
a

ADSP-BF533 Blackfin® Processor
Hardware Reference

(Includes ADSP-BF531 and ADSP-BF532 Blackfin Processors)

Revision 3.6, February 2013

Part Number
82-002005-01

Analog Devices, Inc.
One Technology Way
Norwood, Mass. 02062-9106

Copyright Information
© 2013 Analog Devices, Inc., ALL RIGHTS RESERVED. This docu-
ment may not be reproduced in any form without prior, express written
consent from Analog Devices, Inc.

Printed in the USA.

Disclaimer
Analog Devices, Inc. reserves the right to change this product without
prior notice. Information furnished by Analog Devices is believed to be
accurate and reliable. However, no responsibility is assumed by Analog
Devices for its use; nor for any infringement of patents or other rights of
third parties which may result from its use. No license is granted by impli-
cation or otherwise under the patent rights of Analog Devices, Inc.

Trademark and Service Mark Notice
The Analog Devices logo, Blackfin, CrossCore, EngineerZone, EZ-KIT
Lite, and VisualDSP++ are registered trademarks of Analog Devices, Inc.

All other brand and product names are trademarks or service marks of
their respective owners.

ADSP-BF533 Blackfin Processor Hardware Reference iii

 CONTENTS

PREFACE

Purpose of This Manual ... xxxv

Intended Audience .. xxxv

Manual Contents ... xxxvi

What’s New in This Manual .. xxxix

Technical Support ... xl

Supported Processors .. xli

Product Information .. xli

Analog Devices Web Site ... xlii

EngineerZone .. xlii

Notation Conventions .. xliii

Register Diagram Conventions .. xliv

 INTRODUCTION

Peripherals .. 1-1

Core Architecture .. 1-3

Memory Architecture .. 1-6

Internal Memory ... 1-7

Contents

iv ADSP-BF533 Blackfin Processor Hardware Reference

External Memory .. 1-7

I/O Memory Space .. 1-8

Event Handling .. 1-8

Core Event Controller (CEC) .. 1-9

System Interrupt Controller (SIC) ... 1-9

DMA Support .. 1-10

External Bus Interface Unit ... 1-11

PC133 SDRAM Controller ... 1-11

Asynchronous Controller .. 1-11

Parallel Peripheral Interface ... 1-12

Serial Ports (SPORTs) ... 1-13

Serial Peripheral Interface (SPI) Port ... 1-15

Timers ... 1-16

UART Port ... 1-17

Real-Time Clock .. 1-18

Watchdog Timer ... 1-19

Programmable Flags .. 1-19

Clock Signals .. 1-20

Dynamic Power Management ... 1-21

Full On Mode (Maximum Performance) 1-22

Active Mode (Moderate Power Savings) 1-22

Sleep Mode (High Power Savings) ... 1-22

Deep Sleep Mode (Maximum Power Savings) 1-23

Hibernate State .. 1-23

ADSP-BF533 Blackfin Processor Hardware Reference v

Contents

Voltage Regulation .. 1-23

Boot Modes .. 1-24

Instruction Set Description ... 1-25

Development Tools ... 1-26

COMPUTATIONAL UNITS

Using Data Formats .. 2-3

Binary String ... 2-3

Unsigned ... 2-4

Signed Numbers: Two’s-Complement 2-4

Fractional Representation: 1.15 .. 2-4

Register Files ... 2-5

Data Register File .. 2-6

Accumulator Registers .. 2-6

Pointer Register File .. 2-6

DAG Register Set ... 2-7

Register File Instruction Summary ... 2-8

Data Types .. 2-10

Endianess .. 2-12

ALU Data Types .. 2-12

Multiplier Data Types .. 2-13

Shifter Data Types ... 2-14

Arithmetic Formats Summary .. 2-15

Using Multiplier Integer and Fractional Formats 2-16

Contents

vi ADSP-BF533 Blackfin Processor Hardware Reference

Rounding Multiplier Results ... 2-18

Unbiased Rounding .. 2-18

Biased Rounding .. 2-20

Truncation ... 2-21

Special Rounding Instructions ... 2-22

Using Computational Status ... 2-22

ASTAT Register .. 2-23

Arithmetic Logic Unit (ALU) .. 2-23

ALU Operations ... 2-23

Single 16-Bit Operations .. 2-25

Dual 16-Bit Operations .. 2-26

Quad 16-Bit Operations ... 2-26

Single 32-Bit Operations .. 2-27

Dual 32-Bit Operations .. 2-28

ALU Instruction Summary .. 2-29

ALU Data Flow Details ... 2-34

Dual 16-Bit Cross Options .. 2-36

ALU Status Signals ... 2-36

ALU Division Support Features ... 2-37

Special SIMD Video ALU Operations 2-37

Multiply Accumulators (Multipliers) ... 2-38

Multiplier Operation ... 2-38

Placing Multiplier Results in Multiplier Accumulator
Registers .. 2-39

Rounding or Saturating Multiplier Results 2-39

ADSP-BF533 Blackfin Processor Hardware Reference vii

Contents

Saturating Multiplier Results on Overflow 2-40

Multiplier Instruction Summary .. 2-40

Multiplier Instruction Options .. 2-42

Multiplier Data Flow Details ... 2-44

Multiply Without Accumulate ... 2-46

Special 32-Bit Integer MAC Instruction 2-48

Dual MAC Operations .. 2-49

Barrel Shifter (Shifter) ... 2-50

Shifter Operations ... 2-51

Two-Operand Shifts .. 2-51

Immediate Shifts ... 2-51

Register Shifts ... 2-52

Three-Operand Shifts ... 2-52

Immediate Shifts ... 2-53

Register Shifts ... 2-53

Bit Test, Set, Clear, Toggle .. 2-54

Field Extract and Field Deposit ... 2-54

Shifter Instruction Summary .. 2-55

OPERATING MODES AND STATES

User Mode .. 3-3

Protected Resources and Instructions 3-4

Protected Memory ... 3-5

Contents

viii ADSP-BF533 Blackfin Processor Hardware Reference

Entering User Mode .. 3-5

Example Code to Enter User Mode Upon Reset 3-5

Return Instructions That Invoke User Mode 3-6

Supervisor Mode .. 3-7

Non-OS Environments ... 3-7

Example Code for Supervisor Mode Coming Out of Reset ... 3-8

Emulation Mode .. 3-9

Idle State .. 3-9

Example Code for Transition to Idle State 3-10

Reset State .. 3-10

System Reset and Powerup ... 3-12

Hardware Reset ... 3-13

SYSCR Register .. 3-14

Software Resets and Watchdog Timer 3-15

SWRST Register ... 3-16

Core-Only Software Reset ... 3-17

Core and System Reset .. 3-17

Booting Methods .. 3-18

PROGRAM SEQUENCER

Sequencer Related Registers ... 4-3

SEQSTAT Register ... 4-4

Zero-Overhead Loop Registers (LC, LT, and LB) 4-4

SYSCFG Register .. 4-6

Instruction Pipeline .. 4-6

ADSP-BF533 Blackfin Processor Hardware Reference ix

Contents

Branches and Sequencing .. 4-9

Direct Short and Long Jumps .. 4-10

Direct Call ... 4-11

Indirect Branch and Call .. 4-11

PC-Relative Indirect Branch and Call 4-12

Condition Code Flag ... 4-12

Conditional Branches .. 4-13

Conditional Register Move .. 4-14

Branch Prediction .. 4-14

Loops and Sequencing ... 4-15

Events and Sequencing .. 4-18

System Interrupt Processing ... 4-21

System Peripheral Interrupts .. 4-22

SIC_IWR Register ... 4-25

SIC_ISR Register .. 4-27

SIC_IMASK Register .. 4-28

System Interrupt Assignment Registers (SIC_IARx) 4-29

Core Event Controller Registers .. 4-33

IMASK Register .. 4-33

ILAT Register .. 4-34

IPEND Register .. 4-36

Global Enabling/Disabling of Interrupts 4-37

Contents

x ADSP-BF533 Blackfin Processor Hardware Reference

Event Vector Table .. 4-38

Emulation ... 4-39

Reset .. 4-39

NMI (Nonmaskable Interrupt) .. 4-41

Exceptions .. 4-41

Exceptions While Executing an Exception Handler 4-46

Hardware Error Interrupt ... 4-47

Core Timer ... 4-48

General-Purpose Interrupts (IVG7-IVG15) 4-49

Servicing Interrupts .. 4-49

Nesting of Interrupts .. 4-50

Non-Nested Interrupts .. 4-50

Nested Interrupts .. 4-51

Example Prolog Code for Nested Interrupt Service
Routine ... 4-53

Example Epilog Code for Nested Interrupt Service
Routine ... 4-53

Logging of Nested Interrupt Requests 4-54

Exception Handling .. 4-55

Deferring Exception Processing ... 4-55

Example Code for an Exception Handler 4-56

Example Code for an Exception Routine 4-58

Example Code for Using Hardware Loops in an ISR 4-58

ADSP-BF533 Blackfin Processor Hardware Reference xi

Contents

Additional Usability Issues ... 4-59

Executing RTX, RTN, or RTE in a Lower Priority Event ... 4-59

Allocating the System Stack ... 4-60

Latency in Servicing Events ... 4-60

DATA ADDRESS GENERATORS

Addressing With DAGs ... 5-3

Frame and Stack Pointers ... 5-5

Addressing Circular Buffers ... 5-6

Addressing With Bit-Reversed Addresses 5-9

Indexed Addressing With Index and Pointer Registers 5-9

Auto-Increment and Auto-Decrement Addressing 5-10

Pre-Modify Stack Pointer Addressing 5-11

Indexed Addressing With Immediate Offset 5-11

Post-Modify Addressing .. 5-11

Modifying DAG and Pointer Registers ... 5-12

Memory Address Alignment ... 5-13

DAG Instruction Summary ... 5-16

MEMORY

Memory Architecture .. 6-1

Overview of Internal Memory .. 6-6

Overview of Scratchpad Data SRAM 6-8

Contents

xii ADSP-BF533 Blackfin Processor Hardware Reference

L1 Instruction Memory .. 6-8

IMEM_CONTROL Register .. 6-9

L1 Instruction SRAM ... 6-12

L1 Instruction Cache .. 6-15

Cache Lines .. 6-16

Cache Hits and Misses .. 6-18

Cache Line Fills .. 6-19

Line Fill Buffer ... 6-19

Cache Line Replacement ... 6-20

Instruction Cache Management .. 6-21

Instruction Cache Locking by Line 6-21

Instruction Cache Locking by Way 6-22

Instruction Cache Invalidation 6-23

Instruction Test Registers .. 6-24

ITEST_COMMAND Register .. 6-25

ITEST_DATA1 Register ... 6-25

ITEST_DATA0 Register ... 6-26

L1 Data Memory .. 6-28

DMEM_CONTROL Register ... 6-28

L1 Data SRAM ... 6-31

L1 Data Cache .. 6-34

Example of Mapping Cacheable Address Space 6-35

Data Cache Access .. 6-38

Cache Write Method .. 6-39

ADSP-BF533 Blackfin Processor Hardware Reference xiii

Contents

IPRIO Register and Write Buffer Depth 6-40

Data Cache Control Instructions 6-41

Data Cache Invalidation .. 6-42

Data Test Registers .. 6-43

DTEST_COMMAND Register ... 6-44

DTEST_DATA1 Register .. 6-45

DTEST_DATA0 Register .. 6-45

External Memory .. 6-46

Memory Protection and Properties .. 6-47

Memory Management Unit ... 6-47

Memory Pages ... 6-49

Memory Page Attributes .. 6-49

Page Descriptor Table .. 6-50

CPLB Management ... 6-51

MMU Application ... 6-52

Examples of Protected Memory Regions 6-54

ICPLB_DATAx Registers ... 6-55

DCPLB_DATAx Registers ... 6-57

DCPLB_ADDRx Registers .. 6-59

ICPLB_ADDRx Registers .. 6-60

DCPLB_STATUS and ICPLB_STATUS Registers 6-61

DCPLB_FAULT_ADDR and ICPLB_FAULT_ADDR
Registers ... 6-63

Memory Transaction Model .. 6-65

Contents

xiv ADSP-BF533 Blackfin Processor Hardware Reference

Load/Store Operation ... 6-66

Interlocked Pipeline .. 6-66

Ordering of Loads and Stores .. 6-67

Synchronizing Instructions .. 6-68

Speculative Load Execution ... 6-69

Conditional Load Behavior ... 6-70

Working With Memory .. 6-71

Alignment ... 6-71

Cache Coherency .. 6-71

Atomic Operations .. 6-72

Memory-Mapped Registers .. 6-72

Core MMR Programming Code Example 6-73

Terminology ... 6-74

CHIP BUS HIERARCHY

Internal Interfaces ... 7-1

Internal Clocks ... 7-1

Core Overview ... 7-2

System Overview .. 7-4

System Interfaces .. 7-4

Peripheral Access Bus (PAB) .. 7-5

PAB Arbitration ... 7-5

PAB Performance .. 7-5

PAB Agents (Masters, Slaves) .. 7-6

ADSP-BF533 Blackfin Processor Hardware Reference xv

Contents

DMA Access Bus (DAB), DMA Core Bus (DCB), DMA
External Bus (DEB) .. 7-7

DAB Arbitration ... 7-7

DAB, DCB, and DEB Performance 7-8

DAB Bus Agents (Masters) .. 7-9

External Access Bus (EAB) ... 7-9

Arbitration of the External Bus .. 7-10

DEB/EAB Performance ... 7-10

DYNAMIC POWER MANAGEMENT

Clocking ... 8-1

Phase Locked Loop and Clock Control 8-2

PLL Overview ... 8-3

PLL Clock Multiplier Ratios .. 8-3

Core Clock/System Clock Ratio Control 8-5

PLL Registers .. 8-6

PLL_DIV Register .. 8-7

PLL_CTL Register .. 8-7

PLL_STAT Register .. 8-9

PLL_LOCKCNT Register ... 8-11

Dynamic Power Management Controller 8-12

Operating Modes ... 8-12

Dynamic Power Management Controller States 8-13

Full On Mode .. 8-13

Active Mode .. 8-14

Contents

xvi ADSP-BF533 Blackfin Processor Hardware Reference

Sleep Mode ... 8-14

Deep Sleep Mode .. 8-15

Hibernate State .. 8-16

Operating Mode Transitions .. 8-16

Programming Operating Mode Transitions 8-20

PLL Programming Sequence ... 8-20

PLL Programming Sequence Continues 8-22

Examples .. 8-23

Dynamic Supply Voltage Control .. 8-25

Power Supply Management ... 8-25

VR_CTL Register ... 8-26

Changing Voltage ... 8-29

Powering Down the Core (Hibernate State) 8-30

DIRECT MEMORY ACCESS

DMA and Memory DMA Registers ... 9-3

Naming Conventions for DMA MMRs 9-5

Naming Conventions for Memory DMA Registers 9-7

DMAx_NEXT_DESC_PTR/MDMA_yy_NEXT_DESC_PTR
Register .. 9-8

DMAx_START_ADDR/MDMA_yy_START_ADDR
Register .. 9-10

DMAx_CONFIG/MDMA_yy_CONFIG Register 9-12

DMAx_X_COUNT/MDMA_yy_X_COUNT Register 9-16

DMAx_X_MODIFY/MDMA_yy_X_MODIFY Register 9-17

ADSP-BF533 Blackfin Processor Hardware Reference xvii

Contents

DMAx_Y_COUNT/MDMA_yy_Y_COUNT Register 9-19

DMAx_Y_MODIFY/MDMA_yy_Y_MODIFY Register 9-20

DMAx_CURR_DESC_PTR/MDMA_yy_CURR_DESC_PTR
Register .. 9-21

DMAx_CURR_ADDR/MDMA_yy_CURR_ADDR Register 9-23

DMAx_CURR_X_COUNT/MDMA_yy_CURR_X_COUNT
Register .. 9-25

DMAx_CURR_Y_COUNT/MDMA_yy_CURR_Y_COUNT
Register .. 9-26

DMAx_PERIPHERAL_MAP/MDMA_yy_PERIPHERAL_MAP
Register .. 9-28

DMAx_IRQ_STATUS/MDMA_yy_IRQ_STATUS Register .. 9-30

Flex Descriptor Structure .. 9-34

DMA Operation Flow ... 9-37

DMA Startup .. 9-39

DMA Refresh .. 9-41

To Stop DMA Transfers ... 9-43

To Trigger DMA Transfers ... 9-44

Two-Dimensional DMA .. 9-45

Examples ... 9-46

More 2D DMA Examples .. 9-47

Memory DMA .. 9-48

MDMA Bandwidth ... 9-50

Contents

xviii ADSP-BF533 Blackfin Processor Hardware Reference

DMA Performance Optimization .. 9-50

Prioritization and Traffic Control ... 9-52

DMA_TC_PER and DMA_TC_CNT Registers 9-55

MDMA Priority and Scheduling .. 9-57

Urgent DMA Transfers .. 9-59

Software Management of DMA .. 9-60

Synchronization of Software and DMA 9-61

Single-Buffer DMA Transfers .. 9-63

Continuous Transfers Using Autobuffering 9-64

Descriptor Structures .. 9-66

Descriptor Queue Management .. 9-67

Descriptor Queue Using Interrupts on Every
Descriptor ... 9-67

Descriptor Queue Using Minimal Interrupts 9-69

DMA Errors (Aborts) ... 9-71

SPI COMPATIBLE PORT CONTROLLERS

Interface Signals ... 10-4

Serial Peripheral Interface Clock Signal (SCK) 10-4

Serial Peripheral Interface Slave Select Input Signal 10-5

Master Out Slave In (MOSI) ... 10-5

Master In Slave Out (MISO) ... 10-6

Interrupt Output .. 10-7

ADSP-BF533 Blackfin Processor Hardware Reference xix

Contents

SPI Registers ... 10-7

SPI_BAUD Register .. 10-8

SPI_CTL Register ... 10-9

SPI_FLG Register .. 10-10

Slave Select Inputs .. 10-14

Use of FLS Bits in SPI_FLG for Multiple Slave SPI
Systems .. 10-15

SPI_STAT Register .. 10-16

SPI_TDBR Register .. 10-18

SPI_RDBR Register .. 10-19

SPI_SHADOW Register .. 10-19

Register Functions ... 10-20

SPI Transfer Formats ... 10-21

SPI General Operation .. 10-23

Clock Signals .. 10-24

Master Mode Operation .. 10-25

Transfer Initiation From Master (Transfer Modes) 10-26

Slave Mode Operation ... 10-27

Slave Ready for a Transfer .. 10-29

Error Signals and Flags .. 10-29

Mode Fault Error (MODF) ... 10-29

Transmission Error (TXE) ... 10-31

Reception Error (RBSY) .. 10-31

Transmit Collision Error (TXCOL) 10-31

Beginning and Ending an SPI Transfer 10-31

Contents

xx ADSP-BF533 Blackfin Processor Hardware Reference

DMA ... 10-33

DMA Functionality .. 10-33

Master Mode DMA Operation .. 10-34

Slave Mode DMA Operation ... 10-37

Timing ... 10-39

PARALLEL PERIPHERAL INTERFACE

PPI Registers .. 11-2

PPI_CONTROL Register ... 11-3

PPI_STATUS Register .. 11-8

PPI_DELAY Register .. 11-10

PPI_COUNT Register .. 11-11

PPI_FRAME Register ... 11-12

ITU-R 656 Modes .. 11-13

ITU-R 656 Background .. 11-13

ITU-R 656 Input Modes ... 11-17

Entire Field .. 11-18

Active Video Only .. 11-19

Vertical Blanking Interval (VBI) Only 11-19

ITU-R 656 Output Mode ... 11-20

Frame Synchronization in ITU-R 656 Modes 11-20

General-Purpose PPI Modes .. 11-21

Data Input (RX) Modes .. 11-22

No Frame Syncs .. 11-23

ADSP-BF533 Blackfin Processor Hardware Reference xxi

Contents

1, 2, or 3 External Frame Syncs 11-24

2 or 3 Internal Frame Syncs ... 11-25

Data Output (TX) Modes .. 11-25

No Frame Syncs .. 11-26

1 or 2 External Frame Syncs .. 11-26

1, 2, or 3 Internal Frame Syncs .. 11-27

Frame Synchronization in GP Modes 11-27

Modes with Internal Frame Syncs 11-28

Modes with External Frame Syncs 11-29

DMA Operation ... 11-30

Data Transfer Scenarios ... 11-32

SERIAL PORT CONTROLLERS

SPORT Operation .. 12-10

SPORT Disable .. 12-10

Setting SPORT Modes .. 12-11

Register Writes and Effective Latency .. 12-12

SPORTx_TCR1 and SPORTx_TCR2 Registers 12-12

SPORTx_RCR1 and SPORTx_RCR2 Registers 12-18

Data Word Formats ... 12-22

SPORTx_TX Register ... 12-23

SPORTx_RX Register ... 12-24

SPORTx_STAT Register ... 12-28

SPORT RX, TX, and Error Interrupts 12-29

PAB Errors .. 12-29

Contents

xxii ADSP-BF533 Blackfin Processor Hardware Reference

SPORTx_TCLKDIV and SPORTx_RCLKDIV Registers 12-30

SPORTx_TFSDIV and SPORTx_RFSDIV Register 12-31

Clock and Frame Sync Frequencies ... 12-32

Maximum Clock Rate Restrictions 12-33

Frame Sync and Clock Example 12-33

Word Length .. 12-34

Bit Order ... 12-34

Data Type .. 12-34

Companding .. 12-35

Clock Signal Options .. 12-36

Frame Sync Options ... 12-37

Framed Versus Unframed .. 12-37

Internal Versus External Frame Syncs 12-38

Active Low Versus Active High Frame Syncs 12-39

Sampling Edge for Data and Frame Syncs 12-39

Early Versus Late Frame Syncs (Normal Versus Alternate
Timing) ... 12-42

Data Independent Transmit Frame Sync 12-44

Moving Data Between SPORTs and Memory 12-44

Stereo Serial Operation ... 12-45

Multichannel Operation ... 12-49

SPORTx_MCMCn Registers .. 12-51

Multichannel Enable ... 12-52

Frame Syncs in Multichannel Mode 12-53

The Multichannel Frame ... 12-55

ADSP-BF533 Blackfin Processor Hardware Reference xxiii

Contents

Multichannel Frame Delay ... 12-56

Window Size ... 12-56

Window Offset .. 12-57

SPORTx_CHNL Register .. 12-57

Other Multichannel Fields in SPORTx_MCMC2 12-58

Channel Selection Register .. 12-58

SPORTx_MRCSn Registers .. 12-60

SPORTx_MTCSn Registers .. 12-62

Multichannel DMA Data Packing .. 12-64

Support for H.100 Standard Protocol .. 12-65

2X Clock Recovery Control ... 12-65

SPORT Pin/Line Terminations .. 12-66

Timing Examples .. 12-66

UART PORT CONTROLLER

Serial Communications ... 13-2

UART Control and Status Registers ... 13-3

UART_LCR Register ... 13-3

UART_MCR Register ... 13-4

UART_LSR Register ... 13-5

UART_THR Register .. 13-6

UART_RBR Register ... 13-7

UART_IER Register .. 13-8

UART_IIR Register ... 13-10

UART_DLL and UART_DLH Registers 13-11

Contents

xxiv ADSP-BF533 Blackfin Processor Hardware Reference

UART_SCR Register .. 13-13

UART_GCTL Register ... 13-14

Non-DMA Mode ... 13-15

DMA Mode ... 13-16

Mixing Modes .. 13-17

IrDA Support ... 13-17

IrDA Transmitter Description ... 13-18

IrDA Receiver Description .. 13-19

PROGRAMMABLE FLAGS

Programmable Flag Registers (MMRs) .. 14-5

FIO_DIR Register .. 14-5

Flag Value Registers Overview ... 14-6

FIO_FLAG_D Register ... 14-8

FIO_FLAG_S, FIO_FLAG_C, and FIO_FLAG_T
Registers .. 14-8

FIO_MASKA_D, FIO_MASKA_C, FIO_MASKA_S,
FIO_MASKA_T, FIO_MASKB_D, FIO_MASKB_C,
FIO_MASKB_S, FIO_MASKB_T Registers 14-11

Flag Interrupt Generation Flow 14-12

FIO_MASKA_D, FIO_MASKA_C, FIO_MASKA_S,
FIO_MASKA_T Registers ... 14-14

FIO_MASKB_D, FIO_MASKB_C, FIO_MASKB_S,
FIO_MASKB_T Registers ... 14-16

FIO_POLAR Register ... 14-18

FIO_EDGE Register ... 14-18

ADSP-BF533 Blackfin Processor Hardware Reference xxv

Contents

FIO_BOTH Register ... 14-19

FIO_INEN Register .. 14-20

Performance/Throughput .. 14-21

TIMERS

General-Purpose Timers .. 15-1

Timer Registers ... 15-4

TIMER_ENABLE Register .. 15-5

TIMER_DISABLE Register ... 15-5

TIMER_STATUS Register .. 15-6

TIMERx_CONFIG Registers .. 15-8

TIMERx_COUNTER Registers .. 15-9

TIMERx_PERIOD and TIMERx_WIDTH Registers 15-10

Using the Timer .. 15-13

Pulse Width Modulation (PWM_OUT) Mode 15-16

Output Pad Disable .. 15-18

Single Pulse Generation ... 15-18

Pulse Width Modulation Waveform Generation 15-18

Stopping the Timer in PWM_OUT Mode 15-20

Externally Clocked PWM_OUT 15-21

PULSE_HI Toggle Mode .. 15-22

Pulse Width Count and Capture (WDTH_CAP) Mode 15-26

Autobaud Mode .. 15-34

External Event (EXT_CLK) Mode 15-36

Using the Timers With the PPI .. 15-37

Contents

xxvi ADSP-BF533 Blackfin Processor Hardware Reference

Interrupts ... 15-38

Illegal States .. 15-40

Summary .. 15-43

Core Timer .. 15-45

TCNTL Register ... 15-46

TCOUNT Register ... 15-48

TPERIOD Register ... 15-48

TSCALE Register .. 15-49

Watchdog Timer ... 15-50

Watchdog Timer Operation ... 15-50

WDOG_CNT Register ... 15-51

WDOG_STAT Register .. 15-52

WDOG_CTL Register .. 15-53

REAL-TIME CLOCK

Interfaces .. 16-2

RTC Clock Requirements ... 16-2

RTC Programming Model .. 16-4

Register Writes .. 16-5

Write Latency ... 16-6

Register Reads ... 16-7

Deep Sleep .. 16-7

Prescaler Enable .. 16-8

Event Flags ... 16-8

Interrupts ... 16-11

ADSP-BF533 Blackfin Processor Hardware Reference xxvii

Contents

RTC_STAT Register ... 16-13

RTC_ICTL Register ... 16-15

RTC_ISTAT Register .. 16-16

RTC_SWCNT Register .. 16-17

RTC_ALARM Register ... 16-18

RTC_PREN Register .. 16-19

State Transitions Summary .. 16-20

EXTERNAL BUS INTERFACE UNIT

Overview .. 17-1

Block Diagram .. 17-4

Internal Memory Interfaces .. 17-4

External Memory Interfaces ... 17-5

EBIU Programming Model .. 17-8

Error Detection ... 17-8

Asynchronous Memory Interface ... 17-9

Asynchronous Memory Address Decode 17-9

EBIU_AMGCTL Register ... 17-10

EBIU_AMBCTL0 and EBIU_AMBCTL1 Registers 17-11

Avoiding Bus Contention .. 17-15

ARDY Input Control .. 17-15

Programmable Timing Characteristics 17-16

Asynchronous Accesses by Core Instructions 17-16

Asynchronous Reads .. 17-17

Asynchronous Writes ... 17-19

Contents

xxviii ADSP-BF533 Blackfin Processor Hardware Reference

Adding Additional Wait States .. 17-20

Byte Enables ... 17-22

SDRAM Controller (SDC) ... 17-22

Definition of Terms .. 17-23

Bank Activate Command .. 17-23

Burst Length .. 17-24

Burst Stop Command ... 17-24

Burst Type .. 17-24

CAS Latency (CL) .. 17-25

CBR (CAS Before RAS) Refresh or Auto-Refresh 17-25

DQM Pin Mask Function ... 17-25

Internal Bank ... 17-26

Mode Register .. 17-26

Page Size .. 17-27

Precharge Command .. 17-27

SDRAM Bank .. 17-27

Self-Refresh .. 17-27

tRAS ... 17-28

tRC ... 17-28

tRCD .. 17-28

tRFC ... 17-28

tRP ... 17-29

tRRD .. 17-29

ADSP-BF533 Blackfin Processor Hardware Reference xxix

Contents

tWR .. 17-29

tXSR .. 17-29

SDRAM Configurations Supported 17-30

Example SDRAM System Block Diagrams 17-30

Executing a Parallel Refresh Command 17-31

EBIU_SDGCTL Register .. 17-33

Setting the SDRAM Clock Enable (SCTLE) 17-37

Entering and Exiting Self-Refresh Mode (SRFS) 17-38

Setting the SDRAM Buffering Timing Option
(EBUFE) ... 17-39

Selecting the CAS Latency Value (CL) 17-40

Selecting the Bank Activate Command Delay (TRAS) 17-41

Selecting the RAS to CAS Delay (TRCD) 17-42

Selecting the Precharge Delay (TRP) 17-42

Selecting the Write to Precharge Delay (TWR) 17-43

EBIU_SDBCTL Register ... 17-44

EBIU_SDSTAT Register .. 17-47

EBIU_SDRRC Register ... 17-48

SDRAM External Memory Size ... 17-50

SDRAM Address Mapping .. 17-51

16-Bit Wide SDRAM Address Muxing 17-51

Data Mask (SDQM[1:0]) Encodings 17-52

SDC Operation .. 17-53

SDC Configuration ... 17-54

Contents

xxx ADSP-BF533 Blackfin Processor Hardware Reference

SDC Commands ... 17-56

Precharge Commands ... 17-57

Bank Activate Command .. 17-58

Load Mode Register Command 17-58

Read/Write Command .. 17-59

Auto-Refresh Command ... 17-60

Self-Refresh Command ... 17-60

No Operation/Command Inhibit Commands 17-61

SDRAM Timing Specifications .. 17-61

SDRAM Performance .. 17-62

Bus Request and Grant ... 17-63

Operation ... 17-63

SYSTEM DESIGN

Pin Descriptions ... 18-1

Recommendations for Unused Pins 18-1

Resetting the Processor ... 18-1

Booting the Processor ... 18-2

Managing Clocks .. 18-4

Managing Core and System Clocks .. 18-4

Configuring and Servicing Interrupts .. 18-4

Semaphores .. 18-5

Example Code for Query Semaphore 18-6

Data Delays, Latencies and Throughput 18-6

Bus Priorities .. 18-7

ADSP-BF533 Blackfin Processor Hardware Reference xxxi

Contents

External Memory Design Issues ... 18-7

Example Asynchronous Memory Interfaces 18-7

Using SDRAMs Smaller Than 16M Byte 18-8

Managing SDRAM Refresh During PLL Transitions 18-8

Avoiding Bus Contention ... 18-11

High Frequency Design Considerations 18-12

Point-to-Point Connections on Serial Ports 18-12

Signal Integrity .. 18-12

Decoupling Capacitors and Ground Planes 18-13

Oscilloscope Probes ... 18-15

Recommended Reading ... 18-15

BLACKFIN PROCESSOR CORE MMR ASSIGNMENTS

L1 Data Memory Controller Registers .. A-1

L1 Instruction Memory Controller Registers A-3

Interrupt Controller Registers ... A-5

Core Timer Registers .. A-7

Debug, MP, and Emulation Unit Registers A-7

Trace Unit Registers ... A-8

Watchpoint and Patch Registers .. A-8

Performance Monitor Registers ... A-9

SYSTEM MMR ASSIGNMENTS

Dynamic Power Management Registers ... B-2

System Reset and Interrupt Control
Registers ... B-2

Contents

xxxii ADSP-BF533 Blackfin Processor Hardware Reference

Watchdog Timer Registers .. B-3

Real-Time Clock Registers .. B-3

Parallel Peripheral Interface (PPI) Registers B-4

UART Controller Registers ... B-5

SPI Controller Registers .. B-5

Timer Registers .. B-6

Programmable Flag Registers ... B-7

SPORT0 Controller Registers ... B-9

SPORT1 Controller Registers ... B-11

DMA/Memory DMA Control Registers B-12

External Bus Interface Unit Registers .. B-14

TEST FEATURES

JTAG Standard ... C-1

Boundary-Scan Architecture ... C-2

Instruction Register ... C-4

Public Instructions .. C-5

EXTEST – Binary Code 00000 ... C-5

SAMPLE/PRELOAD – Binary Code 10000 C-6

BYPASS – Binary Code 11111 .. C-6

Boundary-Scan Register .. C-6

NUMERIC FORMATS

Unsigned or Signed: Two’s-Complement Format D-1

Integer or Fractional .. D-1

ADSP-BF533 Blackfin Processor Hardware Reference xxxiii

Contents

Binary Multiplication ... D-4

Fractional Mode And Integer Mode .. D-5

Block Floating-Point Format .. D-7

GLOSSARY

INDEX

 Contents

 xxxiv ADSP-BF533 Blackfin Processor Hardware Reference

ADSP-BF533 Blackfin Processor Hardware Reference xxxv

PREFACE

Thank you for purchasing and developing systems using Blackfin® pro-
cessors from Analog Devices, Inc.

Purpose of This Manual
ADSP-BF533 Blackfin Processor Hardware Reference contains information
about the DSP architecture for the Blackfin processors. The architectural
descriptions cover functional blocks, buses, and ports, including all fea-
tures and processes that they support.

For programming information, see Blackfin Processor Programming Refer-
ence. For timing, electrical, and package specifications, see
ADSP-BF531/ADSP-BF532/ADSP-BF533 Embedded Processor Data Sheet.

Intended Audience
The primary audience for this manual is a programmer who is familiar
with Analog Devices processors. The manual assumes the audience has a
working knowledge of the appropriate processor architecture and instruc-
tion set. Programmers who are unfamiliar with Analog Devices processors
can use this manual, but should supplement it with other texts, such as
hardware and programming reference manuals that describe their target
architecture.

Manual Contents

xxxvi ADSP-BF533 Blackfin Processor Hardware Reference

Manual Contents
This manual contains:

• Chapter 1, Introduction
Provides a high level overview of the processor. Architectural
descriptions include functional blocks, buses, and ports, including
features and processes they support.

• Chapter 2, Computational Units
Describes the arithmetic/logic units (ALUs), multiplier/accumula-
tor units (MACs), shifter, and the set of video ALUs. The chapter
also discusses data formats, data types, and register files.

• Chapter 3, Operating Modes and States
Describes the three operating modes of the processor: Emulation
mode, Supervisor mode, and User mode. The chapter also
describes Idle state and Reset state.

• Chapter 4, Program Sequencer
Describes the operation of the program sequencer, which controls
program flow by providing the address of the next instruction to be
executed. The chapter also discusses loops, subroutines, jumps,
interrupts, and exceptions.

• Chapter 5, Data Address Generators
Describes the Data Address Generators (DAGs), addressing modes,
how to modify DAG and Pointer registers, memory address align-
ment, and DAG instructions.

• Chapter 6, Memory
Describes L1 memories. In particular, details their memory archi-
tecture, memory model, memory transaction model, and
memory-mapped registers (MMRs). Discusses the instruction,
data, and scratchpad memory, which are part of the Blackfin pro-
cessor core.

ADSP-BF533 Blackfin Processor Hardware Reference xxxvii

Preface

• Chapter 7, Chip Bus Hierarchy
Describes on-chip buses, including how data moves through the
system. The chapter also discusses the system memory map, major
system components, and the system interconnects.

• Chapter 8, Dynamic Power Management
Describes system reset and power-up configuration, system clock-
ing and control, and power management.

• Chapter 9, Direct Memory Access
Describes the peripheral DMA and Memory DMA controllers. The
peripheral DMA section discusses direct, block data movements
between a peripheral with DMA access and internal or external
memory spaces. The Memory DMA section discusses mem-
ory-to-memory transfer capabilities among the processor memory
spaces and the L1, external synchronous, and asynchronous
memories.

• Chapter 10, SPI Compatible Port Controllers
Describes the Serial Peripheral Interface (SPI) port that provides an
I/O interface to a variety of SPI compatible peripheral devices.

• Chapter 11, Parallel Peripheral Interface
Describes the Parallel Peripheral Interface (PPI) of the processor.
The PPI is a half-duplex, bidirectional port accommodating up to
16 bits of data and used for digital video and data converter
applications.

• Chapter 12, Serial Port Controllers
Describes the two independent, synchronous Serial Port Control-
lers (SPORT0 and SPORT1) that provide an I/O interface to a
variety of serial peripheral devices.

• Chapter 13, UART Port Controller
Describes the Universal Asynchronous Receiver/Transmitter
(UART) port, which converts data between serial and parallel

Manual Contents

xxxviii ADSP-BF533 Blackfin Processor Hardware Reference

formats and includes modem control and interrupt handling hard-
ware. The UART supports the half-duplex IrDA® SIR protocol as
a mode-enabled feature.

• Chapter 14, Programmable Flags
Describes the programmable flags, or general-purpose I/O pins in
the processor, including how to configure the pins as inputs and
outputs, and how to generate interrupts.

• Chapter 15, Timers
Describes the three general-purpose timers that can be configured
in any of three modes; the core timer that can generate periodic
interrupts for a variety of timing functions; and the watchdog timer
that can implement software watchdog functions, such as generat-
ing events to the Blackfin processor core.

• Chapter 16, Real-Time Clock
Describes a set of digital watch features of the processor, including
time of day, alarm, and stopwatch countdown.

• Chapter 17, External Bus Interface Unit
Describes the External Bus Interface Unit of the processor. The
chapter also discusses the asynchronous memory interface, the
SDRAM controller (SDC), related registers, and SDC configura-
tion and commands.

• Chapter 18, System Design
Describes how to use the processor as part of an overall system. It
includes information about interfacing the processor to external
memory chips, bus timing and latency numbers, semaphores, and a
discussion of the treatment of unused pins.

• Appendix A, Blackfin Processor Core MMR Assignments
Lists the core memory-mapped registers, their addresses, and
cross-references to text.

ADSP-BF533 Blackfin Processor Hardware Reference xxxix

Preface

• Appendix B, System MMR Assignments
Lists the system memory-mapped registers, their addresses, and
cross-references to text.

• Appendix C, Test Features
Describes test features for the processor; discusses the JTAG stan-
dard, boundary-scan architecture, instruction and boundary
registers, and public instructions.

• Appendix D, Numeric Formats
Describes various aspects of the 16-bit data format. The chapter
also describes how to implement a block floating-point format in
software.

• Appendix G, Glossary
Contains definitions of terms used in this book, including
acronyms.

What’s New in This Manual
This is Revision 3.6 of ADSP-BF533 Blackfin Processor Hardware Refer-
ence. This revision corrects minor typographical errors and the following
issues:

• Core Double Fault Reset Enable bit (DOUBLE_FAULT) set in the
SWRST register and system reset code example in Chapter 3, “Oper-
ating Modes and States”

• RETI instructions need not be first in nested interrupts and com-
plete table of hardware conditions causing hardware interrupts in
Chapter 4, “Program Sequencer”

• Core priority over DMA when accessing L1 SRAM in Chapter 7,
“Chip Bus Hierarchy”

Technical Support

xl ADSP-BF533 Blackfin Processor Hardware Reference

• Note on programming the STOPCK bit and input and output delays
in PLL_CTL diagram in Chapter 8, “Dynamic Power Management”

• Obsolete DMA error address range deleted in Chapter 9, “Direct
Memory Access”

• Termination of SPI TX DMA operations in Chapter 10, “SPI
Compatible Port Controllers”

• Behavior on startup when using an external clock and receiver and
transmitter enable bit names standardized on RSPEN and TSPEN in
Chapter 12, “Serial Port Controllers”

• Note on the TINT bit in the TCNTL register in Chapter 15, “Timers”

• Sampling the ARDY pin when it is asserted in and note on timing
dependencies for the TRP and TRAS settings in the EBIU_SDGCTL reg-
ister in Chapter 17, “External Bus Interface Unit”

Technical Support
You can reach Analog Devices processors and DSP technical support in
the following ways:

• Post your questions in the processors and DSP support community
at EngineerZone®:
http://ez.analog.com/community/dsp

• Submit your questions to technical support directly at:
http://www.analog.com/support

• E-mail your questions about processors, DSPs, and tools develop-
ment software from CrossCore® Embedded Studio or
VisualDSP++®:

http://ez.analog.com/community/dsp
http://www.analog.com/support

ADSP-BF533 Blackfin Processor Hardware Reference xli

Preface

Choose Help > Email Support. This creates an e-mail to
processor.tools.support@analog.com and automatically attaches
your CrossCore Embedded Studio or VisualDSP++ version infor-
mation and license.dat file.

• E-mail your questions about processors and processor applications
to:
processor.support@analog.com or
processor.china@analog.com (Greater China support)

• In the USA only, call 1-800-ANALOGD (1-800-262-5643)

• Contact your Analog Devices sales office or authorized distributor.
Locate one at:
www.analog.com/adi-sales

• Send questions by mail to:
Processors and DSP Technical Support
Analog Devices, Inc.
Three Technology Way
P.O. Box 9106
Norwood, MA 02062-9106
USA

Supported Processors
The name “Blackfin” refers to a family of 16-bit, embedded processors.
Refer to the CCES or VisualDSP++ online help for a complete list of sup-
ported processors.

Product Information
Product information can be obtained from the Analog Devices Web site
and the CCES or VisualDSP++ online help.

mailto:processor.tools.support@analog.com
mailto:processor.support@analog.com
mailto:processor.china@analog.com
http://www.analog.com/adi-sales

Product Information

xlii ADSP-BF533 Blackfin Processor Hardware Reference

Analog Devices Web Site
The Analog Devices Web site, www.analog.com, provides information
about a broad range of products—analog integrated circuits, amplifiers,
converters, and digital signal processors.

To access a complete technical library for each processor family, go to
http://www.analog.com/processors/technical_library. The manuals
selection opens a list of current manuals related to the product as well as a
link to the previous revisions of the manuals. When locating your manual
title, note a possible errata check mark next to the title that leads to the
current correction report against the manual.

Also note, myAnalog is a free feature of the Analog Devices Web site that
allows customization of a Web page to display only the latest information
about products you are interested in. You can choose to receive weekly
e-mail notifications containing updates to the Web pages that meet your
interests, including documentation errata against all manuals. myAnalog
provides access to books, application notes, data sheets, code examples,
and more.

Visit myAnalog to sign up. If you are a registered user, just log on. Your
user name is your e-mail address.

EngineerZone
EngineerZone is a technical support forum from Analog Devices, Inc. It
allows you direct access to ADI technical support engineers. You can
search FAQs and technical information to get quick answers to your
embedded processing and DSP design questions.

Use EngineerZone to connect with other DSP developers who face similar
design challenges. You can also use this open forum to share knowledge
and collaborate with the ADI support team and your peers. Visit
http://ez.analog.com to sign up.

http://www.analog.com
http://www.analog.com/processors/technical_library/
http://www.analog.com/MyAnalog
http://www.analog.com/MyAnalog
http://www.analog.com/MyAnalog
http://ez.analog.com

ADSP-BF533 Blackfin Processor Hardware Reference xliii

Preface

Notation Conventions
Text conventions in this manual are identified and described as follows.

Example Description

Close command
(File menu)

Titles in reference sections indicate the location of an item within the
IDE environment’s menu system (for example, the Close command
appears on the File menu).

{this | that} Alternative required items in syntax descriptions appear within curly
brackets and separated by vertical bars; read the example as this or
that. One or the other is required.

[this | that] Optional items in syntax descriptions appear within brackets and sepa-
rated by vertical bars; read the example as an optional this or that.

[this,…] Optional item lists in syntax descriptions appear within brackets delim-
ited by commas and terminated with an ellipsis; read the example as an
optional comma-separated list of this.

.SECTION Commands, directives, keywords, and feature names are in text with
letter gothic font.

filename Non-keyword placeholders appear in text with italic style format.

Note: For correct operation, ...
A Note provides supplementary information on a related topic. In the
online version of this book, the word Note appears instead of this

symbol.

Caution: Incorrect device operation may result if ...
Caution: Device damage may result if ...
A Caution identifies conditions or inappropriate usage of the product
that could lead to undesirable results or product damage. In the online
version of this book, the word Caution appears instead of this symbol.

Warning: Injury to device users may result if ...
A Warning identifies conditions or inappropriate usage of the product
that could lead to conditions that are potentially hazardous for devices
users. In the online version of this book, the word Warning appears
instead of this symbol.







Register Diagram Conventions

xliv ADSP-BF533 Blackfin Processor Hardware Reference

Register Diagram Conventions
Register diagrams use the following conventions:

• The descriptive name of the register appears at the top, followed by
the short form of the name in parentheses.

• If the register is read-only (RO), write-1-to-set (W1S), or
write-1-to-clear (W1C), this information appears under the name.
Read/write is the default and is not noted. Additional descriptive
text may follow.

• If any bits in the register do not follow the overall read/write con-
vention, this is noted in the bit description after the bit name.

• If a bit has a short name, the short name appears first in the bit
description, followed by the long name in parentheses.

• The reset value appears in binary in the individual bits and in hexa-
decimal to the right of the register.

• Bits marked x have an unknown reset value. Consequently, the
reset value of registers that contain such bits is undefined or depen-
dent on pin values at reset.

• Shaded bits are reserved.

 To ensure upward compatibility with future implementations,
write back the value that is read for reserved bits in a register,
unless otherwise specified.

ADSP-BF533 Blackfin Processor Hardware Reference xlv

Preface

The following figure shows an example of these conventions.

Figure 1. Register Diagram Example

00

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0

TMODE[1:0] (Timer Mode)

Reset = 0x00000

Timer Configuration Registers (TIMERx_CONFIG)

0 - Negative action pulse.
1 - Positive action pulse.

This bit must be set to 1, when operat-
ing the PPI in GP Output modes.
0 - Use system clock SCLK for counter.
1 - Use PWM_CLK to clock counter.

0 - The effective state of PULSE_HI
is the programmed state.
1 - The effective state of PULSE_HI
alternates each period.

00 - No error.
01 - Counter overflow error.
10 - Period register programming error.
11 - Pulse width register programming error.

00 - Reset state - unused.
01 - PWM_OUT mode.
10 - WDTH_CAP mode.
11 - EXT_CLK mode.

PULSE_HI

CLK_SEL (Timer Clock Select)

TOGGLE_HI (PWM_OUT PULSE_HI Toggle Mode)

ERR_TYP[1:0] (Error Type) - RO

PERIOD_CNT (Period
Count)

0 - Interrupt request
disable.
1 - Interrupt request enable

0 - Count to end of width.
1 - Count to end of period.

IRQ_ENA (Interrupt
Request Enable)

0 - Sample TMRx pin or
PF1 pin.
1 - Sample UART RX pin
or PPI_CLK pin.

TIN_SEL (Timer Input
Select)

0 - Enable pad in PWM_OUT mode.
1 - Disable pad in PWM_OUT mode.

OUT_DIS (Output Pad Disable)

0 - Timer counter stops during emulation.
1 - Timer counter runs during emulation.

EMU_RUN (Emulation Behavior Select)

Register Diagram Conventions

xlvi ADSP-BF533 Blackfin Processor Hardware Reference

ADSP-BF533 Blackfin Processor Hardware Reference 1-1

1 INTRODUCTION

The ADSP-BF533, ADSP-BF532, and ADSP-BF531 processors are
enhanced members of the Blackfin processor family that offer significantly
higher performance and lower power than previous Blackfin processors
while retaining their ease-of-use and code compatibility benefits. The
three new processors are completely pin compatible, differing only in their
performance and on-chip memory, mitigating many risks associated with
new product development.

The Blackfin processor core architecture combines a dual MAC signal
processing engine, an orthogonal RISC-like microprocessor instruction
set, flexible Single Instruction, Multiple Data (SIMD) capabilities, and
multimedia features into a single instruction set architecture.

Blackfin products feature dynamic power management. The ability to vary
both the voltage and frequency of operation optimizes the power con-
sumption profile to the specific task.

Peripherals
The processor system peripherals include:

• Parallel Peripheral Interface (PPI)

• Serial Ports (SPORTs)

• Serial Peripheral Interface (SPI)

• General-purpose timers

Peripherals

1-2 ADSP-BF533 Blackfin Processor Hardware Reference

• Universal Asynchronous Receiver Transmitter (UART)

• Real-Time Clock (RTC)

• Watchdog timer

• General-purpose I/O (programmable flags)

These peripherals are connected to the core via several high bandwidth
buses, as shown in Figure 1-1.

Figure 1-1. Processor Block Diagram

VOLTAGE
REGULATOR

DMA
CONTROLLER

EVENT
CONTROLLER/
CORE TIMER

REAL TIME CLOCK

UART PORT
IrDA®

TIMER0, TIMER1,
TIMER2

PPI/GPIO

SERIAL PORTS (2)

BOOT ROM

WATCHDOG TIMER

MMU

B

CORE/SYSTEM BUS INTERFACE

SPI PORT

EXTERNAL PORT
FLASH, SDRAM

CONTROL

JTAG TEST AND
EMULATION

L1
INSTRUCTION

MEMORY

L1
DATA

MEMORY

ADSP-BF533 Blackfin Processor Hardware Reference 1-3

Introduction

All of the peripherals, except for general-purpose I/O, Real-Time Clock,
and Timers, are supported by a flexible DMA structure. There are also
two separate memory DMA channels dedicated to data transfers between
the processor’s memory spaces, which include external SDRAM and asyn-
chronous memory. Multiple on-chip buses provide enough bandwidth to
keep the processor core running even when there is also activity on all of
the on-chip and external peripherals.

Core Architecture
The processor core contains two 16-bit multipliers, two 40-bit accumula-
tors, two 40-bit arithmetic logic units (ALUs), four 8-bit video ALUs, and
a 40-bit shifter, shown in Figure 1-2. The computational units process 8-,
16-, or 32-bit data from the register file.

The compute register file contains eight 32-bit registers. When perform-
ing compute operations on 16-bit operand data, the register file operates
as 16 independent 16-bit registers. All operands for compute operations
come from the multiported register file and instruction constant fields.

Each MAC can perform a 16- by 16-bit multiply per cycle, with accumu-
lation to a 40-bit result. Signed and unsigned formats, rounding, and
saturation are supported.

The ALUs perform a traditional set of arithmetic and logical operations
on 16-bit or 32-bit data. Many special instructions are included to acceler-
ate various signal processing tasks. These include bit operations such as

field extract and population count, modulo 232 multiply, divide primi-
tives, saturation and rounding, and sign/exponent detection. The set of
video instructions include byte alignment and packing operations, 16-bit
and 8-bit adds with clipping, 8-bit average operations, and 8-bit sub-
tract/absolute value/accumulate (SAA) operations. Also provided are the
compare/select and vector search instructions. For some instructions, two

Core Architecture

1-4 ADSP-BF533 Blackfin Processor Hardware Reference

16-bit ALU operations can be performed simultaneously on register pairs
(a 16-bit high half and 16-bit low half of a compute register). By also
using the second ALU, quad 16-bit operations are possible.

The 40-bit shifter can deposit data and perform shifting, rotating, normal-
ization, and extraction operations.

A program sequencer controls the instruction execution flow, including
instruction alignment and decoding. For program flow control, the
sequencer supports PC-relative and indirect conditional jumps (with static
branch prediction) and subroutine calls. Hardware is provided to support

Figure 1-2. Processor Core Architecture

SP

SEQUENCER

ALIGN

DECODE

LOOP BUFFER

DAG0 DAG1

16 16

88 8 8

40 40

ACC 0 ACC 1

BARREL
SHIFTER

DATA ARITHMETIC UNIT

CONTROL
UNIT

ADDRESS ARITHMETIC UNIT

FP

P5

P4
P3

P2

P1

P0

R7
R6

R5

R4

R3

R2

R1

R0

I3

I2

I1

I0

L3

L2

L1

L0

B3

B2

B1

B0

M3

M2

M1

M0

ADSP-BF533 Blackfin Processor Hardware Reference 1-5

Introduction

zero-overhead looping. The architecture is fully interlocked, meaning
there are no visible pipeline effects when executing instructions with data
dependencies.

The address arithmetic unit provides two addresses for simultaneous dual
fetches from memory. It contains a multiported register file consisting of
four sets of 32-bit Index, Modify, Length, and Base registers (for circular
buffering) and eight additional 32-bit pointer registers (for C-style
indexed stack manipulation).

Blackfin processors support a modified Harvard architecture in combina-
tion with a hierarchical memory structure. Level 1 (L1) memories typically
operate at the full processor speed with little or no latency. At the L1 level,
the instruction memory holds instructions only. The two data memories
hold data, and a dedicated scratchpad data memory stores stack and local
variable information.

In addition, multiple L1 memory blocks are provided, which may be con-
figured as a mix of SRAM and cache. The Memory Management Unit
(MMU) provides memory protection for individual tasks that may be
operating on the core and may protect system registers from unintended
access.

The architecture provides three modes of operation: User, Supervisor, and
Emulation. User mode has restricted access to a subset of system resources,
thus providing a protected software environment. Supervisor and Emula-
tion modes have unrestricted access to the system and core resources.

The ADSP-BF53x Blackfin processor instruction set is optimized so that
16-bit opcodes represent the most frequently used instructions. Complex
DSP instructions are encoded into 32-bit opcodes as multifunction
instructions. Blackfin products support a limited multi-issue capability,
where a 32-bit instruction can be issued in parallel with two 16-bit
instructions. This allows the programmer to use many of the core
resources in a single instruction cycle.

Memory Architecture

1-6 ADSP-BF533 Blackfin Processor Hardware Reference

The ADSP-BF53x Blackfin processor assembly language uses an algebraic
syntax. The architecture is optimized for use with the C compiler.

Memory Architecture
The Blackfin processor architecture structures memory as a single, unified
4G byte address space using 32-bit addresses. All resources, including
internal memory, external memory, and I/O control registers, occupy sep-
arate sections of this common address space. The memory portions of this
address space are arranged in a hierarchical structure to provide a good
cost/performance balance of some very fast, low latency on-chip memory
as cache or SRAM, and larger, lower cost and lower performance off-chip
memory systems. Table 1-1 shows the memory comparison for the
ADSP-BF531, ADSP-BF532, and ADSP-BF533 processors.

The L1 memory system is the primary highest performance memory avail-
able to the core. The off-chip memory system, accessed through the
External Bus Interface Unit (EBIU), provides expansion with SDRAM,
flash memory, and SRAM, optionally accessing up to 132M bytes of phys-
ical memory.

Table 1-1. Memory Comparison

Type of Memory ADSP-BF531 ADSP-BF532 ADSP-BF533

Instruction SRAM/Cache 16K byte 16K byte 16K byte

Instruction SRAM 16K byte 32K byte 64K byte

Data SRAM/Cache 16K byte 32K byte 32K byte

Data SRAM - - 32K byte

Scratchpad 4K byte 4K byte 4K byte

Total 84K byte 116K byte 148K byte

ADSP-BF533 Blackfin Processor Hardware Reference 1-7

Introduction

The memory DMA controller provides high bandwidth data movement
capability. It can perform block transfers of code or data between the
internal memory and the external memory spaces.

Internal Memory
The processor has three blocks of on-chip memory that provide high
bandwidth access to the core:

• L1 instruction memory, consisting of SRAM and a 4-way set-asso-
ciative cache. This memory is accessed at full processor speed.

• L1 data memory, consisting of SRAM and/or a 2-way set-associa-
tive cache. This memory block is accessed at full processor speed.

• L1 scratchpad RAM, which runs at the same speed as the L1 mem-
ories but is only accessible as data SRAM and cannot be configured
as cache memory.

External Memory
External (off-chip) memory is accessed via the External Bus Interface Unit
(EBIU). This 16-bit interface provides a glueless connection to a bank of
synchronous DRAM (SDRAM) and as many as four banks of asynchro-
nous memory devices including flash memory, EPROM, ROM, SRAM,
and memory-mapped I/O devices.

The PC133-compliant SDRAM controller can be programmed to inter-
face to up to 128M bytes of SDRAM.

The asynchronous memory controller can be programmed to control up
to four banks of devices. Each bank occupies a 1M byte segment regardless
of the size of the devices used, so that these banks are only contiguous if
each is fully populated with 1M byte of memory.

Event Handling

1-8 ADSP-BF533 Blackfin Processor Hardware Reference

I/O Memory Space
Blackfin processors do not define a separate I/O space. All resources are
mapped through the flat 32-bit address space. Control registers for
on-chip I/O devices are mapped into memory-mapped registers (MMRs)
at addresses near the top of the 4G byte address space. These are separated
into two smaller blocks: one contains the control MMRs for all core func-
tions and the other contains the registers needed for setup and control of
the on-chip peripherals outside of the core. The MMRs are accessible only
in Supervisor mode. They appear as reserved space to on-chip peripherals.

Event Handling
The event controller on the processor handles all asynchronous and syn-
chronous events to the processor. The processor event handling supports
both nesting and prioritization. Nesting allows multiple event service rou-
tines to be active simultaneously. Prioritization ensures that servicing a
higher priority event takes precedence over servicing a lower priority
event. The controller provides support for five different types of events:

• Emulation – Causes the processor to enter Emulation mode, allow-
ing command and control of the processor via the JTAG interface.

• Reset – Resets the processor.

• Nonmaskable Interrupt (NMI) – The software watchdog timer or
the NMI input signal to the processor generates this event. The
NMI event is frequently used as a power-down indicator to initiate
an orderly shutdown of the system.

• Exceptions – Synchronous to program flow. That is, the exception
is taken before the instruction is allowed to complete. Conditions
such as data alignment violations and undefined instructions cause
exceptions.

ADSP-BF533 Blackfin Processor Hardware Reference 1-9

Introduction

• Interrupts – Asynchronous to program flow. These are caused by
input pins, timers, and other peripherals.

Each event has an associated register to hold the return address and an
associated return-from-event instruction. When an event is triggered, the
state of the processor is saved on the supervisor stack.

The processor event controller consists of two stages: the Core Event Con-
troller (CEC) and the System Interrupt Controller (SIC). The CEC works
with the SIC to prioritize and control all system events. Conceptually,
interrupts from the peripherals arrive at the SIC and are routed directly
into the general-purpose interrupts of the CEC.

Core Event Controller (CEC)
The Core Event Controller supports nine general-purpose interrupts
(IVG15–7), in addition to the dedicated interrupt and exception events.
Of these general-purpose interrupts, the two lowest priority interrupts
(IVG15–14) are recommended to be reserved for software interrupt han-
dlers, leaving seven prioritized interrupt inputs to support peripherals.

System Interrupt Controller (SIC)
The System Interrupt Controller provides the mapping and routing of
events from the many peripheral interrupt sources to the prioritized gen-
eral-purpose interrupt inputs of the CEC. Although the processor
provides a default mapping, the user can alter the mappings and priorities
of interrupt events by writing the appropriate values into the Interrupt
Assignment Registers (IAR).

DMA Support

1-10 ADSP-BF533 Blackfin Processor Hardware Reference

DMA Support
The processor has multiple, independent DMA controllers that support
automated data transfers with minimal overhead for the core. DMA trans-
fers can occur between the internal memories and any of its DMA-capable
peripherals. Additionally, DMA transfers can be accomplished between
any of the DMA-capable peripherals and external devices connected to the
external memory interfaces, including the SDRAM controller and the
asynchronous memory controller. DMA-capable peripherals include the
SPORTs, SPI port, UART, and PPI. Each individual DMA-capable
peripheral has at least one dedicated DMA channel.

The DMA controller supports both one-dimensional (1D) and
two-dimensional (2D) DMA transfers. DMA transfer initialization can be
implemented from registers or from sets of parameters called descriptor
blocks.

The 2D DMA capability supports arbitrary row and column sizes up to
64K elements by 64K elements, and arbitrary row and column step sizes
up to +/- 32K elements. Furthermore, the column step size can be less
than the row step size, allowing implementation of interleaved data-
streams. This feature is especially useful in video applications where data
can be de-interleaved on the fly.

Examples of DMA types supported include:

• A single, linear buffer that stops upon completion

• A circular, auto-refreshing buffer that interrupts on each full or
fractionally full buffer

• 1D or 2D DMA using a linked list of descriptors

• 2D DMA using an array of descriptors specifying only the base
DMA address within a common page

ADSP-BF533 Blackfin Processor Hardware Reference 1-11

Introduction

In addition to the dedicated peripheral DMA channels, there is a separate
memory DMA channel provided for transfers between the various memo-
ries of the system. This enables transfers of blocks of data between any of
the memories—including external SDRAM, ROM, SRAM, and flash
memory—with minimal processor intervention. Memory DMA transfers
can be controlled by a very flexible descriptor-based methodology or by a
standard register-based autobuffer mechanism.

External Bus Interface Unit
The External Bus Interface Unit (EBIU) on the processor interfaces with a
wide variety of industry-standard memory devices. The controller consists
of an SDRAM controller and an asynchronous memory controller.

PC133 SDRAM Controller
The SDRAM controller provides an interface to a single bank of indus-
try-standard SDRAM devices or DIMMs. Fully compliant with the
PC133 SDRAM standard, the bank can be configured to contain between
16M and 128M bytes of memory.

A set of programmable timing parameters is available to configure the
SDRAM bank to support slower memory devices. The memory bank is
16 bits wide for minimum device count and lower system cost.

Asynchronous Controller
The asynchronous memory controller provides a configurable interface for
up to four separate banks of memory or I/O devices. Each bank can be
independently programmed with different timing parameters. This allows
connection to a wide variety of memory devices, including SRAM, ROM,
and flash EPROM, as well as I/O devices that interface with standard
memory control lines. Each bank occupies a 1M byte window in the

Parallel Peripheral Interface

1-12 ADSP-BF533 Blackfin Processor Hardware Reference

processor address space, but if not fully populated, these are not made
contiguous by the memory controller. The banks are 16 bits wide, for
interfacing to a range of memories and I/O devices.

Parallel Peripheral Interface
The processor provides a Parallel Peripheral Interface (PPI) that can con-
nect directly to parallel A/D and D/A converters, ITU-R 601/656 video
encoders and decoders, and other general-purpose peripherals. The PPI
consists of a dedicated input clock pin, up to 3 frame synchronization
pins, and up to 16 data pins. The input clock supports parallel data rates
up to half the system clock rate.

In ITU-R 656 modes, the PPI receives and parses a data stream of 8-bit or
10-bit data elements. On-chip decode of embedded preamble control and
synchronization information is supported.

Three distinct ITU-R 656 modes are supported:

• Active Video Only – The PPI does not read in any data between
the End of Active Video (EAV) and Start of Active Video (SAV)
preamble symbols, or any data present during the vertical blanking
intervals. In this mode, the control byte sequences are not stored to
memory; they are filtered by the PPI.

• Vertical Blanking Only – The PPI only transfers Vertical Blanking
Interval (VBI) data, as well as horizontal blanking information and
control byte sequences on VBI lines.

• Entire Field – The entire incoming bitstream is read in through the
PPI. This includes active video, control preamble sequences, and
ancillary data that may be embedded in horizontal and vertical
blanking intervals.

ADSP-BF533 Blackfin Processor Hardware Reference 1-13

Introduction

Though not explicitly supported, ITU-R 656 output functionality can be
achieved by setting up the entire frame structure (including active video,
blanking, and control information) in memory and streaming the data out
the PPI in a frame sync-less mode. The processor’s 2D DMA features
facilitate this transfer by allowing the static frame buffer (blanking and
control codes) to be placed in memory once, and simply updating the
active video information on a per-frame basis.

The general-purpose modes of the PPI are intended to suit a wide variety
of data capture and transmission applications. The modes are divided into
four main categories, each allowing up to 16 bits of data transfer per
PPI_CLK cycle:

• Data Receive with Internally Generated Frame Syncs

• Data Receive with Externally Generated Frame Syncs

• Data Transmit with Internally Generated Frame Syncs

• Data Transmit with Externally Generated Frame Syncs

These modes support ADC/DAC connections, as well as video communi-
cation with hardware signalling. Many of the modes support more than
one level of frame synchronization. If desired, a programmable delay can
be inserted between assertion of a frame sync and reception/transmission
of data.

Serial Ports (SPORTs)
The processor incorporates two dual-channel synchronous serial ports
(SPORT0 and SPORT1) for serial and multiprocessor communications.
The SPORTs support these features:

• Bidirectional, I2S capable operation. Each SPORT has two sets of
independent transmit and receive pins, enabling eight channels of
I2S stereo audio.

Serial Ports (SPORTs)

1-14 ADSP-BF533 Blackfin Processor Hardware Reference

• Buffered (eight-deep) transmit and receive ports. Each port has a
data register for transferring data words to and from other proces-
sor components and shift registers for shifting data in and out of
the data registers.

• Clocking. Each transmit and receive port can either use an external
serial clock or can generate its own in a wide range of frequencies.

• Word length. Each SPORT supports serial data words from 3 to 32
bits in length, transferred in most significant bit first or least signif-
icant bit first format.

• Framing. Each transmit and receive port can run with or without
frame sync signals for each data word. Frame sync signals can be
generated internally or externally, active high or low, and with
either of two pulse widths and early or late frame sync.

• Companding in hardware

Each SPORT can perform A-law or µ-law companding according
to ITU recommendation G.711. Companding can be selected on
the transmit and/or receive channel of the SPORT without addi-
tional latencies.

• DMA operations with single cycle overhead

Each SPORT can automatically receive and transmit multiple buf-
fers of memory data. The processor can link or chain sequences of
DMA transfers between a SPORT and memory.

• Interrupts

Each transmit and receive port generates an interrupt upon com-
pleting the transfer of a data word or after transferring an entire
data buffer or buffers through DMA.

ADSP-BF533 Blackfin Processor Hardware Reference 1-15

Introduction

• Multichannel capability

Each SPORT supports 128 channels out of a 1024-channel win-
dow and is compatible with the H.100, H.110, MVIP-90, and
HMVIP standards.

Serial Peripheral Interface (SPI) Port
The processor has an SPI-compatible port that enables the processor to
communicate with multiple SPI-compatible devices.

The SPI interface uses three pins for transferring data: two data pins and a
clock pin. An SPI chip select input pin lets other SPI devices select the
processor, and seven SPI chip select output pins let the processor select
other SPI devices. The SPI select pins are reconfigured Programmable Flag
pins. Using these pins, the SPI port provides a full-duplex, synchronous
serial interface, which supports both master and slave modes and multi-
master environments.

The SPI port’s baud rate and clock phase/polarities are programmable,
and it has an integrated DMA controller, configurable to support either
transmit or receive datastreams. The SPI’s DMA controller can only ser-
vice unidirectional accesses at any given time.

During transfers, the SPI port simultaneously transmits and receives by
serially shifting data in and out of its two serial data lines. The serial clock
line synchronizes the shifting and sampling of data on the two serial data
lines.

Timers

1-16 ADSP-BF533 Blackfin Processor Hardware Reference

Timers
There are four general-purpose programmable timer units in the proces-
sor. Three timers have an external pin that can be configured either as a
Pulse Width Modulator (PWM) or timer output, as an input to clock the
timer, or as a mechanism for measuring pulse widths of external events.
These timer units can be synchronized to an external clock input con-
nected to the PF1 pin, an external clock input to the PPI_CLK pin, or to the
internal SCLK.

The timer units can be used in conjunction with the UART to measure
the width of the pulses in the datastream to provide an autobaud detect
function for a serial channel.

The timers can generate interrupts to the processor core to provide peri-
odic events for synchronization, either to the processor clock or to a count
of external signals.

In addition to the three general-purpose programmable timers, a fourth
timer is also provided. This extra timer is clocked by the internal processor
clock and is typically used as a system tick clock for generation of operat-
ing system periodic interrupts.

ADSP-BF533 Blackfin Processor Hardware Reference 1-17

Introduction

UART Port
The processor provides a full-duplex Universal Asynchronous
Receiver/Transmitter (UART) port, which is fully compatible with
PC-standard UARTs. The UART port provides a simplified UART inter-
face to other peripherals or hosts, providing full- or half-duplex,
DMA-supported, asynchronous transfers of serial data. The UART port
includes support for 5 to 8 data bits; 1 or 2 stop bits; and none, even, or
odd parity. The UART port supports two modes of operation:

• Programmed I/O. The processor sends or receives data by writing
or reading I/O-mapped UART registers. The data is double buff-
ered on both transmit and receive.

• Direct Memory Access (DMA). The DMA controller transfers
both transmit and receive data. This reduces the number and fre-
quency of interrupts required to transfer data to and from memory.
The UART has two dedicated DMA channels, one for transmit
and one for receive. These DMA channels have lower priority than
most DMA channels because of their relatively low service rates.

The UART port’s baud rate, serial data format, error code generation and
status, and interrupts can be programmed to support:

• Wide range of bit rates

• Data formats from 7 to 12 bits per frame

• Generation of maskable interrupts to the processor by both trans-
mit and receive operations

In conjunction with the general-purpose timer functions, autobaud detec-
tion is supported.

The capabilities of the UART are further extended with support for the

Infrared Data Association (IrDA®) Serial Infrared Physical Layer Link
Specification (SIR) protocol.

Real-Time Clock

1-18 ADSP-BF533 Blackfin Processor Hardware Reference

Real-Time Clock
The processor’s Real-Time Clock (RTC) provides a robust set of digital
watch features, including current time, stopwatch, and alarm. The RTC is
clocked by a 32.768 kHz crystal external to the processor. The RTC
peripheral has dedicated power supply pins, so that it can remain powered
up and clocked even when the rest of the processor is in a low power state.
The RTC provides several programmable interrupt options, including
interrupt per second, minute, hour, or day clock ticks, interrupt on pro-
grammable stopwatch countdown, or interrupt at a programmed alarm
time.

The 32.768 kHz input clock frequency is divided down to a 1 Hz signal
by a prescaler. The counter function of the timer consists of four counters:
a 60 second counter, a 60 minute counter, a 24 hours counter, and a
32768 day counter.

When enabled, the alarm function generates an interrupt when the output
of the timer matches the programmed value in the alarm control register.
There are two alarms. The first alarm is for a time of day. The second
alarm is for a day and time of that day.

The stopwatch function counts down from a programmed value, with one
minute resolution. When the stopwatch is enabled and the counter under-
flows, an interrupt is generated.

Like the other peripherals, the RTC can wake up the processor from Sleep
mode or Deep Sleep mode upon generation of any RTC wakeup event. An
RTC wakeup event can also wake up the on-chip internal voltage regula-
tor from a powered down state.

ADSP-BF533 Blackfin Processor Hardware Reference 1-19

Introduction

Watchdog Timer
The processor includes a 32-bit timer that can be used to implement a
software watchdog function. A software watchdog can improve system
availability by forcing the processor to a known state through generation
of a hardware reset, nonmaskable interrupt (NMI), or general-purpose
interrupt, if the timer expires before being reset by software. The pro-
grammer initializes the count value of the timer, enables the appropriate
interrupt, then enables the timer. Thereafter, the software must reload the
counter before it counts to zero from the programmed value. This protects
the system from remaining in an unknown state where software that
would normally reset the timer has stopped running due to an external
noise condition or software error.

If configured to generate a hardware reset, the watchdog timer resets both
the CPU and the peripherals. After a reset, software can determine if the
watchdog was the source of the hardware reset by interrogating a status bit
in the watchdog control register.

The timer is clocked by the system clock (SCLK), at a maximum frequency
of fSCLK.

Programmable Flags
The processor has 16 bidirectional programmable flag (PF) or general-pur-
pose I/O pins, PF[15:0]. Each pin can be individually configured using
the flag control, status, and interrupt registers.

• Flag Direction Control register – Specifies the direction of each
individual PFx pin as input or output.

• Flag Control and Status registers – The processor employs a
“write-1-to-modify” mechanism that allows any combination of
individual flags to be modified in a single instruction, without

Clock Signals

1-20 ADSP-BF533 Blackfin Processor Hardware Reference

affecting the level of any other flags. Four control registers are pro-
vided. One register is written in order to set flag values, one register
is written in order to clear flag values, one register is written in
order to toggle flag values, and one register is written in order to
specify any number of flag values. Reading the Flag Status register
allows software to interrogate the sense of the flags.

• Flag Interrupt Mask registers – The two Flag Interrupt Mask regis-
ters allow each individual PFx pin to function as an interrupt to the
processor. Similar to the two Flag Control registers that are used to
set and clear individual flag values, one Flag Interrupt Mask regis-
ter sets bits to enable interrupt function, and the other Flag
Interrupt Mask register clears bits to disable interrupt function.
The PFx pins defined as inputs can be configured to generate hard-
ware interrupts, while output PFx pins can be triggered by software
interrupts.

• Flag Interrupt Sensitivity registers – The two Flag Interrupt Sensi-
tivity registers specify whether individual PFx pins are level- or
edge-sensitive and specify—if edge-sensitive—whether just the ris-
ing edge or both the rising and falling edges of the signal are
significant. One register selects the type of sensitivity, and one reg-
ister selects which edges are significant for edge sensitivity.

Clock Signals
The processor can be clocked by an external crystal, a sine wave input, or a
buffered, shaped clock derived from an external clock oscillator.

This external clock connects to the processor’s CLKIN pin. The CLKIN input
cannot be halted, changed, or operated below the specified frequency dur-
ing normal operation. This clock signal should be a TTL-compatible
signal.

ADSP-BF533 Blackfin Processor Hardware Reference 1-21

Introduction

The core clock (CCLK) and system peripheral clock (SCLK) are derived from
the input clock (CLKIN) signal. An on-chip Phase Locked Loop (PLL) is
capable of multiplying the CLKIN signal by a user-programmable (1x to
63x) multiplication factor (bounded by specified minimum and maximum
VCO frequencies). The default multiplier is 10x, but it can be modified by a
software instruction sequence. On-the-fly frequency changes can be made
by simply writing to the PLL_DIV register.

All on-chip peripherals are clocked by the system clock (SCLK). The system
clock frequency is programmable by means of the SSEL[3:0] bits of the
PLL_DIV register.

Dynamic Power Management
The processor provides four operating modes, each with a different perfor-
mance/power profile. In addition, Dynamic Power Management provides
the control functions to dynamically alter the processor core supply volt-
age to further reduce power dissipation. Control of clocking to each of the
peripherals also reduces power consumption.

Dynamic Power Management

1-22 ADSP-BF533 Blackfin Processor Hardware Reference

Full On Mode (Maximum Performance)
In the Full On mode, the PLL is enabled, not bypassed, providing the
maximum operational frequency. This is the normal execution state in
which maximum performance can be achieved. The processor core and all
enabled peripherals run at full speed.

Active Mode (Moderate Power Savings)
In the Active mode, the PLL is enabled, but bypassed. Because the PLL is
bypassed, the processor’s core clock (CCLK) and system clock (SCLK) run at
the input clock (CLKIN) frequency. In this mode, the CLKIN to VCO multi-
plier ratio can be changed, although the changes are not realized until the
Full On mode is entered. DMA access is available to appropriately config-
ured L1 memories.

In the Active mode, it is possible to disable the PLL through the PLL
Control register (PLL_CTL). If disabled, the PLL must be re-enabled before
transitioning to the Full On or Sleep modes.

Sleep Mode (High Power Savings)
The Sleep mode reduces power dissipation by disabling the clock to the
processor core (CCLK). The PLL and system clock (SCLK), however, con-
tinue to operate in this mode. Typically an external event or RTC activity
will wake up the processor. When in the Sleep mode, assertion of any
interrupt causes the processor to sense the value of the bypass bit (BYPASS)
in the PLL Control register (PLL_CTL). If bypass is disabled, the processor
transitions to the Full On mode. If bypass is enabled, the processor transi-
tions to the Active mode.

When in the Sleep mode, system DMA access to L1 memory is not
supported.

ADSP-BF533 Blackfin Processor Hardware Reference 1-23

Introduction

Deep Sleep Mode (Maximum Power Savings)
The Deep Sleep mode maximizes power savings by disabling the processor
core and synchronous system clocks (CCLK and SCLK). Asynchronous sys-
tems, such as the RTC, may still be running, but cannot access internal
resources or external memory. This powered-down mode can only be
exited by assertion of the reset interrupt or by an asynchronous interrupt
generated by the RTC. When in Deep Sleep mode, an RTC asynchronous
interrupt causes the processor to transition to the Active mode. Assertion
of RESET while in Deep Sleep mode causes the processor to transition to
the Full On mode.

Hibernate State
For lowest possible power dissipation, this state allows the internal supply
(VDDINT) to be powered down, while keeping the I/O supply (VDDEXT)
running. Although not strictly an operating mode like the four modes
detailed above, it is illustrative to view it as such.

Voltage Regulation
The processor provides an on-chip voltage regulator that can generate
internal voltage levels (0.8 V to 1.2 V) from an external 2.25 V to 3.6 V
supply. Figure 1-3 shows the typical external components required to
complete the power management system. The regulator controls the inter-
nal logic voltage levels and is programmable with the Voltage Regulator
Control register (VR_CTL) in increments of 50 mV. To reduce standby
power consumption, the internal voltage regulator can be programmed to
remove power to the processor core while keeping I/O power supplied.
While in this state, VDDEXT can still be applied, eliminating the need for
external buffers. The regulator can also be disabled and bypassed at the
user’s discretion.

Boot Modes

1-24 ADSP-BF533 Blackfin Processor Hardware Reference

Boot Modes
The processor has two mechanisms for automatically loading internal L1
instruction memory after a reset. A third mode is provided to execute from
external memory, bypassing the boot sequence:

• Execute from 16-bit external memory – Execution starts from
address 0x2000 0000 with 16-bit packing. The boot ROM is
bypassed in this mode. All configuration settings are set for the
slowest device possible (3-cycle hold time; 15-cycle R/W access
times; 4-cycle setup).

• Boot from 8-bit or 16-bit external flash memory – The flash boot
routine located in boot ROM memory space is set up using Asyn-
chronous Memory Bank 0. All configuration settings are set for the
slowest device possible (3-cycle hold time; 15-cycle R/W access
times; 4-cycle setup).

• Boot from SPI serial EEPROM (8-, 16-, or 24-bit addressable) –
The SPI uses the PF2 output pin to select a single SPI EEPROM
device, submits successive read commands at addresses 0x00,
0x0000, and 0x000000 until a valid 8-, 16-, or 24-bit addressable
EEPROM is detected, and begins clocking data into the beginning
of L1 instruction memory.

Figure 1-3. Voltage Regulator Circuit

VDDEXT

VDDINT

EXTERNAL COMPONENTS

VROUT[1-0]

ADSP-BF533 Blackfin Processor Hardware Reference 1-25

Introduction

• Boot from SPI host (slave mode) – A user-defined programmable
flag pin is an output on the Blackfin processor and an input on the
SPI host device. This flag allows the processor to hold off the host
device from sending data during certain sections of the boot pro-
cess. When this flag is de-asserted, the host can continue to send
bytes to the processor.

For each of the boot modes, a 10-byte header is first read from an external
memory device. The header specifies the number of bytes to be transferred
and the memory destination address. Multiple memory blocks may be
loaded by any boot sequence. Once all blocks are loaded, program execu-
tion commences from the start of L1 instruction SRAM.

In addition, bit 4 of the Reset Configuration register can be set by applica-
tion code to bypass the normal boot sequence during a software reset. For
this case, the processor jumps directly to the beginning of L1 instruction
memory.

Instruction Set Description
The ADSP-BF53x processor family assembly language instruction set
employs an algebraic syntax designed for ease of coding and readability.
The instructions have been specifically tuned to provide a flexible, densely
encoded instruction set that compiles to a very small final memory size.
The instruction set also provides fully featured multifunction instructions
that allow the programmer to use many of the processor core resources in
a single instruction. Coupled with many features more often seen on
microcontrollers, this instruction set is very efficient when compiling C
and C++ source code. In addition, the architecture supports both user
(algorithm/application code) and supervisor (O/S kernel, device drivers,
debuggers, ISRs) modes of operation, allowing multiple levels of access to
core resources.

Development Tools

1-26 ADSP-BF533 Blackfin Processor Hardware Reference

The assembly language, which takes advantage of the processor’s unique
architecture, offers these advantages:

• Seamlessly integrated DSP/CPU features optimized for both 8-bit
and 16-bit operations

• A multi-issue load/store modified Harvard architecture, which sup-
ports two 16-bit MAC or four 8-bit ALU + two load/store + two
pointer updates per cycle

• All registers, I/O, and memory mapped into a unified 4G byte
memory space, providing a simplified programming model

• Microcontroller features, such as arbitrary bit and bit field manipu-
lation, insertion, and extraction; integer operations on 8-, 16-, and
32-bit data types; and separate user and supervisor stack pointers.

Code density enhancements include intermixing of 16- and 32-bit
instructions with no mode switching or code segregation. Frequently used
instructions are encoded in 16 bits.

Development Tools
• Create, compile, assemble, and link application programs written

in C++, C, and assembly

• Load, run, step, halt, and set breakpoints in application programs

• Read and write data and program memory

• Read and write core and peripheral registers

• Plot memory

ADSP-BF533 Blackfin Processor Hardware Reference 1-27

Introduction

The processor is supported by a complete set of software and hardware
development tools, including Analog Devices’ emulators and the Cross-
Core Embedded Studio or VisualDSP++ development environment. (The
emulator hardware that supports other Analog Devices processors also
emulates the processor.)

The development environments support advanced application code devel-
opment and debug with features such as:

Analog Devices DSP emulators use the IEEE 1149.1 JTAG test access
port to monitor and control the target board processor during emulation.
The emulator provides full speed emulation, allowing inspection and
modification of memory, registers, and processor stacks. Nonintrusive
in-circuit emulation is assured by the use of the processor JTAG inter-
face—the emulator does not affect target system loading or timing.

Software tools also include Board Support Packages (BSPs). Hardware
tools also include standalone evaluation systems (boards and extenders). In
addition to the software and hardware development tools available from
Analog Devices, third parties provide a wide range of tools supporting the
Blackfin processors. Third party software tools include DSP libraries,
real-time operating systems, and block diagram design tools.

Development Tools

1-28 ADSP-BF533 Blackfin Processor Hardware Reference

ADSP-BF533 Blackfin Processor Hardware Reference 2-1

2 COMPUTATIONAL UNITS

The processor’s computational units perform numeric processing for DSP
and general control algorithms. The six computational units are two arith-
metic/logic units (ALUs), two multiplier/accumulator (multiplier) units, a
shifter, and a set of video ALUs. These units get data from registers in the
Data Register File. Computational instructions for these units provide
fixed-point operations, and each computational instruction can execute
every cycle.

The computational units handle different types of operations. The ALUs
perform arithmetic and logic operations. The multipliers perform
multiplication and execute multiply/add and multiply/subtract opera-
tions. The shifter executes logical shifts and arithmetic shifts and performs
bit packing and extraction. The video ALUs perform Single Instruction,
Multiple Data (SIMD) logical operations on specific 8-bit data operands.

Data moving in and out of the computational units goes through the Data
Register File, which consists of eight registers, each 32 bits wide. In opera-
tions requiring 16-bit operands, the registers are paired, providing sixteen
possible 16-bit registers.

The processor’s assembly language provides access to the Data Register
File. The syntax lets programs move data to and from these registers and
specify a computation’s data format at the same time.

Figure 2-1 provides a graphical guide to the other topics in this chapter.
An examination of each computational unit provides details about its
operation and is followed by a summary of computational instructions.
Studying the details of the computational units, register files, and data

2-2 ADSP-BF533 Blackfin Processor Hardware Reference

buses leads to a better understanding of proper data flow for
computations. Next, details about the processor’s advanced parallelism
reveal how to take advantage of multifunction instructions.

Figure 2-1 shows the relationship between the Data Register File and the
computational units—multipliers, ALUs, and shifter.

Single function multiplier, ALU, and shifter instructions have unrestricted
access to the data registers in the Data Register File. Multifunction opera-
tions may have restrictions that are described in the section for that
particular operation.

Figure 2-1. Processor Core Architecture

SP

SEQUENCER

ALIGN

DECODE

LOOP BUFFER

DAG0 DAG1

16 16

88 8 8

40 40

ACC 0 ACC 1

BARREL
SHIFTER

DATA ARITHMETIC UNIT

CONTROL
UNIT

ADDRESS ARITHMETIC UNIT

FP

P5

P4
P3

P2

P1

P0

R7
R6

R5

R4

R3

R2

R1

R0

I3

I2

I1

I0

L3

L2

L1

L0

B3

B2

B1

B0

M3

M2

M1

M0

ADSP-BF533 Blackfin Processor Hardware Reference 2-3

Computational Units

Two additional registers, A0 and A1, provide 40-bit accumulator results.
These registers are dedicated to the ALUs and are used primarily for mul-
tiply-and-accumulate functions.

The traditional modes of arithmetic operations, such as fractional and
integer, are specified directly in the instruction. Rounding modes are set
from the ASTAT register, which also records status and conditions for the
results of the computational operations.

Using Data Formats
ADSP-BF53x processors are primarily 16-bit, fixed-point machines. Most
operations assume a two’s-complement number representation, while oth-
ers assume unsigned numbers or simple binary strings. Other instructions
support 32-bit integer arithmetic, with further special features supporting
8-bit arithmetic and block floating point. For detailed information about
each number format, see Appendix D, “Numeric Formats”

In the ADSP-BF53x processor family arithmetic, signed numbers are
always in two’s-complement format. These processors do not use
signed-magnitude, one’s-complement, binary-coded decimal (BCD), or
excess-n formats.

Binary String
The binary string format is the least complex binary notation; in it, 16 bits
are treated as a bit pattern. Examples of computations using this format
are the logical operations NOT, AND, OR, XOR. These ALU operations
treat their operands as binary strings with no provision for sign bit or
binary point placement.

Using Data Formats

2-4 ADSP-BF533 Blackfin Processor Hardware Reference

Unsigned
Unsigned binary numbers may be thought of as positive and having nearly
twice the magnitude of a signed number of the same length. The processor
treats the least significant words of multiple precision numbers as
unsigned numbers.

Signed Numbers: Two’s-Complement
In ADSP-BF53x processor arithmetic, the word signed refers to
two’s-complement numbers. Most ADSP-BF53x processor family opera-
tions presume or support two’s-complement arithmetic.

Fractional Representation: 1.15
ADSP-BF53x processor arithmetic is optimized for numerical values in a
fractional binary format denoted by 1.15 (“one dot fifteen”). In the 1.15
format, 1 sign bit (the Most Significant Bit (MSB)) and 15 fractional bits
represent values from –1 to 0.999969.

Figure 2-2 shows the bit weighting for 1.15 numbers as well as some
examples of 1.15 numbers and their decimal equivalents.

Figure 2-2. Bit Weighting for 1.15 Numbers

20 2–1 2–2 2–3 2–4 2–5 2–6 2–7 2–8 2–9 2–10 2–11 2–12 2–13 2–14 2–15

1.15 NUMBER
(HEXADECIMAL)
0x0001 0.000031
0x7FFF 0.999969
0xFFFF –0.000031
0x8000 –1.000000

DECIMAL
EQUIVALENT

ADSP-BF533 Blackfin Processor Hardware Reference 2-5

Computational Units

Register Files
The processor’s computational units have three definitive register
groups—a Data Register File, a Pointer Register File, and set of Data
Address Generator (DAG) registers.

• The Data Register File receives operands from the data buses for
the computational units and stores computational results.

• The Pointer Register File has pointers for addressing operations.

• The DAG registers are dedicated registers that manage zero-over-
head circular buffers for DSP operations.

For more information, see Chapter 5, “Data Address Generators”.

The processor register files appear in Figure 2-3.

Figure 2-3. Register Files

 Data Registers Data Address Generator Registers (DAGs)

R0

R1

R2

R3

R4

R5

R6

R7

A0

A1

A0.X A0.W

P0

P1

P2

P3

P4

P5

 SP

I0

I2

I3

L0 B0

B3L3

L2

L1 B1

B2

I1

R0.H R0.L

R1.H

R2.H

R3.H

R4.H

R5.H

R6.H

R7.H

R1.L

R2.L

R3.L

R4.L

R5.L

R6.L

R7.L

A1.X A1.W
FP

M0

M3

M1

M2

Register Files

2-6 ADSP-BF533 Blackfin Processor Hardware Reference

 In the processor, a word is 32 bits long; H denotes the high order
16 bits of a 32-bit register; L denotes the low order 16 bits of a
32-bit register. For example, A0.W contains the lower 32 bits of the
40-bit A0 register; A0.L contains the lower 16 bits of A0.W, and A0.H
contains the upper 16 bits of A0.W.

Data Register File
The Data Register File consists of eight registers, each 32 bits wide. Each
register may be viewed as a pair of independent 16-bit registers. Each is
denoted as the low half or high half. Thus the 32-bit register R0 may be
regarded as two independent register halves, R0.L and R0.H.

Three separate buses (two read, one write) connect the Register File to the
L1 data memory, each bus being 32 bits wide. Transfers between the Data
Register File and the data memory can move up to four 16-bit words of
valid data in each cycle.

Accumulator Registers
In addition to the Data Register File, the processor has two dedicated,
40-bit accumulator registers. Each can be referred to as its 16-bit low half
(An.L) or high half (An.H) plus its 8-bit extension (An.X). Each can also be
referred to as a 32-bit register (An.W) consisting of the lower 32 bits, or as
a complete 40-bit result register (An).

Pointer Register File
The general-purpose Address Pointer registers, also called P-registers, are
organized as:

• 6-entry, P-register files P[5:0]

• Frame Pointers (FP) used to point to the current procedure’s activa-
tion record

ADSP-BF533 Blackfin Processor Hardware Reference 2-7

Computational Units

• Stack Pointer registers (SP) used to point to the last used location
on the runtime stack. See mode dependent registers in Chapter 3,
“Operating Modes and States”.

P-registers are 32 bits wide. Although P-registers are primarily used for
address calculations, they may also be used for general integer arithmetic
with a limited set of arithmetic operations; for instance, to maintain coun-
ters. However, unlike the Data registers, P-register arithmetic does not
affect the Arithmetic Status (ASTAT) register status flags.

DAG Register Set
DSP instructions primarily use the Data Address Generator (DAG) regis-
ter set for addressing. The DAG register set consists of these registers:

• I[3:0] contain index addresses

• M[3:0] contain modify values

• B[3:0] contain base addresses

• L[3:0] contain length values

All DAG registers are 32 bits wide.

The I (Index) registers and B (Base) registers always contain addresses of
8-bit bytes in memory. The Index registers contain an effective address.
The M (Modify) registers contain an offset value that is added to one of
the Index registers or subtracted from it.

The B and L (Length) registers define circular buffers. The B register con-
tains the starting address of a buffer, and the L register contains the length
in bytes. Each L and B register pair is associated with the corresponding I
register. For example, L0 and B0 are always associated with I0. However,
any M register may be associated with any I register. For example, I0 may
be modified by M3. For more information, see Chapter 5, “Data Address
Generators”.

Register Files

2-8 ADSP-BF533 Blackfin Processor Hardware Reference

Register File Instruction Summary
Table 2-1 lists the register file instructions. For more information about
assembly language syntax, see Blackfin Processor Programming Reference.

In Table 2-1, note the meaning of these symbols:

• Allreg denotes: R[7:0], P[5:0], SP, FP, I[3:0], M[3:0],
B[3:0], L[3:0], A0.X, A0.W, A1.X, A1.W, ASTAT, RETS, RETI,

RETX, RETN, RETE, LC[1:0], LT[1:0], LB[1:0], USP, SEQSTAT,
SYSCFG, CYCLES, and CYCLES2.

• An denotes either ALU Result register A0 or A1.

• Dreg denotes any Data Register File register.

• Sysreg denotes the system registers: ASTAT, SEQSTAT, SYSCFG, RETI,
RETX, RETN, RETE, or RETS, LC[1:0], LT[1:0], LB[1:0], CYCLES, and
CYCLES2.

• Preg denotes any Pointer register, FP, or SP register.

• Dreg_even denotes R0,R2,R4, or R6.

• Dreg_odd denotes R1,R3,R5, or R7.

• DPreg denotes any Data Register File register or any Pointer regis-
ter, FP, or SP register.

• Dreg_lo denotes the lower 16 bits of any Data Register File
register.

• Dreg_hi denotes the upper 16 bits of any Data Register File
register.

• An.L denotes the lower 16 bits of Accumulator A0.W or A1.W.

• An.H denotes the upper 16 bits of Accumulator A0.W or A1.W.

ADSP-BF533 Blackfin Processor Hardware Reference 2-9

Computational Units

• Dreg_byte denotes the low order 8 bits of each Data register.

• Option (X) denotes sign extended.

• Option (Z) denotes zero extended.

• * Indicates the flag may be set or cleared, depending on the result
of the instruction.

• ** Indicates the flag is cleared.

• – Indicates no effect.

Table 2-1. Register File Instruction Summary

Instruction ASTAT Status Flags

AZ AN AC0
AC0_COPY
AC1

AV0
AVS

AV1
AV1S

CC V
V_COPY
VS

allreg = allreg ; 1 – – – – – – –

An = An ; – – – – – – –

An = Dreg ; – – – – – – –

Dreg_even = A0 ; * * – – – – *

Dreg_odd = A1 ; * * – – – – *

Dreg_even = A0,
Dreg_odd = A1 ;

* * – – – – *

Dreg_odd = A1,
Dreg_even = A0 ;

* * – – – – *

IF CC DPreg = DPreg ; – – – – – – –

IF ! CC DPreg = DPreg ; – – – – – – –

Dreg = Dreg_lo (Z) ; * ** ** – – – **/–

Dreg = Dreg_lo (X) ; * * ** – – – **/–

An.X = Dreg_lo ; – – – – – – –

Dreg_lo = An.X ; – – – – – – –

Data Types

2-10 ADSP-BF533 Blackfin Processor Hardware Reference

Data Types
The processor supports 32-bit words, 16-bit half words, and bytes. The
32- and 16-bit words can be integer or fractional, but bytes are always
integers. Integer data types can be signed or unsigned, but fractional data
types are always signed.

Table 2-2 illustrates the formats for data that resides in memory, in the
register file, and in the accumulators. In the table, the letter d represents
one bit, and the letter s represents one signed bit.

An.L = Dreg_lo ; – – – – – – –

An.H = Dreg_hi ; – – – – – – –

Dreg_lo = A0 ; * * – – – – *

Dreg_hi = A1 ; * * – – – – *

Dreg_hi = A1 ;
Dreg_lo = A0 ;

* * – – – – *

Dreg_lo = A0 ;
Dreg_hi = A1 ;

* * – – – – *

Dreg = Dreg_byte (Z) ; * ** ** – – – **/–

Dreg = Dreg_byte (X) ; * * ** – – – **/–

1 Warning: Not all register combinations are allowed. For details, see the functional description of
the Move Register instruction in Blackfin Processor Programming Reference.

Table 2-1. Register File Instruction Summary (Cont’d)

Instruction ASTAT Status Flags

AZ AN AC0
AC0_COPY
AC1

AV0
AVS

AV1
AV1S

CC V
V_COPY
VS

ADSP-BF533 Blackfin Processor Hardware Reference 2-11

Computational Units

Some instructions manipulate data in the registers by sign-extending or
zero-extending the data to 32 bits:

• Instructions zero-extend unsigned data

• Instructions sign-extend signed 16-bit half words and 8-bit bytes

Other instructions manipulate data as 32-bit numbers. In addition, two
16-bit half words or four 8-bit bytes can be manipulated as 32-bit values.
For details, refer to the instructions in Blackfin Processor Programming
Reference.

In Table 2-2, note the meaning of these symbols:

• s = sign bit(s)

• d = data bit(s)

• “.” = decimal point by convention; however, a decimal point does
not literally appear in the number.

• Italics denotes data from a source other than adjacent bits.

Table 2-2. Data Formats

Format Representation in Memory Representation in 32-bit Register

32.0 Unsigned
Word

dddd dddd dddd dddd dddd
dddd dddd dddd

dddd dddd dddd dddd dddd dddd dddd
dddd

32.0 Signed
Word

sddd dddd dddd dddd dddd
dddd dddd dddd

sddd dddd dddd dddd dddd dddd dddd
dddd

16.0 Unsigned
Half Word

dddd dddd dddd dddd 0000 0000 0000 0000 dddd dddd dddd
dddd

16.0 Signed
Half Word

sddd dddd dddd dddd ssss ssss ssss ssss sddd dddd dddd dddd

8.0 Unsigned
Byte

dddd dddd 0000 0000 0000 0000 0000 0000 dddd
dddd

8.0 Signed
Byte

sddd dddd ssss ssss ssss ssss ssss ssss sddd dddd

Data Types

2-12 ADSP-BF533 Blackfin Processor Hardware Reference

Endianess
Both internal and external memory are accessed in little endian byte order.
For more information, see “Memory Transaction Model” on page -65.

ALU Data Types
Operations on each ALU treat operands and results as either 16- or 32-bit
binary strings, except the signed division primitive (DIVS). ALU result sta-
tus bits treat the results as signed, indicating status with the overflow flags
(AV0, AV1) and the negative flag (AN). Each ALU has its own sticky over-
flow flag, AV0S and AV1S. Once set, these bits remain set until cleared by
writing directly to the ASTAT register. An additional V flag is set or cleared

0.16 Unsigned
Fraction

.dddd dddd dddd dddd 0000 0000 0000 0000 .dddd dddd dddd
dddd

1.15 Signed
Fraction

s.ddd dddd dddd dddd ssss ssss ssss ssss s.ddd dddd dddd dddd

0.32 Unsigned
Fraction

.dddd dddd dddd dddd dddd
dddd dddd dddd

.dddd dddd dddd dddd dddd dddd dddd
dddd

1.31 Signed
Fraction

s.ddd dddd dddd dddd dddd
dddd dddd dddd

s.ddd dddd dddd dddd dddd dddd dddd
dddd

Packed 8.0
Unsigned Byte

dddd dddd dddd dddd dddd
dddd dddd dddd

dddd dddd dddd dddd dddd dddd dddd dddd

Packed 0.16
Unsigned Frac-
tion

.dddd dddd dddd dddd .dddd
dddd dddd dddd

.dddd dddd dddd dddd .dddd dddd dddd
dddd

Packed 1.15
Signed
Fraction

s.ddd dddd dddd dddd s.ddd
dddd dddd dddd

s.ddd dddd dddd dddd s.ddd dddd dddd dddd

Table 2-2. Data Formats (Cont’d)

Format Representation in Memory Representation in 32-bit Register

ADSP-BF533 Blackfin Processor Hardware Reference 2-13

Computational Units

depending on the transfer of the result from both accumulators to the
register file. Furthermore, the sticky VS bit is set with the V bit and
remains set until cleared.

The logic of the overflow bits (V, VS, AV0, AV0S, AV1, AV1S) is based on
two’s-complement arithmetic. A bit or set of bits is set if the Most Signifi-
cant Bit (MSB) changes in a manner not predicted by the signs of the
operands and the nature of the operation. For example, adding two posi-
tive numbers must generate a positive result; a change in the sign bit
signifies an overflow and sets AVn, the corresponding overflow flags. Add-
ing a negative and a positive number may result in either a negative or
positive result, but cannot cause an overflow.

The logic of the carry bits (AC0, AC1) is based on unsigned magnitude
arithmetic. The bit is set if a carry is generated from bit 16 (the MSB).
The carry bits (AC0, AC1) are most useful for the lower word portions of a
multiword operation.

ALU results generate status information. For more information about
using ALU status, see “ALU Instruction Summary” on page 2-29.

Multiplier Data Types
Each multiplier produces results that are binary strings. The inputs are
interpreted according to the information given in the instruction itself
(whether it is signed multiplied by signed, unsigned multiplied by
unsigned, a mixture, or a rounding operation). The 32-bit result from the
multipliers is assumed to be signed; it is sign-extended across the full
40-bit width of the A0 or A1 registers.

The processor supports two modes of format adjustment: the fractional
mode for fractional operands (1.15 format with 1 sign bit and 15 frac-
tional bits) and the integer mode for integer operands (16.0 format).

Data Types

2-14 ADSP-BF533 Blackfin Processor Hardware Reference

When the processor multiplies two 1.15 operands, the result is a 2.30
(2 sign bits and 30 fractional bits) number. In the fractional mode, the
multiplier automatically shifts the multiplier product left one bit before
transferring the result to the multiplier result register (A0, A1). This shift of
the redundant sign bit causes the multiplier result to be in 1.31 format,
which can be rounded to 1.15 format. The resulting format appears in
Figure 2-4.

In the integer mode, the left shift does not occur. For example, if the oper-
ands are in the 16.0 format, the 32-bit multiplier result would be in 32.0
format. A left shift is not needed and would change the numerical
representation. This result format appears in Figure 2-5.

Multiplier results generate status information when they update accumu-
lators or when they are transferred to a destination register in the register
file. For more information, see “Multiplier Instruction Summary” on
page 2-40.

Shifter Data Types
Many operations in the shifter are explicitly geared to signed (two’s-com-
plement) or unsigned values—logical shifts assume unsigned magnitude
or binary string values, and arithmetic shifts assume two’s-complement
values.

The exponent logic assumes two’s-complement numbers. The exponent
logic supports block floating point, which is also based on two’s-comple-
ment fractions.

Shifter results generate status information. For more information about
using shifter status, see “Shifter Instruction Summary” on page 2-55.

ADSP-BF533 Blackfin Processor Hardware Reference 2-15

Computational Units

Arithmetic Formats Summary
Table 2-3, Table 2-4, Table 2-5, and Table 2-6 summarize some of the
arithmetic characteristics of computational operations.

Table 2-3. ALU Arithmetic Formats

Operation Operand Formats Result Formats

Addition Signed or unsigned Interpret flags

Subtraction Signed or unsigned Interpret flags

Logical Binary string Same as operands

Division Explicitly signed or unsigned Same as operands

Table 2-4. Multiplier Fractional Modes Formats

Operation Operand Formats Result Formats

Multiplication 1.15 explicitly signed or
unsigned

2.30 shifted to 1.31

Multiplication/Addition 1.15 explicitly signed or
unsigned

2.30 shifted to 1.31

Multiplication/Subtraction 1.15 explicitly signed or
unsigned

2.30 shifted to 1.31

Table 2-5. Multiplier Arithmetic Integer Modes Formats

Operation Operand Formats Result Formats

Multiplication 16.0 explicitly signed or
unsigned

32.0 not shifted

Multiplication/Addition 16.0 explicitly signed or
unsigned

32.0 not shifted

Multiplication/Subtraction 16.0 explicitly signed or
unsigned

32.0 not shifted

Data Types

2-16 ADSP-BF533 Blackfin Processor Hardware Reference

Using Multiplier Integer and Fractional Formats
For multiply-and-accumulate functions, the processor provides two
choices—fractional arithmetic for fractional numbers (1.15) and integer
arithmetic for integers (16.0).

For fractional arithmetic, the 32-bit product output is format adjusted—
sign-extended and shifted one bit to the left—before being added to accu-
mulator A0 or A1. For example, bit 31 of the product lines up with bit 32
of A0 (which is bit 0 of A0.X), and bit 0 of the product lines up with bit 1
of A0 (which is bit 1 of A0.W). The Least Significant Bit (LSB) is zero
filled. The fractional multiplier result format appears in Figure 2-4.

For integer arithmetic, the 32-bit product register is not shifted before
being added to A0 or A1. Figure 2-5 shows the integer mode result
placement.

With either fractional or integer operations, the multiplier output product
is fed into a 40-bit adder/subtracter which adds or subtracts the new prod-
uct with the current contents of the A0 or A1 register to produce the final
40-bit result.

Table 2-6. Shifter Arithmetic Formats

Operation Operand Formats Result Formats

Logical Shift Unsigned binary string Same as operands

Arithmetic Shift Signed Same as operands

Exponent Detect Signed Same as operands

ADSP-BF533 Blackfin Processor Hardware Reference 2-17

Computational Units

Figure 2-4. Fractional Multiplier Results Format

Figure 2-5. Integer Multiplier Results Format

31 31 31 31 31 31 31 31 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 167 6 5 4 3 2 1 0

P SIGN,
7 BITS MULTIPLIER P OUTPUT

A0.X A0.W

SHIFTED
OUT

ZERO
FILLED

31 31 31 31 31 31 31 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 1 1 1 167 6 5 4 3 2 1 0

P SIGN,
8 BITS MULTIPLIER P OUTPUT

A0.X A0.W

Data Types

2-18 ADSP-BF533 Blackfin Processor Hardware Reference

Rounding Multiplier Results
On many multiplier operations, the processor supports multiplier results
rounding (RND option). Rounding is a means of reducing the precision of a
number by removing a lower order range of bits from that number’s repre-
sentation and possibly modifying the remaining portion of the number to
more accurately represent its former value. For example, the original num-
ber will have N bits of precision, whereas the new number will have only
M bits of precision (where N>M). The process of rounding, then, removes
N – M bits of precision from the number.

The RND_MOD bit in the ASTAT register determines whether the RND option
provides biased or unbiased rounding. For unbiased rounding, set RND_MOD
bit = 0. For biased rounding, set RND_MOD bit = 1.

 For most algorithms, unbiased rounding is preferred.

Unbiased Rounding

The convergent rounding method returns the number closest to the origi-
nal. In cases where the original number lies exactly halfway between two
numbers, this method returns the nearest even number, the one contain-
ing an LSB of 0. For example, when rounding the 3-bit,
two’s-complement fraction 0.25 (binary 0.01) to the nearest 2-bit,
two’s-complement fraction, the result would be 0.0, because that is the
even-numbered choice of 0.5 and 0.0. Since it rounds up and down based
on the surrounding values, this method is called unbiased rounding.

Unbiased rounding uses the ALU’s capability of rounding the 40-bit result
at the boundary between bit 15 and bit 16. Rounding can be specified as
part of the instruction code. When rounding is selected, the output regis-
ter contains the rounded 16-bit result; the accumulator is never rounded.

ADSP-BF533 Blackfin Processor Hardware Reference 2-19

Computational Units

The accumulator uses an unbiased rounding scheme. The conventional
method of biased rounding adds a 1 into bit position 15 of the adder
chain. This method causes a net positive bias because the midway value
(when A0.L/A1.L = 0x8000) is always rounded upward.

The accumulator eliminates this bias by forcing bit 16 in the result output
to 0 when it detects this midway point. Forcing bit 16 to 0 has the effect
of rounding odd A0.L/A1.L values upward and even values downward,
yielding a large sample bias of 0, assuming uniformly distributed values.

The following examples use x to represent any bit pattern (not all zeros).
The example in Figure 2-6 shows a typical rounding operation for A0; the
example also applies for A1.

The compensation to avoid net bias becomes visible when all lower 15 bits
are 0 and bit 15 is 1 (the midpoint value) as shown in Figure 2-7.

Figure 2-6. Typical Unbiased Multiplier Rounding

1 X X X X X X X X X X X X X X XX X X X X X X X 0 0 1 0 0 1 0 1X X X X X X X X

A0.X A0.W

1

0 X X X X X X X X X X X X X X XX X X X X X X X 0 0 1 0 0 1 1 0X X X X X X X X

UNROUNDED VALUE:

ADD 1 AND CARRY:

ROUNDED VALUE:

Data Types

2-20 ADSP-BF533 Blackfin Processor Hardware Reference

In Figure 2-7, A0 bit 16 is forced to 0. This algorithm is employed on
every rounding operation, but is evident only when the bit patterns shown
in the lower 16 bits of the next example are present.

Biased Rounding

The round-to-nearest method also returns the number closest to the origi-
nal. However, by convention, an original number lying exactly halfway
between two numbers always rounds up to the larger of the two. For
example, when rounding the 3-bit, two’s-complement fraction 0.25
(binary 0.01) to the nearest 2-bit, two’s-complement fraction, this method
returns 0.5 (binary 0.1). The original fraction lies exactly midway between
0.5 and 0.0 (binary 0.0), so this method rounds up. Because it always
rounds up, this method is called biased rounding.

Figure 2-7. Avoiding Net Bias in Unbiased Multiplier Rounding

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0X X X X X X X X 0 1 1 0 0 1 1 0X X X X X X X X

UNROUNDED VALUE:

A0.X A0.W

1

ADD 1 AND CARRY:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0X X X X X X X X 0 1 1 0 0 1 1 0X X X X X X X X

ROUNDED VALUE:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0X X X X X X X X 0 1 1 0 0 1 1 1X X X X X X X X

A0 BIT 16 = 1:

ADSP-BF533 Blackfin Processor Hardware Reference 2-21

Computational Units

The RND_MOD bit in the ASTAT register enables biased rounding. When the
RND_MOD bit is cleared, the RND option in multiplier instructions uses the
normal, unbiased rounding operation, as discussed in “Unbiased Round-
ing” on page 2-18.

When the RND_MOD bit is set (=1), the processor uses biased rounding
instead of unbiased rounding. When operating in biased rounding mode,
all rounding operations with A0.L/A1.L set to 0x8000 round up, rather
than only rounding odd values up. For an example of biased rounding, see
Table 2-7.

Biased rounding affects the result only when the A0.L/A1.L register con-
tains 0x8000; all other rounding operations work normally. This mode
allows more efficient implementation of bit specified algorithms that use
biased rounding (for example, the Global System for Mobile Communica-
tions (GSM) speech compression routines).

Truncation

Another common way to reduce the significant bits representing a number
is to simply mask off the N – M lower bits. This process is known as trun-
cation and results in a relatively large bias. Instructions that do not
support rounding revert to truncation. The RND_MOD bit in ASTAT has no
effect on truncation.

Table 2-7. Biased Rounding in Multiplier Operation

A0/A1 Before RND Biased RND Result Unbiased RND Result

0x00 0000 8000 0x00 0001 8000 0x00 0000 0000

0x00 0001 8000 0x00 0002 0000 0x00 0002 0000

0x00 0000 8001 0x00 0001 0001 0x00 0001 0001

0x00 0001 8001 0x00 0002 0001 0x00 0002 0001

0x00 0000 7FFF 0x00 0000 FFFF 0x00 0000 FFFF

0x00 0001 7FFF 0x00 0001 FFFF 0x00 0001 FFFF

Using Computational Status

2-22 ADSP-BF533 Blackfin Processor Hardware Reference

Special Rounding Instructions
The ALU provides the ability to round the arithmetic results directly into
a data register with biased or unbiased rounding as described above. It also
provides the ability to round on different bit boundaries. The options
RND12, RND, and RND20 extract 16-bit values from bit 12, bit 16 and bit 20,
respectively, and perform biased rounding regardless of the state of the
RND_MOD bit in ASTAT.

For example:

R3.L = R4 (RND) ;

performs biased rounding at bit 16, depositing the result in a half word.

R3.L = R4 + R5 (RND12) ;

performs an addition of two 32-bit numbers, biased rounding at bit 12,
depositing the result in a half word.

R3.L = R4 + R5 (RND20) ;

performs an addition of two 32-bit numbers, biased rounding at bit 20,
depositing the result in a half word.

Using Computational Status
The multiplier, ALU, and shifter update the overflow and other status
flags in the processor’s Arithmetic Status (ASTAT) register. To use status
conditions from computations in program sequencing, use conditional
instructions to test the CC flag in the ASTAT register after the instruction
executes. This method permits monitoring each instruction’s outcome.
The ASTAT register is a 32-bit register, with some bits reserved. To ensure
compatibility with future implementations, writes to this register should
write back the values read from these reserved bits.

ADSP-BF533 Blackfin Processor Hardware Reference 2-23

Computational Units

ASTAT Register
Figure 2-8 describes the Arithmetic Status (ASTAT) register. The processor
updates the status bits in ASTAT, indicating the status of the most recent
ALU, multiplier, or shifter operation.

Arithmetic Logic Unit (ALU)
The two ALUs perform arithmetic and logical operations on fixed-point
data. ALU fixed-point instructions operate on 16-, 32-, and 40-bit
fixed-point operands and output 16-, 32-, or 40-bit fixed-point results.
ALU instructions include:

• Fixed-point addition and subtraction of registers

• Addition and subtraction of immediate values

• Accumulation and subtraction of multiplier results

• Logical AND, OR, NOT, XOR, bitwise XOR, Negate

• Functions: ABS, MAX, MIN, Round, division primitives

ALU Operations
Primary ALU operations occur on ALU0, while parallel operations occur
on ALU1, which performs a subset of ALU0 operations.

Arithmetic Logic Unit (ALU)

2-24 ADSP-BF533 Blackfin Processor Hardware Reference

Figure 2-8. Arithmetic Status Register

00 0

VS (Sticky Dreg Overflow)

00 0 0 0 0 0 0 0 0 0 0 0

Arithmetic Status Register (ASTAT)

0 - Last result written to A0
has not overflowed

1 - Last result written to A0
has overflowed

AV0 (A0 Overflow)

Reset = 0x0000 0000

Sticky version of AV0

AV0S (Sticky A0 Overflow)

0 - Last result written to A1
has not overflowed

1 - Last result written to A1
has overflowed

AV1 (A1 Overflow)

Sticky version of AV1
AV1S (Sticky A1 Overflow)

0 - Last result written from
ALU to Data Register File
register has not overflowed

1 - Last result has overflowed

V (Dreg Overflow)

Sticky version of V

AN (Negative Result)

AQ (Quotient)

AZ (Zero Result)

RND_MOD (Rounding Mode)

AC1 (ALU1 Carry)

0 - Operation in ALU1 does not
generate a carry

1 - Operation generates a carry

AC0 (ALU0 Carry)

0 - Unbiased rounding
1 - Biased rounding

0 - Result from last ALU0,
ALU1, or shifter operation
is not zero

1 - Result is zero

0 - Result from last ALU0,
ALU1, or shifter operation
is not negative

1 - Result is negative

Multipurpose flag, used
primarily to hold resolution of
arithmetic comparisons. Also
used by some shifter instruc-
tions to hold rotating bits.

Quotient bit

CC (Condition Code)

0 - Operation in ALU0 does not
generate a carry

1 - Operation generates a
carry

AC0_COPY

Identical to bit 12

V_COPY

Identical to bit 24

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

ADSP-BF533 Blackfin Processor Hardware Reference 2-25

Computational Units

Table 2-8 describes the possible inputs and outputs of each ALU.

Combining operations in both ALUs can result in four 16-bit results, two
32-bit results, or two 40-bit results generated in a single instruction.

Single 16-Bit Operations

In single 16-bit operations, any two 16-bit register halves may be used as
the input to the ALU. An addition, subtraction, or logical operation pro-
duces a 16-bit result that is deposited into an arbitrary destination register
half. ALU0 is used for this operation, because it is the primary resource for
ALU operations.

For example:

R3.H = R1.H + R2.L (NS) ;

adds the 16-bit contents of R1.H (R1 high half) to the contents of R2.L (R2
low half) and deposits the result in R3.H (R3 high half) with no saturation.

Table 2-8. Inputs and Outputs of Each ALU

Input Output

Two or four 16-bit operands One or two 16-bit results

Two 32-bit operands One 32-bit result

32-bit result from the multiplier Combination of 32-bit result from the multiplier
with a 40-bit accumulation result

Arithmetic Logic Unit (ALU)

2-26 ADSP-BF533 Blackfin Processor Hardware Reference

Dual 16-Bit Operations

In dual 16-bit operations, any two 32-bit registers may be used as the
input to the ALU, considered as pairs of 16-bit operands. An addition,
subtraction, or logical operation produces two 16-bit results that are
deposited into an arbitrary 32-bit destination register. ALU0 is used for
this operation, because it is the primary resource for ALU operations.

For example:

R3 = R1 +|– R2 (S) ;

adds the 16-bit contents of R2.H (R2 high half) to the contents of R1.H (R1
high half) and deposits the result in R3.H (R3 high half) with saturation.

The instruction also subtracts the 16-bit contents of R2.L (R2 low half)
from the contents of R1.L (R1 low half) and deposits the result in R3.L (R3
low half) with saturation (see Figure 2-10).

Quad 16-Bit Operations

In quad 16-bit operations, any two 32-bit registers may be used as the
inputs to ALU0 and ALU1, considered as pairs of 16-bit operands. A
small number of addition or subtraction operations produces four 16-bit
results that are deposited into two arbitrary, 32-bit destination registers.
Both ALU0 and ALU1 are used for this operation. Because there are only
two 32-bit data paths from the Data Register File to the arithmetic units,
the same two pairs of 16-bit inputs are presented to ALU1 as to ALU0.
The instruction construct is identical to that of a dual 16-bit operation,
and input operands must be the same for both ALUs.

For example:

R3 = R0 +|+ R1, R2 = R0 –|– R1 (S) ;

performs four operations:

ADSP-BF533 Blackfin Processor Hardware Reference 2-27

Computational Units

• Adds the 16-bit contents of R1.H (R1 high half) to the 16-bit con-
tents of R0.H (R0 high half) and deposits the result in R3.H with
saturation.

• Adds R1.L to R0.L and deposits the result in R3.L with saturation.

• Subtracts the 16-bit contents of R1.H (R1 high half) from the 16-bit
contents of the R0.H (R0 high half) and deposits the result in R2.H
with saturation.

• Subtracts R1.L from R0.L and deposits the result in R2.L with
saturation.

Explicitly, the four equivalent instructions are:

R3.H = R0.H + R1.H (S) ;

R3.L = R0.L + R1.L (S) ;

R2.H = R0.H – R1.H (S) ;

R2.L = R0.L – R1.L (S) ;

Single 32-Bit Operations

In single 32-bit operations, any two 32-bit registers may be used as the
input to the ALU, considered as 32-bit operands. An addition, subtrac-
tion, or logical operation produces a 32-bit result that is deposited into an
arbitrary 32-bit destination register. ALU0 is used for this operation,
because it is the primary resource for ALU operations.

In addition to the 32-bit input operands coming from the Data Register
File, operands may be sourced and deposited into the Pointer Register
File, consisting of the eight registers P[5:0], SP, FP.

 Instructions may not intermingle Pointer registers with Data
registers.

Arithmetic Logic Unit (ALU)

2-28 ADSP-BF533 Blackfin Processor Hardware Reference

For example:

R3 = R1 + R2 (NS) ;

adds the 32-bit contents of R2 to the 32-bit contents of R1 and deposits the
result in R3 with no saturation.

R3 = R1 + R2 (S) ;

adds the 32-bit contents of R1 to the 32-bit contents of R2 and deposits the
result in R3 with saturation.

Dual 32-Bit Operations

In dual 32-bit operations, any two 32-bit registers may be used as the
input to ALU0 and ALU1, considered as a pair of 32-bit operands. An
addition or subtraction produces two 32-bit results that are deposited into
two 32-bit destination registers. Both ALU0 and ALU1 are used for this
operation. Because only two 32-bit data paths go from the Data Register
File to the arithmetic units, the same two 32-bit input registers are pre-
sented to ALU0 and ALU1.

For example:

R3 = R1 + R2, R4 = R1 – R2 (NS) ;

adds the 32-bit contents of R2 to the 32-bit contents of R1 and deposits the
result in R3 with no saturation.

The instruction also subtracts the 32-bit contents of R2 from that of R1
and deposits the result in R4 with no saturation.

A specialized form of this instruction uses the ALU 40-bit result registers
as input operands, creating the sum and differences of the A0 and A1
registers.

ADSP-BF533 Blackfin Processor Hardware Reference 2-29

Computational Units

For example:

R3 = A0 + A1, R4 = A0 – A1 (S) ;

transfers to the result registers two 32-bit, saturated, sum and difference
values of the ALU registers.

ALU Instruction Summary
Table 2-9 lists the ALU instructions. For more information about assem-
bly language syntax and the effect of ALU instructions on the status flags,
see Blackfin Processor Programming Reference.

In Table 2-9, note the meaning of these symbols:

• Dreg denotes any Data Register File register.

• Preg denotes any Pointer register, FP, or SP register.

• Dreg_lo_hi denotes any 16-bit register half in any Data Register
File register.

• Dreg_lo denotes the lower 16 bits of any Data Register File
register.

• imm7 denotes a signed, 7-bit wide, immediate value.

• An denotes either ALU Result register A0 or A1.

• DIVS denotes a Divide Sign primitive.

• DIVQ denotes a Divide Quotient primitive.

• MAX denotes the maximum, or most positive, value of the source
registers.

• MIN denotes the minimum value of the source registers.

Arithmetic Logic Unit (ALU)

2-30 ADSP-BF533 Blackfin Processor Hardware Reference

• ABS denotes the absolute value of the upper and lower halves of a
single 32-bit register.

• RND denotes rounding a half word.

• RND12 denotes saturating the result of an addition or subtraction
and rounding the result on bit 12.

• RND20 denotes saturating the result of an addition or subtraction
and rounding the result on bit 20.

• SIGNBITS denotes the number of sign bits in a number, minus
one.

• EXPADJ denotes the lesser of the number of sign bits in a number
minus one, and a threshold value.

• * Indicates the flag may be set or cleared, depending on the results
of the instruction.

• ** Indicates the flag is cleared.

• – Indicates no effect.

• d indicates AQ contains the dividend MSB Exclusive-OR divisor
MSB.

Table 2-9. ALU Instruction Summary

Instruction ASTAT Status Flags

AZ AN AC0
AC0_COPY
AC1

AV0
AV0S

AV1
AV1S

V
V_COPY
VS

AQ

Preg = Preg + Preg ; – – – – – – –

Preg += Preg ; – – – – – – –

Preg –= Preg ; – – – – – – –

Dreg = Dreg + Dreg ; * * * – – * –

ADSP-BF533 Blackfin Processor Hardware Reference 2-31

Computational Units

Dreg = Dreg – Dreg (S) ; * * * – – * –

Dreg = Dreg + Dreg,
Dreg = Dreg – Dreg ;

* * * – – * –

Dreg_lo_hi = Dreg_lo_hi +
Dreg_lo_hi ;

* * * – – * –

Dreg_lo_hi = Dreg_lo_hi –
Dreg_lo_hi (S) ;

* * * – – * –

Dreg = Dreg +|+ Dreg ; * * * – – * –

Dreg = Dreg +|– Dreg ; * * * – – * –

Dreg = Dreg –|+ Dreg ; * * * – – * –

Dreg = Dreg –|– Dreg ; * * * – – * –

Dreg = Dreg +|+Dreg,
Dreg = Dreg –|– Dreg ;

* * – – – * –

Dreg = Dreg +|– Dreg,
Dreg = Dreg –|+ Dreg ;

* * – – – * –

Dreg = An + An,
Dreg = An – An ;

* * * – – * –

Dreg += imm7 ; * * * – – * –

Preg += imm7 ; – – – – – – –

Dreg = (A0 += A1) ; * * * * – * –

Dreg_lo_hi = (A0 += A1) ; * * * * – * –

A0 += A1 ; * * * * – – –

A0 –= A1 ; * * * * – – –

DIVS (Dreg, Dreg) ; * * * * – – d

DIVQ (Dreg, Dreg) ; * * * * – – d

Table 2-9. ALU Instruction Summary (Cont’d)

Instruction ASTAT Status Flags

AZ AN AC0
AC0_COPY
AC1

AV0
AV0S

AV1
AV1S

V
V_COPY
VS

AQ

Arithmetic Logic Unit (ALU)

2-32 ADSP-BF533 Blackfin Processor Hardware Reference

Dreg = MAX (Dreg, Dreg)
(V) ;

* * – – – **/– –

Dreg = MIN (Dreg, Dreg)
(V) ;

* * – – – **/– –

Dreg = ABS Dreg (V) ; * ** – – – * –

An = ABS An ; * ** – * * * –

An = ABS An,
An = ABS An ;

* ** – * * * –

An = –An ; * * * * * * –

An = –An, An =– An ; * * * * * * –

An = An (S) ; * * – * * – –

An = An (S), An = An (S) ; * * – * * – –

Dreg_lo_hi = Dreg (RND) ; * * – – – * –

Dreg_lo_hi = Dreg + Dreg
(RND12) ;

* * – – – * –

Dreg_lo_hi = Dreg – Dreg
(RND12) ;

* * – – – * –

Dreg_lo_hi = Dreg + Dreg
(RND20) ;

* * – – – * –

Dreg_lo_hi = Dreg – Dreg
(RND20) ;

* * – – – * –

Dreg_lo = SIGNBITS Dreg ; – – – – – – –

Dreg_lo = SIGNBITS
Dreg_lo_hi ;

– – – – – – –

Dreg_lo = SIGNBITS An ; – – – – – – –

Dreg_lo = EXPADJ (Dreg,
Dreg_lo) (V) ;

– – – – – – –

Table 2-9. ALU Instruction Summary (Cont’d)

Instruction ASTAT Status Flags

AZ AN AC0
AC0_COPY
AC1

AV0
AV0S

AV1
AV1S

V
V_COPY
VS

AQ

ADSP-BF533 Blackfin Processor Hardware Reference 2-33

Computational Units

Dreg_lo = EXPADJ
(Dreg_lo_hi, Dreg_lo);

– – – – – – –

Dreg = Dreg & Dreg ; * * ** – – **/– –

Dreg = ~ Dreg ; * * ** – – **/– –

Dreg = Dreg | Dreg ; * * ** – – **/– –

Dreg = Dreg ^ Dreg ; * * ** – – **/– –

Dreg =– Dreg ; * * * – – * –

Table 2-9. ALU Instruction Summary (Cont’d)

Instruction ASTAT Status Flags

AZ AN AC0
AC0_COPY
AC1

AV0
AV0S

AV1
AV1S

V
V_COPY
VS

AQ

Arithmetic Logic Unit (ALU)

2-34 ADSP-BF533 Blackfin Processor Hardware Reference

ALU Data Flow Details
Figure 2-9 shows a more detailed diagram of the Arithmetic Units and the
Data Register File, which appears in Figure 2-1 on page 2-2.

ALU0 is described here for convenience. ALU1 is very similar—a subset of
ALU0.

Each ALU performs 40-bit addition for the accumulation of the multiplier
results, as well as 32-bit and dual 16-bit operations. Each ALU has two
32-bit input ports that can be considered a pair of 16-bit operands or a

Figure 2-9. Register Files and ALUs

MAC0

SHIFTER

MAC1

32b

32b

32b

OPERAND

FROM MEMORY

TO MEMORY

OPERAND

ALUs

A1 A0

R0

R1

R2

R3

R4

R5

R6

R7

R0.H R0.L

R1.H

R2.H

R3.H

R4.H

R5.H

R6.H

R7.H

R1.L

R2.L

R3.L

R4.L

R5.L

R6.L

R7.L

SELECTION SELECTION

32b 32b

ADSP-BF533 Blackfin Processor Hardware Reference 2-35

Computational Units

single 32-bit operand. For single 16-bit operations, any of the four
Possible 16-bit operands may be used with any of the other 16-bit oper-
ands presented at the input to the ALU.

As shown in Figure 2-10, for dual 16-bit operations, the high halves and
low halves are paired, providing four possible combinations of addition
and subtraction.

(A) H + H, L + L (B) H + H, L – L

(C) H – H, L + L (D) H – H, L – L

Figure 2-10. Dual 16-Bit ALU Operations

31

Rm

Rp

 Rn

A 31

Rm

Rp

 Rn

B

31

Rm

Rp

 Rn

D31

Rm

Rp

 Rn

C

Arithmetic Logic Unit (ALU)

2-36 ADSP-BF533 Blackfin Processor Hardware Reference

Dual 16-Bit Cross Options

For dual 16-bit operations, the results may be crossed. “Crossing the
results” changes the location in the result register for the result of a calcu-
lation. Usually, the result from the high side calculation is placed in the
high half of the result register, and the result from the low side calculation
is placed in the low half of the result register. With the cross option, the
high result is placed in the low half of the destination register, and the low
result is placed in the high half of the destination register (see
Figure 2-11). This is particularly useful when dealing with complex math
and portions of the Fast Fourier Transform (FFT). The cross option
applies to ALU0 only.

ALU Status Signals

Each ALU generates six status signals: the zero (AZ) status, the negative
(AN) status, the carry (ACn) status, the sticky overflow (AVnS) status, the
immediate overflow (AVn) status, and the quotient (AQ) status. All arithme-
tic status signals are latched into the arithmetic status register (ASTAT) at
the end of the cycle. For the effect of ALU instructions on the status flags,
see Table 2-9 on page 2-30.

Figure 2-11. Cross Options for Dual 16-Bit ALU Operations

31

Rm

Rp

Rn

ADSP-BF533 Blackfin Processor Hardware Reference 2-37

Computational Units

Depending on the instruction, the inputs can come from the Data Regis-
ter File, the Pointer Register File, or the Arithmetic Result registers.
Arithmetic on 32-bit operands directly support multiprecision operations
in the ALU.

ALU Division Support Features
The ALU supports division with two special divide primitives. These
instructions (DIVS, DIVQ) let programs implement a non-restoring, condi-
tional (error checking), addition/subtraction/division algorithm.

The division can be either signed or unsigned, but both the dividend and
divisor must be of the same type. Details about using division and pro-
gramming examples are available in the Blackfin Processor Programming
Reference.

Special SIMD Video ALU Operations
Four 8-bit Video ALUs enable the processor to process video information
with high efficiency. Each Video ALU instruction may take from one to
four pairs of 8-bit inputs and return one to four 8-bit results. The inputs
are presented to the Video ALUs in two 32-bit words from the Data Reg-
ister File. The possible operations include:

• Quad 8-Bit Add or Subtract

• Quad 8-Bit Average

• Quad 8-Bit Pack or Unpack

• Quad 8-Bit Subtract-Absolute-Accumulate

• Byte Align

For more information about the operation of these instructions, see Black-
fin Processor Programming Reference.

Multiply Accumulators (Multipliers)

2-38 ADSP-BF533 Blackfin Processor Hardware Reference

Multiply Accumulators (Multipliers)
The two multipliers (MAC0 and MAC1) perform fixed-point multiplica-
tion and multiply and accumulate operations. Multiply and accumulate
operations are available with either cumulative addition or cumulative
subtraction.

Multiplier fixed-point instructions operate on 16-bit fixed-point data and
produce 32-bit results that may be added or subtracted from a 40-bit
accumulator.

Inputs are treated as fractional or integer, unsigned or two’s-complement.
Multiplier instructions include:

• Multiplication

• Multiply and accumulate with addition, rounding optional

• Multiply and accumulate with subtraction, rounding optional

• Dual versions of the above

Multiplier Operation
Each multiplier has two 32-bit inputs from which it derives the two 16-bit
operands. For single multiply and accumulate instructions, these operands
can be any Data registers in the Data Register File. Each multiplier can
accumulate results in its Accumulator register, A1 or A0. The accumulator
results can be saturated to 32 or 40 bits. The multiplier result can also be
written directly to a 16- or 32-bit destination register with optional
rounding.

Each multiplier instruction determines whether the inputs are either both
in integer format or both in fractional format. The format of the result
matches the format of the inputs. In MAC0, both inputs are treated as
signed or unsigned. In MAC1, there is a mixed-mode option.

ADSP-BF533 Blackfin Processor Hardware Reference 2-39

Computational Units

If both inputs are fractional and signed, the multiplier automatically shifts
the result left one bit to remove the redundant sign bit. Unsigned frac-
tional, integer, and mixed modes do not perform a shift for sign bit
correction. Multiplier instruction options specify the data format of the
inputs. See “Multiplier Instruction Options” on page 2-42 for more
information.

Placing Multiplier Results in Multiplier Accumulator Registers

As shown in Figure 2-9, each multiplier has a dedicated accumulator, A0
or A1. Each Accumulator register is divided into three sections—
A0.L/A1.L (bits 15:0), A0.H/A1.H (bits 31:16), and A0.X/A1.X (bits
39:32).

When the multiplier writes to its result Accumulator registers, the 32-bit
result is deposited into the lower bits of the combined Accumulator regis-
ter, and the MSB is sign-extended into the upper eight bits of the register
(A0.X/A1.X).

Multiplier output can be deposited not only in the A0 or A1 registers, but
also in a variety of 16- or 32-bit Data registers in the Data Register File.

Rounding or Saturating Multiplier Results

On a multiply and accumulate operation, the accumulator data can be sat-
urated and, optionally, rounded for extraction to a register or register half.
When a multiply deposits a result only in a register or register half, the sat-
uration and rounding works the same way. The rounding and saturation
operations work as follows.

• Rounding is applied only to fractional results except for the IH
option, which applies rounding and high half extraction to an inte-
ger result. For the IH option, the rounded result is obtained by
adding 0x8000 to the accumulator (for MAC) or multiply result
(for mult) and then saturating to 32-bits. For more information,
see “Rounding Multiplier Results” on page 2-18.

Multiply Accumulators (Multipliers)

2-40 ADSP-BF533 Blackfin Processor Hardware Reference

• If an overflow or underflow has occurred, the saturate operation
sets the specified Result register to the maximum positive or nega-
tive value. For more information, see the following section.

Saturating Multiplier Results on Overflow
The following bits in ASTAT indicate multiplier overflow status:

• Bit 16 (AV0) and bit 18 (AV1) record overflow condition (whether
the result has overflowed 32 bits) for the A0 and A1 accumulators,
respectively. If the bit is cleared (=0), no overflow or underflow has
occurred. If the bit is set (=1), an overflow or underflow has
occurred. The AV0S and AV1S bits are sticky bits.

• Bit 24 (V) and bit 25 (VS) are set if overflow occurs in extracting the
accumulator result to a register.

Multiplier Instruction Summary
Table 2-10 lists the multiplier instructions. For more information about
assembly language syntax and the effect of multiplier instructions on the
status flags, see Blackfin Processor Programming Reference.

In Table 2-10, note the meaning of these symbols:

• Dreg denotes any Data Register File register.

• Dreg_lo_hi denotes any 16-bit register half in any Data Register
File register.

• Dreg_lo denotes the lower 16 bits of any Data Register File
register.

• Dreg_hi denotes the upper 16 bits of any Data Register File
register.

• An denotes either MAC Accumulator register A0 or A1.

ADSP-BF533 Blackfin Processor Hardware Reference 2-41

Computational Units

• * Indicates the flag may be set or cleared, depending on the results
of the instruction.

• – Indicates no effect.

Multiplier instruction options are described in “Multiplier Instruction
Options” on page 2-42.

Table 2-10. Multiplier Instruction Summary

Instruction ASTAT Status Flags

AV0
AV0S

AV1
AV1S

V
V_COPY
VS

Dreg_lo = Dreg_lo_hi * Dreg_lo_hi ; – – *

Dreg_hi = Dreg_lo_hi * Dreg_lo_hi ; – – *

Dreg = Dreg_lo_hi * Dreg_lo_hi ; – – *

An = Dreg_lo_hi * Dreg_lo_hi ; * * –

An += Dreg_lo_hi * Dreg_lo_hi ; * * –

An –= Dreg_lo_hi * Dreg_lo_hi ; * * –

Dreg_lo = (A0 = Dreg_lo_hi * Dreg_lo_hi) ; * * *

Dreg_lo = (A0 += Dreg_lo_hi * Dreg_lo_hi) ; * * *

Dreg_lo = (A0 –= Dreg_lo_hi * Dreg_lo_hi) ; * * *

Dreg_hi = (A1 = Dreg_lo_hi * Dreg_lo_hi) ; * * *

Dreg_hi = (A1 += Dreg_lo_hi * Dreg_lo_hi) ; * * *

Dreg_hi = (A1 –= Dreg_lo_hi * Dreg_lo_hi) ; * * *

Dreg = (An = Dreg_lo_hi * Dreg_lo_hi) ; * * *

Dreg = (An += Dreg_lo_hi * Dreg_lo_hi) ; * * *

Dreg = (An –= Dreg_lo_hi * Dreg_lo_hi) ; * * *

Dreg *= Dreg ; – – –

Multiply Accumulators (Multipliers)

2-42 ADSP-BF533 Blackfin Processor Hardware Reference

Multiplier Instruction Options

The following descriptions of multiplier instruction options provide an
overview. Not all options are available for all instructions. For informa-
tion about how to use these options with their respective instructions, see
Blackfin Processor Programming Reference.

default No option; input data is signed fraction.

(IS) Input data operands are signed integer. No shift
correction is made.

(FU) Input data operands are unsigned fraction. No shift
correction is made.

(IU) Input data operands are unsigned integer. No shift
correction is made.

(T) Input data operands are signed fraction. When
copying to the destination half register, truncates
the lower 16 bits of the Accumulator contents.

(TFU) Input data operands are unsigned fraction. When
copying to the destination half register, truncates
the lower 16 bits of the Accumulator contents.

(ISS2) If multiplying and accumulating to a register:

Input data operands are signed integer. When copy-
ing to the destination register, Accumulator
contents are scaled (multiplied x2 by a one-place
shift-left). If scaling produces a signed value larger
than 32 bits, the number is saturated to its maxi-
mum positive or negative value.

If multiplying and accumulating to a half register:

ADSP-BF533 Blackfin Processor Hardware Reference 2-43

Computational Units

When copying the lower 16 bits to the destination
half register, the Accumulator contents are scaled. If
scaling produces a signed value greater than 16 bits,
the number is saturated to its maximum positive or
negative value.

(IH) This option indicates integer multiplication with
high half word extraction. The Accumulator is satu-
rated at 32 bits, and bits [31:16] of the
Accumulator are rounded, and then copied into the
destination half register.

(W32) Input data operands are signed fraction with no
extension bits in the Accumulators at 32 bits.
Left-shift correction of the product is performed, as
required. This option is used for legacy GSM
speech vocoder algorithms written for 32-bit Accu-
mulators. For this option only, this special case
applies: 0x8000 x 0x8000 = 0x7FFF.

(M) Operation uses mixed-multiply mode. Valid only
for MAC1 versions of the instruction. Multiplies a
signed fraction by an unsigned fractional operand
with no left-shift correction. Operand one is signed;
operand two is unsigned. MAC0 performs an
unmixed multiply on signed fractions by default, or
another format as specified. That is, MAC0 exe-
cutes the specified signed/signed or
unsigned/unsigned multiplication. The (M) option
can be used alone or in conjunction with one other
format option.

Multiply Accumulators (Multipliers)

2-44 ADSP-BF533 Blackfin Processor Hardware Reference

Multiplier Data Flow Details
Figure 2-12 shows the Register files and ALUs, along with the
multiplier/accumulators.

Each multiplier has two 16-bit inputs, performs a 16-bit multiplication,
and stores the result in a 40-bit accumulator or extracts to a 16-bit or
32-bit register. Two 32-bit words are available at the MAC inputs, provid-
ing four 16-bit operands to chose from.

One of the operands must be selected from the low half or the high half of
one 32-bit word. The other operand must be selected from the low half or
the high half of the other 32-bit word. Thus, each MAC is presented with
four possible input operand combinations. The two 32-bit words can
pcontain the same register information, giving the options for squaring
and multiplying the high half and low half of the same register.
Figure 2-13 show these possible combinations.

The 32-bit product is passed to a 40-bit adder/subtracter, which may add
or subtract the new product from the contents of the Accumulator Result
register or pass the new product directly to the Data Register File Results
register. For results, the A0 and A1 registers are 40 bits wide. Each of these
registers consists of smaller 32- and 8-bit registers—A0.W, A1.W, A0.X, and
A1.X.

ADSP-BF533 Blackfin Processor Hardware Reference 2-45

Computational Units

Some example instructions:

A0 = R3.L * R4.H ;

In this instruction, the MAC0 multiplier/accumulator performs a multiply
and puts the result in the Accumulator register.

A1 += R3.H * R4.H ;

In this instruction, the MAC1 multiplier/accumulator performs a multiply
and accumulates the result with the previous results in the A1
Accumulator.

Figure 2-12. Register Files and ALUs

MAC0

SHIFTER

MAC1

32b 32b32b

32b

32b

 OPERAND

FROM MEMORY

TO MEMORY

OPERAND

ALUs

A1 A0

R0

R1

R2

R3

R4

R5

R6

R7

R0.H R0.L

R1.H

R2.H

R3.H

R4.H

R5.H

R6.H

R7.H

R1.L

R2.L

R3.L

R4.L

R5.L

R6.L

R7.L

SELECTION SELECTION

Multiply Accumulators (Multipliers)

2-46 ADSP-BF533 Blackfin Processor Hardware Reference

Multiply Without Accumulate
The multiplier may operate without the accumulation function. If accu-
mulation is not used, the result can be directly stored in a register from the
Data Register File or the Accumulator register. The destination register
may be 16 bits or 32 bits. If a 16-bit destination register is a low half, then
MAC0 is used; if it is a high half, then MAC1 is used. For a 32-bit desti-
nation register, either MAC0 or MAC1 is used.

If the destination register is 16 bits, then the word that is extracted from
the multiplier depends on the data type of the input.

• If the multiplication uses fractional operands or the IH option, then
the high half of the result is extracted and stored in the 16-bit des-
tination registers (see Figure 2-14).

Figure 2-13. Four Possible Combinations of MAC Operations

31 31

Rm

Rp

39 39

MAC0 MAC0

31

39

MAC0

31

39

MAC0

A0

Rm

Rp

A0

Rm

Rp

A0

Rm

Rp

A0

A B

C D

ADSP-BF533 Blackfin Processor Hardware Reference 2-47

Computational Units

• If the multiplication uses integer operands, then the low half of the
result is extracted and stored in the 16-bit destination registers.
These extractions provide the most useful information in the resul-
tant 16-bit word for the data type chosen (see Figure 2-15).

For example, this instruction uses fractional, unsigned operands:

R0.L = R1.L * R2.L (FU) ;

The instruction deposits the upper 16 bits of the multiply answer with
rounding and saturation into the lower half of R0, using MAC0. This
instruction uses unsigned integer operands:

R0.H = R2.H * R3.H (IU) ;

Figure 2-14. Multiplication of Fractional Operands

A0.X A0.H A0.L

A0 0000 0000 XXXX XXXX XXXX XXXXXXXX XXXX XXXX XXXX

XXXX XXXX XXXX XXXXXXXX XXXX XXXX XXXX
Destination
Register

A1.X A1.H A1.L

A1 0000 0000 XXXX XXXX XXXX XXXXXXXX XXXX XXXX XXXX

XXXX XXXX XXXX XXXXXXXX XXXX XXXX XXXX
Destination
Register

Multiply Accumulators (Multipliers)

2-48 ADSP-BF533 Blackfin Processor Hardware Reference

The instruction deposits the lower 16 bits of the multiply answer with any
required saturation into the high half of R0, using MAC1.

R0 = R1.L * R2.L ;

Regardless of operand type, the preceding operation deposits 32 bits of the
multiplier answer with saturation into R0, using MAC0.

Special 32-Bit Integer MAC Instruction
The processor supports a multicycle 32-bit MAC instruction:

Dreg *= Dreg

The single instruction multiplies two 32-bit integer operands and provides
a 32-bit integer result, destroying one of the input operands.

Figure 2-15. Multiplication of Integer Operands

A0.X A0.H A0.L

A0 0000 0000 XXXX XXXX XXXX XXXXXXXX XXXX XXXX XXXX

XXXX XXXX XXXX XXXXXXXX XXXX XXXX XXXX
Destination
Register

A1.X A1.H A1.L

A1 0000 0000 XXXX XXXX XXXX XXXXXXXX XXXX XXXX XXXX

XXXX XXXX XXXX XXXXXXXX XXXX XXXX XXXX
Destination
Register

ADSP-BF533 Blackfin Processor Hardware Reference 2-49

Computational Units

The instruction takes multiple cycles to execute. Refer to the product data
sheet and the Blackfin Processor Programming Reference for more informa-
tion about the exact operation of this instruction. This macro function is
interruptable and does not modify the data in either Accumulator register
A0 or A1.

Dual MAC Operations
The processor has two 16-bit MACs. Both MACs can be used in the same
operation to double the MAC throughput. The same two 32-bit input
registers are offered to each MAC unit, providing each with four possible
combinations of 16-bit input operands. Dual MAC operations are fre-
quently referred to as vector operations, because a program could store
vectors of samples in the four input operands and perform vector
computations.

An example of a dual multiply and accumulate instruction is

A1 += R1.H * R2.L, A0 += R1.L * R2.H ;

This instruction represents two multiply and accumulate operations.

• In one operation (MAC1) the high half of R1 is multiplied by the
low half of R2 and added to the contents of the A1 Accumulator.

• In the second operation (MAC0) the low half of R1 is multiplied by
the high half of R2 and added to the contents of A0.

The results of the MAC operations may be written to registers in a num-
ber of ways: as a pair of 16-bit halves, as a pair of 32-bit registers, or as an
independent 16-bit half register or 32-bit register.

For example:

R3.H = (A1 += R1.H * R2.L), R3.L = (A0 += R1.L * R2.L) ;

Barrel Shifter (Shifter)

2-50 ADSP-BF533 Blackfin Processor Hardware Reference

In this instruction, the 40-bit Accumulator is packed into a 16-bit half
register. The result from MAC1 must be transferred to a high half of a
destination register and the result from MAC0 must be transferred to the
low half of the same destination register.

The operand type determines the correct bits to extract from the Accumu-
lator and deposit in the 16-bit destination register. See “Multiply Without
Accumulate” on page 2-46.

R3 = (A1 += R1.H * R2.L), R2 = (A0 += R1.L * R2.L) ;

In this instruction, the 40-bit Accumulators are packed into two 32-bit
registers. The registers must be register pairs (R[1:0], R[3:2], R[5:4],
R[7:6]).

R3.H = (A1 += R1.H * R2.L), A0 += R1.L * R2.L ;

This instruction is an example of one Accumulator—but not the other—
being transferred to a register. Either a 16- or 32-bit register may be speci-
fied as the destination register.

Barrel Shifter (Shifter)
The shifter provides bitwise shifting functions for 16-, 32-, or 40-bit
inputs, yielding a 16-, 32-, or 40-bit output. These functions include
arithmetic shift, logical shift, rotate, and various bit test, set, pack,
unpack, and exponent detection functions. These shift functions can be
combined to implement numerical format control, including full float-
ing-point representation.

ADSP-BF533 Blackfin Processor Hardware Reference 2-51

Computational Units

Shifter Operations
The shifter instructions (>>>, >>, <<, ASHIFT, LSHIFT, ROT) can be used var-
ious ways, depending on the underlying arithmetic requirements. The
ASHIFT and >>> instructions represent the arithmetic shift. The LSHIFT,
<<, and >> instructions represent the logical shift.

The arithmetic shift and logical shift operations can be further broken
into subsections. Instructions that are intended to operate on 16-bit single
or paired numeric values (as would occur in many DSP algorithms) can
use the instructions ASHIFT and LSHIFT. These are typically three-operand
instructions.

Instructions that are intended to operate on a 32-bit register value and use
two operands, such as instructions frequently used by a compiler, can use
the >>> and >> instructions.

Arithmetic shift, logical shift, and rotate instructions can obtain the shift
argument from a register or directly from an immediate value in the
instruction. For details about shifter related instructions, see “Shifter
Instruction Summary” on page 2-55.

Two-Operand Shifts

Two-operand shift instructions shift an input register and deposit the
result in the same register.

Immediate Shifts

An immediate shift instruction shifts the input bit pattern to the right
(downshift) or left (upshift) by a given number of bits. Immediate shift
instructions use the data value in the instruction itself to control the
amount and direction of the shifting operation.

Barrel Shifter (Shifter)

2-52 ADSP-BF533 Blackfin Processor Hardware Reference

The following example shows the input value downshifted.

R0 contains 0000 B6A3 ;

R0 >>= 0x04 ;

results in

R0 contains 0000 0B6A ;

The following example shows the input value upshifted.

R0 contains 0000 B6A3 ;

R0 <<= 0x04 ;

results in

R0 contains 000B 6A30 ;

Register Shifts

Register-based shifts use a register to hold the shift value. The entire
32-bit register is used to derive the shift value, and when the magnitude of
the shift is greater than or equal to 32, then the result is either 0 or –1.

The following example shows the input value upshifted.

R0 contains 0000 B6A3 ;

R2 contains 0000 0004 ;

R0 <<= R2 ;

results in

R0 contains 000B 6A30 ;

Three-Operand Shifts

Three-operand shifter instructions shift an input register and deposit the
result in a destination register.

ADSP-BF533 Blackfin Processor Hardware Reference 2-53

Computational Units

Immediate Shifts

Immediate shift instructions use the data value in the instruction itself to
control the amount and direction of the shifting operation.

The following example shows the input value downshifted.

R0 contains 0000 B6A3 ;

R1 = R0 >> 0x04 ;

results in

R1 contains 0000 0B6A ;

The following example shows the input value upshifted.

R0.L contains B6A3 ;

R1.H = R0.L << 0x04 ;

results in

R1.H contains 6A30 ;

Register Shifts

Register-based shifts use a register to hold the shift value. When a register
is used to hold the shift value (for ASHIFT, LSHIFT or ROT), then the shift
value is always found in the low half of a register (Rn.L). The bottom six
bits of Rn.L are masked off and used as the shift value.

The following example shows the input value upshifted.

R0 contains 0000 B6A3 ;

R2.L contains 0004 ;

R1 = R0 ASHIFT by R2.L ;

results in

R1 contains 000B 6A30 ;

Barrel Shifter (Shifter)

2-54 ADSP-BF533 Blackfin Processor Hardware Reference

The following example shows the input value rotated. Assume the Condi-
tion Code (CC) bit is set to 0. For more information about CC, see
“Condition Code Flag” on page 4-12.

R0 contains ABCD EF12 ;

R2.L contains 0004 ;

R1 = R0 ROT by R2.L ;

results in

R1 contains BCDE F125 ;

Note the CC bit is included in the result, at bit 3.

Bit Test, Set, Clear, Toggle

The shifter provides the method to test, set, clear, and toggle specific bits
of a data register. All instructions have two arguments—the source register
and the bit field value. The test instruction does not change the source
register. The result of the test instruction resides in the CC bit.

The following examples show a variety of operations.

BITCLR (R0, 6) ;

BITSET (R2, 9) ;

BITTGL (R3, 2) ;

CC = BITTST (R3, 0) ;

Field Extract and Field Deposit

If the shifter is used, a source field may be deposited anywhere in a 32-bit
destination field. The source field may be from 1 bit to 16 bits in length.
In addition, a 1- to 16-bit field may be extracted from anywhere within a
32-bit source field.

ADSP-BF533 Blackfin Processor Hardware Reference 2-55

Computational Units

Two register arguments are used for these functions. One holds the 32-bit
destination or 32-bit source. The other holds the extract/deposit value, its
length, and its position within the source.

Shifter Instruction Summary
Table 2-11 lists the shifter instructions. For more information about
assembly language syntax and the effect of shifter instructions on the sta-
tus flags, see Blackfin Processor Programming Reference.

In Table 2-11, note the meaning of these symbols:

• Dreg denotes any Data Register File register.

• Dreg_lo denotes the lower 16 bits of any Data Register File
register.

• Dreg_hi denotes the upper 16 bits of any Data Register File
register.

• * Indicates the flag may be set or cleared, depending on the results
of the instruction.

• * 0 Indicates versions of the instruction that send results to Accu-
mulator A0 set or clear AV0.

• * 1 Indicates versions of the instruction that send results to Accu-
mulator A1 set or clear AV1.

• ** Indicates the flag is cleared.

• *** Indicates CC contains the latest value shifted into it.

• – Indicates no effect.

