enable Register (SIC_IWR)
For all bits, 0 - Wakeup function not enabled, 1 - Wakeup function enabled

31 30 29 28 27 26 25 24 23 22 21 20 19 18217 16

oreootzs [ [ [ [ [T L] [ ] ] eseonerereees
Software Watchdog Timer Wakeup Timer 0 Wakeup
Memory DMA Stream 1 Wakeup L Timer 1 Wakeup
Memory DMA Stream 0 Wakeup Timer 2 Wakeup

PF Wakeup A

PF Wakeup B

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ENENENEN (NENENEN ENENENEN iNENENEN

DMA7 Wakeup PLL Wakeup
(UART TX) DMA Error (generic)
DMA6 Wakeup Wakeup
(UARTRX) —— —  PPI Error Wakeup
DMAS5 Wakeup (SPI) -——— SPORTO Error Wakeup
DMA4 Wakeup (SPORT1 TX) L SPORT1 Error Wakeup
DMA3 Wakeup (SPORT1 RX) — L SPI Error Wakeup
DMA2 Wakeup (SPORTO TX) UART Error Wakeup
DMA1 Wakeup (SPORTO0 RX

P( ) Real-Time Clock Wakeup

DMAO Wakeup (PPI)

Figure 4-6. System Interrupt Wakeup-enable Register
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SIC_ISR Register

The System Interrupt Controller (SIC) includes a read-only status regis-
ter, the System Interrupt Status register (SIC_ISR), shown in Figure 4-7.
Each valid bit in this register corresponds to one of the peripheral inter-
rupt sources. The bit is set when the SIC detects the interrupt is asserted
and cleared when the SIC detects that the peripheral interrupt input has
been deasserted. Note for some peripherals, such as programmable flag
asynchronous input interrupts, many cycles of latency may pass from the
time an interrupt service routine initiates the clearing of the interrupt
(usually by writing a system MMR) to the time the SIC senses that the
interrupt has been deasserted.

Depending on how interrupt sources map to the general-purpose interrupt
inputs of the core, the interrupt service routine may have to interrogate
multiple interrupt status bits to determine the source of the interrupt.
One of the first instructions executed in an interrupt service routine
should read SIC_ISR to determine whether more than one of the peripher-
als sharing the input has asserted its interrupt output. The service routine
should fully process all pending, shared interrupts before executing the
RTI, which enables further interrupt generation on that interrupt input.

When an interrupt’s service routine is finished, the RTI instruction
clears the appropriate bit in the IPEND register. However, the rele-
vant SIC_ISR bit is not cleared unless the service routine clears the
mechanism that generated the interrupt.

Many systems need relatively few interrupt-enabled peripherals, allowing
each peripheral to map to a unique core priority level. In these designs,
SIC_ISR will seldom, if ever, need to be interrogated.

The SIC_ISR register is not affected by the state of the System Interrupt
Mask register (SIC_IMASK) and can be read at any time. Writes to the
SIC_ISR register have no effect on its contents.
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System Interrupt Status Register (SIC_ISR)
For all bits, 0 - Deasserted, 1 - Asserted

31 30 29 28 27 26 25 24 23 22 21 20 19 18217 16
0xFFCO 0120 Io |o |o |o Io |o |o |o Io |o |o |o Io |o |o |o | Reset = 0x0000 0000

Software Watchdog Timer Interrupt 4 L Timer 0 Interrupt

Memory DMA Stream 1 Interrupt Timer 1 Interrupt

Memory DMA Stream 0 Interrupt Timer 2 Interrupt
PF Interrupt A
PF Interrupt B

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0

[ofofofofofofofofofofofofofofo]o]

DMA? Interrupt PLL Wakeup Interrupt
(UART TX) DMA Error (generic)
DMAG Interrupt Interrupt

(UART RX) PPI Error Interrupt

DMAS Interrupt (SPI) SPORTO Error Interrupt
DMA4 Interrupt (SPORT1 TX) SPORT1 Error Interrupt
DMAS Interrupt (SPORT1 RX) — L SPIError Interrupt

DMAZ2 Interrupt (SPORTO TX) UART Error Interrupt
DMAT1 Interrupt (SPORTO0 RX) .

DMAO Interrupt (PPI) Real-Time Clock Interrupts

-

Figure 4-7. System Interrupt Status Register

SIC_IMASK Register

The System Interrupt Mask register (SIC_IMASK, shown in Figure 4-8)
allows masking of any peripheral interrupt source at the System Interrupt
Controller (SIC), independently of whether it is enabled at the peripheral
itself.

A reset forces the contents of SIC_IMASK to all Os to mask off all peripheral
interrupts. Writing a 1 to a bit location turns off the mask and enables the
interrupt.
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Although this register can be read from or written to at any time (in
Supervisor mode), it should be configured in the reset initialization
sequence before enabling interrupts.

System Interrupt Mask Register (SIC_IMASK)
For all bits, 0 - Interrupt masked, 1 - Interrupt enabled

31 30 29 28 27 26 25 24 23 22 21 20 19 18217 16
0xFFCO0 010C Io |o |o |o Io |o |o |o Io |o |o |o Io |o |o |o | Reset = 0x0000 0000

L Timer 0 Interrupt
Timer 1 Interrupt

Software Watchdog Timer Interrupt ——— Timer 2 Interrupt
Memory DMA Stream 1 Interrupt ———— PF Interrupt A
Memory DMA Stream O Interrupt ——— | PF Interrupt B

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

fofofolofofofofofofofofodofo]o]o]

DMA? Interrupt L PLL Wakeup Interrupt
(UART TX) DMA Error (generic)

DMAG Interrupt Interrupt

(UART RX) PPI Error Interrupt
DMAS5 Interrupt (SPI) L——————— SPORTO Error Interrupt
DMAA4 Interrupt (SPORT1 TX) L SPORT1 Error Interrupt
DMAS3 Interrupt (SPORT1 RX) — L——————————SPI Error Interrupt
DMA2 Interrupt (SPORTO TX) —— UART Error Interrupt

DMAT1 Interrupt (SPORTO0 RX)
DMAO Interrupt (PPI)

Real-Time Clock Interrupts

Figure 4-8. System Interrupt Mask Register

System Interrupt Assignment Registers (SIC_IARX)

The relative priority of peripheral interrupts can be set by mapping the

peripheral interrupt to the appropriate general-purpose interrupt level in
the core. The mapping is controlled by the System Interrupt Assignment
register settings, as detailed in Figure 4-9, Figure 4-10, and Figure 4-11.
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If more than one interrupt source is mapped to the same interrupt, they
are logically OR’ed, with no hardware prioritization. Software can priori-
tize the interrupt processing as required for a particular system

application.

®

For general-purpose interrupts with multiple peripheral interrupts
assigned to them, take special care to ensure that software correctly
processes all pending interrupts sharing that input. Software is
responsible for prioritizing the shared interrupts.

System Interrupt Assignment Register 0 (SIC_IARO)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0xFFCO0 0110 Io Io Io |1 Io Io Io Io IO Io Io Io Io Io Io Io IReset—0x10000000

T
Real-Time Clock ‘— SPORT1 Error Interrupt
Interrupt IVG select

IVG select SPI Error Interrupt
UART Error Interrupt ———— IVG select
IVG select

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0

fo[ofo oo fo]o |°I°|0 [o Jofo oo |°I

I fl Il
SPORTO Error Interrupt ] l— PLL Wakeup Interrupt
IVG select IVG select
PPI Error Interrupt — DMA Error (generic) Interrupt
IVG select IVG select
Figure 4-9. System Interrupt Assignment Register 0
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System Interrupt Assignment Register 1 (SIC_IAR1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
0xFFCO0 0114 0|0|1 |1 0|0|1 |1 °|° |1 |1 o|o|1 IOIReset=0x33322221
| | |
DMA7 (UART TX) L DMA4 (SPORT1 TX) Interrupt
Interrupt IVG select
IVG select
DMAS5 (SPI) Interrupt
DMAG6 (UART RX) Interrupt IVG select
IVG select
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|0|0|1|o 0|0|1|o o|o|1|o|o|o|o|1|
| | | I 1 |
DMA3 (SPORT1 RX) DMAO (PPI) Interrupt
Interrupt IVG select
IVG select
DMA2 (SPORTO TX) Interrupt DMA1 (SPORTO RX) Interrupt
IVG select IVG select

Figure 4-10. System Interrupt Assignment Register 1

System Interrupt Assignment Register 2 (SIC_IAR2)

31 30 29 28 27

26 25 24 23 22 21 20 19 18 17 16

OxFFC0 0118 |0|1|1 |0|0|1 |1 |o 0|1 |1|0 0|1|0|1 Reset = 0x6665 5444
| I

Software Watchdog Timer

Interrupt \— R/FGB Ir|1terrupt

IVG select select

Memory DMA Stream 1 Interrupt Memory DMA

IVG select ISVtE;ean; Otlnterrupt
selec

15 14 13 12 11

CHENENEN BN
| I

i0 9 8 7 6 5 4 3 2 1 0
tJoJofofr JoJofo]r]o]o]
Il I |

PF A Interrupt —— 1
IVG select

L Timer 0 Interrupt
IVG select

Timer 2 Interrupt
IVG select

Figure 4-11. System Inter

Timer 1 Interrupt
IVG select

rupt Assignment Register 2
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These registers can be read from or written to at any time in Supervisor
mode. It is advisable, however, to configure them in the Reset interrupt
service routine before enabling interrupts. To prevent spurious or lost
interrupt activity, these registers should be written to only when all
peripheral interrupts are disabled.

Table 4-8 defines the value to write in SIC_IARx to configure a peripheral
for a particular IVG priority.

Table 4-8. IVG Select Definitions

General-Purpose Interrupt |Value in SIC_IAR
IvVG7 0
IVGS 1
IVGY 2
IVG10 3
IVG11 4
IVG12 5
IVG13 6
IVG1l4 7
IVG15 8
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Core Event Contiroller Registers

The Event Controller uses three MMRs to coordinate pending event
requests. In each of these MMREs, the 16 lower bits correspond to the 16
event levels (for example, bit 0 corresponds to “Emulator mode”). The
registers are:

* IMASK - interrupt mask
* ILAT - interrupt latch
e IPEND - interrupts pending

These three registers are accessible in Supervisor mode only.

IMASK Register

The Core Interrupt Mask register (IMASK) indicates which interrupt levels
are allowed to be taken. The IMASK register may be read and written in
Supervisor mode. Bits [15:5] have significance; bits [4:0] are hard-coded
to 1 and events of these levels are always enabled. If IMASKIN] == 1 and
ILAT[N] == 1, then interrupt N will be taken if a higher priority is not
already recognized. If IMASK[N] == 0, and ILATLN] gets set by interrupt N,
the interrupt will not be taken, and 1LAT[N] will remain set.
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Core Interrupt Mask Register (IMASK)
For all bits, 0 - Interrupt masked, 1 - Interrupt enabled

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

OxFFE0 2104 [o o [o JoJo]o]o]o]ofo[o]ofo]o]o]o] Reset=oxo000001F
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
fofofofofofofofofofofofufefe]r]r]

IVG15 J \—IVHW (Hardware Error)

IVG14 IVTMR (Core Timer)

IVG13 IVG7

IVG12 IVG8

IVG11 IVG9

IVG10

Figure 4-12. Core Interrupt Mask Register

ILAT Register

Each bit in the Core Interrupt Latch register (ILAT) indicates that the cor-
responding event is latched, but not yet accepted into the processor (see
Figure 4-13). The bit is reset before the first instruction in the corre-
sponding ISR is executed. At the point the interrupt is accepted, ILATIN]
will be cleared and IPENDLN] will be set simultaneously. The ILAT register
can be read in Supervisor mode. Writes to ILAT are used to clear bits only
(in Supervisor mode). To clear bit N from ILAT, first make sure that
IMASKIN] == 0, and then write ILAT[N] = 1. This write functionality to
ILAT is provided for cases where latched interrupt requests need to be
cleared (cancelled) instead of serviced.

The RAISE instruction can be used to set ILAT[15] through ILAT[5], and
also TLAT[2] or TLAT[1].

Only the JTAG TRST pin can clear TLAT[0].
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Core Interrupt Latch Register (ILAT)
Reset value for bit 0 is emulator-dependent. For all bits, 0 - Interrupt not latched, 1 - Interrupt latched

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
0xFFEO 210C |o |o |o |o |o |o |o |o |o |o |o |o |o |o |o |o | Reset = 0x0000 000X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
o fofo Jo fo JoJoJoJofo Jofofo oo x|

IVG15 J EMU (Emulation) - RO
IVG14 RST (Reset) - RO
IVG13 NMI (Nonmaskable Interrupt) - RO
IVG12 EVX (Exception) - RO
IVG11 IVHW (Hardware Error)
IVG10 L IVTMR (Core Timer)
IVG9 IVG7
IVG8

Figure 4-13. Core Interrupt Latch Register

IPEND Register

The Core Interrupt Pending register (IPEND) keeps track of all currently
nested interrupts (see Figure 4-14). Each bit in IPEND indicates that the
corresponding interrupt is currently active or nested at some level. It may
be read in Supervisor mode, but not written. The IPEND[4] bit is used by
the Event Controller to temporarily disable interrupts on entry and exit to
an interrupt service routine.

When an event is processed, the corresponding bit in IPEND is set. The
least significant bit in IPEND that is currently set indicates the interrupt
that is currently being serviced. At any given time, IPEND holds the current
status of all nested events.
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Core Interrupt Pending Register (IPEND)
RO. For all bits except bit 4, 0 - No interrupt pending, 1 - Interrupt pending or active

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
0XFFEO 2108 |o |o |o |o |o |o |o |o |o |o |o |o |o |o |o |o | Reset = 0x0000 0010

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
o fofo Jo foJofo o Jofofo]tfofofolo]

IVG15 J EMU (Emulation)

IVG14 RST (Reset)

IVG13 NMI (Nonmaskable Interrupt)
IVG12 EVX (Exception)

IVG11 Global Interrupt Disable
IVG10 0 - Interrupts globally enabled

1 - Interrupts globally disabled
Set and cleared by Event Con-

troller only
IVHW (Hardware Error)

IVTMR (Core Timer)
IVG7
IVG8

IVG9

Figure 4-14. Core Interrupt Pending Register

Global Enabling/Disabling of Interrupts

General-purpose interrupts can be globally disabled with the CLT Dreg
instruction and re-enabled with the STI Dreg instruction, both of which
are only available in Supervisor mode. Reset, NMI, emulation, and excep-
tion events cannot be globally disabled. Globally disabling interrupts
clears IMASK[15:5] after saving IMASK’s current state. See “Enable Inter-
rupts” and “Disable Interrupts” in the External Event Management
chapter in Blackfin Processor Programming Reference.

When program code is too time critical to be delayed by an interrupt, dis-
able the general-purpose interrupts, but be sure to re-enable them at the
conclusion of the code sequence.
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Event Vector Table

The Event Vector Table (EVT) is a hardware table with sixteen entries
that are each 32 bits wide. The EVT contains an entry for each possible
core event. Entries are accessed as MMRs, and each entry can be pro-
grammed at reset with the corresponding vector address for the interrupt
service routine. When an event occurs, instruction fetch starts at the
address location in the EVT entry for that event.

The processor architecture allows unique addresses to be programmed into
each of the interrupt vectors; that is, interrupt vectors are not determined
by a fixed offset from an interrupt vector table base address. This approach

minimizes latency by not requiring a long jump from the vector table to
the actual ISR code.

Table 4-9 lists events by priority. Each event has a corresponding bit in
the event state registers ILAT, IMASK, and IPEND.

Table 4-9. Core Event Vector Table

Event Number Event Class Name MMR Location  |Notes

EVTO Emulation EMU 0xFFEO 2000 Highest priority. Vec-
tor address is provided
by JTAG.

EVT1 Reset RST 0xFFEO 2004

EVT2 NMI NMI 0xFFEO0 2008

EVT3 Exception EVX 0xFFEO 200C

EVT4 Reserved Reserved 0xFFEO0 2010 Reserved vector

EVT5 Hardware Error | IVHW 0xFFEO0 2014

EVT6 Core Timer IVTMR 0xFFEO0 2018

EVT7 Interrupt 7 IVG7 0xFFE0 201C

EVT8 Interrupt 8 IVGS8 0xFFE0 2020

EVT9 Interrupt 9 IVGY 0xFFEO 2024
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Table 4-9. Core Event Vector Table (Cont’d)

Event Number  |Event Class Name MMR Location |Notes

EVTI10 Interrupt 10 IVG10 0xFFEO0 2028

EVTI11 Interrupt 11 IVG11 0xFFE0 202C

EVT12 Interrupt 12 IVG12 0xFFEO 2030

EVT13 Interrupt 13 IVG13 0xFFE0 2034

EVT14 Interrupt 14 IVG14 0xFFE0 2038

EVT15 Interrupt 15 IVG15 0xFFEO0 203C Lowest priority

Emulation

An emulation event causes the processor to enter Emulation mode, where
instructions are read from the JTAG interface. It is the highest priority
interrupt to the core.

For detailed information on emulation, see Chapter 21, “Debug”, in
Blackfin Processor Programming Reference.

Reset

The reset interrupt (RST) can be initiated via the RESET pin or through
expiration of the watchdog timer. The reset vector can be reconfigured to
another address during runtime and therefore, an application can vector to
an address other than 0xFFAO 0000 (ADSP-BF533) or 0xFFA0 8000
(ADSP-BF531/ADSP-BF532) after a software reset. If the reset vector is
modified during runtime, ensure that the reset vector address within the
EVTT1 register is a valid instruction address. This location differs from that
of other interrupts in that its content is read-only. Writes to this address
change the register but do not change where the processor vectors upon
reset. The processor always vectors to the reset vector address upon reset.
For more information, see “Reset State” on page 3-10 and “Booting

Methods” on page 3-18.
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The core has an output that indicates that a double fault has occurred.
This is a nonrecoverable state. The system (via the SWRST register) can be
programmed to send a reset request if a double fault condition is detected.
Subsequently, the reset request forces a system reset for core and

peripherals.

The reset vector is determined by the processor system. It points to the
start of the on-chip boot ROM, or to the start of external asynchronous
memory, depending on the state of the BMODE[1:0] pins. Refer to

Table 4-10.

Table 4-10. Reset Vector Addresses

BMODE([1:0]

Execution Start

Address

Boot Source

Bypass boot ROM; execute from 16-bit wide exter- | 00 0x2000 0000

nal memory (Async Bank 0)

Use boot ROM to boot from 8-bit or 16-bit flash

01

0xEF00 0000

Use boot ROM to boot from 8-bit SPI host device

10

0xEF00 0000

Use boot ROM to configure and load boot code

11

0xEF00 0000

from SPI serial EEPROM (8-, 16-, or 24-bit address

range)

If the BMODEL1:0] pins indicate either booting from flash, SPI flash, SPI
host, or serial EEPROM, the reset vector points to the start of the internal
boot ROM, where a small bootstrap kernel resides. The bootstrap code
reads the System Reset Configuration register (SYSCR) to determine the
value of the BMODE[1:0] pins, which determine the appropriate boot
sequence. For information about the boot ROM, see “Booting Methods”
on page 3-18.
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If the BMODE[1:0] pins indicate to bypass boot ROM, the reset vector
points to the start of the external asynchronous memory region. In this
mode, the internal boot ROM is not used. To support reads from this
memory region, the External Bus Interface Unit (EBIU) uses the default
external memory configuration that results from hardware reset.

NMI (Nonmaskable Interrupt)

The NMI entry is reserved for a nonmaskable interrupt, which can be gen-
erated by the Watchdog timer or by the NMI input signal to the
processor. NMI is a level-sensitive pin; when not used, it should always be
pulled low for ADSP-BF531/2/3 processors. Only events that require
immediate processor attention are appropriate as an NMI entry. For
example, a powerdown warning is an appropriate NMI event.

If an exception occurs in an event handler that is already servicing
an Exception, NMI, Reset, or Emulation event, this will trigger a
double fault condition, and the address of the excepting instruction
will be written to RETX.

Exceptions

Exceptions are synchronous to the instruction stream. In other words, a
particular instruction causes an exception when it attempts to finish exe-
cution. No instructions after the offending instruction are executed before
the exception handler takes effect.

Many of the exceptions are memory related. For example, an exception is
given when a misaligned access is attempted, or when a cacheability pro-
tection lookaside buffer (CPLB) miss or protection violation occurs.
Exceptions are also given when illegal instructions or illegal combinations
of registers are executed.
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An excepting instruction may or may not commit before the exception
event is taken, depending on if it is a service type or an error type
exception.

An instruction causing a service type event will commit, and the address
written to the RETX register will be the next instruction after the excepting
one. An example of a service type exception is the single step.

An instruction causing an error type event cannot commit, so the address
written to the RETX register will be the address of the offending instruc-
tion. An example of an error type event is a CPLB miss.

Usually the RETX register contains the correct address to return to.
To skip over an excepting instruction, take care in case the next
address is not simply the next linear address. This could happen
when the excepting instruction is a loop end. In that case, the
proper next address would be the loop top.

The EXCAUSEL5:0] field in the Sequencer Status register (SEQSTAT) is writ-
ten whenever an exception is taken, and indicates to the exception handler
which type of exception occurred. Refer to Table 4-11 for a list of events

that cause exceptions.

If an exception occurs in an event handler that is already servicing
an Exception, NMI, Reset, or Emulation event, this will trigger a
double fault condition, and the address of the excepting instruction
will be written to RETX.
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Table 4-11. Events That Cause Exceptions

Exception EXCAUSE |Type: Notes/Examples
[5:0] (E) Error
(S) Service!

Force Exception m field S Instruction provides 4 bits of EXCAUSE.

instruction EXCPT

with 4-bit m field

Single step 0x10 S When the processor is in single step mode,
every instruction generates an exception.
Primarily used for debugging.

Exception caused by a | 0x11 S The processor takes this exception when

trace buffer full condi- the trace buffer overflows (only when

tion enabled by the Trace Unit Control regis-
ter).

Undefined instruction | 0x21 E May be used to emulate instructions that
are not defined for a particular processor
implementation.

Illegal instruction 0x22 E See section for multi-issue rules in the

combination Blackfin Processor Programming Reference.

Data access CPLB pro- | 0x23 E Attempted read or write to Supervisor

tection violation resource, or illegal data memory access.
Supervisor resources are registers and
instructions that are reserved for Supervi-
sor use: Supervisor only registers, all
MMREs, and Supervisor only instructions.
(A simultaneous, dual access to two MMRs
using the data address generators generates
this type of exception.) In addition, this
entry is used to signal a protection viola-
tion caused by disallowed memory access,
and it is defined by the Memory Manage-
ment Unit (MMU) cacheability protection
lookaside buffer (CPLB).

Data access mis- 0x24 E Attempted misaligned data memory or

aligned address viola- data cache access.

tion

Unrecoverable event | 0x25 E For example, an exception generated while

processing a previous exception.
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Table 4-11. Events That Cause Exceptions (Contd)

CPLB miss

Exception EXCAUSE |Type: Notes/Examples
[5:0] (E) Error
(S) Service!

Data access CPLB miss | 0x26 E Used by the MMU to signal a CPLB miss
on a data access.

Data access multiple | 0x27 E More than one CPLB entry matches data

CPLB hits fetch address.

Exception caused by 0x28 E There is a watchpoint match, and one of

an emulation watch- the EMUSW bits in the Watchpoint

point match Instruction Address Control register
(WPIACTL) is set.

Instruction fetch mis- | 0x2A E Attempted misaligned instruction cache

aligned address viola- fetch. On a misaligned instruction fetch

tion exception, the return address provided in
RETX is the destination address which is
misaligned, rather than the address of the
offending instruction. For example, if an
indirect branch to a misaligned address
held in PO is attempted, the return address
in RETX is equal to PO, rather than to the
address of the branch instruction. (Note
this exception can never be generated from
PC-relative branches, only from indirect
branches.)

Instruction fetch 0x2B E Illegal instruction fetch access (memory

CPLB protection vio- protection violation).

lation

Instruction fetch 0x2C E CPLB miss on an instruction fetch.
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Table 4-11. Events That Cause Exceptions (Contd)

Exception EXCAUSE |Type: Notes/Examples
[5:0] (E) Error
(S) Service!
Instruction fetch mul- | 0x2D E More than one CPLB entry matches
tiple CPLB hits instruction fetch address.
Illegal use of supervi- | 0x2E E Attempted to use a Supervisor register or
sor resource instruction from User mode. Supervisor

resources are registers and instructions that
are reserved for Supervisor use: Supervisor
only registers, all MMRs, and Supervisor
only instructions.

1 For services (S), the return address is the address of the instruction that follows the exception.
For errors (E), the return address is the address of the excepting instruction.

If an instruction causes multiple exceptions, only the exception with the
highest priority is taken. Table 4-12 ranks exceptions by descending

priority.

Table 4-12. Exceptions by Descending Priority

Priority Exception EXCAUSE
1 Unrecoverable Event 0x25
2 I-Fetch Multiple CPLB Hits 0x2D
3 I-Fetch Misaligned Access 0x2A
4 I-Fetch Protection Violation 0x2B
5 I-Fetch CPLB Miss 0x2C
6 I-Fetch Access Exception 0x29
7 Watchpoint Match 0x28
8 Undefined Instruction 0x21
9 Illegal Combination 0x22
10 Illegal Use of Protected Resource 0x2E
11 DAGO Multiple CPLB Hits 0x27
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Table 4-12. Exceptions by Descending Priority (Cont'd)

Priority Exception EXCAUSE
12 DAGO Misaligned Access 0x24
13 DAGO Protection Violation 0x23
14 DAGO CPLB Miss 0x26
15 DAG]1 Multiple CPLB Hits 0x27
16 DAG]1 Misaligned Access 0x24
17 DAGT! Protection Violation 0x23
18 DAG1 CPLB Miss 0x26
19 EXCPT Instruction m field
20 Single Step 0x10
21 Trace Buffer Ox11

Exceptions While Executing an Exception Handler

While executing the exception handler, avoid issuing an instruction that
generates another exception. If an exception is caused while executing
code within the exception handler, the NMI handler, the reset vector, or
in emulator mode:

The excepting instruction is not committed. All writebacks from
the instruction are prevented.

The generated exception is not taken.

The EXCAUSE field in SEQSTAT is updated with an unrecoverable
event code.

The address of the offending instruction is saved in RETX. Note if
the processor were executing, for example, the NMI handler, the
RETN register would not have been updated; the excepting instruc-
tion address is always stored in RETX.
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To determine whether an exception occurred while an exception handler
was executing, check SEQSTAT at the end of the exception handler for the
code indicating an “unrecoverable event” (EXCAUSE = 0x25). If an unre-
coverable event occurred, register RETX holds the address of the most
recent instruction to cause an exception. This mechanism is not intended
for recovery, but rather for detection.

Hardware Error Interrupt

The Hardware Error Interrupt indicates a hardware error or system mal-
function. Hardware errors occur when logic external to the core, such as a
memory bus controller, is unable to complete a data transfer (read or
write) and asserts the core’s error input signal. Such hardware errors
invoke the Hardware Error Interrupt (interrupt IVHW in the Event Vector
Table (EVT) and ILAT, IMASK, and IPEND registers). The Hardware Error
Interrupt service routine can then read the cause of the error from the
5-bit HWERRCAUSE field appearing in the Sequencer Status register (SEQ-
STAT) and respond accordingly.

The Hardware Error Interrupt is generated by:
* Bus parity errors

e Internal error conditions within the core, such as Performance
Monitor overflow

e DPeripheral errors

¢ Bus timeout errors
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The list of supported hardware conditions, with their related HWERRCAUSE
codes, appears in Table 4-13. The bit code for the most recent error
appears in the HWERRCAUSE field. If multiple hardware errors occur simulta-
neously, only the last one can be recognized and serviced. The core does
not support prioritizing, pipelining, or queuing multiple error codes. The
Hardware Error Interrupt remains active as long as any of the error condi-
tions remain active.

Table 4-13. Hardware Conditions Causing Hardware Error Interrupts

binations.

Hardware HWERRCAUSE |HWERRCAUSE |Notes/Examples

Condition (Binary) (Hexadecimal)

System MMR 0b00010 0x02 An error can occur if an invalid Sys-

Error tem MMR location is accessed, if a
32-bit register is accessed with a
16-bit instruction, or if a 16-bit
register is accessed with a 32-bit
instruction.

External Memory | 0b00011 0x03 An access to reserved or uninitialized

Addressing Error memory was attempted.

Performance 0b10010 0x12 Refer to “Performance Monitor Reg-

Monitor isters” on page A-9.

Overflow

RAISE 5 0b11000 0x18 Software issued a RAISE 5 instruction

instruction to invoke the Hardware Error Inter-
rupt (IVHW).

Reserved All other bit com-| All other values.

Core Timer

The Core Timer Interrupt (IVTMR) is triggered when the core timer value
reaches zero. See Chapter 15, “Timers”.
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General-Purpose Interrupts (IVG7-IVG15)

General-purpose interrupts are used for any event that requires processor
attention. For instance, a DMA controller may use them to signal the end
of a data transmission, or a serial communications device may use them to
signal transmission errors.

Software can also trigger general-purpose interrupts by using the RAISE
instruction. The RAISE instruction forces events for interrupts IVG15-1VG7,
IVTMR, IVHW, NMI, and RST, but not for exceptions and emulation (EVX and
EMU, respectively).

It is recommended to reserve the two lowest priority interrupts
(1vG15 and 1vG14) for software interrupt handlers.

Servicing Interrupts

The Core Event Controller (CEC) has a single interrupt queueing element
per event—a bit in the ILAT register. The appropriate ILAT bit is set when
an interrupt rising edge is detected (which takes two core clock cycles) and
cleared when the respective IPEND register bit is set. The IPEND bit indi-
cates that the event vector has entered the core pipeline. At this point, the
CEC recognizes and queues the next rising edge event on the correspond-
ing interrupt input. The minimum latency from the rising edge transition
of the general-purpose interrupt to the IPEND output assertion is three core
clock cycles. However, the latency can be much higher, depending on the
core’s activity level and state.

To determine when to service an interrupt, the controller logically ANDs
the three quantities in ILAT, IMASK, and the current processor priority
level.
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Servicing the highest priority interrupt involves these actions:

1. The interrupt vector in the Event Vector Table (EVT) becomes the
next fetch address. On an interrupt, most instructions currently in
the pipeline are aborted. On a service exception, all instructions
after the excepting instruction are aborted. On an error exception,
the excepting instruction and all instructions after it are aborted.

2. The return address is saved in the appropriate return register. The
return register is RETI for interrupts, RETX for exceptions, RETN for
NMIs, and RETE for debug emulation. The return address is the
address of the instruction after the last instruction executed from
normal program flow.

3. Processor mode is set to the level of the event taken. If the event is
an NMI, exception, or interrupt, the processor mode is Supervisor.
If the event is an emulation exception, the processor mode is
Emulation.

4. Before the first instruction starts execution, the corresponding
interrupt bit in ILAT is cleared and the corresponding bit in IPEND
is set. Bit IPEND[41] is also set to disable all interrupts until the
return address in RETI is saved.

Nesting of Interrupts

Interrupts are handled either with or without nesting.

Non-Nested Interrupts

If interrupts do not require nesting, all interrupts are disabled during the
interrupt service routine. Note, however, that emulation, NMI, and
exceptions are still accepted by the system.
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When the system does not need to support nested interrupts, there is no
need to store the return address held in RETI. Only the portion of the
machine state used in the interrupt service routine must be saved in the
Supervisor stack. To return from a non-nested interrupt service routine,
only the RTI instruction must be executed, because the return address is
already held in the RETI register.

Figure 4-15 shows an example of interrupt handling where interrupts are
globally disabled for the entire interrupt service routine.

INTERRUPTS DISABLED
DURING THIS INTERVAL.

EX2 A1 A2 In-2 | In1 In RTI

CYCLE: 1 2 3 4 5 6 m m+1 m+2 m+3 m+4

IF1 | A9 [A10 o [ n |12 |[... A [A4 [A5 [ Ae | A7

IF2 | A8 | A9 | A0 o |1 ... A3 | A4 | A5 | A6
WlIF3 | A7 | As | A5 0 | ... A3 | A4 | A5
g DEC | A6 | A7 | A8 A3 | A4
® A5 | A6 A3
u AC y e
Z|oFt | a4 | as a5~ RTI
o |DF2 | A3 | A4 | A5 In | RTI
o

EX1 | A2 | A3 | A4 In-1 RTI

A2

wB A0 | A1

In-3 | In-2 | In1 | In RTI

CYCLE 1: INTERRUPT IS LATCHED. ALL POSSIBLE INTERRUPT SOURCES DETERMINED.
CYCLE 2: INTERRUPT IS PRIORITIZED.

CYCLE 3: ALL INSTRUCTIONS ABOVE A2 ARE KILLED. A2 IS KILLED IF IT IS AN RTI OR CLI
INSTRUCTION. ISR STARTING ADDRESS LOOKUP OCCURS.

CYCLE 4: 10 (INSTRUCTION AT START OF ISR) ENTERS PIPELINE.

CYCLE M: WHEN THE RTI INSTRUCTION REACHES THE DF1 STAGE, INSTRUCTION A3 IS
FETCHED IN PREPARATION FOR RETURNING FROM INTERRUPT.

CYCLE M+4: RTI HAS REACHED WB STAGE, RE-ENABLING INTERRUPTS.

Figure 4-15. Non-Nested Interrupt Handling

Nested Interrupts

If nested interrupts are desired, the return address to the interrupted point
in the original interrupt service routine (ISR) must be explicitly saved and
subsequently restored when execution of the nested ISR has completed.

ADSP-BF533 Blackfin Processor Hardware Reference 4-51



Nesting of Interrupts

Nesting is enabled by pushing the return address currently held in RETI
to the Supervisor stack ([--SP]1 = RETI), which is typically done early in
the ISR prolog of the lower priority interrupt. This clears the global inter-
rupt disable bit IPEND[4], enabling interrupts. Next, all registers that are
modified by the interrupt service routine are saved onto the Supervisor
stack. Processor state is stored in the Supervisor stack, not in the User
stack. Hence, the instructions to push RETI ([--SP] = RETI) and pop RETI
(RETI = [SP++1) use the Supervisor stack.

Figure 4-16 illustrates that by pushing RETI onto the stack, interrupts can
be re-enabled during an interrupt service routine, resulting in a short
duration where interrupts are globally disabled.

INTERRUPTS DISABLED INTERRUPTS DISABLED
DURING THIS INTERVAL. DURING THIS INTERVAL.
CYCLE: 1 2 3 4 5 6 7 8 9 10 m  mt m+2 m+3  m+d mi5
IF1 | A9 | A10 PUSH 1 [ 12 | 1B |14 | 15 |16 |... A3 | A4 [ A5 | A6 | A7
IF2 | A8 | A9 |A10 PUSH| 1 [ 12 [ 13 |14 |15 |... A3 | A4 | A5 | A6
w| F3 | A7 |A8 | ag” PUSH| 1 | 12 |13 |14 | ... A3 | A4 | A5
2| pbEC | A6 | A7 | A8~ PUSH| 1 |12 | 1B | ... A3 | A4
<
Ol AC | A5 | A6 | AT PUSH| 11 | 12 RTI A3
4
= DF1 | A4 [A5 | A6 PUSH| 11 | ... |[popP |RT
o | DF2 | A3 | A4 | A5~ PUSH| ... | 1, |POP| RTI
o
EX1 | A2 |A3 | a4 In-1 | I, | POP | RTI
EX2 | A1 [A2 | A8 In2 [In4 | 1, | POP| RTI
wB A0 | A1 A2 In-3 | In-2 | In1 In POP | RTI

CYCLE 1: INTERRUPT IS LATCHED. ALL POSSIBLE INTERRUPT SOURCES DETERMINED.

CYCLE 2: INTERRUPT IS PRIORITIZED.

CYCLE 3: ALL INSTRUCTIONS ABOVE A2 ARE KILLED. A2 IS KILLED IF IT IS AN RTI OR CLI INSTRUCTION. ISR STARTING

ADDRESS LOOKUP OCCURS.

CYCLE 4: 10 (INSTRUCTION AT START OF ISR) ENTERS PIPELINE. ASSUME IT IS A PUSH RETI INSTRUCTION (TO ENABLE NESTING).
CYCLE 10: WHEN PUSH REACHES DF2 STAGE, INTERRUPTS ARE RE-ENABLED.

CYCLE M+1: WHEN THE POP RETI INSTRUCTION REACHES THE DF2 STAGE, INTERRUPTS ARE DISABLED.

CYCLE M+5: WHEN RTI REACHES THE WB STAGE, INTERRUPTS ARE RE-ENABLED.

Figure 4-16. Nested Interrupt Handling

4-52 ADSP-BF533 Blackfin Processor Hardware Reference



Program Sequencer

Example Prolog Code for Nested Interrupt Service Routine

Listing 4-2. Prolog Code for Nested ISR

/* Prolog code for nested interrupt service routine.

Push return address in RETI into Supervisor stack, ensuring that
interrupts are back on. Until now, interrupts have been
suspended.*/

ISR:

[--SP]1 = RETI ; /* Enables interrupts and saves return address to
stack */

[--SP] = ASTAT ;

[--SP] = FP

[-- SP] = (R7:0, P5:0)

/* Body of service routine. Note none of the processor resources
(accumulators, DAGs, loop counters and bounds) have been saved.
It is assumed this interrupt service routine does not use the
processor resources. */

Example Epilog Code for Nested Interrupt Service Routine

Listing 4-3. Epilog Code for Nested ISR

/* Epilog code for nested interrupt service routine.

Restore ASTAT, Data and Pointer registers. Popping RETI from
Supervisor stack ensures that interrupts are suspended between
load of return address and RTI. */

(R7:0, P5:0) = [SP++]

FP = [SP++]
ASTAT = [SP++]
RETI = [SP++]
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/* Execute RTI, which jumps to return address, re-enables inter-
rupts, and switches to User mode if this is the last nested
interrupt in service. */

RTT;

The RTI instruction causes the return from an interrupt. The return
address is popped into the RETI register from the stack, an action that sus-
pends interrupts from the time that RETI is restored until RTI finishes
executing. The suspension of interrupts prevents a subsequent interrupt
from corrupting the RETI register.

Next, the RTI instruction clears the highest priority bit that is currently set
in IPEND. The processor then jumps to the address pointed to by the value
in the RETI register and re-enables interrupts by clearing IPEND[4].

Logging of Nested Interrupt Requests

The System Interrupt Controller (SIC) detects level-sensitive interrupt
requests from the peripherals. The Core Event Controller (CEC) provides
edge-sensitive detection for its general-purpose interrupts (IVG7-1VG15).
Consequently, the SIC generates a synchronous interrupt pulse to the
CEC and then waits for interrupt acknowledgement from the CEC.

When the interrupt has been acknowledged by the core (via assertion of
the appropriate IPEND output), the SIC generates another synchronous
interrupt pulse to the CEC if the peripheral interrupt is still asserted. This
way, the system does not lose peripheral interrupt requests that occur dur-
ing servicing of another interrupt.

Multiple interrupt sources can map to a single core processor general-pur-
pose interrupt. Because of this, multiple pulse assertions from the SIC can
occur simultaneously, before, or during interrupt processing for an inter-

rupt event that is already detected on this interrupt input.
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For a shared interrupt, the IPEND interrupt acknowledge mechanism
described above re-enables all shared interrupts. If any of the shared inter-
rupt sources are still asserted, at least one pulse is again generated by the
SIC. The Interrupt Status registers indicate the current state of the shared
interrupt sources.

Exception Handling

Interrupts and exceptions treat instructions in the pipeline differently.

* When an interrupt occurs, all instructions in the pipeline are
aborted.

e When an exception occurs, all instructions in the pipeline after the
excepting instruction are aborted. For error exceptions, the except-
ing instruction is also aborted.

Because exceptions, NMIs, and emulation events have a dedicated return
register, guarding the return address is optional. Consequently, the PUSH

and POP instructions for exceptions, NMIs, and emulation events do not

affect the interrupt system.

Note, however, the return instructions for exceptions (RTX, RTN, and RTE)
do clear the Least Significant Bit (LSB) currently set in IPEND.

Deferring Exception Processing

Exception handlers are usually long routines, because they must discrimi-
nate among several exception causes and take corrective action
accordingly. The length of the routines may result in long periods during
which the interrupt system is, in effect, suspended.

To avoid lengthy suspension of interrupts, write the exception handler to
identify the exception cause, but defer the processing to a low priority
interrupt. To set up the low priority interrupt handler, use the Force
Interrupt / Reset instruction (RAISE).
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When deferring the processing of an exception to lower priority
interrupt 1VGx, the system must guarantee that I1VGx is entered
before returning to the application-level code that issued the excep-
tion. If a pending interrupt of higher priority than 1VGx occurs, it is
acceptable to enter the high priority interrupt before IVGx.

Example Code for an Exception Handler
Listing 4-4 is for an exception routine handler with deferred processing.
Listing 4-4. Exception Routine Handler With Deferred Processing
/* Determine exception cause by examining EXCAUSE field in SEQ-

STAT (first save contents of RO, PO, P1 and ASTAT in Supervisor
SP) */

[--SP] = RO
[--SP1 = PO
[--SP] = Pl
[--SP] = ASTAT ;
RO = SEQSTAT

/* Mask the contents of SEQSTAT, and leave only EXCAUSE in RO */
RO <<= 26

RO >>= 26

/* Using jump table EVTABLE, jump to the event pointed to by RO
*/

PO = RO ;

P1 = _EVTABLE ;

PO = P1 + ( PO KK 1)
RO =W L[ PO T (2)

Pl = RO ;

JUMP (PC + P1)

/* The entry point for an event is as follows. Here, processing
is deferred to low priority interrupt IVGl5. Also, parameter
passing would typically be done here. */
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_EVENTI:

RAISE 15 ;

JUMP.S _EXIT

/* Entry for event at IVGl4 */

_EVENTZ2:

RAISE 14

JUMP.S _EXIT

/* Comments for other events */

/* At the end of handler, restore RO, PO, P1 and ASTAT, and
return. */

_EXIT:

ASTAT = [SP++]
P1 = [SP++]

PO = [SP++] ;
RO = [SP++]
RTX

_EVTABLE:

.byte?2 addr_eventl;
.byte2 addr_event?;

.byte2 addr_eventN;

/* The jump table EVTABLE holds 16-bit address offsets for each
event. With offsets, this code is position independent and the
table is small.

R +
| addr_eventl | _EVTABLE

R TR +

| addr_event2 | _EVTABLE + 2
R +

! |
R +

| addr_eventN | _EVTABLE + 2N
R TR +

*/
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Example Code for an Exception Routine

Listing 4-5 provides an example framework for an interrupt routine
jumped to from an exception handler such as that described above.

Listing 4-5. Interrupt Routine for Handling Exception

[--SP] = RETI ; /* Push return address on stack. */

/* Put body of routine here.*/

RETI = [SP++] ; /* To return, pop return address and jump. */

RTI /* Return from interrupt. */

Example Code for Using Hardware Loops in an ISR

Listing 4-6 shows the optimal method of saving and restoring when using
hardware loops in an interrupt service routine.

Listing 4-6. Saving and Restoring With Hardware Loops

lThandler:

{Save other registers here>
[--SP] = LCO; /* save loop 0 */
[--SP] LBO;

[--SP] LTO;

<{Handler code here>
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/* If the handler uses Toop 0, it is a good idea to have

it leave LCO equal to zero at the end. Normally, this will
happen naturally as a loop is fully executed. If LCO == 0,
then LTO and LBO restores will not incur additional cycles.
I[f LCO != 0 when the following pops happen, each pop will
incur a ten-cycle “replay” penalty. Popping or writing LCO
always incurs the penalty. */

LTO = [SP++1;
LBO = [SP++];
LCO = [SP++]; /* This will cause a “replay,” that is, a

ten-cycle refetch. */
{Restore other registers here>

RTI;

Additional Usability Issues

The following sections describe additional usability issues.

Executing RTX, RTN, or RTE in a Lower Priority Event

Instructions RTX, RTN, and RTE are designed to return from an exception,
NMI, or emulator event, respectively. Do not use them to return from a
lower priority event. To return from an interrupt, use the RTI instruction.
Failure to use the correct instruction may produce unintended results.

In the case of RTX, bit IPEND[3] is cleared. In the case of RTI, the bit of the
highest priority interrupt in IPEND is cleared.
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Allocating the System Stack

The software stack model for processing exceptions implies that the
Supervisor stack must never generate an exception while the exception
handler is saving its state. However, if the Supervisor stack grows past a
CPLB entry or SRAM block, it may, in fact, generate an exception.

To guarantee that the Supervisor stack never generates an exception—
never overflows past a CPLB entry or SRAM block while executing the
exception handler—calculate the maximum space that all interrupt service
routines and the exception handler occupy while they are active, and then
allocate this amount of SRAM memory.

Latency in Servicing Events

In some processor architectures, if instructions are executed from external
memory and an interrupt occurs while the instruction fetch operation is
underway, then the interrupt is held off from being serviced until the cur-
rent fetch operation has completed. Consider a processor operating at
300 MHz and executing code from external memory with 100 ns access
times. Depending on when the interrupt occurs in the instruction fetch
operation, the interrupt service routine may be held off for around 30
instruction clock cycles. When cache line fill operations are taken into
account, the interrupt service routine could be held off for many hundreds
of cycles.

In order for high priority interrupts to be serviced with the least latency
possible, the processor allows any high latency fill operation to be com-
pleted at the system level, while an interrupt service routine executes from
L1 memory. See Figure 4-17.
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AV AV AV AV AN A WaAVAWAWA

OTHER PROCESSORS

FETCH [ \
INSTRUCTION
DATA /

INTERRUPT SERVICED
OCCURRING HERE
HERE

BLACKFIN PROCESSOR

FETCH / \
INSTRUCTION
DATA /

INTERRUPT SERVICED
OCCURRING HERE
HERE

Figure 4-17. Minimizing Latency in Servicing an Interrupt Service Rou-
tine

If an instruction load operation misses the L1 instruction cache and gener-
ates a high latency line fill operation, then when an interrupt occurs, it is
not held off until the fill has completed. Instead, the processor executes
the interrupt service routine in its new context, and the cache fill opera-
tion completes in the background.

Note the interrupt service routine must reside in L1 cache or SRAM mem-
ory and must not generate a cache miss, an L2 memory access, or a
peripheral access, as the processor is already busy completing the original
cache line fill operation. If a load or store operation is executed in the
interrupt service routine requiring one of these accesses, then the interrupt
service routine is held off while the original external access is completed,
before initiating the new load or store.
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If the interrupt service routine finishes execution before the load operation
has completed, then the processor continues to stall, waiting for the fill to
complete.

This same behavior is also exhibited for stalls involving reads of slow data
memory or peripherals.

Writes to slow memory generally do not show this behavior, as the writes
are deemed to be single cycle, being immediately transferred to the write
buffer for subsequent execution.

For detailed information about cache and memory structures, see
Chapter 6, “Memory”.
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GENERATORS

The Data Address Generators (DAGs) generate addresses for data moves
to and from memory. By generating addresses, the DAGs let programs
refer to addresses indirectly, using a DAG register instead of an absolute

address.

The DAG architecture, shown in Figure 5-1, supports several functions
that minimize overhead in data access routines. These functions include:

Supply address — Provides an address during a data access

Supply address and post-modify — Provides an address during a
data move and auto-increments/decrements the stored address for
the next move

Supply address with offset — Provides an address from a base with
an offset without incrementing the original address pointer

Modify address — Increments or decrements the stored address
without performing a data move

Bit-reversed carry address — Provides a bit-reversed carry address
during a data move without reversing the stored address

The DAG subsystem comprises two DAG Arithmetic units, nine Pointer
registers, four Index registers and four complete sets of related Modify,
Base, and Length registers. These registers hold the values that the DAGs

use to generate addresses. The types of registers are:
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Index registers, 1[3:0]. Unsigned 32-bit Index registers hold an
address pointer to memory. For example, the instruction R3 = [10]
loads the data value found at the memory location pointed to by
the register 10. Index registers can be used for 16- and 32-bit mem-
ory accesses.

Modify registers, M[3:0]. Signed 32-bit Modify registers provide
the increment or step size by which an Index register is post-modi-
fied during a register move. For example, the RO = [10 ++ M1]
instruction directs the DAG to:

— Output the address in register 10

— Load the contents of the memory location pointed to by 10 into
RO

— Modify the contents of 10 by the value contained in the M1
register

Base and Length registers, B[3:0] and L[3:0]. Unsigned 32-bit
Base and Length registers set up the range of addresses and the
starting address of a circular buffer. Each B, L pair is always coupled
with a corresponding I-register, for example, 13, 83, L3. For more
information on circular buffers, see “Addressing Circular Buffers”

on page 5-6.

Pointer registers, P[5:01, FP, USP, and SP. 32-bit Pointer registers
hold an address pointer to memory. The P[5:07 field, FP (Frame
Pointer) and SP/USP (Stack Pointer/User Stack Pointer) can be
manipulated and used in various instructions. For example, the
instruction R3 = [P0] loads the register R3 with the data value
found at the memory location pointed to by the register P0. The
Pointer registers have no effect on circular buffer addressing. They
can be used for 8-, 16-, and 32-bit memory accesses. For added
mode protection, SP is accessible only in Supervisor mode, while
USP is accessible in User mode.
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Do not assume the L-registers are automatically initialized to zero
for linear addressing. The I-, M-, L-, and B-registers contain ran-
dom values after reset. For each I-register used, programs must
initialize the corresponding L-registers to zero for linear addressing
or to the buffer length for circular buffer addressing.

Note all DAG registers must be initialized individually. Initializing
a B-register does not automatically initialize the I-register.

Data Address Generator Registers (DAGs)

/ 10 LO BO Mo PO \

"1 L1 B1 M1 P1
12 L2 B2 M2 P2
13 L3 B3 M3 P3
P4
P5

| User SP |

Supervisor SP

x L 1)

Supervisor only register. Attempted read or
write in User mode causes an exception error.

Figure 5-1. Processor DAG Registers

Addressing With DAGs

The DAGs can generate an address that is incremented by a value or by a
register. In post-modify addressing, the DAG outputs the I-register value
unchanged; then the DAG adds an M-register or immediate value to the
I-register.
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In indexed addressing, the DAG adds a small offset to the value in the
P-register, but does not update the P-register with this new value, thus
providing an offset for that particular memory access.

The processor is byte addressed. All data accesses must be aligned to the
data size. In other words, a 32-bit fetch must be aligned to 32 bits, but an
8-bit store can be aligned to any byte. Depending on the type of data
used, increments and decrements to the DAG registers can be by 1, 2, or 4
to match the 8-, 16-, or 32-bit accesses.

For example, consider the following instruction:

RO = [ P3++ 1

This instruction fetches a 32-bit word, pointed to by the value in P3, and
places it in RO. It then post-increments P3 by four, maintaining alignment
with the 32-bit access.

RO.L =W [ I3++ 1;

This instruction fetches a 16-bit word, pointed to by the value in 13, and
places it in the low half of the destination register, R0. L. It then
post-increments 13 by zwo, maintaining alignment with the 16-bit access.

RO =B [ P3++ 1 (2)

This instruction fetches an 8-bit word, pointed to by the value in P3, and
places it in the destination register, RO. It then post-increments P3 by one,
maintaining alignment with the 8-bit access. The byte value may be zero
extended (as shown) or sign extended into the 32-bit data register.

Instructions using Index registers use an M-register or a small immediate
value (+/— 2 or 4) as the modifier. Instructions using Pointer registers use
a small immediate value or another P-register as the modifier. For details,

see Table 5-3 on page 5-17.
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Frame and Stack Pointers

In many respects, the Frame and Stack Pointer registers perform like the
other P-registers, P[5:01. They can act as general pointers in any of the
load/store instructions, for example, R1 = B[SP] (Z). However, FP and SP
have additional functionality.

The Stack Pointer registers include:
* a User Stack Pointer (USP in Supervisor mode, SP in User mode)
* a Supervisor Stack Pointer (SP in Supervisor mode)

The User Stack Pointer register and the Supervisor Stack Pointer register
are accessed using the register alias SP. Depending on the current proces-
sor operating mode, only one of these registers is active and accessible as
SP:

* In User mode, any reference to SP (for example, stack pop
RO = [ SP++ 1 ;) implicitly uses the USP as the effective address.

* In Supervisor mode, the same reference to SP (for example,
RO = [ SP++ 1 ;) implicitly uses the Supervisor Stack Pointer as
the effective address.

To manipulate the User Stack Pointer for code running in Supervi-
sor mode, use the register alias USP. When in Supervisor mode, a
register move from USP (for example, RO = USP ;) moves the cur-
rent User Stack Pointer into R0. The register alias USP can only be
used in Supervisor mode.

Some load/store instructions use FP and SP implicitly:

* rpP-indexed load/store, which extends the addressing range for
16-bit encoded load/stores

 Stack push/pop instructions, including those for pushing and pop-
ping multiple registers
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Link/unlink instructions, which control stack frame space and
manage the Frame Pointer register (FP) for that space

Addressing Circular Buffers

The DAGs support addressing circular buffers. Circular buffers are a range
of addresses containing data that the DAG steps through repeatedly,
wrapping around to repeat stepping through the same range of addresses
in a circular pattern.

The DAGs use four types of DAG registers for addressing circular buffers.

For circular buffering, the registers operate this way:

The Index (I) register contains the value that the DAG outputs on
the address bus.

The Modify (M) register contains the post-modify amount (posi-
tive or negative) that the DAG adds to the I-register at the end of
each memory access. Any M-register can be used with any I-regis-
ter. The modify value can also be an immediate value instead of an
M-register. The size of the modify value must be less than or equal
to the length (L-register) of the circular buffer.

The Length (L) register sets the size of the circular buffer and the
address range through which the DAG circulates the I-register. L is

.. 32 .
positive and cannot have a value greater than 2°“ — 1. If an L-regis-
ter’s value is zero, its circular buffer operation is disabled.

The Base (B) register or the B-register plus the L-register is the
value with which the DAG compares the modified I-register value
after each access.

To address a circular buffer, the DAG steps the Index pointer (I-register)
through the buffer values, post-modifying and updating the index on each
access with a positive or negative modify value from the M-register.

5-6
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If the Index pointer falls outside the buffer range, the DAG subtracts the
length of the buffer (L-register) from the value or adds the length of the
buffer to the value, wrapping the Index pointer back to a point inside the

buffer.

The starting address that the DAG wraps around is called the buffer’s base

address (B-register). There are no restrictions on the value of the base

address for circular buffers that contains 8-bit data. Circular buffers that

contain 16- and 32-bit data must be 16-bit aligned and 32-bit aligned,

respectively. Exceptions can be made for video operations. For more infor-

mation, see “Memory Address Alignment” on page 5-13. Circular

buffering uses post-modify addressing.

LENGTH =11

BASE ADDRESS = 0X0

MODIFIER = 4
0X0 1 0X0 0X0 0X0
0X1 —» 0X1 4 0X1 0X1
0X2 0X2 —» 0X2 7 0X2
0X3 0X3 0X3 —» 0X3
0X4 2 0X4 0X4 0X4
0X5 0X5 5 0X5 0X5
0X6 0X6 0X6 8 0X6
0X7 0X7 0X7 0X7
0X8 3 — 0X8 0X8 0X8
0X9 0X9 6 — 0X9 0X9
0XA 0XA 0XA 9 = 0XA

THE COLUMNS ABOVE SHOW THE SEQUENCE IN ORDER OF LOCATIONS ACCESSED IN ONE PASS.

THE SEQUENCE REPEATS ON SUBSEQUENT PASSES.

Figure 5-2. Circular Data Buffers

10

1
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As seen in Figure 5-2, on the first post-modify access to the buffer, the
DAG outputs the I-register value on the address bus, then modifies the
address by adding the modify value.

e If the updated index value is within the buffer length, the DAG

writes the value to the I-register.

* If the updated index value exceeds the buffer length, the DAG sub-
tracts (for a positive modify value) or adds (for a negative modify
value) the L-register value before writing the updated index value
to the [-register.

In equation form, these post-modify and wraparound operations work as
follows, shown for “I+M” operations.

* If M is positive:

Inew = Iold +M
if I}y + M < buffer base + length (end of buffer)

Inew = Iold +M-L
if I}y + M 2 buffer base + length (end of buffer)

e If M is negative:

Inew = Iold +M
if I}y + M 2 buffer base (start of buffer)

Liew=Iogg+ M+ L
if I jq + M < buffer base (start of buffer)

5-8
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Addressing With Bit-Reversed Addresses

To obrtain results in sequential order, programs need bit-reversed carry
addressing for some algorithms, particularly Fast Fourier Transform
(FFT) calculations. To satisfy the requirements of these algorithms, the
DAG’s bit-reversed addressing feature permits repeatedly subdividing data
sequences and storing this data in bit-reversed order. For detailed infor-
mation about bit-reversed addressing, see the Modify-Increment
instruction in Blackfin Processor Programming Reference.

Indexed Addressing With Index and Pointer
Registers

Indexed addressing uses the value in the Index or Pointer register as an
effective address. This instruction can load or store 16- or 32-bit values.
The default is a 32-bit transfer. If a 16-bit transfer is required, then the W
designator is used to preface the load or store.

For example:
RO=1T[12 13

loads a 32-bit value from an address pointed to by 12 and stores it in the
destination register RO.

RO.H=WT[1I21;

loads a 16-bit value from an address pointed to by 12 and stores it in the
16-bit destination register RO.H.

[ P1 1 =RO;

is an example of a 32-bit store operation.
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Pointer registers can be used for 8-bit loads and stores.
For example:
B [ P1++] = RO ;

stores the 8-bit value from the RO register in the address pointed to by the
P1 register, then increments the P1 register.

Auto-Increment and Auto-Decrement Addressing

Auto-increment addressing updates the Pointer and Index registers after
the access. The amount of increment depends on the word size. An access
of 32-bit words results in an update of the Pointer by 4. A 16-bit word
access updates the Pointer by 2, and an access of an 8-bit word updates the
Pointer by 1. Both 8- and 16-bit read operations may specify either to
sign-extend or zero-extend the contents into the destination register.
Pointer registers may be used for 8-, 16-, and 32-bit accesses while Index
registers may be used only for 16- and 32-bit accesses.

For example:
RO =W [ PI++ 1 (Z2);

loads a 16-bit word into a 32-bit destination register from an address
pointed to by the P1 Pointer register. The Pointer is then incremented by
2 and the word is zero extended to fill the 32-bit destination register.

Auto-decrement works the same way by decrementing the address after
the access.

For example:
RO =1[ I2-- 1

loads a 32-bit value into the destination register and decrements the Index
register by 4.
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Pre-Modify Stack Pointer Addressing

The only pre-modify instruction in the processor uses the Stack Pointer
register, SP. The address in SP is decremented by 4 and then used as an
effective address for the store. The instruction [ --SP ] = RO ; is used for
stack push operations and can support only a 32-bit word transfer.

Indexed Addressing With Immediate Offset

Indexed addressing allows programs to obtain values from data tables,
with reference to the base of that table. The Pointer register is modified by
the immediate field and then used as the effective address. The value of
the Pointer register is not updated.

Alignment exceptions are triggered when a final address is
unaligned.

For example, if P1 = 0x13, then [P1 + 0x11] would effectively be equal to
[0x24], which is aligned for all accesses.

Post-Modify Addressing

Post-modify addressing uses the value in the Index or Pointer registers as
the effective address and then modifies it by the contents of another regis-
ter. Pointer registers are modified by other Pointer registers. Index
registers are modified by Modify registers. Post-modify addressing does
not support the Pointer registers as destination registers, nor does it sup-
port byte-addressing.

For example:
R = [ P1++P2 ] ;

loads a 32-bit value into the R5 register, found in the memory location
pointed to by the P1 register.
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The value in the P2 register is then added to the value in the P1 register.
For example:
R2 = W [ P4++P5 1 (2) :

loads a 16-bit word into the low half of the destination register R2 and
zero-extends it to 32 bits. The value of the pointer P4 is incremented by
the value of the pointer P5.

For example:
R2 = [ I2++M1 7

loads a 32-bit word into the destination register R2. The value in the Index
register, 12, is updated by the value in the Modify register, M1.

Modifying DAG and Pointer Registers

The DAGs support operations that modify an address value in an Index
register without outputting an address. The operation, address-modify, is
useful for maintaining pointers.

The address-modify operation modifies addresses in any DAG Index and
Pointer register (1[3:01, P[5:01, FP, SP) without accessing memory. If the
Index register’s corresponding B- and L-registers are set up for circular
buffering, the address-modify operation performs the specified buffer
wraparound (if needed).

The syntax is similar to post-modify addressing (index += modifier). For
Index registers, an M-register is used as the modifier. For Pointer registers,
another P-register is used as the modifier.

Consider the example, 11 += M2 ;

This instruction adds M2 to 11 and updates I1 with the new value.
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Memory Address Alignment

The processor requires proper memory alignment to be maintained for the
data size being accessed. Unless exceptions are disabled, violations of
memory alignment cause an alignment exception. Some instructions—for
example, many of the Video ALU instructions—automatically disable
alignment exceptions because the data may not be properly aligned when
stored in memory. Alignment exceptions may be disabled by issuing the
DISALGNEXPT instruction in parallel with a load/store operation.

Normally, the memory system requires two address alignments:

* 32-bit word load/stores are accessed on four-byte boundaries,
meaning the two least significant bits of the address are b#00.

* 16-bit word load/stores are accessed on two-byte boundaries,
meaning the least significant bit of the address must be b#0.

Table 5-1 summarizes the types of transfers and transfer sizes supported
by the addressing modes.

Be careful when using the DISALGNEXPT instruction, because it dis-
ables automatic detection of memory alignment errors. The
DISALGNEXPT instruction only affects misaligned loads that use
I-register indirect addressing. Misaligned loads using P-register
addressing will still cause an exception.
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Table 5-1. Types of Transfers Supported and Transfer Sizes

Addressing Mode

Types of Transfers
Supported

Transfer Sizes

Auto-increment
Auto-decrement
Indirect
Indexed

To and from Data
Registers

LOADS:

32-bit word

16-bit, zero extended half word
16-bit, sign extended half word
8-bit, zero extended byte

8-bit, sign extended byte
STORES:

32-bit word

16-bit half word

8-bit byte

To and from Pointer
Registers

LOAD:
32-bit word
STORE:
32-bit word

Post-increment

To and from Data
Registers

LOADS:

32-bit word

16-bit half word to Data Register high half
16-bit half word to Data Register low half
16-bit, zero extended half word

16-bit, sign extended half word

STORES:

32-bit word

16-bit half word from Data Register high half
16-bit half word from Data Register low half

5-14
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Table 5-2 summarizes the addressing modes. In the table, an asterisk (*)
indicates the processor supports the addressing mode.

Table 5-2. Addressing Modes

32-bit

word

16-bit
half-

word

8-bit byte

Sign/zero
extend

Data
Register

Pointer
register

Data
Register
Half

P Auto-inc
[PO++]

*

P Auto-dec
[PO--]

P Indirect
[PO]

P Indexed
[PO+im]

FP indexed
[FP+im]

P Post-inc
[PO++P1]

I Auto-inc

[10++]

I Auto-dec
(10--]

I Indirect
(10]

I Post-inc

[I0++MO0]

ADSP-BF533 Blackfin Processor Hardware Reference
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DAG Instruction Summary

Table 5-3 lists the DAG instructions. For more information on assembly
language syntax, see Blackfin Processor Programming Reference. In
Table 5-3, note the meaning of these symbols:

Dreg denotes any Data Register File register.

Dreg_lo denotes the lower 16 bits of any Data Register File
register.

Dreg_hi denotes the upper 16 bits of any Data Register File

register.

Preg denotes any Pointer register, FP, or SP register.
Ireg denotes any DAG Index register.

Mreg denotes any DAG Modify register.

W denotes a 16-bit wide value.

B denotes an 8-bit wide value.

immA denotes a signed, A-bits wide, immediate value.

uimmAmB denotes an unsigned, A-bits wide, immediate value that
is an even multiple of B.

Z denotes the zero-extension qualifier.
X denotes the sign-extension qualifier.

BREYV denotes the bit-reversal qualifier.

Blackfin Processor Programming Reference more fully describes the options
that may be applied to these instructions and the sizes of immediate fields.

5-16
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DAG instructions do not affect the ASTAT Status flags.

Table 5-3. DAG Instruction Summary

Instruction

Preg = [ Preg ] ;

Preg = [ Preg ++ ] ;

Preg = [ Preg - | ;

Preg = [ Preg + uimm6m4 | ;

Preg = [ Preg + uimm17m4 ] ;

Preg = [ Preg — uimm17m4 ] ;

Preg = [ FP — uimm7m4 ] ;

Dreg = [ Preg ] ;

Dreg = [ Preg ++ ] 3

Dreg = [ Preg -- ] ;

Dreg = [ Preg + uimm6m4 ] ;

Dreg = [ Preg + uimm17m4 ] ;

Dreg = [ Preg — uimm17m4 ] ;

Dreg = [ Preg ++ Preg ] ;

Dreg = [ FP — uimm7m4 ] ;

Dreg = [ Ireg ] ;

Dreg = [ Ireg ++ ] ;

Dreg = [ Ireg - | ;

Dreg = [ Ireg ++ Mreg ] ;

Dreg =W [ Preg ] (2) ;

Dreg =W [ Preg ++ ] (Z) 5

Dreg =W [ Preg -- ] (2) 5

Dreg =W [ Preg + uimm5m2 ] (Z) ;

Dreg =W [ Preg + uimm16m2 ] (Z) ;
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Table 5-3. DAG Instruction Summary (Contd)

Instruction

Dreg =W [ Preg — uimml6m?2 ] (Z) ;

Dreg =W [ Preg ++ Preg ] (Z) ;

Dreg = W [ Preg ] (X) ;

Dreg = W [ Preg ++] (X) 3
Dreg = W [ Preg - ] (X) ;

Dreg =W [ Preg + uimm5m?2 ] (X) ;

Dreg =W [ Preg + uimml6m?2 ] (X) ;

Dreg =W [ Preg — uimm16m?2 ] (X) ;

Dreg =W [ Preg ++ Preg ] (X) ;

Dreg hi =W [Ireg];

Dreg hi =W [ Ireg ++ ] ;

Dreg_hi =W [Ireg - ];

Dreg_hi =W [ Preg ] ;

Dreg_hi = W [ Preg ++ Preg ] ;

Dreg lo =W [Ireg ] ;

Dreg_lo = W [ Ireg ++] ;

Dreg_lo =W [Ireg --1;

Dreg_lo = W [ Preg ] ;

Dreg_lo = W [ Preg ++ Preg | ;

Dreg =B [Preg] (Z) ;

Dreg = B [ Preg ++ ] (Z) ;

Dreg = B [ Preg -] (Z2) ;

Dreg = B [ Preg + uimm15 ] (Z) ;

Dreg = B [ Preg — uimm15 ] (Z) ;

Dreg = B [ Preg ] (X) ;

Dreg = B [ Preg ++ ] (X) ;
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Table 5-3. DAG Instruction Summary (Contd)

Instruction

Dreg = B [ Preg -- ] (X) ;

Dreg = B [ Preg + uimm15 ] (X) ;

Dreg = B [ Preg — uimm15 | (X) ;

[ Preg ] = Preg;

[ Preg ++ ] = Preg ;

[ Preg -- | = Preg ;

[ Preg + uimm6m4 | = Preg ;

[ Preg + uimm17m4 | = Preg ;

[ Preg — uimm17m4 | = Preg ;

[ FP — uimm7m4 ] = Preg;

[ Preg ] = Dreg ;

[ Preg ++ ] = Dreg ;

[ Preg -- ] = Dreg ;

[ Preg + uimm6m4 | = Dreg ;

[ Preg + uimm17m4 ] = Dreg ;

[ Preg — uimm17m4 | = Dreg;

[ Preg ++ Preg ] = Dreg ;

[FP — uimm7m4 ] = Dreg ;

[ Ireg ] = Dreg ;

[ Ireg ++ ] = Dreg ;

[ Ireg -- ] = Dreg;

[ Ireg ++ Mreg ] = Dreg ;
W [ Ireg ] = Dreg_hi ;

W [ Ireg ++ ] = Dreg_hi;

W [ Ireg -- ] = Dreg_hi ;

W [ Preg ] = Dreg_hi ;
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Table 5-3. DAG Instruction Summary (Contd)

Instruction

W [ Preg ++ Preg ] = Dreg_hi;

W [ Ireg ] = Dreg_lo;

W [ Ireg ++ ] = Dreg lo;

W [ Ireg -- ] = Dreg_lo;
W [ Preg ] = Dreg_lo;

W [ Preg ] = Dreg ;

W [ Preg ++ ] = Dreg ;

W [ Preg -- ] = Dreg ;

W [ Preg + uimm5m2 ] = Dreg ;

W [ Preg + uimm16m2 ] = Dreg ;

W [ Preg — uimm16m2 ] = Dreg ;

W [ Preg ++ Preg ] = Dreg_lo ;

B [ Preg | = Dreg ;

B [ Preg ++ ] = Dreg ;

B [ Preg -- | = Dreg;

B [ Preg + uimm15 ] = Dreg ;

B [ Preg — uimm15 ] = Dreg ;

Preg = imm7 (X) ;

Preg = imm16 (X) ;

Preg += Preg (BREV) ;

Ireg += Mreg (BREV) ;

Preg = Preg << 2 ;

Preg = Preg >> 2

Preg = Preg >> 1;

Preg = Preg + Preg << 1 ;

Preg = Preg + Preg << 2 ;
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Table 5-3. DAG Instruction Summary (Contd)

Instruction
Preg —= Preg ;
Ireg —= Mreg ;
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6 MEMORY

The processor supports a hierarchical memory model with different per-
formance and size parameters, depending on the memory location within
the hierarchy. Level 1 (L1) memories are located on the chip and are faster
than the Level 2 (L2) memory systems. The Level 2 (L2) memories are
off-chip and have longer access latencies. The faster L1 memories, which
are typically small scratchpad memory or cache memories, are found
within the core itself.

Memory Architecture

The processor has a unified 4G byte address range that spans a combina-
tion of on-chip and off-chip memory and memory-mapped I/O resources.
Of this range, some of the address space is dedicated to internal, on-chip
resources. The processor populates portions of this internal memory space
with:

e L1 Static Random Access Memories (SRAM)
* A set of memory-mapped registers (MMRys)
* A boot Read-Only Memory (ROM)

A portion of the internal L1 SRAM can also be configured to run as cache.
The processor also provides support for an external memory space that
includes asynchronous memory space and synchronous DRAM (SDRAM)
space. See Chapter 17, “External Bus Interface Unit”, for a detailed dis-
cussion of each of these memory regions and the controllers that support
them.
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Figure 6-1 provides an overview of the ADSP-BF533 processor system
memory map. Figure 6-2 shows this information for the ADSP-BF532
processor, and Figure 6-3 for the ADSP-BF531 processor. Note the archi-
tecture does not define a separate I/O space. All resources are mapped
through the flat 32-bit address space. The memory is byte-addressable.

As shown in Table 6-1, the ADSP-BF533, ADSP-BF532, and
ADSP-BF531 processors offer a variety of instruction and data memory
configurations.

Table 6-1. Memory Configurations

Type of Memory ADSP-BF531 ADSP-BF532 ADSP-BF533
Instruction SRAM/Cache, lockable | 16K byte 16K byte 16K byte

by Way or line

Instruction SRAM 16K byte 32K byte 64K byte
Data SRAM/Cache 16K byte 32K byte 32K byte
Data SRAM - - 32K byte
Data Scratchpad SRAM 4K byte 4K byte 4K byte
Total 52K byte 84K byte 148K byte

The upper portion of internal memory space is allocated to the core and
system MMRs. Accesses to this area are allowed only when the processor is

in Supervisor or Emulation mode (see Chapter 3, “Operating Modes and
States”.)

The lowest 1K byte of internal memory space is occupied by the boot
ROM. Depending on the booting option selected, the appropriate boot

program is executed from this memory space when the processor is reset
(see “Booting Methods” on page 3-18.)
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Within the external memory map, four banks of asynchronous memory
space and one bank of SDRAM memory are available. Each of the asyn-
chronous banks is 1M byte and the SDRAM bank is up to 128M byte.

ADSP-BF532 MEMORY MAP

CORE MMR

0xFFEO 0000 —»

SYSTEM MMR

0xFFCO0 0000 —»

RESERVED

0xFFBO 1000 —»
0xFFBO0 0000 —»

SCRATCHPAD SRAM

RESERVED

0xFFA1 4000 —
0xFFA1 0000 —»

INSTRUCTION SRAM/CACHE

INSTRUCTION SRAM

0xFFA0 C000—»

INSTRUCTION SRAM

0xFFA0 8000 —»

RESERVED

0xFFAO0 0000 —
0xFF90 8000 —»-

RESERVED

0xFF90 4000 ——p

DATA BANK B SRAM/CACHE

RESERVED

0xFF90 0000 ——»

RESERVED

0xFF80 8000 »

DATA BANK A SRAM/CACHE

0xFF80 4000 —»

RESERVED

0xFF80 0000 >
0xEF00 0000 —»

RESERVED

RESERVED

0x2040 0000 —»

ASYNC BANK 3

0x2030 0000 —»
0x2020 0000

ASYNC BANK 2

0x2010 0000

ASYNC BANK 1

ll Yy

ASYNC BANK 0

0x2000 0000
0x0800 0000 —»

RESERVED

SDRAM

0x0000 0000 —»

Figure 6-2. ADSP-BF532 Memory Map

| INTERNAL
MEMORY

| EXTERNAL
MEMORY
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ADSP-BF533 MEMORY MAP

CORE MMR

0xFFEO 0000 —»

SYSTEM MMR

0xFFCO0 0000 —»
0xFFBO 1000 —»
0xFFB0 0000 —»

RESERVED

SCRATCHPAD SRAM

RESERVED

0xFFA1 4000 —»
0xFFA1 0000 —»

INSTRUCTION SRAM/CACHE

INSTRUCTION SRAM

0xFFA0 C000—»

INSTRUCTION SRAM

0xFFAO0 8000 »

INSTRUCTION SRAM

0xFFA0 0000 —»
0xFF90 8000 —»

RESERVED

DATA BANK B SRAM/CACHE

0xFF90 4000 —p-
0xFF90 0000 —»

DATA BANK B SRAM

RESERVED

0xFF80 8000 >

DATA BANK A SRAM/CACHE

0xFF80 4000 —»

DATA BANK A SRAM

0xFF80 0000 —»
0xEF00 0000 >

RESERVED

RESERVED

0x2040 0000 —»

ASYNC BANK 3

0x2030 0000 —»

ASYNC BANK 2

0x2020 0000 —»

ASYNC BANK 1

0x2010 0000 >

ASYNC BANK 0

0x2000 0000 —»
0x0800 0000 —»

RESERVED

SDRAM

0x0000 0000 —»

Figure 6-1. ADSP-BF533 Memory Map

| INTERNAL
MEMORY

| EXTERNAL
MEMORY
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ADSP-BF531 MEMORY MAP

CORE MMR
SYSTEM MMR

RESERVED

SCRATCHPAD SRAM
RESERVED

INSTRUCTION SRAM/CACHE
RESERVED

INSTRUCTION SRAM
RESERVED INTERNAL
RESERVED [ MEMORY
RESERVED
RESERVED
RESERVED
RESERVED

0xFFEO 0000 —»
0xFFCO0 0000 —»
0xFFBO 1000 —»
0xFFBO0 0000 —»
0xFFA1 4000 —»
O0xFFA1 0000 —»
0xFFA0 C000—»
0xFFAOQ 8000 —»
0xFFAO0 0000 —»
0xFF90 8000 —»
0xFF90 6000 ——p
0xFF90 4000 —p
0xFF90 0000 ——
0xFF80 8000 —»

DATA BANK A SRAM/CACHE

0xFF80 4000 —»

RESERVED
0xFF80 0000 —»

RESERVED
0xEF00 0000 —» =

RESERVED
0x2040 0000 —»

ASYNC BANK 3
0x2030 0000 —»
ASYNC BANK 2

0x2020 0000 —»
ASYNC BANK 1 | EXTERNAL
0x2010 0000 —= MEMORY
ASYNC BANK 0
0x2000 0000 —»-
RESERVED
0x0800 0000 —»=
SDRAM

0x0000 0000 —» -

Figure 6-3. ADSP-BF531 Memory Map
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Overview of Internal Memory

The L1 memory system performance provides high bandwidth and low
latency. Because SRAMs provide deterministic access time and very high
throughput, DSP systems have traditionally achieved performance
improvements by providing fast SRAM on the chip.

The addition of instruction and data caches (SRAMs with cache control
hardware) provides both high performance and a simple programming
model. Caches eliminate the need to explicitly manage data movement
into and out of L1 memories. Code can be ported to or developed for the
processor quickly without requiring performance optimization for the
memory organization.

The L1 memory provides:

* A modified Harvard architecture, allowing up to four core memory
accesses per clock cycle (one 64-bit instruction fetch, two 32-bit
data loads, and one pipelined 32-bit data store)

e Simultaneous system DMA, cache maintenance, and core accesses

* SRAM access at processor clock rate (CCLK) for critical DSP algo-
rithms and fast context switching

* Instruction and data cache options for microcontroller code, excel-
lent High Level Language (HLL) support, and ease of
programming cache control instructions, such as PREFETCH and
FLUSH

* Memory protection

@ The L1 memories operate at the core clock frequency (CCLK).

6-6
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Figure 6-4. Processor Memory Architecture
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L1 Instruction Memory

Overview of Scratchpad Data SRAM

The processor provides a dedicated 4K byte bank of scratchpad data
SRAM. The scratchpad is independent of the configuration of the other
L1 memory banks and cannot be configured as cache or targeted by DMA.
Typical applications use the scratchpad data memory where speed is criti-
cal. For example, the User and Supervisor stacks should be mapped to the
scratchpad memory for the fastest context switching during interrupt

handling.
@ The L1 memories operate at the core clock frequency (CCLK).

@ Scratchpad data SRAM cannot be accessed by the DMA controller.

L1 Instruction Memory

L1 Instruction Memory consists of a combination of dedicated SRAM and
banks which can be configured as SRAM or cache. For the 16K byte bank
that can be either cache or SRAM, control bits in the IMEM_CONTROL regis-
ter can be used to organize all four subbanks of the L1 Instruction
Memory as:

* Asimple SRAM
* A 4-Way, set associative instruction cache
* A cache with as many as four locked Ways

@ L1 Instruction Memory can be used only to store instructions.
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IMEM_CONTROL Register

The Instruction Memory Control register (IMEM_CONTROL) contains con-
trol bits for the L1 Instruction Memory. By default after reset, cache and
Cacheability Protection Lookaside Buffer (CPLB) address checking is dis-
abled (see “L1 Instruction Cache” on page 6-15).

When the LRUPRIORST bit is set to 1, the cached states of all CPLB_LRUPRIO
bits (see “ICPLB_DATAx Registers” on page 6-55) are cleared. This
simultaneously forces all cached lines to be of equal (low) importance.
Cache replacement policy is based first on line importance indicated by
the cached states of the CPLB_LRUPRIO bits, and then on LRU (least
recently used). See “Instruction Cache Locking by Line” on page 6-21 for
complete details. This bit must be 0 to allow the state of the CPLB_LRUPRIO
bits to be stored when new lines are cached.

The 1L0C[3:0] bits provide a useful feature only after code has been man-
ually loaded into cache. See “Instruction Cache Locking by Way” on
page 6-22. These bits specify which Ways to remove from the cache
replacement policy. This has the effect of locking code present in nonpar-
ticipating Ways. Code in nonparticipating Ways can still be removed from
the cache using an IFLUSH instruction. If an 1L0C[3:07 bit is 0, the corre-
sponding Way is not locked and that Way participates in cache
replacement policy. If an 1L0C[3:0] bit is 1, the corresponding Way is
locked and does not participate in cache replacement policy.

The 1MC bit reserves a portion of L1 instruction SRAM to serve as cache.

Note reserving memory to serve as cache will not alone enable L2 memory
accesses to be cached. CPLBs must also be enabled using the EN_ICPLB bit
and the CPLB descriptors (ICPLB_DATAx and ICPLB_ADDRx registers) must
specify desired memory pages as cache-enabled.
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Instruction CPLBs are disabled by default after reset. When disabled, only
minimal address checking is performed by the L1 memory interface. This
minimal checking generates an exception to the processor whenever it
attempts to fetch an instruction from:

* Reserved (nonpopulated) L1 instruction memory space
* L1 data memory space

* MMR space

CPLBs must be disabled using this bit prior to updating their descriptors
(DCPLB_DATAx and DCPLB_ADDRx registers). Note since load store ordering is
weak (see “Ordering of Loads and Stores” on page 6-67), disabling of
CPLBs should be proceeded by a CSYNC.

@ When enabling or disabling cache or CPLBs, immediately follow
the write to IMEM_CONTROL with a CSYNC to ensure proper behavior.

@ To ensure proper behavior and future compatibility, all reserved
bits in this register must be set to 0 whenever this register is
written.
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L1 Instruction Memory Control Register (IMEM_CONTROL)

31 80 20 28 27 26 25 24 23 22 21 20 19 18 17 16
0xFFEO 1004 |o |o |o |o |o |o |o |o |o |o |o |o |o |0 |o |0| Reset = 0x0000 0001

15 14 13 12 11

I°I°I°I°I°I°I°I°I°I°I°I°I°I°I°I I

I

ENICPLB (Instruction CPLB
LRUPRIORST (LRU E"ab'e) _ »
Priority Reset) 0- C:dLBs dlshablsd, mlnllmal
0 - LRU priority functionality is enabled 1- %Plfgzse?qai?e:jng only
1 - All cached LRU priority bits (LRUPRIO) X

IMC (L1 Instruction Memory

are cleared . .