Barrel Shifter (Shifter)

2-56 ADSP-BF533 Blackfin Processor Hardware Reference

Table 2-11. Shifter Instruction Summary

Instruction ASTAT Status Flag

AZ AN AC0
AC0_COPY
AC1

AV0
AV0S

AV1
AV1S

CC V
V_COPY
VS

BITCLR (Dreg, uimm5) ; * * ** – – – **/–

BITSET (Dreg, uimm5) ; ** * ** – – – **/–

BITTGL (Dreg, uimm5) ; * * ** – – – **/–

CC =
BITTST (Dreg, uimm5) ;

– – – – – * –

CC =
!BITTST (Dreg, uimm5) ;

– – – – – * –

Dreg =
DEPOSIT (Dreg, Dreg) ;

* * ** – – – **/–

Dreg =
EXTRACT (Dreg, Dreg) ;

* * ** – – – **/–

BITMUX (Dreg, Dreg, A0) ; – – – – – – –

Dreg_lo = ONES Dreg ; – – – – – – –

Dreg = PACK (Dreg_lo_hi,
Dreg_lo_hi);

– – – – – – –

Dreg >>>= uimm5 ; * * – – – – **/–

Dreg >>= uimm5 ; * * – – – – **/–

Dreg <<= uimm5 ; * * – – – – **/–

Dreg = Dreg >>> uimm5 ; * * – – – – **/–

Dreg = Dreg >> uimm5 ; * * – – – – **/–

Dreg = Dreg << uimm5 ; * * – – – – *

Dreg = Dreg >>> uimm4 (V) ; * * – – – – **/–

Dreg = Dreg >> uimm4 (V) ; * * – – – – **/–

Dreg = Dreg << uimm4 (V) ; * * – – – – *

An = An >>> uimm5 ; * * – ** 0/– ** 1/– – –

ADSP-BF533 Blackfin Processor Hardware Reference 2-57

Computational Units

An = An >> uimm5 ; * * – ** 0/– ** 1/– – –

An = An << uimm5 ; * * – * 0 * 1 – –

Dreg_lo_hi = Dreg_lo_hi >>>
uimm4 ;

* * – – – – **/–

Dreg_lo_hi = Dreg_lo_hi >>
uimm4 ;

* * – – – – **/–

Dreg_lo_hi = Dreg_lo_hi <<
uimm4 ;

* * – – – – *

Dreg >>>= Dreg ; * * – – – – **/–

Dreg >>= Dreg ; * * – – – – **/–

Dreg <<= Dreg ; * * – – – – **/–

Dreg = ASHIFT Dreg BY
Dreg_lo ;

* * – – – – *

Dreg = LSHIFT Dreg BY
Dreg_lo ;

* * – – – – **/–

Dreg = ROT Dreg BY imm6 ; – – – – – *** –

Dreg = ASHIFT Dreg BY
Dreg_lo (V) ;

* * – – – – *

Dreg = LSHIFT Dreg BY
Dreg_lo (V) ;

* * – – – – **/–

Dreg_lo_hi = ASHIFT
Dreg_lo_hi BY Dreg_lo ;

* * – – – – *

Dreg_lo_hi = LSHIFT
Dreg_lo_hi BY Dreg_lo ;

* * – – – – **/–

An = An ASHIFT BY Dreg _lo ; * * – * 0 * 1 – –

An = An ROT BY imm6 ; – – – – – *** –

Preg = Preg >> 1 ; – – – – – – –

Table 2-11. Shifter Instruction Summary (Cont’d)

Instruction ASTAT Status Flag

AZ AN AC0
AC0_COPY
AC1

AV0
AV0S

AV1
AV1S

CC V
V_COPY
VS

Barrel Shifter (Shifter)

2-58 ADSP-BF533 Blackfin Processor Hardware Reference

Preg = Preg >> 2 ; – – – – – – –

Preg = Preg << 1 ; – – – – – – –

Preg = Preg << 2 ; – – – – – – –

Dreg = (Dreg + Dreg) << 1 ; * * * – – – *

Dreg = (Dreg + Dreg) << 2 ; * * * – – – *

Preg = (Preg + Preg) << 1 ; – – – – – – –

Preg = (Preg + Preg) << 2 ; – – – – – – –

Preg = Preg + (Preg << 1) ; – – – – – – –

Preg = Preg + (Preg << 2) ; – – – – – – –

Table 2-11. Shifter Instruction Summary (Cont’d)

Instruction ASTAT Status Flag

AZ AN AC0
AC0_COPY
AC1

AV0
AV0S

AV1
AV1S

CC V
V_COPY
VS

ADSP-BF533 Blackfin Processor Hardware Reference 3-1

3 OPERATING MODES AND
STATES

The processor supports the following processor modes:

• User mode

• Supervisor mode

• Emulation mode

Emulation and Supervisor modes have unrestricted access to the core
resources. User mode has restricted access to certain system resources, thus
providing a protected software environment.

User mode is considered the domain of application programs. Supervisor
mode and Emulation mode are usually reserved for the kernel code of an
operating system.

The processor mode is determined by the Event Controller. When servic-
ing an interrupt, a nonmaskable interrupt (NMI), or an exception, the
processor is in Supervisor mode. When servicing an emulation event, the
processor is in Emulation mode. When not servicing any events, the pro-
cessor is in User mode.

The current processor mode may be identified by interrogating the IPEND
memory-mapped register (MMR), as shown in Table 3-1.

 MMRs cannot be read while the processor is in User mode.

3-2 ADSP-BF533 Blackfin Processor Hardware Reference

In addition, the processor supports the following two non-processing
states:

• Idle state

• Reset state

Figure 3-1 illustrates the processor modes and states as well as the transi-
tion conditions between them.

Table 3-1. Identifying the Current Processor Mode

Event Mode IPEND

Interrupt Supervisor  0x10
but IPEND[0], IPEND[1], IPEND[2], and
IPEND[3] = 0.

Exception Supervisor  0x08
The core is processing an exception event if
IPEND[0] = 0, IPEND[1] = 0, IPEND[2] = 0,
IPEND[3] = 1, and IPEND[15:4] are 0’s or 1’s.

NMI Supervisor  0x04
The core is processing an NMI event if IPEND[0]
= 0, IPEND[1] = 0, IPEND[2] = 1, and
IPEND[15:2] are 0’s or 1’s.

Reset Supervisor  0x02
As the reset state is exited, IPEND is set to 0x02, and
the reset vector runs in Supervisor mode.

Emulation Emulator  0x01
The processor is in Emulation mode if
IPEND[0] = 1, regardless of the state of the
remaining bits IPEND[15:1].

None User  0x00

ADSP-BF533 Blackfin Processor Hardware Reference 3-3

Operating Modes and States

User Mode
The processor is in User mode when it is not in Reset or Idle state, and
when it is not servicing an interrupt, NMI, exception, or emulation event.
User mode is used to process application level code that does not require
explicit access to system registers. Any attempt to access restricted system
registers causes an exception event. Table 3-2 lists the registers that may
be accessed in User mode.

Figure 3-1. Processor Modes and States

Interrupt
RTI,

Event

EMULATION

SUPERVISOR

IDLE

RESET

Application
Level Code

System Code,
Event Handlers

USER

Emulation

Event
Emulation

RTX, RTNException

RTE

RST Inactive

Emulation Event (1)

(1) Normal exit from Reset is to Supervisor mode. However, emulation hardware may
have initiated a reset. If so, exit from Reset is to Emulation.

RST
Active

IDLE
instruction

or

IDLE instruction

Wakeup

RTE

Interrupt

User Mode

3-4 ADSP-BF533 Blackfin Processor Hardware Reference

Protected Resources and Instructions
System resources consist of a subset of processor registers, all MMRs, and
a subset of protected instructions. These system and core MMRs are
located starting at address 0xFFC0 0000. This region of memory is pro-
tected from User mode access. Any attempt to access MMR space in User
mode causes an exception.

A list of protected instructions appears in Table 3-3. Any attempt to issue
any of the protected instructions from User mode causes an exception
event.

Table 3-2. Registers Accessible in User Mode

Processor Registers Register Names

Data Registers R[7:0], A[1:0]

Pointer Registers P[5:0], SP, FP, I[3:0], M[3:0], L[3:0], B[3:0]

Sequencer and Status Registers RETS, LC[1:0], LT[1:0], LB[1:0], ASTAT, CYCLES,
CYCLES2

Table 3-3. Protected Instructions

Instruction Description

RTI Return from Interrupt

RTX Return from Exception

RTN Return from NMI

CLI Disable Interrupts

STI Enable Interrupts

RAISE Force Interrupt/Reset

RTE Return from Emulation
Causes an exception only if executed outside Emulation mode

ADSP-BF533 Blackfin Processor Hardware Reference 3-5

Operating Modes and States

Protected Memory
Additional memory locations can be protected from User mode access. A
Cacheability Protection Lookaside Buffer (CPLB) entry can be created
and enabled. See “Memory Management Unit” on page 6-47 for further
information.

Entering User Mode
When coming out of reset, the processor is in Supervisor mode because it
is servicing a reset event. To enter User mode from the Reset state, two
steps must be performed. First, a return address must be loaded into the
RETI register. Second, an RTI must be issued. The following example code
shows how to enter User mode upon reset.

Example Code to Enter User Mode Upon Reset

Listing 3-1 provides code for entering User mode from reset.

Listing 3-1. Entering User Mode from Reset

P1.L = START ; /* Point to start of user code */

P1.H = START ;

RETI = P1 ;

RTI ; /* Return from Reset Event */

START : /* Place user code here */

User Mode

3-6 ADSP-BF533 Blackfin Processor Hardware Reference

Return Instructions That Invoke User Mode

Table 3-4 provides a summary of return instructions that can be used to
invoke User mode from various processor event service routines. When
these instructions are used in service routines, the value of the return
address must be first stored in the appropriate event RETx register. In the
case of an interrupt routine, if the service routine is interruptible, the
return address is stored on the stack. For this case, the address can be
found by popping the value from the stack into RETI. Once RETI has been
loaded, the RTI instruction can be issued.

 Note the stack pop is optional. If the RETI register is not
pushed/popped, then the interrupt service routine becomes
non-interruptible, because the return address is not saved on the
stack.

The processor remains in User mode until one of these events occurs:

• An interrupt, NMI, or exception event invokes Supervisor mode.

• An emulation event invokes Emulation mode.

• A reset event invokes the Reset state.

Table 3-4. Return Instructions That Can Invoke User Mode

Current Process Activity Return Instruction to Use Execution Resumes at Address
in This Register

Interrupt Service Routine RTI RETI

Exception Service Routine RTX RETX

Nonmaskable Interrupt Service
Routine

RTN RETN

Emulation Service Routine RTE RETE

ADSP-BF533 Blackfin Processor Hardware Reference 3-7

Operating Modes and States

Supervisor Mode
The processor services all interrupt, NMI, and exception events in Super-
visor mode.

Supervisor mode has full, unrestricted access to all processor system
resources, including all emulation resources, unless a CPLB has been
configured and enabled. See “Memory Management Unit” on page 6-47
for a further description. Only Supervisor mode can use the register alias
USP, which references the User Stack Pointer in memory. This register
alias is necessary because in Supervisor mode, SP refers to the kernel stack
pointer rather than to the user stack pointer.

Normal processing begins in Supervisor mode from the Reset state. Deas-
serting the RESET signal switches the processor from the Reset state to
Supervisor mode where it remains until an emulation event or Return
instruction occurs to change the mode. Before the Return instruction is
issued, the RETI register must be loaded with a valid return address.

Non-OS Environments
For non-OS environments, application code should remain in Supervisor
mode so that it can access all core and system resources. When RESET is
deasserted, the processor initiates operation by servicing the reset event.
Emulation is the only event that can pre-empt this activity. Therefore,
lower priority events cannot be processed.

One way of keeping the processor in Supervisor mode and still allowing
lower priority events to be processed is to set up and force the lowest pri-
ority interrupt (IVG15). Events and interrupts are described further in
“Events and Sequencing” on page 4-18. After the low priority interrupt
has been forced using the RAISE 15 instruction, RETI can be loaded with a
return address that points to user code that can execute until IVG15 is
issued. After RETI has been loaded, the RTI instruction can be issued to
return from the reset event.

Supervisor Mode

3-8 ADSP-BF533 Blackfin Processor Hardware Reference

The interrupt handler for IVG15 can be set to jump to the application code
starting address. An additional RTI is not required. As a result, the proces-
sor remains in Supervisor mode because IPEND[15] remains set. At this
point, the processor is servicing the lowest priority interrupt. This ensures
that higher priority interrupts can be processed.

Example Code for Supervisor Mode Coming Out of Reset

To remain in Supervisor mode when coming out of the Reset state, use
code as shown in Listing 3-2.

Listing 3-2. Staying in Supervisor Mode Coming Out of Reset

P0.L = LO(EVT15) ; /* Point to IVG15 in Event Vector Table */

P0.H = HI(EVT15) ;

P1.L = START ; /* Point to start of User code */

P1.H = START ;

[P0] = P1 ; /* Place the address of start code in IVG15 of EVT

*/

P0.L = LO(IMASK) ;

R0 = [P0] ;

R1.L = EVT_IVG15 & 0xFFFF ;

R0 = R0 | R1 ;

[P0] = R0 ; /* Set (enable) IVG15 bit in Interrupt Mask Register

*/

RAISE 15 ; /* Invoke IVG15 interrupt */

P0.L = WAIT_HERE ;

P0.H = WAIT_HERE ;

RETI = P0 ; /* RETI loaded with return address */

ADSP-BF533 Blackfin Processor Hardware Reference 3-9

Operating Modes and States

RTI ; /* Return from Reset Event */

WAIT_HERE : /* Wait here till IVG15 interrupt is serviced */

JUMP WAIT_HERE ;

START: /* IVG15 vectors here */

[--SP] = RETI ; /* Enables interrupts and saves return address

to stack */

Emulation Mode
The processor enters Emulation mode if Emulation mode is enabled and
either of these conditions is met:

• An external emulation event occurs.

• The EMUEXCPT instruction is issued.

The processor remains in Emulation mode until the emulation service
routine executes an RTE instruction. If no interrupts are pending when the
RTE instruction executes, the processor switches to User mode. Otherwise,
the processor switches to Supervisor mode to service the interrupt.

 Emulation mode is the highest priority mode, and the processor
has unrestricted access to all system resources.

Idle State
Idle state stops all processor activity at the user’s discretion, usually to
conserve power during lulls in activity. No processing occurs during the
Idle state. The Idle state is invoked by a sequential IDLE instruction. The
IDLE instruction notifies the processor hardware that the Idle state is
requested.

Reset State

3-10 ADSP-BF533 Blackfin Processor Hardware Reference

The processor remains in the Idle state until a peripheral or external
device, such as a SPORT or the Real-Time Clock (RTC), generates an
interrupt that requires servicing.

In Listing 3-3, core interrupts are disabled and the IDLE instruction is exe-
cuted. When all the pending processes have completed, the core disables
its clocks. Since interrupts are disabled, Idle state can be terminated only
by asserting a WAKEUP signal. For more information, see “SIC_IWR Regis-
ter” on page 4-25. (While not required, an interrupt could also be enabled
in conjunction with the WAKEUP signal.)

When the WAKEUP signal is asserted, the processor wakes up, and the STI
instruction enables interrupts again.

Example Code for Transition to Idle State
To transition to the Idle state, use code shown in Listing 3-3.

Listing 3-3. Transitioning to Idle State

CLI R0 ; /* disable interrupts */

IDLE ; /* drain pipeline and send core into IDLE state */

STI R0 ; /* re-enable interrupts after wakeup */

Reset State
Reset state initializes the processor logic. During Reset state, application
programs and the operating system do not execute. Clocks are stopped
while in Reset state.

The processor remains in the Reset state as long as external logic asserts
the external RESET signal. Upon deassertion, the processor completes the
reset sequence and switches to Supervisor mode, where it executes code
found at the reset event vector.

ADSP-BF533 Blackfin Processor Hardware Reference 3-11

Operating Modes and States

Software in Supervisor or Emulation mode can invoke the Reset state
without involving the external RESET signal. This can be done by issuing
the Reset version of the RAISE instruction.

Application programs in User mode cannot invoke the Reset state, except
through a system call provided by an operating system kernel. Table 3-5
summarizes the state of the processor upon reset.

Table 3-5. Processor State Upon Reset

Item Description of Reset State

Core

Operating Mode Supervisor mode in reset event, clocks stopped

Rounding Mode Unbiased rounding

Cycle Counters Disabled, zero

DAG Registers (I, L, B, M) Random values (must be cleared at initialization)

Data and Address Registers Random values (must be cleared at initialization)

IPEND, IMASK, ILAT Cleared, interrupts globally disabled with IPEND bit 4

CPLBs Disabled

L1 Instruction Memory SRAM (cache disabled)

L1 Data Memory SRAM (cache disabled)

Cache Validity Bits Invalid

System

Booting Methods Determined by the values of BMODE pins at reset

MSEL Clock Frequency Reset value = 10

PLL Bypass Mode Disabled

VCO/Core Clock Ratio Reset value = 1

VCO/System Clock Ratio Reset value = 5

Peripheral Clocks Disabled

System Reset and Powerup

3-12 ADSP-BF533 Blackfin Processor Hardware Reference

System Reset and Powerup
Table 3-6 describes the five types of resets. Note all resets, except System
Software, reset the core.

Table 3-6. Resets

Reset Source Result

Hardware Reset The RESET pin causes a hard-
ware reset.

Resets both the core and the peripherals,
including the Dynamic Power Management
Controller (DPMC).
Resets the No Boot on Software Reset bit in
SYSCR. For more information, see “SYSCR
Register” on page -14.

System Software
Reset

Writing b#111 to bits [2:0]
in the system MMR SWRST
at address 0xFFC0 0100
causes a System Software
reset.

Resets only the peripherals, excluding the RTC
(Real-Time Clock) block and most of the
DPMC. The DPMC resets only the No Boot
on Software Reset bit in SYSCR. Does not reset
the core. Does not initiate a boot sequence.

Watchdog Timer
Reset

Programming the watchdog
timer appropriately causes a
Watchdog Timer reset.

Resets both the core and the peripherals,
excluding the RTC block and most of the
DPMC.
The Software Reset register (SWRST) can be read
to determine whether the reset source was the
watchdog timer.

ADSP-BF533 Blackfin Processor Hardware Reference 3-13

Operating Modes and States

Hardware Reset
The processor chip reset is an asynchronous reset event. The RESET input
pin must be deasserted to perform a hardware reset. For more informa-
tion, see ADSP-BF531/ADSP-BF532/ADSP-BF533 Embedded Processor
Data Sheet.

A hardware-initiated reset results in a system-wide reset that includes both
core and peripherals. After the RESET pin is deasserted, the processor
ensures that all asynchronous peripherals have recognized and completed a
reset. After the reset, the processor transitions into the Boot mode
sequence configured by the BMODE state.

The BMODE[1:0] pins are dedicated mode control pins. No other functions
are shared with these pins, and they may be permanently strapped by tying
them directly to either VDD or VSS. The pins and the corresponding bits
in SYSCR configure the Boot mode that is employed after hardware reset or
System Software reset. See “Reset” on page 4-39, and Table 4-11 on
page 4-43 for further information.

Core Double-
Fault Reset

If the core enters a dou-
ble-fault state, and the Core
Double Fault Reset Enable
bit (DOUBLE_FAULT) is
set in the SWRST register,
then a software reset occurs.

Resets both the core and the peripherals,
excluding the RTC block and most of the
DPMC.
The SWRST register can be read to determine
whether the reset source was Core Double
Fault.

Core-Only Soft-
ware Reset

This reset is caused by exe-
cuting a RAISE1 instruction
or by setting the Software
Reset (SYSRST) bit in the
core Debug Control register
(DBGCTL) via emulation soft-
ware through the JTAG port.
The DBGCTL register is not
visible to the memory map.

Resets only the core.
The peripherals do not recognize this reset.

Table 3-6. Resets (Cont’d)

Reset Source Result

System Reset and Powerup

3-14 ADSP-BF533 Blackfin Processor Hardware Reference

SYSCR Register
The values sensed from the BMODE[1:0] pins are latched into the System
Reset Configuration register (SYSCR) upon the deassertion of the RESET
pin. The values are made available for software access and modification
after the hardware reset sequence. Software can modify only the No Boot
on Software Reset bit.

The various configuration parameters are distributed to the appropriate
destinations from SYSCR (see Figure 3-2).

Figure 3-2. System Reset Configuration Register

00000 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BMODE[1:0] (Boot Mode)- RO
 00 - Bypass boot ROM,

execute from 16-bit
external memory

 01 - Use boot ROM to load
from 8-bit or 16-bit flash

 10 - SPI slave mode boot via
a master (host)

 11 - Use boot ROM to configure
and load boot code from
SPI serial EEPROM
(8-, 16-, or 24-bit address
range)

0 0 0 0 0 0 0 0 X X Reset = dependent on pin
values

System Reset Configuration Register (SYSCR)
X - state is initialized from mode pins during hardware reset

No Boot on Software Reset
 0 - Use BMODE to determine

boot source
 1 - Start executing from the

beginning of on-chip L1
memory or the beginning of
ASYNC Bank 0 when
BMODE[1:0] = b#00

0xFFC0 0104

ADSP-BF533 Blackfin Processor Hardware Reference 3-15

Operating Modes and States

Software Resets and Watchdog Timer
A software reset may be initiated in three ways:

• By the watchdog timer, if appropriately configured

• By setting the System Software Reset field in the Software Reset
register (see Figure 3-3)

• By the RAISE1 instruction

The watchdog timer resets both the core and the peripherals. A System
Software reset results in a reset of the peripherals without resetting the
core and without initiating a booting sequence.

 The System Software reset must be performed while executing
from Level 1 memory (either as cache or as SRAM).

When L1 instruction memory is configured as cache, make sure the Sys-
tem Software reset sequence has been read into the cache.

After either the watchdog or System Software reset is initiated, the proces-
sor ensures that all asynchronous peripherals have recognized and
completed a reset.

For a reset generated by the watchdog timer, the processors transitions
into the Boot mode sequence. The Boot mode is configured by the state of
the BMODE and the No Boot on Software Reset control bits.

If the No Boot on Software Reset bit in SYSCR is cleared, the reset
sequence is determined by the BMODE[1:0] control bits.

System Reset and Powerup

3-16 ADSP-BF533 Blackfin Processor Hardware Reference

SWRST Register
A software reset can be initiated by setting the System Software Reset field
in the Software Reset register (SWRST). Bit 15 indicates whether a software
reset has occurred since the last time SWRST was read. Bit 14 and Bit 13,
respectively, indicate whether the Software Watchdog Timer or a Core
Double Fault has generated a software reset. Bits [15:13] are read-only
and cleared when the register is read. Bits [3:0] are read/write.

When the BMODE pins are not set to b#00 and the No Boot on Software
Reset bit in SYSCR is set, the processor starts executing from the start of
on-chip L1 memory. In this configuration, the core begins fetching
instructions from the beginning of on-chip L1 memory.

When the BMODE pins are set to b#00 the core begins fetching instructions
from address 0x2000 0000 (the beginning of ASYNC Bank 0).

Figure 3-3. Software Reset Register

0

Software Reset Register (SWRST)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0

System Software Reset
 0x0 – 0x6 - No SW reset
 0x7 - Triggers SW reset

Software Reset
Status - RO

0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

Core Double Fault Reset - RO
 0 - SW reset not generated by double fault
 1 - SW reset generated by double fault

Software Watchdog Timer-
Source - RO
 0 - SW reset not generated by

watchdog
 1 - SW reset generated by

watchdog

Core Double Fault Reset
Enable

0xFFC0 0100

 0 - No SW reset since last
SWRST read

 1 - SW reset occurred since
last SWRST read 0 - No reset caused by

 Core Double Fault
 1 - Reset generated upon
 Core Double Fault

ADSP-BF533 Blackfin Processor Hardware Reference 3-17

Operating Modes and States

Core-Only Software Reset
A Core-Only Software reset is initiated by executing the RAISE 1 instruc-
tion or by setting the Software Reset (SYSRST) bit in the core Debug
Control register (DBGCTL) via emulation software through the JTAG port.
(DBGCTL is not visible to the memory map.)

A Core-Only Software reset affects only the state of the core. Note the sys-
tem resources may be in an undetermined or even unreliable state,
depending on the system activity during the reset period.

Core and System Reset
To perform a system and core reset, use the code sequence shown in
Listing 3-4. As described in the code comments, the system soft reset takes
five system clock cycles to complete, so a delay loop is needed. This code
must reside in L1 memory for the system soft reset to work properly.

Listing 3-4. Core and System Reset

/* Issue system soft reset */

P0.L = LO(SWRST) ;

P0.H = HI(SWRST) ;

R0.L = 0x0007 ;

W[P0] = R0 ;

SSYNC ;

/* Wait for System reset to complete (needs to be 5 SCLKs). */

/* Assuming a worst case CCLK:SCLK ratio (15:1), use 5*15 = 75 */

/* as the loop count. */

P1 = 75;

LSETUP(start, end) LCO = P1 ;

start:

end:

Booting Methods

3-18 ADSP-BF533 Blackfin Processor Hardware Reference

NOP ;

/* Clear system soft reset */

R0.L = 0x0000 ;

W[P0] = R0 ;

SSYNC ;

/* Core reset - forces reboot */

RAISE 1 ;

Booting Methods
The internal boot ROM includes a small boot kernel that can either be
bypassed or used to load user code from an external memory device. See
Table 4-10 on page 4-40 for further information. The boot kernel reads
the BMODE[1:0] pin state at reset to identify the download source (see
Table 4-7 on page 4-23). When in Boot Mode 0, the processor is set to
execute from 16-bit wide external memory at address 0x2000 0000
(ASYNC Bank 0).

Several boot methods are available in which user code can be loaded from
an external memory device or a host device (as in the case of SPI slave
mode booting). For these modes, the boot kernel sets up the selected
peripheral based on the BMODE[1:0] pin settings.

For each Boot mode, user code read in from the memory device is placed
at the starting location of L1 memory. Additional sections are read into
internal memory as specified within headers in the loader file. The boot
kernel terminates the boot process with a jump to the start of the L1
instruction memory space. The processor then begins execution from this
address.

 If booting from Serial Peripheral Interface (SPI), general-purpose
flag pin 2 is used as the SPI-chip select. This line must be con-
nected for proper operation.

ADSP-BF533 Blackfin Processor Hardware Reference 3-19

Operating Modes and States

A Core-Only Software reset also vectors the core to the boot ROM. Only
the core is reset with the Core-Only Software reset; this reset does not
affect the rest of the system. The boot ROM kernel detects a No Boot on
Software Reset condition in SYSCR to avoid initiating a download. If this
bit is set on a software reset, the processor skips the normal boot sequence
and jumps to the beginning of L1 memory and begins execution.

The boot kernel assumes these conditions for the Flash Boot mode
(BMODE = 01):

• Asynchronous Memory Bank (AMB) 0 enabled

• 16-bit packing for AMB 0 enabled

• Bank 0 RDY is set to active high

• Bank 0 hold time (read/write deasserted to AOE deasserted) =
3 cycles

• Bank 0 read/write access times = 15 cycles

For SPI master mode boot (BMODE = 11), the boot kernel assumes that the
SPI baud rate is 500 kHz. SPI serial EEPROMs that are 8-bit, 16-bit, and
24-bit addressable are supported. The SPI uses the PF2 output pin to select
a single SPI EEPROM device. The SPI controller submits successive read
commands at addresses 0x00, 0x0000, and 0x000000 until a valid 8-, 16-,
or 24-bit addressable EEPROM is detected. It then begins clocking data
into the beginning of L1 instruction memory.

 The MISO pin must be pulled high for SPI master mode booting
(BMODE = 11).

For each of the boot modes, 10-byte headers are first read from an external
memory device. The header specifies the number of bytes to be transferred
and the memory destination address. Once all blocks are loaded, program
execution commences from the start of L1 instruction SRAM.

Booting Methods

3-20 ADSP-BF533 Blackfin Processor Hardware Reference

For SPI slave mode boot (BMODE = 10), the hardware configuration shown
in Figure 3-4 is assumed.

The user defined programmable flag PFx is an output on the Blackfin pro-
cessor and an input on the host device. This flag allows the processor to
hold off the host device from sending data during certain sections of the
boot process. When this flag is de-asserted, the host can continue to send
bytes to the processor.

Figure 3-4. SPI Slave Boot Mode

ADSP-BF533
ADSP-BF532
ADSP-BF531

HOST

SCLK

SPISS

MISO

PFx

MOSI

MASTER SLAVE

ADSP-BF533 Blackfin Processor Hardware Reference 4-1

4 PROGRAM SEQUENCER

In the processor, the program sequencer controls program flow, constantly
providing the address of the next instruction to be executed by other parts
of the processor. Program flow in the chip is mostly linear, with the pro-
cessor executing program instructions sequentially.

The linear flow varies occasionally when the program uses nonsequential
program structures, such as those illustrated in Figure 4-1. Nonsequential
structures direct the processor to execute an instruction that is not at the
next sequential address. These structures include:

• Loops. One sequence of instructions executes several times with
zero overhead.

• Subroutines. The processor temporarily interrupts sequential flow
to execute instructions from another part of memory.

• Jumps. Program flow transfers permanently to another part of
memory.

• Interrupts and Exceptions. A runtime event or instruction triggers
the execution of a subroutine.

• Idle. An instruction causes the processor to stop operating and
hold its current state until an interrupt occurs. Then, the processor
services the interrupt and continues normal execution.

4-2 ADSP-BF533 Blackfin Processor Hardware Reference

The sequencer manages execution of these program structures by selecting
the address of the next instruction to execute.

The fetched address enters the instruction pipeline, ending with the pro-
gram counter (PC). The pipeline contains the 32-bit addresses of the
instructions currently being fetched, decoded, and executed. The PC cou-
ples with the RETn registers, which store return addresses. All addresses
generated by the sequencer are 32-bit memory instruction addresses.

Figure 4-1. Program Flow Variations

ADDRESS:N INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

LINEAR FLOW

LOOP

LOOP

N TIMES

JUMP

JUMP

…

CALL

SUBROUTINE

RTS

…

RTI

INTERRUPT

IRQ

VECTOR

IDLE

IDLE

WAITING
FOR IRQ
OR
WAKEUP

N + 1

N + 2

N + 3

N + 4

N + 5

ADSP-BF533 Blackfin Processor Hardware Reference 4-3

Program Sequencer

To manage events, the sequencer’s event controller handles interrupt and
event processing, determines whether an interrupt is masked, and gener-
ates the appropriate event vector address.

In addition to providing data addresses, the data address generators
(DAGs) can provide instruction addresses for the sequencer’s indirect
branches.

The sequencer evaluates conditional instructions and loop termination
conditions. The loop registers support nested loops. The memory-mapped
registers (MMRs) store information used to implement interrupt service
routines.

Sequencer Related Registers
Table 4-1 lists the registers within the processor that are related to the
sequencer. Except for the PC and SEQSTAT registers, all sequencer-related
registers are directly readable and writable. Manually pushing or popping
registers to or from the stack is done using the explicit instructions:

• [––SP] = Rn (for push)

• Rn = [SP++] (for pop)

Table 4-1. Sequencer-Related Registers

Register Name Description

SEQSTAT Sequencer Status register

RETX
RETN
RETI
RETE
RETS

Return Address registers: See “Events and Sequencing”
on page 4-18.
Exception Return
NMI Return
Interrupt Return
Emulation Return
Subroutine Return

Sequencer Related Registers

4-4 ADSP-BF533 Blackfin Processor Hardware Reference

SEQSTAT Register
The Sequencer Status register (SEQSTAT) contains information about the
current state of the sequencer as well as diagnostic information from the
last event. SEQSTAT is a read-only register and is accessible only in Supervi-
sor mode.

Zero-Overhead Loop Registers (LC, LT, and LB)
Two sets of zero-overhead loop registers implement loops, using hardware
counters instead of software instructions to evaluate loop conditions. After
evaluation, processing branches to a new target address. Both sets of regis-
ters include the Loop Counter (LC), Loop Top (LT), and Loop Bottom
(LB) registers.

LC0, LC1
LT0, LT1
LB0, LB1

Zero-Overhead Loop registers:
Loop Counters
Loop Tops
Loop Bottoms

FP, SP Frame Pointer and Stack Pointer: See “Frame and Stack
Pointers” on page 5-5.

SYSCFG System Configuration register

CYCLES, CYCLES2 Cycle Counters

PC Program Counter

Table 4-1. Sequencer-Related Registers (Cont’d)

Register Name Description

ADSP-BF533 Blackfin Processor Hardware Reference 4-5

Program Sequencer

Table 4-2 describes the 32-bit loop register sets.

Figure 4-2. Sequencer Status Register

Table 4-2. Loop Registers

Registers Description Function

LC0, LC1 Loop Counters Maintains a count of the remaining iterations of the loop

LT0, LT1 Loop Tops Holds the address of the first instruction within a loop

LB0, LB1 Loop Bottoms Holds the address of the last instruction of the loop

Sequencer Status Register (SEQSTAT)

EXCAUSE[5:0]
Holds information about
the last executed excep-
tion. See Table 4-11.

Reset = 0x0000 0000

HWERRCAUSE[1:0]
Holds cause of last hard-
ware error generated by
the core. Hardware errors
trigger interrupt number 5
(IVHW). See Table 4-13.

SFTRESET
0 - Last core reset was not a

reset triggered by software
1 - Last core reset was a reset

triggered by software, rather
than a hardware powerup reset

HWERRCAUSE[4:2]
See description under
bits[1:0], below.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RO

Instruction Pipeline

4-6 ADSP-BF533 Blackfin Processor Hardware Reference

SYSCFG Register
The System Configuration register (SYSCFG) controls the configuration of
the processor. This register is accessible only from the Supervisor mode.

Instruction Pipeline
The program sequencer determines the next instruction address by exam-
ining both the current instruction being executed and the current state of
the processor. If no conditions require otherwise, the processor executes
instructions from memory in sequential order by incrementing the look-
ahead address.

Figure 4-3. System Configuration Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

System Configuration Register (SYSCFG)

CCEN (Cycle Counter Enable) SSSTEP (Supervisor Sin-
gle Step)

When set, a Supervisor
exception is taken after each
instruction is executed. It
applies only to User mode, or
when processing interrupts in
Supervisor mode. It is
ignored if the core is pro-
cessing an exception or
higher priority event. If pre-
cise exception timing is
required, CSYNC must be
used after setting this bit.

0 - Disable 64-bit, free-running
cycle counter

1 - Enable 64-bit, free-running
cycle counter

Reset = 0x0000 0030

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 1 1 0 0 0

SNEN (Self-Nesting Inter-
rupt Enable)

0 - Disable self-nesting of
core interrupts

1 - Enable self-nesting of
core interrupts

ADSP-BF533 Blackfin Processor Hardware Reference 4-7

Program Sequencer

The processor has a ten-stage instruction pipeline, shown in Table 4-3.

Figure 4-4 shows a diagram of the pipeline.

The instruction fetch and branch logic generates 32-bit fetch addresses for
the Instruction Memory Unit. The Instruction Alignment Unit returns
instructions and their width information at the end of the IF3 stage.

Table 4-3. Stages of Instruction Pipeline

Pipeline Stage Description

Instruction Fetch 1 (IF1) Issue instruction address to IAB bus, start compare tag of
instruction cache

Instruction Fetch 2 (IF2) Wait for instruction data

Instruction Fetch 3 (IF3) Read from IDB bus and align instruction

Instruction Decode (DEC) Decode instructions

Address Calculation (AC) Calculation of data addresses and branch target address

Data Fetch 1 (DF1) Issue data address to DA0 and DA1 bus, start compare tag of
data cache

Data Fetch 2 (DF2) Read register files

Execute 1 (EX1) Read data from LD0 and LD1 bus, start multiply and video
instructions

Execute 2 (EX2) Execute/Complete instructions (shift, add, logic, and so on)

Write Back (WB) Writes back to register files, SD bus, and pointer updates (also
referred to as the “commit” stage)

Figure 4-4. Processor Pipeline

Instr
Fetch
1

Instr
Fetch
2

Instr
Decode

Addr
Calc

Ex1 WBEx2Instr
Fetch
3

Instr
Fetch
1

Instr
Fetch
2

Instr
Decode

Addr
Calc

Data
Fetch
1

Data
Fetch
2

Ex1 WBEx2Instr
Fetch
3

Data
Fetch
1

Data
Fetch
2

Instruction Pipeline

4-8 ADSP-BF533 Blackfin Processor Hardware Reference

For each instruction type (16, 32, or 64 bits), the Instruction Alignment
Unit ensures that the alignment buffers have enough valid instructions to
be able to provide an instruction every cycle. Since the instructions can be
16, 32, or 64 bits wide, the Instruction Alignment Unit may not need to
fetch an instruction from the cache every cycle. For example, for a series of
16-bit instructions, the Instruction Alignment Unit gets an instruction
from the Instruction Memory Unit once in four cycles. The alignment
logic requests the next instruction address based on the status of the align-
ment buffers. The sequencer responds by generating the next fetch address
in the next cycle, provided there is no change of flow.

The sequencer holds the fetch address until it receives a request from the
alignment logic or until a change of flow occurs. The sequencer always
increments the previous fetch address by 8 (the next 8 bytes). If a change
of flow occurs, such as a branch or an interrupt, data in the Instruction
Alignment Unit is invalidated. The sequencer decodes and distributes
instruction data to the appropriate locations such as the register file and
data memory.

The Execution Unit contains two 16-bit multipliers, two 40-bit ALUs,
two 40-bit accumulators, one 40-bit shifter, a video unit (which adds 8-bit
ALU support), and an 8-entry 32-bit Data Register File.

Register file reads occur in the DF2 pipeline stage (for operands).

Register file writes occur in the WB stage (for stores). The multipliers and
the video units are active in the EX1 stage, and the ALUs and shifter are
active in the EX2 stage. The accumulators are written at the end of the
EX2 stage.

The program sequencer also controls stalling and invalidating the instruc-
tions in the pipeline. Multi-cycle instruction stalls occur between the IF3
and DEC stages. DAG and sequencer stalls occur between the DEC and
AC stages. Computation and register file stalls occur between the DF2 and
EX1 stages. Data memory stalls occur between the EX1 and EX2 stages.

ADSP-BF533 Blackfin Processor Hardware Reference 4-9

Program Sequencer

 The sequencer ensures that the pipeline is fully interlocked and
that all the data hazards are hidden from the programmer.

Multi-cycle instructions behave as multiple single-cycle instructions being
issued from the decoder over several clock cycles. For example, the Push
Multiple or Pop Multiple instruction can push or pop from 1 to 14 DREGS
and/or PREGS, and the instruction remains in the decode stage for a num-
ber of clock cycles equal to the number of registers being accessed.

Multi-issue instructions are 64 bits in length and consist of one 32-bit
instruction and two 16-bit instructions. All three instructions execute in
the same amount of time as the slowest of the three.

Any nonsequential program flow can potentially decrease the processor’s
instruction throughput. Nonsequential program operations include:

• Jumps

• Subroutine calls and returns

• Interrupts and returns

• Loops

Branches and Sequencing
One type of nonsequential program flow that the sequencer supports is
branching. A branch occurs when a JUMP or CALL instruction begins execu-
tion at a new location other than the next sequential address. For
descriptions of how to use the JUMP and CALL instructions, see Blackfin
Processor Programming Reference. Briefly:

• A JUMP or a CALL instruction transfers program flow to another
memory location. The difference between a JUMP and a CALL is that
a CALL automatically loads the return address into the RETS register.
The return address is the next sequential address after the CALL

Branches and Sequencing

4-10 ADSP-BF533 Blackfin Processor Hardware Reference

instruction. This push makes the address available for the CALL
instruction’s matching return instruction, allowing easy return
from the subroutine.

• A return instruction causes the sequencer to fetch the instruction at
the return address, which is stored in the RETS register (for subrou-
tine returns). The types of return instructions include: return from
subroutine (RTS), return from interrupt (RTI), return from excep-
tion (RTX), return from emulation (RTE), and return from
nonmaskable interrupt (RTN). Each return type has its own register
for holding the return address.

• A JUMP instruction can be conditional, depending on the status of
the CC bit of the ASTAT register. These instructions are immediate
and may not be delayed. The program sequencer can evaluate the
CC status bit to decide whether to execute a branch. If no condition
is specified, the branch is always taken.

• Conditional JUMP instructions use static branch prediction to
reduce the branch latency caused by the length of the pipeline.

Branches can be direct or indirect. A direct branch address is determined
solely by the instruction word (for example, JUMP 0x30), while an indirect
branch gets its address from the contents of a DAG register (for example,
JUMP(P3)).

All types of JUMPs and CALLs can be PC-relative. The indirect JUMP and
CALL can be absolute or PC-relative.

Direct Short and Long Jumps
The sequencer supports both short and long jumps. The target of the
branch is a PC-relative address from the location of the instruction, plus
an offset. The PC-relative offset for the short jump is a 13-bit immediate
value that must be a multiple of two (bit 0 must be a 0). The 13-bit value
gives an effective dynamic range of –4096 to +4094 bytes.

ADSP-BF533 Blackfin Processor Hardware Reference 4-11

Program Sequencer

The PC-relative offset for the long jump is a 25-bit immediate value that
must also be a multiple of two (bit 0 must be a 0). The 25-bit value gives
an effective dynamic range of –16,777,216 to +16,777,214 bytes.

If, at the time of writing the program, the destination is known to be less
than a 13-bit offset from the current PC value, then the JUMP.S 0xnnnn

instruction may be used. If the destination requires more than a 13-bit
offset, then the JUMP.L 0xnnnnnnn instruction must be used. If the desti-
nation offset is unknown and development tools must evaluate the offset,
then use the instruction JUMP 0xnnnnnnn. Upon disassembly, the instruc-
tion is replaced by the appropriate JUMP.S or JUMP.L instruction.

Direct Call
The CALL instruction is a branch instruction that copies the address of the
instruction which would have executed next (had the CALL instruction not
executed) into the RETS register. The direct CALL instruction has a 25-bit,
PC-relative offset that must be a multiple of two (bit 0 must be a 0). The
25-bit value gives an effective dynamic range of –16,777,216 to
+16,777,214 bytes.

Indirect Branch and Call
The indirect JUMP and CALL instructions get their destination address from
a data address generator (DAG) P-register. For the CALL instruction, the
RETS register is loaded with the address of the instruction which would
have executed next in the absence of the CALL instruction.

For example:

JUMP (P3) ;

CALL (P0) ;

Branches and Sequencing

4-12 ADSP-BF533 Blackfin Processor Hardware Reference

PC-Relative Indirect Branch and Call
The PC-relative indirect JUMP and CALL instructions use the contents of a
P-register as an offset to the branch target. For the CALL instruction, the
RETS register is loaded with the address of the instruction which would
have executed next (had the CALL instruction not executed).

For example:

JUMP (PC + P3) ;

CALL (PC + P0) ;

Condition Code Flag
The processor supports a Condition Code (CC) flag bit, which is used to
resolve the direction of a branch. This flag may be accessed eight ways:

• A conditional branch is resolved by the value in CC.

• A Data register value may be copied into CC, and the value in CC
may be copied to a Data register.

• The BITTST instruction accesses the CC flag.

• A status flag may be copied into CC, and the value in CC may be
copied to a status flag.

• The CC flag bit may be set to the result of a Pointer register
comparison.

• The CC flag bit may be set to the result of a Data register
comparison.

• Some shifter instructions (rotate or BXOR) use CC as a portion of the
shift operand/result.

• Test and set instructions can set and clear the CC bit.

ADSP-BF533 Blackfin Processor Hardware Reference 4-13

Program Sequencer

These eight ways of accessing the CC bit are used to control program flow.
The branch is explicitly separated from the instruction that sets the arith-
metic flags. A single bit resides in the instruction encoding that specifies
the interpretation for the value of CC. The interpretation is to “branch on
true” or “branch on false.”

The comparison operations have the form CC = expr where expr involves a
pair of registers of the same type (for example, Data registers or Pointer
registers, or a single register and a small immediate constant). The small
immediate constant is a 3-bit (–4 through 3) signed number for signed
comparisons and a 3-bit (0 through 7) unsigned number for unsigned
comparisons.

The sense of CC is determined by equal (==), less than (<), and less than or
equal to (<=). There are also bit test operations that test whether a bit in a
32-bit R-register is set.

Conditional Branches

The sequencer supports conditional branches. Conditional branches are
JUMP instructions whose execution branches or continues linearly, depend-
ing on the value of the CC bit. The target of the branch is a PC-relative
address from the location of the instruction, plus an offset. The PC-rela-
tive offset is an 11-bit immediate value that must be a multiple of two (bit
0 must be a 0). This gives an effective dynamic range of –1024 to +1022
bytes.

For example, the following instruction tests the CC flag and, if it is posi-
tive, jumps to a location identified by the label dest_address:
IF CC JUMP dest_address ;

Branches and Sequencing

4-14 ADSP-BF533 Blackfin Processor Hardware Reference

Conditional Register Move

Register moves can be performed depending on whether the value of the
CC flag is true or false (1 or 0). In some cases, using this instruction instead
of a branch eliminates the cycles lost because of the branch. These
conditional moves can be done between any R- or P-registers (including
SP and FP).

Example code:
IF CC R0 = P0 ;

Branch Prediction
The sequencer supports static branch prediction to accelerate execution of
conditional branches. These branches are executed based on the state of
the CC bit.

In the EX2 stage, the sequencer compares the actual CC bit value to the
predicted value. If the value was mispredicted, the branch is corrected, and
the correct address is available for the WB stage of the pipeline.

The branch latency for conditional branches is as follows.

• If prediction was “not to take branch,” and branch was actually not
taken: 0 CCLK cycles.

• If prediction was “not to take branch,” and branch was actually
taken: 8 CCLK cycles.

• If prediction was “to take branch,” and branch was actually taken:
4 CCLK cycles.

• If prediction was “to take branch,” and branch was actually not
taken: 8 CCLK cycles.

ADSP-BF533 Blackfin Processor Hardware Reference 4-15

Program Sequencer

For all unconditional branches, the branch target address computed in the
AC stage of the pipeline is sent to the Instruction Fetch Address bus at the
beginning of the DF1 stage. All unconditional branches have a latency of
4 CCLK cycles.

Consider the example in Table 4-4.

Loops and Sequencing
The sequencer supports a mechanism of zero-overhead looping. The
sequencer contains two loop units, each containing three registers. Each
loop unit has a Loop Top register (LT0, LT1), a Loop Bottom register (LB0,
LB1), and a Loop Count register (LC0, LC1).

When an instruction at address X is executed, and X matches the contents
of LB0, then the next instruction executed will be from the address in LT0.
In other words, when PC == LB0, then an implicit jump to LT0 is executed.

A loopback only occurs when the count is greater than or equal to 2. If the
count is nonzero, then the count is decremented by 1. For example, con-
sider the case of a loop with two iterations. At the beginning, the count is
2. Upon reaching the first loop end, the count is decremented to 1 and the
program flow jumps back to the top of the loop (to execute a second
time). Upon reaching the end of the loop again, the count is decremented
to 0, but no loopback occurs (because the body of the loop has already
been executed twice).

Table 4-4. Branch Prediction

Instruction Description

If CC JUMP dest (bp) This instruction tests the CC flag, and if it is set,
jumps to a location, identified by the label, dest.
If the CC flag is set, the branch is correctly predicted
and the branch latency is reduced. Otherwise, the
branch is incorrectly predicted and the branch
latency increases.

Loops and Sequencing

4-16 ADSP-BF533 Blackfin Processor Hardware Reference

Since there are two loop units, loop unit 1 is assigned higher priority so it
can be used as the inner loop in a nested loop structure. In other words, a
loopback caused by loop unit 1 on a particular instruction (PC == LB1,
LC1 >= 2) will prevent loop unit 0 from looping back on that same
instruction, even if the address matches. Loop unit 0 is allowed to loop
back only after the loop count 1 is exhausted.

The LSETUP instruction can be used to load all three registers of a loop unit
at once. Each loop register can also be loaded individually with a register
transfer, but this incurs a significant overhead if the loop count is nonzero
(the loop is active) at the time of the transfer.

The following code example shows a loop that contains two instructions
and iterates 32 times.

Listing 4-1. Loop Example

P5 = 0x20 ;

LSETUP (lp_start, lp_end) LCO = P5 ;

lp_start:

R5 = R0 + R1(ns) || R2 = [P2++] || R3 = [I1++] ;

lp_end: R5 = R5 + R2 ;

Two sets of loop registers are used to manage two nested loops:

• LC[1:0] – the Loop Count registers

• LT[1:0] – the Loop Top address registers

• LB[1:0] – the Loop Bottom address registers

ADSP-BF533 Blackfin Processor Hardware Reference 4-17

Program Sequencer

When executing an LSETUP instruction, the program sequencer loads the
address of the loop’s last instruction into LBx and the address of the loop’s
first instruction into LTx. The top and bottom addresses of the loop are
computed as PC-relative addresses from the LSETUP instruction, plus an
offset. In each case, the offset value is added to the location of the LSETUP
instruction.

The LC0 and LC1 registers are unsigned 32-bit registers, each supporting

232 –1 iterations through the loop.

 When LCx = 0, the loop is disabled, and a single pass of the code
executes.

The processor supports a four-location instruction loop buffer that
reduces instruction fetches while in loops. If the loop code contains four
or fewer instructions, then no fetches to instruction memory are necessary
for any number of loop iterations, because the instructions are stored
locally. The loop buffer effectively eliminates the instruction fetch time in
loops with more than four instructions by allowing fetches to take place
while instructions in the loop buffer are being executed.

A four-cycle latency occurs on the first loopback when the LSETUP specifies
a nonzero start offset (lp_start). Therefore, zero start offsets are
preferred.

The processor has no restrictions regarding which instructions can occur
in a loop end position. Branches and calls are allowed in that position.

Table 4-5. Loop Registers

First/Last Address of the
Loop

PC-Relative Offset Used to
Compute the Loop Start Address

Effective Range of the Loop Start
Instruction

Top / First 5-bit signed immediate; must be
a multiple of 2.

0 to 30 bytes away from LSETUP
instruction.

Bottom / Last 11-bit signed immediate; must
be a multiple of 2.

0 to 2046 bytes away from
LSETUP instruction (the defined
loop can be 2046 bytes long).

Events and Sequencing

4-18 ADSP-BF533 Blackfin Processor Hardware Reference

Events and Sequencing
The Event Controller of the processor manages five types of activities or
events:

• Emulation

• Reset

• Nonmaskable interrupts (NMI)

• Exceptions

• Interrupts

Note the word event describes all five types of activities. The Event Con-
troller manages fifteen different events in all: Emulation, Reset, NMI,
Exception, and eleven Interrupts.

An interrupt is an event that changes normal processor instruction flow
and is asynchronous to program flow. In contrast, an exception is a soft-
ware initiated event whose effects are synchronous to program flow.

The event system is nested and prioritized. Consequently, several service
routines may be active at any time, and a low priority event may be pre-
empted by one of higher priority.

The processor employs a two-level event control mechanism. The proces-
sor System Interrupt Controller (SIC) works with the Core Event
Controller (CEC) to prioritize and control all system interrupts. The SIC
provides mapping between the many peripheral interrupt sources and the
prioritized general-purpose interrupt inputs of the core. This mapping is
programmable, and individual interrupt sources can be masked in the
SIC.

ADSP-BF533 Blackfin Processor Hardware Reference 4-19

Program Sequencer

The CEC supports nine general-purpose interrupts (IVG7 – IVG15) in
addition to the dedicated interrupt and exception events that are described
in Table 4-6. It is recommended that the two lowest priority interrupts
(IVG14 and IVG15) be reserved for software interrupt handlers, leaving
seven prioritized interrupt inputs (IVG7 – IVG13) to support the system.
Refer to Table 4-6.

Table 4-6. System and Core Event Mapping

Event Source Core Event Name

Core Events Emulation (highest priority) EMU

Reset RST

NMI NMI

Exception EVX

Reserved –

Hardware Error IVHW

Core Timer IVTMR

Events and Sequencing

4-20 ADSP-BF533 Blackfin Processor Hardware Reference

Note the System Interrupt to Core Event mappings shown are the default
values at reset and can be changed by software.

System Interrupts PLL Wakeup Interrupt
DMA Error (generic)
PPI Error Interrupt
SPORT0 Error Interrupt
SPORT1 Error Interrupt
SPI Error Interrupt
UART Error Interrupt

IVG7

Real-Time Clock Interrupts
DMA0 Interrupt (PPI)

IVG8

DMA1 Interrupt (SPORT0 RX)
DMA2 Interrupt (SPORT0 TX)
DMA3 Interrupt (SPORT1 RX)
DMA4 Interrupt (SPORT1 TX)

IVG9

DMA5 Interrupt (SPI)
DMA6 Interrupt (UART RX)
DMA7 Interrupt (UART TX)

IVG10

Timer0, Timer1, Timer2 Interrupts IVG11

Programmable Flags Interrupt A/B IVG12

DMA8/9 Interrupt (Memory DMA
Stream 0)
DMA10/11 Interrupt (Memory DMA
Stream 1)
Software Watchdog Timer

IVG13

Software Interrupt 1 IVG14

Software Interrupt 2 (lowest priority) IVG15

Table 4-6. System and Core Event Mapping (Cont’d)

Event Source Core Event Name

ADSP-BF533 Blackfin Processor Hardware Reference 4-21

Program Sequencer

System Interrupt Processing
Referring to Figure 4-5, note when an interrupt (Interrupt A) is generated
by an interrupt-enabled peripheral:

1. SIC_ISR logs the request and keeps track of system interrupts that
are asserted but not yet serviced (that is, an interrupt service rou-
tine hasn’t yet cleared the interrupt).

2. SIC_IWR checks to see if it should wake up the core from an idled
state based on this interrupt request.

3. SIC_IMASK masks off or enables interrupts from peripherals at the
system level. If Interrupt A is not masked, the request proceeds to
Step 4.

4. The SIC_IARx registers, which map the peripheral interrupts to a
smaller set of general-purpose core interrupts (IVG7 – IVG15),
determine the core priority of Interrupt A.

5. ILAT adds Interrupt A to its log of interrupts latched by the core
but not yet actively being serviced.

6. IMASK masks off or enables events of different core priorities. If the
IVGx event corresponding to Interrupt A is not masked, the process
proceeds to Step 7.

7. The Event Vector Table (EVT) is accessed to look up the appropri-
ate vector for Interrupt A’s interrupt service routine (ISR).

8. When the event vector for Interrupt A has entered the core pipe-
line, the appropriate IPEND bit is set, which clears the respective
ILAT bit. Thus, IPEND tracks all pending interrupts, as well as those
being presently serviced.

Events and Sequencing

4-22 ADSP-BF533 Blackfin Processor Hardware Reference

9. When the interrupt service routine (ISR) for Interrupt A has been
executed, the RTI instruction clears the appropriate IPEND bit.
However, the relevant SIC_ISR bit is not cleared unless the inter-
rupt service routine clears the mechanism that generated Interrupt
A, or if the process of servicing the interrupt clears this bit.

It should be noted that emulation, reset, NMI, and exception events, as
well as hardware error (IVHW) and core timer (IVTMR) interrupt requests,
enter the interrupt processing chain at the ILAT level and are not affected
by the system-level interrupt registers (SIC_IWR, SIC_ISR, SIC_IMASK,
SIC_IARx).

If multiple interrupt sources share a single core interrupt, then the inter-
rupt service routine (ISR) must identify the peripheral that generated the
interrupt. The ISR may then need to interrogate the peripheral to deter-
mine the appropriate action to take.

System Peripheral Interrupts
The processor system has numerous peripherals, which therefore require
many supporting interrupts. Table 4-7 lists:

• The Peripheral Interrupt source

• The Peripheral Interrupt ID used in the System Interrupt Assign-
ment registers (SIC_IARx). See “System Interrupt Assignment
Registers (SIC_IARx)” on page 4-29.

• The general-purpose interrupt of the core to which the interrupt
maps at reset

• The Core Interrupt ID used in the System Interrupt Assignment
registers (SIC_IARx). See “System Interrupt Assignment Registers
(SIC_IARx)” on page 4-29.

ADSP-BF533 Blackfin Processor Hardware Reference 4-23

Program Sequencer

Figure 4-5. Interrupt Processing Block Diagram

Table 4-7. Peripheral Interrupt Source Reset State

Peripheral Interrupt Source Peripheral
Interrupt ID

General-purpose
Interrupt (Assignment
at Reset)

Core
Interrupt ID

PLL Wakeup Interrupt 0 IVG7 0

DMA Error (generic) 1 IVG7 0

PPI Error Interrupt 2 IVG7 0

SPORT0 Error Interrupt 3 IVG7 0

SPORT1 Error Interrupt 4 IVG7 0

SPI Error Interrupt 5 IVG7 0

UART Error Interrupt 6 IVG7 0

Real-Time Clock Interrupts (alarm,
second, minute, hour, countdown)

7 IVG8 1

"INTERRUPT
A"

SYSTEM
INTERRUPT

MASK
(SIC_IMASK)

ASSIGN
SYSTEM

PRIORITY
(SIC_IAR0..2)

CORE EVENT CONTROLLERSYSTEM INTERRUPT CONTROLLER

NOTE: NAMES IN PARENTHESES ARE MEMORY-MAPPED REGISTERS.

EMU
RESET
NMI
EVX
IVTMR
IVHW

PERIPHERAL
INTERRUPT
REQUESTS

CORE
EVENT

VECTOR
TABLE

(EVT[15:0])

CORE
PENDING
(IPEND)

CORE
STATUS

(ILAT)

CORE
INTERRUPT

MASK
(IMASK)

SYSTEM
WAKEUP
(SIC_IWR)

SYSTEM
STATUS

(SIC_ISR)

TO DYNAMIC POWER
MANAGEMENT
CONTROLLER

Events and Sequencing

4-24 ADSP-BF533 Blackfin Processor Hardware Reference

The peripheral interrupt structure of the processor is flexible. By default
upon reset, multiple peripheral interrupts share a single, general-purpose
interrupt in the core, as shown in Table 4-7.

An interrupt service routine that supports multiple interrupt sources must
interrogate the appropriate system memory mapped registers (MMRs) to
determine which peripheral generated the interrupt.

DMA 0 Interrupt (PPI) 8 IVG8 1

DMA 1 Interrupt (SPORT0 RX) 9 IVG9 2

DMA 2 Interrupt (SPORT0 TX) 10 IVG9 2

DMA 3 Interrupt (SPORT1 RX) 11 IVG9 2

DMA 4 Interrupt (SPORT1 TX) 12 IVG9 2

DMA 5 Interrupt (SPI) 13 IVG10 3

DMA 6 Interrupt (UART RX) 14 IVG10 3

DMA 7 Interrupt (UART TX) 15 IVG10 3

Timer0 Interrupt 16 IVG11 4

Timer1 Interrupt 17 IVG11 4

Timer2 Interrupt 18 IVG11 4

PF Interrupt A 19 IVG12 5

PF Interrupt B 20 IVG12 5

DMA 8/9 Interrupt (Memory DMA
Stream 0)

21 IVG13 6

DMA 10/11 Interrupt (Memory
DMA Stream 1)

22 IVG13 6

Software Watchdog Timer Interrupt 23 IVG13 6

Reserved 24-31 - -

Table 4-7. Peripheral Interrupt Source Reset State (Cont’d)

Peripheral Interrupt Source Peripheral
Interrupt ID

General-purpose
Interrupt (Assignment
at Reset)

Core
Interrupt ID

ADSP-BF533 Blackfin Processor Hardware Reference 4-25

Program Sequencer

If the default assignments shown in Table 4-7 are acceptable, then inter-
rupt initialization involves only:

• Initialization of the core Event Vector Table (EVT) vector address
entries

• Initialization of the IMASK register

• Unmasking the specific peripheral interrupts in SIC_IMASK that the
system requires

SIC_IWR Register
The System Interrupt Wakeup-Enable register (SIC_IWR) provides the
mapping between the peripheral interrupt source and the Dynamic Power
Management Controller (DPMC). Any of the peripherals can be config-
ured to wake up the core from its idled state to process the interrupt,
simply by enabling the appropriate bit in the System Interrupt
Wakeup-enable register (SIC_IWR, refer to Figure 4-6). If a peripheral
interrupt source is enabled in SIC_IWR and the core is idled, the interrupt
causes the DPMC to initiate the core wakeup sequence in order to process
the interrupt. Note this mode of operation may add latency to interrupt
processing, depending on the power control state. For further discussion
of power modes and the idled state of the core, see Chapter 8, “Dynamic
Power Management”.

By default, all interrupts generate a wakeup request to the core. However,
for some applications it may be desirable to disable this function for some
peripherals, such as for a SPORTx Transmit Interrupt.

The SIC_IWR register has no effect unless the core is idled. The bits in this
register correspond to those of the System Interrupt Mask (SIC_IMASK)
and Interrupt Status (SIC_ISR) registers.

Events and Sequencing

4-26 ADSP-BF533 Blackfin Processor Hardware Reference

After reset, all valid bits of this register are set to 1, enabling the wakeup
function for all interrupts that are not masked. Before enabling interrupts,
configure this register in the reset initialization sequence. The SIC_IWR
register can be read from or written to at any time. To prevent spurious or
lost interrupt activity, this register should be written to only when all
peripheral interrupts are disabled.

 Note the wakeup function is independent of the interrupt mask
function. If an interrupt source is enabled in SIC_IWR but masked
off in SIC_IMASK, the core wakes up if it is idled, but it does not
generate an interrupt.

Figure 4-6. System Interrupt Wakeup-enable Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 1 1 1 1 1 1 1 1 1 1 1 1 1 1

System Interrupt Wakeup-enable Register (SIC_IWR)

Reset = 0xFFFF FFFF

Timer 2 Wakeup

For all bits, 0 - Wakeup function not enabled, 1 - Wakeup function enabled

PF Wakeup A

PF Wakeup B

Memory DMA Stream 1 Wakeup

Software Watchdog Timer Wakeup

PLL Wakeup

PPI Error Wakeup

SPORT0 Error Wakeup

SPORT1 Error Wakeup

SPI Error Wakeup

UART Error Wakeup

Real-Time Clock Wakeup

DMA7 Wakeup
(UART TX)
DMA6 Wakeup
(UART RX)
DMA5 Wakeup (SPI)

DMA4 Wakeup (SPORT1 TX)

DMA3 Wakeup (SPORT1 RX)
DMA2 Wakeup (SPORT0 TX)
DMA1 Wakeup (SPORT0 RX)

DMA0 Wakeup (PPI)

31 30 29 28 27 26 25 24 23 22 21 20 19 182 17 16

11 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Memory DMA Stream 0 Wakeup
Timer 1 Wakeup

Timer 0 Wakeup

DMA Error (generic)
Wakeup

0xFFC0 0124

ADSP-BF533 Blackfin Processor Hardware Reference 4-27

Program Sequencer

SIC_ISR Register
The System Interrupt Controller (SIC) includes a read-only status regis-
ter, the System Interrupt Status register (SIC_ISR), shown in Figure 4-7.
Each valid bit in this register corresponds to one of the peripheral inter-
rupt sources. The bit is set when the SIC detects the interrupt is asserted
and cleared when the SIC detects that the peripheral interrupt input has
been deasserted. Note for some peripherals, such as programmable flag
asynchronous input interrupts, many cycles of latency may pass from the
time an interrupt service routine initiates the clearing of the interrupt
(usually by writing a system MMR) to the time the SIC senses that the
interrupt has been deasserted.

Depending on how interrupt sources map to the general-purpose interrupt
inputs of the core, the interrupt service routine may have to interrogate
multiple interrupt status bits to determine the source of the interrupt.
One of the first instructions executed in an interrupt service routine
should read SIC_ISR to determine whether more than one of the peripher-
als sharing the input has asserted its interrupt output. The service routine
should fully process all pending, shared interrupts before executing the
RTI, which enables further interrupt generation on that interrupt input.

 When an interrupt’s service routine is finished, the RTI instruction
clears the appropriate bit in the IPEND register. However, the rele-
vant SIC_ISR bit is not cleared unless the service routine clears the
mechanism that generated the interrupt.

Many systems need relatively few interrupt-enabled peripherals, allowing
each peripheral to map to a unique core priority level. In these designs,
SIC_ISR will seldom, if ever, need to be interrogated.

The SIC_ISR register is not affected by the state of the System Interrupt
Mask register (SIC_IMASK) and can be read at any time. Writes to the
SIC_ISR register have no effect on its contents.

Events and Sequencing

4-28 ADSP-BF533 Blackfin Processor Hardware Reference

SIC_IMASK Register
The System Interrupt Mask register (SIC_IMASK, shown in Figure 4-8)
allows masking of any peripheral interrupt source at the System Interrupt
Controller (SIC), independently of whether it is enabled at the peripheral
itself.

A reset forces the contents of SIC_IMASK to all 0s to mask off all peripheral
interrupts. Writing a 1 to a bit location turns off the mask and enables the
interrupt.

Figure 4-7. System Interrupt Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

System Interrupt Status Register (SIC_ISR)

Reset = 0x0000 0000

For all bits, 0 - Deasserted, 1 - Asserted

Timer 2 Interrupt
PF Interrupt A

PF Interrupt B

Memory DMA Stream 1 Interrupt

Software Watchdog Timer Interrupt

PLL Wakeup Interrupt

PPI Error Interrupt

SPORT0 Error Interrupt

SPORT1 Error Interrupt

SPI Error Interrupt

UART Error Interrupt

Real-Time Clock Interrupts

DMA7 Interrupt
(UART TX)
DMA6 Interrupt
(UART RX)
DMA5 Interrupt (SPI)

DMA4 Interrupt (SPORT1 TX)

DMA3 Interrupt (SPORT1 RX)
DMA2 Interrupt (SPORT0 TX)
DMA1 Interrupt (SPORT0 RX)

DMA0 Interrupt (PPI)

Memory DMA Stream 0 Interrupt
Timer 1 Interrupt

Timer 0 Interrupt

DMA Error (generic)
Interrupt

31 30 29 28 27 26 25 24 23 22 21 20 19 182 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 00xFFC0 0120

ADSP-BF533 Blackfin Processor Hardware Reference 4-29

Program Sequencer

Although this register can be read from or written to at any time (in
Supervisor mode), it should be configured in the reset initialization
sequence before enabling interrupts.

System Interrupt Assignment Registers (SIC_IARx)
The relative priority of peripheral interrupts can be set by mapping the
peripheral interrupt to the appropriate general-purpose interrupt level in
the core. The mapping is controlled by the System Interrupt Assignment
register settings, as detailed in Figure 4-9, Figure 4-10, and Figure 4-11.

Figure 4-8. System Interrupt Mask Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

System Interrupt Mask Register (SIC_IMASK)
For all bits, 0 - Interrupt masked, 1 - Interrupt enabled

PLL Wakeup Interrupt

PPI Error Interrupt

SPORT0 Error Interrupt

SPORT1 Error Interrupt

SPI Error Interrupt

UART Error Interrupt

Real-Time Clock Interrupts

DMA Error (generic)
Interrupt

DMA7 Interrupt
(UART TX)
DMA6 Interrupt
(UART RX)
DMA5 Interrupt (SPI)

DMA4 Interrupt (SPORT1 TX)

DMA3 Interrupt (SPORT1 RX)
DMA2 Interrupt (SPORT0 TX)
DMA1 Interrupt (SPORT0 RX)

DMA0 Interrupt (PPI)

Timer 2 Interrupt
PF Interrupt A
PF Interrupt B

Timer 1 Interrupt

Timer 0 Interrupt

Memory DMA Stream 1 Interrupt

Software Watchdog Timer Interrupt

Memory DMA Stream 0 Interrupt

31 30 29 28 27 26 25 24 23 22 21 20 19 182 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 00xFFC0 010C Reset = 0x0000 0000

Events and Sequencing

4-30 ADSP-BF533 Blackfin Processor Hardware Reference

If more than one interrupt source is mapped to the same interrupt, they
are logically OR’ed, with no hardware prioritization. Software can priori-
tize the interrupt processing as required for a particular system
application.

 For general-purpose interrupts with multiple peripheral interrupts
assigned to them, take special care to ensure that software correctly
processes all pending interrupts sharing that input. Software is
responsible for prioritizing the shared interrupts.

Figure 4-9. System Interrupt Assignment Register 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

System Interrupt Assignment Register 0 (SIC_IAR0)

PLL Wakeup Interrupt
IVG select

SPORT0 Error Interrupt
IVG select

PPI Error Interrupt
IVG select

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 1 0 0 0 0 0 0 0 0 0 0 0

Real-Time Clock
Interrupt
IVG select

UART Error Interrupt
IVG select

Reset = 0x1000 0000

SPORT1 Error Interrupt
IVG select

SPI Error Interrupt
IVG select

DMA Error (generic) Interrupt
IVG select

0xFFC0 0110

ADSP-BF533 Blackfin Processor Hardware Reference 4-31

Program Sequencer

Figure 4-10. System Interrupt Assignment Register 1

Figure 4-11. System Interrupt Assignment Register 2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 1 0 0 0 1 0 0 0 1 0 0 0 0

DMA0 (PPI) Interrupt
IVG select

DMA1 (SPORT0 RX) Interrupt
IVG select

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 1 1 0 0 1 1 0 0 1 1 0 0 1

DMA4 (SPORT1 TX) Interrupt
IVG select

DMA5 (SPI) Interrupt
IVG select

DMA7 (UART TX)
Interrupt
IVG select

DMA3 (SPORT1 RX)
Interrupt
IVG select

System Interrupt Assignment Register 1 (SIC_IAR1)

Reset = 0x3332 22210xFFC0 0114

DMA6 (UART RX) Interrupt
IVG select

DMA2 (SPORT0 TX) Interrupt
IVG select

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

10 1 1 0 0 1 1 0 0 1 1 0 0 1 0

System Interrupt Assignment Register 2 (SIC_IAR2)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 1 0 1 0 1 0 0 0 1 0 0 0 1 0

PF A Interrupt
IVG select

Timer 2 Interrupt
IVG select

PF B Interrupt
IVG select

Reset = 0x6665 5444

Timer 0 Interrupt
IVG select

Timer 1 Interrupt
IVG select

Memory DMA
Stream 0 Interrupt
IVG select

Software Watchdog Timer
Interrupt
IVG select

0xFFC0 0118

Memory DMA Stream 1 Interrupt
IVG select

Events and Sequencing

4-32 ADSP-BF533 Blackfin Processor Hardware Reference

These registers can be read from or written to at any time in Supervisor
mode. It is advisable, however, to configure them in the Reset interrupt
service routine before enabling interrupts. To prevent spurious or lost
interrupt activity, these registers should be written to only when all
peripheral interrupts are disabled.

Table 4-8 defines the value to write in SIC_IARx to configure a peripheral
for a particular IVG priority.

Table 4-8. IVG Select Definitions

General-Purpose Interrupt Value in SIC_IAR

IVG7 0

IVG8 1

IVG9 2

IVG10 3

IVG11 4

IVG12 5

IVG13 6

IVG14 7

IVG15 8

ADSP-BF533 Blackfin Processor Hardware Reference 4-33

Program Sequencer

Core Event Controller Registers
The Event Controller uses three MMRs to coordinate pending event
requests. In each of these MMRs, the 16 lower bits correspond to the 16
event levels (for example, bit 0 corresponds to “Emulator mode”). The
registers are:

• IMASK - interrupt mask

• ILAT - interrupt latch

• IPEND - interrupts pending

These three registers are accessible in Supervisor mode only.

IMASK Register
The Core Interrupt Mask register (IMASK) indicates which interrupt levels
are allowed to be taken. The IMASK register may be read and written in
Supervisor mode. Bits [15:5] have significance; bits [4:0] are hard-coded
to 1 and events of these levels are always enabled. If IMASK[N] == 1 and
ILAT[N] == 1, then interrupt N will be taken if a higher priority is not
already recognized. If IMASK[N] == 0, and ILAT[N] gets set by interrupt N,
the interrupt will not be taken, and ILAT[N] will remain set.

Core Event Controller Registers

4-34 ADSP-BF533 Blackfin Processor Hardware Reference

ILAT Register
Each bit in the Core Interrupt Latch register (ILAT) indicates that the cor-
responding event is latched, but not yet accepted into the processor (see
Figure 4-13). The bit is reset before the first instruction in the corre-
sponding ISR is executed. At the point the interrupt is accepted, ILAT[N]
will be cleared and IPEND[N] will be set simultaneously. The ILAT register
can be read in Supervisor mode. Writes to ILAT are used to clear bits only
(in Supervisor mode). To clear bit N from ILAT, first make sure that
IMASK[N] == 0, and then write ILAT[N] = 1. This write functionality to
ILAT is provided for cases where latched interrupt requests need to be
cleared (cancelled) instead of serviced.

The RAISE instruction can be used to set ILAT[15] through ILAT[5], and
also ILAT[2] or ILAT[1].

Only the JTAG TRST pin can clear ILAT[0].

Figure 4-12. Core Interrupt Mask Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 0 0 0 0 0 0 1 1 1 1

Core Interrupt Mask Register (IMASK)

IVHW (Hardware Error)
IVTMR (Core Timer)
IVG7
IVG8

IVG15
IVG14
IVG13
IVG12
IVG11
IVG10

IVG9

For all bits, 0 - Interrupt masked, 1 - Interrupt enabled

Reset = 0x0000 001F0xFFE0 2104

ADSP-BF533 Blackfin Processor Hardware Reference 4-35

Program Sequencer

Core Event Controller Registers

4-36 ADSP-BF533 Blackfin Processor Hardware Reference

IPEND Register
The Core Interrupt Pending register (IPEND) keeps track of all currently
nested interrupts (see Figure 4-14). Each bit in IPEND indicates that the
corresponding interrupt is currently active or nested at some level. It may
be read in Supervisor mode, but not written. The IPEND[4] bit is used by
the Event Controller to temporarily disable interrupts on entry and exit to
an interrupt service routine.

When an event is processed, the corresponding bit in IPEND is set. The
least significant bit in IPEND that is currently set indicates the interrupt
that is currently being serviced. At any given time, IPEND holds the current
status of all nested events.

Figure 4-13. Core Interrupt Latch Register

Core Interrupt Latch Register (ILAT)

RST (Reset) - RO
NMI (Nonmaskable Interrupt) - RO

EMU (Emulation) - RO

IVHW (Hardware Error)
EVX (Exception) - RO

IVTMR (Core Timer)
IVG7
IVG8

IVG15
IVG14
IVG13
IVG12
IVG11
IVG10
IVG9

Reset value for bit 0 is emulator-dependent. For all bits, 0 - Interrupt not latched, 1 - Interrupt latched

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000 000X0xFFE0 210C

ADSP-BF533 Blackfin Processor Hardware Reference 4-37

Program Sequencer

Global Enabling/Disabling of Interrupts
General-purpose interrupts can be globally disabled with the CLI Dreg
instruction and re-enabled with the STI Dreg instruction, both of which
are only available in Supervisor mode. Reset, NMI, emulation, and excep-
tion events cannot be globally disabled. Globally disabling interrupts
clears IMASK[15:5] after saving IMASK’s current state. See “Enable Inter-
rupts” and “Disable Interrupts” in the External Event Management
chapter in Blackfin Processor Programming Reference.

When program code is too time critical to be delayed by an interrupt, dis-
able the general-purpose interrupts, but be sure to re-enable them at the
conclusion of the code sequence.

Figure 4-14. Core Interrupt Pending Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 1 0 0 0

Core Interrupt Pending Register (IPEND)

RST (Reset)
NMI (Nonmaskable Interrupt)

EMU (Emulation)

IVHW (Hardware Error)

EVX (Exception)

IVTMR (Core Timer)
IVG7
IVG8

IVG15
IVG14
IVG13
IVG12
IVG11
IVG10
IVG9

RO. For all bits except bit 4, 0 - No interrupt pending, 1 - Interrupt pending or active

Global Interrupt Disable
0 - Interrupts globally enabled
1 - Interrupts globally disabled
Set and cleared by Event Con-
troller only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000 00100xFFE0 2108

Event Vector Table

4-38 ADSP-BF533 Blackfin Processor Hardware Reference

Event Vector Table
The Event Vector Table (EVT) is a hardware table with sixteen entries
that are each 32 bits wide. The EVT contains an entry for each possible
core event. Entries are accessed as MMRs, and each entry can be pro-
grammed at reset with the corresponding vector address for the interrupt
service routine. When an event occurs, instruction fetch starts at the
address location in the EVT entry for that event.

The processor architecture allows unique addresses to be programmed into
each of the interrupt vectors; that is, interrupt vectors are not determined
by a fixed offset from an interrupt vector table base address. This approach
minimizes latency by not requiring a long jump from the vector table to
the actual ISR code.

Table 4-9 lists events by priority. Each event has a corresponding bit in
the event state registers ILAT, IMASK, and IPEND.

Table 4-9. Core Event Vector Table

Event Number Event Class Name MMR Location Notes

EVT0 Emulation EMU 0xFFE0 2000 Highest priority. Vec-
tor address is provided
by JTAG.

EVT1 Reset RST 0xFFE0 2004

EVT2 NMI NMI 0xFFE0 2008

EVT3 Exception EVX 0xFFE0 200C

EVT4 Reserved Reserved 0xFFE0 2010 Reserved vector

EVT5 Hardware Error IVHW 0xFFE0 2014

EVT6 Core Timer IVTMR 0xFFE0 2018

EVT7 Interrupt 7 IVG7 0xFFE0 201C

EVT8 Interrupt 8 IVG8 0xFFE0 2020

EVT9 Interrupt 9 IVG9 0xFFE0 2024

ADSP-BF533 Blackfin Processor Hardware Reference 4-39

Program Sequencer

Emulation
An emulation event causes the processor to enter Emulation mode, where
instructions are read from the JTAG interface. It is the highest priority
interrupt to the core.

For detailed information on emulation, see Chapter 21, “Debug”, in
Blackfin Processor Programming Reference.

Reset
The reset interrupt (RST) can be initiated via the RESET pin or through
expiration of the watchdog timer. The reset vector can be reconfigured to
another address during runtime and therefore, an application can vector to
an address other than 0xFFA0 0000 (ADSP-BF533) or 0xFFA0 8000
(ADSP-BF531/ADSP-BF532) after a software reset. If the reset vector is
modified during runtime, ensure that the reset vector address within the
EVT1 register is a valid instruction address. This location differs from that
of other interrupts in that its content is read-only. Writes to this address
change the register but do not change where the processor vectors upon
reset. The processor always vectors to the reset vector address upon reset.
For more information, see “Reset State” on page 3-10 and “Booting
Methods” on page 3-18.

EVT10 Interrupt 10 IVG10 0xFFE0 2028

EVT11 Interrupt 11 IVG11 0xFFE0 202C

EVT12 Interrupt 12 IVG12 0xFFE0 2030

EVT13 Interrupt 13 IVG13 0xFFE0 2034

EVT14 Interrupt 14 IVG14 0xFFE0 2038

EVT15 Interrupt 15 IVG15 0xFFE0 203C Lowest priority

Table 4-9. Core Event Vector Table (Cont’d)

Event Number Event Class Name MMR Location Notes

Event Vector Table

4-40 ADSP-BF533 Blackfin Processor Hardware Reference

The core has an output that indicates that a double fault has occurred.
This is a nonrecoverable state. The system (via the SWRST register) can be
programmed to send a reset request if a double fault condition is detected.
Subsequently, the reset request forces a system reset for core and
peripherals.

The reset vector is determined by the processor system. It points to the
start of the on-chip boot ROM, or to the start of external asynchronous
memory, depending on the state of the BMODE[1:0] pins. Refer to
Table 4-10.

If the BMODE[1:0] pins indicate either booting from flash, SPI flash, SPI
host, or serial EEPROM, the reset vector points to the start of the internal
boot ROM, where a small bootstrap kernel resides. The bootstrap code
reads the System Reset Configuration register (SYSCR) to determine the
value of the BMODE[1:0] pins, which determine the appropriate boot
sequence. For information about the boot ROM, see “Booting Methods”
on page 3-18.

Table 4-10. Reset Vector Addresses

Boot Source BMODE[1:0] Execution Start
Address

Bypass boot ROM; execute from 16-bit wide exter-
nal memory (Async Bank 0)

00 0x2000 0000

Use boot ROM to boot from 8-bit or 16-bit flash 01 0xEF00 0000

Use boot ROM to boot from 8-bit SPI host device 10 0xEF00 0000

Use boot ROM to configure and load boot code
from SPI serial EEPROM (8-, 16-, or 24-bit address
range)

11 0xEF00 0000

ADSP-BF533 Blackfin Processor Hardware Reference 4-41

Program Sequencer

If the BMODE[1:0] pins indicate to bypass boot ROM, the reset vector
points to the start of the external asynchronous memory region. In this
mode, the internal boot ROM is not used. To support reads from this
memory region, the External Bus Interface Unit (EBIU) uses the default
external memory configuration that results from hardware reset.

NMI (Nonmaskable Interrupt)
The NMI entry is reserved for a nonmaskable interrupt, which can be gen-
erated by the Watchdog timer or by the NMI input signal to the
processor. NMI is a level-sensitive pin; when not used, it should always be
pulled low for ADSP-BF531/2/3 processors. Only events that require
immediate processor attention are appropriate as an NMI entry. For
example, a powerdown warning is an appropriate NMI event.

 If an exception occurs in an event handler that is already servicing
an Exception, NMI, Reset, or Emulation event, this will trigger a
double fault condition, and the address of the excepting instruction
will be written to RETX.

Exceptions
Exceptions are synchronous to the instruction stream. In other words, a
particular instruction causes an exception when it attempts to finish exe-
cution. No instructions after the offending instruction are executed before
the exception handler takes effect.

Many of the exceptions are memory related. For example, an exception is
given when a misaligned access is attempted, or when a cacheability pro-
tection lookaside buffer (CPLB) miss or protection violation occurs.
Exceptions are also given when illegal instructions or illegal combinations
of registers are executed.

Event Vector Table

4-42 ADSP-BF533 Blackfin Processor Hardware Reference

An excepting instruction may or may not commit before the exception
event is taken, depending on if it is a service type or an error type
exception.

An instruction causing a service type event will commit, and the address
written to the RETX register will be the next instruction after the excepting
one. An example of a service type exception is the single step.

An instruction causing an error type event cannot commit, so the address
written to the RETX register will be the address of the offending instruc-
tion. An example of an error type event is a CPLB miss.

 Usually the RETX register contains the correct address to return to.
To skip over an excepting instruction, take care in case the next
address is not simply the next linear address. This could happen
when the excepting instruction is a loop end. In that case, the
proper next address would be the loop top.

The EXCAUSE[5:0] field in the Sequencer Status register (SEQSTAT) is writ-
ten whenever an exception is taken, and indicates to the exception handler
which type of exception occurred. Refer to Table 4-11 for a list of events
that cause exceptions.

 If an exception occurs in an event handler that is already servicing
an Exception, NMI, Reset, or Emulation event, this will trigger a
double fault condition, and the address of the excepting instruction
will be written to RETX.

ADSP-BF533 Blackfin Processor Hardware Reference 4-43

Program Sequencer

Table 4-11. Events That Cause Exceptions

Exception EXCAUSE
[5:0]

Type:
(E) Error

(S) Service1

Notes/Examples

Force Exception
instruction EXCPT
with 4-bit m field

m field S Instruction provides 4 bits of EXCAUSE.

Single step 0x10 S When the processor is in single step mode,
every instruction generates an exception.
Primarily used for debugging.

Exception caused by a
trace buffer full condi-
tion

0x11 S The processor takes this exception when
the trace buffer overflows (only when
enabled by the Trace Unit Control regis-
ter).

Undefined instruction 0x21 E May be used to emulate instructions that
are not defined for a particular processor
implementation.

Illegal instruction
combination

0x22 E See section for multi-issue rules in the
Blackfin Processor Programming Reference.

Data access CPLB pro-
tection violation

0x23 E Attempted read or write to Supervisor
resource, or illegal data memory access.
Supervisor resources are registers and
instructions that are reserved for Supervi-
sor use: Supervisor only registers, all
MMRs, and Supervisor only instructions.
(A simultaneous, dual access to two MMRs
using the data address generators generates
this type of exception.) In addition, this
entry is used to signal a protection viola-
tion caused by disallowed memory access,
and it is defined by the Memory Manage-
ment Unit (MMU) cacheability protection
lookaside buffer (CPLB).

Data access mis-
aligned address viola-
tion

0x24 E Attempted misaligned data memory or
data cache access.

Unrecoverable event 0x25 E For example, an exception generated while
processing a previous exception.

Event Vector Table

4-44 ADSP-BF533 Blackfin Processor Hardware Reference

Data access CPLB miss 0x26 E Used by the MMU to signal a CPLB miss
on a data access.

Data access multiple
CPLB hits

0x27 E More than one CPLB entry matches data
fetch address.

Exception caused by
an emulation watch-
point match

0x28 E There is a watchpoint match, and one of
the EMUSW bits in the Watchpoint
Instruction Address Control register
(WPIACTL) is set.

Instruction fetch mis-
aligned address viola-
tion

0x2A E Attempted misaligned instruction cache
fetch. On a misaligned instruction fetch
exception, the return address provided in
RETX is the destination address which is
misaligned, rather than the address of the
offending instruction. For example, if an
indirect branch to a misaligned address
held in P0 is attempted, the return address
in RETX is equal to P0, rather than to the
address of the branch instruction. (Note
this exception can never be generated from
PC-relative branches, only from indirect
branches.)

Instruction fetch
CPLB protection vio-
lation

0x2B E Illegal instruction fetch access (memory
protection violation).

Instruction fetch
CPLB miss

0x2C E CPLB miss on an instruction fetch.

Table 4-11. Events That Cause Exceptions (Cont’d)

Exception EXCAUSE
[5:0]

Type:
(E) Error

(S) Service1

Notes/Examples

ADSP-BF533 Blackfin Processor Hardware Reference 4-45

Program Sequencer

If an instruction causes multiple exceptions, only the exception with the
highest priority is taken. Table 4-12 ranks exceptions by descending
priority.

Instruction fetch mul-
tiple CPLB hits

0x2D E More than one CPLB entry matches
instruction fetch address.

Illegal use of supervi-
sor resource

0x2E E Attempted to use a Supervisor register or
instruction from User mode. Supervisor
resources are registers and instructions that
are reserved for Supervisor use: Supervisor
only registers, all MMRs, and Supervisor
only instructions.

1 For services (S), the return address is the address of the instruction that follows the exception.
For errors (E), the return address is the address of the excepting instruction.

Table 4-12. Exceptions by Descending Priority

Priority Exception EXCAUSE

1 Unrecoverable Event 0x25

2 I-Fetch Multiple CPLB Hits 0x2D

3 I-Fetch Misaligned Access 0x2A

4 I-Fetch Protection Violation 0x2B

5 I-Fetch CPLB Miss 0x2C

6 I-Fetch Access Exception 0x29

7 Watchpoint Match 0x28

8 Undefined Instruction 0x21

9 Illegal Combination 0x22

10 Illegal Use of Protected Resource 0x2E

11 DAG0 Multiple CPLB Hits 0x27

Table 4-11. Events That Cause Exceptions (Cont’d)

Exception EXCAUSE
[5:0]

Type:
(E) Error

(S) Service1

Notes/Examples

Event Vector Table

4-46 ADSP-BF533 Blackfin Processor Hardware Reference

Exceptions While Executing an Exception Handler
While executing the exception handler, avoid issuing an instruction that
generates another exception. If an exception is caused while executing
code within the exception handler, the NMI handler, the reset vector, or
in emulator mode:

• The excepting instruction is not committed. All writebacks from
the instruction are prevented.

• The generated exception is not taken.

• The EXCAUSE field in SEQSTAT is updated with an unrecoverable
event code.

• The address of the offending instruction is saved in RETX. Note if
the processor were executing, for example, the NMI handler, the
RETN register would not have been updated; the excepting instruc-
tion address is always stored in RETX.

12 DAG0 Misaligned Access 0x24

13 DAG0 Protection Violation 0x23

14 DAG0 CPLB Miss 0x26

15 DAG1 Multiple CPLB Hits 0x27

16 DAG1 Misaligned Access 0x24

17 DAG1 Protection Violation 0x23

18 DAG1 CPLB Miss 0x26

19 EXCPT Instruction m field

20 Single Step 0x10

21 Trace Buffer 0x11

Table 4-12. Exceptions by Descending Priority (Cont’d)

Priority Exception EXCAUSE

ADSP-BF533 Blackfin Processor Hardware Reference 4-47

Program Sequencer

To determine whether an exception occurred while an exception handler
was executing, check SEQSTAT at the end of the exception handler for the
code indicating an “unrecoverable event” (EXCAUSE = 0x25). If an unre-
coverable event occurred, register RETX holds the address of the most
recent instruction to cause an exception. This mechanism is not intended
for recovery, but rather for detection.

Hardware Error Interrupt
The Hardware Error Interrupt indicates a hardware error or system mal-
function. Hardware errors occur when logic external to the core, such as a
memory bus controller, is unable to complete a data transfer (read or
write) and asserts the core’s error input signal. Such hardware errors
invoke the Hardware Error Interrupt (interrupt IVHW in the Event Vector
Table (EVT) and ILAT, IMASK, and IPEND registers). The Hardware Error
Interrupt service routine can then read the cause of the error from the
5-bit HWERRCAUSE field appearing in the Sequencer Status register (SEQ-
STAT) and respond accordingly.

The Hardware Error Interrupt is generated by:

• Bus parity errors

• Internal error conditions within the core, such as Performance
Monitor overflow

• Peripheral errors

• Bus timeout errors

Hardware Error Interrupt

4-48 ADSP-BF533 Blackfin Processor Hardware Reference

The list of supported hardware conditions, with their related HWERRCAUSE
codes, appears in Table 4-13. The bit code for the most recent error
appears in the HWERRCAUSE field. If multiple hardware errors occur simulta-
neously, only the last one can be recognized and serviced. The core does
not support prioritizing, pipelining, or queuing multiple error codes. The
Hardware Error Interrupt remains active as long as any of the error condi-
tions remain active.

Core Timer
The Core Timer Interrupt (IVTMR) is triggered when the core timer value
reaches zero. See Chapter 15, “Timers”.

Table 4-13. Hardware Conditions Causing Hardware Error Interrupts

Hardware
Condition

HWERRCAUSE
(Binary)

HWERRCAUSE
(Hexadecimal)

Notes/Examples

System MMR
Error

0b00010 0x02 An error can occur if an invalid Sys-
tem MMR location is accessed, if a
32-bit register is accessed with a
16-bit instruction, or if a 16-bit
register is accessed with a 32-bit
instruction.

External Memory
Addressing Error

0b00011 0x03 An access to reserved or uninitialized
memory was attempted.

Performance
Monitor
Overflow

0b10010 0x12 Refer to “Performance Monitor Reg-
isters” on page A-9.

RAISE 5
instruction

0b11000 0x18 Software issued a RAISE 5 instruction
to invoke the Hardware Error Inter-
rupt (IVHW).

Reserved All other bit com-
binations.

All other values.

ADSP-BF533 Blackfin Processor Hardware Reference 4-49

Program Sequencer

General-Purpose Interrupts (IVG7-IVG15)
General-purpose interrupts are used for any event that requires processor
attention. For instance, a DMA controller may use them to signal the end
of a data transmission, or a serial communications device may use them to
signal transmission errors.

Software can also trigger general-purpose interrupts by using the RAISE
instruction. The RAISE instruction forces events for interrupts IVG15-IVG7,
IVTMR, IVHW, NMI, and RST, but not for exceptions and emulation (EVX and
EMU, respectively).

 It is recommended to reserve the two lowest priority interrupts
(IVG15 and IVG14) for software interrupt handlers.

Servicing Interrupts
The Core Event Controller (CEC) has a single interrupt queueing element
per event—a bit in the ILAT register. The appropriate ILAT bit is set when
an interrupt rising edge is detected (which takes two core clock cycles) and
cleared when the respective IPEND register bit is set. The IPEND bit indi-
cates that the event vector has entered the core pipeline. At this point, the
CEC recognizes and queues the next rising edge event on the correspond-
ing interrupt input. The minimum latency from the rising edge transition
of the general-purpose interrupt to the IPEND output assertion is three core
clock cycles. However, the latency can be much higher, depending on the
core’s activity level and state.

To determine when to service an interrupt, the controller logically ANDs
the three quantities in ILAT, IMASK, and the current processor priority
level.

Nesting of Interrupts

4-50 ADSP-BF533 Blackfin Processor Hardware Reference

Servicing the highest priority interrupt involves these actions:

1. The interrupt vector in the Event Vector Table (EVT) becomes the
next fetch address. On an interrupt, most instructions currently in
the pipeline are aborted. On a service exception, all instructions
after the excepting instruction are aborted. On an error exception,
the excepting instruction and all instructions after it are aborted.

2. The return address is saved in the appropriate return register. The
return register is RETI for interrupts, RETX for exceptions, RETN for
NMIs, and RETE for debug emulation. The return address is the
address of the instruction after the last instruction executed from
normal program flow.

3. Processor mode is set to the level of the event taken. If the event is
an NMI, exception, or interrupt, the processor mode is Supervisor.
If the event is an emulation exception, the processor mode is
Emulation.

4. Before the first instruction starts execution, the corresponding
interrupt bit in ILAT is cleared and the corresponding bit in IPEND
is set. Bit IPEND[4] is also set to disable all interrupts until the
return address in RETI is saved.

Nesting of Interrupts
Interrupts are handled either with or without nesting.

Non-Nested Interrupts
If interrupts do not require nesting, all interrupts are disabled during the
interrupt service routine. Note, however, that emulation, NMI, and
exceptions are still accepted by the system.

ADSP-BF533 Blackfin Processor Hardware Reference 4-51

Program Sequencer

When the system does not need to support nested interrupts, there is no
need to store the return address held in RETI. Only the portion of the
machine state used in the interrupt service routine must be saved in the
Supervisor stack. To return from a non-nested interrupt service routine,
only the RTI instruction must be executed, because the return address is
already held in the RETI register.

Figure 4-15 shows an example of interrupt handling where interrupts are
globally disabled for the entire interrupt service routine.

Nested Interrupts
If nested interrupts are desired, the return address to the interrupted point
in the original interrupt service routine (ISR) must be explicitly saved and
subsequently restored when execution of the nested ISR has completed.

Figure 4-15. Non-Nested Interrupt Handling

IF 1

IF 2

IF 3

DEC

AC

DF1

DF2

EX1

EX2

WB

A8

1 2CYCLE:

A9

A7

A6

A5

A4

A3

A2

A1

A0 A1

A2

A3

A4

A5

A6

A7

A8

A9

A1 0

A1 0

A9

A8

A7

A6

A5

A4

A3

A2

I0 I2I1

I0 I1

I0

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

A3 A4 A5 A6 A7

A3 A4 A5 A6

A3 A4 A5

A4

A3

A3

In

In

INTERRUPTS DISABLED
DURING THIS INTERVAL.

CYCLE 1: INTERRUPT IS LATCHED. ALL POSSIBLE INTERRUPT SOURCES DETERMINED.
CYCLE 2: INTERRUPT IS PRIORITIZED.
CYCLE 3: ALL INSTRUCTIONS ABOVE A2 ARE KILLED. A2 IS KILLED IF IT IS AN RTI OR CLI
INSTRUCTION. ISR STARTING ADDRESS LOOKUP OCCURS.
CYCLE 4: I0 (INSTRUCTION AT START OF ISR) ENTERS PIPELINE.
CYCLE M: WHEN THE RTI INSTRUCTION REACHES THE DF1 STAGE, INSTRUCTION A3 IS
FETCHED IN PREPARATION FOR RETURNING FROM INTERRUPT.
CYCLE M+4: RTI HAS REACHED WB STAGE, RE-ENABLING INTERRUPTS.

m m+1 m+2 m+3 m+46543

In-1

In-1

In-1 InIn-2

In-2

In-3

RTI

RTI

RTI

RTI

RTI

P
IP

E
L

IN
E

 S
T

A
G

E

Nesting of Interrupts

4-52 ADSP-BF533 Blackfin Processor Hardware Reference

Nesting is enabled by pushing the return address currently held in RETI
to the Supervisor stack ([--SP] = RETI), which is typically done early in
the ISR prolog of the lower priority interrupt. This clears the global inter-
rupt disable bit IPEND[4], enabling interrupts. Next, all registers that are
modified by the interrupt service routine are saved onto the Supervisor
stack. Processor state is stored in the Supervisor stack, not in the User
stack. Hence, the instructions to push RETI ([--SP] = RETI) and pop RETI
(RETI = [SP++]) use the Supervisor stack.

Figure 4-16 illustrates that by pushing RETI onto the stack, interrupts can
be re-enabled during an interrupt service routine, resulting in a short
duration where interrupts are globally disabled.

Figure 4-16. Nested Interrupt Handling

IF 1

IF 2

IF 3

DEC

AC

DF1

DF2

EX1

EX2

WB

A8

1

CYCLE 1: INTERRUPT IS LATCHED. ALL POSSIBLE INTERRUPT SOURCES DETERMINED.
CYCLE 2: INTERRUPT IS PRIORITIZED.
CYCLE 3: ALL INSTRUCTIONS ABOVE A2 ARE KILLED. A2 IS KILLED IF IT IS AN RTI OR CLI INSTRUCTION. ISR STARTING
ADDRESS LOOKUP OCCURS.
CYCLE 4: I0 (INSTRUCTION AT START OF ISR) ENTERS PIPELINE. ASSUME IT IS A PUSH RETI INSTRUCTION (TO ENABLE NESTING).
CYCLE 10: WHEN PUSH REACHES DF2 STAGE, INTERRUPTS ARE RE-ENABLED.
CYCLE M+1: WHEN THE POP RETI INSTRUCTION REACHES THE DF2 STAGE, INTERRUPTS ARE DISABLED.
CYCLE M+5: WHEN RTI REACHES THE WB STAGE, INTERRUPTS ARE RE-ENABLED.

2 3 4 5 6 7 8 9 10 mCYCLE:

A9

A7

A6

A5

A4

A3

A2

A1

A0 A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

A1 0

A9

A8

A7

A6

A5

A4

A3

A2

PUSH I2I1

I1

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

I3 I5 I6

m+1 m+2 m+3 m+4 m+5

A3 A4 A5 A6 A7

A3 A4 A5 A6

A3 A4 A5

A4

A3

A3

RT I

In
I

I

I n-3

n-2

n-1

I

I n-2

n-1

I n-1 In

PUSH

PUSH

I2

I1

PUSH

I3

I2

I1

PUSH

I4

I3

I2

I1

PUSH

I4 I5

I3

I2

I1

PUSH

I4

POP

POP

POP

POP

POP

RTI

RTI

RTI

RTI

RTI

In
In

INTERRUPTS DISABLED
DURING THIS INTERVAL.

INTERRUPTS DISABLED
DURING THIS INTERVAL.

P
IP

E
L

IN
E

 S
T

A
G

E

ADSP-BF533 Blackfin Processor Hardware Reference 4-53

Program Sequencer

Example Prolog Code for Nested Interrupt Service Routine

Listing 4-2. Prolog Code for Nested ISR

/* Prolog code for nested interrupt service routine.

Push return address in RETI into Supervisor stack, ensuring that

interrupts are back on. Until now, interrupts have been

suspended.*/

ISR:

[--SP] = RETI ; /* Enables interrupts and saves return address to

stack */

[--SP] = ASTAT ;

[--SP] = FP ;

[-- SP] = (R7:0, P5:0) ;

/* Body of service routine. Note none of the processor resources

(accumulators, DAGs, loop counters and bounds) have been saved.

It is assumed this interrupt service routine does not use the

processor resources. */

Example Epilog Code for Nested Interrupt Service Routine

Listing 4-3. Epilog Code for Nested ISR

/* Epilog code for nested interrupt service routine.

Restore ASTAT, Data and Pointer registers. Popping RETI from

Supervisor stack ensures that interrupts are suspended between

load of return address and RTI. */

(R7:0, P5:0) = [SP++] ;

FP = [SP++] ;

ASTAT = [SP++] ;

RETI = [SP++] ;

Nesting of Interrupts

4-54 ADSP-BF533 Blackfin Processor Hardware Reference

/* Execute RTI, which jumps to return address, re-enables inter-

rupts, and switches to User mode if this is the last nested

interrupt in service. */

RTI;

The RTI instruction causes the return from an interrupt. The return
address is popped into the RETI register from the stack, an action that sus-
pends interrupts from the time that RETI is restored until RTI finishes
executing. The suspension of interrupts prevents a subsequent interrupt
from corrupting the RETI register.

Next, the RTI instruction clears the highest priority bit that is currently set
in IPEND. The processor then jumps to the address pointed to by the value
in the RETI register and re-enables interrupts by clearing IPEND[4].

Logging of Nested Interrupt Requests

The System Interrupt Controller (SIC) detects level-sensitive interrupt
requests from the peripherals. The Core Event Controller (CEC) provides
edge-sensitive detection for its general-purpose interrupts (IVG7-IVG15).
Consequently, the SIC generates a synchronous interrupt pulse to the
CEC and then waits for interrupt acknowledgement from the CEC.

When the interrupt has been acknowledged by the core (via assertion of
the appropriate IPEND output), the SIC generates another synchronous
interrupt pulse to the CEC if the peripheral interrupt is still asserted. This
way, the system does not lose peripheral interrupt requests that occur dur-
ing servicing of another interrupt.

Multiple interrupt sources can map to a single core processor general-pur-
pose interrupt. Because of this, multiple pulse assertions from the SIC can
occur simultaneously, before, or during interrupt processing for an inter-
rupt event that is already detected on this interrupt input.

ADSP-BF533 Blackfin Processor Hardware Reference 4-55

Program Sequencer

For a shared interrupt, the IPEND interrupt acknowledge mechanism
described above re-enables all shared interrupts. If any of the shared inter-
rupt sources are still asserted, at least one pulse is again generated by the
SIC. The Interrupt Status registers indicate the current state of the shared
interrupt sources.

Exception Handling
Interrupts and exceptions treat instructions in the pipeline differently.

• When an interrupt occurs, all instructions in the pipeline are
aborted.

• When an exception occurs, all instructions in the pipeline after the
excepting instruction are aborted. For error exceptions, the except-
ing instruction is also aborted.

Because exceptions, NMIs, and emulation events have a dedicated return
register, guarding the return address is optional. Consequently, the PUSH
and POP instructions for exceptions, NMIs, and emulation events do not
affect the interrupt system.

Note, however, the return instructions for exceptions (RTX, RTN, and RTE)
do clear the Least Significant Bit (LSB) currently set in IPEND.

Deferring Exception Processing

Exception handlers are usually long routines, because they must discrimi-
nate among several exception causes and take corrective action
accordingly. The length of the routines may result in long periods during
which the interrupt system is, in effect, suspended.

To avoid lengthy suspension of interrupts, write the exception handler to
identify the exception cause, but defer the processing to a low priority
interrupt. To set up the low priority interrupt handler, use the Force
Interrupt / Reset instruction (RAISE).

Nesting of Interrupts

4-56 ADSP-BF533 Blackfin Processor Hardware Reference

 When deferring the processing of an exception to lower priority
interrupt IVGx, the system must guarantee that IVGx is entered
before returning to the application-level code that issued the excep-
tion. If a pending interrupt of higher priority than IVGx occurs, it is
acceptable to enter the high priority interrupt before IVGx.

Example Code for an Exception Handler

Listing 4-4 is for an exception routine handler with deferred processing.

Listing 4-4. Exception Routine Handler With Deferred Processing

/* Determine exception cause by examining EXCAUSE field in SEQ-

STAT (first save contents of R0, P0, P1 and ASTAT in Supervisor

SP) */

[--SP] = R0 ;

[--SP] = P0 ;

[--SP] = P1 ;

[--SP] = ASTAT ;

R0 = SEQSTAT ;

/* Mask the contents of SEQSTAT, and leave only EXCAUSE in R0 */

R0 <<= 26 ;

R0 >>= 26 ;

/* Using jump table EVTABLE, jump to the event pointed to by R0

*/

P0 = R0 ;

P1 = _EVTABLE ;

P0 = P1 + (P0 << 1) ;

R0 = W [P0] (Z) ;

P1 = R0 ;

JUMP (PC + P1) ;

/* The entry point for an event is as follows. Here, processing

is deferred to low priority interrupt IVG15. Also, parameter

passing would typically be done here. */

ADSP-BF533 Blackfin Processor Hardware Reference 4-57

Program Sequencer

_EVENT1:

RAISE 15 ;

JUMP.S _EXIT ;

/* Entry for event at IVG14 */

_EVENT2:

RAISE 14 ;

JUMP.S _EXIT ;

/* Comments for other events */

/* At the end of handler, restore R0, P0, P1 and ASTAT, and

return. */

_EXIT:

ASTAT = [SP++] ;

P1 = [SP++] ;

P0 = [SP++] ;

R0 = [SP++] ;

RTX ;

_EVTABLE:

.byte2 addr_event1;

.byte2 addr_event2;

...

.byte2 addr_eventN;

/* The jump table EVTABLE holds 16-bit address offsets for each

event. With offsets, this code is position independent and the

table is small.

+--------------+

| addr_event1 | _EVTABLE

+--------------+

| addr_event2 | _EVTABLE + 2

+--------------+

| . . . |

+--------------+

| addr_eventN | _EVTABLE + 2N

+--------------+

*/

Nesting of Interrupts

4-58 ADSP-BF533 Blackfin Processor Hardware Reference

Example Code for an Exception Routine

Listing 4-5 provides an example framework for an interrupt routine
jumped to from an exception handler such as that described above.

Listing 4-5. Interrupt Routine for Handling Exception

[--SP] = RETI ; /* Push return address on stack. */

/* Put body of routine here.*/

RETI = [SP++] ; /* To return, pop return address and jump. */

RTI ; /* Return from interrupt. */

Example Code for Using Hardware Loops in an ISR

Listing 4-6 shows the optimal method of saving and restoring when using
hardware loops in an interrupt service routine.

Listing 4-6. Saving and Restoring With Hardware Loops

lhandler:
<Save other registers here>

[--SP] = LC0; /* save loop 0 */

[--SP] = LB0;

[--SP] = LT0;

<Handler code here>

ADSP-BF533 Blackfin Processor Hardware Reference 4-59

Program Sequencer

/* If the handler uses loop 0, it is a good idea to have

it leave LC0 equal to zero at the end. Normally, this will

happen naturally as a loop is fully executed. If LC0 == 0,

then LT0 and LB0 restores will not incur additional cycles.

If LC0 != 0 when the following pops happen, each pop will

incur a ten-cycle “replay” penalty. Popping or writing LC0

always incurs the penalty. */

LT0 = [SP++];

LB0 = [SP++];

LC0 = [SP++]; /* This will cause a “replay,” that is, a

ten-cycle refetch. */

<Restore other registers here>

RTI;

Additional Usability Issues
The following sections describe additional usability issues.

Executing RTX, RTN, or RTE in a Lower Priority Event

Instructions RTX, RTN, and RTE are designed to return from an exception,
NMI, or emulator event, respectively. Do not use them to return from a
lower priority event. To return from an interrupt, use the RTI instruction.
Failure to use the correct instruction may produce unintended results.

In the case of RTX, bit IPEND[3] is cleared. In the case of RTI, the bit of the
highest priority interrupt in IPEND is cleared.

Nesting of Interrupts

4-60 ADSP-BF533 Blackfin Processor Hardware Reference

Allocating the System Stack

The software stack model for processing exceptions implies that the
Supervisor stack must never generate an exception while the exception
handler is saving its state. However, if the Supervisor stack grows past a
CPLB entry or SRAM block, it may, in fact, generate an exception.

To guarantee that the Supervisor stack never generates an exception—
never overflows past a CPLB entry or SRAM block while executing the
exception handler—calculate the maximum space that all interrupt service
routines and the exception handler occupy while they are active, and then
allocate this amount of SRAM memory.

Latency in Servicing Events
In some processor architectures, if instructions are executed from external
memory and an interrupt occurs while the instruction fetch operation is
underway, then the interrupt is held off from being serviced until the cur-
rent fetch operation has completed. Consider a processor operating at
300 MHz and executing code from external memory with 100 ns access
times. Depending on when the interrupt occurs in the instruction fetch
operation, the interrupt service routine may be held off for around 30
instruction clock cycles. When cache line fill operations are taken into
account, the interrupt service routine could be held off for many hundreds
of cycles.

In order for high priority interrupts to be serviced with the least latency
possible, the processor allows any high latency fill operation to be com-
pleted at the system level, while an interrupt service routine executes from
L1 memory. See Figure 4-17.

ADSP-BF533 Blackfin Processor Hardware Reference 4-61

Program Sequencer

If an instruction load operation misses the L1 instruction cache and gener-
ates a high latency line fill operation, then when an interrupt occurs, it is
not held off until the fill has completed. Instead, the processor executes
the interrupt service routine in its new context, and the cache fill opera-
tion completes in the background.

Note the interrupt service routine must reside in L1 cache or SRAM mem-
ory and must not generate a cache miss, an L2 memory access, or a
peripheral access, as the processor is already busy completing the original
cache line fill operation. If a load or store operation is executed in the
interrupt service routine requiring one of these accesses, then the interrupt
service routine is held off while the original external access is completed,
before initiating the new load or store.

Figure 4-17. Minimizing Latency in Servicing an Interrupt Service Rou-
tine

CLOCK

FETCH

INSTRUCTION
DATA

SERVICED
HERE

FETCH

INSTRUCTION
DATA

INTERRUPT
OCCURRING
HERE

SERVICED
HERE

OTHER PROCESSORS

BLACKFIN PROCESSOR

INTERRUPT
OCCURRING
HERE

Nesting of Interrupts

4-62 ADSP-BF533 Blackfin Processor Hardware Reference

If the interrupt service routine finishes execution before the load operation
has completed, then the processor continues to stall, waiting for the fill to
complete.

This same behavior is also exhibited for stalls involving reads of slow data
memory or peripherals.

Writes to slow memory generally do not show this behavior, as the writes
are deemed to be single cycle, being immediately transferred to the write
buffer for subsequent execution.

For detailed information about cache and memory structures, see
Chapter 6, “Memory”.

ADSP-BF533 Blackfin Processor Hardware Reference 5-1

5 DATA ADDRESS
GENERATORS

The Data Address Generators (DAGs) generate addresses for data moves
to and from memory. By generating addresses, the DAGs let programs
refer to addresses indirectly, using a DAG register instead of an absolute
address.

The DAG architecture, shown in Figure 5-1, supports several functions
that minimize overhead in data access routines. These functions include:

• Supply address – Provides an address during a data access

• Supply address and post-modify – Provides an address during a
data move and auto-increments/decrements the stored address for
the next move

• Supply address with offset – Provides an address from a base with
an offset without incrementing the original address pointer

• Modify address – Increments or decrements the stored address
without performing a data move

• Bit-reversed carry address – Provides a bit-reversed carry address
during a data move without reversing the stored address

The DAG subsystem comprises two DAG Arithmetic units, nine Pointer
registers, four Index registers and four complete sets of related Modify,
Base, and Length registers. These registers hold the values that the DAGs
use to generate addresses. The types of registers are:

5-2 ADSP-BF533 Blackfin Processor Hardware Reference

• Index registers, I[3:0]. Unsigned 32-bit Index registers hold an
address pointer to memory. For example, the instruction R3 = [I0]
loads the data value found at the memory location pointed to by
the register I0. Index registers can be used for 16- and 32-bit mem-
ory accesses.

• Modify registers, M[3:0]. Signed 32-bit Modify registers provide
the increment or step size by which an Index register is post-modi-
fied during a register move. For example, the R0 = [I0 ++ M1]
instruction directs the DAG to:

– Output the address in register I0
– Load the contents of the memory location pointed to by I0 into
R0

– Modify the contents of I0 by the value contained in the M1
register

• Base and Length registers, B[3:0] and L[3:0]. Unsigned 32-bit
Base and Length registers set up the range of addresses and the
starting address of a circular buffer. Each B, L pair is always coupled
with a corresponding I-register, for example, I3, B3, L3. For more
information on circular buffers, see “Addressing Circular Buffers”
on page 5-6.

• Pointer registers, P[5:0], FP, USP, and SP. 32-bit Pointer registers
hold an address pointer to memory. The P[5:0] field, FP (Frame
Pointer) and SP/USP (Stack Pointer/User Stack Pointer) can be
manipulated and used in various instructions. For example, the
instruction R3 = [P0] loads the register R3 with the data value
found at the memory location pointed to by the register P0. The
Pointer registers have no effect on circular buffer addressing. They
can be used for 8-, 16-, and 32-bit memory accesses. For added
mode protection, SP is accessible only in Supervisor mode, while
USP is accessible in User mode.

ADSP-BF533 Blackfin Processor Hardware Reference 5-3

Data Address Generators

 Do not assume the L-registers are automatically initialized to zero
for linear addressing. The I-, M-, L-, and B-registers contain ran-
dom values after reset. For each I-register used, programs must
initialize the corresponding L-registers to zero for linear addressing
or to the buffer length for circular buffer addressing.

 Note all DAG registers must be initialized individually. Initializing
a B-register does not automatically initialize the I-register.

Addressing With DAGs
The DAGs can generate an address that is incremented by a value or by a
register. In post-modify addressing, the DAG outputs the I-register value
unchanged; then the DAG adds an M-register or immediate value to the
I-register.

Figure 5-1. Processor DAG Registers

 Data Address Generator Registers (DAGs)

P0

P1

P2

P3

P4

P5

User SP
Supervisor SP

Supervisor only register. Attempted read or
write in User mode causes an exception error.

FP

I0

I2

I3

L0 B0

B3L3

L2

L1 B1

B2

I1

M0

M3

M1

M2

Addressing With DAGs

5-4 ADSP-BF533 Blackfin Processor Hardware Reference

In indexed addressing, the DAG adds a small offset to the value in the
P-register, but does not update the P-register with this new value, thus
providing an offset for that particular memory access.

The processor is byte addressed. All data accesses must be aligned to the
data size. In other words, a 32-bit fetch must be aligned to 32 bits, but an
8-bit store can be aligned to any byte. Depending on the type of data
used, increments and decrements to the DAG registers can be by 1, 2, or 4
to match the 8-, 16-, or 32-bit accesses.

For example, consider the following instruction:

R0 = [P3++];

This instruction fetches a 32-bit word, pointed to by the value in P3, and
places it in R0. It then post-increments P3 by four, maintaining alignment
with the 32-bit access.

R0.L = W [I3++];

This instruction fetches a 16-bit word, pointed to by the value in I3, and
places it in the low half of the destination register, R0.L. It then
post-increments I3 by two, maintaining alignment with the 16-bit access.

R0 = B [P3++] (Z) ;

This instruction fetches an 8-bit word, pointed to by the value in P3, and
places it in the destination register, R0. It then post-increments P3 by one,
maintaining alignment with the 8-bit access. The byte value may be zero
extended (as shown) or sign extended into the 32-bit data register.

Instructions using Index registers use an M-register or a small immediate
value (+/– 2 or 4) as the modifier. Instructions using Pointer registers use
a small immediate value or another P-register as the modifier. For details,
see Table 5-3 on page 5-17.

ADSP-BF533 Blackfin Processor Hardware Reference 5-5

Data Address Generators

Frame and Stack Pointers
In many respects, the Frame and Stack Pointer registers perform like the
other P-registers, P[5:0]. They can act as general pointers in any of the
load/store instructions, for example, R1 = B[SP] (Z). However, FP and SP
have additional functionality.

The Stack Pointer registers include:

• a User Stack Pointer (USP in Supervisor mode, SP in User mode)

• a Supervisor Stack Pointer (SP in Supervisor mode)

The User Stack Pointer register and the Supervisor Stack Pointer register
are accessed using the register alias SP. Depending on the current proces-
sor operating mode, only one of these registers is active and accessible as
SP:

• In User mode, any reference to SP (for example, stack pop
R0 = [SP++] ;) implicitly uses the USP as the effective address.

• In Supervisor mode, the same reference to SP (for example,
R0 = [SP++] ;) implicitly uses the Supervisor Stack Pointer as
the effective address.

To manipulate the User Stack Pointer for code running in Supervi-
sor mode, use the register alias USP. When in Supervisor mode, a
register move from USP (for example, R0 = USP ;) moves the cur-
rent User Stack Pointer into R0. The register alias USP can only be
used in Supervisor mode.

Some load/store instructions use FP and SP implicitly:

• FP-indexed load/store, which extends the addressing range for
16-bit encoded load/stores

• Stack push/pop instructions, including those for pushing and pop-
ping multiple registers

Addressing With DAGs

5-6 ADSP-BF533 Blackfin Processor Hardware Reference

• Link/unlink instructions, which control stack frame space and
manage the Frame Pointer register (FP) for that space

Addressing Circular Buffers
The DAGs support addressing circular buffers. Circular buffers are a range
of addresses containing data that the DAG steps through repeatedly,
wrapping around to repeat stepping through the same range of addresses
in a circular pattern.

The DAGs use four types of DAG registers for addressing circular buffers.
For circular buffering, the registers operate this way:

• The Index (I) register contains the value that the DAG outputs on
the address bus.

• The Modify (M) register contains the post-modify amount (posi-
tive or negative) that the DAG adds to the I-register at the end of
each memory access. Any M-register can be used with any I-regis-
ter. The modify value can also be an immediate value instead of an
M-register. The size of the modify value must be less than or equal
to the length (L-register) of the circular buffer.

• The Length (L) register sets the size of the circular buffer and the
address range through which the DAG circulates the I-register. L is
positive and cannot have a value greater than 232 – 1. If an L-regis-
ter’s value is zero, its circular buffer operation is disabled.

• The Base (B) register or the B-register plus the L-register is the
value with which the DAG compares the modified I-register value
after each access.

To address a circular buffer, the DAG steps the Index pointer (I-register)
through the buffer values, post-modifying and updating the index on each
access with a positive or negative modify value from the M-register.

ADSP-BF533 Blackfin Processor Hardware Reference 5-7

Data Address Generators

If the Index pointer falls outside the buffer range, the DAG subtracts the
length of the buffer (L-register) from the value or adds the length of the
buffer to the value, wrapping the Index pointer back to a point inside the
buffer.

The starting address that the DAG wraps around is called the buffer’s base
address (B-register). There are no restrictions on the value of the base
address for circular buffers that contains 8-bit data. Circular buffers that
contain 16- and 32-bit data must be 16-bit aligned and 32-bit aligned,
respectively. Exceptions can be made for video operations. For more infor-
mation, see “Memory Address Alignment” on page 5-13. Circular
buffering uses post-modify addressing.

Figure 5-2. Circular Data Buffers

0X0

0X1

0X2

0X3

0X4

0X5

0X6

0X7

0X8

0X9

0XA

0X0

0X1

0X2

0X3

0X4

0X5

0X6

0X7

0X8

0X9

0XA

0X0

0X1

0X2

0X3

0X4

0X5

0X6

0X7

0X8

0X9

0XA

0X0

0X1

0X2

0X3

0X4

0X5

0X6

0X7

0X8

0X9

0XA

1

2

3

4

5

6

7

8

9

10

11

LENGTH = 11
BASE ADDRESS = 0X0
MODIFIER = 4

THE COLUMNS ABOVE SHOW THE SEQUENCE IN ORDER OF LOCATIONS ACCESSED IN ONE PASS.
THE SEQUENCE REPEATS ON SUBSEQUENT PASSES.

Addressing With DAGs

5-8 ADSP-BF533 Blackfin Processor Hardware Reference

As seen in Figure 5-2, on the first post-modify access to the buffer, the
DAG outputs the I-register value on the address bus, then modifies the
address by adding the modify value.

• If the updated index value is within the buffer length, the DAG
writes the value to the I-register.

• If the updated index value exceeds the buffer length, the DAG sub-
tracts (for a positive modify value) or adds (for a negative modify
value) the L-register value before writing the updated index value
to the I-register.

In equation form, these post-modify and wraparound operations work as
follows, shown for “I+M” operations.

• If M is positive:

Inew = Iold + M
if Iold + M < buffer base + length (end of buffer)

Inew = Iold + M – L
if Iold + M  buffer base + length (end of buffer)

• If M is negative:

Inew = Iold + M
if Iold + M  buffer base (start of buffer)

Inew = Iold + M + L
if Iold + M < buffer base (start of buffer)

ADSP-BF533 Blackfin Processor Hardware Reference 5-9

Data Address Generators

Addressing With Bit-Reversed Addresses
To obtain results in sequential order, programs need bit-reversed carry
addressing for some algorithms, particularly Fast Fourier Transform
(FFT) calculations. To satisfy the requirements of these algorithms, the
DAG’s bit-reversed addressing feature permits repeatedly subdividing data
sequences and storing this data in bit-reversed order. For detailed infor-
mation about bit-reversed addressing, see the Modify-Increment
instruction in Blackfin Processor Programming Reference.

Indexed Addressing With Index and Pointer
Registers

Indexed addressing uses the value in the Index or Pointer register as an
effective address. This instruction can load or store 16- or 32-bit values.
The default is a 32-bit transfer. If a 16-bit transfer is required, then the W
designator is used to preface the load or store.

For example:

R0 = [I2] ;

loads a 32-bit value from an address pointed to by I2 and stores it in the
destination register R0.

R0.H = W [I2] ;

loads a 16-bit value from an address pointed to by I2 and stores it in the
16-bit destination register R0.H.

[P1] = R0 ;

is an example of a 32-bit store operation.

Addressing With DAGs

5-10 ADSP-BF533 Blackfin Processor Hardware Reference

Pointer registers can be used for 8-bit loads and stores.

For example:

B [P1++] = R0 ;

stores the 8-bit value from the R0 register in the address pointed to by the
P1 register, then increments the P1 register.

Auto-Increment and Auto-Decrement Addressing
Auto-increment addressing updates the Pointer and Index registers after
the access. The amount of increment depends on the word size. An access
of 32-bit words results in an update of the Pointer by 4. A 16-bit word
access updates the Pointer by 2, and an access of an 8-bit word updates the
Pointer by 1. Both 8- and 16-bit read operations may specify either to
sign-extend or zero-extend the contents into the destination register.
Pointer registers may be used for 8-, 16-, and 32-bit accesses while Index
registers may be used only for 16- and 32-bit accesses.

For example:

R0 = W [P1++] (Z) ;

loads a 16-bit word into a 32-bit destination register from an address
pointed to by the P1 Pointer register. The Pointer is then incremented by
2 and the word is zero extended to fill the 32-bit destination register.

Auto-decrement works the same way by decrementing the address after
the access.

For example:

R0 = [I2--] ;

loads a 32-bit value into the destination register and decrements the Index
register by 4.

ADSP-BF533 Blackfin Processor Hardware Reference 5-11

Data Address Generators

Pre-Modify Stack Pointer Addressing
The only pre-modify instruction in the processor uses the Stack Pointer
register, SP. The address in SP is decremented by 4 and then used as an
effective address for the store. The instruction [--SP] = R0 ; is used for
stack push operations and can support only a 32-bit word transfer.

Indexed Addressing With Immediate Offset
Indexed addressing allows programs to obtain values from data tables,
with reference to the base of that table. The Pointer register is modified by
the immediate field and then used as the effective address. The value of
the Pointer register is not updated.

 Alignment exceptions are triggered when a final address is
unaligned.

For example, if P1 = 0x13, then [P1 + 0x11] would effectively be equal to
[0x24], which is aligned for all accesses.

Post-Modify Addressing
Post-modify addressing uses the value in the Index or Pointer registers as
the effective address and then modifies it by the contents of another regis-
ter. Pointer registers are modified by other Pointer registers. Index
registers are modified by Modify registers. Post-modify addressing does
not support the Pointer registers as destination registers, nor does it sup-
port byte-addressing.

For example:

R5 = [P1++P2] ;

loads a 32-bit value into the R5 register, found in the memory location
pointed to by the P1 register.

Modifying DAG and Pointer Registers

5-12 ADSP-BF533 Blackfin Processor Hardware Reference

The value in the P2 register is then added to the value in the P1 register.

For example:

R2 = W [P4++P5] (Z) ;

loads a 16-bit word into the low half of the destination register R2 and
zero-extends it to 32 bits. The value of the pointer P4 is incremented by
the value of the pointer P5.

For example:

R2 = [I2++M1] ;

loads a 32-bit word into the destination register R2. The value in the Index
register, I2, is updated by the value in the Modify register, M1.

Modifying DAG and Pointer Registers
The DAGs support operations that modify an address value in an Index
register without outputting an address. The operation, address-modify, is
useful for maintaining pointers.

The address-modify operation modifies addresses in any DAG Index and
Pointer register (I[3:0], P[5:0], FP, SP) without accessing memory. If the
Index register’s corresponding B- and L-registers are set up for circular
buffering, the address-modify operation performs the specified buffer
wraparound (if needed).

The syntax is similar to post-modify addressing (index += modifier). For
Index registers, an M-register is used as the modifier. For Pointer registers,
another P-register is used as the modifier.

Consider the example, I1 += M2 ;

This instruction adds M2 to I1 and updates I1 with the new value.

ADSP-BF533 Blackfin Processor Hardware Reference 5-13

Data Address Generators

Memory Address Alignment
The processor requires proper memory alignment to be maintained for the
data size being accessed. Unless exceptions are disabled, violations of
memory alignment cause an alignment exception. Some instructions—for
example, many of the Video ALU instructions—automatically disable
alignment exceptions because the data may not be properly aligned when
stored in memory. Alignment exceptions may be disabled by issuing the
DISALGNEXPT instruction in parallel with a load/store operation.

Normally, the memory system requires two address alignments:

• 32-bit word load/stores are accessed on four-byte boundaries,
meaning the two least significant bits of the address are b#00.

• 16-bit word load/stores are accessed on two-byte boundaries,
meaning the least significant bit of the address must be b#0.

Table 5-1 summarizes the types of transfers and transfer sizes supported
by the addressing modes.

 Be careful when using the DISALGNEXPT instruction, because it dis-
ables automatic detection of memory alignment errors. The
DISALGNEXPT instruction only affects misaligned loads that use
I-register indirect addressing. Misaligned loads using P-register
addressing will still cause an exception.

Memory Address Alignment

5-14 ADSP-BF533 Blackfin Processor Hardware Reference

Table 5-1. Types of Transfers Supported and Transfer Sizes

Addressing Mode Types of Transfers
Supported

Transfer Sizes

Auto-increment
Auto-decrement
Indirect
Indexed

To and from Data
Registers

LOADS:
32-bit word
16-bit, zero extended half word
16-bit, sign extended half word
8-bit, zero extended byte
8-bit, sign extended byte
STORES:
32-bit word
16-bit half word
8-bit byte

To and from Pointer
Registers

LOAD:
32-bit word
STORE:
32-bit word

Post-increment To and from Data
Registers

LOADS:
32-bit word
16-bit half word to Data Register high half
16-bit half word to Data Register low half
16-bit, zero extended half word
16-bit, sign extended half word
STORES:
32-bit word
16-bit half word from Data Register high half
16-bit half word from Data Register low half

ADSP-BF533 Blackfin Processor Hardware Reference 5-15

Data Address Generators

Table 5-2 summarizes the addressing modes. In the table, an asterisk (*)
indicates the processor supports the addressing mode.

Table 5-2. Addressing Modes

32-bit
word

16-bit
half-
word

8-bit byte Sign/zero
extend

Data
Register

Pointer
register

Data
Register
Half

P Auto-inc
[P0++]

* * * * * *

P Auto-dec
[P0--]

* * * * * *

P Indirect
[P0]

* * * * * * *

P Indexed
[P0+im]

* * * * * *

FP indexed
[FP+im]

* * *

P Post-inc
[P0++P1]

* * * * *

I Auto-inc
[I0++]

* * * *

I Auto-dec
[I0--]

* * * *

I Indirect
[I0]

* * * *

I Post-inc
[I0++M0]

* *

DAG Instruction Summary

5-16 ADSP-BF533 Blackfin Processor Hardware Reference

DAG Instruction Summary
Table 5-3 lists the DAG instructions. For more information on assembly
language syntax, see Blackfin Processor Programming Reference. In
Table 5-3, note the meaning of these symbols:

• Dreg denotes any Data Register File register.

• Dreg_lo denotes the lower 16 bits of any Data Register File
register.

• Dreg_hi denotes the upper 16 bits of any Data Register File
register.

• Preg denotes any Pointer register, FP, or SP register.

• Ireg denotes any DAG Index register.

• Mreg denotes any DAG Modify register.

• W denotes a 16-bit wide value.

• B denotes an 8-bit wide value.

• immA denotes a signed, A-bits wide, immediate value.

• uimmAmB denotes an unsigned, A-bits wide, immediate value that
is an even multiple of B.

• Z denotes the zero-extension qualifier.

• X denotes the sign-extension qualifier.

• BREV denotes the bit-reversal qualifier.

Blackfin Processor Programming Reference more fully describes the options
that may be applied to these instructions and the sizes of immediate fields.

ADSP-BF533 Blackfin Processor Hardware Reference 5-17

Data Address Generators

DAG instructions do not affect the ASTAT Status flags.

Table 5-3. DAG Instruction Summary

Instruction

Preg = [Preg] ;

Preg = [Preg ++] ;

Preg = [Preg --] ;

Preg = [Preg + uimm6m4] ;

Preg = [Preg + uimm17m4] ;

Preg = [Preg – uimm17m4] ;

Preg = [FP – uimm7m4] ;

Dreg = [Preg] ;

Dreg = [Preg ++] ;

Dreg = [Preg --] ;

Dreg = [Preg + uimm6m4] ;

Dreg = [Preg + uimm17m4] ;

Dreg = [Preg – uimm17m4] ;

Dreg = [Preg ++ Preg] ;

Dreg = [FP – uimm7m4] ;

Dreg = [Ireg] ;

Dreg = [Ireg ++] ;

Dreg = [Ireg --] ;

Dreg = [Ireg ++ Mreg] ;

Dreg =W [Preg] (Z) ;

Dreg =W [Preg ++] (Z) ;

Dreg =W [Preg --] (Z) ;

Dreg =W [Preg + uimm5m2] (Z) ;

Dreg =W [Preg + uimm16m2] (Z) ;

DAG Instruction Summary

5-18 ADSP-BF533 Blackfin Processor Hardware Reference

Dreg =W [Preg – uimm16m2] (Z) ;

Dreg =W [Preg ++ Preg] (Z) ;

Dreg = W [Preg] (X) ;

Dreg = W [Preg ++] (X) ;

Dreg = W [Preg --] (X) ;

Dreg =W [Preg + uimm5m2] (X) ;

Dreg =W [Preg + uimm16m2] (X) ;

Dreg =W [Preg – uimm16m2] (X) ;

Dreg =W [Preg ++ Preg] (X) ;

Dreg_hi = W [Ireg] ;

Dreg_hi = W [Ireg ++] ;

Dreg_hi = W [Ireg --] ;

Dreg_hi = W [Preg] ;

Dreg_hi = W [Preg ++ Preg] ;

Dreg_lo = W [Ireg] ;

Dreg_lo = W [Ireg ++] ;

Dreg_lo = W [Ireg --] ;

Dreg_lo = W [Preg] ;

Dreg_lo = W [Preg ++ Preg] ;

Dreg = B [Preg] (Z) ;

Dreg = B [Preg ++] (Z) ;

Dreg = B [Preg --] (Z) ;

Dreg = B [Preg + uimm15] (Z) ;

Dreg = B [Preg – uimm15] (Z) ;

Dreg = B [Preg] (X) ;

Dreg = B [Preg ++] (X) ;

Table 5-3. DAG Instruction Summary (Cont’d)

Instruction

ADSP-BF533 Blackfin Processor Hardware Reference 5-19

Data Address Generators

Dreg = B [Preg --] (X) ;

Dreg = B [Preg + uimm15] (X) ;

Dreg = B [Preg – uimm15] (X) ;

[Preg] = Preg ;

[Preg ++] = Preg ;

[Preg --] = Preg ;

[Preg + uimm6m4] = Preg ;

[Preg + uimm17m4] = Preg ;

[Preg – uimm17m4] = Preg ;

[FP – uimm7m4] = Preg ;

[Preg] = Dreg ;

[Preg ++] = Dreg ;

[Preg --] = Dreg ;

[Preg + uimm6m4] = Dreg ;

[Preg + uimm17m4] = Dreg ;

[Preg – uimm17m4] = Dreg ;

[Preg ++ Preg] = Dreg ;

[FP – uimm7m4] = Dreg ;

[Ireg] = Dreg ;

[Ireg ++] = Dreg ;

[Ireg --] = Dreg ;

[Ireg ++ Mreg] = Dreg ;

W [Ireg] = Dreg_hi ;

W [Ireg ++] = Dreg_hi ;

W [Ireg --] = Dreg_hi ;

W [Preg] = Dreg_hi ;

Table 5-3. DAG Instruction Summary (Cont’d)

Instruction

DAG Instruction Summary

5-20 ADSP-BF533 Blackfin Processor Hardware Reference

W [Preg ++ Preg] = Dreg_hi ;

W [Ireg] = Dreg_lo ;

W [Ireg ++] = Dreg_lo ;

W [Ireg --] = Dreg_lo ;

W [Preg] = Dreg_lo ;

W [Preg] = Dreg ;

W [Preg ++] = Dreg ;

W [Preg --] = Dreg ;

W [Preg + uimm5m2] = Dreg ;

W [Preg + uimm16m2] = Dreg ;

W [Preg – uimm16m2] = Dreg ;

W [Preg ++ Preg] = Dreg_lo ;

B [Preg] = Dreg ;

B [Preg ++] = Dreg ;

B [Preg --] = Dreg ;

B [Preg + uimm15] = Dreg ;

B [Preg – uimm15] = Dreg ;

Preg = imm7 (X) ;

Preg = imm16 (X) ;

Preg += Preg (BREV) ;

Ireg += Mreg (BREV) ;

Preg = Preg << 2 ;

Preg = Preg >> 2 ;

Preg = Preg >> 1 ;

Preg = Preg + Preg << 1 ;

Preg = Preg + Preg << 2 ;

Table 5-3. DAG Instruction Summary (Cont’d)

Instruction

ADSP-BF533 Blackfin Processor Hardware Reference 5-21

Data Address Generators

Preg –= Preg ;

Ireg –= Mreg ;

Table 5-3. DAG Instruction Summary (Cont’d)

Instruction

DAG Instruction Summary

5-22 ADSP-BF533 Blackfin Processor Hardware Reference

ADSP-BF533 Blackfin Processor Hardware Reference 6-1

6 MEMORY

The processor supports a hierarchical memory model with different per-
formance and size parameters, depending on the memory location within
the hierarchy. Level 1 (L1) memories are located on the chip and are faster
than the Level 2 (L2) memory systems. The Level 2 (L2) memories are
off-chip and have longer access latencies. The faster L1 memories, which
are typically small scratchpad memory or cache memories, are found
within the core itself.

Memory Architecture
The processor has a unified 4G byte address range that spans a combina-
tion of on-chip and off-chip memory and memory-mapped I/O resources.
Of this range, some of the address space is dedicated to internal, on-chip
resources. The processor populates portions of this internal memory space
with:

• L1 Static Random Access Memories (SRAM)

• A set of memory-mapped registers (MMRs)

• A boot Read-Only Memory (ROM)

A portion of the internal L1 SRAM can also be configured to run as cache.
The processor also provides support for an external memory space that
includes asynchronous memory space and synchronous DRAM (SDRAM)
space. See Chapter 17, “External Bus Interface Unit”, for a detailed dis-
cussion of each of these memory regions and the controllers that support
them.

Memory Architecture

6-2 ADSP-BF533 Blackfin Processor Hardware Reference

Figure 6-1 provides an overview of the ADSP-BF533 processor system
memory map. Figure 6-2 shows this information for the ADSP-BF532
processor, and Figure 6-3 for the ADSP-BF531 processor. Note the archi-
tecture does not define a separate I/O space. All resources are mapped
through the flat 32-bit address space. The memory is byte-addressable.

As shown in Table 6-1, the ADSP-BF533, ADSP-BF532, and
ADSP-BF531 processors offer a variety of instruction and data memory
configurations.

The upper portion of internal memory space is allocated to the core and
system MMRs. Accesses to this area are allowed only when the processor is
in Supervisor or Emulation mode (see Chapter 3, “Operating Modes and
States”.)

The lowest 1K byte of internal memory space is occupied by the boot
ROM. Depending on the booting option selected, the appropriate boot
program is executed from this memory space when the processor is reset
(see “Booting Methods” on page 3-18.)

Table 6-1. Memory Configurations

Type of Memory ADSP-BF531 ADSP-BF532 ADSP-BF533

Instruction SRAM/Cache, lockable
by Way or line

16K byte 16K byte 16K byte

Instruction SRAM 16K byte 32K byte 64K byte

Data SRAM/Cache 16K byte 32K byte 32K byte

Data SRAM - - 32K byte

Data Scratchpad SRAM 4K byte 4K byte 4K byte

Total 52K byte 84K byte 148K byte

ADSP-BF533 Blackfin Processor Hardware Reference 6-3

Memory

Within the external memory map, four banks of asynchronous memory
space and one bank of SDRAM memory are available. Each of the asyn-
chronous banks is 1M byte and the SDRAM bank is up to 128M byte.

Figure 6-2. ADSP-BF532 Memory Map

CORE MMR

0xFFC0 0000

SCRATCHPAD SRAM

INSTRUCTION SRAM/CACHE

0xFF90 0000

0xFF80 8000

SDRAM

ADSP-BF532 MEMORY MAP

0xEF00 0000

RESERVED

0xFF90 4000

0xFFA0 0000

0xFFA0 8000

0xFFA0 C000

0xFFA1 0000

0xFFB0 0000

RESERVED

RESERVED

RESERVED

0xFFA1 4000

0xFF80 4000

0xFFE0 0000
SYSTEM MMR

0xFFB0 1000

INSTRUCTION SRAM

RESERVED

0x2020 0000

0x2000 0000

0x2010 0000

0x0000 0000

0x2030 0000

0x2040 0000

0x0800 0000

INTERNAL
MEMORY

EXTERNAL
MEMORY

RESERVED

ASYNC BANK 3

ASYNC BANK 2

ASYNC BANK 1

ASYNC BANK 0

RESERVED

0xFF80 0000

0xFF90 8000

INSTRUCTION SRAM

RESERVED

RESERVED

DATA BANK A SRAM/CACHE

DATA BANK B SRAM/CACHE

RESERVED

Memory Architecture

6-4 ADSP-BF533 Blackfin Processor Hardware Reference

Figure 6-1. ADSP-BF533 Memory Map

CORE MMR

0xFFC0 0000

SCRATCHPAD SRAM

INSTRUCTION SRAM/CACHE

0xFF90 0000

0xFF80 8000

SDRAM

ADSP-BF533 MEMORY MAP

0xEF00 0000

RESERVED

0xFF90 4000

0xFFA0 0000

0xFFA0 8000

0xFFA0 C000

0xFFA1 0000

0xFFB0 0000

INSTRUCTION SRAM

RESERVED

RESERVED

0xFFA1 4000

0xFF80 4000

0xFFE0 0000
SYSTEM MMR

0xFFB0 1000

INSTRUCTION SRAM

DATA BANK A SRAM

0x2020 0000

0x2000 0000

0x2010 0000

0x0000 0000

0x2030 0000

0x2040 0000

0x0800 0000

INTERNAL
MEMORY

EXTERNAL
MEMORY

RESERVED

ASYNC BANK 3

ASYNC BANK 2

ASYNC BANK 1

ASYNC BANK 0

RESERVED

0xFF80 0000

0xFF90 8000

INSTRUCTION SRAM

DATA BANK B SRAM

RESERVED

DATA BANK A SRAM/CACHE

DATA BANK B SRAM/CACHE

RESERVED

ADSP-BF533 Blackfin Processor Hardware Reference 6-5

Memory

Figure 6-3. ADSP-BF531 Memory Map

CORE MMR

0xFFC0 0000

SCRATCHPAD SRAM

INSTRUCTION SRAM/CACHE

0xFF90 0000

0xFF80 8000

SDRAM

ADSP-BF531 MEMORY MAP

0xEF00 0000

RESERVED

0xFF90 4000

0xFFA0 0000

0xFFA0 8000

0xFFA0 C000

0xFFA1 0000

0xFFB0 0000

RESERVED

RESERVED

RESERVED

0xFFA1 4000

0xFF80 4000

0xFFE0 0000
SYSTEM MMR

0xFFB0 1000

INSTRUCTION SRAM

RESERVED

0x2020 0000

0x2000 0000

0x2010 0000

0x0000 0000

0x2030 0000

0x2040 0000

0x0800 0000

INTERNAL
MEMORY

EXTERNAL
MEMORY

RESERVED

ASYNC BANK 3

ASYNC BANK 2

ASYNC BANK 1

ASYNC BANK 0

RESERVED

0xFF80 0000

0xFF90 8000

0xFF90 6000

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

DATA BANK A SRAM/CACHE

RESERVED

Memory Architecture

6-6 ADSP-BF533 Blackfin Processor Hardware Reference

Overview of Internal Memory
The L1 memory system performance provides high bandwidth and low
latency. Because SRAMs provide deterministic access time and very high
throughput, DSP systems have traditionally achieved performance
improvements by providing fast SRAM on the chip.

The addition of instruction and data caches (SRAMs with cache control
hardware) provides both high performance and a simple programming
model. Caches eliminate the need to explicitly manage data movement
into and out of L1 memories. Code can be ported to or developed for the
processor quickly without requiring performance optimization for the
memory organization.

The L1 memory provides:

• A modified Harvard architecture, allowing up to four core memory
accesses per clock cycle (one 64-bit instruction fetch, two 32-bit
data loads, and one pipelined 32-bit data store)

• Simultaneous system DMA, cache maintenance, and core accesses

• SRAM access at processor clock rate (CCLK) for critical DSP algo-
rithms and fast context switching

• Instruction and data cache options for microcontroller code, excel-
lent High Level Language (HLL) support, and ease of
programming cache control instructions, such as PREFETCH and
FLUSH

• Memory protection

 The L1 memories operate at the core clock frequency (CCLK).

ADSP-BF533 Blackfin Processor Hardware Reference 6-7

Memory

Figure 6-4. Processor Memory Architecture

WATCH-
DOG

TIMER

PROG
FLAG

SPORT

SPI

EBIU

PPIUARTTIMERSRTC

DMA
CONTROLLER

L1 MEMORYCORE
PROCESSOR

INSTRUCTION

LOAD DATA

LOAD DATA

EXTERNAL
MEMORY
DEVICES

64

32

32

16

32

STORE DATA

SYSTEM CLOCK
(SCLK) DOMAIN

CORE CLOCK
(CCLK) DOMAIN

DMA ACCESS BUS
(DAB)

EXTERNAL
PORT
BUS (EPB)

EXTERNAL
ACCESS
BUS (EAB)

DMA
EXTERNAL
BUS (DEB)

DMA
CORE
BUS (DCB)

PERIPHERAL ACCESS
BUS (PAB)

L1 Instruction Memory

6-8 ADSP-BF533 Blackfin Processor Hardware Reference

Overview of Scratchpad Data SRAM
The processor provides a dedicated 4K byte bank of scratchpad data
SRAM. The scratchpad is independent of the configuration of the other
L1 memory banks and cannot be configured as cache or targeted by DMA.
Typical applications use the scratchpad data memory where speed is criti-
cal. For example, the User and Supervisor stacks should be mapped to the
scratchpad memory for the fastest context switching during interrupt
handling.

 The L1 memories operate at the core clock frequency (CCLK).

 Scratchpad data SRAM cannot be accessed by the DMA controller.

L1 Instruction Memory
L1 Instruction Memory consists of a combination of dedicated SRAM and
banks which can be configured as SRAM or cache. For the 16K byte bank
that can be either cache or SRAM, control bits in the IMEM_CONTROL regis-
ter can be used to organize all four subbanks of the L1 Instruction
Memory as:

• A simple SRAM

• A 4-Way, set associative instruction cache

• A cache with as many as four locked Ways

 L1 Instruction Memory can be used only to store instructions.

ADSP-BF533 Blackfin Processor Hardware Reference 6-9

Memory

IMEM_CONTROL Register
The Instruction Memory Control register (IMEM_CONTROL) contains con-
trol bits for the L1 Instruction Memory. By default after reset, cache and
Cacheability Protection Lookaside Buffer (CPLB) address checking is dis-
abled (see “L1 Instruction Cache” on page 6-15).

When the LRUPRIORST bit is set to 1, the cached states of all CPLB_LRUPRIO
bits (see “ICPLB_DATAx Registers” on page 6-55) are cleared. This
simultaneously forces all cached lines to be of equal (low) importance.
Cache replacement policy is based first on line importance indicated by
the cached states of the CPLB_LRUPRIO bits, and then on LRU (least
recently used). See “Instruction Cache Locking by Line” on page 6-21 for
complete details. This bit must be 0 to allow the state of the CPLB_LRUPRIO
bits to be stored when new lines are cached.

The ILOC[3:0] bits provide a useful feature only after code has been man-
ually loaded into cache. See “Instruction Cache Locking by Way” on
page 6-22. These bits specify which Ways to remove from the cache
replacement policy. This has the effect of locking code present in nonpar-
ticipating Ways. Code in nonparticipating Ways can still be removed from
the cache using an IFLUSH instruction. If an ILOC[3:0] bit is 0, the corre-
sponding Way is not locked and that Way participates in cache
replacement policy. If an ILOC[3:0] bit is 1, the corresponding Way is
locked and does not participate in cache replacement policy.

The IMC bit reserves a portion of L1 instruction SRAM to serve as cache.
Note reserving memory to serve as cache will not alone enable L2 memory
accesses to be cached. CPLBs must also be enabled using the EN_ICPLB bit
and the CPLB descriptors (ICPLB_DATAx and ICPLB_ADDRx registers) must
specify desired memory pages as cache-enabled.

L1 Instruction Memory

6-10 ADSP-BF533 Blackfin Processor Hardware Reference

Instruction CPLBs are disabled by default after reset. When disabled, only
minimal address checking is performed by the L1 memory interface. This
minimal checking generates an exception to the processor whenever it
attempts to fetch an instruction from:

• Reserved (nonpopulated) L1 instruction memory space

• L1 data memory space

• MMR space

CPLBs must be disabled using this bit prior to updating their descriptors
(DCPLB_DATAx and DCPLB_ADDRx registers). Note since load store ordering is
weak (see “Ordering of Loads and Stores” on page 6-67), disabling of
CPLBs should be proceeded by a CSYNC.

 When enabling or disabling cache or CPLBs, immediately follow
the write to IMEM_CONTROL with a CSYNC to ensure proper behavior.

 To ensure proper behavior and future compatibility, all reserved
bits in this register must be set to 0 whenever this register is
written.

ADSP-BF533 Blackfin Processor Hardware Reference 6-11

Memory

Figure 6-5. L1 Instruction Memory Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

L1 Instruction Memory Control Register (IMEM_CONTROL)

Reset = 0x0000 0001

ENICPLB (Instruction CPLB
Enable)LRUPRIORST (LRU

Priority Reset)
0 - LRU priority functionality is enabled
1 - All cached LRU priority bits (LRUPRIO)

are cleared

0 - CPLBs disabled, minimal
address checking only

1 - CPLBs enabled

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ILOC[3:0] (Cache Way Lock)
0000 - All Ways not locked
0001 - Way0 locked, Way1, Way2, and
Way3 not locked
...
1111 - All Ways locked

IMC (L1 Instruction Memory
Configuration)
0 - Upper 16K byte of LI

instruction memory
configured as SRAM,
also invalidates all cache
lines if previously
configured as cache

1 - Upper 16K byte of L1
instruction memory
configured as cache

0xFFE0 1004

L1 Instruction Memory

6-12 ADSP-BF533 Blackfin Processor Hardware Reference

L1 Instruction SRAM
The processor core reads the instruction memory through the 64-bit wide
instruction fetch bus. All addresses from this bus are 64-bit aligned. Each
instruction fetch can return any combination of 16-, 32- or 64-bit instruc-
tions (for example, four 16-bit instructions, two 16-bit instructions and
one 32-bit instruction, or one 64-bit instruction).

The DAGs, which are described in Chapter 5, cannot access L1 Instruc-
tion Memory directly. A DAG reference to instruction memory SRAM
space generates an exception (see “Exceptions” on page 4-41).

Write access to the L1 Instruction SRAM Memory must be made through
the 64-bit wide system DMA port. Because the SRAM is implemented as a
collection of single ported subbanks, the instruction memory is effectively
dual ported.

Table 6-2 lists the memory start locations of the L1 Instruction Memory
subbanks.

Table 6-2. L1 Instruction Memory Subbanks

Memory Subbank Memory Start
Location,
ADSP-BF533

Memory Start
Location,
ADSP-BF532

Memory Start
Location,
ADSP-BF531

0 0xFFA0 0000 0xFFA0 8000 0xFFA0 8000

1 0xFFA0 1000 0xFFA0 9000 0xFFA0 9000

2 0xFFA0 2000 0xFFA0 A000 0xFFA0 A000

3 0xFFA0 3000 0xFFA0 B000 0xFFA0 B000

4 0xFFA0 4000 0xFFA0 C000

5 0xFFA0 5000 0xFFA0 D000

ADSP-BF533 Blackfin Processor Hardware Reference 6-13

Memory

Figure 6-6 describes the bank architecture of the L1 Instruction Memory.
As the figure shows, each 16K byte bank is made up of four 4K byte
subbanks.

6 0xFFA0 6000 0xFFA0 E000

7 0xFFA0 7000 0xFFA0 F000

8 0xFFA0 8000

9 0xFFA0 9000

10 0xFFA0 A000

11 0xFFA0 B000

12 0xFFA0 C000

13 0xFFA0 D000

14 0xFFA0 E000

15 0xFFA0 F000

Table 6-2. L1 Instruction Memory Subbanks (Cont’d)

Memory Subbank Memory Start
Location,
ADSP-BF533

Memory Start
Location,
ADSP-BF532

Memory Start
Location,
ADSP-BF531

L1 Instruction Memory

6-14 ADSP-BF533 Blackfin Processor Hardware Reference

Figure 6-6. L1 Instruction Memory Bank Architecture

TO
MEMORY

EXTERNAL

CACHE
TAG

CACHE
TAG

CACHE
TAG

CACHE
TAG

4 KB

LINE FILL
BUFFER

8 X 32 BIT

DMA
BUFFER

DMA
BUFFER

DMA
BUFFER

EAB

ADSP-BF533
ONLY

4 KB

4 KB 4 KB

4 KB 4 KB

4 KB 4 KB

4 KB 4 KB

4 KB 4 KB

4 KB 4 KB

4 KB 4 KB

4 KB 4 KB

4 KB 4 KB

ADSP-BF532AND
ADSP-BF533

ONLY

DCB

INSTRUCTION FETCH 64 BIT

MMR ACCESS

TO
PROCESSOR
CORE

IN
S

T
R

U
C

T
IO

N
 B

A
N

K
 A

IN
S

T
R

U
C

T
IO

N
 B

A
N

K
 B

IN
S

T
R

U
C

T
IO

N
 B

A
N

K
 C

A
D

S
P

-B
F

53
1:

 R
E

S
E

R
V

E
D

A
D

S
P

-B
F

53
2:

 R
E

S
E

R
V

E
D

A
D

S
P

-B
F

53
3:

 3
2

K
B

 S
R

A
M

32
 K

B
 S

R
A

M
16

 K
B

 C
A

C
H

E
 O

R
 S

R
A

M

ADSP-BF533 Blackfin Processor Hardware Reference 6-15

Memory

L1 Instruction Cache
For information about cache terminology, see “Terminology” on
page 6-74.