Configuration)
ILOC[3:0] (Cache Way Lock) 0 - Upper 16K byte of LI
0000 - All Ways not locked instruction memory
0001 - WayO0 locked, Way1, Way2, and configured as SRAM,
Way3 not locked also invalidates all cache
lines if previously
1111 - All Ways locked configured as cache

1 - Upper 16K byte of L1
instruction memory
configured as cache

Figure 6-5. L1 Instruction Memory Control Register
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L1 Instruction SRAM

The processor core reads the instruction memory through the 64-bit wide
instruction fetch bus. All addresses from this bus are 64-bit aligned. Each
instruction fetch can return any combination of 16-, 32- or 64-bit instruc
tions (for example, four 16-bit instructions, two 16-bit instructions and
one 32-bit instruction, or one 64-bit instruction).

The DAGs, which are described in Chapter 5, cannot access L1 Instruc-
tion Memory directly. A DAG reference to instruction memory SRAM
space generates an exception (see “Exceptions” on page 4-41).

Write access to the L1 Instruction SRAM Memory must be made through
the 64-bit wide system DMA port. Because the SRAM is implemented as a
collection of single ported subbanks, the instruction memory is effectively

dual ported.

Table 6-2 lists the memory start locations of the L1 Instruction Memory

subbanks.

Table 6-2. L1 Instruction Memory Subbanks

1

Memory Subbank Memory Start Memory Start Memory Start
Location, Location, Location,
ADSP-BF533 ADSP-BF532 ADSP-BF531

0 0xFFA0 0000 0xFFAO0 8000 0xFFAO0 8000

1 0xFFAO0 1000 0xFFA0 9000 0xFFA0 9000

2 0xFFAO0 2000 0xFFAO0 A000 0xFFAO0 A000

3 0xFFAO0 3000 0xFFAO0 B00O 0xFFA0 B00O

4 0xFFAO0 4000 0xFFA0 C000

5 0xFFAO0 5000 0xFFAO0 D000
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Table 6-2. L1 Instruction Memory Subbanks (Contd)

Memory

Memory Subbank Memory Start Memory Start Memory Start
Location, Location, Location,
ADSP-BF533 ADSP-BF532 ADSP-BF531

6 0xFFA0 6000 0xFFA0 E000

7 0xFFAO0 7000 0xFFAO F000

8 0xFFAO0 8000

9 0xFFA0 9000

10 0xFFA0 A000

11 0xFFA0 B000

12 0xFFA0 C000

13 0xFFA0 D000

14 0xFFAO0 E000

15 0xFFAO0 F000

Figure 6-6 describes the bank architecture of the L1 Instruction Memory.
As the figure shows, each 16K byte bank is made up of four 4K byte

subbanks.
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L1 Instruction Memory
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Figure 6-6. L1 Instruction Memory Bank Architecture
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L1 Instruction Cache

For information about cache terminology, see “Terminology” on

page 6-74.

The L1 Instruction Memory may also be configured to contain a, 4-Way
set associative instruction 16K byte cache. To improve the average access
latency for critical code sections, each Way or line of the cache can be
locked independently. When the memory is configured as cache, it cannot
be accessed directly.

When cache is enabled, only memory pages further specified as cacheable
by the CPLBs will be cached. When CPLBs are enabled, any memory
location that is accessed must have an associated page definition available,
or a CPLB exception is generated. CPLBs are described in “Memory Pro-
tection and Properties” on page 6-47.

Figure 6-7 shows the overall Blackfin processor instruction cache
organization.
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Cache Lines

As shown in Figure 6-7, the cache consists of a collection of cache lines.
Each cache line is made up of a tag component and a data component.

e The tag component incorporates a 20-bit address tag, least recently

used (LRU) bits, a Valid bit, and a Line Lock bit.

* The data component is made up of four 64-bit words of instruction
data.

The tag and data components of cache lines are stored in the tag and data
memory arrays, respectively.

The address tag consists of the upper 18 bits plus bits 11 and 10 of the
physical address. Bits 12 and 13 of the physical address are not part of the
address tag. Instead, these bits are used to identify the 4K byte memory
subbank targeted for the access.

The LRU bits are part of an LRU algorithm used to determine which

cache line should be replaced if a cache miss occurs.
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VALID TAG
<1> <20>

WAY 3

32 BYTE LINE 0
32 BYTE LINE 1

32 BYTE LINE 2

| VALID
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TAG WAY 2
<20>
20 32 BYTE LINE 0
| 32 BYTE LINE 1
| [32 BYTE LINE 2
VALID TAG WAY 1
<20>
<1> 20 32 BYTE LINE 0
| 32 BYTE LINE 1
32 BYTE LINE 2
VALID TAG WAY 0
<1> <20>

32 BYTELINEO

32 BYTE LINE 1

32 BYTE LINE 2

32 BYTE LINE 3

32 BYTE LINE 4

32 BYTE LINE 5

| [ LINE 31

SHADED BOXES ACROSS EACH WAY CONSTITUTE A SET.

Figure 6-7. Blackfin Processor Instruction Cache Organization

Memory
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The Valid bit indicates the state of a cache line. A cache line is always

valid or invalid.

* Invalid cache lines have their Valid bit cleared, indicating the line
will be ignored during an address-tag compare operation.

* Valid cache lines have their Valid bit set, indicating the line con-
tains valid instruction/data that is consistent with the source

memory.

The tag and data components of a cache line are illustrated in Figure 6-8.

LRUPRIO

v

TAG

LRU

TAG - 20-BIT ADDRESS TAG

LRUPRIO - LRU PRIORITY BIT FOR LINE LOCKING
LRU - LRU STATE

v - VALID BIT

WD 3 WD 2 WD 1 WD 0

WD - 64-BIT DATA WORD

Figure 6-8. Cache Line — Tag and Data Portions

Cache Hits and Misses

A cache hit occurs when the address for an instruction fetch request from
the core matches a valid entry in the cache. Specifically, a cache hit is
determined by comparing the upper 18 bits and bits 11 and 10 of the
instruction fetch address to the address tags of valid lines currently stored
in a cache set. The cache set is selected, using bits 9 through 5 of the
instruction fetch address. If the address-tag compare operation results in a
match, a cache hit occurs. If the address-tag compare operation does not

result in a match, a cache miss occurs.
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When a cache miss occurs, the instruction memory unit generates a cache
line fill access to retrieve the missing cache line from memory that is exter-
nal to the core. The address for the external memory access is the address
of the target instruction word. When a cache miss occurs, the core halts
until the target instruction word is returned from external memory.

Cache Line Fills

A cache line fill consists of fetching 32 bytes of data from memory. The
operation starts when the instruction memory unit requests a line-read
data transfer (a burst of four 64-bit words of data) on its external
read-data port. The address for the read transfer is the address of the target
instruction word. When responding to a line-read request from the
instruction memory unit, the external memory returns the target instruc-
tion word first. After it has returned the target instruction word, the next
three words are fetched in sequential address order. This fetch wraps
around if necessary, as shown in Table 6-3.

Table 6-3. Cache Line Word Fetching Order

Target Word Fetching Order for Next Three Words
WDO0 WDO0, WDI1, WD2, WD3
WD1 WD1, WD2, WD3, WDO0
WwWD2 WD2, WD3, WDO0, WD1
WD3 WD3, WDO0, WD1, WD2

Line Fill Buffer

As the new cache line is retrieved from external memory, each 64-bit word
is buffered in a four-entry line fill buffer before it is written to a 4K byte
memory bank within L1 memory. The line fill buffer allows the core to
access the data from the new cache line as the line is being retrieved from

external memory, rather than having to wait until the line has been writ-
ten into the cache.
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Cache Line Replacement

When the instruction memory unit is configured as cache, bits 9 through
5 of the instruction fetch address are used as the index to select the cache
set for the tag-address compare operation. If the tag-address compare
operation results in a cache miss, the Valid and LRU bits for the selected
set are examined by a cache line replacement unit to determine the entry
to use for the new cache line, that is, whether to use Way0, Way1, Way2,
or Way3. See Figure 6-7 on page 6-17.

The cache line replacement unit first checks for invalid entries (that is,
entries having its Valid bit cleared). If only a single invalid entry is found,
that entry is selected for the new cache line. If multiple invalid entries are
found, the replacement entry for the new cache line is selected based on
the following priority:

e WayO first

* Wayl next
e Way2 next
e Way3 last

For example:

* If Way3 is invalid and Ways0, 1, 2 are valid, Way3 is selected for

the new cache line.

e If Ways0 and 1 are invalid and Ways2 and 3 are valid, WayO is
selected for the new cache line.

e If Ways2 and 3 are invalid and Ways0 and 1 are valid, Way2 is
selected for the new cache line.

When no invalid entries are found, the cache replacement logic uses an

LRU algorithm.
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Instruction Cache Management

The system DMA controller and the core DAGs cannot access the instruc-
tion cache directly. By a combination of instructions and the use of core
MMRy, it is possible to initialize the instruction tag and data arrays indi-
rectly and provide a mechanism for instruction cache test, initialization,

and debug.

The coherency of instruction cache must be explicitly managed. To
accomplish this and ensure that the instruction cache fetches the
latest version of any modified instruction space, invalidate instruc-
tion cache line entries, as required.

See “Instruction Cache Invalidation” on page 6-23.

Instruction Cache Locking by Line

The CPLB_LRUPRIO bits in the ICPLB_DATAXx registers (see “Memory Protec-
tion and Properties” on page 6-47) are used to enhance control over which
code remains resident in the instruction cache. When a cache line is filled,
the state of this bit is stored along with the line’s tag. It is then used in
conjunction with the LRU (least recently used) policy to determine which
Way is victimized when all cache Ways are occupied when a new cache-
able line is fetched. This bit indicates that a line is of either “low” or
“high” importance. In a modified LRU policy, a high can replace a low,
but a low cannot replace a high. If all Ways are occupied by highs, an oth-
erwise cacheable low will still be fetched for the core, but will not be
cached. Fetched highs seek to replace unoccupied Ways first, then least
recently used lows next, and finally other highs using the LRU policy.
Lows can only replace unoccupied Ways or other lows, and do so using
the LRU policy. If a/l previously cached highs ever become less important,
they may be simultaneously transformed into lows by writing to the LRU-
PRIRST bit in the IMEM_CONTROL register (on page 6-9).
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Instruction Cache Locking by Way

The instruction cache has four independent lock bits (ILOC[3:0]) that
control each of the four Ways of the instruction cache. When the cache is
enabled, L1 Instruction Memory has four Ways available. Setting the lock
bit for a specific Way prevents that Way from participating in the LRU
replacement policy. Thus, a cached instruction with its Way locked can
only be removed using an IFLUSH instruction, or a “back door” MMR
assisted manipulation of the tag array.

An example sequence is provided below to demonstrate how to lock down

WayO:

* If the code of interest may already reside in the instruction cache,
invalidate the entire cache first (for an example, see “Instruction
Cache Management” on page 6-21).

e Disable interrupts, if required, to prevent interrupt service routines
(ISRs) from potentially corrupting the locked cache.

* Set the locks for the other Ways of the cache by setting IL0C[3:1].
Only Way0 of the instruction cache can now be replaced by new
code.

* Execute the code of interest. Any cacheable exceptions, such as exit
code, traversed by this code execution are also locked into the
instruction cache.

* Upon exit of the critical code, clear 1L0C[3:1] and set ILOCLO].
The critical code (and the instructions which set IL0C[0]) is now

locked into WayO.
* Re-enable interrupts, if required.

If all four Ways of the cache are locked, then further allocation into the
cache is prevented.
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Instruction Cache Invalidation

The instruction cache can be invalidated by address, cache line, or com-
plete cache. The IFLUSH instruction can explicitly invalidate cache lines
based on their line addresses. The target address of the instruction is gen-
erated from the P-registers. Because the instruction cache should not
contain modified (dirty) data, the cache line is simply invalidated.

In the following example, the P2 register contains the address of a valid
memory location. If this address has been brought into cache, the corre-
sponding cache line is invalidated after the execution of this instruction.

Example of ICACHE instruction:
iflush [ p2 1 ; /* Invalidate cache Tine containing address
that P2 points to */

Because the IFLUSH instruction is used to invalidate a specific address in
the memory map, it is impractical to use this instruction to invalidate an
entire Way or bank of cache. A second technique can be used to invalidate
larger portions of the cache directly. This second technique directly inval-
idates Valid bits by setting the Invalid bit of each cache line to the invalid
state. To implement this technique, additional MMRs (ITEST_COMMAND
and ITEST_DATAL[1:0]) are available to allow arbitrary read/write of all the
cache entries directly. This method is explained in the next section.

For invalidating the complete instruction cache, a third method is avail-
able. By clearing the IMC bit in the IMEM_CONTROL register (see Figure 6-5
on page 6-11), all Valid bits in the instruction cache are set to the invalid
state. A second write to the IMEM_CONTROL register to set the IMC bit config-
ures the instruction memory as cache again. An SSYNC instruction should
be run before invalidating the cache and a CSYNC instruction should be
inserted after each of these operations.
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Instruction Test Registers

The Instruction Test registers allow arbitrary read/write of all L1 cache
entries directly. They make it possible to initialize the instruction tag and
data arrays and to provide a mechanism for instruction cache test, initial-
ization, and debug.

When the Instruction Test Command register (ITEST_COMMAND) is used,
the L1 cache data or tag arrays are accessed, and data is transferred
through the Instruction Test Data registers (ITEST_DATAL1:01). The
ITEST_DATAx registers contain either the 64-bit data that the access is to
write to or the 64-bit data that was read during the access. The lower 32
bits are stored in the ITEST_DATAL0] register, and the upper 32 bits are
stored in the ITEST_DATAL1] register. When the tag arrays are accessed,
ITEST_DATALO] is used. Graphical representations of the ITEST registers
begin with Figure 6-9.

The following figures describe the ITEST registers:
* Figure 6-9 on page 6-25
* Figure 6-10 on page 6-26
* Figure 6-11 on page 6-27

Access to these registers is possible only in Supervisor or Emulation mode.
When writing to ITEST registers, always write to the ITEST_DATAx registers
first, then the ITEST_COMMAND register. When reading from ITEST registers,
reverse the sequence—read the ITEST_COMMAND register first, then the
ITEST_DATAXx registers.
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ITEST_COMMAND Register

When the Instruction Test Command register (ITEST_COMMAND) is written
to, the L1 cache data or tag arrays are accessed, and the data is transferred
through the Instruction Test Data registers (ITEST_DATA[1:01]).

Instruction Test Command Register (ITEST_COMMAND)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
0xFFEO 1300 |o |o |o |o |o |o |o|o |o |o |o |o |o |o |o |o| Reset = 0x0000 0000

WAYSEL[1:0] (Access Way)j l—l__' SBNK[1:0] (Subbank

00 - Access Way0 Access)
01 - Access Way1 00 - Access subbank 0
10 - Access Way2 01 - Access subbank 1

11 - Access Way3 10 - Access subbank 2
(Address bits [11:10] in SRAM) 11 - Access subbank 3

(Address bits [13:12] in

SRAM)
15 1413 12 11 10 9 8 7 6 5 4 3 2 1 0
[ofo]e]efo Ioll0 lofofo [o ||0 folofo]o]
| | |
SET[4:0] (Set Index) | RW (Read/Write Access)
Selects one of 32 sets 0 - Read access
(Address bits [9:5] in SRAM) 1 - Write access

TAGSELB (Array Access)
0 - Access tag array
1 - Access data array
DWI[1:0] (Double Word
Index)
Selects one of four 64-bit
double words in a 256-bit
line (Address bits [4:3] in
SRAM)

Figure 6-9. Instruction Test Command Register

ITEST_DATA1 Register

Instruction Test Data registers (ITEST_DATAL1:01]) are used to access L1
cache data arrays. They contain either the 64-bit data that the access is to
write to or the 64-bit data that the access is to read from. The Instruction
Test Data 1 register (ITEST_DATAL) stores the upper 32 bits.
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Instruction Test Data 1 Register (ITEST_DATA1)

Used to access L1 cache data arrays and tag arrays. When accessing a data array, stores
the upper 32 bits of 64-bit words of instruction data to be written to or read from by the
access. See “Cache Lines” on page 6-16.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
0xFFEO 1404 |x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x| Reset = Undefined

| |
[ Data[63:48]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| K3 ES KN KN 3 KN ENES ESENENES ENENESER

| |
[ Data[47:32]

When accessing tag arrays, all bits are reserved.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x| Reset = Undefined

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
1 e e e 8 e N e R [ R B B

Figure 6-10. Instruction Test Data 1 Register

ITEST_DATAO Register

The Instruction Test Data 0 register (ITEST_DATAO) stores the lower 32
bits of the 64-bit data to be written to or read from by the access. The
ITEST_DATAO register is also used to access tag arrays. This register also
contains the Valid and Dirty bits, which indicate the state of the cache
line.
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Instruction Test Data 0 Register (ITEST_DATAO)

Used to access L1 cache data arrays and tag arrays. When accessing a data array, stores the lower 32 bits of
64-bit words of instruction data to be written to or read from by the access. See “Cache Lines” on page 6-16.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
O0XFFEO 1400 Ix Ix Ix Ix |x Ix Ix lex Ix Ix lex Ix Ix le Reset = Undefined

| |

I Data[31:16]
1514 1312 1110 9 8 7 6 5 4 3 2 1 0
BN ENENES ENENENES ENENENES ENENENER
| |

I Data[15:0]

Used to access the L1 cache tag arrays. The address tag consists of the upper 18 bits and bits 11 and 10 of the
physical address. See “Cache Lines” on page 6-16.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
DO D DT X e X T D IXTXTXTX] eset = unetined
| |
| Tag[19:4]
Physical address

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| EJ ESES KN EN S ENES ESENENES ENEREEN

I:|_I I— L var
Tag[3:2] Valid

0 - Cache line is not valid

Physical address 1 - Cache line contains valid
data

Tag[1:0] LRUPRIO

Physical address 0 - LRUPRIO is cleared for
this entry

1 - LRUPRIO is set for this
entry. See “ICPLB_DATAXx
Registers” on page 6-55 and
“IMEM_CONTROL Register”
on page 6-9.

Figure 6-11. Instruction Test Data 0 Register
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L1 Data Memory

The L1 data SRAM/cache is constructed from single-ported subsections,
but organized to reduce the likelihood of access collisions. This organiza-
tion results in apparent multi-ported behavior. When there are no
collisions, this L1 data traffic could occur in a single core clock cycle:

e Two 32-bit DAG loads

* One pipelined 32-bit DAG store
* One 64-bit DMA 10

*  One 64-bit cache fill/victim access

@ L1 Data Memory can be used only to store data.

DMEM_CONTROL Register

The Data Memory Control register (DMEM_CONTROL) contains control bits
for the L1 Data Memory.

The PORT_PREF1 bit selects the data port used to process DAG1
non-cacheable L2 fetches. Cacheable fetches are always processed by the
data port physically associated with the targeted cache memory. Steering
DAGO, DAG]I, and cache traffic to different ports optimizes performance
by keeping the queue to L2 memory full.

The PORT_PREFO bit selects the data port used to process DAGO
non-cacheable L2 fetches. Cacheable fetches are always processed by the
data port physically associated with the targeted cache memory. Steering
DAGO, DAG]I, and cache traffic to different ports optimizes performance
by keeping the queue to L2 memory full.
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Data Memory Control Register (DMEM_CONTROL)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0xFFEO 0004

15 14 13 12 11

10 9 8 7 6 5 4 3 2 1
fofofo]rJofofofofofofo]o]oelo
1

PORT_PREF1 (DAG1 Port

Preference)

0 - DAG1 non-cacheable fetches
use port A

1 - DAG1 non-cacheable fetches
use port B

PORT_PREFO0 (DAGO Port

Preference) —mM8M8M8

0 - DAGO non-cacheable fetches
use port A

1 - DAGO non-cacheable fetches
use port B

DCBS (L1 Data Cache Bank Select)

Valid only when DMCJ1:0] = 11, for ADSP-BF532
and ADSP-BF533. Determines whether Address
bit A[14] or A[23] is used to select the L1 data
cache bank.

0 - Address bit 14 is used to select Bank A or B
for cache access. If bit 14 of address is 1,
select L1 Data Memory Data Bank A; if bit 14
of address is 0, select L1 Data Memory Data
Bank B.

1 - Address bit 23 is used to select Bank A or B for
cache access. If bit 23 of address is 1, select
L1 Data Memory Data Bank A; if bit 23 of
address is 0, select L1 Data Memory Data
Bank B.

See “Example of Mapping Cacheable Address

Space” on page 6-35.

Figure 6-12. L1 Data Memory Control Register

Memory

|o |o |o |o |o |o |o |o |o |o |o |o |0 |o |o |o | Reset = 0x0000 1001

I— ENDCPLB (Data Cacheability

Protection Lookaside Buffer

Enable)

0 - CPLBs disabled. Minimal
address checking only

1 - CPLBs enabled

DMC[1:0] (L1 Data Memory

Configure)

For ADSP-BF533:

00 - Both data banks are
SRAM, also invalidates all

cache lines if previously
configured as cache

01 - Reserved

10 - Data Bank A is lower
16K byte SRAM, upper
16K byte cache
Data Bank B is SRAM

11 - Both data banks are
lower 16K byte SRAM,
upper 16K byte cache

For ADSP-BF532:

00 - Both data banks are
SRAM, also invalidates all
cache lines if previously
configured as cache

01 - Reserved

10 - Data Bank A is cache,
Data Bank B is SRAM

11 - Both data banks are
cache

For ADSP-BF531:

00 - Data Bank A is SRAM,
also invalidates all cache
lines if previously
configured as cache

01 - Reserved

10 - Data Bank A is cache

11 - Reserved
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L1 Data Memory

For optimal performance with dual DAG reads, DAGO and DAG1
should be configured for different ports. For example, if
PORT_PREFO is configured as 1, then PORT_PREF1 should be pro-
grammed to 0.

The DCBS bit provides some control over which addresses alias into the
same set. This bit can be used to affect which addresses tend to remain res-
ident in cache by avoiding victimization of repetitively used sets. It has no
affect unless both Data Bank A and Data Bank B are serving as cache (bits
DMC[1:0] in this register are set to 11).

The ENDCPLB bit is used to enable/disable the 16 Cacheability Protection
Lookaside Buffers (CPLBs) used for data (see “L1 Data Cache” on

page 6-34). Data CPLBs are disabled by default after reset. When dis-
abled, only minimal address checking is performed by the L1 memory
interface. This minimal checking generates an exception when the
processor:

* Addresses nonexistent (reserved) L1 memory space
e Attempts to perform a nonaligned memory access

e Attempts to access MMR space either using DAG1 or when in
User mode

CPLBs must be disabled using this bit prior to updating their descriptors
(registers DCPLB_DATAx and DCPLB_ADDRxX). Note that since load store order-
ing is weak (see “Ordering of Loads and Stores” on page 6-67), disabling
CPLBs should be preceded by a CSYNC instruction.

When enabling or disabling cache or CPLBs, immediately follow
the write to DMEM_CONTROL with a SSYNC to ensure proper behavior.

6-30 ADSP-BF533 Blackfin Processor Hardware Reference



Memory

By default after reset, all L1 Data Memory serves as SRAM. The DMC[1:0]
bits can be used to reserve portions of this memory to serve as cache
instead. Reserving memory to serve as cache does not enable L2 memory
accesses to be cached. To do this, CPLBs must also be enabled (using the
ENDCPLB bit) and CPLB descriptors (registers DCPLB_DATAx and
DCPLB_ADDRx) must specify chosen memory pages as cache-enabled.

By default after reset, cache and CPLB address checking is disabled.

To ensure proper behavior and future compatibility, all reserved

bits in this register must be set to 0 whenever this register is
written.

L1 Data SRAM

Accesses to SRAM do not collide unless all of the following are true: the
accesses are to the same 32-bit word polarity (address bits 2 match), the
same 4K byte subbank (address bits 13 and 12 match), the same 16K byte
half bank (address bits 16 match), and the same bank (address bits 21 and
20 match). When an address collision is detected, access is nominally
granted first to the DAGs, then to the store buffer, and finally to the
DMA and cache fill/victim traffic. To ensure adequate DMA bandwidth,
DMA is given highest priority if it has been blocked for more than 16

sequential core clock cycles, or if a second DMA I/O is queued before the
first DMA 1/0O is processed.

Table 6-4 shows how the subbank organization is mapped into memory.

Table 6-4. L1 Data Memory SRAM Subbank Start Addresses

Memory Bank ADSP-BF533 ADSP-BF532 ADSP-BF531
and Subbank

Data Bank A, 0xFF80 0000 - -

Subbank 0

Data Bank A, 0xFF80 1000 - -

Subbank 1
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Table 6-4. L1 Data Memory SRAM Subbank Start Addresses (Cont’d)

Memory Bank
and Subbank

ADSP-BF533

ADSP-BF532

ADSP-BF531

Data Bank A,
Subbank 2

0xFF80 2000

Data Bank A,
Subbank 3

0xFF80 3000

Data Bank A,
Subbank 4

0xFF80 4000

0xFF80 4000

0xFF80 4000

Data Bank A,
Subbank 5

0xFF80 5000

0xFF80 5000

0xFF80 5000

Data Bank A,
Subbank 6

0xFF80 6000

0xFF80 6000

0xFF80 6000

Data Bank A,
Subbank 7

0xFF80 7000

0xFF80 7000

0xFF80 7000

Data Bank B,
Subbank 0

0xFF90 0000

Data Bank B,
Subbank 1

0xFF90 1000

Data Bank B,
Subbank 2

0xFF90 2000

Data Bank B,
Subbank 3

0xFF90 3000

Data Bank B,
Subbank 4

0xFF90 4000

0xFF90 4000

Data Bank B,
Subbank 5

0xFF90 5000

0xFF90 5000

Data Bank B,
Subbank 6

0xFF90 6000

0xFF90 6000

Data Bank B,
Subbank 7

0xFF90 7000

0xFF90 7000

Figure 6-13 shows the L1 Data Memory architecture.
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ADSP-BF532 AND ADSP-BF533 ONLY

DATA BANK B
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Memory
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| | | — I 8 X 32 BIT
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1 ! ]
| |
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| | BUFFER BUFFER
= | I 8X32 BIT 2T0 8X32BIT
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YVY A TAG TAG Y Y _ WRITE
DAG1 LOAD . bcB
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i PROCESSOR EXTERNAL _  EAB
CORE MEMORY ~+>
STORE BUFFER DAG1/0 STORE _
6X 32 BIT
Figure 6-13. L1 Data Memory Architecture
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L1 Data Memory

L1 Data Cache

For definitions of cache terminology, see “Terminology” on page 6-74.

When data cache is enabled (controlled by bits DMC[1:0] in the
DMEM_CONTROL register), either 16K byte of Data Bank A or 16K byte of
both Data Bank A and Data Bank B can be set to serve as cache. For the
ADSP-BF533, the upper 16K byte is used. For the ADSP-BF531, only
Data Bank A is available. Unlike instruction cache, which is 4-Way set
associative, data cache is 2-Way set associative. When two banks are avail-
able and enabled as cache, additional sets rather than Ways are created.
When both Data Bank A and Data Bank B have memory serving as cache,
the DCBS bit in the DMEM_CONTROL register may be used to control which
half of all address space is handled by which bank of cache memory. The
DCBS bit selects either address bit 14 or 23 to steer traffic between the
cache banks. This provides some control over which addresses alias into
the same set. It may therefore be used to affect which addresses tend to
remain resident in cache by avoiding victimization of repetitively used
sets.

Accesses to cache do not collide unless they are to the same 4K byte sub-
bank, the same half bank, and to the same bank. Cache has less apparent
multi-ported behavior than SRAM due to the overhead in maintaining
tags. When cache addresses collide, access is granted first to the DTEST reg-
ister accesses, then to the store buffer, and finally to cache fill/victim
traffic.

Three different cache modes are available.
*  Write-through with cache line allocation only on reads
e Write-through with cache line allocation on both reads and writes

e  Worite-back which allocates cache lines on both reads and writes
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Cache mode is selected by the DCPLB descriptors (see “Memory Protection
and Properties” on page 6-47). Any combination of these cache modes can
be used simultaneously since cache mode is selectable for each memory

page independently.

If cache is enabled (controlled by bits DMC[1:0] in the DMEM_CONTROL regis-
ter), data CPLBs should also be enabled (controlled by ENDCPLB bit in the
DMEM_CONTROL register). Only memory pages specified as cacheable by data
CPLBs will be cached. The default behavior when data CPLBs are dis-
abled is for nothing to be cached.

Erroneous behavior can result when MMR space is configured as
cacheable by data CPLBs, or when data banks serving as L1 SRAM
are configured as cacheable by data CPLBs.

Example of Mapping Cacheable Address Space

An example of how the cacheable address space maps into two data banks
follows.

When both banks are configured as cache on the ADSP-BF533 or
ADSP-BF532, they operate as two independent, 16K byte, 2-Way set
associative caches that can be independently mapped into the Blackfin
processor address space.

If both data banks are configured as cache, the DCBS bit in the
DMEM_CONTROL register designates Address bit A[14] or A[23] as the cache
selector. Address bit A[14] or A[23] selects the cache implemented by
Data Bank A or the cache implemented by Data Bank B.

e IfDCBS = 0, then A[14] is part of the address index, and all
addresses in which A[14] = 0 use Data Bank B. All addresses in
which A[14]1 = 1 use Data Bank A.

In this case, A[23] is treated as merely another bit in the address
that is stored with the tag in the cache and compared for hit/miss
processing by the cache.
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If DCBS = 1, then A[23] is part of the address index, and all
addresses where A[23] = 0 use Data Bank B. All addresses where
AL23] = 1 use Data Bank A.

In this case, A[14] is treated as merely another bit in the address
that is stored with the tag in the cache and compared for hit/miss
processing by the cache.

The result of choosing DCBS = 0 or DCBS = 1 is:

If DCBS = 0, A[14] selects Data Bank A instead of Data Bank B.

Alternating 16K byte pages of memory map into each of the two
16K byte caches implemented by the two data banks.
Consequently:

* Any data in the first 16K byte of memory could be stored
only in Data Bank B.

* Any data in the next address range (16K byte through 32K
byte) — 1 could be stored only in Data Bank A.

* Any data in the next range (32K byte through 48K byte) — 1
would be stored in Data Bank B.

* Alternate mapping would continue.

As a result, the cache operates as if it were a single, contiguous,

2-Way set associative 32K byte cache. Each Way is 16K byte long,
and all data elements with the same first 14 bits of address index to
a unique set in which up to two elements can be stored (one in each

Way).
If DCBS = 1, A[23] selects Data Bank A instead of Data Bank B.

With DCBS = 1, the system functions more like two independent
caches, each a 2-Way set associative 16K byte cache. Each Bank
serves an alternating set of 8M byte blocks of memory.

6-36
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For example, Data Bank B caches all data accesses for the first 8M
byte of memory address range. That is, every 8M byte of range vies
for the two line entries (rather than every 16K byte repeat). Like-
wise, Data Bank A caches data located above 8M byte and below
16M byte.

For example, if the application is working from a data set that is
1M byte long and located entirely in the first 8M byte of memory,
it is effectively served by only half the cache, that is, by Data Bank
B (a 2-Way set associative 16K byte cache). In this instance, the
application never derives any benefit from Data Bank A.

@ For most applications, it is best to operate with DCBS = 0.

However, if the application is working from two data sets, located in two
memory spaces at least 8M byte apart, closer control over how the cache
maps to the data is possible. For example, if the program is doing a series
of dual MAC operations in which both DAGs are accessing data on every
cycle, by placing DAGO’s data set in one block of memory and DAG1’s
data set in the other, the system can ensure that:

* DAGO gets its data from Data Bank A for all of its accesses and
* DAGI gets its data from Data Bank B.

This arrangement causes the core to use both data buses for cache line
transfer and achieves the maximum data bandwidth between the cache
and the core.

Figure 6-14 shows an example of how mapping is performed when
DCBS = 1.

The DCBS selection can be changed dynamically; however, to ensure
that no data is lost, first flush and invalidate the entire cache.
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Figure 6-14. Data Cache Mapping When DCBS =1
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Data Cache Access

The Cache Controller tests the address from the DAGs against the tag
bits. If the logical address is present in L1 cache, a cache hit occurs, and
the data is accessed in L1. If the logical address is not present, a cache miss
occurs, and the memory transaction is passed to the next level of memory
via the system interface. The line index and replacement policy for the
Cache Controller determines the cache tag and data space that are allo-
cated for the data coming back from external memory.

A data cache line is in one of three states: invalid, exclusive (valid and
clean), and modified (valid and dirty). If valid data already occupies the
allocated line and the cache is configured for write-back storage, the con-
troller checks the state of the cache line and treats it accordingly:

 If the state of the line is exclusive (clean), the new tag and data
write over the old line.
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* If the state of the line is modified (dirty), then the cache contains
the only valid copy of the data. If the line is dirty, the current con-
tents of the cache are copied back to external memory before the
new data is written to the cache.

The processor provides victim buffers and line fill buffers. These buffers
are used if a cache load miss generates a victim cache line that should be
replaced. The line fill operation goes to external memory. The data cache
performs the line fill request to the system as critical (or requested) word
first, and forwards that data to the waiting DAG as it updates the cache
line. In other words, the cache performs critical word forwarding.

The data cache supports hit-under-a-store miss, and hit-under-a-prefetch
miss. In other words, on a write-miss or execution of a PREFETCH instruc-
tion that misses the cache (and is to a cacheable region), the instruction
pipeline incurs a minimum of a 4-cycle stall. Furthermore, a subsequent
load or store instruction can hit in the L1 cache while the line fill
completes.

Interrupts of sufficient priority (relative to the current context) cancel a
stalled load instruction. Consequently, if the load operation misses the L1
Data Memory cache and generates a high latency line fill operation on the
system interface, it is possible to interrupt the core, causing it to begin
processing a different context. The system access to fill the cache line is
not cancelled, and the data cache is updated with the new data before any
further cache miss operations to the respective data bank are serviced. For
more information see “Exceptions” on page 4-41.

Cache Write Method

Cache write memory operations can be implemented by using either a
write-through method or a write-back method:

* For each store operation, write-through caches initiate a write to
external memory immediately upon the write to cache.
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If the cache line is replaced or explicitly flushed by software, the
contents of the cache line are invalidated rather than written back
to external memory.

* A write-back cache does not write to external memory until the line
is replaced by a load operation that needs the line.

The L1 Data Memory employs a full cache line width copyback buffer on
each data bank. In addition, a two-entry write buffer in the L1 Data
Memory accepts all stores with cache inhibited or store-through protec-
tion. An SSYNC instruction flushes the write buffer.

IPRIO Register and Write Buffer Depth

The Interrupt Priority register (IPRI0) can be used to control the size of
the write buffer on Port A (see “L1 Data Memory Architecture” on
page 6-33).

The IPRIO[3:0] bits can be programmed to reflect the low priority inter-
rupt watermark. When an interrupt occurs, causing the processor to
vector from a low priority interrupt service routine to a high priority inter-
rupt service routine, the size of the write buffer increases from two to eight
32-bit words deep. This allows the interrupt service routine to run and
post writes without an initial stall, in the case where the write buffer was
already filled in the low priority interrupt routine. This is most useful
when posted writes are to a slow external memory device. When returning
from a high priority interrupt service routine to a low priority interrupt
service routine or user mode, the core stalls until the write buffer has
completed the necessary writes to return to a two-deep state. By default,
the write buffer is a fixed two-deep FIFO.
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Interrupt Priority Register (IPRIO)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
0xFFEO 2110 |o |o |o |o |o |o |o |o |o |o |o |o |o |o |o |o | Reset = 0x0000 0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
folofofofofo]ofofofofofofofofe]o]

I_I:IIPRIO_MAFIK (Priority

Watermark)

0000 - Default, all interrupts
are low priority

0001 - Interrupts 15 through 1
are low priority, interrupt
0 is considered high
priority

0010 - Interrupts 15 through 2
are low priority,
interrupts 1 and 0 are
considered high priority

1110 - Interrupts 15 and 14
are low priority,
interrupts 13 through 0
are considered high
priority

1111 - Interrupt 15 is low
priority, all others are
considered high priority

Figure 6-15. Interrupt Priority Register

Data Cache Control Instructions

The processor defines data cache control instructions that are accessible in
User and Supervisor modes. They are PREFETCH, FLUSH, and FLUSHINV.

e PREFETCH (Data Cache Prefetch) attempts to allocate a line into the
L1 cache. If the prefetch hits in the cache, generates an exception,
or addresses a cache inhibited region, PREFETCH functions as a NOP.

e FLUSH (Data Cache Flush) causes the data cache to synchronize the
specified cache line with external memory. If the cached data line is
dirty, the instruction writes the line out and marks the line clean in
the data cache. If the specified data cache line is already clean or
does not exist, FLUSH functions like a NOP.
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* FLUSHINV (Data Cache Line Flush and Invalidate) causes the data
cache to perform the same function as the FLUSH instruction and
then invalidate the specified line in the cache. If the line is in the
cache and dirty, the cache line is written out to external memory.
The Valid bit in the cache line is then cleared. If the line is not in
the cache, FLUSHINV functions like a NOP.

If software requires synchronization with system hardware, place an SSYNC
instruction after the FLUSH instruction to ensure that the flush operation
has completed. If ordering is desired to ensure that previous stores have
been pushed through all the queues, place an SSYNC instruction before the
FLUSH.

Data Cache Invalidation

Besides the FLUSHINV instruction, explained in the previous section, two
additional methods are available to invalidate the data cache when flush-
ing is not required. The first technique directly invalidates Valid bits by
setting the Invalid bit of each cache line to the invalid state. To implement
this technique, additional MMRs (DTEST_COMMAND and DTEST_DATA[1:0])
are available to allow arbitrary reads/writes of all the cache entries directly.
This method is explained in the next section.

For invalidating the complete data cache, a second method is available. By
clearing the DMC[1:0] bits in the DMEM_CONTROL register (see Figure 6-12
on page 6-29), all Valid bits in the data cache are set to the invalid state. A
second write to the DMEM_CONTROL register to set the DMC[1:0] bits to their
previous state then configures the data memory back to its previous
cache/SRAM configuration. An SSYNC instruction should be run before
invalidating the cache and a CSYNC instruction should be inserted after
each of these operations.
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Data Test Registers

Like L1 Instruction Memory, L1 Data Memory contains additional
MMRs to allow arbitrary reads/writes of all cache entries directly. The reg-
isters provide a mechanism for data cache test, initialization, and debug.

When the Data Test Command register (DTEST_COMMAND) is written to, the
L1 cache data or tag arrays are accessed and data is transferred through the
Data Test Data registers (DTEST_DATAL1:0]). The DTEST_DATA[1:0] regis-
ters contain the 64-bit data to be written, or they contain the destination
for the 64-bit data read. The lower 32 bits are stored in the DTEST_DATA[0]
register and the upper 32 bits are stored in the DTEST_DATA[1] register.
When the tag arrays are being accessed, then the DTEST_DATAL0] register is
used.

A CSYNC instruction is required after writing the DTEST_COMMAND
MMR.

These figures describe the DTEST registers.
* Figure 6-16 on page 6-44
* Figure 6-17 on page 6-45
* Figure 6-18 on page 6-46

Access to these registers is possible only in Supervisor or Emulation mode.
When writing to DTEST registers, always write to the DTEST_DATA registers
first, then the DTEST_COMMAND register.
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DTEST_COMMAND Register

When the Data Test Command register (DTEST_COMMAND) is written to, the
L1 cache data or tag arrays are accessed, and the data is transferred

through the Data Test Data registers (DTEST

DATA[1:01).

The Data/Instruction Access bit allows direct access via the
DTEST_COMMAND MMR to L1 instruction SRAM.

Data Test Command Register (DTEST_COMMAND)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

oxFFE0 0300 Ix o [ o P ox T e I P I T X Tx [x [x | Reset = undefined

Access Way/Instruction
Address Bit 11

0 - Access WayO/Instruction bit 11 =0
=1

1 - Access Way1/Instruction bit 11

Data/Instruction Access
0 - Access Data

1 - Access Instruction
Data Bank Access
For ADSP-BF533:
0 - Access Data Bank A/Instr Memory OxFFAO 0000

1 - Access Data Bank B/Instr Memory OxFFAO 8000

For ADSP-BF532:

0 - Access Data Bank A

1 - Access Data Bank B/Instr Memory 0xFFAO 8000

For ADSP-BF531:

0 - Access Data Bank A (Valid when Data/Instruction Access = 0

Subbank Access[1:0]
(SRAM ADDRJ[13:12])
00 - Access subbank 0
01 - Access subbank 1
10 - Access subbank 2
11 - Access subbank 3

1 - Instr Memory OxFFAOQ 8000 (Valid when Data/Instruction Access = 1)

15 14 13 12 11 10 9 8 7 6 5 4 3

2 1 0

ENESENES N ENES ES ESEN ENES ENERESES

Data Cache Select/
Address Bit 14
0 - Reserved/Instruction bit 14 = 0

1 - Select Data Cache Bank/Instruction bit 14 = 1

Set Index[5:0]
Selects one of 64 sets

Double Word Index[1:0]

Selects one of four 64-bit
double words in a 256-bit line

Figure 6-16. Data Test Command Register

| |_
Read/Write Access

0 - Read access

1 - Write access
Array Access

0 - Access tag array
1 - Access data array
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Data Test Data registers (DOTEST_DATA[1:01]) contain the 64-bit data to be
written, or they contain the destination for the 64-bit data read. The Data
Test Data 1 register (DTEST_DATAL) stores the upper 32 bits.