The L1 Instruction Memory may also be configured to contain a, 4-Way
set associative instruction 16K byte cache. To improve the average access
latency for critical code sections, each Way or line of the cache can be
locked independently. When the memory is configured as cache, it cannot
be accessed directly.

When cache is enabled, only memory pages further specified as cacheable
by the CPLBs will be cached. When CPLBs are enabled, any memory
location that is accessed must have an associated page definition available,
or a CPLB exception is generated. CPLBs are described in “Memory Pro-
tection and Properties” on page 6-47.

Figure 6-7 shows the overall Blackfin processor instruction cache
organization.

L1 Instruction Memory

6-16 ADSP-BF533 Blackfin Processor Hardware Reference

Cache Lines

As shown in Figure 6-7, the cache consists of a collection of cache lines.
Each cache line is made up of a tag component and a data component.

• The tag component incorporates a 20-bit address tag, least recently
used (LRU) bits, a Valid bit, and a Line Lock bit.

• The data component is made up of four 64-bit words of instruction
data.

The tag and data components of cache lines are stored in the tag and data
memory arrays, respectively.

The address tag consists of the upper 18 bits plus bits 11 and 10 of the
physical address. Bits 12 and 13 of the physical address are not part of the
address tag. Instead, these bits are used to identify the 4K byte memory
subbank targeted for the access.

The LRU bits are part of an LRU algorithm used to determine which
cache line should be replaced if a cache miss occurs.

ADSP-BF533 Blackfin Processor Hardware Reference 6-17

Memory

Figure 6-7. Blackfin Processor Instruction Cache Organization

32-BYTE LINE 5

32-BYTE LINE 4

32-BYTE LINE 3

LINE 127

.
32 BYTE LINE 1

32 BYTE LINE 0

32-BYTE LINE 5

32-BYTE LINE 4

32-BYTE LINE 3
32 BYTE LINE 2

LINE 127

. . .

WAY 3

. . .

VALID

<1> <20>

TAG

32-BYTE LINE 5

32-BYTE LINE 4

32-BYTE LINE 3

LINE 127

.
32 BYTE LINE 1

32 BYTE LINE 0

32-BYTE LINE 5

32-BYTE LINE 4

32-BYTE LINE 3
32 BYTE LINE 2

LINE 127

. . .

WAY 2

. . .

VALID

<1> <20>

TAG

32-BYTE LINE 5

32-BYTE LINE 4

32-BYTE LINE 3

LINE 127

.
32 BYTE LINE 1

32 BYTE LINE 0

32 BYTE LINE 2

WAY 1VALID

<1> <20>

TAG

32-BIT ADDRESS FOR LOOKUP

4:1 MUX

DATA

<64>

32-BYTE LINE 5

32-BYTE LINE 4

32-BYTE LINE 3

LINE 127

.
32 BYTE LINE 1

32 BYTE LINE 0

32 BYTE LINE 5

32 BYTE LINE 4

32 BYTE LINE 3
32 BYTE LINE 2

LINE 31

. . .

WAY 0

. . .

VALID

<1> <20>

TAG

SHADED BOXES ACROSS EACH WAY CONSTITUTE A SET.

L1 Instruction Memory

6-18 ADSP-BF533 Blackfin Processor Hardware Reference

The Valid bit indicates the state of a cache line. A cache line is always
valid or invalid.

• Invalid cache lines have their Valid bit cleared, indicating the line
will be ignored during an address-tag compare operation.

• Valid cache lines have their Valid bit set, indicating the line con-
tains valid instruction/data that is consistent with the source
memory.

The tag and data components of a cache line are illustrated in Figure 6-8.

Cache Hits and Misses

A cache hit occurs when the address for an instruction fetch request from
the core matches a valid entry in the cache. Specifically, a cache hit is
determined by comparing the upper 18 bits and bits 11 and 10 of the
instruction fetch address to the address tags of valid lines currently stored
in a cache set. The cache set is selected, using bits 9 through 5 of the
instruction fetch address. If the address-tag compare operation results in a
match, a cache hit occurs. If the address-tag compare operation does not
result in a match, a cache miss occurs.

Figure 6-8. Cache Line – Tag and Data Portions

TAG

LRUPRIO

LRU V

WD 3 WD 2 WD 1 WD 0

WD - 64-BIT DATA WORD

TAG - 20-BIT ADDRESS TAG
LRUPRIO - LRU PRIORITY BIT FOR LINE LOCKING
LRU - LRU STATE
V - VALID BIT

ADSP-BF533 Blackfin Processor Hardware Reference 6-19

Memory

When a cache miss occurs, the instruction memory unit generates a cache
line fill access to retrieve the missing cache line from memory that is exter-
nal to the core. The address for the external memory access is the address
of the target instruction word. When a cache miss occurs, the core halts
until the target instruction word is returned from external memory.

Cache Line Fills

A cache line fill consists of fetching 32 bytes of data from memory. The
operation starts when the instruction memory unit requests a line-read
data transfer (a burst of four 64-bit words of data) on its external
read-data port. The address for the read transfer is the address of the target
instruction word. When responding to a line-read request from the
instruction memory unit, the external memory returns the target instruc-
tion word first. After it has returned the target instruction word, the next
three words are fetched in sequential address order. This fetch wraps
around if necessary, as shown in Table 6-3.

Line Fill Buffer

As the new cache line is retrieved from external memory, each 64-bit word
is buffered in a four-entry line fill buffer before it is written to a 4K byte
memory bank within L1 memory. The line fill buffer allows the core to
access the data from the new cache line as the line is being retrieved from
external memory, rather than having to wait until the line has been writ-
ten into the cache.

Table 6-3. Cache Line Word Fetching Order

Target Word Fetching Order for Next Three Words

WD0 WD0, WD1, WD2, WD3

WD1 WD1, WD2, WD3, WD0

WD2 WD2, WD3, WD0, WD1

WD3 WD3, WD0, WD1, WD2

L1 Instruction Memory

6-20 ADSP-BF533 Blackfin Processor Hardware Reference

Cache Line Replacement

When the instruction memory unit is configured as cache, bits 9 through
5 of the instruction fetch address are used as the index to select the cache
set for the tag-address compare operation. If the tag-address compare
operation results in a cache miss, the Valid and LRU bits for the selected
set are examined by a cache line replacement unit to determine the entry
to use for the new cache line, that is, whether to use Way0, Way1, Way2,
or Way3. See Figure 6-7 on page 6-17.

The cache line replacement unit first checks for invalid entries (that is,
entries having its Valid bit cleared). If only a single invalid entry is found,
that entry is selected for the new cache line. If multiple invalid entries are
found, the replacement entry for the new cache line is selected based on
the following priority:

• Way0 first

• Way1 next

• Way2 next

• Way3 last

For example:

• If Way3 is invalid and Ways0, 1, 2 are valid, Way3 is selected for
the new cache line.

• If Ways0 and 1 are invalid and Ways2 and 3 are valid, Way0 is
selected for the new cache line.

• If Ways2 and 3 are invalid and Ways0 and 1 are valid, Way2 is
selected for the new cache line.

When no invalid entries are found, the cache replacement logic uses an
LRU algorithm.

ADSP-BF533 Blackfin Processor Hardware Reference 6-21

Memory

Instruction Cache Management

The system DMA controller and the core DAGs cannot access the instruc-
tion cache directly. By a combination of instructions and the use of core
MMRs, it is possible to initialize the instruction tag and data arrays indi-
rectly and provide a mechanism for instruction cache test, initialization,
and debug.

 The coherency of instruction cache must be explicitly managed. To
accomplish this and ensure that the instruction cache fetches the
latest version of any modified instruction space, invalidate instruc-
tion cache line entries, as required.

See “Instruction Cache Invalidation” on page 6-23.

Instruction Cache Locking by Line

The CPLB_LRUPRIO bits in the ICPLB_DATAx registers (see “Memory Protec-
tion and Properties” on page 6-47) are used to enhance control over which
code remains resident in the instruction cache. When a cache line is filled,
the state of this bit is stored along with the line’s tag. It is then used in
conjunction with the LRU (least recently used) policy to determine which
Way is victimized when all cache Ways are occupied when a new cache-
able line is fetched. This bit indicates that a line is of either “low” or
“high” importance. In a modified LRU policy, a high can replace a low,
but a low cannot replace a high. If all Ways are occupied by highs, an oth-
erwise cacheable low will still be fetched for the core, but will not be
cached. Fetched highs seek to replace unoccupied Ways first, then least
recently used lows next, and finally other highs using the LRU policy.
Lows can only replace unoccupied Ways or other lows, and do so using
the LRU policy. If all previously cached highs ever become less important,
they may be simultaneously transformed into lows by writing to the LRU-
PRIRST bit in the IMEM_CONTROL register (on page 6-9).

L1 Instruction Memory

6-22 ADSP-BF533 Blackfin Processor Hardware Reference

Instruction Cache Locking by Way

The instruction cache has four independent lock bits (ILOC[3:0]) that
control each of the four Ways of the instruction cache. When the cache is
enabled, L1 Instruction Memory has four Ways available. Setting the lock
bit for a specific Way prevents that Way from participating in the LRU
replacement policy. Thus, a cached instruction with its Way locked can
only be removed using an IFLUSH instruction, or a “back door” MMR
assisted manipulation of the tag array.

An example sequence is provided below to demonstrate how to lock down
Way0:

• If the code of interest may already reside in the instruction cache,
invalidate the entire cache first (for an example, see “Instruction
Cache Management” on page 6-21).

• Disable interrupts, if required, to prevent interrupt service routines
(ISRs) from potentially corrupting the locked cache.

• Set the locks for the other Ways of the cache by setting ILOC[3:1].
Only Way0 of the instruction cache can now be replaced by new
code.

• Execute the code of interest. Any cacheable exceptions, such as exit
code, traversed by this code execution are also locked into the
instruction cache.

• Upon exit of the critical code, clear ILOC[3:1] and set ILOC[0].
The critical code (and the instructions which set ILOC[0]) is now
locked into Way0.

• Re-enable interrupts, if required.

If all four Ways of the cache are locked, then further allocation into the
cache is prevented.

ADSP-BF533 Blackfin Processor Hardware Reference 6-23

Memory

Instruction Cache Invalidation

The instruction cache can be invalidated by address, cache line, or com-
plete cache. The IFLUSH instruction can explicitly invalidate cache lines
based on their line addresses. The target address of the instruction is gen-
erated from the P-registers. Because the instruction cache should not
contain modified (dirty) data, the cache line is simply invalidated.

In the following example, the P2 register contains the address of a valid
memory location. If this address has been brought into cache, the corre-
sponding cache line is invalidated after the execution of this instruction.

Example of ICACHE instruction:
iflush [p2] ; /* Invalidate cache line containing address

that P2 points to */

Because the IFLUSH instruction is used to invalidate a specific address in
the memory map, it is impractical to use this instruction to invalidate an
entire Way or bank of cache. A second technique can be used to invalidate
larger portions of the cache directly. This second technique directly inval-
idates Valid bits by setting the Invalid bit of each cache line to the invalid
state. To implement this technique, additional MMRs (ITEST_COMMAND
and ITEST_DATA[1:0]) are available to allow arbitrary read/write of all the
cache entries directly. This method is explained in the next section.

For invalidating the complete instruction cache, a third method is avail-
able. By clearing the IMC bit in the IMEM_CONTROL register (see Figure 6-5
on page 6-11), all Valid bits in the instruction cache are set to the invalid
state. A second write to the IMEM_CONTROL register to set the IMC bit config-
ures the instruction memory as cache again. An SSYNC instruction should
be run before invalidating the cache and a CSYNC instruction should be
inserted after each of these operations.

Instruction Test Registers

6-24 ADSP-BF533 Blackfin Processor Hardware Reference

Instruction Test Registers
The Instruction Test registers allow arbitrary read/write of all L1 cache
entries directly. They make it possible to initialize the instruction tag and
data arrays and to provide a mechanism for instruction cache test, initial-
ization, and debug.

When the Instruction Test Command register (ITEST_COMMAND) is used,
the L1 cache data or tag arrays are accessed, and data is transferred
through the Instruction Test Data registers (ITEST_DATA[1:0]). The
ITEST_DATAx registers contain either the 64-bit data that the access is to
write to or the 64-bit data that was read during the access. The lower 32
bits are stored in the ITEST_DATA[0] register, and the upper 32 bits are
stored in the ITEST_DATA[1] register. When the tag arrays are accessed,
ITEST_DATA[0] is used. Graphical representations of the ITEST registers
begin with Figure 6-9.

The following figures describe the ITEST registers:

• Figure 6-9 on page 6-25

• Figure 6-10 on page 6-26

• Figure 6-11 on page 6-27

Access to these registers is possible only in Supervisor or Emulation mode.
When writing to ITEST registers, always write to the ITEST_DATAx registers
first, then the ITEST_COMMAND register. When reading from ITEST registers,
reverse the sequence—read the ITEST_COMMAND register first, then the
ITEST_DATAx registers.

ADSP-BF533 Blackfin Processor Hardware Reference 6-25

Memory

ITEST_COMMAND Register
When the Instruction Test Command register (ITEST_COMMAND) is written
to, the L1 cache data or tag arrays are accessed, and the data is transferred
through the Instruction Test Data registers (ITEST_DATA[1:0]).

ITEST_DATA1 Register
Instruction Test Data registers (ITEST_DATA[1:0]) are used to access L1
cache data arrays. They contain either the 64-bit data that the access is to
write to or the 64-bit data that the access is to read from. The Instruction
Test Data 1 register (ITEST_DATA1) stores the upper 32 bits.

Figure 6-9. Instruction Test Command Register

00 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0

0 00 0 0 0 0 00 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

000

Instruction Test Command Register (ITEST_COMMAND)

00 - Access subbank 0
01 - Access subbank 1
10 - Access subbank 2
11 - Access subbank 3
(Address bits [13:12] in
SRAM)

SBNK[1:0] (Subbank
Access)

Reset = 0x0000 0000

RW (Read/Write Access)

WAYSEL[1:0] (Access Way)
00 - Access Way0
01 - Access Way1
10 - Access Way2
11 - Access Way3
(Address bits [11:10] in SRAM)

0 - Read access
1 - Write access

TAGSELB (Array Access)
0 - Access tag array
1 - Access data array

DW[1:0] (Double Word
Index)

Selects one of four 64-bit
double words in a 256-bit
line (Address bits [4:3] in
SRAM)

SET[4:0] (Set Index)
Selects one of 32 sets
(Address bits [9:5] in SRAM)

0

0xFFE0 1300

Instruction Test Registers

6-26 ADSP-BF533 Blackfin Processor Hardware Reference

ITEST_DATA0 Register
The Instruction Test Data 0 register (ITEST_DATA0) stores the lower 32
bits of the 64-bit data to be written to or read from by the access. The
ITEST_DATA0 register is also used to access tag arrays. This register also
contains the Valid and Dirty bits, which indicate the state of the cache
line.

Figure 6-10. Instruction Test Data 1 Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

XX X X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

XX X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Instruction Test Data 1 Register (ITEST_DATA1)

Reset = Undefined

Reset = Undefined

Data[63:48]

Data[47:32]

When accessing tag arrays, all bits are reserved.

Used to access L1 cache data arrays and tag arrays. When accessing a data array, stores
the upper 32 bits of 64-bit words of instruction data to be written to or read from by the
access. See “Cache Lines” on page 6-16.

0xFFE0 1404

ADSP-BF533 Blackfin Processor Hardware Reference 6-27

Memory

Figure 6-11. Instruction Test Data 0 Register

X X XX X XX X

XX X X X X X

X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X XX X X X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X

Instruction Test Data 0 Register (ITEST_DATA0)

Reset = UndefinedX

Tag[19:4]

Tag[3:2]

Tag[1:0]

X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

XX X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Data[31:16]

Data[15:0]

Used to access L1 cache data arrays and tag arrays. When accessing a data array, stores the lower 32 bits of
64-bit words of instruction data to be written to or read from by the access. See “Cache Lines” on page 6-16.

Used to access the L1 cache tag arrays. The address tag consists of the upper 18 bits and bits 11 and 10 of the
physical address. See “Cache Lines” on page 6-16.

Physical address

Physical address

Physical address

Reset = Undefined

Valid
0 - Cache line is not valid
1 - Cache line contains valid
data
LRUPRIO
0 - LRUPRIO is cleared for
this entry
1 - LRUPRIO is set for this
entry. See “ICPLB_DATAx
Registers” on page 6-55 and
“IMEM_CONTROL Register”
on page 6-9.

0xFFE0 1400

L1 Data Memory

6-28 ADSP-BF533 Blackfin Processor Hardware Reference

L1 Data Memory
The L1 data SRAM/cache is constructed from single-ported subsections,
but organized to reduce the likelihood of access collisions. This organiza-
tion results in apparent multi-ported behavior. When there are no
collisions, this L1 data traffic could occur in a single core clock cycle:

• Two 32-bit DAG loads

• One pipelined 32-bit DAG store

• One 64-bit DMA IO

• One 64-bit cache fill/victim access

 L1 Data Memory can be used only to store data.

DMEM_CONTROL Register
The Data Memory Control register (DMEM_CONTROL) contains control bits
for the L1 Data Memory.

The PORT_PREF1 bit selects the data port used to process DAG1
non-cacheable L2 fetches. Cacheable fetches are always processed by the
data port physically associated with the targeted cache memory. Steering
DAG0, DAG1, and cache traffic to different ports optimizes performance
by keeping the queue to L2 memory full.

The PORT_PREF0 bit selects the data port used to process DAG0
non-cacheable L2 fetches. Cacheable fetches are always processed by the
data port physically associated with the targeted cache memory. Steering
DAG0, DAG1, and cache traffic to different ports optimizes performance
by keeping the queue to L2 memory full.

ADSP-BF533 Blackfin Processor Hardware Reference 6-29

Memory

Figure 6-12. L1 Data Memory Control Register

0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 10 0 0 0 0 000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0

Data Memory Control Register (DMEM_CONTROL)

Reset = 0x0000 1001

ENDCPLB (Data Cacheability
Protection Lookaside Buffer
Enable)
0 - CPLBs disabled. Minimal

address checking only
1 - CPLBs enabled
DMC[1:0] (L1 Data Memory
Configure)

DCBS (L1 Data Cache Bank Select)

PORT_PREF1 (DAG1 Port
Preference)
0 - DAG1 non-cacheable fetches

use port A
1 - DAG1 non-cacheable fetches

use port B

PORT_PREF0 (DAG0 Port
Preference)
0 - DAG0 non-cacheable fetches

use port A
1 - DAG0 non-cacheable fetches

use port B

Valid only when DMC[1:0] = 11, for ADSP-BF532
and ADSP-BF533. Determines whether Address
bit A[14] or A[23] is used to select the L1 data
cache bank.
0 - Address bit 14 is used to select Bank A or B

for cache access. If bit 14 of address is 1,
select L1 Data Memory Data Bank A; if bit 14
of address is 0, select L1 Data Memory Data
Bank B.

1 - Address bit 23 is used to select Bank A or B for
cache access. If bit 23 of address is 1, select
L1 Data Memory Data Bank A; if bit 23 of
address is 0, select L1 Data Memory Data
Bank B.

See “Example of Mapping Cacheable Address
Space” on page 6-35.

For ADSP-BF533:
00 - Both data banks are

SRAM, also invalidates all

cache lines if previously
configured as cache

01 - Reserved
10 - Data Bank A is lower

16K byte SRAM, upper
16K byte cache
Data Bank B is SRAM

11 - Both data banks are
lower 16K byte SRAM,
upper 16K byte cache

For ADSP-BF532:
00 - Both data banks are

SRAM, also invalidates all
cache lines if previously
configured as cache

01 - Reserved
10 - Data Bank A is cache,

Data Bank B is SRAM
11 - Both data banks are

cache
For ADSP-BF531:
00 - Data Bank A is SRAM,

also invalidates all cache
lines if previously
configured as cache

01 - Reserved
10 - Data Bank A is cache
11 - Reserved

0xFFE0 0004

L1 Data Memory

6-30 ADSP-BF533 Blackfin Processor Hardware Reference

 For optimal performance with dual DAG reads, DAG0 and DAG1
should be configured for different ports. For example, if
PORT_PREF0 is configured as 1, then PORT_PREF1 should be pro-
grammed to 0.

The DCBS bit provides some control over which addresses alias into the
same set. This bit can be used to affect which addresses tend to remain res-
ident in cache by avoiding victimization of repetitively used sets. It has no
affect unless both Data Bank A and Data Bank B are serving as cache (bits
DMC[1:0] in this register are set to 11).

The ENDCPLB bit is used to enable/disable the 16 Cacheability Protection
Lookaside Buffers (CPLBs) used for data (see “L1 Data Cache” on
page 6-34). Data CPLBs are disabled by default after reset. When dis-
abled, only minimal address checking is performed by the L1 memory
interface. This minimal checking generates an exception when the
processor:

• Addresses nonexistent (reserved) L1 memory space

• Attempts to perform a nonaligned memory access

• Attempts to access MMR space either using DAG1 or when in
User mode

CPLBs must be disabled using this bit prior to updating their descriptors
(registers DCPLB_DATAx and DCPLB_ADDRx). Note that since load store order-
ing is weak (see “Ordering of Loads and Stores” on page 6-67), disabling
CPLBs should be preceded by a CSYNC instruction.

 When enabling or disabling cache or CPLBs, immediately follow
the write to DMEM_CONTROL with a SSYNC to ensure proper behavior.

ADSP-BF533 Blackfin Processor Hardware Reference 6-31

Memory

By default after reset, all L1 Data Memory serves as SRAM. The DMC[1:0]
bits can be used to reserve portions of this memory to serve as cache
instead. Reserving memory to serve as cache does not enable L2 memory
accesses to be cached. To do this, CPLBs must also be enabled (using the
ENDCPLB bit) and CPLB descriptors (registers DCPLB_DATAx and
DCPLB_ADDRx) must specify chosen memory pages as cache-enabled.

By default after reset, cache and CPLB address checking is disabled.

 To ensure proper behavior and future compatibility, all reserved
bits in this register must be set to 0 whenever this register is
written.

L1 Data SRAM
Accesses to SRAM do not collide unless all of the following are true: the
accesses are to the same 32-bit word polarity (address bits 2 match), the
same 4K byte subbank (address bits 13 and 12 match), the same 16K byte
half bank (address bits 16 match), and the same bank (address bits 21 and
20 match). When an address collision is detected, access is nominally
granted first to the DAGs, then to the store buffer, and finally to the
DMA and cache fill/victim traffic. To ensure adequate DMA bandwidth,
DMA is given highest priority if it has been blocked for more than 16
sequential core clock cycles, or if a second DMA I/O is queued before the
first DMA I/O is processed.

Table 6-4 shows how the subbank organization is mapped into memory.

Table 6-4. L1 Data Memory SRAM Subbank Start Addresses

Memory Bank
and Subbank

ADSP-BF533 ADSP-BF532 ADSP-BF531

Data Bank A,
Subbank 0

0xFF80 0000 - -

Data Bank A,
Subbank 1

0xFF80 1000 - -

L1 Data Memory

6-32 ADSP-BF533 Blackfin Processor Hardware Reference

Figure 6-13 shows the L1 Data Memory architecture.

Data Bank A,
Subbank 2

0xFF80 2000 - -

Data Bank A,
Subbank 3

0xFF80 3000 - -

Data Bank A,
Subbank 4

0xFF80 4000 0xFF80 4000 0xFF80 4000

Data Bank A,
Subbank 5

0xFF80 5000 0xFF80 5000 0xFF80 5000

Data Bank A,
Subbank 6

0xFF80 6000 0xFF80 6000 0xFF80 6000

Data Bank A,
Subbank 7

0xFF80 7000 0xFF80 7000 0xFF80 7000

Data Bank B,
Subbank 0

0xFF90 0000 - -

Data Bank B,
Subbank 1

0xFF90 1000 - -

Data Bank B,
Subbank 2

0xFF90 2000 - -

Data Bank B,
Subbank 3

0xFF90 3000 - -

Data Bank B,
Subbank 4

0xFF90 4000 0xFF90 4000 -

Data Bank B,
Subbank 5

0xFF90 5000 0xFF90 5000 -

Data Bank B,
Subbank 6

0xFF90 6000 0xFF90 6000 -

Data Bank B,
Subbank 7

0xFF90 7000 0xFF90 7000 -

Table 6-4. L1 Data Memory SRAM Subbank Start Addresses (Cont’d)

Memory Bank
and Subbank

ADSP-BF533 ADSP-BF532 ADSP-BF531

ADSP-BF533 Blackfin Processor Hardware Reference 6-33

Memory

Figure 6-13. L1 Data Memory Architecture

CACHE
TAG

CACHE
TAG

CACHE
TAG

CACHE
TAG

CACHE
TAG

CACHE
TAG

CACHE
TAG

CACHE
TAG

4 KB 4 KB

4 KB 4 KB

4 KB 4 KB

4 KB 4 KB 4 KB 4 KB

4 KB 4 KB

4 KB 4 KB

4 KB 4 KB

LINE FILL
BUFFER

8 X 32 BIT

DMA
BUFFER

DMA
BUFFER

VICTIM
BUFFER

8 X 32 BIT

LINE FILL
BUFFER

8 X 32 BIT

VICTIM
BUFFER

8 X 32 BIT

WRITE
BUFFER

2 TO 8 X 32 BIT

4 KB

STORE BUFFER
6 X 32 BIT

TO
PROCESSOR
CORE

TO
EXTERNAL
MEMORY

DMA

DCB

DMA

READ

READ

WRITE

WRITE

EAB

32 BIT

32 BIT

32 BIT

64 BIT

32 BIT

32 BIT

32 BIT

64 BIT

DAG1 LOAD

DAG0 LOAD

DAG1/0 STORE

SRAM SRAM OR CACHE I/O BUFFERS

32
 B

IT

32
 B

IT

32
 B

IT

P
O

R
T

A
P

O
R

T
B

D
A

TA
 B

A
N

K
 A

A
D

S
P

-B
F5

32
 A

N
D

 A
D

S
P

-B
F5

33
 O

N
LY

D
A

TA
 B

A
N

K
 B

S
C

R
A

TC
H

P
A

D

ADSP-BF533
ONLY

L1 Data Memory

6-34 ADSP-BF533 Blackfin Processor Hardware Reference

L1 Data Cache
For definitions of cache terminology, see “Terminology” on page 6-74.

When data cache is enabled (controlled by bits DMC[1:0] in the
DMEM_CONTROL register), either 16K byte of Data Bank A or 16K byte of
both Data Bank A and Data Bank B can be set to serve as cache. For the
ADSP-BF533, the upper 16K byte is used. For the ADSP-BF531, only
Data Bank A is available. Unlike instruction cache, which is 4-Way set
associative, data cache is 2-Way set associative. When two banks are avail-
able and enabled as cache, additional sets rather than Ways are created.
When both Data Bank A and Data Bank B have memory serving as cache,
the DCBS bit in the DMEM_CONTROL register may be used to control which
half of all address space is handled by which bank of cache memory. The
DCBS bit selects either address bit 14 or 23 to steer traffic between the
cache banks. This provides some control over which addresses alias into
the same set. It may therefore be used to affect which addresses tend to
remain resident in cache by avoiding victimization of repetitively used
sets.

Accesses to cache do not collide unless they are to the same 4K byte sub-
bank, the same half bank, and to the same bank. Cache has less apparent
multi-ported behavior than SRAM due to the overhead in maintaining
tags. When cache addresses collide, access is granted first to the DTEST reg-
ister accesses, then to the store buffer, and finally to cache fill/victim
traffic.

Three different cache modes are available.

• Write-through with cache line allocation only on reads

• Write-through with cache line allocation on both reads and writes

• Write-back which allocates cache lines on both reads and writes

ADSP-BF533 Blackfin Processor Hardware Reference 6-35

Memory

Cache mode is selected by the DCPLB descriptors (see “Memory Protection
and Properties” on page 6-47). Any combination of these cache modes can
be used simultaneously since cache mode is selectable for each memory
page independently.

If cache is enabled (controlled by bits DMC[1:0] in the DMEM_CONTROL regis-
ter), data CPLBs should also be enabled (controlled by ENDCPLB bit in the
DMEM_CONTROL register). Only memory pages specified as cacheable by data
CPLBs will be cached. The default behavior when data CPLBs are dis-
abled is for nothing to be cached.

 Erroneous behavior can result when MMR space is configured as
cacheable by data CPLBs, or when data banks serving as L1 SRAM
are configured as cacheable by data CPLBs.

Example of Mapping Cacheable Address Space

An example of how the cacheable address space maps into two data banks
follows.

When both banks are configured as cache on the ADSP-BF533 or
ADSP-BF532, they operate as two independent, 16K byte, 2-Way set
associative caches that can be independently mapped into the Blackfin
processor address space.

If both data banks are configured as cache, the DCBS bit in the
DMEM_CONTROL register designates Address bit A[14] or A[23] as the cache
selector. Address bit A[14] or A[23] selects the cache implemented by
Data Bank A or the cache implemented by Data Bank B.

• If DCBS = 0, then A[14] is part of the address index, and all
addresses in which A[14] = 0 use Data Bank B. All addresses in
which A[14] = 1 use Data Bank A.

In this case, A[23] is treated as merely another bit in the address
that is stored with the tag in the cache and compared for hit/miss
processing by the cache.

L1 Data Memory

6-36 ADSP-BF533 Blackfin Processor Hardware Reference

• If DCBS = 1, then A[23] is part of the address index, and all
addresses where A[23] = 0 use Data Bank B. All addresses where
A[23] = 1 use Data Bank A.

In this case, A[14] is treated as merely another bit in the address
that is stored with the tag in the cache and compared for hit/miss
processing by the cache.

The result of choosing DCBS = 0 or DCBS = 1 is:

• If DCBS = 0, A[14] selects Data Bank A instead of Data Bank B.

Alternating 16K byte pages of memory map into each of the two
16K byte caches implemented by the two data banks.
Consequently:

• Any data in the first 16K byte of memory could be stored
only in Data Bank B.

• Any data in the next address range (16K byte through 32K
byte) – 1 could be stored only in Data Bank A.

• Any data in the next range (32K byte through 48K byte) – 1
would be stored in Data Bank B.

• Alternate mapping would continue.

As a result, the cache operates as if it were a single, contiguous,
2-Way set associative 32K byte cache. Each Way is 16K byte long,
and all data elements with the same first 14 bits of address index to
a unique set in which up to two elements can be stored (one in each
Way).

• If DCBS = 1, A[23] selects Data Bank A instead of Data Bank B.

With DCBS = 1, the system functions more like two independent
caches, each a 2-Way set associative 16K byte cache. Each Bank
serves an alternating set of 8M byte blocks of memory.

ADSP-BF533 Blackfin Processor Hardware Reference 6-37

Memory

For example, Data Bank B caches all data accesses for the first 8M
byte of memory address range. That is, every 8M byte of range vies
for the two line entries (rather than every 16K byte repeat). Like-
wise, Data Bank A caches data located above 8M byte and below
16M byte.

For example, if the application is working from a data set that is
1M byte long and located entirely in the first 8M byte of memory,
it is effectively served by only half the cache, that is, by Data Bank
B (a 2-Way set associative 16K byte cache). In this instance, the
application never derives any benefit from Data Bank A.

 For most applications, it is best to operate with DCBS = 0.

However, if the application is working from two data sets, located in two
memory spaces at least 8M byte apart, closer control over how the cache
maps to the data is possible. For example, if the program is doing a series
of dual MAC operations in which both DAGs are accessing data on every
cycle, by placing DAG0’s data set in one block of memory and DAG1’s
data set in the other, the system can ensure that:

• DAG0 gets its data from Data Bank A for all of its accesses and

• DAG1 gets its data from Data Bank B.

This arrangement causes the core to use both data buses for cache line
transfer and achieves the maximum data bandwidth between the cache
and the core.

Figure 6-14 shows an example of how mapping is performed when
DCBS = 1.

 The DCBS selection can be changed dynamically; however, to ensure
that no data is lost, first flush and invalidate the entire cache.

L1 Data Memory

6-38 ADSP-BF533 Blackfin Processor Hardware Reference

Data Cache Access

The Cache Controller tests the address from the DAGs against the tag
bits. If the logical address is present in L1 cache, a cache hit occurs, and
the data is accessed in L1. If the logical address is not present, a cache miss
occurs, and the memory transaction is passed to the next level of memory
via the system interface. The line index and replacement policy for the
Cache Controller determines the cache tag and data space that are allo-
cated for the data coming back from external memory.

A data cache line is in one of three states: invalid, exclusive (valid and
clean), and modified (valid and dirty). If valid data already occupies the
allocated line and the cache is configured for write-back storage, the con-
troller checks the state of the cache line and treats it accordingly:

• If the state of the line is exclusive (clean), the new tag and data
write over the old line.

Figure 6-14. Data Cache Mapping When DCBS = 1

WAY0 WAY1

WAY0 WAY1

8MB

8MB

8MB

8MB

DATA BANK B

DATA BANK B

ADSP-BF533 Blackfin Processor Hardware Reference 6-39

Memory

• If the state of the line is modified (dirty), then the cache contains
the only valid copy of the data. If the line is dirty, the current con-
tents of the cache are copied back to external memory before the
new data is written to the cache.

The processor provides victim buffers and line fill buffers. These buffers
are used if a cache load miss generates a victim cache line that should be
replaced. The line fill operation goes to external memory. The data cache
performs the line fill request to the system as critical (or requested) word
first, and forwards that data to the waiting DAG as it updates the cache
line. In other words, the cache performs critical word forwarding.

The data cache supports hit-under-a-store miss, and hit-under-a-prefetch
miss. In other words, on a write-miss or execution of a PREFETCH instruc-
tion that misses the cache (and is to a cacheable region), the instruction
pipeline incurs a minimum of a 4-cycle stall. Furthermore, a subsequent
load or store instruction can hit in the L1 cache while the line fill
completes.

Interrupts of sufficient priority (relative to the current context) cancel a
stalled load instruction. Consequently, if the load operation misses the L1
Data Memory cache and generates a high latency line fill operation on the
system interface, it is possible to interrupt the core, causing it to begin
processing a different context. The system access to fill the cache line is
not cancelled, and the data cache is updated with the new data before any
further cache miss operations to the respective data bank are serviced. For
more information see “Exceptions” on page 4-41.

Cache Write Method

Cache write memory operations can be implemented by using either a
write-through method or a write-back method:

• For each store operation, write-through caches initiate a write to
external memory immediately upon the write to cache.

L1 Data Memory

6-40 ADSP-BF533 Blackfin Processor Hardware Reference

If the cache line is replaced or explicitly flushed by software, the
contents of the cache line are invalidated rather than written back
to external memory.

• A write-back cache does not write to external memory until the line
is replaced by a load operation that needs the line.

The L1 Data Memory employs a full cache line width copyback buffer on
each data bank. In addition, a two-entry write buffer in the L1 Data
Memory accepts all stores with cache inhibited or store-through protec-
tion. An SSYNC instruction flushes the write buffer.

IPRIO Register and Write Buffer Depth

The Interrupt Priority register (IPRIO) can be used to control the size of
the write buffer on Port A (see “L1 Data Memory Architecture” on
page 6-33).

The IPRIO[3:0] bits can be programmed to reflect the low priority inter-
rupt watermark. When an interrupt occurs, causing the processor to
vector from a low priority interrupt service routine to a high priority inter-
rupt service routine, the size of the write buffer increases from two to eight
32-bit words deep. This allows the interrupt service routine to run and
post writes without an initial stall, in the case where the write buffer was
already filled in the low priority interrupt routine. This is most useful
when posted writes are to a slow external memory device. When returning
from a high priority interrupt service routine to a low priority interrupt
service routine or user mode, the core stalls until the write buffer has
completed the necessary writes to return to a two-deep state. By default,
the write buffer is a fixed two-deep FIFO.

ADSP-BF533 Blackfin Processor Hardware Reference 6-41

Memory

Data Cache Control Instructions

The processor defines data cache control instructions that are accessible in
User and Supervisor modes. They are PREFETCH, FLUSH, and FLUSHINV.

• PREFETCH (Data Cache Prefetch) attempts to allocate a line into the
L1 cache. If the prefetch hits in the cache, generates an exception,
or addresses a cache inhibited region, PREFETCH functions as a NOP.

• FLUSH (Data Cache Flush) causes the data cache to synchronize the
specified cache line with external memory. If the cached data line is
dirty, the instruction writes the line out and marks the line clean in
the data cache. If the specified data cache line is already clean or
does not exist, FLUSH functions like a NOP.

Figure 6-15. Interrupt Priority Register

0 00 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0

Interrupt Priority Register (IPRIO)

Reset = 0x0000 0000

IPRIO_MARK (Priority
Watermark)
0000 - Default, all interrupts

are low priority
0001 - Interrupts 15 through 1

are low priority, interrupt
0 is considered high
priority

0010 - Interrupts 15 through 2
are low priority,
interrupts 1 and 0 are
considered high priority

...
1110 - Interrupts 15 and 14

are low priority,
interrupts 13 through 0
are considered high
priority

1111 - Interrupt 15 is low
priority, all others are
considered high priority

0xFFE0 2110

L1 Data Memory

6-42 ADSP-BF533 Blackfin Processor Hardware Reference

• FLUSHINV (Data Cache Line Flush and Invalidate) causes the data
cache to perform the same function as the FLUSH instruction and
then invalidate the specified line in the cache. If the line is in the
cache and dirty, the cache line is written out to external memory.
The Valid bit in the cache line is then cleared. If the line is not in
the cache, FLUSHINV functions like a NOP.

If software requires synchronization with system hardware, place an SSYNC
instruction after the FLUSH instruction to ensure that the flush operation
has completed. If ordering is desired to ensure that previous stores have
been pushed through all the queues, place an SSYNC instruction before the
FLUSH.

Data Cache Invalidation

Besides the FLUSHINV instruction, explained in the previous section, two
additional methods are available to invalidate the data cache when flush-
ing is not required. The first technique directly invalidates Valid bits by
setting the Invalid bit of each cache line to the invalid state. To implement
this technique, additional MMRs (DTEST_COMMAND and DTEST_DATA[1:0])
are available to allow arbitrary reads/writes of all the cache entries directly.
This method is explained in the next section.

For invalidating the complete data cache, a second method is available. By
clearing the DMC[1:0] bits in the DMEM_CONTROL register (see Figure 6-12
on page 6-29), all Valid bits in the data cache are set to the invalid state. A
second write to the DMEM_CONTROL register to set the DMC[1:0] bits to their
previous state then configures the data memory back to its previous
cache/SRAM configuration. An SSYNC instruction should be run before
invalidating the cache and a CSYNC instruction should be inserted after
each of these operations.

ADSP-BF533 Blackfin Processor Hardware Reference 6-43

Memory

Data Test Registers
Like L1 Instruction Memory, L1 Data Memory contains additional
MMRs to allow arbitrary reads/writes of all cache entries directly. The reg-
isters provide a mechanism for data cache test, initialization, and debug.

When the Data Test Command register (DTEST_COMMAND) is written to, the
L1 cache data or tag arrays are accessed and data is transferred through the
Data Test Data registers (DTEST_DATA[1:0]). The DTEST_DATA[1:0] regis-
ters contain the 64-bit data to be written, or they contain the destination
for the 64-bit data read. The lower 32 bits are stored in the DTEST_DATA[0]
register and the upper 32 bits are stored in the DTEST_DATA[1] register.
When the tag arrays are being accessed, then the DTEST_DATA[0] register is
used.

 A CSYNC instruction is required after writing the DTEST_COMMAND
MMR.

These figures describe the DTEST registers.

• Figure 6-16 on page 6-44

• Figure 6-17 on page 6-45

• Figure 6-18 on page 6-46

Access to these registers is possible only in Supervisor or Emulation mode.
When writing to DTEST registers, always write to the DTEST_DATA registers
first, then the DTEST_COMMAND register.

Data Test Registers

6-44 ADSP-BF533 Blackfin Processor Hardware Reference

DTEST_COMMAND Register
When the Data Test Command register (DTEST_COMMAND) is written to, the
L1 cache data or tag arrays are accessed, and the data is transferred
through the Data Test Data registers (DTEST DATA[1:0]).

 The Data/Instruction Access bit allows direct access via the
DTEST_COMMAND MMR to L1 instruction SRAM.

Figure 6-16. Data Test Command Register

X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

X XX X X X X X X XX X X X X

Data Test Command Register (DTEST_COMMAND)

00 - Access subbank 0
01 - Access subbank 1
10 - Access subbank 2
11 - Access subbank 3

Subbank Access[1:0]
(SRAM ADDR[13:12])

Reset = Undefined

Read/Write Access

Access Way/Instruction
Address Bit 11
0 - Access Way0/Instruction bit 11 = 0
1 - Access Way1/Instruction bit 11 = 1

Data/Instruction Access
0 - Access Data
1 - Access Instruction

0 - Read access
1 - Write access
Array Access
0 - Access tag array
1 - Access data array

Double Word Index[1:0]
Selects one of four 64-bit
double words in a 256-bit line

Set Index[5:0]
Selects one of 64 sets

Data Bank Access
For ADSP-BF533:
0 - Access Data Bank A/Instr Memory 0xFFA0 0000
1 - Access Data Bank B/Instr Memory 0xFFA0 8000
For ADSP-BF532:
0 - Access Data Bank A
1 - Access Data Bank B/Instr Memory 0xFFA0 8000
For ADSP-BF531:
0 - Access Data Bank A (Valid when Data/Instruction Access = 0
1 - Instr Memory 0xFFA0 8000 (Valid when Data/Instruction Access = 1)

Data Cache Select/
Address Bit 14

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

0xFFE0 0300

0 - Reserved/Instruction bit 14 = 0
1 - Select Data Cache Bank/Instruction bit 14 = 1

ADSP-BF533 Blackfin Processor Hardware Reference 6-45

Memory

DTEST_DATA1 Register
Data Test Data registers (DTEST_DATA[1:0]) contain the 64-bit data to be
written, or they contain the destination for the 64-bit data read. The Data
Test Data 1 register (DTEST_DATA1) stores the upper 32 bits.

DTEST_DATA0 Register
The Data Test Data 0 register (DTEST_DATA0) stores the lower 32 bits of
the 64-bit data to be written, or it contains the lower 32 bits of the desti-
nation for the 64-bit data read. The DTEST_DATA0 register is also used to
access the tag arrays and contains the Valid and Dirty bits, which indicate
the state of the cache line.

Figure 6-17. Data Test Data 1 Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

XX X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Data Test Data 1 Register (DTEST_DATA1)

Reset = Undefined

XX X X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
Reset = Undefined

Data[63:48]

Data[47:32]

When accessing tag arrays, all bits are reserved.

0xFFE0 0404

External Memory

6-46 ADSP-BF533 Blackfin Processor Hardware Reference

External Memory
The external memory space is shown in Figure 6-1. One of the memory
regions is dedicated to SDRAM support. The size of the SDRAM bank is
programmable and can range in size from 16M byte to 128M byte. The
start address of the bank is 0x0000 0000.

Figure 6-18. Data Test Data 0 Register

X XX X X X X X

10 9 8 7 6 5 4 3 2

X X X

XX X X X X X

X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X XX X X X

15 14 13 12 11 1 0

X X X

Data Test Data 0 Register (DTEST_DATA0)

Reset = Undefined

Valid
0 - Cache line invalid
1 - Cache line valid

X

Tag[19:4]

Tag[3:2]

Tag

Dirty
0 - Cache line unmodified

since it was copied from
source memory

1 - Cache line modified
after it was copied
from source memory

X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

XX X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Data[31:16]

Data[15:0]

Used to access the L1 cache tag arrays. The address tag consists of the upper 18 bits
and bit 11 of the physical address. See “Cache Lines” on page 6-16.

Physical address

Physical address

Physical address
LRU
0 - Way0 is the least
recently used
1 - Way1 is the least
recently used

Reset = Undefined0xFFE0 0400

ADSP-BF533 Blackfin Processor Hardware Reference 6-47

Memory

Each of the next four banks contains 1M byte and is dedicated to support
asynchronous memories. The start address of the asynchronous memory
bank is 0x2000 0000.

Memory Protection and Properties
This section describes the Memory Management Unit (MMU), memory
pages, CPLB management, MMU management, and CPLB registers.

Memory Management Unit
The Blackfin processor contains a page based Memory Management Unit
(MMU). This mechanism provides control over cacheability of memory
ranges, as well as management of protection attributes at a page level. The
MMU provides great flexibility in allocating memory and I/O resources
between tasks, with complete control over access rights and cache
behavior.

The MMU is implemented as two 16-entry Content Addressable Memory
(CAM) blocks. Each entry is referred to as a Cacheability Protection Loo-
kaside Buffer (CPLB) descriptor. When enabled, every valid entry in the
MMU is examined on any fetch, load, or store operation to determine
whether there is a match between the address being requested and the page
described by the CPLB entry. If a match occurs, the cacheability and pro-
tection attributes contained in the descriptor are used for the memory
transaction with no additional cycles added to the execution of the
instruction.

Because the L1 memories are separated into instruction and data memo-
ries, the CPLB entries are also divided between instruction and data
CPLBs. Sixteen CPLB entries are used for instruction fetch requests; these
are called ICPLBs. Another sixteen CPLB entries are used for data transac-
tions; these are called DCPLBs. The ICPLBs and DCPLBs are enabled by
setting the appropriate bits in the L1 Instruction Memory Control

Memory Protection and Properties

6-48 ADSP-BF533 Blackfin Processor Hardware Reference

(IMEM_CONTROL) and L1 Data Memory Control (DMEM_CONTROL) registers,
respectively. These registers are shown in Figure 6-5 and Figure 6-12,
respectively.

Each CPLB entry consists of a pair of 32-bit values. For instruction
fetches:

• ICPLB_ADDR[n] defines the start address of the page described by
the CPLB descriptor.

• ICPLB_DATA[n] defines the properties of the page described by the
CPLB descriptor.

For data operations:

• DCPLB_ADDR[m] defines the start address of the page described by
the CPLB descriptor.

• DCPLB_DATA[m] defines the properties of the page described by the
CPLB descriptor.

There are two default CPLB descriptors for data accesses to the scratchpad
data memory and to the system and core MMR space. These default
descriptors define the above space as non-cacheable, so that additional
CPLBs do not need to be set up for these regions of memory.

 If valid CPLBs are set up for this space, the default CPLBs are
ignored.

ADSP-BF533 Blackfin Processor Hardware Reference 6-49

Memory

Memory Pages
The 4G byte address space of the processor can be divided into smaller
ranges of memory or I/O referred to as memory pages. Every address
within a page shares the attributes defined for that page. The architecture
supports four different page sizes:

• 1K byte

• 4K byte

• 1M byte

• 4M byte

Different page sizes provide a flexible mechanism for matching the map-
ping of attributes to different kinds of memory and I/O.

Memory Page Attributes

Each page is defined by a two-word descriptor, consisting of an address
descriptor word xCPLB_ADDR[n] and a properties descriptor word
xCPLB_DATA[n]. The address descriptor word provides the base address of
the page in memory. Pages must be aligned on page boundaries that are an
integer multiple of their size. For example, a 4M byte page must start on
an address divisible by 4M byte; whereas a 1K byte page can start on any
1K byte boundary. The second word in the descriptor specifies the other
properties or attributes of the page. These properties include:

• Page size. 1K byte, 4K byte, 1M byte, 4M byte

• Cacheable/non-cacheable: Accesses to this page use the L1 cache or
bypass the cache.

• If cacheable: write-through/write-back. Data writes propagate
directly to memory or are deferred until the cache line is reallo-
cated. If write-through, allocate on read only, or read and write.

Memory Protection and Properties

6-50 ADSP-BF533 Blackfin Processor Hardware Reference

• Dirty/modified. The data in this page in memory has changed
since the CPLB was last loaded.

• Supervisor write access permission. Enables or disables writes to
this page when in Supervisor mode, for data pages only.

• User write access permission. Enables or disables writes to this page
when in User mode, for data pages only.

• User read access permission. Enables or disables reads from this
page when in User mode.

• Valid. Check this bit to determine whether this is valid CPLB data.

• Lock. Keep this entry in MMR; do not participate in CPLB
replacement policy.

Page Descriptor Table
For memory accesses to utilize the cache when CPLBs are enabled for
instruction access, data access, or both, a valid CPLB entry must be avail-
able in an MMR pair. The MMR storage locations for CPLB entries are
limited to 16 descriptors for instruction fetches and 16 descriptors for
data load and store operations.

For small and/or simple memory models, it may be possible to define a set
of CPLB descriptors that fit into these 32 entries, cover the entire address-
able space, and never need to be replaced. This type of definition is
referred to as a static memory management model.

However, operating environments commonly define more CPLB descrip-
tors to cover the addressable memory and I/O spaces than will fit into the
available on-chip CPLB MMRs. When this happens, a memory-based
data structure, called a Page Descriptor Table, is used; in it can be stored
all the potentially required CPLB descriptors. The specific format for the
Page Descriptor Table is not defined as part of the Blackfin processor
architecture. Different operating systems, which have different memory

ADSP-BF533 Blackfin Processor Hardware Reference 6-51

Memory

management models, can implement Page Descriptor Table structures
that are consistent with the OS requirements. This allows adjustments to
be made between the level of protection afforded versus the performance
attributes of the memory-management support routines.

CPLB Management
When the Blackfin processor issues a memory operation for which no
valid CPLB (cacheability protection lookaside buffer) descriptor exists in
an MMR pair, an exception occurs that places the processor into
Supervisor mode and vectors to the MMU exception handler
(see “Exceptions” on page 4-41 for more information). The handler is typ-
ically part of the operating system (OS) kernel that implements the CPLB
replacement policy.

 Before CPLBs are enabled, valid CPLB descriptors must be in place
for both the Page Descriptor Table and the MMU exception han-
dler. The LOCK bits of these CPLB descriptors are commonly set so
they are not inadvertently replaced in software.

The handler uses the faulting address to index into the Page Descriptor
Table structure to find the correct CPLB descriptor data to load into one
of the on-chip CPLB register pairs. If all on-chip registers contain valid
CPLB entries, the handler selects one of the descriptors to be replaced,
and the new descriptor information is loaded. Before loading new descrip-
tor data into any CPLBs, the corresponding group of sixteen CPLBs must
be disabled using:

• The Enable DCPLB (ENDCPLB) bit in the DMEM_CONTROL register for
data descriptors, or

• The Enable ICPLB (ENICPLB) bit in the IMEM_CONTROL register for
instruction descriptors

Memory Protection and Properties

6-52 ADSP-BF533 Blackfin Processor Hardware Reference

The CPLB replacement policy and algorithm to be used are the responsi-
bility of the system MMU exception handler. This policy, which is
dictated by the characteristics of the operating system, usually implements
a modified LRU (Least Recently Used) policy, a round robin scheduling
method, or pseudo random replacement.

After the new CPLB descriptor is loaded, the exception handler returns,
and the faulting memory operation is restarted. this operation should now
find a valid CPLB descriptor for the requested address, and it should pro-
ceed normally.

A single instruction may generate an instruction fetch as well as one or
two data accesses. It is possible that more than one of these memory oper-
ations references data for which there is no valid CPLB descriptor in an
MMR pair. In this case, the exceptions are prioritized and serviced in this
order:

• Instruction page miss

• A page miss on DAG0

• A page miss on DAG1

MMU Application
Memory management is an optional feature in the Blackfin processor
architecture. Its use is predicated on the system requirements of a given
application. Upon reset, all CPLBs are disabled, and the Memory Man-
agement Unit (MMU) is not used.

If all L1 memory is configured as SRAM, then the data and instruction
MMU functions are optional, depending on the application’s need for
protection of memory spaces either between tasks or between User and
Supervisor modes. To protect memory between tasks, the operating sys-
tem can maintain separate tables of instruction and/or data memory pages
available for each task and make those pages visible only when the relevant

ADSP-BF533 Blackfin Processor Hardware Reference 6-53

Memory

task is running. When a task switch occurs, the operating system can
ensure the invalidation of any CPLB descriptors on chip that should not
be available to the new task. It can also preload descriptors appropriate to
the new task.

For many operating systems, the application program is run in User mode
while the operating system and its services run in Supervisor mode. It is
desirable to protect code and data structures used by the operating system
from inadvertent modification by a running User mode application. This
protection can be achieved by defining CPLB descriptors for protected
memory ranges that allow write access only when in Supervisor mode. If a
write to a protected memory region is attempted while in User mode, an
exception is generated before the memory is modified. Optionally, the
User mode application may be granted read access for data structures that
are useful to the application. Even Supervisor mode functions can be
blocked from writing some memory pages that contain code that is not
expected to be modified. Because CPLB entries are MMRs that can be
written only while in Supervisor mode, user programs cannot gain access
to resources protected in this way.

If either the L1 Instruction Memory or the L1 Data Memory is configured
partially or entirely as cache, the corresponding CPLBs must be enabled.
When an instruction generates a memory request and the cache is enabled,
the processor first checks the ICPLBs to determine whether the address
requested is in a cacheable address range. If no valid ICPLB entry in an
MMR pair corresponds to the requested address, an MMU exception is
generated to obtain a valid ICPLB descriptor to determine whether the
memory is cacheable or not. As a result, if the L1 Instruction Memory is
enabled as cache, then any memory region that contains instructions must
have a valid ICPLB descriptor defined for it. These descriptors must either
reside in MMRs at all times or be resident in a memory-based Page
Descriptor Table that is managed by the MMU exception handler. Like-
wise, if either or both L1 data banks are configured as cache, all potential
data memory ranges must be supported by DCPLB descriptors.

Memory Protection and Properties

6-54 ADSP-BF533 Blackfin Processor Hardware Reference

 Before caches are enabled, the MMU and its supporting data struc-
tures must be set up and enabled.

Examples of Protected Memory Regions
In Figure 6-19, a starting point is provided for basic CPLB allocation for
Instruction and Data CPLBs. Note some ICPLBs and DCPLBs have com-
mon descriptors for the same address space.

Figure 6-19. Examples of Protected Memory Regions

INSTRUCTION CPLB SETUP

DATA CPLB SETUP

ASYNC: CACHEABLE
TWO 1MB PAGES

L1 INSTRUCTION:
NON-CACHEABLE 1MB PAGE

SDRAM: CACHEABLE
EIGHT 4MB PAGES

ASYNC: NON-CACHEABLE
ONE 1MB PAGE

L1 DATA:
NON-CACHEABLE ONE 4MB PAGE

ASYNC: CACHEABLE
ONE 1MB PAGE

SDRAM: CACHEABLE
EIGHT 4MB PAGES

ASYNC: NON-CACHEABLE
ONE 1MB PAGE

ADSP-BF533 Blackfin Processor Hardware Reference 6-55

Memory

ICPLB_DATAx Registers
Figure 6-20 describes the ICPLB Data registers (ICPLB_DATAx).

 To ensure proper behavior and future compatibility, all reserved
bits in this register must be set to 0 whenever this register is
written.

Figure 6-20. ICPLB Data Registers

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ICPLB Data Registers (ICPLB_DATAx)

00 - 1K byte page size
01 - 4K byte page size
10 - 1M byte page size
11 - 4M byte page size

PAGE_SIZE[1:0]

Reset = 0x0000 0000

CPLB_LOCK

CPLB_VALID

CPLB_L1_CHBL

Clear this bit whenever L1 memory
is configured as SRAM
0 - Non-cacheable in L1
1 - Cacheable in L1

0 - Invalid (disabled) CPLB
entry

1 - Valid (enabled) CPLB
entry

Can be used by software in
CPLB replacement algorithms
0 - Unlocked, CPLB entry can

be replaced
1 - Locked, CPLB entry

should not be replaced

0 - User mode read access
generates protection
violation exception

1 - User mode read access
permitted

CPLB_USER_RD

CPLB_LRUPRIO
See “Instruction Cache Locking by Line” on page 6-21.
0 - Low importance
1 - High importance

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

For Memory-
mapped
addresses, see
Table 6-5.

Memory Protection and Properties

6-56 ADSP-BF533 Blackfin Processor Hardware Reference

Table 6-5. ICPLB Data Register Memory-Mapped Addresses

Register Name Memory-Mapped Address

ICPLB_DATA0 0xFFE0 1200

ICPLB_DATA1 0xFFE0 1204

ICPLB_DATA2 0xFFE0 1208

ICPLB_DATA3 0xFFE0 120C

ICPLB_DATA4 0xFFE0 1210

ICPLB_DATA5 0xFFE0 1214

ICPLB_DATA6 0xFFE0 1218

ICPLB_DATA7 0xFFE0 121C

ICPLB_DATA8 0xFFE0 1220

ICPLB_DATA9 0xFFE0 1224

ICPLB_DATA10 0xFFE0 1228

ICPLB_DATA11 0xFFE0 122C

ICPLB_DATA12 0xFFE0 1230

ICPLB_DATA13 0xFFE0 1234

ICPLB_DATA14 0xFFE0 1238

ICPLB_DATA15 0xFFE0 123C

ADSP-BF533 Blackfin Processor Hardware Reference 6-57

Memory

DCPLB_DATAx Registers
Figure 6-21 shows the DCPLB Data registers (DCPLB_DATAx).

Figure 6-21. DCPLB Data Registers

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DCPLB Data Registers (DCPLB_DATAx)

00 - 1K byte page size
01 - 4K byte page size
10 - 1M byte page size
11 - 4M byte page size

PAGE_SIZE[1:0]

Reset = 0x0000 0000

CPLB_DIRTY

CPLB_WT
Operates only in cache mode
0 - Write back
1 - Write through

CPLB_L1_CHBL

Clear this bit when L1 memory is
configured as SRAM
0 - Non-cacheable in L1
1 - Cacheable in L1

CPLB_L1_AOW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Valid only if write
through cacheable
(CPLB_VALID = 1,
CPLB_WT = 1)
0 - Allocate cache lines

on reads only
1 - Allocate cache lines

on reads and writes

Valid only if write back cacheable (CPLB_VALID = 1,
CPLB_WT = 0, and CPLB_L1_CHBL = 1)
0 - Clean
1 - Dirty
A protection violation exception is generated on store
accesses to this page when this bit is 0. The state of
this bit is modified only by writes to this register. The
exception service routine must set this bit.

CPLB_LOCK

CPLB_USER_WR

CPLB_VALID
0 - Invalid (disabled) CPLB entry
1 - Valid (enabled) CPLB entry

Can be used by software in
CPLB replacement algorithms
0 - Unlocked, CPLB entry can

be replaced
1 - Locked, CPLB entry should

not be replaced

0 - User mode read access
generates protection
violation exception

1 - User mode read access
permitted

CPLB_USER_RD

0 - User mode write access
generates protection
violation exception

1 - User mode write access
permitted

CPLB_SUPV_WR
0 - Supervisor mode write

access generates protection
violation exception

1 - Supervisor mode write
access permitted

For Memory-
mapped
addresses, see
Table 6-6.

Memory Protection and Properties

6-58 ADSP-BF533 Blackfin Processor Hardware Reference

 To ensure proper behavior and future compatibility, all reserved
bits in this register must be set to 0 whenever this register is
written.

Table 6-6. DCPLB Data Register Memory-Mapped Addresses

Register Name Memory-Mapped Address

DCPLB_DATA0 0xFFE0 0200

DCPLB_DATA1 0xFFE0 0204

DCPLB_DATA2 0xFFE0 0208

DCPLB_DATA3 0xFFE0 020C

DCPLB_DATA4 0xFFE0 0210

DCPLB_DATA5 0xFFE0 0214

DCPLB_DATA6 0xFFE0 0218

DCPLB_DATA7 0xFFE0 021C

DCPLB_DATA8 0xFFE0 0220

DCPLB_DATA9 0xFFE0 0224

DCPLB_DATA10 0xFFE0 0228

DCPLB_DATA11 0xFFE0 022C

DCPLB_DATA12 0xFFE0 0230

DCPLB_DATA13 0xFFE0 0234

DCPLB_DATA14 0xFFE0 0238

DCPLB_DATA15 0xFFE0 023C

ADSP-BF533 Blackfin Processor Hardware Reference 6-59

Memory

DCPLB_ADDRx Registers
Figure 6-22 shows the DCPLB Address registers (DCPLB_ADDRx).

Figure 6-22. DCPLB Address Registers

Table 6-7. DCPLB Address Register Memory-Mapped Addresses

Register Name Memory-Mapped Address

DCPLB_ADDR0 0xFFE0 0100

DCPLB_ADDR1 0xFFE0 0104

DCPLB_ADDR2 0xFFE0 0108

DCPLB_ADDR3 0xFFE0 010C

DCPLB_ADDR4 0xFFE0 0110

DCPLB_ADDR5 0xFFE0 0114

DCPLB_ADDR6 0xFFE0 0118

DCPLB_ADDR7 0xFFE0 011C

DCPLB_ADDR8 0xFFE0 0120

DCPLB_ADDR9 0xFFE0 0124

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DCPLB Address Registers (DCPLB_ADDRx)

Upper Bits of Address for
Match[21:6]

Reset = 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

X0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Upper Bits of Address for
Match[5:0]

For Memory-
mapped
addresses, see
Table 6-7.

Memory Protection and Properties

6-60 ADSP-BF533 Blackfin Processor Hardware Reference

ICPLB_ADDRx Registers
Figure 6-23 shows the ICPLB Address registers (ICPLB_ADDRx).

DCPLB_ADDR10 0xFFE0 0128

DCPLB_ADDR11 0xFFE0 012C

DCPLB_ADDR12 0xFFE0 0130

DCPLB_ADDR13 0xFFE0 0134

DCPLB_ADDR14 0xFFE0 0138

DCPLB_ADDR15 0xFFE0 013C

Figure 6-23. ICPLB Address Registers

Table 6-7. DCPLB Address Register Memory-Mapped Addresses (Cont’d)

Register Name Memory-Mapped Address

00 0 0 0 0 0 000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0

ICPLB Address Registers (ICPLB_ADDRx)

Upper Bits of Address for
Match[21:6]

Reset = 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Upper Bits of Address for
Match[5:0]

For Memory-
mapped
addresses, see
Table 6-8.

ADSP-BF533 Blackfin Processor Hardware Reference 6-61

Memory

DCPLB_STATUS and ICPLB_STATUS Registers
Bits in the DCPLB Status register (DCPLB_STATUS) and ICPLB Status reg-
ister (ICPLB_STATUS) identify the CPLB entry that has triggered
CPLB-related exceptions. The exception service routine can infer the
cause of the fault by examining the CPLB entries.

 The DCPLB_STATUS and ICPLB_STATUS registers are valid only while
in the faulting exception service routine.

Table 6-8. ICPLB Address Register Memory-Mapped Addresses

Register Name Memory-Mapped Address

ICPLB_ADDR0 0xFFE0 1100

ICPLB_ADDR1 0xFFE0 1104

ICPLB_ADDR2 0xFFE0 1108

ICPLB_ADDR3 0xFFE0 110C

ICPLB_ADDR4 0xFFE0 1110

ICPLB_ADDR5 0xFFE0 1114

ICPLB_ADDR6 0xFFE0 1118

ICPLB_ADDR7 0xFFE0 111C

ICPLB_ADDR8 0xFFE0 1120

ICPLB_ADDR9 0xFFE0 1124

ICPLB_ADDR10 0xFFE0 1128

ICPLB_ADDR11 0xFFE0 112C

ICPLB_ADDR12 0xFFE0 1130

ICPLB_ADDR13 0xFFE0 1134

ICPLB_ADDR14 0xFFE0 1138

ICPLB_ADDR15 0xFFE0 113C

Memory Protection and Properties

6-62 ADSP-BF533 Blackfin Processor Hardware Reference

Bits FAULT_DAG, FAULT_USERSUPV and FAULT_RW in the DCPLB Status regis-
ter (DCPLB_STATUS) are used to identify the CPLB entry that has triggered
the CPLB-related exception (see Figure 6-24).

Bit FAULT_USERSUPV in the ICPLB Status register (ICPLB_STATUS) is used
to identify the CPLB entry that has triggered the CPLB-related exception
(see Figure 6-25).

Figure 6-24. DCPLB Status Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X 0 X X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DCPLB Status Register (DCPLB_STATUS)

0 - Access was read
1 - Access was write

FAULT_RW

Reset = Undefined

FAULT[15:0]

FAULT_ILLADDR

0 - No fault
1 - Attempted access to nonexistent memory

FAULT_DAG

0 - Access was made by DAG0
1 - Access was made by DAG1

Each bit indicates the hit/miss
status of the associated CPLB
entry

0 - Access was made in User
mode

1 - Access was made in
Supervisor mode

FAULT_USERSUPV

0xFFE0 0008

ADSP-BF533 Blackfin Processor Hardware Reference 6-63

Memory

DCPLB_FAULT_ADDR and ICPLB_FAULT_ADDR
Registers

The DCPLB Address register (DCPLB_FAULT_ADDR) and ICPLB Fault
Address register (ICPLB_FAULT_ADDR) hold the address that has caused a
fault in the L1 Data Memory or L1 Instruction Memory, respectively. See
Figure 6-26 and Figure 6-27.

 The DCPLB_FAULT_ADDR and ICPLB_FAULT_ADDR registers are valid
only while in the faulting exception service routine.

Figure 6-25. ICPLB Status Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

X X0X X X X X X X X X X X X X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ICPLB Status Register (ICPLB_STATUS)

Reset = Undefined

FAULT[15:0]

FAULT_ILLADDR

0 - No fault
1 - Attempted access to nonexistent memory

Each bit indicates hit/miss
status of associated CPLB
entry

0 - Access was made in User
mode

1 - Access was made in
Supervisor mode

FAULT_USERSUPV

0xFFE0 1008

Memory Protection and Properties

6-64 ADSP-BF533 Blackfin Processor Hardware Reference

Figure 6-26. DCPLB Address Register

Figure 6-27. ICPLB Fault Address Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

DCPLB Address Register (DCPLB_FAULT_ADDR)

Reset = Undefined

FAULT_ADDR[15:0]
Data address that has caused
a fault in the L1 Data Memory

FAULT_ADDR[31:16]
Data address that has caused
a fault in L1 Data Memory

0xFFE0 000C

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

ICPLB Fault Address Register (ICPLB_FAULT_ADDR)

Reset = Undefined

FAULT_ADDR[15:0]

FAULT_ADDR[31:16]
Instruction address that has
caused a fault in the L1
Instruction Memory

Instruction address that has
caused a fault in the L1
Instruction Memory

0xFFE0 100C

ADSP-BF533 Blackfin Processor Hardware Reference 6-65

Memory

Memory Transaction Model
Both internal and external memory locations are accessed in little endian
byte order. Figure 6-28 shows a data word stored in register R0 and in
memory at address location addr. B0 refers to the least significant byte of
the 32-bit word.

Figure 6-29 shows 16- and 32-bit instructions stored in memory. The dia-
gram on the left shows 16-bit instructions stored in memory with the
most significant byte of the instruction stored in the high address (byte B1
in addr+1) and the least significant byte in the low address (byte B0 in
addr).

The diagram on the right shows 32-bit instructions stored in memory.
Note the most significant 16-bit half word of the instruction (bytes B3
and B2) is stored in the low addresses (addr+1 and addr), and the least sig-
nificant half word (bytes B1 and B0) is stored in the high addresses
(addr+3 and addr+2).

Figure 6-28. Data Stored in Little Endian Order

Figure 6-29. Instructions Stored in Little Endian Order

R0

DATA IN REGISTER DATA IN MEMORY

B3 B2 B1 B0 B3 B2 B1 B0

addr+3 addr+2 addr+1 addr

16-BIT INSTRUCTIONS IN MEMORY 32-BIT INSTRUCTIONS IN MEMORY

B1 B0 B1 B0 B1 B0 B3 B2

addr+3 addr+2 addr+1 addraddr+3 addr+2 addr+1 addr

16-BIT INSTRUCTIONS 32-BIT INSTRUCTIONS

B1 B0 B3 B2 B1 B0

INST 0 INST 0

Load/Store Operation

6-66 ADSP-BF533 Blackfin Processor Hardware Reference

Load/Store Operation
The Blackfin processor architecture supports the RISC concept of a
Load/Store machine. This machine is the characteristic in RISC architec-
tures whereby memory operations (loads and stores) are intentionally
separated from the arithmetic functions that use the targets of the memory
operations. The separation is made because memory operations, particu-
larly instructions that access off-chip memory or I/O devices, often take
multiple cycles to complete and would normally halt the processor, pre-
venting an instruction execution rate of one instruction per cycle.

Separating load operations from their associated arithmetic functions
allows compilers or assembly language programmers to place unrelated
instructions between the load and its dependent instructions. If the value
is returned before the dependent operation reaches the execution stage of
the pipeline, the operation completes in one cycle.

In write operations, the store instruction is considered complete as soon as
it executes, even though many cycles may execute before the data is actu-
ally written to an external memory or I/O location. This arrangement
allows the processor to execute one instruction per clock cycle, and it
implies that the synchronization between when writes complete and when
subsequent instructions execute is not guaranteed. Moreover, this syn-
chronization is considered unimportant in the context of most memory
operations.

Interlocked Pipeline
In the execution of instructions, the Blackfin processor architecture imple-
ments an interlocked pipeline. When a load instruction executes, the
target register of the read operation is marked as busy until the value is
returned from the memory system. If a subsequent instruction tries to
access this register before the new value is present, the pipeline will stall
until the memory operation completes. This stall guarantees that

ADSP-BF533 Blackfin Processor Hardware Reference 6-67

Memory

instructions that require the use of data resulting from the load do not use
the previous or invalid data in the register, even though instructions are
allowed to start execution before the memory read completes.

This mechanism allows the execution of independent instructions between
the load and the instructions that use the read target without requiring the
programmer or compiler to know how many cycles are actually needed for
the memory-read operation to complete. If the instruction immediately
following the load uses the same register, it simply stalls until the value is
returned. Consequently, it operates as the programmer expects. However,
if four other instructions are placed after the load but before the instruc-
tion that uses the same register, all of them execute, and the overall
throughput of the processor is improved.

Ordering of Loads and Stores
The relaxation of synchronization between memory access instructions
and their surrounding instructions is referred to as weak ordering of loads
and stores. Weak ordering implies that the timing of the actual comple-
tion of the memory operations—even the order in which these events
occur—may not align with how they appear in the sequence of the pro-
gram source code. All that is guaranteed is:

• Load operations will complete before the returned data is used by a
subsequent instruction.

• Load operations using data previously written will use the updated
values.

• Store operations will eventually propagate to their ultimate
destination.

Because of weak ordering, the memory system is allowed to prioritize
reads over writes. In this case, a write that is queued anywhere in the pipe-
line, but not completed, may be deferred by a subsequent read operation,
and the read is allowed to be completed before the write. Reads are

Load/Store Operation

6-68 ADSP-BF533 Blackfin Processor Hardware Reference

prioritized over writes because the read operation has a dependent
operation waiting on its completion, whereas the processor considers the
write operation complete, and the write does not stall the pipeline if it
takes more cycles to propagate the value out to memory. This behavior
could cause a read that occurs in the program source code after a write in
the program flow to actually return its value before the write has been
completed. This ordering provides significant performance advantages in
the operation of most memory instructions. However, it can cause side
effects that the programmer must be aware of to avoid improper system
operation.

When writing to or reading from nonmemory locations such as I/O device
registers, the order of how read and write operations complete is often sig-
nificant. For example, a read of a status register may depend on a write to
a control register. If the address is the same, the read would return a value
from the write buffer rather than from the actual I/O device register, and
the order of the read and write at the register may be reversed. Both these
effects could cause undesirable side effects in the intended operation of the
program and peripheral. To ensure that these effects do not occur in code
that requires precise (strong) ordering of load and store operations, syn-
chronization instructions (CSYNC or SSYNC) should be used.

Synchronizing Instructions
When strong ordering of loads and stores is required, as may be the case
for sequential writes to an I/O device for setup and control, use the core or
system synchronization instructions, CSYNC or SSYNC, respectively.

The CSYNC instruction ensures all pending core operations have completed
and the core buffer (between the processor core and the L1 memories) has
been flushed before proceeding to the next instruction. Pending core oper-
ations may include any pending interrupts, speculative states (such as
branch predictions), or exceptions.

ADSP-BF533 Blackfin Processor Hardware Reference 6-69

Memory

Consider the following example code sequence:

IF CC JUMP away_from_here

csync;

r0 = [p0];

away_from_here:

In the preceding example code, the CSYNC instruction ensures:

• The conditional branch (IF CC JUMP away_from_here) is resolved,
forcing stalls into the execution pipeline until the condition is
resolved and any entries in the processor store buffer have been
flushed.

• All pending interrupts or exceptions have been processed before
CSYNC completes.

• The load is not fetched from memory speculatively.

The SSYNC instruction ensures that all side effects of previous operations
are propagated out through the interface between the L1 memories and
the rest of the chip. In addition to performing the core synchronization
functions of CSYNC, the SSYNC instruction flushes any write buffers
between the L1 memory and the system domain and generates a sync
request to the system that requires acknowledgement before SSYNC
completes.

Speculative Load Execution
Load operations from memory do not change the state of the memory
value. Consequently, issuing a speculative memory-read operation for a
subsequent load instruction usually has no undesirable side effect. In some
code sequences, such as a conditional branch instruction followed by a

Load/Store Operation

6-70 ADSP-BF533 Blackfin Processor Hardware Reference

load, performance may be improved by speculatively issuing the read
request to the memory system before the conditional branch is resolved.
For example,

IF CC JUMP away_from_here

RO = [P2];

…

away_from_here:

If the branch is taken, then the load is flushed from the pipeline, and any
results that are in the process of being returned can be ignored. Con-
versely, if the branch is not taken, the memory will have returned the
correct value earlier than if the operation were stalled until the branch
condition was resolved.

However, in the case of an I/O device, this could cause an undesirable side
effect for a peripheral that returns sequential data from a FIFO or from a
register that changes value based on the number of reads that are
requested. To avoid this effect, use synchronizing instructions (CSYNC or
SSYNC) to guarantee the correct behavior between read operations.

Store operations never access memory speculatively, because this could
cause modification of a memory value before it is determined whether the
instruction should have executed.

Conditional Load Behavior
The synchronization instructions force all speculative states to be resolved
before a load instruction initiates a memory reference. However, the load
instruction itself may generate more than one memory-read operation,
because it is interruptible. If an interrupt of sufficient priority occurs
between the completion of the synchronization instruction and the com-
pletion of the load instruction, the sequencer cancels the load instruction.
After execution of the interrupt, the interrupted load is executed again.
This approach minimizes interrupt latency. However, it is possible that a
memory-read cycle was initiated before the load was canceled, and this

ADSP-BF533 Blackfin Processor Hardware Reference 6-71

Memory

would be followed by a second read operation after the load is executed
again. For most memory accesses, multiple reads of the same memory
address have no side effects. However, for some memory-mapped devices,
such as peripheral data FIFOs, reads are destructive. Each time the device
is read, the FIFO advances, and the data cannot be recovered and re-read.

 When accessing memory-mapped devices that have state dependen-
cies on the number of read operations on a given address location,
disable interrupts before performing the load operation.

Working With Memory
This section contains information about alignment of data in memory and
memory operations that support semaphores between tasks. It also con-
tains a brief discussion of MMR registers and a core MMR programming
example.

Alignment
Nonaligned memory operations are not directly supported. A nonaligned
memory reference generates a Misaligned Access exception event (see
“Exceptions” on page 4-41). However, because some datastreams (such as
8-bit video data) can properly be nonaligned in memory, alignment excep-
tions may be disabled by using the DISALGNEXCPT instruction. Moreover,
some instructions in the quad 8-bit group automatically disable alignment
exceptions.

Cache Coherency
For shared data, software must provide cache coherency support as
required. To accomplish this, use the FLUSH instruction (see “Data Cache
Control Instructions” on page 6-41), and/or explicit line invalidation
through the core MMRs (see “Data Test Registers” on page 6-43).

Working With Memory

6-72 ADSP-BF533 Blackfin Processor Hardware Reference

Atomic Operations
The processor provides a single atomic operation: TESTSET. Atomic opera-
tions are used to provide noninterruptible memory operations in support
of semaphores between tasks. The TESTSET instruction loads an indirectly
addressed memory half word, tests whether the low byte is zero, and then
sets the most significant bit (MSB) of the low memory byte without
affecting any other bits. If the byte is originally zero, the instruction sets
the CC bit. If the byte is originally nonzero, the instruction clears the CC
bit. The sequence of this memory transaction is atomic—hardware bus
locking insures that no other memory operation can occur between the
test and set portions of this instruction. The TESTSET instruction can be
interrupted by the core. If this happens, the TESTSET instruction is exe-
cuted again upon return from the interrupt.

The TESTSET instruction can address the entire 4G byte memory space,
but should not target on-core memory (L1 or MMR space) since atomic
access to this memory is not supported.

The memory architecture always treats atomic operations as cache inhib-
ited accesses even if the CPLB descriptor for the address indicates cache
enabled access. However, executing TESTSET operations on cacheable
regions of memory is not recommended since the architecture cannot
guarantee a cacheable location of memory is coherent when the TESTSET
instruction is executed.

Memory-Mapped Registers
The MMR reserved space is located at the top of the memory space
(0xFFC0 0000). This region is defined as non-cacheable and is divided
between the system MMRs (0xFFC0 0000–0xFFE0 0000) and core
MMRs (0xFFE0 0000–0xFFFF FFFF).

ADSP-BF533 Blackfin Processor Hardware Reference 6-73

Memory

 If strong ordering is required, place a synchronization instruction
after stores to MMRs. For more information, see “Load/Store
Operation” on page 6-66.

All MMRs are accessible only in Supervisor mode. Access to MMRs in
User mode generates a protection violation exception. Attempts to access
MMR space using DAG1 also generates a protection violation exception.

All core MMRs are read and written using 32-bit aligned accesses. How-
ever, some MMRs have fewer than 32 bits defined. In this case, the
unused bits are reserved. System MMRs may be 16 bits.

Accesses to nonexistent MMRs generate an illegal access exception. The
system ignores writes to read-only MMRs.

Appendix A, “Blackfin Processor Core MMR Assignments” provides a
summary of all Core MMRs. Appendix B, “System MMR Assignments”
provides a summary of all System MMRs.

Core MMR Programming Code Example
Core MMRs may be accessed only as aligned 32-bit words. Nonaligned
access to MMRs generates an exception event. Listing 6-1 shows the
instructions required to manipulate a generic core MMR.

Listing 6-1. Core MMR Programming

CLI R0; /* stop interrupts and save IMASK */

P0 = MMR_BASE; /* 32-bit instruction to load base of MMRs */

R1 = [P0 + TIMER_CONTROL_REG]; /* get value of control reg */

BITSET R1, #N; /* set bit N */

[P0 + TIMER_CONTROL_REG] = R1; /* restore control reg */

CSYNC; /* assures that the control reg is written */

STI R0; /* enable interrupts */

Terminology

6-74 ADSP-BF533 Blackfin Processor Hardware Reference

 The CLI instruction saves the contents of the IMASK register and
disables interrupts by clearing IMASK. The STI instruction restores
the contents of the IMASK register, thus enabling interrupts. The
instructions between CLI and STI are not interruptible.

Terminology
The following terminology is used to describe memory.

cache block. The smallest unit of memory that is transferred to/from the
next level of memory from/to a cache as a result of a cache miss.

cache hit. A memory access that is satisfied by a valid, present entry in the
cache.

cache line. Same as cache block. In this chapter, cache line is used for
cache block.

cache miss. A memory access that does not match any valid entry in the
cache.

direct-mapped. Cache architecture in which each line has only one place
in which it can appear in the cache. Also described as 1-Way associative.

dirty or modified. A state bit, stored along with the tag, indicating
whether the data in the data cache line has been changed since it was cop-
ied from the source memory and, therefore, needs to be updated in that
source memory.

exclusive, clean. The state of a data cache line, indicating that the line is
valid and that the data contained in the line matches that in the source
memory. The data in a clean cache line does not need to be written to
source memory before it is replaced.

fully associative. Cache architecture in which each line can be placed any-
where in the cache.

ADSP-BF533 Blackfin Processor Hardware Reference 6-75

Memory

index. Address portion that is used to select an array element (for example,
a line index).

invalid. Describes the state of a cache line. When a cache line is invalid, a
cache line match cannot occur.

least recently used (LRU) algorithm. Replacement algorithm, used by
cache, that first replaces lines that have been unused for the longest time.

Level 1 (L1) memory. Memory that is directly accessed by the core with
no intervening memory subsystems between it and the core.

little endian. The native data store format of the Blackfin processor.
Words and half words are stored in memory (and registers) with the least
significant byte at the lowest byte address and the most significant byte in
the highest byte address of the data storage location.

replacement policy. The function used by the processor to determine
which line to replace on a cache miss. Often, an LRU algorithm is
employed.

set. A group of N-line storage locations in the Ways of an N-Way cache,
selected by the INDEX field of the address (see Figure 6-7).

set associative. Cache architecture that limits line placement to a number
of sets (or Ways).

tag. Upper address bits, stored along with the cached data line, to identify
the specific address source in memory that the cached line represents.

valid. A state bit, stored with the tag, indicating that the corresponding
tag and data are current and correct and can be used to satisfy memory
access requests.

victim. A dirty cache line that must be written to memory before it can be
replaced to free space for a cache line allocation.

Terminology

6-76 ADSP-BF533 Blackfin Processor Hardware Reference

Way. An array of line storage elements in an N-Way cache (see
Figure 6-7).

write back. A cache write policy, also known as copyback. The write data is
written only to the cache line. The modified cache line is written to source
memory only when it is replaced. Cache lines are allocated on both reads
and writes.

write through. A cache write policy (also known as store through). The
write data is written to both the cache line and to the source memory. The
modified cache line is not written to the source memory when it is
replaced. Cache lines must be allocated on reads, and may be allocated on
writes (depending on mode).

ADSP-BF533 Blackfin Processor Hardware Reference 7-1

7 CHIP BUS HIERARCHY

This chapter discusses on-chip buses, how data moves through the system,
and factors that determine the system organization. The chapter also
describes the system internal chip interfaces and discusses the system
interconnects and associated system buses.

Internal Interfaces
Figure 7-1 shows the core processor and system boundaries as well as the
interfaces between them.

Internal Clocks
The core processor clock (CCLK) rate is highly programmable with respect
to CLKIN. The CCLK rate is divided down from the Phase Locked Loop
(PLL) output rate. This divider ratio is set using the CSEL parameter of the
PLL Divide register.

The Peripheral Access Bus (PAB), the DMA Access Bus (DAB), the Exter-
nal Access Bus (EAB), the DMA Core Bus (DCB), the DMA External Bus
(DEB), the External Port Bus (EPB), and the External Bus Interface Unit
(EBIU) run at system clock frequency (SCLK domain). This divider ratio is
set using the SSEL parameter of the PLL Divide register and must be set so
that these buses run as specified in the processor data sheet, and slower
than or equal to the core clock frequency.

Core Overview

7-2 ADSP-BF533 Blackfin Processor Hardware Reference

These buses can also be cycled at a programmable frequency to reduce
power consumption, or to allow the core processor to run at an optimal
frequency. Note all synchronous peripherals derive their timing from the
SCLK. For example, the UART clock rate is determined by further divid-
ing this clock frequency.

Core Overview
For the purposes of this discussion, Level 1 memories (L1) are included in
the description of the core; they have full bandwidth access from the pro-
cessor core with a 64-bit instruction bus and two 32-bit data buses.

Figure 7-1. Processor Bus Hierarchy

WATCH-
DOG

TIMER

PROG
FLAG

SPORT

SPI

EBIU

PPIUARTTIMERSRTC

DMA
CONTROLLER

L1 MEMORYCORE
PROCESSOR

INSTRUCTION

LOAD DATA

LOAD DATA

EXTERNAL
MEMORY
DEVICES

64

32

32

16

32

STORE DATA

SYSTEM CLOCK
(SCLK) DOMAIN

CORE CLOCK
(CCLK) DOMAIN

DMA ACCESS BUS
(DAB)

EXTERNAL
PORT
BUS (EPB)

EXTERNAL
ACCESS
BUS (EAB)

DMA
EXTERNAL
BUS (DEB)

DMA
CORE
BUS (DCB)

PERIPHERAL ACCESS
BUS (PAB)

ADSP-BF533 Blackfin Processor Hardware Reference 7-3

Chip Bus Hierarchy

Figure 7-2 shows the core processor and its interfaces to the peripherals
and external memory resources.

The core can generate up to three simultaneous off-core accesses per cycle.

The core bus structure between the processor and L1 memory runs at the
full core frequency and has data paths up to 64 bits.

Figure 7-2. Core Block Diagram

INT

RESET
VECTOR

ACK

CORE TIMER

EVENT
CONTROLLER

DEBUG AND JTAG INTERFACE

JTAG DSP ID
(8 BITS)

SYSTEM CLOCK
AND POWER

MANAGEMENT

POWER AND
CLOCK

CONTROLLER

PERFORMANCE
MONITOR

MEMORY
MANAGEMENT

UNIT
L1 DATA L1 INSTRUCTION

L
D

0

L
D

1

S
D

D
A

0

D
A

1

IA
B

ID
B

CORE

EAB

PROCESSOR

DMA CORE BUS
(DCB)

PAB

32 32 32 32 32 32 64

System Overview

7-4 ADSP-BF533 Blackfin Processor Hardware Reference

When the instruction request is filled, the 64-bit read can contain a single
64-bit instruction or any combination of 16-, 32-, or 64-bit (partial)
instructions.

When cache is enabled, four 64-bit read requests are issued to support
32-byte line fill burst operations. These requests are pipelined so that each
transfer after the first is filled in a single, consecutive cycle.

System Overview
The system includes the controllers for system interrupts, test/emulation,
and clock and power management. Synchronous clock domain conversion
is provided to support clock domain transactions between the core and the
system.

System Interfaces
The processor system includes:

• The peripheral set (Timers, Real-Time Clock, programmable flags,
UART, SPORTs, PPI, Watchdog timer, and SPI)

• The external memory controller (EBIU)

• The DMA controller

• The interfaces between these, the system, and the optional external
(off-chip) resources

See Figure 7-2.

ADSP-BF533 Blackfin Processor Hardware Reference 7-5

Chip Bus Hierarchy

The following sections describe the on-chip interfaces between the system
and the peripherals:

• Peripheral Access Bus (PAB)

• DMA Access Bus (DAB)

• DMA Core Bus (DCB)

• DMA External Bus (DEB)

• External Access Bus (EAB)

The External Bus Interface Unit (EBIU) is the primary chip pin bus. The
EBIU is discussed in Chapter 17, “External Bus Interface Unit”.

Peripheral Access Bus (PAB)
The processor has a dedicated peripheral bus. A low latency peripheral bus
keeps core stalls to a minimum and allows for manageable interrupt laten-
cies to time-critical peripherals. All peripheral resources accessed through
the PAB are mapped into the system MMR space of the processor memory
map. The core can access system MMR space through the PAB bus.

The core processor has byte addressability, but the programming model is
restricted to only 32-bit (aligned) access to the system MMRs. Byte access
to this region is not supported.

PAB Arbitration

The core is the only master on this bus. No arbitration is necessary.

PAB Performance

For the PAB, the primary performance criteria is latency, not throughput.
Transfer latencies for both read and write transfers on the PAB are 2 SCLK
cycles.

System Interfaces

7-6 ADSP-BF533 Blackfin Processor Hardware Reference

For example, the core can transfer up to 32 bits per access to the PAB
slaves. With the core clock running at 2x the frequency of the system
clock, the first and subsequent system MMR read or write accesses take 4
core clocks (CCLK) of latency.

The PAB has a maximum frequency of SCLK.

PAB Agents (Masters, Slaves)

The processor core can master bus operations on the PAB. All peripherals
have a peripheral bus slave interface which allows the core to access con-
trol and status state. These registers are mapped into the system MMR
space of the memory map. Appendix B lists system MMR addresses.

The slaves on the PAB bus are:

• Event Controller

• Clock and Power Management Controller

• Watchdog Timer

• Real-Time Clock (RTC)

• Timer 0, 1, and 2

• SPORT0

• SPORT1

• SPI

• Programmable Flags

• UART

• PPI

• Asynchronous Memory Controller (AMC)

ADSP-BF533 Blackfin Processor Hardware Reference 7-7

Chip Bus Hierarchy

• SDRAM Controller (SDC)

• DMA Controller

DMA Access Bus (DAB), DMA Core Bus (DCB), DMA
External Bus (DEB)

The DAB, DCB, and DEB buses provide a means for DMA-capable
peripherals to gain access to on-chip and off-chip memory with little or no
degradation in core bandwidth to memory.

DAB Arbitration

There are six DMA-capable peripherals in the processor system, including
the Memory DMA controller. Twelve DMA channels and bus masters
support these devices. The peripheral DMA controllers can transfer data
between peripherals and internal or external memory. Both the read and
write channels of the Memory DMA controller access their descriptor lists
through the DAB.

The DCB has priority over the core processor on arbitration into L1 con-
figured as data SRAM, whereas the core processor has priority over the
DCB on arbitration into L1 instruction SRAM. For off-chip memory, the
core (by default) has priority over the DEB for accesses to the EPB. The
processor has a programmable priority arbitration policy on the DAB.
Table 7-1 shows the default arbitration priority. In addition, by setting
the CDPRIO bit in the EBIU_AMGCTL register, all DEB transactions to the
EPB have priority over core accesses to external memory. Use of this bit is
application-dependent. For example, if you are polling a peripheral
mapped to asynchronous memory with long access times, by default the
core will “win” over DMA requests. By setting the CDPRIO bit, the core
would be held off until DMA requests were serviced.

System Interfaces

7-8 ADSP-BF533 Blackfin Processor Hardware Reference

DAB, DCB, and DEB Performance

The processor DAB supports data transfers of 16 bits or 32 bits. The data
bus has a 16-bit width with a maximum frequency as specified in
ADSP-BF531/ADSP-BF532/ADSP-BF533 Embedded Processor Data Sheet.

The DAB has a dedicated port into L1 memory. No stalls occur as long as
the core access and the DMA access are not to the same memory bank (4K
byte size for L1). If there is a conflict when accessing data memory, DMA
is the highest priority requester, followed by the core. If the conflict
occurs when accessing instruction memory, the core is the highest priority
requester, followed by DMA.

Note that a locked transfer by the core processor (for example, execution
of a TESTSET instruction) effectively disables arbitration for the addressed
memory bank or resource until the memory lock is deasserted. DMA con-
trollers cannot perform locked transfers.

Table 7-1. DAB, DCB, and DEB Arbitration Priority

DAB, DCB, DEB Master Default Arbitration Priority

PPI 0 - highest

SPORT0 RCV DMA Controller 1

SPORT1 RCV DMA Controller 3

SPORT0 XMT DMA Controller 2

SPORT1 XMT DMA Controller 4

SPI DMA Controller 5

UART RCV Controller 6

UART XMT Controller 7

Memory DMA0 (dest) Controller 8

Memory DMA0 (source) Controller 9

Memory DMA1 (dest) Controller 10

Memory DMA1 (source) Controller 11 - lowest

ADSP-BF533 Blackfin Processor Hardware Reference 7-9

Chip Bus Hierarchy

DMA access to L1 memory can only be stalled by an access already in
progress from another DMA channel. Latencies caused by these stalls are
in addition to any arbitration latencies.

 The core processor and the DAB must arbitrate for access to exter-
nal memory through the EBIU. This additional arbitration latency
added to the latency required to read off-chip memory devices can
significantly degrade DAB throughput, potentially causing periph-
eral data buffers to underflow or overflow. If you use DMA
peripherals other than the Memory DMA controller, and you tar-
get external memory for DMA accesses, you need to carefully
analyze your specific traffic patterns. Make sure that isochronous
peripherals targeting internal memory have enough allocated band-
width and the appropriate maximum arbitration latencies.

DAB Bus Agents (Masters)

All peripherals capable of sourcing a DMA access are masters on this bus,
as shown in Table 7-1. A single arbiter supports a programmable priority
arbitration policy for access to the DAB.

When two or more DMA master channels are actively requesting the
DAB, bus utilization is considerably higher due to the DAB’s pipelined
design. Bus arbitration cycles are concurrent with the previous DMA
access’s data cycles.

External Access Bus (EAB)
The EAB provides a way for the processor core to directly access off-chip
memory.

System Interfaces

7-10 ADSP-BF533 Blackfin Processor Hardware Reference

Arbitration of the External Bus
Arbitration for use of external port bus interface resources is required
because of possible contention between the potential masters of this bus. A
fixed-priority arbitration scheme is used. That is, core accesses via the
EAB will be of higher priority than those from the DMA External Bus
(DEB).

DEB/EAB Performance
The DEB and the EAB support single word accesses of either 8-bit or
16-bit data types. The DEB and the EAB operate at the same frequency as
the PAB and the DAB, up to the maximum SCLK frequency specified in
ADSP-BF531/ADSP-BF532/ADSP-BF533 Embedded Processor Data Sheet.

Memory DMA transfers can result in repeated accesses to the same mem-
ory location. Because the memory DMA controller has the potential of
simultaneously accessing on-chip and off-chip memory, considerable
throughput can be achieved. The throughput rate for an on-chip/off-chip
memory access is limited by the slower of the two accesses.

In the case where the transfer is from on-chip to on-chip memory or from
off-chip to off-chip memory, the burst accesses cannot occur simultane-
ously. The transfer rate is then determined by adding each transfer plus an
additional cycle between each transfer.

Table 7-2 shows many types of 16-bit memory DMA transfers. In the
table, it is assumed that no other DMA activity is conflicting with ongoing
operations. The numbers in the table are theoretical values. These values
may be higher when they are measured on actual hardware due to a variety
of reasons relating to the device that is connected to the EBIU.

ADSP-BF533 Blackfin Processor Hardware Reference 7-11

Chip Bus Hierarchy

For non-DMA accesses (for example, a core access via the EAB), a 32-bit
access to SDRAM (of the form R0 = [P0]; where P0 points to an address
in SDRAM) will always be more efficient than executing two 16-bit
accesses (of the form R0 = W[P0++]; where P0 points to an address in
SDRAM). In this example, a 32-bit SDRAM read will take 10 SCLK cycles
while 2 16-bit reads will take 9 SCLK cycles each.

Table 7-2. Performance of DMA Access to External Memory

Source Destination Approximate SCLKs For n Words
(from start of DMA to interrupt at
end)

16-bit SDRAM L1 Data memory n + 14

L1 Data memory 16-bit SDRAM n + 11

16-bit Async memory L1 Data memory xn + 12, where x is the number of
wait states + setup/hold SCLK cycles
(minimum x = 2)

L1 Data memory 16-bit Async memory xn + 9, where x is the number of wait
states + setup/hold SCLK cycles (min-
imum x = 2)

16-bit SDRAM 16-bit SDRAM 10 + (17n/7)

16-bit Async memory 16-bit Async memory 10 + 2xn, where x is the number of
wait states + setup/hold SCLK cycles
(minimum x = 2)

L1 Data memory L1 Data memory 2n + 12

System Interfaces

7-12 ADSP-BF533 Blackfin Processor Hardware Reference

ADSP-BF533 Blackfin Processor Hardware Reference 8-1

8 DYNAMIC POWER
MANAGEMENT

This chapter describes the Dynamic Power Management functionality of
the processor. This functionality includes:

• Clocking

• Phase Locked Loop (PLL)

• Dynamic Power Management Controller

• Operating Modes

• Voltage Control

Clocking
The input clock into the processor, CLKIN, provides the necessary clock
frequency, duty cycle, and stability to allow accurate internal clock multi-
plication by means of an on-chip Phase Locked Loop (PLL) module.
During normal operation, the user programs the PLL with a multiplica-
tion factor for CLKIN. The resulting, multiplied signal is the Voltage
Controlled Oscillator (VCO) clock. A user-programmable value then
divides the VCO clock signal to generate the core clock (CCLK).

A user-programmable value divides the VCO signal to generate the system
clock (SCLK). The SCLK signal clocks the Peripheral Access Bus (PAB),
DMA Access Bus (DAB), External Access Bus (EAB), and the External
Bus Interface Unit (EBIU).

Clocking

8-2 ADSP-BF533 Blackfin Processor Hardware Reference

 These buses run at the PLL frequency divided by 1–15 (SCLK
domain). Using the SSEL parameter of the PLL Divide register,
select a divider value that allows these buses to run at or below the
maximum SCLK rate specified in
ADSP-BF531/ADSP-BF532/ADSP-BF533 Embedded Processor
Data Sheet.

To optimize performance and power dissipation, the processor allows the
core and system clock frequencies to be changed dynamically in a “coarse
adjustment.” For a “fine adjustment,” the PLL clock frequency can also be
varied.

Phase Locked Loop and Clock Control
To provide the clock generation for the core and system, the processor
uses an analog PLL with programmable state machine control.

The PLL design serves a wide range of applications. It emphasizes embed-
ded and portable applications and low cost, general-purpose processors, in
which performance, flexibility, and control of power dissipation are key
features. This broad range of applications requires a wide range of fre-
quencies for the clock generation circuitry. The input clock may be a
crystal, a crystal oscillator, or a buffered, shaped clock derived from an
external system clock oscillator.

The PLL interacts with the Dynamic Power Management Controller
(DPMC) block to provide power management functions for the processor.
For information about the DPMC, see “Dynamic Power Management
Controller” on page 8-12.

ADSP-BF533 Blackfin Processor Hardware Reference 8-3

Dynamic Power Management

PLL Overview

Subject to the maximum VCO frequency, the PLL supports a wide range of
multiplier ratios and achieves multiplication of the input clock, CLKIN. To
achieve this wide multiplication range, the processor uses a combination
of programmable dividers in the PLL feedback circuit and output configu-
ration blocks.

Figure 8-1 illustrates a conceptual model of the PLL circuitry, configura-
tion inputs, and resulting outputs. In the figure, the VCO is an intermediate
clock from which the core clock (CCLK) and system clock (SCLK) are
derived.

PLL Clock Multiplier Ratios
The PLL Control register (PLL_CTL) governs the operation of the PLL. For
details about the PLL_CTL register, see “PLL_CTL Register” on page 8-7.

Figure 8-1. PLL Block Diagram

VCOCLKIN

DF

MSEL[5:0]

SSEL[3:0]

DIVIDER

CCLK

SCLK

BYPASS

CSEL[1:0]

LOOP
FILTER

PHASE
DETECT

CLOCK
DIVIDE

AND
MUX

/1 or /2

Clocking

8-4 ADSP-BF533 Blackfin Processor Hardware Reference

The Divide Frequency (DF) bit and Multiplier Select (MSEL[5:0]) field
configure the various PLL clock dividers:

• DF enables the input divider

• MSEL[5:0] controls the feedback dividers

The reset value of MSEL is 0xA. This value can be reprogrammed at
startup in the boot code.

Table 8-1 illustrates the VCO multiplication factors for the various MSEL
and DF settings. In this table, the value x represents the input clock (CLKIN)
frequency.

As shown in the table, different combinations of MSEL[5:0] and DF can
generate the same VCO frequencies. For a given application, one combina-
tion may provide lower power or satisfy the VCO maximum frequency.
Under normal conditions, setting DF to 1 typically results in lower power
dissipation. See ADSP-BF531/ADSP-BF532/ADSP-BF533 Embedded Pro-
cessor Data Sheet for maximum and minimum frequencies for CLKIN, CCLK,
and VCO.

Table 8-1. MSEL Encodings

Signal name
MSEL[5:0]

VCO Frequency
DF = 0 DF = 1

0 64x 32x

1 1x 0.5x

2 2x 1x

N = 3–62 Nx 0.5Nx

63 63x 31.5x

ADSP-BF533 Blackfin Processor Hardware Reference 8-5

Dynamic Power Management

Core Clock/System Clock Ratio Control

Table 8-2 describes the programmable relationship between the VCO fre-
quency and the core clock. Table 8-3 shows the relationship of the VCO
frequency to the system clock. Note the divider ratio must be chosen to
limit the SCLK to a frequency specified in
ADSP-BF531/ADSP-BF532/ADSP-BF533 Embedded Processor Data Sheet.
The SCLK drives all synchronous, system-level logic.

The divider ratio control bits, CSEL and SSEL, are in the PLL Divide regis-
ter (PLL_DIV). For information about this register, see “PLL_DIV
Register” on page 8-7. Appendix B, “System MMR Assignments” shows
the register addresses.

The reset value of CSEL[1:0] is 0x0 (/1), and the reset value of SSEL[3:0]
is 0x5. These values can be reprogrammed at startup by the boot code.

By writing the appropriate value to PLL_DIV, you can change the CSEL and
SSEL value dynamically. Note the divider ratio of the core clock can never
be greater than the divider ratio of the system clock. If the PLL_DIV register
is programmed to illegal values, the SCLK divider is automatically increased
to be greater than or equal to the core clock divider.

The PLL_DIV register can be programmed at any time to change the CCLK
and SCLK divide values without entering the Idle state.

Table 8-2. Core Clock Ratio

Signal Name
CSEL[1:0]

Divider Ratio
VCO/CCLK

Example Frequency Ratios (MHz)
VCO CCLK

00 1 300 300

01 2 600 300

10 4 600 150

11 8 400 50

Clocking

8-6 ADSP-BF533 Blackfin Processor Hardware Reference

As long as the MSEL and DF control bits in the PLL Control register
(PLL_CTL) remain constant, the PLL is locked.

 If changing the clock ratio via writing a new SSEL value into
PLL_DIV, take care that the enabled peripherals do not suffer data
loss due to SCLK frequency changes.

PLL Registers
The user interface to the PLL is through four memory-mapped registers
(MMRs):

• The PLL Divide register (PLL_DIV)

• The PLL Control register (PLL_CTL)

• The PLL Status register (PLL_STAT)

• The PLL Lock Count register (PLL_LOCKCNT)

All four registers are 16-bit MMRs and must be accessed with aligned
16-bit reads/writes.

Table 8-3. System Clock Ratio

Signal Name
SSEL[3:0]

Divider Ratio
VCO/SCLK

Example Frequency Ratios (MHz)
VCO SCLK

0000 Reserved N/A N/A

0001 1:1 100 100

0010 2:1 200 100

0011 3:1 400 133

0100 4:1 500 125

0101 5:1 600 120

0110 6:1 600 100

N = 7–15 N:1 600 600/N

ADSP-BF533 Blackfin Processor Hardware Reference 8-7

Dynamic Power Management

PLL_DIV Register

The PLL Divide register (PLL_DIV) divides the PLL output clock to create
the processor Core Clock (CCLK) and the System Clock (SCLK). These val-
ues can be independently changed during processing to reduce power
dissipation without changing the PLL state. The only restrictions are the
resulting CCLK frequency must be greater than or equal to the SCLK fre-
quency, and SCLK must fall within the allowed range specified in
ADSP-BF531/ADSP-BF532/ADSP-BF533 Embedded Processor Data Sheet.
If the CCLK and SCLK divide values are programmed otherwise, the SCLK
value is automatically adjusted to be slower than or equal to the core
clock. Figure 8-2, “PLL Divide Register,” on page 8-7 shows the bits in
the PLL_DIV register.

PLL_CTL Register

The PLL Control register (PLL_CTL) controls operation of the PLL (see
Figure 8-3). Note changes to the PLL_CTL register do not take effect imme-
diately. In general, the PLL_CTL register is first programmed with new
values, and then a specific PLL programming sequence must be executed
to implement the changes. See “PLL Programming Sequence” on
page 8-20.

Figure 8-2. PLL Divide Register

PLL Divide Register (PLL_DIV)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1

0 - Reserved
1-15 - SCLK = VCO / X

CSEL[1:0] (Core Select)

0 0 0 0 0 0 0 0 0 0 0 0 1 0

00 - CCLK = VCO /1
01 - CCLK = VCO / 2
10 - CCLK = VCO / 4
11 - CCLK = VCO / 8

SSEL[3:0] (System Select)

Reset = 0x000500xFFC0 0004

Clocking

8-8 ADSP-BF533 Blackfin Processor Hardware Reference

The following fields of the PLL_CTL register are used to control the PLL:

• SPORT_HYS] – This bit is used to add 250 mV of hysteresis to the
SPORT input pins to provide better immunity to system noise on
SPORT clock and frame sync signals configured as inputs.

• MSEL[5:0] – The Multiplier Select (MSEL) field defines the input
clock to VCO clock (CLKIN to VCO) multiplier.

• BYPASS – This bit is used to bypass the PLL. When BYPASS is set,
CLKIN is passed directly to the core and peripheral clocks.

• OUT_DELAY – This bit is used to add approximately 200ps of delay
to external memory output signals.

Figure 8-3. The PLL Control Register

00

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 1 0 1 0 0 0 0 0 0 0 0

PLL Control Register (PLL_CTL)

BYPASS
0 - Do not bypass PLL
1 - Bypass PLL

MSEL[5:0]
(Multiplier Select)

DF (Divide Frequency)
0 - Pass CLKIN to PLL
1 - Pass CLKIN/2 to PLL
PLL_OFF
0 - Enable power to PLL
1 - Disable power to PLL

STOPCK (Stop Clock)
0 - CCLK on
1 - CCLK off

PDWN (Power Down)
0 - All internal clocks on
1 - All internal clocks off

Reset = 0x14000xFFC0 0000

IN_DELAY
0 - Do not add output delay
1 - Add approximately 200 ps

of delay to external memory
output signals

OUT_DELAY
0 - Do not add input delay
1 - Add approximately 200 ps

of delay to the time when
inputs are latched on the
external memory interface

SPORT_HYS
0 - No added hysteresis to
SPORT input pins
1 - Add 250 mV of hysteresis to
SPORT input pins

See Table 8-1 on page 8-4 for
CLKIN/VCO multiplication
factors.

ADSP-BF533 Blackfin Processor Hardware Reference 8-9

Dynamic Power Management

• IN_DELAY – This bit is used to add approximately 200ps of delay to
the time when inputs are latched on the external memory interface.

• PDWN – The Power Down (PDWN) bit is used to place the processor in
the Deep Sleep operating mode.

For information about operating modes, see “Operating Modes”
on page 8-12.

• STOPCK – The Stop Clock (STOPCK) bit is used to enable/disable the
core clock, CCLK.

• PLL_OFF – This bit is used to enable/disable power to the PLL.

• DF – The Divide Frequency (DF) bit determines whether CLKIN is
passed directly to the PLL or CLKIN/2 is passed.

PLL_STAT Register

The PLL Status register (PLL_STAT) indicates the operating mode of the
PLL and processor (see Figure 8-4). For more information about operat-
ing modes, see “Operating Modes” on page 8-12.

Figure 8-4. PLL Status Register

0 0 0 0 0 0 0 0

PLL Status Register (PLL_STAT)
Read only. Unless otherwise noted, 1 - Processor operating in this mode. For more infor-
mation, see “Operating Modes” on page 8-12.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

01 0 1 0 0 0 1 Reset = 0x00A2

ACTIVE_PLLENABLED

FULL_ON

ACTIVE_PLLDISABLED

DEEP_SLEEP

SLEEP

PLL_LOCKED

CORE_IDLE

VSTAT (Voltage Regulator Status)
0 - Regulator not at programmed voltage
1 - Regulator at programmed voltage

0xFFC0 000C

Clocking

8-10 ADSP-BF533 Blackfin Processor Hardware Reference

The following fields are used in the PLL_STAT register:

• VSTAT (Voltage Regulator Status) – This bit indicates whether the
voltage regulator has reached the programmed voltage.

When changing voltage levels, the core must be put into an Idle
operating state to allow the PLL to lock with the new voltage level.
See “PLL Programming Sequence” on page 8-20.

• CORE_IDLE – This bit is set to 1 when the Blackfin processor core is
idled; that is, an IDLE instruction has executed, and the core is
awaiting a wakeup signal.

• PLL_LOCKED – This field is set to 1 when the internal PLL lock
counter has incremented to the value set in the PLL Lock Count
register (PLL_LOCKCNT). For more information, see
“PLL_LOCKCNT Register” on page 8-11.

• SLEEP – This field is set to 1 when the processor is in Sleep operat-
ing mode.

• DEEP_SLEEP – This field is set to 1 when the processor is in Deep
Sleep operating mode.

• ACTIVE_PLLDISABLED – This field is set to 1 when the processor is in
Active operating mode with the PLL powered down.

• FULL_ON – This field is set to 1 when the processor is in Full On
operating mode.

• ACTIVE_PLLENABLED – This field is set to 1 when the processor is in
Active operating mode with the PLL powered up.

ADSP-BF533 Blackfin Processor Hardware Reference 8-11

Dynamic Power Management

PLL_LOCKCNT Register

When changing clock frequencies in the PLL, the PLL requires time to
stabilize and lock to the new frequency.

The PLL Lock Count register (PLL_LOCKCNT) defines the number of CLKIN
cycles that occur before the processor sets the PLL_LOCKED bit in the
PLL_STAT register. When executing the PLL programming sequence, the
internal PLL lock counter begins incrementing upon execution of the IDLE
instruction. The lock counter increments by 1 each CLKIN cycle. When the
lock counter has incremented to the value defined in the PLL_LOCKCNT reg-
ister, the PLL_LOCKED bit is set.

See ADSP-BF531/ADSP-BF532/ADSP-BF533 Embedded Processor Data
Sheet for more information about PLL stabilization time and programmed
values for this register. For more information about operating modes, see
“Operating Modes” on page 8-12. For further information about the PLL
programming sequence, see “PLL Programming Sequence” on page 8-20.

Figure 8-5. PLL Lock Count Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0

LOCKCNT
Number of SCLK cycles
before PLL Lock Count
timer expires.

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 Reset = 0x0200

PLL Lock Count Register (PLL_LOCKCNT)

0xFFC0 0010

Dynamic Power Management Controller

8-12 ADSP-BF533 Blackfin Processor Hardware Reference

Dynamic Power Management Controller
The Dynamic Power Management Controller (DPMC) works in conjunc-
tion with the PLL, allowing the user to control the processor’s
performance characteristics and power dissipation dynamically. The
DPMC provides these features that allow the user to control performance
and power:

• Multiple operating modes – The processor works in four operating
modes, each with different performance characteristics and power
dissipation profiles. See “Operating Modes” on page 8-12.

• Peripheral clocks – Clocks to each peripheral are disabled automat-
ically when the peripheral is disabled.

• Voltage control – The processor provides an on-chip switching reg-
ulator controller which, with some external components, can
generate internal voltage levels from the external Vdd (VDDEXT)
supply.

Depending on the needs of the system, the voltage level can be
reduced to save power. See “VR_CTL Register” on page 8-26.

Operating Modes
The processor works in four operating modes, each with unique perfor-
mance and power saving benefits. Table 8-4 summarizes the operational
characteristics of each mode.

ADSP-BF533 Blackfin Processor Hardware Reference 8-13

Dynamic Power Management

Dynamic Power Management Controller States
Power management states are synonymous with the PLL control state.
The state of the DPMC/PLL can be determined by reading the PLL Status
register (see “PLL_STAT Register” on page 8-9). In all modes except
Sleep and Deep Sleep, the core can either execute instructions or be in Idle
core state. If the core is in the Idle state, it can be awakened.

In all modes except Active, the SCLK frequency is determined by the
SSEL-specified ratio to VCO. In Sleep mode, although the core clock is dis-
abled, SCLK continues to run at the specified SSEL ratio.

The following sections describe the DPMC/PLL states in more detail, as
they relate to the power management controller functions.

Full On Mode

Full On mode is the maximum performance mode. In this mode, the PLL
is enabled and not bypassed. Full On mode is the normal execution state
of the processor, with the processor and all enabled peripherals running at
full speed. DMA access is available to L1 memories. From Full On mode,
the processor can transition directly to Active, Sleep, or Deep Sleep
modes, as shown in Figure 8-6.

Table 8-4. Operational Characteristics

Operating
Mode

Power
Savings

PLL
Status Bypassed

CCLK SCLK Allowed
DMA
Access

Full On None Enabled No Enabled Enabled L1

Active Medium Enabled 1 Yes Enabled Enabled L1

Sleep High Enabled No Disabled Enabled –

Deep Sleep Maximum Disabled – Disabled Disabled –

1 PLL can also be disabled in this mode.

Dynamic Power Management Controller

8-14 ADSP-BF533 Blackfin Processor Hardware Reference

Active Mode

In Active mode, the PLL is enabled but bypassed. Because the PLL is
bypassed, the processor’s core clock (CCLK) and system clock (SCLK) run at
the input clock (CLKIN) frequency. DMA access is available to appropri-
ately configured L1 memories.

In Active mode, it is possible not only to bypass, but also to disable the
PLL. If disabled, the PLL must be re-enabled before transitioning to Full
On or Sleep modes.

From Active mode, the processor can transition directly to Full On, Sleep,
or Deep Sleep modes.

Sleep Mode

Sleep mode significantly reduces power dissipation by idling the core pro-
cessor. The CCLK is disabled in this mode; however, SCLK continues to run
at the speed configured by MSEL and SSEL bit settings. As CCLK is disabled,
DMA access is available only to external memory in Sleep mode. From
Sleep mode, a wakeup event causes the processor to transition to one of
these modes:

• Active mode if the BYPASS bit in the PLL_CTL register is set

• Full On mode if the BYPASS bit is cleared

The processor resumes execution from the program counter value present
immediately prior to entering sleep mode.

 The STOPCK bit is not a status bit and is therefore unmodified by
hardware when the wakeup occurs. Software must explicitly clear
STOPCK in the next write to PLL_CTL to avoid going back into sleep
mode.

ADSP-BF533 Blackfin Processor Hardware Reference 8-15

Dynamic Power Management

Deep Sleep Mode

Deep Sleep mode maximizes power savings by disabling the PLL, CCLK,
and SCLK. In this mode, the processor core and all peripherals except the
Real-Time Clock (RTC) are disabled. DMA is not supported in this
mode.

Deep Sleep mode can be exited only by an RTC interrupt or hardware
reset event. An RTC interrupt causes the processor to transition to Active
mode; a hardware reset begins the hardware reset sequence. For more
information about hardware reset, see “Hardware Reset” on page 3-13.

Note an RTC interrupt in Deep Sleep mode automatically resets some
fields of the PLL Control register (PLL_CTL). See Table 8-5.

 When in Deep Sleep operating mode, clocking to the SDRAM is
turned off. Before entering Deep Sleep mode, software should
ensure either that important information in SDRAM is saved to a
non-volatile memory, or that SDRAM is placed in Self-Refresh
mode.

Table 8-5. Control Register Values after RTC Wakeup Interrupt

Field Value

PLL_OFF 0

STOPCK 0

PDWN 0

BYPASS 1

Dynamic Power Management Controller

8-16 ADSP-BF533 Blackfin Processor Hardware Reference

Hibernate State

For lowest possible power dissipation, this state allows the internal supply
(VDDINT) to be powered down, while keeping the I/O supply (VDDEXT)
running. Although not strictly an operating mode like the four modes
detailed above, it is illustrative to view it as such in the diagram of
Figure 8-6. Since this feature is coupled to the on-chip switching regulator
controller, it is discussed in detail in “Powering Down the Core (Hiber-
nate State)” on page 8-30.

Operating Mode Transitions
Figure 8-6 graphically illustrates the operating modes and transitions. In
the diagram, ellipses represent operating modes. Arrows between the
ellipses show the allowed transitions into and out of each mode.

The text next to each transition arrow shows the fields in the PLL Control
register (PLL_CTL) that must be changed for the transition to occur. For
example, the transition from Full On mode to Sleep mode indicates that
the STOPCK bit must be set to 1 and the PDWN bit must be set to 0. For
information about how to effect mode transitions, see “Programming
Operating Mode Transitions” on page 8-20.

In addition to the mode transitions shown in Figure 8-6, the PLL can be
modified while in Active operating mode. Power to the PLL can be
applied and removed, and new clock-in to VCO clock (CLKIN to VCO) multi-
plier ratios can be programmed. Described in detail below, these changes
to the PLL do not take effect immediately. As with operating mode transi-
tions, the PLL programming sequence must be executed for these changes
to take effect (see “PLL Programming Sequence” on page 8-20).

ADSP-BF533 Blackfin Processor Hardware Reference 8-17

Dynamic Power Management

Figure 8-6. Operating Mode Transitions

Sleep

Full OnActive

Deep
Sleep

Reset

Wakeup &
BYPASS = 0

STOPCK = 1 &
 PDWN = 0

 PDWN = 1

RTC_WAKEUP

 PDWN = 1

STOPCK = 1 &
 PDWN = 0

HARDWARE
 RESET

BYPASS = 0 & PLL_OFF = 0 &
 STOPCK = 0 & PDWN = 0

BYPASS = 1 & STOPCK = 0 &
 PDWN = 0

Wakeup &
BYPASS = 1

Hibernate
RTC_WAKEUP

 WAKE = 1 &

HARDWARE RESET

 FREQ = 00

 FREQ = 00

Dynamic Power Management Controller

8-18 ADSP-BF533 Blackfin Processor Hardware Reference

• PLL Disabled: In addition to being bypassed in the Active mode,
power to the PLL can be removed.

When power is removed from the PLL, additional power savings
are achieved although they are relatively small. To remove power to
the PLL, set the PLL_OFF bit in the PLL_CTL register, and then exe-
cute the PLL programming sequence.

• PLL Enabled: When the PLL is powered down, power can be reap-
plied later when additional performance is required.

Power to the PLL must be reapplied before transitioning to Full
On or Sleep operating modes. To apply power to the PLL, clear the
PLL_OFF bit in the PLL_CTL register, and then execute the PLL pro-
gramming sequence.

• New Multiplier Ratio in Active Mode: New clock-in to VCO clock
(CLKIN to VCO) multiplier ratios can be programmed while in Active
mode.

Although the CLKIN to VCO multiplier changes are not realized in
Active mode, forcing the PLL to lock to the new ratio in Active
mode before transitioning to Full On mode reduces the transition
time, because the PLL is already locked to the new ratio. Note the
PLL must be powered up to lock to the new ratio. To program a
new CLKIN to VCO multiplier, write the new MSEL[5:0] and/or DF
values to the PLL_CTL register; then execute the PLL programming
sequence.

ADSP-BF533 Blackfin Processor Hardware Reference 8-19

Dynamic Power Management

• New Multiplier Ratio in Full On Mode: The multiplier ratio can
also be changed while in Full On mode.

In this case, the PLL state automatically transitions to Active mode
while the PLL is locking. After locking, the PLL returns to Full On
state. To program a new CLKIN to VCO multiplier, write the new
MSEL[5:0] and/or DF values to the PLL_CTL register; then execute
the PLL programming sequence (see on page 8-20).

Table 8-6 summarizes the allowed operating mode transitions.

 Attempting to cause mode transitions other than those shown in
Table 8-6 causes unpredictable behavior.

Table 8-6. Allowed Operating Mode Transitions

New Mode

Current Mode

Full On Active Sleep Deep Sleep

Full On – Allowed Allowed –

Active Allowed – Allowed Allowed

Sleep Allowed Allowed – –

Deep Sleep Allowed Allowed – –

Dynamic Power Management Controller

8-20 ADSP-BF533 Blackfin Processor Hardware Reference

Programming Operating Mode Transitions

The operating mode is defined by the state of the PLL_OFF, BYPASS,
STOPCK, and PDWN bits of the PLL Control register (PLL_CTL). Merely mod-
ifying the bits of the PLL_CTL register does not change the operating mode
or the behavior of the PLL. Changes to the PLL_CTL register are realized
only after executing a specific code sequence, which is shown in
Listing 8-1. This code sequence first brings the processor to a known,
idled state. Once in this idled state, the PLL recognizes and implements
the changes made to the PLL_CTL register. After the changes take effect, the
processor operates with the new settings, including the new operating
mode, if one is programmed.

PLL Programming Sequence

If new values are assigned to MSEL or DF in the PLL Control register
(PLL_CTL), the instruction sequence shown in Listing 8-1 puts those
changes into effect. The PLL programming sequence is also executed
when transitioning between operating states.

 Changes to the divider-ratio bits, CSEL and SSEL, can be made
dynamically; they do not require execution of the PLL program-
ming sequence.

Listing 8-1. PLL Programming Sequence

CLI R0 ; /* disable interrupts */

IDLE ; /* drain pipeline and send core into IDLE state */

STI R0 ; /* re-enable interrupts after wakeup */

The first two instructions in the sequence take the core to an idled state
with interrupts disabled; the interrupt mask (IMASK) is saved to the R0 reg-
ister, and the instruction pipeline is halted. The PLL state machine then
loads the PLL_CTL register changes into the PLL.

ADSP-BF533 Blackfin Processor Hardware Reference 8-21

Dynamic Power Management

If the PLL_CTL register changes include a new CLKIN to VCO multiplier or
the changes reapply power to the PLL, the PLL needs to relock. To relock,
the PLL lock counter is first cleared, and then it begins incrementing,
once per SCLK cycle. After the PLL lock counter reaches the value pro-
grammed into the PLL Lock Count register (PLL_LOCKCNT), the PLL sets
the PLL_LOCKED bit in the PLL Status register (PLL_STAT), and the PLL
asserts the PLL wakeup interrupt.

Depending on how the PLL_CTL register is programmed, the processor
proceeds in one of the following four ways:

• If the PLL_CTL register is programmed to enter either Active or Full
On operating mode, the PLL generates a wakeup signal, and then
the processor continues with the STI instruction in the sequence, as
described in “PLL Programming Sequence Continues” on
page 8-22.

When the state change enters Full On mode from Active mode or
Active from Full On, the PLL itself generates a wakeup signal that
can be used to exit the idled core state. The wakeup signal is gener-
ated by the PLL itself or another peripheral, watchdog or other
timer, RTC, or other source. For more information about events
that cause the processor to wakeup from being idled, see
“SIC_IWR Register” on page 4-25.

• If the PLL_CTL register is programmed to enter the Sleep operating
mode, the processor immediately transitions to the Sleep mode and
waits for a wakeup signal before continuing.

When the wakeup signal has been asserted, the instruction
sequence continues with the STI instruction, as described in the
section, “PLL Programming Sequence Continues” on page 8-22,
causing the processor to transition to:

Dynamic Power Management Controller

8-22 ADSP-BF533 Blackfin Processor Hardware Reference

• Active mode if BYPASS in the PLL_CTL register is set

• Full On mode if the BYPASS bit is cleared

• If the PLL_CTL register is programmed to enter Deep Sleep operat-
ing mode, the processor immediately transitions to Deep Sleep
mode and waits for an RTC interrupt or hardware reset signal:

• An RTC interrupt causes the processor to enter Active oper-
ating mode and continue with the STI instruction in the
sequence, as described below.

• A hardware reset causes the processor to execute the reset
sequence, as described in “Hardware Reset” on page 3-13.

• If no operating mode transition is programmed, the PLL generates
a wakeup signal, and the processor continues with the STI instruc-
tion in the sequence, as described in the following section.

PLL Programming Sequence Continues

The instruction sequence shown in Listing 8-1 then continues with the
STI instruction. Interrupts are re-enabled, IMASK is restored, and normal
program flow resumes.

 To prevent spurious activity, DMA should be suspended while exe-
cuting this instruction sequence.

ADSP-BF533 Blackfin Processor Hardware Reference 8-23

Dynamic Power Management

Examples

The following code examples illustrate how to effect various operating
mode transitions. Some setup code has been removed for clarity, and the
following assumptions are made:

• P0 points to the PLL Control register (PLL_CTL). P1 points to the
PLL Divide register.

• The PLL wakeup interrupt is enabled as a wakeup signal.

• MSEL[5:0] and DF in PLL_CTL are set to (b#011111) and (b#0)
respectively, signifying a CLKIN to VCO multiplier of 31x.

Active Mode to Full On Mode

Listing 8-2 provides code for transitioning from Active operating mode to
Full On mode.

Listing 8-2. Transitioning From Active Mode to Full On Mode

CLI R2; /* disable interrupts, copy IMASK to R2 */

R1.L = 0x3E00; /* clear BYPASS bit */

W[P0] = R1; /* and write to PLL_CTL */

IDLE; /* drain pipeline, enter idled state, wait for

PLL wakeup */

STI R2; /* after PLL wakeup occurs, restore interrupts

and IMASK */

... /* processor is now in Full On mode */

Full On Mode to Active Mode

Listing 8-3 provides code for transitioning from Full On operating mode
to Active mode.

Dynamic Power Management Controller

8-24 ADSP-BF533 Blackfin Processor Hardware Reference

Listing 8-3. Transitioning From Full On Mode to Active Mode

CLI R2; /* disable interrupts, copy IMASK to R2 */

R1.L = 0x3F00; /* set BYPASS bit */

W[P0] = R1; /* and write to PLL_CTL */

IDLE; /* drain pipeline, enter idled state, wait for

PLL wakeup */

STI R2; /* after PLL wakeup occurs, restore interrupts

and IMASK */

... /* processor is now in Active mode */

In the Full On Mode, Change CLKIN to VCO Multiplier From 31x to 2x

Listing 8-4 provides code for changing CLKIN to VCO multiplier from 31x
to 2x in Full On operating mode.

Listing 8-4. Changing CLKIN to VCO Multiplier

CLI R2; /* disable interrupts, copy IMASK to R2 */

R1.L = 0x0400; /* change VCO multiplier to 2x */

W[P0] = R1; /* by writing to PLL_CTL */

IDLE; /* drain pipeline, enter idled state, wait for

PLL wakeup */

STI R2; /* after PLL wakeup occurs, restore interrupts

and IMASK */

... /* processor is now in Full On mode, with the

CLKIN to VCO multiplier set to 2x */

ADSP-BF533 Blackfin Processor Hardware Reference 8-25

Dynamic Power Management

Dynamic Supply Voltage Control
In addition to clock frequency control, the processor provides the capabil-
ity to run the core processor at different voltage levels. As power
dissipation is proportional to the voltage squared, significant power reduc-
tions can be accomplished when lower voltages are used.

The processor uses three power domains. These power domains are shown
in Table 8-7. Each power domain has a separate VDD supply. Note the
internal logic of the processor and much of the processor I/O can be run
over a range of voltages. See ADSP-BF531/ADSP-BF532/ADSP-BF533
Embedded Processor Data Sheet for details on the allowed voltage ranges for
each power domain and power dissipation data.

Power Supply Management
The processor provides an on-chip switching regulator controller which,
with some external hardware, can generate internal voltage levels from the
external VDDEXT supply with an external power transistor as shown in
Figure 8-7. This voltage level can be reduced to save power, depending
upon the needs of the system.

Table 8-7. Power Domains

Power Domain VDD Range

All internal logic except RTC Variable

Real-Time Clock I/O and internal logic Variable

All other I/O Variable

Dynamic Power Management Controller

8-26 ADSP-BF533 Blackfin Processor Hardware Reference

 When increasing the VDDINT voltage, the external FET will switch
on for a longer period. The VDDEXT supply should have appropri-
ate capacitive bypassing to enable it to provide sufficient current
without drooping the supply voltage.

VR_CTL Register

The on-chip core voltage regulator controller manages the internal logic
voltage levels for the VDDINT supply. The Voltage Regulator Control reg-
ister (VR_CTL) controls the regulator (see Figure 8-8). Writing to VR_CTL
initiates a PLL relock sequence.

Figure 8-7. Processor Voltage Regulator

Figure 8-8. Voltage Regulator Control Register

VDDEXT

VDDINT

EXTERNAL COMPONENTS

VROUT[1-0]

0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 0 0 1 1 0 1 0

Voltage Regulator Control Register (VR_CTL)

Reset = 0x00DB

VLEV[3:0] (Internal Voltage Level)
See Table 8-8 for encodings.

FREQ[1:0] (Voltage Frequency)
Controls the switching oscillator
frequency for the voltage regulator.
See Table 8-10 for encodings.

GAIN[1:0] (Voltage Level Gain)
Controls how quickly the voltage
output settles on its final value.
See Table 8-9 for encodings.

0 11

WAKE (RTC Wakeup Enable)

0 - RTC wakeup disabled
1 - RTC wakeup enabled

0xFFC0 0008

ADSP-BF533 Blackfin Processor Hardware Reference 8-27

Dynamic Power Management

The following fields of the VR_CTL register are used to control internal
logic voltage levels:

• WAKE — The Wakeup-enable (WAKE) control bit allows the voltage
regulator to be awakened from powerdown (FREQ=00) upon an
interrupt from the RTC.

• VLEV[3:0] – The Voltage Level (VLEV) field identifies the nominal
internal voltage level. Refer to
ADSP-BF531/ADSP-BF532/ADSP-BF533 Embedded Processor
Data Sheet for the applicable VLEV voltage range and associated
voltage tolerances.

• FREQ[1:0] – The Frequency (FREQ) field controls the switching
oscillator frequency for the voltage regulator. A higher frequency
setting allows for smaller switching capacitor and inductor values,
while potentially generating more EMI (electromagnetic
interference).

 To bypass onboard regulation, program a value of b#00 in the FREQ
field and leave the VROUT pins floating.

• GAIN[1:0] – The Gain (GAIN) field controls the internal loop gain
of the switching regulator loop; this bit controls how quickly the
voltage output settles on its final value. In general, higher gain
allows for quicker settling times but causes more overshoot in the
process.

Dynamic Power Management Controller

8-28 ADSP-BF533 Blackfin Processor Hardware Reference

Table 8-8 lists the voltage level values for VLEV[3:0].

 For legal VLEV values with respect to voltage tolerance, consult the
appropriate processor-specific data sheet.

Table 8-9 lists the switching frequency values configured by FREQ[1:0].

Table 8-8. VLEV Encodings

VLEV Voltage

0000–0101 Reserved

0110 .85 volts

0111 .90 volts

1000 .95 volts

1001 1.00 volts

1010 1.05 volts

1011 1.10 volts

1100 1.15 volts

1101 1.20 volts

1110 1.25 volts

1111 1.30 volts

Table 8-9. FREQ Encodings

FREQ Value

00 Powerdown/Bypass onboard regulation

01 333 kHz

10 667 kHz

11 1MHz

ADSP-BF533 Blackfin Processor Hardware Reference 8-29

Dynamic Power Management

Table 8-10 lists the gain levels configured by GAIN[1:0].

Changing Voltage

Minor changes in operating voltage can be accommodated without requir-
ing special consideration or action by the application program. See
ADSP-BF531/ADSP-BF532/ADSP-BF533 Embedded Processor Data Sheet
for more information about voltage tolerances and allowed rates of
change.

 Reducing the processor’s operating voltage to greatly conserve
power or raising the operating voltage to greatly increase perfor-
mance will probably require significant changes to the operating
voltage level. To ensure predictable behavior when varying the
operating voltage, the processor should be brought to a known and
stable state before the operating voltage is modified.

The recommended procedure is to follow the PLL programming sequence
when varying the voltage. After changing the voltage level in the VR_CTL
register, the PLL will automatically enter the Active mode when the pro-
cessor enters the Idle state. At that point the voltage level will change and
the PLL will relock with the new voltage. After the PLL_LOCKCNT has
expired, the part will return to the Full On state. When changing voltages,
a larger PLL_LOCKCNT value may be necessary than when changing just the
PLL frequency. See ADSP-BF531/ADSP-BF532/ADSP-BF533 Embedded
Processor Data Sheet for details.

Table 8-10. GAIN Encodings

GAIN Value

00 5

01 10

10 20

11 50

Dynamic Power Management Controller

8-30 ADSP-BF533 Blackfin Processor Hardware Reference

After the voltage has been changed to the new level, the processor can
safely return to any operational mode so long as the operating parameters,
such as core clock frequency (CCLK), are within the limits specified in
ADSP-BF531/ADSP-BF532/ADSP-BF533 Embedded Processor Data Sheet
for the new operating voltage level.

Powering Down the Core (Hibernate State)

The internal supply regulator for the processor can be shut off by writing
b#00 to the FREQ bits of the VR_CTL register. This disables both CCLK and
SCLK. Furthermore, it sets the internal power supply voltage (VDDINT) to
0 V, eliminating any leakage currents from the processor. The internal
supply regulator can be woken up either by a Real-Time Clock wakeup or
by asserting the RESET pin.

If the on-chip supply controller is bypassed, so that VDDINT is sourced
externally, the only way to power down the core is to remove the external
VDDINT voltage source.

 When the core is powered down, VDDINT is set to 0 V, and thus
the internal state of the processor is not maintained. Therefore, any
critical information stored internally (memory contents, register
contents, and so on) must be written to a non-volatile storage
device prior to removing power.

Powering down VDDINT does not affect VDDEXT. While VDDEXT is still
applied to the processor, external pins are maintained at a tristate level,
unless otherwise specified.

ADSP-BF533 Blackfin Processor Hardware Reference 8-31

Dynamic Power Management

To power down the internal supply:

1. Write 0 to the SIC_IWR register to prevent peripheral resources
from interrupting the Hibernate process.

2. Write to VR_CTL, setting the FREQ bits to b#00. If the Real-Time
Clock is being used to wake up from Hibernate, also set the WAKE
bit to 1.

3. Execute this code sequence:

CLI R0 ;

IDLE ;

4. When the Idle state is reached, VDDINT will transition to 0 V.

5. When the processor is woken up, whether by RTC or by a reset
interrupt, the PLL relocks and the boot sequence defined by the
BMODE[1:0] pin settings takes effect.

 Failure to allow VDDINT to complete the transition to 0 V before
waking up the processor can cause undesired results.

Dynamic Power Management Controller

8-32 ADSP-BF533 Blackfin Processor Hardware Reference

ADSP-BF533 Blackfin Processor Hardware Reference 9-1

9 DIRECT MEMORY ACCESS

The processor uses Direct Memory Access (DMA) to transfer data within
memory spaces or between a memory space and a peripheral. The proces-
sor can specify data transfer operations and return to normal processing
while the fully integrated DMA controller carries out the data transfers
independent of processor activity.

The DMA controller can perform several types of data transfers:

• Between memory and memory (MDMA)
(“Memory DMA” on page 9-48)

• Between memory and the Serial Peripheral Interface (SPI)
(Chapter 10, “SPI Compatible Port Controllers”)

• Between memory and a Serial Port (SPORT)
(Chapter 12, “Serial Port Controllers”)

• Between memory and the UART Port
(Chapter 13, “UART Port Controller”)

• Between memory and the Parallel Peripheral Interface (PPI)
(Chapter 11, “Parallel Peripheral Interface”)

The system includes six DMA-capable peripherals, including the Memory
DMA controller (MDMA). The following twelve DMA channels support
these devices:

• PPI Receive/Transmit DMA Controller

• SPORT0 Receive DMA Controller

9-2 ADSP-BF533 Blackfin Processor Hardware Reference

• SPORT0 Transmit DMA Controller

• SPORT1 Receive DMA Controller

• SPORT1 Transmit DMA Controller

• SPI Receive/Transmit DMA Controller

• UART Receive DMA Controller

• UART Transmit DMA Controller

• MDMA Stream 1 Transmit (Destination)

• MDMA Stream 1 Receive (Source)

• MDMA Stream 0 Transmit (Destination)

• MDMA Stream 0 Receive (Source)

This chapter describes the features common to all the DMA channels, as
well as how DMA operations are set up. For specific peripheral features,
see the appropriate peripheral chapter for additional information. Perfor-
mance and bus arbitration for DMA operations can be found in “DAB,
DCB, and DEB Performance” on page 7-8.

DMA transfers on the processor can be descriptor-based or register-based.
Descriptor-based DMA transfers require a set of parameters stored within
memory to initiate a DMA sequence. This sort of transfer allows the
chaining together of multiple DMA sequences. In descriptor-based DMA
operations, a DMA channel can be programmed to automatically set up
and start another DMA transfer after the current sequence completes.
Register-based DMA allows the processor to directly program DMA con-
trol registers to initiate a DMA transfer. On completion, the control
registers may be automatically updated with their original setup values for
continuous transfer, if needed.

ADSP-BF533 Blackfin Processor Hardware Reference 9-3

Direct Memory Access

DMA and Memory DMA Registers
For convenience, discussions in this chapter use generic (non-peripheral
specific) DMA and Memory DMA register names.

• Generic DMA register names are listed in Table 9-1.

• Generic Memory DMA register names are listed in Table 9-3 on
page 9-7.

DMA registers fall into three categories:

• Parameter registers, such as DMAx_CONFIG and DMAx_X_COUNT

Only Parameter registers can be loaded directly from descriptor ele-
ments; descriptor elements are listed in Table 9-2 on page 9-6.

 The letter x in DMAx represents a specific DMA-capable periph-
eral. For example, for DMA with default channel mapping,
DMA6_CONFIG represents the DMA_CONFIG register for the UART RX
peripheral. For default DMA channel mappings, see Table 9-16 on
page 9-30.

• Current registers, such as DMAx_CURR_ADDR and DMAx_CURR_X_COUNT

• Control/Status registers, such as DMAx_IRQ_STATUS and
DMAx_PERIPHERAL_MAP

Table 9-1 lists the generic names of the DMA registers. For each register,
the table also shows the MMR offset, a brief description of the register,
the register category, and reset value.

DMA and Memory DMA Registers

9-4 ADSP-BF533 Blackfin Processor Hardware Reference

Table 9-1. Generic Names of the DMA Memory-Mapped
Registers

MMR
Offset

Generic MMR Name MMR Description Register
Category

0x00 NEXT_DESC_PTR Link pointer to next descriptor Parameter

0x04 START_ADDR Start address of current buffer Parameter

0x08 DMA_CONFIG DMA Configuration register, including
enable bit

Parameter

0x0C Reserved Reserved

0x10 X_COUNT Inner loop count Parameter

0x14 X_MODIFY Inner loop address increment, in bytes Parameter

0x18 Y_COUNT Outer loop count (2D only) Parameter

0x1C Y_MODIFY Outer loop address increment, in bytes Parameter

0x20 CURR_DESC_PTR Current Descriptor Pointer Current

0x24 CURR_ADDR Current DMA Address Current

0x28 IRQ_STATUS Interrupt Status register:
Contains Completion and DMA Error
Interrupt status and channel state
(Run/Fetch/Paused)

Control/
Status

0x2C PERIPHERAL_MAP Peripheral to DMA Channel Mapping:
Contains a 4-bit value specifying the
peripheral to associate with this DMA
channel (Read-only for MDMA channels)

Control/
Status

0x30 CURR_X_COUNT Current count (1D) or intra-row X count
(2D); counts down from X_COUNT

Current

0x34 Reserved Reserved

0x38 CURR_Y_COUNT Current row count (2D only); counts
down from Y_COUNT

Current

0x3C Reserved Reserved

ADSP-BF533 Blackfin Processor Hardware Reference 9-5

Direct Memory Access

All DMA registers can be accessed as 16-bit entities. However, the follow-
ing registers may also be accessed as 32-bit registers:

• NEXT_DESC_PTR

• START_ADDR

• CURR_DESC_PTR

• CURR_ADDR

 When these four registers are accessed as 16-bit entities, only the
lower 16 bits can be accessed.

Naming Conventions for DMA MMRs
Because confusion might arise between descriptor element names and
generic DMA register names, this chapter uses the naming conventions in
Table 9-2, where:

• The left column lists the generic name of the MMR, which is used
when discussing the general operation of the DMA engine.

 Note the generic names in the left column are not actually mapped
to resources in the processor.

• The middle column lists the specific MMR name. Only specific
MMR names are mapped to processor resources.

In DMAx, the letter x represents the number of the DMA channel.
For instance, DMA3_IRQ_STATUS is the IRQ_STATUS MMR for DMA
Channel #3.

DMA and Memory DMA Registers

9-6 ADSP-BF533 Blackfin Processor Hardware Reference

The channel number can be assigned by default or can be pro-
grammed. For the DMA channel numbers and the default
peripheral mapping, see Table 9-16 on page 9-30.

• The last column lists the macro assigned to each descriptor element
in memory.

The macro name in the last column serves only to clarify the dis-
cussion of how the DMA engine operates.

Table 9-2. Naming Conventions: DMA MMRs and Descriptor
Elements

Generic MMR Name Specific MMR Name
(x = DMA Channel Number)

Name of Corresponding
Descriptor Element in
Memory

DMA_CONFIG DMAx_CONFIG DMACFG

NEXT_DESC_PTR DMAx_NEXT_DESC_PTR NDPH (upper 16 bits),
NDPL (lower 16 bits)

START_ADDR DMAx_START_ADDR SAH (upper 16 bits),
SAL (lower 16 bits)

X_COUNT DMAx_X_COUNT XCNT

Y_COUNT DMAx_Y_COUNT YCNT

X_MODIFY DMAx_X_MODIFY XMOD

Y_MODIFY DMAx_Y_MODIFY YMOD

CURR_DESC_PTR DMAx_CURR_DESC_PTR N/A

CURR_ADDR DMAx_CURR_ADDR N/A

CURR_X_COUNT DMAx_CURR_X_COUNT N/A

CURR_Y_COUNT DMAx_CURR_Y_COUNT N/A

IRQ_STATUS DMAx_IRQ_STATUS N/A

PERIPHERAL_MAP DMAx_PERIPHERAL_MAP N/A

ADSP-BF533 Blackfin Processor Hardware Reference 9-7

Direct Memory Access

Naming Conventions for Memory DMA Registers
The names of Memory DMA registers differ somewhat from the names of
other DMA registers. Memory DMA streams cannot be reassigned to dif-
ferent channels, whereas the peripherals associated with DMA can be
mapped to any DMA channel between 0 and 7.

Table 9-3 shows the naming conventions for Memory DMA registers. In
each name, the letters yy have four possible values:

• S0, Memory DMA Source Stream 0

• D0, Memory DMA Destination Stream 0

• S1, Memory DMA Source Stream 1

• D1, Memory DMA Destination Stream 1

Table 9-3. Naming Conventions for Memory DMA Registers

Generic MMR Name Memory DMA MMR Name
(yy = S0, S1, D0, or D1)

Name of Corresponding
Descriptor Element in
Memory

DMA_CONFIG MDMA_yy_CONFIG DMACFG

NEXT_DESC_PTR MDMA_yy_NEXT_DESC_PTR NDPH (upper 16 bits),
NDPL (lower 16 bits)

START_ADDR MDMA_yy_START_ADDR SAH (upper 16 bits),
SAL (lower 16 bits)

X_COUNT MDMA_yy_X_COUNT XCNT

Y_COUNT MDMA_yy_Y_COUNT YCNT

X_MODIFY MDMA_yy_X_MODIFY XMOD

Y_MODIFY MDMA_yy_Y_MODIFY YMOD

CURR_DESC_PTR MDMA_yy_CURR_DESC_PTR N/A

CURR_ADDR MDMA_yy_CURR_ADDR N/A

CURR_X_COUNT MDMA_yy_CURR_X_COUNT N/A

DMA and Memory DMA Registers

9-8 ADSP-BF533 Blackfin Processor Hardware Reference

DMAx_NEXT_DESC_PTR/MDMA_yy_NEXT_DESC_PTR
Register

The Next Descriptor Pointer register
(DMAx_NEXT_DESC_PTR/MDMA_yy_NEXT_DESC_PTR) specifies where to look for
the start of the next descriptor block when the DMA activity specified by
the current descriptor block finishes. This register is used in small and
large descriptor list modes. At the start of a descriptor fetch in either of
these modes, the 32-bit NEXT_DESC_PTR register is copied into the
CURR_DESC_PTR register. Then, during the descriptor fetch, the
CURR_DESC_PTR register increments after each element of the descriptor is
read in.

 In small and large descriptor list modes, the NEXT_DESC_PTR regis-
ter, and not the CURR_DESC_PTR register, must be programmed
directly via MMR access before starting DMA operation.

In Descriptor Array mode, the Next Descriptor Pointer register is disre-
garded, and fetching is controlled only by the CURR_DESC_PTR register.

CURR_Y_COUNT MDMA_yy_CURR_Y_COUNT N/A

IRQ_STATUS MDMA_yy_IRQ_STATUS N/A

PERIPHERAL_MAP MDMA_yy_PERIPHERAL_MAP N/A

Table 9-3. Naming Conventions for Memory DMA Registers (Cont’d)

Generic MMR Name Memory DMA MMR Name
(yy = S0, S1, D0, or D1)

Name of Corresponding
Descriptor Element in
Memory

ADSP-BF533 Blackfin Processor Hardware Reference 9-9

Direct Memory Access

Figure 9-1. Next Descriptor Pointer Register

Table 9-4. Next Descriptor Pointer Register Memory-Mapped Addresses

Register Name Memory-Mapped Address

DMA0_NEXT_DESC_PTR 0xFFC0 0C00

DMA1_NEXT_DESC_PTR 0xFFC0 0C40

DMA2_NEXT_DESC_PTR 0xFFC0 0C80

DMA3_NEXT_DESC_PTR 0xFFC0 0CC0

DMA4_NEXT_DESC_PTR 0xFFC0 0D00

DMA5_NEXT_DESC_PTR 0xFFC0 0D40

DMA6_NEXT_DESC_PTR 0xFFC0 0D80

DMA7_NEXT_DESC_PTR 0xFFC0 0DC0

MDMA_D0_NEXT_DESC_PTR 0xFFC0 0E00

MDMA_S0_NEXT_DESC_PTR 0xFFC0 0E40

MDMA_D1_NEXT_DESC_PTR 0xFFC0 0E80

MDMA_S1_NEXT_DESC_PTR 0xFFC0 0EC0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

X

Next Descriptor
Pointer[31:16]

X X X X X X X X X X X X X X X

Next Descriptor Pointer Register (DMAx_NEXT_DESC_PTR/MDMA_yy_NEXT_DESC_PTR)
R/W prior to enabling channel; RO after enabling channel

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X

Next Descriptor
Pointer[15:0]

X X X X X X X X X X X X X X X

For Memory-
mapped
addresses, see
Table 9-4.

Reset = Undefined

DMA and Memory DMA Registers

9-10 ADSP-BF533 Blackfin Processor Hardware Reference

DMAx_START_ADDR/MDMA_yy_START_ADDR
Register

The Start Address register (DMAx_START_ADDR/MDMA_yy_START_ADDR),
shown in Figure 9-2, contains the start address of the data buffer currently
targeted for DMA.

Figure 9-2. Start Address Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

X

DMA Start
Address[31:16]

X X X X X X X X X X X X X X X

Start Address Register (DMAx_START_ADDR/ MDMA_yy_START_ADDR)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X

DMA Start
Address[15:0]

X X X X X X X X X X X X X X X

Reset = Undefined

R/W prior to enabling channel; RO after enabling channel

For Memory-
mapped
addresses, see
Table 9-5.

ADSP-BF533 Blackfin Processor Hardware Reference 9-11

Direct Memory Access

Table 9-5. Start Address Register Memory-Mapped Addresses

Register Name Memory-Mapped Address

DMA0_START_ADDR 0xFFC0 0C04

DMA1_START_ADDR 0xFFC0 0C44

DMA2_START_ADDR 0xFFC0 0C84

DMA3_START_ADDR 0xFFC0 0CC4

DMA4_START_ADDR 0xFFC0 0D04

DMA5_START_ADDR 0xFFC0 0D44

DMA6_START_ADDR 0xFFC0 0D84

DMA7_START_ADDR 0xFFC0 0DC4

MDMA_D0_START_ADDR 0xFFC0 0E04

MDMA_S0_START_ADDR 0xFFC0 0E44

MDMA_D1_START_ADDR 0xFFC0 0E84

MDMA_S1_START_ADDR 0xFFC0 0EC4

DMA and Memory DMA Registers

9-12 ADSP-BF533 Blackfin Processor Hardware Reference

DMAx_CONFIG/MDMA_yy_CONFIG Register
The DMA Configuration register (DMAx_CONFIG/MDMA_yy_CONFIG), shown
in Figure 9-3, is used to set up DMA parameters and operating modes.
Note that writing the DMA_CONFIG register while DMA is already running
will cause a DMA error unless writing with the DMAEN bit set to 0.

Figure 9-3. Configuration Register

0 00

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0

DI_EN (Data Interrupt Enable)
0 - Do not allow completion of

work unit to generate an
interrupt

1 - Allow completion of work unit
to generate a data interrupt

0x0 - Stop
0x1 - Autobuffer mode
0x4 - Descriptor array
0x6 - Descriptor list (small model)
0x7 - Descriptor list (large model)

Configuration Register (DMAx_CONFIG/MDMA_yy_CONFIG)

NDSIZE[3:0] (Flex Descriptor Size)
Size of next descriptor
0000 - Required if in Stop or Autobuffer mode
0001 - 1001 - Descriptor size
1010 - 1111 - Reserved

FLOW[2:0] (Next
Operation)

DMAEN (DMA
Channel Enable)
0 - Disable DMA channel
1 - Enable DMA channel
WNR (DMA Direction)
0 - DMA is a memory read

(source) operation
1 - DMA is a memory write

(destination) operation

WDSIZE [1:0](Transfer Word
Size)
00 - 8-bit transfers
01 - 16-bit transfers
10 - 32-bit transfers
11 - Reserved
DMA2D (DMA Mode)
0 - Linear (One-dimensional)
1 - Two-dimensional (2D)

Reset = 0x0000

DI_SEL (Data Interrupt Timing Select)
Applies only when DMA2D = 1
0 - Interrupt after completing

whole buffer (outer loop)
1 - Interrupt after completing

each row (inner loop)

R/W prior to enabling channel; RO after enabling channel

RESTART (DMA Buffer Clear)
0 - Retain DMA FIFO data

between work units
1 - Discard DMA FIFO before

beginning work unit

For Memory-
mapped
addresses,
see Table 9-6.

ADSP-BF533 Blackfin Processor Hardware Reference 9-13

Direct Memory Access

The fields of the DMAx_CONFIG register are used to set up DMA parameters
and operating modes.

• FLOW[2:0] (Next Operation). This field specifies the type of DMA
transfer to follow the present one. The flow options are:

• 0x0 - Stop. When the current work unit completes, the
DMA channel stops automatically, after signaling an inter-
rupt (if selected). The DMA_RUN status bit in the
DMAx_IRQ_STATUS register changes from 1 to 0, while the
DMAEN bit in the DMAx_CONFIG register is unchanged. In this
state, the channel is paused. Peripheral interrupts are still
filtered out by the DMA unit. The channel may be restarted
simply by another write to the DMAx_CONFIG register specify-
ing the next work unit, in which the DMAEN bit is set to 1.

Table 9-6. Configuration Register Memory-Mapped Addresses

Register Name Memory-Mapped Address

DMA0_CONFIG 0xFFC0 0C08

DMA1_CONFIG 0xFFC0 0C48

DMA2_CONFIG 0xFFC0 0C88

DMA3_CONFIG 0xFFC0 0CC8

DMA4_CONFIG 0xFFC0 0D08

DMA5_CONFIG 0xFFC0 0D48

DMA6_CONFIG 0xFFC0 0D88

DMA7_CONFIG 0xFFC0 0DC8

MDMA_D0_CONFIG 0xFFC0 0E08

MDMA_S0_CONFIG 0xFFC0 0E48

MDMA_D1_CONFIG 0xFFC0 0E88

MDMA_S1_CONFIG 0xFFC0 0EC8

DMA and Memory DMA Registers

9-14 ADSP-BF533 Blackfin Processor Hardware Reference

• 0x1 - Autobuffer Mode. In this mode, no descriptors in
memory are used. Instead, DMA is performed in a continu-
ous circular buffer fashion based on user-programmed
DMAx MMR settings. Upon completion of the work unit,
the Parameter registers are reloaded into the Current regis-
ters, and DMA resumes immediately with zero overhead.
Autobuffer mode is stopped by a user write of 0 to the DMAEN
bit in the DMAx_CONFIG register.

• 0x4 - Descriptor Array Mode. This mode fetches a descrip-
tor from memory that does not include the NDPH or NDPL
elements. Because the descriptor does not contain a Next
Descriptor Pointer entry, the DMA engine defaults to using
the CURR_DESC_PTR register to step through descriptors, thus
allowing a group of descriptors to follow one another in
memory like an array.

• 0x6 - Descriptor List (Small Model) Mode. This mode
fetches a descriptor from memory that includes NDPL, but
not NDPH. Therefore, the high 16 bits of the Next Descriptor
Pointer field are taken from the upper 16 bits of the
NEXT_DESC_PTR register, thus confining all descriptors to a
specific 64K page in memory.

• 0x7 - Descriptor List (Large Model) Mode. This mode
fetches a descriptor from memory that includes NDPH and
NDPL, thus allowing maximum flexibility in locating descrip-
tors in memory.

• NDSIZE[3:0] (Flex Descriptor Size). This field specifies the num-
ber of descriptor elements in memory to load. This field must be 0
if in Stop or Autobuffer mode. If NDSIZE and FLOW specify a
descriptor that extends beyond YMOD, a DMA error results.

• DI_EN (Data Interrupt Enable). This bit specifies whether to allow
completion of a work unit to generate a data interrupt.

ADSP-BF533 Blackfin Processor Hardware Reference 9-15

Direct Memory Access

• DI_SEL (Data Interrupt Timing Select). This bit specifies the tim-
ing of a data interrupt—after completing the whole buffer or after
completing each row of the inner loop. This bit is used only in 2D
DMA operation.

• RESTART (DMA Buffer Clear). This bit specifies whether receive
data held in the channel’s data FIFO should be preserved
(RESTART = 0) or discarded (RESTART = 1) before beginning the
next work unit. Receive data is automatically discarded when the
DMAEN bit changes from 0 to 1, typically when a channel is first
enabled. Received FIFO data should usually be retained between
work units if the work units make up a continuous datastream. If,
however, a new work unit starts a new datastream, the RESTART bit
should be set to 1 to clear out any previously received data.

 The RESTART bit applies only to memory write DMA channels. It is
reserved in the cases of memory read DMA channels and MDMA
channels, and must be 0 in those cases.

 In memory write DMA channels, the RESTART bit only affects the
first work unit initiated by a write to the DMAx_CONFIG register. The
RESTART bit has no effect if it is set in DMACFG elements of DMA
descriptors.

• DMA2D (DMA Mode). This bit specifies whether DMA mode
involves only X_COUNT and X_MODIFY (one-dimensional DMA) or
also involves Y_COUNT and Y_MODIFY (two-dimensional DMA).

• WDSIZE[1:0] (Transfer Word Size). The DMA engine supports
transfers of 8-, 16-, or 32-bit items. Each request/grant results in a
single memory access (although two cycles are required to transfer
32-bit data through a 16-bit memory port or through the 16-bit
DMA Access bus). The DMA Address Pointer registers’ increment
sizes (strides) must be a multiple of the transfer unit size—1 for
8-bit, 2 for 16-bit, 4 for 32-bit.

DMA and Memory DMA Registers

9-16 ADSP-BF533 Blackfin Processor Hardware Reference

• WNR (DMA Direction). This bit specifies DMA direction—memory
read (0) or memory write (1).

• DMAEN (DMA Channel Enable). This bit specifies whether to enable
a given DMA channel.

 When a peripheral DMA channel is enabled, interrupts from the
peripheral denote DMA requests. When a channel is disabled, the
DMA unit ignores the peripheral interrupt and passes it directly to
the interrupt controller. To avoid unexpected results, take care to
enable the DMA channel before enabling the peripheral, and to
disable the peripheral before disabling the DMA channel.

DMAx_X_COUNT/MDMA_yy_X_COUNT Register
For 2D DMA, the Inner Loop Count register
(DMAx_X_COUNT/MDMA_yy_X_COUNT), shown in Figure 9-4, contains the
inner loop count. For 1D DMA, it specifies the number of elements to
read in. For details, see “Two-Dimensional DMA” on page 9-45. A value
of 0 in X_COUNT corresponds to 65,536 elements.

Figure 9-4. Inner Loop Count Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X

X_COUNT[15:0] (Inner
Loop Count)

X X X X X X X X X X X X X X X

Inner Loop Count Register (DMAx_X_COUNT/MDMA_yy_X_COUNT)
R/W prior to enabling channel; RO after enabling channel

Reset = Undefined

The number of elements to
read in (1D); the number of
rows in the inner loop (2D)

For Memory-
mapped
addresses, see
Table 9-7.

ADSP-BF533 Blackfin Processor Hardware Reference 9-17

Direct Memory Access

DMAx_X_MODIFY/MDMA_yy_X_MODIFY Register
The Inner Loop Address Increment register
(DMAx_X_MODIFY/MDMA_yy_X_MODIFY) contains a signed, two’s-complement
byte-address increment. In 1D DMA, this increment is the stride that is
applied after transferring each element.

 Note X_MODIFY is specified in bytes, regardless of the DMA transfer
size.

In 2D DMA, this increment is applied after transferring each element in
the inner loop, up to but not including the last element in each inner
loop. After the last element in each inner loop, the Y_MODIFY register is
applied instead, except on the very last transfer of each work unit. The
X_MODIFY register is always applied on the last transfer of a work unit.

Table 9-7. Inner Loop Count Register Memory-Mapped
Addresses

Register Name Memory-Mapped Address

DMA0_X_COUNT 0xFFC0 0C10

DMA1_X_COUNT 0xFFC0 0C50

DMA2_X_COUNT 0xFFC0 0C90

DMA3_X_COUNT 0xFFC0 0CD0

DMA4_X_COUNT 0xFFC0 0D10

DMA5_X_COUNT 0xFFC0 0D50

DMA6_X_COUNT 0xFFC0 0D90

DMA7_X_COUNT 0xFFC0 0DD0

MDMA_D0_X_COUNT 0xFFC0 0E10

MDMA_S0_X_COUNT 0xFFC0 0E50

MDMA_D1_X_COUNT 0xFFC0 0E90

MDMA_S1_X_COUNT 0xFFC0 0ED0

DMA and Memory DMA Registers

9-18 ADSP-BF533 Blackfin Processor Hardware Reference

The X_MODIFY field may be set to 0. In this case, DMA is performed
repeatedly to or from the same address. This is useful, for example, in
transferring data between a data register and an external memory-mapped
peripheral.

Figure 9-5. Inner Loop Address Increment Register

Table 9-8. Inner Loop Address Increment Register Memory-Mapped
Addresses

Register Name Memory-Mapped Address

DMA0_X_MODIFY 0xFFC0 0C14

DMA1_X_MODIFY 0xFFC0 0C54

DMA2_X_MODIFY 0xFFC0 0C94

DMA3_X_MODIFY 0xFFC0 0CD4

DMA4_X_MODIFY 0xFFC0 0D14

DMA5_X_MODIFY 0xFFC0 0D54

DMA6_X_MODIFY 0xFFC0 0D94

DMA7_X_MODIFY 0xFFC0 0DD4

MDMA_D0_X_MODIFY 0xFFC0 0E14

MDMA_S0_X_MODIFY 0xFFC0 0E54

MDMA_D1_X_MODIFY 0xFFC0 0E94

MDMA_S1_X_MODIFY 0xFFC0 0ED4

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X

X_MODIFY[15:0] (Inner
Loop Address Increment)

X X X X X X X X X X X X X X X

Inner Loop Address Increment Register (DMAx_X_MODIFY/MDMA_yy_X_MODIFY)
R/W prior to enabling channel; RO after enabling channel

Reset = Undefined

Stride (in bytes) to take after
each decrement of
CURR_X_COUNT

For Memory-
mapped
addresses, see
Table 9-8.

ADSP-BF533 Blackfin Processor Hardware Reference 9-19

Direct Memory Access

DMAx_Y_COUNT/MDMA_yy_Y_COUNT Register
For 2D DMA, the Outer Loop Count register
(DMAx_Y_COUNT/MDMA_yy_Y_COUNT) contains the outer loop count. It is not
used in 1D DMA mode. This register contains the number of rows in the
outer loop of a 2D DMA sequence. For details, see “Two-Dimensional
DMA” on page 9-45.

Figure 9-6. Outer Loop Count Register

Table 9-9. Outer Loop Count Register Memory-Mapped
Addresses

Register Name Memory-Mapped Address

DMA0_Y_COUNT 0xFFC0 0C18

DMA1_Y_COUNT 0xFFC0 0C58

DMA2_Y_COUNT 0xFFC0 0C98

DMA3_Y_COUNT 0xFFC0 0CD8

DMA4_Y_COUNT 0xFFC0 0D18

DMA5_Y_COUNT 0xFFC0 0D58

DMA6_Y_COUNT 0xFFC0 0D98

DMA7_Y_COUNT 0xFFC0 0DD8

MDMA_D0_Y_COUNT 0xFFC0 0E18

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X

Y_COUNT[15:0]
(Outer Loop Count)

X X X X X X X X X X X X X X X

Outer Loop Count Register (DMAx_Y_COUNT/MDMA_yy_Y_COUNT)
R/W prior to enabling channel; RO after enabling channel

Reset = Undefined

The number of rows in
the outer loop of a 2D
DMA sequence

For Memory-
mapped
addresses, see
Table 9-9.

DMA and Memory DMA Registers

9-20 ADSP-BF533 Blackfin Processor Hardware Reference

DMAx_Y_MODIFY/MDMA_yy_Y_MODIFY Register
The Outer Loop Address Increment register
(DMAx_Y_MODIFY/MDMA_yy_Y_MODIFY) contains a signed, two’s-complement
value. This byte-address increment is applied after each decrement of the
CURR_Y_COUNT register except for the last item in the 2D array where the
CURR_Y_COUNT also expires. The value is the offset between the last word of
one “row” and the first word of the next “row.” For details, see
“Two-Dimensional DMA” on page 9-45.

 Note Y_MODIFY is specified in bytes, regardless of the DMA transfer
size.

MDMA_S0_Y_COUNT 0xFFC0 0E58

MDMA_D1_Y_COUNT 0xFFC0 0E98

MDMA_S1_Y_COUNT 0xFFC0 0ED8

Figure 9-7. Outer Loop Address Increment Register

Table 9-9. Outer Loop Count Register Memory-Mapped
Addresses (Cont’d)

Register Name Memory-Mapped Address

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X

Y_MODIFY[15:0]
(Outer Loop Address
Increment)

X X X X X X X X X X X X X X X

Outer Loop Address Increment Register (DMAx_Y_MODIFY/ MDMA_yy_Y_MODIFY)
R/W prior to enabling channel; RO after enabling channel

Reset = Undefined

Stride to take after each
decrement of
CURR_Y_COUNT

For Memory-
mapped
addresses, see
Table 9-10.

ADSP-BF533 Blackfin Processor Hardware Reference 9-21

Direct Memory Access

DMAx_CURR_DESC_PTR/MDMA_yy_CURR_DESC_PTR
Register

The Current Descriptor Pointer register
(DMAx_CURR_DESC_PTR/MDMA_yy_CURR_DESC_PTR) contains the memory
address for the next descriptor element to be loaded. For FLOW mode set-
tings that involve descriptors (FLOW = 4, 6, or 7), this register is used to
read descriptor elements into appropriate MMRs before a DMA work
block begins. For Descriptor List modes (FLOW = 6 or 7), this register is
initialized from the NEXT_DESC_PTR register before loading each descriptor.
Then, the address in the CURR_DESC_PTR register increments as each
descriptor element is read in.

When the entire descriptor has been read, the CURR_DESC_PTR register con-
tains this value:

Table 9-10. Outer Loop Address Increment Register Memory-Mapped
Addresses

Register Name Memory-Mapped Address

DMA0_Y_MODIFY 0xFFC0 0C1C

DMA1_Y_MODIFY 0xFFC0 0C5C

DMA2_Y_MODIFY 0xFFC0 0C9C

DMA3_Y_MODIFY 0xFFC0 0CDC

DMA4_Y_MODIFY 0xFFC0 0D1C

DMA5_Y_MODIFY 0xFFC0 0D5C

DMA6_Y_MODIFY 0xFFC0 0D9C

DMA7_Y_MODIFY 0xFFC0 0DDC

MDMA_D0_Y_MODIFY 0xFFC0 0E1C

MDMA_S0_Y_MODIFY 0xFFC0 0E5C

MDMA_D1_Y_MODIFY 0xFFC0 0E9C

MDMA_S1_Y_MODIFY 0xFFC0 0EDC

DMA and Memory DMA Registers

9-22 ADSP-BF533 Blackfin Processor Hardware Reference

Descriptor Start Address + Descriptor Size (# of elements)

 For Descriptor Array mode (FLOW = 4), this register, and not the
NEXT_DESC_PTR register, must be programmed by MMR access
before starting DMA operation.

Figure 9-8. Current Descriptor Pointer Register

Table 9-11. Current Descriptor Pointer Register Memory-Mapped
Addresses

Register Name Memory-Mapped Address

DMA0_CURR_DESC_PTR 0xFFC0 0C20

DMA1_CURR_DESC_PTR 0xFFC0 0C60

DMA2_CURR_DESC_PTR 0xFFC0 0CA0

DMA3_CURR_DESC_PTR 0xFFC0 0CE0

DMA4_CURR_DESC_PTR 0xFFC0 0D20

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

X

Current Descriptor
Pointer[31:16]

X X X X X X X X X X X X X X X

Current Descriptor Pointer Register (DMAx_CURR_DESC_PTR/
MDMA_yy_CURR_DESC_PTR)
R/W prior to enabling channel; RO after enabling channel

Reset = Undefined

Upper 16 bits of
memory address of
the next descriptor
element

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

Current Descriptor
Pointer[15:0]

Lower 16 bits of
memory address of
the next descriptor
element

For Memory-
mapped
addresses, see
Table 9-11.

ADSP-BF533 Blackfin Processor Hardware Reference 9-23

Direct Memory Access

DMAx_CURR_ADDR/MDMA_yy_CURR_ADDR
Register

The Current Address register (DMAx_CURR_ADDR/MDMA_yy_CURR_ADDR),
shown in Figure 9-9, contains the present DMA transfer address for a
given DMA session. At the start of a DMA session, the CURR_ADDR register
is loaded from the START_ADDR register, and it is incremented as each trans-
fer occurs. The Current Address register contains 32 bits.

DMA5_CURR_DESC_PTR 0xFFC0 0D60

DMA6_CURR_DESC_PTR 0xFFC0 0DA0

DMA7_CURR_DESC_PTR 0xFFC0 0DE0

MDMA_D0_CURR_DESC_PTR 0xFFC0 0E20

MDMA_S0_CURR_DESC_PTR 0xFFC0 0E60

MDMA_D1_CURR_DESC_PTR 0xFFC0 0EA0

MDMA_S1_CURR_DESC_PTR 0xFFC0 0EE0

Table 9-11. Current Descriptor Pointer Register Memory-Mapped
Addresses (Cont’d)

Register Name Memory-Mapped Address

DMA and Memory DMA Registers

9-24 ADSP-BF533 Blackfin Processor Hardware Reference

Figure 9-9. Current Address Register

Table 9-12. Current Address Register Memory-Mapped Addresses

Register Name Memory-Mapped Address

DMA0_CURR_ADDR 0xFFC0 0C24

DMA1_CURR_ADDR 0xFFC0 0C64

DMA2_CURR_ADDR 0xFFC0 0CA4

DMA3_CURR_ADDR 0xFFC0 0CE4

DMA4_CURR_ADDR 0xFFC0 0D24

DMA5_CURR_ADDR 0xFFC0 0D64

DMA6_CURR_ADDR 0xFFC0 0DA4

DMA7_CURR_ADDR 0xFFC0 0DE4

MDMA_D0_CURR_ADDR 0xFFC0 0E24

MDMA_S0_CURR_ADDR 0xFFC0 0E64

MDMA_D1_CURR_ADDR 0xFFC0 0EA4

MDMA_S1_CURR_ADDR 0xFFC0 0EE4

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

X

Current Address[31:16]

X X X X X X X X X X X X X X X

Current Address Register (DMAx_CURR_ADDR/MDMA_yy_CURR_ADDR)
R/W prior to enabling channel; RO after enabling channel

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X

Current Address[15:0]

X X X X X X X X X X X X X X X

Reset = Undefined

Upper 16 bits of present
DMA transfer address for
a given DMA session

Lower 16 bits of present
DMA transfer address for
a given DMA session

For Memory-
mapped
addresses, see
Table 9-12.

ADSP-BF533 Blackfin Processor Hardware Reference 9-25

Direct Memory Access

DMAx_CURR_X_COUNT/MDMA_yy_CURR_X_COUNT
Register

The Current Inner Loop Count register
(DMAx_CURR_X_COUNT/MDMA_yy_CURR_X_COUNT) is loaded by the X_COUNT
register at the beginning of each DMA session (for 1D DMA) and also
after the end of DMA for each row (for 2D DMA). Otherwise it is decre-
mented each time an element is transferred. Expiration of the count in this
register signifies that DMA is complete. In 2D DMA, the CURR_X_COUNT
register value is 0 only when the entire transfer is complete. Between rows
it is equal to the value of the X_COUNT register.

Figure 9-10. Current Inner Loop Count Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X

CURR_X_COUNT[15:0]
(Current Inner Loop
Count)

X X X X X X X X X X X X X X X

Current Inner Loop Count Register (DMAx_CURR_X_COUNT/

R/W prior to enabling channel; RO after enabling channel

Reset = Undefined

Loaded by X_COUNT
at the beginning of each
DMA session (1D DMA),
or at the beginning of
each row (2D DMA)

For Memory-
mapped
addresses, see
Table 9-13.

DMA and Memory DMA Registers

9-26 ADSP-BF533 Blackfin Processor Hardware Reference

DMAx_CURR_Y_COUNT/MDMA_yy_CURR_Y_COUNT
Register

The Current Outer Loop Count register
(DMAx_CURR_Y_COUNT/MDMA_yy_CURR_Y_COUNT) is loaded by the Y_COUNT
register at the beginning of each 2D DMA session. It is not used for 1D
DMA. This register is decremented each time the CURR_X_COUNT register
expires during 2D DMA operation (1 to X_COUNT or 1 to 0 transition), sig-
nifying completion of an entire row transfer. After a 2D DMA session is
complete, CURR_Y_COUNT = 1 and CURR_X_COUNT = 0.

Table 9-13. Current Inner Loop Count Register Memory-Mapped
Addresses

Register Name Memory-Mapped Address

DMA0_CURR_X_COUNT 0xFFC0 0C30

DMA1_CURR_X_COUNT 0xFFC0 0C70

DMA2_CURR_X_COUNT 0xFFC0 0CB0

DMA3_CURR_X_COUNT 0xFFC0 0CF0

DMA4_CURR_X_COUNT 0xFFC0 0D30

DMA5_CURR_X_COUNT 0xFFC0 0D70

DMA6_CURR_X_COUNT 0xFFC0 0DB0

DMA7_CURR_X_COUNT 0xFFC0 0DF0

MDMA_D0_CURR_X_COUNT 0xFFC0 0E30

MDMA_S0_CURR_X_COUNT 0xFFC0 0E70

MDMA_D1_CURR_X_COUNT 0xFFC0 0EB0

MDMA_S1_CURR_X_COUNT 0xFFC0 0EF0

ADSP-BF533 Blackfin Processor Hardware Reference 9-27

Direct Memory Access

Figure 9-11. Current Outer Loop Count Register

Table 9-14. Current Outer Loop Count Register Memory-Mapped
Addresses

Register Name Memory-Mapped Address

DMA0_CURR_Y_COUNT 0xFFC0 0C38

DMA1_CURR_Y_COUNT 0xFFC0 0C78

DMA2_CURR_Y_COUNT 0xFFC0 0CB8

DMA3_CURR_Y_COUNT 0xFFC0 0CF8

DMA4_CURR_Y_COUNT 0xFFC0 0D38

DMA5_CURR_Y_COUNT 0xFFC0 0D78

DMA6_CURR_Y_COUNT 0xFFC0 0DB8

DMA7_CURR_Y_COUNT 0xFFC0 0DF8

MDMA_D0_CURR_Y_COUNT 0xFFC0 0E38

MDMA_S0_CURR_Y_COUNT 0xFFC0 0E78

MDMA_D1_CURR_Y_COUNT 0xFFC0 0EB8

MDMA_S1_CURR_Y_COUNT 0xFFC0 0EF8

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X

CURR_Y_COUNT[15:0]
(Current Outer Loop
Count)

X X X X X X X X X X X X X X X

Current Outer Loop Count Register (DMAx_CURR_Y_COUNT/
MDMA_yy_CURR_Y_COUNT)
R/W prior to enabling channel; RO after enabling channel

Reset = Undefined

Loaded by Y_COUNT
at the beginning of each
2D DMA session; not
used for 1D DMA

For Memory-
mapped
addresses, see
Table 9-14.

DMA and Memory DMA Registers

9-28 ADSP-BF533 Blackfin Processor Hardware Reference

DMAx_PERIPHERAL_MAP/MDMA_yy_PERIPHERAL_M
AP Register

Each DMA channel’s Peripheral Map register
(DMAx_PERIPHERAL_MAP/MDMA_yy_PERIPHERAL_MAP) contains bits that:

• Map the channel to a specific peripheral.

• Identify whether the channel is a Peripheral DMA channel or a
Memory DMA channel.

 Note a 1:1 mapping should exist between DMA channels and
peripherals. The user is responsible for ensuring that multiple
DMA channels are not mapped to the same peripheral and that
multiple peripherals are not mapped to the same DMA port. If
multiple channels are mapped to the same peripheral, only one
channel is connected (the lowest priority channel). If a nonexistent
peripheral (for example, 0xF in the PMAP field) is mapped to a chan-
nel, that channel is disabled—DMA requests are ignored, and no
DMA grants are issued. The DMA requests are also not forwarded
from the peripheral to the interrupt controller.

Follow these steps to swap the DMA channel priorities of two channels.
Assume that channels 6 and 7 are involved.

1. Make sure DMA is disabled on channels 6 and 7.

2. Write DMA6_PERIPHERAL_MAP with 0x7000 and
DMA7_PERIPHERAL_MAP with 0x6000.

3. Enable DMA on channels 6 and/or 7.

ADSP-BF533 Blackfin Processor Hardware Reference 9-29

Direct Memory Access

Figure 9-12. Peripheral Map Register

Table 9-15. Peripheral Map Register Memory-Mapped Addresses

Register Name Memory-Mapped Address

DMA0_PERIPHERAL_MAP 0xFFC0 0C2C

DMA1_PERIPHERAL_MAP 0xFFC0 0C6C

DMA2_PERIPHERAL_MAP 0xFFC0 0CAC

DMA3_PERIPHERAL_MAP 0xFFC0 0CEC

DMA4_PERIPHERAL_MAP 0xFFC0 0D2C

DMA5_PERIPHERAL_MAP 0xFFC0 0D6C

DMA6_PERIPHERAL_MAP 0xFFC0 0DAC

DMA7_PERIPHERAL_MAP 0xFFC0 0DEC

MDMA_D0_PERIPHERAL_MAP 0xFFC0 0E2C

MDMA_S0_PERIPHERAL_MAP 0xFFC0 0E6C

MDMA_D1_PERIPHERAL_MAP 0xFFC0 0EAC

MDMA_S1_PERIPHERAL_MAP 0xFFC0 0EEC

X XXX

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X X X X X X X

0x0 - PPI
0x1 - SPORT0 RX
0x2 - SPORT0 TX
0x3 - SPORT1 RX
0x4 - SPORT1 TX
0x5 - SPI
0x6 - UART RX
0x7 - UART TX

Peripheral Map Register (DMAx_PERIPHERAL_MAP/MDMA_yy_PERIPHERAL_MAP)

PMAP[3:0] (Peripheral
Mapped to This
Channel)

CTYPE (DMA Channel Type)
- RO
0 - Peripheral DMA
1 - Memory DMA

R/W prior to enabling channel; RO after enabling channel

For Memory-
mapped
addresses, see
Table 9-15.

Reset: See Table

DMA and Memory DMA Registers

9-30 ADSP-BF533 Blackfin Processor Hardware Reference

Table 9-16 lists the binary peripheral map settings for each DMA-capable
peripheral.

DMAx_IRQ_STATUS/MDMA_yy_IRQ_STATUS Register
The Interrupt Status register (DMAx_IRQ_STATUS/MDMA_yy_IRQ_STATUS),
shown in Figure 9-13, contains bits that record whether the DMA
channel:

• Is enabled and operating, enabled but stopped, or disabled.

• Is fetching data or a DMA descriptor.

Table 9-16. Peripheral Mapping

DMA
Channel

Default Peripheral Mapping Default PERIPHERAL_MAP
Setting (Binary)

Comments

0 (highest
priority)

PPI b#0000 0000 0000 0000

1 SPORT0 RX b#0001 0000 0000 0000

2 SPORT0 TX b#0010 0000 0000 0000

3 SPORT1 RX b#0011 0000 0000 0000

4 SPORT1 TX b#0100 0000 0000 0000

5 SPI b#0101 0000 0000 0000

6 UART RX b#0110 0000 0000 0000

7 UART TX b#0111 0000 0000 0000

8 Mem DMA Stream 0 Desti-
nation

b#0000 0000 0100 0000 Not reassignable

9 Mem DMA Stream 0 Source b#0000 0000 0100 0000 Not reassignable

10 Mem DMA Stream 1 Desti-
nation

b#0000 0000 0100 0000 Not reassignable

11 (lowest
priority)

Mem DMA Stream 1 Source b#0000 0000 0100 0000 Not reassignable

ADSP-BF533 Blackfin Processor Hardware Reference 9-31

Direct Memory Access

• Has detected that a global DMA interrupt or a channel interrupt is
being asserted.

• Has logged occurrence of a DMA error.

Note the DMA_DONE interrupt is asserted when the last memory access (read
or write) has completed.

 For a memory transfer to a peripheral, there may be up to four data
words in the channel’s DMA FIFO when the interrupt occurs. At
this point, it is normal to immediately start the next work unit. If,
however, the application needs to know when the final data item is
actually transferred to the peripheral, the application can test or
poll the DMA_RUN bit. As long as there is undelivered transmit data
in the FIFO, the DMA_RUN bit is 1.

 For a memory write DMA channel, the state of the DMA_RUN bit has
no meaning after the last DMA_DONE event has been signaled. It does
not indicate the status of the DMA FIFO.

 For MemDMA transfers where it is not desired to use an interrupt
to notify when the DMA operation has ended, software should poll
the DMA_DONE bit, and not the DMA_RUN bit, to determine when the
transaction has completed.

DMA and Memory DMA Registers

9-32 ADSP-BF533 Blackfin Processor Hardware Reference

Figure 9-13. Interrupt Status Register

Table 9-17. Interrupt Status Register Memory-Mapped
Addresses

Register Name Memory-Mapped Address

DMA0_IRQ_STATUS 0xFFC0 0C28

DMA1_IRQ_STATUS 0xFFC0 0C68

DMA2_IRQ_STATUS 0xFFC0 0CA8

DMA3_IRQ_STATUS 0xFFC0 0CE8

DMA4_IRQ_STATUS 0xFFC0 0D28

DMA5_IRQ_STATUS 0xFFC0 0D68

DMA6_IRQ_STATUS 0xFFC0 0DA8

DMA7_IRQ_STATUS 0xFFC0 0DE8

00

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0

This bit is set to 1 automatically when
the DMA_CONFIG register is written
0 - This DMA channel is disabled, or it

is enabled but paused (FLOW
mode 0)

1 - This DMA channel is enabled and
operating, either transferring data
or fetching a DMA descriptor

Interrupt Status Register (DMAx_IRQ_STATUS/MDMA_yy_IRQ_STATUS)

DFETCH (DMA Descriptor
 Fetch) - RO

DMA_RUN (DMA Channel
Running) - RO

DMA_DONE (DMA Comple-
tion Interrupt Status) - W1C
0 - No interrupt is being

asserted for this channel
1 - DMA work unit has

completed, and this DMA
channel’s interrupt is being
asserted

DMA_ERR (DMA Error Inter-
rupt Status) - W1C
0 - No DMA error has

occurred
1 - A DMA error has occurred,

and the global DMA Error
interrupt is being asserted.
After this error occurs,
the contents of the DMA
Current registers are
unspecified. Control/
Status and Parameter
registers are unchanged.

Reset = 0x0000

This bit is set to 1 automatically when
the DMA_CONFIG register is written
with FLOW modes 4–7
0 - This DMA channel is disabled, or it

is enabled but stopped (FLOW
mode 0)

1 - This DMA channel is enabled and
presently fetching a DMA descriptor

For Memory-
mapped
addresses, see
Table 9-17.

ADSP-BF533 Blackfin Processor Hardware Reference 9-33

Direct Memory Access

The processor supports a flexible interrupt control structure with three
interrupt sources.

• Data driven interrupts (see Table 9-18)

• Peripheral Error interrupts

• DMA Error interrupts (for example, Bad Descriptor or Bus Error)

Separate Interrupt Request (IRQ) levels are allocated for Data and Periph-
eral Error interrupts, and DMA Error interrupts.

All DMA channels are OR’ed together into one system-level DMA Error
interrupt. The individual IRQ_STATUS words of each channel can be read
to identify the channel that caused the DMA Error interrupt.

MDMA_D0_IRQ_STATUS 0xFFC0 0E28

MDMA_S0_IRQ_STATUS 0xFFC0 0E68

MDMA_D1_IRQ_STATUS 0xFFC0 0EA8

MDMA_S1_IRQ_STATUS 0xFFC0 0EE8

Table 9-18. Data Driven Interrupts

Interrupt Name Description

No Interrupt Interrupts can be disabled for a given work unit.

Peripheral Interrupt These are peripheral (non-DMA) interrupts.

Row Completion DMA Interrupts can occur on the completion of a row
(CURR_X_COUNT expiration).

Buffer Completion DMA Interrupts can occur on the completion of an entire buf-
fer (when CURR_X_COUNT and CURR_Y_COUNT expire).

Table 9-17. Interrupt Status Register Memory-Mapped
Addresses (Cont’d)

Register Name Memory-Mapped Address

Flex Descriptor Structure

9-34 ADSP-BF533 Blackfin Processor Hardware Reference

 Note the DMA_DONE and DMA_ERR interrupt indicators are
write-one-to-clear (W1C).

 When switching a peripheral from DMA to non-DMA mode, the
peripheral’s interrupts should be disabled during the mode switch
(via the appropriate peripheral registers or SIC_IMASK) so that no
unintended interrupt is generated on the shared DMA/interrupt
request line.

Flex Descriptor Structure
DMA flex descriptors are variable sized data structures whose contents are
loaded into DMA Parameter registers. The sequence of registers in the
descriptor is essentially fixed (among three similar variations), but the
length of the descriptor is completely programmable. The DMA channel
registers are ordered so that the registers that are most commonly reloaded
per work unit are at the lowest MMR addresses. The user may choose
whether or not to use descriptors. If not using descriptors, the user can
write the DMA MMRs directly to start DMA, and use either Autobuffer
mode for continuous operation or Stop mode for single-buffer operation.

To use descriptors, the user programs the NDSIZE field of the DMAx_CONFIG
register with the number of DMA registers to load from the descriptor,
starting with the lowest MMR address. The user may select a descriptor
size from one entry (the lower 16 bits of START_ADDR) to nine entries (all
the DMA parameters).

ADSP-BF533 Blackfin Processor Hardware Reference 9-35

Direct Memory Access

The three variations of the descriptor value sequences depend on whether
a Next Descriptor Pointer is included and, if so, what kind.

• None included (Descriptor Array mode)

• The lower 16 bits of the Next Descriptor Pointer (Descriptor List,
Small Model)

• All 32 bits of the Next Descriptor Pointer (Descriptor List, Large
Model)

All the other registers not loaded from the descriptor retain their prior val-
ues, although the CURR_ADDR, CURR_X_COUNT, and CURR_Y_COUNT registers
are reloaded between the descriptor fetch and the start of DMA operation.

There are certain DMA settings that are not allowed to change from one
descriptor to the next in a chain (Small or Large List and Array modes).
These are DMA Direction, Word Size, and Memory Space (that is,
switching between internal and external memory).

A single descriptor chain cannot control the transfer of a sequence of data
buffers which reside in different memory spaces. Instead, group the data
buffers into chains of buffers in the same space, but do not link the chains
together. Transfer the first chain, wait for its final interrupt, and then start
the next chain with an MMR write to the DMA_CONFIG register.

Note that while the user must locate each chain’s data buffers in the same
memory space, the descriptor structures themselves may be placed in any
memory space, and they may link from a descriptor in one space to a
descriptor in another space without restriction.

Flex Descriptor Structure

9-36 ADSP-BF533 Blackfin Processor Hardware Reference

Table 9-19 shows the offsets for descriptor elements in the three modes
described above. Note the names in the table list the descriptor elements
in memory, not the actual MMRs into which they are eventually loaded.

Table 9-19. Parameter Registers and Descriptor Offsets

Descriptor
Offset

Descriptor Array
Mode

Small Descriptor List
Mode

Large Descriptor List
Mode

0x0 SAL NDPL NDPL

0x2 SAH SAL NDPH

0x4 DMACFG SAH SAL

0x6 XCNT DMACFG SAH

0x8 XMOD XCNT DMACFG

0xA YCNT XMOD XCNT

0xC YMOD YCNT XMOD

0xE YMOD YCNT

0x10 YMOD

ADSP-BF533 Blackfin Processor Hardware Reference 9-37

Direct Memory Access

DMA Operation Flow
Figure 9-14 and Figure 9-15 describe the DMA Flow.

Figure 9-14. DMA Flow, From DMA Controller’s Point of View (1 of 2)

COPY FLOW, NDSIZE FROM DMA_CONFIG
INTO TEMPORARY DESCRIPTOR FETCH COUNTERS

B

COPY NEXT DESCRIPTOR POINTER
TO CURRENT DESCRIPTOR POINTER

USER WRITES SOME OR ALL DMA PARAMETER
REGISTERS, AND THEN WRITES DMA_CONFIG

SET DFETCH IN IRQ_STATUS

SET DMA_RUN IN IRQ_STATUS

BAD DMA_CONFIG?

TEST DMA_EN

TEST FLOW

TEST FLOW

Y

N

DMA ERROR

DMA_EN = 1

DMA_EN = 0

FLOW = 4, 6, OR 7

DMA STOPPED.
CLEAR DMA_RUN IN

IRQ_STATUS

FLOW = 0 OR 1
A

C

DI_EN = 0 OR
(DI_EN = 1 AND
DMA_DONE_IRQ = 1)

FLOW = 4

FLOW = 6 OR 7

DMA Operation Flow

9-38 ADSP-BF533 Blackfin Processor Hardware Reference

Figure 9-15. DMA Flow, From DMA Controller’s Point of View (2 of 2)

B

A

C

TEST NDSIZE
DMA

ABORT
OCCURS

READ NDSIZE ELEMENTS
OF DESCRIPTOR INTO

PARAMETER REGISTERS
VIA CURRENT

DESCRIPTOR POINTER
FLOW = 0 OR 1

FLOW = 1

CLEAR DFETCH IN
IRQ_STATUS

DMA TRANSFER
BEGINS AND

CONTINUES UNTIL
COUNTS EXPIRE

TEST DI_EN

TEST FLOW

TEST WNR

DMA STOPPED.
CLEAR DMA_RUN IN

IRQ_STATUS.

MEMORY WRITE (DESTINATION)

MEMORY READ
(SOURCE)

FLOW = 0

DI_EN = 0

DI_EN = 1 SIGNAL AN
INTERRUPT

TO THE CORE

SET DMA_DONE
IN IRQ_STATUS

TRANSFER
DATA FROM

FIFO TO
PERIPHERAL
UNTIL EMPTY

*MAX SIZE DEPENDS ON FLOW
 IF FLOW = 4, MAX_SIZE = 7
 IF FLOW = 6, MAX_SIZE = 8
 IF FLOW = 7, MAX_SIZE = 9

NDSIZE = 0 OR
NDSIZE > MAX_SIZE*

NDSIZE > 0 AND
NDSIZE <= MAX_SIZE*

ADSP-BF533 Blackfin Processor Hardware Reference 9-39

Direct Memory Access

DMA Startup
This section discusses starting DMA “from scratch.” This is similar to
starting it after it has been paused by FLOW = 0 mode.

 Before initiating DMA for the first time on a given channel, be
sure to initialize all Parameter registers. Be especially careful to ini-
tialize the upper 16 bits of the NEXT_DESC_PTR and START_ADDR
registers, because they might not otherwise be accessed, depending
on the chosen FLOW mode of operation.

To start DMA operation on a given channel, some or all of the DMA
Parameter registers must first be written directly. At a minimum, the
NEXT_DESC_PTR register (or CURR_DESC_PTR register in FLOW = 4 mode)
must be written at this stage, but the user may wish to write other DMA
registers that might be static throughout the course of DMA activity (for
example, X_MODIFY, Y_MODIFY). The contents of NDSIZE and FLOW in
DMA_CONFIG indicate which registers, if any, are fetched from descriptor
elements in memory. After the descriptor fetch, if any, is completed,
DMA operation begins, initiated by writing DMA_CONFIG with DMAEN = 1.

When DMA_CONFIG is written directly, the DMA controller recognizes this
as the special startup condition that occurs when starting DMA for the
first time on this channel or after the engine has been stopped (FLOW = 0).

When the descriptor fetch is complete and DMAEN = 1, the DMACFG descrip-
tor element that was read into DMA_CONFIG assumes control. Before this
point, the direct write to DMA_CONFIG had control. In other words, the
WDSIZE, DI_EN, DI_SEL, RESTART, and DMA2D fields will be taken from the
DMACFG value in the descriptor read from memory, while these field values
initially written to the DMA_CONFIG register are ignored.

DMA Operation Flow

9-40 ADSP-BF533 Blackfin Processor Hardware Reference

As Figure 9-14 and Figure 9-15 show, at startup the FLOW and NDSIZE bits
in DMA_CONFIG determine the course of the DMA setup process. The FLOW
value determines whether to load more Current registers from descriptor
elements in memory, while the NDSIZE bits detail how many descriptor
elements to fetch before starting DMA. DMA registers not included in the
descriptor are not modified from their prior values.

If the FLOW value specifies Small or Large Descriptor List modes, the
NEXT_DESC_PTR is copied into CURR_DESC_PTR. Then, fetches of new
descriptor elements from memory are performed, indexed by
CURR_DESC_PTR, which is incremented after each fetch. If NDPL and/or NDPH
is part of the descriptor, then these values are loaded into NEXT_DESC_PTR,
but the fetch of the current descriptor continues using CURR_DESC_PTR.
After completion of the descriptor fetch, CURR_DESC_PTR points to the next
16-bit word in memory past the end of the descriptor.

If neither NDPH nor NDPL are part of the descriptor (that is, in Descriptor
Array mode, FLOW = 4), then the transfer from NDPH/NDPL into
CURR_DESC_PTR does not occur. Instead, descriptor fetch indexing begins
with the value in CURR_DESC_PTR.

If DMACFG is not part of the descriptor, the previous DMA_CONFIG settings (as
written by MMR access at startup) control the work unit operation. If
DMACFG is part of the descriptor, then the DMA_CONFIG value programmed
by the MMR access controls only the loading of the first descriptor from
memory. The subsequent DMA work operation is controlled by the low
byte of the descriptor’s DMACFG and by the Parameter registers loaded from
the descriptor. The bits DI_EN, DI_SEL, DMA2D, WDSIZE, and WNR in the value
programmed by the MMR access are disregarded.

The DMA_RUN and DFETCH status bits in the IRQ_STATUS register indicate the
state of the DMA channel. After a write to DMA_CONFIG, the DMA_RUN and
DFETCH bits can be automatically set to 1. No data interrupts are signaled
as a result of loading the first descriptor from memory.

ADSP-BF533 Blackfin Processor Hardware Reference 9-41

Direct Memory Access

After the above steps, the Current registers are loaded automatically from
the appropriate descriptor elements, overwriting their previous contents,
as follows.

• START_ADDR is copied to CURR_ADDR

• X_COUNT is copied to CURR_X_COUNT

• Y_COUNT is copied to CURR_Y_COUNT

Then DMA data transfer operation begins, as shown in Figure 9-15.

DMA Refresh
On completion of a work unit, the DMA controller:

• Completes the transfer of all data between memory and the DMA
unit.

• If enabled by DI_EN, signals an interrupt to the core and sets the
DMA_DONE bit in the channel’s IRQ_STATUS register.

• If FLOW = 0 (Stop) only:

Stops operation by clearing the DMA_RUN bit in IRQ_STATUS after any
data in the channel’s DMA FIFO has been transferred to the
peripheral.

• During the fetch in FLOW modes 4, 6, and 7, the DMA controller
sets the DFETCH bit in IRQ_STATUS to 1. At this point, the DMA
operation depends on whether FLOW = 4, 6, or 7, as follows:

If FLOW = 4 (Descriptor Array):

Loads a new descriptor from memory into DMA registers via the
contents of CURR_DESC_PTR, while incrementing CURR_DESC_PTR.

DMA Operation Flow

9-42 ADSP-BF533 Blackfin Processor Hardware Reference

The descriptor size comes from the NDSIZE field of the DMA_CONFIG
value prior to the beginning of the fetch.

If FLOW = 6 (Descriptor List Small):

Copies the 32-bit NEXT_DESC_PTR into CURR_DESC_PTR. Next,
fetches a descriptor from memory into DMA registers via the new
contents of CURR_DESC_PTR, while incrementing CURR_DESC_PTR.
The first descriptor element loaded is a new 16-bit value for the
lower 16 bits of NEXT_DESC_PTR, followed by the rest of the descrip-
tor elements. The high 16 bits of NEXT_DESC_PTR will retain their
former value. This supports a shorter, more efficient descriptor
than the Descriptor List Large model, suitable whenever the appli-
cation can place the channel’s descriptors in the same 64K byte
range of memory.

If FLOW = 7 (Descriptor List Large):

Copies the 32-bit NEXT_DESC_PTR into CURR_DESC_PTR. Next,
fetches a descriptor from memory into DMA registers via the new
contents of CURR_DESC_PTR, while incrementing CURR_DESC_PTR.
The first descriptor element loaded is a new 32-bit value for the
full NEXT_DESC_PTR, followed by the rest of the descriptor elements.
The high 16 bits of NEXT_DESC_PTR may differ from their former
value. This supports a fully flexible descriptor list which can be
located anywhere in internal memory or external memory.

• Note if it is necessary to link from a descriptor chain whose
descriptors are in one 64K byte area to another chain whose
descriptors are outside that area, only one descriptor needs to use
FLOW = 7—just the descriptor which contains the link leaving the
64K byte range. All the other descriptors located together in the
same 64K byte areas may use FLOW = 6.

ADSP-BF533 Blackfin Processor Hardware Reference 9-43

Direct Memory Access

• If FLOW = 1, 4, 6, or 7 (Autobuffer, Descriptor Array, Descriptor
List Small, or Descriptor List Large, respectively):

(Re)loads the Current registers:
CURR_ADDR loaded from START_ADDR
CURR_X_COUNT loaded from X_COUNT
CURR_Y_COUNT loaded from Y_COUNT

The DFETCH bit in IRQ_STATUS is then cleared, after which the DMA
transfer begins again, as shown in Figure 9-15.

To Stop DMA Transfers
In FLOW = 0 mode, DMA stops automatically after the work unit is
complete.

If a list or array of descriptors is used to control DMA, and if every
descriptor contains a DMACFG element, then the final DMACFG element
should have a FLOW = 0 setting to gracefully stop the channel.

In Autobuffer (FLOW = 1) mode, or if a list or array of descriptors without
DMACFG elements is used, then the DMA transfer process must be termi-
nated by an MMR write to the DMAx_CONFIG register with a value whose
DMAEN bit is 0. A write of 0 to the entire register will always terminate
DMA gracefully (without DMA Abort).

Before enabling the channel again, make sure that any slow memory read
operations that may have started are completed (for example, reads from
slow external memory). Do not enable the channel again until any such
reads are complete.

DMA Operation Flow

9-44 ADSP-BF533 Blackfin Processor Hardware Reference

To Trigger DMA Transfers
If a DMA has been stopped in FLOW = 0 mode, the DMA_RUN bit in the
DMA Interrupt Status register remains set until the content of the internal
DMA FIFOs has been completely processed. Once the DMA_RUN bit clears,
it is safe to restart the DMA by simply writing again to the DMA Config-
uration register. The DMA sequence is repeated with the previous
settings.

Similarly, a descriptor-based DMA sequence that has been stopped tem-
porarily with a FLOW = 0 descriptor can be continued with a new write to
the Configuration register. When the DMA controller detects the FLOW = 0
condition by loading the DMACFG field from memory, it has already
updated the Next Descriptor pointer, regardless of whether operating in
Descriptor Array mode or Descriptor List mode.

The Next Descriptor pointer remains valid, if the DMA halts and is
restarted. As soon as the DMA_RUN bit clears, software can restart the DMA
and force the DMA controller to fetch the next descriptor. To accomplish
this, the software writes a value with the DMAEN bit set and with proper val-
ues in the FLOW and NDSIZE fields into the Configuration register. The next
descriptor is fetched if FLOW equals 0x4, 0x6, or 0x7. In this mode of opera-
tion, the NDSIZE field should at least span up to the DMACFG field to
overwrite the Configuration register immediately.

If all DMACFG fields in a descriptor chain have the FLOW and NDSIZE fields set
to zero, the individual DMA sequences do not start until triggered by soft-
ware. This is useful when the DMAs need to be synchronized with other
events in the system, and it is typically performed by interrupt service rou-
tines. A single MMR write is required to trigger the next DMA sequence.

ADSP-BF533 Blackfin Processor Hardware Reference 9-45

Direct Memory Access

Especially when applied to MemDMA channels, such scenarios play an
important role. Usually, the timing of MemDMAs cannot be controlled.
By halting descriptor chains or rings this way, the whole DMA transaction
can be broken into pieces that are individually triggered by software.

 Source and destination channels of a MemDMA may differ in
descriptor structure. However, the total work count must match
when the DMA stops. Whenever a MemDMA is stopped, destina-
tion and source channels should both provide the same FLOW = 0
mode after exactly the same number of words. Accordingly, both
channels need to be started afterward.

Two-Dimensional DMA
Two-dimensional (2D) DMA supports arbitrary row and column sizes up
to 64 K x 64 K elements, as well as arbitrary X_MODIFY and Y_MODIFY val-
ues up to ±32 K bytes. Furthermore, Y_MODIFY can be negative, allowing
implementation of interleaved datastreams. The X_COUNT and Y_COUNT val-
ues specify the row and column sizes, where X_COUNT must be 2 or greater.

The start address and modify values are in bytes, and they must be aligned
to a multiple of the DMA transfer word size (WDSIZE[1:0] in DMA_CONFIG).
Misalignment causes a DMA error.

The X_MODIFY value is the byte-address increment that is applied after each
transfer that decrements the CURR_X_COUNT register. The X_MODIFY value is
not applied when the inner loop count is ended by decrementing
CURR_X_COUNT from 1 to 0, except that it is applied on the final transfer
when CURR_Y_COUNT is 1 and CURR_X_COUNT decrements from 1 to 0.

The Y_MODIFY value is the byte-address increment that is applied after each
decrement of CURR_Y_COUNT. However, the Y_MODIFY value is not applied
to the last item in the array on which the outer loop count (CURR_Y_COUNT)
also expires by decrementing from 1 to 0.

Two-Dimensional DMA

9-46 ADSP-BF533 Blackfin Processor Hardware Reference

After the last transfer completes, CURR_Y_COUNT = 1, CURR_X_COUNT = 0,
and CURR_ADDR is equal to the last item’s address plus X_MODIFY. Note if
the DMA channel is programmed to refresh automatically (Autobuffer
mode), then these registers will be loaded from X_COUNT, Y_COUNT, and
START_ADDR upon the first data transfer.

Examples
Example 1: Retrieve a 16  8 block of bytes from a video frame buffer of
size (N  M) pixels:

X_MODIFY = 1

X_COUNT = 16

Y_MODIFY = N–15 (offset from the end of one row to the start of

another)

Y_COUNT = 8

This produces the following address offsets from the start address:

0,1,2,...15,

N,N + 1, ... N + 15,

2N, 2N + 1,... 2N + 15, ...

7N, 7N + 1,... 7N + 15,

Example 2: Receive a video datastream of bytes,
(R,G,B pixels)  (N  M image size):

X_MODIFY = (N * M)

X_COUNT = 3

Y_MODIFY = 1 – 2(N * M) (negative)

Y_COUNT = (N * M)

ADSP-BF533 Blackfin Processor Hardware Reference 9-47

Direct Memory Access

This produces the following address offsets from the start address:

0, (N * M), 2(N * M),

1, (N * M) + 1, 2(N * M) + 1,

2, (N * M) + 2, 2(N * M) + 2,

...

(N * M) – 1, 2(N * M) – 1, 3(N * M) – 1,

More 2D DMA Examples
Examples of DMA styles supported by flex descriptors include:

• A single linear buffer that stops on completion (FLOW = Stop mode)

• A linear buffer with stride greater than 1 (X_MODIFY > 1)

• A circular, auto-refreshing buffer that interrupts on each full buffer

• A similar buffer that interrupts on fractional buffers (for example,
1/2, 1/4) (2D DMA)

• 1D DMA, using a set of identical ping-pong buffers defined by a
linked ring of 3-word descriptors, each containing { link pointer,
32-bit address }

• 1D DMA, using a linked list of 5-word descriptors containing
{ link pointer, 32-bit address, length, config } (ADSP-2191 style)

• 2D DMA, using an array of 1-word descriptors, specifying only the
base DMA address within a common data page

• 2D DMA, using a linked list of 9-word descriptors, specifying
everything

Memory DMA

9-48 ADSP-BF533 Blackfin Processor Hardware Reference

Memory DMA
This section describes the Memory DMA (MDMA) controller, which pro-
vides memory-to-memory DMA transfers among the various memory
spaces. These include L1 memory and external synchronous/ asynchro-
nous memories.

Each MDMA controller contains a DMA FIFO, an 8-word by 16-bit
FIFO block used to transfer data to and from either L1 or the External
Access Bus (EAB). Typically, it is used to transfer data between external
memory and internal memory. It will also support DMA from Boot ROM
on the EAB bus. The FIFO can be used to hold DMA data transferred
between two L1 memory locations or between two external memory
locations.

The processor provides four MDMA channels:

• Two source channels (for reading from memory)

• Two destination channels (for writing to memory)

Each source/destination channel forms a “stream,” and these two streams
are hardwired for DMA priorities 8 through 11.

• Priority 8: Memory DMA Destination Stream D0

• Priority 9: Memory DMA Source Stream D0

• Priority 10: Memory DMA Destination Stream D1

• Priority 11: Memory DMA Source Stream D1

Memory DMA Stream 0 takes precedence over Memory DMA Stream 1,
unless round robin scheduling is used. Note it is illegal to program a
source stream for memory write or a destination stream for memory read.

ADSP-BF533 Blackfin Processor Hardware Reference 9-49

Direct Memory Access

The channels support 8-, 16-, and 32-bit Memory DMA transfers, but
both ends of the MDMA transfer must be programmed to the same word
size. In other words, the MDMA transfer does not perform packing or
unpacking of data; each read results in one write. Both ends of the
MDMA FIFO for a given stream are granted priority at the same time.
Each pair shares an 8-word-deep 16-bit FIFO. The source DMA engine
fills the FIFO, while the destination DMA engine empties it. The FIFO
depth allows the burst transfers of the External Access Bus (EAB) and
DMA Access Bus (DAB) to overlap, significantly improving throughput
on block transfers between internal and external memory. Two separate
descriptor blocks are required to supply the operating parameters for each
MDMA pair, one for the source channel and one for the destination
channel.

Because the source and destination DMA engines share a single FIFO buf-
fer, the descriptor blocks must be configured to have the same data size. It
is possible to have a different mix of descriptors on both ends as long as
the total count is the same.

To start an MDMA transfer operation, the MMRs for the source and des-
tination streams are written, each in a manner similar to peripheral DMA.

 Note the DMA_CONFIG register for the source stream must be written
before the DMA_CONFIG register for the destination stream.

When the destination DMA_CONFIG register is written, MDMA operation
starts, after a latency of 3 SCLK cycles.

First, if either MDMA stream has been selected to use descriptors, the
descriptors are fetched from memory. The destination stream descriptors
are fetched first. Then, after a latency of 4 SCLK cycles after the last
descriptor word is returned from memory (or typically 8 SCLK cycles after
the fetch of the last descriptor word, due to memory pipelining), the
source MDMA stream begins fetching data from the source buffer. The

DMA Performance Optimization

9-50 ADSP-BF533 Blackfin Processor Hardware Reference

resulting data is deposited in the MDMA stream’s 8-location FIFO, and
then after a latency of 2 SCLK cycles, the destination MDMA stream begins
writing data to the destination memory buffer.

MDMA Bandwidth
If source and destination are in different memory spaces (one internal and
one external), the internal and external memory transfers are typically
simultaneous and continuous, maintaining 100% bus utilization of the
internal and external memory interfaces. This performance is affected by
core-to-system clock frequency ratios. At ratios below about 2.5:1, syn-
chronization and pipeline latencies result in lower bus utilization in the
system clock domain. At a clock ratio of 2:1, for example, DMA typically
runs at 2/3 of the system clock rate. At higher clock ratios, full bandwidth
is maintained.

If source and destination are in the same memory space (both internal or
both external), the MDMA stream typically prefetches a burst of source
data into the FIFO, and then automatically turns around and delivers all
available data from the FIFO to the destination buffer. The burst length is
dependent on traffic, and is equal to 3 plus the memory latency at the
DMA in SCLKs (which is typically 7 for internal transfers and 6 for exter-
nal transfers).

DMA Performance Optimization
The DMA system is designed to provide maximum throughput per chan-
nel and maximum utilization of the internal buses, while accommodating
the inherent latencies of memory accesses.

A key feature of the DMA architecture is the separation of the activity on
the peripheral DMA bus (the DMA Access Bus (DAB)) from the activity
on the buses between the DMA and memory (the DMA Core Bus (DCB)
and the DMA External Bus (DEB)). Each peripheral DMA channel has its

ADSP-BF533 Blackfin Processor Hardware Reference 9-51

Direct Memory Access

own data FIFO which lies between the DAB bus and the memory buses.
These FIFOs automatically prefetch data from memory for transmission
and buffer received data for later memory writes. This allows the periph-
eral to be granted a DMA transfer with very low latency compared to the
total latency of a pipelined memory access, permitting the repeat rate
(bandwidth) of each DMA channel to be as fast as possible.

Peripheral DMA channels have a maximum transfer rate of one 16-bit
word per two system clocks, per channel, in either direction.

MDMA channels have a maximum transfer rate of one 16-bit word per
one system clock (SCLK), per channel.

When all DMA channels’ traffic is taken in the aggregate:

• Transfers between the peripherals and the DMA unit have a maxi-
mum rate of one 16-bit transfer per system clock.

• Transfers between the DMA unit and internal memory (L1) have a
maximum rate of one 16-bit transfer per system clock.

• Transfers between the DMA unit and external memory have a
maximum rate of one 16-bit transfer per system clock.

Some considerations which limit the actual performance include:

• Accesses to internal or external memory which conflict with core
accesses to the same memory. This can cause delays, for example,
for accessing the same L1 bank, for opening/closing SDRAM
pages, or while filling cache lines.

• Each direction change from RX to TX on the DAB bus imposes a
one SCLK cycle delay.

• Direction changes on the DCB bus (for example, write followed by
read) to the same bank of internal memory can impose delays.

DMA Performance Optimization

9-52 ADSP-BF533 Blackfin Processor Hardware Reference

• Direction changes (for example, read followed by write) on the
DEB bus to external memory can each impose a several-cycle delay.

• MMR accesses to DMA registers other than DMAx_CONFIG,
DMAx_IRQSTAT, or DMAx_PERIPHERAL_MAP will stall all DMA activity
for one cycle per 16-bit word transferred. In contrast, MMR
accesses to the Control/Status registers do not cause stalls or wait
states.

• Reads from DMA registers other than Control/Status registers use
one PAB bus wait state, delaying the core for several core clocks.

• Descriptor fetches consume one DMA memory cycle per 16-bit
word read from memory, but do not delay transfers on the DAB
bus.

• Initialization of a DMA channel stalls DMA activity for one cycle.
This occurs when DMAEN changes from 0 to 1 or when the RESTART
bit is set to 1 in the DMAx_CONFIG register.

Several of these factors may be minimized by proper design of the applica-
tion software. It is often possible to structure the software to avoid
internal and external memory conflicts by careful allocation of data buffers
within banks and pages, and by planning for low cache activity during
critical DMA operations. Furthermore, unnecessary MMR accesses can be
minimized, especially by using descriptors or autobuffering.

Efficiency loss caused by excessive direction changes (thrashing) can be
minimized by the processor’s traffic control features, described in the next
section.

Prioritization and Traffic Control
DMA channels are ordinarily granted service strictly according to their
priority. The priority of a channel is simply its channel number, where
lower priority numbers are granted first. Thus, peripherals with high data

ADSP-BF533 Blackfin Processor Hardware Reference 9-53

Direct Memory Access

rates or low latency requirements should be assigned to lower numbered
(higher priority) channels using the DMAx_PERIPHERAL_MAP registers. The
Memory DMA streams are always lower priority than the peripherals, but
as they request service continuously, they ensure that any time slots
unused by peripheral DMA are applied to MDMA transfers. By default,
when more than one MDMA stream is enabled and ready, only the high-
est priority MDMA stream is granted. If it is desirable for the MDMA
streams to share the available bandwidth, however, the
MDMA_ROUND_ROBIN_PERIOD may be programmed to select each stream in
turn for a fixed number of transfers.

In the processor DMA, there are two completely separate but simultane-
ous prioritization processes—the DAB bus prioritization and the memory
bus (DCB and DEB) prioritization. Peripherals that are requesting DMA
via the DAB bus, and whose data FIFOs are ready to handle the transfer,
compete with each other for DAB bus cycles. Similarly but separately,
channels whose FIFOs need memory service (prefetch or post-write) com-
pete together for access to the memory buses. MDMA streams compete
for memory access as a unit, and source and destination may be granted
together if their memory transfers do not conflict. In this way, inter-
nal-to-external or external-to-internal memory transfers may occur at the
full system clock rate (SCLK). Examples of memory conflict include simul-
taneous access to the same memory space and simultaneous attempts to
fetch descriptors. Special processing may occur if a peripheral is requesting
DMA but its FIFO is not ready (for example, an empty transmit FIFO or
full receive FIFO). For more information, see “Urgent DMA Transfers”
on page 9-59.

Traffic control is an important consideration in optimizing use of DMA
resources. Traffic control is a way to influence how often the transfer
direction on the data buses may change, by automatically grouping same
direction transfers together. The DMA block provides a traffic control
mechanism controlled by the DMA_TC_PER and DMA_TC_CNT registers. This
mechanism performs the optimization without real-time processor inter-
vention, and without the need to program transfer bursts into the DMA

DMA Performance Optimization

9-54 ADSP-BF533 Blackfin Processor Hardware Reference

work unit streams. Traffic can be independently controlled for each of the
three buses (DAB, DCB, and DEB) with simple counters. In addition,
alternation of transfers among MDMA streams can be controlled with the
MDMA_ROUND_ROBIN_COUNT field of the DMA_TC_CNT register. See “MDMA
Priority and Scheduling” on page 9-57.

Using the traffic control features, the DMA system preferentially grants
data transfers on the DAB or memory buses which are going in the same
read/write direction as the previous transfer, until either the traffic control
counter times out, or until traffic stops or changes direction on its own.
When the traffic counter reaches zero, the preference is changed to the
opposite flow direction. These directional preferences work as if the prior-
ity of the opposite direction channels were decreased by 16.

For example, if channels 3 and 5 were requesting DAB access, but lower
priority channel 5 is going “with traffic” and higher priority channel 3 is
going “against traffic,” then channel 3’s effective priority becomes 19, and
channel 5 would be granted instead. If, on the next cycle, only channels 3
and 6 were requesting DAB transfers, and these transfer requests were
both “against traffic,” then their effective priorities would become 19 and
22, respectively. One of the channels (channel 3) is granted, even though
its direction is opposite to the current flow. No bus cycles are wasted,
other than any necessary delay required by the bus turnaround.

This type of traffic control represents a trade-off of latency to improve uti-
lization (efficiency). Higher traffic timeouts might increase the length of
time each request waits for its grant, but it often dramatically improves the
maximum attainable bandwidth in congested systems, often to above
90%.

To disable preferential DMA prioritization, program the DMA_TC_PER reg-
ister to 0x0000.

ADSP-BF533 Blackfin Processor Hardware Reference 9-55

Direct Memory Access

DMA_TC_PER and DMA_TC_CNT Registers

The DMA Traffic Control Counter Period register (DMA_TC_PER) and the
DMA Traffic Control Counter register (DMA_TC_CNT) work with other
DMA registers to define traffic control.

The MDMA_ROUND_ROBIN_COUNT field shows the current transfer count
remaining in the MDMA round robin period. It initializes to
MDMA_ROUND_ROBIN_PERIOD whenever DMA_TC_PER is written, whenever a
different MDMA stream is granted, or whenever every MDMA stream is
idle. It then counts down to 0 with each MDMA transfer. When this
count decrements from 1 to 0, the next available MDMA stream is
selected.

The DAB_TRAFFIC_COUNT field shows the current cycle count remaining in
the DAB traffic period. It initializes to DAB_TRAFFIC_PERIOD whenever
DMA_TC_PER is written, or whenever the DAB bus changes direction or
becomes idle. It then counts down from DAB_TRAFFIC_PERIOD to 0 on each
system clock (except for DMA stalls). While this count is nonzero, same
direction DAB accesses are treated preferentially. When this count decre-
ments from 1 to 0, the opposite direction DAB access is treated
preferentially, which may result in a direction change. When this count is
0 and a DAB bus access occurs, the count is reloaded from
DAB_TRAFFIC_PERIOD to begin a new burst.

The DEB_TRAFFIC_COUNT field shows the current cycle count remaining in
the DEB traffic period. It initializes to DEB_TRAFFIC_PERIOD whenever
DMA_TC_PER is written, or whenever the DEB bus changes direction or
becomes idle. It then counts down from DEB_TRAFFIC_PERIOD to 0 on each
system clock (except for DMA stalls). While this count is nonzero, same
direction DEB accesses are treated preferentially. When this count decre-
ments from 1 to 0, the opposite direction DEB access is treated
preferentially, which may result in a direction change. When this count is
0 and a DEB bus access occurs, the count is reloaded from
DEB_TRAFFIC_PERIOD to begin a new burst.

DMA Performance Optimization

9-56 ADSP-BF533 Blackfin Processor Hardware Reference

The DCB_TRAFFIC_COUNT field shows the current cycle count remaining in
the DCB traffic period. It initializes to DCB_TRAFFIC_PERIOD whenever
DMA_TC_PER is written, or whenever the DCB bus changes direction or
becomes idle. It then counts down from DCB_TRAFFIC_PERIOD to 0 on each
system clock (except for DMA stalls). While this count is nonzero, same
direction DCB accesses are treated preferentially. When this count decre-
ments from 1 to 0, the opposite direction DCB access is treated
preferentially, which may result in a direction change. When this count is
0 and a DCB bus access occurs, the count is reloaded from
DCB_TRAFFIC_PERIOD to begin a new burst.

Figure 9-16. DMA Traffic Control Counter Period Register

0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0

Maximum length of MDMA round
robin bursts. If not zero, any MDMA
stream which receives a grant is
allowed up to that number of DMA
transfers, to the exclusion of the other
MDMA streams.

DMA Traffic Control Counter Period Register (DMA_TC_PER)

DAB_TRAFFIC_PERIOD[2:0]

000 - No DAB bus transfer grouping performed
Other - Preferred length of unidirectional bursts
on the DAB bus between the DMA and the
peripherals

MDMA_ROUND_ROBIN_
PERIOD[4:0]

DCB_TRAFFIC_PERIOD[3:0]

DEB_TRAFFIC_PERIOD[3:0]

Reset = 0x0000

000 - No DCB bus transfer
grouping performed
Other - Preferred length of uni-
directional bursts on the DCB
bus between the DMA and
internal L1 memory

000 - No DEB bus transfer
grouping performed
Other - Preferred length of uni-
directional bursts on the DEB
bus between the DMA and
external memory

ADSP-BF533 Blackfin Processor Hardware Reference 9-57

Direct Memory Access

MDMA Priority and Scheduling
All MDMA operations have lower precedence than any peripheral DMA
operations. MDMA thus makes effective use of any memory bandwidth
unused by peripheral DMA traffic.

If two MDMA streams are used (S0-D0 and S1-D1), the user may choose
to allocate bandwidth either by fixed stream priority or by a round robin
scheme. This is selected by programming the MDMA_ROUND_ROBIN_PERIOD
field in the DMA_TC_PER register (see “Prioritization and Traffic Control”
on page 9-52).

If this field is set to 0, then MDMA is scheduled by fixed priority.
MDMA Stream 0 takes precedence over MDMA Stream 1 whenever
Stream 0 is ready to perform transfers. Since an MDMA Stream is typi-
cally capable of transferring data on every available cycle, this could cause
MDMA Stream 1 traffic to be delayed for an indefinite time until any and
all MDMA Stream 0 operations are complete. This scheme could be
appropriate in systems where low duration but latency sensitive data buf-
fers need to be moved immediately, interrupting long duration, low
priority background transfers.

Figure 9-17. DMA Traffic Control Counter Register

RO

0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0

Current transfer count remaining in
the MDMA round robin period

DMA Traffic Control Counter Register (DMA_TC_CNT)

DAB_TRAFFIC_COUNT[2:0]

Current cycle count remaining in the
DAB traffic period

MDMA_ROUND_ROBIN_
COUNT[4:0]

DCB_TRAFFIC_COUNT[3:0]

DEB_TRAFFIC_COUNT[3:0]

Reset = 0x0000

Current cycle count remaining
in the DCB traffic period

Current cycle count remaining
in the DEB traffic period

DMA Performance Optimization

9-58 ADSP-BF533 Blackfin Processor Hardware Reference

If the MDMA_ROUND_ROBIN_PERIOD field is set to some nonzero value in the
range 1 <= P <= 31, then a round robin scheduling method is used. The
two MDMA streams are granted bus access in alternation in bursts of up
to P data transfers. This could be used in systems where two transfer pro-
cesses need to coexist, each with a guaranteed fraction of the available
bandwidth. For example, one stream might be programmed for inter-
nal-to-external moves while the other is programmed for
external-to-internal moves, and each would be allocated approximately
equal data bandwidth.

In round robin operation, the MDMA stream selection at any time is
either “free” or “locked.” Initially, the selection is free. On any free cycle
available to MDMA (when no peripheral DMA accesses take precedence),
if either or both MDMA streams request access, the higher precedence
stream will be granted (Stream 0 in case of conflict), and that stream’s
selection is then “locked.” The MDMA_ROUND_ROBIN_COUNT counter field in
the DMA_TC_CNT register is loaded with the period P from
MDMA_ROUND_ROBIN_PERIOD, and MDMA transfers begin. The counter is
decremented on every data transfer (as each data word is written to mem-
ory). After the transfer corresponding to a count of 1, the MDMA stream
selection is passed automatically to the other stream with zero overhead,
and the MDMA_ROUND_ROBIN_COUNT counter is reloaded with the period
value P from MDMA_ROUND_ROBIN_PERIOD. In this cycle, if the other MDMA
stream is ready to perform a transfer, the stream selection is locked on the
new MDMA stream. If the other MDMA stream is not ready to perform a
transfer, then no transfer is performed, and on the next cycle the stream
selection unlocks and becomes free again.

If round robin operation is used when only one MDMA stream is active,
one idle cycle will occur for each P MDMA data cycles, slightly lowering
bandwidth by a factor of 1/(P+1). If both MDMA streams are used, how-
ever, memory DMA can operate continuously with zero additional
overhead for alternation of streams (other than overhead cycles normally
associated with reversal of read/write direction to memory, for example).

ADSP-BF533 Blackfin Processor Hardware Reference 9-59

Direct Memory Access

By selection of various round robin period values P which limit how often
the MDMA streams alternate, maximal transfer efficiency can be
maintained.

Urgent DMA Transfers
Typically, DMA transfers for a given peripheral occur at regular intervals.
Generally, the shorter the interval, the higher the priority that should be
assigned to the peripheral. If the average bandwidth of all the peripherals
is not too large a fraction of the total, then all peripherals’ requests should
be granted as required.

Occasionally, instantaneous DMA traffic might exceed the available band-
width, causing congestion. This may occur if L1 or external memory is
temporarily stalled, perhaps for an SDRAM page swap or a cache line fill.
Congestion might also occur if one or more DMA channels initiates a
flurry of requests, perhaps for descriptor fetches or to fill a FIFO in the
DMA or in the peripheral.

If congestion persists, lower priority DMA peripherals may become
starved for data. Even though the peripheral’s priority is low, if the neces-
sary data transfer does not take place before the end of the peripheral’s
regular interval, system failure may result. To minimize this possibility,
the DMA unit detects peripherals whose need for data has become urgent,
and preferentially grants them service at the highest priority.

A DMA channel’s request for memory service is defined as “urgent” if
both:

• The channel’s FIFO is not ready for a DAB bus transfer (that is, a
transmit FIFO is empty or a receive FIFO is full), and

• The peripheral is asserting its DMA request line.

Software Management of DMA

9-60 ADSP-BF533 Blackfin Processor Hardware Reference

Descriptor fetches may be urgent, if they are necessary to initiate or con-
tinue a DMA work unit chain for a starving peripheral. DMA requests
from an MDMA channel are never urgent.

When one or more DMA channels express an urgent memory request, two
events occur:

• All non-urgent memory requests are decreased in priority by 32,
guaranteeing that only an urgent request will be granted. The
urgent requests compete with each other, if there is more than one,
and directional preference among urgent requests is observed.

• The resulting memory transfer is marked for expedited processing
in the targeted memory system (L1 or external), and so are all prior
incomplete memory transfers ahead of it in that memory system.
This may cause a series of external memory core accesses to be
delayed for a few cycles so that a peripheral’s urgent request may be
accommodated.

The preferential handling of urgent DMA transfers is completely auto-
matic. No user controls are required for this function to operate.

Software Management of DMA
Several synchronization and control methods are available for use in devel-
opment of software tasks which manage DMA and MDMA (see also
“Memory DMA” on page 9-48). Such software needs to be able to accept
requests for new DMA transfers from other software tasks, integrate these
transfers into existing transfer queues, and reliably notify other tasks when
the transfers are complete.

In the processor, it is possible for each DMA peripheral and MDMA
stream to be managed by a separate task or to be managed together with
any other stream. Each DMA channel has independent, orthogonal con-
trol registers, resources, and interrupts, so that the selection of the control

ADSP-BF533 Blackfin Processor Hardware Reference 9-61

Direct Memory Access

scheme for one channel does not affect the choice of control scheme on
other channels. For example, one peripheral can use a linked-descrip-
tor-list, interrupt-driven scheme while another peripheral can
simultaneously use a demand-driven, buffer-at-a-time scheme synchro-
nized by polling of the IRQ_STATUS register.

Synchronization of Software and DMA
A critical element of software DMA management is synchronization of
DMA buffer completion with the software. This can best be done using
interrupts, polling of IRQ_STATUS, or a combination of both. Polling for
address or count can only provide synchronization within loose tolerances
comparable to pipeline lengths.

Interrupt-based synchronization methods must avoid interrupt overrun,
or the failure to invoke a DMA channel’s interrupt handler for every inter-
rupt event due to excessive latency in processing of interrupts. Generally,
the system design must either ensure that only one interrupt per channel is
scheduled (for example, at the end of a descriptor list), or that interrupts
are spaced sufficiently far apart in time that system processing budgets can
guarantee every interrupt is serviced. Note since every interrupt channel
has its own distinct interrupt, interaction among the interrupts of differ-
ent peripherals is much simpler to manage.

Polling of the CURR_ADDR, CURR_DESC_PTR, or CURR_X/Y_COUNT registers is
not recommended as a method of precisely synchronizing DMA with data
processing, due to DMA FIFOs and DMA/memory pipelining. The Cur-
rent Address, Pointer, and Count registers change several cycles in advance
of the completion of the corresponding memory operation, as measured
by the time at which the results of the operation would first be visible to
the core by memory read or write instructions. For example, in a DMA
memory write operation to external memory, assume a DMA write by
channel A is initiated that causes the SDRAM to perform a page open
operation which will take many system clock cycles. The DMA engine
may then move on to another DMA operation by channel B which does

Software Management of DMA

9-62 ADSP-BF533 Blackfin Processor Hardware Reference

not in itself incur latency, but will be stalled behind the slow operation by
channel A. Software monitoring channel B could not safely conclude
whether the memory location pointed to by channel B’s CURR_ADDR has or
has not been written, based on examination of the CURR_ADDR register
contents.

Polling of the Current Address, Pointer, and Count registers can permit
loose synchronization of DMA with software, however, if allowances are
made for the lengths of the DMA/memory pipeline. The length of the
DMA FIFO for a peripheral DMA channel is four locations (either four 8-
or 16-bit data elements, or two 32-bit data elements) and for an MDMA
FIFO is eight locations (four 32-bit data elements). The DMA will not
advance Current Address/Pointer/Count registers if these FIFOs are filled
with incomplete work (including reads that have been started but not yet
finished).

Additionally, the length of the combined DMA and L1 pipelines to inter-
nal memory is approximately six 8- or 16-bit data elements. The length of
the DMA and External Bus Interface Unit (EBIU) pipelines is approxi-
mately three data elements, when measured from the point where a DMA
register update is visible to an MMR read to the point where DMA and
core accesses to memory become strictly ordered. If the DMA FIFO
length and the DMA/memory pipeline length are added, an estimate can
be made of the maximum number of incomplete memory operations in
progress at one time. (Note this is a maximum, as the DMA/memory
pipeline may include traffic from other DMA channels.)

For example, assume a peripheral DMA channel is transferring a work
unit of 100 data elements into internal memory and its CURR_X_COUNT reg-
ister reads a value of 60 remaining elements, so that processing of the first
40 elements has at least been started. The total pipeline length is no
greater than the sum of 4 (for the PDMA FIFO) plus 6 (for the
DMA/memory pipeline), or 10 data elements, so it is safe to conclude that
the DMA transfer of the first 40-10 = 30 data elements is complete.

ADSP-BF533 Blackfin Processor Hardware Reference 9-63

Direct Memory Access

For precise synchronization, software should either wait for an interrupt
or consult the channel’s IRQ_STATUS register to confirm completion of
DMA, rather than polling Current Address/Pointer/Count registers.
When the DMA system issues an interrupt or changes an IRQ_STATUS bit,
it guarantees that the last memory operation of the work unit has been
completed and will definitely be visible to DSP code. For memory read
DMA, the final memory read data will have been safely received in the
DMA’s FIFO; for memory write DMA, the DMA unit will have received
an acknowledge from L1 memory or the EBIU that the data has been
written.

The following examples show methods of synchronizing software with
several different styles of DMA.

Single-Buffer DMA Transfers

Synchronization is simple if a peripheral’s DMA activity consists of iso-
lated transfers of single buffers. DMA activity is initiated by software
writes to the channel’s Control registers. The user may choose to use a
single descriptor in memory, in which case the software only needs to
write the DMA_CONFIG and the NEXT_DESC_PTR registers. Alternatively, the
user may choose to write all the MMR registers directly from software,
ending with the write to the DMA_CONFIG register.

The simplest way to signal completion of DMA is by an interrupt. This is
selected by the DI_EN bit in the DMA_CONFIG register, and by the necessary
setup of the System Interrupt Controller. If it is desirable not to use an
interrupt, the software can poll for completion by reading the IRQ_STATUS
register and testing the DMA_RUN bit. If this bit is zero, the buffer transfer
has completed.

Software Management of DMA

9-64 ADSP-BF533 Blackfin Processor Hardware Reference

Continuous Transfers Using Autobuffering

If a peripheral’s DMA data consists of a steady, periodic stream of signal
data, DMA autobuffering (FLOW = 1) may be an effective option. Here,
DMA is transferred from or to a memory buffer with a circular addressing
scheme, using either one- or two-dimensional indexing with zero proces-
sor and DMA overhead for looping. Synchronization options include:

• 1D, interrupt-driven—software is interrupted at the conclusion of
each buffer. The critical design consideration is that the software
must deal with the first items in the buffer before the next DMA
transfer, which might overwrite or re-read the first buffer location
before it is processed by software. This scheme may be workable if
the system design guarantees that the data repeat period is longer
than the interrupt latency under all circumstances.

• 2D, interrupt-driven (double buffering)—the DMA buffer is parti-
tioned into two or more sub-buffers, and interrupts are selected
(set DI_SEL = 1 in DMA_CONFIG) to be signaled at the completion of
each DMA inner loop. In this way, a traditional double buffer or
“ping-pong” scheme could be implemented.

For example, two 512-word sub-buffers inside a 1K word buffer
could be used to receive 16-bit peripheral data with these settings:

START_ADDR = buffer base address
1DMA_CONFIG = 0x10D7 (FLOW = 1, DI_EN = 1, DI_SEL = 1,
DMA2D = 1, WDSIZE = 01, WNR = 1, DMAEN = 1)
X_COUNT = 512

X_MODIFY = 2 for 16-bit data
Y_COUNT = 2 for two sub-buffers
Y_MODIFY = 2, same as X_MODIFY for contiguous sub-buffers

• 2D, polled—if interrupt overhead is unacceptable but the loose
synchronization of address/count register polling is acceptable, a
2D multibuffer synchronization scheme may be used. For example,
assume receive data needs to be processed in packets of sixteen

ADSP-BF533 Blackfin Processor Hardware Reference 9-65

Direct Memory Access

32-bit elements. A four-part 2D DMA buffer can be allocated
where each of the four sub-buffers can hold one packet with these
settings:

START_ADDR = buffer base address
DMA_CONFIG = 0x101B (FLOW = 1, DI_EN = 0, DMA2D = 1,
WDSIZE = 10, WNR = 1, DMAEN = 1)
X_COUNT = 16

X_MODIFY = 4 for 32-bit data
Y_COUNT = 4 for four sub-buffers
Y_MODIFY = 4, same as X_MODIFY for contiguous sub-buffers

The synchronization core might read Y_COUNT to determine which
sub-buffer is currently being transferred, and then allow one full
sub-buffer to account for pipelining. For example, if a read of
Y_COUNT shows a value of 3, then the software should assume that
sub-buffer 3 is being transferred, but some portion of sub-buffer 2
may not yet be received. The software could, however, safely pro-
ceed with processing sub-buffers 1 or 0.

• 1D unsynchronized FIFO—if a system’s design guarantees that
the processing of a peripheral’s data and the DMA rate of the data
will remain correlated in the steady state, but that short-term
latency variations must be tolerated, it may be appropriate to build
a simple FIFO. Here, the DMA channel may be programmed using
1D Autobuffer mode addressing without any interrupts or polling.

Software Management of DMA

9-66 ADSP-BF533 Blackfin Processor Hardware Reference

Descriptor Structures

DMA descriptors may be used to transfer data to or from memory data
structures that are not simple 1D or 2D arrays. For example, if a packet
of data is to be transmitted from several different locations in memory
(a header from one location, a payload from a list of several blocks of
memory managed by a memory pool allocator, and a small trailer contain-
ing a checksum), a separate DMA descriptor can be prepared for each
memory area, and the descriptors can be grouped in either an array or list
as desired by selecting the appropriate FLOW setting in DMA_CONFIG.

The software can synchronize with the progress of the structure’s transfer
by selecting interrupt notification for one or more of the descriptors. For
example, the software might select interrupt notification for the header’s
descriptor and for the trailer’s descriptor, but not for the payload blocks’
descriptors.

It is important to remember the meaning of the various fields in the
DMA_CONFIG descriptor elements when building a list or array of DMA
descriptors. In particular:

• The lower byte of DMA_CONFIG specifies the DMA transfer to be per-
formed by the current descriptor (for example, interrupt-enable,
2D mode)

• The upper byte of DMA_CONFIG specifies the format of the next
descriptor in the chain. The NDSIZE and FLOW fields in a given
descriptor do not correspond to the format of the descriptor itself;
they specify the link to the next descriptor, if any.

On the other hand, when the DMA unit is being restarted, both bytes of
the DMA_CONFIG value written to the DMA channel’s DMA_CONFIG register
should correspond to the current descriptor. At a minimum, the FLOW,
NDSIZE, WNR, and DMAEN fields must all agree with the current descriptor;
the WDSIZE, DI_EN, DI_SEL, RESTART, and DMA2D fields will be taken from
the DMA_CONFIG value in the descriptor read from memory (and the field
values initially written to the register are ignored).

ADSP-BF533 Blackfin Processor Hardware Reference 9-67

Direct Memory Access

Descriptor Queue Management

A system designer might want to write a DMA Manager facility which
accepts DMA requests from other software. The DMA Manager software
does not know in advance when new work requests will be received or
what these requests might contain. The software could manage these
transfers using a circular linked list of DMA descriptors, where each
descriptor’s NDPH and NDPL members point to the next descriptor, and the
last descriptor points to the first.

The code that writes into this descriptor list could use the processor’s cir-
cular addressing modes (I, L, M, and B registers), so that it does not need to
use comparison and conditional instructions to manage the circular struc-
ture. In this case, the NDPH and NDPL members of each descriptor could
even be written once at startup, and skipped over as each descriptor’s new
contents are written.

The recommended method for synchronization of a descriptor queue is
through the use of an interrupt. The descriptor queue is structured so that
at least the final valid descriptor is always programmed to generate an
interrupt.

There are two general methods for managing a descriptor queue using
interrupts:

• Interrupt on every descriptor

• Interrupt minimally - only on the last descriptor

Descriptor Queue Using Interrupts on Every Descriptor

In this system, the DMA Manager software synchronizes with the DMA
unit by enabling an interrupt on every descriptor. This method should
only be used if system design can guarantee that each interrupt event will
be serviced separately (no interrupt overrun).

Software Management of DMA

9-68 ADSP-BF533 Blackfin Processor Hardware Reference

To maintain synchronization of the descriptor queue, the non-interrupt
software maintains a count of descriptors added to the queue, while the
interrupt handler maintains a count of completed descriptors removed
from the queue. The counts are equal only when the DMA channel is
paused after having processed all the descriptors.

When each new work request is received, the DMA Manager software ini-
tializes a new descriptor, taking care to write a DMA_CONFIG value with a
FLOW value of 0. Next, the software compares the descriptor counts to
determine if the DMA channel is running or not. If the DMA channel is
paused (counts equal), the software increments its count and then starts
the DMA unit by writing the new descriptor’s DMA_CONFIG value to the
DMA channel’s DMA_CONFIG register.

If the counts are unequal, the software instead modifies the next-to-last
descriptor’s DMA_CONFIG value so that its upper half (FLOW and NDSIZE) now
describes the newly queued descriptor. This operation does not disrupt the
DMA channel, provided the rest of the descriptor data structure is initial-
ized in advance. It is necessary, however, to synchronize the software to
the DMA to correctly determine whether the new or the old DMA_CONFIG
value was read by the DMA channel.

This synchronization operation should be performed in the interrupt
handler. First, upon interrupt, the handler should read the channel’s
IRQ_STATUS register. If the DMA_RUN status bit is set, then the channel has
moved on to processing another descriptor, and the interrupt handler may
increment its count and exit. If the DMA_RUN status bit is not set, however,
then the channel has paused, either because there are no more descriptors
to process, or because the last descriptor was queued too late (that is, the
modification of the next-to-last descriptor’s DMA_CONFIG element occurred
after that element was read into the DMA unit.) In this case, the interrupt
handler should write the DMA_CONFIG value appropriate for the last descrip-
tor to the DMA channel’s DMA_CONFIG register, increment the completed
descriptor count, and exit.

ADSP-BF533 Blackfin Processor Hardware Reference 9-69

Direct Memory Access

Again, this system can fail if the system’s interrupt latencies are large
enough to cause any of the channel’s DMA interrupts to be dropped. An
interrupt handler capable of safely synchronizing multiple descriptors’
interrupts would need to be complex, performing several MMR accesses to
ensure robust operation. In such a system environment, a minimal inter-
rupt synchronization method is preferred.

Descriptor Queue Using Minimal Interrupts

In this system, only one DMA interrupt event is possible in the queue at
any time. The DMA interrupt handler for this system can also be
extremely short. Here, the descriptor queue is organized into an “active”
and a “waiting” portion, where interrupts are enabled only on the last
descriptor in each portion.

When each new DMA request is processed, the software’s non-interrupt
code fills in a new descriptor’s contents and adds it to the waiting portion
of the queue. The descriptor’s DMA_CONFIG word should have a FLOW value
of zero. If more than one request is received before the DMA queue com-
pletion interrupt occurs, the non-interrupt code should queue later
descriptors, forming a waiting portion of the queue that is disconnected
from the active portion of the queue being processed by the DMA unit. In
other words, all but the last active descriptors contain FLOW values >= 4
and have no interrupt enable set, while the last active descriptor contains a
FLOW of 0 and an interrupt enable bit DI_EN set to 1. Also, all but the last
waiting descriptors contain FLOW values >= 4 and no interrupt enables set,
while the last waiting descriptor contains a FLOW of 0 and an interrupt
enable bit set to 1. This ensures that the DMA unit can automatically pro-
cess the whole active queue and then issue one interrupt. Also, this
arrangement makes it easy to start the waiting queue within the interrupt
handler by a single DMA_CONFIG register write.

Software Management of DMA

9-70 ADSP-BF533 Blackfin Processor Hardware Reference

After queuing a new waiting descriptor, the non-interrupt software should
leave a message for its interrupt handler in a memory mailbox location
containing the desired DMA_CONFIG value to use to start the first waiting
descriptor in the waiting queue (or 0 to indicate no descriptors are
waiting.)

It is critical that the software not modify the contents of the active
descriptor queue directly, once its processing by the DMA unit has been
started, unless careful synchronization measures are taken. In the most
straightforward implementation of a descriptor queue, the DMA Manager
software would never modify descriptors on the active queue; instead, the
DMA Manager waits until the DMA queue completion interrupt indicates
the processing of the entire active queue is complete.

When a DMA queue completion interrupt is received, the interrupt han-
dler reads the mailbox from the non-interrupt software and writes the
value in it to the DMA channel’s DMA_CONFIG register. This single register
write restarts the queue, effectively transforming the waiting queue to an
active queue. The interrupt handler should then pass a message back to
the non-interrupt software indicating the location of the last descriptor
accepted into the active queue. If, on the other hand, the interrupt han-
dler reads its mailbox and finds a DMA_CONFIG value of zero, indicating
there is no more work to perform, then it should pass an appropriate mes-
sage (for example, zero) back to the non-interrupt software indicating that
the queue has stopped. This simple handler should be able to be coded in
a very small number of instructions.

The non-interrupt software which accepts new DMA work requests needs
to synchronize the activation of new work with the interrupt handler. If
the queue has stopped (that is, if the mailbox from the interrupt software
is zero), the non-interrupt software is responsible for starting the queue
(writing the first descriptor’s DMA_CONFIG value to the channel’s
DMA_CONFIG register). If the queue is not stopped, however, the
non-interrupt software must not write the DMA_CONFIG register

ADSP-BF533 Blackfin Processor Hardware Reference 9-71

Direct Memory Access

(which would cause a DMA error), but instead it should queue the
descriptor onto the waiting queue and update its mailbox directed to the
interrupt handler.

DMA Errors (Aborts)
The DMA controller flags conditions that cause the DMA process to end
abnormally (that is, abort). This functionality is provided as a tool for sys-
tem development and debug, as a way to detect DMA-related
programming errors. DMA errors (aborts) are detected by the DMA chan-
nel module in the cases listed below. When a DMA error occurs, the
channel is immediately stopped (DMA_RUN goes to 0) and any prefetched
data is discarded. In addition, a DMA_ERROR interrupt is asserted.

There is only one DMA_ERROR interrupt for the whole DMA controller,
which is asserted whenever any of the channels has detected an error
condition.

The DMA_ERROR interrupt handler must do these things for each channel:

• Read each channel’s IRQ_STATUS register to look for a channel with
the DMA_ERR bit set (bit 1).

• Clear the problem with that channel (for example, fix register
values).

• Clear the DMA_ERR bit (write IRQ_STATUS with bit 1 = 1).

DMA Errors (Aborts)

9-72 ADSP-BF533 Blackfin Processor Hardware Reference

The following error conditions are detected by the DMA hardware and
result in a DMA Abort interrupt.

• The Configuration register contains invalid values:

- Incorrect WDSIZE value (WDSIZE = b#11)
- Bit 15 not set to 0
- Incorrect FLOW value (FLOW = 2, 3, or 5)
- NDSIZE value does not agree with FLOW. See Table 9-20.

• A disallowed register write occurred while the channel was run-
ning. Only the DMA_CONFIG and IRQ_STATUS registers can be written
when DMA_RUN = 1.

• An address alignment error occurred during any memory access.
For example, DMA_CONFIG register WDSIZE = 1 (16 bit) but the least
significant bit (LSB) of the address is not equal to 0, or WDSIZE = 2
(32 bit) but the two LSBs of the address are not equal to 00.

• A memory space transition was attempted (internal-to-external or
vice versa).

• A memory access error occurred. Either an access attempt was
made to an internal address not populated or defined as cache, or
an external access caused an error (signaled by the external memory
interface).

Some prohibited situations are not detected by the DMA hardware. No
DMA abort is signaled for these situations:

• DMA_CONFIG Direction bit (WNR) does not agree with the direction of
the mapped peripheral.

• DMA_CONFIG Direction bit does not agree with the direction of the
MDMA channel.

• DMA_CONFIG Word Size (WDSIZE) is not supported by the mapped
peripheral.

ADSP-BF533 Blackfin Processor Hardware Reference 9-73

Direct Memory Access

• DMA_CONFIG Word Size in source and destination of the MDMA
stream are not equal.

• Descriptor chain indicates data buffers that are not in the same
internal/external memory space.

• In 2D DMA, X_COUNT = 1.

Table 9-20. Legal NDSIZE Values

FLOW NDSIZE Note

0 0

1 0

4 0 < NDSIZE <= 7 Descriptor array, no
descriptor pointer
fetched

6 0 < NDSIZE <= 8 Descriptor list, small
descriptor pointer
fetched

7 0 < NDSIZE <= 9 Descriptor list, large
descriptor pointer
fetched

DMA Errors (Aborts)

9-74 ADSP-BF533 Blackfin Processor Hardware Reference

ADSP-BF533 Blackfin Processor Hardware Reference 10-1

10 SPI COMPATIBLE PORT
CONTROLLERS

The processor has a Serial Peripheral Interface (SPI) port that provides an
I/O interface to a wide variety of SPI compatible peripheral devices.

With a range of configurable options, the SPI port provides a glueless
hardware interface with other SPI compatible devices. SPI is a four-wire
interface consisting of two data pins, a device select pin, and a clock pin.
SPI is a full-duplex synchronous serial interface, supporting master modes,
slave modes, and multimaster environments. The SPI compatible periph-
eral implementation also supports programmable baud rate and clock
phase/polarities. The SPI features the use of open drain drivers to support
the multimaster scenario and to avoid data contention.

Typical SPI compatible peripheral devices that can be used to interface to
the SPI compatible interface include:

• Other CPUs or microcontrollers

• Codecs

• A/D converters

• D/A converters

• Sample rate converters

• SP/DIF or AES/EBU digital audio transmitters and receivers

• LCD displays

10-2 ADSP-BF533 Blackfin Processor Hardware Reference

• Shift registers

• FPGAs with SPI emulation

The SPI is an industry-standard synchronous serial link that supports
communication with multiple SPI compatible devices. The SPI peripheral
is a synchronous, four-wire interface consisting of two data pins (MOSI and
MISO), one device select pin (SPISS), and a gated clock pin (SCK). With the
two data pins, it allows for full-duplex operation to other SPI compatible
devices. The SPI also includes programmable baud rates, clock phase, and
clock polarity.

The SPI can operate in a multimaster environment by interfacing with
several other devices, acting as either a master device or a slave device. In a
multimaster environment, the SPI interface uses open drain outputs to
avoid data bus contention.

Figure 10-1 provides a block diagram of the SPI. The interface is essen-
tially a shift register that serially transmits and receives data bits, one bit at
a time at the SCK rate, to and from other SPI devices. SPI data is transmit-
ted and received at the same time through the use of a shift register. When
an SPI transfer occurs, data is simultaneously transmitted (shifted serially
out of the shift register) as new data is received (shifted serially into the
other end of the same shift register). The SCK synchronizes the shifting and
sampling of the data on the two serial data pins.

During SPI data transfers, one SPI device acts as the SPI link master,
where it controls the data flow by generating the SPI serial clock and
asserting the SPI device select signal (SPISS). The other SPI device acts as
the slave and accepts new data from the master into its shift register, while
it transmits requested data out of the shift register through its SPI trans-
mit data pin. Multiple processors can take turns being the master device,
as can other microcontrollers or microprocessors.

ADSP-BF533 Blackfin Processor Hardware Reference 10-3

SPI Compatible Port Controllers

One master device can also simultaneously shift data into multiple slaves
(known as Broadcast mode). However, only one slave may drive its output
to write data back to the master at any given time. This must be enforced
in Broadcast mode, where several slaves can be selected to receive data
from the master, but only one slave at a time can be enabled to send data
back to the master.

In a multimaster or multidevice environment where multiple processors
are connected via their SPI ports, all MOSI pins are connected together, all
MISO pins are connected together, and all SCK pins are connected together.

For a multislave environment, the processor can make use of seven pro-
grammable flags, PF1–PF7, that are dedicated SPI slave select signals for
the SPI slave devices.

 At reset, the SPI is disabled and configured as a slave.

Figure 10-1. SPI Block Diagram

MOSI MISO SCK

SPI INTERFACE LOGIC

SHIFT REGISTER

SPI_RDBR
RECEIVE

REGISTER

SPI_TDBR
TRANSMIT
REGISTER

SPI IRQ
OR DMA
REQUEST

SPI
INTERNAL

CLOCK
GENERATOR

SPI_CTL
SPI_ST

16

16

PAB

DAB

FOUR-DEEP FIFO

M S S M

SPISS

Interface Signals

10-4 ADSP-BF533 Blackfin Processor Hardware Reference

Interface Signals
The following section discusses the SPI signals.

Serial Peripheral Interface Clock Signal (SCK)
The SCK signal is the SPI clock signal. This control signal is driven by the
master and controls the rate at which data is transferred. The master may
transmit data at a variety of baud rates. The SCK signal cycles once for each
bit transmitted. It is an output signal if the device is configured as a mas-
ter, and an input signal if the device is configured as a slave.

The SCK is a gated clock that is active during data transfers only for the
length of the transferred word. The number of active clock edges is equal
to the number of bits driven on the data lines. Slave devices ignore the
serial clock if the Serial Peripheral Slave Select Input (SPISS) is driven
inactive (high).

The SCK is used to shift out and shift in the data driven on the MISO and
MOSI lines. Clock polarity and clock phase relative to data are programma-
ble in the SPI Control register (SPI_CTL) and define the transfer format
(see “SPI Transfer Formats” on page 10-21).

ADSP-BF533 Blackfin Processor Hardware Reference 10-5

SPI Compatible Port Controllers

Serial Peripheral Interface Slave Select Input
Signal

The SPISS signal is the SPI Serial Peripheral Slave Select Input signal.
This is an active-low signal used to enable a processor when it is config-
ured as a slave device. This input-only pin behaves like a chip select and is
provided by the master device for the slave devices. For a master device, it
can act as an error signal input in case of the multimaster environment. In
multimaster mode, if the SPISS input signal of a master is asserted
(driven low), and the PSSE bit in the SPI_CTL register is enabled,
an error has occurred. This means that another device is also trying to be
the master device.

 The SPISS signal is the same pin as the PF0 pin.

Master Out Slave In (MOSI)
The MOSI pin is the Master Out Slave In pin, one of the bidirectional I/O
data pins. If the processor is configured as a master, the MOSI pin becomes
a data transmit (output) pin, transmitting output data. If the processor is
configured as a slave, the MOSI pin becomes a data receive (input) pin,
receiving input data. In an SPI interconnection, the data is shifted out
from the MOSI output pin of the master and shifted into the MOSI input(s)
of the slave(s).

Interface Signals

10-6 ADSP-BF533 Blackfin Processor Hardware Reference

Master In Slave Out (MISO)
The MISO pin is the Master In Slave Out pin, one of the bidirectional I/O
data pins. If the processor is configured as a master, the MISO pin becomes
a data receive (input) pin, receiving input data. If the processor is config-
ured as a slave, the MISO pin becomes a data transmit (output) pin,
transmitting output data. In an SPI interconnection, the data is shifted
out from the MISO output pin of the slave and shifted into the MISO input
pin of the master.

 Only one slave is allowed to transmit data at any given time.

The SPI configuration example in Figure 10-2 illustrates how the proces-
sor can be used as the slave SPI device. The 8-bit host microcontroller is
the SPI master.

 The processor can be booted via its SPI interface to allow user
application code and data to be downloaded before runtime.

Figure 10-2. ADSP-BF533 as Slave SPI Device

8-BIT HOST
MICROCONTROLLER

BLACKFIN PROCESSOR
SLAVE SPI DEVICE

SCLK

MOSI

MISO MISO

SCK

MOSI

SPISSS_SEL

ADSP-BF533 Blackfin Processor Hardware Reference 10-7

SPI Compatible Port Controllers

Interrupt Output
The SPI has two interrupt output signals: a data interrupt and an error
interrupt.

The behavior of the SPI data interrupt signal depends on the Transfer Ini-
tiation mode bit field (TIMOD) in the SPI Control register. In DMA mode
(TIMOD = 1X), the data interrupt acts as a DMA request and is generated
when the DMA FIFO is ready to be written to (TIMOD = 11) or read from
(TIMOD = 10). In non-DMA mode (TIMOD = 0X), a data interrupt is gener-
ated when the SPI_TDBR is ready to be written to (TIMOD = 01) or when the
SPI_RDBR is ready to be read from (TIMOD = 00).

An SPI Error interrupt is generated in a master when a Mode Fault Error
occurs, in both DMA and non-DMA modes. An error interrupt can also
be generated in DMA mode when there is an underflow (TXE when
TIMOD = 11) or an overflow (RBSY when TIMOD = 10) error condition. In
non-DMA mode, the underflow and overflow conditions set the TXE and
RBSY bits in the SPI_STAT register, respectively, but do not generate an
error interrupt.

For more information about this interrupt output, see the discussion of
the TIMOD bits in “SPI_CTL Register” on page 10-9.

SPI Registers
The SPI peripheral includes a number of user-accessible registers. Some of
these registers are also accessible through the DMA bus. Four registers
contain control and status information: SPI_BAUD, SPI_CTL, SPI_FLG, and
SPI_STAT. Two registers are used for buffering receive and transmit data:
SPI_RDBR and SPI_TDBR. For information about DMA-related registers, see
Chapter 9, “Direct Memory Access”. The shift register, SFDR, is internal to
the SPI module and is not directly accessible.

SPI Registers

10-8 ADSP-BF533 Blackfin Processor Hardware Reference

See “Error Signals and Flags” on page 10-29 for more information about
how the bits in these registers are used to signal errors and other condi-
tions. See “Register Functions” on page 10-20 for more information about
SPI register and bit functions.

SPI_BAUD Register
The SPI Baud Rate register (SPI_BAUD) is used to set the bit transfer rate
for a master device. When configured as a slave, the value written to this
register is ignored. The serial clock frequency is determined by this
formula:

SCK Frequency = (Peripheral clock frequency SCLK)/(2 x SPI_BAUD)

Writing a value of 0 or 1 to the register disables the serial clock. There-
fore, the maximum serial clock rate is one-fourth the system clock rate.

Table 10-1 lists several possible baud rate values for SPI_BAUD.

Figure 10-3. SPI Baud Rate Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Baud Rate
SCLK / (2 SPI_BAUD)

Reset = 0x0000

SPI Baud Rate Register (SPI_BAUD)

0xFFC0 0514

ADSP-BF533 Blackfin Processor Hardware Reference 10-9

SPI Compatible Port Controllers

SPI_CTL Register
The SPI Control register (SPI_CTL) is used to configure and enable the SPI
system. This register is used to enable the SPI interface, select the device as
a master or slave, and determine the data transfer format and word size.

The term “word” refers to a single data transfer of either 8 bits or 16 bits,
depending on the word length (SIZE) bit in SPI_CTL. There are two special
bits which can also be modified by the hardware: SPE and MSTR.

The TIMOD field is used to specify the action that initiates transfers to/from
the receive/transmit buffers. When set to 00, a SPI port transaction is
begun when the receive buffer is read. Data from the first read will need to
be discarded since the read is needed to initiate the first SPI port transac-
tion. When set to 01, the transaction is initiated when the transmit buffer
is written. A value of 10 selects DMA Receive mode and the first transac-
tion is initiated by enabling the SPI for DMA Receive mode. Subsequent
individual transactions are initiated by a DMA read of the SPI_RDBR. A
value of 11 selects DMA Transmit mode and the transaction is initiated
by a DMA write of the SPI_TDBR.

The PSSE bit is used to enable the SPISS input for master. When not used,
SPISS can be disabled, freeing up a chip pin as general-purpose I/O.

Table 10-1. SPI Master Baud Rate Example

SPI_BAUD Decimal Value SPI Clock (SCK) Divide
Factor

Baud Rate for
SCLK at 100 MHz

0 N/A N/A

1 N/A N/A

2 4 25 MHz

3 6 16.7 MHz

4 8 12.5 MHz

65,535 (0xFFFF) 131,070 763 Hz

SPI Registers

10-10 ADSP-BF533 Blackfin Processor Hardware Reference

The EMISO bit enables the MISO pin as an output. This is needed in an
environment where the master wishes to transmit to various slaves at one
time (broadcast). Only one slave is allowed to transmit data back to the
master. Except for the slave from whom the master wishes to receive, all
other slaves should have this bit cleared.

The SPE and MSTR bits can be modified by hardware when the MODF bit of
the Status register is set. See “Mode Fault Error (MODF)” on page 10-29.

Figure 10-4 provides the bit descriptions for SPI_CTL.

SPI_FLG Register
If the SPI is enabled as a master, the SPI uses the SPI Flag register
(SPI_FLG) to enable up to seven general-purpose programmable flag pins
to be used as individual slave select lines. In Slave mode, the SPI_FLG bits
have no effect, and each SPI uses the SPISS input as a slave select.
Figure 10-5 shows the SPI_FLG register diagram.

The SPI_FLG register consists of two sets of bits that function as follows.

• Slave Select Enable (FLSx) bits

Each FLSx bit corresponds to a Programmable Flag (PFx) pin.
When a FLSx bit is set, the corresponding PFx pin is driven as a
slave select. For example, if FLS1 is set in SPI_FLG, PF1 is driven as a
slave select (SPISEL1). Table 10-2 shows the association of the FLSx
bits and the corresponding PFx pins.

If the FLSx bit is not set, the general-purpose programmable flag
registers (FIO_DIR and others) configure and control the corre-
sponding PFx pin.

ADSP-BF533 Blackfin Processor Hardware Reference 10-11

SPI Compatible Port Controllers

Figure 10-4. SPI Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 1 0 0 0 0 0 0 0 0 00

TIMOD (Transfer Initiation Mode)
00 - Start transfer with read of

SPI_RDBR, interrupt when
SPI_RDBR is full

01 - Start transfer with write of
SPI_TDBR, interrupt when
SPI_TDBR is empty

10 - Start transfer with DMA read
of SPI_RDBR, request further
DMA reads as long as SPI DMA
FIFO is not empty

11 - Start transfer with DMA write
of SPI_TDBR, request further
DMA writes as long as SPI DMA
FIFO is not full

SZ (Send Zero)
Send zero or last word when
SPI_TDBR is empty
0 - Send last word
1 - Send zeros

GM (Get More Data)
When SPI_RDBR is full, get
data or discard incoming data
0 - Discard incoming data
1 - Get more data, overwrite

previous data

PSSE (Slave Select Enable)
0 - Disable
1 - Enable

EMISO (Enable MISO)
0 - MISO disabled
1 - MISO enabled

Reset = 0x0400

SPE (SPI Enable)
0 - Disabled
1 - Enabled

WOM (Write Open Drain
Master)
0 - Normal
1 - Open drain

MSTR (Master)
Sets the SPI module as
master or slave
0 - Slave
1 - Master

CPOL (Clock Polarity)
0 - Active high SCK
1 - Active low SCK

CPHA (Clock Phase)
Selects transfer format and
operation mode
0 - SCLK toggles from middle

of the first data bit, slave select
pins controlled by hardware.

1 - SCLK toggles from beginning
of first data bit, slave select
pins controller by user software.

LSBF (LSB First)
0 - MSB sent/received first
1 - LSB sent/received first

SIZE (Size of Words)
0 - 8 bits
1 - 16 bits

SPI Control Register (SPI_CTL)

0xFFC0 0500

SPI Registers

10-12 ADSP-BF533 Blackfin Processor Hardware Reference

Figure 10-5. SPI Flag Register

Reset = 0xFF00

FLS1 (Slave Select Enable 1)
0 - SPISEL1 disabled
1 - SPISEL1 enabled

FLS2 (Slave Select Enable 2)
0 - SPISEL2 disabled
1 - SPISEL2 enabled

FLS3 (Slave Select Enable 3)
0 - SPISEL3 disabled
1 - SPISEL3 enabled

FLS4 (Slave Select Enable 4)
0 - SPISEL4 disabled
1 - SPISEL4 enabled

FLS5 (Slave Select Enable 5)
0 - SPISEL5 disabled
1 - SPISEL5 enabled

FLS6 (Slave Select Enable 6)
0 - SPISEL6 disabled
1 - SPISEL6 enabled

FLS7 (Slave Select Enable 7)
0 - SPISEL7 disabled
1 - SPISEL7 enabled

FLG7 (Slave
Select Value 7)
SPISEL7 value

FLG6 (Slave Select
Value 6)
SPISEL6 value

FLG5 (Slave Select
Value 5)
SPISEL5 value

FLG4 (Slave Select
 Value 4)
SPISEL4 value

FLG3 (Slave Select Value 3)
SPISEL3 value

FLG2 (Slave Select Value 2)
SPISEL2 value

FLG1 (Slave Select Value 1)
SPISEL1 value

SPI Flag Register (SPI_FLG)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

01 1 1 1 1 1 1 1 0 0 0 0 0 0 00xFFC0 0504

ADSP-BF533 Blackfin Processor Hardware Reference 10-13

SPI Compatible Port Controllers

• Slave Select Value (FLGx) bits

• When a PFx pin is configured as a slave select output, the FLGx bits
can determine the value driven onto the output. If the CPHA bit in
SPI_CTL is set, the output value is set by software control of the
FLGx bits. The SPI protocol permits the slave select line to either
remain asserted (low) or be deasserted between transferred words.
The user must set or clear the appropriate FLGx bits. For example,
to drive PF3 as a slave select, FLS3 in SPI_FLG must be set. Clearing
FLG3 in SPI_FLG drives PF3 low; setting FLG3 drives PF3 high. The
PF3 pin can be cycled high and low between transfers by setting
and clearing FLG3. Otherwise, PF3 remains active (low) between
transfers.

If CPHA = 0, the SPI hardware sets the output value and the FLGx
bits are ignored. The SPI protocol requires that the slave select be
deasserted between transferred words. In this case, the SPI hard-
ware controls the pins. For example, to use PF3 as a slave select pin,
it is only necessary to set the FLS3 bit in SPI_FLG. It is not necessary
to write to the FLG3 bit, because the SPI hardware automatically
drives the PF3 pin.

SPI Registers

10-14 ADSP-BF533 Blackfin Processor Hardware Reference

Slave Select Inputs

If the SPI is in Slave mode, SPISS acts as the slave select input. When
enabled as a master, SPISS can serve as an error detection input for the SPI
in a multimaster environment. The PSSE bit in SPI_CTL enables this fea-
ture. When PSSE = 1, the SPISS input is the master mode error input.
Otherwise, SPISS is ignored.

Table 10-2. SPI_FLG Bit Mapping to PFx Pins

Bit Name Function PFx Pin Default

0 Reserved 0

1 FLS1 SPISEL1 Enable PF1 0

2 FLS2 SPISEL2 Enable PF2 0

3 FLS3 SPISEL3 Enable PF3 0

4 FLS4 SPISEL4 Enable PF4 0

5 FLS5 SPISEL5 Enable PF5 0

6 FLS6 SPISEL6 Enable PF6 0

7 FLS7 SPISEL7 Enable PF7 0

8 Reserved 1

9 FLG1 SPISEL1 Value PF1 1

10 FLG2 SPISEL2 Value PF2 1

11 FLG3 SPISEL3 Value PF3 1

12 FLG4 SPISEL4 Value PF4 1

13 FLG5 SPISEL5 Value PF5 1

14 FLG6 SPISEL6 Value PF6 1

15 FLG7 SPISEL7 Value PF7 1

ADSP-BF533 Blackfin Processor Hardware Reference 10-15

SPI Compatible Port Controllers

Use of FLS Bits in SPI_FLG for Multiple Slave SPI Systems

The FLSx bits in the SPI_FLG register are used in a multiple slave SPI envi-
ronment. For example, if there are eight SPI devices in the system
including a processor master, the master processor can support the SPI
mode transactions across the other seven devices. This configuration
requires only one master processor in this multislave environment. For
example, assume that the SPI is the master. The seven flag pins (PF1–PF7)
on the processor master can be connected to each of the slave SPI device’s
SPISS pins. In this configuration, the FLSx bits in SPI_FLG can be used in
three cases.

In cases 1 and 2, the processor is the master and the seven microcon-
trollers/peripherals with SPI interfaces are slaves. The processor can:

1. Transmit to all seven SPI devices at the same time in a broadcast
mode. Here, all FLSx bits are set.

2. Receive and transmit from one SPI device by enabling only one
slave SPI device at a time.

In case 3, all eight devices connected via SPI ports can be other
processors.

3. If all the slaves are also processors, then the requester can receive
data from only one processor (enabled by clearing the EMISO bit in
the six other slave processors) at a time and transmit broadcast data
to all seven at the same time. This EMISO feature may be available in
some other microcontrollers. Therefore, it is possible to use the
EMISO feature with any other SPI device that includes this
functionality.

Figure 10-6 shows one processor as a master with three processors (or
other SPI compatible devices) as slaves.

SPI Registers

10-16 ADSP-BF533 Blackfin Processor Hardware Reference

SPI_STAT Register
The SPI Status register (SPI_STAT) is used to detect when an SPI transfer is
complete or if transmission/reception errors occur. The SPI_STAT register
can be read at any time.

Some of the bits in SPI_STAT are read-only and other bits are sticky. Bits
that provide information only about the SPI are read-only. These bits are
set and cleared by the hardware. Sticky bits are set when an error condi-
tion occurs. These bits are set by hardware and must be cleared by
software. To clear a sticky bit, the user must write a 1 to the desired bit
position of SPI_STAT. For example, if the TXE bit is set, the user must write
a 1 to bit 2 of SPI_STAT to clear the TXE error condition. This allows the
user to read SPI_STAT without changing its value.

 Sticky bits are cleared on a reset, but are not cleared on an SPI
disable.

Figure 10-6. Single-Master, Multiple-Slave Configuration

MOSIMISO

SLAVE DEVICE

SCK MOSIMISO SCK MOSIMISO SCK

MOSIMISO SCK

MASTER
DEVICE

SLAVE DEVICE SLAVE DEVICE

PFPF

PF

VDD

SPISS

SPISS

SPISS SPISS

ADSP-BF533 Blackfin Processor Hardware Reference 10-17

SPI Compatible Port Controllers

The transmit buffer becomes full after it is written to. It becomes empty
when a transfer begins and the transmit value is loaded into the shift regis-
ter. The receive buffer becomes full at the end of a transfer when the shift
register value is loaded into the receive buffer. It becomes empty when the
receive buffer is read.

 The SPIF bit is set when the SPI port is disabled.

 Upon entering DMA mode, the transmit buffer and the receive
buffer become empty. That is, the TXS bit and the RXS bit are ini-
tially cleared upon entering DMA mode.

Figure 10-7. SPI Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0001

SPIF (SPI Finished) - RO
Set when SPI single word
transfer complete

MODF (Mode Fault Error) -
W1C
Set in a master device when
some other device tries to
become the master

TXE (Transmission Error) -
W1C
Set when transmission
occurred with no new data in
SPI_TDBR

SPI Status Register (SPI_STAT)

TXCOL (Transmit Collision Error) - W1C
When set, corrupt data may
have been transmitted

RXS (RX Data Buffer Status) - RO
0 - Empty
1 - Full

RBSY (Receive Error) - W1C
Set when data is received with
receive buffer full

TXS (SPI_TDBR Data Buffer Status) - RO
0 - Empty
1 - Full

0xFFC0 0508

SPI Registers

10-18 ADSP-BF533 Blackfin Processor Hardware Reference

 When using DMA for SPI transmit, the DMA_DONE interrupt signi-
fies that the DMA FIFO is empty. However, at this point there
may still be data in the SPI DMA FIFO waiting to be transmitted.
Therefore, software needs to poll TXS in the SPI_STAT register until
it goes low for 2 successive reads, at which point the SPI DMA
FIFO will be empty. When the SPIF bit subsequently goes high,
the last word has been transferred.

SPI_TDBR Register
The SPI Transmit Data Buffer register (SPI_TDBR) is a 16-bit read-write
register. Data is loaded into this register before being transmitted. Just
prior to the beginning of a data transfer, the data in SPI_TDBR is loaded
into the Shift Data register (SFDR). A read of SPI_TDBR can occur at any
time and does not interfere with or initiate SPI transfers.

When the DMA is enabled for transmit operation, the DMA engine loads
data into this register for transmission just prior to the beginning of a data
transfer. A write to SPI_TDBR should not occur in this mode because this
data will overwrite the DMA data to be transmitted.

When the DMA is enabled for receive operation, the contents of SPI_TDBR
are repeatedly transmitted. A write to SPI_TDBR is permitted in this mode,
and this data is transmitted.

If the Send Zeros control bit (SZ in the SPI_CTL register) is set, SPI_TDBR
may be reset to 0 under certain circumstances.

If multiple writes to SPI_TDBR occur while a transfer is already in progress,
only the last data written is transmitted. None of the intermediate values
written to SPI_TDBR are transmitted. Multiple writes to SPI_TDBR are pos-
sible, but not recommended.

ADSP-BF533 Blackfin Processor Hardware Reference 10-19

SPI Compatible Port Controllers

SPI_RDBR Register
The SPI Receive Data Buffer register (SPI_RDBR) is a 16-bit read-only reg-
ister. At the end of a data transfer, the data in the shift register is loaded
into SPI_RDBR. During a DMA receive operation, the data in SPI_RDBR is
automatically read by the DMA. When SPI_RDBR is read via software, the
RXS bit is cleared and an SPI transfer may be initiated (if TIMOD = 00).

SPI_SHADOW Register
The SPI RDBR Shadow register (SPI_SHADOW), has been provided for use
in debugging software. This register is at a different address than the
receive data buffer, SPI_RDBR, but its contents are identical to that of
SPI_RDBR. When a software read of SPI_RDBR occurs, the RXS bit in
SPI_STAT is cleared and an SPI transfer may be initiated (if TIMOD = 00 in

SPI_CTL). No such hardware action occurs when the SPI_SHADOW register is
read. The SPI_SHADOW register is read-only.

Figure 10-8. SPI Transmit Data Buffer Register

Figure 10-9. SPI Receive Data Buffer Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

Transmit Data Buffer

SPI Transmit Data Buffer Register (SPI_TDBR)

0xFFC0 050C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

Receive Data Buffer

SPI Receive Data Buffer Register (SPI_RDBR)
RO

0xFFC0 0510

SPI Registers

10-20 ADSP-BF533 Blackfin Processor Hardware Reference

Register Functions
Table 10-3 summarizes the functions of the SPI registers.

Figure 10-10. SPI RDBR Shadow Register

Table 10-3. SPI Register Mapping

Register Name Function Notes

SPI_CTL SPI port control SPE and MSTR bits can also be modified by
hardware (when MODF is set)

SPI_FLG SPI port flag Bits 0 and 8 are reserved

SPI_STAT SPI port status SPIF bit can be set by clearing SPE in SPI_CTL

SPI_TDBR SPI port transmit
data buffer

Register contents can also be modified by hard-
ware (by DMA and/or when SZ = 1 in
SPI_CTL)

SPI_RDBR SPI port receive
data buffer

When register is read, hardware events are trig-
gered

SPI_BAUD SPI port baud
control

Value of 0 or 1 disables the serial clock

SPI_SHADOW SPI port data Register has the same contents as SPI_RDBR,
but no action is taken when it is read

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

SPI_RDBR Shadow

SPI RDBR Shadow Register (SPI_SHADOW)
RO

0xFFC0 0518

ADSP-BF533 Blackfin Processor Hardware Reference 10-21

SPI Compatible Port Controllers

SPI Transfer Formats
The SPI supports four different combinations of serial clock phase and
polarity (SPI modes 0-3). These combinations are selected using the CPOL
and CPHA bits in SPI_CTL, as shown in Figure 10-11.

Figure 10-12 and Figure 10-13 demonstrate the two basic transfer formats
as defined by the CPHA bit. Two waveforms are shown for SCK—one for
CPOL = 0 and the other for CPOL = 1. The diagrams may be interpreted as
master or slave timing diagrams since the SCK, MISO, and MOSI pins are
directly connected between the master and the slave. The MISO signal is the
output from the slave (slave transmission), and the MOSI signal is the out-
put from the master (master transmission). The SCK signal is generated by
the master, and the SPISS signal is the slave device select input to the slave
from the master. The diagrams represent an 8-bit transfer (SIZE = 0) with
the Most Significant Bit (MSB) first (LSBF = 0). Any combination of the
SIZE and LSBF bits of SPI_CTL is allowed. For example, a 16-bit transfer
with the Least Significant Bit (LSB) first is another possible configuration.

Figure 10-11. SPI Modes of Operation

C
P

O
L

 =
 0

C
P

O
L

 =
 1

C
L

O
C

K
 P

O
L

A
R

IT
Y

 (
C

P
O

L
)

CLOCK PHASE (CPHA)

CPHA = 0 CPHA = 1

MODE 0

SAMPLE
EDGE

DRIVE
EDGE

MODE 1

SAMPLE
EDGE

DRIVE
EDGE

MODE 2

SAMPLE
EDGE

DRIVE
EDGE

MODE 3

SAMPLE
EDGE

DRIVE
EDGE

SPI Transfer Formats

10-22 ADSP-BF533 Blackfin Processor Hardware Reference

The clock polarity and the clock phase should be identical for the master
device and the slave device involved in the communication link. The
transfer format from the master may be changed between transfers to
adjust to various requirements of a slave device.

When CPHA = 0, the slave select line, SPISS, must be inactive (high)
between each serial transfer. This is controlled automatically by the SPI
hardware logic. When CPHA = 1, SPISS may either remain active (low)
between successive transfers or be inactive (high). This must be controlled
by the software via manipulation of SPI_FLG.

Figure 10-12 shows the SPI transfer protocol for CPHA = 0. Note SCK starts
toggling in the middle of the data transfer, SIZE = 0, and LSBF = 0.

Figure 10-13 shows the SPI transfer protocol for CPHA = 1. Note SCK starts
toggling at the beginning of the data transfer, SIZE = 0, and LSBF = 0.

Figure 10-12. SPI Transfer Protocol for CPHA = 0

6MSB

SPISS
(TO SLAVE)

SCK
(CPOL = 0)

SCK
(CPOL = 1)

MOSI
(FROM MASTER)

MISO
(FROM SLAVE)

1 2 3 4 85 6 7

5 4 3 2 1 LSB

6MSB 5 4 3 2 1 LSB

CLOCK CYCLE
NUMBER

 * *

 *

(* = UNDEFINED)

ADSP-BF533 Blackfin Processor Hardware Reference 10-23

SPI Compatible Port Controllers

SPI General Operation
The SPI can be used in a single master as well as multimaster environ-
ment. The MOSI, MISO, and the SCK signals are all tied together in both
configurations. SPI transmission and reception are always enabled simul-
taneously, unless the Broadcast mode has been selected. In Broadcast
mode, several slaves can be enabled to receive, but only one of the slaves
must be in Transmit mode driving the MISO line. If the transmit or receive
is not needed, it can simply be ignored. This section describes the clock
signals, SPI operation as a master and as a slave, and error generation.

Precautions must be taken to avoid data corruption when changing the
SPI module configuration. The configuration must not be changed during
a data transfer. The clock polarity should only be changed when no slaves
are selected. An exception to this is when an SPI communication link con-
sists of a single master and a single slave, CPHA = 1, and the slave select
input of the slave is always tied low. In this case, the slave is always
selected and data corruption can be avoided by enabling the slave only
after both the master and slave devices are configured.

Figure 10-13. SPI Transfer Protocol for CPHA = 1

6MSB

1 2 3 4 85 6 7

5 4 3 2 1 LSB

6MSB 5 4 3 2 1 LSB

 * *

(* = UNDEFINED)

 *

 SCK
(CPOL = 0)

SCK
(CPOL = 1)

MOSI
(FROM MASTER)

MISO
(FROM SLAVE)

CLOCK CYCLE
NUMBER

SPISS
(TO SLAVE)

SPI General Operation

10-24 ADSP-BF533 Blackfin Processor Hardware Reference

In a multimaster or multislave SPI system, the data output pins (MOSI and
MISO) can be configured to behave as open drain outputs, which prevents
contention and possible damage to pin drivers. An external pull-up resis-
tor is required on both the MOSI and MISO pins when this option is
selected.

The WOM bit controls this option. When WOM is set and the SPI is config-
ured as a master, the MOSI pin is three-stated when the data driven out on
MOSI is a logic high. The MOSI pin is not three-stated when the driven data
is a logic low. Similarly, when WOM is set and the SPI is configured as a
slave, the MISO pin is three-stated if the data driven out on MISO is a logic
high.

Clock Signals
The SCK signal is a gated clock that is only active during data transfers for
the duration of the transferred word. The number of active edges is equal
to the number of bits driven on the data lines. The clock rate can be as
high as one-fourth of the SCLK rate. For master devices, the clock rate is
determined by the 16-bit value of SPI_BAUD. For slave devices, the value in
SPI_BAUD is ignored. When the SPI device is a master, SCK is an output sig-
nal. When the SPI is a slave, SCK is an input signal. Slave devices ignore
the serial clock if the slave select input is driven inactive (high).

The SCK signal is used to shift out and shift in the data driven onto the
MISO and MOSI lines. The data is always shifted out on one edge of the
clock and sampled on the opposite edge of the clock. Clock polarity and
clock phase relative to data are programmable into SPI_CTL and define the
transfer format.

ADSP-BF533 Blackfin Processor Hardware Reference 10-25

SPI Compatible Port Controllers

Master Mode Operation
When the SPI is configured as a master (and DMA mode is not selected),
the interface operates in the following manner.

1. The core writes to SPI_FLG, setting one or more of the SPI Flag
Select bits (FLSx). This ensures that the desired slaves are properly
deselected while the master is configured.

2. The core writes to the SPI_BAUD and SPI_CTL registers, enabling the
device as a master and configuring the SPI system by specifying the
appropriate word length, transfer format, baud rate, and other nec-
essary information.

3. If CPHA = 1, the core activates the desired slaves by clearing one or
more of the SPI flag bits (FLGx) of SPI_FLG.

4. The TIMOD bits in SPI_CTL determine the SPI Transfer Initiate
mode. The transfer on the SPI link begins upon either a data write
by the core to the transmit data buffer (SPI_TDBR) or a data read of
the receive data buffer (SPI_RDBR).

5. The SPI then generates the programmed clock pulses on SCK and
simultaneously shifts data out of MOSI and shifts data in from MISO.
Before a shift, the shift register is loaded with the contents of the
SPI_TDBR register. At the end of the transfer, the contents of the
shift register are loaded into SPI_RDBR.

6. With each new Transfer Initiate command, the SPI continues to
send and receive words, according to the SPI Transfer Initiate
mode.

SPI General Operation

10-26 ADSP-BF533 Blackfin Processor Hardware Reference

If the transmit buffer remains empty or the receive buffer remains full, the
device operates according to the states of the SZ and GM bits in SPI_CTL. If
SZ = 1 and the transmit buffer is empty, the device repeatedly transmits 0s
on the MOSI pin. One word is transmitted for each new Transfer Initiate
command. If SZ = 0 and the transmit buffer is empty, the device
repeatedly transmits the last word it transmitted before the transmit buffer
became empty. If GM = 1 and the receive buffer is full, the device contin-
ues to receive new data from the MISO pin, overwriting the older data in
the SPI_RDBR buffer. If GM = 0 and the receive buffer is full, the incoming
data is discarded, and SPI_RDBR is not updated.

Transfer Initiation From Master (Transfer Modes)
When a device is enabled as a master, the initiation of a transfer is defined
by the two TIMOD bits of SPI_CTL. Based on those two bits and the status of
the interface, a new transfer is started upon either a read of SPI_RDBR or a
write to SPI_TDBR. This is summarized in Table 10-4.

 If the SPI port is enabled with TIMOD = 01 or TIMOD = 11, the hard-
ware immediately issues a first interrupt or DMA request.

ADSP-BF533 Blackfin Processor Hardware Reference 10-27

SPI Compatible Port Controllers

Slave Mode Operation
When a device is enabled as a slave (and DMA mode is not selected), the
start of a transfer is triggered by a transition of the SPISS select signal to
the active state (low), or by the first active edge of the clock (SCK), depend-
ing on the state of CPHA.

Table 10-4. Transfer Initiation

TIMOD Function Transfer Initiated Upon Action, Interrupt

00 Transmit and
Receive

Initiate new single word trans-
fer upon read of SPI_RDBR
and previous transfer com-
pleted.

Interrupt active when receive
buffer is full.

Read of SPI_RDBR clears
interrupt.

01 Transmit and
Receive

Initiate new single word trans-
fer upon write to SPI_TDBR
and previous transfer com-
pleted.

Interrupt active when transmit
buffer is empty.

Writing to SPI_TDBR clears
interrupt.

10 Receive with
DMA

Initiate new multiword trans-
fer upon enabling SPI for DMA
mode. Individual word trans-
fers begin with a DMA read of
SPI_RDBR, and last transfer
completed.

Request DMA reads as long as
SPI DMA FIFO is not empty.

11 Transmit with
DMA

Initiate new multiword trans-
fer upon enabling SPI for DMA
mode. Individual word trans-
fers begin with a DMA write to
SPI_TDBR, and last transfer
completed.

Request DMA writes as long as
SPI DMA FIFO is not full.

SPI General Operation

10-28 ADSP-BF533 Blackfin Processor Hardware Reference

These steps illustrate SPI operation in the Slave mode:

1. The core writes to SPI_CTL to define the mode of the serial link to
be the same as the mode setup in the SPI master.

2. To prepare for the data transfer, the core writes data to be trans-
mitted into SPI_TDBR.

3. Once the SPISS falling edge is detected, the slave starts shifting
data out on MISO and in from MOSI on SCK edges, depending on the
states of CPHA and CPOL.

4. Reception/transmission continues until SPISS is released or until
the slave has received the proper number of clock cycles.

5. The slave device continues to receive/transmit with each new fall-
ing edge transition on SPISS and/or SCK clock edge.

If the transmit buffer remains empty or the receive buffer remains full, the
device operates according to the states of the SZ and GM bits in SPI_CTL. If
SZ = 1 and the transmit buffer is empty, the device repeatedly transmits 0s
on the MISO pin. If SZ = 0 and the transmit buffer is empty, it repeatedly
transmits the last word it transmitted before the transmit buffer became
empty. If GM = 1 and the receive buffer is full, the device continues to
receive new data from the MOSI pin, overwriting the older data in
SPI_RDBR. If GM = 0 and the receive buffer is full, the incoming data is dis-
carded, and SPI_RDBR is not updated.

ADSP-BF533 Blackfin Processor Hardware Reference 10-29

SPI Compatible Port Controllers

Slave Ready for a Transfer
When a device is enabled as a slave, the actions shown in Table 10-5 are
necessary to prepare the device for a new transfer.

Error Signals and Flags
The status of a device is indicated by the SPI_STAT register. See
“SPI_STAT Register” on page 10-16 for more information.

Mode Fault Error (MODF)
The MODF bit is set in SPI_STAT when the SPISS input pin of a device
enabled as a master is driven low by some other device in the system. This
occurs in multimaster systems when another device is also trying to be the
master. To enable this feature, the PSSE bit in SPI_CTL must be set. This
contention between two drivers can potentially damage the driving pins.
As soon as this error is detected, these actions occur:

Table 10-5. Transfer Preparation

TIMOD Function Action, Interrupt

00 Transmit and
Receive

Interrupt active when receive buffer is full.

Read of SPI_RDBR clears interrupt.

01 Transmit and
Receive

Interrupt active when transmit buffer is empty.

Writing to SPI_TDBR clears interrupt.

10 Receive with
DMA

Request DMA reads as long as SPI DMA FIFO is not empty.

11 Transmit with
DMA

Request DMA writes as long as SPI DMA FIFO is not full.

Error Signals and Flags

10-30 ADSP-BF533 Blackfin Processor Hardware Reference

• The MSTR control bit in SPI_CTL is cleared, configuring the SPI
interface as a slave

• The SPE control bit in SPI_CTL is cleared, disabling the SPI system

• The MODF status bit in SPI_STAT is set

• An SPI Error interrupt is generated

These four conditions persist until the MODF bit is cleared by software.
Until the MODF bit is cleared, the SPI cannot be re-enabled, even as a slave.
Hardware prevents the user from setting either SPE or MSTR while MODF is
set.

When MODF is cleared, the interrupt is deactivated. Before attempting to
re-enable the SPI as a master, the state of the SPISS input pin should be
checked to make sure the pin is high. Otherwise, once SPE and MSTR are
set, another Mode Fault Error condition immediately occurs.

When SPE and MSTR are cleared, the SPI data and clock pin drivers (MOSI,
MISO, and SCK) are disabled. However, the slave select output pins revert to
being controlled by the programmable flag registers. This could lead to
contention on the slave select lines if these lines are still driven by the pro-
cessor. To ensure that the slave select output drivers are disabled once an
MODF error occurs, the program must configure the programmable flag reg-
isters appropriately.

When enabling the MODF feature, the program must configure as inputs all
of the PFx pins that will be used as slave selects. Programs can do this by
configuring the direction of the PFx pins prior to configuring the SPI.
This ensures that, once the MODF error occurs and the slave selects are auto-
matically reconfigured as PFx pins, the slave select output drivers are
disabled.

ADSP-BF533 Blackfin Processor Hardware Reference 10-31

SPI Compatible Port Controllers

Transmission Error (TXE)
The TXE bit is set in SPI_STAT when all the conditions of transmission are
met, and there is no new data in SPI_TDBR (SPI_TDBR is empty). In this
case, the contents of the transmission depend on the state of the SZ bit in
SPI_CTL. The TXE bit is sticky (W1C).

Reception Error (RBSY)
The RBSY flag is set in the SPI_STAT register when a new transfer is com-
pleted, but before the previous data can be read from SPI_RDBR. The state
of the GM bit in the SPI_CTL register determines whether SPI_RDBR is
updated with the newly received data. The RBSY bit is sticky (W1C).

Transmit Collision Error (TXCOL)
The TXCOL flag is set in SPI_STAT when a write to SPI_TDBR coincides with
the load of the shift register. The write to SPI_TDBR can be via software or
the DMA. The TXCOL bit indicates that corrupt data may have been loaded
into the shift register and transmitted. In this case, the data in SPI_TDBR
may not match what was transmitted. This error can easily be avoided by
proper software control. The TXCOL bit is sticky (W1C).

Beginning and Ending an SPI Transfer
The start and finish of an SPI transfer depend on whether the device is
configured as a master or a slave, whether the CPHA mode is selected, and
whether the Transfer Initiation mode (TIMOD) is selected. For a master SPI
with CPHA = 0, a transfer starts when either SPI_TDBR is written to or
SPI_RDBR is read, depending on TIMOD. At the start of the transfer, the
enabled slave select outputs are driven active (low). However, the SCK sig-
nal remains inactive for the first half of the first cycle of SCK. For a slave
with CPHA = 0, the transfer starts as soon as the SPISS input goes low.

Beginning and Ending an SPI Transfer

10-32 ADSP-BF533 Blackfin Processor Hardware Reference

For CPHA = 1, a transfer starts with the first active edge of SCK for both
slave and master devices. For a master device, a transfer is considered fin-
ished after it sends the last data and simultaneously receives the last data
bit. A transfer for a slave device ends after the last sampling edge of SCK.

The RXS bit defines when the receive buffer can be read. The TXS bit
defines when the transmit buffer can be filled. The end of a single word
transfer occurs when the RXS bit is set, indicating that a new word has just
been received and latched into the receive buffer, SPI_RDBR. For a master
SPI, RXS is set shortly after the last sampling edge of SCK. For a slave SPI,
RXS is set shortly after the last SCK edge, regardless of CPHA or CPOL. The
latency is typically a few SCLK cycles and is independent of TIMOD and the
baud rate. If configured to generate an interrupt when SPI_RDBR is full
(TIMOD = 00), the interrupt goes active one SCLK cycle after RXS is set.
When not relying on this interrupt, the end of a transfer can be detected
by polling the RXS bit.

To maintain software compatibility with other SPI devices, the SPIF bit is
also available for polling. This bit may have a slightly different behavior
from that of other commercially available devices. For a slave device, SPIF
is cleared shortly after the start of a transfer (SPISS going low for
CPHA = 0, first active edge of SCK on CPHA = 1), and is set at the same time
as RXS. For a master device, SPIF is cleared shortly after the start of a
transfer (either by writing the SPI_TDBR or reading the SPI_RDBR,
depending on TIMOD), and is set one-half SCK period after the last SCK edge,
regardless of CPHA or CPOL.

The time at which SPIF is set depends on the baud rate. In general, SPIF is
set after RXS, but at the lowest baud rate settings (SPI_BAUD < 4). The
SPIF bit is set before RXS is set, and consequently before new data is
latched into SPI_RDBR, because of the latency. Therefore, for
SPI_BAUD = 2 or SPI_BAUD = 3, RXS must be set before SPIF to read
SPI_RDBR. For larger SPI_BAUD settings, RXS is guaranteed to be set before
SPIF is set.

ADSP-BF533 Blackfin Processor Hardware Reference 10-33

SPI Compatible Port Controllers

If the SPI port is used to transmit and receive at the same time, or to
switch between receive and transmit operation frequently, then the
TIMOD = 00 mode may be the best operation option. In this mode, software
performs a dummy read from the SPI_RDBR register to initiate the first
transfer. If the first transfer is used for data transmission, software should
write the value to be transmitted into the SPI_TDBR register before per-
forming the dummy read. If the transmitted value is arbitrary, it is good
practice to set the SZ bit to ensure zero data is transmitted rather than ran-
dom values. When receiving the last word of an SPI stream, software
should ensure that the read from the SPI_RDBR register does not initiate
another transfer. It is recommended to disable the SPI port before the
final SPI_RDBR read access. Reading the SPI_SHADOW register is not suffi-
cient as it does not clear the interrupt request.

In master mode with the CPHA bit set, software should manually assert the
required slave select signal before starting the transaction. After all data
has been transferred, software typically releases the slave select again. If the
SPI slave device requires the slave select line to be asserted for the com-
plete transfer, this can be done in the SPI interrupt service routine only
when operating in TIMOD = 00 or TIMOD = 10 mode. With TIMOD = 01 or
TIMOD = 11, the interrupt is requested while the transfer is still in progress.

DMA
The SPI port also can use Direct Memory Access (DMA). For more infor-
mation on DMA, see “DMA and Memory DMA Registers” on page 9-3.

DMA Functionality
The SPI has a single DMA engine which can be configured to support
either an SPI transmit channel or a receive channel, but not both simulta-
neously. Therefore, when configured as a transmit channel, the received
data will essentially be ignored.

DMA

10-34 ADSP-BF533 Blackfin Processor Hardware Reference

When configured as a receive channel, what is transmitted is irrelevant. A
16-bit by four-word FIFO (without burst capability) is included to
improve throughput on the DMA Access Bus (DAB).

 When using DMA for SPI transmit, the DMA_DONE interrupt signi-
fies that the DMA FIFO is empty. However, at this point there
may still be data in the SPI DMA FIFO waiting to be transmitted.
Therefore, software needs to poll TXS in the SPI_STAT register until
it goes low for 2 successive reads, at which point the SPI DMA
FIFO will be empty. When the SPIF bit subsequently gets set, the
last word has been transferred.

 The four-word FIFO is cleared when the SPI port is disabled.

Master Mode DMA Operation
When enabled as a master with the DMA engine configured to transmit or
receive data, the SPI interface operates as follows.

1. The processor core writes to the appropriate DMA registers to
enable the SPI DMA Channel and to configure the necessary work
units, access direction, word count, and so on. For more informa-
tion, see “DMA and Memory DMA Registers” on page 9-3.

2. The processor core writes to the SPI_FLG register, setting one or
more of the SPI flag select bits (FLSx).

3. The processor core writes to the SPI_BAUD and SPI_CTL registers,
enabling the device as a master and configuring the SPI system by
specifying the appropriate word length, transfer format, baud rate,
and so on. The TIMOD field should be configured to select either
“Receive with DMA” (TIMOD = 10) or “Transmit with DMA”
(TIMOD = 11) mode.

ADSP-BF533 Blackfin Processor Hardware Reference 10-35

SPI Compatible Port Controllers

4. If configured for receive, a receive transfer is initiated upon
enabling of the SPI. Subsequent transfers are initiated as the SPI
reads data from the SPI_RDBR register and writes to the SPI DMA
FIFO. The SPI then requests a DMA write to memory. Upon a
DMA grant, the DMA engine reads a word from the SPI DMA
FIFO and writes to memory.

If configured for transmit, the SPI requests a DMA read from
memory. Upon a DMA grant, the DMA engine reads a word from
memory and writes to the SPI DMA FIFO. As the SPI writes data
from the SPI DMA FIFO into the SPI_TDBR register, it initiates a
transfer on the SPI link.

5. The SPI then generates the programmed clock pulses on SCK and
simultaneously shifts data out of MOSI and shifts data in from MISO.
For receive transfers, the value in the shift register is loaded into
the SPI_RDBR register at the end of the transfer. For transmit trans-
fers, the value in the SPI_TDBR register is loaded into the shift
register at the start of the transfer.

6. In Receive mode, as long as there is data in the SPI DMA FIFO
(the FIFO is not empty), the SPI continues to request a DMA
write to memory. The DMA engine continues to read a word from
the SPI DMA FIFO and writes to memory until the SPI DMA
Word Count register transitions from 1 to 0. The SPI continues
receiving words until SPI DMA mode is disabled.

In Transmit mode, as long as there is room in the SPI DMA FIFO
(the FIFO is not full), the SPI continues to request a DMA read
from memory. The DMA engine continues to read a word from
memory and write to the SPI DMA FIFO until the SPI DMA
Word Count register transitions from 1 to 0. The SPI continues
transmitting words until the SPI DMA FIFO is empty.

DMA

10-36 ADSP-BF533 Blackfin Processor Hardware Reference

For receive DMA operations, if the DMA engine is unable to keep up with
the receive datastream, the receive buffer operates according to the state of
the GM bit. If GM = 1 and the DMA FIFO is full, the device continues to
receive new data from the MISO pin, overwriting the older data in the
SPI_RDBR register. If GM = 0, and the DMA FIFO is full, the incoming
data is discarded, and the SPI_RDBR register is not updated. While per-
forming receive DMA, the transmit buffer is assumed to be empty (and
TXE is set). If SZ = 1, the device repeatedly transmits 0s on the MOSI pin. If
SZ = 0, it repeatedly transmits the contents of the SPI_TDBR register. The
TXE underrun condition cannot generate an error interrupt in this mode.

For transmit DMA operations, the master SPI initiates a word transfer
only when there is data in the DMA FIFO. If the DMA FIFO is empty,
the SPI waits for the DMA engine to write to the DMA FIFO before start-
ing the transfer. All aspects of SPI receive operation should be ignored
when configured in Transmit DMA mode, including the data in the
SPI_RDBR register, and the status of the RXS and RBSY bits. The RBSY
overrun conditions cannot generate an error interrupt in this mode. The
TXE underrun condition cannot happen in this mode (master DMA TX
mode), because the master SPI will not initiate a transfer if there is no data
in the DMA FIFO.

Writes to the SPI_TDBR register during an active SPI transmit DMA opera-
tion should not occur because the DMA data will be overwritten. Writes
to the SPI_TDBR register during an active SPI receive DMA operation are
allowed. Reads from the SPI_RDBR register are allowed at any time.

DMA requests are generated when the DMA FIFO is not empty (when
TIMOD = 10), or when the DMA FIFO is not full (when TIMOD = 11).

Error interrupts are generated when there is an RBSY overflow error condi-
tion (when TIMOD = 10).

A master SPI DMA sequence may involve back-to-back transmission
and/or reception of multiple DMA work units. The SPI controller sup-
ports such a sequence with minimal core interaction.

ADSP-BF533 Blackfin Processor Hardware Reference 10-37

SPI Compatible Port Controllers

Slave Mode DMA Operation
When enabled as a slave with the DMA engine configured to transmit or
receive data, the start of a transfer is triggered by a transition of the SPISS
signal to the active-low state or by the first active edge of SCK, depending
on the state of CPHA.

The following steps illustrate the SPI receive or transmit DMA sequence
in an SPI slave (in response to a master command).

1. The processor core writes to the appropriate DMA registers to
enable the SPI DMA Channel and configure the necessary work
units, access direction, word count, and so on. For more informa-
tion, see “DMA and Memory DMA Registers” on page 9-3.

2. The processor core writes to the SPI_CTL register to define the
mode of the serial link to be the same as the mode setup in the SPI
master. The TIMOD field will be configured to select either “Receive
with DMA” (TIMOD = 10) or “Transmit with DMA” (TIMOD = 11)
mode.

3. If configured for receive, once the slave select input is active, the
slave starts receiving and transmitting data on SCK edges. The value
in the shift register is loaded into the SPI_RDBR register at the end
of the transfer. As the SPI reads data from the SPI_RDBR register
and writes to the SPI DMA FIFO, it requests a DMA write to
memory. Upon a DMA grant, the DMA engine reads a word from
the SPI DMA FIFO and writes to memory.

If configured for transmit, the SPI requests a DMA read from
memory. Upon a DMA grant, the DMA engine reads a word from
memory and writes to the SPI DMA FIFO. The SPI then reads
data from the SPI DMA FIFO and writes to the SPI_TDBR register,
awaiting the start of the next transfer.

DMA

10-38 ADSP-BF533 Blackfin Processor Hardware Reference

Once the slave select input is active, the slave starts receiving and
transmitting data on SCK edges. The value in the SPI_TDBR register
is loaded into the shift register at the start of the transfer.

4. In Receive mode, as long as there is data in the SPI DMA FIFO
(FIFO not empty), the SPI slave continues to request a DMA write
to memory. The DMA engine continues to read a word from the
SPI DMA FIFO and writes to memory until the SPI DMA Word
Count register transitions from 1 to 0. The SPI slave continues
receiving words on SCK edges as long as the slave select input is
active.

In Transmit mode, as long as there is room in the SPI DMA FIFO
(FIFO not full), the SPI slave continues to request a DMA read
from memory. The DMA engine continues to read a word from
memory and write to the SPI DMA FIFO until the SPI DMA
Word Count register transitions from 1 to 0. The SPI slave contin-
ues transmitting words on SCK edges as long as the slave select input
is active.

For receive DMA operations, if the DMA engine is unable to keep up with
the receive datastream, the receive buffer operates according to the state of
the GM bit. If GM = 1 and the DMA FIFO is full, the device continues to
receive new data from the MOSI pin, overwriting the older data in the
SPI_RDBR register. If GM = 0 and the DMA FIFO is full, the incoming data
is discarded, and the SPI_RDBR register is not updated. While performing
receive DMA, the transmit buffer is assumed to be empty and TXE is set. If
SZ = 1, the device repeatedly transmits 0s on the MISO pin. If SZ = 0, it
repeatedly transmits the contents of the SPI_TDBR register. The TXE under-
run condition cannot generate an error interrupt in this mode.

ADSP-BF533 Blackfin Processor Hardware Reference 10-39

SPI Compatible Port Controllers

For transmit DMA operations, if the DMA engine is unable to keep up
with the transmit stream, the transmit port operates according to the state
of the SZ bit. If SZ = 1 and the DMA FIFO is empty, the device repeat-
edly transmits 0s on the MISO pin. If SZ = 0 and the DMA FIFO is empty,
it repeatedly transmits the last word it transmitted before the DMA buffer
became empty. All aspects of SPI receive operation should be ignored
when configured in Transmit DMA mode, including the data in the
SPI_RDBR register, and the status of the RXS and RBSY bits. The RBSY over-
run conditions cannot generate an error interrupt in this mode.

Writes to the SPI_TDBR register during an active SPI transmit DMA opera-
tion should not occur because the DMA data will be overwritten. Writes
to the SPI_TDBR register during an active SPI receive DMA operation are
allowed. Reads from the SPI_RDBR register are allowed at any time.

DMA requests are generated when the DMA FIFO is not empty (when
TIMOD = 10), or when the DMA FIFO is not full (when TIMOD = 11).

Error interrupts are generated when there is an RBSY overflow error condi-
tion (when TIMOD = 10), or when there is a TXE underflow error condition
(when TIMOD = 11).

Timing
The enable lead time (T1), the enable lag time (T2), and the sequential
transfer delay time (T3) each must always be greater than or equal to
one-half the SCK period. See Figure 10-14. The minimum time between
successive word transfers (T4) is two SCK periods. This is measured from
the last active edge of SCK of one word to the first active edge of SCK of the
next word. This is independent of the configuration of the SPI (CPHA,
MSTR, and so on).

Timing

10-40 ADSP-BF533 Blackfin Processor Hardware Reference

For a master device with CPHA = 0, the slave select output will be inactive
(high) for at least one-half the SCK period. In this case, T1 and T2 will
each always be equal to one-half the SCK period.

Figure 10-14. SPI Timing

T1 T2

SPISS
(TO SLAVE)

SCK
(CPOL =1)

T4
T3

ADSP-BF533 Blackfin Processor Hardware Reference 11-1

11 PARALLEL PERIPHERAL
INTERFACE

The Parallel Peripheral Interface (PPI) is a half-duplex, bidirectional port
accommodating up to 16 bits of data. It has a dedicated clock pin, three
multiplexed frame sync pins, and four dedicated data pins. Up to 12 addi-
tional data pins are available by reconfiguring the PF pins. The highest
system throughput is achieved with 8-bit data, since two 8-bit data sam-
ples can be packed as a single 16-bit word. In such a case, the earlier
sample is placed in the 8 least significant bits (LSBs).

The PPI_CLK pin can accept an external clock input up to SCLK/2. It can-
not source a clock internally. Table 11-1 shows the pin interface for the
PPI.

If a programmable flag pin is configured for PPI use, its bit position in
programmable flag MMRs will read back as 0.

Table 11-1. PPI Pins

Signal Name Function Direction Alternate Function

PPI15 Data Bidirectional PF4, SPI Enable Output

PPI14 Data Bidirectional PF5, SPI Enable Output

PPI13 Data Bidirectional PF6, SPI Enable Output

PPI12 Data Bidirectional PF7, SPI Enable Output

PPI11 Data Bidirectional PF8

PPI10 Data Bidirectional PF9

PPI9 Data Bidirectional PF10

PPI8 Data Bidirectional PF11

PPI Registers

11-2 ADSP-BF533 Blackfin Processor Hardware Reference

PPI Registers
The PPI has five memory-mapped registers (MMRs) that regulate its oper-
ation. These registers are the PPI Control register (PPI_CONTROL), the PPI
Status register (PPI_STATUS), the Delay Count register (PPI_DELAY), the
Transfer Count register (PPI_COUNT), and the Lines Per Frame register
(PPI_FRAME).

Descriptions and bit diagrams for each of these MMRs are provided in the
following sections.

PPI7 Data Bidirectional PF12

PPI6 Data Bidirectional PF13

PPI5 Data Bidirectional PF14

PPI4 Data Bidirectional PF15

PPI3 Data Bidirectional N/A

PPI2 Data Bidirectional N/A

PPI1 Data Bidirectional N/A

PPI0 Data Bidirectional N/A

PPI_FS3 Frame Sync3/Field Bidirectional PF3, SPI Enable Output

PPI_FS2 Frame Sync2/VSYNC Bidirectional Timer 2

PPI_FS1 Frame Sync1/HSYNC Bidirectional Timer 1

PPI_CLK Up to SCLK/2 Input Clock N/A

Table 11-1. PPI Pins (Cont’d)

Signal Name Function Direction Alternate Function

ADSP-BF533 Blackfin Processor Hardware Reference 11-3

Parallel Peripheral Interface

PPI_CONTROL Register
The PPI Control register (PPI_CONTROL) configures the PPI for operating
mode, control signal polarities, and data width of the port. See
Figure 11-1 for a bit diagram of this MMR.

The POLC and POLS bits allow for selective signal inversion of the PPI_CLK
and PPI_FS1/PPI_FS2 signals, respectively. This provides a mechanism to
connect to data sources and receivers with a wide array of control signal
polarities. Often, the remote data source/receiver also offers configurable
signal polarities, so the POLC and POLS bits simply add increased flexibility.

The DLEN[2:0] field is programmed to specify the width of the PPI port in
any mode. Note any width from 8 to 16 bits is supported, with the excep-
tion of a 9-bit port width. Any PF pins that are unused by the PPI as a
result of the DLEN setting are free to be used in their normal PF capacity.

 In ITU-R 656 modes, the DLEN field should not be configured for
anything greater than a 10-bit port width. If it is, the PPI will
reserve extra pins, making them unusable by other peripherals.

The SKIP_EN bit, when set, enables the selective skipping of data elements
being read in through the PPI. By ignoring data elements, the PPI is able
to conserve DMA bandwidth.