Data Test Data 1 Register (DTEST_DATA1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
0xFFEO 0404 |><|><|>< |x|x |>< |>< |><|><|x |><|><|><|><|x|><|

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

KN EN ENES ENEN ENES ENEN ENES ENENERER

| |
[

When accessing tag arrays, all bits are reserved.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
1 e 1 e e e [ e B A

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[ENESENES ENENENES ESENENES ENENERER

Figure 6-17. Data Test Data 1 Register

DTEST_DATAO Register

Reset = Undefined

Data[63:48]

Data[47:32]

Reset = Undefined

The Data Test Data 0 register (DTEST_DATAO) stores the lower 32 bits of
the 64-bit data to be written, or it contains the lower 32 bits of the desti-
nation for the 64-bit data read. The DTEST_DATAO register is also used to
access the tag arrays and contains the Valid and Dirty bits, which indicate

the state of the cache line.
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Data Test Data 0 Register (DTEST_DATAO)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
0xFFEO 0400 lexlxlxlxlxlxlxlxlxlexlxlxlxlxl Reset = Undefined
| |

[ Data[31:16]
1514 1312 11 10 9 8 7 6 5 4 3 2 1 0
BN ENENES BN ESENEY ENEN ENES ENENESEN
| |
[ Data[15:0]

Used to access the L1 cache tag arrays. The address tag consists of the upper 18 bits
and bit 11 of the physical address. See “Cache Lines” on page 6-16.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
P DI e e D e I Ix X [x ]x]  reset = undefined
| |
| Tag[19:4]
Physical address

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
SN ENES N KN ENEN ES ESENESEY ENENESEN

Tag[3:2] L valid

Physical address

0 - Cache line invalid

Tag 1 - Cache line valid
Physical address Dirt
LRU v

0 - Cache line unmodified
since it was copied from
source memory

1 - Cache line modified
after it was copied
from source memory

0 - WayO is the least
recently used
1 - Way1 is the least
recently used

Figure 6-18. Data Test Data 0 Register

External Memory

The external memory space is shown in Figure 6-1. One of the memory
regions is dedicated to SDRAM support. The size of the SDRAM bank is
programmable and can range in size from 16M byte to 128M byte. The
start address of the bank is 0x0000 0000.
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Each of the next four banks contains 1M byte and is dedicated to support

asynchronous memories. The start address of the asynchronous memory
bank is 0x2000 0000.

Memory Protection and Properties

This section describes the Memory Management Unit (MMU), memory
pages, CPLB management, MMU management, and CPLB registers.

Memory Management Unit

The Blackfin processor contains a page based Memory Management Unit
(MMU). This mechanism provides control over cacheability of memory
ranges, as well as management of protection attributes at a page level. The
MMU provides great flexibility in allocating memory and I/O resources
between tasks, with complete control over access rights and cache
behavior.

The MMU is implemented as two 16-entry Content Addressable Memory
(CAM) blocks. Each entry is referred to as a Cacheability Protection Loo-
kaside Buffer (CPLB) descriptor. When enabled, every valid entry in the
MMU is examined on any fetch, load, or store operation to determine
whether there is a match between the address being requested and the page
described by the CPLB entry. If a match occurs, the cacheability and pro-
tection attributes contained in the descriptor are used for the memory
transaction with no additional cycles added to the execution of the
instruction.

Because the L1 memories are separated into instruction and data memo-
ries, the CPLB entries are also divided between instruction and data
CPLBs. Sixteen CPLB entries are used for instruction fetch requests; these
are called /CPLBs. Another sixteen CPLB entries are used for data transac-
tions; these are called DCPLBs. The ICPLBs and DCPLBs are enabled by
setting the appropriate bits in the L1 Instruction Memory Control
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(IMEM_CONTROL) and L1 Data Memory Control (DMEM_CONTROL) registers,
respectively. These registers are shown in Figure 6-5 and Figure 6-12,
respectively.

Each CPLB entry consists of a pair of 32-bit values. For instruction
fetches:

* ICPLB_ADDR[n] defines the start address of the page described by
the CPLB descriptor.

* ICPLB_DATALn] defines the properties of the page described by the
CPLB descriptor.

For data operations:

e DCPLB_ADDRLm] defines the start address of the page described by
the CPLB descriptor.

* DCPLB_DATALm] defines the properties of the page described by the
CPLB descriptor.

There are two default CPLB descriptors for data accesses to the scratchpad
data memory and to the system and core MMR space. These default
descriptors define the above space as non-cacheable, so that additional
CPLBs do not need to be set up for these regions of memory.

If valid CPLBs are set up for this space, the default CPLBs are

ignored.
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Memory Pages

The 4G byte address space of the processor can be divided into smaller
ranges of memory or I/O referred to as memory pages. Every address
within a page shares the attributes defined for that page. The architecture
supports four different page sizes:

e 1K byte
* 4K byte
* 1M byte
* 4M byte

Different page sizes provide a flexible mechanism for matching the map-
ping of attributes to different kinds of memory and I/0O.

Memory Page Attributes

Each page is defined by a two-word descriptor, consisting of an address
descriptor word xCPLB_ADDR[n] and a properties descriptor word
xCPLB_DATALn]. The address descriptor word provides the base address of
the page in memory. Pages must be aligned on page boundaries that are an
integer multiple of their size. For example, a 4M byte page must start on
an address divisible by 4M byte; whereas a 1K byte page can start on any
1K byte boundary. The second word in the descriptor specifies the other
properties or attributes of the page. These properties include:

* DPage size. 1K byte, 4K byte, 1M byte, 4M byte

* Cacheable/non-cacheable: Accesses to this page use the L1 cache or
bypass the cache.

* If cacheable: write-through/write-back. Data writes propagate
directly to memory or are deferred until the cache line is reallo-
cated. If write-through, allocate on read only, or read and write.
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* Dirty/modified. The data in this page in memory has changed
since the CPLB was last loaded.

* Supervisor write access permission. Enables or disables writes to
this page when in Supervisor mode, for data pages only.

e User write access permission. Enables or disables writes to this page
when in User mode, for data pages only.

e User read access permission. Enables or disables reads from this
page when in User mode.

e Valid. Check this bit to determine whether this is valid CPLB data.

* Lock. Keep this entry in MMR; do not participate in CPLB

replacement policy.

Page Descriptor Table

For memory accesses to utilize the cache when CPLBs are enabled for
instruction access, data access, or both, a valid CPLB entry must be avail-
able in an MMR pair. The MMR storage locations for CPLB entries are
limited to 16 descriptors for instruction fetches and 16 descriptors for
data load and store operations.

For small and/or simple memory models, it may be possible to define a set
of CPLB descriptors that fit into these 32 entries, cover the entire address-
able space, and never need to be replaced. This type of definition is
referred to as a static memory management model.

However, operating environments commonly define more CPLB descrip-
tors to cover the addressable memory and I/O spaces than will fit into the
available on-chip CPLB MMRs. When this happens, a memory-based
data structure, called a Page Descriptor Table, is used; in it can be stored
all the potentially required CPLB descriptors. The specific format for the
Page Descriptor Table is not defined as part of the Blackfin processor
architecture. Different operating systems, which have different memory
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management models, can implement Page Descriptor Table structures
that are consistent with the OS requirements. This allows adjustments to
be made between the level of protection afforded versus the performance
attributes of the memory-management support routines.

CPLB Management

When the Blackfin processor issues a memory operation for which no
valid CPLB (cacheability protection lookaside buffer) descriptor exists in
an MMR pair, an exception occurs that places the processor into
Supervisor mode and vectors to the MMU exception handler

(see “Exceptions” on page 4-41 for more information). The handler is typ-
ically part of the operating system (OS) kernel that implements the CPLB
replacement policy.

Before CPLBs are enabled, valid CPLB descriptors must be in place
for both the Page Descriptor Table and the MMU exception han-
dler. The L0oCK bits of these CPLB descriptors are commonly set so
they are not inadvertently replaced in software.

The handler uses the faulting address to index into the Page Descriptor
Table structure to find the correct CPLB descriptor data to load into one
of the on-chip CPLB register pairs. If all on-chip registers contain valid
CPLB entries, the handler selects one of the descriptors to be replaced,
and the new descriptor information is loaded. Before loading new descrip-
tor data into any CPLBs, the corresponding group of sixteen CPLBs must
be disabled using;:

e The Enable DCPLB (ENDCPLB) bit in the DMEM_CONTROL register for
data descriptors, or

e The Enable ICPLB (ENICPLB) bit in the IMEM_CONTROL register for
instruction descriptors
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The CPLB replacement policy and algorithm to be used are the responsi-
bility of the system MMU exception handler. This policy, which is
dictated by the characteristics of the operating system, usually implements
a modified LRU (Least Recently Used) policy, a round robin scheduling

method, or pseudo random replacement.

After the new CPLB descriptor is loaded, the exception handler returns,
and the faulting memory operation is restarted. this operation should now
find a valid CPLB descriptor for the requested address, and it should pro-
ceed normally.

A single instruction may generate an instruction fetch as well as one or
two data accesses. It is possible that more than one of these memory oper-
ations references data for which there is no valid CPLB descriptor in an
MMR pair. In this case, the exceptions are prioritized and serviced in this
order:

* Instruction page miss
* A page miss on DAGO
* A page miss on DAGI

MMU Application

Memory management is an optional feature in the Blackfin processor
architecture. Its use is predicated on the system requirements of a given
application. Upon reset, all CPLBs are disabled, and the Memory Man-
agement Unit (MMU) is not used.

If all L1 memory is configured as SRAM, then the data and instruction
MMU functions are optional, depending on the application’s need for
protection of memory spaces either between tasks or between User and
Supervisor modes. To protect memory between tasks, the operating sys-
tem can maintain separate tables of instruction and/or data memory pages
available for each task and make those pages visible only when the relevant
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task is running. When a task switch occurs, the operating system can
ensure the invalidation of any CPLB descriptors on chip that should not
be available to the new task. It can also preload descriptors appropriate to
the new task.

For many operating systems, the application program is run in User mode
while the operating system and its services run in Supervisor mode. It is
desirable to protect code and data structures used by the operating system
from inadvertent modification by a running User mode application. This
protection can be achieved by defining CPLB descriptors for protected
memory ranges that allow write access only when in Supervisor mode. If a
write to a protected memory region is attempted while in User mode, an
exception is generated before the memory is modified. Optionally, the
User mode application may be granted read access for data structures that
are useful to the application. Even Supervisor mode functions can be
blocked from writing some memory pages that contain code that is not
expected to be modified. Because CPLB entries are MMRs that can be
written only while in Supervisor mode, user programs cannot gain access
to resources protected in this way.

If either the L1 Instruction Memory or the L1 Data Memory is configured
partially or entirely as cache, the corresponding CPLBs must be enabled.
When an instruction generates a memory request and the cache is enabled,
the processor first checks the ICPLBs to determine whether the address
requested is in a cacheable address range. If no valid ICPLB entry in an
MMR pair corresponds to the requested address, an MMU exception is
generated to obtain a valid ICPLB descriptor to determine whether the
memory is cacheable or not. As a resulg, if the L1 Instruction Memory is
enabled as cache, then any memory region that contains instructions must
have a valid ICPLB descriptor defined for it. These descriptors must either
reside in MMRs at all times or be resident in a memory-based Page
Descriptor Table that is managed by the MMU exception handler. Like-
wise, if either or both L1 data banks are configured as cache, all potential
data memory ranges must be supported by DCPLB descriptors.
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Before caches are enabled, the MMU and its supporting data struc-
tures must be set up and enabled.

Examples of Protected Memory Regions

In Figure 6-19, a starting point is provided for basic CPLB allocation for
Instruction and Data CPLBs. Note some ICPLBs and DCPLBs have com-
mon descriptors for the same address space.

INSTRUCTION CPLB SETUP

L1 INSTRUCTION: SDRAM: CACHEABLE
NON-CACHEABLE 1MB PAGE EIGHT 4MB PAGES

ASYNC: NON-CACHEABLE
ONE 1MB PAGE

ASYNC: CACHEABLE
TWO 1MB PAGES

DATA CPLB SETUP

SDRAM: CACHEABLE
EIGHT 4MB PAGES

L1 DATA: ASYNC: NON-CACHEABLE
NON-CACHEABLE ONE 4MB PAGE ONE 1MB PAGE

ASYNC: CACHEABLE
ONE 1MB PAGE

Figure 6-19. Examples of Protected Memory Regions
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ICPLB_DATAX Registers

Figure 6-20 describes the ICPLB Data registers (ICPLB_DATAXx).

To ensure proper behavior and future compatibility, all reserved
bits in this register must be set to 0 whenever this register is
written.

ICPLB Data Registers (ICPLB_DATAX)

zoarpl\'ilzénory- 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
addresses, see IO |O |0 |0 IO |0 |O |0 IO |0 |0 |0 Io |0 |o |0 I Reset = 0x0000 0000
Table 6-5.

[

L PAGE_SIZE[1:0]
00 - 1K byte page size
01 - 4K byte page size
10 - 1M byte page size
11 - 4M byte page size

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
fofofofodofo]ofofofofofofofofofo]

CPLB_L1_CHBL L
Clear this bit whenever L1 memory CPLB_VALID
is configured as SRAM 0 - Invalid (disabled) CPLB
0 - Non-cacheable in L1 entry
1 - Cacheable in L1 1 - Valid (enabled) CPLB
CPLB_LRUPRIO entry
See “Instruction Cache Locking by Line” on page 6-21. CPLB_LOCK
0 - Low importance Can be used by software in
1 - High importance CPLB replacement algorithms
0 - Unlocked, CPLB entry can
be replaced
1 - Locked, CPLB entry
should not be replaced

CPLB_USER_RD

0 - User mode read access
generates protection
violation exception

1 - User mode read access
permitted

Figure 6-20. ICPLB Data Registers
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Table 6-5. ICPLB Data Register Memory-Mapped Addresses

Register Name Memory-Mapped Address

ICPLB_DATAO0

0xFFEO 1200

ICPLB_DATA1

0xFFEO 1204

ICPLB_DATA2

0xFFEO 1208

ICPLB_DATA3

0xFFEO 120C

ICPLB_DATA4

O0xFFEO 1210

ICPLB_DATA5

0xFFEO 1214

ICPLB_DATAG

0xFFEO 1218

ICPLB_DATA7

0xFFEO0 121C

ICPLB_DATAS

0xFFEO 1220

ICPLB_DATA9

0xFFEO 1224

ICPLB_DATA10

O0xFFEO 1228

ICPLB_DATA11

0xFFEO 122C

ICPLB_DATA12

0xFFEO 1230

ICPLB_DATA13

0xFFEO 1234

ICPLB_DATA14

0xFFEO 1238

ICPLB_DATA15

0xFFEO 123C
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Memory

Figure 6-21 shows the DCPLB Data registers (DCPLB_DATAX).

DCPLB Data Registers (DCPLB_DATAX)

For Memory- 31 30 29 28 27 26 25 24 23 22 2120 19 18 17 16
mapped |o|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|

Reset = 0x0000 0000

addresses, see
Table 6-6. I_l__I PAGE_SIZE[1:0]

15 14 13 12 11 10 9 8 7 6 5
2 o N N N 3 B N C O EN EN N

CPLB_L1_AOW |—

Valid only if write

through cacheable

(CPLB_VALID =1,

CPLB_WT =1)

0 - Allocate cache lines
on reads only

1 - Allocate cache lines
on reads and writes

CPLB_WT
Operates only in cache mode
0 - Write back

1 - Write through

CPLB_L1_CHBL

Clear this bit when L1 memory is
configured as SRAM

0 - Non-cacheable in L1

1 - Cacheable in L1

CPLB_DIRTY

Valid only if write back cacheable (CPLB_VALID = 1,
CPLB_WT =0, and CPLB_L1_CHBL = 1)

0 - Clean

1 - Dirty

A protection violation exception is generated on store
accesses to this page when this bit is 0. The state of
this bit is modified only by writes to this register. The
exception service routine must set this bit.

Figure 6-21. DCPLB Data Registers

00 - 1K byte page size
01 - 4K byte page size
10 - 1M byte page size
11 - 4M byte page size

CPLB_VALID

0 - Invalid (disabled) CPLB entry
1 - Valid (enabled) CPLB entry
CPLB_LOCK

Can be used by software in

CPLB replacement algorithms

0 - Unlocked, CPLB entry can
be replaced

1 - Locked, CPLB entry should
not be replaced

CPLB_USER_RD

0 - User mode read access
generates protection
violation exception

1 - User mode read access
permitted

CPLB_USER_WR

0 - User mode write access
generates protection
violation exception

1 - User mode write access
permitted

CPLB_SUPV_WR

0 - Supervisor mode write
access generates protection
violation exception

1 - Supervisor mode write
access permitted
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To ensure proper behavior and future compatibility, all reserved
bits in this register must be set to 0 whenever this register is

written.

Table 6-6. DCPLB Data Register Memory-Mapped Addresses

Register Name

Memory-Mapped Address

DCPLB_DATAO

0xFFEO 0200

DCPLB_DATA1

0xFFEO0 0204

DCPLB_DATA2

0xFFEO 0208

DCPLB_DATA3

0xFFEO0 020C

DCPLB_DATA4

O0xFFEO 0210

DCPLB_DATA5

0xFFEO0 0214

DCPLB_DATAG

0xFFEO 0218

DCPLB_DATA7

0xFFEO0 021C

DCPLB_DATAS

0xFFEO 0220

DCPLB_DATA9

0xFFEO0 0224

DCPLB_DATA10

0xFFEO 0228

DCPLB_DATAL11

0xFFEO 022C

DCPLB_DATA12

0xFFEO0 0230

DCPLB_DATA13

0xFFEO0 0234

DCPLB_DATA14

0xFFEO 0238

DCPLB_DATA15

0xFFEO0 023C
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Figure 6-22 shows the DCPLB Address registers (DCPLB_ADDRX).

DCPLB Address Registers (DCPLB_ADDRX)

For Memory-

mapped 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

addresses, see |0 |o |o |o |o |0 |o |o |o Io Io Io |o Io Io Ix
|

Table 6-7.

15 14 13 12 11 10 9

8 7 6 5 4 3 2 1 0
[ofofofofofofofo]o]

[o]ofofofe]o]e
| |

Figure 6-22. DCPLB Address Registers

Memory

Reset = 0x0000 0000

Upper Bits of Address for
Match[21:6]

Upper Bits of Address for
Match[5:0]

Table 6-7. DCPLB Address Register Memory-Mapped Addresses

Register Name

Memory-Mapped Address

DCPLB_ADDRO

0xFFEO 0100

DCPLB_ADDRI

0xFFEO 0104

DCPLB_ADDR2

0xFFEO0 0108

DCPLB_ADDR3

0xFFE0 010C

DCPLB_ADDR4

O0xFFEO0 0110

DCPLB_ADDRS5

0xFFEO 0114

DCPLB_ADDRG6

0xFFEO 0118

DCPLB_ADDRY7

0xFFE0 011C

DCPLB_ADDRS

0xFFEO0 0120

DCPLB_ADDRY

0xFFEO0 0124
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Table 6-7. DCPLB Address Register Memory-Mapped Addresses (Cont'd)

Register Name Memory-Mapped Address
DCPLB_ADDRI10 0xFFEO 0128
DCPLB_ADDRI1 0xFFEO0 012C
DCPLB_ADDRI12 0xFFEO 0130
DCPLB_ADDRI13 0xFFEO 0134
DCPLB_ADDRI14 0xFFEO 0138
DCPLB_ADDRI5 0xFFE0 013C

ICPLB_ADDRX Registers

Figure 6-23 shows the ICPLB Address registers (ICPLB_ADDRX).

ICPLB Address Registers (ICPLB_ADDRXx)

For Memory- 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

mapped [ofofofoJofofofofooo]Jo]o]o]o]o] Reset=oxo000 0000
addresses, see

Table 6-8. L I

Upper Bits of Address for
Match[21:6]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[olofofodofofofofofofofofofofo]o]
|

Upper Bits of Address for
Match[5:0]

Figure 6-23. ICPLB Address Registers
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Table 6-8. ICPLB Address Register Memory-Mapped Addresses

Register Name

Memory-Mapped Address

ICPLB_ADDRO

0xFFEO 1100

ICPLB_ADDRI1

0xFFEO 1104

ICPLB_ADDR2

0xFFEO 1108

ICPLB_ADDR3

O0xFFEO 110C

ICPLB_ADDR4

OxFFEO 1110

ICPLB_ADDRS

0xFFEO 1114

ICPLB_ADDRG

O0xFFEO 1118

ICPLB_ADDR7?

0xFFEO 111C

ICPLB_ADDRS

O0xFFEO 1120

ICPLB_ADDRY

O0xFFEO 1124

ICPLB_ADDRI10

OxFFEO 1128

ICPLB_ADDRI1

0xFFEO 112C

ICPLB_ADDRI12

0xFFEO 1130

ICPLB_ADDRI13

0xFFEO 1134

ICPLB_ADDRI14

0xFFEO 1138

ICPLB_ADDR15

0xFFEO 113C

DCPLB_STATUS and ICPLB_STATUS Registers

Memory

Bits in the DCPLB Status register (DCPLB_STATUS) and ICPLB Status reg-

ister (ICPLB_STATUS) identify the CPLB entry that has triggered

CPLB-related exceptions. The exception service routine can infer the
cause of the fault by examining the CPLB entries.

The DCPLB_STATUS and ICPLB_STATUS registers are valid only while
in the faulting exception service routine.
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Bits FAULT_DAG, FAULT_USERSUPV and FAULT_RW in the DCPLB Status regis-
ter (DCPLB_STATUS) are used to identify the CPLB entry that has triggered
the CPLB-related exception (see Figure 6-24).

DCPLB Status Register (DCPLB_STATUS)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
OxFFEO 0008 HEER BB EBEEE Io [x [x[x] Reset=undefined

FAULT_ILLADDR |
0 - No fault FAULT_RW
1 - Attempted access to nonexistent memory O Access was read

FAULT_DAG - Access was write

0 - Access was made by DAGO FAULT_USERSUPV

1 - Access was made by DAG1 0- g(;(;iss was made in User

1 - Access was made in
Supervisor mode

15 14 13 12 11 10

I°I°I°I°I°I°I°I°I°I°I°I°I°I°I°I°I

FAULT[15:0]

Each bit indicates the hit/miss
status of the associated CPLB
entry

Figure 6-24. DCPLB Status Register

Bit FAULT_USERSUPV in the ICPLB Status register (ICPLB_STATUS) is used
to identify the CPLB entry that has triggered the CPLB-related exception
(see Figure 6-25).
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ICPLB Status Register (ICPLB_STATUS)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

OxFEEO 1008 P [P e P I P P e [ [ Jo [x [x [x ] Reset = undefined
FAULT_ILLADDR | | FAULT_USERSUPV
0 - No fault 0 - Access was made in User

mode
1 - Access was made in
Supervisor mode

1 - Attempted access to nonexistent memory

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[ofofofofofofofofofofofofofofo]o]
|

FAULT[15:0]

Each bit indicates hit/miss
status of associated CPLB
entry

Figure 6-25. ICPLB Status Register

DCPLB_FAULT_ADDR and ICPLB_FAULT_ADDR
Registers

The DCPLB Address register (DCPLB_FAULT_ADDR) and ICPLB Fault
Address register (ICPLB_FAULT_ADDR) hold the address that has caused a
fault in the L1 Data Memory or L1 Instruction Memory, respectively. See
Figure 6-26 and Figure 6-27.

The DCPLB_FAULT_ADDR and ICPLB_FAULT_ADDR registers are valid
only while in the faulting exception service routine.
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DCPLB Address Register (DCPLB_FAULT_ADDR)

O0xFFEO 000C

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

><|><|><|x|><|><|><|><|x|><|><|><|><|x|><|><

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0

D DD P x e e x e x x|

Figure 6-26. DCPLB Address Register

ICPLB Fault Address Register (ICPLB_FAULT_ADDR)

0xFFEO 100C

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0

EJESENES ENENENES ENENENES ENENESES
l

Figure 6-27. ICPLB Fault Address Register

Reset = Undefined

FAULT_ADDR[31:16]
Data address that has caused
a fault in L1 Data Memory

FAULT_ADDR[15:0]

Data address that has caused
a fault in the L1 Data Memory

Reset = Undefined

FAULT_ADDR[31:16]
Instruction address that has
caused a fault in the L1
Instruction Memory

FAULT_ADDRI[15:0]
Instruction address that has
caused a fault in the L1
Instruction Memory
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Memory Transaction Model

Both internal and external memory locations are accessed in little endian
byte order. Figure 6-28 shows a data word stored in register RO and in
memory at address location addr. BO refers to the least significant byte of
the 32-bit word.

DATA IN REGISTER DATA IN MEMORY

RO B3 B2 B1 BO B3 B2 B1 BO
Il Il

|
addr+3 | addr+2 | addr+1| addr

Figure 6-28. Data Stored in Little Endian Order

Figure 6-29 shows 16- and 32-bit instructions stored in memory. The dia-
gram on the left shows 16-bit instructions stored in memory with the
most significant byte of the instruction stored in the high address (byte B1
in addr+1) and the least significant byte in the low address (byte BO in
addr).

16-BIT INSTRUCTIONS 32-BIT INSTRUCTIONS
INST 0 INST 0
B1 BO B3 B2 B1 BO
16-BIT INSTRUCTIONS IN MEMORY 32-BIT INSTRUCTIONS IN MEMORY
B1 | BO | B1 | BO B1 BO B3 B2
addr+3 | addr+2 | addr+1 | addr addr+3 | addr+2 | addr+1 | addr

Figure 6-29. Instructions Stored in Little Endian Order

The diagram on the right shows 32-bit instructions stored in memory.
Note the most significant 16-bit half word of the instruction (bytes B3
and B2) is stored in the low addresses (addr+1 and addr), and the least sig-
nificant half word (bytes B1 and BO) is stored in the high addresses
(addr+3 and addr+2).
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Load/Store Operation

The Blackfin processor architecture supports the RISC concept of a
Load/Store machine. This machine is the characteristic in RISC architec-
tures whereby memory operations (loads and stores) are intentionally
separated from the arithmetic functions that use the targets of the memory
operations. The separation is made because memory operations, particu-
larly instructions that access off-chip memory or I/O devices, often take
multiple cycles to complete and would normally halt the processor, pre-
venting an instruction execution rate of one instruction per cycle.

Separating load operations from their associated arithmetic functions
allows compilers or assembly language programmers to place unrelated
instructions between the load and its dependent instructions. If the value
is returned before the dependent operation reaches the execution stage of
the pipeline, the operation completes in one cycle.

In write operations, the store instruction is considered complete as soon as
it executes, even though many cycles may execute before the data is actu-
ally written to an external memory or I/O location. This arrangement
allows the processor to execute one instruction per clock cycle, and it
implies that the synchronization between when writes complete and when
subsequent instructions execute is not guaranteed. Moreover, this syn-
chronization is considered unimportant in the context of most memory
operations.

Interlocked Pipeline

In the execution of instructions, the Blackfin processor architecture imple-
ments an interlocked pipeline. When a load instruction executes, the
target register of the read operation is marked as busy until the value is
returned from the memory system. If a subsequent instruction tries to
access this register before the new value is present, the pipeline will stall
until the memory operation completes. This stall guarantees that
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instructions that require the use of data resulting from the load do not use
the previous or invalid data in the register, even though instructions are
allowed to start execution before the memory read completes.

This mechanism allows the execution of independent instructions between
the load and the instructions that use the read target without requiring the
programmer or compiler to know how many cycles are actually needed for
the memory-read operation to complete. If the instruction immediately
following the load uses the same register, it simply stalls until the value is
returned. Consequently, it operates as the programmer expects. However,
if four other instructions are placed after the load but before the instruc-
tion that uses the same register, all of them execute, and the overall
throughput of the processor is improved.

Ordering of Loads and Stores

The relaxation of synchronization between memory access instructions
and their surrounding instructions is referred to as weak ordering of loads
and stores. Weak ordering implies that the timing of the actual comple-
tion of the memory operations—even the order in which these events
occur—may not align with how they appear in the sequence of the pro-
gram source code. All that is guaranteed is:

* Load operations will complete before the returned data is used by a
subsequent instruction.

* Load operations using data previously written will use the updated
values.

* Store operations will eventually propagate to their ultimate
destination.

Because of weak ordering, the memory system is allowed to prioritize
reads over writes. In this case, a write that is queued anywhere in the pipe-
line, but not completed, may be deferred by a subsequent read operation,
and the read is allowed to be completed before the write. Reads are
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prioritized over writes because the read operation has a dependent
operation waiting on its completion, whereas the processor considers the
write operation complete, and the write does not stall the pipeline if it
takes more cycles to propagate the value out to memory. This behavior
could cause a read that occurs in the program source code after a write in
the program flow to actually return its value before the write has been
completed. This ordering provides significant performance advantages in
the operation of most memory instructions. However, it can cause side
effects that the programmer must be aware of to avoid improper system
operation.

When writing to or reading from nonmemory locations such as I/O device
registers, the order of how read and write operations complete is often sig-
nificant. For example, a read of a status register may depend on a write to
a control register. If the address is the same, the read would return a value
from the write buffer rather than from the actual I/O device register, and
the order of the read and write at the register may be reversed. Both these
effects could cause undesirable side effects in the intended operation of the
program and peripheral. To ensure that these effects do not occur in code
that requires precise (strong) ordering of load and store operations, syn-
chronization instructions (CSYNC or SSYNC) should be used.

Synchronizing Instructions

When strong ordering of loads and stores is required, as may be the case
for sequential writes to an I/O device for setup and control, use the core or
system synchronization instructions, CSYNC or SSYNC, respectively.

The CSYNC instruction ensures all pending core operations have completed
and the core buffer (between the processor core and the L1 memories) has
been flushed before proceeding to the next instruction. Pending core oper-
ations may include any pending interrupts, speculative states (such as
branch predictions), or exceptions.
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Consider the following example code sequence:

IF CC JUMP away_from_here
csync;

r0 = [p0];
away_from_here:

In the preceding example code, the CSYNC instruction ensures:

e The conditional branch (IF CC JUMP away_from_here) is resolved,
forcing stalls into the execution pipeline until the condition is
resolved and any entries in the processor store buffer have been

flushed.

* All pending interrupts or exceptions have been processed before
CSYNC completes.

* The load is not fetched from memory speculatively.

The SSYNC instruction ensures that all side effects of previous operations
are propagated out through the interface between the L1 memories and
the rest of the chip. In addition to performing the core synchronization
functions of CSYNC, the SSYNC instruction flushes any write buffers
between the L1 memory and the system domain and generates a sync
request to the system that requires acknowledgement before SSYNC
completes.

Speculative Load Execution

Load operations from memory do not change the state of the memory
value. Consequently, issuing a speculative memory-read operation for a
subsequent load instruction usually has no undesirable side effect. In some
code sequences, such as a conditional branch instruction followed by a
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load, performance may be improved by speculatively issuing the read
request to the memory system before the conditional branch is resolved.
For example,

IF CC JUMP away_from_here
RO = [P2];

away_from_here:

If the branch is taken, then the load is flushed from the pipeline, and any
results that are in the process of being returned can be ignored. Con-
versely, if the branch is not taken, the memory will have returned the
correct value earlier than if the operation were stalled until the branch
condition was resolved.

However, in the case of an I/O device, this could cause an undesirable side
effect for a peripheral that returns sequential data from a FIFO or from a
register that changes value based on the number of reads that are
requested. To avoid this effect, use synchronizing instructions (CSYNC or
SSYNC) to guarantee the correct behavior between read operations.

Store operations never access memory speculatively, because this could
cause modification of a memory value before it is determined whether the
instruction should have executed.

Conditional Load Behavior

The synchronization instructions force all speculative states to be resolved
before a load instruction initiates a memory reference. However, the load
instruction itself may generate more than one memory-read operation,
because it is interruptible. If an interrupt of sufficient priority occurs
between the completion of the synchronization instruction and the com-
pletion of the load instruction, the sequencer cancels the load instruction.
After execution of the interrupt, the interrupted load is executed again.
This approach minimizes interrupt latency. However, it is possible that a
memory-read cycle was initiated before the load was canceled, and this
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would be followed by a second read operation after the load is executed
again. For most memory accesses, multiple reads of the same memory
address have no side effects. However, for some memory-mapped devices,
such as peripheral data FIFOs, reads are destructive. Each time the device
is read, the FIFO advances, and the data cannot be recovered and re-read.

When accessing memory-mapped devices that have state dependen-
cies on the number of read operations on a given address location,
disable interrupts before performing the load operation.

Working With Memory

This section contains information about alignment of data in memory and
memory operations that support semaphores between tasks. It also con-
tains a brief discussion of MMR registers and a core MMR programming
example.

Alignment

Nonaligned memory operations are not directly supported. A nonaligned
memory reference generates a Misaligned Access exception event (see
“Exceptions” on page 4-41). However, because some datastreams (such as
8-bit video data) can properly be nonaligned in memory, alignment excep-
tions may be disabled by using the DISALGNEXCPT instruction. Moreover,
some instructions in the quad 8-bit group automatically disable alignment
exceptions.

Cache Coherency

For shared data, software must provide cache coherency support as
required. To accomplish this, use the FLUSH instruction (see “Data Cache
Control Instructions” on page 6-41), and/or explicit line invalidation

through the core MMRs (see “Data Test Registers” on page 6-43).
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Atomic Operations

The processor provides a single atomic operation: TESTSET. Atomic opera-
tions are used to provide noninterruptible memory operations in support
of semaphores between tasks. The TESTSET instruction loads an indirectly
addressed memory half word, tests whether the low byte is zero, and then
sets the most significant bit (MSB) of the low memory byte without
affecting any other bits. If the byte is originally zero, the instruction sets
the CC bit. If the byte is originally nonzero, the instruction clears the cC
bit. The sequence of this memory transaction is atomic—hardware bus
locking insures that no other memory operation can occur between the
test and set portions of this instruction. The TESTSET instruction can be
interrupted by the core. If this happens, the TESTSET instruction is exe-
cuted again upon return from the interrupt.

The TESTSET instruction can address the entire 4G byte memory space,
but should not target on-core memory (L1 or MMR space) since atomic
access to this memory is not supported.

The memory architecture always treats atomic operations as cache inhib-
ited accesses even if the CPLB descriptor for the address indicates cache
enabled access. However, executing TESTSET operations on cacheable
regions of memory is not recommended since the architecture cannot
guarantee a cacheable location of memory is coherent when the TESTSET
instruction is executed.

Memory-Mapped Registers

The MMR reserved space is located at the top of the memory space
(0xFFCO0 0000). This region is defined as non-cacheable and is divided
between the system MMRs (0xFFC0 0000-0xFFEO 0000) and core
MMRs (0xFFE0 0000—0xFFFF FFFF).
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If strong ordering is required, place a synchronization instruction
after stores to MMRs. For more information, see “Load/Store

Operation” on page 6-606.
All MMRs are accessible only in Supervisor mode. Access to MMRs in

User mode generates a protection violation exception. Attempts to access
MMR space using DAG1 also generates a protection violation exception.

All core MMRs are read and written using 32-bit aligned accesses. How-
ever, some MMRs have fewer than 32 bits defined. In this case, the
unused bits are reserved. System MMRs may be 16 bits.

Accesses to nonexistent MMRs generate an illegal access exception. The
system ignores writes to read-only MMREs.

Appendix A, “Blackfin Processor Core MMR Assignments” provides a
summary of all Core MMRs. Appendix B, “System MMR Assignments”
provides a summary of all System MMRGs.

Core MMR Programming Code Example

Core MMRs may be accessed only as aligned 32-bit words. Nonaligned
access to MMRs generates an exception event. Listing 6-1 shows the
instructions required to manipulate a generic core MMR.

Listing 6-1. Core MMR Programming

CLI RO; /* stop interrupts and save IMASK */

PO = MMR_BASE; /* 32-bit instruction to load base of MMRs */
Rl = [P0 + TIMER_CONTROL_REG]; /* get value of control reg */
BITSET R1, #N; /* set bit N */

[PO + TIMER_CONTROL_REG] = RI1; /* restore control reg */
CSYNC; /* assures that the control reg is written */
STI RO; /* enable interrupts */
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The CLI instruction saves the contents of the IMASK register and
disables interrupts by clearing IMASK. The STI instruction restores
the contents of the IMASK register, thus enabling interrupts. The
instructions between CLI and STI are not interruptible.

Terminology

The following terminology is used to describe memory.

cache block. The smallest unit of memory that is transferred to/from the
next level of memory from/to a cache as a result of a cache miss.

cache hit. A memory access that is satisfied by a valid, present entry in the
cache.

cache line. Same as cache block. In this chapter, cache line is used for

cache block.

cache miss. A memory access that does not match any valid entry in the
cache.

direct-mapped. Cache architecture in which each line has only one place
in which it can appear in the cache. Also described as 1-Way associative.

dirty or modified. A state bit, stored along with the tag, indicating
whether the data in the data cache line has been changed since it was cop-
ied from the source memory and, therefore, needs to be updated in that
source memory.

exclusive, clean. The state of a data cache line, indicating that the line is
valid and that the data contained in the line matches that in the source
memory. The data in a clean cache line does not need to be written to
source memory before it is replaced.

fully associative. Cache architecture in which each line can be placed any-
where in the cache.
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index. Address portion that is used to select an array element (for example,
a line index).

invalid. Describes the state of a cache line. When a cache line is invalid, a
cache line match cannot occur.

least recently used (LRU) algorithm. Replacement algorithm, used by
cache, that first replaces lines that have been unused for the longest time.

Level 1 (L1) memory. Memory that is directly accessed by the core with
no intervening memory subsystems between it and the core.

little endian. The native data store format of the Blackfin processor.
Words and half words are stored in memory (and registers) with the least
significant byte at the lowest byte address and the most significant byte in
the highest byte address of the data storage location.

replacement policy. The function used by the processor to determine
which line to replace on a cache miss. Often, an LRU algorithm is
employed.

set. A group of N-line storage locations in the Ways of an N-Way cache,
selected by the INDEX field of the address (see Figure 6-7).

set associative. Cache architecture that limits line placement to a number
of sets (or Ways).

tag. Upper address bits, stored along with the cached data line, to identify

the specific address source in memory that the cached line represents.

valid. A state bit, stored with the tag, indicating that the corresponding
tag and data are current and correct and can be used to satisfy memory
access requests.

victim. A dirty cache line that must be written to memory before it can be
replaced to free space for a cache line allocation.
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Way. An array of line storage elements in an N-Way cache (see

Figure 6-7).

write back. A cache write policy, also known as copyback. The write data is
written only to the cache line. The modified cache line is written to source
memory only when it is replaced. Cache lines are allocated on both reads
and writes.

write through. A cache write policy (also known as store through). The
write data is written to both the cache line and to the source memory. The
modified cache line is 7oz written to the source memory when it is
replaced. Cache lines must be allocated on reads, and may be allocated on
writes (depending on mode).
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7 CHIP BUS HIERARCHY

This chapter discusses on-chip buses, how data moves through the system,
and factors that determine the system organization. The chapter also
describes the system internal chip interfaces and discusses the system
interconnects and associated system buses.

Internal Interfaces

Figure 7-1 shows the core processor and system boundaries as well as the
interfaces between them.

Internal Clocks

The core processor clock (CCLK) rate is highly programmable with respect
to CLKIN. The cCLK rate is divided down from the Phase Locked Loop

(PLL) output rate. This divider ratio is set using the CSEL parameter of the
PLL Divide register.

The Peripheral Access Bus (PAB), the DMA Access Bus (DAB), the Exter-
nal Access Bus (EAB), the DMA Core Bus (DCB), the DMA External Bus
(DEB), the External Port Bus (EPB), and the External Bus Interface Unit
(EBIU) run at system clock frequency (SCLK domain). This divider ratio is
set using the SSEL parameter of the PLL Divide register and must be set so
that these buses run as specified in the processor data sheet, and slower
than or equal to the core clock frequency.
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These buses can also be cycled at a programmable frequency to reduce
power consumption, or to allow the core processor to run at an optimal
frequency. Note all synchronous peripherals derive their timing from the
scLK. For example, the UART clock rate is determined by further divid-
ing this clock frequency.
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Figure 7-1. Processor Bus Hierarchy

Core Overview

For the purposes of this discussion, Level 1 memories (L1) are included in
the description of the core; they have full bandwidth access from the pro-
cessor core with a 64-bit instruction bus and two 32-bit data buses.
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Figure 7-2 shows the core processor and its interfaces to the peripherals
and external memory resources.
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Figure 7-2. Core Block Diagram

The core can generate up to three simultaneous off-core accesses per cycle.