When the SKIP_EN bit is set, the SKIP_EO bit allows the PPI to ignore
either the odd or the even elements in an input datastream. This is useful,
for instance, when reading in a color video signal in YCbCr format (Cb,
Y, Cr, Y, Cb, Y, Cr, Y...). Skipping every other element allows the PPI to
only read in the luma (Y) or chroma (Cr or Cb) values. This could also be
useful when synchronizing two processors to the same incoming video
stream. One processor could handle luma processing and the other (whose
SKIP_EO bit is set differently from the first processor’s) could handle
chroma processing. This skipping feature is valid in ITU-R 656 modes
and RX modes with external frame syncs.

PPI Registers

11-4 ADSP-BF533 Blackfin Processor Hardware Reference

Figure 11-1. PPI Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0

PPI Control Register (PPI_CONTROL)

0 - PPI disabled
1 - PPI enabled

FLD_SEL (Active Field Select)

PORT_DIR (Direction)

XFR_TYPE[1:0] (Transfer
Type)

PORT_CFG[1:0] (Port
Configuration)

PORT_EN (Enable)

DLEN[2:0] (Data Length)
000 - 8 bits
001 - 10 bits
010 - 11 bits
011 - 12 bits
100 - 13 bits
101 - 14 bits
110 - 15 bits
111 - 16 bits

POLS

0 - PPI in Receive mode (input)
1 - PPI in Transmit mode

(output)

In Input mode:
00 - ITU-R 656, Active Field Only
01 - ITU-R 656, Entire Field
10 - ITU-R 656, Vertical Blanking

Only
11 - Non-ITU-R 656 mode
In Output mode:
00, 01, 10 - Sync-less Output

mode
11 - Output mode with 1, 2, or

3 frame syncs

Reset = 0x0000

In ITU-R 656 modes, when XFR_TYPE = 00:
0 - Field 1
1 - Fields 1 and 2
In RX mode with external frame sync, when PORT_CFG = 11:
0 - External trigger
1 - Internal trigger

0 - PPI_FS1 and
PPI_FS2 are treated
as rising edge asserted

1 - PPI_FS1 and
PPI_FS2 are treated
as falling edge
asserted

ALT_TIMING

SKIP_EO (Skip Even Odd)
In ITU-R 656 and GP Input modes:
0 - Skip odd-numbered elements
1 - Skip even-numbered elements

In ITU-R 656 and GP Input modes:
0 - Skipping disabled
1 - Skipping enabled

PACK_EN (Packing Mode Enable)
0 - Disabled
1 - Output mode, unpacking enabled;

Input mode, packing enabled

In non-ITU-R 656 Input modes
(PORT_DIR = 0, XFR_TYPE = 11):
00 - 1 external frame sync
01 - 2 or 3 internal frame syncs
10 - 2 or 3 external frame syncs
11 - 0 frame syncs, triggered
In Output modes with frame syncs
(PORT_DIR = 1, XFR_TYPE = 11):
00 - 1 frame sync
01 - 2 or 3 frame syncs
10 - Reserved
11 - Sync PPI_FS3 to assertion of

PPI_FS2 rather than of
PPI_FS1.

0xFFC0 1000

POLC
0 - PPI samples data on rising edge
 and drives data on falling
 edge of PPI_CLK
1 - PPI samples data on falling edge

 and drives data on rising edge
of PPI_CLK

0

0 - Data/frame sync sampled
on opposite edges
1 - Data/frame sync sampled
on same edge

SKIP_EN (Skip Enable)

ADSP-BF533 Blackfin Processor Hardware Reference 11-5

Parallel Peripheral Interface

The ALT_TIMING bit provides the capability to have the frame sync and
data pins sampled on the same PPI clock edge, rather than on opposite
PPI clock edges, which is the default behavior. The PACK_EN bit only has
meaning when the PPI port width (selected by DLEN[2:0]) is 8 bits. Every
PPI_CLK-initiated event on the DMA bus (that is, an input or output oper-
ation) handles 16-bit entities. In other words, an input port width of 10
bits still results in a 16-bit input word for every PPI_CLK; the upper 6 bits
are 0s. Likewise, a port width of 8 bits also results in a 16-bit input word,
with the upper 8 bits all 0s. In the case of 8-bit data, it is usually more effi-
cient to pack this information so that there are two bytes of data for every
16-bit word. This is the function of the PACK_EN bit. When set, it enables
packing for all RX modes.

Consider this data transported into the PPI via DMA:

0xCE, 0xFA, 0xFE, 0xCA....

• With PACK_EN set:

This is read into the PPI, configured for an 8-bit port width: 0xCE,
0xFA, 0xFE, 0xCA...

This is transferred onto the DMA bus: 0xFACE, 0xCAFE, ...

• With PACK_EN cleared:

This is read into the PPI: 0xCE, 0xFA, 0xFE, 0xCA, ...

This is transferred onto the DMA bus: 0x00CE, 0x00FA, 0x00FE,
0x00CA, ...

For TX modes, setting PACK_EN enables unpacking of bytes. Consider this
data in memory, to be transported out through the PPI via DMA:

0xFACE CAFE.... (0xFA and 0xCA are the two Most Significant Bits
(MSBs) of their respective 16-bit words)

PPI Registers

11-6 ADSP-BF533 Blackfin Processor Hardware Reference

• With PACK_EN set:

This is DMAed to the PPI:0xFACE, 0xCAFE, ...

This is transferred out through the PPI, configured for an 8-bit
port width (note LSBs are transferred first):0xCE, 0xFA, 0xFE,
0xCA, ...

• With PACK_EN cleared:

This is DMAed to the PPI:0xFACE, 0xCAFE, ...

This is transferred out through the PPI, configured for an 8-bit
port width:0xCE, 0xFE, ...

The FLD_SEL bit is used primarily in the Active Field Only ITU-R 656
mode. The FLD_SEL bit determines whether to transfer in only Field 1 of
each video frame, or both Fields 1 and 2. Thus, it allows a savings in
DMA bandwidth by transferring only every other field of active video.

The PORT_CFG[1:0] field is used to configure the operating mode of the
PPI. It operates in conjunction with the PORT_DIR bit, which sets the
direction of data transfer for the port. The XFR_TYPE[1:0] field is also
used to configure operating mode and is discussed below. See Table 11-2
for the possible operating modes for the PPI.

ADSP-BF533 Blackfin Processor Hardware Reference 11-7

Parallel Peripheral Interface

Table 11-2. PPI Possible Operating Modes

PPI Mode # of
Syncs

PORT_
DIR

PORT_
CFG

XFR_T
YPE

POLC POLS FLD_
SEL

RX mode, 0 frame syncs,
external trigger

0 0 11 11 0 or 1 0 or 1 0

RX mode, 0 frame syncs,
internal trigger

0 0 11 11 0 or 1 0 or 1 1

RX mode, 1 external frame
sync

1 0 00 11 0 or 1 0 or 1 X

RX mode, 2 or 3 external
frame syncs

3 0 10 11 0 or 1 0 or 1 X

RX mode, 2 or 3 internal
frame syncs

3 0 01 11 0 or 1 0 or 1 X

RX mode, ITU-R 656,
Active Field Only

embed-
ded

0 XX 00 0 or 1 0 0 or 1

RX mode, ITU-R 656, Ver-
tical Blanking Only

embed-
ded

0 XX 10 0 or 1 0 X

RX mode, ITU-R 656,
Entire Field

embed-
ded

0 XX 01 0 or 1 0 X

TX mode, 0 frame syncs 0 1 XX 00, 01,
10

0 or 1 0 or 1 X

TX mode, 1 internal or
external frame sync

1 1 00 11 0 or 1 0 or 1 X

TX mode, 2 external frame
syncs

2 1 01 11 0 or 1 0 or 1 X

TX mode, 2 or 3 internal
frame syncs, FS3 sync’ed to
FS1 assertion

3 1 01 11 0 or 1 0 or 1 X

TX mode, 2 or 3 internal
frame syncs, FS3 sync’ed to
FS2 assertion

3 1 11 11 0 or 1 0 or 1 X

PPI Registers

11-8 ADSP-BF533 Blackfin Processor Hardware Reference

The XFR_TYPE[1:0] field configures the PPI for various modes of opera-
tion. Refer to Table 11-2 to see how XFR_TYPE[1:0] interacts with other
bits in PPI_CONTROL to determine the PPI operating mode.

The PORT_EN bit, when set, enables the PPI for operation.

 Note that, when configured as an input port, the PPI does not start
data transfer after being enabled until the appropriate synchroniza-
tion signals are received. If configured as an output port, transfer
(including the appropriate synchronization signals) begins as soon
as the frame syncs (Timer units) are enabled, so all frame syncs
must be configured before this happens. Refer to the section
“Frame Synchronization in GP Modes” on page 11-27 for more
information.

PPI_STATUS Register
The PPI Status register (PPI_STATUS) contains bits that provide informa-
tion about the current operating state of the PPI.

The ERR_DET bit is a sticky bit that denotes whether or not an error was
detected in the ITU-R 656 control word preamble. The bit is valid only in
ITU-R 656 modes. If ERR_DET = 1, an error was detected in the preamble.
If ERR_DET = 0, no error was detected in the preamble.

The ERR_NCOR bit is sticky and is relevant only in ITU-R 656 modes. If
ERR_NCOR = 0 and ERR_DET = 1, all preamble errors that have occurred
have been corrected. If ERR_NCOR = 1, an error in the preamble was
detected but not corrected. This situation generates a PPI Error interrupt,
unless this condition is masked off in the SIC_IMASK register.

The FT_ERR bit is sticky and indicates, when set, that a Frame Track Error
has occurred. It is valid for RX modes only. In this condition, the pro-
grammed number of lines per frame in PPI_FRAME does not match up with

ADSP-BF533 Blackfin Processor Hardware Reference 11-9

Parallel Peripheral Interface

the “frame start detect” condition (see the information note on
on page 11-12). A Frame Track Error generates a PPI Error interrupt,
unless this condition is masked off in the SIC_IMASK register.

The FLD bit is set or cleared at the same time as the change in state of F (in
ITU-R 656 modes) or PPI_FS3 (in other RX modes). It is valid for Input
modes only. The state of FLD reflects the current state of the F or PPI_FS3
signals. In other words, the FLD bit always reflects the current video field
being processed by the PPI.

The OVR bit is sticky and indicates, when set, that the PPI FIFO has over-
flowed and can accept no more data. A FIFO Overflow Error generates a
PPI Error interrupt, unless this condition is masked off in the SIC_IMASK
register.

 The PPI FIFO is 16 bits wide and has 16 entries.

The UNDR bit is sticky and indicates, when set, that the PPI FIFO has
underrun and is data-starved. A FIFO Underrun Error generates a PPI
Error interrupt, unless this condition is masked off in the SIC_IMASK
register.

PPI Registers

11-10 ADSP-BF533 Blackfin Processor Hardware Reference

PPI_DELAY Register
The Delay Count register (PPI_DELAY) can be used in all configurations
except ITU-R 656 modes and GP modes with 0 frame syncs. It contains a
count of how many PPI_CLK cycles to delay after assertion of PPI_FS1
before starting to read in or write out data.

 Note in TX modes using at least one frame sync, there is a
one-cycle delay beyond what is specified in the PPI_DELAY register.

Figure 11-2. PPI Status Register

Figure 11-3. Delay Count Register

PPI Status Register (PPI_STATUS)

0 - Field 1
1 - Field 2

FT_ERR - W1C (Frame Track Error)

OVR - W1C (FIFO Overflow)

FLD (Field Indicator)

ERR_DET - W1C
(Error Detected)

Used only in ITU-R 656 modes
0 - No preamble error detected
1 - Preamble error detected

ERR_NCOR - W1C
(Error Not Corrected)

0 - No interrupt
1 - Frame Track Error

interrupt occurred

Reset = 0x0000

Used only in ITU-R 656
modes
0 - No uncorrected

preamble error
has occurred

1 - Preamble error
detected but not
corrected 0 - No interrupt

1 - FIFO Overflow Error
interrupt occurred

UNDR - W1C (FIFO Underrun)
0 - No interrupt
1 - FIFO Underrun Error

interrupt occurred

0xFFC0 1004

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Delay Count Register (PPI_DELAY)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PPI_DELAY[15:0]

Reset = 0x0000

Number of PPI_CLK cycles to
delay after assertion of
PPI_FS1 before latching in or
sending out data

0xFFC0 100C

ADSP-BF533 Blackfin Processor Hardware Reference 11-11

Parallel Peripheral Interface

PPI_COUNT Register
The Transfer Count register (PPI_COUNT) is used only in cases where recur-
ring hardware frame syncs (either externally or internally generated) are
involved. It is not needed in ITU-R 656 modes or modes with 0 frame
syncs. For RX modes, this register holds the number of samples to read
into the PPI per line, minus one. For TX modes, it holds the number of
samples to write out through the PPI per line, minus one. The register
itself does not actually decrement with each transfer. Thus, at the begin-
ning of a new line of data, there is no need to rewrite the value of this
register. For example, to receive or transmit 100 samples through the PPI,
set PPI_COUNT to 99.

 Take care to ensure that the number of samples programmed into
PPI_COUNT is in keeping with the number of samples expected dur-
ing the “horizontal” interval specified by PPI_FS1.

Figure 11-4. Transfer Count Register

Transfer Count Register (PPI_COUNT)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PPI_COUNT[15:0]

Reset = 0x0000

In RX modes, holds one less
than the number of samples to
read in to the PPI per line. In
TX modes, holds one less
than the number of samples to
write out through the PPI per
line.

0xFFC0 1008

PPI Registers

11-12 ADSP-BF533 Blackfin Processor Hardware Reference

PPI_FRAME Register
The Lines Per Frame (PPI_FRAME) register is used in all TX and RX modes
with external frame syncs. For ITU-R 656 modes, this register holds the
number of lines expected per frame of data, where a frame is defined as
Field 1 and Field 2 combined, designated by the F indicator in the ITU-R
stream. Here, a line is defined as a complete ITU-R 656 SAV-EAV cycle.

For non-ITU-R 656 modes with external frame syncs, a frame is defined
as the data bounded between PPI_FS2 assertions, regardless of the state of
PPI_FS3. A line is defined as a complete PPI_FS1 cycle. In these modes,
PPI_FS3 is used only to determine the original "frame start" each time the
PPI is enabled. It is ignored on every subsequent field and frame, and its
state (high or low) is not important except during the original frame start.

If the start of a new frame (or field, for ITU-R 656 mode) is detected
before the number of lines specified by PPI_FRAME have been trans-
ferred, a Frame Track Error results, and the FT_ERR bit in PPI_STATUS is
set. However, the PPI still automatically reinitializes to count to the value
programmed in PPI_FRAME, and data transfer continues.

 In ITU-R 656 modes, a frame start detect happens on the falling
edge of F, the Field indicator. This occurs at the start of Field 1.

 In RX mode with 3 external frame syncs, a frame start detect refers
to a condition where a PPI_FS2 assertion is followed by an assertion
of PPI_FS1 while PPI_FS3 is low. This occurs at the start of Field 1.

Note that PPI_FS3 only needs to be low when PPI_FS1 is asserted,
not when PPI_FS2 asserts. Also, PPI_FS3 is only used to synchro-
nize to the start of the very first frame after the PPI is enabled. It is
subsequently ignored.

 When using RX mode with 3 external frame syncs, and only 2
syncs are needed, configure the PPI for three-frame-sync operation
and provide an external pull-down to GND for the PPI_FS3 pin.

ADSP-BF533 Blackfin Processor Hardware Reference 11-13

Parallel Peripheral Interface

ITU-R 656 Modes
The PPI supports three input modes for ITU-R 656-framed data. These
modes are described in this section. Although the PPI does not explicitly
support an ITU-R 656 output mode, recommendations for using the PPI
for this situation are provided as well.

ITU-R 656 Background
According to the ITU-R 656 recommendation (formerly known as
CCIR-656), a digital video stream has the characteristics shown in
Figure 11-6 and Figure 11-7 for 525/60 (NTSC) and 625/50 (PAL) sys-
tems. The processor supports only the Bit-parallel mode of ITU-R 656.
Both 8- and 10-bit video element widths are supported.

In this mode, the Horizontal (H), Vertical (V), and Field (F) signals are
sent as an embedded part of the video datastream in a series of bytes that
form a control word. The Start of Active Video (SAV) and End of Active
Video (EAV) signals indicate the beginning and end of data elements to
read in on each line. SAV occurs on a 1-to-0 transition of H, and EAV
begins on a 0-to-1 transition of H. An entire field of video is comprised of
Active Video + Horizontal Blanking (the space between an EAV and SAV
code) and Vertical Blanking (the space where V = 1). A field of video
commences on a transition of the F bit. The “odd field” is denoted by a

Figure 11-5. Lines Per Frame Register

Lines Per Frame Register (PPI_FRAME)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PPI_FRAME[15:0]

Reset = 0x0000

Holds the number of lines
expected per frame of data

0xFFC0 1010

ITU-R 656 Modes

11-14 ADSP-BF533 Blackfin Processor Hardware Reference

value of F = 0, whereas F = 1 denotes an even field. Progressive video
makes no distinction between Field 1 and Field 2, whereas interlaced
video requires each field to be handled uniquely, because alternate rows of
each field combine to create the actual video image.

Figure 11-7. Typical Video Frame Partitioning for NTSC/PAL Systems for
ITU-R BT.656-4

LINE 4

FIELD 1
ACTIVE VIDEO

FIELD 1
ACTIVE VIDEO

FIELD 2
ACTIVE VIDEO

FIELD 2
ACTIVE VIDEO

FIELD 1

FIELD 2

LINE 266

LINE 313

LINE 625

LINE 3

LINE 1

EAV SAV

EAV SAV

1

20

264

283

525

1

23

311

336

624

625

LINE
NUMBER

LINE
NUMBER

F H
(SAV)

H
(EAV)

H
(SAV)

H
(EAV)

F

V

V

1-3,
266-282

4-19,
264-265

20-263

283-525

1-22,
311-312

23-310

313-335,
624-625

336-623

1

1 1

1

1

1

1

1

0

0 0

0

0

0

0

0

0

0

0

01

1

1

1

1

1

0

0

1

1

0

0

LINE #

VERTICAL
BLANKING

VERTICAL
BLANKING

VERTICAL
BLANKING

VERTICAL
BLANKING

VERTICAL
BLANKING

H
O

R
IZ

O
N

T
A

L
B

L
A

N
K

IN
G

H
O

R
IZ

O
N

T
A

L
B

L
A

N
K

IN
G

FIELD 1

FIELD 2

ADSP-BF533 Blackfin Processor Hardware Reference 11-15

Parallel Peripheral Interface

Figure 11-6. ITU-R 656 8-Bit Parallel Data Stream for NTSC (PAL)
Systems

4 268 (280 FOR PAL) 4 1440

F
F

0
0

0
0

X
Y

8
0

1
0

8
0

1
0

8
0

1
0

F
F

0
0

0
0

X
Y

C
B

Y C
R

Y C
B

Y C
R

Y C
R

Y F
F

DIGITAL
VIDEO
STREAM

START OF
NEXT LINE

EAV
CODE
(H = 1)

SAV
CODE
(H = 0)

HORIZONTAL
BLANKING

END OF ACTIVE VIDEO START OF ACTIVE VIDEO

1716 (1728 FOR PAL)

ITU-R 656 Modes

11-16 ADSP-BF533 Blackfin Processor Hardware Reference

The SAV and EAV codes are shown in more detail in Table 11-3 on
page 11-17. Note there is a defined preamble of three bytes (0xFF, 0x00,
0x00), followed by the XY Status word, which, aside from the F (Field), V
(Vertical Blanking) and H (Horizontal Blanking) bits, contains four pro-
tection bits for single-bit error detection and correction. Note F and V are
only allowed to change as part of EAV sequences (that is, transition from
H = 0 to H = 1). The bit definitions are as follows:

• F = 0 for Field 1

• F = 1 for Field 2

• V = 1 during Vertical Blanking

• V = 0 when not in Vertical Blanking

• H = 0 at SAV

• H = 1 at EAV

• P3 = V XOR H

• P2 = F XOR H

• P1 = F XOR V

• P0 = F XOR V XOR H

In many applications, video streams other than the standard NTSC/PAL
formats (for example, CIF, QCIF) can be employed. Because of this, the
processor interface is flexible enough to accommodate different row and
field lengths. In general, as long as the incoming video has the proper
EAV/SAV codes, the PPI can read it in. In other words, a CIF image
could be formatted to be “656-compliant,” where EAV and SAV values
define the range of the image for each line, and the V and F codes can be
used to delimit fields and frames.

ADSP-BF533 Blackfin Processor Hardware Reference 11-17

Parallel Peripheral Interface

ITU-R 656 Input Modes
Figure 11-8 shows a general illustration of data movement in the ITU-R
656 input modes. In the figure, the clock CLK is either provided by the
video source or supplied externally by the system.

There are three submodes supported for ITU-R 656 inputs: Entire Field,
Active Video Only, and Vertical Blanking Interval Only. Figure 11-9
shows these three submodes.

Table 11-3. Control Byte Sequences for 8-Bit and 10-Bit ITU-R 656
Video

8-bit Data 10-bit Data

D9
(MSB)

D8 D7 D6 D5 D4 D3 D2 D1 D0

Preamble 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Control Byte 1 F V H P3 P2 P1 P0 0 0

Figure 11-8. ITU-R 656 Input Modes

PPIx

PPI_CLK

PPI

CLK

'656
COMPATIBLE

VIDEOSOURCE

ITU-R 656 INPUT MODE

8- OR 10-BIT DATA WITH
EMBEDDED CONTROL

ITU-R 656 Modes

11-18 ADSP-BF533 Blackfin Processor Hardware Reference

Entire Field

In this mode, the entire incoming bitstream is read in through the PPI.
This includes Active Video as well as control byte sequences and ancillary
data that may be embedded in Horizontal and Vertical Blanking Intervals.
Data transfer starts immediately after synchronization to Field 1 occurs,
but does not include the first EAV code that contains the F = 0
assignment.

 Note the first line transferred in after enabling the PPI will be miss-
ing its first 4-byte preamble. However, subsequent lines and frames
should have all control codes intact.

One side benefit of this mode is that it enables a “loopback” feature
through which a frame or two of data can be read in through the PPI and
subsequently output to a compatible video display device. Of course, this
requires multiplexing on the PPI pins, but it enables a convenient way to
verify that 656 data can be read into and written out from the PPI.

Figure 11-9. ITU-R 656 Input Submodes

BLANKING BLANKING BLANKING

BLANKING BLANKING BLANKING

BLANKING BLANKING BLANKING

FIELD 1
ACTIVE VIDEO

FIELD 2
ACTIVE VIDEO

FIELD 2
ACTIVE VIDEO

FIELD 2
ACTIVE VIDEO

FIELD 1
ACTIVE VIDEO

FIELD 1
ACTIVE VIDEO

ENTIRE FIELD SENT BLANKING ONLY SENTACTIVE VIDEO ONLY SENT

ADSP-BF533 Blackfin Processor Hardware Reference 11-19

Parallel Peripheral Interface

Active Video Only

This mode is used when only the active video portion of a field is of inter-
est, and not any of the blanking intervals. The PPI ignores (does not read
in) all data between EAV and SAV, as well as all data present when V = 1.
In this mode, the control byte sequences are not stored to memory; they
are filtered out by the PPI. After synchronizing to the start of Field 1, the
PPI ignores incoming samples until it sees an SAV.

 In this mode, the user specifies the number of total (active plus ver-
tical blanking) lines per frame in the PPI_FRAME MMR.

Vertical Blanking Interval (VBI) Only

In this mode, data transfer is only active while V = 1 is in the control byte
sequence. This indicates that the video source is in the midst of the Verti-
cal Blanking Interval (VBI), which is sometimes used for ancillary data
transmission. The ITU-R 656 recommendation specifies the format for
these ancillary data packets, but the PPI is not equipped to decode the
packets themselves. This task must be handled in software. Horizontal
blanking data is logged where it coincides with the rows of the VBI. Con-
trol byte sequence information is always logged. The user specifies the
number of total lines (Active plus Vertical Blanking) per frame in the
PPI_FRAME MMR.

Note the VBI is split into two regions within each field. From the PPI’s
standpoint, it considers these two separate regions as one contiguous
space. However, keep in mind that frame synchronization begins at the
start of Field 1, which doesn’t necessarily correspond to the start of Verti-
cal Blanking. For instance, in 525/60 systems, the start of Field 1 (F = 0)
corresponds to Line 4 of the VBI.

ITU-R 656 Modes

11-20 ADSP-BF533 Blackfin Processor Hardware Reference

ITU-R 656 Output Mode
The PPI does not explicitly provide functionality for framing an ITU-R
656 output stream with proper preambles and blanking intervals.
However, with the TX mode with 0 frame syncs, this process can be sup-
ported manually. Essentially, this mode provides a streaming operation
from memory out through the PPI. Data and control codes can be set up
in memory prior to sending out the video stream. With the 2D DMA
engine, this could be performed in a number of ways. For instance, one
line of blanking (H + V) could be stored in a buffer and sent out N times
by the DMA controller when appropriate, before proceeding to DMA
active video. Alternatively, one entire field (with control codes and blank-
ing) can be set up statically in a buffer while the DMA engine transfers
only the active video region into the buffer, on a frame-by-frame basis.

Frame Synchronization in ITU-R 656 Modes
Synchronization in ITU-R 656 modes always occurs at the falling edge of
F, the field indicator. This corresponds to the start of Field 1. Conse-
quently, up to two fields might be ignored (for example, if Field 1 just
started before the PPI-to-camera channel was established) before data is
received into the PPI.

Because all H and V signalling is embedded in the datastream in ITU-R
656 modes, the PPI_COUNT register is not necessary. However, the
PPI_FRAME register is used in order to check for synchronization errors.
The user programs this MMR for the number of lines expected in each
frame of video, and the PPI keeps track of the number of EAV-to-SAV
transitions that occur from the start of a frame until it decodes the
end-of-frame condition (transition from F = 1 to F = 0). At this time, the
actual number of lines processed is compared against the value in
PPI_FRAME. If there is a mismatch, the FT_ERR bit in the PPI_STATUS regis-
ter is asserted. For instance, if an SAV transition is missed, the current
field will only have NUM_ROWS – 1 rows, but resynchronization will reoccur
at the start of the next frame.

ADSP-BF533 Blackfin Processor Hardware Reference 11-21

Parallel Peripheral Interface

Upon completing reception of an entire field, the Field Status bit is tog-
gled in the PPI_STATUS register. This way, an interrupt service routine
(ISR) can discern which field was just read in.

General-Purpose PPI Modes
The General-Purpose (GP) PPI modes are intended to suit a wide variety
of data capture and transmission applications. Table 11-4 summarizes
these modes. If a particular mode shows a given PPI_FSx frame sync not
being used, this implies that the pin is available for its alternate, multi-
plexed processor function (that is, as a timer or flag pin). The exception to
this is that when the PPI is configured for a 2-frame-sync mode, PPI_FS3
cannot be used as a general-purpose flag, even though it is not used by the
PPI.

Table 11-4. General-Purpose PPI Modes

GP PPI Mode PPI_FS1
Direction

PPI_FS2
Direction

PPI_FS3
Direction

Data
Direction

RX mode, 0 frame syncs, external
trigger

Input Not used Not used Input

RX mode, 0 frame syncs, internal
trigger

Not used Not used Not used Input

RX mode, 1 external frame sync Input Not used Not used Input

RX mode, 2 or 3 external frame syncs Input Input Input Input

RX mode, 2 or 3 internal frame syncs Output Output Output Input

TX mode, 0 frame syncs Not used Not used Not used Output

TX mode, 1 external frame sync Input Not used Not used Output

TX mode, 2 external frame syncs Input Input Output Output

TX mode, 1 internal frame sync Output Not used Not used Output

TX mode, 2 or 3 internal frame syncs Output Output Output Output

General-Purpose PPI Modes

11-22 ADSP-BF533 Blackfin Processor Hardware Reference

Figure 11-10 illustrates the general flow of the GP modes. The top of the
diagram shows an example of RX mode with 1 external frame sync. After
the PPI receives the hardware frame sync pulse (PPI_FS1), it delays for the
duration of the PPI_CLK cycles programmed into PPI_DELAY. The DMA
controller then transfers in the number of samples specified by PPI_COUNT.
Every sample that arrives after this, but before the next PPI_FS1 frame
sync arrives, is ignored and not transferred onto the DMA bus.

 If the next PPI_FS1 frame sync arrives before the specified
PPI_COUNT samples have been read in, the sample counter reinitial-
izes to 0 and starts to count up to PPI_COUNT again. This situation
can cause the DMA channel configuration to lose synchronization
with the PPI transfer process.

The bottom of Figure 11-10 shows an example of TX mode, 1 internal
frame sync. After PPI_FS1 is asserted, there is a latency of 1 PPI_CLK cycle,
and then there is a delay for the number of PPI_CLK cycles programmed
into PPI_DELAY. Next, the DMA controller transfers out the number of
samples specified by PPI_COUNT. No further DMA takes place until the
next PPI_FS1 sync and programmed delay occur.

 If the next PPI_FS1 frame sync arrives before the specified
PPI_COUNT samples have been transferred out, the sync has priority
and starts a new line transfer sequence. This situation can cause the
DMA channel configuration to lose synchronization with the PPI
transfer process.

Data Input (RX) Modes
The PPI supports several modes for data input. These modes differ chiefly
by the way the data is framed. Refer to Table 11-2 on page 11-7 for infor-
mation on how to configure the PPI for each mode.

ADSP-BF533 Blackfin Processor Hardware Reference 11-23

Parallel Peripheral Interface

No Frame Syncs

These modes cover the set of applications where periodic frame syncs are
not generated to frame the incoming data. There are two options for start-
ing the data transfer, both configured by the PPI_CONTROL register.

• External trigger: An external source sends a single frame sync (tied
to PPI_FS1) at the start of the transaction, when FLD_SEL = 0 and
PORT_CFG = b#11.

• Internal trigger: Software initiates the process by setting
PORT_EN = 1 with FLD_SEL = 1 and PORT_CFG = b#11.

Figure 11-10. General Flow for GP Modes (Assumes Positive Assertion of
PPI_FS1)

INPUT

OUTPUT

PPI_COUNT

PPI_COUNT1 CYCLE
DELAY

PROG
DELAY

(PPI_DELAY)

PROG
DELAY

(PPI_DELAY)

FRAME
SYNC

(PPI_FS1)

FRAME
SYNC

(PPI_FS1)

SAMPLES
IGNORED

General-Purpose PPI Modes

11-24 ADSP-BF533 Blackfin Processor Hardware Reference

All subsequent data manipulation is handled via DMA. For example, an
arrangement could be set up between alternating 1K memory buffers.
When one fills up, DMA continues with the second buffer, at the same
time that another DMA operation is clearing the first memory buffer for
reuse.

 Due to clock domain synchronization in RX modes with no frame
syncs, there may be a delay of at least 2 PPI_CLK cycles between
when the mode is enabled and when valid data is received. There-
fore, detection of the start of valid data should be managed by
software.

1, 2, or 3 External Frame Syncs

The 1-sync mode is intended for analog-to-digital converter (ADC) appli-
cations. The top part of Figure 11-11 shows a typical illustration of the
system setup for this mode.

Figure 11-11. RX Mode, External Frame Syncs

PPI
VIDEO

SOURCE

A/D
CONVERTER

PPIx

PPIx

PPI_CLK

PPI_CLKCLK

CLK

PPI_FS1

PPI_FS2

PPI_FS3

PPI_FS1

HSYNC

VSYNC

FIELD

FRAMESYNC

8–16 BITS DATA

8–16 BITS DATA

DATA

DATA

PPI

ADSP-BF533 Blackfin Processor Hardware Reference 11-25

Parallel Peripheral Interface

The 3-sync mode shown at the bottom of Figure 11-11 supports video
applications that use hardware signalling (HSYNC, VSYNC, FIELD) in accor-
dance with the ITU-R 601 recommendation. The mapping for the frame
syncs in this mode is PPI_FS1 = HSYNC, PPI_FS2 = VSYNC,
PPI_FS3 = FIELD. Refer to “Frame Synchronization in GP Modes” on
page 11-27 for more information about frame syncs in this mode.

A 2-sync mode is implicitly supported by pulling PPI_FS3 to GND by an
external resistor when configured in 3-sync mode.

2 or 3 Internal Frame Syncs

This mode can be useful for interfacing to video sources that can be slaved
to a master processor. In other words, the processor controls when to read
from the video source by asserting PPI_FS1 and PPI_FS2, and then reading
data into the PPI. The PPI_FS3 frame sync provides an indication of
which field is currently being transferred, but since it is an output, it can
simply be left floating if not used. Figure 11-12 shows a sample applica-
tion for this mode.

Data Output (TX) Modes
The PPI supports several modes for data output. These modes differ
chiefly by the way the data is framed. Refer to Table 11-2 on page 11-7
for information on how to configure the PPI for each mode.

Figure 11-12. RX Mode, Internal Frame Syncs

PPI
IMAGE

SOURCE

PPIx

CLKPPI_CLK

PPI_FS1

PPI_FS2

HSYNC

VSYNC

8–16 BITS DATA DATA

General-Purpose PPI Modes

11-26 ADSP-BF533 Blackfin Processor Hardware Reference

No Frame Syncs

In this mode, data blocks specified by the DMA controller are sent out
through the PPI with no framing. That is, once the DMA channel is con-
figured and enabled, and the PPI is configured and enabled, data transfers
will take place immediately, synchronized to PPI_CLK. See Figure 11-13
for an illustration of this mode.

 In this mode, there is a delay of up to 16 SCLK cycles (for > 8-bit
data) or 32 SCLK cycles (for 8-bit data) between enabling the PPI
and transmission of valid data. Furthermore, DMA must be config-
ured to transmit at least 16 samples (for > 8-bit data) or 32 samples
(for 8-bit data).

1 or 2 External Frame Syncs

In these modes, an external receiver can frame data sent from the PPI.
Both 1-sync and 2-sync modes are supported. The top diagram in
Figure 11-14 shows the 1-sync case, while the bottom diagram illustrates
the 2-sync mode.

 There is a mandatory delay of 1.5 PPI_CLK cycles, plus the value
programmed in PPI_DELAY, between assertion of the external frame
sync(s) and the transfer of valid data out through the PPI.

Figure 11-13. TX Mode, 0 Frame Syncs

CLK

PPIx

PPI_CLK

RECEIVER8- TO 16-BIT DATA

ADSP-BF533 Blackfin Processor Hardware Reference 11-27

Parallel Peripheral Interface

1, 2, or 3 Internal Frame Syncs

The 1-sync mode is intended for interfacing to digital-to-analog convert-
ers (DACs) with a single frame sync. The top part of Figure 11-15 shows
an example of this type of connection.

The 3-sync mode is useful for connecting to video and graphics displays,
as shown in the bottom part of Figure 11-15. A 2-sync mode is implicitly
supported by leaving PPI_FS3 unconnected in this case.

Frame Synchronization in GP Modes
Frame synchronization in GP modes operates differently in modes with
internal frame syncs than in modes with external frame syncs.

Figure 11-14. TX Mode, 1 or 2 External Frame Syncs

DATA
RECEIVER

DATA
RECEIVER

PPIx

CLK

CLK

PPI_CLK

PPI_FS1

PPI_FS2

8–16 BITS DATA

8–16 BITS DATA

DATA

DATA

PPI

PPI

PPI_CLK

PPIx

PPI_FS1FRAMESYNC

FRAMESYNC1

FRAMESYNC2

General-Purpose PPI Modes

11-28 ADSP-BF533 Blackfin Processor Hardware Reference

Modes with Internal Frame Syncs

In modes with internal frame syncs, PPI_FS1 and PPI_FS2 link directly to
the Pulsewidth Modulation (PWM) circuits of Timer 1 and Timer 2,
respectively. This allows for arbitrary pulse widths and periods to be pro-
grammed for these signals using the existing TIMERx registers. This
capability accommodates a wide range of timing needs. Note these PWM
circuits are clocked by PPI_CLK, not by SCLK or PF1 (as during conven-
tional Timer PWM operation). If PPI_FS2 is not used in the configured
PPI mode, Timer 2 operates as it normally would, unrestricted in func-
tionality. The state of PPI_FS3 depends completely on the state of PPI_FS1
and/or PPI_FS2, so PPI_FS3 has no inherent programmability.

Figure 11-15. PPI GP Output

PPI VIDEO DISPLAY

PPIx CLK

PPI_CLK

PPI_CLK

PPI_FS1

PPI_FS2

HSYNC

VSYNC

8–16 BITS DATA

8–16 BITS DATA

D/A
CONVERTER

PPI_FS3

PPIx

PPI_FS1

CLK

FIELD

FRAMESYNC

1 FRAME
SYNC

3 FRAME
SYNCS

PPI

DATA

ADSP-BF533 Blackfin Processor Hardware Reference 11-29

Parallel Peripheral Interface

 To program PPI_FS1 and/or PPI_FS2 for operation in an internal
frame sync mode:

1. Configure and enable DMA for the PPI. See “DMA Operation” on
page 11-30.

2. Configure the width and period for each frame sync signal via
TIMER1_WIDTH and TIMER1_PERIOD (for PPI_FS1), or TIMER2_WIDTH
and TIMER2_PERIOD (for PPI_FS2).

3. Set up TIMER1_CONFIG for PWM_OUT mode (for PPI_FS1). If used,
configure TIMER2_CONFIG for PWM_OUT mode (for PPI_FS2). This
includes setting CLK_SEL = 1 and TIN_SEL = 1 for each timer.

4. Write to PPI_CONTROL to configure and enable the PPI.

5. Write to TIMER_ENABLE to enable Timer 1 and/or Timer 2.

 It is important to guarantee proper frame sync polarity between the
PPI and Timer peripherals. To do this, make sure that if
PPI_CONTROL[15:14] = b#10 or b#11, the PULSE_HI bit is cleared in
TIMER1_CONFIG and TIMER2_CONFIG. Likewise, if
PPI_CONTROL[15:14] = b#00 or b#01, the PULSE_HI bit should be
set in TIMER1_CONFIG and TIMER2_CONFIG.

To switch to another PPI mode not involving internal frame syncs:

1. Disable the PPI (using PPI_CONTROL).

2. Disable the timers (using TIMER_DISABLE).

Modes with External Frame Syncs

In RX modes with external frame syncs, the PPI_FS1 and PPI_FS2 pins
become edge-sensitive inputs. In such a mode, Timers 1 and 2 can be used
for a purpose not involving the TMR1 and TMR2 pins. However, timer access
to a TMRx pin is disabled when the PPI is using that pin for a PPI_FSx
frame sync input function. For modes that do not require PPI_FS2,

DMA Operation

11-30 ADSP-BF533 Blackfin Processor Hardware Reference

Timer 2 is not restricted in functionality and can be operated as if the PPI
were not being used (that is, the TMR2 pin becomes available for timer use
as well). For more information on configuring and using the timers, refer
to Chapter 15, “Timers”.

 In RX Mode with 3 external frame syncs, the start of frame detec-
tion occurs where a PPI_FS2 assertion is followed by an assertion of
PPI_FS1 while PPI_FS3 is low. This happens at the start of Field 1.

Note that PPI_FS3 only needs to be low when PPI_FS1 is asserted,
not when PPI_FS2 asserts. Also, PPI_FS3 is only used to synchro-
nize to the start of the very first frame after the PPI is enabled. It is
subsequently ignored.

In TX modes with external frame syncs, the PPI_FS1 and PPI_FS2 pins are
treated as edge-sensitive inputs. In this mode, it is not necessary to config-
ure the timer(s) associated with the frame sync(s) as input(s), or to enable
them via the TIMER_ENABLE register. Additionally, the actual timers them-
selves are available for use, even though the timer pin(s) are taken over by
the PPI. In this case, there is no requirement that the timebase (configured
by TIN_SEL in TIMERx_CONFIG) be PPI_CLK.

However, if using a timer whose pin is connected to an external frame
sync, be sure to disable the pin via the OUT_DIS bit in TIMERx_CONFIG.
Then the timer itself can be configured and enabled for non-PPI use with-
out affecting PPI operation in this mode. For more information, see
Chapter 15, “Timers”.

DMA Operation
The PPI must be used with the processor’s DMA engine. This section dis-
cusses how the two interact. For additional information about the DMA
engine, including explanations of DMA registers and DMA operations,
refer to Chapter 9, “Direct Memory Access”.

ADSP-BF533 Blackfin Processor Hardware Reference 11-31

Parallel Peripheral Interface

The PPI DMA channel can be configured for either transmit or receive
operation, and it has a maximum throughput of (PPI_CLK) x

(16 bits/transfer). In modes where data lengths are greater than 8 bits,
only one element can be clocked in per PPI_CLK cycle, and this results in
reduced bandwidth (since no packing is possible). The highest throughput
is achieved with 8-bit data and PACK_EN = 1 (packing mode enabled).
Note for 16-bit packing mode, there must be an even number of data
elements.

Configuring the PPI’s DMA channel is a necessary step toward using the
PPI interface. It is the DMA engine that generates interrupts upon com-
pletion of a row, frame, or partial-frame transfer. It is also the DMA
engine that coordinates the origination or destination point for the data
that is transferred through the PPI.

The processor’s 2D DMA capability allows the processor to be interrupted
at the end of a line or after a frame of video has been transferred, as well as
if a DMA Error occurs. In fact, the specification of the DMAx_XCOUNT and
DMAx_YCOUNT MMRs allows for flexible data interrupt points. For example,
assume the DMA registers XMODIFY = YMODIFY = 1. Then, if a data frame
contains 320 x 240 bytes (240 rows of 320 bytes each), these conditions
hold:

• Setting XCOUNT = 320, YCOUNT = 240, and DI_SEL = 1 (the DI_SEL
bit is located in DMAx_CONFIG) will interrupt on every row trans-
ferred, for the entire frame.

• Setting XCOUNT = 320, YCOUNT = 240, and DI_SEL = 0 will inter-
rupt only on the completion of the frame (when 240 rows of 320
bytes have been transferred).

• Setting XCOUNT = 38,400 (320 x 120), YCOUNT = 2, and DI_SEL = 1
will cause an interrupt when half of the frame has been transferred,
and again when the whole frame has been transferred.

Data Transfer Scenarios

11-32 ADSP-BF533 Blackfin Processor Hardware Reference

Following is the general procedure for setting up DMA operation with the
PPI. Refer to “DMA and Memory DMA Registers” on page 9-3 for details
regarding configuration of DMA.

1. Configure DMA registers as appropriate for desired DMA operat-
ing mode.

2. Enable the DMA channel for operation.

3. Configure appropriate PPI registers.

4. Enable the PPI by writing a 1 to bit 0 in PPI_CONTROL.

Data Transfer Scenarios
Figure 11-16 shows two possible ways to use the PPI to transfer in video.
These diagrams are very generalized, and bandwidth calculations must be
made only after factoring in the exact PPI mode and settings (for example,
transfer Field 1 only, transfer odd and even elements).

The top part of the diagram shows a situation appropriate for, as an exam-
ple, JPEG compression. The first N rows of video are DMAed into L1
memory via the PPI. Once in L1, the compression algorithm operates on
the data and sends the compressed result out from the processor via the
SPORT. Note that no SDRAM access was necessary in this approach.

The bottom part of the diagram takes into account a more formidable
compression algorithm, such as MPEG-2 or MPEG-4. Here, the raw
video is transferred directly into SDRAM. Independently, a Memory
DMA channel transfers data blocks between SDRAM and L1 memory for
intermediate processing stages. Finally, the compressed video exits the
processor via the SPORT.

ADSP-BF533 Blackfin Processor Hardware Reference 11-33

Parallel Peripheral Interface

Figure 11-16. PPI Possible Data Transfer Scenarios

PPI SDRAM L1
MEMORY

L1
MEMORY

SPORT

DMA

DMA DMA

DMA DMA

PPIVIDEO
SOURCE

VIDEO
SOURCE

SPORT

COMPRESSED
VIDEO

VIDEO
DATA AND
CONTROL

Data Transfer Scenarios

11-34 ADSP-BF533 Blackfin Processor Hardware Reference

ADSP-BF533 Blackfin Processor Hardware Reference 12-1

12 SERIAL PORT CONTROLLERS

The processor has two identical synchronous serial ports, or SPORTs.
These support a variety of serial data communications protocols and can
provide a direct interconnection between processors in a multiprocessor
system.

The serial ports (SPORT0 and SPORT1) provide an I/O interface to a
wide variety of peripheral serial devices. SPORTs provide synchronous
serial data transfer only; the processor provides asynchronous RS-232 data
transfer via the UART. Each SPORT has one group of pins (primary data,
secondary data, clock, and frame sync) for transmit and a second set of
pins for receive. The receive and transmit functions are programmed sepa-
rately. Each SPORT is a full duplex device, capable of simultaneous data
transfer in both directions. The SPORTs can be programmed for bit rate,
frame sync, and number of bits per word by writing to memory-mapped
registers.

 In this text, the naming conventions for registers and pins use a
lower case x to represent a digit. In this chapter, for example, the
name RFSx pins indicates RFS0 and RFS1 (corresponding to
SPORT0 and SPORT1, respectively). In this chapter, LSB refers to
least significant bit, and MSB refers to most significant bit.

Both SPORTs have the same capabilities and are programmed in the same
way. Each SPORT has its own set of control registers and data buffers.

The SPORTs use frame sync pulses to indicate the beginning of each word
or packet, and the bit clock marks the beginning of each data bit. External
bit clock and frame sync are available for the TX and RX buffers.

12-2 ADSP-BF533 Blackfin Processor Hardware Reference

With a range of clock and frame synchronization options, the SPORTs
allow a variety of serial communication protocols, including H.100, and
provide a glueless hardware interface to many industry-standard data con-
verters and codecs.

The SPORTs can operate at up to an SCLK/2 clock rate with an externally
generated clock, or 1/2 the system clock rate for an internally generated
serial port clock. The SPORT external clock must always be less than the
SCLK frequency. Independent transmit and receive clocks provide greater
flexibility for serial communications.

SPORT clocks and frame syncs can be internally generated by the system
or received from an external source. The SPORTs can operate with a
transmission format of LSB first or MSB first, with word lengths select-
able from 3 to 32 bits. They offer selectable transmit modes and optional
-law or A-law companding in hardware. SPORT data can be automati-
cally transferred between on-chip and off-chip memories using DMA
block transfers. Additionally, each of the SPORTs offers a TDM
(Time-Division-Multiplexed) Multichannel mode.

Each of the SPORTs offers these features and capabilities:

• Provides independent transmit and receive functions.

• Transfers serial data words from 3 to 32 bits in length, either MSB
first or LSB first.

• Provides alternate framing and control for interfacing to I2S serial
devices, as well as other audio formats (for example, left-justified
stereo serial data).

• Has FIFO plus double buffered data (both receive and transmit
functions have a data buffer register and a Shift register), providing
additional time to service the SPORT.

ADSP-BF533 Blackfin Processor Hardware Reference 12-3

Serial Port Controllers

• Provides two synchronous transmit and two synchronous receive
data pins and buffers in each SPORT to double the total supported
datastreams.

• Performs A-law and -law hardware companding on transmitted
and received words. (See “Companding” on page 12-35 for more
information.)

• Internally generates serial clock and frame sync signals in a wide
range of frequencies or accepts clock and frame sync input from an
external source.

• Operates with or without frame synchronization signals for each
data word, with internally generated or externally generated frame
signals, with active high or active low frame signals, and with either
of two configurable pulse widths and frame signal timing.

• Performs interrupt-driven, single word transfers to and from
on-chip memory under processor control.

• Provides Direct Memory Access transfer to and from memory
under DMA Master control. DMA can be autobuffer-based (a
repeated, identical range of transfers) or descriptor-based (individ-
ual or repeated ranges of transfers with differing DMA parameters).

• Executes DMA transfers to and from on-chip memory. Each
SPORT can automatically receive and transmit an entire block of
data.

• Permits chaining of DMA operations for multiple data blocks.

• Has a multichannel mode for TDM interfaces. Each SPORT can
receive and transmit data selectively from a Time-Division-Multi-
plexed serial bitstream on 128 contiguous channels from a stream
of up to 1024 total channels. This mode can be useful as a network
communication scheme for multiple processors. The 128 channels
available to the processor can be selected to start at any channel

12-4 ADSP-BF533 Blackfin Processor Hardware Reference

location from 0 to 895 = (1023 – 128). Note the Multichannel
Select registers and the WSIZE register control which subset of the
128 channels within the active region can be accessed.

Table 12-1 shows the pins for each SPORT.

A SPORT receives serial data on its DRxPRI and DRxSEC inputs and trans-
mits serial data on its DTxPRI and DTxSEC outputs. It can receive and
transmit simultaneously for full-duplex operation. For transmit, the data
bits (DTxPRI and DTxSEC) are synchronous to the transmit clock (TSCLKx).
For receive, the data bits (DRxPRI and DRxSEC) are synchronous to the
receive clock (RSCLKx). The serial clock is an output if the processor gener-
ates it, or an input if the clock is externally generated. Frame
synchronization signals RFSx and TFSx are used to indicate the start of a
serial data word or stream of serial words.

Table 12-1. Serial Port (SPORT) Pins

Pin1

1 A lowercase x within a pin name represents a possible value of 0 or 1 (corresponding to SPORT0
or SPORT1).

Description

DTxPRI Transmit Data Primary

DTxSEC Transmit Data Secondary

TSCLKx Transmit Clock

TFSx Transmit Frame Sync

DRxPRI Receive Data Primary

DRxSEC Receive Data Secondary

RSCLKx Receive Clock

RFSx Receive Frame Sync

ADSP-BF533 Blackfin Processor Hardware Reference 12-5

Serial Port Controllers

The primary and secondary data pins provide a method to increase the
data throughput of the serial port. They do not behave as totally separate
SPORTs; rather, they operate in a synchronous manner (sharing clock and
frame sync) but on separate data. The data received on the primary and
secondary pins is interleaved in main memory and can be retrieved by set-
ting a stride in the Data Address Generators (DAG) unit. For more
information about DAGs, see Chapter 5, “Data Address Generators”.
Similarly, for TX, data should be written to the TX register in an alternat-
ing manner—first primary, then secondary, then primary, then secondary,
and so on. This is easily accomplished with the processor’s powerful
DAGs.

In addition to the serial clock signal, data must be signalled by a frame
synchronization signal. The framing signal can occur either at the begin-
ning of an individual word or at the beginning of a block of words.

The following figure shows a simplified block diagram of a single SPORT.
Data to be transmitted is written from an internal processor register to the
SPORT’s SPORTx_TX register via the peripheral bus. This data is optionally
compressed by the hardware and automatically transferred to the TX Shift
register. The bits in the Shift register are shifted out on the SPORT’s DTx-
PRI/DTxSEC pin, MSB first or LSB first, synchronous to the serial clock on
the TSCLKx pin. The receive portion of the SPORT accepts data from the
DRxPRI/DRxSEC pin synchronous to the serial clock on the RSCLKx pin.
When an entire word is received, the data is optionally expanded, then
automatically transferred to the SPORT’s SPORTx_RX register, and then
into the RX FIFO where it is available to the processor.

12-6 ADSP-BF533 Blackfin Processor Hardware Reference

Figure 12-1. SPORT Block Diagram

COMPANDING
HARDWARE

COMPANDING
HARDWARE

NOTE 1: ALL WIDE ARROW DATA PATHS ARE 16 OR 32 BITS WIDE, DEPENDING ON SLEN. FOR SLEN = 2 TO 15, A 16-BIT
DATA PATH WITH 8-DEEP FIFO IS USED. FOR SLEN = 16 TO 31, A 32-BIT DATA PATH WITH 4-DEEP FIFO IS USED.
NOTE 2: Tx REGISTER IS THE BOTTOM OF THE Tx FIFO, Rx REGISTER IS THE TOP OF THE Rx FIFO.

TFS

Rx FIFO
4 x 32 OR 8 x 16

TCLK RCL KR FS

PAB

DAB

Tx FIFO
4 x 32 OR 8 x 16

SERIAL
CONTROL

DT SE CDT PR I DR SECDR PR I

Tx REGISTER Rx REGISTER

Tx PRI
SHIFT REG

Tx SEC
SHIFT REG

Tx PRI
HOLD REG

Tx SEC
HOLD REG

Rx PRI
HOLD REG

Rx SEC
HOLD REG

Rx PRI
SHIFT REG

Rx SEC
SHIFT REG

INTERNAL
CLOCK

GENERATOR

ADSP-BF533 Blackfin Processor Hardware Reference 12-7

Serial Port Controllers

Figure 12-2 shows a possible port connection for the SPORTs. Note serial
devices A and B must be synchronous, as they share common frame syncs
and clocks. The same is true for serial devices C and D.

Figure 12-2. SPORT Connections

RCLK0

TCLK0

TFS0

RFS0

SPORT0
SERIAL PORT 0

(CLOCKS AND FRAME SYNCS)

SERIAL PORT 1
(CLOCKS AND FRAME SYNCS)

DT0SEC

DR0SEC

DR0PRI

DT0PRI

RCLK1

TCLK1

TFS1

RFS1

DT1SEC

DR1SEC

DR1PRI

DT1PRI

ADSP-BF533

SPORT1

SERIAL
DEVICE D

(SECONDARY)

SERIAL
DEVICE C

(PRIMARY)

SERIAL
DEVICE B

(SECONDARY)

SERIAL
DEVICE A

(PRIMARY)

12-8 ADSP-BF533 Blackfin Processor Hardware Reference

Figure 12-3 shows an example of a stereo serial device with three transmit
and two receive channels connected to the processor.

Figure 12-3. Stereo Serial Connection

DBCLK
DLRCLK

DSDATA1

ALRCLK

ABCLK

DSDATA3
DSDATA2

ASDATA1

ASDATA2

AD1836
STEREO SERIAL

DEVICE ADSP-BF533

RCLK0

TCLK0

TFS0

RFS0

SPORT0

DT0SEC

DR0SEC

DR0PRI

DT0PRI

RCLK1

TCLK1

TFS1

RFS1

SPORT1

DT1SEC

DR1SEC

DR1PRI

DT1PRI

ADSP-BF533 Blackfin Processor Hardware Reference 12-9

Serial Port Controllers

SPORT Operation

12-10 ADSP-BF533 Blackfin Processor Hardware Reference

SPORT Operation
This section describes general SPORT operation, illustrating the most
common use of a SPORT. Since the SPORT functionality is configurable,
this description represents just one of many possible configurations.

Writing to a SPORT’s SPORTx_TX register readies the SPORT for trans-
mission. The TFS signal initiates the transmission of serial data. Once
transmission has begun, each value written to the SPORTx_TX register is
transferred through the FIFO to the internal Transmit Shift register. The
bits are then sent, beginning with either the MSB or the LSB as specified
in the SPORTx_TCR1 register. Each bit is shifted out on the driving edge of
TSCLKx. The driving edge of TSCLKx can be configured to be rising or fall-
ing. The SPORT generates the transmit interrupt or requests a DMA
transfer as long as there is space in the TX FIFO.

As a SPORT receives bits, they accumulate in an internal receive register.
When a complete word has been received, it is written to the SPORT
FIFO register and the receive interrupt for that SPORT is generated or a
DMA transfer is initiated. Interrupts are generated differently if DMA
block transfers are performed. For information about DMA, see Chapter
9, “Direct Memory Access.”

SPORT Disable
The SPORTs are automatically disabled by a processor hardware or soft-
ware reset. A SPORT can also be disabled directly by clearing the
SPORT’s transmit or receive enable bits (TSPEN in the SPORTx_TCR1 regis-
ter and RSPEN in the SPORTx_RCR1 register, respectively). Each method has
a different effect on the SPORT.

ADSP-BF533 Blackfin Processor Hardware Reference 12-11

Serial Port Controllers

A processor reset disables the SPORTs by clearing the SPORTx_TCR1,
SPORTx_TCR2, SPORTx_RCR1, and SPORTx_RCR2 registers (including the
TSPEN and RSPEN enable bits) and the SPORTx_TCLKDIV, SPORTX_RCLKDIV,
SPORTx_TFSDIVx, and SPORTx_RFSDIVx Clock and Frame Sync Divisor reg-
isters. Any ongoing operations are aborted.

Clearing the TSPEN and RSPEN enable bits disables the SPORTs and aborts
any ongoing operations. Status bits are also cleared. Configuration bits
remain unaffected and can be read by the software in order to be altered or
overwritten. To disable the SPORT output clock, set the SPORT to be
disabled.

 Note that disabling a SPORT via TSPEN/RSPEN may shorten any
currently active pulses on the TFSx/RFSx and TSCLKx/RSCLKx pins, if
these signals are configured to be generated internally.

When disabling the SPORT from multichannel operation, first disable
TSPEN and then disable RSPEN. Note both TSPEN and RSPEN must be dis-
abled before reenabling. Disabling only TX or RX is not allowed.

Setting SPORT Modes
SPORT configuration is accomplished by setting bit and field values in
configuration registers. Each SPORT must be configured prior to being
enabled. Once the SPORT is enabled, further writes to the SPORT Con-
figuration registers are disabled (except for SPORTx_RCLKDIV,
SPORTx_TCLKDIV, and Multichannel Mode Channel Select registers). To
change values in all other SPORT Configuration registers, disable the
SPORT by clearing TSPEN in SPORTx_TCR1 and/or RSPEN in SPORTx_RCR1.

Each SPORT has its own set of control registers and data buffers. These
registers are described in detail in the following sections. All control and
status bits in the SPORT registers are active high unless otherwise noted.

Register Writes and Effective Latency

12-12 ADSP-BF533 Blackfin Processor Hardware Reference

Register Writes and Effective Latency
When the SPORT is disabled (TSPEN and RSPEN cleared), SPORT register
writes are internally completed at the end of the SCLK cycle in which they
occurred, and the register reads back the newly-written value on the next
cycle.

When the SPORT is enabled to transmit (TSPEN set) or receive (RSPEN set),
corresponding SPORT Configuration register writes are disabled (except
for SPORTx_RCLKDIV, SPORTx_TCLKDIV, and Multichannel Mode Channel
Select registers). The SPORTx_TX register writes are always enabled;
SPORTx_RX, SPORTx_CHNL, and SPORTx_STAT are read-only registers.

After a write to a SPORT register, while the SPORT is disabled, any
changes to the control and mode bits generally take effect when the
SPORT is re-enabled.

 Most configuration registers can only be changed while the
SPORT is disabled (TSPEN/RSPEN = 0). Changes take effect after
the SPORT is re-enabled. The only exceptions to this rule are the
TCLKDIV/RCLKDIV registers and Multichannel Select registers.

SPORTx_TCR1 and SPORTx_TCR2
Registers

The main control registers for the transmit portion of each SPORT are
the Transmit Configuration registers, SPORTx_TCR1 and SPORTx_TCR2.

A SPORT is enabled for transmit if Bit 0 (TSPEN) of the Transmit Config-
uration 1 register is set to 1. This bit is cleared during either a hard reset
or a soft reset, disabling all SPORT transmission.

ADSP-BF533 Blackfin Processor Hardware Reference 12-13

Serial Port Controllers

When the SPORT is enabled to transmit (TSPEN set), corresponding
SPORT Configuration register writes are not allowed except for
SPORTx_TCLKDIV and Multichannel Mode Channel Select registers. Writes
to disallowed registers have no effect. While the SPORT is enabled,
SPORTx_TCR1 is not written except for bit 0 (TSPEN). For example:

write (SPORTx_TCR1, 0x0001) ; /* SPORT TX Enabled */

write (SPORTx_TCR1, 0xFF01) ; /* ignored, no effect */

write (SPORTx_TCR1, 0xFFF0) ; /* SPORT disabled, SPORTx_TCR1

still equal to 0x0000 */

Figure 12-4. SPORTx Transmit Configuration 1 Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPORTx Transmit Configuration 1 Register (SPORTx_TCR1)

0 - Transmit disabled
1 - Transmit enabled

ITFS (Internal Transmit
Frame Sync Select)

ITCLK (Internal Transmit
Clock Select)

TDTYPE[1:0] (Data Format-
ting Type Select)

TLSBIT (Transmit Bit Order)

TSPEN (Transmit Enable)

LTFS (Low Transmit
Frame Sync Select)

LATFS (Late Transmit
 Frame Sync)
0 - Early frame syncs
1 - Late frame syncs

TCKFE (Clock Falling
Edge Select)

0 -External transmit clock
selected

1 - Internal transmit clock
selected

00 - Normal operation
01 - Reserved
10 - Compand using -law
11 - Compand using A-law

0 - Transmit MSB first
1 - Transmit LSB first

Reset = 0x0000

0 - External TFS used
1 - Internal TFS used

0 - Drive data and internal
frame syncs with rising
edge of TSCLK. Sample
external frame syncs with
falling edge of TSCLK.

1 - Drive data and internal
frame syncs with falling
edge of TSCLK. Sample
external frame syncs
with rising edge of TSCLK.

0 - Active high TFS
1 - Active low TFS

TFSR (Transmit Frame Sync
Required Select)

DITFS (Data-Independent
Transmit Frame Sync Select)
0 - Data-dependent TFS generated
1 - Data-independent TFS generated

0 - Does not require TFS for
every data word

1 - Requires TFS for every
data word

SPORT0:
0xFFC0 0800

SPORT1:
0xFFC0 0900

SPORTx_TCR1 and SPORTx_TCR2 Registers

12-14 ADSP-BF533 Blackfin Processor Hardware Reference

Additional information for the SPORTx_TCR1 and SPORTx_TCR2 Transmit
Configuration register bits includes:

• Transmit Enable (TSPEN). This bit selects whether the SPORT is
enabled to transmit (if set) or disabled (if cleared).

Setting TSPEN causes an immediate assertion of a SPORT TX inter-
rupt, indicating that the TX data register is empty and needs to be
filled. This is normally desirable because it allows centralization of
the transmit data write code in the TX interrupt service routine
(ISR). For this reason, the code should initialize the ISR and be
ready to service TX interrupts before setting TSPEN.

Similarly, if DMA transfers will be used, DMA control should be
configured correctly before setting TSPEN. Set all DMA control reg-
isters before setting TSPEN.

Clearing TSPEN causes the SPORT to stop driving data, TSCLK, and
frame sync pins; it also shuts down the internal SPORT circuitry.
In low power applications, battery life can be extended by clearing
TSPEN whenever the SPORT is not in use.

Figure 12-5. SPORTx Transmit Configuration 2 Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPORTx Transmit Configuration 2 Register (SPORTx_TCR2)

SLEN[4:0] (SPORT Word
Length)

TSFSE (Transmit Stereo
Frame Sync Enable)

TRFST (Left/Right Order)
00000 - Illegal value
00001 - Illegal value
Serial word length is value in
this field plus 1

Reset = 0x0000

0 - Left stereo channel first
1 - Right stereo channel first

0 - Normal mode
1 - Frame sync becomes L/R clock

TXSE (TxSEC Enable)

0 - Secondary side disabled
1 - Secondary side enabled

SPORT0:
0xFFC0 0804

SPORT1:
0xFFC0 0904

ADSP-BF533 Blackfin Processor Hardware Reference 12-15

Serial Port Controllers

 All SPORT control registers should be programmed before TSPEN is
set. Typical SPORT initialization code first writes all control regis-
ters, including DMA control if applicable. The last step in the code
is to write SPORTx_TCR1 with all of the necessary bits, including
TSPEN.

• Internal Transmit Clock Select. (ITCLK). This bit selects the inter-
nal transmit clock (if set) or the external transmit clock on the
TSCLK pin (if cleared). The TCLKDIV MMR value is not used when
an external clock is selected.

• Data Formatting Type Select. The two TDTYPE bits specify data
formats used for single and multichannel operation.

• Bit Order Select. (TLSBIT). The TLSBIT bit selects the bit order of
the data words transmitted over the SPORT.

• Serial Word Length Select. (SLEN). The serial word length (the
number of bits in each word transmitted over the SPORTs) is cal-
culated by adding 1 to the value of the SLEN field:

 Serial Word Length = SLEN + 1;

The SLEN field can be set to a value of 2 to 31; 0 and 1 are illegal
values for this field. Three common settings for the SLEN field are
15, to transmit a full 16-bit word; 7, to transmit an 8-bit byte; and
23, to transmit a 24-bit word. The processor can load 16- or 32-bit
values into the transmit buffer via DMA or an MMR write
instruction; the SLEN field tells the SPORT how many of those bits
to shift out of the register over the serial link. The serial port trans-
fers bits [SLEN:0] from the transmit buffer.

SPORTx_TCR1 and SPORTx_TCR2 Registers

12-16 ADSP-BF533 Blackfin Processor Hardware Reference

 The frame sync signal is controlled by the SPORTx_TFSDIV and
SPORTx_RFSDIV registers, not by SLEN. To produce a frame sync
pulse on each byte or word transmitted, the proper frame sync
divider must be programmed into the Frame Sync Divider register;
setting SLEN to 7 does not produce a frame sync pulse on each byte
transmitted.

• Internal Transmit Frame Sync Select. (ITFS). This bit selects
whether the SPORT uses an internal TFS (if set) or an external TFS
(if cleared).

• Transmit Frame Sync Required Select. (TFSR). This bit selects
whether the SPORT requires (if set) or does not require (if cleared)
a Transmit Frame Sync for every data word.

 The TFSR bit is normally set during SPORT configuration. A frame
sync pulse is used to mark the beginning of each word or data
packet, and most systems need a frame sync to function properly.

• Data-Independent Transmit Frame Sync Select. (DITFS). This bit
selects whether the SPORT generates a data-independent TFS (sync
at selected interval) or a data-dependent TFS (sync when data is
present in SPORTx_TX) for the case of internal frame sync select
(ITFS = 1). The DITFS bit is ignored when external frame syncs are
selected.

The frame sync pulse marks the beginning of the data word. If
DITFS is set, the frame sync pulse is issued on time, whether the
SPORTx_TX register has been loaded or not; if DITFS is cleared, the
frame sync pulse is only generated if the SPORTx_TX data register has
been loaded. If the receiver demands regular frame sync pulses,
DITFS should be set, and the processor should keep loading the
SPORTx_TX register on time. If the receiver can tolerate occasional

ADSP-BF533 Blackfin Processor Hardware Reference 12-17

Serial Port Controllers

late frame sync pulses, DITFS should be cleared to prevent the
SPORT from transmitting old data twice or transmitting garbled
data if the processor is late in loading the SPORTx_TX register.

• Low Transmit Frame Sync Select. (LTFS). This bit selects an active
low TFS (if set) or active high TFS (if cleared).

• Late Transmit Frame Sync. (LATFS). This bit configures late frame
syncs (if set) or early frame syncs (if cleared).

• Clock Drive/Sample Edge Select. (TCKFE). This bit selects which
edge of the TCLKx signal the SPORT uses for driving data, for driv-
ing internally generated frame syncs, and for sampling externally
generated frame syncs. If set, data and internally generated frame
syncs are driven on the falling edge, and externally generated frame
syncs are sampled on the rising edge. If cleared, data and internally
generated frame syncs are driven on the rising edge, and externally
generated frame syncs are sampled on the falling edge.

• TxSec Enable. (TXSE). This bit enables the transmit secondary side
of the serial port (if set).

• Stereo Serial Enable. (TSFSE). This bit enables the Stereo Serial
operating mode of the serial port (if set). By default this bit is
cleared, enabling normal clocking and frame sync.

• Left/Right Order. (TRFST). If this bit is set, the right channel is
transmitted first in Stereo Serial operating mode. By default this
bit is cleared, and the left channel is transmitted first.

SPORTx_RCR1 and SPORTx_RCR2 Registers

12-18 ADSP-BF533 Blackfin Processor Hardware Reference

SPORTx_RCR1 and SPORTx_RCR2
Registers

The main control registers for the receive portion of each SPORT are the
Receive Configuration registers, SPORTx_RCR1 and SPORTx_RCR2.

A SPORT is enabled for receive if Bit 0 (RSPEN) of the Receive Configura-
tion 1 register is set to 1. This bit is cleared during either a hard reset or a
soft reset, disabling all SPORT reception.

When the SPORT is enabled to receive (RSPEN set), corresponding
SPORT Configuration register writes are not allowed except for
SPORTx_RCLKDIV and Multichannel Mode Channel Select registers. Writes
to disallowed registers have no effect. While the SPORT is enabled,
SPORTx_RCR1 is not written except for bit 0 (RSPEN). For example:

write (SPORTx_RCR1, 0x0001) ; /* SPORT RX Enabled */

write (SPORTx_RCR1, 0xFF01) ; /* ignored, no effect */

write (SPORTx_RCR1, 0xFFF0) ; /* SPORT disabled, SPORTx_RCR1

still equal to 0x0000 */

ADSP-BF533 Blackfin Processor Hardware Reference 12-19

Serial Port Controllers

Figure 12-6. SPORTx Receive Configuration 1 Register

Figure 12-7. SPORTx Receive Configuration 2 Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPORTx Receive Configuration 1 Register (SPORTx_RCR1)

0 - Receive disabled
1 - Receive enabled

IRFS (Internal Receive Frame
Sync Select)

IRCLK (Internal Receive
Clock Select)

RDTYPE[1:0] (Data Format-
ting Type Select)

RLSBIT (Receive Bit Order)

RSPEN (Receive Enable)

LRFS (Low Receive Frame
Sync Select)

LARFS (Late Receive
Frame Sync)
0 - Early frame syncs
1 - Late frame syncs

RCKFE (Clock Falling
Edge Select)

0 -External receive clock
selected

1 - Internal receive clock
selected

00 - Zero fill
01 - Sign-extend
10 - Compand using -law
11 - Compand using A-law

0 - Receive MSB first
1 - Receive LSB first

Reset = 0x0000

0 - External RFS used
1 - Internal RFS used

0 - Drive internal frame sync
on rising edge of RSCLK.
Sample data and external
frame sync with falling
edge of RSCLK.

1 - Drive internal frame sync
on falling edge of RSCLK.
Sample data and external
frame sync with rising
edge of RSCLK.

0 - Active high RFS
1 - Active low RFS

RFSR (Receive Frame Sync
Required Select)
0 - Does not require RFS for

every data word
1 - Requires RFS for every data

word

SPORT0:
0xFFC0 0820

SPORT1:
0xFFC0 0920

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPORTx Receive Configuration 2 Register (SPORTx_RCR2)

SLEN[4:0] (SPORT Word
Length)

RSFSE (Receive Stereo
Frame Sync Enable)

RRFST (Left/Right Order)
00000 - Illegal value
00001 - Illegal value
Serial word length is value in
this field plus 1

Reset = 0x0000

0 - Left stereo channel first
1 - Right stereo channel first

0 - Normal mode
1 - Frame sync becomes L/R clock

RXSE (RxSEC Enable)

0 - Secondary side disabled
1 - Secondary side enabled

SPORT0:
0xFFC0 0824

SPORT1:
0xFFC0 0924

SPORTx_RCR1 and SPORTx_RCR2 Registers

12-20 ADSP-BF533 Blackfin Processor Hardware Reference

Additional information for the SPORTx_RCR1 and SPORTxRCR2 Receive Con-
figuration register bits:

• Receive Enable. (RSPEN). This bit selects whether the SPORT is
enabled to receive (if set) or disabled (if cleared). Setting the RSPEN
bit turns on the SPORT and causes it to sample data from the data
receive pins as well as the receive bit clock and Receive Frame Sync
pins if so programmed.

Setting RSPEN enables the SPORTx receiver, which can generate a
SPORTx RX interrupt. For this reason, the code should initialize
the ISR and the DMA control registers, and should be ready to ser-
vice RX interrupts before setting RSPEN. Setting RSPEN also
generates DMA requests if DMA is enabled and data is received.
Set all DMA control registers before setting RSPEN.

• Clearing RSPEN causes the SPORT to stop receiving data; it also
shuts down the internal SPORT receive circuitry. In low power
applications, battery life can be extended by clearing RSPEN when-
ever the SPORT is not in use.

 All SPORT control registers should be programmed before RSPEN is
set. Typical SPORT initialization code first writes all control regis-
ters, including DMA control if applicable. The last step in the code
is to write SPORTx_RCR1 with all of the necessary bits, including
RSPEN.

• Internal Receive Clock Select. (IRCLK). This bit selects the internal
receive clock (if set) or external receive clock (if cleared). The RCLK-
DIV MMR value is not used when an external clock is selected.

• Data Formatting Type Select. (RDTYPE). The two RDTYPE bits spec-
ify one of four data formats used for single and multichannel
operation.

ADSP-BF533 Blackfin Processor Hardware Reference 12-21

Serial Port Controllers

• Bit Order Select. (RLSBIT). The RLSBIT bit selects the bit order of
the data words received over the SPORTs.

• Serial Word Length Select. (SLEN). The serial word length (the
number of bits in each word received over the SPORTs) is calcu-
lated by adding 1 to the value of the SLEN field. The SLEN field can
be set to a value of 2 to 31; 0 and 1 are illegal values for this field.

 The frame sync signal is controlled by the SPORTx_TFSDIV and
SPORTx_RFSDIV registers, not by SLEN. To produce a frame sync
pulse on each byte or word transmitted, the proper frame sync
divider must be programmed into the Frame Sync Divider register;
setting SLEN to 7 does not produce a frame sync pulse on each byte
transmitted.

• Internal Receive Frame Sync Select. (IRFS). This bit selects
whether the SPORT uses an internal RFS (if set) or an external RFS
(if cleared).

• Receive Frame Sync Required Select. (RFSR). This bit selects
whether the SPORT requires (if set) or does not require (if cleared)
a Receive Frame Sync for every data word.

• Low Receive Frame Sync Select. (LRFS). This bit selects an active
low RFS (if set) or active high RFS (if cleared).

• Late Receive Frame Sync. (LARFS). This bit configures late frame
syncs (if set) or early frame syncs (if cleared).

Data Word Formats

12-22 ADSP-BF533 Blackfin Processor Hardware Reference

• Clock Drive/Sample Edge Select. (RCKFE). This bit selects which
edge of the RSCLK clock signal the SPORT uses for sampling data,
for sampling externally generated frame syncs, and for driving
internally generated frame syncs. If set, internally generated frame
syncs are driven on the falling edge, and data and externally gener-
ated frame syncs are sampled on the rising edge. If cleared,
internally generated frame syncs are driven on the rising edge, and
data and externally generated frame syncs are sampled on the fall-
ing edge.

• RxSec Enable. (RXSE). This bit enables the receive secondary side of
the serial port (if set).

• Stereo Serial Enable. (RSFSE). This bit enables the Stereo Serial
operating mode of the serial port (if set). By default this bit is
cleared, enabling normal clocking and frame sync.

• Left/Right Order. (RRFST). If this bit is set, the right channel is
received first in Stereo Serial operating mode. By default this bit is
cleared, and the left channel is received first.

Data Word Formats
The format of the data words transferred over the SPORTs is configured
by the combination of transmit SLEN and receive SLEN; RDTYPE; TDTYPE;
RLSBIT; and TLSBIT bits of the SPORTx_TCR1, SPORTx_TCR2, SPORTx_RCR1,
and SPORTx_RCR2 registers.

ADSP-BF533 Blackfin Processor Hardware Reference 12-23

Serial Port Controllers

SPORTx_TX Register
The SPORTx Transmit Data register (SPORTx_TX) is a write-only register.
Reads produce a Peripheral Access Bus (PAB) error. Writes to this register
cause writes into the transmitter FIFO. The 16-bit wide FIFO is 8 deep
for word length <= 16 and 4 deep for word length > 16. The FIFO is com-
mon to both primary and secondary data and stores data for both. Data
ordering in the FIFO is shown in the Figure 12-8.

It is important to keep the interleaving of primary and secondary data in
the FIFO as shown. This means that PAB/DMA writes to the FIFO must
follow an order of primary first, and then secondary, if secondary is
enabled. DAB/PAB writes must match their size to the data word length.
For word length up to and including 16 bits, use a 16-bit write. Use a
32-bit write for word length greater than 16 bits.

When transmit is enabled, data from the FIFO is assembled in the TX
Hold register based on TXSE and SLEN, and then shifted into the primary
and secondary shift registers. From here, the data is shifted out serially on
the DTPRI and DTSEC pins.

Figure 12-8. SPORT Transmit FIFO Data Ordering

015

015

015

015

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

W7

W6
W5

W4

W3

W2
W1

W0

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

W3 LOW

W3 HIGH
W2 LOW

W2 HIGH

W1 LOW

W1 HIGH
W0 LOW

W0 HIGH

SECONDARY W3

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY
PRIMARY

PRIMARY

PRIMARY

SECONDARY

SECONDARY

SECONDARY

W3
W2

W2

W1

W1
W0

W0

SECONDARY W1 LOW

SECONDARY

SECONDARY

SECONDARY

W1 HIGH
W1 LOW

W1 HIGH

W0 LOW

W0 HIGH
W0 LOW

W0 HIGH

ONLY PRIMARY ENABLED
DATA LENGTH <= 16 BITS

ONLY PRIMARY ENABLED
DATA LENGTH > 16 BITS

8 WORDS OF
PRIMARY DATA

IN FIFO

4 WORDS OF
PRIMARY DATA

IN FIFO

PRIMARY AND
SECONDARY ENABLED

DATA LENGTH <= 16 BITS

PRIMARY AND
SECONDARY ENABLED

DATA LENGTH > 16 BITS

4 WORDS OF
PRIMARY DATA AND

4 WORDS OF
SECONDARY DATA

IN FIFO

2 WORDS OF
PRIMARY DATA AND

2 WORDS OF
SECONDARY DATA

IN FIFO

SPORTx_RX Register

12-24 ADSP-BF533 Blackfin Processor Hardware Reference

The SPORT TX interrupt is asserted when TSPEN = 1 and the TX FIFO
has room for additional words. This interrupt does not occur if SPORT
DMA is enabled. For DMA operation, see Chapter 9, “Direct Memory
Access”.

The Transmit Underflow Status bit (TUVF) is set in the SPORT Status reg-
ister when a Transmit Frame Sync occurs and no new data has been
loaded into the serial shift register. In Multichannel Mode (MCM), TUVF
is set whenever the serial shift register is not loaded, and transmission
begins on the current enabled channel. The TUVF status bit is a sticky
write-1-to-clear (W1C) bit and is also cleared by disabling the serial port
(writing TSPEN = 0).

If software causes the core processor to attempt a write to a full TX FIFO
with a SPORTx_TX write, the new data is lost and no overwrites occur to
data in the FIFO. The TOVF status bit is set and a SPORT error interrupt
is asserted. The TOVF bit is a sticky bit; it is only cleared by disabling the
SPORT TX. To find out whether the core processor can access the
SPORTx_TX register without causing this type of error, read the register’s
status first. The TXF bit in the SPORT Status register is 0 if space is avail-
able for another word in the FIFO.

The TXF and TOVF status bits in the SPORTx Status register are updated
upon writes from the core processor, even when the SPORT is disabled.

SPORTx_RX Register
The SPORTx Receive Data register (SPORTx_RX) is a read-only register.
Writes produce a PAB error. The same location is read for both primary
and secondary data. Reading from this register space causes reading of the
receive FIFO. This 16-bit FIFO is 8 deep for receive word length <= 16
and 4 deep for length > 16 bits. The FIFO is shared by both primary and
secondary receive data. The order for reading using PAB/DMA reads is
important since data is stored in differently depending on the setting of
the SLEN and RXSE configuration bits.

ADSP-BF533 Blackfin Processor Hardware Reference 12-25

Serial Port Controllers

Data storage and data ordering in the FIFO is shown in Figure 12-10.

When reading from the FIFO for both primary and secondary data, read
primary first, followed by secondary. DAB/PAB reads must match their
size to the data word length. For word length up to and including 16 bits,
use a 16-bit read. Use a 32-bit read for word length greater than 16 bits.

When receiving is enabled, data from the DRPRI pin is loaded into the RX
primary shift register, while data from the DRSEC pin is loaded into the RX
secondary shift register. At transfer completion of a word, data is shifted
into the RX Hold registers for primary and secondary data, respectively.
Data from the Hold registers is moved into the FIFO based on RXSE and
SLEN.

The SPORT RX interrupt is generated when RSPEN = 1 and the RX FIFO
has received words in it. When the core processor has read all the words in
the FIFO, the RX interrupt is cleared. The SPORT RX interrupt is set
only if SPORT RX DMA is disabled; otherwise, the FIFO is read by
DMA reads.

Figure 12-9. SPORTx Transmit Data Register

SPORTx Transmit Data Register (SPORTx_TX)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Transmit Data[31:16]

Reset = 0x0000 0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Transmit Data[15:0]

SPORT0:
0xFFC0 0810

SPORT1:
0xFFC0 0910

SPORTx_RX Register

12-26 ADSP-BF533 Blackfin Processor Hardware Reference

Figure 12-10. SPORT Receive FIFO Data Ordering

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

W7

0

PRIMARY AND
SECONDARY ENABLED

DATA LENGTH <= 16 BITS

PRIMARY AND
SECONDARY ENABLED

DATA LENGTH > 16 BITS

15

W6
W5

W4

W3

W2
W1

W0

W3 LOW

015

W3 HIGH
W2 LOW

W2 HIGH

W1 LOW

W1 HIGH
W0 LOW

W0 HIGH

SECONDARY W3

015

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY
PRIMARY

PRIMARY

PRIMARY

SECONDARY

SECONDARY

SECONDARY

W3
W2

W2

W1

W1
W0

W0

SECONDARY W1 LOW

015

SECONDARY

SECONDARY

SECONDARY

W1 HIGH
W1 LOW

W1 HIGH

W0 LOW

W0 HIGH
W0 LOW

W0 HIGH

4 WORDS OF
PRIMARY DATA AND

4 WORDS OF
SECONDARY DATA

IN FIFO

2 WORDS OF
PRIMARY DATA AND

2 WORDS OF
SECONDARY DATA

IN FIFO

FROM Rx HOLD REGISTER

TO
PAB/DAB
BUSES

TO
PAB/DAB
BUSES

TO
PAB/DAB
BUSES

TO
PAB/DAB
BUSES

FROM Rx HOLD REGISTER

FROM Rx HOLD REGISTER

FROM Rx HOLD REGISTER

ONLY PRIMARY ENABLED
DATA LENGTH <= 16 BITS

ONLY PRIMARY ENABLED
DATA LENGTH > 16 BITS

8 WORDS OF
PRIMARY DATA

IN FIFO

4 WORDS OF
PRIMARY DATA

IN FIFO

ADSP-BF533 Blackfin Processor Hardware Reference 12-27

Serial Port Controllers

If the program causes the core processor to attempt a read from an empty
RX FIFO, old data is read, the RUVF flag is set in the SPORTx_STAT register,
and the SPORT error interrupt is asserted. The RUVF bit is a sticky bit and
is cleared only when the SPORT is disabled. To determine if the core can
access the RX registers without causing this error, first read the RX FIFO
status (RXNE in the SPORTx Status register). The RUVF status bit is
updated even when the SPORT is disabled.

The ROVF status bit is set in the SPORTx_STAT register when a new word is
assembled in the RX Shift register and the RX Hold register has not
moved the data to the FIFO. The previously written word in the Hold
register is overwritten. The ROVF bit is a sticky bit; it is only cleared by dis-
abling the SPORT RX.

Figure 12-11. SPORTx Receive Data Register

SPORTx Receive Data Register (SPORTx_RX)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Receive Data[31:16]

Reset = 0x0000 0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Receive Data[15:0]

SPORT0:
0xFFC0 0818

SPORT1:
0xFFC0 0918

SPORTx_STAT Register

12-28 ADSP-BF533 Blackfin Processor Hardware Reference

SPORTx_STAT Register
The SPORT Status register (SPORTx_STAT) is used to determine if the
access to a SPORT RX or TX FIFO can be made by determining their full
or empty status.

The TXF bit in the SPORT Status register indicates whether there is room
in the TX FIFO. The RXNE status bit indicates whether there are words in
the RX FIFO. The TXHRE bit indicates if the TX Hold register is empty.

The Transmit Underflow Status bit (TUVF) is set whenever the TFS signal
occurs (from either an external or internal source) while the TX Shift reg-
ister is empty. The internally generated TFS may be suppressed whenever
SPORTx_TX is empty by clearing the DITFS control bit in the SPORT Con-
figuration register. The TUVF status bit is a sticky write-1-to-clear (W1C)
bit and is also cleared by disabling the serial port (writing TSPEN = 0).

For continuous transmission (TFSR = 0), TUVF is set at the end of a trans-
mitted word if no new word is available in the TX Hold register.

Figure 12-12. SPORTx Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 1 0 0 0 0 0

SPORTx Status Register (SPORTx_STAT)

0 - Disabled
1 - Enabled

RUVF (Sticky Receive Under-
flow Status) - W1C

RXNE (Receive FIFO Not
Empty Status)

ROVF (Sticky Receive Over-
flow Status) - W1C

TUVF (Sticky Transmit Underflow Status) - W1C 0 - Disabled
1 - Enabled

0 - Empty
1 - Data present in FIFO

Reset = 0x0040

0 - Disabled
1 - Enabled

TOVF (Sticky Transmit Overflow Status) - W1C
0 - Disabled
1 - Enabled

TXF (Transmit FIFO Full Status)
0 - Not full
1 - Full

TXHRE (Transmit Hold Register Empty)
0 - Not empty
1 - Empty

SPORT0:
0xFFC0 0830

SPORT1:
 0xFFC0 0930

ADSP-BF533 Blackfin Processor Hardware Reference 12-29

Serial Port Controllers

The TOVF bit is set when a word is written to the TX FIFO when it is full.
It is a sticky W1C bit and is also cleared by writing TSPEN = 0. Both TXF
and TOVF are updated even when the SPORT is disabled.

When the SPORT RX Hold register is full, and a new receive word is
received in the Shift register, the Receive Overflow Status bit (ROVF) is set
in the SPORT Status register. It is a sticky W1C bit and is also cleared by
disabling the serial port (writing RSPEN = 0).

The RUVF bit is set when a read is attempted from the RX FIFO and it is
empty. It is a sticky W1C bit and is also cleared by writing RSPEN = 0.
The RUVF bit is updated even when the SPORT is disabled.

SPORT RX, TX, and Error Interrupts
The SPORT RX interrupt is asserted when RSPEN is enabled and any
words are present in the RX FIFO. If RX DMA is enabled, the SPORT
RX interrupt is turned off and DMA services the RX FIFO.

The SPORT TX interrupt is asserted when TSPEN is enabled and the TX
FIFO has room for words. If TX DMA is enabled, the SPORT TX inter-
rupt is turned off and DMA services the TX FIFO.

The SPORT Error interrupt is asserted when any of the sticky status bits
(ROVF, RUVF, TOVF, TUVF) are set. The ROVF and RUVF bits are cleared by
writing 0 to RSPEN. The TOVF and TUVF bits are cleared by writing 0 to
TSPEN.

PAB Errors
The SPORT generates a PAB error for illegal register read or write opera-
tions. Examples include:

• Reading a write-only register (for example, SPORT_TX)

• Writing a read-only register (for example, SPORT_RX)

SPORTx_TCLKDIV and SPORTx_RCLKDIV Registers

12-30 ADSP-BF533 Blackfin Processor Hardware Reference

• Writing or reading a register with the wrong size (for example,
32-bit read of a 16-bit register)

• Accessing reserved register locations

SPORTx_TCLKDIV and SPORTx_RCLKDIV
Registers

The frequency of an internally generated clock is a function of the system
clock frequency (as seen at the SCLK pin) and the value of the 16-bit serial
clock divide modulus registers (the SPORTx Transmit Serial Clock
Divider register, SPORTx_TCLKDIV, and the SPORTx Receive Serial Clock
Divider register, SPORTx_RCLKDIV).

Figure 12-13. SPORTx Transmit Serial Clock Divider Register

Figure 12-14. SPORTx Receive Serial Clock Divider Register

SPORTx Transmit Serial Clock Divider Register (SPORTx_TCLKDIV)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Serial Clock Divide
Modulus[15:0]

Reset = 0x0000
SPORT0:

0xFFC0 0808
SPORT1:

0xFFC0 0908

SPORTx Receive Serial Clock Divider Register (SPORTx_RCLKDIV)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Serial Clock Divide
Modulus[15:0]

Reset = 0x0000
SPORT0:

0xFFC0 0828
SPORT1:

0xFFC0 0928

ADSP-BF533 Blackfin Processor Hardware Reference 12-31

Serial Port Controllers

SPORTx_TFSDIV and SPORTx_RFSDIV
Register

The 16-bit SPORTx Transmit Frame Sync Divider register
(SPORTx_TFSDIV) and the SPORTx Receive Frame Sync Divider register
(SPORTx_RFSDIV) specify how many transmit or receive clock cycles are
counted before generating a TFS or RFS pulse when the frame sync is inter-
nally generated. In this way, a frame sync can be used to initiate periodic
transfers. The counting of serial clock cycles applies to either internally or
externally generated serial clocks.

Figure 12-15. SPORTx Transmit Frame Sync Divider Register

Figure 12-16. SPORTx Receive Frame Sync Divider Register

SPORTx Transmit Frame Sync Divider Register (SPORTx_TFSDIV)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Frame Sync Divider[15:0]

Reset = 0x0000

Number of transmit clock
cycles counted before gener-
ating TFS pulse

SPORT0:
 0xFFC0 080C

SPORT1:
0xFFC0 090C

SPORTx Receive Frame Sync Divider Register (SPORTx_RFSDIV)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Frame Sync Divider[15:0]

Reset = 0x0000

Number of receive clock
cycles counted before gener-
ating RFS pulse

SPORT0:
0xFFC0 082C

SPORT1:
0xFFC0 092C

Clock and Frame Sync Frequencies

12-32 ADSP-BF533 Blackfin Processor Hardware Reference

Clock and Frame Sync Frequencies
The maximum serial clock frequency (for either an internal source or an
external source) is SCLK/2. The frequency of an internally generated clock
is a function of the system clock frequency (SCLK) and the value of the
16-bit serial clock divide modulus registers, SPORTx_TCLKDIV and
SPORTx_RCLKDIV.

SPORTx_TCLK frequency =

(SCLK frequency)/(2 x (SPORTx_TCLKDIV + 1))

SPORTx_RCLK frequency =

(SCLK frequency)/(2 x (SPORTx_RCLKDIV + 1))

If the value of SPORTx_TCLKDIV or SPORTx_RCLKDIV is changed while the
internal serial clock is enabled, the change in TSCLK or RSCLK frequency
takes effect at the start of the drive edge of TSCLK or RSCLK that follows the
next leading edge of TFS or RFS.

When an internal frame sync is selected (ITFS = 1 in the SPORTx_TCR1 reg-
ister or IRFS = 1 in the SPORTx_RCR1 register) and frame syncs are not
required, the first frame sync does not update the clock divider if the value
in SPORTx_TCLKDIV or SPORTx_RCLKDIV has changed. The second frame
sync will cause the update.

The SPORTx_TFSDIV and SPORTx_RFSDIV registers specify the number of
transmit or receive clock cycles that are counted before generating a TFS or
RFS pulse (when the frame sync is internally generated). This enables a
frame sync to initiate periodic transfers. The counting of serial clock
cycles applies to either internally or externally generated serial clocks.

The formula for the number of cycles between frame sync pulses is:

of transmit serial clocks between frame sync assertions =

TFSDIV + 1

of receive serial clocks between frame sync assertions =

RFSDIV + 1

ADSP-BF533 Blackfin Processor Hardware Reference 12-33

Serial Port Controllers

Use the following equations to determine the correct value of TFSDIV or
RFSDIV, given the serial clock frequency and desired frame sync frequency:

SPORTxTFS frequency = (TSCLKx frequency)/(SPORTx_TFSDIV + 1)

SPORTxRFS frequency = (RSCLKx frequency)/(SPORTx_RFSDIV + 1)

The frame sync would thus be continuously active (for transmit if
TFSDIV = 0 or for receive if RFSDIV = 0). However, the value of TFSDIV
(or RFSDIV) should not be less than the serial word length minus 1 (the
value of the SLEN field in SPORTx_TCR2 or SPORTx_RCR2). A smaller value
could cause an external device to abort the current operation or have other
unpredictable results. If a SPORT is not being used, the TFSDIV (or
RFSDIV) divisor can be used as a counter for dividing an external clock or
for generating a periodic pulse or periodic interrupt. The SPORT must be
enabled for this mode of operation to work.

Maximum Clock Rate Restrictions
Externally generated late Transmit Frame Syncs also experience a delay
from arrival to data output, and this can limit the maximum serial clock
speed. See ADSP-BF531/ADSP-BF532/ADSP-BF533 Embedded Processor
Data Sheet for exact timing specifications.

Frame Sync and Clock Example

The following code fragment is a brief example of setting up the clocks
and frame sync.

r0 = 0x00FF;

p0.l = SPORT0_RFSDIV & 0xFFFF;

p0.h = (SPORT0_RFSDIV >> 16) & 0xFFFF;

w[p0] = r0.l; ssync;

p0.l = SPORT0_TFSDIV & 0xFFFF;

w[p0] = r0.l; ssync;

Word Length

12-34 ADSP-BF533 Blackfin Processor Hardware Reference

Word Length
Each SPORT channel (transmit and receive) independently handles word
lengths of 3 to 32 bits. The data is right-justified in the SPORT data reg-
isters if it is fewer than 32 bits long, residing in the LSB positions. The
value of the serial word length (SLEN) field in the SPORTx_TCR2 and
SPORTx_RCR2 registers of each SPORT determines the word length accord-
ing to this formula:

Serial Word Length = SLEN + 1

 The SLEN value should not be set to 0 or 1; values from 2 to 31 are
allowed. Continuous operation (when the last bit of the current
word is immediately followed by the first bit of the next word) is
restricted to word sizes of 4 or longer (so SLEN  3).

Bit Order
Bit order determines whether the serial word is transmitted MSB first or
LSB first. Bit order is selected by the RLSBIT and TLSBIT bits in the
SPORTx_RCR1 and SPORTx_TCR1 registers. When RLSBIT (or TLSBIT) = 0,
serial words are received (or transmitted) MSB first. When RLSBIT (or
TLSBIT) = 1, serial words are received (or transmitted) LSB first.

Data Type
The TDTYPE field of the SPORTx_TCR1 register and the RDTYPE field of the
SPORTx_RCR1 register specify one of four data formats for both single and
multichannel operation. See Table 12-2.

ADSP-BF533 Blackfin Processor Hardware Reference 12-35

Serial Port Controllers

These formats are applied to serial data words loaded into the SPORTx_RX
and SPORTx_TX buffers. SPORTx_TX data words are not actually zero filled or
sign extended, because only the significant bits are transmitted.

Companding
Companding (a contraction of COMpressing and exPANDing) is the pro-
cess of logarithmically encoding and decoding data to minimize the
number of bits that must be sent. The SPORTs support the two most
widely used companding algorithms, -law and A-law. The processor
compands data according to the CCITT G.711 specification. The type of
companding can be selected independently for each SPORT.

When companding is enabled, valid data in the SPORTx_RX register is the
right-justified, expanded value of the eight LSBs received and sign
extended to 16 bits. A write to SPORTx_TX causes the 16-bit value to be
compressed to eight LSBs (sign extended to the width of the transmit
word) and written to the internal transmit register. Although the com-
panding standards support only 13-bit (A-law) or 14-bit (-law)
maximum word lengths, up to 16-bit word lengths can be used. If the
magnitude of the word value is greater than the maximum allowed, the
value is automatically compressed to the maximum positive or negative
value.

Lengths greater than 16 bits are not supported for companding operation.

Table 12-2. TDTYPE, RDTYPE, and Data Formatting

TDTYPE or
RDTYPE

SPORTx_TCR1 Data Formatting SPORTx_RCR1 Data Formatting

00 Normal operation Zero fill

01 Reserved Sign extend

10 Compand using -law Compand using -law

11 Compand using A-law Compand using A-law

Clock Signal Options

12-36 ADSP-BF533 Blackfin Processor Hardware Reference

Clock Signal Options
Each SPORT has a transmit clock signal (TSCLK) and a receive clock signal
(RSCLK). The clock signals are configured by the TCKFE and RCKFE bits of
the SPORTx_TCR1 and SPORTx_RCR1 registers. Serial clock frequency is con-
figured in the SPORTx_TCLKDIV and SPORTx_RCLKDIV registers.

 The receive clock pin may be tied to the transmit clock if a single
clock is desired for both receive and transmit.

Both transmit and receive clocks can be independently generated inter-
nally or input from an external source. The ITCLK bit of the SPORTx_TCR1
Configuration register and the IRCLK bit in the SPORTx_RCR1 Configura-
tion register determines the clock source.

When IRCLK or ITCLK = 1, the clock signal is generated internally by the
core, and the TSCLK or RSCLK pin is an output. The clock frequency is
determined by the value of the serial clock divisor in the SPORTx_RCLKDIV
register.

When IRCLK or ITCLK = 0, the clock signal is accepted as an input on the
TSCLK or RSCLK pins, and the serial clock divisors in the
SPORTx_TCLKDIV/SPORTx_RCLKDIV registers are ignored. The externally gen-
erated serial clocks do not need to be synchronous with the core system
clock or with each other. The core system clock must have a higher fre-
quency than RSCLK and TSCLK.

 When the SPORT uses external clocks, it must be enabled for a
minimal number of stable clock pulses before the first active frame
sync is sampled. Failure to allow for these clocks may result in a
SPORT malfunction. See the processor data sheet for details.

The first internal frame sync will occur one frame sync delay after the
SPORTs are ready. External frame syncs can occur as soon as the SPORT
is ready.

ADSP-BF533 Blackfin Processor Hardware Reference 12-37

Serial Port Controllers

Frame Sync Options
Framing signals indicate the beginning of each serial word transfer. The
framing signals for each SPORT are TFS (Transmit Frame Sync) and RFS
(Receive Frame Sync). A variety of framing options are available; these
options are configured in the SPORT Configuration registers
(SPORTx_TCR1, SPORTx_TCR2, SPORTx_RCR1 and SPORTx_RCR2). The TFS
and RFS signals of a SPORT are independent and are separately configured
in the control registers.

Framed Versus Unframed
The use of multiple frame sync signals is optional in SPORT communica-
tions. The TFSR (Transmit Frame Sync Required Select) and RFSR (Receive
Frame Sync Required Select) control bits determine whether frame sync
signals are required. These bits are located in the SPORTx_TCR1 and
SPORTx_RCR1 registers.

When TFSR = 1 or RFSR = 1, a frame sync signal is required for every data
word. To allow continuous transmitting by the SPORT, each new data
word must be loaded into the SPORTx_TX Hold register before the previous
word is shifted out and transmitted.

When TFSR = 0 or RFSR = 0, the corresponding frame sync signal is not
required. A single frame sync is needed to initiate communications but is
ignored after the first bit is transferred. Data words are then transferred
continuously, unframed.

 With frame syncs not required, interrupt or DMA requests may
not be serviced frequently enough to guarantee continuous
unframed data flow. Monitor status bits or check for a SPORT
Error interrupt to detect underflow or overflow of data.

Frame Sync Options

12-38 ADSP-BF533 Blackfin Processor Hardware Reference

Figure 12-17 illustrates framed serial transfers, which have these
characteristics:

• TFSR and RFSR bits in the SPORTx_TCR1 and SPORTx_RCR1 registers
determine framed or unframed mode.

• Framed mode requires a framing signal for every word. Unframed
mode ignores a framing signal after the first word.

• Unframed mode is appropriate for continuous reception.

• Active low or active high frame syncs are selected with the LTFS and
LRFS bits of the SPORTx_TCR1 and SPORTx_RCR1 registers.

See “Timing Examples” on page 12-66 for more timing examples.

Internal Versus External Frame Syncs
Both Transmit and Receive Frame Syncs can be independently generated
internally or can be input from an external source. The ITFS and IRFS bits
of the SPORTx_TCR1 and SPORTx_RCR1 registers determine the frame sync
source.

Figure 12-17. Framed Versus Unframed Data

B
3

B
2

B
1

B
0

B
3

B
2

B
1

B
0

B
3

B
2

B
1

B
0

B
3

B
2

B
1

B
0

B
3

B
2

B
1

FRAMED
DATA

UNFRAMED
DATA

TFS
OR

RFS

TFS
OR

RFS

DATA

TSCLK
OR

RSCLK

ADSP-BF533 Blackfin Processor Hardware Reference 12-39

Serial Port Controllers

When ITFS = 1 or IRFS = 1, the corresponding frame sync signal is gener-
ated internally by the SPORT, and the TFS pin or RFS pin is an output.
The frequency of the frame sync signal is determined by the value of the
frame sync divisor in the SPORTx_TFSDIV or SPORTx_RFSDIV register.

When ITFS = 0 or IRFS = 0, the corresponding frame sync signal is
accepted as an input on the TFS pin or RFS pin, and the frame sync divisors
in the SPORTx_TFSDIV/SPORTx_RFSDIV registers are ignored.

All of the frame sync options are available whether the signal is generated
internally or externally.

Active Low Versus Active High Frame Syncs
Frame sync signals may be either active high or active low (in other words,
inverted). The LTFS and LRFS bits of the SPORTx_TCR1 and SPORTx_RCR1
registers determine frame sync logic levels:

• When LTFS = 0 or LRFS = 0, the corresponding frame sync signal
is active high.

• When LTFS = 1 or LRFS = 1, the corresponding frame sync signal
is active low.

Active high frame syncs are the default. The LTFS and LRFS bits are initial-
ized to 0 after a processor reset.

Sampling Edge for Data and Frame Syncs
Data and frame syncs can be sampled on either the rising or falling edges
of the SPORT clock signals. The TCKFE and RCKFE bits of the SPORTx_TCR1
and SPORTx_RCR1 registers select the driving and sampling edges of the
serial data and frame syncs.

Frame Sync Options

12-40 ADSP-BF533 Blackfin Processor Hardware Reference

For the SPORT transmitter, setting TCKFE = 1 in the SPORTx_TCR1 register
selects the falling edge of TSCLKx to drive data and internally generated
frame syncs and selects the rising edge of TSCLKx to sample externally gen-
erated frame syncs. Setting TCKFE = 0 selects the rising edge of TSCLKx to
drive data and internally generated frame syncs and selects the falling edge
of TSCLKx to sample externally generated frame syncs.

For the SPORT receiver, setting RCKFE = 1 in the SPORTx_RCR1 register
selects the falling edge of RSCLKx to drive internally generated frame syncs
and selects the rising edge of RSCLKx to sample data and externally gener-
ated frame syncs. Setting RCKFE = 0 selects the rising edge of RSCLKx to
drive internally generated frame syncs and selects the falling edge of
RSCLKx to sample data and externally generated frame syncs.

 Note externally generated data and frame sync signals should
change state on the opposite edge than that selected for sampling.
For example, for an externally generated frame sync to be sampled
on the rising edge of the clock (TCKFE = 1 in the SPORTx_TCR1 reg-
ister), the frame sync must be driven on the falling edge of the
clock.

The transmit and receive functions of two SPORTs connected together
should always select the same value for TCKFE in the transmitter and RCKFE
in the receiver, so that the transmitter drives the data on one edge and the
receiver samples the data on the opposite edge.

In Figure 12-18, TCKFE = RCKFE = 0 and transmit and receive are con-
nected together to share the same clock and frame syncs.

ADSP-BF533 Blackfin Processor Hardware Reference 12-41

Serial Port Controllers

In Figure 12-19, TCKFE = RCKFE = 1 and transmit and receive are con-
nected together to share the same clock and frame syncs.

Figure 12-18. Example of TCKFE = RCKFE = 0, Transmit and Receive
Connected

Figure 12-19. Example of TCKFE = RCKFE = 1, Transmit and Receive
Connected

B1 B2 B3B0

B1 B2 B3B0

TSCLK = RSCLK
INTERNAL OR EXTERNAL

TFS = RFS
INTERNAL OR EXTERNAL

DT

DR

DRIVE
EDGE

SAMPLE
EDGE

B1 B2 B3

TSCLK = RSCLK
INTERNAL OR EXTERNAL

TFS = RFS
INTERNAL OR EXTERNAL

DT B0

B1 B2 B3DR B0

DRIVE
EDGE

SAMPLE
EDGE

Frame Sync Options

12-42 ADSP-BF533 Blackfin Processor Hardware Reference

Early Versus Late Frame Syncs (Normal Versus
Alternate Timing)

Frame sync signals can occur during the first bit of each data word (late)
or during the serial clock cycle immediately preceding the first bit (early).
The LATFS and LARFS bits of the SPORTx_TCR1 and SPORTx_RCR1 registers
configure this option.

When LATFS = 0 or LARFS = 0, early frame syncs are configured; this is
the normal mode of operation. In this mode, the first bit of the transmit
data word is available and the first bit of the receive data word is sampled
in the serial clock cycle after the frame sync is asserted, and the frame sync
is not checked again until the entire word has been transmitted or
received. In multichannel operation, this corresponds to the case when
multichannel frame delay is 1.

If data transmission is continuous in early framing mode (in other words,
the last bit of each word is immediately followed by the first bit of the next
word), then the frame sync signal occurs during the last bit of each word.
Internally generated frame syncs are asserted for one clock cycle in early
framing mode. Continuous operation is restricted to word sizes of 4 or
longer (SLEN  3).

When LATFS = 1 or LARFS = 1, late frame syncs are configured; this is the
alternate mode of operation. In this mode, the first bit of the transmit data
word is available and the first bit of the receive data word is sampled in the
same serial clock cycle that the frame sync is asserted. In multichannel
operation, this is the case when frame delay is 0. Receive data bits are sam-
pled by serial clock edges, but the frame sync signal is only checked during
the first bit of each word. Internally generated frame syncs remain asserted
for the entire length of the data word in late framing mode. Externally
generated frame syncs are only checked during the first bit.

ADSP-BF533 Blackfin Processor Hardware Reference 12-43

Serial Port Controllers

Figure 12-20 illustrates the two modes of frame signal timing. In
summary:

• For the LATFS or LARFS bits of the SPORTx_TCR1 or SPORTx_RCR1 reg-
isters: LATFS = 0 or LARFS = 0 for early frame syncs, LATFS = 1 or
LARFS = 1 for late frame syncs.

• For early framing, the frame sync precedes data by one cycle. For
late framing, the frame sync is checked on the first bit only.

• Data is transmitted MSB first (TLSBIT = 0 or RLSBIT = 0) or LSB
first (TLSBIT = 1 or RLSBIT = 1).

• Frame sync and clock are generated internally or externally.

See “Timing Examples” on page 12-66 for more examples.

Figure 12-20. Normal Versus Alternate Framing

B3 B2 B1 B0 ...

xSCLK

DATA

EARLY
FRAME

SYNC

LATE
FRAME

SYNC

Moving Data Between SPORTs and Memory

12-44 ADSP-BF533 Blackfin Processor Hardware Reference

Data Independent Transmit Frame Sync
Normally the internally generated Transmit Frame Sync signal (TFS) is
output only when the SPORTx_TX buffer has data ready to transmit. The
Data-Independent Transmit Frame Sync Select bit (DITFS) allows the
continuous generation of the TFS signal, with or without new data. The
DITFS bit of the SPORTx_TCR1 register configures this option.

When DITFS = 0, the internally generated TFS is only output when a new
data word has been loaded into the SPORTx_TX buffer. The next TFS is
generated once data is loaded into SPORTx_TX. This mode of operation
allows data to be transmitted only when it is available.

When DITFS = 1, the internally generated TFS is output at its programmed
interval regardless of whether new data is available in the SPORTx_TX buf-
fer. Whatever data is present in SPORTx_TX is transmitted again with each
assertion of TFS. The TUVF (Transmit Underflow Status) bit in the
SPORTx_STAT register is set when this occurs and old data is retransmitted.
The TUVF status bit is also set if the SPORTx_TX buffer does not have new
data when an externally generated TFS occurs. Note that in this mode of
operation, data is transmitted only at specified times.

If the internally generated TFS is used, a single write to the SPORTx_TX data
register is required to start the transfer.

Moving Data Between SPORTs and
Memory

Transmit and receive data can be transferred between the SPORTs and
on-chip memory in one of two ways: with single word transfers or with
DMA block transfers.

ADSP-BF533 Blackfin Processor Hardware Reference 12-45

Serial Port Controllers

If no SPORT DMA channel is enabled, the SPORT generates an interrupt
every time it has received a data word or needs a data word to transmit.
SPORT DMA provides a mechanism for receiving or transmitting an
entire block or multiple blocks of serial data before the interrupt is gener-
ated. The SPORT’s DMA controller handles the DMA transfer, allowing
the processor core to continue running until the entire block of data is
transmitted or received. Interrupt service routines (ISRs) can then operate
on the block of data rather than on single words, significantly reducing
overhead.

For information about DMA, see Chapter 9, “Direct Memory Access”.

Stereo Serial Operation
Several Stereo Serial modes can be supported by the SPORT, including

the popular I2S format. To use these modes, set bits in the SPORT_RCR2 or
SPORT_TCR2 registers. Setting RSFSE or TSFSE in SPORT_RCR2 or SPORT_TCR2
changes the operation of the frame sync pin to a left/right clock as

required for I2S and left-justified stereo serial data. Setting this bit enables
the SPORT to generate or accept the special LRCLK-style frame sync. All
other SPORT control bits remain in effect and should be set appropri-
ately. Figure 12-21 and Figure 12-22 show timing diagrams for Stereo
Serial mode operation.

Table 12-3 shows several modes that can be configured using bits in
SPORTx_TCR1 and SPORTx_RCR1. The table shows bits for the receive side of
the SPORT, but corresponding bits are available for configuring the trans-
mit portion of the SPORT. A control field which may be either set or
cleared depending on the user’s needs, without changing the standard, is
indicated by an “X.”

Stereo Serial Operation

12-46 ADSP-BF533 Blackfin Processor Hardware Reference

Note most bits shown as a 0 or 1 may be changed depending on the user’s
preference, creating many other “almost standard” modes of stereo serial
operation. These modes may be of use in interfacing to codecs with
slightly non-standard interfaces. The settings shown in Table 12-3 pro-
vide glueless interfaces to many popular codecs.

Note RFSDIV or TFSDIV must still be greater than or equal to SLEN. For I2S
operation, RFSDIV or TFSDIV is usually 1/64 of the serial clock rate. With
RSFSE set, the formulas to calculate frame sync period and frequency (dis-
cussed in “Clock and Frame Sync Frequencies” on page 12-32) still apply,
but now refer to one half the period and twice the frequency. For instance,
setting RFSDIV or TFSDIV = 31 produces an LRCLK that transitions every 32
serial clock cycles and has a period of 64 serial clock cycles.

Table 12-3. Stereo Serial Settings

Bit Field Stereo Audio Serial Scheme

I2S Left-Justified DSP Mode

RSFSE 1 1 0

RRFST 0 0 0

LARFS 0 1 0

LRFS 0 1 0

RFSR 1 1 1

RCKFE 1 0 0

SLEN 2 – 31 2 – 31 2 – 31

RLSBIT 0 0 0

RFSDIV
(If internal FS is selected.)

2 – Max 2 – Max 2 – Max

RXSE
(Secondary Enable is available for RX and TX.)

X X X

ADSP-BF533 Blackfin Processor Hardware Reference 12-47

Serial Port Controllers

The LRFS bit determines the polarity of the RFS or TFS frame sync pin for
the channel that is considered a “right” channel. Thus, setting LRFS = 0
(meaning that it is an active high signal) indicates that the frame sync is
high for the “right” channel, thus implying that it is low for the “left”
channel. This is the default setting.

The RRFST and TRFST bits determine whether the first word received or
transmitted is a left or a right channel. If the bit is set, the first word
received or transmitted is a right channel. The default is to receive or
transmit the left channel word first.

The secondary DRxSEC and DTxSEC pins are useful extensions of the serial

port which pair well with Stereo Serial mode. Multiple I2S streams of data
can be transmitted or received using a single SPORT. Note the primary
and secondary pins are synchronous, as they share clock and LRCLK (Frame

Figure 12-21. SPORT Stereo Serial Modes, Transmit

TFS

TSCLKx

DTxPRI

TFS

TSCLKx

DTxPRI

TFS

TSCLKx

DTxPRI

LEFT CHANNEL
RIGHT CHANNEL

LEFT CHANNEL
RIGHT CHANNEL

MSB MSB

MSB MSB

MSB MSB

LSB LSB

LSB LSB

LSB LSB

LEFT-JUSTIFIED MODE—3 TO 32 BITS PER CHANNEL

I2S MODE—3 TO 32 BITS PER CHANNEL

DSP MODE—3 TO 32 BITS PER CHANNEL
1/fS

NOTES:
1. DSP MODE DOES NOT IDENTIFY CHANNEL.
2. TFS NORMALLY OPERATES AT fS EXCEPT FOR DSP MODE WHICH IS 2 x fS.
3. TSCLKx FREQUENCY IS NORMALLY 64 x TFS BUT MAY BE OPERATED IN BURST MODE.

Stereo Serial Operation

12-48 ADSP-BF533 Blackfin Processor Hardware Reference

Sync) pins. The transmit and receive sides of the SPORT need not be syn-
chronous, but may share a single clock in some designs. See Figure 12-3
on page 12-8, which shows multiple stereo serial connections being made
between the processor and an AD1836 codec.

The Blackfin processor’s SPORTs are designed such that in I2S master
mode, the LRCLK signal is held at the last driven logic level. The LRCLK sig-
nal does not transition (provide an edge) after the final data word is driven

out. While transmitting a fixed number of words to an I2S receiver that
expects an LRCLK edge to receive the incoming data word, the SPORT
should send a dummy word after transmitting the fixed number of words.
The transmission of this dummy word toggles LRCLK, generating an edge.

Transmission of the dummy word is not required when the I2S receiver is
a Blackfin processor SPORT.

Figure 12-22. SPORT Stereo Serial Modes, Receive

RFS

RSCLKx

DRxPRI

RFS

RSCLKx

DRxPRI

RFS

RSCLKx

DRxPRI

LEFT CHANNEL
RIGHT CHANNEL

LEFT CHANNEL
RIGHT CHANNEL

MSB MSB

MSB MSB

MSB MSB

LSB LSB

LSB LSB

LSB LSB

LEFT-JUSTIFIED MODE—3 TO 32 BITS PER CHANNEL

I2S MODE—3 TO 32 BITS PER CHANNEL

DSP MODE—3 TO 32 BITS PER CHANNEL
1/fS

NOTES:
1. DSP MODE DOES NOT IDENTIFY CHANNEL.
2. RFS NORMALLY OPERATES AT fS EXCEPT FOR DSP MODE WHICH IS 2x fS.
3. RSCLKx FREQUENCY IS NORMALLY 64x RFS BUT MAY BE OPERATED IN BURST MODE.

ADSP-BF533 Blackfin Processor Hardware Reference 12-49

Serial Port Controllers

Multichannel Operation
The SPORTs offer a Multichannel mode of operation which allows the
SPORT to communicate in a Time-Division-Multiplexed (TDM) serial
system. In multichannel communications, each data word of the serial bit-
stream occupies a separate channel. Each word belongs to the next
consecutive channel so that, for example, a 24-word block of data contains
one word for each of 24 channels.

The SPORT can automatically select words for particular channels while
ignoring the others. Up to 128 channels are available for transmitting or
receiving; each SPORT can receive and transmit data selectively from any
of the 128 channels. These 128 channels can be any 128 out of the 1024
total channels. RX and TX must use the same 128-channel region to selec-
tively enable channels. The SPORT can do any of the following on each
channel:

• Transmit data

• Receive data

• Transmit and receive data

• Do nothing

Data companding and DMA transfers can also be used in multichannel
mode.

The DTPRI pin is always driven (not three-stated) if the SPORT is enabled
(TSPEN = 1 in the SPORTx_TCR1 register), unless it is in Multichannel mode
and an inactive time slot occurs. The DTSEC pin is always driven (not
three-stated) if the SPORT is enabled and the secondary transmit is
enabled (TXSE = 1 in the SPORTx_TCR2 register), unless the SPORT is in
Multichannel mode and an inactive time slot occurs.

Multichannel Operation

12-50 ADSP-BF533 Blackfin Processor Hardware Reference

In multichannel mode, RSCLK can either be provided externally or gener-
ated internally by the SPORT, and it is used for both transmit and receive
functions. Leave TSCLK disconnected if the SPORT is used only in multi-
channel mode. If RSCLK is externally or internally provided, it will be
internally distributed to both the receiver and transmitter circuitry.

 The SPORT Multichannel Transmit Select register and the
SPORT Multichannel Receive Select register must be programmed
before enabling SPORTx_TX or SPORTx_RX operation for Multichan-
nel Mode. This is especially important in “DMA data unpacked
mode,” since SPORT FIFO operation begins immediately after
RSPEN and TSPEN are set, enabling both RX and TX. The MCMEN bit
(in SPORTx_MCMC2) must be enabled prior to enabling SPORTx_TX or
SPORTx_RX operation. When disabling the SPORT from multichan-
nel operation, first disable TSPEN and then disable RSPEN. Note both
TSPEN and RSPEN must be disabled before reenabling. Disabling
only TX or RX is not allowed.

Figure 12-23 shows example timing for a multichannel transfer that has
these characteristics:

• Use TDM method where serial data is sent or received on different
channels sharing the same serial bus

• Can independently select transmit and receive channels

• RFS signals start of frame

• TFS is used as “Transmit Data Valid” for external logic, true only
during transmit channels

• Receive on channels 0 and 2, transmit on channels 1 and 2

• Multichannel frame delay is set to 1

See “Timing Examples” on page -66 for more examples.

ADSP-BF533 Blackfin Processor Hardware Reference 12-51

Serial Port Controllers

SPORTx_MCMCn Registers
There are two SPORTx Multichannel Configuration registers
(SPORTx_MCMCn) for each SPORT. The SPORTx_MCMCn registers are used to
configure the multichannel operation of the SPORT. The two control
registers are shown in Figure 12-24 and Figure 12-25.

Figure 12-23. Multichannel Operation

Figure 12-24. SPORTx Multichannel Configuration Register 1

RSCLK

B3 B2 B1 B2DR

RFS

B0 IGNORED B3

DT
B2B3 B0 B3 B2B1

CHANNEL 2CHANNEL 1CHANNEL 0

TFS

MFD = 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPORTx Multichannel Configuration Register 1 (SPORTx_MCMC1)

WSIZE[3:0] (Window Size) WOFF[9:0] (Window Offset)

Reset = 0x0000

Places start of window anywhere
in the 0 to 1023 channel rangeValue in field = [(Desired window size)/8 –1]

SPORT0:
0xFFC0 0838

SPORT1:
0xFFC0 0938

Multichannel Operation

12-52 ADSP-BF533 Blackfin Processor Hardware Reference

Multichannel Enable
Setting the MCMEN bit in the SPORTx_MCM2 register enables Multichannel
mode. When MCMEN = 1, multichannel operation is enabled; when
MCMEN = 0, all multichannel operations are disabled.

 Setting the MCMEN bit enables multichannel operation for both the
receive and transmit sides of the SPORT. Therefore, if a receiving
SPORT is in Multichannel mode, the transmitting SPORT must
also be in Multichannel mode.

 When in multichannel mode, do not enable the stereo serial frame
sync modes or the late frame sync feature, as these features are
incompatible with multichannel mode.

Figure 12-25. SPORTx Multichannel Configuration Register 2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPORTx Multichannel Configuration Register 2 (SPORTx_MCMC2)

0x - Bypass mode
10 - Recover 2 MHz clock

from 4 MHz
11 - Recover 8 MHz clock

from 16 MHz

MCDTXPE (Multichannel
DMA Transmit Packing)

MCCRM[1:0] (2X Clock
Recovery Mode)

FSDR (Frame Sync to Data Relationship)

0 - Disabled
1 - Enabled

Reset = 0x0000

0 - Normal
1 - Reversed, H.100 mode

MCDRXPE (Multichannel
DMA Receive Packing)
0 - Disabled
1 - Enabled

Delay between frame sync pulse and the
first data bit in Multichannel mode

MFD[3:0] (Multichannel
Frame Delay)

0 - Multichannel operations disabled
1 - Multichannel operations enabled

MCMEN (Multichannel Frame Mode Enable)

SPORT0:
0xFFC0 083C

SPORT1:
0xFFC0 093C

ADSP-BF533 Blackfin Processor Hardware Reference 12-53

Serial Port Controllers

Table 12-4 shows the dependencies of bits in the SPORT Configuration
register when the SPORT is in Multichannel Mode.

Frame Syncs in Multichannel Mode
All receiving and transmitting devices in a multichannel system must have
the same timing reference. The RFS signal is used for this reference, indi-
cating the start of a block or frame of multichannel data words.

Table 12-4. Multichannel Mode Configuration

SPORTx_RCR1 or
SPORTx_RCR2

SPORTx_TCR1 or
SPORTx_TCR2

Notes

RSPEN TSPEN Set or clear both

IRCLK - Independent

- ITCLK Ignored

RDTYPE TDTYPE Independent

RLSBIT TLSBIT Independent

IRFS - Independent

- ITFS Ignored

RFSR TFSR Ignored

- DITFS Ignored

LRFS LTFS Independent

LARFS LATFS Both must be 0

RCKFE TCKFE Set or clear both to same value

SLEN SLEN Set or clear both to same value

RXSE TXSE Independent

RSFSE TSFSE Both must be 0

RRFST TRFST Ignored

Multichannel Operation

12-54 ADSP-BF533 Blackfin Processor Hardware Reference

When Multichannel mode is enabled on a SPORT, both the transmitter
and the receiver use RFS as a frame sync. This is true whether RFS is
generated internally or externally. The RFS signal is used to synchronize
the channels and restart each multichannel sequence. Assertion of RFS
indicates the beginning of the channel 0 data word.

Since RFS is used by both the SPORTx_TX and SPORTx_RX channels of the
SPORT in Multichannel mode configuration, the corresponding bit pairs
in SPORTx_RCR1 and SPORTx_TCR1, and in SPORTx_RCR2 and SPORTx_TCR2,
should always be programmed identically, with the possible exception of
the RXSE and TXSE pair and the RDTYPE and TDTYPE pair. This is true even if
SPORTx_RX operation is not enabled.

In Multichannel mode, RFS timing similar to late (alternative) frame mode
is entered automatically; the first bit of the transmit data word is available
and the first bit of the receive data word is sampled in the same serial clock
cycle that the frame sync is asserted, provided that MFD is set to 0.

The TFS signal is used as a transmit data valid signal which is active during
transmission of an enabled word. The SPORT’s data transmit pin is
three-stated when the time slot is not active, and the TFS signal serves as an
output-enabled signal for the data transmit pin. The SPORT drives TFS in
Multichannel mode whether or not ITFS is cleared. The TFS pin in Multi-
channel mode still obeys the LTFS bit. If LTFS is set, the transmit data valid
signal will be active low—a low signal on the TFS pin indicates an active
channel.

Once the initial RFS is received, and a frame transfer has started, all other
RFS signals are ignored by the SPORT until the complete frame has been
transferred.

If MFD > 0, the RFS may occur during the last channels of a previous frame.
This is acceptable, and the frame sync is not ignored as long as the delayed
channel 0 starting point falls outside the complete frame.

ADSP-BF533 Blackfin Processor Hardware Reference 12-55

Serial Port Controllers

In Multichannel mode, the RFS signal is used for the block or frame start
reference, after which the word transfers are performed continuously with
no further RFS signals required. Therefore, internally generated frame
syncs are always data independent.

The Multichannel Frame
A multichannel frame contains more than one channel, as specified by the
window size and window offset. A complete multichannel frame consists
of 1 – 1024 channels, starting with channel 0. The particular channels of
the multichannel frame that are selected for the SPORT are a combination
of the window offset, the window size, and the Multichannel Select
registers.

Figure 12-26. Relationships for Multichannel Parameters

FRAME
SYNC

DATA DATA IGNORED

CHANNEL

RSCLK

DATA IGNORED DATA IGNORED

MULTICHANNEL FRAME

WINDOW OFFSET WINDOW
SPx_MCMC
REG FIELD:

SIZE

UNITS:

MFD

RANGE:

NOTE: FRAME LENGTH IS SET BY FRAME SYNC DIVIDE OR EXTERNAL FRAME SYNC PERIOD.

BITS WORDS MULTIPLES OF 8 WORDS
0–15 0–1015 8–128

Multichannel Operation

12-56 ADSP-BF533 Blackfin Processor Hardware Reference

Multichannel Frame Delay
The 4-bit MFD field in SPORTx_MCMC2 specifies a delay between the frame
sync pulse and the first data bit in Multichannel mode. The value of MFD is
the number of serial clock cycles of the delay. Multichannel frame delay
allows the processor to work with different types of interface devices.

A value of 0 for MFD causes the frame sync to be concurrent with the first
data bit. The maximum value allowed for MFD is 15. A new frame sync may
occur before data from the last frame has been received, because blocks of
data occur back-to-back.

Window Size
The window size (WSIZE[3:0]) defines the number of channels that can be
enabled/disabled by the Multichannel Select registers. This range of words
is called the active window. The number of channels can be any value in
the range of 0 to 15, corresponding to active window size of 8 to 128, in
increments of 8; the default value of 0 corresponds to a minimum active
window size of 8 channels. To calculate the active window size from the
WSIZE register, use this equation:

Number of words in active window = 8 x (WSIZE + 1)

Since the DMA buffer size is always fixed, it is possible to define a smaller
window size (for example, 32 words), resulting in a smaller DMA buffer
size (in this example, 32 words instead of 128 words) to save DMA band-
width. The window size cannot be changed while the SPORT is enabled.

Multichannel select bits that are enabled but fall outside the window
selected are ignored.

ADSP-BF533 Blackfin Processor Hardware Reference 12-57

Serial Port Controllers

Window Offset
The window offset (WOFF[9:0]) specifies where in the 1024-channel range
to place the start of the active window. A value of 0 specifies no offset and
896 is the largest value that permits using all 128 channels. As an example,
a program could define an active window with a window size of 8
(WSIZE = 0) and an offset of 93 (WOFF = 93). This 8-channel window
would reside in the range from 93 to 100. Neither the window offset nor
the window size can be changed while the SPORT is enabled.

If the combination of the window size and the window offset would place
any portion of the window outside of the range of the channel counter,
none of the out-of-range channels in the frame are enabled.

SPORTx_CHNL Register
The 10-bit CHNL field in the SPORTx Current Channel register
(SPORTx_CHNL) indicates which channel is currently being serviced during
multichannel operation. This field is a read-only status indicator. The
CHNL[9:0] field increments by one as each channel is serviced. The coun-
ter stops at the upper end of the defined window. The Channel Select
register restarts at 0 at each frame sync. As an example, for a window size
of 8 and an offset of 148, the counter displays a value between 0 and 156.

Once the window size has completed, the channel counter resets to 0 in
preparation for the next frame. Because there are synchronization delays
between RSCLK and the processor clock, the Channel register value is
approximate. It is never ahead of the channel being served, but it may lag
behind.

Multichannel Operation

12-58 ADSP-BF533 Blackfin Processor Hardware Reference

Other Multichannel Fields in SPORTx_MCMC2
The FSDR bit in the SPORTx_MCMC2 register changes the timing relationship
between the frame sync and the clock received. This change enables the
SPORT to comply with the H.100 protocol.

Normally (When FSDR = 0), the data is transmitted on the same edge that
the TFS is generated. For example, a positive edge on TFS causes data to be
transmitted on the positive edge of the TSCLK—either the same edge or the
following one, depending on when LATFS is set.

When the frame sync/data relationship is used (FSDR = 1), the frame sync
is expected to change on the falling edge of the clock and is sampled on
the rising edge of the clock. This is true even though data received is sam-
pled on the negative edge of the receive clock.

Channel Selection Register
A channel is a multibit word from 3 to 32 bits in length that belongs to
one of the TDM channels. Specific channels can be individually enabled
or disabled to select which words are received and transmitted during mul-
tichannel communications. Data words from the enabled channels are
received or transmitted, while disabled channel words are ignored. Up to
128 contiguous channels may be selected out of 1024 available channels.

Figure 12-27. SPORTx Current Channel Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPORTx Current Channel Register (SPORTx_CHNL)

CHNL (Current Channel
Indicator)

Reset = 0x0000

RO

SPORT0:
 0xFFC0 0834

SPORT1:
0xFFC0 0934

ADSP-BF533 Blackfin Processor Hardware Reference 12-59

Serial Port Controllers

The SPORTx_MRCSn and SPORTx_MTCSn Multichannel Select registers are
used to enable and disable individual channels; the SPORTx_MRCSn registers
specify the active receive channels, and the SPORTx_MTCSn registers specify
the active transmit channels.

Four registers make up each Multichannel Select register. Each of the four
registers has 32 bits, corresponding to 32 channels. Setting a bit enables
that channel, so the SPORT selects its word from the multiple word block
of data (for either receive or transmit).

Channel Select bit 0 always corresponds to the first word of the active
window. To determine a channel’s absolute position in the frame, add the
window offset words to the channel select position. For example, setting
bit 7 in MCS2 selects word 71 of the active window to be enabled. Setting
bit 2 in MCS1 selects word 34 of the active window, and so on.

Setting a particular bit in the SPORTx_MTCSn register causes the SPORT to
transmit the word in that channel’s position of the datastream. Clearing
the bit in the SPORTx_MTCSn register causes the SPORT’s data transmit pin
to three-state during the time slot of that channel.

Setting a particular bit in the SPORTx_MRCSn register causes the SPORT to
receive the word in that channel’s position of the datastream; the received
word is loaded into the SPORTx_RX buffer. Clearing the bit in the
SPORTx_MRCSn register causes the SPORT to ignore the data.

Figure 12-28. Multichannel Select Registers

0 31 0 31 0 31 0 31

0 31 32 63 64 95 96 127

MCS1MCS0

Channel Select 0 – 127

MCS2 MCS3

Multichannel Operation

12-60 ADSP-BF533 Blackfin Processor Hardware Reference

Companding may be selected for all channels or for no channels. A-law or
-law companding is selected with the TDTYPE field in the SPORTx_TCR1
register and the RDTYPE field in the SPORTx_RCR1 register, and applies to all
active channels. (See “Companding” on page 12-35 for more information
about companding.)

SPORTx_MRCSn Registers

The Multichannel Selection registers are used to enable and disable indi-
vidual channels. The SPORTx Multichannel Receive Select registers
(SPORTx_MRCSn) specify the active receive channels. There are four regis-
ters, each with 32 bits, corresponding to the 128 channels. Setting a bit
enables that channel so that the serial port selects that word for receive
from the multiple word block of data. For example, setting bit 0 selects
word 0, setting bit 12 selects word 12, and so on.

Setting a particular bit in the SPORTx_MRCSn register causes the serial port
to receive the word in that channel’s position of the datastream; the
received word is loaded into the RX buffer. Clearing the bit in the
SPORTx_MRCSn register causes the serial port to ignore the data.

ADSP-BF533 Blackfin Processor Hardware Reference 12-61

Serial Port Controllers

Figure 12-29. SPORTx Multichannel Receive Select Registers

SPORTx Multichannel Receive Select Registers (SPORTx_MRCSn)
For all bits, 0 - Channel disabled, 1 - Channel enabled, so SPORT selects that word from multiple word
block of data.

31

31

0

0

0 00 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0

31

63

0

32

31

95

0

64

31

127

0

96

Reset = 0x0000 0000

Reset = 0x0000 0000

Reset = 0x0000 0000

Reset = 0x0000 0000

MRCS0

MRCS1

MRCS2

MRCS3

Channel number

Bit number in register

Channel number

Bit number in register

Channel number

Bit number in register

Channel number

Bit number in register

For Memory-mapped
addresses, see
Table 12-5.

0 00 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0

0 00 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0

0 00 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0

Multichannel Operation

12-62 ADSP-BF533 Blackfin Processor Hardware Reference

SPORTx_MTCSn Registers

The Multichannel Selection registers are used to enable and disable indi-
vidual channels. The four SPORTx Multichannel Transmit Select
registers (SPORTx_MTCSn) specify the active transmit channels. There are
four registers, each with 32 bits, corresponding to the 128 channels. Set-
ting a bit enables that channel so that the serial port selects that word for
transmit from the multiple word block of data. For example, setting bit 0
selects word 0, setting bit 12 selects word 12, and so on.

Setting a particular bit in a SPORTx_MTCSn register causes the serial port to
transmit the word in that channel’s position of the datastream. Clearing
the bit in the SPORTx_MTCSn register causes the serial port’s data transmit
pin to three-state during the time slot of that channel.

Table 12-5. SPORTx Multichannel Receive Select Register
Memory-Mapped Addresses

Register Name Memory-Mapped Address

SPORT0_MRCS0 0xFFC0 0850

SPORT0_MRCS1 0xFFC0 0854

SPORT0_MRCS2 0xFFC0 0858

SPORT0_MRCS3 0xFFC0 085C

SPORT1_MRCS0 0xFFC0 0950

SPORT1_MRCS1 0xFFC0 0954

SPORT1_MRCS2 0xFFC0 0958

SPORT1_MRCS3 0xFFC0 095C

ADSP-BF533 Blackfin Processor Hardware Reference 12-63

Serial Port Controllers

Figure 12-30. SPORTx Multichannel Transmit Select Registers

SPORTx Multichannel Transmit Select Registers (SPORTx_MTCSn)
For all bits, 0 - Channel disabled, 1 - Channel enabled, so SPORT selects that word from multiple
word block of data.

31

31

0

0

31

63

0

32

31

95

0

64

31

127

0

96

Reset = 0x0000 0000

Reset = 0x0000 0000

Reset = 0x0000 0000

Reset = 0x0000 0000

MTCS0

MTCS1

MTCS2

MTCS3

Channel number

Bit number in register

Channel number

Bit number in register

Channel number

Bit number in register

Channel number

Bit number in register

For Memory-mapped
addresses, see
Table 12-6.

0 00 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0

0 00 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0

0 00 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0

0 00 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0

Multichannel Operation

12-64 ADSP-BF533 Blackfin Processor Hardware Reference

Multichannel DMA Data Packing
Multichannel DMA data packing and unpacking are specified with the
MCDTXPE and MCDRXPE bits in the SPORTx_MCMC2 Multichannel Configura-
tion register.

If the bits are set, indicating that data is packed, the SPORT expects the
data contained by the DMA buffer corresponds only to the enabled
SPORT channels. For example, if an MCM frame contains 10 enabled
channels, the SPORT expects the DMA buffer to contain 10 consecutive
words for each frame. It is not possible to change the total number of
enabled channels without changing the DMA buffer size, and reconfigur-
ing is not allowed while the SPORT is enabled.

If the bits are cleared (the default, indicating that data is not packed), the
SPORT expects the DMA buffer to have a word for each of the channels
in the active window, whether enabled or not, so the DMA buffer size
must be equal to the size of the window. For example, if channels 1 and 10
are enabled, and the window size is 16, the DMA buffer size would have
to be 16 words. The data to be transmitted or received would be placed at
addresses 1 and 10 of the buffer, and the rest of the words in the DMA

Table 12-6. SPORTx Multichannel Transmit Select Register
Memory-Mapped Addresses

Register Name Memory-Mapped Address

SPORT0_MTCS0 0xFFC0 0840

SPORT0_MTCS1 0xFFC0 0844

SPORT0_MTCS2 0xFFC0 0848

SPORT0_MTCS3 0xFFC0 084C

SPORT1_MTCS0 0xFFC0 0940

SPORT1_MTCS1 0xFFC0 0944

SPORT1_MTCS2 0xFFC0 0948

SPORT1_MTCS3 0xFFC0 094C

ADSP-BF533 Blackfin Processor Hardware Reference 12-65

Serial Port Controllers

buffer would be ignored. This mode allows changing the number of
enabled channels while the SPORT is enabled, with some caution. First
read the Channel register to make sure that the active window is not being
serviced. If the channel count is 0, then the Multichannel Select registers
can be updated.

Support for H.100 Standard Protocol
The processor supports the H.100 standard protocol. The following
SPORT parameters must be set to support this standard.

• Set for external frame sync. Frame sync generated by external bus
master.

• TFSR/RFSR set (frame syncs required)

• LTFS/LRFS set (active low frame syncs)

• Set for external clock

• MCMEN set (Multichannel mode selected)

• MFD = 0 (no frame delay between frame sync and first data bit)

• SLEN = 7 (8-bit words)

• FSDR = 1 (set for H.100 configuration, enabling half-clock-cycle
early frame sync)

2X Clock Recovery Control
The SPORTs can recover the data rate clock from a provided 2X input
clock. This enables the implementation of H.100 compatibility modes for
MVIP-90 (2 Mbps data) and HMVIP (8 Mbps data), by recovering
2 MHz from 4 MHz or 8 MHz from the 16 MHz incoming clock with
the proper phase relationship. A 2-bit mode signal (MCCRM[1:0] in the

SPORT Pin/Line Terminations

12-66 ADSP-BF533 Blackfin Processor Hardware Reference

SPORTx_MCMC2 register) chooses the applicable clock mode, which includes
a non-divide or bypass mode for normal operation. A value of MCCRM = 00
chooses non-divide or bypass mode (H.100-compatible), MCCRM = 10
chooses MVIP-90 clock divide (extract 2 MHz from 4 MHz), and
MCCRM = 11 chooses HMVIP clock divide (extract 8 MHz from 16 MHz).

SPORT Pin/Line Terminations
The processor has very fast drivers on all output pins, including the
SPORTs. If connections on the data, clock, or frame sync lines are longer
than six inches, consider using a series termination for strip lines on
point-to-point connections. This may be necessary even when using low
speed serial clocks, because of the edge rates.

Timing Examples
Several timing examples are included within the text of this chapter (in the
sections “Framed Versus Unframed” on page 12-37, “Early Versus Late
Frame Syncs (Normal Versus Alternate Timing)” on page 12-42, and
“Frame Syncs in Multichannel Mode” on page 12-53). This section con-
tains additional examples to illustrate other possible combinations of the
framing options.

These timing examples show the relationships between the signals but are
not scaled to show the actual timing parameters of the processor. Consult
ADSP-BF531/ADSP-BF532/ADSP-BF533 Embedded Processor Data Sheet
for actual timing parameters and values.

These examples assume a word length of four bits (SLEN = 3). Framing
signals are active high (LRFS = 0 and LTFS = 0).

Figure 12-31 through Figure 12-36 show framing for receiving data.

ADSP-BF533 Blackfin Processor Hardware Reference 12-67

Serial Port Controllers

In Figure 12-31 and Figure 12-32, the normal framing mode is shown for
non-continuous data (any number of TSCLK or RSCLK cycles between
words) and continuous data (no TSCLK or SCLK cycles between words).

Figure 12-33 and Figure 12-34 show non-continuous and continuous
receiving in the alternate framing mode. These four figures show the input
timing requirement for an externally generated frame sync and also the
output timing characteristic of an internally generated frame sync. Note

Figure 12-31. SPORT Receive, Normal Framing

Figure 12-32. SPORT Continuous Receive, Normal Framing

B3B3 B2 B1 B0 B2 B1 B0

SPORT CONTROL REGISTER:
BOTH INTERNAL FRAMING OPTION AND EXTERNAL FRAMING OPTION SHOWN.
DR REPRESENTS DRxPRI AND/OR DRxSEC, DEPENDING ON DESIRED CONFIGURATION.

RSCLK

RFS OUTPUT

DR

RFS INPUT

RSCLK

RFS OUTPUT

RFS INPUT

DR B3 B2 B1 B0 B3 B2 B1 B0 B3 B2

SPORT CONTROL REGISTER:
BOTH INTERNAL FRAMING OPTION AND EXTERNAL FRAMING OPTION SHOWN
DR REPRESENTS DRxPRI AND/OR DRxSEC, DEPENDING ON DESIRED CONFIGURATION.

:

Timing Examples

12-68 ADSP-BF533 Blackfin Processor Hardware Reference

the output meets the input timing requirement; therefore, with two
SPORT channels used, one SPORT channel could provide RFS for the
other SPORT channel.

Figure 12-35 and Figure 12-36 show the receive operation with normal
framing and alternate framing, respectively, in the unframed mode. A sin-
gle frame sync signal occurs only at the start of the first word, either one
RSCLK before the first bit (in normal mode) or at the same time as the first
bit (in alternate mode). This mode is appropriate for multiword bursts
(continuous reception).

Figure 12-33. SPORT Receive, Alternate Framing

Figure 12-34. SPORT Continuous Receive, Alternate Framing

B3B3 B2 B1 B0 B2 B1 B0

SPORT CONTROL REGISTER:
BOTH INTERNAL FRAMING OPTION AND EXTERNAL FRAMING OPTION SHOWN.
DR REPRESENTS DRxPRI AND/OR DRxSEC, DEPENDING ON DESIRED CONFIGURATION.

RSCLK

RFS OUTPUT

DR

RFS INPUT

RSCLK

RFS OUTPUT

RFS INPUT

DR B3 B2 B1 B0 B3 B2 B1 B0

SPORT CONTROL REGISTER:
BOTH INTERNAL FRAMING OPTION AND EXTERNAL FRAMING OPTION SHOWN
DR REPRESENTS DRxPRI AND/OR DRxSEC, DEPENDING ON DESIRED CONFIGURATION.

ADSP-BF533 Blackfin Processor Hardware Reference 12-69

Serial Port Controllers

Figure 12-37 through Figure 12-42 show framing for transmitting data
and are very similar to Figure 12-31 through Figure 12-36. In
Figure 12-37 and Figure 12-38, the normal framing mode is shown for
non-continuous data (any number of TSCLK cycles between words) and
continuous data (no TSCLK cycles between words). Figure 12-39 and
Figure 12-40 show non-continuous and continuous transmission in the
alternate framing mode. As noted previously for the receive timing dia-
grams, the RFS output meets the RFS input timing requirement.

Figure 12-35. SPORT Receive, Unframed Mode, Normal Framing

Figure 12-36. SPORT Receive, Unframed Mode, Alternate Framing

RSCLK

RFS

DR B3 B2 B1 B0 B3 B2 B1 B0 B2B3

DR REPRESENTS DRxPRI AND/OR DRxSEC, DEPENDING ON DESIRED CONFIGURATION.

RSCLK

RFS

DR B3 B2 B1 B0 B3 B2 B1 B0 B2B3

DR REPRESENTS DRxPRI AND/OR DRxSEC, DEPENDING ON DESIRED CONFIGURATION.

Timing Examples

12-70 ADSP-BF533 Blackfin Processor Hardware Reference

Figure 12-37. SPORT Transmit, Normal Framing

Figure 12-38. SPORT Continuous Transmit, Normal Framing

TSCLK

TFS OUTPUT

DT B2 B1 B0B3 B2 B1 B0B3

TFS INPUT

SPORT CONTROL REGISTER:
BOTH INTERNAL FRAMING OPTION AND EXTERNAL FRAMING OPTION SHOWN.
DT REPRESENTS DTxPRI AND/OR DTxSEC, DEPENDING ON DESIRED CONFIGURATION.

B2 B1 B0B3 B2 B1 B0B3 B3 B2

TSCLK

TFS OUTPUT

TFS INPUT

TR

SPORT CONTROL REGISTER:
BOTH INTERNAL FRAMING OPTION AND EXTERNAL FRAMING OPTION SHOWN
DT REPRESENTS DTxPRI AND/OR DTxSEC, DEPENDING ON DESIRED CONFIGURATION.

ADSP-BF533 Blackfin Processor Hardware Reference 12-71

Serial Port Controllers

Figure 12-41 and Figure 12-42 show the transmit operation with normal
framing and alternate framing, respectively, in the unframed mode. A sin-
gle frame sync signal occurs only at the start of the first word, either one
TSCLK before the first bit (in normal mode) or at the same time as the first
bit (in alternate mode).

Figure 12-39. SPORT Transmit, Alternate Framing

Figure 12-40. SPORT Continuous Transmit, Alternate Framing

B2 B1 B0B3 B2 B1 B0B3

SPORT CONTROL REGISTER:
BOTH INTERNAL FRAMING OPTION AND EXTERNAL FRAMING OPTION SHOWN.
DT REPRESENTS DTxPRI AND/OR DTxSEC, DEPENDING ON DESIRED CONFIGURATION.

TSCLK

TFS OUTPUT

DT

TFS INPUT

B2 B1 B0B3 B0B3 B2 B1

TSCLK

TFS OUTPUT

TFS INPUT

TR

SPORT CONTROL REGISTER:
BOTH INTERNAL FRAMING OPTION AND EXTERNAL FRAMING OPTION SHOWN
DT REPRESENTS DTxPRI AND/OR DTxSEC, DEPENDING ON DESIRED CONFIGURATION.

Timing Examples

12-72 ADSP-BF533 Blackfin Processor Hardware Reference

Figure 12-41. SPORT Transmit, Unframed Mode, Normal Framing

Figure 12-42. SPORT Transmit, Unframed Mode, Alternate Framing

TSCLK

TFS

DT B3 B3B0B1B2 B1 B0 B3B2 B2

DT REPRESENTS DTxPRI AND/OR DTxSEC, DEPENDING ON DESIRED CONFIGURATION.

TSCLK

TFS

DT B3 B3B0B1B2 B1 B0 B3B2 B2

DT REPRESENTS DTxPRI AND/OR DTxSEC, DEPENDING ON DESIRED CONFIGURATION.

ADSP-BF533 Blackfin Processor Hardware Reference 13-1

13 UART PORT CONTROLLER

The Universal Asynchronous Receiver/Transmitter (UART) is a
full-duplex peripheral compatible with PC-style industry-standard
UARTs. The UART converts data between serial and parallel formats.
The serial communication follows an asynchronous protocol that supports
various word length, stop bits, and parity generation options. The UART
includes interrupt handling hardware. Interrupts can be generated from
12 different events.

The UART supports the half-duplex IrDA® (Infrared Data Association)
SIR (9.6/115.2 Kbps rate) protocol. This is a mode-enabled feature.

 Modem status and control functionality is not supported by the
UART module, but may be implemented using General-Purpose
I/O (GPIO) pins.

The UART is a DMA-capable peripheral with support for separate TX
and RX DMA master channels. It can be used in either DMA or pro-
grammed non-DMA mode of operation. The non-DMA mode requires
software management of the data flow using either interrupts or polling.
The DMA method requires minimal software intervention as the DMA
engine itself moves the data. See Chapter 9, “Direct Memory Access” for
more information on DMA.

Either one of the peripheral timers can be used to provide a hardware
assisted autobaud detection mechanism for use with the UART. See
Chapter 15, “Timers” for more information.

Serial Communications

13-2 ADSP-BF533 Blackfin Processor Hardware Reference

Serial Communications
The UART follows an asynchronous serial communication protocol with
these options:

• 5 – 8 data bits

• 1, 1½, or 2 stop bits

• None, even, or odd parity

• Baud rate = SCLK/(16  Divisor), where SCLK is the system clock
frequency and Divisor can be a value from 1 to 65536

All data words require a start bit and at least one stop bit. With the
optional parity bit, this creates a 7- to 12-bit range for each word. The for-
mat of received and transmitted character frames is controlled by the Line
Control register (UART_LCR). Data is always transmitted and received least
significant bit (LSB) first.

Figure 13-1 shows a typical physical bitstream measured on the TX pin.

Figure 13-1. Bitstream on the TX Pin

DATA BITS STOP BIT(S)

START BIT LSB PARITY BIT (OPTIONAL, ODD OR EVEN)

D0 D1 D2 D3 D4 D5 D6 D7

ADSP-BF533 Blackfin Processor Hardware Reference 13-3

UART Port Controller

UART Control and Status Registers
The processor provides a set of PC-style industry-standard control and
status registers for each UART. These Memory-mapped Registers
(MMRs) are byte-wide registers that are mapped as half words with the
most significant byte zero filled.

Consistent with industry-standard interfaces, multiple registers are
mapped to the same address location. The Divisor Latch registers
(UART_DLH and UART_DLL) share their addresses with the Transmit Holding
register (UART_THR), the Receive Buffer register (UART_RBR), and the Inter-
rupt Enable register (UART_IER). The Divisor Latch Access bit (DLAB) in
the Line Control Register (UART_LCR) controls which set of registers is
accessible at a given time. Software must use 16-bit word load/store
instructions to access these registers.

Transmit and receive channels are both buffered. The UART_THR register
buffers the Transmit Shift register (TSR) and the UART_RBR register buffers
the Receive Shift register (RSR). The shift registers are not directly accessi-
ble by software.

UART_LCR Register
The UART Line Control register (UART_LCR) controls the format of
received and transmitted character frames. The SB bit functions even when
the UART clock is disabled. Since the TX pin normally drives high, it can
be used as a flag output pin, if the UART is not used.

UART Control and Status Registers

13-4 ADSP-BF533 Blackfin Processor Hardware Reference

UART_MCR Register
The Modem Control register (UART_MCR) controls the UART port, as
shown in Figure 13-3. Even if modem functionality is not supported, the
Modem Control register is available in order to support the loopback
mode.

Figure 13-2. UART Line Control Register

Figure 13-3. UART Modem Control Register

DLAB (Divisor Latch Access)
1 - Enables access to UART_DLL

and UART_DLH
0 - Enables access to UART_THR,

UART_RBR, and UART_IER

SB (Set Break)
0 - No force
1 - Force TX pin to 0

STP (Stick Parity)
Forces parity to defined value if set and PEN = 1
EPS = 1, parity transmitted and checked as 0
EPS = 0, parity transmitted and checked as 1

EPS (Even Parity Select)
1 - Even parity
0 - Odd parity when PEN = 1 and STP = 0

WLS[1:0] (Word Length Select)
00 - 5-bit word
01 - 6-bit word
10 - 7-bit word
11 - 8-bit word

STB (Stop Bits)
1 - 2 stop bits for non-5-bit

word length or 1 1/2 stop
bits for 5-bit word length

0 - 1 stop bit

PEN (Parity Enable)
1 - Transmit and check parity
0 - Parity not transmitted or

checked

UART Line Control Register (UART_LCR)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x00000xFFC0 040C

LOOP_ENA (Loopback mode enable)
Disconnects RX from RSR

UART Modem Control Register (UART_MCR)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x00000xFFC0 0410

ADSP-BF533 Blackfin Processor Hardware Reference 13-5

UART Port Controller

Loopback mode disconnects the receiver’s input from the RX pin, but
redirects it to the transmit output internally.

UART_LSR Register
The UART Line Status register (UART_LSR) contains UART status infor-
mation as shown in Figure 13-4.

The Break Interrupt (BI), Overrun Error (OE), Parity Error (PE) and Fram-
ing Error (FE) bits are cleared when the UART Line Status register
(UART_LSR) is read. The Data Ready (DR) bit is cleared when the UART
Receive Buffer register (UART_RBR) is read.

 Because of the destructive nature of these read operations, special
care should be taken. For more information, see “Speculative Load
Execution” on page 6-69 and “Conditional Load Behavior” on
page 6-70.

Figure 13-4. UART Line Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 1 1 0 0 0 0

DR (Data Ready)TEMT (TSR and UART_THR Empty)

UART Line Status Register (UART_LSR)

0 - Full
1 - Both empty

0 - THR not empty
1 - THR empty

0 - No break interrupt
1 - Break interrupt; this

indicates RX was held low
for more than the maximum
word length

BI (Break Interrupt)

THRE (THR Empty)

FE (Framing Error)

0 - No new data
1 - UART_RBR holds new data

OE (Overrun Error)
0 - No overrun
1 - UART_RBR overwritten

before read

PE (Parity Error)
0 - No parity error
1 - Parity error

0 - No error
1 - Invalid stop bit error

Reset = 0x00600xFFC0 0414

RO

UART Control and Status Registers

13-6 ADSP-BF533 Blackfin Processor Hardware Reference

The THRE bit indicates that the UART transmit channel is ready for new
data and software can write to UART_THR. Writes to UART_THR clear the THRE
bit. It is set again when data is copied from UART_THR to the Transmit Shift
register (TSR). The TEMT bit can be evaluated to determine whether a
recently initiated transmit operation has been completed.