The core bus structure between the processor and L1 memory runs at the
full core frequency and has data paths up to 64 bits.
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When the instruction request is filled, the 64-bit read can contain a single
64-bit instruction or any combination of 16-, 32-, or 64-bit (partial)
instructions.

When cache is enabled, four 64-bit read requests are issued to support
32-byte line fill burst operations. These requests are pipelined so that each
transfer after the first is filled in a single, consecutive cycle.

System Overview

The system includes the controllers for system interrupts, test/emulation,
and clock and power management. Synchronous clock domain conversion
is provided to support clock domain transactions between the core and the
system.

System Interfaces

The processor system includes:

e The peripheral set (Timers, Real-Time Clock, programmable flags,
UART, SPORTs, PPI, Watchdog timer, and SPI)

* The external memory controller (EBIU)
e The DMA controller

* The interfaces between these, the system, and the optional external
(off-chip) resources

See Figure 7-2.
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The following sections describe the on-chip interfaces between the system

and the peripherals:

* Peripheral Access Bus (PAB)

* DMA Access Bus (DAB)

* DMA Core Bus (DCB)

« DMA External Bus (DEB)

e External Access Bus (EAB)
The External Bus Interface Unit (EBIU) is the primary chip pin bus. The
EBIU is discussed in Chapter 17, “External Bus Interface Unit”.

Peripheral Access Bus (PAB)

The processor has a dedicated peripheral bus. A low latency peripheral bus
keeps core stalls to a minimum and allows for manageable interrupt laten-
cies to time-critical peripherals. All peripheral resources accessed through

the PAB are mapped into the system MMR space of the processor memory
map. The core can access system MMR space through the PAB bus.

The core processor has byte addressability, but the programming model is
restricted to only 32-bit (aligned) access to the system MMRs. Byte access
to this region is not supported.

PAB Arbitration

The core is the only master on this bus. No arbitration is necessary.

PAB Performance

For the PAB, the primary performance criteria is latency, not throughput.
Transfer latencies for both read and write transfers on the PAB are 2 SCLK
cycles.
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For example, the core can transfer up to 32 bits per access to the PAB
slaves. With the core clock running at 2x the frequency of the system
clock, the first and subsequent system MMR read or write accesses take 4
core clocks (CCLK) of latency.

The PAB has a maximum frequency of SCLK.

PAB Agents (Masters, Slaves)

The processor core can master bus operations on the PAB. All peripherals
have a peripheral bus slave interface which allows the core to access con-
trol and status state. These registers are mapped into the system MMR
space of the memory map. Appendix B lists system MMR addresses.

The slaves on the PAB bus are:

Event Controller

Clock and Power Management Controller
Watchdog Timer

Real-Time Clock (RTC)

Timer 0, 1, and 2

SPORTO

SPORT1

SPI

Programmable Flags

UART

PPI

Asynchronous Memory Controller (AMC)

7-6
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e SDRAM Controller (SDC)
e DMA Controller

DMA Access Bus (DAB), DMA Core Bus (DCB), DMA
External Bus (DEB)

The DAB, DCB, and DEB buses provide a means for DMA-capable
peripherals to gain access to on-chip and off-chip memory with little or no
degradation in core bandwidth to memory.

DAB Arbitration

There are six DMA-capable peripherals in the processor system, including
the Memory DMA controller. Twelve DMA channels and bus masters
support these devices. The peripheral DMA controllers can transfer data
between peripherals and internal or external memory. Both the read and
write channels of the Memory DMA controller access their descriptor lists

through the DAB.

The DCB has priority over the core processor on arbitration into L1 con-
figured as data SRAM, whereas the core processor has priority over the
DCB on arbitration into L1 instruction SRAM. For off-chip memory, the
core (by default) has priority over the DEB for accesses to the EPB. The
processor has a programmable priority arbitration policy on the DAB.
Table 7-1 shows the default arbitration priority. In addition, by setting
the CDPRIO bit in the EBIU_AMGCTL register, all DEB transactions to the
EPB have priority over core accesses to external memory. Use of this bit is
application-dependent. For example, if you are polling a peripheral
mapped to asynchronous memory with long access times, by default the
core will “win” over DMA requests. By setting the CDPRIO bit, the core
would be held off until DMA requests were serviced.
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Table 7-1. DAB, DCB, and DEB Arbitration Priority

DAB, DCB, DEB Master Default Arbitration Priority
PPI 0 - highest
SPORTO0 RCV DMA Controller 1

SPORT1 RCV DMA Controller 3
SPORT0 XMT DMA Controller 2
SPORT1 XMT DMA Controller 4

SPI DMA Controller 5

UART RCV Controller 6

UART XMT Controller 7

Memory DMAO (dest) Controller 8

Memory DMAO (source) Controller 9

Memory DMAT1 (dest) Controller 10
Memory DMAT1 (source) Controller 11 - lowest

DAB, DCB, and DEB Performance

The processor DAB supports data transfers of 16 bits or 32 bits. The data
bus has a 16-bit width with a maximum frequency as specified in

ADSP-BF531/ADSP-BF532/ADSP-BF533 Embedded Processor Data Sheet.

The DAB has a dedicated port into L1 memory. No stalls occur as long as
the core access and the DMA access are not to the same memory bank (4K
byte size for L1). If there is a conflict when accessing data memory, DMA
is the highest priority requester, followed by the core. If the conflict

occurs when accessing instruction memory, the core is the highest priority

requester, followed by DMA.

Note that a locked transfer by the core processor (for example, execution

of a TESTSET instruction) effectively disables arbitration for the addressed

memory bank or resource until the memory lock is deasserted. DMA con-
trollers cannot perform locked transfers.
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DMA access to L1 memory can only be stalled by an access already in
progress from another DMA channel. Latencies caused by these stalls are
in addition to any arbitration latencies.

The core processor and the DAB must arbitrate for access to exter-
nal memory through the EBIU. This additional arbitration latency
added to the latency required to read off-chip memory devices can
significantly degrade DAB throughput, potentially causing periph-
eral data buffers to underflow or overflow. If you use DMA
peripherals other than the Memory DMA controller, and you tar-
get external memory for DMA accesses, you need to carefully
analyze your specific traffic patterns. Make sure that isochronous
peripherals targeting internal memory have enough allocated band-
width and the appropriate maximum arbitration latencies.

DAB Bus Agents (Masters)

All peripherals capable of sourcing a DMA access are masters on this bus,
as shown in Table 7-1. A single arbiter supports a programmable priority
arbitration policy for access to the DAB.

When two or more DMA master channels are actively requesting the
DAB, bus utilization is considerably higher due to the DAB’s pipelined
design. Bus arbitration cycles are concurrent with the previous DMA
access’s data cycles.

External Access Bus (EAB)

The EAB provides a way for the processor core to directly access off-chip
memory.
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Arbitration of the External Bus

Arbitration for use of external port bus interface resources is required
because of possible contention between the potential masters of this bus. A
fixed-priority arbitration scheme is used. That is, core accesses via the
EAB will be of higher priority than those from the DMA External Bus
(DEB).

DEB/EAB Performance

The DEB and the EAB support single word accesses of either 8-bit or
16-bit data types. The DEB and the EAB operate at the same frequency as
the PAB and the DAB, up to the maximum SCLK frequency specified in
ADSP-BF531/ADSP-BF532/ADSP-BF533 Embedded Processor Data Sheet.

Memory DMA transfers can result in repeated accesses to the same mem-
ory location. Because the memory DMA controller has the potential of
simultaneously accessing on-chip and off-chip memory, considerable
throughput can be achieved. The throughput rate for an on-chip/off-chip

memory access is limited by the slower of the two accesses.

In the case where the transfer is from on-chip to on-chip memory or from
off-chip to off-chip memory, the burst accesses cannot occur simultane-
ously. The transfer rate is then determined by adding each transfer plus an
additional cycle between each transfer.

Table 7-2 shows many types of 16-bit memory DMA transfers. In the
table, it is assumed that no other DMA activity is conflicting with ongoing
operations. The numbers in the table are theoretical values. These values
may be higher when they are measured on actual hardware due to a variety
of reasons relating to the device that is connected to the EBIU.
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For non-DMA accesses (for example, a core access via the EAB), a 32-bit
access to SDRAM (of the form RO = [P0]; where PO points to an address
in SDRAM) will always be more efficient than executing two 16-bit
accesses (of the form RO = W[PO++]; where PO points to an address in
SDRAM). In this example, a 32-bit SDRAM read will take 10 SCLK cycles
while 2 16-bit reads will take 9 SCLK cycles each.

Table 7-2. Performance of DMA Access to External Memory

Source Destination Approximate SCLKs For n Words
(from start of DMA to interrupt at
end)

16-bit SDRAM L1 Data memory n+ 14

L1 Data memory 16-bit SDRAM n+11

16-bit Async memory

L1 Data memory

xn + 12, where x is the number of
wait states + setup/hold SCLK cycles
(minimum x = 2)

L1 Data memory

16-bit Async memory

xn + 9, where x is the number of wait
states + setup/hold SCLK cycles (min-
imum x = 2)

16-bit SDRAM

16-bit SDRAM

10 + (17n/7)

16-bit Async memory

16-bit Async memory

10 + 2xn, where x is the number of
wait states + setup/hold SCLK cycles
(minimum x = 2)

L1 Data memory

L1 Data memory

2n + 12
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8 DYNAMIC POWER
MANAGEMENT

This chapter describes the Dynamic Power Management functionality of
the processor. This functionality includes:

* Clocking

* Phase Locked Loop (PLL)

* Dynamic Power Management Controller
* Operating Modes

* Voltage Control

Clocking

The input clock into the processor, CLKIN, provides the necessary clock
frequency, duty cycle, and stability to allow accurate internal clock multi-
plication by means of an on-chip Phase Locked Loop (PLL) module.
During normal operation, the user programs the PLL with a multiplica-
tion factor for CLKIN. The resulting, multiplied signal is the Voltage
Controlled Oscillator (VC0) clock. A user-programmable value then
divides the vc0 clock signal to generate the core clock (CCLK).

A user-programmable value divides the VC0 signal to generate the system
clock (scLk). The scLk signal clocks the Peripheral Access Bus (PAB),
DMA Access Bus (DAB), External Access Bus (EAB), and the External
Bus Interface Unit (EBIU).
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These buses run at the PLL frequency divided by 1-15 (ScLK
domain). Using the SSEL parameter of the PLL Divide register,
select a divider value that allows these buses to run at or below the
maximum SCLK rate specified in
ADSP-BF531/ADSP-BF532/ADSP-BF533 Embedded Processor
Data Sheet.

To optimize performance and power dissipation, the processor allows the
core and system clock frequencies to be changed dynamically in a “coarse
adjustment.” For a “fine adjustment,” the PLL clock frequency can also be
varied.

Phase Locked Loop and Clock Control

To provide the clock generation for the core and system, the processor
uses an analog PLL with programmable state machine control.

The PLL design serves a wide range of applications. It emphasizes embed-
ded and portable applications and low cost, general-purpose processors, in
which performance, flexibility, and control of power dissipation are key
features. This broad range of applications requires a wide range of fre-
quencies for the clock generation circuitry. The input clock may be a
crystal, a crystal oscillator, or a buffered, shaped clock derived from an
external system clock oscillator.

The PLL interacts with the Dynamic Power Management Controller
(DPMC) block to provide power management functions for the processor.
For information about the DPMC, see “Dynamic Power Management
Controller” on page 8-12.

8-2 ADSP-BF533 Blackfin Processor Hardware Reference



Dynamic Power Management

PLL Overview

Subject to the maximum V€0 frequency, the PLL supports a wide range of
multiplier ratios and achieves multiplication of the input clock, CLKIN. To
achieve this wide multiplication range, the processor uses a combination
of programmable dividers in the PLL feedback circuit and output configu-
ration blocks.

Figure 8-1 illustrates a conceptual model of the PLL circuitry, configura-
tion inputs, and resulting outputs. In the figure, the VC0 is an intermediate
clock from which the core clock (CCLK) and system clock (SCLK) are
derived.

PHASE LoOP
CLKIN Mor/2 | vco -
: |_> DETECT FILTER COLK
cLock
oF DIVIDE

AND
MUX [ SCLK

DIVIDER

T 4

MSEL[5:0]
BYPASS

SSEL[3:0]
CSEL[1:0]

Figure 8-1. PLL Block Diagram

PLL Clock Multiplier Ratios

The PLL Control register (PLL_CTL) governs the operation of the PLL. For
details about the PLL_CTL register, see “PLL_CTL Register” on page 8-7.
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The Divide Frequency (DF) bit and Multiplier Select (MSEL[5:01) field
configure the various PLL clock dividers:

* DF enables the input divider

* MSEL[5:071 controls the feedback dividers

The reset value of MSEL is 0xA. This value can be reprogrammed at

startup in the boot code.

Table 8-1 illustrates the V0 multiplication factors for the various MSEL

and DF settings. In this table, the value x represents the input clock (CLKIN)
frequency.

As shown in the table, different combinations of MSEL[5:0] and DF can
generate the same VC0 frequencies. For a given application, one combina-
tion may provide lower power or satisfy the V€0 maximum frequency.
Under normal conditions, setting DF to 1 typically results in lower power
dissipation. See ADSP-BF531/ADSP-BF532/ADSP-BF533 Embedded Pro-

cessor Data Sheet for maximum and minimum frequencies for CLKIN, CCLK,

and VvCoO.

Table 8-1. MSEL Encodings

Signal name VCO Frequency
MSEL[5:0] DF =0 DF -1
0 64x 32x
1 1x 0.5x
2 2x 1x
N = 3-62 Nx 0.5Nx
63 63x 31.5x
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Core Clock/System Clock Ratio Control

Table 8-2 describes the programmable relationship between the vCO0 fre-
quency and the core clock. Table 8-3 shows the relationship of the vc0
frequency to the system clock. Note the divider ratio must be chosen to
limit the SCLK to a frequency specified in
ADSP-BF531/ADSP-BF532/ADSP-BF533 Embedded Processor Data Sheet.
The sCLK drives all synchronous, system-level logic.

The divider ratio control bits, CSEL and SSEL, are in the PLL Divide regis-
ter (PLL_DIV). For information about this register, see “PLL_DIV
Register” on page 8-7. Appendix B, “System MMR Assignments” shows
the register addresses.

The reset value of CSEL[1:07 is 0x0 (/1), and the reset value of SSEL[3:0]
is 0x5. These values can be reprogrammed at startup by the boot code.

By writing the appropriate value to PLL_DIV, you can change the CSEL and
SSEL value dynamically. Note the divider ratio of the core clock can never
be greater than the divider ratio of the system clock. If the PLL_DIV register
is programmed to illegal values, the SCLK divider is automatically increased
to be greater than or equal to the core clock divider.

The PLL_DIV register can be programmed at any time to change the CCLK
and SCLK divide values without entering the Idle state.

Table 8-2. Core Clock Ratio

Signal Name Divider Ratio Example Frequency Ratios (MHz)
CSEL[1:0] VCO/CCLK VCO CCLK

00 1 300 300

01 2 600 300

10 4 600 150

11 8 400 50
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As long as the MSEL and DF control bits in the PLL Control register
(PLL_CTL) remain constant, the PLL is locked.

Table 8-3. System Clock Ratio

Signal Name Divider Ratio Example Frequency Ratios (MHz)
SSEL[3:0] VCO/SCLK VCO SCLK

0000 Reserved N/A N/A

0001 1:1 100 100

0010 2:1 200 100

0011 3:1 400 133

0100 4:1 500 125

0101 5:1 600 120

0110 6:1 600 100

N =7-15 N:1 600 600/N

If changing the clock ratio via writing a new SSEL value into

PLL_DIV, take care that the enabled peripherals do not suffer data
loss due to SCLK frequency changes.

PLL Registers

The user interface to the PLL is through four memory-mapped registers

(MMRes):
e The PLL Divide register (PLL_DIV)
e The PLL Control register (PLL_CTL)
* The PLL Status register (PLL_STAT)
e The PLL Lock Count register (PLL_LOCKCNT)

All four registers are 16-bit MMRs and must be accessed with aligned
16-bit reads/writes.
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PLL_DIV Register

The PLL Divide register (PLL_DIV) divides the PLL output clock to create
the processor Core Clock (CCLK) and the System Clock (SCLK). These val-
ues can be independently changed during processing to reduce power
dissipation without changing the PLL state. The only restrictions are the
resulting CCLK frequency must be greater than or equal to the SCLK fre-
quency, and SCLK must fall within the allowed range specified in
ADSP-BF531/ADSP-BF532/ADSP-BF533 Embedded Processor Data Sheet.
If the cCLK and SCLK divide values are programmed otherwise, the SCLK
value is automatically adjusted to be slower than or equal to the core
clock. Figure 8-2, “PLL Divide Register,” on page 8-7 shows the bits in
the PLL_DIV register.

PLL Divide Register (PLL_DIV)

i5 14 13 12 1110 9 8 7 6 5 4 3 2 1 0
0xFFCO 0004 |o |o |o |o |o |o |o |o |o |o |o |o|0 |1 |o |1 IReset=0x0005

| Il I
CSEL[1:0] (Core Select) I L SSEL[3:0] (System Select)

00 - CCLK =VCO /1 0 - Reserved
01-CCLK=VCO/2 1-15 - SCLK =VCO/X

10-CCLK=VCO/4
11-CCLK=VCO/8

Figure 8-2. PLL Divide Register

PLL_CTL Register

The PLL Control register (PLL_CTL) controls operation of the PLL (see
Figure 8-3). Note changes to the PLL_CTL register do not take effect imme-
diately. In general, the PLL_CTL register is first programmed with new
values, and then a specific PLL programming sequence must be executed
to implement the changes. See “PLL Programming Sequence” on

page 8-20.
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PLL Control Register (PLL_CTL)

15 14 13 12

11 10 9

8

7 6

5

4

3

2

1

0

0xFFCO 0000 |0 |o |o |1 |o |1 |o |o|o |o |o |o|o |o |o |o|

L
SPORT_HYS

0 - No added hysteresis to
SPORT input pins

1 - Add 250 mV of hysteresis to
SPORT input pins

B

MSEL[5:0]

(Multiplier Select)

See Table 8-1 on page 8-4 for
CLKIN/VCO multiplication
factors.

BYPASS

0 - Do not bypass PLL
1 - Bypass PLL

IN_DELAY

L

0 - Do not add input delay

1 - Add approximately 200 ps
of delay to the time when
inputs are latched on the
external memory interface

Figure 8-3. The PLL Control Register

Reset = 0x1400

DF (Divide Frequency)
0 - Pass CLKIN to PLL

1 - Pass CLKIN/2 to PLL
PLL_OFF

0 - Enable power to PLL
1 - Disable power to PLL
STOPCK (Stop Clock)
0 - CCLK on

1 - CCLK off

PDWN (Power Down)

0 - All internal clocks on
1 - All internal clocks off

OUT_DELAY

0 - Do not add output delay

1 - Add approximately 200 ps
of delay to external memory
output signals

The following fields of the PLL_CTL register are used to control the PLL:

* SPORT_HYS] — This bit is used to add 250 mV of hysteresis to the
SPORT input pins to provide better immunity to system noise on
SPORT clock and frame sync signals configured as inputs.

e MSEL[5:0] — The Multiplier Select (MSEL) field defines the input
clock to vco clock (CLKIN to VC0) multiplier.

e BYPASS — This bit is used to bypass the PLL. When BYPASS is set,
CLKIN is passed directly to the core and peripheral clocks.

* OUT_DELAY — This bit is used to add approximately 200ps of delay
to external memory output signals.

8-8

ADSP-BF533 Blackfin Processor Hardware Reference



Dynamic Power Management

* IN_DELAY — This bit is used to add approximately 200ps of delay to
the time when inputs are latched on the external memory interface.

e PDWN — The Power Down (PDWN) bit is used to place the processor in
the Deep Sleep operating mode.

For information about operating modes, see “Operating Modes”
on page 8-12.

e STOPCK — The Stop Clock (STOPCK) bit is used to enable/disable the
core clock, CCLK.

e PLL_OFF — This bit is used to enable/disable power to the PLL.

e DF — The Divide Frequency (DF) bit determines whether CLKIN is
passed directly to the PLL or CLKIN/2 is passed.

PLL_STAT Register

The PLL Status register (PLL_STAT) indicates the operating mode of the
PLL and processor (see Figure 8-4). For more information about operat-
ing modes, see “Operating Modes” on page 8-12.

PLL Status Register (PLL_STAT)

Read only. Unless otherwise noted, 1 - Processor operating in this mode. For more infor-
mation, see “Operating Modes” on page 8-12.

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
0xFFCO 000C |o |o |o |o |o |o |o |o |1 |o |1 |o |o |o |1 |o | Reset = 0x00A2

VSTAT (Voltage Regulator Status) Q ‘ |— ACTIVE_PLLENABLED

0 - Regulator not at programmed voltage
1 - Regulator at programmed voltage FULL_ON

CORE_IDLE ACTIVE_PLLDISABLED
PLL_LOCKED DEEP_SLEEP
SLEEP

Figure 8-4. PLL Status Register
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The following fields are used in the PLL_STAT register:

VSTAT (Voltage Regulator Status) — This bit indicates whether the
voltage regulator has reached the programmed voltage.

When changing voltage levels, the core must be put into an Idle
operating state to allow the PLL to lock with the new voltage level.
See “PLL Programming Sequence” on page 8-20.

CORE_IDLE — This bit is set to 1 when the Blackfin processor core is
idled; that is, an IDLE instruction has executed, and the core is
awaiting a wakeup signal.

PLL_LOCKED — This field is set to 1 when the internal PLL lock
counter has incremented to the value set in the PLL Lock Count
register (PLL_LOCKCNT). For more information, see

“PLL_LOCKCNT Register” on page 8-11.

SLEEP — This field is set to 1 when the processor is in Sleep operat-
ing mode.

DEEP_SLEEP — This field is set to 1 when the processor is in Deep
Sleep operating mode.

ACTIVE_PLLDISABLED — This field is set to 1 when the processor is in
Active operating mode with the PLL powered down.

FULL_ON — This field is set to 1 when the processor is in Full On
operating mode.

ACTIVE_PLLENABLED — This field is set to 1 when the processor is in
Active operating mode with the PLL powered up.

8-10
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PLL_LOCKCNT Register

When changing clock frequencies in the PLL, the PLL requires time to
stabilize and lock to the new frequency.

The PLL Lock Count register (PLL_LOCKCNT) defines the number of CLKIN
cycles that occur before the processor sets the PLL_LOCKED bit in the
PLL_STAT register. When executing the PLL programming sequence, the
internal PLL lock counter begins incrementing upon execution of the IDLE
instruction. The lock counter increments by 1 each CLKIN cycle. When the
lock counter has incremented to the value defined in the PLL_LOCKCNT reg-
ister, the PLL_LOCKED bic is set.

See ADSP-BF531/ADSP-BF532/ADSP-BF533 Embedded Processor Data

Sheet for more information about PLL stabilization time and programmed
values for this register. For more information about operating modes, see
“Operating Modes” on page 8-12. For further information about the PLL
programming sequence, see “PLL Programming Sequence” on page 8-20.

PLL Lock Count Register (PLL_LOCKCNT)

1514 1312 1110 9 8 7 6 5 4 3 2 1 0
0xFFCO 0010 |o|o|o |o|o |o |1 Iololo |0|o|0|0|0|0| Reset = 0x0200

LOCKCNT

Number of SCLK cycles
before PLL Lock Count
timer expires.

Figure 8-5. PLL Lock Count Register
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Dynamic Power Management Controller

The Dynamic Power Management Controller (DPMC) works in conjunc-
tion with the PLL, allowing the user to control the processor’s
performance characteristics and power dissipation dynamically. The
DPMC provides these features that allow the user to control performance
and power:

* Multiple operating modes — The processor works in four operating
modes, each with different performance characteristics and power
dissipation profiles. See “Operating Modes” on page 8-12.

* DPeripheral clocks — Clocks to each peripheral are disabled automat-
ically when the peripheral is disabled.

* Voltage control — The processor provides an on-chip switching reg-
ulator controller which, with some external components, can
generate internal voltage levels from the external Vdd (Vppgxt)

supply.

Depending on the needs of the system, the voltage level can be
reduced to save power. See “VR_CTL Register” on page 8-26.

Operating Modes

The processor works in four operating modes, each with unique perfor-
mance and power saving benefits. Table 8-4 summarizes the operational
characteristics of each mode.
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Table 8-4. Operational Characteristics

Operating Power PLL CCLK SCLK Allowed

Mode Savings Status Bypassed DMA
Access

Full On None Enabled No Enabled Enabled L1

Active Medium Enabled ! Yes Enabled Enabled L1

Sleep High Enabled No Disabled Enabled -

Deep Sleep Maximum Disabled - Disabled Disabled -

1 PLL can also be disabled in this mode.

Dynamic Power Management Controller States

Power management states are synonymous with the PLL control state.
The state of the DPMC/PLL can be determined by reading the PLL Status
register (see “PLL_STAT Register” on page 8-9). In all modes except
Sleep and Deep Sleep, the core can either execute instructions or be in Idle
core state. If the core is in the Idle state, it can be awakened.

In all modes except Active, the SCLK frequency is determined by the
SSEL-specified ratio to VC0. In Sleep mode, although the core clock is dis-
abled, SCLK continues to run at the specified SSEL ratio.

The following sections describe the DPMC/PLL states in more detail, as
they relate to the power management controller functions.

Full On Mode

Full On mode is the maximum performance mode. In this mode, the PLL
is enabled and not bypassed. Full On mode is the normal execution state
of the processor, with the processor and all enabled peripherals running at
full speed. DMA access is available to L1 memories. From Full On mode,
the processor can transition directly to Active, Sleep, or Deep Sleep
modes, as shown in Figure 8-6.
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Active Mode

In Active mode, the PLL is enabled but bypassed. Because the PLL is
bypassed, the processor’s core clock (CCLK) and system clock (SCLK) run at
the input clock (CLKIN) frequency. DMA access is available to appropri-
ately configured L1 memories.

In Active mode, it is possible not only to bypass, but also to disable the
PLL. If disabled, the PLL must be re-enabled before transitioning to Full
On or Sleep modes.

From Active mode, the processor can transition directly to Full On, Sleep,
or Deep Sleep modes.

Sleep Mode

Sleep mode significantly reduces power dissipation by idling the core pro-
cessor. The CCLK is disabled in this mode; however, SCLK continues to run
at the speed configured by MSEL and SSEL bit settings. As CCLK is disabled,
DMA access is available only to external memory in Sleep mode. From
Sleep mode, a wakeup event causes the processor to transition to one of
these modes:

e Active mode if the BYPASS bit in the PLL_CTL register is set
e Full On mode if the BYPASS bit is cleared

The processor resumes execution from the program counter value present
immediately prior to entering sleep mode.

The STOPCK bit is not a status bit and is therefore unmodified by
hardware when the wakeup occurs. Software must explicitly clear
STOPCK in the next write to PLL_CTL to avoid going back into sleep
mode.
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Deep Sleep Mode

Deep Sleep mode maximizes power savings by disabling the PLL, cCLk,
and SCLK. In this mode, the processor core and all peripherals except the
Real-Time Clock (RTC) are disabled. DMA is not supported in this

mode.

Deep Sleep mode can be exited only by an RTC interrupt or hardware
reset event. An RTC interrupt causes the processor to transition to Active
mode; a hardware reset begins the hardware reset sequence. For more
information about hardware reset, see “Hardware Reset” on page 3-13.

Note an RTC interrupt in Deep Sleep mode automatically resets some
fields of the PLL Control register (PLL_CTL). See Table 8-5.

When in Deep Sleep operating mode, clocking to the SDRAM is
turned off. Before entering Deep Sleep mode, software should
ensure either that important information in SDRAM is saved to a
non-volatile memory, or that SDRAM is placed in Self-Refresh
mode.

Table 8-5. Control Register Values after RTC Wakeup Interrupt

Field Value
PLL_OFF 0
STOPCK 0
PDWN 0
BYPASS 1
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Hibernate State

For lowest possible power dissipation, this state allows the internal supply
(VbpInT) to be powered down, while keeping the 1/0 supply (VppgxT)

running. Although not strictly an operating mode like the four modes
detailed above, it is illustrative to view it as such in the diagram of
Figure 8-6. Since this feature is coupled to the on-chip switching regulator
controller, it is discussed in detail in “Powering Down the Core (Hiber-
nate State)” on page 8-30.

Operating Mode Transitions

Figure 8-6 graphically illustrates the operating modes and transitions. In
the diagram, ellipses represent operating modes. Arrows between the
ellipses show the allowed transitions into and out of each mode.

The text next to each transition arrow shows the fields in the PLL Control
register (PLL_CTL) that must be changed for the transition to occur. For
example, the transition from Full On mode to Sleep mode indicates that
the STOPCK bit must be set to 1 and the PDWN bit must be set to 0. For
information about how to effect mode transitions, see “Programming
Operating Mode Transitions” on page 8-20.

In addition to the mode transitions shown in Figure 8-6, the PLL can be
modified while in Active operating mode. Power to the PLL can be
applied and removed, and new clock-in to vVC0 clock (CLKIN to VC0) multi-
plier ratios can be programmed. Described in detail below, these changes
to the PLL do not take effect immediately. As with operating mode transi-
tions, the PLL programming sequence must be executed for these changes
to take effect (see “PLL Programming Sequence” on page 8-20).
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Wakeup &
SngCK BYPASS =0

=1&
WN =0

STOPCK =1 &
PDWN =

Wakeup &
BYPASS =1

BYPASS =0 & PLL_ OFF =0 &
STOPCK =0 &PDWN =0

BYPASS =1 & STOPCK =0 &
PDWN =0

HARDWARE
RESET

Hibernate

WAKE =1 &
RTC_WAKEUP

FREQ =00

HARDWARE RESET

Figure 8-6. Operating Mode Transitions
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PLL Disabled: In addition to being bypassed in the Active mode,
power to the PLL can be removed.

When power is removed from the PLL, additional power savings
are achieved although they are relatively small. To remove power to
the PLL, set the PLL_OFF bit in the PLL_CTL register, and then exe-
cute the PLL programming sequence.

PLL Enabled: When the PLL is powered down, power can be reap-
plied later when additional performance is required.

Power to the PLL must be reapplied before transitioning to Full
On or Sleep operating modes. To apply power to the PLL, clear the
PLL_OFF bitin the PLL_CTL register, and then execute the PLL pro-
gramming sequence.

New Multiplier Ratio in Active Mode: New clock-in to vC0 clock
(CLKIN to VCO) multiplier ratios can be programmed while in Active
mode.

Although the CLKIN to V€0 multiplier changes are not realized in
Active mode, forcing the PLL to lock to the new ratio in Active
mode before transitioning to Full On mode reduces the transition
time, because the PLL is already locked to the new ratio. Note the
PLL must be powered up to lock to the new ratio. To program a
new CLKIN to VCO multiplier, write the new MSEL[5:0] and/or DF
values to the PLL_CTL register; then execute the PLL programming
sequence.
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* New Multiplier Ratio in Full On Mode: The multiplier ratio can
also be changed while in Full On mode.

In this case, the PLL state automatically transitions to Active mode
while the PLL is locking. After locking, the PLL returns to Full On
state. To program a new CLKIN to VCO multiplier, write the new
MSELL5:0] and/or DF values to the PLL_CTL register; then execute
the PLL programming sequence (see on page 8-20).

Table 8-6 summarizes the allowed operating mode transitions.

Attempting to cause mode transitions other than those shown in
Table 8-6 causes unpredictable behavior.

Table 8-6. Allowed Operating Mode Transitions

Current Mode
New Mode Full On Active Sleep Deep Sleep
Full On - Allowed Allowed -
Active Allowed - Allowed Allowed
Sleep Allowed Allowed - -
Deep Sleep Allowed Allowed - -
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Programming Operating Mode Transitions

The operating mode is defined by the state of the PLL_OFF, BYPASS,
STOPCK, and PDWN bits of the PLL Control register (PLL_CTL). Merely mod-
ifying the bits of the PLL_CTL register does not change the operating mode
or the behavior of the PLL. Changes to the PLL_CTL register are realized
only after executing a specific code sequence, which is shown in

Listing 8-1. This code sequence first brings the processor to a known,
idled state. Once in this idled state, the PLL recognizes and implements
the changes made to the PLL_CTL register. After the changes take effect, the
processor operates with the new settings, including the new operating
mode, if one is programmed.

PLL Programming Sequence

If new values are assigned to MSEL or DF in the PLL Control register
(PLL_CTL), the instruction sequence shown in Listing 8-1 puts those
changes into effect. The PLL programming sequence is also executed
when transitioning between operating states.

Changes to the divider-ratio bits, CSEL and SSEL, can be made
dynamically; they do not require execution of the PLL program-
ming sequence.

Listing 8-1. PLL Programming Sequence

CLI RO ; /* disable interrupts */
IDLE ; /* drain pipeline and send core into IDLE state */
STI RO /* re-enable interrupts after wakeup */

The first two instructions in the sequence take the core to an idled state
with interrupts disabled; the interrupt mask (IMASK) is saved to the RO reg-
ister, and the instruction pipeline is halted. The PLL state machine then
loads the PLL_CTL register changes into the PLL.
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If the PLL_CTL register changes include a new CLKIN to VCO multiplier or
the changes reapply power to the PLL, the PLL needs to relock. To relock,
the PLL lock counter is first cleared, and then it begins incrementing,
once per SCLK cycle. After the PLL lock counter reaches the value pro-
grammed into the PLL Lock Count register (PLL_LOCKCNT), the PLL sets
the PLL_LOCKED bit in the PLL Status register (PLL_STAT), and the PLL
asserts the PLL wakeup interrupt.

Depending on how the PLL_CTL register is programmed, the processor
proceeds in one of the following four ways:

e Ifthe PLL_CTL register is programmed to enter either Active or Full
On operating mode, the PLL generates a wakeup signal, and then
the processor continues with the STI instruction in the sequence, as
described in “PLL Programming Sequence Continues” on
page 8-22.

When the state change enters Full On mode from Active mode or
Active from Full On, the PLL itself generates a wakeup signal that
can be used to exit the idled core state. The wakeup signal is gener-
ated by the PLL itself or another peripheral, watchdog or other
timer, RTC, or other source. For more information about events
that cause the processor to wakeup from being idled, see

“SIC_I'WR Register” on page 4-25.

e If the PLL_CTL register is programmed to enter the Sleep operating
mode, the processor immediately transitions to the Sleep mode and
waits for a wakeup signal before continuing.

When the wakeup signal has been asserted, the instruction
sequence continues with the STI instruction, as described in the
section, “PLL Programming Sequence Continues” on page 8-22,
causing the processor to transition to:
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e Active mode if BYPASS in the PLL_CTL register is set
¢  Full On mode if the BYPASS bit is cleared

e If the PLL_CTL register is programmed to enter Deep Sleep operat-
ing mode, the processor immediately transitions to Deep Sleep
mode and waits for an RTC interrupt or hardware reset signal:

* An RTC interrupt causes the processor to enter Active oper-
ating mode and continue with the STI instruction in the
sequence, as described below.

* A hardware reset causes the processor to execute the reset
sequence, as described in “Hardware Reset” on page 3-13.

* If no operating mode transition is programmed, the PLL generates
a wakeup signal, and the processor continues with the STI instruc-
tion in the sequence, as described in the following section.

PLL Programming Sequence Continues

The instruction sequence shown in Listing 8-1 then continues with the
STI instruction. Interrupts are re-enabled, IMASK is restored, and normal
program flow resumes.

To prevent spurious activity, DMA should be suspended while exe-
cuting this instruction sequence.
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Examples

The following code examples illustrate how to effect various operating
mode transitions. Some setup code has been removed for clarity, and the
following assumptions are made:

* PO points to the PLL Control register (PLL_CTL). P1 points to the
PLL Divide register.

e The PLL wakeup interrupt is enabled as a wakeup signal.

® MSEL[5:0] and DF in PLL_CTL are set to (b#011111) and (b#0)
respectively, signifying a CLKIN to VCO multiplier of 31x.

Active Mode to Full On Mode

Listing 8-2 provides code for transitioning from Active operating mode to

Full On mode.

Listing 8-2. Transitioning From Active Mode to Full On Mode

CLI R2; /* disable interrupts, copy IMASK to R2 */

R1.L = 0x3E00; /* clear BYPASS bit */

WLPOI = RI; /* and write to PLL_CTL */

IDLE; /* drain pipeline, enter idled state, wait for
PLL wakeup */

STI R2; /* after PLL wakeup occurs, restore interrupts

and IMASK */
/* processor is now in Full On mode */

Full On Mode to Active Mode

Listing 8-3 provides code for transitioning from Full On operating mode
to Active mode.
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Listing 8-3. Transitioning From Full On Mode to Active Mode

CLI RZ; /* disable interrupts, copy IMASK to R2 */

R1.L = 0x3F00; /* set BYPASS bit */

WLPO] = R1; /* and write to PLL_CTL */

IDLE; /* drain pipeline, enter idled state, wait for
PLL wakeup */

STI RZ; /* after PLL wakeup occurs, restore interrupts

and IMASK */
/* processor is now in Active mode */

In the Full On Mode, Change CLKIN to VCO Multiplier From 31x to 2x

Listing 8-4 provides code for changing CLKIN to VCO multiplier from 31x
to 2x in Full On operating mode.

Listing 8-4. Changing CLKIN to VCO Multiplier

CLI R2; /* disable interrupts, copy IMASK to R2 */

R1.L = 0x0400; /* change VCO multiplier to 2x */

WLPO] = R1; /* by writing to PLL_CTL */

IDLE; /* drain pipeline, enter idled state, wait for
PLL wakeup */

STI R2; /* after PLL wakeup occurs, restore interrupts

and IMASK */
/* processor is now in Full On mode, with the
CLKIN to VCO multiplier set to 2x */
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Dynamic Supply Voltage Control

In addition to clock frequency control, the processor provides the capabil-
ity to run the core processor at different voltage levels. As power

dissipation is proportional to the voltage squared, significant power reduc-
tions can be accomplished when lower voltages are used.

The processor uses three power domains. These power domains are shown
in Table 8-7. Each power domain has a separate Vpp supply. Note the
internal logic of the processor and much of the processor I/O can be run
over a range of voltages. See ADSP-BF531/ADSP-BF532/ADSP-BF533
Embedded Processor Data Sheet for details on the allowed voltage ranges for
each power domain and power dissipation data.

Table 8-7. Power Domains

Power Domain

Vpp Range
All internal logic except RTC Variable
Real-Time Clock I/O and internal logic Variable
All other I/0 Variable

Power Supply Management

The processor provides an on-chip switching regulator controller which,
with some external hardware, can generate internal voltage levels from the
external Vppgxt supply with an external power transistor as shown in

Figure 8-7. This voltage level can be reduced to save power, depending
upon the needs of the system.
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Vbpext T
VopINT T T %
v
EXTERNAL COMPONENTS
VRout1-0]

Figure 8-7. Processor Voltage Regulator

® When increasing the Vppn voltage, the external FET will switch

on for a longer period. The Vppgxt supply should have appropri-
ate capacitive bypassing to enable it to provide sufficient current
without drooping the supply voltage.

VR_CTL Register

The on-chip core voltage regulator controller manages the internal logic
voltage levels for the Vppnt supply. The Voltage Regulator Control reg-

ister (VR_CTL) controls the regulator (see Figure 8-8). Writing to VR_CTL
initiates a PLL relock sequence.

Voltage Regulator Control Register (VR_CTL)

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0

0XFFCO0 0008 Io |o |o |o Io |o |o |o |1 |1 |o |1 |1 |0 |1 |1 I Reset = 0x00DB
| Il I |

WAKE (RTC Wakeup Enable) |-FREQ[1:0] (Voltage Frequency)
0 - RTC wakeup disabled Controls the switching oscillator
1 - RTC wakeup enabled frequency for the voltage regulator.
VLEV[3:0] (Internal Voltage Level) See Table 8-10 for encodings.
See Table 8-8 for encodings. L——— GAIN[1:0] (Voltage Level Gain)

Controls how quickly the voltage
output settles on its final value.
See Table 8-9 for encodings.

Figure 8-8. Voltage Regulator Control Register
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The following fields of the VR_CTL register are used to control internal
logic voltage levels:

* WAKE — The Wakeup-enable (WAKE) control bit allows the voltage
regulator to be awakened from powerdown (FREQ=00) upon an

interrupt from the RTC.

* VLEV[3:0] — The Voltage Level (VLEV) field identifies the nominal
internal voltage level. Refer to
ADSP-BF531/ADSP-BF532/ADSP-BF533 Embedded Processor
Data Sheet for the applicable VLEV voltage range and associated
voltage tolerances.

e FREQ[1:0] — The Frequency (FREQ) field controls the switching
oscillator frequency for the voltage regulator. A higher frequency
setting allows for smaller switching capacitor and inductor values,
while potentially generating more EMI (electromagnetic
interference).

@ To bypass onboard regulation, program a value of b#00 in the FREQ
field and leave the VROUT pins floating.

* GAIN[1:0] — The Gain (GAIN) field controls the internal loop gain
of the switching regulator loop; this bit controls how quickly the
voltage output settles on its final value. In general, higher gain
allows for quicker settling times but causes more overshoot in the
process.
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Table 8-8 lists the voltage level values for VLEV[3:07.

Table 8-8. VLEV Encodings

VLEV Voltage
0000-0101 Reserved
0110 .85 volts
0111 .90 volts
1000 .95 volts
1001 1.00 volts
1010 1.05 volts
1011 1.10 volts
1100 1.15 volts
1101 1.20 volts
1110 1.25 volts
1111 1.30 volts

For legal VLEV values with respect to voltage tolerance, consult the
appropriate processor-specific data sheet.

Table 8-9 lists the switching frequency values configured by FREQ[1:0].

Table 8-9. FREQ Encodings

FREQ Value
00 Powerdown/Bypass onboard regulation
01 333 kHz
10 667 kHz
11 1MHz
8-28
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Table 8-10 lists the gain levels configured by GAIN[1:0].

Table 8-10. GAIN Encodings

GAIN Value
00 5

01 10
10 20
11 50

Changing Voltage

Minor changes in operating voltage can be accommodated without requir-
ing special consideration or action by the application program. See
ADSP-BF531/ADSP-BF532/ADSP-BF533 Embedded Processor Data Sheet
for more information about voltage tolerances and allowed rates of
change.

Reducing the processor’s operating voltage to greatly conserve
power or raising the operating voltage to greatly increase perfor-
mance will probably require significant changes to the operating
voltage level. To ensure predictable behavior when varying the
operating voltage, the processor should be brought to a known and
stable state before the operating voltage is modified.

The recommended procedure is to follow the PLL programming sequence
when varying the voltage. After changing the voltage level in the VR_CTL
register, the PLL will automatically enter the Active mode when the pro-
cessor enters the Idle state. At that point the voltage level will change and
the PLL will relock with the new voltage. After the PLL_LOCKCNT has
expired, the part will return to the Full On state. When changing voltages,
a larger PLL_LOCKCNT value may be necessary than when changing just the
PLL frequency. See ADSP-BF531/ADSP-BF532/ADSP-BF533 Embedded
Processor Data Sheet for details.
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After the voltage has been changed to the new level, the processor can
safely return to any operational mode so long as the operating parameters,
such as core clock frequency (CCLK), are within the limits specified in

ADSP-BF531/ADSP-BF532/ADSP-BF533 Embedded Processor Data Sheet

for the new operating voltage level.

Powering Down the Core (Hibernate State)

The internal supply regulator for the processor can be shut off by writing
b#00 to the FREQ bits of the VR_CTL register. This disables both cCLK and
sCLK. Furthermore, it sets the internal power supply voltage (VppnT) to
0V, eliminating any leakage currents from the processor. The internal
supply regulator can be woken up either by a Real-Time Clock wakeup or
by asserting the RESET pin.

If the on-chip supply controller is bypassed, so that Vppn is sourced

externally, the only way to power down the core is to remove the external
VppInT Vvoltage source.

When the core is powered down, VppinT is set to 0 V, and thus
the internal state of the processor is not maintained. Therefore, any
critical information stored internally (memory contents, register
contents, and so on) must be written to a non-volatile storage
device prior to removing power.

Powering down Vppnt does not affect Vppgxr. While Vppexr is still

applied to the processor, external pins are maintained at a tristate level,
unless otherwise specified.
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To power down the internal supply:

1.

Werite 0 to the SIC_IWR register to prevent peripheral resources
from interrupting the Hibernate process.

Write to VR_CTL, setting the FREQ bits to b#00. If the Real-Time
Clock is being used to wake up from Hibernate, also set the WAKE
bit to 1.

Execute this code sequence:

CLI RO ;
IDLE

When the Idle state is reached, Vppnt will transition to 0 V.

When the processor is woken up, whether by RTC or by a reset
interrupt, the PLL relocks and the boot sequence defined by the
BMODE[1:0] pin settings takes effect.

Failure to allow VppnT to complete the transition to 0 V before
waking up the processor can cause undesired results.
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The processor uses Direct Memory Access (DMA) to transfer data within
memory spaces or between a memory space and a peripheral. The proces-
sor can specify data transfer operations and return to normal processing
while the fully integrated DMA controller carries out the data transfers
independent of processor activity.

The DMA controller can perform several types of data transfers:

Between memory and memory (MDMA)
(“Memory DMA” on page 9-48)

Between memory and the Serial Peripheral Interface (SPI)
(Chapter 10, “SPI Compatible Port Controllers”)

Between memory and a Serial Port (SPORT)
(Chapter 12, “Serial Port Controllers™)

Between memory and the UART Port
(Chapter 13, “UART Port Controller”)

Between memory and the Parallel Peripheral Interface (PPI)
(Chapter 11, “Parallel Peripheral Interface”)

The system includes six DMA-capable peripherals, including the Memory
DMA controller (MDMA). The following twelve DMA channels support
these devices:

PPI Receive/Transmit DMA Controller
SPORTO Receive DMA Controller
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e SPORTO Transmit DMA Controller

e SPORT1 Receive DMA Controller

e SPORT1 Transmit DMA Controller

e SPI Receive/Transmit DMA Controller

e UART Receive DMA Controller

e UART Transmit DMA Controller

e MDMA Stream 1 Transmit (Destination)
e MDMA Stream 1 Receive (Source)

e MDMA Stream 0 Transmit (Destination)
e MDMA Stream 0 Receive (Source)

This chapter describes the features common to all the DMA channels, as
well as how DMA operations are set up. For specific peripheral features,
see the appropriate peripheral chapter for additional information. Perfor-
mance and bus arbitration for DMA operations can be found in “DAB,
DCB, and DEB Performance” on page 7-8.

DMA transfers on the processor can be descriptor-based or register-based.
Descriptor-based DMA transfers require a set of parameters stored within
memory to initiate a DMA sequence. This sort of transfer allows the
chaining together of multiple DMA sequences. In descriptor-based DMA
operations, a DMA channel can be programmed to automatically set up
and start another DMA transfer after the current sequence completes.
Register-based DMA allows the processor to directly program DMA con-
trol registers to initiate a DMA transfer. On completion, the control
registers may be automatically updated with their original setup values for
continuous transfer, if needed.
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DMA and Memory DMA Registers

For convenience, discussions in this chapter use generic (non-peripheral
specific) DMA and Memory DMA register names.

*  Generic DMA register names are listed in Table 9-1.

*  Generic Memory DMA register names are listed in Table 9-3 on
page 9-7.

DMA registers fall into three categories:

e DParameter registers, such as DMAx_CONFIG and DMAx_X_COUNT

Only Parameter registers can be loaded directly from descriptor ele-
ments; descriptor elements are listed in Table 9-2 on page 9-6.

@ The letter x in DMAx represents a specific DMA-capable periph-

eral. For example, for DMA with default channel mapping,
DMA6_CONFIG represents the DMA_CONFIG register for the UART RX
peripheral. For default DMA channel mappings, see Table 9-16 on
page 9-30.

e Current registers, such as DMAx_CURR_ADDR and DMAx_CURR_X_COUNT

» Control/Status registers, such as DMAx_IRQ_STATUS and
DMAXx_PERIPHERAL_MAP

Table 9-1 lists the generic names of the DMA registers. For each register,
the table also shows the MMR offset, a brief description of the register,
the register category, and reset value.
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Table 9-1. Generic Names of the DMA Memory-Mapped
Registers
MMR Generic MMR Name |MMR Description Register
Offset Category
0x00 NEXT_DESC_PTR Link pointer to next descriptor Parameter
0x04 START_ADDR Start address of current buffer Parameter
0x08 DMA_CONFIG DMA Configuration register, including Parameter
enable bit
0x0C Reserved Reserved
0x10 X_COUNT Inner loop count Parameter
0x14 X_MODIFY Inner loop address increment, in bytes Parameter
0x18 Y_COUNT Outer loop count (2D only) Parameter
0x1C Y_MODIFY Outer loop address increment, in bytes Parameter
0x20 CURR_DESC_PTR Current Descriptor Pointer Current
0x24 CURR_ADDR Current DMA Address Current
0x28 IRQ_STATUS Interrupt Status register: Control/
Contains Completion and DMA Error | Status
Interrupt status and channel state
(Run/Fetch/Paused)
0x2C PERIPHERAL_MAP | Peripheral to DMA Channel Mapping: Control/
Contains a 4-bit value specifying the Status
peripheral to associate with this DMA
channel (Read-only for MDMA channels)
0x30 CURR_X_COUNT Current count (1D) or intra-row X count | Current
(2D); counts down from X_COUNT
0x34 Reserved Reserved
0x38 CURR_Y_COUNT Current row count (2D only); counts Current
down from Y_COUNT
0x3C Reserved Reserved
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Direct Memory Access

All DMA registers can be accessed as 16-bit entities. However, the follow-
ing registers may also be accessed as 32-bit registers:

®

NEXT_DESC_PTR
START_ADDR
CURR_DESC_PTR
CURR_ADDR

When these four registers are accessed as 16-bit entities, only the
lower 16 bits can be accessed.

Naming Conventions for DMA MMRs

Because confusion might arise between descriptor element names and

generic DMA register names, this chapter uses the naming conventions in

Table 9-2, where:

®

The left column lists the generic name of the MMR, which is used
when discussing the general operation of the DMA engine.

Note the generic names in the left column are not actually mapped
to resources in the processor.

The middle column lists the specific MMR name. Only specific

MMR names are mapped to processor resources.

In DMALx, the letter x represents the number of the DMA channel.
For instance, DMA3_IRQ_STATUS is the IRQ_STATUS MMR for DMA
Channel #3.
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DMA and Memory DMA Registers

The channel number can be assigned by default or can be pro-
grammed. For the DMA channel numbers and the default
peripheral mapping, see Table 9-16 on page 9-30.

* The last column lists the macro assigned to each descriptor element

in memory.

The macro name in the last column serves only to clarify the dis-

cussion of how the DMA engine operates.

Table 9-2. Naming Conventions: DMA MMRs and Descriptor

Elements
Generic MMR Name Specific MMR Name Name of Corresponding
(x = DMA Channel Number) Descriptor Element in
Memory
DMA_CONFIG DMAx_CONFIG DMACFG

NEXT_DESC_PTR

DMAx_NEXT_DESC_PTR

NDPH (upper 16 bits),
NDPL (lower 16 bits)

START_ADDR DMAx_START_ADDR SAH (upper 16 bits),
SAL (lower 16 bits)
X_COUNT DMAx_X_COUNT XCNT
Y_COUNT DMAx_Y_COUNT YCNT
X_MODIFY DMAx_X_MODIFY XMOD
Y_MODIFY DMAx_Y_MODIFY YMOD
CURR_DESC_PTR DMAx_CURR_DESC_PTR N/A
CURR_ADDR DMAx_CURR_ADDR N/A
CURR_X_COUNT DMAx_CURR_X_COUNT N/A
CURR_Y_COUNT DMAx_CURR_Y_COUNT N/A
IRQ_STATUS DMAx_IRQ_STATUS N/A
PERIPHERAL_MAP DMAx_PERIPHERAL_MAP N/A
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Naming Conventions for Memory DMA Registers

The names of Memory DMA registers differ somewhat from the names of
other DMA registers. Memory DMA streams cannot be reassigned to dif-
ferent channels, whereas the peripherals associated with DMA can be
mapped to any DMA channel between 0 and 7.

Table 9-3 shows the naming conventions for Memory DMA registers. In
each name, the letters yy have four possible values:

* S0, Memory DMA Source Stream 0

* DO, Memory DMA Destination Stream 0

* S1, Memory DMA Source Stream 1

* DI, Memory DMA Destination Stream 1

Table 9-3. Naming Conventions for Memory DMA Registers

Generic MMR Name  |Memory DMA MMR Name Name of Corresponding
(yy = S0, S1, DO, or D1) Descriptor Element in
Memory
DMA_CONFIG MDMA_yy_CONFIG DMACFG

NEXT_DESC_PTR

MDMA_yy_NEXT_DESC_PTR

NDPH (upper 16 bits),
NDPL (lower 16 bits)

START_ADDR MDMA_yy_START_ADDR SAH (upper 16 bits),
SAL (lower 16 bits)

X_COUNT MDMA_yy_X_COUNT XCNT

Y_COUNT MDMA_yy_Y_COUNT YCNT

X_MODIFY MDMA_yy_X_MODIFY XMOD

Y_MODIFY MDMA_yy_Y_MODIFY YMOD

CURR_DESC_PTR MDMA_yy_CURR_DESC_PTR N/A

CURR_ADDR MDMA_yy_CURR_ADDR N/A

CURR_X_COUNT MDMA_yy_CURR_X_COUNT N/A
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Table 9-3. Naming Conventions for Memory DMA Registers (Cont'd)

Generic MMR Name  |Memory DMA MMR Name Name of Corresponding
(yy = S0, S1, DO, or D1) Descriptor Element in
Memory
CURR_Y_COUNT MDMA_yy_CURR_Y_COUNT N/A
IRQ_STATUS MDMA_yy_IRQ_STATUS N/A
PERIPHERAL_MAP MDMA_yy_PERIPHERAL_MAP N/A

DMAX_NEXT_DESC_PTR/MDMA _yy_NEXT_DESC_PTR
Register

The Next Descriptor Pointer register
(DMAX_NEXT_DESC_PTR/MDMA_yy_NEXT_DESC_PTR) specifies where to look for
the start of the next descriptor block when the DMA activity specified by
the current descriptor block finishes. This register is used in small and
large descriptor list modes. At the start of a descriptor fetch in either of
these modes, the 32-bit NEXT_DESC_PTR register is copied into the
CURR_DESC_PTR register. Then, during the descriptor fetch, the

CURR_DESC_PTR register increments after each element of the descriptor is
read in.

In small and large descriptor list modes, the NEXT_DESC_PTR regis-
ter, and not the CURR_DESC_PTR register, must be programmed
directly via MMR access before starting DMA operation.

In Descriptor Array mode, the Next Descriptor Pointer register is disre-
garded, and fetching is controlled only by the CURR_DESC_PTR register.
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Next Descriptor Pointer Register (DMAx_NEXT_DESC_PTR/MDMA_yy NEXT_DESC_PTR)
R/W prior to enabling channel; RO after enabling channel

For Memory-
mapped

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

addresses, see | X |>< |>< |>< IX |X |X |><|><|X |X |X|>< |>< |>< |><|

Table 9-4. .

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

ENESENES ENENENES ESENENES ENESESES

Figure 9-1. Next Descriptor Pointer Register

Reset = Undefined

Next Descriptor
Pointer[31:16]

Next Descriptor
Pointer[15:0]

Table 9-4. Next Descriptor Pointer Register Memory-Mapped Addresses

Register Name

Memory-Mapped Address

DMAO_NEXT_DESC_PTR

0xFFCO0 0C00

DMA1_NEXT_DESC_PTR

0xFFCO0 0C40

DMA2_NEXT_DESC_PTR

0xFFCO0 0C80

DMA3_NEXT_DESC_PTR

0xFFCO0 0CCO0

DMA4_NEXT_DESC_PTR

0xFFCO0 0D00

DMA5_NEXT_DESC_PTR

0xFFCO0 0D40

DMAG6_NEXT_DESC_PTR

0xFFCO0 0D80

DMA7_NEXT_DESC_PTR

0xFFCO0 0DCO

MDMA_DO0_NEXT_DESC_PTR

0xFFCO0 0E00

MDMA_SO0_NEXT_DESC_PTR

0xFFCO0 0E40

MDMA_D1_NEXT_DESC_PTR

0xFFCO 0E80

MDMA_S1_NEXT_DESC_PTR

0xFFCO0 0ECO
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DMAX_START_ADDR/MDMA _yy_START_ADDR
Register

The Start Address register (DMAx_START_ADDR/MDMA_yy_START_ADDR),
shown in Figure 9-2, contains the start address of the data buffer currently

targeted for DMA.

Start Address Register (DMAx_START_ADDR/ MDMA_yy_START_ADDR)
R/W prior to enabling channel; RO after enabling channel

For Memory- 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
mapped |X|X|X|XIX|X|X|XIX|X|X|X|X|X|X|XI Reset = Undefined
addresses, see | |

Table 9-5.

DMA Start
Address[31:16]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
D D D P P P e e e x|

DMA Start
Address[15:0]

Figure 9-2. Start Address Register
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Table 9-5. Start Address Register Memory-Mapped Addresses

Register Name

Memory-Mapped Address

DMAO_START_ADDR

0xFFCO0 0C04

DMA1_START_ADDR

0xFFCO0 0C44

DMA2_START_ADDR

0xFFCO0 0C84

DMA3_START_ADDR

0xFFCO0 0CC4

DMA4_START_ADDR

0xFFCO0 0D04

DMA5_START_ADDR

0xFFCO0 0D44

DMAG_START_ADDR

0xFFCO0 0D84

DMA7_START_ADDR

0xFFCO0 0DC4

MDMA_DO_START_ADDR

0xFFCO0 0E04

MDMA_S0_START_ADDR

0xFFCO 0E44

MDMA_D1_START_ADDR

0xFFCO0 0E84

MDMA_S1_START_ADDR

0xFFCO0 0EC4
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DMAx_CONFIG/MDMA_yy_CONFIG Register

The DMA Configuration register (OMAx_CONFIG/MDMA_yy_CONFIG), shown
in Figure 9-3, is used to set up DMA parameters and operating modes.
Note that writing the DMA_CONFIG register while DMA is already running
will cause a DMA error unless writing with the DMAEN bit set to 0.

Configuration Register (DMAx_CONFIG/MDMA_yy_CONFIG)

R/W prior to enabling channel; RO after enabling channel

For Memory-

mapped 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

addresses, |o |o |0 |o |o |o |o |0 |o |o |o |o 0 |o |o |o | Reset = 0x0000

see Table 9-6. | “ | |
FLOWI[2:0] (Next DMAEN (DMA
Operation) Channel Enable)
0x0 - Stop 0 - Disable DMA channel
0x1 - Autobuffer mode 1 - Enable DMA channel
0x4 - Descriptor array L WNR (DMA Direction)
0x6 - Descriptor list (small model) 0 - DMA is a memory read
0x7 - Descriptor list (large model) (source) operation
NDSIZE[3:0] (Flex Descriptor Size) 1 - DMA is a memory write
Size of next descriptor (destination) operation
0000 - Required if in Stop or Autobuffer mode L WDSIZE [1:0](Transfer Word
0001 - 1001 - Descriptor size Size)
1010 - 1111 - Reserved 00 - 8-bit transfers
DI_EN (Data Interrupt Enable) —— 01 - 16-bit transfers
0 - Do not allow completion of 10 - 32-bit transfers
work unit to generate an 11 - Reserved
interrupt L———— DMA2D (DMA Mode)
1 - Allow completion of work unit 0 - Linear (One-dimensional)
to generate a data interrupt 1 - Two-dimensional (2D)
DI_SEL (Data Interrupt Timing Select) RESTART (DMA Buffer Clear)
Applies only when DMA2D = 1 0 - Retain DMA FIFO data
0 - Interrupt after completing between work units
whole buffer (outer loop) 1 - Discard DMA FIFO before
1 - Interrupt after completing beginning work unit

each row (inner loop)

Figure 9-3. Configuration Register
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Table 9-6. Configuration Register Memory-Mapped Addresses

Register Name

Memory-Mapped Address

DMAO0_CONFIG

0xFFCO0 0C08

DMA1_CONFIG

0xFFCO0 0C48

DMA2_CONFIG

0xFFCO0 0C88

DMA3_CONFIG

0xFFCO0 0CC8

DMA4_CONFIG

0xFFCO0 0D08

DMAS_CONFIG

0xFFCO0 0D48

DMAG_CONFIG

0xFFCO0 0D88

DMA7_CONFIG

0xFFCO0 0DC8

MDMA_DO0_CONFIG

0xFFCO 0E08

MDMA_S0_CONFIG

0xFFCO 0E48

MDMA_D1_CONFIG

0xFFCO OE88

MDMA_S1_CONFIG

0xFFCO 0EC8

The fields of the DMAXx_CONFIG register are used to set up DMA parameters

and operating modes.

e FLOW[2:0] (Next Operation). This field specifies the type of DMA

transfer to follow the present one. The flow options are:

* 0x0 - Stop. When the current work unit completes, the
DMA channel stops automatically, after signaling an inter-
rupt (if selected). The DMA_RUN status bit in the
DMAx_IRQ_STATUS register changes from 1 to 0, while the
DMAEN bit in the DMAx_CONFIG register is unchanged. In this
state, the channel is paused. Peripheral interrupts are still
filtered out by the DMA unit. The channel may be restarted
simply by another write to the DMAx_CONFIG register specify-
ing the next work unit, in which the DMAEN bit is set to 1.

ADSP-BF533 Blackfin Processor Hardware Reference 9-13



DMA and Memory DMA Registers

0x1 - Autobuffer Mode. In this mode, no descriptors in
memory are used. Instead, DMA is performed in a continu-
ous circular buffer fashion based on user-programmed
DMAx MMR settings. Upon completion of the work unit,
the Parameter registers are reloaded into the Current regis-
ters, and DMA resumes immediately with zero overhead.
Autobuffer mode is stopped by a user write of 0 to the DMAEN
bit in the DMAX_CONFIG register.

0x4 - Descriptor Array Mode. This mode fetches a descrip-
tor from memory that does not include the NDPH or NDPL
elements. Because the descriptor does not contain a Next
Descriptor Pointer entry, the DMA engine defaults to using
the CURR_DESC_PTR register to step through descriptors, thus
allowing a group of descriptors to follow one another in
memory like an array.

0x6 - Descriptor List (Small Model) Mode. This mode
fetches a descriptor from memory that includes NDPL, but
not NDPH. Therefore, the high 16 bits of the Next Descriptor
Pointer field are taken from the upper 16 bits of the
NEXT_DESC_PTR register, thus confining all descriptors to a
specific 64K page in memory.

0x7 - Descriptor List (Large Model) Mode. This mode
fetches a descriptor from memory that includes NDPH and
NDPL, thus allowing maximum flexibility in locating descrip-
tors in memory.

NDSIZE[3:0] (Flex Descriptor Size). This field specifies the num-
ber of descriptor elements in memory to load. This field must be 0
if in Stop or Autobuffer mode. If NDSIZE and FLOW specify a
descriptor that extends beyond YM0D, a DMA error results.

DI_EN (Data Interrupt Enable). This bit specifies whether to allow
completion of a work unit to generate a data interrupt.

9-14
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e DI_SEL (Data Interrupt Timing Select). This bit specifies the tim-
ing of a data interrupt—after completing the whole buffer or after
completing each row of the inner loop. This bit is used only in 2D
DMA operation.

e RESTART (DMA Buffer Clear). This bit specifies whether receive
data held in the channel’s data FIFO should be preserved
(RESTART = 0) or discarded (RESTART = 1) before beginning the
next work unit. Receive data is automatically discarded when the
DMAEN bit changes from 0 to 1, typically when a channel is first
enabled. Received FIFO data should usually be retained between
work units if the work units make up a continuous datastream. If,
however, a new work unit starts a new datastream, the RESTART bit
should be set to 1 to clear out any previously received data.

The RESTART bit applies only to memory write DMA channels. It is
reserved in the cases of memory read DMA channels and MDMA
channels, and must be 0 in those cases.

©

In memory write DMA channels, the RESTART bit only affects the
first work unit initiated by a write to the DMAx_CONFIG register. The
RESTART bit has no effect if it is set in DMACFG elements of DMA
descriptors.

©

e DMA2D (DMA Mode). This bit specifies whether DMA mode
involves only X_COUNT and X_MODIFY (one-dimensional DMA) or
also involves Y_COUNT and Y_MODIFY (two-dimensional DMA).

* WDSIZE[1:0] (Transfer Word Size). The DMA engine supports
transfers of 8-, 16-, or 32-bit items. Each request/grant results in a
single memory access (although two cycles are required to transfer
32-bit data through a 16-bit memory port or through the 16-bit
DMA Access bus). The DMA Address Pointer registers’ increment
sizes (strides) must be a multiple of the transfer unit size—1 for

8-bit, 2 for 16-bit, 4 for 32-bit.

ADSP-BF533 Blackfin Processor Hardware Reference 9-15



DMA and Memory DMA Registers

* UWNR (DMA Direction). This bit specifies DMA direction—memory
read (0) or memory write (1).

* DMAEN (DMA Channel Enable). This bit specifies whether to enable
a given DMA channel.

@ When a peripheral DMA channel is enabled, interrupts from the

peripheral denote DMA requests. When a channel is disabled, the
DMA unit ignores the peripheral interrupt and passes it directly to
the interrupt controller. To avoid unexpected results, take care to
enable the DMA channel before enabling the peripheral, and to
disable the peripheral before disabling the DMA channel.

DMAx_X_COUNT/MDMA_yy_X_COUNT Register

For 2D DMA, the Inner Loop Count register
(DMAX_X_COUNT/MDMA_yy_X_COUNT), shown in Figure 9-4, contains the
inner loop count. For 1D DMA, it specifies the number of elements to
read in. For details, see “T'wo-Dimensional DMA” on page 9-45. A value
of 0 in X_COUNT corresponds to 65,536 elements.

Inner Loop Count Register (DMAx_X_COUNT/MDMA_yy_X_COUNT)
R/W prior to enabling channel; RO after enabling channel

For Memory-
mapped 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

gg::sgsi;s,see |Ix |x |x |x |x |x |x |x|x |x |x |x|x |x |x |x|| Reset = Undefined

X_COUNTI[15:0] (Inner
Loop Count)

The number of elements to
read in (1D); the number of
rows in the inner loop (2D)

Figure 9-4. Inner Loop Count Register
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Table 9-7. Inner Loop Count Register Memory-Mapped

Addresses

Direct Memory Access

Register Name

Memory-Mapped Address

DMAO0_X_COUNT

0xFFCO0 0C10

DMA1_X_COUNT

0xFFCO0 0C50

DMA2_X_COUNT

0xFFCO0 0C90

DMA3_X_COUNT

0xFFCO0 0CDO0

DMA4_X_COUNT

0xFFCO0 0D10

DMA5_X_COUNT

0xFFCO0 0D50

DMAG6_X_COUNT

0xFFCO0 0D90

DMA7_X_COUNT

0xFFCO0 0DDO0

MDMA_D0_X_COUNT

0xFFCO 0E10

MDMA_S0_X_COUNT

0xFFCO 0E50

MDMA_D1_X_COUNT

0xFFCO0 0E90

MDMA_S1_X_COUNT

0xFFCO0 0EDO

DMAx_X_MODIFY/MDMA_yy_X_MODIFY Register

The Inner Loop Address Increment register
(DMAX_X_MODIFY/MDMA_yy_X_MODIFY) contains a signed, two’s-complement
byte-address increment. In 1D DMA, this increment is the stride that is

applied after transferring each element.

Note X_MODIFY is specified in bytes, regardless of the DMA transfer

size.

In 2D DMA, this increment is applied after transferring each element in

the inner loop, up to but not including the last element in each inner

loop. After the last element in each inner loop, the Y_MODIFY register is
applied instead, except on the very last transfer of each work unit. The

X_MODIFY register is always applied on the last transfer of a work unit.

ADSP-BF533 Blackfin Processor Hardware Reference
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The x_MODIFY field may be set to 0. In this case, DMA is performed
repeatedly to or from the same address. This is useful, for example, in
transferring data between a data register and an external memory-mapped

peripheral.

Inner Loop Address Increment Register (DMAx_X_MODIFY/MDMA_yy X_MODIFY)
R/W prior to enabling channel; RO after enabling channel

For Memory-
mapped 15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0

addresses, see |X|X|x |x|x |x |x |x|x|x |x |x|x |x |x|x| Reset = Undefined
Table 9-8. 1 |

| X_MODIFY[15:0] (Inner
Loop Address Increment)
Stride (in bytes) to take after
each decrement of
CURR_X_COUNT

Figure 9-5. Inner Loop Address Increment Register

Table 9-8. Inner Loop Address Increment Register Memory-Mapped
Addresses

Register Name Memory-Mapped Address
DMA0_X_MODIFY 0xFFCO0 0C14
DMA1_X_MODIFY 0xFFCO0 0C54
DMA2_X_MODIFY 0xFFCO0 0C94
DMA3_X_MODIFY 0xFFCO0 0CD4
DMA4_X_MODIFY 0xFFCO0 0D14
DMAS5_X_MODIFY 0xFFCO0 0D54
DMAG_X_MODIFY 0xFFCO0 0D94
DMA7_X_MODIFY 0xFFCO0 0DD4
MDMA_D0_X_MODIFY 0xFFCO0 0E14
MDMA_S0_X_MODIFY 0xFFCO0 0E54
MDMA_D1_X_ MODIFY 0xFFCO0 0E94
MDMA_S1_X_MODIFY 0xFFCO0 0ED4
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DMAXx_Y_COUNT/MDMA_yy_Y_COUNT Register

For 2D DMA, the Outer Loop Count register
(DMAX_Y_COUNT/MDMA_yy_Y_COUNT) contains the outer loop count. It is not
used in 1D DMA mode. This register contains the number of rows in the
outer loop of a 2D DMA sequence. For details, see “Two-Dimensional

DMA” on page 9-45.

Outer Loop Count Register (DMAx_Y_COUNT/MDMA_yy_Y_COUNT)
R/W prior to enabling channel; RO after enabling channel

For Memory-
mapped 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

addresses, see |X|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x| Reset = Undefined
Table 9-9.

Y_COUNT[15:0]
(Outer Loop Count)

The number of rows in
the outer loop of a 2D
DMA sequence

Figure 9-6. Outer Loop Count Register

Table 9-9. Outer Loop Count Register Memory-Mapped
Addresses

Register Name Memory-Mapped Address
DMAO_Y_COUNT 0xFFCO0 0C18
DMA1_Y_COUNT 0xFFCO0 0C58
DMA2_Y_COUNT 0xFFCO0 0C98
DMA3_Y_COUNT 0xFFCO0 0CD8
DMA4_Y_COUNT 0xFFCO0 0D18
DMA5_Y_COUNT 0xFFCO0 0D58
DMAG_Y_COUNT 0xFFCO0 0D98
DMA7_Y_COUNT 0xFFCO0 0DD8
MDMA_DO0_Y_COUNT 0xFFCO 0E18
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Table 9-9. Outer Loop Count Register Memory-Mapped
Addresses (Contd)

Register Name Memory-Mapped Address
MDMA_S0_Y_COUNT 0xFFCO 0E58
MDMA_D1_Y_COUNT 0xFFCO 0E98
MDMA_S1_Y_COUNT 0xFFCO0 0EDS8

DMAXx_Y_MODIFY/MDMA_yy_Y_MODIFY Register

The Outer Loop Address Increment register
(DMAX_Y_MODIFY/MDMA_yy_Y_MODIFY) contains a signed, two’s-complement
value. This byte-address increment is applied after each decrement of the
CURR_Y_COUNT register except for the last item in the 2D array where the
CURR_Y_COUNT also expires. The value is the offset between the last word of
one “row” and the first word of the next “row.” For details, see
“Two-Dimensional DMA” on page 9-45.

Note Y_MODIFY is specified in bytes, regardless of the DMA transfer
size.

Outer Loop Address Increment Register (DMAx_Y_MODIFY/ MDMA_yy_Y_MODIFY)
R/W prior to enabling channel; RO after enabling channel

ForMemory- 15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
?dadprzzges,see X |X |X |x |x |x |x |x |x |x |x |x |x |x |x |x | Reset = Undefined
Table 9-10.

Y_MODIFY[15:0]
(Outer Loop Address
Increment)

Stride to take after each
decrement of
CURR_Y_COUNT

Figure 9-7. Outer Loop Address Increment Register
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Table 9-10. Outer Loop Address Increment Register Memory-Mapped
Addresses

Register Name Memory-Mapped Address
DMAO_Y_MODIFY 0xFFCO0 0C1C
DMA1_Y_MODIFY 0xFFCO0 0C5C
DMA2_Y_MODIFY 0xFFCO0 0C9C
DMA3_Y_MODIFY 0xFFC0 0CDC
DMA4_Y_MODIFY 0xFFCO0 0D1C
DMA5_Y_MODIFY 0xFFCO0 0D5C
DMAG6_Y_MODIFY 0xFFCO0 0D9C
DMA7_Y_MODIFY 0xFFC0 0DDC
MDMA_DO0_Y_MODIFY 0xFFCO 0E1C
MDMA_S0_Y_MODIFY 0xFFCO 0E5C
MDMA_D1_Y_MODIFY 0xFFCO0 0E9C
MDMA_S1_Y_MODIFY 0xFFCO0 0OEDC

DMAXx_CURR_DESC_PTR/MDMA_yy_CURR_DESC_PTR
Register

The Current Descriptor Pointer register
(DMAX_CURR_DESC_PTR/MDMA_yy_CURR_DESC_PTR) contains the memory
address for the next descriptor element to be loaded. For FLOW mode set-
tings that involve descriptors (FLOW = 4, 6, or 7), this register is used to
read descriptor elements into appropriate MMRs before a DMA work
block begins. For Descriptor List modes (FLOW = 6 or 7), this register is
initialized from the NEXT_DESC_PTR register before loading each descriptor.
Then, the address in the CURR_DESC_PTR register increments as each
descriptor element is read in.

When the entire descriptor has been read, the CURR_DESC_PTR register con-
tains this value:
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Descriptor Start Address + Descriptor Size (# of elements)

For Descriptor Array mode (FLOW = 4), this register, and not the
NEXT_DESC_PTR register, must be programmed by MMR access
before starting DMA operation.

Current Descriptor Pointer Register (DMAx_CURR_DESC_PTR/
MDMA_yy CURR_DESC_PTR)

R/W prior to enabling channel; RO after enabling channel

For Memory- 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 .
mapped IXIXIXIXIXIXIXIXIXIXIXIXIXIXIXIXI Reset = Undefined
addresses, see 1 |

Table 9-11.

Current Descriptor
Pointer[31:16]
Upper 16 bits of
memory address of
the next descriptor
1514 1312 1110 9 8 7 6 5 4 3 2 1 0 element
ENENENEN ENENENES ENENESES EREREREY

Current Descriptor
Pointer[15:0]

Lower 16 bits of
memory address of
the next descriptor
element

Figure 9-8. Current Descriptor Pointer Register

Table 9-11. Current Descriptor Pointer Register Memory-Mapped
Addresses

Register Name Memory-Mapped Address
DMAO_CURR_DESC_PTR 0xFFCO0 0C20
DMA1_CURR_DESC_PTR 0xFFCO0 0C60
DMA2_CURR_DESC_PTR 0xFFCO0 0CAO
DMA3_CURR_DESC_PTR 0xFFCO0 0CEO
DMA4_CURR_DESC_PTR 0xFFCO0 0D20
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Table 9-11. Current Descriptor Pointer Register Memory-Mapped
Addresses (Contd)

Register Name Memory-Mapped Address
DMA5_CURR_DESC_PTR 0xFFCO0 0D60
DMAG6_CURR_DESC_PTR 0xFFCO0 0DAO
DMA7_CURR_DESC_PTR 0xFFCO0 0DEO
MDMA_DO0_CURR_DESC_PTR 0xFFCO 0E20
MDMA_S0_CURR_DESC_PTR 0xFFCO 0E60
MDMA_D1_CURR_DESC_PTR 0xFFCO0 0EA0
MDMA_S1_CURR_DESC_PTR 0xFFCO0 0EEO

DMAXx_CURR_ADDR/MDMA_yy_CURR_ADDR
Register

The Current Address register (DMAx_CURR_ADDR/MDMA_yy_CURR_ADDR),
shown in Figure 9-9, contains the present DMA transfer address for a
given DMA session. At the start of a DMA session, the CURR_ADDR register
is loaded from the START_ADDR register, and it is incremented as each trans-
fer occurs. The Current Address register contains 32 bits.
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Current Address Register (DMAx_CURR_ADDR/MDMA_yy CURR_ADDR)
R/W prior to enabling channel; RO after enabling channel

;‘;’p“::;"ory' 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
addresses, see |x |x |x |x |x |x |x |x |x |x |x |x |x |x |x |x | Reset = Undefined
Table 9-12.

Current Address[31:16]

Upper 16 bits of present
DMA transfer address for

1514 1312 11 10 9 8 7 6 5 4 3 2 1 o  agiven DMAsession
D D e P o o e o e [ [x Jx [x [x ¢
L I

Current Address[15:0]

Lower 16 bits of present
DMA transfer address for
a given DMA session

Figure 9-9. Current Address Register

Table 9-12. Current Address Register Memory-Mapped Addresses

Register Name Memory-Mapped Address
DMAO_CURR_ADDR 0xFFCO0 0C24
DMA1_CURR_ADDR 0xFFCO0 0C64
DMA2_CURR_ADDR 0xFFCO0 0CA4
DMA3_CURR_ADDR 0xFFCO0 0CE4
DMA4_CURR_ADDR 0xFFCO0 0D24
DMAS5_CURR_ADDR 0xFFCO0 0D64
DMAG_CURR_ADDR 0xFFCO0 0DA4
DMA7_CURR_ADDR 0xFFCO 0DE4
MDMA_D0_CURR_ADDR 0xFFCO0 0E24
MDMA_S0_CURR_ADDR 0xFFCO0 0E64
MDMA_D1_CURR_ADDR 0xFFCO 0EA4
MDMA_S1_CURR_ADDR 0xFFCO OEE4
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DMAX_CURR_X_COUNT/MDMA _yy_CURR_X_COUNT
Register

The Current Inner Loop Count register
(DMAX_CURR_X_COUNT/MDMA_yy_CURR_X_COUNT) is loaded by the X_COUNT
register at the beginning of each DMA session (for 1D DMA) and also
after the end of DMA for each row (for 2D DMA). Otherwise it is decre-
mented each time an element is transferred. Expiration of the count in this
register signifies that DMA is complete. In 2D DMA, the CURR_X_COUNT
register value is 0 only when the entire transfer is complete. Between rows
it is equal to the value of the X_COUNT register.

Current Inner Loop Count Register (DMAx_CURR_X_COUNT/

R/W prior to enabling channel; RO after enabling channel

For Memory-
mapped 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

dd s XXX [IXEIX XX [XEX[XIX[XEX]|X]X]|X Reset = Undefined
addresses, see [ | X [x [x |x [x [x [x Jx[x [x [x [x [x[x]x]

CURR_X_COUNT[15:0]
(Current Inner Loop
Count)

Loaded by X_COUNT
at the beginning of each
DMA session (1D DMA),
or at the beginning of
each row (2D DMA)

Figure 9-10. Current Inner Loop Count Register
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Table 9-13. Current Inner Loop Count Register Memory-Mapped
Addresses

Register Name Memory-Mapped Address
DMAO_CURR_X_COUNT 0xFFCO0 0C30
DMA1_CURR_X_COUNT 0xFFCO0 0C70
DMA2_CURR_X_COUNT 0xFFCO0 0CBO
DMA3_CURR_X_COUNT 0xFFCO0 0CFO
DMA4_CURR_X_COUNT 0xFFCO0 0D30
DMA5_CURR_X_COUNT 0xFFCO0 0D70
DMAG6_CURR_X_COUNT 0xFFCO0 0DBO
DMA7_CURR_X_COUNT 0xFFCO0 0DFO0
MDMA_DO0_CURR_X_COUNT 0xFFCO 0E30
MDMA_S0_CURR_X_COUNT 0xFFCO0 0E70
MDMA_D1_CURR_X_COUNT 0xFFCO 0EBO
MDMA_S1_CURR_X_COUNT 0xFFCO0 OEFO

DMAX_CURR_Y_COUNT/MDMA_yy_CURR_Y_COUNT
Register

The Current Outer Loop Count register
(DMAX_CURR_Y_COUNT/MDMA_yy_CURR_Y_COUNT) is loaded by the Y_COUNT
register at the beginning of each 2D DMA session. It is not used for 1D
DMA. This register is decremented each time the CURR_X_COUNT register
expires during 2D DMA operation (1 to X_COUNT or 1 to O transition), sig-
nifying completion of an entire row transfer. After a 2D DMA session is
complete, CURR_Y_COUNT = 1 and CURR_X_COUNT = 0.
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Current Outer Loop Count Register (DMAx_CURR_Y_COUNT/
MDMA_yy CURR_Y_COUNT)
R/W prior to enabling channel; RO after enabling channel

For Memory-
mapped 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

, Reset = Undefined
:_gg:‘:sgs-ﬁ.see IIXIXIXIXIXIXIXIXIXIXIXIXIXIXIXIXI ese ndefine

CURR_Y_COUNT[15:0]
(Current Outer Loop
Count)

Loaded by Y_COUNT
at the beginning of each
2D DMA session; not
used for 1D DMA

Figure 9-11. Current Outer Loop Count Register

Table 9-14. Current Outer Loop Count Register Memory-Mapped
Addresses

Register Name Memory-Mapped Address
DMAO_CURR_Y_COUNT 0xFFCO0 0C38
DMA1_CURR_Y_COUNT 0xFFCO0 0C78
DMA2_CURR_Y_COUNT 0xFFCO0 0CB8
DMA3_CURR_Y_COUNT 0xFFCO0 0CF8
DMA4_CURR_Y_COUNT 0xFFCO0 0D38
DMA5_CURR_Y_COUNT 0xFFCO0 0D78
DMAG_CURR_Y_COUNT 0xFFCO0 0DB8
DMA7_CURR_Y_COUNT 0xFFCO 0DF8
MDMA_DO0_CURR_Y_COUNT 0xFFCO O0E38
MDMA_S0_CURR_Y_COUNT 0xFFCO OE78
MDMA_D1_CURR_Y_COUNT 0xFFCO OEBS8
MDMA_S1_CURR_Y_COUNT 0xFFCO OEF8
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DMAX_PERIPHERAL_MAP/MDMA _yy_PERIPHERAL_M
AP Register

Each DMA channel’s Peripheral Map register
(OMAX_PERTPHERAL_MAP/MDMA_yy PERIPHERAL_MAP) contains bits that:

* Map the channel to a specific peripheral.