UART_THR Register
A write to the UART Transmit Holding register (UART_THR) initiates the
transmit operation. The data is moved to the internal Transmit Shift reg-
ister (TSR) where it is shifted out at a baud rate equal to
SCLK/(16  Divisor) with start, stop, and parity bits appended as
required. All data words begin with a 1-to-0-transition start bit. The
transfer of data from UART_THR to the Transmit Shift register sets the
Transmit Holding Register Empty (THRE) status flag in the UART Line
Status register (UART_LSR).

The write-only UART_THR register is mapped to the same address as the
read-only UART_RBR and UART_DLL registers. To access UART_THR, the DLAB
bit in UART_LCR must be cleared. When the DLAB bit is cleared, writes to
this address target the UART_THR register, and reads from this address
return the UART_RBR register.

Note data is transmitted and received least significant bit (LSB) first (bit
0) followed by the most significant bits (MSBs).

Figure 13-5. UART Transmit Holding Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Transmit Hold[7:0]

UART Transmit Holding Register (UART_THR)
WO

Reset = 0x00000xFFC0 0400

ADSP-BF533 Blackfin Processor Hardware Reference 13-7

UART Port Controller

UART_RBR Register
The receive operation uses the same data format as the transmit configura-
tion, except that the number of stop bits is always assumed to be 1. After
detection of the start bit, the received word is shifted into the Receive
Shift register (RSR) at a baud rate of SCLK/(16 x Divisor). After the
appropriate number of bits (including stop bit) is received, the data and
any status are updated and the Receive Shift register is transferred to the
UART Receive Buffer register (UART_RBR), shown in Figure 13-6. After the
transfer of the received word to the UART_RBR buffer and the appropriate
synchronization delay, the Data Ready (DR) status flag is updated.

A sampling clock equal to 16 times the baud rate samples the data as close
to the midpoint of the bit as possible. Because the internal sample clock
may not exactly match the asynchronous receive data rate, the sampling
point drifts from the center of each bit. The sampling point is synchro-
nized again with each start bit, so the error accumulates only over the
length of a single word. A receive filter removes spurious pulses of less
than two times the sampling clock period.

The read-only UART_RBR register is mapped to the same address as the
write-only UART_THR and UART_DLL registers. To access UART_RBR, the DLAB
bit in UART_LCR must be cleared. When the DLAB bit is cleared, writes to
this address target the UART_THR register, while reads from this address
return the UART_RBR register.

Figure 13-6. UART Receive Buffer Register

Receive Buffer[7:0]

UART Receive Buffer Register (UART_RBR)
RO

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x00000xFFC0 0400

UART Control and Status Registers

13-8 ADSP-BF533 Blackfin Processor Hardware Reference

UART_IER Register
The UART Interrupt Enable register (UART_IER) is used to enable requests
for system handling of empty or full states of UART data registers. Unless
polling is used as a means of action, the ERBFI and/or ETBEI bits in this
register are normally set.

Setting this register without enabling system DMA causes the UART to
notify the processor of data inventory state by means of interrupts. For
proper operation in this mode, system interrupts must be enabled, and
appropriate interrupt handling routines must be present. For backward
compatibility, the UART_IIR still reflects the correct interrupt status.

 The UART features three separate interrupt channels to handle
data transmit, data receive, and line status events independently,
regardless whether DMA is enabled or not.

With system DMA enabled, the UART uses DMA to transfer data to or
from the processor. Dedicated DMA channels are available to receive and
transmit operation. Line error handling can be configured completely
independently from the receive/transmit setup.

The UART_IER register is mapped to the same address as UART_DLH. To
access UART_IER, the DLAB bit in UART_LCR must be cleared.

UART’s DMA is enabled by first setting up the system DMA control reg-
isters and then enabling the UART ERBFI and/or ETBEI interrupts in the
UART_IER register. This is because the interrupt request lines double as
DMA request lines. Depending on whether DMA is enabled or not, upon
receiving these requests, the DMA control unit either generates a direct
memory access or passes the UART interrupt on to the system interrupt
handling unit. However, UART’s error interrupt goes directly to the sys-
tem interrupt handling unit, bypassing the DMA unit completely.

ADSP-BF533 Blackfin Processor Hardware Reference 13-9

UART Port Controller

The ELSI bit enables interrupt generation on an independent interrupt
channel when any of the following conditions are raised by the respective
bit in the UART Line Status register (UART_LSR):

• Receive Overrun Error (OE)

• Receive Parity Error (PE)

• Receive Framing Error (FE)

• Break Interrupt (BI)

When the ETBEI bit is set in the UART_IER register, the UART module
immediately issues an interrupt or DMA request. When initiating the
transmission of a string, no special handling of the first character is
required. Set the ETBEI bit and let the interrupt service routine load the
first character from memory and write it to the UART_THR register in the
normal manner. Accordingly, the ETBEI bit should be cleared if the string
transmission has completed.

Figure 13-7. UART Interrupt Enable Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ERBFI (Enable Receive Buf-
fer Full Interrupt)

UART Interrupt Enable Register (UART_IER)

ETBEI (Enable Transmit
Buffer Empty Interrupt)

ELSI (Enable RX Status Interrupt)

0 - No interrupt
1 - Generate RX interrupt if

DR bit in UART_LSR is set

0 - No interrupt
1 - Generate TX interrupt if

THRE bit in UART_LSR is
set

0 - No interrupt
1 - Generate line status interrupt if
any of UART_LSR[4:1] is set

Reset = 0x00000xFFC0 0404

UART Control and Status Registers

13-10 ADSP-BF533 Blackfin Processor Hardware Reference

UART_IIR Register
For legacy reasons, the UART Interrupt Identification register (UART_IIR)
still reflects the UART interrupt status. Legacy operation may require
bundling all UART interrupt sources to a single interrupt channel and ser-
vicing them all by the same software routine. This can be established by
globally assigning all UART interrupts to the same interrupt priority, by
using the System Interrupt Controller (SIC).

When cleared, the Pending Interrupt bit (NINT) signals that an interrupt is
pending. The STATUS field indicates the highest priority pending inter-
rupt. The receive line status has the highest priority; the UART_THR empty
interrupt has the lowest priority. In the case where both interrupts are sig-
nalling, the UART_IIR reads 0x06.

When a UART interrupt is pending, the interrupt service routine (ISR)
needs to clear the interrupt latch explicitly. The following figure shows
how to clear any of the three latches.

The TX interrupt request is cleared by writing new data to the UART_THR
register or by reading the UART_IIR register. Note the special role of the
UART_IIR register read in the case where the service routine does not want
to transmit further data.

Figure 13-8. UART Interrupt Identification Register

NINT (Pending interrupt)

UART Interrupt Identification Register (UART_IIR)
RO

STATUS[1:0]
0 - Interrupt pending
1 - No interrupt pending

00 - Reserved
01 - UART_THR empty. Write UART_THR or read UART_IIR to clear

interrupt request.
10 - Receive data ready. Read UART RBR to clear interrupt request.
11 - Receive line status. Read UART_LSR to clear interrupt request.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x00010xFFC0 0408

ADSP-BF533 Blackfin Processor Hardware Reference 13-11

UART Port Controller

If software stops transmission, it must read the UART_IIR register to reset
the interrupt request. As long as the UART_IIR register reads 0x04 or 0x06
(indicating that another interrupt of higher priority is pending), the
UART_THR empty latch cannot be cleared by reading UART_IIR.

 If either the Line Status interrupt or the Receive Data interrupt has
been assigned a lower interrupt priority by the SIC, a deadlock
condition can occur. To avoid this, always assign the lowest prior-
ity of the enabled UART interrupts to the UART_THR empty event.

 Because of the destructive nature of these read operations, special
care should be taken. For more information, see “Speculative Load
Execution” on page 6-69 and “Conditional Load Behavior” on
page 6-70.

UART_DLL and UART_DLH Registers
The bit rate is characterized by the system clock (SCLK) and the 16-bit
Divisor. The Divisor is split into the UART Divisor Latch Low Byte regis-
ter (UART_DLL) and the UART Divisor Latch High Byte register
(UART_DLH). These registers form a 16-bit Divisor. The baud clock is
divided by 16 so that:

BAUD RATE = SCLK/(16 x Divisor)

Divisor = 65,536 when UART_DLL = UART_DLH = 0

UART Control and Status Registers

13-12 ADSP-BF533 Blackfin Processor Hardware Reference

The UART_DLL register is mapped to the same address as the UART_THR and
UART_RBR registers. The UART_DLH register is mapped to the same address as
the Interrupt Enable register (UART_IER). The DLAB bit in UART_LCR must
be set before the UART Divisor Latch registers can be accessed.

 Note the 16-bit Divisor formed by UART_DLH and UART_DLL resets to
0x0001, resulting in the highest possible clock frequency by
default. If the UART is not used, disabling the UART clock will
save power. The UART_DLH and UART_DLL registers can be pro-
grammed by software before or after setting the UCEN bit.

Figure 13-9. UART Divisor Latch Registers

Divisor Latch Low Byte[7:0]

Divisor Latch High Byte[15:8]

UART Divisor Latch Low Byte Register (UART_DLL)

UART Divisor Latch High Byte Register (UART_DLH)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0001

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

0xFFC0 0400

0xFFC0 0404

ADSP-BF533 Blackfin Processor Hardware Reference 13-13

UART Port Controller

Table 13-1 provides example divide factors required to support most stan-
dard baud rates.

 Careful selection of SCLK frequencies, that is, even multiples of
desired baud rates, can result in lower error percentages.

UART_SCR Register
The contents of the 8-bit UART Scratch register (UART_SCR) is reset to
0x00. It is used for general-purpose data storage and does not control the
UART hardware in any way.

Table 13-1. UART Baud Rate Examples With 100 MHz SCLK

Baud Rate DL Actual % Error

2400 2604 2400.15 .006

4800 1302 4800.31 .007

9600 651 9600.61 .006

19200 326 19171.78 .147

38400 163 38343.56 .147

57600 109 57339.45 .452

115200 54 115740.74 .469

921600 7 892857.14 3.119

6250000 1 6250000 -

Figure 13-10. UART Scratch Register

Scratch[7:0]

UART Scratch Register (UART_SCR)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x00000xFFC0 041C

UART Control and Status Registers

13-14 ADSP-BF533 Blackfin Processor Hardware Reference

UART_GCTL Register
The UART Global Control register (UART_GCTL) contains the enable bit
for internal UART clocks and for the IrDA mode of operation of the
UART.

Note that the UCEN bit was not present in previous UART implementa-
tions. It has been introduced to save power if the UART is not used.
When porting code, be sure to enable this bit.

The IrDA TX Polarity Change bit and the IrDA RX Polarity Change bit
are effective only in IrDA mode. The two force error bits, FPE and FFE, are
intended for test purposes. They are useful for debugging software, espe-
cially in loopback mode.

Figure 13-11. UART Global Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

UCEN (Enable UART Clocks)
1 - Enable UART clocks
0 - Disable UART clocks

Reset = 0x0000

IREN (Enable IrDA Mode)
1 - Enable IrDA
0 - Disable IrDA

FPE (Force Parity Error on Transmit)
1 - Force error
0 - Normal operation

FFE (Force Framing Error on Transmit)
1 - Force error
0 - Normal operation

UART Global Control Register (UART_GCTL)

0xFFC0 0424

TPOLC (IrDA TX Polarity
Change)
1 - Serial line idles high
0 - Serial line idles low

RPOLC (IrDA RX Polarity Change)
1 - Serial line idles high
0 - Serial line idles low

ADSP-BF533 Blackfin Processor Hardware Reference 13-15

UART Port Controller

Non-DMA Mode
In non-DMA mode, data is moved to and from the UART by the proces-
sor core. To transmit a character, load it into UART_THR. Received data can
be read from UART_RBR. The processor must write and read one character
at time.

To prevent any loss of data and misalignments of the serial datastream, the
UART Line Status register (UART_LSR) provides two status flags for hand-
shaking—THRE and DR.

The THRE flag is set when UART_THR is ready for new data and cleared when
the processor loads new data into UART_THR. Writing UART_THR when it is
not empty overwrites the register with the new value and the previous
character is never transmitted.

The DR flag signals when new data is available in UART_RBR. This flag is
cleared automatically when the processor reads from UART_RBR. Reading
UART_RBR when it is not full returns the previously received value. When
UART_RBR is not read in time, newly received data overwrites UART_RBR and
the Overrun (OE) flag is set.

With interrupts disabled, these status flags can be polled to determine
when data is ready to move. Note that because polling is processor inten-
sive, it is not typically used in real-time signal processing environments.
Software can write up to two words into the UART_THR register before
enabling the UART clock. As soon as the UCEN bit is set, those two words
are sent.

Alternatively, UART writes and reads can be accomplished by interrupt
service routines (ISRs). Separate interrupt lines are provided for UART
TX, UART RX, and UART Error. The independent interrupts can be
enabled individually by the UART_IER register.

DMA Mode

13-16 ADSP-BF533 Blackfin Processor Hardware Reference

The ISRs can evaluate the Status bit field within the UART Interrupt
Identification register (UART_IIR) to determine the signalling interrupt
source. If more than one source is signalling, the status field displays the
one with the highest priority. Interrupts also must be assigned and
unmasked by the processor’s interrupt controller. The ISRs must clear the
interrupt latches explicitly. See Figure 13-8.

DMA Mode
In this mode, separate receive (RX) and transmit (TX) DMA channels
move data between the UART and memory. The software does not have
to move data, it just has to set up the appropriate transfers either through
the descriptor mechanism or through Autobuffer mode.

No additional buffering is provided in the UART DMA channel, so the
latency requirements are the same as in non-DMA mode. However, the
latency is determined by the bus activity and arbitration mechanism and
not by the processor loading and interrupt priorities. For more informa-
tion, see Chapter 9, “Direct Memory Access”.

DMA interrupt routines must explicitly write 1s to the corresponding
DMA IRQ status registers to clear the latched request of the pending
interrupt.

The UART’s DMA is enabled by first setting up the system DMA control
registers and then enabling the UART ERBFI and/or ETBEI interrupts in
the UART_IER register. This is because the interrupt request lines double as
DMA request lines. Depending on whether DMA is enabled or not, upon
receiving these requests, the DMA control unit either generates a direct
memory access or passes the UART interrupt on to the system interrupt
handling unit. However, the UART’s error interrupt goes directly to the
system interrupt handling unit, bypassing the DMA unit completely.

The UART’s DMA supports 8-bit operation.

ADSP-BF533 Blackfin Processor Hardware Reference 13-17

UART Port Controller

Mixing Modes
Non-DMA and DMA modes use different synchronization mechanisms.
Consequently, any serial communication must be complete before switch-
ing from non-DMA to DMA mode or vice versa. In other words, before
switching from non-DMA transmission to DMA transmission, make sure
both UART_THR and the internal Transmit Shift register (TSR) are empty by
testing the THRE and the TEMT status bits in UART_LSR.

When switching from DMA to non-DMA operation, make sure both the
receive (RX) and transmit (TX) DMA channels have completely trans-
ferred their data, including data contained in the DMA FIFOs. While the
DMA RX interrupt indicates the last data word has been written to mem-
ory (and has left the DMA FIFO), the DMA TX interrupt indicates the
last data word has left memory (and has entered the DMA FIFO). The
processor must wait until the TX FIFO is empty, by testing that the
DMA_RUN status bit in the TX channel’s IRQ_STATUS register is clear, before
it is safe to disable the DMA channel.

IrDA Support
Aside from the standard UART functionality, the UART also supports
half-duplex serial data communication via infrared signals, according to
the recommendations of the Infrared Data Association (IrDA). The physi-
cal layer known as IrDA SIR (9.6/115.2 Kbps rate) is based on
return-to-zero-inverted (RZI) modulation. Pulse position modulation is
not supported.

Using the 16x data rate clock, RZI modulation is achieved by inverting
and modulating the non-return-to-zero (NRZ) code normally transmitted
by the UART. On the receive side, the 16x clock is used to determine an
IrDA pulse sample window, from which the RZI-modulated NRZ code is
recovered.

IrDA Support

13-18 ADSP-BF533 Blackfin Processor Hardware Reference

IrDA support is enabled by setting the IREN bit in the UART Global Con-
trol register. The IrDA application requires external transceivers.

IrDA Transmitter Description
To generate the IrDA pulse transmitted by the UART, the normal NRZ
output of the transmitter is first inverted, so a 0 is transmitted as a high
pulse of 16 UART clock periods and a 1 is transmitted as a low pulse for
16 UART clock periods. The leading edge of the pulse is then delayed by
six UART clock periods. Similarly, the trailing edge of the pulse is trun-
cated by eight UART clock periods. This results in the final representation
of the original 0 as a high pulse of only 3/16 clock periods in a 16-cycle
UART clock period. The pulse is centered around the middle of the bit
time, as shown in Figure 13-12. The final IrDA pulse is fed to the off-chip
infrared driver.

This modulation approach ensures a pulse width output from the UART
of three cycles high out of every 16 UART clock cycles. As shown in
Table 13-1, the error terms associated with the baud rate generator are
very small and well within the tolerance of most infrared transceiver
specifications.

Figure 13-12. IrDA Transmit Pulse

 0 1 0

8/16

9/167/16

16/16

NRZ

INVERTED

FINAL
IrDA

8/16

9/167/16

16/16

ADSP-BF533 Blackfin Processor Hardware Reference 13-19

UART Port Controller

IrDA Receiver Description
The IrDA receiver function is more complex than the transmit function.
The receiver must discriminate the IrDA pulse and reject noise. To do
this, the receiver looks for the IrDA pulse in a narrow window centered
around the middle of the expected pulse.

Glitch filtering is accomplished by counting 16 system clocks from the
time an initial pulse is seen. If the pulse is absent when the counter
expires, it is considered a glitch. Otherwise, it is interpreted as a 0. This is
acceptable because glitches originating from on-chip capacitive cross-cou-
pling typically do not last for more than a fraction of the system clock
period. Sources outside of the chip and not part of the transmitter can be
avoided by appropriate shielding. The only other source of a glitch is the
transmitter itself. The processor relies on the transmitter to perform
within specification. If the transmitter violates the specification, unpre-
dictable results may occur. The 4-bit counter adds an extra level of
protection at a minimal cost. Note because the system clock can change
across systems, the longest glitch tolerated is inversely proportional to the
system clock frequency.

The receive sampling window is determined by a counter that is clocked at
the 16x bit-time sample clock. The sampling window is re-synchronized
with each start bit by centering the sampling window around the start bit.

IrDA Support

13-20 ADSP-BF533 Blackfin Processor Hardware Reference

The polarity of receive data is selectable, using the IRPOL bit. Figure 13-13
gives examples of each polarity type.

• IRPOL = 0 assumes that the receive data input idles 0 and each
active 1 transition corresponds to a UART NRZ value of 0.

• IRPOL = 1 assumes that the receive data input idles 1 and each
active 0 transition corresponds to a UART NRZ value of 0.

Figure 13-13. IrDA Receiver Pulse Detection

 0 1

16/16

PULSE
DETECTOR

OUTPUT

SAMPLING
WINDOW

8/16 16/16

RECOVERED
NRZ INPUT 1 0

8/16

 0 1

RECEIVED
IrDA

PULSE
IR POL = 1

RECEIVED
IrDA

PULSE
IR POL = 0

ADSP-BF533 Blackfin Processor Hardware Reference 14-1

14 PROGRAMMABLE FLAGS

The processor supports 16 bidirectional programmable flags (PFx) or gen-
eral-purpose I/O pins, PF[15:0]. Each pin can be individually configured
as either an input or an output by using the Flag Direction register
(FIO_DIR). When configured as output, the Flag Data register
(FIO_FLAG_D) can be directly written to specify the state of all PFx pins.
When configured as an output, the state written to the Flag Set
(FIO_FLAG_S), Flag Clear (FIO_FLAG_C), and Flag Toggle (FIO_FLAG_T) reg-
isters determines the state driven by the output PFx pin. Regardless of how
the pins are configured, as an input or an output, reading any of these reg-
isters (FIO_FLAG_D, FIO_FLAG_S, FIO_FLAG_C, FIO_FLAG_T) returns the state
of each pin.

Each PFx pin can be configured to generate an interrupt. When a PFx pin
is configured as an input, an interrupt can be generated according to the
state of the pin (either high or low), an edge transition (low to high or
high to low), or on both edge transitions (low to high and high to low).
Input sensitivity is defined on a per-bit basis by the Flag Polarity register
(FIO_POLAR), the Flag Interrupt Sensitivity register (FIO_EDGE) and the
Flag Set on Both Edges register (FIO_BOTH). Input polarity is defined on a
per-bit basis by the Flag Polarity register. When the PFx inputs are enabled
and a PFx pin is configured as an output, enabling interrupts for the pin
allows an interrupt to be generated by setting the PFx pin.

14-2 ADSP-BF533 Blackfin Processor Hardware Reference

The processor provides two independent interrupt channels for the PFx
pins. Identical in functionality, these are called Interrupt A and Interrupt
B. Each interrupt channel has four mask registers associated with it, a Flag
Interrupt Mask Data register (FIO_MASKx_D), a Flag Interrupt Mask Set
register (FIO_MASKx_S), a Flag Interrupt Mask Clear register
(FIO_MASKx_C), and a Flag Interrupt Mask Toggle register (FIO_MASKx_T).

Each PFx pin is represented by a bit in each of these eight registers. Writ-
ing a 1 to a bit in a Mask Set register enables interrupt generation for that
PFx pin, while writing a 1 to a bit in a Mask Clear register disables inter-
rupt generation for that PFx pin.

The interrupt masking can be toggled by writing a 1 to a bit in the Mask
Toggle register. Additionally, the mask bits can be directly written by
writing to the Mask Data register. This flexible mechanism allows each bit
to generate Flag Interrupt A, Flag Interrupt B, both Flag Interrupts A and
B, or neither.

When a PF pin is not used in a system, the input buffer can be disabled so
that no external pull-ups or pull-downs are required on the unused pins.
By default, the input buffers are disabled. They can be enabled via bits in
the Flag Input Enable register (FIO_INEN).

The PFx pins are multiplexed for use by the Parallel Peripheral Interface
(PPI), Timers, and Serial Peripheral Interface (SPI). Table 14-1 shows the
programmable flag pins and their multiplexed functionality.

ADSP-BF533 Blackfin Processor Hardware Reference 14-3

Programmable Flags

Table 14-2 describes how to use the peripheral function that shares the PF
pin.

Table 14-1. Programmable Flag Pins and Functionality

PF Pin
Peripheral That Shares the PF Pin

PPI SPI Timers 0, 1, 2

0 Slave Select Input
(SPISS)

1 Slave Select Enable 1
(SPISEL1)

Input clock

2 Slave Select Enable 2
(SPISEL2)

3 Frame Sync 3 Slave Select Enable 3
(SPISEL3)

4 I/O #15 Slave Select Enable 4
(SPISEL4)

5 I/O #14 Slave Select Enable 5
(SPISEL5)

6 I/O #13 Slave Select Enable 6
(SPISEL6)

7 I/O #12 Slave Select Enable 7
(SPISEL7)

8 I/O #11

9 I/O #10

10 I/O #9

11 I/O #8

12 I/O #7

13 I/O #6

14 I/O #5

15 I/O #4

14-4 ADSP-BF533 Blackfin Processor Hardware Reference

Table 14-2. Using Peripheral Function That Shares the PF Pin

PF Pin
To Use the Peripheral Function That Shares the PF Pin…
(Assuming Peripheral is Enabled)

PPI SPI Timers 0,1,2

0 Write ‘1’ to PSSE in SPI_CTL

1 Write ‘1’ to FLS1 in SPI_FLG Write ‘1’ to
CLK_SEL in
TIMERx_
CONFIG

2 Write ‘1’ to FLS2 in SPI_FLG

3 Write ‘01’ to PORT_CFG in
PPI_CTL (if
PORT_DIR = ‘1’), or write
‘10’ to PORT_CFG (if
PORT_DIR = ‘0’)

Write ‘1’ to FLS3 in SPI_FLG

4 Write ‘111’ to DLEN in
PPI_CTL

Write ‘1’ to FLS4 in SPI_FLG

5 Write ‘110’ to DLEN in
PPI_CTL

Write ‘1’ to FLS5 in SPI_FLG

6 Write ‘101’ to DLEN in
PPI_CTL

Write ‘1’ to FLS6 in SPI_FLG

7 Write ‘100’ to DLEN in
PPI_CTL

Write ‘1’ to FLS7 in SPI_FLG

8 Write ‘011’ to DLEN in
PPI_CTL

9 Write ‘010’ to DLEN in
PPI_CTL

10 Write ‘001’ to DLEN in
PPI_CTL

11 Write ‘001’ to DLEN in
PPI_CTL

12 Always enabled when PPI
enabled

ADSP-BF533 Blackfin Processor Hardware Reference 14-5

Programmable Flags

For more information, see Chapter 11, “Parallel Peripheral Interface”,
Chapter 10, “SPI Compatible Port Controllers”, and Chapter 15,
“Timers”.

Programmable Flag Registers (MMRs)
The programmable flag registers are part of the system memory-mapped
registers (MMRs). The addresses of the programmable flag MMRs appear
in Appendix B, “System MMR Assignments”. Core access to the Flag
Configuration registers is through the system bus.

FIO_DIR Register
The Flag Direction register (FIO_DIR) is a read-write register. Each bit
position corresponds to a PFx pin. A logic 1 configures a PFx pin as an out-
put, driving the state contained in the FIO_FLAG_D register. A logic 0
configures a PFx pin as an input. The reset value of this register is 0x0000,
making all PF pins inputs upon reset.

13 Always enabled when PPI
enabled

14 Always enabled when PPI
enabled

15 Always enabled when PPI
enabled

Table 14-2. Using Peripheral Function That Shares the PF Pin (Cont’d)

PF Pin
To Use the Peripheral Function That Shares the PF Pin…
(Assuming Peripheral is Enabled)

PPI SPI Timers 0,1,2

Programmable Flag Registers (MMRs)

14-6 ADSP-BF533 Blackfin Processor Hardware Reference

 Note when using the PFx pin as an input, the corresponding bit
should also be set in the Flag Input Enable register.

Flag Value Registers Overview
The processor has four Flag Value registers:

• Flag Data register (FIO_FLAG_D)

• Flag Set register (FIO_FLAG_S)

• Flag Clear register (FIO_FLAG_C)

• Flag Toggle Direct register (FIO_FLAG_T)

These registers are used to:

• Sense the value of the PFx pins defined as inputs

• Specify the state of PFx pins defined as outputs

• Clear interrupts generated by the PFx pins

Figure 14-1. Flag Direction Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Flag Direction Register (FIO_DIR)

PF0 Direction

PF12 Direction

PF13 Direction

PF14 Direction

PF15 Direction

PF1 Direction

PF2 Direction

PF3 Direction

PF4 Direction

PF5 Direction

For all bits, 0 - Input, 1 - Output

PF6 Direction

PF7 Direction

PF11 Direction

PF10 Direction

PF9 Direction

PF8 Direction

Reset = 0x00000xFFC0 0730

ADSP-BF533 Blackfin Processor Hardware Reference 14-7

Programmable Flags

Each PFx pin is represented by a bit in each of the four registers.

Reading any of the Flag Data, Flag Set, Flag Clear, or Flag Toggle regis-
ters returns the value of the PFx pins. The value returned shows the state
of the PFx pins defined as outputs and the sense of PFx pins defined as
inputs, based on the polarity and sensitivity settings of each pin.

Reading the Flag Data, Flag Set, Flag Clear, or Flag Toggle register after
reset results in 0x0000, because although the pins are inputs, the input
buffers are not enabled. See Table 14-3 for guidance on how to interpret a
value read from one of these registers, based on the settings of the
FIO_POLAR, FIO_EDGE, and FIO_BOTH registers.

 For pins configured as edge-sensitive, a readback of 1 from one of
these registers is sticky. That is, once it is set it remains set until
cleared by user code. For level-sensitive pins, the pin state is
checked every cycle, so the readback value will change when the
original level on the pin changes.

For more information about Flag Set, Flag Clear, and Flag Toggle regis-
ters, see “FIO_FLAG_S, FIO_FLAG_C, and FIO_FLAG_T Registers”.

Table 14-3. Flag Value Register Pin Interpretation

FIO_POLAR FIO_EDGE FIO_BOTH Effect of MMR Settings

0 0 X Pin that is high reads as 1; pin that is low
reads as 0

0 1 0 If rising edge occurred, pin reads as 1;
otherwise, pin reads as 0

1 0 X Pin that is low reads as 1; pin that is high
reads as 0

1 1 0 If falling edge occurred, pin reads as 1;
otherwise, pin reads as 0

X 1 1 If any edge occurred, pin reads as 1; oth-
erwise, pin reads as 0

Programmable Flag Registers (MMRs)

14-8 ADSP-BF533 Blackfin Processor Hardware Reference

FIO_FLAG_D Register
When written, the Flag Data register (FIO_FLAG_D), shown in Figure 14-2,
directly specifies the state of all PFx pins. When read, the register returns
the value of the PFx pins.

FIO_FLAG_S, FIO_FLAG_C, and FIO_FLAG_T
Registers

The Flag Set register (FIO_FLAG_S), Flag Clear register (FIO_FLAG_C), and
Flag Toggle register (FIO_FLAG_T) are used to:

• Set, clear or toggle the output state associated with each output PFx
pin

• Clear the latched interrupt state captured from each input PFx pin

This mechanism is used to avoid the potential issues with more traditional
read-modify-write mechanisms. Reading any of the these registers shows
the flag pin state.

Figure 14-2. Flag Data Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Flag Data Register (FIO_FLAG_D)

Program PF0

Program PF12

Program PF13

Program PF14

Program PF15

Program PF1

Program PF2

Program PF3

Program PF4

Program PF5

1 - Set, 0 - Clear

Program PF6

Program PF7

Program PF11

Program PF10

Program PF9

Program PF8

Reset = 0x00000xFFC0 0700

ADSP-BF533 Blackfin Processor Hardware Reference 14-9

Programmable Flags

Figure 14-3 and Figure 14-4 represent the Flag Set and Flag Clear regis-
ters, respectively. Figure 14-5 represents the Flag Toggle register.

Figure 14-3. Flag Set Register

Figure 14-4. Flag Clear Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Flag Set Register (FIO_FLAG_S)

Set PF0

Set PF12

Set PF13

Set PF14

Set PF15

Set PF1

Set PF2

Set PF3

Set PF4

Set PF5

Write-1-to-set

Set PF6

Set PF7

Set PF11
Set PF10

Set PF9

Set PF8

Reset = 0x00000xFFC0 0708

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Flag Clear Register (FIO_FLAG_C)

Clear PF0

Clear PF12

Clear PF13

Clear PF14

Clear PF15

Clear PF1

Clear PF2

Clear PF3

Clear PF4

Clear PF5

Write-1-to-clear

Clear PF6

Clear PF7

Clear PF11

Clear PF10

Clear PF9

Clear PF8

Reset = 0x00000xFFC0 0704

Programmable Flag Registers (MMRs)

14-10 ADSP-BF533 Blackfin Processor Hardware Reference

As an example of how these registers work, assume that PF[0] is config-
ured as an output. Writing 0x0001 to the Flag Set register drives a logic 1
on the PF[0] pin without affecting the state of any other PFx pins. Writing
0x0001 to the Flag Clear register drives a logic 0 on the PF[0] pin without
affecting the state of any other PFx pins. Writing a 0x0001 to the Flag
Toggle register changes the pin state on PF[0] from logic 0 to logic 1 or
from logic 1 to logic 0, depending upon the existing pin state.

 Writing a 0 to the Flag Set, Flag Clear, or Flag Toggle register has
no effect on the value of the flag pin and is, therefore, ignored.

Reading the Flag Set or Flag Clear register shows:

• 0s for PFx pins defined as outputs and driven low

• 1s for pins (including PF[0] in the example above) defined as out-
puts and driven high

• The present sense of PFx pins defined as inputs

Input sense is based on FIO_POLAR and FIO_EDGE settings, as well as the
logic level at each pin.

Figure 14-5. Flag Toggle Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Flag Toggle Register (FIO_FLAG_T)

Toggle PF0

Toggle PF12

Toggle PF13

Toggle PF14

Toggle PF15

Toggle PF1

Toggle PF2

Toggle PF3

Toggle PF4

Toggle PF5

Write-1-to-toggle

Toggle PF6

Toggle PF7

Toggle PF11

Toggle PF10

Toggle PF9

Toggle PF8

Reset = 0x00000xFFC0 070C

ADSP-BF533 Blackfin Processor Hardware Reference 14-11

Programmable Flags

FIO_MASKA_D, FIO_MASKA_C, FIO_MASKA_S,
FIO_MASKA_T, FIO_MASKB_D, FIO_MASKB_C,
FIO_MASKB_S, FIO_MASKB_T Registers

The Flag Mask Interrupt registers (FIO_MASKA_D, FIO_MASKA_C,
FIO_MASKA_S, FIO_MASKA_T, FIO_MASKB_D, FIO_MASKB_C, FIO_MASKB_S, and
FIO_MASKB_T) are implemented as complementary pairs of write-1-to-set,
write-1-to-clear, and write-1-to-toggle registers. This implementation pro-
vides the ability to enable or disable a PFx pin to act as a processor
interrupt without requiring read-modify-write accesses—or to directly
specify the mask value with the data register.

Both Flag Interrupt A and Flag Interrupt B are supported by a set of four
dedicated registers:

• Flag Mask Interrupt Data register

• Flag Mask Interrupt Set register

• Flag Mask Interrupt Clear register

• Flag Interrupt Toggle register

For diagrams of the registers that support Flag Interrupt A, see
“FIO_MASKA_D, FIO_MASKA_C, FIO_MASKA_S, FIO_MASKA_T
Registers”.

For diagrams of the registers that support Flag Interrupt B, see
“FIO_MASKB_D, FIO_MASKB_C, FIO_MASKB_S, FIO_MASKB_T
Registers”.

Each PFx pin is represented by a bit in each of the eight registers.
Table 14-4 shows the effect of writing 1 to a bit in a Mask Set, Mask
Clear, or Mask Toggle register.

Reading any of the [A&B] mask data, set, clear, or toggle registers returns
the value of the current mask [A&B] data.

Programmable Flag Registers (MMRs)

14-12 ADSP-BF533 Blackfin Processor Hardware Reference

Interrupt A and Interrupt B operate independently. For example, writing
1 to a bit in the Flag Mask Interrupt A Set register does not affect Flag
Interrupt B. This facility allows PFx pins to generate Flag Interrupt A, Flag
Interrupt B, both Flag Interrupts A and B, or neither.

 Note a Flag Interrupt is generated by a logical OR of all unmasked
PF pins for that interrupt. For example, if PF[0] and PF[1] are both
unmasked for Flag Interrupt A, Flag Interrupt A will be generated
when triggered by PF[0] or PF[1].

 When using either rising or falling edge-triggered interrupts, the
interrupt condition must be cleared each time a corresponding
interrupt is serviced by writing 1 to the appropriate FIO_FLAG_C bit.

At reset, all interrupts are masked.

Flag Interrupt Generation Flow

Figure 14-6 shows the process by which a Flag Interrupt A or a Flag Inter-
rupt B event can be generated. Note the flow is shown for only one
programmable flag, “FlagN.” However, a Flag Interrupt is generated by a
logical OR of all unmasked PFx pins for that interrupt. For example, if
only PF[0] and PF[1] are unmasked for Flag Interrupt A, this interrupt is
generated when triggered by either PF[0] or PF[1].

Table 14-4. Effect of Writing 1 to a Bit

Register Effect of Writing 1 to a Bit in the Register

Mask Set Enables interrupt generation for that PFx pin

Mask Clear Disables interrupt generation for that PFx pin

Mask Toggle Changes the state of interrupt generation capability

ADSP-BF533 Blackfin Processor Hardware Reference 14-13

Programmable Flags

Figure 14-6. Flag Interrupt Generation Flow

IS FLAGN ENABLED
FOR INTERRUPT

GENERATION
IN FIO_MASKA_S AND

FIO_MASKA_C?

IS FLAGN ENABLED
FOR INTERRUPT

GENERATION
IN FIO_MASKB_S AND

FIO_MASKB_C?

NO
(INPUT)

NO
(INPUT)

YES YES

YES

YES YES

YES

YES YES

FLAG INTERRUPT B
OCCURS

FLAG INTERRUPT A
OCCURS

START

IS FLAGN SET AS
AN OUTPUT IN

FIO_DIR?

IS FLAGN SET AS
AN OUTPUT IN

FIO_DIR?

IS FLAGN
ASSERTED

HIGH?

IS FLAGN
ASSERTED

HIGH?

BASED ON
FIO_EDGE,

FIO_POLAR, AND
FIO_BOTH SETTINGS, IS

FLAGN GENERATING
AN INTERRUPT
 CONDITION?

BASED ON
FIO_EDGE,

FIO_POLAR, AND
FIO_BOTH SETTINGS, IS

FLAGN GENERATING
AN INTERRUPT
 CONDITION?

Programmable Flag Registers (MMRs)

14-14 ADSP-BF533 Blackfin Processor Hardware Reference

FIO_MASKA_D, FIO_MASKA_C, FIO_MASKA_S, FIO_MASKA_T
Registers

The following four registers support Flag Interrupt A. For details, see
on page 14-11.

Figure 14-7. Flag Mask Interrupt A Data Register

Figure 14-8. Flag Mask Interrupt A Set Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Flag Mask Interrupt A Data Register (FIO_MASKA_D)

Enable PF0 Interrupt Mask

Enable PF12 Interrupt Mask

Enable PF13 Interrupt Mask

Enable PF14 Interrupt
Mask

Enable PF15 Inter-
rupt Mask

Enable PF1 Interrupt Mask

Enable PF2 Interrupt Mask

Enable PF3 Interrupt Mask

Enable PF4 Interrupt Mask

Enable PF5 Interrupt Mask

For all bits, 1 - Enable

Enable PF6 Interrupt Mask

Enable PF7 Interrupt Mask

Enable PF11 Interrupt Mask

Enable PF10 Interrupt Mask

Enable PF9 Interrupt Mask

Enable PF8 Interrupt Mask

Reset = 0x00000xFFC0 0710

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Flag Mask Interrupt A Set Register (FIO_MASKA_S)

Set PF0 Interrupt Mask

Set PF12 Interrupt Mask

Set PF13 Interrupt Mask

Set PF14 Interrupt Mask

Set PF15 Interrupt Mask

Set PF1 Interrupt Mask

Set PF2 Interrupt Mask

Set PF3 Interrupt Mask

Set PF4 Interrupt Mask

Set PF5 Interrupt Mask

For all bits, 1 - Set

Set PF6 Interrupt Mask

Set PF7 Interrupt Mask

Set PF11 Interrupt Mask

Set PF10 Interrupt Mask

Set PF9 Interrupt Mask

Set PF8 Interrupt Mask

Reset = 0x00000xFFC0 0718

ADSP-BF533 Blackfin Processor Hardware Reference 14-15

Programmable Flags

Figure 14-9. Flag Mask Interrupt A Clear Register

Figure 14-10. Flag Mask Interrupt A Toggle Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Flag Mask Interrupt A Clear Register (FIO_MASKA_C)

Clear PF0 Interrupt Mask

Clear PF12 Interrupt Mask

Clear PF13 Interrupt Mask

Clear PF14 Interrupt Mask

Clear PF15 Interrupt Mask

Clear PF1 Interrupt Mask

Clear PF2 Interrupt Mask

Clear PF3 Interrupt Mask

Clear PF4 Interrupt Mask

Clear PF5 Interrupt Mask

For all bits, 1 - Clear

Clear PF6 Interrupt Mask

Clear PF7 Interrupt Mask

Clear PF11 Interrupt Mask

Clear PF10 Interrupt Mask

Clear PF9 Interrupt Mask

Clear PF8 Interrupt Mask

Reset = 0x00000xFFC0 0714

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Flag Mask Interrupt A Toggle Register (FIO_MASKA_T)

Toggle PF0 Interrupt Mask

Toggle PF12 Interrupt Mask

Toggle PF13 Interrupt Mask

Toggle PF14
Interrupt Mask

Toggle PF15
Interrupt Mask

Toggle PF1 Interrupt Mask

Toggle PF2 Interrupt Mask

Toggle PF3 Interrupt Mask

Toggle PF4 Interrupt Mask

Toggle PF5 Interrupt Mask

For all bits, 1 - Toggle

Toggle PF6 Interrupt Mask

Toggle PF7 Interrupt Mask

Toggle PF11 Interrupt Mask

Toggle PF10 Interrupt Mask

Toggle PF9 Interrupt Mask

Toggle PF8 Interrupt Mask

Reset = 0x00000xFFC0 071C

Programmable Flag Registers (MMRs)

14-16 ADSP-BF533 Blackfin Processor Hardware Reference

FIO_MASKB_D, FIO_MASKB_C, FIO_MASKB_S, FIO_MASKB_T
Registers

The following four registers support Flag Interrupt B. For details, see
on page 14-11.

Figure 14-11. Flag Mask Interrupt B Data Register

Figure 14-12. Flag Mask Interrupt B Set Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Flag Mask Interrupt B Data Register (FIO_MASKB_D)

Enable PF0 Interrupt Mask

Enable PF12 Interrupt Mask

Enable PF13 Interrupt Mask

Enable PF14 Interrupt
Mask

Enable PF15
Interrupt Mask

Enable PF1 Interrupt Mask

Enable PF2 Interrupt Mask

Enable PF3 Interrupt Mask

Enable PF4 Interrupt Mask

Enable PF5 Interrupt Mask

For all bits, 1 - Enable

Enable PF6 Interrupt Mask

Enable PF7 Interrupt Mask

Enable PF11 Interrupt Mask

Enable PF10 Interrupt Mask

Enable PF9 Interrupt Mask

Enable PF8 Interrupt Mask

Reset = 0x00000xFFC0 0720

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Flag Mask Interrupt B Set Register (FIO_MASKB_S)

Set PF0 Interrupt Mask

Set PF12 Interrupt Mask

Set PF13 Interrupt Mask

Set PF14 Interrupt Mask

Set PF15 Interrupt Mask

Set PF1 Interrupt Mask

Set PF2 Interrupt Mask

Set PF3 Interrupt Mask

Set PF4 Interrupt Mask

Set PF5 Interrupt Mask

For all bits, 1 - Set

Set PF6 Interrupt Mask

Set PF7 Interrupt Mask

Set PF11 Interrupt Mask

Set PF10 Interrupt Mask

Set PF9 Interrupt Mask

Set PF8 Interrupt Mask

Reset = 0x00000xFFC0 0728

ADSP-BF533 Blackfin Processor Hardware Reference 14-17

Programmable Flags

Figure 14-13. Flag Mask Interrupt B Clear Register

Figure 14-14. Flag Mask Interrupt B Toggle Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Flag Mask Interrupt B Clear Register (FIO_MASKB_C)

Clear PF0 Interrupt Mask

Clear PF12 Interrupt Mask

Clear PF13 Interrupt Mask

Clear PF14 Interrupt Mask

Clear PF15 Interrupt Mask

Clear PF1 Interrupt Mask

Clear PF2 Interrupt Mask

Clear PF3 Interrupt Mask

Clear PF4 Interrupt Mask

Clear PF5 Interrupt Mask

For all bits, 1 - Clear

Clear PF6 Interrupt Mask

Clear PF7 Interrupt Mask

Clear PF11 Interrupt Mask

Clear PF10 Interrupt Mask

Clear PF9 Interrupt Mask

Clear PF8 Interrupt Mask

Reset = 0x00000xFFC0 0724

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Flag Mask Interrupt B Toggle Register (FIO_MASKB_T)

Toggle PF0 Interrupt Mask

Toggle PF12 Interrupt Mask

Toggle PF13 Interrupt Mask

Toggle PF14
Interrupt Mask

Toggle PF15
Interrupt Mask

Toggle PF1 Interrupt Mask

Toggle PF2 Interrupt Mask

Toggle PF3 Interrupt Mask

Toggle PF4 Interrupt Mask

Toggle PF5 Interrupt Mask

For all bits, 1 - Toggle

Toggle PF6 Interrupt Mask

Toggle PF7 Interrupt Mask

Toggle PF11 Interrupt Mask

Toggle PF10 Interrupt Mask

Toggle PF9 Interrupt Mask

Toggle PF8 Interrupt Mask

Reset = 0x00000xFFC0 072C

Programmable Flag Registers (MMRs)

14-18 ADSP-BF533 Blackfin Processor Hardware Reference

FIO_POLAR Register
The Flag Polarity register (FIO_POLAR) is used to configure the polarity of
the flag input source. To select active high or rising edge, set the bits in
this register to 0. To select active low or falling edge, set the bits in this
register to 1.

This register has no effect on PFx pins that are defined as outputs. The
contents of this register are cleared at reset, defaulting to active high
polarity.

FIO_EDGE Register
The Flag Interrupt Sensitivity register (FIO_EDGE) is used to configure each
of the flags as either a level-sensitive or an edge-sensitive source. When
using an edge-sensitive mode, an edge detection circuit is used to prevent
a situation where a short event is missed because of the system clock rate.
This register has no effect on PFx pins that are defined as outputs.

The contents of this register are cleared at reset, defaulting to level
sensitivity.

Figure 14-15. Flag Polarity Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Flag Polarity Register (FIO_POLAR)

PF0 Polarity

PF12 Polarity

PF13 Polarity

PF14 Polarity

PF15 Polarity

PF1 Polarity

PF2 Polarity

PF3 Polarity

PF4 Polarity

PF5 Polarity

For all bits, 0 - Active high or rising edge, 1 - Active low or falling edge

PF6 Polarity

PF7 Polarity

PF11 Polarity

PF10 Polarity

PF9 Polarity

PF8 Polarity

Reset = 0x00000xFFC0 0734

ADSP-BF533 Blackfin Processor Hardware Reference 14-19

Programmable Flags

FIO_BOTH Register
The Flag Set on Both Edges register (FIO_BOTH) is used to enable interrupt
generation on both rising and falling edges.

When a given PFx pin has been set to edge-sensitive in the Flag Interrupt
Sensitivity register, setting the PFx pin’s bit in the Flag Set on Both Edges
register to Both Edges results in an interrupt being generated on both the
rising and falling edges. This register has no effect on PFx pins that are
defined as level-sensitive or as outputs.

Figure 14-16. Flag Interrupt Sensitivity Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Flag Interrupt Sensitivity Register (FIO_EDGE)

PF0 Sensitivity

PF12 Sensitivity

PF13 Sensitivity

PF14 Sensitivity

PF15 Sensitivity

PF1 Sensitivity

PF2 Sensitivity

PF3 Sensitivity

PF4 Sensitivity

PF5 Sensitivity

For all bits, 0 - Level, 1 - Edge

PF6 Sensitivity

PF7 Sensitivity

PF11 Sensitivity

PF10 Sensitivity

PF9 Sensitivity

PF8 Sensitivity

Reset = 0x00000xFFC0 0738

Programmable Flag Registers (MMRs)

14-20 ADSP-BF533 Blackfin Processor Hardware Reference

FIO_INEN Register
The Flag Input Enable register (FIO_INEN) is used to enable the input buf-
fers on any flag pin that is being used as an input. Leaving the input buffer
disabled eliminates the need for pull-ups and pull-downs when a particu-
lar PFx pin is not used in the system. By default, the input buffers are
disabled.

 Note that if the PFx pin is being used as an input, the correspond-
ing bit in the Flag Input Enable register must be set. Otherwise,
changes at the flag pins will not be recognized by the processor.

Figure 14-17. Flag Set on Both Edges Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Flag Set on Both Edges Register (FIO_BOTH)

PF0 Both Edges

PF12 Both Edges

PF13 Both Edges

PF14 Both Edges

PF15 Both Edges

PF1 Both Edges

PF2 Both Edges

PF3 Both Edges

PF4 Both Edges

PF5 Both Edges

For all bits when enabled for edge-sensitivity, 0 - Single edge, 1 - Both edges

PF6 Both Edges

PF7 Both Edges

PF11 Both Edges

PF10 Both Edges

PF9 Both Edges

PF8 Both Edges

Reset = 0x00000xFFC0 073C

ADSP-BF533 Blackfin Processor Hardware Reference 14-21

Programmable Flags

Performance/Throughput
The PFx pins are synchronized to the system clock (SCLK). When config-
ured as outputs, the programmable flags can transition once every system
clock cycle.

When configured as inputs, the overall system design should take into
account the potential latency between the core and system clocks. Changes
in the state of PFx pins have a latency of 3 SCLK cycles before being detect-
able by the processor. When configured for level-sensitive interrupt
generation, there is a minimum latency of 4 SCLK cycles between the time
the flag is asserted and the time that program flow is interrupted. When
configured for edge-sensitive interrupt generation, an additional SCLK
cycle of latency is introduced, giving a total latency of 5 SCLK cycles
between the time the edge is asserted and the time that the core program
flow is interrupted.

Figure 14-18. Flag Input Enable Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Flag Input Enable Register (FIO_INEN)

PF0 Input Enable

PF12 Input Enable

PF13 Input Enable

PF14 Input Enable

PF15 Input Enable

PF1 Input Enable

PF2 Input Enable

PF3 Input Enable

PF4 Input Enable

PF5 Input Enable

For all bits, 0 - Input Buffer Disabled, 1 - Input Buffer Enabled

PF6 Input Enable

PF7 Input Enable

PF11 Input Enable

PF10 Input Enable

PF9 Input Enable

PF8 Input Enable

Reset = 0x00000xFFC0 0740

Performance/Throughput

14-22 ADSP-BF533 Blackfin Processor Hardware Reference

ADSP-BF533 Blackfin Processor Hardware Reference 15-1

15 TIMERS

The processor features three identical 32-bit general-purpose timers, a
core timer, and a watchdog timer.

The general-purpose timers can be individually configured in any of three
modes:

• Pulse Width Modulation (PWM_OUT) mode

• Pulse Width Count and Capture (WDTH_CAP) mode

• External Event (EXT_CLK) mode

The core timer is available to generate periodic interrupts for a variety of
system timing functions.

The watchdog timer can be used to implement a software watchdog func-
tion. A software watchdog can improve system availability by generating
an event to the Blackfin processor core if the timer expires before being
updated by software.

General-Purpose Timers
Each general-purpose timer has one dedicated bidirectional chip pin,
TMRx. This pin functions as an output pin in the PWM_OUT mode and as an
input pin in the WDTH_CAP and EXT_CLK modes. To provide these func-
tions, each timer has four registers. For range and precision, the Timer
Counter (TIMERx_COUNTER), Timer Period (TIMERx_PERIOD), and Timer
Pulse Width (TIMERx_WIDTH) registers are 32 bits wide. See Figure 15-1.

General-Purpose Timers

15-2 ADSP-BF533 Blackfin Processor Hardware Reference

The registers for each general-purpose timer are:

• Timer Configuration (TIMERx_CONFIG) registers

• Timer Counter (TIMERx_COUNTER) registers

• Timer Period (TIMERx_PERIOD) registers

• Timer Pulse Width (TIMERx_WIDTH) registers

When clocked internally, the clock source is the processor’s peripheral
clock (SCLK). Assuming the peripheral clock is running at 133 MHz, the

maximum period for the timer count is ((232-1) / 133 MHz) =
32.2 seconds.

Figure 15-1. Timer Block Diagram

PERIOD BUFFER
(32 BIT)

TIMERx_COUNTER
(32 BIT)

WIDTH BUFFER
(32 BIT)

TIMERx_PERIOD
(32 BIT)

TIMERx_WIDTH
(32 BIT)

32
(READ ONLY)

3232

EXPIRE

PAB BUS

32 32 32

EQUAL?

CONTROL
LOGIC

CONTROL
LOGIC

EQUAL?

ADSP-BF533 Blackfin Processor Hardware Reference 15-3

Timers

The Timer Enable (TIMER_ENABLE) register can be used to enable all three
timers simultaneously. The register contains three “write-1-to-set” control
bits, one for each timer. Correspondingly, the Timer Disable
(TIMER_DISABLE) register contains three “write-1-to-clear” control bits to
allow simultaneous or independent disabling of the three timers. Either
the Timer Enable or the Timer Disable register can be read back to check
the enable status of the timers. A 1 indicates that the corresponding timer
is enabled. The timer starts counting three SCLK cycles after the TIMENx bit
is set.

The Timer Status (TIMER_STATUS) register contains an Interrupt Latch bit
(TIMILx) and an Overflow/Error Indicator bit (TOVF_ERRx) for each timer.
These sticky bits are set by the timer hardware and may be polled by soft-
ware. They need to be cleared by software explicitly, by writing a 1 to the
bit.

To enable a timer’s interrupts, set the IRQ_ENA bit in the timer’s Configu-
ration (TIMERx_CONFIG) register and unmask the timer’s interrupt by
setting the corresponding bits of the IMASK and SIC_IMASK registers. With
the IRQ_ENA bit cleared, the timer does not set its Timer Interrupt latch
(TIMILx) bits. To poll the TIMILx bits without permitting a timer inter-
rupt, programs can set the IRQ_ENA bit while leaving the timer’s interrupt
masked.

With interrupts enabled, make sure that the interrupt service routine
(ISR) clears the TIMILx latch before the RTI instruction, to ensure that the
interrupt is not reissued. To make sure that no timer event is missed, the
latch should be reset at the very beginning of the interrupt routine when
in External Clock (EXT_CLK) mode. To enable timer interrupts, set the
IRQ_ENA bit in the proper Timer Configuration (TIMERx_CONFIG) register.

Timer Registers

15-4 ADSP-BF533 Blackfin Processor Hardware Reference

Timer Registers
The timer peripheral module provides general-purpose timer functional-
ity. It consists of three identical timer units.

Each timer provides four registers:

• TIMERx_CONFIG[15:0] – Timer Configuration register

• TIMERx_WIDTH[31:0] – Timer Pulse Width register

• TIMERx_PERIOD[31:0] – Timer Period register

• TIMERx_COUNTER[31:0] – Timer Counter register

Three registers are shared between the three timers:

• TIMER_ENABLE[15:0] – Timer Enable register

• TIMER_DISABLE[15:0] – Timer Disable register

• TIMER_STATUS[15:0] – Timer Status register

The size of accesses is enforced. A 32-bit access to a Timer Configuration
register or a 16-bit access to a Timer Pulse Width, Timer Period, or Timer
Counter register results in a Memory-Mapped Register (MMR) error.
Both 16- and 32-bit accesses are allowed for the Timer Enable, Timer Dis-
able, and Timer Status registers. On a 32-bit read, the upper word returns
all 0s.

ADSP-BF533 Blackfin Processor Hardware Reference 15-5

Timers

TIMER_ENABLE Register
The Timer Enable register (TIMER_ENABLE) allows all three timers to be
enabled simultaneously in order to make them run completely synchro-
nously. For each timer there is a single W1S control bit. Writing a 1
enables the corresponding timer; writing a 0 has no effect. The three bits
can be set individually or in any combination. A read of the Timer Enable
register shows the status of the enable for the corresponding timer. A 1
indicates that the timer is enabled. All unused bits return 0 when read.

TIMER_DISABLE Register
The Timer Disable register (TIMER_DISABLE) allows all three timers to be
disabled simultaneously. For each timer there is a single W1C control bit.
Writing a 1 disables the corresponding timer; writing a 0 has no effect.
The three bits can be cleared individually or in any combination. A read of
the Timer Disable register returns a value identical to a read of the Timer
Enable register. A 1 indicates that the timer is enabled. All unused bits
return 0 when read.

Figure 15-2. Timer Enable Register

000 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 Reset = 0x00000

Timer Enable Register (TIMER_ENABLE)

TIMEN0 (Timer0 Enable)

TIMEN1 (Timer1 Enable)

1 - Enable timer
Read as 1 when enabled

1 - Enable timer
Read as 1 when enabled

TIMEN2 (Timer2 Enable)
1 - Enable timer
Read as 1 when enabled

0xFFC0 0640

Timer Registers

15-6 ADSP-BF533 Blackfin Processor Hardware Reference

In PWM_OUT mode, a write of a 1 to TIMER_DISABLE does not stop the corre-
sponding timer immediately. Rather, the timer continues running and
stops cleanly at the end of the current period (if PERIOD_CNT = 1) or pulse
(if PERIOD_CNT = 0). If necessary, the processor can force a timer in
PWM_OUT mode to stop immediately by first writing a 1 to the correspond-
ing bit in TIMER_DISABLE, and then writing a 1 to the corresponding TRUNx
bit in TIMER_STATUS. See “Stopping the Timer in PWM_OUT Mode” on
page 15-20.

In WDTH_CAP and EXT_CLK modes, a write of a 1 to TIMER_DISABLE stops the
corresponding timer immediately.

TIMER_STATUS Register
The Timer Status register (TIMER_STATUS) indicates the status of all three
timers and is used to check the status of all three timers with a single read.
Status bits are sticky and W1C. The TRUNx bits can clear themselves,
which they do when a PWM_OUT mode timer stops at the end of a period.
During a Status Register read access, all reserved or unused bits return a 0.

Each Timer generates a unique interrupt request signal, which is gated by
the corresponding IRQ_ENA bit in the TIMERx_CONFIG register. The shared
Timer Status register (TIMER_STATUS) latches these interrupts so the user

Figure 15-3. Timer Disable Register

000 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 Reset = 0x00000

Timer Disable Register (TIMER_DISABLE)

TIMDIS0 (Timer0 Disable)

TIMDIS1 (Timer1 Disable)

1 - Disable timer
Read as 1 if this timer is enabled

1 - Disable timer
Read as 1 if this timer is enabled

TIMDIS2 (Timer2 Disable)
1 - Disable timer
Read as 1 if this timer is enabled

0xFFC0 0644

ADSP-BF533 Blackfin Processor Hardware Reference 15-7

Timers

can determine the interrupt source without reference to the unique inter-
rupt signal (for example, in the case where all three timers have been
assigned to the same interrupt priority). Interrupt bits are sticky and must
be cleared by the interrupt service routine (ISR) to assure that the inter-
rupt is not reissued.

The TIMILx bits work along with the IRQ_ENA bit of the Timer Configura-
tion register to indicate interrupt requests. If an interrupt condition or
error occurs and IRQ_ENA is set, then the TIMILx bit is set and the interrupt
to the core is asserted. This interrupt may be masked by the system inter-
rupt controller. If an interrupt condition or error occurs and IRQ_ENA is
cleared, then the TIMILx bit is not set and the interrupt is not asserted. If
TIMILx is already set and IRQ_ENA is written to 0, TIMILx stays set and the
interrupt stays asserted. See Figure 15-24.

The read value of the TRUNx bits reflects the timer slave enable status in all
modes—TRUNx set indicates running and TRUNx cleared indicates stopped.
While reading the TIMENx or TIMDISx bits in the TIMER_ENABLE and
TIMER_DISABLE registers will reflect whether a timer is enabled, the TRUNx
bits indicate whether the timer is actually running. In WDTH_CAP and
EXT_CLK modes, reads from TIMENx and TRUNx always return the same
value.

A W1C operation to the TIMER_DISABLE register disables the correspond-
ing timer in all modes. In PWM_OUT mode, a disabled timer continues
running until the ongoing period (PERIOD_CNT = 1) or pulse
(PERIOD_CNT = 0) completes. During this final period the TIMENx bit
returns 0, but the TRUNx bit still reads as a 1. See Figure 15-10. In this
state only, TRUNx becomes a W1C bit. During this final period with the
timer disabled, writing a 1 to TRUNx clears TRUNx and stops the timer
immediately without waiting for the timer counter to reach the end of its
current cycle.

Writing the TRUNx bits has no effect in other modes or when a timer has
not been enabled. Writing the TRUNx bits to 1 in PWM_OUT mode has no
effect on a timer that has not first been disabled.

Timer Registers

15-8 ADSP-BF533 Blackfin Processor Hardware Reference

TIMERx_CONFIG Registers
The operating mode for each timer is specified by its Timer Configuration
register (TIMERx_CONFIG). The TIMERx_CONFIG register may be written only
when the timer is not running. After disabling the timer in PWM_OUT mode,
make sure the timer has stopped running by checking its TRUNx bit in
TIMER_STATUS before attempting to reprogram TIMERx_CONFIG. The
TIMERx_CONFIG registers may be read at any time. The ERR_TYP field is
read-only. It is cleared at reset and when the timer is enabled. Each time
TOVF_ERRx is set, ERR_TYP[1:0] is loaded with a code that identifies the
type of error that was detected. This value is held until the next error or
timer enable occurs. For an overview of error conditions, see Table 15-1.
The TIMERx_CONFIG register also controls the behavior of the TMRx pin,
which becomes an output in PWM_OUT mode (TMODE = 01) when the
OUT_DIS bit is cleared.

Figure 15-4. Timer Status Register

000 00

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0

TIMIL0 (Timer0 Interrupt)
W1C

Reset = 0x00000

Timer Status Register (TIMER_STATUS)

1 = stop timer immediately in
PWM_OUT mode

Indicates an interrupt
request when IRQ_ENA is
set
TIMIL1 (Timer1 Interrupt)-
W1C

TRUN2 (Timer2 Slave
Enable Status) W1C

TIMIL2 (Timer2 Interrupt)
W1C

Indicates that an error or an
overflow occurred

TOVF_ERR0 (Timer0
Counter Overflow) W1C

1 = stop timer immediately in
PWM_OUT mode

TRUN1 (Timer1 Slave
Enable Status) W1C

1 = stop timer immediately in
PWM_OUT mode

TRUN0 (Timer0 Slave Enable
Status) W1C

TOVF_ERR1 (Timer1
Counter Overflow) W1C

TOVF_ERR2 (Timer2
Counter Overflow) W1C

Indicates an interrupt
request when IRQ_ENA is
set

Indicates an interrupt
request when IRQ_ENA is
set

Indicates that an error or an
overflow occurred

Indicates that an error or an
overflow occurred

0xFFC0 0648

ADSP-BF533 Blackfin Processor Hardware Reference 15-9

Timers

TIMERx_COUNTER Registers
These read-only registers retain their state when disabled. When enabled,
the Timer Counter register (TIMERx_COUNTER) is reinitialized by hardware
based on configuration and mode. The Timer Counter register may be
read at any time (whether the timer is running or stopped), and it returns
a coherent 32-bit value. Depending on the operation mode, the incre-
menting counter can be clocked by four different sources: SCLK, the TMRx
pin, the Programmable Flag pin PF1, or the parallel port clock PPI_CLK.

Figure 15-5. Timer Configuration Registers

0 00

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0

TMODE[1:0] (Timer Mode)

Reset = 0x00000

Timer Configuration Registers (TIMERx_CONFIG)

0 - Negative action pulse
1 - Positive action pulse

This bit must be set to 1 when operat-
ing the PPI in GP Output modes with
internal frame syncs.
0 - Use system clock SCLK for counter
1 - Use PWM_CLK to clock counter

0 - The effective state of PULSE_HI
is the programmed state

1 - The effective state of PULSE_HI
alternates each period

00 - No error
01 - Counter overflow error
10 - Period register programming error
11 - Pulse width register programming error

00 - Reset state - unused
01 - PWM_OUT mode
10 - WDTH_CAP mode
11 - EXT_CLK mode

PULSE_HI

CLK_SEL (Timer Clock Select)

TOGGLE_HI (PWM_OUT PULSE_HI
Toggle Mode)

ERR_TYP[1:0] (Error
Type) - RO

PERIOD_CNT (Period
Count)

0 - Interrupt request disable
1 - Interrupt request enable

0 - Count to end of width
1 - Count to end of period

IRQ_ENA (Interrupt
Request Enable)

0 - Sample TMRx pin
or PF1 pin

1 - Sample UART RX pin
or PPI_CLK pin

TIN_SEL (Timer Input
Select)

0 - Enable pad in
PWM_OUT mode

1 - Disable pad in
PWM_OUT mode

OUT_DIS (Output Pad
Disable)

0 - Timer counter stops during emulation
1 - Timer counter runs during emulation

EMU_RUN (Emulation Behavior Select)

Timer0:
0xFFC0 0600

Timer1:
0xFFC0 0610

Timer2:
0xFFC0 0620

Timer Registers

15-10 ADSP-BF533 Blackfin Processor Hardware Reference

While the processor core is being accessed by an external emulator debug-
ger, all code execution stops. By default, the TIMERx_COUNTER also halts its
counting during an emulation access in order to remain synchronized with
the software. While stopped, the count does not advance—in PWM_OUT
mode, the TMRx pin waveform is “stretched”; in WDTH_CAP mode, measured
values are incorrect; in EXT_CLK mode, input events on TMRx may be
missed. All other timer functions such as register reads and writes, inter-
rupts previously asserted (unless cleared), and the loading of
TIMERx_PERIOD and TIMERx_WIDTH in WDTH_CAP mode remain active during
an emulation stop.

Some applications may require the timer to continue counting asynchro-
nously to the emulation-halted processor core. Set the EMU_RUN bit in
TIMERx_CONFIG to enable this behavior.

TIMERx_PERIOD and TIMERx_WIDTH Registers

 When a timer is enabled and running, and the software writes new
values to the Timer Period register and the Timer Pulse Width reg-
ister, the writes are buffered and do not update the registers until
the end of the current period (when the Timer Counter register
equals the Timer Period register).

Figure 15-6. Timer Counter Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Timer Counter[15:0]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Timer Counter[31:16]

Reset = 0x0000 0001

Timer Counter Registers (TIMERx_COUNTER)

Timer0:
0xFFC0 0604

Timer1:
0xFFC0 0614

Timer2:
0xFFC0 0624

ADSP-BF533 Blackfin Processor Hardware Reference 15-11

Timers

Usage of the Timer Period register (TIMERx_PERIOD) and the Timer Pulse
Width register (TIMERx_WIDTH) varies depending on the mode of the timer:

• In Pulse Width Modulation mode (PWM_OUT), both the Timer
Period and Timer Pulse Width register values can be updated
“on-the-fly” since the Timer Period and Timer Pulse Width (duty
cycle) register values change simultaneously.

• In Pulse Width and Period Capture mode (WDTH_CAP), the Timer
Period and Timer Pulse Width buffer values are captured at the
appropriate time. The Timer Period and Timer Pulse Width regis-
ters are then updated simultaneously from their respective buffers.
Both registers are read-only in this mode.

• In External Event Capture mode (EXT_CLK), the Timer Period reg-
ister is writable and can be updated “on-the-fly.” The Timer Pulse
Width register is not used.

If new values are not written to the Timer Period register or the Timer
Pulse Width register, the value from the previous period is reused. Writes
to the 32-bit Timer Period register and Timer Pulse Width register are
atomic; it is not possible for the high word to be written without the low
word also being written.

Values written to the Timer Period registers or Timer Pulse Width regis-
ters are always stored in the buffer registers. Reads from the Timer Period
or Timer Pulse Width registers always return the current, active value of
period or pulse width. Written values are not read back until they become
active. When the timer is enabled, they do not become active until after
the Timer Period and Timer Pulse Width registers are updated from their
respective buffers at the end of the current period. See Figure 15-1.

Timer Registers

15-12 ADSP-BF533 Blackfin Processor Hardware Reference

When the timer is disabled, writes to the buffer registers are immediately
copied through to the Timer Period or Timer Pulse Width register so that
they will be ready for use in the first timer period. For example, to change
the values for the Timer Period and/or Timer Pulse Width registers in
order to use a different setting for each of the first three timer periods after
the timer is enabled, the procedure to follow is:

1. Program the first set of register values.

2. Enable the timer.

3. Immediately program the second set of register values.

4. Wait for the first timer interrupt.

5. Program the third set of register values.

Each new setting is then programmed when a timer interrupt is received.

 In PWM_OUT mode with very small periods (less than 10 counts),
there may not be enough time between updates from the buffer
registers to write both the Timer Period register and the Timer
Pulse Width register. The next period may use one old value and
one new value. In order to prevent Pulse Width >= Period errors,
write the Timer Pulse Width register before the Timer Period reg-
ister when decreasing the values, and write the Timer Period
register before the Timer Pulse Width register when increasing the
value.

ADSP-BF533 Blackfin Processor Hardware Reference 15-13

Timers

Using the Timer
To enable an individual timer, set that timer’s TIMEN bit in the
TIMER_ENABLE register. To disable an individual timer, set that timer’s
TIMDIS bit in the TIMER_DISABLE register. To enable all three timers in par-
allel, set all three TIMEN bits in the TIMER_ENABLE register.

Figure 15-7. Timer Period Registers

Figure 15-8. Timer Width Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Timer Period[15:0]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Timer Period[31:16]

Reset = 0x0000 0000

Timer Period Registers (TIMERx_PERIOD)

Timer0:
0xFFC0 0608

Timer1:
0xFFC0 0618

Timer2:
0xFFC0 0628

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Timer Width[15:0]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Timer Width[31:16]

Reset = 0x0000 0000

Timer Width Registers (TIMERx_WIDTH)

Timer0:
0xFFC0 060C

Timer1:
0xFFC0 061C

Timer2:
0xFFC0 062C

Using the Timer

15-14 ADSP-BF533 Blackfin Processor Hardware Reference

Before enabling a timer, always program the corresponding Timer Config-
uration (TIMERx_CONFIG) register. This register defines the timer operating
mode, the polarity of the TMRx pin, and the timer interrupt behavior. Do
not alter the operating mode while the timer is running.

Examples of timer enable and disable timing appear in Figure 15-9,
Figure 15-10, and Figure 15-11.

Figure 15-9. Timer Enable Timing

SCLK

TIMERx_PERIOD 4 4 4

EXAMPLE TIMER ENABLE TIMING (PWM_OUT MODE, PERIOD_CNT = 1)

1 1 1

X 41 2 3 1 2 3

TIMERx_WIDTH

TIMERx_COUNTER

TIMENx

TRUNx

TMRx, PULSE_HI = 0

TMRx, PULSE_HI = 1

W1S TO
TIMER_ENABLE

ADSP-BF533 Blackfin Processor Hardware Reference 15-15

Timers

Figure 15-10. Timer Disable Timing

Figure 15-11. Timer Enable and Automatic Disable Timing

7

EXAMPLE TIMER DISABLE TIMING (PWM_OUT MODE, PERIOD_CNT = 1)

5

7

5

7

5

7 1 2 3 5 6 74

W1C TO
TIMER_DISABLE

SCLK

TIMERx_PERIOD

TIMERx_WIDTH

TIMERx_COUNTER

TIMENx

TRUNx

TMRx, PULSE_HI = 0

TMRx, PULSE_HI = 1

EXAMPLE TIMER ENABLE AND AUTOMATIC DISABLE TIMING
(PWM_OUT MODE, PERIOD_CNT = 0)

3

21X 3

SCLK

TIMERx_WIDTH

TIMERx_COUNTER

TIMENx

TRUNx

TMRx, PULSE_HI = 0

TMRx, PULSE_HI = 1

W1S TO
TIMER_ENABLE

Using the Timer

15-16 ADSP-BF533 Blackfin Processor Hardware Reference

When timers are disabled, the Timer Counter registers retain their state;
when a timer is re-enabled, the Timer Counter is reinitialized based on the
operating mode. The Timer Counter registers are read-only. Software can-
not overwrite or preset the Timer Counter value directly.

Pulse Width Modulation (PWM_OUT) Mode
Setting the TMODE field to b#01 in the Timer Configuration
(TIMERx_CONFIG) register enables PWM_OUT mode. In PWM_OUT mode, the
timer TMRx pin is an output. The output can be disabled by setting the
OUT_DIS bit in the Timer Configuration register.

In PWM_OUT mode, the bits PULSE_HI, PERIOD_CNT, IRQ_ENA, OUT_DIS,
CLK_SEL, EMU_RUN, and TOGGLE_HI enable orthogonal functionality. They
may be set individually or in any combination, although some combina-
tions are not useful (such as TOGGLE_HI = 1 with OUT_DIS = 1 or
PERIOD_CNT = 0).

Once a timer has been enabled, the Timer Counter register is loaded with
a starting value. If CLK_SEL = 0, the Timer Counter starts at 0x1. If
CLK_SEL = 1, it is reset to 0x0 as in EXT_CLK mode. The timer counts
upward to the value of the Timer Period register. For either setting of
CLK_SEL, when the Timer Counter equals the Timer Period, the Timer
Counter is reset to 0x1 on the next clock.

In PWM_OUT mode, the PERIOD_CNT bit controls whether the timer generates
one pulse or many pulses. When PERIOD_CNT is cleared (PWM_OUT single
pulse mode), the timer uses the TIMERx_WIDTH register, generates one
asserting and one deasserting edge, then generates an interrupt (if enabled)
and stops. When PERIOD_CNT is set (PWM_OUT continuous pulse mode), the
timer uses both the TIMERx_PERIOD and TIMERx_WIDTH registers and gener-
ates a repeating (and possibly modulated) waveform. It generates an
interrupt (if enabled) at the end of each period and stops only after it is
disabled. A setting of PERIOD_CNT = 0 counts to the end of the Width; a
setting of PERIOD_CNT = 1 counts to the end of the Period.

ADSP-BF533 Blackfin Processor Hardware Reference 15-17

Timers

 The TIMERx_PERIOD and TIMERx_WIDTH registers are read-only in
some operation modes. Be sure to set the TMODE field in the
TIMERx_CONFIG register to b#01 before writing to these registers.

Figure 15-12. Timer Flow Diagram, PWM_OUT Mode

TIN_SEL

DATA BUS

0

1 PWM_CLK

SCLK

CLK_SEL
EQUAL?

TIMER_ENABLE

EQUAL?

1

1

0

0

YES

CLOCK RESET

ASSERT DEASSERT

INTERRUPT

PERIOD_CNT

TMRx

PWMOUT
LOGIC

PULSE_HI
TOGGLE_HI
OUT_DIS

YES

PF1

PPI_CLK

TIMERx_COUNTER

TIMERx_PERIOD TIMERx_WIDTH

Using the Timer

15-18 ADSP-BF533 Blackfin Processor Hardware Reference

Output Pad Disable

The output pin can be disabled in PWM_OUT mode by setting the OUT_DIS
bit in the Timer Configuration register. The TMRx pin is then three-stated
regardless of the setting of PULSE_HI and TOGGLE_HI. This can reduce
power consumption when the output signal is not being used.

Single Pulse Generation

If the PERIOD_CNT bit is cleared, the PWM_OUT mode generates a single pulse
on the TMRx pin. This mode can also be used to implement a precise delay.
The pulse width is defined by the Timer Pulse Width register, and the
Timer Period register is not used.

At the end of the pulse, the Timer Interrupt latch bit TIMILx gets set, and
the timer is stopped automatically. If the PULSE_HI bit is set, an active high
pulse is generated on the TMRx pin. If PULSE_HI is not set, the pulse is
active low.

Pulse Width Modulation Waveform Generation

If the PERIOD_CNT bit is set, the internally clocked timer generates rectan-
gular signals with well-defined period and duty cycle. This mode also
generates periodic interrupts for real-time signal processing.

The 32-bit Timer Period (TIMERx_PERIOD) and Timer Pulse Width
(TIMERx_WIDTH) registers are programmed with the values of the timer
count period and pulse width modulated output pulse width.

When the timer is enabled in this mode, the TMRx pin is pulled to a deas-
serted state each time the Timer Counter equals the value of the Timer
Pulse Width register, and the pin is asserted again when the period expires
(or when the timer gets started).

ADSP-BF533 Blackfin Processor Hardware Reference 15-19

Timers

To control the assertion sense of the TMRx pin, the PULSE_HI bit in the cor-
responding TIMERx_CONFIG register is used. For a low assertion level, clear
this bit. For a high assertion level, set this bit. When the timer is disabled
in PWM_OUT mode, the TMRx pin is driven to the deasserted level.

If enabled, a timer interrupt is generated at the end of each period. An
interrupt service routine (ISR) must clear the Interrupt Latch bit (TIMILx)
and might alter period and/or width values. In pulse width modulation
(PWM) applications, the software needs to update period and pulse width
values while the timer is running. When software updates either period or
pulse width registers, the new values are held by special buffer registers
until the period expires. Then the new period and pulse width values
become active simultaneously. New Timer Period and Timer Pulse Width
register values are written while the old values are being used. The new
values are loaded in to be used when the Timer Counter value equals the
current Timer Period value. Reads from Timer Period and Timer Pulse
Width registers return the old values until the period expires.

The TOVF_ERRx status bit signifies an error condition in PWM_OUT mode.
The TOVF_ERRx bit is set if TIMERx_PERIOD = 0 or TIMERx_PERIOD = 1 at
startup, or when the Timer Counter register rolls over. It is also set when
the Timer Counter register rolls over if the Timer Pulse Width register is
greater than or equal to the Timer Period register. The ERR_TYP bits are set
when the TOVF_ERRx bit is set.

To generate the maximum frequency on the TMRx output pin, set the
period value to 2 and the pulse width to 1. This makes TMRx toggle each
SCLK clock, producing a duty cycle of 50%. The period may be pro-

grammed to any value from 2 to (232 – 1), inclusive. The pulse width may
be programmed to any value from 1 to (Period – 1), inclusive. When
PERIOD_CNT = 0, the pulse width may be programmed to any value from 1

to (232 – 1), inclusive.

Using the Timer

15-20 ADSP-BF533 Blackfin Processor Hardware Reference

Although the hardware reports an error if the TIMERx_WIDTH value equals
the TIMERx_PERIOD value, this is still a valid operation to implement PWM
patterns with 100% duty cycle. If doing so, software must generally ignore
the TOVL_ERRx flags. Pulse width values greater than the period value are
not recommended. Similarly, TIMERx_WIDTH = 0 is not a valid operation.
Duty cycles of 0% are not supported.

Stopping the Timer in PWM_OUT Mode

In all PWM_OUT mode variants, the timer treats a disable operation (W1C to
TIMER_DISABLE) as a “stop is pending” condition. When disabled, it auto-
matically completes the current waveform and then stops cleanly. This
prevents truncation of the current pulse and unwanted PWM patterns at
the TMRx pin. The processor can determine when the timer stops running
by polling for the corresponding TRUNx bit in the TIMER_STATUS register to
read 0 or by waiting for the last interrupt (if enabled). Note the timer can-
not be reconfigured (TIMERx_CONFIG cannot be written to a new value)
until after the timer stops and TRUNx reads 0.

In PWM_OUT single pulse mode (PERIOD_CNT = 0), it is not necessary to
write TIMER_DISABLE to stop the timer. At the end of the pulse, the timer
stops automatically, the corresponding bit in TIMER_ENABLE (and
TIMER_DISABLE) is cleared, and the corresponding TRUNx bit is cleared.
See Figure 15-11. To generate multiple pulses, write a 1 to TIMER_ENABLE,
wait for the timer to stop, then write another 1 to TIMER_ENABLE.

If necessary, the processor can force a timer in PWM_OUT mode to stop
immediately. Do this by first writing a 1 to the corresponding bit in
TIMER_DISABLE, and then writing a 1 to the corresponding TRUNx bit in
TIMER_STATUS. This stops the timer whether the pending stop was waiting
for the end of the current period (PERIOD_CNT = 1) or the end of the cur-
rent pulse width (PERIOD_CNT = 0). This feature may be used to regain
immediate control of a timer during an error recovery sequence.

 Use this feature carefully, because it may corrupt the PWM pattern
generated at the TMRx pin.

ADSP-BF533 Blackfin Processor Hardware Reference 15-21

Timers

In PWM_OUT continuous pulse mode (PERIOD_CNT = 1), each timer samples
its TIMENx bit at the end of each period. It stops cleanly at the end of the
first period when TIMENx is low. This implies (barring any W1C to TRUNx)
that a timer that is disabled and then re-enabled all before the end of the
current period will continue to run as if nothing happened. Typically,
software should disable a PWM_OUT timer and then wait for it to stop itself.
The timer will always stop at the end of the first pulse when
PERIOD_CNT = 0.

Externally Clocked PWM_OUT

By default, the timer is clocked internally by SCLK. Alternatively, if the
CLK_SEL bit in the Timer Configuration (TIMERx_CONFIG) register is set,
then the timer is clocked by PWM_CLK. The PWM_CLK is normally input from
the PF1 pin, but may be taken from the PPI_CLK pin when the timers are
configured to work with the PPI. Different timers may receive different
signals on their PWM_CLK inputs, depending on configuration. As selected
by the PERIOD_CNT bit, the PWM_OUT mode either generates pulse width
modulation waveforms or generates a single pulse with pulse width
defined by the TIMERx_WIDTH register.

When CLK_SEL is set, the counter resets to 0x0 at startup and increments
on each rising edge of PWM_CLK. The TMRx pin transitions on rising edges
of PWM_CLK. There is no way to select the falling edges of PWM_CLK. In this
mode, the PULSE_HI bit controls only the polarity of the pulses produced.
The timer interrupt may occur slightly before the corresponding edge on
the TMRx pin (the interrupt occurs on an SCLK edge, the pin transitions on
a later PWM_CLK edge). It is still safe to program new period and pulse
width values as soon as the interrupt occurs. After a period expires, the
counter rolls over to a value of 0x1.

The PWM_CLK clock waveform is not required to have a 50% duty cycle, but
the minimum PWM_CLK clock low time is one SCLK period, and the mini-
mum PWM_CLK clock high time is one SCLK period. This implies the
maximum PWM_CLK clock frequency is SCLK/2.

Using the Timer

15-22 ADSP-BF533 Blackfin Processor Hardware Reference

The PF1 pin can only clock the timer when PF1 functions as an input pin.
When any timer is in PWM_OUT mode with CLK_SEL = 1 and TIN_SEL = 0,
then the PF1 bit in the FIO_DIR register is ignored and PF1 is forced to be
an input.

PULSE_HI Toggle Mode

The waveform produced in PWM_OUT mode with PERIOD_CNT = 1 normally
has a fixed assertion time and a programmable deassertion time (via the
TIMERx_WIDTH register). When two timers are running synchronously by
the same period settings, the pulses are aligned to the asserting edge as
shown in Figure 15-13.

The TOGGLE_HI mode enables control of the timing of both the asserting
and deasserting edges of the output waveform produced. The phase
between the asserting edges of two timer outputs is programmable. The
effective state of the PULSE_HI bit alternates every period. The adjacent
active low and active high pulses, taken together, create two halves of a
fully arbitrary rectangular waveform. The effective waveform is still active
high when PULSE_HI is set and active low when PULSE_HI is cleared. The
value of TOGGLE_HI has no effect unless the mode is PWM_OUT and
PERIOD_CNT = 1.

Figure 15-13. Timers With Pulses Aligned to Asserting Edge

TMR0

TMR1

PERIOD 1

TMR2

TOGGLE_HI = 0
PULSE_HI = 1

TOGGLE_HI = 0
PULSE_HI = 1

TOGGLE_HI = 0
PULSE_HI = 1

TIMER
ENABLE

ACTIVE
HIGH

ACTIVE
HIGH

ACTIVE
HIGH

ADSP-BF533 Blackfin Processor Hardware Reference 15-23

Timers

In TOGGLE_HI mode, when PULSE_HI is set, an active low pulse is generated
in the first, third, and all odd-numbered periods, and an active high pulse
is generated in the second, fourth, and all even-numbered periods. When
PULSE_HI is cleared, an active high pulse is generated in the first, third,
and all odd-numbered periods, and an active low pulse is generated in the
second, fourth, and all even-numbered periods.

The deasserted state at the end of one period matches the asserted state at
the beginning of the next period, so the output waveform only transitions
when Count = Pulse Width. The net result is an output waveform pulse
that repeats every two counter periods and is centered around the end of
the first period (or the start of the second period).

Figure 15-14 shows an example with all three timers running with the
same period settings. When software does not alter the PWM settings at
runtime, the duty cycle is 50%. The values of the TIMERx_WIDTH registers
control the phase between the signals.

Figure 15-14. Three Timers With Same Period Settings

TMR0

TMR1

TMR2

TIMER
PERIOD 1

TIMER
PERIOD 2

TIMER
PERIOD 3

TIMER
PERIOD 4

WAVEFORM
PERIOD 1

WAVEFORM
PERIOD 2

TIMER
ENABLE

ACTIVE
LOW

ACTIVE
HIGH

ACTIVE
HIGH

ACTIVE
HIGH

ACTIVE
HIGH

ACTIVE
HIGH

ACTIVE
HIGH

ACTIVE
LOW

ACTIVE
LOW

ACTIVE
LOW

ACTIVE
LOW

ACTIVE
LOW

TOGGLE_HI = 1
PULSE_HI = 1

TOGGLE_HI = 1
PULSE_HI = 1

TOGGLE_HI = 1
PULSE_HI = 1

Using the Timer

15-24 ADSP-BF533 Blackfin Processor Hardware Reference

Similarly, two timers can generate non-overlapping clocks, by cen-
ter-aligning the pulses while inverting the signal polarity for one of the
timers (See Figure 15-15).

When TOGGLE_HI = 0, software updates the Timer Period and Timer Pulse
Width registers once per waveform period. When TOGGLE_HI = 1, soft-
ware updates the Timer Period and Timer Pulse Width registers twice per
waveform period with values that are half as large. In odd-numbered peri-
ods, write (Period – Width) instead of Width to the Timer Pulse Width
register in order to obtain center-aligned pulses.

For example, if the pseudo-code when TOGGLE_HI = 0 is:

int period, width ;

for (;;) {

period = generate_period(...) ;

width = generate_width(...) ;

waitfor (interrupt) ;

Figure 15-15. Two Timers With Non-Overlapping Clocks

TMR0

TMR1

WAVEFORM
PERIOD 1

WAVEFORM
PERIOD 2

TIMER
ENABLE

ACTIVE
LOW

ACTIVE
HIGH

ACTIVE
HIGH

ACTIVE
LOW

ACTIVE
LOW

ACTIVE
HIGH

ACTIVE
HIGH

ACTIVE
LOW

TOGGLE_HI = 1
PULSE_HI = 0

TOGGLE_HI = 1
PULSE_HI = 1

TIMER
PERIOD 1

TIMER
PERIOD 2

TIMER
PERIOD 3

TIMER
PERIOD 4

ADSP-BF533 Blackfin Processor Hardware Reference 15-25

Timers

write(TIMERx_PERIOD, period) ;

write(TIMERx_WIDTH, width) ;

}

Then when TOGGLE_HI = 1, the pseudo-code would be:

int period, width ;

int per1, per2, wid1, wid2 ;

for (;;) {

period = generate_period(...) ;

width = generate_width(...) ;

per1 = period/2 ;

wid1 = width/2 ;

per2 = period/2 ;

wid2 = width/2 ;

waitfor (interrupt) ;

write(TIMERx_PERIOD, per1) ;

write(TIMERx_WIDTH, per1 - wid1) ;

waitfor (interrupt) ;

write(TIMERx_PERIOD, per2) ;

write(TIMERx_WIDTH, wid2) ;

}

As shown in this example, the pulses produced do not need to be symmet-
ric (wid1 does not need to equal wid2). The period can be offset to adjust
the phase of the pulses produced (per1 does not need to equal per2).

Using the Timer

15-26 ADSP-BF533 Blackfin Processor Hardware Reference

The Timer Slave Enable bit (TRUNx bit in the TIMER_STATUS register) is
updated only at the end of even-numbered periods in TOGGLE_HI mode.
When TIMER_DISABLE is written to 1, the current pair of counter periods
(one waveform period) completes before the timer is disabled.

As when TOGGLE_HI = 0, errors are reported if:

TIMERx_WIDTH >= TIMERx_PERIOD, TIMERx_PERIOD = 0, or
TIMERx_PERIOD = 1

Pulse Width Count and Capture (WDTH_CAP) Mode
In WDTH_CAP mode, the TMRx pin is an input pin. The internally clocked
timer is used to determine the period and pulse width of externally applied
rectangular waveforms. Setting the TMODE field to b#10 in the
TIMERx_CONFIG (Timer Configuration register) enables this mode.

When enabled in this mode, the timer resets the count in the
TIMERx_COUNTER register to 0x0000 0001 and does not start counting until
it detects a leading edge on the TMRx pin.

When the timer detects the first leading edge, it starts incrementing.
When it detects a trailing edge of a waveform, the timer captures the cur-
rent 32-bit value of the TIMERx_COUNTER register into the width buffer
register. At the next leading edge, the timer transfers the current 32-bit
value of the TIMERx_COUNTER register into the period buffer register. The
count register is reset to 0x0000 0001 again, and the timer continues
counting and capturing until it is disabled.

In this mode, software can measure both the pulse width and the pulse
period of a waveform. To control the definition of leading edge and trail-
ing edge of the TMRx pin, the PULSE_HI bit in the TIMERx_CONFIG register is
set or cleared.

ADSP-BF533 Blackfin Processor Hardware Reference 15-27

Timers

If the PULSE_HI bit is cleared, the measurement is initiated by a falling
edge, the Timer Counter register is captured to the Timer Pulse Width
buffer register on the rising edge, and the Timer Period is captured on the
next falling edge. When the PULSE_HI bit is set, the measurement is initi-
ated by a rising edge, the Timer Counter register is captured to the Timer
Pulse Width buffer register on the falling edge, and the Timer Period is
captured on the next rising edge.

Figure 15-16. Timer Flow Diagram, WDTH_CAP Mode

SCLK

TIMER_ENABLE

RESET

INTERRUPT

PERIOD_CNT

TMRx

INTERRUPT
LOGIC

PULSE_HI

TOVF_ERR

TMRx

PULSE_HI

TRAILING
EDGE

DETECT

DATA BUS

LEADING
EDGE

DETECT

TIMERx_COUNTER

TIMERx_WIDTHTIMERx_PERIOD

Using the Timer

15-28 ADSP-BF533 Blackfin Processor Hardware Reference

In WDTH_CAP mode, these three events always occur at the same time as one
unit:

1. The TIMERx_PERIOD register is updated from the period buffer
register.

2. The TIMERx_WIDTH register is updated from the width buffer
register.

3. The Timer Interrupt latch bit (TIMILx) gets set (if enabled) but
does not generate an error.

The PERIOD_CNT bit in the TIMERx_CONFIG register controls the point in
time at which this set of transactions is executed. Taken together, these
three events are called a measurement report. The Timer Counter Over-
flow error latch bit (TOVF_ERRx) does not get set at a measurement report.
A measurement report occurs at most once per input signal period.

The current timer counter value is always copied to the width buffer and
period buffer registers at the trailing and leading edges of the input signal,
respectively, but these values are not visible to software. A measurement
report event samples the captured values into visible registers and sets the
timer interrupt to signal that TIMERx_PERIOD and TIMERx_WIDTH are ready
to be read. When the PERIOD_CNT bit is set, the measurement report occurs
just after the period buffer register captures its value (at a leading edge).
When the PERIOD_CNT bit is cleared, the measurement report occurs just
after the width buffer register captures its value (at a trailing edge).

If the PERIOD_CNT bit is set and a leading edge occurred (See
Figure 15-17), then the TIMERx_PERIOD and TIMERx_WIDTH registers report
the pulse period and pulse width measured in the period that just ended.
If the PERIOD_CNT bit is cleared and a trailing edge occurred (See
Figure 15-18), then the TIMERx_WIDTH register reports the pulse width
measured in the pulse that just ended, but the TIMERx_PERIOD register
reports the pulse period measured at the end of the previous period.

ADSP-BF533 Blackfin Processor Hardware Reference 15-29

Timers

Figure 15-17. Example of Period Capture Measurement Report Timing
(WDTH_CAP Mode, PERIOD_CNT = 1)

STARTS
COUNTING

NOTE: FOR SIMPLICITY, THE SYNCHRONIZATION DELAY BETWEEN TMRx EDGES AND BUFFER
REGISTER UPDATES IS NOT SHOWN.

SCLK

1 3 1 2 3 4 6 7 8

TMRx, PULSE_HI = 0

TMRx, PULSE_HI = 1

2 4 5 1X

TIMERx_COUNTER

4

TIMERx_PERIOD BUFFER

2 3

TIMERx_WIDTH BUFFER

4

TIMERx_PERIOD

2

8

8

3

TIMERx_WIDTH

TIMILx

TOVF_ERRx

TIMENx

X 0

X 0

X 0

X 0

MEASUREMENT
REPORT

MEASUREMENT
REPORT

Using the Timer

15-30 ADSP-BF533 Blackfin Processor Hardware Reference

Figure 15-18. Example of Width Capture Measurement Report Timing
(WDTH_CAP Mode, PERIOD_CNT = 0)

SCLK

1

TMRx, PULSE_HI = 0

TMRx, PULSE_HI = 1

2 3 5 6 8 3 4 34 7 1 2 1X

TIMERx_COUNTER

8 4

TIMERx_PERIOD BUFFER

3

TIMERx_WIDTH BUFFER

TIMERx_PERIOD

TIMERx_WIDTH

TIMILx

TOVF_ERRx

TIMENx

2

1 2

0 4

3

8

1 2

X 0

X 0

X 0

X 0

STARTS
COUNTING

MEASUREMENT
REPORT

MEASUREMENT
REPORT

MEASUREMENT
REPORT

NOTE: FOR SIMPLICITY, THE SYNCHRONIZATION DELAY BETWEEN TMRx EDGES AND BUFFER
REGISTER UPDATES IS NOT SHOWN.

ADSP-BF533 Blackfin Processor Hardware Reference 15-31

Timers

If the PERIOD_CNT bit is cleared and the first trailing edge occurred, then
the first period value has not yet been measured at the first measurement
report, so the period value is not valid. Reading the TIMERx_PERIOD value
in this case returns 0, as shown in Figure 15-18. To measure the pulse
width of a waveform that has only one leading edge and one trailing edge,
set PERIOD_CNT = 0. If PERIOD_CNT = 1 for this case, no period value is cap-
tured in the period buffer register. Instead, an error report interrupt is
generated (if enabled) when the counter range is exceeded and the counter
wraps around. In this case, both TIMERx_WIDTH and TIMERx_PERIOD read 0
(because no measurement report occurred to copy the value captured in
the width buffer register to TIMERx_WIDTH). See the first interrupt in
Figure 15-19.

 When using the PERIOD_CNT = 0 mode described above to measure
the width of a single pulse, it is recommended to disable the timer
after taking the interrupt that ends the measurement interval. If
desired, the timer can then be reenabled as appropriate in prepara-
tion for another measurement. This procedure prevents the timer
from free-running after the width measurement and logging errors
generated by the timer count overflowing.

A timer interrupt (if enabled) is generated if the Timer Counter register
wraps around from 0xFFFF FFFF to 0 in the absence of a leading edge. At
that point, the TOVF_ERRx bit in the TIMER_STATUS register and the ERR_TYP
bits in the TIMERx_CONFIG register are set, indicating a count overflow due
to a period greater than the counter’s range. This is called an error report.
When a timer generates an interrupt in WDTH_CAP mode, either an error has
occurred (an error report) or a new measurement is ready to be read (a
measurement report), but never both at the same time. The
TIMERx_PERIOD and TIMERx_WIDTH registers are never updated at the time
an error is signaled. Refer to Figure 15-19 and Figure 15-20 for more
information.

Using the Timer

15-32 ADSP-BF533 Blackfin Processor Hardware Reference

Figure 15-19. Example Timing for Period Overflow Followed by Period
Capture (WDTH_CAP Mode, PERIOD_CNT = 1)

STARTS
COUNTING

SCLK

1

TMRx, PULSE_HI = 0

TMRx, PULSE_HI = 1

2 3 1 2 3 40X

TIMERx_COUNTER

4

TIMERx_PERIOD BUFFER

2

TIMERx_WIDTH BUFFER

TIMERx_PERIOD

TIMERx_WIDTH

TIMILx

TOVF_ERRx

TIMENx

4

5

2

ERROR
REPORT

MEASUREMENT
REPORT

0xFFFF
FFFC

0xFFFF
FFFD

0xFFFF
FFFE

0xFFFF
FFFF

X 0

X 0

X 0

X 0

0

2

0

0

NOTE: FOR SIMPLICITY, THE SYNCHRONIZATION DELAY BETWEEN TMRx EDGES AND BUFFER
REGISTER UPDATES IS NOT SHOWN.

ADSP-BF533 Blackfin Processor Hardware Reference 15-33

Timers

Both TIMILx and TOVF_ERRx are sticky bits, and software has to explicitly
clear them. If the timer overflowed and PERIOD_CNT = 1, neither the
TIMERx_PERIOD nor the TIMERx_WIDTH register were updated. If the timer

Figure 15-20. Example Timing for Width Capture Followed by Period
Overflow (WDTH_CAP Mode, PERIOD_CNT = 0)

SCLK

1

TMRx, PULSE_HI = 0

TMRx, PULSE_HI = 1

23 1 2 3 40X

TIMERx_COUNTER

4X

TIMERx_PERIOD BUFFER

3

TIMERx_WIDTH BUFFER

TIMERx_PERIOD

TIMERx_WIDTH

TIMILx

TOVF_ERRx

TIMENx

1 2

0

3

0

X 0

X 0

X 0

0

3

0

3

NOTE: FOR SIMPLICITY, THE SYNCHRONIZATION DELAY BETWEEN TMRx EDGES AND BUFFER
REGISTER UPDATES IS NOT SHOWN.

STARTS
COUNTING

ERROR
REPORT

MEASUREMENT
REPORT

0xFFFF
FFFC

0xFFFF
FFFD

0xFFFF
FFFE

0xFFFF
FFFF

Using the Timer

15-34 ADSP-BF533 Blackfin Processor Hardware Reference

overflowed and PERIOD_CNT = 0, the TIMERx_PERIOD and TIMERx_WIDTH
registers were updated only if a trailing edge was detected at a previous
measurement report.

Software can count the number of error report interrupts between mea-
surement report interrupts to measure input signal periods longer than

0xFFFF FFFF. Each error report interrupt adds a full 232 SCLK counts to
the total for the period, but the width is ambiguous. For example, in
Figure 15-19 the period is 0x1 0000 0004 but the pulse width could be
either 0x0 0000 0002 or 0x1 0000 0002.

The waveform applied to the TMRx pin is not required to have a 50% duty
cycle, but the minimum TMRx low time is one SCLK period and the mini-
mum TMRx high time is one SCLK period. This implies the maximum TMRx
input frequency is SCLK/2 with a 50% duty cycle. Under these conditions,
the WDTH_CAP mode timer would measure Period = 2 and
Pulse Width = 1.

Autobaud Mode

Any one of the three timers may provide autobaud detection for the Uni-
versal Asynchronous Receiver/Transmitter (UART). The Timer Input
Select (TIN_SEL) bit in the TIMERx_CONFIG register causes the timer to sam-
ple the UART port receive data (RX) pin instead of the TMRx pin when
enabled for WDTH_CAP mode.

 Do not enable the UART until after autobaud detection is
complete.

A software routine can detect the pulse widths of serial stream bit cells.
Because the sample base of the timers is synchronous with the UART
operation—all derived from the Phase Locked Loop (PLL) clock—the
pulse widths can be used to calculate the baud rate divider for the UART.

DIVISOR = ((TIMERx_WIDTH) / (16 x Number of captured UART bits))

ADSP-BF533 Blackfin Processor Hardware Reference 15-35

Timers

In order to increase the number of timer counts and therefore the resolu-
tion of the captured signal, it is recommended not to measure just the
pulse width of a single bit, but to enlarge the pulse of interest over more
bits. Typically a NULL character (ASCII 0x00) is used in autobaud detec-
tion, as shown in Figure 15-21.

Because the example frame in Figure 15-21 encloses 8 data bits and 1 start
bit, apply the formula:

DIVISOR = TIMERx_WIDTH/(16 x 9)

Real UART RX signals often have asymmetrical falling and rising edges,
and the sampling logic level is not exactly in the middle of the signal volt-
age range. At higher bit rates, such pulse width-based autobaud detection
might not return adequate results without additional analog signal condi-
tioning. Measuring signal periods works around this issue and is strongly
recommended.

For example, predefine ASCII character “@” (40h) as an autobaud detec-
tion byte and measure the period between two subsequent falling edges.
As shown in Figure 15-22, measure the period between the falling edge of
the start bit and the falling edge after bit 6. Since this period encloses 8
bits, apply the formula:

DIVISOR = TIMERx_PERIOD/(16 x 8)

Figure 15-21. Autobaud Detection Character 0x00

FRAME WIDTH

S 1 2 3 4 5 6 7 STOP

Using the Timer

15-36 ADSP-BF533 Blackfin Processor Hardware Reference

External Event (EXT_CLK) Mode
In EXT_CLK mode, the TMRx pin is an input. The timer works as a counter
clocked by an external source, which can also be asynchronous to the sys-
tem clock. The current count in TIMERx_COUNTER represents the number
of leading edge events detected. Setting the TMODE field to b#11 in the
TIMERx_CONFIG register enables this mode. The TIMERx_PERIOD register is
programmed with the value of the maximum timer external count.

The waveform applied to the TMRx pin is not required to have a 50% duty
cycle, but the minimum TMRx low time is one SCLK period, and the mini-
mum TMRx high time is one SCLK period. This implies the maximum TMRx
input frequency is SCLK/2.

Period may be programmed to any value from 1 to (232 – 1), inclusive.

After the timer has been enabled, it resets the Timer Counter register to
0x0 and then waits for the first leading edge on the TMRx pin. This edge
causes the Timer Counter register to be incremented to the value 0x1.
Every subsequent leading edge increments the count register. After reach-
ing the period value, the TIMILx bit is set, and an interrupt is generated.
The next leading edge reloads the Timer Counter register again with 0x1.
The timer continues counting until it is disabled. The PULSE_HI bit deter-
mines whether the leading edge is rising (PULSE_HI set) or falling
(PULSE_HI cleared).

Figure 15-22. Autobaud Detection Character 0x40

PERIOD

STOPS 1 2 3 4 5 6 7

ADSP-BF533 Blackfin Processor Hardware Reference 15-37

Timers

The configuration bits, TIN_SEL and PERIOD_CNT, have no effect in this
mode. The TOVF_ERRx and ERR_TYP bits are set if the Timer Counter regis-
ter wraps around from 0xFFFF FFFF to 0 or if Period = 0 at startup or
when the Timer Counter register rolls over (from Count = Period to
Count = 0x1). The Timer Pulse Width register is unused.

Using the Timers With the PPI
Up to two timers are used to generate frame sync signals for certain PPI
modes. For detailed instructions on how to configure the timers for use
with the PPI, refer to “Frame Synchronization in GP Modes” on
page 11-27 of the PPI chapter.

Figure 15-23. Timer Flow Diagram, EXT_CLK Mode

CLOCKTRES

LEADING
EDGE

DETECT

TIMERx_COUNTER

TIMERx_PERIOD

TIMER_ENABLE

INTERRUPT

EQUAL?

Y

PULSE_HI TMRx

DATA BUS

Using the Timer

15-38 ADSP-BF533 Blackfin Processor Hardware Reference

Interrupts
Each of the three timers can generate a single interrupt. The three result-
ing interrupt signals are routed to the System Interrupt Controller block
for prioritization and masking. The Timer Status (TIMER_STATUS) register
latches the timer interrupts to provide a means for software to determine
the interrupt source. These bits are W1C and must be cleared prior to a
RTI to assure that the interrupt is not reissued.

To enable interrupt generation, set the IRQ_ENA bit and unmask the inter-
rupt source in the System Interrupt Mask register (SIC_IMASK). To poll the
TIMILx bit without interrupt generation, set IRQ_ENA but leave the inter-
rupt masked. If enabled by IRQ_ENA, interrupt requests are also generated
by error conditions.

The system interrupt controller enables flexible interrupt handling. All
timers may or may not share the same interrupt channel, so that a single
interrupt routine services more than one timer. In PWM mode, more tim-
ers may run with the same period settings and issue their interrupt
requests simultaneously. In this case, the service routine might clear all
TIMILx latch bits at once by writing 0x07 to the TIMER_STATUS register.

If interrupts are enabled, make sure that the interrupt service routine
(ISR) clears the TIMILx bit in the TIMERx_STATUS register before the RTI
instruction executes. This ensures that the interrupt is not reissued.
Remember that writes to system registers are delayed. If only a few
instructions separate the TIMILx clear command from the RTI instruction,
an extra SSYNC instruction may be inserted. In EXT_CLK mode, reset the
TIMILx bit in the TIMERx_STATUS register at the very beginning of the
interrupt service routine (ISR) to avoid missing any timer events.

ADSP-BF533 Blackfin Processor Hardware Reference 15-39

Timers

Figure 15-24. Timers Interrupt Structure

ERROR EVENT

IRQ_ENA

TIMILx

TIMER
IRQx PROCESSOR

CORE

TMODE
PWM_OUT WDTH_CAP EXT_CLK

TOVF_ERRx

RST RST

SET SET

INTERRUPT
EVENT

RESET

TOVF_ERRx WRITE DATA
TIMILx WRITE DATA

MMR WRITE TO
TIMER_STATUS

COUNTER
OVERFLOW

ILLEGAL
TIMERX_PERIOD

ILLEGAL
TIMERX_WIDTH

10 10PERIOD_CNT

LEADING
EDGE

TRAILING
EDGE

COUNT = WIDTH

COUNT = PERIOD

TMODE
PWM_OUT WDTH_CAP EXT_CLK

SYSTEM
INTERRUPT

CONTROLLER

Using the Timer

15-40 ADSP-BF533 Blackfin Processor Hardware Reference

Illegal States
For Table 15-1, these definitions are used:

• Startup. The first clock period during which the timer counter is
running after the timer is enabled by writing TIMER_ENABLE.

• Rollover. The time when the current count matches the value in
TIMERx_PERIOD and the counter is reloaded with the value 1.

• Overflow. The timer counter was incremented instead of doing a
rollover when it was holding the maximum possible count value of
0xFFFF FFFF. The counter does not have a large enough range to
express the next greater value and so erroneously loads a new value
of 0x0000 0000.

• Unchanged. No new error.

• When ERR_TYP is unchanged, it displays the previously
reported error code or 00 if there has been no error since
this timer was enabled.

• When TOVF_ERR is unchanged, it reads 0 if there has been no
error since this timer was enabled, or if software has per-
formed a W1C to clear any previous error. If a previous
error has not been acknowledged by software, TOVF_ERR
reads 1.

Software should read TOVF_ERR to check for an error. If TOVF_ERR is set,
software can then read ERR_TYP for more information. Once detected,
software should write 1 to clear TOVF_ERR to acknowledge the error.

Table 15-1 can be read as: “In mode __ at event __, if TIMERx_PERIOD
is __ and TIMERx_WIDTH is __, then ERR_TYP is __ and
TOVF_ERR is __.”

ADSP-BF533 Blackfin Processor Hardware Reference 15-41

Timers

 Startup error conditions do not prevent the timer from starting.
Similarly, overflow and rollover error conditions do not stop the
timer. Illegal cases may cause unwanted behavior of the TMRx pin.

Table 15-1. Overview of Illegal States

Mode Event TIMERx_
PERIOD

TIMERx_
WIDTH

ERR_TYP TOVF_ERR

PWM_OUT,
PERIOD_
CNT = 1

Startup
(No boundary
condition tests
performed on
TIMERx_
WIDTH)

== 0 Anything b#10 Set

== 1 Anything b#10 Set

>= 2 Anything Unchanged Unchanged

Rollover == 0 Anything b#10 Set

== 1 Anything b#11 Set

>= 2 == 0 b#11 Set

>= 2 < TIMERx_
PERIOD

Unchanged Unchanged

>= 2 >= TIMERx_
PERIOD

b#11 Set

Overflow, not
possible unless
there is also
another error,
such as
TIMERx_
PERIOD == 0.

Anything Anything b#01 Set

Using the Timer

15-42 ADSP-BF533 Blackfin Processor Hardware Reference

PWM_OUT,
PERIOD_
CNT = 0

Startup Anything == 0 b#01 Set

This case is not detected at startup, but results in an overflow
error once the counter counts through its entire range.

Anything >= 1 Unchanged Unchanged

Rollover Rollover is not possible in this mode.

Overflow, not
possible unless
there is also
another error,
such as
TIMERx_
WIDTH == 0.

Anything Anything b#01 Set

WDTH_CAP Startup TIMERx_PERIOD and TIMERx_WIDTH are read-only in
this mode, no error possible.

Rollover TIMERx_PERIOD and TIMERx_WIDTH are read-only in
this mode, no error possible.

Overflow Anything Anything b#01 Set

EXT_CLK Startup == 0 Anything b#10 Set

>= 1 Anything Unchanged Unchanged

Rollover == 0 Anything b#10 Set

>= 1 Anything Unchanged Unchanged

Overflow, not
possible unless
there is also
another error,
such as
TIMERx_
PERIOD == 0.

Anything Anything b#01 Set

Table 15-1. Overview of Illegal States (Cont’d)

Mode Event TIMERx_
PERIOD

TIMERx_
WIDTH

ERR_TYP TOVF_ERR

ADSP-BF533 Blackfin Processor Hardware Reference 15-43

Timers

Summary
Table 15-2 summarizes control bit and register usage in each timer mode.

Table 15-2. Control Bit and Register Usage Chart

Bit / Register PWM_OUT Mode WDTH_CAP Mode EXT_CLK Mode

TIMER_ENABLE 1 - Enable timer
0 - No effect

1 - Enable timer
0 - No effect

1 - Enable timer
0 - No effect

TIMER_DISABLE 1 - Disable timer at end
of period
0 - No effect

1 - Disable timer
0 - No effect

1 - Disable timer
0 - No effect

TMODE b#01 b#10 b#11

PULSE_HI 1 - Generate high width
0 - Generate low width

1 - Measure high width
0 - Measure low width

1 - Count rising edges
0 - Count falling edges

PERIOD_CNT 1 - Generate PWM
0 - Single width pulse

1 - Interrupt after mea-
suring period
0 - Interrupt after mea-
suring width

Unused

IRQ_ENA 1 - Enable interrupt
0 - Disable interrupt

1 - Enable interrupt
0 - Disable interrupt

1 - Enable interrupt
0 - Disable interrupt

TIN_SEL Depends on CLK_SEL:

If CLK_SEL = 1,
1 - Count PPI_CLKs
0 - Count PF1 clocks

If CLK_SEL = 0,
Unused

1 - Select RX input
0 - Select TMRx input

Unused

OUT_DIS 1 - Disable TMRx pin
0 - Enable TMRx pin

Unused Unused

CLK_SEL 1 - PWM_CLK clocks
timer
0 - SCLK clocks timer

Unused Unused

Using the Timer

15-44 ADSP-BF533 Blackfin Processor Hardware Reference

TOGGLE_HI 1 - One waveform
period every two coun-
ter periods
0 - One waveform
period every one coun-
ter period

Unused Unused

ERR_TYP Reports b#00, b#01,
b#10, or b#11, as
appropriate

Reports b#00 or b#01,
as appropriate

Reports b#00, b#01, or
b#10, as appropriate

EMU_RUN 0 - Halt during
emulation
1 - Count during
emulation

0 - Halt during
emulation
1 - Count during
emulation

0 - Halt during
emulation
1 - Count during
emulation

TMR Pin Depends on
OUT_DIS:
1 - Three-state
0 - Output

Depends on TIN_SEL:
1 - Unused
0 - Input

Input

Period R/W: Period value RO: Period value R/W: Period value

Width R/W: Width value RO: Width value Unused

Counter RO: Counts up on
SCLK or PWM_CLK

RO: Counts up on
SCLK

RO: Counts up on
event

TRUNx Read: Timer slave
enable status
Write:
1 - Stop timer if dis-
abled
0 - No effect

Read: Timer slave
enable status
Write:
1 - No effect
0 - No effect

Read: Timer slave
enable status
Write:
1 - No effect
0 - No effect

Table 15-2. Control Bit and Register Usage Chart (Cont’d)

Bit / Register PWM_OUT Mode WDTH_CAP Mode EXT_CLK Mode

ADSP-BF533 Blackfin Processor Hardware Reference 15-45

Timers

Core Timer
The Core timer is a programmable interval timer which can generate peri-
odic interrupts. The Core timer runs at the core clock (CCLK) rate. The
timer includes four core Memory-Mapped Registers (MMRs), the Timer
Control register (TCNTL), the Timer Count register (TCOUNT), the Timer
Period register (TPERIOD), and the Timer Scale register (TSCALE).

Figure 15-25 provides a block diagram of the Core timer.

TOVF_ERR Set at startup or roll-
over if period = 0 or 1
Set at rollover if width
>= Period
Set if counter wraps

Set if counter wraps Set if counter wraps or
set at startup or roll-
over if period = 0

IRQ Depends on
IRQ_ENA:
1 - Set when
TOVF_ERR set or
when counter equals
period and
PERIOD_CNT = 1 or
when counter equals
width and
PERIOD_CNT = 0
0 - Not set

Depends on
IRQ_ENA:
1 - Set when
TOVF_ERR set or
when counter captures
period and
PERIOD_CNT = 1 or
when counter captures
width and
PERIOD_CNT = 0
0 - Not set

Depends on
IRQ_ENA:
1 - Set when counter
equals period or
TOVF_ERR set
0 - Not set

Table 15-2. Control Bit and Register Usage Chart (Cont’d)

Bit / Register PWM_OUT Mode WDTH_CAP Mode EXT_CLK Mode

Core Timer

15-46 ADSP-BF533 Blackfin Processor Hardware Reference

TCNTL Register
When the timer is enabled by setting the TMREN bit in the Core Timer
Control register (TCNTL), the TCOUNT register is decremented once every
TSCALE + 1 number of clock cycles. When the value of the TCOUNT register
reaches 0, an interrupt is generated and the TINT bit is set in the TCNTL reg-
ister. If the TAUTORLD bit in the TCNTL register is set, then the TCOUNT
register is reloaded with the contents of the TPERIOD register and the count
begins again.

 The TINT bit in the TCNTL register indicates that an interrupt has
been generated. Note that this is not a W1C bit. Write a 0 to clear
it. However, the write is optional. It is not required to clear inter-
rupt requests. The core timer module does not provide any further
interrupt enable bit. When the timer is enabled, interrupts can be
masked in the CEC controller.

Figure 15-25. Core Timer Block Diagram

DEC

TSCALE

CCLK TIMER ENABLE
AND PRESCALE

LOGIC
ZEROTCOUNT

TCNTL TPERIOD

COUNT REGISTER
LOAD LOGIC

TIMER
INTERRUPT

T
IN

T

T
M

R
E

N

CORE MMR BUS

ADSP-BF533 Blackfin Processor Hardware Reference 15-47

Timers

The Core timer can be put into low power mode by clearing the TMPWR bit
in the TCNTL register. Before using the timer, set the TMPWR bit. This
restores clocks to the timer unit. When TMPWR is set, the Core timer may
then be enabled by setting the TMREN bit in the TCNTL register.

 Hardware behavior is undefined if TMREN is set when TMPWR = 0.

Figure 15-26. Core Timer Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0X X X X X X X X X X X X 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

TMPWR

Core Timer Control Register (TCNTL)

Reset = Undefined

TMREN

0 - Puts the timer in low
power mode

1 - Active state. Timer can be
enabled using the TMREN
bit

Meaningful only when
TMPWR = 1
0 - Disable timer
1 - Enable timer

TINT

TAUTORLD

Sticky status bit
0 - Timer has not generated an interrupt
1 - Timer has generated an interrupt

0 - Disable auto-reload feature. When TCOUNT
reaches zero, the timer generates an interrupt and halts

1 - Enable auto-reload feature. When TCOUNT reaches zero
and the timer generates an interrupt, TCOUNT is
automatically reloaded with the contents of TPERIOD
and the timer continues to count

0xFFE0 3000

Core Timer

15-48 ADSP-BF533 Blackfin Processor Hardware Reference

TCOUNT Register
The Core Timer Count register (TCOUNT) decrements once every
TSCALE + 1 clock cycles. When the value of TCOUNT reaches 0, an interrupt
is generated and the TINT bit of the TCNTL register is set.

TPERIOD Register
When auto-reload is enabled, the TCOUNT register is reloaded with the
value of the Core Timer Period register (TPERIOD) whenever TCOUNT
reaches 0.

 To ensure that there is valid data in the TPERIOD register, the TPE-
RIOD and TCOUNT registers are initialized simultaneously on the first
write to either register. If a different value is desired for the first
count period, write the data to TCOUNT after writing to TPERIOD.

Figure 15-27. Core Timer Count Register

Core Timer Count Register (TCOUNT)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X Reset = Undefined

Count Value[31:16]

Count Value[15:0]

0xFFE0 300C

ADSP-BF533 Blackfin Processor Hardware Reference 15-49

Timers

TSCALE Register
The Core Timer Scale register (TSCALE) stores the scaling value that is one
less than the number of cycles between decrements of TCOUNT. For exam-
ple, if the value in the TSCALE register is 0, the counter register decrements
once every clock cycle. If TSCALE is 1, the counter decrements once every
two cycles.

Figure 15-28. Core Timer Period Register

Figure 15-29. Core Timer Scale Register

Core Timer Period Register (TPERIOD)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X Reset = Undefined

Period Value[31:16]

Period Value[15:0]

0xFFE0 3004

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

Core Timer Scale Register (TSCALE)

Reset = Undefined

Scale Value

0xFFE0 3008

Watchdog Timer

15-50 ADSP-BF533 Blackfin Processor Hardware Reference

Watchdog Timer
The processor includes a 32-bit timer that can be used to implement a
software watchdog function. A software watchdog can improve system
reliability by generating an event to the processor core if the timer expires
before being updated by software. Depending on how the watchdog timer
is programmed, the event that is generated may be a reset, a nonmaskable
interrupt, or a general-purpose interrupt. The watchdog timer is clocked
by the system clock (SCLK).

Watchdog Timer Operation
To use the watchdog timer:

1. Set the count value for the watchdog timer by writing the count
value into the Watchdog Count register (WDOG_CNT). Note that
loading the WDOG_CNT register while the watchdog timer is not
enabled will also pre-load the WDOG_STAT register.

2. In the Watchdog Control register (WDOG_CTL), select the event to be
generated upon timeout.

3. Enable the watchdog timer in WDOG_CTL. The watchdog timer then
begins counting down, decrementing the value in the WDOG_STAT
register. When the WDOG_STAT reaches 0, the programmed event is
generated. To prevent the event from being generated, software
must reload the count value from WDOG_CNT to WDOG_STAT by exe-
cuting a write (of any value) to WDOG_STAT, or must disable the
watchdog timer in WDOG_CTL before the watchdog timer expires.

ADSP-BF533 Blackfin Processor Hardware Reference 15-51

Timers

WDOG_CNT Register
The Watchdog Count register (WDOG_CNT) holds the 32-bit unsigned count
value. The WDOG_CNT register must be accessed with 32-bit read/writes
only.

The Watchdog Count register holds the programmable count value. A
valid write to the Watchdog Count register also preloads the Watchdog
counter. For added safety, the Watchdog Count register can be updated
only when the watchdog timer is disabled. A write to the Watchdog
Count register while the timer is enabled does not modify the contents of
this register.

Figure 15-30. Watchdog Count Register

Watchdog Count Register (WDOG_CNT)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000 0000

Watchdog Count[31:16]

Watchdog Count[15:0]

0xFFC0 0204

Watchdog Timer

15-52 ADSP-BF533 Blackfin Processor Hardware Reference

WDOG_STAT Register
The 32-bit Watchdog Status register (WDOG_STAT) contains the current
count value of the watchdog timer. Reads to WDOG_STAT return the current
count value. When the watchdog timer is enabled, WDOG_STAT is decre-
mented by 1 on each SCLK cycle. When WDOG_STAT reaches 0, the watchdog
timer stops counting and the event selected in the Watchdog Control reg-
ister (WDOG_CTL) is generated.

Values cannot be stored directly in WDOG_STAT, but are instead copied from
WDOG_CNT. This can happen in two ways.

• While the watchdog timer is disabled, writing the WDOG_CNT register
pre-loads the WDOG_STAT register.

• While the watchdog timer is enabled, writing the WDOG_STAT regis-
ter loads it with the value in WDOG_CNT.

When the processor executes a write (of an arbitrary value) to WDOG_STAT,
the value in WDOG_CNT is copied into WDOG_STAT. Typically, software sets
the value of WDOG_CNT at initialization, then periodically writes to
WDOG_STAT before the watchdog timer expires. This reloads the watchdog
timer with the value from WDOG_CNT and prevents generation of the
selected event.

The WDOG_STAT register is a 32-bit unsigned system memory-mapped regis-
ter that must be accessed with 32-bit reads and writes.

If the user does not reload the counter before SCLK * Count register cycles,
a Watchdog interrupt or reset is generated and the WDRO bit in the Watch-
dog Control register is set. When this happens the counter stops
decrementing and remains at zero.

If the counter is enabled with a zero loaded to the counter, the WDRO bit of
the Watchdog Control register is set immediately and the counter remains
at zero and does not decrement.

ADSP-BF533 Blackfin Processor Hardware Reference 15-53

Timers

WDOG_CTL Register
The Watchdog Control register (WDOG_CTL) is a 16-bit system mem-
ory-mapped register used to control the watchdog timer.

The WDEV[1:0] field is used to select the event that is generated when the
watchdog timer expires. Note that if the general-purpose interrupt option
is selected, the System Interrupt Mask register (SIC_IMASK) should be
appropriately configured to unmask that interrupt. If the generation of
watchdog events is disabled, the watchdog timer operates as described,
except that no event is generated when the watchdog timer expires.

The WDEN[7:0] field is used to enable and disable the watchdog timer.
Writing any value other than the disable value into this field enables the
watchdog timer. This multibit disable key minimizes the chance of inad-
vertently disabling the watchdog timer.

Software can determine whether the timer has rolled over by interrogating
the WDRO status bit of the Watchdog Control register. This is a sticky bit
that is set whenever the watchdog timer count reaches 0 and cleared only
by disabling the watchdog timer and then writing a 1 to the bit.

Figure 15-31. Watchdog Status Register

Watchdog Status Register (WDOG_STAT)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reset = 0x0000 0000

Watchdog Status[31:16]

Watchdog Status[15:0]

0xFFC0 0208

Watchdog Timer

15-54 ADSP-BF533 Blackfin Processor Hardware Reference

 Note that when the processor is in Emulation mode, the watchdog
timer counter will not decrement even if it is enabled.

Figure 15-32. Watchdog Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 1 0 1 0 1 1 0 1 0 0 0

Watchdog Control Register (WDOG_CTL)

WDEV[1:0]
00 - Generate reset event
01 - Generate NMI
10 - Generate GP interrupt
11 - Disable event

generation

WDEN[7:0]
0xAD - Counter disabled
All other values - Counter
enabled

WDRO - W1C
0 - Watchdog timer has not expired
1 - Watchdog timer has expired

Reset = 0x0AD00xFFC0 0200

ADSP-BF533 Blackfin Processor Hardware Reference 16-1

16 REAL-TIME CLOCK

The Real-Time Clock (RTC) provides a set of digital watch features to the
processor, including time of day, alarm, and stopwatch countdown. It is
typically used to implement either a real-time watch or a life counter.

The RTC watch features are clocked by a 32.768 kHz crystal external to
the processor. The RTC uses dedicated power supply pins and is indepen-
dent of any reset, which enables it to maintain functionality even when
the rest of the processor is powered down.

The RTC input clock is divided down to a 1 Hz signal by a prescaler,
which can be bypassed. When bypassed, the RTC is clocked at the
32.768 kHz crystal rate. In normal operation, the prescaler is enabled.

The primary function of the RTC is to maintain an accurate day count
and time of day. The RTC accomplishes this by means of four counters:

• 60-second counter

• 60-minute counter

• 24-hour counter

• 32768-day counter

The RTC increments the 60-second counter once per second and incre-
ments the other three counters when appropriate. The 32768-day counter
is incremented each day at midnight (0 hours, 0 minutes, 0 seconds).
Interrupts can be issued periodically, either every second, every minute,
every hour, or every day. Each of these interrupts can be independently
controlled.

Interfaces

16-2 ADSP-BF533 Blackfin Processor Hardware Reference

The RTC provides two alarm features, programmed with the RTC Alarm
register (RTC_ALARM). The first is a time of day alarm (hour, minute, and
second). When the alarm interrupt is enabled, the RTC generates an inter-
rupt each day at the time specified. The second alarm feature allows the
application to specify a day as well as a time. When the day alarm inter-
rupt is enabled, the RTC generates an interrupt on the day and time
specified. The alarm interrupt and day alarm interrupt can be enabled or
disabled independently.

The RTC provides a stopwatch function that acts as a countdown timer.
The application can program a second count into the RTC Stopwatch
Count register (RTC_SWCNT). When the stopwatch interrupt is enabled and
the specified number of seconds have elapsed, the RTC generates an
interrupt.

Interfaces
The RTC external interface consists of two clock pins, which together
with the external components form the reference clock circuit for the
RTC. The RTC interfaces internally to the processor system through the
Peripheral Access bus (PAB), and through the interrupt interface to the
SIC (System Interrupt Controller).

The RTC has dedicated power supply pins that power the clock functions
at all times, including when the core power supply is turned off.

RTC Clock Requirements
The RTC timer is clocked by a 32.768 kHz crystal external to the proces-
sor. The RTC system memory-mapped registers (MMRs) are clocked by
this crystal. When the prescaler is disabled, the RTC MMRs are clocked at
the 32.768 kHz crystal frequency. When the prescaler is enabled, the
RTC MMRs are clocked at the 1 Hz rate.

ADSP-BF533 Blackfin Processor Hardware Reference 16-3

Real-Time Clock

There is no way to disable the RTC counters from software. If a given sys-
tem does not require the RTC functionality, then it may be disabled with
hardware tieoffs. Tie the RTXI pin to EGND, tie the RTCVDD pin to EVDD, and
leave the RTXO pin unconnected.

Figure 16-1. RTC Block Diagram

DAYS
COUNTER

DAY
ALARM
EVENT

24 HOURS
EVENT

1

0

9

RTC_ALARM REGISTER

RTC_PREN

EQUAL?

HOURS
COUNTER

MINUTES
COUNTER

SECONDS
COUNTER

HOURS
EVENT

MINUTES
EVENT

SECONDS
EVENT

PRESCALE
COUNTER

5 6 6

9 5 6 6

ALARM
EVENT

Y Y Y Y

RTXI
32.768 kHz

1 Hz
TICK

SET

RST

STOPWATCH
EVENT

STOPWATCH
ENABLE

Y

16

STOPWATCH
COUNTER

WRITE
RTC_SWCNT

EQUAL?

EQUAL 0?

EQUAL? EQUAL?

RTC Programming Model

16-4 ADSP-BF533 Blackfin Processor Hardware Reference

RTC Programming Model
The RTC programming model consists of a set of system MMRs. Soft-
ware can configure the RTC and can determine the status of the RTC
through reads and writes to these registers. The RTC Interrupt Control
register (RTC_ICTL) and the RTC Interrupt Status register (RTC_ISTAT)
provide RTC interrupt management capability.

Note that software cannot disable the RTC counting function. However,
all RTC interrupts can be disabled, or masked. At reset, all interrupts are
disabled. The RTC state can be read via the system MMR status registers
at any time.

The primary Real-Time Clock functionality, shown in Figure 16-1, con-
sists of registers and counters that are powered by an independent RTC
Vdd supply. This logic is never reset; it comes up in an unknown state
when RTC Vdd is first powered on.

The RTC also contains logic powered by the same internal Vdd as the pro-
cessor core and other peripherals. This logic contains some control
functionality, holding registers for PAB write data, and prefetched PAB
read data shadow registers for each of the five RTC Vdd-powered registers.
This logic is reset by the same system reset and clocked by the same SCLK
as the other peripherals.

Figure 16-2 shows the connections between the RTC Vdd-powered RTC
MMRs and their corresponding internal Vdd-powered write holding regis-
ters and read shadow registers. In the figure, “REG” means each of the
RTC_STAT, RTC_ALARM, RTC_SWCNT, RTC_ICTL, and RTC_PREN registers. The
RTC_ISTAT register connects only to the PAB.

The rising edge of the 1 Hz RTC clock is the “1 Hz tick”. Software can
synchronize to the 1 Hz tick by waiting for the Seconds Event flag to set
or by waiting for the Seconds Interrupt (if enabled).

ADSP-BF533 Blackfin Processor Hardware Reference 16-5

Real-Time Clock

Register Writes
Writes to all RTC MMRs, except the RTC Interrupt Status register
(RTC_ISTAT), are saved in write holding registers and then are synchro-
nized to the RTC 1 Hz clock. The Write Pending Status bit in RTC_ISTAT
indicates the progress of the write. The Write Pending Status bit is set
when a write is initiated and is cleared when all writes are complete. The
falling edge of the Write Pending Status bit causes the Write Complete
flag in RTC_ISTAT to be set. This flag can be configured in RTC_ICTL to
cause an interrupt.

Figure 16-2. RTCT Register Architecture

FALLING
EDGE DETECT

WRITE
COMPLETE
EVENT

N

1 Hz
TICK

RST

SET
PAB

16/32

REG WRITE
PENDING

REG WRITE
HOLDING

REG READ
SHADOW RTC_ISTAT

REG

161616/32

N

MMR WRITE
TO REG

5

WRITE
PENDING
STATUS

POWERED BY RTC VDD
CLOCKED BY 1 Hz TICK

POWERED BY INTERNAL VDD
CLOCKED BY SCLK

RTC Programming Model

16-6 ADSP-BF533 Blackfin Processor Hardware Reference

Software does not have to wait for writes to one RTC MMR to complete
before writing to another RTC MMR. The Write Pending Status bit is set
if any writes are in progress, and the Write Complete flag is set only when
all writes are complete.

 Any writes in progress when peripherals are reset will be aborted.
Do not stop SCLK (enter Deep Sleep mode) or remove Internal Vdd
power until all RTC writes have completed.

 Do not attempt another write to the same register without waiting
for the previous write to complete. Subsequent writes to the same
register are ignored if the previous write is not complete.

 Reading a register that has been written before the Write Complete
flag is set will return the old value. Always check the Write Pending
Status bit before attempting a read or write.

Write Latency
Writes to the RTC MMRs are synchronized to the 1 Hz RTC clock.
When setting the time of day, do not factor in the delay when writing to
the RTC MMRs. The most accurate method of setting the Real-Time
Clock is to monitor the Seconds (1 Hz) Event flag or to program an inter-
rupt for this event and then write the current time to the RTC Status
register (RTC_STAT) in the interrupt service routine (ISR). The new value is
inserted ahead of the incrementer. Hardware adds one second to the writ-
ten value (with appropriate carries into minutes, hours and days) and
loads the incremented value at the next 1 Hz tick, when it represents the
then-current time.

Writes posted at any time are properly synchronized to the 1 Hz clock.
Writes complete at the rising edge of the 1 Hz clock. A write posted just
before the 1 Hz tick may not be completed until the 1 Hz tick one second
later. Any write posted in the first 990 ms after a 1 Hz tick will complete
on the next 1 Hz tick, but the simplest, most predictable and

ADSP-BF533 Blackfin Processor Hardware Reference 16-7

Real-Time Clock

recommended technique is to only post writes to RTC_STAT, RTC_ALARM,
RTC_SWCNT, RTC_ICTL, or RTC_PREN immediately after a Seconds Interrupt
or Event. All five registers may be written in the same second.

W1C bits in the RTC_ISTAT register take effect immediately.

Register Reads
There is no latency when reading RTC MMRs, as the values come from
the read shadow registers. The shadows are updated and ready for reading
by the time any RTC interrupts or Event flags for that second are asserted.
Once the internal Vdd logic completes its initialization sequence after SCLK
starts, there is no point in time when it is unsafe to read the RTC MMRs
for synchronization reasons. They always return coherent values, although
the values may be unknown.

Deep Sleep
When the Dynamic Power Management Controller (DPMC) state is
Deep Sleep, all clocks in the system (except RTXI and the RTC 1 Hz tick)
are stopped. In this state, the RTC Vdd counters continue to increment.
The internal Vdd shadow registers are not updated, but neither can they be
read.

During Deep Sleep state, all bits in RTC_ISTAT are cleared. Events that
occur during Deep Sleep are not recorded in RTC_ISTAT. The internal Vdd
RTC control logic generates a virtual 1 Hz tick within one RTXI period
(30.52 s) after SCLK restarts. This loads all shadow registers with
up-to-date values and sets the Seconds Event flag. Other Event flags may
also be set. When the system wakes up from Deep Sleep, whether by an
RTC event or a hardware reset, all of the RTC events that occurred during
that second (and only that second) are reported in RTC_ISTAT.

RTC Programming Model

16-8 ADSP-BF533 Blackfin Processor Hardware Reference

When the system wakes up from Deep Sleep state, software does not need
to W1C the bits in RTC_ISTAT. All W1C bits are already cleared by hard-
ware. The Seconds Event flag is set when the RTC internal Vdd logic has
completed its restart sequence. Software should wait until the Seconds
Event flag is set and then may begin reading or writing any RTC register.

Prescaler Enable
The single active bit of the RTC Prescaler Enable register (RTC_PREN) is
written using a synchronization path. Clearing of the bit is synchronized
to the 32.768 kHz clock. This faster synchronization allows the module to
be put into high-speed mode (bypassing the prescaler) without waiting the
full 1 second for the write to complete that would be necessary if the mod-
ule were already running with the prescaler enabled.

When setting the RTC_PREN bit, the first positive edge of the 1 Hz clock
occurs 1 to 2 cycles of the 32.768 kHz clock after the prescaler is enabled.
The Write Complete Status/Interrupt works as usual when enabling or
disabling the prescale counter. The new RTC clock rate is in effect before
the Write Complete Status is set.

Event Flags

 The unknown values in the registers at powerup can cause Event
flags to set before the correct value is written into each of the regis-
ters. By catching the 1 Hz clock edge, the write to RTC_STAT can
occur a full second before the write to RTC_ALARM. This would cause
an extra second of delay between the validity of RTC_STAT and
RTC_ALARM, if the value of the RTC_ALARM out of reset is the same as
the value written to RTC_STAT. Wait for the writes to complete on
these registers before using the flags and interrupts associated with
their values.

ADSP-BF533 Blackfin Processor Hardware Reference 16-9

Real-Time Clock

The following is a list of flags along with the conditions under which they
are valid:

• Seconds (1 Hz) Event flag

Always set on the positive edge of the 1 Hz clock and after shadow
registers have updated after waking from Deep Sleep. This is valid
as long as the RTC 1 Hz clock is running. Use this flag or interrupt
to validate the other flags.

• Write Complete

Always valid.

• Write Pending Status

Always valid.

• Minutes Event flag

Valid only after the second field in RTC_STAT is valid. Use the Write
Complete and Write Pending Status flags or interrupts to validate
the RTC_STAT value before using this flag value or enabling the
interrupt.

• Hours Event flag

Valid only after the minute field in RTC_STAT is valid. Use the
Write Complete and Write Pending Status flags or interrupts to
validate the RTC_STAT value before using this flag value or enabling
the interrupt.

RTC Programming Model

16-10 ADSP-BF533 Blackfin Processor Hardware Reference

• 24 Hours Event flag

Valid only after the hour field in RTC_STAT is valid. Use the Write
Complete and Write Pending Status flags or interrupts to validate
the RTC_STAT value before using this flag value or enabling the
interrupt.

• Stopwatch Event flag

Valid only after the RTC_SWCNT register is valid. Use the Write
Complete and Write Pending Status flags or interrupts to validate
the RTC_SWCNT value before using this flag value or enabling the
interrupt.

• Alarm Event flag

Valid only after the RTC_STAT and RTC_ALARM registers are valid. Use
the Write Complete and Write Pending Status flags or interrupts
to validate the RTC_STAT and RTC_ALARM values before using this flag
value or enabling its interrupt.

• Day Alarm Event flag

Same as Alarm.

Writes posted together at the beginning of the same second take effect
together at the next 1 Hz tick. The following sequence is safe and does not
result in any spurious interrupts from a previous state.

1. Wait for 1 Hz tick.

2. Write 1s to clear the RTC_ISTAT flags for Alarm, Day Alarm, Stop-
watch, and/or per-interval.

3. Write new values for RTC_STAT, RTC_ALARM, and/or RTC_SWCNT.

ADSP-BF533 Blackfin Processor Hardware Reference 16-11

Real-Time Clock

4. Write new value for RTC_ICTL with Alarm, Day Alarm, Stopwatch,
and/or per-interval interrupts enabled.

5. Wait for 1 Hz tick.

6. New values have now taken effect simultaneously.

Interrupts
The RTC can provide interrupts at several programmable intervals,
including:

• Per second

• Per minute

• Per hour

• Per day

• On countdown from a programmable value

• Daily at a specific time

• On a specific day and time

The RTC can be programmed to provide an interrupt at the completion
of all pending writes to any of the 1 Hz registers (RTC_STAT, RTC_ALARM,
RTC_SWCNT, RTC_ICTL, and RTC_PREN). Interrupts can be individually
enabled or disabled using the RTC Interrupt Control register (RTC_ICTL).
Interrupt status can be determined by reading the RTC Interrupt Status
register (RTC_ISTAT).

The RTC interrupt is set whenever an event latched into the RTC_ISTAT
register is enabled in the RTC_ICTL register. The pending RTC interrupt is
cleared whenever all enabled and set bits in RTC_ISTAT are cleared, or when
all bits in RTC_ICTL corresponding to pending events are cleared.

RTC Programming Model

16-12 ADSP-BF533 Blackfin Processor Hardware Reference

As shown in Figure 16-3, the RTC generates an interrupt request (IRQ)
to the processor core for event handling and wakeup from a Sleep state.
The RTC generates a separate signal for wakeup from a Deep Sleep or
from an internal Vdd power-off state. The Deep Sleep wakeup signal is
asserted at the 1 Hz tick when any RTC interval event enabled in
RTC_ICTL occurs. The assertion of the Deep Sleep wakeup signal causes the
processor core clock (CCLK) and the system clock (SCLK) to restart. Any
enabled event that asserts the RTC Deep Sleep wakeup signal also causes
the RTC IRQ to assert once SCLK restarts.

Figure 16-3. RTC Interrupt Structure

VOLTAGE
REGULATOR

WRITE
COMPLETE
EVENT

1 Hz
TICK

PLL

RTC_ISTAT ICTL READ
SHADOW

RTC_ICTL

7

RTC
IRQ

7

POWERED BY
RTC VDD

7

7

7

DAY,
HOURS,
SECONDS,
STOPWATCH

24 HOURS,
MINUTES,
ALARM,
EVENTS

POWERED BY
INTERNAL VDD

POWERED BY
EXTERNAL VDD

7 SYSTEM
INTERRUPT

CONTROLLER

PROCESSOR
CORE

WRITE
COMPLETE
ENABLE

77

WAKE FROM
DEEP SLEEP

WAKE
FROM
POWER
OFF

ADSP-BF533 Blackfin Processor Hardware Reference 16-13

Real-Time Clock

RTC_STAT Register
The RTC Status register (RTC_STAT) is used to read or write the current
time. Reads return a 32-bit value that always reflects the current state of
the days, hours, minutes, and seconds counters. Reads and writes must be
32-bit transactions; attempted 16-bit transactions result in an MMR
error. Reads always return a coherent 32-bit value. The hours, minutes,
and seconds fields are usually set to match the real time of day. The day
counter value is incremented every day at midnight to record how many
days have elapsed since it was last modified. Its value does not correspond
to a particular calendar day. The 15-bit day counter provides a range of 89
years, 260 or 261 days (depending on leap years) before it overflows.

After the 1 Hz tick, program RTC_STAT with the current time. At the next
1 Hz tick, RTC_STAT takes on the new, incremented value. For example:

1. Wait for 1 Hz tick.

2. Read RTC_STAT, get 10:45:30.

3. Write RTC_STAT to current time, 13:10:59.

4. Read RTC_STAT, still get old time 10:45:30.

5. Wait for 1 Hz tick.

6. Read RTC_STAT, get new current time, 13:11:00.

RTC_STAT Register

16-14 ADSP-BF533 Blackfin Processor Hardware Reference

Figure 16-4. RTC Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

Hours[4]
(0-23)

Day Counter[14:0]
(0-32767)

Seconds[5:0]
(0-59)

Minutes[5:0]
(0-59)

Hours[3:0]
(0-23)

Reset = Undefined

RTC Status Register (RTC_STAT)

0xFFC0 0300

ADSP-BF533 Blackfin Processor Hardware Reference 16-15

Real-Time Clock

RTC_ICTL Register
The eight RTC interrupt events can be individually masked or enabled by
the RTC Interrupt Control register (RTC_ICTL). The seconds interrupt is
generated on each 1 Hz clock tick, if enabled. The minutes interrupt is
generated at the 1 Hz clock tick that advances the seconds counter from
59 to 0. The hour interrupt is generated at the 1 Hz clock tick that
advances the minute counter from 59 to 0. The 24-hour interrupt occurs
once per 24-hour period at the 1 Hz clock tick that advances the time to
midnight (00:00:00). Any of these interrupts can generate a wakeup
request to the processor, if enabled. All implemented bits are read/write.

 This register is only partially cleared at reset, so some events may
appear to be enabled initially. However, the RTC Interrupt and the
RTC Wakeup to the PLL are handled specially and are masked
(forced low) until after the first write to the RTC_ICTL register is
complete. Therefore, all interrupts act as if they were disabled at
system reset (as if all bits of RTC_ICTL were zero), even thought
some bits of RTC_ICTL may read as nonzero. If no RTC interrupts
are needed immediately after reset, it is recommended to write
RTC_ICTL to 0x0000 so that later read-modify-write accesses will
function as intended.

Figure 16-5. RTC Interrupt Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X0 0 0 0 0 0 0 0 0 X X X X X X

Stopwatch Interrupt
Enable

Alarm Interrupt Enable
(Hour, Minute, Second)

Seconds (1Hz) Interrupt
Enable

Minutes Interrupt
Enable

Write Complete
Interrupt Enable

Day Alarm Interrupt Enable
(Day, Hour, Minute, Second)

24 Hours Interrupt Enable

Hours Interrupt Enable

0 - Interrupt disabled, 1 - Interrupt enabled

Reset = 0x00XX

RTC Interrupt Control Register (RTC_ICTL)

0xFFC0 0304

RTC_ISTAT Register

16-16 ADSP-BF533 Blackfin Processor Hardware Reference

RTC_ISTAT Register
The RTC Interrupt Status register (RTC_ISTAT) provides the status of all
RTC interrupts. These bits are sticky. Once set by the corresponding
event, each bit remains set until cleared by a software write to this register.
Event flags are always set; they are not masked by the interrupt enable bits
in RTC_ICTL. Values are cleared by writing a 1 to the respective bit loca-
tion, except for the Write Pending Status bit, which is read-only. Writes
of 0 to any bit of the register have no effect. This register is cleared at reset
and during Deep Sleep.

Figure 16-6. RTC Interrupt Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Stopwatch Event Flag
0 - No event
1 - Event occurred

Alarm Event Flag
0 - No event
1 - Event occurred

Seconds (1 Hz) Event Flag
0 - No event
1 - Event occurred

Minutes Event Flag
0 - No event
1 - Event occurred

Hours Event Flag
0 - No event
1 - Event occurred

Write Complete
0 - Writes (if any) not yet

complete
1 - All pending writes

complete

Write Pending
Status (RO)
0 - No writes pending
1 - At least one write

pending

Day Alarm Event Flag
0 - No event
1 - Event occurred

24 Hours Event Flag
0 - No event
1 - Event occurred

Reset = 0x0000

RTC Interrupt Status Register (RTC_ISTAT)
All bits are write-1-to-clear, except bit 14

0xFFC0 0308

ADSP-BF533 Blackfin Processor Hardware Reference 16-17

Real-Time Clock

RTC_SWCNT Register
The RTC Stopwatch Count register (RTC_SWCNT) contains the countdown
value for the stopwatch. The stopwatch counts down seconds from the
programmed value and generates an interrupt (if enabled) when the count
reaches 0. The counter stops counting at this point and does not resume
counting until a new value is written to RTC_SWCNT. Once running, the
counter may be overwritten with a new value. This allows the stopwatch
to be used as a watchdog timer with a precision of one second. Writing the
running stopwatch to 0 forces it to stop and interrupt early. The Stop-
watch Event flag is set at the 1 Hz tick at which any of these occur:

• The stopwatch counter decrements to 0x0000

• A write of 0x0000 to RTC_SWCNT completes and the stopwatch was
running (current stopwatch count was greater than 0)

• A write of 0x0000 to RTC_SWCNT completes and the stopwatch was
stopped (current stopwatch count was equal to 0)

The register can be programmed to any value between 0 and (216 – 1) sec-
onds. This is a range of 18 hours, 12 minutes, and 15 seconds.

Typically, software should wait for a 1 Hz tick, then write RTC_SWCNT. One
second later, RTC_SWCNT changes to the new value and begins decrement-
ing. Because the register write occupies nearly one second, the time from
writing a value of N until the stopwatch interrupt is nearly N + 1 seconds.
To produce an exact delay, software can compensate by writing N – 1 to
get a delay of nearly N seconds. This implies that you cannot achieve a
delay of 1 second with the stopwatch. Writing a value of 1 immediately
after a 1 Hz tick results in a stopwatch interrupt nearly two seconds later.
To wait one second, software should just wait for the next 1 Hz tick.

The RTC Stopwatch Count register is not reset. After initial powerup, it
may be running. When the stopwatch is not used, writing it to 0 to force
it to stop saves a small amount of power.

RTC_ALARM Register

16-18 ADSP-BF533 Blackfin Processor Hardware Reference

RTC_ALARM Register
The RTC Alarm register (RTC_ALARM) is programmed by software for the
time (in hours, minutes, and seconds) the alarm interrupt occurs. Reads
and writes can occur at any time. The alarm interrupt occurs whenever the
hour, minute, and second fields first match those of the RTC Status regis-
ter. The day interrupt occurs whenever the day, hour, minute, and second
fields first match those of the RTC Status register.

Figure 16-7. RTC Stopwatch Count Register

Figure 16-8. RTC Alarm Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

Stopwatch Count
(0 to 65,535)

Reset = Undefined

RTC Stopwatch Count Register (RTC_SWCNT)

0xFFC0 030C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

Hours[4]
(0 to 23)

Day[14:0]
(0 to 32767)

Seconds[5:0]
(0 to 59)

Minutes[5:0]
(0 to 59)

Hours[3:0]
(0 to 23)

Reset = Undefined

RTC Alarm Register (RTC_ALARM)

0xFFC0 0310

ADSP-BF533 Blackfin Processor Hardware Reference 16-19

Real-Time Clock

RTC_PREN Register
The RTC Prescaler Enable register (RTC_PREN) has one active bit. When
this bit is set, the prescaler is enabled, and the RTC runs at a frequency of
1 Hz. When this bit is cleared, the prescaler is disabled, and the RTC runs
at the 32.768 kHz crystal frequency.

In order for the RTC to operate at the proper rate, software must set the
Prescaler Enable bit after initial powerup. Write RTC_PREN and then wait
for the Write Complete event before programming the other registers. It is
safe to write RTC_PREN to 1, once the power is reapplied to the RTC. The
first time sets the bit, and subsequent writes will have no effect, as no state
is changed.

 Do not disable the prescaler by clearing the bit in RTC_PREN with-
out making sure that there are no writes to RTC MMRs in
progress. Do not switch between fast and slow mode during normal
operation by setting and clearing this bit, as this disrupts the accu-
rate tracking of real time by the counters. To avoid these potential
errors, initialize the RTC during startup via RTC_PREN and do not
dynamically alter the state of the prescaler during normal
operation.

Running without the prescaler enabled is provided primarily as a test
mode. All functionality works, just 32,768 times as fast. Typical software
should never program RTC_PREN to 0. The only reason to do so is to syn-
chronize the 1 Hz tick to a more precise external event, as the 1 Hz tick
predictably occurs a few RTXI cycles after a 0  1 transition of RTC_PREN.
Use the following sequence to achieve synchronization to within 100 s.

State Transitions Summary

16-20 ADSP-BF533 Blackfin Processor Hardware Reference

1. Write RTC_PREN to 0.

2. Wait for the write to complete.

3. Wait for the external event.

4. Write RTC_PREN to 1.

5. Wait for the write to complete.

6. Reprogram the time into RTC_STAT.

State Transitions Summary
Table 16-1 shows how each RTC MMR is affected by the system states.
The phase locked loop (PLL) states (Reset, Full On, Active, Sleep, and
Deep Sleep) are defined in Chapter 8, “Dynamic Power Management”.
“No Power” means none of the processor power supply pins are connected
to a source of energy. “Off” means the processor core, peripherals, and
memory are not powered (Internal Vdd is off), while the RTC is still pow-
ered and running. External Vdd may still be powered. Registers described
as “As written” are holding the last value software wrote to the register. If
the register has not been written since RTC Vdd power was applied, then
the state is unknown (for all bits of RTC_STAT, RTC_ALARM, and RTC_SWCNT,
and for some bits of RTC_ISTAT, RTC_PREN, and RTC_ICTL).

Figure 16-9. Prescaler Enable Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Prescaler Enable (PREN)

Prescaler Enable Register (RTC_PREN)

Reset = Undefined0xFFC0 0314

ADSP-BF533 Blackfin Processor Hardware Reference 16-21

Real-Time Clock

Table 16-2 summarizes software’s responsibilities with respect to the RTC
at various system state transition events.

Table 16-1. Effect of States on RTC MMRs

RTC
Vdd

IVdd System
State

RTC_ICTL RTC_ISTAT RTC_STAT
RTC_SWCNT

RTC_ALARM
RTC_PREN

Off Off No
Power

X X X X

On On Reset As written 0 Counting As written

On On Full On As written Events Counting As written

On On Sleep As written Events Counting As written

On On Active As written Events Counting As written

On On Deep
Sleep

As written 0 Counting As written

On Off Off As written X Counting As written

Table 16-2. RTC System State Transition Events

At This Event: Execute This Sequence:

Power On from No Power Write RTC_PREN = 1.
Wait for Write Complete.
Write RTC_STAT to current time.
Write RTC_ALARM, if needed.
Write RTC_SWCNT.
Write RTC_ISTAT to clear any pending RTC events.
Write RTC_ICTL to enable any desired RTC interrupts
or to disable all RTC interrupts.

Full On after Reset
or
Full On after Power On from Off

Wait for Seconds Event, or write RTC_PREN = 1 and
wait for Write Complete.
Write RTC_ISTAT to clear any pending RTC events.
Write RTC_ICTL to enable any desired RTC interrupts
or to disable all RTC interrupts.
Read RTC MMRs as required.

State Transitions Summary

16-22 ADSP-BF533 Blackfin Processor Hardware Reference

Wake from Deep Sleep Wait for Seconds Event flag to set.
Write RTC_ISTAT to acknowledge RTC Deep Sleep
wakeup.
Read RTC MMRs as required.
The PLL state is now Active. Transition to Full On as
needed.

Wake from Sleep If wakeup came from RTC, Seconds Event flag will be set.
In this case, write RTC_ISTAT to acknowledge RTC
wakeup IRQ.
Always, read RTC MMRs as required.

Before Going to Sleep If wakeup by RTC is desired:
Write RTC_ALARM and/or RTC_SWCNT as needed to
schedule a wakeup event.
Write RTC_ICTL to enable the desired RTC interrupt
sources for wakeup.
Wait for Write Complete.
Enable RTC for wakeup in the System Interrupt
Wakeup-Enable register (SIC_IWR).