* Identify whether the channel is a Peripheral DMA channel or a
Memory DMA channel.

@ Note a 1:1 mapping should exist between DMA channels and

peripherals. The user is responsible for ensuring that multiple
DMA channels are not mapped to the same peripheral and that
multiple peripherals are not mapped to the same DMA port. If
multiple channels are mapped to the same peripheral, only one
channel is connected (the lowest priority channel). If a nonexistent
peripheral (for example, OxF in the PMAP field) is mapped to a chan-
nel, that channel is disabled—DMA requests are ignored, and no
DMA grants are issued. The DMA requests are also not forwarded
from the peripheral to the interrupt controller.

Follow these steps to swap the DMA channel priorities of two channels.
Assume that channels 6 and 7 are involved.

1. Make sure DMA is disabled on channels 6 and 7.

2. Write DMA6_PERIPHERAL_MAP with 0x7000 and
DMA7_PERIPHERAL_MAP with 0x6000.

3. Enable DMA on channels 6 and/or 7.
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Peripheral Map Register (DMAx_PERIPHERAL_MAP/MDMA_yy_PERIPHERAL_MAP)
R/W prior to enabling channel; RO after enabling channel

For Memory-

mapped 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
addresses,seeIX |>< |>< |X IX |X |X |X I X |X |X | )‘X |X |X |X I Reset: See Table
Table 9-15.
I |
PMAP[3:0] (Peripheral CTYPE(DMAChannelType)
Mapped to This -RO
Channel) ——M 0 - Peripheral DMA
0x0 - PPI 1 - Memory DMA

0x1 - SPORTO RX
0x2 - SPORTO TX
0x3 - SPORT1 RX
0x4 - SPORT1 TX
0x5 - SPI

0x6 - UART RX
0x7 - UART TX

Figure 9-12. Peripheral Map Register

Table 9-15. Peripheral Map Register Memory-Mapped Addresses

Register Name Memory-Mapped Address
DMAO_PERIPHERAL_MAP 0xFFCO0 0C2C
DMA1_PERIPHERAL_MAP 0xFFCO0 0C6C
DMA2_PERIPHERAL_MAP 0xFFCO0 0CAC
DMA3_PERIPHERAL_MAP 0xFFCO0 0CEC
DMA4_PERIPHERAL_MAP 0xFFCO0 0D2C
DMA5_PERIPHERAL_MAP 0xFFCO0 0D6C
DMAG_PERIPHERAL_MAP 0xFFCO0 0DAC
DMA7_PERIPHERAL_MAP 0xFFCO0 0DEC
MDMA_DO_PERIPHERAL_MAP 0xFFCO0 0E2C
MDMA_SO0_PERIPHERAL_MAP 0xFFCO0 0E6C
MDMA_D1_PERIPHERAL_MAP 0xFFCO 0EAC
MDMA_S1_PERIPHERAL_MAP 0xFFCO OEEC
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Table 9-16 lists the binary peripheral map settings for each DMA-capable
peripheral.

Table 9-16. Peripheral Mapping

DMA Default Peripheral Mapping |Default PERIPHERAL _MAP | Comments

Channel Setting (Binary)

0 (highest | PPI b#0000 0000 0000 0000

priority)

1 SPORT0 RX b#0001 0000 0000 0000

2 SPORTO0 TX b#0010 0000 0000 0000

3 SPORT1 RX b#0011 0000 0000 0000

4 SPORT1 TX b#0100 0000 0000 0000

5 SPI b#0101 0000 0000 0000

6 UART RX b#0110 0000 0000 0000

7 UART TX b#0111 0000 0000 0000

8 Mem DMA Stream 0 Desti- | b#0000 0000 0100 0000 Not reassignable
nation

9 Mem DMA Stream 0 Source | b#0000 0000 0100 0000 Not reassignable

10 Mem DMA Stream 1 Desti- | b#0000 0000 0100 0000 Not reassignable
nation

11 (lowest | Mem DMA Stream 1 Source | b#0000 0000 0100 0000 Not reassignable

priority)

DMAXx_IRQ_STATUS/MDMA _yy_IRQ_STATUS Register

The Interrupt Status register (DMAx_IRQ_STATUS/MDMA_yy_IRQ_STATUS),
shown in Figure 9-13, contains bits that record whether the DMA

channel:

e Is enabled and operating, enabled but stopped, or disabled.

e Is fetching data or a DMA descriptor.
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* Has detected that a global DMA interrupt or a channel interrupt is
being asserted.

* Has logged occurrence of a DMA error.

Note the DMA_DONE interrupt is asserted when the last memory access (read
or write) has completed.

@ For a memory transfer to a peripheral, there may be up to four data

words in the channel’s DMA FIFO when the interrupt occurs. At
this point, it is normal to immediately start the next work unit. If,
however, the application needs to know when the final data item is
actually transferred to the peripheral, the application can test or
poll the DMA_RUN bit. As long as there is undelivered transmit data
in the FIFO, the DMA_RUN bit is 1.

@ For a memory write DMA channel, the state of the DMA_RUN bit has
no meaning after the last DMA_DONE event has been signaled. It does
not indicate the status of the DMA FIFO.

@ For MemDMA transfers where it is not desired to use an interrupt

to notify when the DMA operation has ended, software should poll

the DMA_DONE bit, and not the DMA_RUN bit, to determine when the
transaction has completed.
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Interrupt Status Register (DMAx_IRQ_STATUS/MDMA_yy_IRQ_STATUS)

For Memory-
mapped 15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
addresses,seelo |o |0 |o |o |o |o |0 |0 |o |o |o |o |0 |o |o | Reset = 0x0000
Table 9-17.
DMA_RUN (DMA Channel L DMA_DONE (DMA Comple-
Running) - RO tion Interrupt Status) - W1C
This bit is set to 1 automatically when 0 - No interrupt is being
the DMA_CONFIG register is written asserted for this channel
0 - This DMA channel is disabled, or it 1 - DMA work unit has
is enabled but paused (FLOW completed, and this DMA
mode 0) channel’s interrupt is being
1 - This DMA channel is enabled and asserted
operating, either transferring data L DMA_ERR (DMA Error Inter-
or fetching a DMA descriptor rupt Status) - W1C
0 - No DMA error has
DFETCH (DMA Descriptor occurred
Fetch) - RO 1 - A DMA error has occurred,
This bit is set to 1 automatically when and the global DMA Error
the DMA_CONFIG register is written interrupt is being asserted.
with FLOW modes 4-7 After this error occurs,
0 - This DMA channel is disabled, or it the contents of the DMA
is enabled but stopped (FLOW Current registers are
mode 0) unspecified. Control/
1 - This DMA channel is enabled and Status and Parameter
presently fetching a DMA descriptor registers are unchanged.

Figure 9-13. Interrupt Status Register

Table 9-17. Interrupt Status Register Memory-Mapped

Addresses

Register Name Memory-Mapped Address
DMAO_IRQ_STATUS 0xFFC0 0C28
DMA1_IRQ_STATUS 0xFFCO0 0C68
DMA2_IRQ_STATUS 0xFFCO0 0CA8
DMA3_IRQ_STATUS 0xFFCO0 0CE8
DMA4_IRQ_STATUS 0xFFCO0 0D28
DMA5_IRQ_STATUS 0xFFCO0 0D68
DMAG_IRQ_STATUS 0xFFCO0 0DAS
DMA7_IRQ_STATUS 0xFFCO0 0DES8
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Table 9-17. Interrupt Status Register Memory-Mapped
Addresses (Contd)

Register Name Memory-Mapped Address

MDMA_DO0_IRQ_STATUS 0xFFCO 0E28
MDMA_S0_IRQ_STATUS
MDMA_D1_IRQ_STATUS

0xFFCO0 0E68

0xFFCO OEAS
MDMA_S1_IRQ_STATUS 0xFFCO OEES8

The processor supports a flexible interrupt control structure with three
interrupt sources.

Data driven interrupts (see Table 9-18)

* DPeripheral Error interrupts

DMA Error interrupts (for example, Bad Descriptor or Bus Error)

Separate Interrupt Request (IRQ) levels are allocated for Data and Periph-
eral Error interrupts, and DMA Error interrupts.

Table 9-18. Data Driven Interrupts

Interrupt Name Description

No Interrupt Interrupts can be disabled for a given work unit.

Peripheral Interrupt | These are peripheral (non-DMA) interrupts.

Row Completion DMA Interrupts can occur on the completion of a row

(CURR_X_COUNT expiration).

Buffer Completion DMA Interrupts can occur on the completion of an entire buf-

fer (when CURR_X_COUNT and CURR_Y_COUNT expire).

All DMA channels are OR’ed together into one system-level DMA Error
interrupt. The individual IRQ_STATUS words of each channel can be read
to identify the channel that caused the DMA Error interrupt.
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@ Note the DMA_DONE and DMA_ERR interrupt indicators are
write-one-to-clear (W1C).

® When switching a peripheral from DMA to non-DMA mode, the

peripheral’s interrupts should be disabled during the mode switch
(via the appropriate peripheral registers or SIC_IMASK) so that no
unintended interrupt is generated on the shared DMA/interrupt
request line.

Flex Descriptor Structure

DMA flex descriptors are variable sized data structures whose contents are
loaded into DMA Parameter registers. The sequence of registers in the
descriptor is essentially fixed (among three similar variations), but the
length of the descriptor is completely programmable. The DMA channel
registers are ordered so that the registers that are most commonly reloaded
per work unit are at the lowest MMR addresses. The user may choose
whether or not to use descriptors. If not using descriptors, the user can
write the DMA MMRs directly to start DMA, and use either Autobuffer

mode for continuous operation or Stop mode for single-buffer operation.

To use descriptors, the user programs the NDSIZE field of the DMAx_CONFIG
register with the number of DMA registers to load from the descriptor,
starting with the lowest MMR address. The user may select a descriptor

size from one entry (the lower 16 bits of START_ADDR) to nine entries (all
the DMA parameters).
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The three variations of the descriptor value sequences depend on whether
a Next Descriptor Pointer is included and, if so, what kind.

* None included (Descriptor Array mode)

* The lower 16 bits of the Next Descriptor Pointer (Descriptor List,
Small Model)

* All 32 bits of the Next Descriptor Pointer (Descriptor List, Large
Model)

All the other registers not loaded from the descriptor retain their prior val-
ues, although the CURR_ADDR, CURR_X_COUNT, and CURR_Y_COUNT registers
are reloaded between the descriptor fetch and the start of DMA operation.

There are certain DMA settings that are not allowed to change from one
descriptor to the next in a chain (Small or Large List and Array modes).
These are DMA Direction, Word Size, and Memory Space (that is,
switching between internal and external memory).

A single descriptor chain cannot control the transfer of a sequence of data
buffers which reside in different memory spaces. Instead, group the data
buffers into chains of buffers in the same space, but do not link the chains
together. Transfer the first chain, wait for its final interrupt, and then start
the next chain with an MMR write to the DMA_CONFIG register.

Note that while the user must locate each chain’s data buffers in the same
memory space, the descriptor structures themselves may be placed in any
memory space, and they may link from a descriptor in one space to a
descriptor in another space without restriction.
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Table 9-19 shows the offsets for descriptor elements in the three modes
described above. Note the names in the table list the descriptor elements
in memory, not the actual MMRs into which they are eventually loaded.

Table 9-19. Parameter Registers and Descriptor Offsets

Descriptor Descriptor Array Small Descriptor List  |Large Descriptor List
Offset Mode Mode Mode

0x0 SAL NDPL NDPL
0x2 SAH SAL NDPH
0x4 DMACFG SAH SAL

0x6 XCNT DMACFG SAH

0x8 XMOD XCNT DMACFG
0xA YCNT XMOD XCNT
0xC YMOD YCNT XMOD
0xE YMOD YCNT
0x10 YMOD
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DMA Operation Flow

Figure 9-14 and Figure 9-15 describe the DMA Flow.

USER WRITES SOME OR ALL DMA PARAMETER
REGISTERS, AND THEN WRITES DMA_CONFIG

1

Y
DMA ERROR BAD DMA_CONFIG?

DMA_EN =0
TEST DMA_EN DI_EN = 0 OR
(DI_LEN =1 AND
DMA_EN =1 DMA_DONE_IRQ =1)
- -t Cc
A
SET DMA_RUN IN IRQ_STATS
v !
DMA STOPPED. FLOW=0O0R 1
CLEAR DMA_RUN IN TEST FLOW > A
IRQ_STATUS
FLOW=4,6,0R 7
SET DFETCH IN IRQ_STATUS
COPY FLOW, NDSIZE FROM DMA_CONFIG
INTO TEMPORARY DESCRIPTOR FETCH COUNTERS
FLOW=60R 7
COPY NEXT DESCRIPTOR POINTER
TO CURRENT DESCRIPTOR POINTER
A
> B

Figure 9-14. DMA Flow, From DMA Controller’s Point of View (1 of 2)
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NDSIZE = 0 OR
NDSIZE > MAX_SIZE*

TEST NDSIZE

DMA
| ABORT
OCCURS
NDSIZE > 0 AND
NDSIZE <= MAX_SIZE*
READ NDSIZE ELEMENTS
OF DESCRIPTOR INTO
PARAMETER REGISTERS
VIA CURRENT
DESCRIPTOR POINTER
FLOW =0OR 1

|
Y

CLEAR DFETCH IN
IRQ_STATUS

v

DMA TRANSFER
BEGINS AND
CONTINUES UNTIL
COUNTS EXPIRE

Y

SIGNAL AN
INTERRUPT
TO THE CORE

!

SET DMA_DONE
IN IRQ_STATUS

MEMORY READ

TRANSFER
TEST WNR (SOURCE) DATA FROM
FIFO TO
PERIPHERAL
UNTIL EMPTY
__ MEMORY WRITE (DESTINATION) |
! *MAX SIZE DEPENDS ON FLOW
DMA STOPPED.
CLEAR DMA RUN IN IF FLOW = 4, MAX_SIZE = 7
RQ STATUS. IF FLOW = 6, MAX_SIZE = 8

IF FLOW =7, MAX_SIZE =9

Figure 9-15. DMA Flow, From DMA Controller’s Point of View (2 of 2)
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DMA Startup

This section discusses starting DMA “from scratch.” This is similar to
starting it after it has been paused by FLOW = 0 mode.

Before initiating DMA for the first time on a given channel, be
sure to initialize all Parameter registers. Be especially careful to ini-
tialize the upper 16 bits of the NEXT_DESC_PTR and START_ADDR
registers, because they might not otherwise be accessed, depending
on the chosen FLOW mode of operation.

To start DMA operation on a given channel, some or all of the DMA
Parameter registers must first be written directly. At a minimum, the
NEXT_DESC_PTR register (or CURR_DESC_PTR register in FLOW = 4 mode)
must be written at this stage, but the user may wish to write other DMA
registers that might be static throughout the course of DMA activity (for
example, X_MODIFY, Y_MODIFY). The contents of NDSIZE and FLOW in
DMA_CONFIG indicate which registers, if any, are fetched from descriptor
elements in memory. After the descriptor fetch, if any, is completed,
DMA operation begins, initiated by writing DMA_CONFIG with DMAEN = 1.

When DMA_CONFIG is written directly, the DMA controller recognizes this
as the special startup condition that occurs when starting DMA for the
first time on this channel or after the engine has been stopped (FLOW = 0).

When the descriptor fetch is complete and DMAEN = 1, the DMACFG descrip-
tor element that was read into DMA_CONFIG assumes control. Before this
point, the direct write to DMA_CONFIG had control. In other words, the
WDSIZE, DI_EN, DI_SEL, RESTART, and DMA2D fields will be taken from the
DMACFG value in the descriptor read from memory, while these field values
initially written to the DMA_CONFIG register are ignored.
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As Figure 9-14 and Figure 9-15 show, at startup the FLOW and NDSIZE bits
in DMA_CONFIG determine the course of the DMA setup process. The FLOW
value determines whether to load more Current registers from descriptor
elements in memory, while the NDSIZE bits detail how many descriptor
elements to fetch before starting DMA. DMA registers not included in the
descriptor are not modified from their prior values.

If the FLOW value specifies Small or Large Descriptor List modes, the
NEXT_DESC_PTR is copied into CURR_DESC_PTR. Then, fetches of new
descriptor elements from memory are performed, indexed by
CURR_DESC_PTR, which is incremented after each fetch. If NDPL and/or NDPH
is part of the descriptor, then these values are loaded into NEXT_DESC_PTR,
but the fetch of the current descriptor continues using CURR_DESC_PTR.
After completion of the descriptor fetch, CURR_DESC_PTR points to the next
16-bit word in memory past the end of the descriptor.

If neither NDPH nor NDPL are part of the descriptor (that is, in Descriptor
Array mode, FLOW = 4), then the transfer from NDPH/NDPL into
CURR_DESC_PTR does not occur. Instead, descriptor fetch indexing begins
with the value in CURR_DESC_PTR.

If DMACFG is not part of the descriptor, the previous DMA_CONFIG settings (as
written by MMR access at startup) control the work unit operation. If
DMACFG is part of the descriptor, then the DMA_CONFIG value programmed
by the MMR access controls only the loading of the first descriptor from
memory. The subsequent DMA work operation is controlled by the low
byte of the descriptor’s DMACFG and by the Parameter registers loaded from
the descriptor. The bits DI_EN, DI_SEL, DMA2D, WDSIZE, and WNR in the value
programmed by the MMR access are disregarded.

The DMA_RUN and DFETCH status bits in the IRQ_STATUS register indicate the
state of the DMA channel. After a write to DMA_CONFIG, the DMA_RUN and
DFETCH bits can be automatically set to 1. No data interrupts are signaled
as a result of loading the first descriptor from memory.
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After the above steps, the Current registers are loaded automatically from
the appropriate descriptor elements, overwriting their previous contents,
as follows.

START_ADDR is copied to CURR_ADDR
X_COUNT is copied to CURR_X_COUNT

Y_COUNT is Copied to CURR_Y_COUNT

Then DMA data transfer operation begins, as shown in Figure 9-15.

DMA Refresh

On completion of a work unit, the DMA controller:

Completes the transfer of all data between memory and the DMA
unit.

If enabled by DI_EN, signals an interrupt to the core and sets the
DMA_DONE bit in the channel’s IRQ_STATUS register.

If FLoW = 0 (Stop) only:
Stops operation by clearing the DMA_RUN bit in IRQ_STATUS after any

data in the channel’s DMA FIFO has been transferred to the
peripheral.

During the fetch in FLOW modes 4, 6, and 7, the DMA controller
sets the DFETCH bit in IRQ_STATUS to 1. At this point, the DMA
operation depends on whether FLOW = 4, 6, or 7, as follows:

If FLow = 4 (Descriptor Array):

Loads a new descriptor from memory into DMA registers via the
contents of CURR_DESC_PTR, while incrementing CURR_DESC_PTR.
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The descriptor size comes from the NDSIZE field of the DMA_CONFIG
value prior to the beginning of the fetch.

If FLow = 6 (Descriptor List Small):

Copies the 32-bit NEXT_DESC_PTR into CURR_DESC_PTR. Next,
fetches a descriptor from memory into DMA registers via the new
contents of CURR_DESC_PTR, while incrementing CURR_DESC_PTR.
The first descriptor element loaded is a new 16-bit value for the
lower 16 bits of NEXT_DESC_PTR, followed by the rest of the descrip-
tor elements. The high 16 bits of NEXT_DESC_PTR will retain their
former value. This supports a shorter, more efficient descriptor
than the Descriptor List Large model, suitable whenever the appli-
cation can place the channel’s descriptors in the same 64K byte
range of memory.

If FLow = 7 (Descriptor List Large):

Copies the 32-bit NEXT_DESC_PTR into CURR_DESC_PTR. Next,
fetches a descriptor from memory into DMA registers via the new
contents of CURR_DESC_PTR, while incrementing CURR_DESC_PTR.
The first descriptor element loaded is a new 32-bit value for the
full NEXT_DESC_PTR, followed by the rest of the descriptor elements.
The high 16 bits of NEXT_DESC_PTR may differ from their former
value. This supports a fully flexible descriptor list which can be
located anywhere in internal memory or external memory.

Note if it is necessary to link from a descriptor chain whose
descriptors are in one 64K byte area to another chain whose
descriptors are outside that area, only one descriptor needs to use
FLOW = 7—just the descriptor which contains the link leaving the
64K byte range. All the other descriptors located together in the
same 64K byte areas may use FLOW = 6.

9-42
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e IfFLOW =1, 4, 6, or 7 (Autobuffer, Descriptor Array, Descriptor
List Small, or Descriptor List Large, respectively):

(Re)loads the Current registers:
CURR_ADDR loaded from START_ADDR
CURR_X_COUNT loaded from X_COUNT
CURR_Y_COUNT loaded from Y_COUNT

The DFETCH bit in IRQ_STATUS is then cleared, after which the DMA
transfer begins again, as shown in Figure 9-15.

To Stop DMA Transfers

In FLOW = 0 mode, DMA stops automatically after the work unit is
complete.

If a list or array of descriptors is used to control DMA, and if every
descriptor contains a DMACFG element, then the final DMACFG element
should have a FLOW = 0 setting to gracefully stop the channel.

In Autobuffer (FLOW = 1) mode, or if a list or array of descriptors without
DMACFG elements is used, then the DMA transfer process must be termi-
nated by an MMR write to the DMAX_CONFIG register with a value whose
DMAEN bit is 0. A write of O to the entire register will always terminate

DMA gracefully (without DMA Abort).

Before enabling the channel again, make sure that any slow memory read
operations that may have started are completed (for example, reads from
slow external memory). Do not enable the channel again until any such
reads are complete.
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To Trigger DMA Transfers

If a DMA has been stopped in FLOW = 0 mode, the DMA_RUN bit in the
DMA Interrupt Status register remains set until the content of the internal
DMA FIFOs has been completely processed. Once the DMA_RUN bit clears,
it is safe to restart the DMA by simply writing again to the DMA Config-
uration register. The DMA sequence is repeated with the previous
settings.

Similarly, a descriptor-based DMA sequence that has been stopped tem-
porarily with a FLOW = 0 descriptor can be continued with a new write to
the Configuration register. When the DMA controller detects the FLOW = 0
condition by loading the DMACFG field from memory, it has already
updated the Next Descriptor pointer, regardless of whether operating in
Descriptor Array mode or Descriptor List mode.

The Next Descriptor pointer remains valid, if the DMA halts and is
restarted. As soon as the DMA_RUN bit clears, software can restart the DMA
and force the DMA controller to fetch the next descriptor. To accomplish
this, the software writes a value with the DMAEN bit set and with proper val-
ues in the FLOW and NDSIZE fields into the Configuration register. The next
descriptor is fetched if FLOW equals 0x4, 0x6, or 0x7. In this mode of opera-
tion, the NDSIZE field should at least span up to the DMACFG field to
overwrite the Configuration register immediately.

If all DMACFG fields in a descriptor chain have the FLOW and NDSIZE fields set
to zero, the individual DMA sequences do not start until triggered by soft-
ware. This is useful when the DMAs need to be synchronized with other
events in the system, and it is typically performed by interrupt service rou-
tines. A single MMR write is required to trigger the next DMA sequence.
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Especially when applied to MemDMA channels, such scenarios play an
important role. Usually, the timing of MemDMAs cannot be controlled.
By halting descriptor chains or rings this way, the whole DMA transaction
can be broken into pieces that are individually triggered by software.

Source and destination channels of a MemDMA may differ in
descriptor structure. However, the total work count must match
when the DMA stops. Whenever a MemDMA is stopped, destina-
tion and source channels should both provide the same FLOW = 0
mode after exactly the same number of words. Accordingly, both
channels need to be started afterward.

Two-Dimensional DMA

Two-dimensional (2D) DMA supports arbitrary row and column sizes up
to 64 K x 64 K elements, as well as arbitrary X_MODIFY and Y_MODIFY val-
ues up to +32 K bytes. Furthermore, Y_MODIFY can be negative, allowing
implementation of interleaved datastreams. The X_COUNT and Y_COUNT val-
ues specify the row and column sizes, where X_COUNT must be 2 or greater.

The start address and modify values are in bytes, and they must be aligned
to a multiple of the DMA transfer word size (WDSIZE[1:0] in DMA_CONFIG).
Misalignment causes a DMA error.

The X_MODIFY value is the byte-address increment that is applied after each
transfer that decrements the CURR_X_COUNT register. The X_MODIFY value is
not applied when the inner loop count is ended by decrementing
CURR_X_COUNT from 1 to 0, except that it is applied on the final transfer
when CURR_Y_COUNT is 1 and CURR_X_COUNT decrements from 1 to 0.

The Y_MODIFY value is the byte-address increment that is applied after each
decrement of CURR_Y_COUNT. However, the Y_MODIFY value is not applied
to the last item in the array on which the outer loop count (CURR_Y_COUNT)
also expires by decrementing from 1 to 0.
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After the last transfer completes, CURR_Y_COUNT = 1, CURR_X_COUNT = 0,
and CURR_ADDR is equal to the last item’s address plus X_MODIFY. Note if
the DMA channel is programmed to refresh automatically (Autobuffer
mode), then these registers will be loaded from X_COUNT, Y_COUNT, and
START_ADDR upon the first data transfer.

Examples

Example 1: Retrieve a 16 x 8 block of bytes from a video frame buffer of
size (N x M) pixels:

X_MODIFY =1

X_COUNT = 16

Y_MODIFY = N-15 (offset from the end of one row to the start of
another)

Y_COUNT = 8

This produces the following address offsets from the start address:

0,1,2,...15,

NN+ 1, o000 N+ 15,
2N, 2N+ 1,... 2N + 15,
IN, 7N+ 1,... 7N + 15,

Example 2: Receive a video datastream of bytes,
(R,G,B pixels) x (N x M image size):

X_MODIFY = (N * M)

X_COUNT = 3

Y_MODIFY =1 - 2(N * M) (negative)
Y_COUNT = (N * M)
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This produces the following address offsets from the start address:

0, (N* M), 2(N * M),
I, (N*M) + 1, 2(N*M) +1,
2, (N* M)+ 2, 2(N * M) + 2,

(N*M) -1, 2(N*M) -1, 3(N*M -1,

More 2D DMA Examples

Examples of DMA styles supported by flex descriptors include:
* Asingle linear buffer that stops on completion (FLOW = Stop mode)
* A linear buffer with stride greater than 1 (X_MODIFY > 1)
* A circular, auto-refreshing buffer that interrupts on each full buffer

* A similar buffer that interrupts on fractional buffers (for example,

1/2, 1/4) 2D DMA)

e 1D DMA, using a set of identical ping-pong buffers defined by a
linked ring of 3-word descriptors, each containing { link pointer,

32-bit address }

e 1D DMA, using a linked list of 5-word descriptors containing
{ link pointer, 32-bit address, length, config } (ADSP-2191 style)

e 2D DMA, using an array of 1-word descriptors, specifying only the
base DMA address within a common data page

e 2D DMA, using a linked list of 9-word descriptors, specifying
everything
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Memory DMA

This section describes the Memory DMA (MDMA) controller, which pro-
vides memory-to-memory DMA transfers among the various memory
spaces. These include L1 memory and external synchronous/ asynchro-
nous memories.

Each MDMA controller contains a DMA FIFO, an 8-word by 16-bit
FIFO block used to transfer data to and from either L1 or the External
Access Bus (EAB). Typically, it is used to transfer data between external

memory and internal memory. It will also support DMA from Boot ROM
on the EAB bus. The FIFO can be used to hold DMA data transferred

between two L1 memory locations or between two external memory
locations.

The processor provides four MDMA channels:
* Two source channels (for reading from memory)
* Two destination channels (for writing to memory)

Each source/destination channel forms a “stream,” and these two streams
are hardwired for DMA priorities 8 through 11.

* Priority 8: Memory DMA Destination Stream DO
* Priority 9: Memory DMA Source Stream DO

e Priority 10: Memory DMA Destination Stream D1
e Priority 11: Memory DMA Source Stream D1

Memory DMA Stream 0 takes precedence over Memory DMA Stream 1,
unless round robin scheduling is used. Note it is illegal to program a
source stream for memory write or a destination stream for memory read.
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The channels support 8-, 16-, and 32-bit Memory DMA transfers, but
both ends of the MDMA transfer must be programmed to the same word
size. In other words, the MDMA transfer does not perform packing or
unpacking of data; each read results in one write. Both ends of the
MDMA FIFO for a given stream are granted priority at the same time.
Each pair shares an 8-word-deep 16-bit FIFO. The source DMA engine
fills the FIFO, while the destination DMA engine empties it. The FIFO
depth allows the burst transfers of the External Access Bus (EAB) and
DMA Access Bus (DAB) to overlap, significantly improving throughput
on block transfers between internal and external memory. Two separate
descriptor blocks are required to supply the operating parameters for each
MDMA pair, one for the source channel and one for the destination
channel.

Because the source and destination DMA engines share a single FIFO buf-
fer, the descriptor blocks must be configured to have the same data size. It
is possible to have a different mix of descriptors on both ends as long as
the total count is the same.

To start an MDMA transfer operation, the MMRs for the source and des-
tination streams are written, each in a manner similar to peripheral DMA.

Note the DMA_CONFIG register for the source stream must be written
before the DMA_CONFIG register for the destination stream.

When the destination DMA_CONFIG register is written, MDMA operation
starts, after a latency of 3 SCLK cycles.

First, if either MDMA stream has been selected to use descriptors, the
descriptors are fetched from memory. The destination stream descriptors
are fetched first. Then, after a latency of 4 SCLK cycles after the last
descriptor word is returned from memory (or typically 8 SCLK cycles after
the fetch of the last descriptor word, due to memory pipelining), the
source MDMA stream begins fetching data from the source buffer. The
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resulting data is deposited in the MDMA stream’s 8-location FIFO, and
then after a latency of 2 SCLK cycles, the destination MDMA stream begins
writing data to the destination memory buffer.

MDMA Bandwidth

If source and destination are in different memory spaces (one internal and
one external), the internal and external memory transfers are typically
simultaneous and continuous, maintaining 100% bus utilization of the
internal and external memory interfaces. This performance is affected by
core-to-system clock frequency ratios. At ratios below about 2.5:1, syn-
chronization and pipeline latencies result in lower bus utilization in the
system clock domain. At a clock ratio of 2:1, for example, DMA typically
runs at 2/3 of the system clock rate. At higher clock ratios, full bandwidth
is maintained.

If source and destination are in the same memory space (both internal or
both external), the MDMA stream typically prefetches a burst of source
data into the FIFO, and then automatically turns around and delivers all
available data from the FIFO to the destination buffer. The burst length is
dependent on traffic, and is equal to 3 plus the memory latency at the
DMA in SCLKs (which is typically 7 for internal transfers and 6 for exter-
nal transfers).

DMA Performance Optimization

The DMA system is designed to provide maximum throughput per chan-
nel and maximum utilization of the internal buses, while accommodating
the inherent latencies of memory accesses.

A key feature of the DMA architecture is the separation of the activity on
the peripheral DMA bus (the DMA Access Bus (DAB)) from the activity
on the buses between the DMA and memory (the DMA Core Bus (DCB)
and the DMA External Bus (DEB)). Each peripheral DMA channel has its
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own data FIFO which lies between the DAB bus and the memory buses.

These FIFOs automatically prefetch data from memory for transmission

and buffer received data for later memory writes. This allows the periph-
eral to be granted a DMA transfer with very low latency compared to the
total latency of a pipelined memory access, permitting the repeat rate

(bandwidth) of each DMA channel to be as fast as possible.

Peripheral DMA channels have a maximum transfer rate of one 16-bit
word per two system clocks, per channel, in either direction.

MDMA channels have a maximum transfer rate of one 16-bit word per
one system clock (SCLK), per channel.

When all DMA channels’ traffic is taken in the aggregate:

* Transfers between the peripherals and the DMA unit have a maxi-
mum rate of one 16-bit transfer per system clock.

* Transfers between the DMA unit and internal memory (L1) have a
maximum rate of one 16-bit transfer per system clock.

* Transfers between the DMA unit and external memory have a
maximum rate of one 16-bit transfer per system clock.

Some considerations which limit the actual performance include:

* Accesses to internal or external memory which conflict with core
accesses to the same memory. This can cause delays, for example,
for accessing the same L1 bank, for opening/closing SDRAM
pages, or while filling cache lines.

* Each direction change from RX to TX on the DAB bus imposes a
one SCLK cycle delay.

* Direction changes on the DCB bus (for example, write followed by
read) to the same bank of internal memory can impose delays.
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* Direction changes (for example, read followed by write) on the
DEB bus to external memory can each impose a several-cycle delay.

* MMR accesses to DMA registers other than DMAX_CONFIG,
DMAX_IRQSTAT, or DMAx_PERIPHERAL_MAP will stall all DMA activity
for one cycle per 16-bit word transferred. In contrast, MMR
accesses to the Control/Status registers do not cause stalls or wait
states.

* Reads from DMA registers other than Control/Status registers use
one PAB bus wait state, delaying the core for several core clocks.

* Descriptor fetches consume one DMA memory cycle per 16-bit
word read from memory, but do not delay transfers on the DAB
bus.

* Initialization of a DMA channel stalls DMA activity for one cycle.
This occurs when DMAEN changes from 0 to 1 or when the RESTART
bit is set to 1 in the DMAx_CONFIG register.

Several of these factors may be minimized by proper design of the applica-
tion software. It is often possible to structure the software to avoid
internal and external memory conflicts by careful allocation of data buffers
within banks and pages, and by planning for low cache activity during
critical DMA operations. Furthermore, unnecessary MMR accesses can be
minimized, especially by using descriptors or autobuffering.

Efficiency loss caused by excessive direction changes (thrashing) can be
minimized by the processor’s traffic control features, described in the next
section.

Prioritization and Traffic Control

DMA channels are ordinarily granted service strictly according to their
priority. The priority of a channel is simply its channel number, where
lower priority numbers are granted first. Thus, peripherals with high data
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rates or low latency requirements should be assigned to lower numbered
(higher priority) channels using the DMAx_PERIPHERAL_MAP registers. The
Memory DMA streams are always lower priority than the peripherals, but
as they request service continuously, they ensure that any time slots
unused by peripheral DMA are applied to MDMA transfers. By default,
when more than one MDMA stream is enabled and ready, only the high-
est priority MDMA stream is granted. If it is desirable for the MDMA
streams to share the available bandwidth, however, the
MDMA_ROUND_ROBIN_PERIOD may be programmed to select each stream in
turn for a fixed number of transfers.

In the processor DMA, there are two completely separate but simultane-
ous prioritization processes—the DAB bus prioritization and the memory
bus (DCB and DEB) prioritization. Peripherals that are requesting DMA
via the DAB bus, and whose data FIFOs are ready to handle the transfer,
compete with each other for DAB bus cycles. Similarly but separately,
channels whose FIFOs need memory service (prefetch or post-write) com-
pete together for access to the memory buses. MDMA streams compete
for memory access as a unit, and source and destination may be granted
together if their memory transfers do not conflict. In this way, inter-
nal-to-external or external-to-internal memory transfers may occur at the
full system clock rate (SCLK). Examples of memory conflict include simul-
taneous access to the same memory space and simultaneous attempts to
fetch descriptors. Special processing may occur if a peripheral is requesting
DMA but its FIFO is not ready (for example, an empty transmit FIFO or
full receive FIFO). For more information, see “Urgent DMA Transfers”

on page 9-59.

Traffic control is an important consideration in optimizing use of DMA
resources. Traffic control is a way to influence how often the transfer
direction on the data buses may change, by automatically grouping same
direction transfers together. The DMA block provides a traffic control
mechanism controlled by the DMA_TC_PER and DMA_TC_CNT registers. This
mechanism performs the optimization without real-time processor inter-
vention, and without the need to program transfer bursts into the DMA

ADSP-BF533 Blackfin Processor Hardware Reference 9-53



DMA Performance Optimization

work unit streams. Traffic can be independently controlled for each of the
three buses (DAB, DCB, and DEB) with simple counters. In addition,
alternation of transfers among MDMA streams can be controlled with the
MDMA_ROUND_ROBIN_COUNT field of the DMA_TC_CNT register. See “MDMA
Priority and Scheduling” on page 9-57.

Using the traffic control features, the DMA system preferentially grants
data transfers on the DAB or memory buses which are going in the same
read/write direction as the previous transfer, until either the traffic control
counter times out, or until traffic stops or changes direction on its own.
When the traffic counter reaches zero, the preference is changed to the
opposite flow direction. These directional preferences work as if the prior-
ity of the opposite direction channels were decreased by 16.

For example, if channels 3 and 5 were requesting DAB access, but lower
priority channel 5 is going “with traffic” and higher priority channel 3 is
going “against traffic,” then channel 3’s effective priority becomes 19, and
channel 5 would be granted instead. If, on the next cycle, only channels 3
and 6 were requesting DAB transfers, and these transfer requests were
both “against traffic,” then their effective priorities would become 19 and
22, respectively. One of the channels (channel 3) is granted, even though
its direction is opposite to the current flow. No bus cycles are wasted,
other than any necessary delay required by the bus turnaround.

This type of traffic control represents a trade-off of latency to improve uti-
lization (efficiency). Higher traffic timeouts might increase the length of
time each request waits for its grant, but it often dramatically improves the
maximum attainable bandwidth in congested systems, often to above

90%.

To disable preferential DMA prioritization, program the DMA_TC_PER reg-
ister to 0x0000.
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DMA_TC_PER and DMA_TC_CNT Registers

The DMA Traffic Control Counter Period register (OMA_TC_PER) and the
DMA Traftic Control Counter register (DMA_TC_CNT) work with other
DMA registers to define traffic control.

The MDMA_ROUND_ROBIN_COUNT field shows the current transfer count
remaining in the MDMA round robin period. It initializes to
MDMA_ROUND_ROBIN_PERIOD whenever DMA_TC_PER is written, whenever a
different MDMA stream is granted, or whenever every MDMA stream is
idle. It then counts down to 0 with each MDMA transfer. When this
count decrements from 1 to 0, the next available MDMA stream is
selected.

The DAB_TRAFFIC_COUNT field shows the current cycle count remaining in
the DAB traffic period. It initializes to DAB_TRAFFIC_PERIOD whenever
DMA_TC_PER is written, or whenever the DAB bus changes direction or
becomes idle. It then counts down from DAB_TRAFFIC_PERIOD to 0 on each
system clock (except for DMA stalls). While this count is nonzero, same
direction DAB accesses are treated preferentially. When this count decre-
ments from 1 to 0, the opposite direction DAB access is treated
preferentially, which may result in a direction change. When this count is
0 and a DAB bus access occurs, the count is reloaded from
DAB_TRAFFIC_PERIOD to begin a new burst.