Before Going to Deep Sleep Write RTC_ALARM and/or RTC_SWCNT as needed to
schedule a wakeup event.
Write RTC_ICTL to enable the desired RTC event
sources for Deep Sleep wakeup.
Wait for Write Complete.

Before Going to Off Write RTC_ALARM and/or RTC_SWCNT as needed to
schedule a wakeup event.
Write RTC_ICTL to enable any desired RTC event
sources for powerup wakeup.
Wait for Write Complete.
Set the Wake bit in the Voltage Regulator Control register
(VR_CTL).

Table 16-2. RTC System State Transition Events (Cont’d)

At This Event: Execute This Sequence:

ADSP-BF533 Blackfin Processor Hardware Reference 17-1

17 EXTERNAL BUS INTERFACE
UNIT

The External Bus Interface Unit (EBIU) provides glueless interfaces to
external memories. The processor supports synchronous DRAM
(SDRAM) and is compliant with the PC100 and PC133 SDRAM stan-
dards. The EBIU also supports asynchronous interfaces such as SRAM,
ROM, FIFOs, flash memory, and ASIC/FPGA designs.

Overview
The EBIU services requests for external memory from the core or from a
DMA channel. The priority of the requests is determined by the External
Bus Controller. The address of the request determines whether the request
is serviced by the EBIU SDRAM Controller or the EBIU Asynchronous
Memory Controller.

The EBIU is clocked by the system clock (SCLK). All synchronous memo-
ries interfaced to the processor operate at the SCLK frequency. The ratio
between core frequency and SCLK frequency is programmable using a
phase-locked loop (PLL) system memory-mapped register (MMR). For
more information, see “Core Clock/System Clock Ratio Control” on
page 8-5.

The external memory space is shown in Figure 17-1. One memory region
is dedicated to SDRAM support. SDRAM interface timing and the size of
the SDRAM region are programmable. The SDRAM memory space can
range in size from 16 to 128M byte.

Overview

17-2 ADSP-BF533 Blackfin Processor Hardware Reference

 For information on how to connect to SDRAMs smaller than
16M byte, see “Using SDRAMs Smaller Than 16M Byte” on
page 18-8.

The start address of the SDRAM memory space is 0x0000 0000. The area
from the end of the SDRAM memory space up to address 0x2000 0000 is
reserved.

The next four regions are dedicated to supporting asynchronous memo-
ries. Each asynchronous memory region can be independently
programmed to support different memory device characteristics. Each
region has its own memory select output pin from the EBIU.

The next region is reserved memory space. References to this region do
not generate external bus transactions. Writes have no effect on external
memory values, and reads return undefined values. The EBIU generates
an error response on the internal bus, which will generate a hardware
exception for a core access or will optionally generate an interrupt from a
DMA channel.

ADSP-BF533 Blackfin Processor Hardware Reference 17-3

External Bus Interface Unit

Figure 17-1. External Memory Map

0x0000 0000

ASYNC MEMORY BANK 0 (1 MByte)

ASYNC MEMORY BANK 1 (1 MByte)

SDRAM MEMORY
(16 MByte–128 MByte)

0x2000 0000

0x2010 0000

EXTERNAL MEMORY MAP

0x2040 FFFF

ASYNC MEMORY BANK 2 (1 MByte)
0x2020 0000

0x2030 0000

0xEEFF FFFF

NOTE: RESERVED OFF-CHIP MEMORY AREAS ARE LABELED IN THE DIAGRAM
ABOVE. ALL OTHER OFF-CHIP SYSTEM RESOURCES ARE ADDRESSABLE BY
BOTH THE CORE AND THE SYSTEM.

ASYNC MEMORY BANK 3 (1 MByte)

RESERVED

RESERVED

Overview

17-4 ADSP-BF533 Blackfin Processor Hardware Reference

Block Diagram
Figure 17-2 is a conceptual block diagram of the EBIU and its interfaces.
Signal names shown with an overbar are active low signals.

Since only one external memory device can be accessed at a time, control,
address, and data pins for each memory type are multiplexed together at
the pins of the device. The Asynchronous Memory Controller (AMC) and
the SDRAM Controller (SDC) effectively arbitrate for the shared pin
resources.

Internal Memory Interfaces
The EBIU functions as a slave on three buses internal to the processor:

• External Access Bus (EAB), mastered by the core memory manage-
ment unit on behalf of external bus requests from the core

Figure 17-2. External Bus Interface Unit (EBIU)

ABE [1:0]/SDQM [1:0]

EBIU

ASYNCHRONOUS
MEMORY

CONTROLLER
(AMC)

SDRAM
CONTROLLER

(SDC)

E
X

T
E

R
N

A
L

 B
U

S
 C

O
N

T
R

O
L

L
E

R
(E

B
C

)

EAB

PAB

D
E

V
IC

E
P

A
D

S

DATA [15:0]
ADDR [19:1]

AMS [3:0]
ARDY

CLKOUT
SCKE
SA10

BGH

DEB

BG
BR

AOE
ARE
AWE
SMS

SWE

SRAS
SCAS

ADSP-BF533 Blackfin Processor Hardware Reference 17-5

External Bus Interface Unit

• DMA External Bus (DEB), mastered by the DMA controller on
behalf of external bus requests from any DMA channel

• Peripheral Access Bus (PAB), mastered by the core on behalf of sys-
tem MMR requests from the core

These are synchronous interfaces, clocked by SCLK, as are the EBIU and
Pads registers. The EAB provides access to both asynchronous external
memory and synchronous DRAM external memory. The external access is
controlled by either the Asynchronous Memory Controller (AMC) or the
SDRAM Controller (SDC), depending on the internal address used to
access the EBIU. Since the AMC and SDC share the same interface to the
external pins, access is sequential and must be arbitrated based on requests
from the EAB.

The third bus (PAB) is used only to access the memory-mapped control
and status registers of the EBIU. The PAB connects separately to the
AMC and SDC; it does not need to arbitrate with or take access cycles
from the EAB bus.

The External Bus Controller (EBC) logic must arbitrate access requests for
external memory coming from the EAB and DEB buses. The EBC logic
routes read and write requests to the appropriate memory controller based
on the bus selects. The AMC and SDC compete for access to the shared
resources in the Pads logic. This competition is resolved in a pipelined
fashion, in the order dictated by the EBC arbiter. Transactions from the
core have priority over DMA accesses in most circumstances. However, if
the DMA controller detects an excessive backup of transactions, it can
request its priority to be temporarily raised above the core.

External Memory Interfaces
Both the AMC and the SDC share the external interface address and data
pins, as well as some of the control signals. These pins are shared:

Overview

17-6 ADSP-BF533 Blackfin Processor Hardware Reference

• ADDR[19:1], address bus

• DATA[15:0], data bus

• ABE[1:0]/SDQM[1:0], AMC byte enables/SDC data masks

• BR, BG, BGH, external bus access control signals

No other signals are multiplexed between the two controllers.

The following tables describe the signals associated with each interface.

Table 17-1. Asynchronous Memory Interface Signals

Pad Pin Type 1

1 Pin Types: I = Input, O = Output

Description

DATA[15:0] I/O External Data Bus

ADDR[19:1] O External Address Bus

AMS[3:0] O Asynchronous Memory Selects

AWE O Asynchronous Memory Write Enable

ARE O Asynchronous Memory Read Enable

AOE O Asynchronous Memory Output Enable
In most cases, the AOE pin should be con-
nected to the OE pin of an external mem-
ory-mapped asynchronous device. Refer to
ADSP-BF531/ADSP-BF532/ADSP-BF533
Embedded Processor Data Sheet for specific tim-
ing information between the AOE and ARE sig-
nals to determine which interface signal
should be used in your system.

ARDY I Asynchronous Memory Ready Response
Note this is a synchronous input

ABE[1:0]/SDQM[1:0] O Byte Enables

ADSP-BF533 Blackfin Processor Hardware Reference 17-7

External Bus Interface Unit

Table 17-2. SDRAM Interface Signals

Pad Pin Type 1 Description

DATA[15:0] I/O External Data Bus

ADDR[19:18],
ADDR[16:1]

O External Address Bus
Connect to SDRAM Address pins. Bank address is out-
put on ADDR[19:18] and should be connected to
SDRAM BA[1:0] pins.

SRAS O SDRAM Row Address Strobe pin
Connect to SDRAM’s RAS pin.

SCAS O SDRAM Column Address Strobe pin
Connect to SDRAM’s CAS pin.

SWE O SDRAM Write Enable pin
Connect to SDRAM’s WE pin.

ABE[1:0]/
SDQM[1:0]

O SDRAM Data Mask pins
Connect to SDRAM’s DQM pins.

SMS O Memory Select pin of external memory bank config-
ured for SDRAM
Connect to SDRAM’s CS (Chip Select) pin. Active
Low.

SA10 O SDRAM A10 pin
SDRAM interface uses this pin to be able to do
refreshes while the AMC is using the bus. Connect to
SDRAM’s A[10] pin.

SCKE O SDRAM Clock Enable pin
Connect to SDRAM’s CKE pin.

CLKOUT O SDRAM Clock Output pin
Switches at system clock frequency. Connect to the
SDRAM’s CLK pin.

1 Pin Types: I = Input, O = Output

Overview

17-8 ADSP-BF533 Blackfin Processor Hardware Reference

EBIU Programming Model
This section describes the programming model of the EBIU. This model is
based on system memory-mapped registers used to program the EBIU.

There are six control registers and one status register in the EBIU. They
are:

• Asynchronous Memory Global Control register (EBIU_AMGCTL)

• Asynchronous Memory Bank Control 0 register (EBIU_AMBCTL0)

• Asynchronous Memory Bank Control 1 register (EBIU_AMBCTL1)

• SDRAM Memory Global Control register (EBIU_SDGCTL)

• SDRAM Memory Bank Control register (EBIU_SDBCTL)

• SDRAM Refresh Rate Control register (EBIU_SDRRC)

• SDRAM Control Status register (EBIU_SDSTAT)

Each of these registers is described in detail in the AMC and SDC sections
later in this chapter.

Error Detection
The EBIU responds to any bus operation which addresses the range of
0x0000 0000 – 0xEEFF FFFF, even if that bus operation addresses
reserved or disabled memory or functions. It responds by completing the
bus operation (asserting the appropriate number of acknowledges as speci-
fied by the bus master) and by asserting the bus error signal for these error
conditions:

• Any access to reserved off-chip memory space

• Any access to a disabled external memory bank

• Any access to an unpopulated area of an SDRAM memory bank

ADSP-BF533 Blackfin Processor Hardware Reference 17-9

External Bus Interface Unit

If the core requested the faulting bus operation, the bus error response
from the EBIU is gated into the HWE interrupt internal to the core (this
interrupt can be masked off in the core). If a DMA master requested the
faulting bus operation, then the bus error is captured in that controller
and can optionally generate an interrupt to the core.

Asynchronous Memory Interface
The asynchronous memory interface allows a glueless interface to a variety
of memory and peripheral types. These include SRAM, ROM, EPROM,
flash memory, and FPGA/ASIC designs. Four asynchronous memory
regions are supported. Each has a unique memory select associated with it,
shown in Table 17-3.

Asynchronous Memory Address Decode
The address range allocated to each asynchronous memory bank is fixed at
1M byte; however, not all of an enabled memory bank need be populated.
Unlike the SDRAM memory, which may need to support very large mem-
ory structures spanning multiple memory banks, it should be relatively
easy to constrain code and data structures to fit within one of the sup-
ported asynchronous memory banks, because of the nature of the types of
code or data that is stored here.

Table 17-3. Asynchronous Memory Bank Address Range

Memory Bank Select Address Start Address End

AMS[3] 2030 0000 203F FFFF

AMS[2] 2020 0000 202F FFFF

AMS[1] 2010 0000 201F FFFF

AMS[0] 2000 0000 200F FFFF

Asynchronous Memory Interface

17-10 ADSP-BF533 Blackfin Processor Hardware Reference

 Note accesses to unpopulated memory of partially populated AMC
banks do not result in a bus error and will alias to valid AMC
addresses.

The asynchronous memory signals are defined in Table 17-1. The timing
of these pins is programmable to allow a flexible interface to devices of dif-
ferent speeds. For example interfaces, see Chapter 18, “System Design”

EBIU_AMGCTL Register
The Asynchronous Memory Global Control register (EBIU_AMGCTL) con-
figures global aspects of the controller. It contains bank enables and other
information as described in this section. This register should not be
programmed while the AMC is in use. The EBIU_AMGCTL register should be
the last control register written to when configuring the processor to
access external memory-mapped asynchronous devices.

Figure 17-3. Asynchronous Memory Global Control Register

00 0

Asynchronous Memory Global Control Register (EBIU_AMGCTL)

AMBEN[2:0]

AMCKEN

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 1 1 1 1 0 1

0 - Disable CLKOUT for
asynchronous memory
region accesses

1 - Enable CLKOUT for
asynchronous memory
region accesses

Enable asynchronous memory
banks
000 - All banks disabled
001 - Bank0 enabled
010 - Bank0 and Bank1 enabled
011 - Bank0, Bank1, and Bank2

enabled
1xx - All banks (Bank0, Bank1,

Bank2, Bank3) enabled

Reset = 0x00F20xFFC0 0A00

CDPRIO
0 - Core has priority over DMA

for external accesses
1 - DMA has priority over core

for external accesses
For more information, see
Chapter 7, “Chip Bus Hierarchy”

ADSP-BF533 Blackfin Processor Hardware Reference 17-11

External Bus Interface Unit

If a bus operation accesses a disabled asynchronous memory bank, the
EBIU responds by acknowledging the transfer and asserting the error sig-
nal on the requesting bus. The error signal propagates back to the
requesting bus master. This generates a hardware exception to the core, if
it is the requester. For DMA mastered requests, the error is captured in
the respective status register. If a bank is not fully populated with mem-
ory, then the memory likely aliases into multiple address regions within
the bank. This aliasing condition is not detected by the EBIU, and no
error response is asserted.

For external devices that need a clock, CLKOUT can be enabled by setting
the AMCKEN bit in the EBIU_AMGCTL register. In systems that do not use
CLKOUT, set the AMCKEN bit to 0.

EBIU_AMBCTL0 and EBIU_AMBCTL1 Registers
The EBIU asynchronous memory controller has two Asynchronous Mem-
ory Bank Control registers (EBIU_AMBCTL0 and EBIU_AMBCTL1). They
contain bits for counters for setup, strobe, and hold time; bits to deter-
mine memory type and size; and bits to configure use of ARDY. These
registers should not be programmed while the AMC is in use.

The timing characteristics of the AMC can be programmed using these
four parameters:

• Setup: the time between the beginning of a memory cycle (AMS[x]
low) and the read-enable assertion (ARE low) or write-enable asser-
tion (AWE low)

• Read Access: the time between read-enable assertion (ARE low) and
deassertion (ARE high)

Asynchronous Memory Interface

17-12 ADSP-BF533 Blackfin Processor Hardware Reference

• Write Access: the time between write-enable assertion (AWE low)
and deassertion (AWE high)

• Hold: the time between read-enable deassertion (ARE high) or
write-enable deassertion (AWE high) and the end of the memory
cycle (AMS[x] high)

Each of these parameters can be programmed in terms of EBIU clock
cycles. In addition, there are minimum values for these parameters:

• Setup  1 cycle

• Read Access  1 cycle

• Write Access  1 cycle

• Hold  0 cycles

ADSP-BF533 Blackfin Processor Hardware Reference 17-13

External Bus Interface Unit

Figure 17-4. Asynchronous Memory Bank Control 0 Register

Asynchronous Memory Bank Control 0 Register (EBIU_AMBCTL0)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

01 1 1 1 1 1 1 1 1 1 0 0 0 0 1

B1RDYPOL

B1TT[1:0]

B1ST[1:0]

B1RDYEN

B1HT[1:0]

B1RAT[3:0]

B1WAT[3:0]
Bank 1 write access time (number of
cycles AWE is held asserted)
0000 - Not supported
0001 to 1111 - 1 to 15 cycles

Bank 1 read access time (number of
cycles ARE is held asserted)
0000 - Not supported
0001 to 1111 - 1 to 15 cycles

Bank 1 hold time (number of cycles between AWE or
ARE deasserted, and AMS1 deasserted)
00 - 0 cycles
01 - 1 cycle
10 - 2 cycles
11 - 3 cycles

Bank 1 setup time (number of cycles after AMS1
asserted, before AWE or ARE asserted)
00 - 4 cycles
01 - 1 cycle
10 - 2 cycles
11 - 3 cycles

Bank 1 memory transition time
(number of cycles inserted after a
read access to this bank, and
before a write access to this bank
or a read access to another bank)
00 - 4 cycles for bank transition
01 - 1 cycle for bank transition
10 - 2 cycles for bank transition
11 - 3 cycles for bank transition

Bank 1 ARDY polarity
0 - Transaction completes if

ARDY sampled low
1 - Transition completes if ARDY

sampled high

Bank 1 ARDY enable
0 - Ignore ARDY for accesses to

this memory bank
1 - After access time countdown,

use state of ARDY to deter-
mine completion of access

Reset = 0xFFC2 FFC2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

01 1 1 1 1 1 1 1 1 1 0 0 0 0 1

B0RDYPOL

B0TT[1:0]

B0ST[1:0]

B0RDYEN

B0HT[1:0]

B0RAT[3:0]

B0WAT[3:0]
Bank 0 write access time (number of
cycles AWE is held asserted)
0000 - Not supported
0001 to 1111 - 1 to 15 cycles

Bank 0 read access time (number of
cycles ARE is held asserted)
0000 - Not supported
0001 to 1111 - 1 to 15 cycles

Bank 0 hold time (number of cycles between AWE or
ARE deasserted, and AMS0 deasserted)
00 - 0 cycles
01 - 1 cycle
10 - 2 cycles
11 - 3 cycles

Bank 0 setup time (number of cycles after AMS0
asserted, before AWE or ARE asserted)
00 - 4 cycles
01 - 1 cycle
10 - 2 cycles
11 - 3 cycles

Bank 0 memory transition time
(number of cycles inserted after a
read access to this bank, and
before a write access to this bank
or a read access to another bank)
00 - 4 cycles for bank transition
01 - 1 cycle for bank transition
10 - 2 cycles for bank transition
11 - 3 cycles for bank transition

Bank 0 ARDY polarity
0 - Transaction completes if

ARDY sampled low
1 - Transition completes if ARDY

sampled high

Bank 0 ARDY enable
0 - Ignore ARDY for accesses to

this memory bank
1 - After access time countdown,

use state of ARDY to deter-
mine completion of access

0xFFC0 0A04

Asynchronous Memory Interface

17-14 ADSP-BF533 Blackfin Processor Hardware Reference

Figure 17-5. Asynchronous Memory Bank Control 1 Register

Asynchronous Memory Bank Control 1 Register (EBIU_AMBCTL1)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

01 1 1 1 1 1 1 1 1 1 0 0 0 0 1

B3RDYPOL

B3TT[1:0]

B3ST[1:0]

B3RDYEN

B3HT[1:0]

B3RAT[3:0]

B3WAT[3:0]
Bank 3 write access time (number of
cycles AWE is held asserted)
0000 - Not supported
0001 to 1111 - 1 to 15 cycles

Bank 3 read access time (number of
cycles ARE is held asserted)
0000 - Not supported
0001 to 1111 - 1 to 15 cycles

Bank 3 hold time (number of cycles between AWE or
ARE deasserted, and AMS3 deasserted)
00 - 0 cycles
01 - 1 cycle
10 - 2 cycles
11 - 3 cycles

Bank 3 setup time (number of cycles after AMS3
asserted, before AWE or ARE asserted)
00 - 4 cycles
01 - 1 cycle
10 - 2 cycles
11 - 3 cycles

Bank 3 memory transition time
(number of cycles inserted after a
read access to this bank, and
before a write access to this bank
or a read access to another bank)
00 - 4 cycles for bank transition
01 - 1 cycle for bank transition
10 - 2 cycles for bank transition
11 - 3 cycles for bank transition

Bank 3 ARDY polarity
0 - Transaction completes if

ARDY sampled low
1 - Transition completes if ARDY

sampled high

Bank 3 ARDY enable
0 - Ignore ARDY for accesses to

this memory bank
1 - After access time countdown,

use state of ARDY to deter-
mine completion of access

Reset = 0xFFC2 FFC2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

01 1 1 1 1 1 1 1 1 1 0 0 0 0 1

B2RDYPOL

B2TT[1:0]

B2ST[1:0]

B2RDYEN

B2HT[1:0]

B2RAT[3:0]

B2WAT[3:0]
Bank 2 write access time (number of
cycles AWE is held asserted)
0000 - Not supported
0001 to 1111 - 1 to 15 cycles

Bank 2 read access time (number of
cycles ARE is held asserted)
0000 - Not supported
0001 to 1111 - 1 to 15 cycles

Bank 2 hold time (number of cycles between AWE or
ARE deasserted, and AMS2 deasserted)
00 - 0 cycles
01 - 1 cycle
10 - 2 cycles
11 - 3 cycles

Bank 2 setup time (number of cycles after AMS2
asserted, before AWE or ARE asserted)
00 - 4 cycles
01 - 1 cycle
10 - 2 cycles
11 - 3 cycles

Bank 2 memory transition time
(number of cycles inserted after a
read access to this bank, and
before a write access to this bank
or a read access to another bank)
00 - 4 cycles for bank transition
01 - 1 cycle for bank transition
10 - 2 cycles for bank transition
11 - 3 cycles for bank transition

Bank 2 ARDY polarity
0 - Transaction completes if

ARDY sampled low
1 - Transition completes if ARDY

sampled high

Bank 2 ARDY enable
0 - Ignore ARDY for accesses to

this memory bank
1 - After access time countdown,

use state of ARDY to deter-
mine completion of access

0xFFC0 0A08

ADSP-BF533 Blackfin Processor Hardware Reference 17-15

External Bus Interface Unit

Avoiding Bus Contention
Because the three-stated data bus is shared by multiple devices in a system,
be careful to avoid contention. Contention causes excessive power dissipa-
tion and can lead to device failure. Contention occurs during the time one
device is getting off the bus and another is getting on. If the first device is
slow to three-state and the second device is quick to drive, the devices
contend.

There are two cases where contention can occur. The first case is a read
followed by a write to the same memory space. In this case, the data bus
drivers can potentially contend with those of the memory device addressed
by the read. The second case is back-to-back reads from two different
memory spaces. In this case, the two memory devices addressed by the two
reads could potentially contend at the transition between the two read
operations.

To avoid contention, program the turnaround time (Bank Transition
Time) appropriately in the Asynchronous Memory Bank Control regis-
ters. This feature allows software to set the number of clock cycles
between these types of accesses on a bank-by-bank basis. Minimally, the
EBIU provides one cycle for the transition to occur.

ARDY Input Control

Each bank can be programmed to sample the ARDY input after the read or
write access timer has counted down or to ignore this input signal. If
enabled and disabled at the sample window, ARDY can be used to extend
the access time as required. Note ARDY is synchronously sampled,
therefore:

• Assertion and deassertion of ARDY to the processor must meet the
data sheet setup and hold times. Failure to meet these synchronous
specifications could result in meta-stable behavior internally. The
processor’s CLKOUT signal should be used to ensure synchronous
transitions of ARDY.

Asynchronous Memory Interface

17-16 ADSP-BF533 Blackfin Processor Hardware Reference

• The ARDY pin must be stable (either asserted or deasserted) at the
external interface on the cycle before the internal bank counter
reaches 0; that is, more than one CLKOUT cycle before the scheduled
rising edge of AWE or ARE. This will determine whether the access is
extended or not.

• Once the transaction has been extended as a result of ARDY being
sampled in the “busy” state, the transaction will then complete in
the cycle after ARDY is subsequently sampled in the “ready” state.

The polarity of ARDY is programmable on a per-bank basis. Since ARDY is
not sampled until an access is in progress to a bank in which the ARDY
enable is asserted, ARDY does not need to be driven by default. For more
information, see “Adding Additional Wait States” on page 17-20.

Programmable Timing Characteristics
This section describes the programmable timing characteristics for the
EBIU. Timing relationships depend on the programming of the AMC,
whether initiation is from the core or from Memory DMA (MemDMA),
and the sequence of transactions (read followed by read, read followed by
write, and so on).

Asynchronous Accesses by Core Instructions

Some external memory accesses are caused by core instructions of the type:

R0.L = W[P0++] ; /* Read from external memory, where P0 points

to a location in external memory */

or:

W[P0++] = R0.L ; /* Write to external memory */

ADSP-BF533 Blackfin Processor Hardware Reference 17-17

External Bus Interface Unit

Asynchronous Reads

Figure 17-6 shows an asynchronous read bus cycle with timing pro-
grammed as setup = 2 cycles, read access = 2 cycles, hold = 1 cycle, and
transition time = 1 cycle.

Asynchronous read bus cycles proceed as follows.

1. At the start of the setup period, AMS[x], the address bus, and
ABE[1:0] become valid, and AOE asserts.

2. At the beginning of the read access period and after the 2 setup
cycles, ARE asserts.

3. At the beginning of the hold period, read data is sampled on the
rising edge of the EBIU clock. The ARE pin deasserts after this ris-
ing edge.

4. At the end of the hold period, AOE deasserts unless this bus cycle is
followed by another asynchronous read to the same memory space.
Also, AMS[x] deasserts unless the next cycle is to the same memory
bank.

5. Unless another read of the same memory bank is queued internally,
the AMC appends the programmed number of memory transition
time cycles.

Asynchronous Memory Interface

17-18 ADSP-BF533 Blackfin Processor Hardware Reference

Read access is completed with the AMSx and AOE signals getting de-asserted.
There are a few idle cycles before the next read operation starts. The num-
ber of idle cycles is a function of the CCLK/SCLK ratio. The number of idle
cycles is 6 for a CCLK/SCLK ratio of 3, 4 for a CCLK/SCLK ratio of 5, and 3
for a CCLK/SCLK ratio of 10.

Figure 17-6. Asynchronous Read Bus Cycles

READ

BE

ADDRESS

CLKOUT

ADDR[19:1]

DATA[15:0]

DATA LATCHED

SETUP

2 CYCLES

READ ACCESS

2 CYCLES

HOLD
TRANSITION
TIME

1 CYCLE 1 CYCLE

AOE

ARE

AWE

[X]

[1:0]ABE

AMS

ADSP-BF533 Blackfin Processor Hardware Reference 17-19

External Bus Interface Unit

Asynchronous Writes

Figure 17-7 shows an asynchronous write bus cycle followed by an asyn-
chronous read cycle to the same bank, with timing programmed as setup =
2 cycles, write access = 2 cycles, read access = 3 cycles, hold = 1 cycle, and
transition time = 1 cycle.

Asynchronous write bus cycles proceed as follows.

1. At the start of the setup period, AMS[x], the address bus, data buses,
and ABE[1:0] become valid.

2. At the beginning of the write access period, AWE asserts.

3. At the beginning of the hold period, AWE deasserts.

Asynchronous read bus cycles proceed as follows.

1. At the start of the setup period, AMS[x], the address bus, and
ABE[1:0] become valid, and AOE asserts.

2. At the beginning of the read access period, ARE asserts.

3. At the beginning of the hold period, read data is sampled on the
rising edge of the EBIU clock. The ARE signal deasserts after this
rising edge.

4. At the end of the hold period, AOE deasserts unless this bus cycle is
followed by another asynchronous read to the same memory space.
Also, AMS[x] deasserts unless the next cycle is to the same memory
bank.

5. Unless another read of the same memory bank is queued internally,
the AMC appends the programmed number of memory transition
time cycles.

Asynchronous Memory Interface

17-20 ADSP-BF533 Blackfin Processor Hardware Reference

Adding Additional Wait States

The ARDY pin is used to insert extra wait states. The input is sampled syn-
chronously with the EBIU internal clock. The EBIU starts sampling ARDY
on the clock cycle before the end of the programmed strobe period. If
ARDY is sampled as deasserted, the access period is extended. The ARDY pin
is then sampled on each subsequent clock edge. Read data is latched on
the clock edge after ARDY is sampled as asserted. The read- or write-enable
remains asserted for one clock cycle after ARDY is sampled as asserted. An

Figure 17-7. Asynchronous Write and Read Bus Cycles

SETUP

2 CYCLES

WRITE ACCESS

2 CYCLES

HOLD

1 CYCLE

SETUP

2 CYCLES

READ ACCESS

3 CYCLES

HOLD

CLKOUT

ADDR[19:1]

DATA[15:0]

TRANSITION
TIME

D2

BE1 BE2

A1 A2

D1

DATA LATCHED

1 CYCLE 1 CYCLE

AOE

ARE

AWE

[X]AMS

[1:0]ABE

ADSP-BF533 Blackfin Processor Hardware Reference 17-21

External Bus Interface Unit

example of this behavior is shown in Figure 17-8, where setup = 2 cycles,
read access = 4 cycles, and hold = 1 cycle. Note the read access period
must be programmed to a minimum of two cycles to make use of the ARDY
input.

Figure 17-8. Inserting Wait States Using ARDY

PROGRAMMED READ ACCESS ACCESS EXTENDED

READY SAMPLED

ARDY

EAD

CLKOUT

ADDR[19:1]

DATA[15:0]

[X]

[1:0]

READ D

BE

SETUP

2 CYCLES 4 CYCLES 3 CYCLES

HOLD

1 CYCLE

DATA
LATCHED

ADDRESS

AOE

ARE

AWE

ABE

AMS

SDRAM Controller (SDC)

17-22 ADSP-BF533 Blackfin Processor Hardware Reference

Byte Enables

The ABE[1:0] pins are both low during all asynchronous reads and 16-bit
asynchronous writes. When an asynchronous write is made to the upper
byte of a 16-bit memory, ABE1 = 0 and ABE0 = 1. When an asynchronous
write is made to the lower byte of a 16-bit memory, ABE1 = 1 and ABE0 = 0.

SDRAM Controller (SDC)
The SDRAM Controller (SDC) enables the processor to transfer data to
and from Synchronous DRAM (SDRAM) with a maximum frequency
specified in ADSP-BF531/ADSP-BF532/ADSP-BF533 Embedded Proces-
sor Data Sheet. The processor supports a glueless interface with one
external bank of standard SDRAMs of 64 Mbit to 512 Mbit, with config-
urations x4, x8, and x16, up to a maximum total capacity of 128M bytes
of SDRAM. This bank is controlled by the SMS Memory Select pin. The
interface includes timing options to support additional buffers between
the processor and SDRAM, to handle the capacitive loads of large memory
arrays.

All inputs are sampled and all outputs are valid on the rising edge of the
SDRAM clock output CLKOUT.

The EBIU SDC provides a glueless interface with standard SDRAMs. The
SDRAM controller:

• Supports SDRAMs of 64M bit, 128M bit, 256M bit, and 512M
bit with configurations of x4, x8, and x16

• Supports up to 128M byte of SDRAM in external SDRAM

• Supports SDRAM page sizes of 512 bytes, 1K byte, 2K byte, and
4K byte

• Supports four internal banks within the SDRAM

ADSP-BF533 Blackfin Processor Hardware Reference 17-23

External Bus Interface Unit

• Uses a programmable refresh counter to coordinate between vary-
ing clock frequencies and the SDRAM’s required refresh rate

• Provides multiple timing options to support additional buffers
between the processor and SDRAM

• Uses a separate pin (SA10) that enables the SDC to precharge
SDRAM before issuing an Auto-Refresh or Self-Refresh command
while the asynchronous memory controller has control of the EBIU
port

• Supports self-refresh for standard SDRAMs and partial array
self-refresh for mobile SDRAMs

• Provides two SDRAM powerup options

• Supports interleaved SDRAM bank accesses

Definition of Terms
The following are definitions used in the remainder of this chapter.

Bank Activate Command

The Bank Activate command causes the SDRAM to open an internal bank
(specified by the bank address) in a row (specified by the row address).
When the Bank Activate command is issued to the SDRAM, the SDRAM
opens a new row address in the dedicated bank. The memory in the open
internal bank and row is referred to as the open page. The Bank Activate
command must be applied before a read or write command.

SDRAM Controller (SDC)

17-24 ADSP-BF533 Blackfin Processor Hardware Reference

Burst Length

The burst length determines the number of words that the SDRAM device
stores or delivers after detecting a single write or read command, respec-
tively. The burst length is selected by writing certain bits in the SDRAM’s
Mode register during the SDRAM powerup sequence.

 Although the SDC supports only Burst Length = 1 mode, during a
burst to SDRAM, the SDC applies the read or write command
every cycle and keeps accessing the data. Therefore, the effective
burst length is much greater than 1. In other words, setting Burst
Length = 1 does not reduce the performance throughput.

Burst Stop Command

The Burst Stop command is one of several ways to terminate or interrupt a
burst read or write operation.

 Since the SDRAM burst length is always hardwired to be 1, the
SDC does not support the Burst Stop command.

Burst Type

The burst type determines the address order in which the SDRAM deliv-
ers burst data after detecting a read command or stores burst data after
detecting a write command. The burst type is programmed in the
SDRAM during the SDRAM powerup sequence.

 Since the SDRAM burst length is always programmed to be 1, the
burst type does not matter. However, the SDC always sets the
burst type to sequential-accesses-only during the SDRAM powerup
sequence.

ADSP-BF533 Blackfin Processor Hardware Reference 17-25

External Bus Interface Unit

CAS Latency (CL)

The Column Address Strobe (CAS) latency is the delay in clock cycles
between when the SDRAM detects the read command and when it pro-
vides the data at its output pins. The CAS latency is programmed in the
SDRAM Mode register during the powerup sequence.

The speed grade of the SDRAM and the application’s clock frequency
determine the value of the CAS latency. The SDC can support CAS
latency of two or three clock cycles. The selected CAS latency value must
be programmed into the SDRAM Memory Global Control register
(EBIU_SDGCTL) before the SDRAM powerup sequence. See
“EBIU_SDGCTL Register” on page 17-33.

CBR (CAS Before RAS) Refresh or Auto-Refresh

When the SDC refresh counter times out, the SDC precharges all four
banks of SDRAM and then issues an Auto-Refresh command to them.
This causes the SDRAMs to generate an internal CBR refresh cycle. When
the internal refresh completes, all four internal SDRAM banks are
precharged.

DQM Pin Mask Function

The SDQM[1:0] pins provide a byte-masking capability on 8-bit writes to
SDRAM. The DQM pins are used to block the input buffer of the SDRAM
during partial write operations. The SDQM[1:0] pins are not used to mask
data on partial read cycles. For write cycles, the data masks have a latency
of zero cycles, permitting data writes when the corresponding SDQM[x]]
pin is sampled low and blocking data writes when the SDQM[x] pin is sam-
pled high on a byte-by-byte basis.

SDRAM Controller (SDC)

17-26 ADSP-BF533 Blackfin Processor Hardware Reference

Internal Bank

There are several internal memory banks on a given SDRAM. The SDC
supports interleaved accesses among the internal banks. The bank address
can be thought of as part of the row address. The SDC assumes that all
SDRAMs to which it interfaces have four internal banks and allows each
activated bank to have a unique row address.

Mode Register

SDRAM devices contain an internal configuration register which allows
specification of the SDRAM device’s functionality. After powerup and
before executing a read or write to the SDRAM memory space, the appli-
cation must trigger the SDC to write the SDRAM’s Mode register. The
write of the SDRAM’s Mode register is triggered by writing a 1 to the
PSSE bit in the SDRAM Memory Global Control register (EBIU_SDGCTL)
and then issuing a read or write transfer to the SDRAM address space. The
initial read or write triggers the SDRAM powerup sequence to be run,
which programs the SDRAM’s Mode register with the CAS latency from
the EBIU_SDGCTL register. This initial read or write to SDRAM takes many
cycles to complete.

 Note for most applications, the SDRAM powerup sequence and
writing of the Mode register needs to be done only once. Once the
powerup sequence has completed, the PSSE bit should not be set
again unless a change to the Mode register is desired. In this case,
refer to “Managing SDRAM Refresh During PLL Transitions” on
page 18-8.

Low power SDRAM devices may also contain an Extended Mode register.
The EBIU enables programming of the Extended Mode register during
powerup via the EMREN bit in the EBIU_SDGCTL register.

ADSP-BF533 Blackfin Processor Hardware Reference 17-27

External Bus Interface Unit

Page Size

Page size is the amount of memory which has the same row address and
can be accessed with successive read or write commands without needing
to activate another row. The page size can be calculated for 16-bit
SDRAM banks with this formula:

• 16-bit SDRAM banks: page size = 2(CAW + 1)

where CAW is the column address width of the SDRAM, plus 1 because the
SDRAM bank is 16 bits wide (1 address bit = 2 bytes).

Precharge Command

The Precharge command closes a specific internal bank in the active page
or all internal banks in the page.

SDRAM Bank

The SDRAM bank is a region of memory that can be configured to 16M
byte, 32M byte, 64M byte, or 128M byte and is selected by the SMS pin.

 Do not confuse the “SDRAM internal banks” which are internal to
the SDRAM and are selected with the bank address, with the
“SDRAM bank” or “external bank” that is enabled by the SMS pin.

Self-Refresh

When the SDRAM is in Self-Refresh mode, the SDRAM’s internal timer
initiates Auto-Refresh cycles periodically, without external control input.
The SDC must issue a series of commands including the Self-Refresh
command to put the SDRAM into this low power mode, and it must issue
another series of commands to exit Self-Refresh mode.

SDRAM Controller (SDC)

17-28 ADSP-BF533 Blackfin Processor Hardware Reference

Entering Self-Refresh mode is programmable in the SDRAM Memory
Global Control register (EBIU_SDGCTL) and any access to the SDRAM
address space causes the SDC to exit the SDRAM from Self-Refresh
mode. See “Entering and Exiting Self-Refresh Mode (SRFS)” on
page 17-38.

tRAS

This is the required delay between issuing a Bank Activate command and
issuing a Precharge command, and between the Self-Refresh command
and the exit from Self-Refresh. The TRAS bit field in the SDRAM Memory
Global Control register (EBIU_SDGCTL) is 4 bits wide and can be pro-
grammed to be 1 to 15 clock cycles long. See “Selecting the Bank Activate
Command Delay (TRAS)” on page 17-41.

tRC

This is the required delay between issuing successive Bank Activate com-
mands to the same SDRAM internal bank. This delay is not directly
programmable. The tRC delay must be satisfied by programming the TRAS
and TRP fields to ensure that tRAS + tRP  tRC.

tRCD

This is the required delay between a Bank Activate command and the start
of the first Read or Write command. The TRCD bit field in the SDRAM
Memory Global Control register (EBIU_SDGCTL) is three bits wide and can
be programmed to be from 1 to 7 clock cycles long.

ADSP-BF533 Blackfin Processor Hardware Reference 17-29

External Bus Interface Unit

tRFC

This is the required delay between issuing an Auto-Refresh command and
a Bank Activate command and between issuing successive Auto-Refresh
commands. This delay is not directly programmable and is assumed to be
equal to tRC. The tRC delay must be satisfied by programming the TRAS
and TRP fields to ensure that tRAS + tRP  tRC.

tRP

This is the required delay between issuing a Precharge command and:

• issuing a Bank Activate command

• issuing an Auto-Refresh command

• issuing a Self-Refresh command

The TRP bit field in the SDRAM Memory Global Control register
(EBIU_SDGCTL) is three bits wide and can be programmed to be 1 to 7 clock
cycles long. See “Selecting the Precharge Delay (TRP)” on page 17-42.

tRRD

This is the required delay between issuing a Bank A Activate command
and a Bank B Activate command. This delay is not directly programmable
and is assumed to be tRCD + 1.

tWR

This is the required delay between a Write command (driving write data)
and a Precharge command. The TWR bit field in the SDRAM Memory
Global Control register (EBIU_SDGCTL) is two bits wide and can be pro-
grammed to be from 1 to 3 clock cycles long.

SDRAM Controller (SDC)

17-30 ADSP-BF533 Blackfin Processor Hardware Reference

tXSR

This is the required delay between exiting Self-Refresh mode and issuing
the Auto-Refresh command. This delay is not directly programmable and
is assumed to be equal to tRC. The tRC delay must be satisfied by program-
ming the TRAS and TRP fields to ensure that tRAS + tRP  tRC.

SDRAM Configurations Supported
Table 17-4 shows all possible bank sizes, bank widths and SDRAM dis-
crete component configurations that can be gluelessly interfaced to the
SDC.

Table 17-4. SDRAM Discrete Component Configurations Supported

Bank Size
(M byte)

Bank Width
(Bits)

SDRAM

Size (M bit) Configuration Number of
Chips

16 16 32 2M x 4 x 4 banks 4

16 16 64 2M x 8 x 4 banks 2

16 16 128 2M x 16 x 4 banks 1

32 16 64 4M x 4 x 4 banks 4

32 16 128 4M x 8 x 4 banks 2

32 16 256 4M x 16 x 4 banks 1

64 16 128 8M x 4 x 4 banks 4

64 16 256 8M x 8 x 4 banks 2

64 16 512 8M x 16 x 4 banks 1

128 16 256 16M x 4 x 4 banks 4

128 16 512 16M x 8 x 4 banks 2

128 16 1024 16M x 16 x 4 banks 1

ADSP-BF533 Blackfin Processor Hardware Reference 17-31

External Bus Interface Unit

Example SDRAM System Block Diagrams
Figure 17-9 shows a block diagram of the SDRAM interface. In this exam-
ple, the SDRAM interface connects to two 64 Mbit (x8) SDRAM devices
to form one external bank of 16M bytes of memory. The same address and
control bus feeds both SDRAM devices.

The SDC includes a separate address pin (SA10) to enable the execution
of Auto-Refresh commands in parallel with any asynchronous memory
access. This separate pin allows the SDC to issue a Precharge command to
the SDRAM before it issues an Auto-Refresh command.

In addition, the SA10 pin allows the SDC to enter and exit Self-Refresh
mode in parallel with any asynchronous memory access. The SA10 pin
(instead of the ADDR[11] pin) should be directly connected to the
SDRAM’s A10 pin. During the Precharge command, SA10 is used to
indicate that a Precharge All should be done. During a Bank Activate
command, SA10 outputs the internal row address bit, which should be
multiplexed to the A10 SDRAM input. During Read and Write com-
mands, SA10 is used to disable the auto-precharge function of SDRAMs.

 SDRAM systems do not use the ADDR[11] pin.

Executing a Parallel Refresh Command

The SDC includes a separate address pin (SA10) to enable the execution of
Auto-Refresh commands in parallel with any asynchronous memory
access. This separate pin allows the SDC to issue a Precharge command to
the SDRAM before it issues an Auto-Refresh command. In addition, the
SA10 pin allows the SDC to enter and exit Self-Refresh mode in parallel
with any asynchronous memory access.

SDRAM Controller (SDC)

17-32 ADSP-BF533 Blackfin Processor Hardware Reference

Figure 17-9. 16M Byte SDRAM System Example

SCKE

ADSP-BF533

ADDR[19]
ADDR[18]

SA10
ADDR[12,10:1]

SDRAM 2

A13[BS1]

A[10]

CLKOUT

SDQM[0]

DATA[15:0]

A12[BS0]

A[11,9:0]
CKE

CLK
DQM

DQ[7:0]

SDRAM 1

A13[BS1]

A[10]
A12[BS0]

A[11,9:0]
CKE

CLK
DQM

DQ[7:0]

DATA[7:0]

DATA[15:8]

SDQM[1]

SWE
SCAS
SRAS

SMS

WE
CAS
RAS

CS

WE
CAS
RAS

CS

ADSP-BF533 Blackfin Processor Hardware Reference 17-33

External Bus Interface Unit

The SA10 pin should be directly connected to the A10 pin of the SDRAM
(instead of to the ADDR[10] pin). During the Precharge command, SA10 is
used to indicate that a Precharge All should be done. During a Bank Acti-
vate command, SA10 outputs the internal row address bit, which should be
multiplexed to the A10 SDRAM input. During Read and Write com-
mands, SA10 is used to disable the auto-precharge function of SDRAMs.

EBIU_SDGCTL Register
The SDRAM Memory Global Control register (EBIU_SDGCTL) includes all
programmable parameters associated with the SDRAM access timing and
configuration. Figure 17-10 shows the EBIU_SDGCTL register bit
definitions.

 When using the hibernate state with the intent of preserving
SDRAM contents during power-down, an application may issue an
immediate read from SDRAM after enabling the controller. If this
is the case, the write to this register should be followed by an SSYNC
instruction to prevent the subsequent read from happening before
the controller is properly initialized.

The SCTLE bit is used to enable or disable the SDC. If SCTLE is disabled,
any access to SDRAM address space generates an internal bus error, and
the access does not occur externally. For more information, see “Error
Detection” on page 17-8. When SCTLE is disabled, all SDC control pins
are in their inactive states and the SDRAM clock is not running. The
SCTLE bit must be enabled for SDC operation and is enabled by default at
reset.

SDRAM Controller (SDC)

17-34 ADSP-BF533 Blackfin Processor Hardware Reference

Figure 17-10. SDRAM Memory Global Control Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

01 1 1 0 0 0 0 0 0 0 0 0 1 0 0

SDRAM Memory Global Control Register (EBIU_SDGCTL)

TWR[1:0]

PSM

PSSE

TRCD[2:1]
CDDBG

EBUFE

SRFS

Control disable during bus grant
0 - Continue driving SDRAM

controls during bus grant
1 - Three-state SDRAM controls

during bus grant

SDRAM timing for external buffering
of address and control
0 - External buffering timing disabled
1 - External buffering timing enabled

SDRAM self-refresh enable
0 - Disable self-refresh
1 - Enable self-refresh during inactivity

SDRAM tRCD in SCLK cycles
000 - Reserved
001-111 - 1 to 7 cycles

SDRAM tWR in SCLK cycles
00 - Reserved
01-11 - 1 to 3 cycles

SDRAM powerup sequence
0 - Precharge, 8 CBR refresh

cycles, mode register set
1 - Precharge, mode register

set, 8 CBR refresh cycles

SDRAM powerup sequence
start enable. Always reads 0
0 - No effect
1 - Enables SDRAM powerup

sequence on next SDRAM
access

Reset = 0xE008 8849

CL[1:0]

PASR[1:0]

SCTLE

TRAS[3:0]

TRP[2:0]

TRCD
SDRAM tRCD in SCLK cycles
000 - Reserved
001-111 - 1 to 7 cycles

Enable CLKOUT, SRAS,
SCAS, SWE, SDQM[1:0]
0 - Disabled
1 - Enabled

SDRAM tRP in SCLK cycles
000 - No effect
001-111 - 1 to 7 cycles

SDRAM tRAS in SCLK cycles
0000 - No effect
0001-1111 - 1 to 15 cycles

SDRAM CAS latency
00–01 - Reserved
10 - 2 cycles
11 - 3 cycles

Partial array self-refresh in
extended mode register
00 - All 4 banks refreshed
01 - Int banks 0, 1 refreshed
10 - Int bank 0 only refreshed
11 - Reserved

FBBRW
Fast back-to-back read to write
0 - Disabled
1 - Enabled

EMREN
Extended mode register enable
0 - Disabled
1 - Enabled

TCSR
Temperature compensated self-refresh
value in extended mode register
0 - 45 degrees C
1 - 85 degrees C

PUPSD
Powerup start delay
0 - No extra delay added

before first Precharge
command

1 - Fifteen SCLK cycles of
delay before first
Precharge command

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 0 0 0 1 0 0 0 0 1 0 0 1 0 0

0xFFC0 0A10

ADSP-BF533 Blackfin Processor Hardware Reference 17-35

External Bus Interface Unit

The CAS Latency (CL), SDRAM tRAS Timing (TRAS), SDRAM tRP Tim-
ing (TRP), SDRAM tRCD Timing (TRCD), and SDRAM tWR Timing (TWR)
bits should be programmed based on the system clock frequency and the
timing specifications of the SDRAM used.

 The user must ensure that tRAS + tRP >= max(tRC,tRFC,tXSR).

The PSM and PSSE bits work together to specify and trigger an SDRAM
powerup (initialization) sequence. If the PSM bit is set to 1, the SDC does a
Precharge All command, followed by a Load Mode Register command,
and then does eight Auto-Refresh cycles. If the PSM bit is cleared, the SDC
does a Precharge All command, followed by eight Auto-Refresh cycles,
and then a Load Mode Register command. Two events must occur before
the SDC does the SDRAM powerup sequence:

• The PSSE bit must be set to 1 to enable the SDRAM powerup
sequence.

• A read or write access must be done to enabled SDRAM address
space in order to have the external bus granted to the SDC so that
the SDRAM powerup sequence may occur.

The SDRAM powerup sequence occurs and is followed immediately by
the read or write transfer to SDRAM that was used to trigger the SDRAM
powerup sequence. Note there is a latency for this first access to SDRAM
because the SDRAM powerup sequence takes many cycles to complete.

 Before executing the SDC powerup sequence, ensure that the
SDRAM receives stable power and is clocked for the proper
amount of time, as specified by the SDRAM specification.

SDRAM Controller (SDC)

17-36 ADSP-BF533 Blackfin Processor Hardware Reference

The Powerup Start Delay bit (PUPSD) optionally delays the powerup start
sequence for 15 SCLK cycles. This is useful for multiprocessor systems shar-
ing an external SDRAM. If the bus has been previously granted to the
other processor before powerup and Self-Refresh mode is used when
switching bus ownership, then the PUPSD bit can be used to guarantee a
sufficient period of inactivity from self-refresh to the first Precharge com-
mand in the powerup sequence in order to meet the exit self-refresh time
(tXSR) of the SDRAM.

When the SRFS bit is set to 1, Self-Refresh mode is triggered. Once the
SDC completes any active transfers, the SDC executes the sequence of
commands to put the SDRAM into Self-Refresh mode. The next access to
an enabled SDRAM bank causes the SDC to execute the commands to
exit the SDRAM from Self-Refresh and execute the access. See “Entering
and Exiting Self-Refresh Mode (SRFS)” on page 17-38 for more informa-
tion about the SRFS bit.

The EBUFE bit is used to enable or disable external buffer timing. When
buffered SDRAM modules or discrete register-buffers are used to drive the
SDRAM control inputs, EBUFE should be set to 1. Using this setting adds a
cycle of data buffering to read and write accesses. See “Setting the
SDRAM Buffering Timing Option (EBUFE)” on page 17-39 for more
information about the EBUFE bit.

The FBBRW bit enables an SDRAM read followed by write to occur on con-
secutive cycles. In many systems, this is not possible because the turn-off
time of the SDRAM data pins is too long, leading to bus contention with
the succeeding write from the processor. When this bit is 0, a clock cycle is
inserted between read accesses followed immediately by write accesses.

The EMREN bit enables programming of the Extended Mode register during
startup. The Extended Mode register is used to control SDRAM power
consumption in certain mobile low power SDRAMs. If the EMREN bit is
enabled, then the TCSR and PASR[1:0] bits control the value written to the
Extended Mode register. The PASR bits determine how many SDRAM
internal banks are refreshed during Self-Refresh. The TCSR bit signals to

ADSP-BF533 Blackfin Processor Hardware Reference 17-37

External Bus Interface Unit

the SDRAM the worst case temperature range for the system, and thus
how often the SDRAM internal banks need to be refreshed during
Self-Refresh.

The CDDBG bit is used to enable or disable the SDRAM control signals
when the external memory interface is granted to an external controller. If
this bit is set to a 1, then the control signals are three-stated when bus
grant is active. Otherwise, these signals continue to be driven during
grant. If the bit is set and the external bus is granted, all SDRAM internal
banks are assumed to have been changed by the external controller. This
means a precharge is required on each bank prior to use after control of
the external bus is re-established. The control signals affected by this pin
are SRAS, SCAS, SWE, SMS, SA10, SCKE, and CLKOUT.

Note all reserved bits in this register must always be written with 0s.

Setting the SDRAM Clock Enable (SCTLE)

The SCTLE bit allows software to disable all SDRAM control pins. These
pins are SDQM[3:0], SCAS, SRAS, SWE, SCKE, and CLKOUT.

• SCTLE = 0

Disable all SDRAM control pins (control pins negated, CLKOUT
low)

• SCTLE = 1

Enable all SDRAM control pins (CLKOUT toggles)

Note the CLKOUT function is also shared with the AMC. Even if SCTLE is
disabled, CLKOUT can be enabled independently by the CLKOUT enable in the
AMC (AMCKEN in the EBIU_AMGCTL register).

If the system does not use SDRAM, SCTLE should be set to 0.

SDRAM Controller (SDC)

17-38 ADSP-BF533 Blackfin Processor Hardware Reference

If an access occurs to the SDRAM address space while SCTLE is 0, the
access generates an internal bus error and the access does not occur exter-
nally. For more information, see “Error Detection” on page 17-8. With
careful software control, the SCTLE bit can be used in conjunction with
Self-Refresh mode to further lower power consumption. However, SCTLE
must remain enabled at all times when the SDC is needed to generate
Auto-Refresh commands to SDRAM.

Entering and Exiting Self-Refresh Mode (SRFS)

The SDC supports SDRAM Self-Refresh mode. In Self-Refresh mode, the
SDRAM performs refresh operations internally—without external con-
trol—reducing the SDRAM’s power consumption.

The SRFS bit in EBIU_SDGCTL enables the start of Self-Refresh mode:

• SRFS = 0

Disable Self-Refresh mode

• SRFS = 1

Enable Self-Refresh mode

When SRFS is set to 1, once the SDC enters an idle state it issues a Pre-
charge command if necessary, and then issues a Self-Refresh command. If
an internal access is pending, the SDC delays issuing the Self-Refresh
command until it completes the pending SDRAM access and any subse-
quent pending access requests. Refer to “SDC Commands” on page 17-56
for more information.

Once the SDRAM device enters into Self-Refresh mode, the SDRAM
controller asserts the SDSRA bit in the SDRAM Control Status register
(EBIU_SDSTAT).

ADSP-BF533 Blackfin Processor Hardware Reference 17-39

External Bus Interface Unit

The SDRAM device exits Self-Refresh mode only when the SDC receives
a core or DMA access request. In conjunction with the SRFS bit, 2 possi-
bilities are given to exit the self-refresh mode:

• If SRFS bit is set before the request, the SDC exits self-refresh and
remains in auto-refresh mode.

• If SRFS bit is cleared before the request, the SDC exits self-refresh
only for a single request and returns back to self-refresh mode until
a new request is coming.

Note once the SRFS bit is set to 1, the SDC enters Self-Refresh mode when
it finishes pending accesses. There is no way to cancel the entry into-
Self-Refresh mode.

Setting the SDRAM Buffering Timing Option (EBUFE)

To meet overall system timing requirements, systems that employ several
SDRAM devices connected in parallel may require buffering between the
processor and multiple SDRAM devices. This buffering generally consists
of a register and driver.

To meet such timing requirements and to allow intermediary registration,
the SDC supports pipelining of SDRAM address and control signals.

The EBUFE bit in the EBIU_SDGCTL register enables this mode:

• EBUFE = 0

Disable external buffering timing

• EBUFE = 1

Enable external buffering timing

SDRAM Controller (SDC)

17-40 ADSP-BF533 Blackfin Processor Hardware Reference

When EBUFE = 1, the SDRAM controller delays the data in write accesses
by one cycle, enabling external buffer registers to latch the address and
controls. In read accesses, the SDRAM controller samples data one cycle
later to account for the one-cycle delay added by the external buffer regis-
ters. When external buffering timing is enabled, the latency of all accesses
is increased by one cycle.

Selecting the CAS Latency Value (CL)

The CAS latency value defines the delay, in number of clock cycles,
between the time the SDRAM detects the Read command and the time it
provides the data at its output pins.

CAS latency does not apply to write cycles.

The CL bits in the SDRAM Memory Global Control register
(EBIU_SDGCTL) select the CAS latency value:

• CL = 00

Reserved

• CL = 01

Reserved

• CL = 10

2 clock cycles

• CL = 11

3 clock cycles

Generally, the frequency of operation determines the value of the CAS
latency. For specific information about setting this value, consult the
SDRAM device documentation.

ADSP-BF533 Blackfin Processor Hardware Reference 17-41

External Bus Interface Unit

Selecting the Bank Activate Command Delay (TRAS)

The tRAS value (Bank Activate command delay) defines the required delay,
in number of clock cycles, between the time the SDC issues a Bank Acti-
vate command and the time it issues a Precharge command. The SDRAM
must also remain in Self-Refresh mode for at least the time period speci-
fied by tRAS. The tRP and tRAS values define the tRFC, tRC, and tXSR
values. For more information, see “tRAS” on page 17-28.

The tRAS parameter allows the processor to adapt to the timing require-
ments of the system’s SDRAM devices.

The TRAS bits in the SDRAM Memory Global Control register
(EBIU_SDGCTL) select the tRAS value. Any value between 1 and 15 clock
cycles can be selected. For example:

• TRAS = 0000

No effect

• TRAS = 0001

1 clock cycle

• TRAS = 0010

2 clock cycles

• TRAS = 1111

15 clock cycles

For specific information on setting this value, consult the SDRAM device
documentation.

SDRAM Controller (SDC)

17-42 ADSP-BF533 Blackfin Processor Hardware Reference

Selecting the RAS to CAS Delay (TRCD)

The tRCD value (RAS to CAS delay) defines the delay for the first read or
write command after a row activate command, in number of clock cycles.
The tRCD parameter allows the processor to adapt to the timing require-
ments of the system’s SDRAM devices.

The tRCD bits in the SDRAM Memory Global Control register
(EBIU_SDGCTL) select the tRCD value. Any value between 1 and 7 clock
cycles may be selected. For example:

• TRCD = reserved

No effect

• TRCD = 001

1 clock cycle

• TRCD = 010

2 clock cycles

• TRCD = 111

7 clock cycles

Selecting the Precharge Delay (TRP)

The tRP value (Precharge delay) defines the required delay, in number of
clock cycles, between the time the SDC issues a Precharge command and
the time it issues a Bank Activate command. The tRP also specifies the
time required between Precharge and Auto-Refresh, and between Pre-
charge and Self-Refresh. The tRP and tRAS values define the tRFC, tRC, and
tXSR values.

ADSP-BF533 Blackfin Processor Hardware Reference 17-43

External Bus Interface Unit

This parameter enables the application to accommodate the SDRAM’s
timing requirements.

The TRP bits in the SDRAM Memory Global Control register
(EBIU_SDGCTL) select the tRP value. Any value between 1 and 7 clock
cycles may be selected. For example:

• TRP = 000

No effect

• TRP = 001

1 clock cycle

• TRP = 010

2 clock cycles

• TRP = 111

7 clock cycles

Selecting the Write to Precharge Delay (TWR)

The tWR value defines the required delay, in number of clock cycles,
between the time the SDC issues a Write command (drives write data) and
a Precharge command.

This parameter enables the application to accommodate the SDRAM’s
timing requirements.

The TWR bits in the SDRAM Memory Global Control register
(EBIU_SDGCTL) select the tWR value.

SDRAM Controller (SDC)

17-44 ADSP-BF533 Blackfin Processor Hardware Reference

Any value between 1 and 3 clock cycles may be selected. For example:

• TWR = 00

Reserved

• TWR = 01

1 clock cycle

• TWR = 10

2 clock cycles

• TWR = 11

3 clock cycles

EBIU_SDBCTL Register
The SDRAM Memory Bank Control register (EBIU_SDBCTL) includes
external bank-specific programmable parameters. It allows software to
control some parameters of the SDRAM. The external bank can be config-
ured for a different size of SDRAM. It uses the access timing parameters
defined in the SDRAM Memory Global Control register (EBIU_SDGCTL).
The EBIU_SDBCTL register should be programmed before powerup and
should be changed only when the SDC is idle.

The EBIU_SDBCTL register stores the configuration information for the
SDRAM bank interface. The EBIU supports 64 Mbit, 128 Mbit,
256 Mbit, and 512 Mbit SDRAM devices with x4, x8, x16 configura-
tions. Table 17-4 maps SDRAM density and I/O width to the supported
EBSZ encodings. See “SDRAM External Memory Size” on page 17-50 for
more information on bank starting address decodes.

ADSP-BF533 Blackfin Processor Hardware Reference 17-45

External Bus Interface Unit

The SDC determines the internal SDRAM page size from the EBCAW
parameters. Page sizes of 512 B, 1K byte, 2K byte, and 4K byte are sup-
ported. Table 17-5 shows the page size and breakdown of the internal
address (IA[31:0], as seen from the core or DMA) into the row, bank, col-
umn, and byte address. The column address and the byte address together
make up the address inside the page.

The EBE bit in the EBIU_SDBCTL register is used to enable or disable the
external SDRAM bank. If the SDRAM is disabled, any access to the
SDRAM address space generates an internal bus error, and the access does
not occur externally. For more information, see “Error Detection” on
page 17-8.

Figure 17-11. SDRAM Memory Bank Control Register

SDRAM Memory Bank Control Register (EBIU_SDBCTL)

EBSZ

EBCAW

EBE
SDRAM external bank enable
0 - Disabled
1 - Enabled

SDRAM external bank size
00 - 16M byte
01 - 32M byte
10 - 64M byte
11 - 128M byte

SDRAM external bank column
address width
00 - 8 bits
01 - 9 bits
10 - 10 bits
11 - 11 bits

Reset = 0x0000
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 00xFFC0 0A14

SDRAM Controller (SDC)

17-46 ADSP-BF533 Blackfin Processor Hardware Reference

 For information on how to connect to SDRAMs smaller than
16M byte, see “Using SDRAMs Smaller Than 16M Byte” on
page 18-8.

Table 17-5. Internal Address Mapping
B

an
k

W
id

th
(b

it
s)

B
an

k
Si

ze
(M

by
te

)

C
ol

. A
dd

r.
W

id
th

 (
C

AW
)

Pa
ge

 S
iz

e
(K

 B
yt

e)

B
an

k
A

dd
re

ss

R
ow

A
dd

re
ss

Page

C
ol

um
n

A
dd

re
ss

B
yt

e
A

dd
re

ss

16 128 11 4 IA[26:25] IA[24:12] A[11:1] IA[0]

16 128 10 2 IA[26:25] IA[24:11] IA[10:1] IA[0]

16 128 9 1 1A[26:25] IA[24:10] IA[9:1] IA[0]

16 128 8 .5 IA[26:25] IA[24:9] IA[8:1] IA[0]

16 64 11 4 IA[25:24] IA[23:12] IA[11:1] IA[0]

16 64 10 2 IA[25:24] IA[23:11] IA[0]IA[10:1]

16 64 9 1 IA[25:24] IA[23:10] IA[9:1] IA[0]

16 64 8 .5 IA[25:24] IA[23:9] IA[8:1] IA[0]

16 32 11 4 IA[24:23] IA[22:12] IA[11:1] IA[0]

16 32 10 2 IA[24:23] IA[22:11] IA[0]IA[10:1]

16 32 9 1 IA[24:23] IA[22:10] IA[9:1] IA[0]

16 32 8 .5 IA[24:23] IA[22:9] IA[8:1] IA[0]

16 16 11 4 IA[23:22] IA[21:12] IA[11:1] IA[0]

16 16 10 2 IA[23:22] IA[21:11] IA[10:1] IA[0]

16 16 9 1 IA[23:22] IA[21:10] IA[9:1] IA[0]

16 16 8 .5 IA[23:22] IA[21:9] IA[8:1] IA[0]

ADSP-BF533 Blackfin Processor Hardware Reference 17-47

External Bus Interface Unit

EBIU_SDSTAT Register
The SDRAM Control Status register (EBIU_SDSTAT) provides information
on the state of the SDC. This information can be used to determine when
it is safe to alter SDC control parameters or it can be used as a debug aid.
The SDEASE bit of this register is sticky. Once it has been set, software
must explicitly write a 1 to the bit to clear it. Writes have no effect on the
other status bits, which are updated by the SDC only. This SDC MMR is
16 bits wide.

Figure 17-12. SDRAM Control Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 1 0 0

SDRAM Control Status Register (EBIU_SDSTAT)

SDSRA

SDPUA

SDCI

SDRS

SDEASE - W1C
SDRAM EAB sticky error status. Write 1
to this bit to clear it.
0 - No error detected
1 - EAB access generated an error

0 - Will not power up on next SDRAM
access (SDRAM already powered up)

1 - Will power up on next SDRAM
access if SDRAM enabled

SDRAM controller idle
0 - SDC is busy performing

an access or an Auto-
Refresh

1 - SDC is idle

SDRAM self-refresh active
0 - SDRAMs not in self-

refresh mode
1 - SDRAMs in self-refresh

mode

SDRAM powerup active
0 - SDC not in powerup

sequence
1 - SDC in powerup

sequence

Reset = 0x0008

BGSTAT
Bus grant status
0 - Bus not granted
1 - Bus granted

0xFFC0 0A1C

SDRAM Controller (SDC)

17-48 ADSP-BF533 Blackfin Processor Hardware Reference

EBIU_SDRRC Register
The SDRAM Refresh Rate Control register (EBIU_SDRRC) provides a flexi-
ble mechanism for specifying the Auto-Refresh timing. Since the clock
supplied to the SDRAM can vary, the SDC provides a programmable
refresh counter, which has a period based on the value programmed into
the RDIV field of this register. This counter coordinates the supplied clock
rate with the SDRAM device’s required refresh rate.

The desired delay (in number of SDRAM clock cycles) between consecu-
tive refresh counter time-outs must be written to the RDIV field. A refresh
counter time-out triggers an Auto-Refresh command to all external
SDRAM devices. Write the RDIV value to the EBIU_SDRRC register before
the SDRAM powerup sequence is triggered. Change this value only when
the SDC is idle.

To calculate the value that should be written to the EBIU_SDRRC register,
use the following equation:

RDIV = ((fSCLK  tREF) / NRA) – (tRAS + tRP)

Where:

• fSCLK = SDRAM clock frequency (system clock frequency)

• tREF = SDRAM refresh period

• NRA = Number of row addresses in SDRAM (refresh cycles to
refresh whole SDRAM)

Figure 17-13. SDRAM Refresh Rate Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 1 0 0 0 0 0 0 1 1 0 1

SDRAM Refresh Rate Control Register (EBIU_SDRRC)

RDIV

Reset = 0x081A0xFFC0 0A18

ADSP-BF533 Blackfin Processor Hardware Reference 17-49

External Bus Interface Unit

• tRAS = Active to Precharge time (TRAS in the SDRAM Memory
Global Control register) in number of clock cycles

• tRP = RAS to Precharge time (TRP in the SDRAM Memory Global
Control register) in number of clock cycles

This equation calculates the number of clock cycles between required
refreshes and subtracts the required delay between Bank Activate com-
mands to the same internal bank (tRC = tRAS + tRP). The tRC value is
subtracted, so that in the case where a refresh time-out occurs while an
SDRAM cycle is active, the SDRAM refresh rate specification is guaran-
teed to be met. The result from the equation should always be rounded
down to an integer.

Below is an example of the calculation of RDIV for a typical SDRAM in a
system with a 133 MHz clock:

• fSCLK = 133 MHz

• tREF = 64 ms

• NRA = 4096 row addresses

• tRAS = 2

• tRP = 2

The equation for RDIV yields:

RDIV = ((133 x 106  64  10-3) / 4096) – (2 + 2) = 2074 clock cycles

This means RDIV is 0x81A (hex) and the SDRAM Refresh Rate Control
register should be written with 0x081A.

SDRAM Controller (SDC)

17-50 ADSP-BF533 Blackfin Processor Hardware Reference

Note RDIV must be programmed to a nonzero value if the SDRAM con-
troller is enabled. When RDIV = 0, operation of the SDRAM controller is
not supported and can produce undesirable behavior. Values for RDIV can
range from 0x001 to 0xFFF.

 Refer to “Managing SDRAM Refresh During PLL Transitions” on
page 18-8 for a detailed discussion of the process for changing the
PLL frequency when using SDRAM.

SDRAM External Memory Size
The total amount of external SDRAM memory addressed by the processor
is controlled by the EBSZ bits of the EBIU_SDBCTL register (see Table 17-6).
Accesses above the range shown for a specialized EBSZ value results in an
internal bus error and the access does not occur. For more information,
see “Error Detection” on page 17-8.

Table 17-6. Bank Size Encodings

EBSZ Bank Size
(Mbyte)

Valid SDRAM Addresses

00 16 0x0000 0000 – 0x00FF FFFF

01 32 0x0000 0000 – 0x01FF FFFF

10 64 0x0000 0000 – 0x03FF FFFF

11 128 0x0000 0000 – 0x07FF FFFF

ADSP-BF533 Blackfin Processor Hardware Reference 17-51

External Bus Interface Unit

SDRAM Address Mapping
To access SDRAM, the SDC multiplexes the internal 32-bit non-multi-
plexed address into a row address, a column address, a bank address, and
the byte data masks for the SDRAM device. See Figure 17-14. The lowest
bit is mapped to byte data masks, the next bits are mapped into the col-
umn address, the next bits are mapped into the row address, and the final
two bits are mapped into the bank address. This mapping is based on the
EBSZ and EBCAW parameters programmed into the SDRAM Memory Bank
Control register.

16-Bit Wide SDRAM Address Muxing

Table 17-7 shows the connection of the address pins with the SDRAM
device pins.

Figure 17-14. Multiplexed SDRAM Addressing Scheme

Internal 32-bit Address

31 26 0

Bank
Address

Column
Address

Row
Address

Byte
Mask

SDRAM Controller (SDC)

17-52 ADSP-BF533 Blackfin Processor Hardware Reference

Data Mask (SDQM[1:0]) Encodings
During write transfers to SDRAM, the SDQM[1:0] pins are used to mask
writes to bytes that are not accessed. Table 17-8 shows the SDQM[1:0]
encodings for 16-bit wide SDRAM based on the internal transfer address
bit IA[0] and the transfer size.

Table 17-7. SDRAM Address Connections for 16-Bit Banks

External Address Pin SDRAM Address Pin

ADDR[19] BA[1]

ADDR[18] BA[0]

ADDR[16] A[15]

ADDR[15] A[14]

ADDR[14] A[13]

ADDR[13] A[12]

ADDR[12] A[11]

SA[10] A[10]

ADDR[10] A[9]

ADDR[9] A[8]

ADDR[8] A[7]

ADDR[7] A[6]

ADDR[6] A[5]

ADDR[5] A[4]

ADDR[4] A[3]

ADDR[3] A[2]

ADDR[2] A[1]

ADDR[1] A[0]

ADSP-BF533 Blackfin Processor Hardware Reference 17-53

External Bus Interface Unit

During read transfers to SDRAM banks, reads are always done of all bytes
in the bank regardless of the transfer size. This means for 16-bit SDRAM
banks, SDQM[1:0] are all 0s.

The only time that the SDQM[1:0] pins are high is when bytes are masked
during write transfers to the SDRAM. At all other times, the SDQM[1:0]
pins are held low.

SDC Operation
The SDC uses a burst length = 1 for read and write operations. Whenever
a page miss occurs, the SDC executes a Precharge command followed by a
Bank Activate command before executing the Read or Write command. If
there is a page hit, the Read or Write command can be given immediately
without requiring the Precharge command.

For SDRAM Read commands, there is a latency from the start of the Read
command to the availability of data from the SDRAM, equal to the CAS
latency. This latency is always present for any single read transfer. Subse-
quent reads do not have latency.

A programmable refresh counter is provided. It can be programmed to
generate background Auto-Refresh cycles at the required refresh rate based
on the clock frequency used. The refresh counter period is specified with
the RDIV field in the SDRAM Refresh Rate Control register.

Table 17-8. SDQM[1:0] Encodings During Writes

Internal Address
IA[0]

Internal Transfer Size

byte 2 bytes 4 bytes

0 SDQM[1] = 1
SDQM[0] = 0

SDQM[1] = 0
SDQM[0] = 0

SDQM[1] = 0
SDQM[0] = 0

1 SDQM[1] = 0
SDQM[0] = 1

SDRAM Controller (SDC)

17-54 ADSP-BF533 Blackfin Processor Hardware Reference

To allow Auto-Refresh commands to execute in parallel with any AMC
access, a separate A10 pin (SA10) is provided. All the SDRAM internal
banks are precharged before issuing an Auto-Refresh command.

The internal 32-bit non-multiplexed address is multiplexed into a row
address, a column address, a bank select address, and data masks. Bit0 for
16-bit wide SDRAMs is used to generate the data masks. The next lowest
bits are mapped into the column address, next bits are mapped into the
row address, and the final two bits are mapped into the internal bank
address. This mapping is based on the EBCAW and EBSZ values programmed
into the SDRAM Memory Bank Control register.

SDC Configuration
After a processor’s hardware or software reset, the SDC clocks are enabled;
however, the SDC must be configured and initialized. Before program-
ming the SDC and executing the powerup sequence, ensure the clock to
the SDRAM is enabled after the power has stabilized for the proper
amount of time (as specified by the SDRAM). In order to set up the SDC
and start the SDRAM powerup sequence for the SDRAMs, the SDRAM
Refresh Rate Control register (EBIU_SDRRC), the SDRAM Memory Bank
Control register (EBIU_SDBCTL), and SDRAM Memory Global Control
register (EBIU_SDGCTL) must be written, and a transfer must be started to
SDRAM address space. The SDRS bit of the SDRAM Control Status regis-
ter can be checked to determine the current state of the SDC. If this bit is
set, the SDRAM powerup sequence has not been initiated.

The RDIV field of the EBIU_SDRRC register should be written to set the
SDRAM refresh rate.

The EBIU_SDBCTL register should be written to describe the sizes and
SDRAM memory configuration used (EBSZ and EBCAW) and to enable the
external bank (EBE). Note until the SDRAM powerup sequence has been
started, any access to SDRAM address space, regardless of the state of the
EBE bit, generates an internal bus error, and the access does not occur

ADSP-BF533 Blackfin Processor Hardware Reference 17-55

External Bus Interface Unit

externally. For more information, see “Error Detection” on page 17-8.
After the SDRAM powerup sequence has completed, if the external bank
is disabled, any transfer to it results in a hardware error interrupt, and the
SDRAM transfer does not occur.

The EBIU_SDGCTL register is written:

• to set the SDRAM cycle timing options (CL, TRAS, TRP, TRCD, TWR,
EBUFE)

• to enable the SDRAM clock (SCTLE)

• to select and enable the start of the SDRAM powerup sequence
(PSM, PSSE)

Note if SCTLE is disabled, any access to SDRAM address space generates an
internal bus error and the access does not occur externally. For more infor-
mation, see “Error Detection” on page 17-8.

Once the PSSE bit in the EBIU_SDGCTL register is set to 1, and a transfer
occurs to enabled SDRAM address space, the SDC initiates the SDRAM
powerup sequence. The exact sequence is determined by the PSM bit in the
EBIU_SDGCTL register. The transfer used to trigger the SDRAM powerup
sequence can be either a read or a write. This transfer occurs when the
SDRAM powerup sequence has completed. This initial transfer takes
many cycles to complete since the SDRAM powerup sequence must take
place.

SDRAM Controller (SDC)

17-56 ADSP-BF533 Blackfin Processor Hardware Reference

SDC Commands
This section provides a description of each of the commands that the SDC
uses to manage the SDRAM interface. These commands are initiated
automatically upon a memory read or memory write. A summary of the
various commands used by the on-chip controller for the SDRAM inter-
face is as follows.

• Precharge All: Precharges all banks

• Single Precharge: Precharges a single bank

• Bank Activate: Activates a page in the required SDRAM internal
bank

• Load Mode Register: Initializes the SDRAM operation parameters
during the powerup sequence

• Load Extended Mode Register: Initializes mobile SDRAM opera-
tion parameters during the powerup sequence

• Read/Write

• Auto-Refresh: Causes the SDRAM to execute a CAS before RAS
refresh

• Self-Refresh: Places the SDRAM in self-refresh mode, in which the
SDRAM powers down and controls its refresh operations internally

• NOP/Command Inhibit: No operation

Table 17-9 shows the SDRAM pin state during SDC commands.

ADSP-BF533 Blackfin Processor Hardware Reference 17-57

External Bus Interface Unit

Precharge Commands

The Precharge All command is given to precharge all internal banks at the
same time before executing an auto-refresh. For a page miss during reads
or writes in a specific internal SDRAM bank, the SDC uses the Single Pre-
charge command to that bank.

Table 17-9. Pin State During SDC Commands

Command SMS SCAS SRAS SWE SCKE SA10

Precharge All low high low low high high

Single
Precharge

low high low low high low

Bank Activate low high low high high

Load Mode
Register

low low low low high

Load Extended
Mode Register

low low low low high low

Read low low high high high low

Write low low high low high low

Auto-Refresh low low low high high

Self-Refresh low low low high low

NOP low high high high high

Command
Inhibit

high high high high high

SDRAM Controller (SDC)

17-58 ADSP-BF533 Blackfin Processor Hardware Reference

Bank Activate Command

The Bank Activate command is required if the next data access is in a dif-
ferent page. The SDC executes the Precharge command, followed by a
Bank Activate command, to activate the page in the desired SDRAM
internal bank.

 The SDC supports bank interleaving (opening up to 4 internal
SDRAM banks at a time). This results in an effective size of 4
pages. The address mapping indicates the start address of each
internal bank.

 Bank interleaving is accomplished by switching between 4 internal
SDRAM banks without any stalls between the pages.

Load Mode Register Command

The Load Mode Register command initializes SDRAM operation parame-
ters. This command is a part of the SDRAM powerup sequence. The Load
Mode Register command uses the address bus of the SDRAM as data
input. The powerup sequence is initiated by writing 1 to the PSSE bit in
the SDRAM Memory Global Control register (EBIU_SDGCTL) and then
writing or reading from any enabled address within the SDRAM address
space to trigger the powerup sequence. The exact order of the powerup
sequence is determined by the PSM bit of the EBIU_SDGCTL register.

The Load Mode Register command initializes these parameters:

• Burst length = 1, bits 2–0, always 0

• Wrap type = sequential, bit 3, always 0

• Ltmode = latency mode (CAS latency), bits 6–4, programmable in
the EBIU_SDGCTL register

• Bits 14–7, always 0

ADSP-BF533 Blackfin Processor Hardware Reference 17-59

External Bus Interface Unit

While executing the Load Mode Register command, the unused address
pins are set to 0. During the two clock cycles following the Load Mode
Register command, the SDC issues only NOP commands.

For low power mobile SDRAMs that include an Extended Mode register,
this register is programmed during powerup sequence if the EMREN bit is
set in the EBIU_SDGCTL register.

The Extended Mode register is initialized with these parameters:

• Partial Array Self-Refresh, bits 2–0, bit 2 always 0, bits 1–0 pro-
grammable in EBIU_SDGCTL

• Temperature Compensated Self-Refresh, bits 4–3, bit 3 always 1,
bit 4 programmable in EBIU_SDGCTL

• Bits 12–5, always 0, and bit 13 always 1

Read/Write Command

A Read/Write command is executed if the next read/write access is in the
present active page. During the Read command, the SDRAM latches the
column address. The delay between Activate and Read commands is deter-
mined by the tRCD parameter. Data is available from the SDRAM after
the CAS latency has been met.

In the Write command, the SDRAM latches the column address. The
write data is also valid in the same cycle. The delay between Activate and
Write commands is determined by the tRCD parameter.

The SDC does not use the auto-precharge function of SDRAMs, which is
enabled by asserting SA10 high during a Read or Write command.

SDRAM Controller (SDC)

17-60 ADSP-BF533 Blackfin Processor Hardware Reference

Auto-Refresh Command

The SDRAM internally increments the refresh address counter and causes
a CAS before RAS (CBR) refresh to occur internally for that address when
the Auto-Refresh command is given. The SDC generates an Auto-Refresh
command after the SDC refresh counter times out. The RDIV value in the
SDRAM Refresh Rate Control register must be set so that all addresses are
refreshed within the tREF period specified in the SDRAM timing specifi-
cations. This command is issued to the external bank whether or not it is
enabled (EBE in the SDRAM Memory Global Control register). Before
executing the Auto-Refresh command, the SDC executes a Precharge All
command to the external bank. The next Activate command is not given
until the tRFC specification (tRFC = tRAS + tRP) is met.

Auto-Refresh commands are also issued by the SDC as part of the pow-
erup sequence and also after exiting Self-Refresh mode.

Self-Refresh Command

The Self-Refresh command causes refresh operations to be performed
internally by the SDRAM, without any external control. This means that
the SDC does not generate any Auto-Refresh cycles while the SDRAM is
in Self-Refresh mode. Before executing the Self-Refresh command, all
internal banks are precharged. Self-Refresh mode is enabled by writing a 1
to the SRFS bit of the SDRAM Memory Global Control register
(EBIU_SDGCTL). After issuing the Self-Refresh command, the SDC drives
SCKE low. This puts the SDRAM into a power down mode (SCKE = 0,
SRAS/SMS/SCAS/SWE = 1) Before exiting Self-Refresh mode, the SDC asserts
SCKE. The SDRAM remains in Self-Refresh mode for at least tRAS and
until an internal access to SDRAM space occurs. When an internal access
occurs causing the SDC to exit the SDRAM from Self-Refresh mode, the
SDC waits to meet the tXSR specification (tXSR = tRAS + tRP) and then
issues an Auto-Refresh command. After the Auto-Refresh command, the
SDC waits for the tRFC specification (tRFC = tRAS + tRP) to be met before
executing the Activate command for the transfer that caused the SDRAM

ADSP-BF533 Blackfin Processor Hardware Reference 17-61

External Bus Interface Unit

to exit Self-Refresh mode. Therefore, the latency from when a transfer is
received by the SDC while in Self-Refresh mode, until the Activate com-
mand occurs for that transfer, is 2  (tRAS + tRP).

Note CLKOUT is not disabled by the SDC during Self-Refresh mode. How-
ever, software may disable the clock by clearing the SCTLE bit in
EBIU_SDGCTL. The application software should ensure that all applicable
clock timing specifications are met before the transfer to SDRAM address
space which causes the controller to exit Self-Refresh mode. If a transfer
occurs to SDRAM address space when the SCTLE bit is cleared, an internal
bus error is generated, and the access does not occur externally, leaving the
SDRAM in Self-Refresh mode. For more information, see “Error Detec-
tion” on page 17-8.

No Operation/Command Inhibit Commands

The No Operation (NOP) command to the SDRAM has no effect on
operations currently in progress. The Command Inhibit command is the
same as a NOP command; however, the SDRAM is not chip-selected.
When the SDC is actively accessing the SDRAM but needs to insert addi-
tional commands with no effect, the NOP command is given. When the
SDC is not accessing the SDRAM, the Command Inhibit command is
given.

SDRAM Timing Specifications
To support key timing requirements and powerup sequences for different
SDRAM vendors, the SDC provides programmability for tRAS, tRP, tRCD,
tWR, and the powerup sequence mode. (For more information, see
“EBIU_SDGCTL Register” on page 17-33.) CAS latency should be pro-
grammed in the EBIU_SDGCTL register based on the frequency of operation.
(Refer to the SDRAM vendor’s data sheet for more information.)

SDRAM Controller (SDC)

17-62 ADSP-BF533 Blackfin Processor Hardware Reference

For other parameters, the SDC assumes:

• Bank Cycle Time: tRC = tRAS + tRP

• Refresh Cycle Time: tRFC = tRAS + tRP

• Exit Self-Refresh Time: tXSR = tRAS + tRP

• Load Mode Register to Activate Time: tMRD or tRSC = 3 clock
cycles

• Page-Miss Penalty = tRP + tRCD

• Row (Bank A) to Row (Bank B) Active Time: tRRD= tRCD +1

SDRAM Performance
Table 7-2 on page 7-11 lists the data throughput rates for the core or
DMA read/write accesses to 16-bit wide SDRAM. For this example,
assume all cycles are SCLK cycles and the following SCLK frequency and
SDRAM parameters are used:

• SCLK frequency = 133 MHz

• CAS latency = 2 cycles (CL = 2)

• No SDRAM buffering (EBUFE = 0)

• RAS precharge (tRP) = 2 cycles (TRP = 2)

• RAS to CAS delay (tRCD) = 2 cycles (TRCD = 2)

• Active command time (tRAS) = 5 cycles (TRAS = 5)

When the external buffer timing (EBUFE = 1 in the SDRAM Memory
Global Control register) and/or CAS latency of 3 (CL = 11 in the SDRAM
Memory Global Control register) is used, all accesses take one extra cycle
for each feature selected.

ADSP-BF533 Blackfin Processor Hardware Reference 17-63

External Bus Interface Unit

Bus Request and Grant
The processor can relinquish control of the data and address buses to an
external device. The processor three-states its memory interface to allow
an external controller to access either external asynchronous or synchro-
nous memory parts.

Operation
When the external device requires access to the bus, it asserts the Bus
Request (BR) signal. The BR signal is arbitrated with EAB requests. If no
internal request is pending, the external bus request will be granted. The
processor initiates a bus grant by:

• Three-stating the data and address buses and the asynchronous
memory control signals. The synchronous memory control signals
can optionally be three-stated.

• Asserting the Bus Grant (BG) signal.

The processor may halt program execution if the bus is granted to an
external device and an instruction fetch or data read/write request is made
to external memory. When the external device releases BR, the processor
deasserts BG and continues execution from the point at which it stopped.

The processor asserts the BGH pin when it is ready to start another external
port access, but is held off because the bus was previously granted.

When the bus has been granted, the BGSTAT bit in the SDSTAT register is
set. This bit can be used by the processor to check the bus status to avoid
initiating a transaction that would be delayed by the external bus grant.

Bus Request and Grant

17-64 ADSP-BF533 Blackfin Processor Hardware Reference

ADSP-BF533 Blackfin Processor Hardware Reference 18-1

18 SYSTEM DESIGN

This chapter provides hardware, software, and system design information
to aid users in developing systems based on the Blackfin processor. The
design options implemented in a system are influenced by cost, perfor-
mance, and system requirements. In many cases, design issues cited here
are discussed in detail in other sections of this manual. In such cases, a ref-
erence appears to the corresponding section of the text, instead of
repeating the discussion in this chapter.

Pin Descriptions
Refer to ADSP-BF531/ADSP-BF532/ADSP-BF533 Embedded Processor
Data Sheet for pin information, including pin numbers for the 160-lead
PBGA package.

Recommendations for Unused Pins
Refer to ADSP-BF531/ADSP-BF532/ADSP-BF533 Embedded Processor
Data Sheet for detailed pin descriptions.

Resetting the Processor
In addition to the Hardware Reset mode provided via the RESET pin, the
processor supports several software reset modes. For detailed information
on the various modes, see “System Reset and Powerup” on page 3-12.

The processor state after reset is described in “Reset State” on page 3-10.

Booting the Processor

18-2 ADSP-BF533 Blackfin Processor Hardware Reference

Booting the Processor
The processor can be booted via a variety of methods. These include exe-
cuting from external 16-bit memory, booting from a ROM configured to
load code from 8-bit flash memory, or booting from a serial ROM (8-bit,
16-bit, or 24-bit address range). For more information on boot modes, see
“Booting Methods” on page 3-18.

Figure 18-1 and Figure 18-2 show the connections necessary for 8-bit and
16-bit booting, respectively. Notice that the address connections are made
in the same manner for both 8- and 16-bit peripherals. Only the lower
byte of each 16-bit word is accessed if byte-wide memory is used.

For example, on core reads of the form:

R0 = W[P0] (Z) ; //P0 points to a 16-bit aligned ASYNC memory

location

only the lower 8 bits of R0 contain the actual value read from the 8-bit
device.

For core writes of the form:

W[P0] = R0.L ; //P0 points to a 16-bit aligned ASYNC memory

location

The 8-bit value to be written to the 8-bit device should be first loaded into
the lower byte of R0.

ADSP-BF533 Blackfin Processor Hardware Reference 18-3

System Design

Figure 18-1. Interface to 8-Bit SRAM or Flash

Figure 18-2. Interface to 16-Bit SRAM or Flash

ADSP-BF533
ADSP-BF532
ADSP-BF531

8-BIT SRAM
OR FLASH

DATA[7:0]

ARDY

D[7:0]

ADDR[N+1:1] A[N:0]

ARE

ABE[1:0]

AWE

AOE

AMS[X] AMS[X]

R/W OR WR

OE

ADSP-BF533
ADSP-BF532
ADSP-BF531

DATA[15:0]

ARDY

R/W OR WR

16-BIT SRAM
OR FLASH

BE[1:0]

D[15:0]

ADDR[N+1:1] A[N:0]

ARE

AWE

AOE OE

AMS[X]

ABE[1:0]

AMS[X]

Managing Clocks

18-4 ADSP-BF533 Blackfin Processor Hardware Reference

Managing Clocks
Systems can drive the clock inputs with a crystal oscillator or a buffered,
shaped clock derived from an external clock oscillator. The external clock
connects to the processor’s CLKIN pin. It is not possible to halt, change, or
operate CLKIN below the specified frequency during normal operation. The
processor uses the clock input (CLKIN) to generate on-chip clocks. These
include the core clock (CCLK) and the peripheral clock (SCLK).

Managing Core and System Clocks
The processor produces a multiplication of the clock input provided on
the CLKIN pin to generate the PLL VCO clock. This VCO clock is divided to
produce the core clock (CCLK) and the system clock (SCLK). The core clock
is based on a divider ratio that is programmed via the CSEL bit settings in
the PLL_DIV register. The system clock is based on a divider ratio that is
programmed via the SSEL bit settings in the PLL_DIV register. For detailed
information about how to set and change CCLK and SCLK frequencies, see
Chapter 8, “Dynamic Power Management”.

Configuring and Servicing Interrupts
A variety of interrupts are available. They include both core and periph-
eral interrupts. The processor assigns default core priorities to system-level
interrupts. However, these system interrupts can be remapped via the Sys-
tem Interrupt Assignment registers (SIC_IARx). For more information, see
“System Interrupt Assignment Registers (SIC_IARx)” on page 4-29.

The processor core supports nested and non-nested interrupts, as well as
self-nested interrupts. For explanations of the various modes of servicing
events, see “Nesting of Interrupts” on page 4-50.

ADSP-BF533 Blackfin Processor Hardware Reference 18-5

System Design

Semaphores
Semaphores provide a mechanism for communication between multiple
processors or processes/threads running in the same system. They are used
to coordinate resource sharing. For instance, if a process is using a particu-
lar resource and another process requires that same resource, it must wait
until the first process signals that it is no longer using the resource. This
signalling is accomplished via semaphores.

Semaphore coherency is guaranteed by using the Test and Set Byte
(Atomic) instruction (TESTSET). The TESTSET instruction performs these
functions.

• Loads the half word at memory location pointed to by a P-register.
The P-register must be aligned on a half-word boundary.

• Sets CC if the value is equal to zero.

• Stores the value back in its original location (but with the most sig-
nificant bit (MSB) of the low byte set to 1).

The events triggered by TESTSET are atomic operations. The bus for the
memory where the address is located is acquired and not relinquished
until the store operation completes. In multithreaded systems, the
TESTSET instruction is required to maintain semaphore consistency.

To ensure that the store operation is flushed through any store or write
buffers, issue an SSYNC instruction immediately after semaphore release.

The TESTSET instruction can be used to implement binary semaphores or
any other type of mutual exclusion method. The TESTSET instruction sup-
ports a system-level requirement for a multicycle bus lock mechanism.

The processor restricts use of the TESTSET instruction to the external mem-
ory region only. Use of the TESTSET instruction to address any other area
of the memory map may result in unreliable behavior.

Data Delays, Latencies and Throughput

18-6 ADSP-BF533 Blackfin Processor Hardware Reference

Example Code for Query Semaphore
Listing 18-1 provides an example of a query semaphore that checks the
availability of a shared resource.

Listing 18-1. Query Semaphore

/* Query semaphore. Denotes "Busy" if its value is nonzero. Wait

until free (or reschedule thread-- see note below). P0 holds

address of semaphore. */

QUERY:

TESTSET (P0) ;

IF !CC JUMP QUERY ;

/* At this point, semaphore has been granted to current thread,

and all other contending threads are postponed because semaphore

value at [P0] is nonzero. Current thread could write thread_id to

semaphore location to indicate current owner of resource. */

R0.L = THREAD_ID ;

B[P0] = R0 ;

/* When done using shared resource, write a zero byte to [P0] */

R0 = 0 ;

B[P0] = R0 ;

SSYNC ;

/* NOTE: Instead of busy idling in the QUERY loop, one can use an

operating system call to reschedule the current thread. */

Data Delays, Latencies and Throughput
For detailed information on latencies and performance estimates on the
DMA and External Memory buses, refer to Chapter 7, “Chip Bus
Hierarchy”.

ADSP-BF533 Blackfin Processor Hardware Reference 18-7

System Design

Bus Priorities
For an explanation of prioritization between the various internal buses,
refer to Chapter 7, “Chip Bus Hierarchy”.

External Memory Design Issues
This section describes design issues related to external memory.

Example Asynchronous Memory Interfaces
This section shows glueless connections to 16-bit wide SRAM. Note this
interface does not require external assertion of ARDY, since the internal wait
state counter is sufficient for deterministic access times of memories.

Figure 18-3 shows the system interconnect required to support 16-bit
memories. The programming model must ensure that data is only accessed
on 16-bit boundaries.

Figure 18-3. Interface to 16-Bit SRAM

ADDR[N+1:2]

DATA[15:0]

ARDY

CE

OE

R/W

SRAM

BE[1:0]

A[N:1]

D[15:0]

ADDR[1]

ADSP-BF533
ADSP-BF532
ADSP-BF531

A[0]

AWE

AOE

AMS[X]

ARE

ABE[1:0]

External Memory Design Issues

18-8 ADSP-BF533 Blackfin Processor Hardware Reference

Using SDRAMs Smaller Than 16M Byte
It is possible to use SDRAMs smaller than 16M byte on the
ADSP-BF531/ADSP-BF532/ADSP-BF533, as long as it is understood
how the resulting memory map is altered. Figure 18-4 shows an example
where a 2M byte SDRAM (512K x 16 bits x 2 banks) is mapped to the
external memory interface. In this example, there are 11 row addresses and
8 column addresses per bank. Referring to Table 17-5, the lowest available
bank size (16M byte) for a device with 8 column addresses has 2 Bank
Address lines (IA[23:22]) and 13 Row Address lines (IA[21:9]). Therefore,
1 processor Bank Address line and 2 Row Address lines are unused when
hooking up to the SDRAM in the example. This causes aliasing in the
processor’s external memory map, which results in the SDRAM being
mapped into noncontiguous regions of the processor’s memory space.

Referring to the table in Figure 18-4, note that each line in the table cor-

responds to 219 bytes, or 512K byte. Thus, the mapping of the 2M byte
SDRAM is noncontiguous in Blackfin memory, as shown by the memory
mapping in the left side of the figure.

Managing SDRAM Refresh During PLL Transitions
Since the processor’s SDRAM refresh rate is based on the SCLK frequency,
lowering SCLK after configuring SDRAM can result in an improper refresh
rate, which could compromise the data stored in SDRAM. Raising SCLK
after configuring SDRAM, however, would merely result in a less efficient
use of SDRAM, since the processor would just refresh the memory at an
unnecessarily fast rate.

ADSP-BF533 Blackfin Processor Hardware Reference 18-9

System Design

Figure 18-4. Using Small SDRAMs

BANK
ADDRESS

ROW ADDRESS

IA22IA23 IA21 IA20 IA19

0

1

1

UNAVAILABLE COMBINATIONS ARE SHADED

1

X XX

1

X

1

IA
23

 =
 0

0 111 0

0 011 1

0 011 0

0 101 1

0 101 0

0

0

01

1 01

0

0

1

0 010 0

0 100 1

0 100 0

0 000 1

0 000 0

0 001 1

0 001 0

0 110 1

1M BYTE

1M BYTE

BLACKFIN MEMORY MAP

0x0000 0000

IA
23

 =
 1

EXAMPLE: 2M BYTE SDRAM WITH
512K x 16 x 2 BANKS,
11 ROW ADDRESSES AND
8 COLUMN ADDRESSES PER BANK

External Memory Design Issues

18-10 ADSP-BF533 Blackfin Processor Hardware Reference

In systems where SDRAM is used, the recommended procedure for chang-
ing the PLL VCO frequency is:

1. Issue an SSYNC instruction to ensure all pending memory opera-
tions have completed.

2. Set the SDRAM to Self-Refresh mode by writing a 1 to the SRFS bit
of EBIU_SDGCTL.

3. Execute the desired PLL programming sequence (refer to
Chapter 8, “Dynamic Power Management” for details).

4. After the wakeup occurs that signifies the PLL has settled to the
new VCO frequency, reprogram the SDRAM Refresh Rate Control
register (EBIU_SDRRC) with a value appropriate to the new SCLK
frequency.

5. Bring the SDRAM out of Self-Refresh mode by clearing the SRFS
bit of EBIU_SDGCTL. If it is desired to change the SDRAM Mode
register, write these changes to EBIU_SDGCTL as well, making sure
the PSSE bit is set.

Changing the SCLK frequency using the SSEL bits in PLL_DIV, as opposed
to actually changing the VCO frequency, should be done using these steps:

1. Issue an SSYNC instruction to ensure all pending memory opera-
tions have completed.

2. Set the SDRAM to Self-Refresh mode by writing a 1 to the SRFS bit
of EBIU_SDGCTL.

3. Execute the desired write to the SSEL bits.

ADSP-BF533 Blackfin Processor Hardware Reference 18-11

System Design

4. Reprogram the SDRAM Refresh Rate Control register
(EBIU_SDRRC) with a value appropriate to the new SCLK frequency.

5. Bring the SDRAM out of Self-Refresh mode by clearing the SRFS
bit of EBIU_SDGCTL. If it is desired to change the SDRAM Mode
register, write these changes to EBIU_SDGCTL as well, making sure
the PSSE bit is set.

Note steps 2 and 4 are not strictly necessary if changing SCLK to a higher
value, but they should always be performed when decreasing SCLK.

For more information on SDRAM refresh, refer to “SDRAM Controller
(SDC)” in Chapter 17, External Bus Interface Unit.

Avoiding Bus Contention
Because the three-stated data bus is shared by multiple devices in a system,
be careful to avoid contention. Contention causes excessive power dissipa-
tion and can lead to device failure. Contention occurs during the time one
device is getting off the bus and another is getting on. If the first device is
slow to three-state and the second device is quick to drive, the devices
contend.

Contention can occur in two cases. The first case is a read followed by a
write to the same memory space. In this case, the data bus drivers can
potentially contend with those of the memory device addressed by the
read. The second case is back-to-back reads from two different memory
spaces. In this case, the two memory devices addressed by the two reads
can potentially contend at the transition between the two read operations.

To avoid contention, program the turnaround time (Bank Transition
Time) appropriately in the Asynchronous Memory Bank Control regis-
ters. This feature allows software to set the number of clock cycles
between these types of accesses on a bank-by-bank basis. Minimally, the
External Bus Interface Unit (EBIU) provides one cycle for the transition
to occur.

High Frequency Design Considerations

18-12 ADSP-BF533 Blackfin Processor Hardware Reference

High Frequency Design Considerations
Because the processor can operate at very fast clock frequencies, signal
integrity and noise problems must be considered for circuit board design
and layout. The following sections discuss these topics and suggest various
techniques to use when designing and debugging signal processing
systems.

Point-to-Point Connections on Serial Ports
Although the serial ports may be operated at a slow rate, the output drivers
still have fast edge rates and for longer distances the drivers may require
source termination.

You can add a series termination resistor near the pin for point-to-point
connections. Typically, serial port applications use this termination
method when distances are greater than 6 inches. For details, see the refer-
ence source in “Recommended Reading” on page 18-15 for suggestions on
transmission line termination. Also, see the processor data sheet for rise
and fall time data for the output drivers.

Signal Integrity
The capacitive loading on high-speed signals should be reduced as much
as possible. Loading of buses can be reduced by using a buffer for devices
that operate with wait states (for example, DRAMs). This reduces the
capacitance on signals tied to the zero-wait-state devices, allowing these
signals to switch faster and reducing noise-producing current spikes.

Signal run length (inductance) should also be minimized to reduce ring-
ing. Extra care should be taken with certain signals such as external
memory, read, write, and acknowledge strobes.

ADSP-BF533 Blackfin Processor Hardware Reference 18-13

System Design

Other recommendations and suggestions to promote signal integrity:

• Use more than one ground plane on the Printed Circuit Board
(PCB) to reduce crosstalk. Be sure to use lots of vias between the
ground planes. These planes should be in the center of the PCB.

• Keep critical signals such as clocks, strobes, and bus requests on a
signal layer next to a ground plane and away from or laid out per-
pendicular to other non-critical signals to reduce crosstalk.

• Design for lower transmission line impedances to reduce crosstalk
and to allow better control of impedance and delay.

• Experiment with the board and isolate crosstalk and noise issues
from reflection issues. This can be done by driving a signal wire
from a pulse generator and studying the reflections while other
components and signals are passive.

Decoupling Capacitors and Ground Planes
Ground planes must be used for the ground and power supplies. The
capacitors should be placed very close to the VDDEXT and VDDINT pins of the
package as shown in Figure 18-5. Use short and fat traces for this. The
ground end of the capacitors should be tied directly to the ground plane
inside the package footprint of the processor (underneath it, on the bot-
tom of the board), not outside the footprint. A surface-mount capacitor is
recommended because of its lower series inductance.

High Frequency Design Considerations

18-14 ADSP-BF533 Blackfin Processor Hardware Reference

Connect the power plane to the power supply pins directly with minimum
trace length. The ground planes must not be densely perforated with vias
or traces as their effectiveness is reduced. In addition, there should be sev-
eral large tantalum capacitors on the board.

 Designs can use either bypass placement case or combinations of
the two. Designs should try to minimize signal feedthroughs that
perforate the ground plane.

Figure 18-5. Bypass Capacitor Placement

CASE 1:
BYPASS CAPACITORS ON NON-
COMPONENT (BOTTOM) SIDE OF
BOARD, BENEATH PACKAGE

a

B
ADSP -BF533

CASE 2:
BYPASS CAPACITORS ON
COMPONENT (TOP) SIDE OF
BOARD, AROUND PACKAGE

ADSP-BF533 Blackfin Processor Hardware Reference 18-15

System Design

Oscilloscope Probes
When making high-speed measurements, be sure to use a “bayonet” type
or similarly short (< 0.5 inch) ground clip, attached to the tip of the oscil-
loscope probe. The probe should be a low-capacitance active probe
with 3 pF or less of loading. The use of a standard ground clip with
4 inches of ground lead causes ringing to be seen on the displayed trace
and makes the signal appear to have excessive overshoot and undershoot.
To see the signals accurately, a 1 GHz or better sampling oscilloscope is
needed.

Recommended Reading
 For more information, refer to High-Speed Digital Design: A Handbook of
Black Magic, Johnson & Graham, Prentice Hall, Inc., ISBN
0-13-395724-1.

This book is a technical reference that covers the problems encountered in
state of the art, high-frequency digital circuit design. It is an excellent
source of information and practical ideas. Topics covered in the book
include:

• High-speed Properties of Logic Gates

• Measurement Techniques

• Transmission Lines

• Ground Planes and Layer Stacking

• Terminations

• Vias

• Power Systems

• Connectors

High Frequency Design Considerations

18-16 ADSP-BF533 Blackfin Processor Hardware Reference

• Ribbon Cables

• Clock Distribution

• Clock Oscillators

ADSP-BF533 Blackfin Processor Hardware Reference A-1

A BLACKFIN PROCESSOR
CORE MMR ASSIGNMENTS

The Blackfin processor’s memory-mapped registers (MMRs) are in the
address range 0xFFE0 0000 – 0xFFFF FFFF.

 All core MMRs must be accessed with a 32-bit read or write access.

This appendix lists core MMR addresses and register names. To find more
information about an MMR, refer to the page shown in the “See Section”
column. When viewing the PDF version of this document, click a refer-
ence in the “See Section” column to jump to additional information about
the MMR.

L1 Data Memory Controller Registers
L1 Data Memory Controller registers (0xFFE0 0000 – 0xFFE0 0404)

Table A-1. L1 Data Memory Controller Registers

Memory-Mapped
Address

Register Name See Section

0xFFE0 0004 DMEM_CONTROL “DMEM_CONTROL Register” on
page 6-28

0xFFE0 0008 DCPLB_STATUS “DCPLB_STATUS and ICPLB_STATUS
Registers” on page -61

0xFFE0 000C DCPLB_FAULT_ADDR “DCPLB_FAULT_ADDR and
ICPLB_FAULT_ADDR Registers” on
page 6-63

0xFFE0 0100 DCPLB_ADDR0 “DCPLB_ADDRx Registers” on page 6-59

L1 Data Memory Controller Registers

A-2 ADSP-BF533 Blackfin Processor Hardware Reference

0xFFE0 0104 DCPLB_ADDR1 “DCPLB_ADDRx Registers” on page 6-59

0xFFE0 0108 DCPLB_ADDR2 “DCPLB_ADDRx Registers” on page 6-59

0xFFE0 010C DCPLB_ADDR3 “DCPLB_ADDRx Registers” on page 6-59

0xFFE0 0110 DCPLB_ADDR4 “DCPLB_ADDRx Registers” on page 6-59

0xFFE0 0114 DCPLB_ADDR5 “DCPLB_ADDRx Registers” on page 6-59

0xFFE0 0118 DCPLB_ADDR6 “DCPLB_ADDRx Registers” on page 6-59

0xFFE0 011C DCPLB_ADDR7 “DCPLB_ADDRx Registers” on page 6-59

0xFFE0 0120 DCPLB_ADDR8 “DCPLB_ADDRx Registers” on page 6-59

0xFFE0 0124 DCPLB_ADDR9 “DCPLB_ADDRx Registers” on page 6-59

0xFFE0 0128 DCPLB_ADDR10 “DCPLB_ADDRx Registers” on page 6-59

0xFFE0 012C DCPLB_ADDR11 “DCPLB_ADDRx Registers” on page 6-59

0xFFE0 0130 DCPLB_ADDR12 “DCPLB_ADDRx Registers” on page 6-59

0xFFE0 0134 DCPLB_ADDR13 “DCPLB_ADDRx Registers” on page 6-59

0xFFE0 0138 DCPLB_ADDR14 “DCPLB_ADDRx Registers” on page 6-59

0xFFE0 013C DCPLB_ADDR15 “DCPLB_ADDRx Registers” on page 6-59

0xFFE0 0200 DCPLB_DATA0 “DCPLB_DATAx Registers” on page 6-57

0xFFE0 0204 DCPLB_DATA1 “DCPLB_DATAx Registers” on page 6-57

0 xFFE0 0208 DCPLB_DATA2 “DCPLB_DATAx Registers” on page 6-57

0xFFE0 020C DCPLB_DATA3 “DCPLB_DATAx Registers” on page 6-57

0xFFE0 0210 DCPLB_DATA4 “DCPLB_DATAx Registers” on page 6-57

0xFFE0 0214 DCPLB_DATA5 “DCPLB_DATAx Registers” on page 6-57

0xFFE0 0218 DCPLB_DATA6 “DCPLB_DATAx Registers” on page 6-57

0xFFE0 021C DCPLB_DATA7 “DCPLB_DATAx Registers” on page 6-57

0xFFE0 0220 DCPLB_DATA8 “DCPLB_DATAx Registers” on page 6-57

0xFFE0 0224 DCPLB_DATA9 “DCPLB_DATAx Registers” on page 6-57

Table A-1. L1 Data Memory Controller Registers (Cont’d)

Memory-Mapped
Address

Register Name See Section

ADSP-BF533 Blackfin Processor Hardware Reference A-3

Blackfin Processor Core MMR Assignments

L1 Instruction Memory Controller
Registers

L1 Instruction Memory Controller registers (0xFFE0 1004 –
0xFFE0 1404)

0xFFE0 0228 DCPLB_DATA10 “DCPLB_DATAx Registers” on page 6-57

0xFFE0 022C DCPLB_DATA11 “DCPLB_DATAx Registers” on page 6-57

0xFFE0 0230 DCPLB_DATA12 “DCPLB_DATAx Registers” on page 6-57

0xFFE0 0234 DCPLB_DATA13 “DCPLB_DATAx Registers” on page 6-57

0xFFE0 0238 DCPLB_DATA14 “DCPLB_DATAx Registers” on page 6-57

0xFFE0 023C DCPLB_DATA15 “DCPLB_DATAx Registers” on page 6-57

0xFFE0 0300 DTEST_COMMAND “DTEST_COMMAND Register” on
page 6-44

0xFFE0 0400 DTEST_DATA0 “DTEST_DATA0 Register” on page 6-45

0xFFE0 0404 DTEST_DATA1 “DTEST_DATA1 Register” on page 6-45

Table A-2. L1 Instruction Memory Controller Registers

Memory-Mapped
Address

Register Name See Section

0xFFE0 1004 IMEM_CONTROL “IMEM_CONTROL Register” on page 6-9

0xFFE0 1008 ICPLB_STATUS “DCPLB_STATUS and ICPLB_STATUS
Registers” on page 6-61

0xFFE0 100C ICPLB_FAULT_ADDR “DCPLB_FAULT_ADDR and
ICPLB_FAULT_ADDR Registers” on
page 6-63

0xFFE0 1100 ICPLB_ADDR0 “ICPLB_ADDRx Registers” on page 6-60

Table A-1. L1 Data Memory Controller Registers (Cont’d)

Memory-Mapped
Address

Register Name See Section

L1 Instruction Memory Controller Registers

A-4 ADSP-BF533 Blackfin Processor Hardware Reference

0xFFE0 1104 ICPLB_ADDR1 “ICPLB_ADDRx Registers” on page 6-60

0xFFE0 1108 ICPLB_ADDR2 “ICPLB_ADDRx Registers” on page 6-60

0xFFE0 110C ICPLB_ADDR3 “ICPLB_ADDRx Registers” on page 6-60

0xFFE0 1110 ICPLB_ADDR4 “ICPLB_ADDRx Registers” on page 6-60

0xFFE0 1114 ICPLB_ADDR5 “ICPLB_ADDRx Registers” on page 6-60

0xFFE0 1118 ICPLB_ADDR6 “ICPLB_ADDRx Registers” on page 6-60

0xFFE0 111C ICPLB_ADDR7 “ICPLB_ADDRx Registers” on page 6-60

0xFFE0 1120 ICPLB_ADDR8 “ICPLB_ADDRx Registers” on page 6-60

0xFFE0 1124 ICPLB_ADDR9 “ICPLB_ADDRx Registers” on page 6-60

0xFFE0 1128 ICPLB_ADDR10 “ICPLB_ADDRx Registers” on page 6-60

0xFFE0 112C ICPLB_ADDR11 “ICPLB_ADDRx Registers” on page 6-60

0xFFE0 1130 ICPLB_ADDR12 “ICPLB_ADDRx Registers” on page 6-60

0xFFE0 1134 ICPLB_ADDR13 “ICPLB_ADDRx Registers” on page 6-60

0xFFE0 1138 ICPLB_ADDR14 “ICPLB_ADDRx Registers” on page 6-60

0xFFE0 113C ICPLB_ADDR15 “ICPLB_ADDRx Registers” on page 6-60

0xFFE0 1200 ICPLB_DATA0 “ICPLB_DATAx Registers” on page 6-55

0xFFE0 1204 ICPLB_DATA1 “ICPLB_DATAx Registers” on page 6-55

0xFFE0 1208 ICPLB_DATA2 “ICPLB_DATAx Registers” on page 6-55

0xFFE0 120C ICPLB_DATA3 “ICPLB_DATAx Registers” on page 6-55

0xFFE0 1210 ICPLB_DATA4 “ICPLB_DATAx Registers” on page 6-55

0xFFE0 1214 ICPLB_DATA5 “ICPLB_DATAx Registers” on page 6-55

0xFFE0 1218 ICPLB_DATA6 “ICPLB_DATAx Registers” on page 6-55

0xFFE0 121C ICPLB_DATA7 “ICPLB_DATAx Registers” on page 6-55

0xFFE0 1220 ICPLB_DATA8 “ICPLB_DATAx Registers” on page 6-55

0xFFE0 1224 ICPLB_DATA9 “ICPLB_DATAx Registers” on page 6-55

Table A-2. L1 Instruction Memory Controller Registers (Cont’d)

Memory-Mapped
Address

Register Name See Section

ADSP-BF533 Blackfin Processor Hardware Reference A-5

Blackfin Processor Core MMR Assignments

Interrupt Controller Registers
Interrupt Controller registers (0xFFE0 2000 – 0xFFE0 2110)

0xFFE0 1228 ICPLB_DATA10 “ICPLB_DATAx Registers” on page 6-55

0xFFE0 122C ICPLB_DATA11 “ICPLB_DATAx Registers” on page 6-55

0xFFE0 1230 ICPLB_DATA12 “ICPLB_DATAx Registers” on page 6-55

0xFFE0 1234 ICPLB_DATA13 “ICPLB_DATAx Registers” on page 6-55

0xFFE0 1238 ICPLB_DATA14 “ICPLB_DATAx Registers” on page 6-55

0xFFE0 123C ICPLB_DATA15 “ICPLB_DATAx Registers” on page 6-55

0xFFE0 1300 ITEST_COMMAND “ITEST_COMMAND Register” on page -25

0XFFE0 1400 ITEST_DATA0 “ITEST_DATA0 Register” on page -26

0XFFE0 1404 ITEST_DATA1 “ITEST_DATA1 Register” on page 6-25

Table A-3. Interrupt Controller Registers

Memory-Mapped
Address

Register Name See Section

0xFFE0 2000 EVT0
(EMU)

“Core Event Vector Table” on page 4-38

0xFFE0 2004 EVT1
(RST)

“Core Event Vector Table” on page 4-38

0xFFE0 2008 EVT2
(NMI)

“Core Event Vector Table” on page 4-38

0xFFE0 200C EVT3
(EVX)

“Core Event Vector Table” on page 4-38

0xFFE0 2010 EVT4 “Core Event Vector Table” on page 4-38

Table A-2. L1 Instruction Memory Controller Registers (Cont’d)

Memory-Mapped
Address

Register Name See Section

Interrupt Controller Registers

A-6 ADSP-BF533 Blackfin Processor Hardware Reference

0xFFE0 2014 EVT5
(IVHW)

“Core Event Vector Table” on page 4-38

0xFFE0 2018 EVT6
(TMR)

“Core Event Vector Table” on page 4-38

0xFFE0 201C EVT7
(IVG7)

“Core Event Vector Table” on page 4-38

0xFFE0 2020 EVT8
(IVG8)

“Core Event Vector Table” on page 4-38

0xFFE0 2024 EVT9
(IVG9)

“Core Event Vector Table” on page 4-38

0xFFE0 2028 EVT10
(IVG10)

“Core Event Vector Table” on page 4-38

0xFFE0 202C EVT11
(IVG11)

“Core Event Vector Table” on page 4-38

0xFFE0 2030 EVT12
(IVG12)

“Core Event Vector Table” on page 4-38

0xFFE0 2034 EVT13
(IVG13)

“Core Event Vector Table” on page 4-38

0xFFE0 2038 EVT14
(IVG14)

“Core Event Vector Table” on page 4-38

0xFFE0 203C EVT15
(IVG15)

“Core Event Vector Table” on page 4-38

0xFFE0 2104 IMASK “IMASK Register” on page 4-33

0xFFE0 2108 IPEND “IPEND Register” on page 4-36

0xFFE0 2110 IPRIO “IPRIO Register and Write Buffer Depth” on
page 6-40

0xFFE0 210C ILAT “ILAT Register” on page 4-34

Table A-3. Interrupt Controller Registers (Cont’d)

Memory-Mapped
Address

Register Name See Section

ADSP-BF533 Blackfin Processor Hardware Reference A-7

Blackfin Processor Core MMR Assignments

Core Timer Registers
Core Timer registers (0xFFE0 3000 – 0xFFE0 300C)

Debug, MP, and Emulation Unit Registers
Debug, MP, and Emulation Unit registers (0xFFE0 5000 –
0xFFE0 5008)

For further details about these registers, see Chapter 21, “Debug” of the
Blackfin Processor Programming Reference.

Table A-4. Core Timer Registers

Memory-Mapped
Address

Register Name See Section

0xFFE0 3000 TCNTL “TCNTL Register” on page 15-46

0xFFE0 3004 TPERIOD “TPERIOD Register” on page 15-48

0xFFE0 3008 TSCALE “TSCALE Register” on page 15-49

0xFFE0 300C TCOUNT “TCOUNT Register” on page 15-48

Table A-5. Debug and Emulation Unit Registers

Memory-Mapped
Address

Register Name

0xFFE0 5000 DSPID

Trace Unit Registers

A-8 ADSP-BF533 Blackfin Processor Hardware Reference

Trace Unit Registers
Trace Unit registers (0xFFE0 6000 – 0xFFE0 6100)

For further details about these registers, see Chapter 21, “Debug” of the
Blackfin Processor Programming Reference.

Watchpoint and Patch Registers
Watchpoint and Patch registers (0xFFE0 7000 – 0xFFE0 7200)

For further details about these registers, see Chapter 21, “Debug” of the
Blackfin Processor Programming Reference.

Table A-6. Trace Unit Registers

Memory-Mapped
Address

Register Name

0xFFE0 6000 TBUFCTL

0xFFE0 6004 TBUFSTAT

0xFFE0 6100 TBUF

Table A-7. Watchpoint and Patch Registers

Memory-Mapped
Address

Register Name

0xFFE0 7000 WPIACTL

0xFFE0 7040 WPIA0

0xFFE0 7044 WPIA1

0xFFE0 7048 WPIA2

0xFFE0 704C WPIA3

0xFFE0 7050 WPIA4

0xFFE0 7054 WPIA5

ADSP-BF533 Blackfin Processor Hardware Reference A-9

Blackfin Processor Core MMR Assignments

Performance Monitor Registers
Performance Monitor registers (0xFFE0 8000 – 0xFFE0 8104)

For further details about these registers, see Chapter 21, “Debug” of the
Blackfin Processor Programming Reference.

0xFFE0 7080 WPIACNT0

0xFFE0 7084 WPIACNT1

0xFFE0 7088 WPIACNT2

0xFFE0 708C WPIACNT3

0xFFE0 7090 WPIACNT4

0xFFE0 7094 WPIACNT5

0xFFE0 7100 WPDACTL

0xFFE0 7140 WPDA0

0xFFE0 7144 WPDA1

0xFFE0 7180 WPDACNT0

0xFFE0 7184 WPDACNT1

0xFFE0 7200 WPSTAT

Table A-8. Performance Monitor Registers

Memory-Mapped
Address

Register Name

0xFFE0 8000 PFCTL

0xFFE0 8100 PFCNTR0

0xFFE0 8104 PFCNTR1

Table A-7. Watchpoint and Patch Registers (Cont’d)

Memory-Mapped
Address

Register Name

Performance Monitor Registers

A-10 ADSP-BF533 Blackfin Processor Hardware Reference

ADSP-BF533 Blackfin Processor Hardware Reference B-1

B SYSTEM MMR ASSIGNMENTS

These notes provide general information about the system mem-
ory-mapped registers (MMRs):

• The system MMR address range is 0xFFC0 0000 – 0xFFDF FFFF.

• All system MMRs are either 16 bits or 32 bits wide. MMRs that are
16 bits wide must be accessed with 16-bit read or write operations.
MMRs that are 32 bits wide must be accessed with 32-bit read or
write operations. Check the description of the MMR to determine
whether a 16-bit or a 32-bit access is required.

• All system MMR space that is not defined in this appendix is
reserved for internal use only.

This appendix lists MMR addresses and register names. To find more
information about an MMR, refer to the page shown in the “See Section”
column. When viewing the PDF version of this document, click a refer-
ence in the “See Section” column to jump to additional information about
the MMR.

Dynamic Power Management Registers

B-2 ADSP-BF533 Blackfin Processor Hardware Reference

Dynamic Power Management Registers
Dynamic Power Management registers (0xFFC0 0000 – 0xFFC0 00FF)

System Reset and Interrupt Control
Registers

System Reset and Interrupt Controller registers (0xFFC0 0100 –
0xFFC0 01FF)

Table B-1. Dynamic Power Management Registers

Memory-Mapped
Address

Register Name See Section

0xFFC0 0000 PLL_CTL “PLL_CTL Register” on page 8-7

0xFFC0 0004 PLL_DIV “PLL_DIV Register” on page 8-7

0xFFC0 0008 VR_CTL “VR_CTL Register” on page 8-26

0xFFC0 000C PLL_STAT “PLL_STAT Register” on page 8-9

0xFFC0 0010 PLL_LOCKCNT “PLL_LOCKCNT Register” on page 8-11

Table B-2. System Interrupt Controller Registers

Memory-Mapped
Address

Register Name See Section

0xFFC0 0100 SWRST “SWRST Register” on page 3-16

0xFFC0 0104 SYSCR “SYSCR Register” on page 3-14

0xFFC0 010C SIC_IMASK “SIC_IMASK Register” on page 4-28

0xFFC0 0110 SIC_IAR0 “System Interrupt Assignment Registers
(SIC_IARx)” on page 4-29

0xFFC0 0114 SIC_IAR1 “System Interrupt Assignment Registers
(SIC_IARx)” on page 4-29

ADSP-BF533 Blackfin Processor Hardware Reference B-3

System MMR Assignments

Watchdog Timer Registers
Watchdog Timer registers (0xFFC0 0200 – 0xFFC0 02FF)

Real-Time Clock Registers
Real-Time Clock registers (0xFFC0 0300 – 0xFFC0 03FF)

0xFFC0 0118 SIC_IAR2 “System Interrupt Assignment Registers
(SIC_IARx)” on page 4-29

0xFFC0 0120 SIC_ISR “SIC_ISR Register” on page 4-27

0xFFC0 0124 SIC_IWR “SIC_IWR Register” on page 4-25

Table B-3. Watchdog Timer Registers

Memory-Mapped
Address

Register Name See Section

0xFFC0 0200 WDOG_CTL “WDOG_CTL Register” on page 15-53

0xFFC0 0204 WDOG_CNT “WDOG_CNT Register” on page 15-51

0xFFC0 0208 WDOG_STAT “WDOG_STAT Register” on page 15-52

Table B-4. Real-Time Clock Registers

Memory-Mapped
Address

Register Name See Section

0xFFC0 0300 RTC_STAT “RTC_STAT Register” on page 16-13

0xFFC0 0304 RTC_ICTL “RTC_ICTL Register” on page 16-15

0xFFC0 0308 RTC_ISTAT “RTC_ISTAT Register” on page 16-16

Table B-2. System Interrupt Controller Registers (Cont’d)

Memory-Mapped
Address

Register Name See Section

Parallel Peripheral Interface (PPI) Registers

B-4 ADSP-BF533 Blackfin Processor Hardware Reference

Parallel Peripheral Interface (PPI)
Registers

Parallel Peripheral Interface (PPI) registers (0xFFC0 1000 –
0xFFC0 10FF)

0xFFC0 030C RTC_SWCNT “RTC_SWCNT Register” on page 16-17

0xFFC0 0310 RTC_ALARM “RTC_ALARM Register” on page 16-18

0xFFC0 0314 RTC_PREN “RTC_PREN Register” on page 16-19

Table B-5. Parallel Peripheral Interface (PPI) Registers

Memory-Mapped
Address

Register Name See Section

0xFFC0 1000 PPI_CONTROL “PPI_CONTROL Register” on page 11-3

0xFFC0 1004 PPI_STATUS “PPI_STATUS Register” on page 11-8

0xFFC0 1008 PPI_COUNT “PPI_COUNT Register” on page 11-11

0xFFC0 100C PPI_DELAY “PPI_DELAY Register” on page 11-10

0xFFC0 1010 PPI_FRAME “PPI_FRAME Register” on page 11-12

Table B-4. Real-Time Clock Registers (Cont’d)

Memory-Mapped
Address

Register Name See Section

ADSP-BF533 Blackfin Processor Hardware Reference B-5

System MMR Assignments

UART Controller Registers
UART Controller registers (0xFFC0 0400 – 0xFFC0 04FF)

SPI Controller Registers
SPI Controller registers (0xFFC0 0500 – 0xFFC0 05FF)

Table B-6. UART Controller Registers

Memory-Mapped
Address

Register Name See Section

0xFFC0 0400 UART_THR “UART_THR Register” on page 13-6

0xFFC0 0400 UART_RBR “UART_RBR Register” on page 13-7

0xFFC0 0400 UART_DLL “UART_DLL and UART_DLH Registers” on
page 13-11

0xFFC0 0404 UART_DLH “UART_DLL and UART_DLH Registers” on
page 13-11

0xFFC0 0404 UART_IER “UART_IER Register” on page 13-8

0xFFC0 0408 UART_IIR “UART_IIR Register” on page 13-10

0xFFC0 040C UART_LCR “UART_LCR Register” on page 13-3

0xFFC0 0410 UART_MCR “UART_MCR Register” on page 13-4

0xFFC0 0414 UART_LSR “UART_LSR Register” on page 13-5

0xFFC0 041C UART_SCR “UART_SCR Register” on page 13-13

0xFFC0 0424 UART_GCTL “UART_GCTL Register” on page 13-14

Table B-7. SPI Controller Registers

Memory-Mapped
Address

Register Name See Section

0xFFC0 0500 SPI_CTL “SPI_CTL Register” on page 10-9

0xFFC0 0504 SPI_FLG “SPI_FLG Register” on page 10-10

Timer Registers

B-6 ADSP-BF533 Blackfin Processor Hardware Reference

Timer Registers
Timer registers (0xFFC0 0600 – 0xFFC0 06FF)

0xFFC0 0508 SPI_STAT “SPI_STAT Register” on page 10-16

0xFFC0 050C SPI_TDBR “SPI_TDBR Register” on page 10-18

0xFFC0 0510 SPI_RDBR “SPI_RDBR Register” on page 10-19

0xFFC0 0514 SPI_BAUD “SPI_BAUD Register” on page 10-8

0xFFC0 0518 SPI_SHADOW “SPI_SHADOW Register” on page 10-19

Table B-8. Timer Registers

Memory-Mapped
Address

Register Name See Section

0xFFC0 0600 TIMER0_CONFIG “TIMERx_CONFIG Registers” on page 15-8

0xFFC0 0604 TIMER0_COUNTER “TIMERx_COUNTER Registers” on
page 15-9

0xFFC0 0608 TIMER0_PERIOD “TIMERx_PERIOD and TIMERx_WIDTH
Registers” on page 15-10

0xFFC0 060C TIMER0_WIDTH “TIMERx_PERIOD and TIMERx_WIDTH
Registers” on page 15-10

0xFFC0 0610 TIMER1_CONFIG “TIMERx_CONFIG Registers” on page 15-8

0xFFC0 0614 TIMER1_COUNTER “TIMERx_COUNTER Registers” on
page 15-9

0xFFC0 0618 TIMER1_PERIOD “TIMERx_PERIOD and TIMERx_WIDTH
Registers” on page 15-10

0xFFC0 061C TIMER1_WIDTH “TIMERx_PERIOD and TIMERx_WIDTH
Registers” on page 15-10

0xFFC0 0620 TIMER2_CONFIG “TIMERx_CONFIG Registers” on page 15-8

Table B-7. SPI Controller Registers (Cont’d)

Memory-Mapped
Address

Register Name See Section

ADSP-BF533 Blackfin Processor Hardware Reference B-7

System MMR Assignments

Programmable Flag Registers
Programmable Flag registers (0xFFC0 0700 – 0xFFC0 07FF)

0xFFC0 0624 TIMER2_COUNTER “TIMERx_COUNTER Registers” on
page 15-9

0xFFC0 0628 TIMER2_PERIOD “TIMERx_PERIOD and TIMERx_WIDTH
Registers” on page 15-10

0xFFC0 062C TIMER2_WIDTH “TIMERx_PERIOD and TIMERx_WIDTH
Registers” on page 15-10

0xFFC0 0640 TIMER_ENABLE “TIMER_ENABLE Register” on page 15-5

0xFFC0 0644 TIMER_DISABLE “TIMER_DISABLE Register” on page 15-5

0xFFC0 0648 TIMER_STATUS “TIMER_STATUS Register” on page 15-6

Table B-9. Programmable Flags Registers

Memory-Mapped
Address

Register Name See Section

0xFFC0 0700 FIO_FLAG_D “FIO_FLAG_D Register” on page 14-8

0xFFC0 0704 FIO_FLAG_C “FIO_FLAG_S, FIO_FLAG_C, and
FIO_FLAG_T Registers” on page 14-8

0xFFC0 0708 FIO_FLAG_S “FIO_FLAG_S, FIO_FLAG_C, and
FIO_FLAG_T Registers” on page 14-8

0xFFC0 070C FIO_FLAG_T “FIO_FLAG_S, FIO_FLAG_C, and
FIO_FLAG_T Registers” on page 14-8

0xFFC0 0710 FIO_MASKA_D “FIO_MASKA_D, FIO_MASKA_C,
FIO_MASKA_S, FIO_MASKA_T,
FIO_MASKB_D, FIO_MASKB_C,
FIO_MASKB_S, FIO_MASKB_T Registers”
on page 14-11

Table B-8. Timer Registers (Cont’d)

Memory-Mapped
Address

Register Name See Section

Programmable Flag Registers

B-8 ADSP-BF533 Blackfin Processor Hardware Reference

0xFFC0 0714 FIO_MASKA_C “FIO_MASKA_D, FIO_MASKA_C,
FIO_MASKA_S, FIO_MASKA_T,
FIO_MASKB_D, FIO_MASKB_C,
FIO_MASKB_S, FIO_MASKB_T Registers”
on page 14-11

0xFFC0 0718 FIO_MASKA_S “FIO_MASKA_D, FIO_MASKA_C,
FIO_MASKA_S, FIO_MASKA_T,
FIO_MASKB_D, FIO_MASKB_C,
FIO_MASKB_S, FIO_MASKB_T Registers”
on page 14-11

0xFFC0 071C FIO_MASKA_T “FIO_MASKA_D, FIO_MASKA_C,
FIO_MASKA_S, FIO_MASKA_T,
FIO_MASKB_D, FIO_MASKB_C,
FIO_MASKB_S, FIO_MASKB_T Registers”
on page 14-11

0xFFC0 0720 FIO_MASKB_D “FIO_MASKA_D, FIO_MASKA_C,
FIO_MASKA_S, FIO_MASKA_T,
FIO_MASKB_D, FIO_MASKB_C,
FIO_MASKB_S, FIO_MASKB_T Registers”
on page 14-11

0xFFC0 0724 FIO_MASKB_C “FIO_MASKA_D, FIO_MASKA_C,
FIO_MASKA_S, FIO_MASKA_T,
FIO_MASKB_D, FIO_MASKB_C,
FIO_MASKB_S, FIO_MASKB_T Registers”
on page 14-11

0xFFC0 0728 FIO_MASKB_S “FIO_MASKA_D, FIO_MASKA_C,
FIO_MASKA_S, FIO_MASKA_T,
FIO_MASKB_D, FIO_MASKB_C,
FIO_MASKB_S, FIO_MASKB_T Registers”
on page 14-11

0xFFC0 072C FIO_MASKB_T “FIO_MASKA_D, FIO_MASKA_C,
FIO_MASKA_S, FIO_MASKA_T,
FIO_MASKB_D, FIO_MASKB_C,
FIO_MASKB_S, FIO_MASKB_T Registers”
on page 14-11

Table B-9. Programmable Flags Registers (Cont’d)

Memory-Mapped
Address

Register Name See Section

ADSP-BF533 Blackfin Processor Hardware Reference B-9

System MMR Assignments

SPORT0 Controller Registers
SPORT0 Controller registers (0xFFC0 0800 – 0xFFC0 08FF)

0xFFC0 0730 FIO_DIR “FIO_DIR Register” on page 14-5

0xFFC0 0734 FIO_POLAR “FIO_POLAR Register” on page 14-18

0xFFC0 0738 FIO_EDGE “FIO_EDGE Register” on page 14-18

0xFFC0 073C FIO_BOTH “FIO_BOTH Register” on page 14-19

0xFFC0 0740 FIO_INEN “FIO_INEN Register” on page 14-20

Table B-10. SPORT0 Controller Registers

Memory-Mapped
Address

Register Name See Section

0xFFC0 0800 SPORT0_TCR1 “SPORTx_TCR1 and SPORTx_TCR2 Regis-
ters” on page 12-12

0xFFC0 0804 SPORT0_TCR2 “SPORTx_TCR1 and SPORTx_TCR2 Regis-
ters” on page 12-12

0xFFC0 0808 SPORT0_TCLKDIV “SPORTx_TCLKDIV and
SPORTx_RCLKDIV Registers” on page 12-30

0xFFC0 080C SPORT0_TFSDIV “SPORTx_TFSDIV and SPORTx_RFSDIV
Register” on page 12-31

0xFFC0 0810 SPORT0_TX “SPORTx_TX Register” on page 12-23

0xFFC0 0818 SPORT0_RX “SPORTx_RX Register” on page 12-24

0xFFC0 0820 SPORT0_RCR1 “SPORTx_RCR1 and SPORTx_RCR2 Regis-
ters” on page 12-18

0xFFC0 0824 SPORT0_RCR2 “SPORTx_RCR1 and SPORTx_RCR2 Regis-
ters” on page 12-18

Table B-9. Programmable Flags Registers (Cont’d)

Memory-Mapped
Address

Register Name See Section

SPORT0 Controller Registers

B-10 ADSP-BF533 Blackfin Processor Hardware Reference

0xFFC0 0828 SPORT0_RCLKDIV “SPORTx_TCLKDIV and
SPORTx_RCLKDIV Registers” on page 12-30

0xFFC0 082C SPORT0_RFSDIV “SPORTx_TFSDIV and SPORTx_RFSDIV
Register” on page 12-31

0xFFC0 0830 SPORT0_STAT “SPORTx_STAT Register” on page 12-28

0xFFC0 0834 SPORT0_CHNL “SPORTx_CHNL Register” on page 12-57

0xFFC0 0838 SPORT0_MCMC1 “SPORTx_MCMCn Registers” on page 12-51

0xFFC0 083C SPORT0_MCMC2 “SPORTx_MCMCn Registers” on page 12-51

0xFFC0 0840 SPORT0_MTCS0 “SPORTx_MTCSn Registers” on page 12-62

0xFFC0 0844 SPORT0_MTCS1 “SPORTx_MTCSn Registers” on page 12-62

0xFFC0 0848 SPORT0_MTCS2 “SPORTx_MTCSn Registers” on page 12-62

0xFFC0 084C SPORT0_MTCS3 “SPORTx_MTCSn Registers” on page 12-62

0xFFC0 0850 SPORT0_MRCS0 “SPORTx_MRCSn Registers” on page 12-60

0xFFC0 0854 SPORT0_MRCS1 “SPORTx_MRCSn Registers” on page 12-60

0xFFC0 0858 SPORT0_MRCS2 “SPORTx_MRCSn Registers” on page 12-60

0xFFC0 085C SPORT0_MRCS3 “SPORTx_MRCSn Registers” on page 12-60

Table B-10. SPORT0 Controller Registers (Cont’d)

Memory-Mapped
Address

Register Name See Section

ADSP-BF533 Blackfin Processor Hardware Reference B-11

System MMR Assignments

SPORT1 Controller Registers
SPORT1 Controller registers (0xFFC0 0900 – 0xFFC0 09FF)

Table B-11. SPORT 1 Controller Registers

Memory-Mapped
Address

Register Name See Section

0xFFC0 0900 SPORT1_TCR1 “SPORTx_TCR1 and SPORTx_TCR2 Regis-
ters” on page 12-12

0xFFC0 0904 SPORT1_TCR2 “SPORTx_TCR1 and SPORTx_TCR2 Regis-
ters” on page 12-12

0xFFC0 0908 SPORT1_TCLKDIV “SPORTx_TCLKDIV and
SPORTx_RCLKDIV Registers” on page 12-30

0xFFC0 090C SPORT1_TFSDIV “SPORTx_TFSDIV and SPORTx_RFSDIV
Register” on page 12-31

0xFFC0 0910 SPORT1_TX “SPORTx_TX Register” on page 12-23

0xFFC0 0918 SPORT1_RX “SPORTx_RX Register” on page 12-24

0xFFC0 0920 SPORT1_RCR1 “SPORTx_RCR1 and SPORTx_RCR2 Regis-
ters” on page 12-18

0xFFC0 0924 SPORT1_RCR2 “SPORTx_RCR1 and SPORTx_RCR2 Regis-
ters” on page 12-18

0xFFC0 0928 SPORT1_RCLKDIV “SPORTx_TCLKDIV and
SPORTx_RCLKDIV Registers” on page 12-30

0xFFC0 092C SPORT1_RFSDIV “SPORTx_TFSDIV and SPORTx_RFSDIV
Register” on page 12-31

0xFFC0 0930 SPORT1_STAT “SPORTx_STAT Register” on page 12-28

0xFFC0 0934 SPORT1_CHNL “SPORTx_CHNL Register” on page 12-57

0xFFC0 0938 SPORT1_MCMC1 “SPORTx_MCMCn Registers” on page 12-51

0xFFC0 093C SPORT1_MCMC2 “SPORTx_MCMCn Registers” on page 12-51

0xFFC0 0940 SPORT1_MTCS0 “SPORTx_MRCSn Registers” on page 12-60

0xFFC0 0944 SPORT1_MTCS1 “SPORTx_MRCSn Registers” on page 12-60

0xFFC0 0948 SPORT1_MTCS2 “SPORTx_MRCSn Registers” on page 12-60

DMA/Memory DMA Control Registers

B-12 ADSP-BF533 Blackfin Processor Hardware Reference

DMA/Memory DMA Control Registers
DMA Control registers (0xFFC0 0B00 – 0xFFC0 0FFF)

Since each DMA channel has an identical MMR set, with fixed offsets
from the base address associated with that DMA channel, it is convenient
to view the MMR information as provided in Table B-13 and Table B-14.
Table B-13 identifies the base address of each DMA channel, as well as the
register prefix that identifies the channel. Table B-14 then lists the register
suffix and provides its offset from the Base Address.

As an example, the DMA Channel 0 Y_MODIFY register is called
DMA0_Y_MODIFY, and its address is 0xFFC0 0C1C. Likewise, the Memory
DMA Stream 0 Source Current Address register is called
MDMA_S0_CURR_ADDR, and its address is 0xFFC0 0E64.

0xFFC0 094C SPORT1_MTCS3 “SPORTx_MRCSn Registers” on page 12-60

0xFFC0 0950 SPORT1_MRCS0 “SPORTx_MRCSn Registers” on page 12-60

0xFFC0 0954 SPORT1_MRCS1 “SPORTx_MRCSn Registers” on page 12-60

0xFFC0 0958 SPORT1_MRCS2 “SPORTx_MRCSn Registers” on page 12-60

0xFFC0 095C SPORT1_MRCS3 “SPORTx_MRCSn Registers” on page 12-60

Table B-12. DMA Traffic Control Registers

Memory-Mapped
Address

Register Name See Section

0xFFC0 0B0C DMA_TC_PER “DMA_TC_PER and DMA_TC_CNT Regis-
ters” on page 9-55

0xFFC0 0B10 DMA_TC_CNT “DMA_TC_PER and DMA_TC_CNT Regis-
ters” on page 9-55

Table B-11. SPORT 1 Controller Registers (Cont’d)

Memory-Mapped
Address

Register Name See Section

ADSP-BF533 Blackfin Processor Hardware Reference B-13

System MMR Assignments

Table B-13. DMA Channel Base Addresses

DMA Channel
Identifier

MMR Base Address Register Prefix

0 0xFFC0 0C00 DMA0_

1 0xFFC0 0C40 DMA1_

2 0xFFC0 0C80 DMA2_

3 0xFFC0 0CC0 DMA3_

4 0xFFC0 0D00 DMA4_

5 0xFFC0 0D40 DMA5_

6 0xFFC0 0D80 DMA6_

7 0xFFC0 0DC0 DMA7_

Mem DMA Stream
0 Destination

0xFFCO 0E00 MDMA_D0_

Mem DMA Stream
0 Source

0xFFC0 0E40 MDMA_S0_

Mem DMA Stream
1 Destination

0xFFCO 0E80 MDMA_D1_

Mem DMA Stream
1 Source

0xFFC0 0EC0 MDMA_S1_

Table B-14. DMA Register Suffix and Offset

Register Suffix Offset From
Base

See Section

NEXT_DESC_PTR 0x00 “DMAx_NEXT_DESC_PTR/MDMA_yy_NEXT_DES
C_PTR Register” on page 9-8

START_ADDR 0x04 “DMAx_START_ADDR/MDMA_yy_START_ADDR
Register” on page 9-10

CONFIG 0x08 “DMAx_CONFIG/MDMA_yy_CONFIG Register” on
page 9-12

X_COUNT 0x10 “DMAx_X_COUNT/MDMA_yy_X_COUNT Regis-
ter” on page 9-16

External Bus Interface Unit Registers

B-14 ADSP-BF533 Blackfin Processor Hardware Reference

External Bus Interface Unit Registers
External Bus Interface Unit registers (0xFFC0 0A00 – 0xFFC0 0AFF)

X_MODIFY 0x14 “DMAx_X_MODIFY/MDMA_yy_X_MODIFY Regis-
ter” on page 9-17

Y_COUNT 0x18 “DMAx_Y_COUNT/MDMA_yy_Y_COUNT Regis-
ter” on page 9-19

Y_MODIFY 0x1C “DMAx_Y_MODIFY/MDMA_yy_Y_MODIFY Regis-
ter” on page 9-20

CURR_DESC_PTR 0x20 “DMAx_CURR_DESC_PTR/MDMA_yy_CURR_DE
SC_PTR Register” on page 9-21

CURR_ADDR 0x24 “DMAx_CURR_ADDR/MDMA_yy_CURR_ADDR
Register” on page 9-23

IRQ_STATUS 0x28 “DMAx_IRQ_STATUS/MDMA_yy_IRQ_STATUS
Register” on page 9-30

PERIPHERAL_MAP 0x2C “DMAx_PERIPHERAL_MAP/MDMA_yy_PERIPHER
AL_MAP Register” on page 9-28

CURR_X_COUNT 0x30 “DMAx_CURR_X_COUNT/MDMA_yy_CURR_X_C
OUNT Register” on page 9-25

CURR_Y_COUNT 0x38 “DMAx_CURR_Y_COUNT/MDMA_yy_CURR_Y_C
OUNT Register” on page 9-26

Table B-15. External Bus Interface Unit Registers

Memory-Mapped
Address

Register Name See Section

0xFFC0 0A00 EBIU_AMGCTL “EBIU_AMGCTL Register” on page 17-10

0xFFC0 0A04 EBIU_AMBCTL0 “EBIU_AMBCTL0 and EBIU_AMBCTL1
Registers” on page 17-11

Table B-14. DMA Register Suffix and Offset (Cont’d)

Register Suffix Offset From
Base

See Section

ADSP-BF533 Blackfin Processor Hardware Reference B-15

System MMR Assignments

0xFFC0 0A08 EBIU_AMBCTL1 “EBIU_AMBCTL0 and EBIU_AMBCTL1
Registers” on page 17-11

0xFFC0 0A10 EBIU_SDGCTL “EBIU_SDGCTL Register” on page 17-33

0xFFC0 0A14 EBIU_SDBCTL “EBIU_SDBCTL Register” on page 17-44

0xFFC0 0A18 EBIU_SDRRC “EBIU_SDRRC Register” on page 17-48

0xFFC0 0A1C EBIU_SDSTAT “EBIU_SDSTAT Register” on page 17-47

Table B-15. External Bus Interface Unit Registers (Cont’d)

Memory-Mapped
Address

Register Name See Section

External Bus Interface Unit Registers

B-16 ADSP-BF533 Blackfin Processor Hardware Reference

ADSP-BF533 Blackfin Processor Hardware Reference C-1

C TEST FEATURES

This chapter discusses the test features of the processor.

JTAG Standard
The processor is fully compatible with the IEEE 1149.1 standard, also
known as the Joint Test Action Group (JTAG) standard.

The JTAG standard defines circuitry that may be built to assist in the test,
maintenance, and support of assembled printed circuit boards.The cir-
cuitry includes a standard interface through which instructions and test
data are communicated. A set of test features is defined, including a
Boundary-Scan register, such that the component can respond to a mini-
mum set of instructions designed to help test printed circuit boards.

The standard defines test logic that can be included in an integrated cir-
cuit to provide standardized approaches to:

• Testing the interconnections between integrated circuits once they
have been assembled onto a printed circuit board

• Testing the integrated circuit itself

• Observing or modifying circuit activity during normal component
operation

The test logic consists of a Boundary-Scan register and other building
blocks. The test logic is accessed through a Test Access Port (TAP).

Boundary-Scan Architecture

C-2 ADSP-BF533 Blackfin Processor Hardware Reference

Full details of the JTAG standard can be found in the document IEEE
Standard Test Access Port and Boundary-Scan Architecture, ISBN
1-55937-350-4.

Boundary-Scan Architecture
The boundary-scan test logic consists of:

• A TAP comprised of five pins (see Table C-1)

• A TAP controller that controls all sequencing of events through the
test registers

• An Instruction register (IR) that interprets 5-bit instruction codes
to select the test mode that performs the desired test operation

• Several data registers defined by the JTAG standard

The TAP controller is a synchronous, 16-state, finite-state machine con-
trolled by the TCK and TMS pins. Transitions to the various states in the
diagram occur on the rising edge of TCK and are defined by the state of the
TMS pin, here denoted by either a logic 1 or logic 0 state. For full details of
the operation, see the JTAG standard.

Table C-1. Test Access Port Pins

Pin Name Input/Output Description

TDI Input Test Data Input

TMS Input Test Mode Select

TCK Input Test Clock

TRST Input Test Reset

TDO Output Test Data Out

ADSP-BF533 Blackfin Processor Hardware Reference C-3

Test Features

Figure C-1 shows the state diagram for the TAP controller.

Note:

• The TAP controller enters the Test-Logic-Reset state when TMS is
held high after five TCK cycles.

• The TAP controller enters the Test-Logic-Reset state when TRST is
asynchronously asserted.

Figure C-1. TAP Controller State Diagram

Test-Logic_Reset

Run-Test/Idle Select-DR-Scan

Capture-DR

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Update-DR

Select-IR-Scan

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-IR

1

1 1 1

1

1

1

1

1

1 1

1

1

1

1

1

0

0
0 0

0 0
0 0

0 0

0

0 0

0
0

0

Boundary-Scan Architecture

C-4 ADSP-BF533 Blackfin Processor Hardware Reference

• An external system reset does not affect the state of the TAP con-
troller, nor does the state of the TAP controller affect an external
system reset.

Instruction Register
The Instruction register is five bits wide and accommodates up to 32
boundary-scan instructions.

The Instruction register holds both public and private instructions. The
JTAG standard requires some of the public instructions; other public
instructions are optional. Private instructions are reserved for the manu-
facturer’s use.

The binary decode column of Table C-2 lists the decode for the public
instructions. The register column lists the serial scan paths.

Figure C-2 shows the instruction bit scan ordering for the paths shown in
Table C-2.

Table C-2. Decode for Public JTAG-Scan Instructions

Instruction Name Binary Decode
01234

Register

EXTEST 00000 Boundary-Scan

SAMPLE/PRELOAD 10000 Boundary-Scan

BYPASS 11111 Bypass

ADSP-BF533 Blackfin Processor Hardware Reference C-5

Test Features

Public Instructions
The following sections describe the public JTAG scan instructions.

EXTEST – Binary Code 00000

The EXTEST instruction selects the Boundary-Scan register to be connected
between the TDI and TDO pins. This instruction allows testing of on-board
circuitry external to the device.

Figure C-2. Serial Scan Paths

TDOTDI

N

N-1

N-2 2

1

0

0
130

31

4

3

2

1

0

1

Bypass Register

Boundary-Scan Register

JTAG Instruction Register

Boundary-Scan Architecture

C-6 ADSP-BF533 Blackfin Processor Hardware Reference

The EXTEST instruction allows internal data to be driven to the boundary
outputs and external data to be captured on the boundary inputs.

 To protect the internal logic when the boundary outputs are over-
driven or signals are received on the boundary inputs, make sure
that nothing else drives data on the processor’s output pins.

SAMPLE/PRELOAD – Binary Code 10000

The SAMPLE/PRELOAD instruction performs two functions and selects the
Boundary-Scan register to be connected between TDI and TDO. The
instruction has no effect on internal logic.

The SAMPLE part of the instruction allows a snapshot of the inputs and
outputs captured on the boundary-scan cells. Data is sampled on the ris-
ing edge of TCK.

The PRELOAD part of the instruction allows data to be loaded on the device
pins and driven out on the board with the EXTEST instruction. Data is pre-
loaded on the pins on the falling edge of TCK.

BYPASS – Binary Code 11111

The BYPASS instruction selects the BYPASS register to be connected to TDI
and TDO. The instruction has no effect on the internal logic. No data
inversion should occur between TDI and TDO.

Boundary-Scan Register
The Boundary-Scan register is selected by the EXTEST and SAMPLE/PRELOAD
instructions. These instructions allow the pins of the processor to be con-
trolled and sampled for board-level testing.

ADSP-BF533 Blackfin Processor Hardware Reference D-1

D NUMERIC FORMATS

ADSP-BF53x Blackfin family processors support 8-, 16-, 32-, and 40-bit
fixed-point data in hardware. Special features in the computation units
allow support of other formats in software. This appendix describes vari-
ous aspects of these data formats. It also describes how to implement a
block floating-point format in software.

Unsigned or Signed: Two’s-Complement
Format

Unsigned integer numbers are positive, and no sign information is con-
tained in the bits. Therefore, the value of an unsigned integer is
interpreted in the usual binary sense. The least significant words of multi-
ple-precision numbers are treated as unsigned numbers.

Signed numbers supported by the ADSP-BF53x Blackfin family are in
two’s-complement format. Signed-magnitude, one’s-complement,
binary-coded decimal (BCD) or excess-n formats are not supported.

Integer or Fractional
The ADSP-BF53x Blackfin family supports both fractional and integer
data formats. In an integer, the radix point is assumed to lie to the right of
the least significant bit (LSB), so that all magnitude bits have a weight of 1
or greater. This format is shown in Figure D-1. Note in two’s-comple-
ment format, the sign bit has a negative weight.

Integer or Fractional

D-2 ADSP-BF533 Blackfin Processor Hardware Reference

In a fractional format, the assumed radix point lies within the number, so
that some or all of the magnitude bits have a weight of less than 1. In the
format shown in Figure D-2, the assumed radix point lies to the left of the
three LSBs, and the bits have the weights indicated.

The native formats for the Blackfin processor family are a signed fractional
1.M format and an unsigned fractional 0.N format, where N is the num-
ber of bits in the data word and M = N – 1.

The notation used to describe a format consists of two numbers separated
by a period (.); the first number is the number of bits to the left of the
radix point, the second is the number of bits to the right of the radix
point. For example, 16.0 format is an integer format; all bits lie to the left
of the radix point. The format in Figure D-2 is 13.3.

Figure D-1. Integer Format

Signed Integer

Unsigned Integer

Bit

Weight

Sign Bit

Radix Point

01215 14 13

. . . 202122213214- (215)

Bit

Weight

Sign Bit

Radix Point

01215 14 13

. . . 202122213214215

ADSP-BF533 Blackfin Processor Hardware Reference D-3

Numeric Formats

Table D-1 shows the ranges of signed numbers representable in the frac-
tional formats that are possible with 16 bits.