The DEB_TRAFFIC_COUNT field shows the current cycle count remaining in
the DEB traffic period. It initializes to DEB_TRAFFIC_PERIOD whenever
DMA_TC_PER is written, or whenever the DEB bus changes direction or
becomes idle. It then counts down from DEB_TRAFFIC_PERIOD to 0 on each
system clock (except for DMA stalls). While this count is nonzero, same
direction DEB accesses are treated preferentially. When this count decre-
ments from 1 to 0, the opposite direction DEB access is treated
preferentially, which may result in a direction change. When this count is
0 and a DEB bus access occurs, the count is reloaded from
DEB_TRAFFIC_PERIOD to begin a new burst.
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The DCB_TRAFFIC_COUNT field shows the current cycle count remaining in
the DCB traffic period. It initializes to DCB_TRAFFIC_PERIOD whenever
DMA_TC_PER is written, or whenever the DCB bus changes direction or
becomes idle. It then counts down from DCB_TRAFFIC_PERIOD to 0 on each
system clock (except for DMA stalls). While this count is nonzero, same
direction DCB accesses are treated preferentially. When this count decre-
ments from 1 to 0, the opposite direction DCB access is treated
preferentially, which may result in a direction change. When this count is
0 and a DCB bus access occurs, the count is reloaded from
DCB_TRAFFIC_PERIOD to begin a new burst.

DMA Traffic Control Counter Period Register (DMA_TC_PER)

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
lTolofofe[oJo[o[eloJo [oJo oo o | Reset = 0x0000

MDMA_ROUND_ROBIN_ I— DCB_TRAFFIC_PERIODI[3:0]
PERIODI[4:0] 000 - No DCB bus transfer
Maximum length of MDMA round grouping performed

robin bursts. If not zero, any MDMA Other - Preferred length of uni-
stream which receives a grant is directional bursts on the DCB
allowed up to that number of DMA bus between the DMA and
transfers, to the exclusion of the other internal L1 memory

MDMA streams. c o
DAB_TRAFFIC_PERIOD[2:0] DEB_TRAFFIC_PERIODI3:0]

000 - No DEB bus transfer

000 - No DAB bus transfer grouping performed grouping performed

Other - Preferred length of unidirectional bursts Other - Preferred length of uni-
on the DAB bus between the DMA and the directional bursts on the DEB
peripherals bus between the DMA and

external memory

Figure 9-16. DMA Traffic Control Counter Period Register
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DMA Traffic Control Counter Register (DMA_TC_CNT)

RO
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Reset = 0x0000
|o|o|o|o|o|o|o|o o|o |o|0|o|o|o|o|
MDMA_ROUND_ROBIN_ I_ DCB_TRAFFIC_COUNT[3:0]
COUNT[4:0] Current cycle count remaining
Current transfer count remaining in in the DCB traffic period
the MDMA round robin period DEB_TRAFFIC_COUNTI[3:0]
DAB_TRAFFIC_COUNT[2:0] ° o :

Current cycle count remaining
Current cycle count remaining in the in the DEB traffic period
DAB traffic period

Figure 9-17. DMA Traffic Control Counter Register

MDMA Priority and Scheduling

All MDMA operations have lower precedence than any peripheral DMA
operations. MDMA thus makes effective use of any memory bandwidth
unused by peripheral DMA traffic.

If two MDMA streams are used (S0-D0 and S1-D1), the user may choose
to allocate bandwidth either by fixed stream priority or by a round robin
scheme. This is selected by programming the MDMA_ROUND_ROBIN_PERIOD
field in the DMA_TC_PER register (see “Prioritization and Traffic Control”
on page 9-52).

If this field is set to 0, then MDMA is scheduled by fixed priority.
MDMA Stream 0 takes precedence over MDMA Stream 1 whenever
Stream 0 is ready to perform transfers. Since an MDMA Stream is typi-
cally capable of transferring data on every available cycle, this could cause
MDMA Stream 1 traffic to be delayed for an indefinite time until any and
all MDMA Stream 0 operations are complete. This scheme could be
appropriate in systems where low duration but latency sensitive data buf-
fers need to be moved immediately, interrupting long duration, low
priority background transfers.
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If the MDMA_ROUND_ROBIN_PERIOD field is set to some nonzero value in the
range 1 <= P <= 31, then a round robin scheduling method is used. The
two MDMA streams are granted bus access in alternation in bursts of up
to P data transfers. This could be used in systems where two transfer pro-
cesses need to coexist, each with a guaranteed fraction of the available
bandwidth. For example, one stream might be programmed for inter-
nal-to-external moves while the other is programmed for
external-to-internal moves, and each would be allocated approximately

equal data bandwidth.

In round robin operation, the MDMA stream selection at any time is
either “free” or “locked.” Initially, the selection is free. On any free cycle
available to MDMA (when no peripheral DMA accesses take precedence),
if either or both MDMA streams request access, the higher precedence
stream will be granted (Stream 0 in case of conflict), and that stream’s
selection is then “locked.” The MDMA_ROUND_ROBIN_COUNT counter field in
the DMA_TC_CNT register is loaded with the period P from
MDMA_ROUND_ROBIN_PERIOD, and MDMA transfers begin. The counter is
decremented on every data transfer (as each data word is written to mem-
ory). After the transfer corresponding to a count of 1, the MDMA stream
selection is passed automatically to the other stream with zero overhead,
and the MDMA_ROUND_ROBIN_COUNT counter is reloaded with the period
value P from MDMA_ROUND_ROBIN_PERIOD. In this cycle, if the other MDMA
stream is ready to perform a transfer, the stream selection is locked on the
new MDMA stream. If the other MDMA stream is not ready to perform a
transfer, then no transfer is performed, and on the next cycle the stream
selection unlocks and becomes free again.

If round robin operation is used when only one MDMA stream is active,
one idle cycle will occur for each P MDMA data cycles, slightly lowering
bandwidth by a factor of 1/(P+1). If both MDMA streams are used, how-
ever, memory DMA can operate continuously with zero additional
overhead for alternation of streams (other than overhead cycles normally
associated with reversal of read/write direction to memory, for example).
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By selection of various round robin period values P which limit how often
the MDMA streams alternate, maximal transfer efficiency can be
maintained.

Urgent DMA Transfers

Typically, DMA transfers for a given peripheral occur at regular intervals.
Generally, the shorter the interval, the higher the priority that should be

assigned to the peripheral. If the average bandwidth of all the peripherals
is not too large a fraction of the total, then all peripherals’ requests should
be granted as required.

Occasionally, instantaneous DMA traffic might exceed the available band-
width, causing congestion. This may occur if L1 or external memory is
temporarily stalled, perhaps for an SDRAM page swap or a cache line fill.
Congestion might also occur if one or more DMA channels initiates a
flurry of requests, perhaps for descriptor fetches or to fill a FIFO in the
DMA or in the peripheral.

If congestion persists, lower priority DMA peripherals may become
starved for data. Even though the peripheral’s priority is low, if the neces-
sary data transfer does not take place before the end of the peripheral’s
regular interval, system failure may result. To minimize this possibility,
the DMA unit detects peripherals whose need for data has become urgent,
and preferentially grants them service at the highest priority.

A DMA channel’s request for memory service is defined as “urgent” if

both:

* The channel’s FIFO is not ready for a DAB bus transfer (that is, a
transmit FIFO is empty or a receive FIFO is full), and

e The peripheral is asserting its DMA request line.
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Descriptor fetches may be urgent, if they are necessary to initiate or con-
tinue a DMA work unit chain for a starving peripheral. DMA requests
from an MDMA channel are never urgent.

When one or more DMA channels express an urgent memory request, two
events occur:

e All non-urgent memory requests are decreased in priority by 32,
guaranteeing that only an urgent request will be granted. The
urgent requests compete with each other, if there is more than one,
and directional preference among urgent requests is observed.

e The resulting memory transfer is marked for expedited processing
in the targeted memory system (L1 or external), and so are all prior
incomplete memory transfers ahead of it in that memory system.
This may cause a series of external memory core accesses to be
delayed for a few cycles so that a peripheral’s urgent request may be
accommodated.

The preferential handling of urgent DMA transfers is completely auto-
matic. No user controls are required for this function to operate.

Software Management of DMA

Several synchronization and control methods are available for use in devel-
opment of software tasks which manage DMA and MDMA (see also
“Memory DMA” on page 9-48). Such software needs to be able to accept
requests for new DMA transfers from other software tasks, integrate these
transfers into existing transfer queues, and reliably notify other tasks when
the transfers are complete.

In the processor, it is possible for each DMA peripheral and MDMA
stream to be managed by a separate task or to be managed together with
any other stream. Each DMA channel has independent, orthogonal con-
trol registers, resources, and interrupts, so that the selection of the control
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scheme for one channel does not affect the choice of control scheme on
other channels. For example, one peripheral can use a linked-descrip-
tor-list, interrupt-driven scheme while another peripheral can
simultaneously use a demand-driven, buffer-at-a-time scheme synchro-
nized by polling of the IRQ_STATUS register.

Synchronization of Software and DMA

A critical element of software DMA management is synchronization of
DMA buffer completion with the software. This can best be done using
interrupts, polling of IRQ_STATUS, or a combination of both. Polling for
address or count can only provide synchronization within loose tolerances
comparable to pipeline lengths.

Interrupt-based synchronization methods must avoid interrupt overrun,
or the failure to invoke a DMA channel’s interrupt handler for every inter-
rupt event due to excessive latency in processing of interrupts. Generally,
the system design must either ensure that only one interrupt per channel is
scheduled (for example, at the end of a descriptor list), or that interrupts
are spaced sufficiently far apart in time that system processing budgets can
guarantee every interrupt is serviced. Note since every interrupt channel
has its own distinct interrupt, interaction among the interrupts of differ-
ent peripherals is much simpler to manage.

Polling of the CURR_ADDR, CURR_DESC_PTR, or CURR_X/Y_COUNT registers is
not recommended as a method of precisely synchronizing DMA with data
processing, due to DMA FIFOs and DMA/memory pipelining. The Cur-
rent Address, Pointer, and Count registers change several cycles in advance
of the completion of the corresponding memory operation, as measured
by the time at which the results of the operation would first be visible to
the core by memory read or write instructions. For example, in a DMA
memory write operation to external memory, assume a DMA write by
channel A is initiated that causes the SDRAM to perform a page open
operation which will take many system clock cycles. The DMA engine
may then move on to another DMA operation by channel B which does
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not in itself incur latency, but will be stalled behind the slow operation by
channel A. Software monitoring channel B could not safely conclude
whether the memory location pointed to by channel B’s CURR_ADDR has or
has not been written, based on examination of the CURR_ADDR register
contents.

Polling of the Current Address, Pointer, and Count registers can permit
loose synchronization of DMA with software, however, if allowances are
made for the lengths of the DMA/memory pipeline. The length of the
DMA FIFO for a peripheral DMA channel is four locations (either four 8-
or 16-bit data elements, or two 32-bit data elements) and for an MDMA
FIFO is eight locations (four 32-bit data elements). The DMA will not
advance Current Address/Pointer/Count registers if these FIFOs are filled
with incomplete work (including reads that have been started but not yet

finished).

Additionally, the length of the combined DMA and L1 pipelines to inter-
nal memory is approximately six 8- or 16-bit data elements. The length of
the DMA and External Bus Interface Unit (EBIU) pipelines is approxi-
mately three data elements, when measured from the point where a DMA
register update is visible to an MMR read to the point where DMA and
core accesses to memory become strictly ordered. If the DMA FIFO
length and the DMA/memory pipeline length are added, an estimate can
be made of the maximum number of incomplete memory operations in
progress at one time. (Note this is a maximum, as the DMA/memory
pipeline may include traffic from other DMA channels.)

For example, assume a peripheral DMA channel is transferring a work
unit of 100 data elements into internal memory and its CURR_X_COUNT reg-
ister reads a value of 60 remaining elements, so that processing of the first
40 elements has at least been started. The total pipeline length is no
greater than the sum of 4 (for the PDMA FIFO) plus 6 (for the
DMA/memory pipeline), or 10 data elements, so it is safe to conclude that
the DMA transfer of the first 40-10 = 30 data elements is complete.
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For precise synchronization, software should either wait for an interrupt
or consult the channel’s TRQ_STATUS register to confirm completion of
DMA, rather than polling Current Address/Pointer/Count registers.
When the DMA system issues an interrupt or changes an IRQ_STATUS bit,
it guarantees that the last memory operation of the work unit has been
completed and will definitely be visible to DSP code. For memory read
DMA, the final memory read data will have been safely received in the
DMA’s FIFO; for memory write DMA, the DMA unit will have received
an acknowledge from L1 memory or the EBIU that the data has been
written.

The following examples show methods of synchronizing software with

several different styles of DMA.

Single-Buffer DMA Transfers

Synchronization is simple if a peripheral’s DMA activity consists of iso-
lated transfers of single buffers. DMA activity is initiated by software
writes to the channel’s Control registers. The user may choose to use a
single descriptor in memory, in which case the software only needs to
write the DMA_CONFIG and the NEXT_DESC_PTR registers. Alternatively, the
user may choose to write all the MMR registers directly from software,
ending with the write to the DMA_CONFIG register.

The simplest way to signal completion of DMA is by an interrupt. This is
selected by the DI_EN bit in the DMA_CONFIG register, and by the necessary
setup of the System Interrupt Controller. If it is desirable not to use an
interrupt, the software can poll for completion by reading the IRQ_STATUS
register and testing the DMA_RUN bit. If this bit is zero, the buffer transfer
has completed.
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Continuvous Transfers Using Autobuffering

If a peripheral’s DMA data consists of a steady, periodic stream of signal
data, DMA autobuffering (FLOW = 1) may be an effective option. Here,
DMA is transferred from or to a memory buffer with a circular addressing
scheme, using either one- or two-dimensional indexing with zero proces-
sor and DMA overhead for looping. Synchronization options include:

1D, interrupt-driven—software is interrupted at the conclusion of
each buffer. The critical design consideration is that the software
must deal with the first items in the buffer before the next DMA
transfer, which might overwrite or re-read the first buffer location
before it is processed by software. This scheme may be workable if
the system design guarantees that the data repeat period is longer
than the interrupt latency under all circumstances.

2D, interrupt-driven (double buffering)—the DMA bulffer is parti-
tioned into two or more sub-buffers, and interrupts are selected
(set DI_SEL = 1 in DMA_CONFIG) to be signaled at the completion of
each DMA inner loop. In this way, a traditional double buffer or
“ping-pong” scheme could be implemented.

For example, two 512-word sub-buffers inside a 1K word buffer
could be used to receive 16-bit peripheral data with these settings:

START_ADDR = buffer base address
1DMA_CONFIG = 0x10D7 (FLOW 1, DI_EN
DMA2D = 1, WDSIZE = 01, WNR 1, DMAEN
X_COUNT = 512

X_MODIFY = 2 for 16-bit data

Y_COUNT = 2 for two sub-buffers
Y_MODIFY = 2, same as X_MODIFY for contiguous sub-buffers

1, DI_SEL = 1,

1)

2D, polled—if interrupt overhead is unacceptable but the loose
synchronization of address/count register polling is acceptable, a
2D multibuffer synchronization scheme may be used. For example,
assume receive data needs to be processed in packets of sixteen
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32-bit elements. A four-part 2D DMA buffer can be allocated
where each of the four sub-buffers can hold one packet with these

settings:
START_ADDR = buffer base address
DMA_CONFIG = OxlolB(FLOW = 1, DI_EN = 0, DMA2D = 1,

WDSIZE = 10, WNR = 1, DMAEN = 1)

X_COUNT = 16

X_MODIFY = 4 for 32-bit data

Y_COUNT = 4 for four sub-buffers

Y_MODIFY = 4, same as X_MODIFY for contiguous sub-buffers

The synchronization core might read Y_COUNT to determine which
sub-buffer is currently being transferred, and then allow one full
sub-buffer to account for pipelining. For example, if a read of
Y_COUNT shows a value of 3, then the software should assume that
sub-buffer 3 is being transferred, but some portion of sub-buffer 2
may not yet be received. The software could, however, safely pro-
ceed with processing sub-buffers 1 or 0.

* 1D unsynchronized FIFO—if a system’s design guarantees that
the processing of a peripheral’s data and the DMA rate of the data
will remain correlated in the steady state, but that short-term
latency variations must be tolerated, it may be appropriate to build
a simple FIFO. Here, the DMA channel may be programmed using
1D Autobuffer mode addressing without any interrupts or polling.
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Descriptor Structures

DMA descriptors may be used to transfer data to or from memory data
structures that are not simple 1D or 2D arrays. For example, if a packet

of data is to be transmitted from several different locations in memory

(a header from one location, a payload from a list of several blocks of
memory managed by a memory pool allocator, and a small trailer contain-
ing a checksum), a separate DMA descriptor can be prepared for each
memory area, and the descriptors can be grouped in either an array or list
as desired by selecting the appropriate FLOW setting in DMA_CONFIG.

The software can synchronize with the progress of the structure’s transfer
by selecting interrupt notification for one or more of the descriptors. For
example, the software might select interrupt notification for the header’s
descriptor and for the trailer’s descriptor, but not for the payload blocks’
descriptors.

It is important to remember the meaning of the various fields in the
DMA_CONFIG descriptor elements when building a list or array of DMA
descriptors. In particular:

* The lower byte of DMA_CONFIG specifies the DMA transfer to be per-
formed by the current descriptor (for example, interrupt-enable,
2D mode)

* The upper byte of DMA_CONFIG specifies the format of the next
descriptor in the chain. The NDSIZE and FLOW fields in a given
descriptor do not correspond to the format of the descriptor itself;
they specify the link to the next descriptor, if any.

On the other hand, when the DMA unit is being restarted, both bytes of
the DMA_CONFIG value written to the DMA channel’s DMA_CONFIG register
should correspond to the current descriptor. At a minimum, the FLOW,
NDSIZE, WNR, and DMAEN fields must all agree with the current descriptor;
the WDSIZE, DI_EN, DI_SEL, RESTART, and DMA2D fields will be taken from
the DMA_CONFIG value in the descriptor read from memory (and the field
values initially written to the register are ignored).
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Descriptor Queue Management

A system designer might want to write a DMA Manager facility which
accepts DMA requests from other software. The DMA Manager software
does not know in advance when new work requests will be received or
what these requests might contain. The software could manage these
transfers using a circular linked list of DMA descriptors, where each
descriptor’s NDPH and NDPL members point to the next descriptor, and the
last descriptor points to the first.

The code that writes into this descriptor list could use the processor’s cir-
cular addressing modes (I, L, M, and B registers), so that it does not need to
use comparison and conditional instructions to manage the circular struc-
ture. In this case, the NDPH and NDPL members of each descriptor could
even be written once at startup, and skipped over as each descriptor’s new
contents are written.

The recommended method for synchronization of a descriptor queue is
through the use of an interrupt. The descriptor queue is structured so that
at least the final valid descriptor is always programmed to generate an
interrupt.

There are two general methods for managing a descriptor queue using
interrupts:

* Interrupt on every descriptor

* Interrupt minimally - only on the last descriptor

Descriptor Queue Using Interrupts on Every Descriptor

In this system, the DMA Manager software synchronizes with the DMA
unit by enabling an interrupt on every descriptor. This method should
only be used if system design can guarantee that each interrupt event will
be serviced separately (no interrupt overrun).
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To maintain synchronization of the descriptor queue, the non-interrupt
software maintains a count of descriptors added to the queue, while the
interrupt handler maintains a count of completed descriptors removed
from the queue. The counts are equal only when the DMA channel is
paused after having processed all the descriptors.

When each new work request is received, the DMA Manager software ini-
tializes a new descriptor, taking care to write a DMA_CONFIG value with a
FLOW value of 0. Next, the software compares the descriptor counts to
determine if the DMA channel is running or not. If the DMA channel is
paused (counts equal), the software increments its count and then starts
the DMA unit by writing the new descriptor’s DMA_CONFIG value to the
DMA channel’s DMA_CONFIG register.

If the counts are unequal, the software instead modifies the next-to-last
descriptor’s DMA_CONFIG value so that its upper half (FLOWand NDSIZE) now
describes the newly queued descriptor. This operation does not disrupt the
DMA channel, provided the rest of the descriptor data structure is initial-
ized in advance. It is necessary, however, to synchronize the software to
the DMA to correctly determine whether the new or the old DMA_CONFIG
value was read by the DMA channel.

This synchronization operation should be performed in the interrupt
handler. First, upon interrupt, the handler should read the channel’s
TRQ_STATUS register. If the DMA_RUN status bit is set, then the channel has
moved on to processing another descriptor, and the interrupt handler may
increment its count and exit. If the DMA_RUN status bit is not set, however,
then the channel has paused, either because there are no more descriptors
to process, or because the last descriptor was queued too late (that is, the
modification of the next-to-last descriptor’s DMA_CONFIG element occurred
after that element was read into the DMA unit.) In this case, the interrupt
handler should write the DMA_CONF1G value appropriate for the last descrip-
tor to the DMA channel’s DMA_CONFIG register, increment the completed
descriptor count, and exit.
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Again, this system can fail if the system’s interrupt latencies are large
enough to cause any of the channel’s DMA interrupts to be dropped. An
interrupt handler capable of safely synchronizing multiple descriptors’
interrupts would need to be complex, performing several MMR accesses to
ensure robust operation. In such a system environment, a minimal inter-
rupt synchronization method is preferred.

Descriptor Queue Using Minimal Interrupts

In this system, only one DMA interrupt event is possible in the queue at
any time. The DMA interrupt handler for this system can also be
extremely short. Here, the descriptor queue is organized into an “active”
and a “waiting” portion, where interrupts are enabled only on the last
descriptor in each portion.

When each new DMA request is processed, the software’s non-interrupt
code fills in a new descriptor’s contents and adds it to the waiting portion
of the queue. The descriptor’s DMA_CONF1G word should have a FLOW value
of zero. If more than one request is received before the DMA queue com-
pletion interrupt occurs, the non-interrupt code should queue later
descriptors, forming a waiting portion of the queue that is disconnected
from the active portion of the queue being processed by the DMA unit. In
other words, all but the last active descriptors contain FLOW values >= 4
and have no interrupt enable set, while the last active descriptor contains a
FLOW of 0 and an interrupt enable bit DI_EN set to 1. Also, all but the last
waiting descriptors contain FLOW values >= 4 and no interrupt enables set,
while the last waiting descriptor contains a FLOW of 0 and an interrupt
enable bit set to 1. This ensures that the DMA unit can automatically pro-
cess the whole active queue and then issue one interrupt. Also, this
arrangement makes it easy to start the waiting queue within the interrupt
handler by a single DMA_CONFIG register write.
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After queuing a new waiting descriptor, the non-interrupt software should
leave a message for its interrupt handler in a memory mailbox location
containing the desired DMA_CONFIG value to use to start the first waiting
descriptor in the waiting queue (or 0 to indicate no descriptors are
waiting.)

It is critical that the software not modify the contents of the active
descriptor queue directly, once its processing by the DMA unit has been
started, unless careful synchronization measures are taken. In the most
straightforward implementation of a descriptor queue, the DMA Manager
software would never modify descriptors on the active queue; instead, the
DMA Manager waits until the DMA queue completion interrupt indicates
the processing of the entire active queue is complete.

When a DMA queue completion interrupt is received, the interrupt han-
dler reads the mailbox from the non-interrupt software and writes the
value in it to the DMA channel’s DMA_CONFIG register. This single register
write restarts the queue, effectively transforming the waiting queue to an
active queue. The interrupt handler should then pass a message back to
the non-interrupt software indicating the location of the last descriptor
accepted into the active queue. If, on the other hand, the interrupt han-
dler reads its mailbox and finds a DMA_CONF1G value of zero, indicating
there is no more work to perform, then it should pass an appropriate mes-
sage (for example, zero) back to the non-interrupt software indicating that
the queue has stopped. This simple handler should be able to be coded in

a very small number of instructions.

The non-interrupt software which accepts new DMA work requests needs
to synchronize the activation of new work with the interrupt handler. If
the queue has stopped (that is, if the mailbox from the interrupt software
is zero), the non-interrupt software is responsible for starting the queue
(writing the first descriptor’s DMA_CONFIG value to the channel’s
DMA_CONFIG register). If the queue is not stopped, however, the
non-interrupt software must not write the DMA_CONFIG register
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(which would cause a DMA error), but instead it should queue the
descriptor onto the waiting queue and update its mailbox directed to the
interrupt handler.

DMA Errors (Aborts)

The DMA controller flags conditions that cause the DMA process to end
abnormally (that is, abort). This functionality is provided as a tool for sys-
tem development and debug, as a way to detect DMA-related
programming errors. DMA errors (aborts) are detected by the DMA chan-
nel module in the cases listed below. When a DMA error occurs, the
channel is immediately stopped (DMA_RUN goes to 0) and any prefetched
data is discarded. In addition, a DMA_ERROR interrupt is asserted.

There is only one DMA_ERROR interrupt for the whole DMA controller,
which is asserted whenever any of the channels has detected an error
condition.

The DMA_ERROR interrupt handler must do these things for each channel:

* Read each channel’s TRQ_STATUS register to look for a channel with
the DMA_ERR bit set (bit 1).

* Clear the problem with that channel (for example, fix register
values).

e Clear the DMA_ERR bit (write IRQ_STATUS with bit 1 = 1).
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The following error conditions are detected by the DMA hardware and
result in a DMA Abort interrupt.

The Configuration register contains invalid values:

- Incorrect WDSIZE value (WDSIZE = b#l1)

- Bit 15 not set to 0

- Incorrect FLOW value (FLOW = 2, 3, or 5)

- NDSIZE value does not agree with FLOW. See Table 9-20.

A disallowed register write occurred while the channel was run-
ning. Only the DMA_CONFIG and IRQ_STATUS registers can be written
when DMA_RUN = 1.

An address alignment error occurred during any memory access.
For example, DMA_CONFIG register WDSIZE = 1 (16 bit) but the least
significant bit (LSB) of the address is not equal to 0, or WDSIZE = 2
(32 bit) but the two LSBs of the address are not equal to 00.

A memory space transition was attempted (internal-to-external or
vice versa).

A memory access error occurred. Either an access attempt was
made to an internal address not populated or defined as cache, or
an external access caused an error (signaled by the external memory
interface).

Some prohibited situations are not detected by the DMA hardware. No
DMA abort is signaled for these situations:

DMA_CONFIG Direction bit (WNR) does not agree with the direction of
the mapped peripheral.

DMA_CONFIG Direction bit does not agree with the direction of the
MDMA channel.

DMA_CONFIG Word Size (WDSIZE) is not supported by the mapped
peripheral.
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DMA_CONFIG Word Size in source and destination of the MDMA
stream are not equal.

* Descriptor chain indicates data buffers that are not in the same
internal/external memory space.

e In2D DMA, X_COUNT = 1.

Table 9-20. Legal NDSIZE Values

FLOW NDSIZE Note

0 0

1 0

4 0 < NDSIZE <=7 Descriptor array, no
descriptor pointer
fetched

6 0 < NDSIZE <= 8 Descriptor list, small
descriptor pointer
fetched

7 0 < NDSIZE <=9 Descriptor list, large
descriptor pointer
fetched
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10 SPI COMPATIBLE PORT
CONTROLLERS

The processor has a Serial Peripheral Interface (SPI) port that provides an
/0O interface to a wide variety of SPI compatible peripheral devices.

With a range of configurable options, the SPI port provides a glueless
hardware interface with other SPI compatible devices. SPI is a four-wire
interface consisting of two data pins, a device select pin, and a clock pin.
SPIis a full-duplex synchronous serial interface, supporting master modes,
slave modes, and multimaster environments. The SPI compatible periph-
eral implementation also supports programmable baud rate and clock
phase/polarities. The SPI features the use of open drain drivers to support
the multimaster scenario and to avoid data contention.

Typical SPI compatible peripheral devices that can be used to interface to
the SPI compatible interface include:

* Other CPUs or microcontrollers

* Codecs

e A/D converters

* D/A converters

e Sample rate converters

e SP/DIF or AES/EBU digital audio transmitters and receivers
* LCD displays
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e Shift registers
e FPGAs with SPI emulation

The SPI is an industry-standard synchronous serial link that supports
communication with multiple SPI compatible devices. The SPI peripheral
is a synchronous, four-wire interface consisting of two data pins (M0SI and
MIS0), one device select pin (SPTSS), and a gated clock pin (SCk). With the
two data pins, it allows for full-duplex operation to other SPI compatible
devices. The SPI also includes programmable baud rates, clock phase, and
clock polarity.

The SPI can operate in a multimaster environment by interfacing with
several other devices, acting as either a master device or a slave device. In a
multimaster environment, the SPI interface uses open drain outputs to
avoid data bus contention.

Figure 10-1 provides a block diagram of the SPI. The interface is essen-
tially a shift register that serially transmits and receives data bits, one bit at
a time at the SCK rate, to and from other SPI devices. SPI data is transmit-
ted and received at the same time through the use of a shift register. When
an SPI transfer occurs, data is simultaneously transmitted (shifted serially
out of the shift register) as new data is received (shifted serially into the
other end of the same shift register). The SCK synchronizes the shifting and
sampling of the data on the two serial data pins.

During SPI data transfers, one SPI device acts as the SPI link master,
where it controls the data flow by generating the SPI serial clock and
asserting the SPI device select signal (SPISS). The other SPI device acts as
the slave and accepts new data from the master into its shift register, while
it transmits requested data out of the shift register through its SPI trans-
mit data pin. Multiple processors can take turns being the master device,
as can other microcontrollers or microprocessors.
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One master device can also simultaneously shift data into multiple slaves
(known as Broadcast mode). However, only one slave may drive its output
to write data back to the master at any given time. This must be enforced
in Broadcast mode, where several slaves can be selected to receive data
from the master, but only one slave at a time can be enabled to send data
back to the master.

| mosi | |mso| | sck | spiss |
SPI
INTERNAL
T CLOCK
o oo SPI INTERFACE LOGIC (=) GENERATOR
M Sy :S yMm SPI_CTL
SPIST
FTTTTTTTTETTTTT
|| SHIFT REGISTER

SPI_RDBR SPL_TDBR
RECEIVE TRANSMIT SPIIRQ
REGISTER REGISTER OR DMA
7~ REQUEST
U 16 PAB ﬁ 1
AN
| FOUR-DEEP FIFO
16 {7 DaB
AN

Figure 10-1. SPI Block Diagram

In a multimaster or multidevice environment where multiple processors
are connected via their SPI ports, all MOST pins are connected together, all
MISO pins are connected together, and all SCK pins are connected together.

For a multislave environment, the processor can make use of seven pro-
grammable flags, PF1-PF7, that are dedicated SPI slave select signals for
the SPI slave devices.

@ At reset, the SPI is disabled and configured as a slave.
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Interface Signals

The following section discusses the SPI signals.

Serial Peripheral Interface Clock Signal (SCK)

The sck signal is the SPI clock signal. This control signal is driven by the
master and controls the rate at which data is transferred. The master may
transmit data at a variety of baud rates. The SCK signal cycles once for each
bit transmitted. It is an output signal if the device is configured as a mas-
ter, and an input signal if the device is configured as a slave.

The scK is a gated clock that is active during data transfers only for the
length of the transferred word. The number of active clock edges is equal
to the number of bits driven on the data lines. Slave devices ignore the
serial clock if the Serial Peripheral Slave Select Input (SPISS) is driven
inactive (high).

The scK is used to shift out and shift in the data driven on the M1S0 and
MOST lines. Clock polarity and clock phase relative to data are programma-
ble in the SPI Control register (SPI_CTL) and define the transfer format
(see “SPI Transfer Formats” on page 10-21).
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Serial Peripheral Interface Slave Select Input
Signal

The SPTSS signal is the SPI Serial Peripheral Slave Select Input signal.
This is an active-low signal used to enable a processor when it is config-
ured as a slave device. This input-only pin behaves like a chip select and is
provided by the master device for the slave devices. For a master device, it
can act as an error signal input in case of the multimaster environment. In
multimaster mode, if the SPISS input signal of a master is asserted
(driven low), and the PSSE bit in the SPI_CTL register is enabled,

an error has occurred. This means that another device is also trying to be
the master device.

@ The SPTSS signal is the same pin as the PFO pin.

Master Out Slave In (MOSI)

The MOST pin is the Master Out Slave In pin, one of the bidirectional I/0O
data pins. If the processor is configured as a master, the MOSI pin becomes
a data transmit (output) pin, transmitting output data. If the processor is
configured as a slave, the MOSI pin becomes a data receive (input) pin,
receiving input data. In an SPI interconnection, the data is shifted out
from the MOST output pin of the master and shifted into the MOST input(s)
of the slave(s).
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Master In Slave Out (MISO)

The MIS0 pin is the Master In Slave Out pin, one of the bidirectional I/0O
data pins. If the processor is configured as a master, the MIS0 pin becomes
a data receive (input) pin, receiving input data. If the processor is config-
ured as a slave, the MI1S0 pin becomes a data transmit (output) pin,
transmitting output data. In an SPI interconnection, the data is shifted
out from the MISO0 output pin of the slave and shifted into the MIS0 input
pin of the master.

@ Only one slave is allowed to transmit data at any given time.

The SPI configuration example in Figure 10-2 illustrates how the proces-
sor can be used as the slave SPI device. The 8-bit host microcontroller is
the SPI master.

The processor can be booted via its SPI interface to allow user
application code and data to be downloaded before runtime.

8-BIT HOST BLACKFIN PROCESSOR
MICROCONTROLLER SLAVE SPI DEVICE
SCLK SCK
S_SEL SPISS
MOosI MOsI
MISO MISO

Figure 10-2. ADSP-BF533 as Slave SPI Device
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Interrupt Output

The SPI has two interrupt output signals: a data interrupt and an error
interrupt.

The behavior of the SPI data interrupt signal depends on the Transfer Ini-
tiation mode bit field (T1M0D) in the SPI Control register. In DMA mode
(TIMOD = 1X), the data interrupt acts as a DMA request and is generated
when the DMA FIFO is ready to be written to (TIMOD = 11) or read from
(TIMOD = 10). In non-DMA mode (TIMOD = 0X), a data interrupt is gener-
ated when the SPI_TDBR is ready to be written to (TIMOD = 01) or when the
SPI_RDBR is ready to be read from (TIMOD = 00).

An SPI Error interrupt is generated in a master when a Mode Fault Error
occurs, in both DMA and non-DMA modes. An error interrupt can also
be generated in DMA mode when there is an underflow (TXE when
TIMOD = 11) or an overflow (RBSY when TIMOD = 10) error condition. In
non-DMA mode, the underflow and overflow conditions set the TXE and
RBSY bits in the SPI_STAT register, respectively, but do not generate an
error interrupt.

For more information about this interrupt output, see the discussion of

the TIMOD bits in “SPI_CTL Register” on page 10-9.

SPI Registers

The SPI peripheral includes a number of user-accessible registers. Some of
these registers are also accessible through the DMA bus. Four registers
contain control and status information: SPI_BAUD, SPI_CTL, SPI_FLG, and
SPI_STAT. Two registers are used for buffering receive and transmit data:
SPI_RDBR and SPI_TDBR. For information about DMA-related registers, see
Chapter 9, “Direct Memory Access”. The shift register, SFDR, is internal to
the SPI module and is not directly accessible.
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See “Error Signals and Flags” on page 10-29 for more information about
how the bits in these registers are used to signal errors and other condi-
tions. See “Register Functions” on page 10-20 for more information about
SPI register and bit functions.

SPI_BAUD Register

The SPI Baud Rate register (SPI_BAUD) is used to set the bit transfer rate
for a master device. When configured as a slave, the value written to this
register is ignored. The serial clock frequency is determined by this
formula:

SCK Frequency = (Peripheral clock frequency SCLK)/(2 x SPI_BAUD)

SPI Baud Rate Register (SPI_BAUD)

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
oxrco 0514 foJoJoJoJoJoJoJoJoJo JoJoJoJoJo o] Reset=oxo000

Baud Rate
SCLK/ (2 x SPI_BAUD)

Figure 10-3. SPI Baud Rate Register

Writing a value of 0 or 1 to the register disables the serial clock. There-
fore, the maximum serial clock rate is one-fourth the system clock rate.

Table 10-1 lists several possible baud rate values for SPI_BAUD.
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Table 10-1. SPI Master Baud Rate Example

SPI_BAUD Decimal Value SPI Clock (SCK) Divide Baud Rate for
Factor SCLK at 100 MHz

0 N/A N/A

1 N/A N/A

2 4 25 MHz

3 6 16.7 MHz

4 8 12.5 MHz

65,535 (0xFFFF) 131,070 763 Hz

SPI_CTL Register

The SPI Control register (SPI_CTL) is used to configure and enable the SPI
system. This register is used to enable the SPI interface, select the device as
a master or slave, and determine the data transfer format and word size.

The term “word” refers to a single data transfer of either 8 bits or 16 bits,
depending on the word length (S1ZE) bitin SPI_CTL. There are two special
bits which can also be modified by the hardware: SPE and MSTR.

The TIMOD field is used to specify the action that initiates transfers to/from
the receive/transmit buffers. When set to 00, a SPI port transaction is
begun when the receive buffer is read. Data from the first read will need to
be discarded since the read is needed to initiate the first SPI port transac-
tion. When set to 01, the transaction is initiated when the transmit buffer
is written. A value of 10 selects DMA Receive mode and the first transac-
tion is initiated by enabling the SPI for DMA Receive mode. Subsequent
individual transactions are initiated by a DMA read of the SPI_RDBR. A
value of 11 selects DMA Transmit mode and the transaction is initiated
by a DMA write of the SPI_TDBR.

The PSSE bit is used to enable the SPTSS input for master. When not used,
SPISS can be disabled, freeing up a chip pin as general-purpose 1/0O.
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The EMISO bit enables the MISO pin as an output. This is needed in an
environment where the master wishes to transmit to various slaves at one
time (broadcast). Only one slave is allowed to transmit data back to the
master. Except for the slave from whom the master wishes to receive, all
other slaves should have this bit cleared.

The SPE and MSTR bits can be modified by hardware when the MODF bit of
the Status register is set. See “Mode Fault Error (MODEF)” on page 10-29.

Figure 10-4 provides the bit descriptions for SPI_CTL.

SPI_FLG Register

If the SPI is enabled as a master, the SPI uses the SPI Flag register
(SPI_FLG) to enable up to seven general-purpose programmable flag pins
to be used as individual slave select lines. In Slave mode, the SP1_FLG bits
have no effect, and each SPI uses the SPISS input as a slave select.

Figure 10-5 shows the SPI_FLG register diagram.

The SPI_FLG register consists of two sets of bits that function as follows.

e Slave Select Enable (FLSx) bits

Each FLSx bit corresponds to a Programmable Flag (PFx) pin.
When a FLSx bit is set, the corresponding PFx pin is driven as a
slave select. For example, if FLS1 is set in SPI_FLG, PF1 is driven as a
slave select (SPISEL1). Table 10-2 shows the association of the FLSx
bits and the corresponding PFx pins.

If the FLSx bit is not set, the general-purpose programmable flag
registers (FI0_DIR and others) configure and control the corre-
sponding PFx pin.
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15 14 13 12 11 10

SPI Compatible Port Controllers

7 6 5 4 3 2 1 0

0xFFCO0 0500 Io |o |0 |o Io |1 |o |

8
°|

o|o|o o|0|o|o|o

SPE (SPI Enable)
0 - Disabled
1 - Enabled

WOM (Write Open Drain
Master) ———
0 - Normal

1 - Open drain

MSTR (Master)

Sets the SPI module as
master or slave

0 - Slave

1 - Master

CPOL (Clock Polarity)
0 - Active high SCK
1 - Active low SCK

CPHA (Clock Phase)

Selects transfer format and

operation mode

0 - SCLK toggles from middle
of the first data bit, slave select
pins controlled by hardware.

1 - SCLK toggles from beginning
of first data bit, slave select
pins controller by user software.

LSBF (LSB First)
0 - MSB sent/received first
1 - LSB sent/received first

SIZE (Size of Words)
0 - 8 bits
1 - 16 bits

Figure 10-4. SPI Control Register

Reset = 0x0400

TIMOD (Transfer Initiation Mode)

00 - Start transfer with read of
SPI_RDBR, interrupt when
SPI_RDBR is full

01 - Start transfer with write of
SPI_TDBR, interrupt when
SPI_TDBR is empty

10 - Start transfer with DMA read
of SPI_RDBR, request further
DMA reads as long as SPI DMA
FIFO is not empty

11 - Start transfer with DMA write
of SPI_TDBR, request further
DMA writes as long as SPI DMA
FIFO is not full

SZ (Send Zero)

Send zero or last word when
SPI_TDBR is empty

0 - Send last word

1 - Send zeros

GM (Get More Data)

When SPI_RDBR is full, get

data or discard incoming data

0 - Discard incoming data

1 - Get more data, overwrite
previous data

PSSE (Slave Select Enable)
0 - Disable
1 - Enable

EMISO (Enable MISO)
0 - MISO disabled
1 - MISO enabled
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SPI Flag Register (SPI_FLG)

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
oxFFco 0504 1 [1 ]+ [+ [+ [+ [1 [1 oo JoJo]o]o [o Jo]Reset=oxrroo
FLG7 (Slave FLS1 (Slave Select Enable 1)
Select Value 7) 0 - SPISEL1 disabled
SPISEL7 value 1 - SPISEL1 enabled
FLG6 (Slave Select — FLS2 (Slave Select Enable 2)
Value 6) ——— 0 - SPISEL2 disabled
SPISELS6 value 1 - SPISEL2