Figure D-2. Example of Fractional Format

Signed Fractional (13.3)

Bit

Weight

Sign Bit

Radix Point

01215 14 13

. . . 2-32-22-1210211- (212)

34

2021

Unsigned Fractional (13.3)

Bit

Weight

Sign Bit

Radix Point

01215 14 13

. . . 2-32-22-1210211212

34

2021

Binary Multiplication

D-4 ADSP-BF533 Blackfin Processor Hardware Reference

Binary Multiplication
In addition and subtraction, both operands must be in the same format
(signed or unsigned, radix point in the same location), and the result for-
mat is the same as the input format. Addition and subtraction are
performed the same way whether the inputs are signed or unsigned.

Table D-1. Fractional Formats and Their Ranges

Format # of
Integer
Bits

of
Fractional
Bits

Max Positive Value
(0x7FFF) In Decimal

Max Negative
Value (0x8000)
In Decimal

Value of 1 LSB
(0x0001) In Decimal

1.15 1 15 0.999969482421875 –1.0 0.000030517578125

2.14 2 14 1.999938964843750 –2.0 0.000061035156250

3.13 3 13 3.999877929687500 –4.0 0.000122070312500

4.12 4 12 7.999755859375000 –8.0 0.000244140625000

5.11 5 11 15.999511718750000 –16.0 0.000488281250000

6.10 6 10 31.999023437500000 –32.0 0.000976562500000

7.9 7 9 63.998046875000000 –64.0 0.001953125000000

8.8 8 8 127.996093750000000 –128.0 0.003906250000000

9.7 9 7 255.992187500000000 –256.0 0.007812500000000

10.6 10 6 511.984375000000000 –512.0 0.015625000000000

11.5 11 5 1023.968750000000000 –1024.0 0.031250000000000

12.4 12 4 2047.937500000000000 –2048.0 0.062500000000000

13.3 13 3 4095.875000000000000 –4096.0 0.125000000000000

14.2 14 2 8191.750000000000000 –8192.0 0.250000000000000

15.1 15 1 16383.500000000000000 –16384.0 0.500000000000000

16.0 16 0 32767.000000000000000 –32768.0 1.000000000000000

ADSP-BF533 Blackfin Processor Hardware Reference D-5

Numeric Formats

In multiplication, however, the inputs can have different formats, and the
result depends on their formats. The ADSP-BF53x Blackfin family assem-
bly language allows you to specify whether the inputs are both signed,
both unsigned, or one of each (mixed-mode). The location of the radix
point in the result can be derived from its location in each of the inputs.
This is shown in Figure D-3. The product of two 16-bit numbers is a
32-bit number. If the inputs’ formats are M.N and P.Q, the product has
the format (M + P).(N + Q). For example, the product of two 13.3 num-
bers is a 26.6 number. The product of two 1.15 numbers is a 2.30
number.

Fractional Mode And Integer Mode
A product of 2 two’s-complement numbers has two sign bits. Since one of
these bits is redundant, you can shift the entire result left one bit. Addi-
tionally, if one of the inputs was a 1.15 number, the left shift causes the
result to have the same format as the other input (with 16 bits of
additional precision). For example, multiplying a 1.15 number by a 5.11
number yields a 6.26 number. When shifted left one bit, the result is a
5.27 number, or a 5.11 number plus 16 LSBs.

Figure D-3. Format of Multiplier Result

General Rule 4-bit Example 16-bit Examples

M.N
x P.Q

(M + P).(N + Q)

1.111 (1.3 Format)
x 11.11 (2.2 Format)

1111
1111

1111
1111

111.00001 (3.5 Format = (1 + 2).(2 + 3))

5.3
x 5.3

10.6

1.15
x 1.15

2.30

Binary Multiplication

D-6 ADSP-BF533 Blackfin Processor Hardware Reference

The ADSP-BF53x Blackfin family provides a means (a signed fractional
mode) by which the multiplier result is always shifted left one bit before
being written to the result register. This left shift eliminates the extra sign
bit when both operands are signed, yielding a result that is correctly
formatted.

When both operands are in 1.15 format, the result is 2.30 (30 fractional
bits). A left shift causes the multiplier result to be 1.31 which can be
rounded to 1.15. Thus, if you use a signed fractional data format, it is
most convenient to use the 1.15 format.

For more information about data formats, see the data formats listed in
Table 2-2 on page 2-11.

ADSP-BF533 Blackfin Processor Hardware Reference D-7

Numeric Formats

Block Floating-Point Format
A block floating-point format enables a fixed-point processor to gain some
of the increased dynamic range of a floating-point format without the
overhead needed to do floating-point arithmetic. However, some addi-
tional programming is required to maintain a block floating-point format.

A floating-point number has an exponent that indicates the position of the
radix point in the actual value. In block floating-point format, a set
(block) of data values share a common exponent. A block of fixed-point
values can be converted to block floating-point format by shifting each
value left by the same amount and storing the shift value as the block
exponent.

Typically, block floating-point format allows you to shift out non-signifi-
cant MSBs (most significant bits), increasing the precision available in
each value. Block floating-point format can also be used to eliminate the
possibility of a data value overflowing. See Figure D-4. Each of the three
data samples shown has at least two non-significant, redundant sign bits.
Each data value can grow by these two bits (two orders of magnitude)
before overflowing. These bits are called guard bits.

Figure D-4. Data With Guard Bits

Sign Bit

2 Guard Bits

0x0FFF = 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

0x1FFF = 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

0x07FF = 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1

To detect bit growth into two guard bits, set SB = –2

Block Floating-Point Format

D-8 ADSP-BF533 Blackfin Processor Hardware Reference

If it is known that a process will not cause any value to grow by more than
the two guard bits, then the process can be run without loss of data. Later,
however, the block must be adjusted to replace the guard bits before the
next process.

Figure D-5 shows the data after processing but before adjustment. The
block floating-point adjustment is performed as follows.

• Assume the output of the SIGNBITS instruction is SB and SB is used
as an argument in the EXPADJ instruction (see Blackfin Processor
Programming Reference for the usage and syntax of these instruc-
tions). Initially, the value of SB is +2, corresponding to the two
guard bits. During processing, each resulting data value is
inspected by the EXPADJ instruction, which counts the number of
redundant sign bits and adjusts SB if the number of redundant sign
bits is less than two. In this example, SB = +1 after processing,
indicating the block of data must be shifted right one bit to main-
tain the two guard bits.

• If SB were 0 after processing, the block would have to be shifted
two bits right. In either case, the block exponent is updated to
reflect the shift.

ADSP-BF533 Blackfin Processor Hardware Reference D-9

Numeric Formats

Figure D-5. Block Floating-Point Adjustment

Sign Bit

One Guard Bit

0x1FFF = 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

0x3FFF = 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0x07FF = 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1

2. Shift right to restore guard bits

Sign Bit

Two Guard Bits

0x0FFF = 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

0x1FFF = 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

0x03FF = 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

1. Check for bit growth

Exponent = +2, SB = +2

Exponent = +1, SB = +1

Exponent = +4, SB = +1

EXPADJ instruction checks
exponent, adjusts SB

Block Floating-Point Format

D-10 ADSP-BF533 Blackfin Processor Hardware Reference

ADSP-BF533 Blackfin Processor Hardware Reference G-1

G GLOSSARY

ALU.

See Arithmetic/Logic Unit

AMC (Asynchronous Memory Controller).

A configurable memory controller supporting multiple banks of asynchro-
nous memory including SRAM, ROM, and flash, where each bank can be
independently programmed with different timing parameters.

Arithmetic/Logic Unit (ALU).

A processor component that performs arithmetic, comparative, and logical
functions.

Bank Activate command.

The Bank Activate command causes the SDRAM to open an internal bank
(specified by the bank address) in a row (specified by the row address).
When the Bank Activate command is issued to the SDRAM, the SDRAM
opens a new row address in the dedicated bank. The memory in the open
internal bank and row is referred to as the open page. The Bank Activate
command must be applied before a read or write command.

base address.

The starting address of a circular buffer.

G-2 ADSP-BF533 Blackfin Processor Hardware Reference

Base register.

A Data Address Generator (DAG) register that contains the starting
address for a circular buffer.

bit-reversed addressing.

The addressing mode in which the Data Address Generator (DAG) pro-
vides a bit-reversed address during a data move without reversing the
stored address.

Boot memory space.

Internal memory space designated for a program that is executed immedi-
ately after powerup or after a software reset.

burst length.

The burst length determines the number of words that the SDRAM device
stores or delivers after detecting a single write or read command, respec-
tively. The burst length is selected by writing certain bits in the SDRAM’s
Mode register during the SDRAM powerup sequence.

Burst Stop command.

The Burst Stop command is one of several ways to terminate a burst read
or write operation.

burst type.

The burst type determines the address order in which the SDRAM deliv-
ers burst data after detecting a read command, or stores burst data after
detecting a write command. The burst type is programmed in the
SDRAM during the SDRAM powerup sequence.

cache block.

The smallest unit of memory that is transferred to/from the next level of
memory from/to a cache as a result of a cache miss.

ADSP-BF533 Blackfin Processor Hardware Reference G-3

Glossary

cache hit.

A memory access that is satisfied by a valid, present entry in the cache.

cache line.

Same as cache block. In this document, cache line is used for cache block.

cache miss.

A memory access that does not match any valid entry in the cache.

cache tag.

Upper address bits, stored along with the cached data line, to identify the
specific address source in memory that the cached line represents.

Cacheability Protection Lookaside Buffer (CPLB).

Storage area that describes the access characteristics of the core memory
map.

CAM (Content Addressable Memory).

Also called Associative Memory. A memory device that includes compari-
son logic with each bit of storage. A data value is broadcast to all words in
memory; it is compared with the stored values; and values that match are
flagged.

CAS (Column Address Strobe).

A signal sent from the SDC to a DRAM device to indicate that the col-
umn address lines are valid.

CAS latency (also tAA, tCAC, CL).

The Column Address Strobe (CAS) latency is the delay in clock cycles
between when the SDRAM detects the read command and when it pro-
vides the data at its output pins.

G-4 ADSP-BF533 Blackfin Processor Hardware Reference

CBR (CAS Before RAS) memory refresh.

DRAM devices have a built-in counter for the refresh row address. By
activating Column Address Strobe (CAS) before activating Row Address
Strobe (RAS), this counter is selected to supply the row address instead of
the address inputs.

CEC.

See Core Event Controller

circular addressing.

The process by which the Data Address Generator (DAG) “wraps around”
or repeatedly steps through a range of registers.

companding.

(Compressing/expanding). The process of logarithmically encoding and
decoding data to minimize the number of bits that must be sent.

conditional branches.

Jump or call/return instructions whose execution is based on defined
conditions.

core.

The core consists of these functional blocks: CPU, L1 memory, Event
Controller, core timer, and Performance Monitoring registers.

Core Event Controller (CEC).

The CEC works with the System Interrupt Controller (SIC) to prioritize
and control all system interrupts. The CEC handles general-purpose inter-
rupts and interrupts routed from the SIC.

CPLB.

See Cacheability Protection Lookaside Buffer

ADSP-BF533 Blackfin Processor Hardware Reference G-5

Glossary

DAB.

See DMA Access Bus

DAG.

See Data Address Generator

Data Address Generator (DAG).

Processing component that provides memory addresses when data is trans-
ferred between memory and registers.

Data Register File.

A set of data registers that is used to transfer data between computation
units and memory while providing local storage for operands.

data registers (Dreg).

Registers located in the data arithmetic unit that hold operands and results
for multiplier, ALU, or shifter operations.

DCB.

See DMA Core Bus

DEB.

See DMA External Bus

descriptor block, DMA.

A set of parameters used by the direct memory access (DMA) controller to
describe a set of DMA sequences.

G-6 ADSP-BF533 Blackfin Processor Hardware Reference

descriptor loading, DMA.

The process in which the direct memory access (DMA) controller down-
loads a DMA descriptor from data memory and autoinitializes the DMA
parameter registers.

DFT (Design For Testability).

A set of techniques that helps designers of digital systems ensure that those
systems will be testable.

Digital Signal Processor (DSP).

An integrated circuit designated for high-speed manipulation of analog
information that has been converted into digital form.

direct branches.

Jump or call/return instructions that use absolute addresses that do not
change at runtime (such as a program label), or they use a PC-relative
address.

direct-mapped.

Cache architecture where each line has only one place that it can appear in
the cache. Also described as 1-Way associative.

Direct Memory Access (DMA).

A way of moving data between system devices and memory in which the
data is transferred through a DMA port without involving the processor.

dirty, modified.

A state bit, stored along with the tag, indicating whether the data in the
data cache line has been changed since it was copied from the source
memory and, therefore, needs to be updated in that source memory.

ADSP-BF533 Blackfin Processor Hardware Reference G-7

Glossary

DMA.

See Direct Memory Access

DMA Access Bus (DAB).

A bus that provides a means for DMA channels to be accessed by the
peripherals.

DMA chaining.

The linking or chaining of multiple direct memory access (DMA)
sequences. In chained DMA, the I/O processor loads the next DMA
descriptor into the DMA parameter registers when the current DMA fin-
ishes and autoinitializes the next DMA sequence.

DMA Core Bus (DCB).

A bus that provides a means for DMA channels to gain access to on-chip
memory.

DMA descriptor registers.

Registers that hold the initialization information for a direct memory
access (DMA) process.

DMA External Bus (DEB).

A bus that provides a means for DMA channels to gain access to off-chip
memory.

DPMC (Dynamic Power Management Controller).

A processor’s control block that allows the user to dynamically control the
processor’s performance characteristics and power dissipation.

DQM Data I/O Mask Function.

The SDQM[1:0] pins provide a byte-masking capability on 8-bit writes to
SDRAM.

G-8 ADSP-BF533 Blackfin Processor Hardware Reference

DRAM (Dynamic Random Access Memory).

A type of semiconductor memory in which the data is stored as electrical
charges in an array of cells, each consisting of a capacitor and a transistor.
The cells are arranged on a chip in a grid of rows and columns. Since the
capacitors discharge gradually—and the cells lose their information—the
array of cells has to be refreshed periodically.

DSP.

See Digital Signal Processor

EAB.

See External Access Bus

EBC.

See External Bus Controller

EBIU.

See External Bus Interface Unit

edge-sensitive interrupt.

A signal or interrupt the processor detects if the input signal is high (inac-
tive) on one cycle and low (active) on the next cycle when sampled on the
rising edge of CLKIN.

Endian format.

The ordering of bytes in a multibyte number.

EPB.

See External Port Bus

ADSP-BF533 Blackfin Processor Hardware Reference G-9

Glossary

EPROM (Erasable Programmable Read-Only Memory).

A type of semiconductor memory in which the data is stored as electrical
charges in isolated (“floating”) transistor gates that retain their charges
almost indefinitely without an external power supply. An EPROM is pro-
grammed by “injecting” charge into the floating gates—a process that
requires relatively high voltage (usually 12V – 25V). Ultraviolet light,
applied to the chip’s surface through a quartz window in the package, will
discharge the floating gates, allowing the chip to be reprogrammed.

EVT (Event Vector Table).

A table stored in memory that contains sixteen 32-bit entries; each entry
contains a vector address for an interrupt service routine (ISR). When an
event occurs, instruction fetch starts at the address location in the corre-
sponding EVT entry. See ISR.

exclusive, clean.

The state of a data cache line indicating the line is valid and the data con-
tained in the line matches that in the source memory. The data in a clean
cache line does not need to be written to source memory before it is
replaced.

External Access Bus (EAB).

A bus mastered by the core memory management unit to access external
memory.

External Bus Controller (EBC).

A component that provides arbitration between the External Access Bus
(EAB) and the DMA External Bus (DEB), granting at most one requester
per cycle.

G-10 ADSP-BF533 Blackfin Processor Hardware Reference

External Bus Interface Unit (EBIU).

A component that provides glueless interfaces to external memories. It ser-
vices requests for external memory from the core or from a DMA channel.

external port.

A channel or port that extends the processor’s internal address and data
buses off-chip, providing the processor’s interface to off-chip memory and
peripherals.

External Port Bus (EPB).

A bus that connects the output of the EBIU to external devices.

FFT (Fast Fourier Transform).

An algorithm for computing the Fourier transform of a set of discrete data
values. The FFT expresses a finite set of data points, for example a peri-
odic sampling of a real-world signal, in terms of its component
frequencies. Or conversely, the FFT reconstructs a signal from the fre-
quency data. The FFT can also be used to multiply two polynomials.

FIFO (First In, First Out).

A hardware buffer or data structure from which items are taken out in the
same order they were put in.

flash memory.

A type of single transistor cell, erasable memory in which erasing can only
be done in blocks or for the entire chip.

fully associative.

Cache architecture where each line can be placed anywhere in the cache.

glueless.

No external hardware is required.

ADSP-BF533 Blackfin Processor Hardware Reference G-11

Glossary

Harvard architecture.

A processor memory architecture that uses separate buses for program and
data storage. The two buses let the processor fetch a data word and an
instruction word simultaneously.

HLL (High Level Language).

A programming language that provides some level of abstraction above
assembly language, often using English-like statements, where each com-
mand or statement corresponds to several machine instructions.

IDLE.

An instruction that causes the processor to cease operations, holding its
current state until an interrupt occurs. Then, the processor services the
interrupt and continues normal execution.

index.

Address portion that is used to select an array element (for example, line
index).

Index registers.

A Data Address Generator (DAG) register that holds an address and acts
as a pointer to memory.

indirect branches.

Jump or call/return instructions that use a dynamic address from the data
address generator, evaluated at runtime.

input clock.

Device that generates a steady stream of timing signals to provide the fre-
quency, duty cycle, and stability to allow accurate internal clock
multiplication via the phase locked loop (PLL) module.

G-12 ADSP-BF533 Blackfin Processor Hardware Reference

internal memory bank.

There are several internal memory banks within a given SDRAM. Each of
the internal banks can be active (open) simultaneously.

The SDC assumes that all SDRAMs to which it interfaces have four inter-
nal banks.

interrupt.

An event that suspends normal processing and temporarily diverts the flow
of control through an interrupt service routine (ISR). See ISR.

invalid.

Describes the state of a cache line. When a cache line is invalid, a cache
line match cannot occur.

IrDA (Infrared Data Association).

A nonprofit trade association that established standards for ensuring the
quality and interoperability of devices using the infrared spectrum.

isochronous.

Processes where data must be delivered within certain time constraints.

ISR (Interrupt Service Routine).

Software that is executed when a specific interrupt occurs. A table stored
in low memory contains pointers, also called vectors, that direct the pro-
cessor to the corresponding ISR. See EVT.

JTAG (Joint Test Action Group).

An IEEE Standards working group that defines the IEEE 1149.1 standard
for a test access port for testing electronic devices.

ADSP-BF533 Blackfin Processor Hardware Reference G-13

Glossary

JTAG port.

A channel or port that supports the IEEE standard 1149.1 JTAG standard
for system test. This standard defines a method for serially scanning the
I/O status of each component in a system.

jump.

A permanent transfer of the program flow to another part of program
memory.

latency.

The overhead time used to find the correct place for memory access and
preparing to access it.

Least Recently Used algorithm.

Replacement algorithm used by cache that first replaces lines that have
been unused for the longest time.

Least Significant Bit (LSB).

The last or rightmost bit in the normal representation of a binary num-
ber—the bit of a binary number giving the number of ones.

Length registers.

A Data Address Generator (DAG) register that specifies the range of
addresses in a circular buffer.

Level 1 (L1) memory.

Memory that is directly accessed by the core with no intervening memory
subsystems between it and the core.

G-14 ADSP-BF533 Blackfin Processor Hardware Reference

Level 2 (L2) memory.

Memory that is at least one level removed from the core. L2 memory has a
larger capacity than L1 memory, but it requires additional latency to
access.

level-sensitive interrupts.

A signal or interrupt that the processor detects if the input signal is low
(active) when sampled on the rising edge of CLKIN.

LIFO (Last In, First Out).

A data structure from which the next item taken out is the most recent
item put in.

little endian.

The native data store format of the processor. Words and half words are
stored in memory (and registers) with the least significant byte at the low-
est byte address and the most significant byte at the highest byte address of
the data storage location.

loop.

A sequence of instructions that executes several times.

LRU.

See Least Recently Used algorithm.

LSB.

See Least Significant Bit.

MAC (Multiply/Accumulate).

A mathematical operation that multiplies two numbers and then adds a
third to get the result (see Multiply Accumulator).

ADSP-BF533 Blackfin Processor Hardware Reference G-15

Glossary

Memory Management Unit (MMU).

A component of the processor that supports protection and selective cach-
ing of memory by using Cacheability Protection Lookaside Buffers
(CPLBs).

Mode Register.

Internal configuration registers within SDRAM devices which allow speci-
fication of the SDRAM device’s functionality.

modified addressing.

The process whereby the Data Address Generator (DAG) produces an
address that is incremented by a value or the contents of a register.

Modify register.

A Data Address Generator (DAG) register that provides the increment or
step size by which an index register is pre- or post-modified during a regis-
ter move.

MMR (Memory-Mapped Register).

A specific location in main memory used by the processor as if it were a
register.

MMU.

See Memory Management Unit

MSB (Most Significant Bit).

The first or leftmost bit in the normal representation of a binary num-
ber—the bit of a binary number with the greatest weight (2(n-1)).

G-16 ADSP-BF533 Blackfin Processor Hardware Reference

multifunction computations.

The parallel execution of multiple computational instructions. These
instructions complete in a single cycle, and they combine parallel
operation of the computational units and memory accesses. The multiple
operations perform the same as if they were in corresponding single func-
tion computations.

multiplier.

A computational unit that performs fixed-point multiplication and exe-
cutes fixed-point multiply/add and multiply/subtract operations.

NMI (Nonmaskable Interrupt).

A high priority interrupt that cannot be disabled by another interrupt.

NRZ (Non-return-to-Zero).

A binary encoding scheme in which a 1 is represented by a change in the
signal and a 0 by no change—there is no return to a reference (0) voltage
between encoded bits. This method eliminates the need for a clock signal.

NRZI (Non-return-to-Zero Inverted).

A binary encoding scheme in which a 0 is represented by a change in the
signal and a 1 is represented by no change—there is no return to a refer-
ence (0) voltage between encoded bits. This method eliminates the need
for a clock signal.

orthogonal.

The characteristic of being independent. An orthogonal instruction set
allows any register to be used in an instruction that references a register.

PAB.

See Peripheral Access Bus

ADSP-BF533 Blackfin Processor Hardware Reference G-17

Glossary

page size.

The amount of memory which has the same row address and can be
accessed with successive read or write commands without needing to acti-
vate another row.

PC (Program Counter).

A register that contains the address of the next instruction to be executed.

peripheral.

Functional blocks not included as part of the core, and typically used to
support system level operations.

Peripheral Access Bus (PAB).

A bus used to provide access to EBIU memory-mapped registers.

PF (Programmable Flag).

General-purpose I/O pins. Each PF pin can be individually configured as
either an input or an output pin, and each PF pin can be further config-
ured to generate an interrupt.

Phase Locked Loop (PLL).

An on-chip frequency synthesizer that produces a full speed master clock
from a lower frequency input clock signal.

PLL.

See Phase Locked Loop.

precision.

The number of bits after the binary point in the storage format for the
number.

G-18 ADSP-BF533 Blackfin Processor Hardware Reference

post-modify addressing.

The process in which the Data Address Generator (DAG) provides an
address during a data move and auto-increments after the instruction is
executed.

Precharge command.

The Precharge command closes a specific internal bank in the active page
or all internal banks in the page.

pre-modify addressing.

The process in which the Data Address Generator (DAG) provides an
address during a data move and auto-increments before the instruction is
executed.

PWM (Pulse Width Modulation).

Also called Pulse Duration Modulation (PDM), PWM is a pulse modula-
tion technique in which the duration of the pulses is varied by the
modulating voltage.

RAS (Row Address Strobe).

A signal sent from the SDC to a DRAM device to indicate validity of row
address lines.

Real-Time Clock (RTC).

A component that generates timing pulses for the digital watch features of
the processor, including time of day, alarm, and stopwatch countdown
features.

ROM (Read-Only Memory).

A data storage device manufactured with fixed contents. This term is most
often used to refer to non-volatile semiconductor memory.

ADSP-BF533 Blackfin Processor Hardware Reference G-19

Glossary

RTC.

See Real-Time Clock

RZ (Return-to-Zero modulation).

A binary encoding scheme in which two signal pulses are used for every
bit. A 0 is represented by a change from the low voltage level to the high
voltage level; a 1 is represented by a change from the high voltage level to
the low voltage level. A return to a reference (0) voltage is made between
encoded bits.

RZI (Return-to-Zero-Inverted modulation).

A binary encoding scheme in which two signal pulses are used for every
bit. A 1 is represented by a change from the low voltage level to the high
voltage level; a 0 is represented by a change from the high voltage level to
the low voltage level. A return to a reference (0) voltage is made between
encoded bits.

saturation (ALU saturation mode).

A state in which all positive fixed-point overflows return the maximum
positive fixed-point number, and all negative overflows return the maxi-
mum negative number.

SDC (SDRAM Controller).

A configurable memory controller supporting a bank of synchronous
memory consisting of SDRAM.

SDRAM (Synchronous Dynamic Random Access Memory).

A form of DRAM that includes a clock signal with its other control sig-
nals. This clock signal allows SDRAM devices to support “burst” access
modes that clock out a series of successive bits.

G-20 ADSP-BF533 Blackfin Processor Hardware Reference

SDRAM bank.

Region of external memory that can be configured to be 16M bytes, 32M
bytes, 64M bytes, or 128M bytes and is selected by the SMS pin.

Self-Refresh.

When the SDRAM is in Self-Refresh mode, the SDRAM’s internal timer
initiates Auto-Refresh cycles periodically, without external control input.
The SDRAM Controller (SDC) must issue a series of commands includ-
ing the Self-Refresh command to put SDRAM into low power mode, and
it must issue another series of commands to exit Self-Refresh mode. Enter-
ing Self-Refresh mode is programmed in the SDRAM Memory Global
Control register (EBIU_SDGCTL) and any access to the SDRAM address
space causes the SDC to exit SDRAM from Self-Refresh mode. See
“Entering and Exiting Self-Refresh Mode (SRFS)” on page 17-38.

Serial Peripheral Interface (SPI).

A synchronous serial protocol used to connect integrated circuits.

serial ports (SPORTs).

A high speed synchronous input/output device on the processor. The pro-
cessor uses two synchronous serial ports that provide inexpensive
interfaces to a wide variety of digital and mixed-signal peripheral devices.

set.

A group of N-line storage locations in the Ways of an N-Way cache,
selected by the Index field of the address.

set associative.

Cache architecture that limits line placement to a number of sets (or
Ways).

ADSP-BF533 Blackfin Processor Hardware Reference G-21

Glossary

shifter.

A computational unit that completes logical and arithmetic shifts.

SIC (System Interrupt Controller).

Part of the processor’s two-level event control mechanism. The SIC works
with the Core Event Controller (CEC) to prioritize and control all system
interrupts. The SIC provides mapping between the peripheral interrupt
sources and the prioritized general-purpose interrupt inputs of the core.

SIMD (Single Instruction, Multiple Data).

A parallel computer architecture in which multiple data operands are pro-
cessed simultaneously using one instruction.

SP (Stack Pointer).

A register that points to the top of the stack.

SPI.

See Serial Peripheral Interface

SRAM.

See Static Random Access Memory

stack.

A data structure for storing items that are to be accessed in last in, first out
(LIFO) order. When a data item is added to the stack, it is “pushed”;
when a data item is removed from the stack, it is “popped.”

Static Random Access Memory (SRAM).

Very fast read/write memory that does not require periodic refreshing.

G-22 ADSP-BF533 Blackfin Processor Hardware Reference

system.

The system includes the peripheral set (Timers, Real-Time Clock, pro-
grammable flags, UART, SPORTs, PPI, and SPIs), the external memory
controller (EBIU), the Memory DMA controller, as well as the interfaces
between these peripherals, and the optional, external (off-chip) resources.

System clock (SCLK).

A component that delivers clock pulses at a frequency determined by a
programmable divider ratio within the PLL.

System Interrupt Controller (SIC).

Component that maps and routes events from peripheral interrupt sources
to the prioritized, general-purpose interrupt inputs of the Core Event
Controller (CEC).

TAP (Test Access Port).

See JTAG port

TDM.

See Time Division Multiplexing

Time Division Multiplexing (TDM).

A method used for transmitting separate signals over a single channel.
Transmission time is broken into segments, each of which carries one ele-
ment. Each word belongs to the next consecutive channel so that, for
example, a 24-word block of data contains one word for each of the 24
channels.

UART.

See Universal Asynchronous Receiver Transmitter

ADSP-BF533 Blackfin Processor Hardware Reference G-23

Glossary

Universal Asynchronous Receiver Transmitter (UART).

A module that contains both the receiving and transmitting circuits
required for asynchronous serial communication.

Valid.

A state bit (stored along with the tag) that indicates the corresponding tag
and data are current and correct and can be used to satisfy memory access
requests.

victim.

A dirty cache line that must be written to memory before it can be
replaced to free space for a cache line allocation.

Von Neumann architecture.

The architecture used by most non-DSP microprocessors. This architec-
ture uses a single address and data bus for memory access.

Way.

An array of line storage elements in an N-Way cache.

W1C.

See Write-1-to-Clear

W1S.

See Write-1-to-Set

Write-1-to-Clear (W1C) bit.

A control or status bit that can be cleared (= 0) by being written to with 1.

G-24 ADSP-BF533 Blackfin Processor Hardware Reference

Write-1-to-Set (W1S) bit.

A control or status bit that is set by writing 1 to it. It cannot be cleared by
writing 0 to it.

write back.

A cache write policy (also known as copyback). The write data is written
only to the cache line. The modified cache line is written to source mem-
ory only when it is replaced.

write through.

A cache write policy (also known as store through). The write data is writ-
ten to both the cache line and to source memory. The modified cache line
is not written to the source memory when it is replaced.

ADSP-BF533 Blackfin Processor Hardware Reference I-1

I INDEX

A
A1-0 (accumulator result) registers, 2-6,

2-38, 2-39, 2-44
A10 (SDRAM address) pin, 17-33
aborts, DMA, 9-71
AC (address calculation) stage, 4-7
accumulator result (A1-0) registers, 2-6,

2-38, 2-44
active descriptor queue, and DMA

synchronization, 9-70
active field select (FLD_SEL) bit, 11-6
active low/high frame syncs, serial port,

12-39
active mode, 1-22, 8-14
ACTIVE_PLLDISABLED bit, 8-10
ACTIVE_PLLENABLED bit, 8-10
active video only mode, PPI, 11-19
address bus, 17-63
address calculation (AC) stage, 4-7
addressing

See also auto-decrement; auto-increment;
bit-reversed; circular-buffer; indexed;
indirect; modified; post-increment;
post-modify; pre-modify; data address
generators

circular buffers, 9-67
modes, 5-15
transfer types supported, 5-13

address mapping, SDRAM, 17-51
address pointer registers. See pointer

registers
address-tag compare operation, 6-18

alarm clock, RTC, 16-2
A-law companding, 12-2, 12-35, 12-60
alignment exceptions, 6-71
alignment of memory operations, 6-71
alternate frame sync mode, 12-42
alternate timing, serial port, 12-42
ALU, 1-3, 2-1, 2-23 to 2-37

arithmetic, 2-13
arithmetic formats, 2-15
data flow, 2-34
data types, 2-12
functions, 2-23
inputs and outputs, 2-25
instructions, 2-25, 2-29, 2-37
instructions (summary), 2-29
operations, 2-23 to 2-29
status, 2-22
status signals, 2-36

AMBEN (asynchronous memory bank
enable) field, 17-10

AMC (asynchronous memory controller),
1-7, 17-4

EBIU block diagram, 17-4
programming, 17-11
timing parameters, 17-11

AMCKEN (asynchronous memory
CLKOUT enable) bit, 17-11

AMS, 17-9
AND, logical, 2-23
arbitration

congestion on DMA channels, 9-59
DAB, 7-7

Index

I-2 ADSP-BF533 Blackfin Processor Hardware Reference

arbitration (continued)
DCB, 7-7
DEB, 7-7
EAB, 7-10
latency, 7-9

architecture, processor core, 2-2
ARDY pin, 17-15, 17-20
arithmetic formats summary, 2-15 to 2-16
arithmetic logic unit (ALU). See ALU
arithmetic operations, 2-23
arithmetic shift (ASHIFT) instruction,

2-50
arithmetic shifts, 2-1, 2-14
arithmetic status (ASTAT) register, 2-23
ASHIFT (arithmetic shift) instruction,

2-50
ASIC/FPGA designs, 17-1
assembly language, 2-1
ASTAT (arithmetic status) register, 2-23
asynchronous accesses, by core, 17-16
asynchronous controller, 1-12
asynchronous interfaces supported, 17-1
asynchronous memory, 17-2, 17-9
asynchronous memory bank address range

(table), 17-9
asynchronous memory bank control 0

(EBIU_AMBCTL0) register, 17-13
asynchronous memory bank control 1

(EBIU_AMBCTL1) register, 17-14
asynchronous memory bank control

(EBIU_AMBCTLx) registers, 17-11
asynchronous memory bank enable

(AMBEN) field, 17-10
asynchronous memory CLKOUT enable

(AMCKEN) bit, 17-11
asynchronous memory controller (AMC),

17-4
asynchronous memory controller. See AMC
asynchronous memory global control

(EBIU_AMGCTL) register, 17-10

asynchronous read, 17-17
asynchronous serial communications, 13-2
asynchronous write, 17-19
ASYNC memory banks, 17-3
atomic operations, 6-72
audience, intended, -xxxv
autobaud, and general-purpose timers,

15-34
autobaud detection, 13-1, 15-34
auto-decrement addressing, 5-10
auto-increment addressing, 5-10
auto-refresh

command, 17-60
timing, 17-48

B
B3-0 (base) registers, 2-7, 5-2, 5-6
bandwidth, memory DMA operations,

9-57
bank activate command, 17-23, 17-41,

17-58
bank address, EBIU, 17-46
bank n ARDY enable bit, 17-13
bank n ARDY polarity bit, 17-13
bank n memory transition time field, 17-13
bank n read access time field, 17-13
bank n setup time field, 17-13
bank n write access time field, 17-13
bank size encodings (table), 17-50
bank sizes

EBIU, 17-46
SDRAM, 17-30

bank widths
EBIU, 17-46
SDRAM, 17-30

barrel-shifter. See shifter
base (B3-0) registers, 2-7, 5-2, 5-6
baud rate, UART, 13-6, 13-7, 13-13
baud rate values, SPI, 10-8

ADSP-BF533 Blackfin Processor Hardware Reference I-3

Index

BGSTAT (bus grant status) bit, 17-47,
17-63

biased rounding, 2-18
BI (break interrupt) bit, 13-5, 13-9
binary decode, C-4
binary multiplication, D-4
binary numbers, 2-3
bit clear (BITCLR) instruction, 2-54
BITCLR (bit clear) instruction, 2-54
bit manipulation

bit clearbits, 2-54
bit set, 2-54
bit test, 2-54
bit toggle, 2-54

bit order, selecting, 12-34
bit-reversed addressing, 5-9
bit-reversed carry addressing, 5-1
bit. See specific bit by name
BITSET (bit set) instruction, 2-54
bit set (BITSET) instruction, 2-54
BITTGL (bit toggle) instruction, 2-54
bit toggle (BITTGL) instruction, 2-54
Blackfin processors

core architecture, 1-1
dynamic power management, 1-1
instruction set, 1-5
I/O memory space, 1-8
memory architecture, 1-6
native formats, D-2

block diagrams
bus hierarchy, 7-1
core, 7-3
core timer, 15-45
EBIU, 17-4
interrupt processing, 4-22
PLL, 8-3
processor, 1-2
RTC, 16-2
SDRAM, 17-30

block diagrams (continued)
SPI, 10-2
SPORT, 12-5

block floating-point format, D-7
BMODE

bits, 3-14
pins, 4-40
state, 3-13

BnRAT, 17-13
BnRDYEN bit, 17-13
BnRDYPOL bit, 17-13
BnST field, 17-13
BnTT field, 17-13
BnWAT field, 17-13
booting, 18-2
boot kernel, 3-18
boot modes, 1-24
boot ROM

loading user code, 3-18
reading in user code, 3-18

boundary-scan architecture, C-2
boundary-scan register, C-6
branch, conditional, 4-13
branching, 4-9
branch latency, 4-10

conditional branches, 4-14
unconditional branches, 4-15

branch prediction, 4-14
branch target, 4-12
branch target address for unconditional

branches, 4-15
break interrupt (BI) bit, 13-5, 13-9
B-registers (base), 2-7, 5-2, 5-6
broadcast mode, 10-3, 10-15, 10-23
buffers

cacheability protection lookaside buffers
(CPLBs), 6-15, 6-47, 6-48

timing, external, 17-62

Index

I-4 ADSP-BF533 Blackfin Processor Hardware Reference

burst length
defined, 17-24
SDC, 17-53

burst stop command, 17-24
burst type, defined, 17-24
bus agents

DAB, 7-9
PAB, 7-6

bus contention, avoiding, 17-15, 18-11
bus error, EBIU, 17-9
buses

See also DAB, DCB, DEB, EAB, PAB
diagram, 7-1
DMA usage, 9-50
hierarchy, 7-1
loading, 18-12
on-chip, 7-1
peripheral, 7-5
prioritization and DMA, 9-53

bus grant status (BGSTAT) bit, 17-47,
17-63

bus request and grant, 17-63
BYPASS field, 8-8
BYPASS instruction, C-6
bypass mode, 3-18
bypass register, C-6
byte address, EBIU, 17-46
byte enables, 17-22
byte order, 2-12

C
cache

cache line validity, 6-18
coherency support, 6-71
mapping into data banks, 6-35

cacheability protection lookaside buffers
(CPLBs), 6-15, 6-47, 6-48

cache block (definition), 6-74

cache hit
address-tag compare, 6-18
data cache access, 6-38
definition, 6-18, 6-74

cache inhibited accesses, 6-72
cache line

components, 6-16
definition, 6-74
states, 6-38

cache miss
definition, 6-38, 6-74
replacement policy, 6-20

CALL instruction, 4-9, 4-11
CAM (content-addressable memory), 6-47
capacitive loads, 17-22, 18-12
capacitors, recommendations, 18-13
carry status, 2-36
CAS before RAS, 17-25
CAS latency, 17-25, 17-40
CAW (column address width), EBIU,

17-46
CBR refresh, 17-25
CC (condition code) bit, 2-54, 4-10, 4-12
CCIR-656. See ITU-R 656
CCITT G.711 specification, 12-35
CCLK (core clock), 8-5

disabling, 8-30
status by operating mode, 8-13

CDDBG (control disable during bus grant)
bit, 17-37

CDPRIO (core-DMA priority) bit, 17-10
CEC (core event controller), 1-9
channels

defined, serial, 12-58
serial port TDM, 12-58
serial select offset, 12-58

CHNL (current channel indicator) field,
12-57

circuit boards, testing, C-1, C-5

ADSP-BF533 Blackfin Processor Hardware Reference I-5

Index

circular buffer addressing, 5-6, 9-67
registers, 5-6
wraparound, 5-8

clean (definition), 6-74
clear bit (BITCLR) instruction, 2-54
clear PFn bits, 14-9
clear PFn interrupt mask bit, 14-15
CLI (disable interrupts) instruction, 6-74
CLKIN (input clock), 8-1, 8-3
CLKIN to VCO, changing the multiplier,

8-21
CLK_SEL (timer clock select) bit, 15-9,

15-16, 15-21
clock divide modulus register, 12-30
clock falling edge select (RCKFE) bit,

12-22, 12-36, 12-39
clock falling edge select (TCKFE) bit,

12-17, 12-36, 12-39
clocking, 8-1 to 8-11
clock input (CLKIN) pin, 18-4
clock phase, SPI, 10-22
clock phase (CPHA) bit, 10-10, 10-31,

10-33, 10-37
clock polarity, SPI, 10-21
clock polarity (CPOL) bit, 10-10, 10-32
clock rate

core timer, 15-45
SPORT, 12-2

2x clock recovery mode (MCCRM) field,
12-51

clocks
EBIU, 17-1
frequency for SPORT, 12-30
managing, 18-4
RTC, 16-2
set up example, 12-33
source for general-purpose timers, 15-2
types of, 18-4

clock signal, SPI, 10-4

CL (SDRAM CAS latency) field, 17-35,
17-40

code examples
active mode to full on mode, 8-23
control register restoration, 6-73
epilog code for nested ISR, 4-53
full on mode to active mode, 8-23
interrupt enabling and disabling, 6-73
load base of MMRs, 6-73
loop, 4-16
modification of PLL, 8-20
prolog code for nested ISR, 4-53

column address
EBIU, 17-46
strobe latency, 17-25

command inhibit command, 17-61
commands

auto-refresh, 17-48, 17-60
bank activate, 17-23, 17-41, 17-58
burst stop, 17-24
command inhibit, 17-61
load mode register, 17-58
no operation, 17-61
parallel refresh, 17-31
precharge, 17-27, 17-42, 17-57
read/write, 17-59
SDC, 17-56
self-refresh, 17-27, 17-60
transfer initiate, 10-25

companding, 12-49
A-law, 12-2, 12-35
defined, 12-35
lengths supported, 12-35
multichannel operations, 12-60
µ-law, 12-2, 12-35

computational instructions, 2-1
computational status, 2-22
computational units, 2-1 to 2-58
conditional branches, 4-13, 4-14, 6-69,

6-70

Index

I-6 ADSP-BF533 Blackfin Processor Hardware Reference

conditional instructions, 2-22, 4-3
conditional JUMP instruction, 4-10
condition code (CC) bit, 2-54, 4-10, 4-12
configuration

L1 instruction SRAM, 6-1, 6-15
SDC, 17-54
SDRAM, 17-22
SPORT, 12-11

content-addressable memory (CAM), 6-47
contention, bus (avoiding), 17-15
control bit summary, general-purpose

timers, 15-43
control disable during bus grant (CDDBG)

bit, 17-37
control register

data memory, 6-28
EBIU, 17-8
instruction memory, 6-9
restoration, 6-73

convergent rounding, 2-18
core

access to flag configuration, 14-5
architecture, 1-3 to 1-6, 2-2
block diagram, 7-3
core clock/system clock ratio control, 8-5
double-fault condition, 4-40
double-fault reset, 3-13
powering down, 8-30

core clock (CCLK), 8-5
core-DMA priority (CDPRIO) bit, 17-10
core event controller (CEC), 1-9, 4-18
core events

event vector table, 4-38
MMR location, 4-38

CORE_IDLE bit, 8-10
core instructions, asynchronous accesses,

17-16
core interrupt latch (ILAT) register, 4-34
core interrupt mask (IMASK) register,

4-33, 15-3

core interrupt pending (IPEND) register,
3-1, 4-36

core-only software reset, 3-13, 3-17, 3-19
core timer, 15-45 to 15-49
core timer control (TCNTL) register,

15-46
core timer count (TCOUNT) register,

15-48
core timer period (TPERIOD) register,

15-46, 15-48
core timers

block diagram, 15-45
clock rate, 15-45
register list, A-7
scaling, 15-49

core timer scale (TSCALE) register, 15-49
counters

cycle, 4-4
RTC, 16-1

count value fields, 15-48
CPHA (clock phase) bit, 10-10, 10-31,

10-33, 10-37
CPOL (clock polarity) bit, 10-10, 10-32
CROSSCORE software, 1-27
cross options, 2-36
crosstalk, reducing, 18-13
CSYNC instruction, 6-68
current address registers

DMAx_CURR_ADDR, 9-23
MDMA_yy_CURR_ADDR, 9-23

current channel indicator (CHNL) field,
12-57

current descriptor pointer registers
DMAx_CURR_DESC_PTR, 9-21
MDMA_yy_CURR_DESC_PTR, 9-21

current inner loop count registers
DMAx_CURR_X_COUNT, 9-25
MDMA_yy_CURR_X_COUNT, 9-25

ADSP-BF533 Blackfin Processor Hardware Reference I-7

Index

current outer loop count registers
DMAx_CURR_Y_COUNT, 9-26
MDMA_yy_CURR_Y_COUNT, 9-26

cycle counters, 4-4

D
DAB (DMA access bus), 9-55

arbitration, 7-7
bus agents (masters), 7-9
latencies, 7-9
performance, 7-8

DAB_TRAFFIC_COUNT field, 9-55
DAG0 CPLB miss, 4-46
DAG0 misaligned access, 4-46
DAG0 multiple CPLB hits, 4-45
DAG0 port preference (PORT_PREF0)

bit, 6-28
DAG0 protection violation, 4-46
DAG1 CPLB miss, 4-46
DAG1 misaligned access, 4-46
DAG1 multiple CPLB hits, 4-46
DAG1 port preference (PORT_PREF1)

bit, 6-28
DAG1 protection violation, 4-46
DAG. See data address generators (DAGs)
data address generators (DAGs), 5-1 to

5-21
addressing modes, 5-15
branching support, 4-3
exceptions, 4-45
instructions, 5-16
register modification, 5-12
registers, 2-5, 2-7

data bus, 17-63
data cache, control instructions, 6-41
data cacheability protection lookaside

buffer enable (ENDCPLB) bit, 6-30
data cache flush (FLUSH) instruction, 6-41
data cache line flush and invalidate

(FLUSHINV) instruction, 6-42

data cache prefetch (PREFETCH)
instruction, 6-41

data corruption, avoiding with SPI, 10-23
data-driven interrupts, 9-33
data flow, 2-1
data formats, 2-3 to 2-4, 2-11

binary multiplication, D-4
SPORT, 12-34

data formatting type select (RDTYPE)
field, 12-20, 12-34, 12-60

data formatting type select (TDTYPE) bits,
12-15, 12-34, 12-60

data-independent transmit frame sync
select (DITFS) bit, 12-16, 12-28,
12-44

data input modes, PPI, 11-22 to 11-25
data interrupt enable (DI_EN) bit, 9-14
data interrupt timing select (DI_SEL) bit,

9-15
data length (DLEN) field, 11-3
data mask encodings, 17-52
data memory, L1, 6-28 to 6-42
data memory control

(DMEM_CONTROL) register,
6-28, 6-48

data move, serial port operations, 12-44
data operations, CPLB, 6-48
data output modes, PPI, 11-25 to 11-27
data overflow, 12-37
data ready (DR) bit, 13-5, 13-7, 13-15
data register file, 2-5, 2-6
data registers, 2-5, 3-4
data sampling, serial, 12-39
data SRAM, L1, 6-31
data store format, 6-75
data test command

(DTEST_COMMAND) register,
6-44

data test data (DTEST_DATAx) registers,
6-45

Index

I-8 ADSP-BF533 Blackfin Processor Hardware Reference

data test registers, 6-43 to 6-45
data transfers

data register file, 2-6
DMA, 7-8, 9-1
serial, 12-1
SPI, 10-2

data types, 2-10 to 2-21, 12-34
data underflow, 12-37
data word

serial data formats, 12-22
UART, 13-6

DBGCTL (debug control) register, 3-17
DCB (DMA core bus), 7-7, 9-56
DCBS (L1 data cache bank select) bit,

6-30, 6-36
DCB_TRAFFIC_COUNT field, 9-56
DCB_TRAFFIC_PERIOD field, 9-56
DCPLB address (DCPLB_ADDRx)

registers, 6-59
DCPLB_ADDRx (DCPLB address)

registers, 6-59
DCPLB data (DCPLB_DATAx) registers,

6-57
DCPLB_DATAx (DCPLB data) registers,

6-57
DCPLB_FAULT_ADDR (DCPLB fault

address) register, 6-63
DCPLB fault address

(DCPLB_FAULT_ADDR) register,
6-63

DCPLB_STATUS (DCPLB status)
register, 6-62

DCPLB status (DCPLB_STATUS)
register, 6-62

DEB (DMA external bus), 7-7, 9-55
arbitration, 7-7
frequency, 7-10
performance, 7-10

DEB_TRAFFIC_COUNT field, 9-55
DEB_TRAFFIC_PERIOD field, 9-55

debug
registers, A-7

debug control (DBGCTL) register, 3-17
DEC (instruction decode) stage, 4-7
DEEP_SLEEP bit, 8-10
deep sleep mode, 1-23, 8-15
deep sleep state, RTC, 16-7
deep sleep wakeup, 16-12
deferring exception processing, 4-55
delay count (PPI_DELAY) register, 11-10
descriptor queue, 9-67
descriptor structures, DMA, 9-66
destination channels, memory DMA, 9-48
development tools, 1-27
DF (divide frequency) bit, 8-4, 8-9
DI_EN (data interrupt enable) bit, 9-14
direction (PORT_DIR) bit, 11-6
direct-mapped (definition), 6-74
direct memory access. See DMA
dirty (definition), 6-74
disable interrupts (CLI) instruction, 6-74
disabling

general-purpose timers, 15-5, 15-13
PLL, 8-18
RTC prescaler, 16-19

DISALGNEXPT instruction, 5-13
discrete SDRAM components supported,

17-30
DI_SEL (data interrupt timing select) bit,

9-15
DITFS (data-independent transmit frame

sync select) bit, 12-16, 12-28, 12-44
divide frequency (DF) bit, 8-4, 8-9
divide primitives (DIVS, DIVQ), 2-12,

2-37
divisor, UART, 13-11
divisor latch access (DLAB) bit, 13-3, 13-6,

13-7, 13-8
divisor latch high byte, 13-12
divisor latch low byte, 13-12

ADSP-BF533 Blackfin Processor Hardware Reference I-9

Index

divisor reset, UART, 13-12
DIVQ instruction, 2-37
DIVS (division primitives), 2-12
DIVS instruction, 2-37
DLAB (divisor latch access) bit, 13-3, 13-6,

13-7, 13-8
DLEN (data length) field, 11-3
DMA, 9-1 to 9-73

1D interrupt-driven, 9-64
1D unsynchronized FIFO, 9-65
2D, polled, 9-64
2D interrupt-driven, 9-64
autobuffer mode, 9-34, 9-43
buffer size, multichannel SPORT, 12-64
channel registers, 9-34
channels, 9-50
channels and control schemes, 9-60
continuous transfers using autobuffering,

9-64
descriptor array, 9-41
descriptor elements, 9-6
descriptor lists, 9-42
descriptor queue management, 9-67
descriptor structures, 9-66
direction, 9-16
DMA-capable peripherals, 9-1
double buffer scheme, 9-64
errors, 9-71
errors not detected, 9-72
flex descriptor structure, 9-34
flow chart, 9-37
memory DMA, 9-48 to 9-50
memory DMA streams, 9-48
operation flow, 9-37
overview, 1-10
performance considerations, 9-51
polling registers, 9-61
PPI, 11-30
prioritization and traffic control, 9-52 to

9-54

DMA (continued)
refresh, 9-41
register naming conventions, 9-5
serial port block transfers, 12-44
single-buffer transfers, 9-63
software management, 9-60
SPI, 10-33 to 10-39
SPI data transmission, 10-18, 10-19
SPI master, 10-34
SPI slave, 10-37
SPI transmit, 10-18
SPORT, 12-3
startup, 9-39
stopping, 9-43
synchronization, 9-60 to 9-71
synchronization with PPI, 11-22
triggering transfers, 9-44
two-dimensional (2D), 9-45 to 9-47
UART, 13-8, 13-16

DMA2D (DMA mode) bit, 9-15
DMA buffer clear (RESTART) bit, 9-15
DMA bus. See DAB
DMA channel enable (DMA_EN) bit,

9-16
DMA configuration registers

DMAx_CONFIG, 9-12
MDMA_yy_CONFIG, 9-12

DMA controller, 9-1
DMA control registers

list, B-12
DMA core bus. See DCB
DMA direction (WNR) bit, 9-16
DMA_EN (DMA channel enable) bit,

9-16
DMA_ERROR interrupt, 9-71
DMA error interrupts, 9-33
DMA external bus. See DEB
DMA mode (DMA2D) bit, 9-15
DMA performance optimization, 9-50 to

9-60

Index

I-10 ADSP-BF533 Blackfin Processor Hardware Reference

DMA queue completion interrupt, 9-70
DMA_TC_CNT (DMA traffic control

counter) register, 9-55
DMA_TC_PER (DMA traffic control

counter period) register, 9-55
DMA traffic control counter

(DMA_TC_CNT) register, 9-55
DMA traffic control counter period

(DMA_TC_PER) register, 9-55
DMA traffic exceeding available

bandwidth, 9-59
DMA_TRAFFIC_PERIOD field, 9-55
DMA transfers, urgent, 9-59
DMAx_CONFIG (DMA configuration)

registers, 9-12
DMAx_CURR_ADDR (current address)

registers, 9-23
DMAx_CURR_DESC_PTR (current

descriptor pointer) registers, 9-21
DMAx_CURR_X_COUNT (current

inner loop count) registers, 9-25
DMAx_CURR_Y_COUNT (current

outer loop count) registers, 9-26
DMAx_IRQ_STATUS (interrupt status)

registers, 9-30
DMAx_NEXT_DESC_PTR (next

descriptor pointer) registers, 9-8
DMAx_PERIPHERAL_MAP (peripheral

map) registers, 9-28
DMAx_START_ADDR (start address)

registers, 9-10
DMAx_X_COUNT (inner loop count)

registers, 9-16
DMAx_X_MODIFY (inner loop address

increment) registers, 9-17
DMAx_Y_COUNT (outer loop count)

registers, 9-19
DMAx_Y_MODIFY (outer loop address

increment) registers, 9-20

DMC (L1 data memory configure) field,
6-31

DMEM_CONTROL (data memory
control) register, 6-28, 6-48

double-fault condition, 4-40
DPMC (dynamic power management

controller), 8-2, 8-12 to 8-31
DQM pin mask function, 17-25
DQM pins, 17-25
DR (data ready) bit, 13-5, 13-7, 13-15
DRxPRI SPORT input, 12-4
DRxSEC SPORT input, 12-4
DTEST_COMMAND (data test

command) register, 6-44
DTEST_DATAx (data test data) registers,

6-45
DTxPRI SPORT output, 12-4
DTxSEC SPORT output, 12-4
dual 16-bit operations, 2-26
dynamic power management, 1-1, 1-21,

8-1 to 8-31
dynamic power management controller

(DPMC), 8-2, 8-12 to 8-31
dynamic power management registers

list, B-2

E
EAB (external access bus), 7-9

arbitration, 7-10
EBIU usage, 17-4
frequency, 7-10
performance, 7-10

early frame sync, 12-42
EBCAW (SDRAM external bank column

address width) field, 17-45
EBE (SDRAM external bank enable) bit,

17-45, 17-54

ADSP-BF533 Blackfin Processor Hardware Reference I-11

Index

EBIU, 17-1 to 17-63
asynchronous interfaces supported, 17-1
block diagram, 17-4
bus error, 17-9
byte enables, 17-22
clock, 17-1
clocking, 8-1
control registers, 17-8
overview, 17-1
programmable timing characteristics,

17-16
registers, 17-8
request priority, 17-1
SDRAM devices supported, 17-44
slave operation, 17-4
status register, 17-8

EBIU_AMBCTLx (asynchronous memory
bank control) registers, 17-11, 17-13,
17-14

EBIU_AMGCTL (asynchronous memory
global control) register, 17-10

EBIU (external bus interface unit), 1-11
list of registers, B-14

EBIU_SDBCTL (SDRAM memory global
control) register, 17-44

EBIU_SDGCTL (SDRAM memory global
control) register, 17-33

EBIU_SDRRC (SDRAM refresh rate
control) register, 17-48

EBIU_SDSTAT (SDRAM control status)
register, 17-47

EBSZ (SDRAM external bank size) field,
17-45, 17-50

EBUFE (external buffering timing enable)
bit, 17-36, 17-39

ELSI (enable status RX interrupt) bit, 13-9
EMISO (enable MISO) bit, 10-10
EMREN (extended mode register enable)

bit, 17-36

emulation, and timer counter, 15-10
emulation behavior select (EMU_RUN)

bit, 15-9, 15-10, 15-16, 15-44
emulation events, 4-39
emulation mode, 3-9, 4-39
emulation registers, A-7
emulator mode, 1-5
EMU_RUN (emulation behavior select)

bit, 15-9, 15-10, 15-16, 15-44
enable interrupts (STI) instruction, 6-73,

6-74, 8-22
enable IrDA mode (IREN) bit, 13-14,

13-18
enable MISO (EMISO) bit, 10-10
enable PFn interrupt mask bit, 14-14
enable (PORT_EN) bit, 11-8
enable receive buffer full interrupt (ERBFI)

bit, 13-8, 13-16
enable status RX interrupt (ELSI) bit, 13-9
enable transmit buffer empty interrupt

(ETBEI) bit, 13-8, 13-9, 13-16
enable UART clocks (UCEN) bit, 13-12,

13-14, 13-15
ENDCPLB (data cacheability protection

lookaside buffer enable) bit, 6-30
endianess, 2-12
endian format, data and instruction storage,

6-65
entire field mode, PPI, 11-18
environments, non-OS, 3-7
EPROM, 1-7
ERBFI (enable receive buffer full interrupt)

bit, 13-8, 13-16
ERR_DET (error detected) bit, 11-8
ERR_NCOR (error not corrected) bit,

11-8
error detected (ERR_DET) bit, 11-8
error not corrected (ERR_NCOR) bit,

11-8

Index

I-12 ADSP-BF533 Blackfin Processor Hardware Reference

errors
bus parity, 4-47
bus timeout, 4-47
data misalignment, 6-71
DMA, 9-71
hardware, 4-47
hardware conditions causing, 4-48
internal core, 4-47
multiple hardware, 4-48
not detected by DMA hardware, 9-72
peripheral, 4-47

error signals, SPI, 10-29 to 10-31
error type (ERR_TYP) field, 15-8, 15-9,

15-19, 15-44
ERR_TYP (error type) field, 15-8, 15-9,

15-19, 15-44
ETBEI (enable transmit buffer empty

interrupt) bit, 13-8, 13-9, 13-16
event controller, 3-1, 4-18

MMRs, 4-33
sequencer, 4-3

event flags, RTC, 16-8
event handling, 1-8
events

definition, 4-18
exception, 4-41
handling, 4-18
latency in servicing, 4-60
nested, 4-36
processing, 4-3
unrecoverable, 4-45

event vector table (EVT), 4-38
EVT (event vector table), 4-38
EX1 (execute 1) stage, 4-7
EX2 (execute 2) stage, 4-7
EX3 (execute 3) stage, 4-7
EX4 (execute 4) stage, 4-7
exception events, 3-4
exception return (RETX) register, 3-6
exception routine, example code, 4-58

exceptions
deferring, 4-55
events, 4-41
events causing, 4-43
handler, executing, 4-46
handling instructions in pipeline, 4-55
multiple, 4-45
nonsequential structures, 4-1
table by descending priority, 4-45
trace buffer, 4-46
watchpoint matches, 4-45
while exception handler executing, 4-47

exclusive (definition), 6-74
EXCPT instruction, 4-46
execute 1 (EX1) stage, 4-7
execute 2 (EX2) stage, 4-7
execute 3 (EX3) stage, 4-7
execute 4 (EX4) stage, 4-7
execution unit, components, 4-8
EXT_CLK mode, 15-36 to 15-37
extended mode register enable (EMREN)

bit, 17-36
external access bus. See EAB
external buffering timing enable (EBUFE)

bit, 17-36, 17-39
external buffer timing, 17-62
external bus interface unit (EBIU), 1-11,

B-14
external bus interface unit (EBIU). See

EBIU
external event mode, 15-3
external event mode. See EXT_CLK mode
external memory, 1-7, 6-46 to 6-47

design issues, 18-7
interfaces, 17-5
interfacing to, 17-1
map (diagram), 17-3

external SDRAM memory, 17-50
EXTEST instruction, C-5

ADSP-BF533 Blackfin Processor Hardware Reference I-13

Index

F
fast back-to-back read to write (FBBRW)

bit, 17-36
Fast Fourier Transform, 2-36, 5-9
FBBRW (fast back-to-back read to write)

bit, 17-36
FE (framing error) bit, 13-5, 13-9
fetch address, 4-2, 4-7, 4-8
FFE (force framing error on transmit) bit,

13-14
field indicator (FLD) bit, 11-9
FIFO, EBIU, 17-1
FIFO overflow (OVR) bit, 11-9
FIFO underrun (UNDR) bit, 11-9
FIO_BOTH (flag set on both edges)

register, 14-7, 14-19
FIO_DIR (flag direction) register, 14-1,

14-5
FIO_EDGE (flag interrupt sensitivity)

register, 14-7, 14-18
FIO_FLAG_C (flag clear) register, 14-1,

14-8
FIO_FLAG_D (flag data) register, 14-1,

14-8
FIO_FLAG_S (flag set) register, 14-1, 14-8
FIO_FLAG_T (flag toggle) register, 14-1,

14-8, 14-9
FIO_INEN (flag input enable) register,

14-2, 14-20
FIO_MASKx_C (interrupt mask clear)

registers, 14-2, 14-11
FIO_MASKx_D (interrupt mask data)

registers, 14-2, 14-11
FIO_MASKx_S (interrupt mask set)

registers, 14-2, 14-11
FIO_MASKx_T (interrupt mask toggle)

registers, 14-2, 14-11
FIO_POLAR (flag polarity) register, 14-7,

14-18

flag clear (FIO_FLAG_C) register, 14-1,
14-8

flag configuration registers, 14-1, 14-5
flag data (FIO_FLAG_D) register, 14-1,

14-8
flag direction (FIO_DIR) register, 14-1,

14-5
flag input enable (FIO_INEN) register,

14-2, 14-20
flag interrupts, flowchart, 14-13
flag interrupt sensitivity (FIO_EDGE)

register, 14-7, 14-18
flag mask interrupt registers, 14-11
flag polarity (FIO_POLAR) register, 14-7,

14-18
flags

 See also programmable flags
interrupt generation, 14-1, 14-12
overflow, 2-12
programmable, 14-1
UART, 13-15

flag set (FIO_FLAG_S) register, 14-1, 14-8
flag set on both edges (FIO_BOTH)

register, 14-7, 14-19
flag toggle (FIO_FLAG_T) register, 14-1,

14-8, 14-9
flag value registers, 14-6
flash memory, 1-7, 17-1
FLD (field indicator) bit, 11-9
FLD_SEL (active field select) bit, 11-6
flex descriptors, 9-34, 9-47
flex descriptor size (NDSIZE) field, 9-14,

9-72
FLGx (slave select value) bits, 10-10, 10-13
FLOW (next operation) field, 9-13, 9-66
FLSx (slave select enable) bits, 10-10
FLUSH (data cache flush) instruction, 6-41
FLUSHINV (data cache line flush and

invalidate) instruction, 6-42

Index

I-14 ADSP-BF533 Blackfin Processor Hardware Reference

force framing error on transmit (FFE) bit,
13-14

force interrupt/reset (RAISE) instruction,
3-11

force parity error on transmit (FPE) bit,
13-14

formats, serial data words, 12-22
FPE (force parity error on transmit) bit,

13-14
FP (frame pointer) register, 4-4, 5-5
fractional data format, D-1
fractional mode, 2-13, D-5
fractional multiplier results format, 2-16
fractional representation, 2-4
fractions, multiplication, 2-48
framed serial transfers, characteristics,

12-38
framed/unframed data, 12-37
frame pointer (FP) register, 4-4, 5-5
frame start detect, PPI, 11-12
frame sync, 12-1

active high/low, 12-39
early, 12-42
early/late, 12-42
external/internal, 12-38
internal, 12-32
internally generated, 12-31
late, 12-42
multichannel mode, 12-53
sampling edge, 12-39
set up example, 12-33
SPORT options, 12-37

frame synchronization
PPI in GP modes, 11-27
SPORT usage, 12-3

frame sync polarity, between PPI and timer,
11-29

frame sync pulse
use of, 12-16
when issued, 12-16

frame sync signal, control of, 12-16, 12-21
frame sync to data relationship (FSDR) bit,

12-51, 12-58
frame track error (FT_ERR) bit, 11-8,

11-12
frame track errors, 11-8, 11-12
framing

continuous data, 12-67
examples of, 12-69
non-continuous data, 12-67

framing error (FE) bit, 13-5, 13-9
frequencies, clock and frame sync, 12-32
frequency

DEB, 7-10
EAB, 7-10

FREQ (voltage frequency) field, 8-27, 8-28
FSDR (frame sync to data relationship) bit,

12-51, 12-58
F signal, 11-9
FT_ERR (frame track error) bit, 11-8,

11-12
full duplex, 10-1, 12-1, 12-4
FULL_ON bit, 8-10
full on mode, 1-22, 8-13
FU (unsigned fraction) option, 2-42

G
GAIN (voltage level gain) field, 8-27, 8-29
general-purpose interrupts, 4-18, 4-30,

4-49
general-purpose I/O (GPIO) pins, 14-1
general-purpose modes, PPI, 11-21
general-purpose (PFx) pins, 14-1
general-purpose timers, 15-1 to 15-43

autobaud mode, 15-34
clock source, 15-2
control bit summary, 15-43
disabling, 15-5, 15-13
enabling, 15-5, 15-13
enabling simultaneously, 15-3

ADSP-BF533 Blackfin Processor Hardware Reference I-15

Index

general-purpose timers (continued)
interrupts, 15-3, 15-6, 15-19, 15-38
modes, 15-1
output pad disable, 15-18
PPI usage, 15-37
PULSE_HI toggle mode, 15-22
registers, 15-2
single pulse generation, 15-18
size of register accesses, 15-4
stopping in PWM_OUT mode, 15-20
waveform generation, 15-18

get more data (GM) bit, 10-28, 10-36,
10-38

glitch filtering, UART, 13-19
global enabling and disabling interrupts,

4-37
glossary, G-1
GM (get more data) bit, 10-28, 10-36,

10-38
GPIO (general-purpose I/O) pins, 14-1
ground plane, recommendations, 18-13
GSM speech-compression routines, 2-21
GSM speech vocoder algorithms, 2-43

H
H.100 protocol, 12-2, 12-58, 12-65
handshaking, status flags, 13-15
hardware conditions and error interrupts,

4-48
hardware error (HWE) interrupt, 4-47
hardware error interrupts, 4-47, 4-48
hardware errors, multiple, 4-48
hardware reset, 3-12
Harvard architecture, 6-6
hibernate state, 1-23, 8-16, 8-30
hierarchical memory structure, 1-5
high frequency design considerations,

18-12
HMVIP, 12-65
HWE (hardware error interrupt), 4-47

I
I2S serial devices, 12-2
I3-0 (index) registers, 2-7, 5-2, 5-6
ICPLB address (ICPLB_ADDRx) registers,

6-60
ICPLB_ADDRx (ICPLB address) registers,

6-60
ICPLB data (ICPLB_DATAx) registers,

6-55
ICPLB_DATAx (ICPLB data) registers,

6-55
ICPLB fault address

(ICPLB_FAULT_ADDR) register,
6-63

ICPLB_FAULT_ADDR (ICPLB fault
address) register, 6-63

ICPLB_STATUS (ICPLB status) register,
6-62

ICPLB status (ICPLB_STATUS) register,
6-62

idle state, 3-9, 4-1
IEEE 1149.1 standard. See JTAG standard
IF1 (instruction fetch 1) stage, 4-7
IF2 (instruction fetch 2) stage, 4-7
IF3 (instruction fetch 3) stage, 4-7
I-fetch access exception, 4-45
I-fetch CPLB miss, 4-45
I-fetch misaligned access, 4-45
I-fetch multiple CPLB hits, 4-45
I-fetch protection violation, 4-45
IH (integer high-half extraction) option,

2-43
ILAT (core interrupt latch) register, 4-34
illegal combination, 4-45
illegal use protected resource, 4-45
IMASK (core interrupt mask) register,

4-33, 15-3
IMEM_CONTROL (instruction memory

control) register, 6-9, 6-48
immediate offset, 5-11

Index

I-16 ADSP-BF533 Blackfin Processor Hardware Reference

immediate overflow status, 2-36
index (definition), 6-75
indexed addressing, 5-9, 5-11
index (I3-0) registers, 2-7, 5-2, 5-6
inductance (run length), 18-12
inner loop address increment registers

DMAx_X_MODIFY, 9-17
MDMA_yy_X_MODIFY, 9-17

inner loop count registers
DMAx_X_COUNT, 9-16
MDMA_yy_X_COUNT, 9-16

input clock (CLKIN), 8-1, 8-3
input delay bit, 8-9
inputs and outputs, 2-25
instruction address, 4-3
instruction alignment unit, 4-7
instruction-bit scan ordering, C-4
instruction cache

coherency, 6-21
invalidation, 6-23
management, 6-21 to 6-23

instruction decode (DEC) stage, 4-7
instruction fetch 1 (IF1) stage, 4-7
instruction fetch 2 (IF2) stage, 4-7
instruction fetch 3 (IF3) stage, 4-7
instruction fetches, 6-48
instruction fetch time loop, 4-17
instruction (IR) register, C-2
instruction loop buffer, 4-17
instruction memory control

(IMEM_CONTROL) register, 6-9,
6-48

instruction memory unit, 4-7
instruction pipeline, 4-2, 4-6, 4-7
instructions

ALU, 2-29, 2-30
conditional, 2-22, 4-3
DAG, 5-16
DAG, summary, 5-17
data cache control, 6-41

instructions (continued)
in pipeline when interrupt occurs, 4-55
instruction set, 1-25
interlocked pipeline, 6-66
load/store, 6-66
multiple exceptions, 4-45
multiplier, 2-40
protected, 3-4
register file, 2-8
shifter, summary of, 2-55
stored in memory, 6-65
synchronizing, 6-68
width, 4-8

instruction set, 1-5, 1-25
instruction test command

(ITEST_COMMAND) register, 6-25
instruction test data (ITEST_DATAx)

registers, 6-25
instruction test registers, 6-24 to 6-26
instruction width, 4-8
integer data format, D-1
integer high-half extraction (IH) option,

2-43
integer mode, 2-14, D-5
integer multiplier results format, 2-16
integers, multiplication, 2-48
interfaces

external memory, 17-5
internal, 7-1
internal memory, 17-5
on-chip, 7-5
RTC, 16-2
system, 7-4

interleaving data, 12-5, 12-23
internal address mapping (table), 17-45
internal/external frame syncs. See frame

sync
internal memory, 1-7, 6-6, 17-5
internal receive clock select (IRCLK) bit,

12-20

ADSP-BF533 Blackfin Processor Hardware Reference I-17

Index

internal receive frame sync select (IRFS) bit,
12-21, 12-38

internal supply regulator, shutting off, 8-30
internal transmit clock select (ITCLK) bit,

12-15
internal transmit frame sync select (ITFS)

bit, 12-16, 12-38, 12-54
internal voltage level (VLEV) field, 8-27,

8-28
interrupt channels, 13-8, 14-2
interrupt conditions, UART, 13-9
interrupt controller registers, A-5, B-2
interrupt handling

DMA synchronization, 9-68
instructions in pipeline, 4-55

interrupt mask clear (FIO_MASKx_C)
registers, 14-2, 14-11

interrupt mask data (FIO_MASKx_D)
registers, 14-2, 14-11

interrupt mask set (FIO_MASKx_S)
registers, 14-2, 14-11

interrupt mask toggle (FIO_MASKx_T)
registers, 14-2, 14-11

interrupt output, SPI, 10-7
interrupt priority (IPRIO) register, 6-40
interrupt request enable (IRQ_ENA) bit,

15-3, 15-6, 15-7, 15-9, 15-16
interrupts

assigning priority for UART, 13-11
configuring and servicing, 18-4
control of system, 4-18
data-driven, 9-33
definition, 4-18
disabling generation of, 14-2
DMA errors, 9-33
DMA queue completion, 9-70
enabling and disabling, 6-73
enabling generation of, 14-2
general-purpose, 4-18, 4-49

interrupts (continued)
general-purpose timers, 15-3, 15-19,

15-38
generated by peripherals, 4-21
global enabling and disabling, 4-37
hardware conditions (table), 4-48
hardware error, 4-47
managing descriptor queues, 9-67
masking, 14-2
multiple sources, 4-22
nested, 4-36
non-nested, 4-50
nonsequential structures, 4-1
peripheral, 4-18
peripheral errors, 9-33
PF pins, 14-1
priority watermark, 6-40
processing, 4-3, 4-21
processor, 14-11
RTC, 16-11, 16-12
servicing, 4-49
shared, 4-30
sources, peripheral, 4-27
SPI errors, 10-7
SPORT error, 12-29
SPORT RX, 12-25, 12-29
SPORT TX, 12-24, 12-29
timers, 15-6

interrupt service routines. See ISRs
interrupt status registers, 13-17

DMAx_IRQ_STATUS, 9-30
MDMA_yy_IRQ_STATUS, 9-30

invalidation, instruction cache, 6-23
invalid cache line (definition), 6-75
I/O interface to peripheral serial device,

12-1
I/O memory space, 1-8
I/O pins, general-purpose, 14-1
IPEND (core interrupt pending) register,

3-1, 4-36

Index

I-18 ADSP-BF533 Blackfin Processor Hardware Reference

IPRIO (interrupt priority) register, 6-40
IRCLK (internal receive clock select) bit,

12-20
IrDA

receiver, 13-19
SIR protocol, 13-1
transmitter, 13-18
UART, 13-17

IrDA mode, 13-14
IrDA RX polarity change (RPOLC) bit,

13-14
IrDA SIR, 13-17
IrDA TX polarity change (TPOLC) bit,

13-14
I-registers (index), 2-7
IREN (enable IrDA mode) bit, 13-14,

13-18
IRFS (internal receive frame sync select) bit,

12-21, 12-38
IR (instruction) register, C-2
IRPOL bit, 13-20
IRQ_ENA (interrupt request enable) bit,

15-3, 15-6, 15-7, 15-9, 15-16
ISR and multiple interrupt sources, 4-22
ISRs

clearing interrupt bits, 15-7
determining source of interrupt, 4-27
UART, 13-15

ISS2 (signed integer scale) option, 2-42
IS (signed integer) option, 2-42
ITCLK (internal transmit clock select) bit,

12-15
ITEST_COMMAND (instruction test

command) register, 6-25
ITEST_DATAx (instruction test data)

registers, 6-25
ITEST (instruction test) registers, 6-24
ITFS (internal transmit frame sync select)

bit, 12-16, 12-38, 12-54
ITU-R 601/656, 1-12

ITU-R 656 modes, 11-6, 11-8, 11-13
DLEN field, 11-3
frame start detect, 11-12
frame synchronization, 11-20
output, 11-20

IU (unsigned integer) option, 2-42
IVHW interrupt, 4-47

J
JPEG compression, PPI, 11-32
JTAG

port, 3-17
standard, C-1, C-2, C-4

JUMP instruction, 4-9
conditional, 4-10
range, 4-10

jumps, nonsequential structures, 4-1

L
L1 data cache bank select (DCBS) bit,

6-30, 6-36
L1 data memory configure (DMC) field,

6-31
L1 data memory controller registers, A-1
L1 data SRAM, 6-31
L1 instruction memory controller registers,

A-3
L1 memory. See level 1 (L1) memory; level

1 (L1) data memory; level 1 (L1)
instruction memory

L3-0 (length) registers, 2-7, 5-2, 5-6
LARFS (late receive frame sync) bit, 12-21,

12-42
latched interrupt request, 4-34
late frame sync, 12-42, 12-52
latency

DAB, 7-9
programmable flags, 14-21
SDRAM, 17-35

ADSP-BF533 Blackfin Processor Hardware Reference I-19

Index

latency (continued)
SDRAM read command, 17-53
servicing events, 4-60
setting CAS value, 17-40
when servicing interrupts, 4-49

late receive frame sync (LARFS) bit, 12-21,
12-42

late transmit frame select (LATFS) bit,
12-17, 12-42, 12-58

LATFS (late transmit frame select) bit,
12-17, 12-42, 12-58

LBx (loop bottom) registers, 4-4
LCx (loop counter) registers, 4-4
least recently used algorithm (LRU)

(definition), 6-75
left-right order (RRFST) bit, 12-22
left-right order (TRFST) bit, 12-17
length (L3-0) registers, 2-7, 5-2, 5-6
level 1 (L1) data memory, 6-28 to 6-42

subbanks, 6-31
traffic, 6-28

level 1 (L1) instruction memory, 6-8 to
6-23

configuration, 6-15
DAG reference exception, 6-12
instruction cache, 6-15
organization, 6-15
subbank organization, 6-8
subbanks, 6-12

level 1 (L1) memory, 1-5, 6-6
See also level 1 (L1) data memory; level 1

(L1) instruction memory
address alignment, 6-12
definition, 6-75
scratchpad data SRAM, 6-8

level 2 (L2) memory, 6-46
life counter, 16-1
lines per frame (PPI_FRAME) register,

11-12
line terminations, SPORT, 12-66

little endian (definition), 6-75
load, speculative execution, 6-69
load mode register command, 17-58
load operation, 6-66
load ordering, 6-67
load/store instructions, 5-5
locked transfers, DMA, 7-8
logging nested interrupts, 4-54
logical operations, 2-23
logical shift (LSHIFT) instruction, 2-50
logical shifts, 2-1, 2-14
long jump (JUMP.L) instruction, 4-11
loopback mode, force error bits, 13-14
loopback mode enable (LOOP) bit, 13-4
loop bottom (LBx) registers, 4-4
loop conditions, evaluation, 4-4
loop counter (LCx) registers, 4-4
LOOP (loopback mode enable) bit, 13-4
loops

buffer, 4-17
disabling, 4-17
instruction fetch time, 4-17
nonsequential structures, 4-1
registers, 4-4, 4-5
termination conditions, 4-3
top and bottom addresses, 4-17

loop top (LTx) registers, 4-4
low receive frame sync select (LRFS) bit,

12-21, 12-38, 12-39
low transmit frame sync select (LTFS) bit,

12-17, 12-38, 12-39, 12-54
L-registers (length), 2-7
LRFS (low receive frame sync select) bit,

12-21, 12-38, 12-39
LSB first (LSBF) bit, 10-10
LSBF (LSB first) bit, 10-10
LSHIFT (logical shift) instruction, 2-50
LTFS (low transmit frame sync select) bit,

12-17, 12-38, 12-39, 12-54
LTx (loop top) registers, 4-4

Index

I-20 ADSP-BF533 Blackfin Processor Hardware Reference

M
M3-0 (modify) registers, 2-7, 5-2, 5-6
MACs (multiplier-accumulators), 2-38 to

2-50
See also multiply without accumulate
dual operations, 2-49
multicycle 32-bit instruction, 2-48

manual
contents, -xxxvi
new in this edition, -xxxix

master in slave out (MISO) pin, 10-3, 10-4,
10-6, 10-21, 10-23, 10-24

master (MSTR) bit, 10-10
master out slave in (MOSI) pin, 10-3, 10-4,

10-5, 10-21, 10-23, 10-24
masters

DAB, 7-9
PAB, 7-6

MCCRM (2x clock recovery mode) field,
12-51

MCCRM (mode) signal, 12-65
MCDRXPE (multichannel DMA receive

packing) bit, 12-51, 12-64
MCDTXPE (multichannel DMA transmit

packing) bit, 12-51, 12-64
MCMEN (multichannel frame mode

enable) bit, 12-51, 12-52
MDMA_ROUND_ROBIN_COUNT

field, 9-55, 9-58
MDMA_ROUND_ROBIN_PERIOD

field, 9-55, 9-57, 9-58
MDMA_yy_CONFIG (DMA

configuration) registers, 9-12
MDMA_yy_CURR_ADDR (current

address) registers, 9-23
MDMA_yy_CURR_DESC_PTR (current

descriptor pointer) registers, 9-21
MDMA_yy_CURR_X_COUNT (current

inner loop count) registers, 9-25

MDMA_yy_CURR_Y_COUNT (current
outer loop count) registers, 9-26

MDMA_yy_IRQ_STATUS (interrupt
status) registers, 9-30

MDMA_yy_NEXT_DESC_PTR (next
descriptor pointer) registers, 9-8

MDMA_yy_PERIPHERAL_MAP
(peripheral map) registers, 9-28

MDMA_yy_START_ADDR (start
address) registers, 9-10

MDMA_yy_X_COUNT (inner loop
count) registers, 9-16

MDMA_yy_X_MODIFY (inner loop
address increment) registers, 9-17

MDMA_yy_Y_COUNT (outer loop
count) register, 9-19

MDMA_yy_Y_MODIFY (outer loop
address increment) registers, 9-20

memory
See also cache; level 1 (L1) memory; level

1 (L1) data memory; level 1 (L1)
instruction memory; level 2 (L2)
memory

address alignment, 5-13
architecture, 1-6, 6-1 to 6-8
asynchronous interface, 18-7
asynchronous region, 17-2
configurations, 6-2
external, 1-7, 6-46 to 6-47, 17-5
external SDRAM, 17-50
instructions storage, 6-65
internal, 1-7
internal memory banks, 17-26
L1 data, 6-28 to 6-42
L1 data SRAM, 6-31
management, 6-47
map, 6-3
moving data between SPORT, 12-44
nonaligned operations, 6-71
off-chip, 1-7

ADSP-BF533 Blackfin Processor Hardware Reference I-21

Index

memory (continued)
on-chip, 1-7
page descriptor table, 6-50
protected, 3-5
protection and properties, 6-47 to 6-63
start locations of L1 instruction memory

subbanks, 6-12
terminology, 6-74 to 6-76
transaction model, 6-65
unpopulated, 17-10

memory DMA, 9-48 to 9-50
bandwidth, 9-50
channels, 9-48
priority, 9-57
register naming conventions, 9-7
scheduling, 9-57
transfer operation, starting, 9-49
transfer performance, 7-10
word size, 9-49

memory management unit (MMU), 1-5,
6-47

memory map, external (diagram), 17-3
memory-mapped registers (MMRs), 6-72

to 6-74
memory page, 6-49
memory structure, 1-5
MFD (multichannel frame delay) field,

12-54, 12-56
MISO (master in slave out) pin, 10-3, 10-4,

10-6, 10-21, 10-23, 10-24
mixed multiply (M) option, 2-43
µ-law companding, 12-2, 12-35, 12-60
M (mixed multiply mode) option, 2-43
MMR location of core events, 4-38
MMRs (memory-mapped registers), B-1
MMU (memory management unit), 1-5,

6-47
mode fault error (MODF) bit, 10-16,

10-29
mode fault errors, 10-7

mode register, 17-26
modes

active video only mode, 11-19
addressing, 5-15
autobaud, 15-34
boot, 1-24, 3-18
broadcast, 10-3, 10-15, 10-23
bypass, 3-18
emulation, 4-39
emulator, 1-5
external event, 15-3
full on, 8-13
general-purpose (PPI), 11-21
general-purpose timers, 15-1
IrDA, 13-14
multichannel, 12-49
operating, 8-12
operation, 1-5
processor reset, 18-1
self-refresh, 17-27
serial port, 12-11
SPI as master, 10-25
SPI master, 10-2
SPI slave, 10-2, 10-27
supervisor, 1-5
TDM multichannel, 12-2
time-division-multiplexed (TDM)

mode, 12-49
UART DMA, 13-16
UART non-DMA, 13-15
user, 1-5
VBI only, 11-19

MODF (mode fault error) bit, 10-16,
10-29

modified addressing, 5-3
modified (definition), 6-74
modify address, 5-1
modify (M3-0) registers, 2-7, 5-2, 5-6
MOSI (master out slave in) pin, 10-3, 10-4,

10-5, 10-21, 10-23, 10-24

Index

I-22 ADSP-BF533 Blackfin Processor Hardware Reference

moving data, serial port, 12-44
MPEG compression, PPI, 11-32
MP registers, A-7
MSEL (multiplier select) field, 8-4, 8-8
MSTR (master) bit, 10-10
µ-law companding, 12-2, 12-35, 12-60
multichannel configuration

(SPORTx_MCMC2) register, 12-58,
12-64

multichannel DMA receive packing
(MCDRXPE) bit, 12-51, 12-64

multichannel DMA transmit packing
(MCDTXPE) bit, 12-51, 12-64

multichannel frame, 12-55
multichannel frame delay (MFD) field,

12-54, 12-56
multichannel frame mode enable

(MCMEN) bit, 12-51, 12-52
multichannel mode, 12-49

enable/disable, 12-52
frame syncs, 12-53
SPORT, 12-53

multichannel operation, SPORT, 12-49 to
12-65

multichannel selection registers, 12-60
multimaster environment, SPI, 10-2
multiple interrupt sources, 4-22, 4-54
multiple-slave SPI systems, 10-15
multiplexed SDRAM addressing scheme

(figure), 17-51
multiplier, 2-1

accumulator result (A1-0) registers, 2-38,
2-39

arithmetic integer modes formats, 2-15
data types, 2-13
fractional modes format, 2-15
instruction options, 2-42
instructions, 2-40
operands for input, 2-38
operations, 2-38

multiplier (continued)
results, 2-39, 2-40, 2-44
rounding, 2-39
saturation, 2-40
status, 2-22
status bits, 2-40
theory of operation, 2-44

multiplier select (MSEL) field, 8-4, 8-8
multiply without accumulate, 2-46
multiprocessor systems, shared SDRAM,

17-36
MVIP-90, 12-65

N
NDSIZE (flex descriptor size) field, 9-14,

9-72
negative status, 2-36
nested interrupts, 4-36

handling (table), 4-52
logging, 4-54

nested ISRs
example epilog code, 4-53
example prolog code, 4-53

next descriptor pointer registers
DMAx_NEXT_DESC_PTR register,

9-8
MDMA_yy_NEXT_DESC_PTR

register, 9-8
next operation (FLOW) field, 9-13, 9-66
NINT (pending interrupt) bit, 13-10
NMI (nonmaskable interrupt), 4-41
nonaligned memory operations, 6-71
nonmaskable interrupts, 4-41
non-nested interrupts, 4-50, 4-51
non-OS environments, 3-7
nonsequential program operation, 4-9
nonsequential program structures, 4-1
no operation command, 17-61
NOP command, 17-61
normal frame sync mode, 12-42

ADSP-BF533 Blackfin Processor Hardware Reference I-23

Index

normal timing, serial port, 12-42
NOT, logical, 2-23
NRZ modulation, 13-17
numbers

binary, 2-3
data formats, 2-11
fractional representation, 2-4
two’s-complement, 2-4
unsigned, 2-4

numeric formats, D-1 to D-8
binary multiplication, D-4
block floating-point, D-7
integer mode, D-5
two’s-complement, D-1

O
OE (overrun error) bit, 13-5, 13-9, 13-15
off-chip memory, 1-7
on-chip memory, 1-7
open drain drivers, 10-1
open drain outputs, 10-24
open page, defined, 17-23
operating modes, 3-1 to 3-19, 8-12

active, 1-22
active mode, 8-14
deep sleep, 1-23
deep sleep mode, 8-15
full on, 1-22, 8-13
hibernate state, 1-23, 8-16
PPI, 11-6
sleep, 1-22
sleep mode, 8-14
transition, 8-16

16-bit operations, 2-25, 2-26, 2-36
32-bit operations, 2-27, 2-28
optimization, DMA performance, 9-50 to

9-60
OR, logical, 2-23

ordering
loads and stores, 6-67
weak and strong, 6-67

orthogonal functionality, 15-16
oscilloscope probes, 18-15
OUT_DIS (output pad disable) bit, 15-8,

15-9, 15-16, 15-18
outer loop address increment registers

DMAx_Y_MODIFY register, 9-20
MDMA_yy_Y_MODIFY registers, 9-20

outer loop count registers
DMAx_Y_COUNT register, 9-19
MDMA_yy_Y_COUNT register, 9-19

output, PF pin configured as, 14-1
output, PPI, 1 sync mode, 11-25
output delay bit, 8-8
output pad disable, timer, 15-18
output pad disable (OUT_DIS) bit, 15-8,

15-9, 15-16, 15-18
overflow, data, 12-37
overflow, saturation of multiplier results,

2-40
overflow-error indicator (TOVF_ERRx)

bit, 15-3, 15-8, 15-19, 15-45
overflow flags, 2-12
overrun error (OE) bit, 13-5, 13-9, 13-15
OVR (FIFO overflow) bit, 11-9

P
PAB (peripheral access bus), 7-5

arbitration, 7-5
bus agents (masters, slaves), 7-6
clocking, 8-1
EBIU usage, 17-5
errors generated by SPORT, 12-29
performance, 7-5

PACK_EN (packing mode enable) bit,
11-5

packing, serial port, 12-64

Index

I-24 ADSP-BF533 Blackfin Processor Hardware Reference

packing mode enable (PACK_EN) bit,
11-5

page descriptor table, 6-50
page size, 17-27, 17-46
parallel peripheral interface (PPI). See PPI
parallel refresh command, 17-31
parity enable (PEN) bit, 13-3
parity error (PE) bit, 13-5, 13-9
partial array self-refresh (PASR) field,

17-34, 17-36
PASR (partial array self-refresh) field,

17-34, 17-36
patch registers, A-8
PC100 SDRAM standard, 17-1
PC133 SDRAM controller, 1-11
PC133 SDRAM standard, 17-1
PC (program counter) register, 4-2
PC-relative offset, 4-11
PDWN (power down) bit, 8-9, 8-16
pending interrupt (NINT) bit, 13-10
PEN (parity enable) bit, 13-3
PE (parity error) bit, 13-5, 13-9
performance

DAB, 7-8
DEB, 7-10
DMA, 9-51
EAB, 7-10
memory DMA, 7-10, 9-50
PAB, 7-5
programmable flags, 14-21
SDRAM, 17-62

performance monitor registers, A-9
performance optimization, DMA, 9-50 to

9-60
PERIOD_CNT (period count) bit, 15-6,

15-9, 15-16, 15-18, 15-21
period count (PERIOD_CNT) bit, 15-6,

15-9, 15-16, 15-18, 15-21
period value fields, 15-49
peripheral access bus (PAB), 12-29

peripheral bus. See PAB
peripheral DMA channels, 9-50
peripheral error interrupts, 9-33
peripheral interrupts, 4-18

relative priority, 4-29
source masking, 4-28

peripheral map registers
DMAx_PERIPHERAL_MAP register,

9-28
MDMA_yy_PERIPHERAL_MAP

register, 9-28
peripherals, 1-1 to 1-3

configuring for an IVG priority, 4-32
interrupts generated by, 4-21
interrupt sources, 4-27
programmable flag pins, 14-4
SPI-compatible, 10-1
timing, 7-2

PFn both edges bit, 14-20
PFn input enable bit, 14-21
PFn polarity bit, 14-18
PFn (programmable flag direction) bits,

14-5
PFn sensitivity bit, 14-19
PF (programmable flag) pins, shared with

PPI, 11-1
PF (programmable flag) registers, B-7
PF. See programmable flags
PFx (general-purpose) pins, 14-1
PFx (programmable flag) pins, 10-10
pins

 See alsoblock diagrams
See specific pin by name
SPORT, 12-4
unused, 18-1

pin terminations, SPORT, 12-66
pipeline

diagram, 4-7
instructions, 4-2, 4-6
instruction stages, 4-7

ADSP-BF533 Blackfin Processor Hardware Reference I-25

Index

pipeline (continued)
interlocked, 6-66
interrupt usage, 4-55
lengths of, 9-62

pipelining, SDC supported, 17-39
PLL

active mode, 8-14, 8-21
applying power to the PLL, 8-18
block diagram, 8-3
BYPASS bit, 8-14, 8-22
CCLK derivation, 8-3
changing CLKIN-to-VCO multiplier,

8-18
clock counter, 8-11
clock dividers, 8-4
clock frequencies, changing, 8-11
clocking to SDRAM, 8-15
clock multiplier ratios, 8-3
code examples, 8-23, 8-24
configuration, 8-3
control bits, 8-16
deep sleep mode, 8-22
disabled, 8-18
divide frequency (DF) bit, 8-4
DMA access, 8-13, 8-14, 8-22
dynamic power management controller

(DPMC), 8-12
enabled, 8-18
enabled but bypassed, 8-14
full on mode, 8-21
lock counter, 8-11
maximum performance mode, 8-13
modification, activating changes to DF

or MSEL, 8-20
modification in active mode, 8-16
multiplier select (MSEL) field, 8-4
new multiplier ratio, 8-18
operating modes, operational

characteristics, 8-12
operating mode transitions (table), 8-19

PLL (continued)
PDWN (power down) bit, 8-16
PLL_LOCKED bit, 8-21
PLL_OFF bit, 8-18
PLL status (table), 8-12
power domains, 8-25
powering down core, 8-30
power savings by operating mode (table),

8-13
processing during PLL programming

sequence, 8-21
programming sequence, 8-20
relocking after changes, 8-21
removing power to the PLL, 8-18
RTC interrupt, 8-15, 8-22
SCLK derivation, 8-1, 8-3
sleep mode, 8-14, 8-21
STOPCK (stop clock) bit, 8-16
transitions, 18-8
voltage control, 8-12, 8-29
wakeup signal, 8-21

PLL control (PLL_CTL) register, 8-7
PLL_CTL (PLL control) register, 8-7
PLL divide (PLL_DIV) register, 8-7
PLL_DIV (PLL divide) register, 8-7
PLL_LOCKCNT (PLL lock count)

register, 8-11
PLL lock count (PLL_LOCKCNT)

register, 8-11
PLL_LOCKED bit, 8-10
PLL_OFF bit, 8-9
PLL status (PLL_STAT) register, 8-9
pointer register file, 2-5
pointer register modification, 5-12
pointer registers, 2-6, 3-4
point-to-point connections, 18-12
polarity, 10-21

programmable flags, 14-18
SPI, 10-21

POLC bit, 11-3

Index

I-26 ADSP-BF533 Blackfin Processor Hardware Reference

polling DMA registers, 9-61
POLS bit, 11-3
popping, manual, 4-3
PORT_CFG (port configuration) field,

11-6
port configuration (PORT_CFG) field,

11-6
port connection, SPORT, 12-7
PORT_DIR (direction) bit, 11-6
PORT_EN (enable) bit, 11-8
PORT_PREF0 (DAG0 port preference)

bit, 6-28
PORT_PREF1 (DAG1 port preference)

bit, 6-28
port width, PPI, 11-5
post-modify addressing, 5-1, 5-3, 5-7, 5-11
post-modify buffer access, 5-8
power dissipation, 8-25
power domains, 8-25
power down (PDWN) bit, 8-9, 8-16
powerdown warning, as NMI, 4-41
powering down core, 8-30
power management, 1-21, 8-1 to 8-31
power reduction, PWM_OUT mode,

15-18
powerup

mode register, 17-26
sequence, 17-35, 17-58, 17-61

powerup start delay (PUPSD) bit, 17-36
PPI, 11-1 to 11-32

active video only mode, 11-19
beginning data transfers, 11-8
clock input, 11-1
control signal polarities, 11-3
data input modes, 11-22 to 11-25
data output modes, 11-25 to 11-27
data width, 11-3
delay before starting, 11-10
DMA operation, 11-30
edge-sensitive inputs, 11-29

PPI (continued)
enabling, 11-8
entire field modes, 11-18
FIFO, 11-9
frame start detect, 11-12
frame synchronization with ITU-R 656,

11-20
frame sync polarity with timer

peripherals, 11-29
frame track errors, 11-8, 11-12
general-purpose modes, 11-21
general-purpose timers, 15-37
GP modes, frame synchronization, 11-27
ITU-R 656 modes, 11-13, 11-20
MMRs, 11-2
number of samples, 11-11
operating modes, 11-3, 11-6
output, 1 sync mode, 11-25
pins, 11-1
port width, 11-5
registers, B-4
synchronization with DMA, 11-22
timer pins, 11-29
vertical blanking interval only mode,

11-19
video data transfer, 11-32
video processing, 11-13

PPI_CLK signal, 11-3
PPI_CONTROL (PPI control) register,

11-3
PPI control (PPI_CONTROL) register,

11-3
PPI_COUNT (transfer count) register,

11-11
PPI_DELAY (delay count) register, 11-10
PPI_FRAME (lines per frame) register,

11-12
PPI_FS1 signal, 11-3
PPI_FS2 signal, 11-3
PPI_FS3 signal, 11-9

ADSP-BF533 Blackfin Processor Hardware Reference I-27

Index

PPI_STATUS (PPI status) register, 11-8
PPI status (PPI_STATUS) register, 11-8
precharge command, 17-27, 17-57
precharge delay, selecting, 17-42
PREFETCH (data cache prefetch)

instruction, 6-41
PRELOAD instruction, C-6
pre-modify instruction, 5-11
pre-modify stack pointer addressing, 5-11
prescaler, RTC, 16-1, 16-19
prioritization

DMA, 9-52 to 9-54
memory DMA operations, 9-57
peripheral DMA operations, 9-57

private instructions, C-4
probes, oscilloscope, 18-15
processor modes

determining, 3-1
diagram, 3-2
emulation, 3-9
identifying, 3-2
IPEND interrogation, 3-1
supervisor mode, 3-7
user mode, 3-3

processors
addressing modes, 5-15
block diagram, 1-2
booting, 18-2
bus hierarchy diagram, 7-1
core architecture, 2-2
core block diagram, 7-3
resetting, 18-1

processor states
idle, 3-9
reset, 3-10

program counter (PC) register, 4-2
PC-relative JUMP/CALL, 4-12
PC-relative offset, 4-10

program flow, 4-1

programmable flag direction (PFx) bits,
14-5

programmable flag (FIO_x) registers, B-7
programmable flag (PFx) pins, 10-10, 14-8

functionality, 14-3
peripherals, 14-3
used for PPI, 11-1

programmable flags, 1-19, 14-1 to 14-21
edge sensitive, 14-18
latency, 14-21
level sensitive, 14-18
multiplexed (table), 14-2
performance, 14-21
pins, interrupt, 14-1
polarity, 14-18
slave select, 10-10
system MMRs, 14-5
throughput, 14-21

programming model
cache memory, 6-6
EBIU, 17-8

program operation, nonsequential, 4-9
program sequencer, 4-1 to 4-62
program structures, nonsequential, 4-1
protected instructions, 3-4
protected resources, 3-4
PSM (SDRAM powerup sequence) bit,

17-35, 17-55
PSSE (SDRAM powerup sequence start

enable) bit, 17-35
PSSE (slave select enable) bit, 10-9
public instructions, C-4, C-5
PULSE_HI bit, 15-9, 15-16, 15-18, 15-19,

15-22
PULSE_HI toggle mode, 15-22
pulse width count and capture mode. See

WDTH_CAP mode
pulse width modulation mode, 15-6
pulse width modulation mode. See

PWM_OUT mode

Index

I-28 ADSP-BF533 Blackfin Processor Hardware Reference

PUPSD (powerup start delay) bit, 17-36
pushing, manual, 4-3
PWM_CLK, 15-21
PWM_OUT mode, 15-16 to 15-26

externally clocked, 15-21
flow diagram, 15-17
PULSE_HI toggle mode, 15-22
stopping the timer, 15-20

PWM_OUT PULSE_HI toggle mode
(TOGGLE_HI) bit, 15-9, 15-16,
15-22, 15-44

Q
quad 16-bit operations, 2-26
query semaphore, 18-6
quotient status, 2-36

R
radix point, D-1
RAISE (force interrupt/reset) instruction,

3-11
range

CALL instruction, 4-11
conditional branches, 4-13
JUMP instruction, 4-10

RBSY (receive error) bit, 10-16, 10-31,
10-39

RCKFE (clock falling edge select) bit,
12-22, 12-36, 12-39

RDIV field, 17-48, 17-53, 17-54
RDTYPE (data formatting type select)

field, 12-20, 12-34, 12-60
read, asynchronous, 17-17
read command, 17-59
read transfers to SDRAM banks, 17-53
real-time clock. See RTC
receive bit order (RLSBIT) bit, 12-21
receive buffer, 13-7
receive clock (RSCLK) signal, 12-36

receive configuration (SPORTx_RCRx)
registers, 12-18, 12-60

receive enable (RSPEN) bit, 12-10, 12-18,
12-20, 12-29

receive error (RBSY) bit, 10-16, 10-31,
10-39

receive FIFO, SPORT, 12-24
receive FIFO not empty status (RXNE) bit,

12-28
receive frame sync required select (RFSR)

bit, 12-21, 12-37
receive frame sync (RFS) signal, 12-53,

12-54
receive sampling window, UART, 13-19
receive secondary side of SPORT (RXSE)

bit, 12-22
receive shift (RSR) register, 13-3, 13-7
receive stereo frame sync enable (RSFSE)

bit, 12-22
reception error, SPI, 10-31
refresh, parallel, 17-31
refresh rate, SDRAM, 18-8
register file instructions, 2-8
register files, 2-5 to 2-10
register instructions, conditional branch,

4-10
register move, 4-14
registers

See also specific register by name
accessible in user mode, 3-4
core, A-1 to A-9
flag mask interrupt, 14-11
flag value, 14-6
general-purpose timers, 15-2
memory-mapped, core, A-1 to A-9
multichannel selection, 12-60
return address, 4-3
stack pointer, 5-5
system, B-1 to B-15

replacement policy, 6-38, 6-75

ADSP-BF533 Blackfin Processor Hardware Reference I-29

Index

reserved SDRAM, 17-2
reset

core double-fault, 3-13
core-only software, 3-13, 3-17, 3-19
effect on memory configuration, 6-30
effect on SPI, 10-3
hardware, 3-12, 8-15
initialization sequence, 4-29
interrupt programming, 4-29
system software, 3-12, 3-15
watchdog timer, 3-12, 3-15

reset interrupt (RST), 4-39
reset modes, 18-1
RESET signal, 3-10
reset state, 3-10
reset vector, 4-41
reset vector addresses (table), 4-40
resources, protected, 3-4
resource sharing, with semaphores, 18-5
RESTART (DMA buffer clear) bit, 9-15
RETS register, 4-11
return address, 4-2, 4-9
return address registers, 4-3
return from emulation (RTE) instruction,

4-10
return from exception (RTX) instruction,

4-10
return from interrupt (RTI) instruction,

4-10, 15-3
return from nonmaskable interrupt (RTN)

instruction, 4-10
return from subroutine (RTS) instruction,

4-10
return instructions, 4-10
RETX (exception return) register, 3-6
RFS pins, 12-37
RFS (receive frame sync) signal, 12-53,

12-54
RFSR (receive frame sync required select)

bit, 12-21, 12-37

RLSBIT (receive bit order) bit, 12-21
RND_MOD (rounding mode) bit, 2-18,

2-21
ROM (read only memory), 1-7, 17-1
rounding

biased, 2-18, 2-20
convergent, 2-18
instructions, 2-18, 2-22
round-to-nearest method, 2-20
unbiased, 2-18

rounding mode (RND_MOD) bit, 2-18,
2-21

round robin scheduling, memory DMA,
9-58

round-to-nearest, 2-20
ROVF (sticky receive overflow status) bit,

12-27, 12-29
row address, EBIU, 17-46
RPOLC (IrDA RX polarity change) bit,

13-14
RRFST (left-right order) bit, 12-22
RSCLK (receive clock) signal, 12-36
RSCLKx pins, 12-36
RSFSE (receive stereo frame sync enable)

bit, 12-22
RSPEN (receive enable) bit, 12-10, 12-18,

12-20, 12-29
RSR (receive shift) register, 13-3, 13-7
RST (reset interrupt), 4-39
RTC, 1-18, 16-1 to 16-21

alarm clock features, 16-2
architecture, 16-4
block diagram, 16-2
clock requirements, 16-2
counters, 16-1
digital watch features, 16-1
disabling, 16-3
event flags, 16-8
flags (list), 16-9
interfaces, 16-2

Index

I-30 ADSP-BF533 Blackfin Processor Hardware Reference

RTC (continued)
interrupts, 16-11
interrupt structure, 16-12
prescaler, 16-1
programming model, 16-4
registers, B-3
state transitions, 16-20
stopwatch function, 16-2
write latency, 16-6

RTC_ALARM (RTC alarm) register, 16-2,
16-18

RTC alarm (RTC_ALARM) register, 16-2,
16-18

RTC_ICTL (RTC interrupt control)
register, 16-4, 16-15

RTC interrupt control (RTC_ICTL)
register, 16-4, 16-15

RTC interrupt status (RTC_ISTAT)
register, 16-4, 16-5, 16-16

RTC_ISTAT (RTC interrupt status)
register, 16-4, 16-5, 16-16

RTC_PREN (RTC prescaler enable)
register, 16-8, 16-19

RTC prescaler enable (RTC_PREN)
register, 16-8, 16-19

RTC (real-time clock), 1-18
RTC_STAT (RTC status) register, 16-8,

16-13
RTC status (RTC_STAT) register, 16-8,

16-13
RTC stopwatch count (RTC_SWCNT)

register, 16-2, 16-17
RTC_SWCNT (RTC stopwatch count)

register, 16-2, 16-17
RTE (return from emulation) instruction,

4-10
RTI (return from interrupt) instruction,

4-10, 4-59, 15-3
RTN (return from nonmaskable interrupt)

instruction, 4-10

RTS (return from subroutine) instruction,
4-10

RTX (return from exception) instruction,
4-10

RUVF (sticky receive underflow status) bit,
12-27, 12-29

RX data buffer status (RXS) bit, 10-16,
10-32, 10-39

RX hold registers, 12-25
RXNE (receive FIFO not empty status) bit,

12-28
RXSE (receive secondary side of SPORT)

bit, 12-22
RXS (RX data buffer status) bit, 10-16,

10-32, 10-39
RZI modulation, 13-17

S
SA10 pin, 17-31
SAMPLE instruction, C-6
sampling clock period, UART, 13-7
sampling edge, SPORT, 12-39
sampling point, UART, 13-7
SB (set break) bit, 13-3
scale value field, 15-49
scaling, of core timer, 15-49
scan paths, C-4
scheduling, memory DMA, 9-57
SCK (SPI clock) signal, 10-4, 10-21,

10-23, 10-24, 10-37
SCLK (system clock), 8-1, 8-5

changing frequency, 18-10
derivation, 8-1
disabling, 8-30
EBIU, 17-1
frequency, 8-13
status by operating mode (table), 8-13

SCLK (system clock) pin, 12-30
SCRATCH field, 13-13
scratchpad SRAM, 6-8

ADSP-BF533 Blackfin Processor Hardware Reference I-31

Index

SCTLE (SDRAM enable clockout) bit,
17-33, 17-37

SDC, 17-22 to 17-62
commands, 17-56
component configurations (table), 17-30
configuration, 17-54
glueless interface features, 17-22
operation, 17-53
pin states, 17-57
set up, 17-54

SDCI (SDRAM controller idle) bit, 17-47
SDC (SDRAM controller), 17-4
SDEASE (SDRAM EAB sticky error status)

bit, 17-47
SDPUA (SDRAM powerup active) bit,

17-47
SDQM1-0 encodings during writes (table),

17-53
SDQM pins, 17-52
SDRAM, 1-7

A10 pin, 17-33
address mapping, 17-51
auto-refresh, 17-60
banks, 6-46, 17-27
bank size, 17-1
block diagram, 17-30
buffering timing option (EBUFE),

setting, 17-39
components supported, 17-30
configuration, 17-22
devices supported, 17-44
external memory, 6-1, 17-50
interface commands, 17-56
interface signals (table), 17-7
latency, 17-35
memory banks, 17-3
no operation command, 17-61
operation parameters, initializing, 17-58
performance, 17-62
powerup sequence, 17-35

SDRAM (continued)
read command latency, 17-53
read transfers, 17-53
read/write, 17-59
refresh during PLL transitions, 18-8
refresh rate, 18-8
reserved, 17-2
sharing external, 17-36
size configuration, 17-44
sizes supported, 6-46, 17-22
smaller than 16M byte, 18-8
start addresses, 17-1
timing specifications, 17-61

16-bit SDRAM bank, 17-52
SDRAM CAS latency (CL) field, 17-35,

17-40
SDRAM clock enables, setting, 17-37
SDRAM clock enables, set up, 17-37
SDRAM controller idle (SDCI) bit, 17-47
SDRAM controller. See SDC
SDRAM control status (EBIU_SDSTAT)

register, 17-47
SDRAM EAB sticky error status (SDEASE)

bit, 17-47
SDRAM enable clockout (SCTLE) bit,

17-33, 17-37
SDRAM external bank column address

width (EBCAW) field, 17-45
SDRAM external bank enable (EBE) bit,

17-45, 17-54
SDRAM external bank size (EBSZ) field,

17-45, 17-50
SDRAM memory bank control

(EBIU_SDBCTL) register, 17-44
SDRAM memory global control

(EBIU_SDGCTL) register, 17-33
SDRAM powerup active (SDPUA) bit,

17-47
SDRAM powerup sequence (PSM) bit,

17-35, 17-55

Index

I-32 ADSP-BF533 Blackfin Processor Hardware Reference

SDRAM powerup sequence start enable
(PSSE) bit, 17-35

SDRAM refresh rate control
(EBIU_SDRRC) register, 17-48

SDRAM self-refresh active (SDSRA) bit,
17-38, 17-47

SDRAM self-refresh enable (SRFS) bit,
17-36, 17-38

SDRAM tRAS (TRAS) field, 17-28, 17-29,
17-35, 17-41

SDRAM tRCD (TRCD) field, 17-28,
17-34, 17-42

SDRAM tRP (TRP) field, 17-28, 17-29,
17-35, 17-42, 17-43

SDRAM tWR (TWR) field, 17-29, 17-35,
17-43

SDRS bit, 17-47, 17-54
SDSRA (SDRAM self-refresh active) bit,

17-38, 17-47
self-refresh command, 17-27, 17-60
self-refresh mode, 17-27

entering, 17-38
exiting, 17-38

semaphores
example code, 18-6
query, 18-6
uses, 18-5

send zero (SZ) bit, 10-28, 10-33, 10-38
sensitivity, programmable flags, 14-18
SEQSTAT (sequencer status) register, 4-3,

4-4
sequencer registers, 3-4
sequencer status (SEQSTAT) register, 4-3,

4-4
serial clock frequency, 10-8, 12-32
serial clock phase, SPI, 10-21
serial communications, 13-2
serial data transfer, 12-1
serial peripheral interface (SPI). See SPI

serial peripheral slave select input (SPISS)
signal, 10-5, 10-14, 10-15, 10-21

serial ports. See SPORT
serial scan paths, C-4
servicing interrupts, 4-49
set associative (definition), 6-75
set bit (BITSET) instruction, 2-54
set break (SB) bit, 13-3
set (definition), 6-75
set PFn bits, 14-9
set PFn interrupt mask bit, 14-14
shared interrupts, 4-30, 4-55
shared resources, checking availability of,

18-6
shifter, 1-3, 2-1, 2-50 to 2-58

arithmetic formats, 2-16
data types, 2-14
immediate shifts, 2-51, 2-53
operations, 2-51
register shifts, 2-52, 2-53
status flags, 2-55
three-operand shifts, 2-52
two-operand shifts, 2-51

shifts, 2-1
short jump (JUMP.S) instruction, 4-11
SIC, 4-27
SIC_IAR0 (system interrupt assignment 0)

register, 4-30
SIC_IAR1 (system interrupt assignment 1)

register), 4-30
SIC_IARx (system interrupt assignment)

registers, 4-29
SIC_IMASK (system interrupt mask)

register, 4-28, 15-3
SIC_ISR (system interrupt status) register,

4-27
SIC_IWR (system interrupt wakeup

enable) register, 4-25
SIC (system interrupt controller), 1-9,

4-18, 13-10

ADSP-BF533 Blackfin Processor Hardware Reference I-33

Index

signal integrity, 18-12
signed integer (IS) option, 2-42
signed integer scale (ISS2) option, 2-42
signed numbers, 2-3, D-1, D-3
sign-extending data, 2-11
SIMD video ALU operations, 2-37
single 16-bit operations, 2-25
single pulse generation, timer, 15-18
single step exception, 4-46
size of accesses, timer registers, 15-4
size of words (SIZE) bit, 10-9
SIZE (size of words) bit, 10-9
skip enable (SKIP_EN) bit, 11-3
SKIP_EN (skip enable) bit, 11-3
SKIP_EO (skip even odd) bit, 11-3
skip even odd (SKIP_EO) bit, 11-3
slaves

EBIU, 17-4
PAB, 7-6

slave select, SPI, 10-10
slave select enable (FLSx) bits, 10-10
slave select enable (PSSE) bit, 10-9
slave select value (FLGx) bits, 10-10, 10-13
slave SPI devices, 10-6
SLEEP bit, 8-10
sleep mode, 1-22, 8-14
SLEN (SPORT word length) field, 12-15,

12-21
restrictions, 12-34
word length formula, 12-34

software interrupt handlers, 4-19
software management of DMA, 9-60
software reset (SWRST) register, 3-16
software watchdog timer, 15-50
source channels, memory DMA, 9-48
speculative load execution, 6-69
speech compression routines, 2-21
SPE (SPI enable) bit, 10-10

SPI, 10-1 to 10-40
beginning transfers, 10-31
block diagram, 10-2
clock phase, 10-22, 10-24
clock polarity, 10-21, 10-24
clock signal, 10-2
compatible peripherals, 10-1
data corruption, avoiding, 10-23
data interrupts, 10-7
data transfer, 10-2
detecting transfer complete, 10-16
DMA, 10-33 to 10-39
effect of reset, 10-3
ending transfers, 10-31
error interrupts, 10-7
error signals, 10-29 to 10-31
general operation, 10-23 to 10-29
interface signals, 10-4 to 10-7
interrupt outputs, 10-7
master mode, 10-2, 10-25
master mode booting, 3-19
master mode DMA operation, 10-34
mode fault error, 10-29
multimaster environment, 10-2
multiple-slave systems, 10-15
ports, 1-15
reception error, 10-31
registers (list), 10-20
SCK (SPI clock) signal, 10-4
serial clock phase, 10-21
slave devices, 10-6
slave mode, 10-2, 10-27
slave mode booting, 3-18, 3-20
slave mode DMA operation, 10-37
slave-select function, 10-10
slave transfer preparation, 10-29
SPI_FLG mapping to PFx pins, 10-13
switching between transmit and receive,

10-33
timing, 10-39

Index

I-34 ADSP-BF533 Blackfin Processor Hardware Reference

SPI (continued)
transfer formats, 10-21 to 10-22
transfer initiate command, 10-25
transfer mode, 10-26
transmission errors, 10-31
transmission/reception errors, 10-16
transmit collision error, 10-31
using DMA, 10-18
word length, 10-9

SPI baud rate (SPI_BAUD) register, 10-8,
10-20

SPI_BAUD (SPI baud rate) register, 10-8,
10-20

SPI clock (SCK) signal, 10-21, 10-23,
10-24, 10-37

SPI controller registers, B-5
SPI control (SPI_CTL) register, 10-9,

10-20
SPI_CTL (SPI control) register, 10-9,

10-20
SPI enable (SPE) bit, 10-10
SPI finished (SPIF) bit, 10-16, 10-32
SPI flag (SPI_FLG) register, 10-10, 10-20
SPI_FLG (SPI flag) register, 10-10, 10-20
SPIF (SPI finished) bit, 10-16, 10-32
SPI_RDBR (SPI receive data buffer)

register, 10-19, 10-20, 10-33, 10-37
SPI receive data buffer shadow

(SPI_SHADOW) register, 10-19,
10-20, 10-33

SPI receive data buffer (SPI_RDBR)
register, 10-19, 10-20, 10-33, 10-37

SPI slave select, 10-10
SPISS (serial peripheral slave select input)

signal, 10-5, 10-14, 10-15, 10-21
SPI_STAT (SPI status) register, 10-16,

10-20
SPI status (SPI_STAT) register, 10-16,

10-20

SPI_TDBR data buffer status (TXS) bit,
10-16, 10-32

SPI_TDBR (SPI transmit data buffer)
register, 10-18, 10-20, 10-33, 10-37

SPI transmit data buffer (SPI_TDBR)
register, 10-18, 10-20, 10-33, 10-37

SPORT, 12-1 to 12-71
active low vs. active high frame syncs,

12-39
block diagram, 12-5
channels, 12-49
clock, 12-36
clock frequency, 12-30, 12-32
clock rate, 12-2
clock rate restrictions, 12-33
clock recovery control, 12-65
companding, 12-35
configuration, 12-11
data formats, 12-34
data word formats, 12-22
disabling, 12-11
DMA block transfers, 12-2
DMA data packing, 12-64
enable/disable, 12-10
enabling multichannel mode, 12-52
framed serial transfers, 12-38
framed vs. unframed, 12-37
frame sync, 12-38, 12-42
frame sync frequencies, 12-32
frame sync pulses, 12-1
framing signals, 12-37
general operation, 12-10
H.100 standard protocol, 12-65
initialization code, 12-20
interleaved data, 12-5
internal memory access, 12-44
internal vs. external frame syncs, 12-38
late frame sync, 12-52
modes, 12-11
moving data to memory, 12-44

ADSP-BF533 Blackfin Processor Hardware Reference I-35

Index

SPORT (continued)
multichannel frame, 12-55
multichannel operation, 12-49 to 12-65
PAB errors, 12-29
packing data, multichannel DMA, 12-64
pins, 12-1, 12-4
point-to-point connections, 18-12
port connection, 12-7
receive and transmit functions, 12-1
receive clock signal, 12-36
receive FIFO, 12-24
receive word length, 12-25
register writes, 12-12
RX hold registers, 12-25
sampling, 12-39
selecting bit order, 12-34
shortened active pulses, 12-11
single clock for both receive and

transmit, 12-36
single word transfers, 12-44
stereo serial connections, 12-8
stereo serial frame sync modes, 12-52
support for standard protocols, 12-65
termination, 12-66
timing, 12-66
transmit clock signal, 12-36
transmitter FIFO, 12-23
transmit word length, 12-23
TX hold register, 12-23
TX interrupt, 12-24
unpacking data, multichannel DMA,

12-64
window offset, 12-57
word length, 12-34

SPORT controller registers, B-9, B-11
SPORT error interrupt, 12-29
SPORT FIFO, 12-23
SPORT RX interrupt, 12-25, 12-29
SPORTs. See SPORT
SPORT TX interrupt, 12-29

SPORT word length (SLEN) field, 12-15,
12-21

restrictions, 12-34
word length formula, 12-34

SPORTx_CHNL (SPORTx current
channel) registers, 12-57

SPORTx current channel
(SPORTx_CHNL) registers, 12-57

SPORTx_MCMC2 (multichannel
configuration) register, 12-58, 12-64

SPORTx_MCMCn (SPORTx
multichannel configuration) registers,
12-51

SPORTx_MRCSn (SPORTx
multichannel receive select) registers,
12-59, 12-60

SPORTx_MTCSn (SPORTx
multichannel transmit select) registers,
12-59, 12-62

SPORTx multichannel configuration
(SPORTx_MCMCn) registers, 12-51

SPORTx multichannel receive select
(SPORTx_MRCSn) registers, 12-59,
12-60

SPORTx multichannel transmit select
(SPORTx_MTCSn) registers, 12-59,
12-62

SPORTx_RCLKDIV (SPORTx receive
serial clock divider) registers, 12-30

SPORTx_RCR1 (receive configuration)
registers, 12-18, 12-60

SPORTx_RCR1 (SPORTx receive
configuration 1) register, 12-20

SPORTx_RCR2 (receive configuration)
register, 12-18

SPORTx_RCR2 (SPORTx receive
configuration 2) register, 12-20

SPORTx receive configuration 1
(SPORTx_RCR1) register, 12-20

Index

I-36 ADSP-BF533 Blackfin Processor Hardware Reference

SPORTx receive configuration 2
(SPORTx_RCR2) register, 12-20

SPORTx receive data (SPORTx_RX)
registers, 12-54

SPORTx receive frame sync divider
(SPORTx_RFSDIV) registers, 12-31

SPORTx receive serial clock divider
(SPORTx_RCLKDIV) registers,
12-30

SPORTx_RFSDIV (SPORTx receive
frame sync divider) registers, 12-31

SPORTx_RX (SPORTx receive data)
registers, 12-24, 12-54

SPORTx_STAT (SPORTx status)
registers, 12-28

SPORTx status (SPORTx_STAT)
registers, 12-28

SPORTx_TCLKDIV (SPORTx transmit
serial clock divider) registers, 12-30

SPORTx_TCR1 (transmit configuration)
registers, 12-12

SPORTx_TCR2 (transmit configuration)
registers, 12-12

SPORTx_TFSDIV (SPORTx transmit
frame sync divider) registers, 12-31

SPORTx transmit data (SPORTx_TX)
registers, 12-23, 12-44, 12-54

SPORTx transmit frame sync divider
(SPORTx_TFSDIV) registers, 12-31

SPORTx transmit serial clock divider
(SPORTx_TCLKDIV) registers,
12-30

SPORTx_TX (SPORTx transmit data)
registers, 12-23, 12-44, 12-54

SP (stack pointer) register, 4-4, 5-5
SRAM, 1-7

EBIU, 17-1
glueless connection, 18-7
interface, 18-7
L1 data, 6-31

SRAM (continued)
L1 instruction access, 6-12
scratchpad, 6-8

SRFS (SDRAM self-refresh enable) bit,
17-36, 17-38

SSEL (system select) bit, 7-1
SSYNC instruction, 6-68
stack, pushing and popping, 4-3
stack pointer registers, 5-5
stack pointer (SP) register, 4-4, 5-5
stalls, pipeline, 6-66
start address registers

DMAx_START_ADDR register, 9-10
MDMA_yy_START_ADDR register,

9-10
states, BMODE, 3-13
state transitions, RTC, 16-20
STATUS field, 13-10, 13-16
status signals, 2-36
STB (stop bits) bit, 13-3
stereo serial data, 12-2
stereo serial device, SPORT connections,

12-8
stereo serial frame sync modes, 12-52
sticky overflow status, 2-36
sticky overflow transmit status (TOVF) bit,

12-24, 12-29
sticky parity (STP) bit, 13-3
sticky receive overflow status (ROVF) bit,

12-27, 12-29
sticky receive underflow status (RUVF) bit,

12-27, 12-29
sticky transmit underflow status (TUVF)

bit, 12-24, 12-28, 12-29, 12-44
STI (enable interrupts) instruction, 6-73,

6-74, 8-22
stop bits (STB) bit, 13-3
STOPCK (stop clock) bit, 8-9, 8-16
stop clock (STOPCK) bit, 8-9, 8-16
stopwatch function, RTC, 16-2

ADSP-BF533 Blackfin Processor Hardware Reference I-37

Index

store operation, 6-66
store ordering, 6-67
STP (sticky parity) bit, 13-3
streams, memory DMA, 9-48
strong ordering requirement, 6-73
subroutines, nonsequential structures, 4-1
supervisor mode, 1-5, 3-7
supply addressing, 5-1
supply addressing with offset, 5-1
SWRST (software reset) register, 3-16
synchronization

descriptor queue, 9-67
DMA, 9-60 to 9-71
interrupt-based methods, 9-61

synchronization instructions, 6-68
synchronous serial data transfer, 12-1
SYSCFG (system configuration) register,

4-6
SYSCR (system reset configuration)

register, 3-14
system and core event mapping (table),

4-19
system clock (SCLK), 8-1
system clock (SCLK) pin, 12-30
system clock (SYSCLK), 8-5
system configuration (SYSCFG) register,

4-6
system design, 18-1 to 18-16

high frequency considerations, 18-12
point-to-point connections, 18-12
recommendations and suggestions,

18-13
recommended reading, 18-15

system internal interfaces, 7-1
system interrupt assignment 0 (SIC_IAR0)

register, 4-30
system interrupt assignment 1 (SIC_IAR1)

register, 4-30
system interrupt assignment (SIC_IARx)

registers, 4-29

system interrupt controller (SIC), 1-9,
4-18, 13-10

system interrupt mask (SIC_IMASK)
register, 4-28, 15-3

system interrupt processing, 4-21
system interrupts, 4-18
system interrupt status (SIC_ISR) register,

4-27
system interrupt wakeup enable

(SIC_IWR), 4-25
system MMRs (memory mapped registers),

B-1
system reset configuration (SYSCR)

register, 3-14
system reset registers, B-2
system select (SSEL) bit, 7-1
system software reset, 3-12, 3-15
system stack, allocation recommendation,

4-60
SZ (send zero) bit, 10-28, 10-33, 10-38

T
tag (definition), 6-75
TAP registers, C-2

boundary-scan, C-6
bypass, C-6

TAP (test access port), C-1, C-2
TAUTORLD bit, 15-46
TCKFE (clock falling edge select) bit,

12-17, 12-36, 12-39
TCK (test clock), C-6
TCNTL (core timer control) register),

15-46
TCOUNT (core timer count) register,

15-48
TCSR (temperature compensated

self-refresh) bit, 17-34, 17-36
TDM interfaces, 12-3
TDM multichannel mode, 12-2

Index

I-38 ADSP-BF533 Blackfin Processor Hardware Reference

TDTYPE (data formatting type select) bits,
12-15, 12-34, 12-60

technical support, -xl
temperature compensated self-refresh

(TCSR) bit, 17-34, 17-36
TEMT (TSR and UART_THR empty)

bit, 13-5, 13-17
terminations, SPORT pin/line, 12-66
terms (definitions), G-1
test access port (TAP), C-1, C-2
test and set byte (TESTSET) instruction,

6-72, 7-8, 18-5
test clock (TCK), C-6
test features, C-1 to C-6
testing, circuit boards, C-1, C-5
test-logic-reset state, C-3
TESTSET (test and set byte) instruction,

6-72, 7-8, 18-5
TFSR (transmit frame sync required select)

bit, 12-16, 12-37
TFS (transmit frame sync) pins, 12-37
TFS (transmit frame sync) signal, 12-28,

12-44, 12-54, 12-58
TFU (truncate unsigned fraction) option,

2-42
THR empty (THRE) bit, 13-5, 13-6,

13-15, 13-17
THRE (THR empty) bit, 13-5, 13-6,

13-15, 13-17
throughput

achieved by interlocked pipeline, 6-66
achieved by SRAM, 6-6
DAB, 7-9
DMA system, 9-50
programmable flags, 14-21
SPORT, 12-5

TIMDISx (timer n disable) bits, 15-5
time-division-multiplexed (TDM) mode,

12-49
See also SPORT, multichannel operation

TIMENx (timer n enable) bits, 15-5
timer clock select (CLK_SEL) bit, 15-9,

15-16, 15-21
timer configuration (TIMERx_CONFIG)

registers, 15-2, 15-8
timer counter (TIMERx_COUNTER)

registers, 15-2, 15-9
TIMER_DISABLE (timer disable) register,

15-3, 15-5
timer disable (TIMER_DISABLE) register,

15-3, 15-5
TIMER_ENABLE (timer enable) register,

15-3, 15-5
timer enable (TIMER_ENABLE) register,

15-3, 15-5
timer input select (TIN_SEL) bit, 15-9,

15-34
timer interrupt latch (TIMILx) bit, 15-3,

15-7
timer mode (TMODE) field, 15-8, 15-9,

15-16
timer n disable (TIMDISx) bits, 15-5
timer n enable (TIMENx) bits, 15-5
timer n slave enable status (TRUNx) bit,

15-6, 15-7, 15-20, 15-26, 15-44
timer period fields, 15-13
timer period (TIMERx_PERIOD)

registers, 15-2, 15-10
timer pulse width (TIMERx_WIDTH)

registers, 15-2, 15-10
timer registers, B-6
timers, 1-16, 15-1 to 15-54

core, 15-45 to 15-49
disabling, 15-3
enabling, 15-3
EXT_CLK mode, 15-36 to 15-37
forcing an immediate stop, 15-20
general-purpose, 15-1 to 15-43
illegal states, 15-40
modes (summary), 15-43

ADSP-BF533 Blackfin Processor Hardware Reference I-39

Index

timers (continued)
PWM_OUT mode, 15-16 to 15-26
stopping, 15-20
UART, 13-1
watchdog, 1-19, 15-50 to 15-54
WDTH_CAP mode, 15-26 to 15-35

TIMER_STATUS (timer status) register,
15-3, 15-6

timer status (TIMER_STATUS) register,
15-3, 15-6

timer width fields, 15-13
TIMERx_CONFIG (timer configuration)

registers, 15-2, 15-8
TIMERx_COUNTER (timer counter)

registers, 15-2, 15-9
TIMERx_PERIOD (timer period)

registers, 15-2, 15-10
TIMERx_WIDTH (timer pulse width)

registers, 15-2, 15-10
TIMILx (timer interrupt latch) bit, 15-3,

15-7
timing

auto-refresh, 17-48
examples for SPORTs, 12-66
external buffer, 17-62
peripherals, 7-2
SDRAM specifications, 17-61
SPI, 10-39

TIMOD (transfer initiation mode) field,
10-7, 10-9, 10-26, 10-33, 10-36,
10-37

TIN_SEL (timer input select) bit, 15-9,
15-34

TINT bit, 15-46
TLSBIT (transmit bit order) bit, 12-15
TMODE (timer mode) field, 15-8, 15-9,

15-16
TMPWR bit, 15-47
TMREN bit, 15-46
TMR pin, 15-44

TMRx pin, 15-1
toggle bit (BITTGL) instruction, 2-54
TOGGLE_HI (PWM_OUT PULSE_HI

toggle mode) bit, 15-9, 15-16, 15-22,
15-44

toggle PFn bits, 14-10
toggle PFn interrupt mask bit, 14-15
tools, development, 1-27
TOVF_ERRx (overflow-error indicator)

bit, 15-3, 15-8, 15-19, 15-45
TOVF (sticky overflow transmit status) bit,

12-24, 12-29
TPERIOD (core timer period) register,

15-46, 15-48
TPOLC (IrDA TX polarity change) bit,

13-14
trace buffer exception, 4-46
trace unit registers, A-8
traffic control, DMA, 9-52 to 9-54
transfer count (PPI_COUNT) register,

11-11
transfer initiate command, 10-25
transfer initiation from SPI master, 10-26
transfer initiation mode (TIMOD) field,

10-7, 10-9, 10-26, 10-33, 10-36,
10-37

transfer rate
memory DMA channels, 9-51
peripheral DMA channels, 9-51

transfer type (XFR_TYPE) field, 11-6
transfer word size (WDSIZE1-0) field,

9-15
transitions, operating mode, 8-16, 8-20
transmission errors, SPI, 10-31
transmission error (TXE) bit, 10-16, 10-31,

10-38
transmission format, SPORT, 12-2
transmit bit order (TLSBIT) bit, 12-15
transmit clock (TSCLK) signal, 12-36,

12-58

Index

I-40 ADSP-BF533 Blackfin Processor Hardware Reference

transmit collision error, SPI, 10-31
transmit collision error (TXCOL) bit,

10-16, 10-31
transmit configuration (SPORTx_TCR1)

registers, 12-12
transmit configuration (SPORTx_TCR2)

registers, 12-12
transmit enable (TSPEN) bit, 12-10,

12-12, 12-14, 12-24, 12-29
transmit FIFO full status (TXF) bit, 12-24,

12-28
transmit frame sync required select (TFSR)

bit, 12-16, 12-37
transmit frame sync (TFS) pins, 12-37
transmit frame sync (TFS) signal, 12-28,

12-44, 12-54, 12-58
transmit hold field, 13-6
transmit hold register empty (TXHRE) bit,

12-28
transmit secondary side enable (TXSE) bit,

12-17
transmit shift (TSR) register, 13-3, 13-6,

13-17
transmit stereo frame sync enable (TSFSE)

bit, 12-17
TRAS (SDRAM tRAS) field, 17-28, 17-29,

17-35, 17-41
tRAS timing parameter, 17-28
TRCD (SDRAM tRCD) field, 17-28,

17-34, 17-42
tRCD timing parameter, 17-28
tRC timing parameter, 17-28
tRFC timing parameter, 17-28
TRFST (left-right order) bit, 12-17
triggering DMA transfers, 9-44
TRP (SDRAM tRP) field, 17-28, 17-29,

17-35, 17-42, 17-43
tRP timing parameter, 17-29
tRRD timing parameter, 17-29

truncate (T) option, 2-42
truncate unsigned fraction (TFU) option,

2-42
truncation, 2-21
TRUNx (timer n slave enable status) bit,

15-6, 15-7, 15-20, 15-26, 15-44
TSCALE (core timer scale) register, 15-49
TSCLK (transmit clock) signal, 12-36,

12-58
TSFSE (transmit stereo frame sync enable)

bit, 12-17
TSPEN (transmit enable) bit, 12-10,

12-12, 12-14, 12-24, 12-29
TSR and UART_THR empty (TEMT)

bit, 13-5, 13-17
TSR (transmit shift) register, 13-3, 13-6,

13-17
T (truncate) option, 2-42
TUVF (sticky transmit underflow status)

bit, 12-24, 12-28, 12-29, 12-44
two’s-complement format, D-1
TWR (SDRAM tWR) field, 17-29, 17-35,

17-43
tWR timing parameter, 17-29
TXCOL (transmit collision error) bit,

10-16, 10-31
TXE (transmission error) bit, 10-16, 10-31,

10-38
TXF (transmit FIFO full status) bit, 12-24,

12-28
TX hold register, 12-23
TXHRE (transmit hold register empty) bit,

12-28
TXSE (transmit secondary side enable) bit,

12-17
tXSR timing parameter, 17-29
TXS (SPI_TDBR data buffer status) bit,

10-16, 10-32

ADSP-BF533 Blackfin Processor Hardware Reference I-41

Index

U
UART, 13-1 to 13-20

assigning interrupt priority, 13-11
autobaud detection, 15-34
baud rate, 13-6, 13-7
baud rate examples, 13-13
clearing interrupt latches, 13-10
clock rate, 7-2
data word, 13-6
divisor, 13-11
divisor reset, 13-12
DMA channel latency requirement,

13-16
DMA channels, 13-16
DMA mode, 13-16
glitch filtering, 13-19
interrupt channels, 13-8
interrupt conditions, 13-9
IrDA mode, 13-14
IrDA receiver, 13-19
IrDA support, 13-17
IrDA transmit pulse, 13-18
IrDA transmitter, 13-18
ISRs, 13-16
mixing modes, 13-17
non-DMA mode, 13-15
port, 1-17
receive sampling window, 13-19
sampling clock period, 13-7
sampling point, 13-7
standard, 13-1
switching from DMA to non-DMA,

13-17
system DMA, 13-8
timers, 13-1

UART controller registers, B-5
UART divisor latch high byte

(UART_DLH) register, 13-3, 13-8,
13-11

UART divisor latch low byte
(UART_DLL) register, 13-3, 13-6

UART divisor latch registers, 13-3
UART_DLH, 13-11
UART_DLL, 13-11

UART_DLH (UART divisor latch high
byte) register, 13-3, 13-8, 13-11

UART_DLL (UART divisor latch low
byte) register, 13-3, 13-6

UART_GCTL (UART global control)
register, 13-14, 13-18

UART global control (UART_GCTL)
register, 13-14, 13-18

UART_IER (UART interrupt enable)
register, 13-3, 13-8, 13-16

UART_IIR (UART interrupt
identification) register, 13-10

UART interrupt enable (UART_IER)
register, 13-3, 13-8, 13-16

UART interrupt identification
(UART_IIR) register, 13-10

UART_LCR (UART line control) register,
13-2, 13-3, 13-8

UART line control (UART_LCR) register,
13-2, 13-3, 13-8

UART line status (UART_LSR register),
13-5, 13-6, 13-9, 13-15, 13-17

UART_LSR (UART line status) register,
13-5, 13-6, 13-9, 13-15, 13-17

UART_MCR (UART modem control)
register, 13-4

UART modem control (UART_MCR)
register, 13-4

UART_RBR (UART receive buffer)
register, 13-3, 13-5, 13-6, 13-7

UART receive buffer (UART_RBR)
register, 13-3, 13-5, 13-6, 13-7

UART scratch (UART_SCR) register,
13-13

Index

I-42 ADSP-BF533 Blackfin Processor Hardware Reference

UART_SCR (UART scratch) register,
13-13

UART_THR (UART transmit holding)
register, 13-3, 13-6, 13-9, 13-10,
13-17

UART transmit holding (UART_THR)
register, 13-3, 13-6, 13-9, 13-10,
13-17

UCEN (enable UART clocks) bit, 13-12,
13-14, 13-15

unbiased rounding, 2-18
unconditional branches

branch latency, 4-15
branch target address, 4-15

undefined instruction, 4-45
underflow, data, 12-37
UNDR (FIFO underrun) bit, 11-9
unframed/framed, serial data, 12-37
universal asynchronous receiver transmitter

(UART) port, 1-17
unpopulated memory, 17-10
unrecoverable events, 4-45
unsigned fraction (FU) option, 2-42
unsigned integer (IU) option, 2-42
unsigned integers, D-1
unsigned numbers, 2-4, 2-11
unused pins, handling, 18-1
user mode, 1-5

accessible registers, 3-3
entering, 3-5
leaving, 3-6
protected instructions, 3-4

user stack pointer (USP) register, 3-7, 5-5
USP (user stack pointer) register, 3-7, 5-5

V
valid bit

cache line replacement, 6-20
clearing, 6-42
diagram, 6-26
function, 6-18
instruction cache invalidation, 6-23

valid (definition), 6-75
VBI only mode, 11-19
VCO, changing frequency, 18-10
VCO (voltage-controlled oscillator), 8-3
vertical blanking interval only mode, PPI,

11-19
victim (definition), 6-75
video ALU

instructions, 5-13
operations, 2-37

video data transfers, using PPI, 11-32
VLEV (internal voltage level) field, 8-27,

8-28
voltage, 8-25

changing, 8-29
control, 8-12
dynamic control, 8-25

voltage-controlled oscillator (VCO), 8-3
voltage frequency (FREQ) field, 8-27, 8-28
voltage level gain (GAIN) field, 8-27, 8-29
voltage regulator, 1-23
voltage regulator control (VR_CTL)

register, 8-26
voltage regulator status (VSTAT) bit, 8-10
VR_CTL (voltage regulator control)

register, 8-26
VSTAT (voltage regulator status) bit, 8-10

ADSP-BF533 Blackfin Processor Hardware Reference I-43

Index

W
W32 option, 2-43
wait states, adding additional, 17-20
wakeup enable (WAKE) bit, 8-27
wakeup signal, 3-10, 8-21
WAKE (wakeup enable) bit, 8-27
watchdog control (WDOG_CTL) register,

15-50, 15-53
watchdog counter enable (WDEN) field,

15-53
watchdog count (WDOG_CNT) register,

15-50, 15-51
watchdog event (WDEV) field, 15-53
watchdog status (WDOG_STAT) register,

15-50, 15-52
watchdog timer, 1-19, 15-50 to 15-54

functionality, 1-19
operation, 15-50
registers, 15-50, B-3
reset, 3-12, 3-15

watchdog timer expired (WDRO) bit,
15-52, 15-54

watchpoint match exceptions, 4-45
watchpoint registers, A-8
waveform generation, pulse width

modulation, 15-18
ways

1-way associative (direct-mapped), 6-74
definition, 6-76
priority in cache line replacement, 6-20

WB (write back) stage, 4-7
WDEN (watchdog counter enable) field,

15-53
WDEV (watchdog event) field, 15-53
WDOG_CNT (watchdog count) register,

15-50, 15-51

WDOG_CTL (watchdog control) register,
15-50, 15-53

WDOG_STAT (watchdog status) register,
15-50, 15-52

WDRO (watchdog timer expired) bit,
15-52, 15-54

WDSIZE1-0 (transfer word size) field,
9-15

WDTH_CAP mode, 15-26 to 15-35
window offset (WOFF) field, 12-51, 12-57
window size (WSIZE) field, 12-51, 12-56
WLS (word length select) field, 13-3
WNR (DMA direction) bit, 9-16
WOFF (window offset) field, 12-51, 12-57
WOM (write open drain master) bit,

10-10, 10-24
word (definition), 2-6
word length

SPI, 10-9
SPORT, 12-34
SPORT receive data, 12-25
SPORT transmission, 12-2
SPORT transmit data, 12-23

word length select (WLS) field, 13-3
wraparound buffer, 5-8
write, asynchronous, 17-19
write back (definition), 6-76
write back (WB) stage, 4-7
write buffer depth, 6-40
write command, 17-59
write complete bit, 16-5, 16-8
write open drain master (WOM) bit,

10-10, 10-24
write pending status bit, 16-5
write through (definition), 6-76
write to precharge delay, selecting, 17-43
WSIZE (window size) field, 12-51, 12-56

Index

I-44 ADSP-BF533 Blackfin Processor Hardware Reference

X
XFR_TYPE (transfer type) field, 11-6
XOR, logical, 2-23

Y
YCbCr format, 11-3

Z
zero-extending data, 2-11
zero-overhead loop registers, 4-4
zero status, 2-36
µ-law companding, 12-2, 12-35, 12-60

	ADSP-BF533 Blackfin Processor Hardware Reference, Revision 3.6

	Contents

	Preface
	Purpose of This Manual
	Intended Audience
	Manual Contents
	What’s New in This Manual
	Technical Support
	Supported Processors
	Product Information
	Analog Devices Web Site
	EngineerZone

	Notation Conventions
	Register Diagram Conventions

	1 Introduction
	Peripherals
	Core Architecture
	Memory Architecture
	Internal Memory
	External Memory
	I/O Memory Space

	Event Handling
	Core Event Controller (CEC)
	System Interrupt Controller (SIC)

	DMA Support
	External Bus Interface Unit
	PC133 SDRAM Controller
	Asynchronous Controller

	Parallel Peripheral Interface
	Serial Ports (SPORTs)
	Serial Peripheral Interface (SPI) Port
	Timers
	UART Port
	Real-Time Clock
	Watchdog Timer
	Programmable Flags
	Clock Signals
	Dynamic Power Management
	Full On Mode (Maximum Performance)
	Active Mode (Moderate Power Savings)
	Sleep Mode (High Power Savings)
	Deep Sleep Mode (Maximum Power Savings)
	Hibernate State

	Voltage Regulation
	Boot Modes
	Instruction Set Description
	Development Tools

	2 Computational Units
	Using Data Formats
	Binary String
	Unsigned
	Signed Numbers: Two’s-Complement
	Fractional Representation: 1.15

	Register Files
	Data Register File
	Accumulator Registers
	Pointer Register File
	DAG Register Set
	Register File Instruction Summary

	Data Types
	Endianess
	ALU Data Types
	Multiplier Data Types
	Shifter Data Types
	Arithmetic Formats Summary
	Using Multiplier Integer and Fractional Formats
	Rounding Multiplier Results
	Unbiased Rounding
	Biased Rounding
	Truncation

	Special Rounding Instructions

	Using Computational Status
	ASTAT Register
	Arithmetic Logic Unit (ALU)
	ALU Operations
	Single 16-Bit Operations
	Dual 16-Bit Operations
	Quad 16-Bit Operations
	Single 32-Bit Operations
	Dual 32-Bit Operations

	ALU Instruction Summary
	ALU Data Flow Details
	Dual 16-Bit Cross Options
	ALU Status Signals

	ALU Division Support Features
	Special SIMD Video ALU Operations

	Multiply Accumulators (Multipliers)
	Multiplier Operation
	Placing Multiplier Results in Multiplier Accumulator Registers
	Rounding or Saturating Multiplier Results

	Saturating Multiplier Results on Overflow
	Multiplier Instruction Summary
	Multiplier Instruction Options

	Multiplier Data Flow Details
	Multiply Without Accumulate
	Special 32-Bit Integer MAC Instruction
	Dual MAC Operations

	Barrel Shifter (Shifter)
	Shifter Operations
	Two-Operand Shifts
	Immediate Shifts
	Register Shifts

	Three-Operand Shifts
	Immediate Shifts
	Register Shifts

	Bit Test, Set, Clear, Toggle
	Field Extract and Field Deposit

	Shifter Instruction Summary

	3 Operating Modes and States
	User Mode
	Protected Resources and Instructions
	Protected Memory
	Entering User Mode
	Example Code to Enter User Mode Upon Reset
	Return Instructions That Invoke User Mode

	Supervisor Mode
	Non-OS Environments
	Example Code for Supervisor Mode Coming Out of Reset

	Emulation Mode
	Idle State
	Example Code for Transition to Idle State

	Reset State
	System Reset and Powerup
	Hardware Reset
	SYSCR Register
	Software Resets and Watchdog Timer
	SWRST Register
	Core-Only Software Reset
	Core and System Reset

	Booting Methods

	4 Program Sequencer
	Sequencer Related Registers
	SEQSTAT Register
	Zero-Overhead Loop Registers (LC, LT, and LB)
	SYSCFG Register

	Instruction Pipeline
	Branches and Sequencing
	Direct Short and Long Jumps
	Direct Call
	Indirect Branch and Call
	PC-Relative Indirect Branch and Call
	Condition Code Flag
	Conditional Branches
	Conditional Register Move

	Branch Prediction

	Loops and Sequencing
	Events and Sequencing
	System Interrupt Processing
	System Peripheral Interrupts
	SIC_IWR Register
	SIC_ISR Register
	SIC_IMASK Register
	System Interrupt Assignment Registers (SIC_IARx)

	Core Event Controller Registers
	IMASK Register
	ILAT Register
	IPEND Register

	Global Enabling/Disabling of Interrupts
	Event Vector Table
	Emulation
	Reset
	NMI (Nonmaskable Interrupt)
	Exceptions
	Exceptions While Executing an Exception Handler

	Hardware Error Interrupt
	Core Timer
	General-Purpose Interrupts (IVG7-IVG15)

	Servicing Interrupts
	Nesting of Interrupts
	Non-Nested Interrupts
	Nested Interrupts
	Example Prolog Code for Nested Interrupt Service Routine
	Example Epilog Code for Nested Interrupt Service Routine
	Logging of Nested Interrupt Requests

	Exception Handling
	Deferring Exception Processing
	Example Code for an Exception Handler
	Example Code for an Exception Routine
	Example Code for Using Hardware Loops in an ISR

	Additional Usability Issues
	Executing RTX, RTN, or RTE in a Lower Priority Event
	Allocating the System Stack

	Latency in Servicing Events

	5 Data Address Generators
	Addressing With DAGs
	Frame and Stack Pointers
	Addressing Circular Buffers
	Addressing With Bit-Reversed Addresses
	Indexed Addressing With Index and Pointer Registers
	Auto-Increment and Auto-Decrement Addressing
	Pre-Modify Stack Pointer Addressing
	Indexed Addressing With Immediate Offset
	Post-Modify Addressing

	Modifying DAG and Pointer Registers
	Memory Address Alignment
	DAG Instruction Summary

	6 Memory
	Memory Architecture
	Overview of Internal Memory
	Overview of Scratchpad Data SRAM

	L1 Instruction Memory
	IMEM_CONTROL Register
	L1 Instruction SRAM
	L1 Instruction Cache
	Cache Lines
	Cache Hits and Misses
	Cache Line Fills
	Line Fill Buffer
	Cache Line Replacement

	Instruction Cache Management
	Instruction Cache Locking by Line
	Instruction Cache Locking by Way
	Instruction Cache Invalidation

	Instruction Test Registers
	ITEST_COMMAND Register
	ITEST_DATA1 Register
	ITEST_DATA0 Register

	L1 Data Memory
	DMEM_CONTROL Register
	L1 Data SRAM
	L1 Data Cache
	Example of Mapping Cacheable Address Space
	Data Cache Access
	Cache Write Method
	IPRIO Register and Write Buffer Depth
	Data Cache Control Instructions
	Data Cache Invalidation

	Data Test Registers
	DTEST_COMMAND Register
	DTEST_DATA1 Register
	DTEST_DATA0 Register

	External Memory
	Memory Protection and Properties
	Memory Management Unit
	Memory Pages
	Memory Page Attributes

	Page Descriptor Table
	CPLB Management
	MMU Application
	Examples of Protected Memory Regions
	ICPLB_DATAx Registers
	DCPLB_DATAx Registers
	DCPLB_ADDRx Registers
	ICPLB_ADDRx Registers
	DCPLB_STATUS and ICPLB_STATUS Registers
	DCPLB_FAULT_ADDR and ICPLB_FAULT_ADDR Registers

	Memory Transaction Model
	Load/Store Operation
	Interlocked Pipeline
	Ordering of Loads and Stores
	Synchronizing Instructions
	Speculative Load Execution
	Conditional Load Behavior

	Working With Memory
	Alignment
	Cache Coherency
	Atomic Operations
	Memory-Mapped Registers
	Core MMR Programming Code Example

	Terminology

	7 Chip Bus Hierarchy
	Internal Interfaces
	Internal Clocks
	Core Overview
	System Overview
	System Interfaces
	Peripheral Access Bus (PAB)
	PAB Arbitration
	PAB Performance
	PAB Agents (Masters, Slaves)

	DMA Access Bus (DAB), DMA Core Bus (DCB), DMA External Bus (DEB)
	DAB Arbitration
	DAB, DCB, and DEB Performance
	DAB Bus Agents (Masters)

	External Access Bus (EAB)
	Arbitration of the External Bus
	DEB/EAB Performance

	8 Dynamic Power Management
	Clocking
	Phase Locked Loop and Clock Control
	PLL Overview

	PLL Clock Multiplier Ratios
	Core Clock/System Clock Ratio Control

	PLL Registers
	PLL_DIV Register
	PLL_CTL Register
	PLL_STAT Register
	PLL_LOCKCNT Register

	Dynamic Power Management Controller
	Operating Modes
	Dynamic Power Management Controller States
	Full On Mode
	Active Mode
	Sleep Mode
	Deep Sleep Mode
	Hibernate State

	Operating Mode Transitions
	Programming Operating Mode Transitions
	PLL Programming Sequence
	PLL Programming Sequence Continues
	Examples
	Active Mode to Full On Mode
	Full On Mode to Active Mode
	In the Full On Mode, Change CLKIN to VCO Multiplier From 31x to 2x

	Dynamic Supply Voltage Control
	Power Supply Management
	VR_CTL Register
	Changing Voltage
	Powering Down the Core (Hibernate State)

	9 Direct Memory Access
	DMA and Memory DMA Registers
	Naming Conventions for DMA MMRs
	Naming Conventions for Memory DMA Registers
	DMAx_NEXT_DESC_PTR/MDMA_yy_NEXT_DESC_PTR Register
	DMAx_START_ADDR/MDMA_yy_START_ADDR Register
	DMAx_CONFIG/MDMA_yy_CONFIG Register
	DMAx_X_COUNT/MDMA_yy_X_COUNT Register
	DMAx_X_MODIFY/MDMA_yy_X_MODIFY Register
	DMAx_Y_COUNT/MDMA_yy_Y_COUNT Register
	DMAx_Y_MODIFY/MDMA_yy_Y_MODIFY Register
	DMAx_CURR_DESC_PTR/MDMA_yy_CURR_DESC_PTR Register
	DMAx_CURR_ADDR/MDMA_yy_CURR_ADDR Register
	DMAx_CURR_X_COUNT/MDMA_yy_CURR_X_COUNT Register
	DMAx_CURR_Y_COUNT/MDMA_yy_CURR_Y_COUNT Register
	DMAx_PERIPHERAL_MAP/MDMA_yy_PERIPHERAL_M AP Register
	DMAx_IRQ_STATUS/MDMA_yy_IRQ_STATUS Register

	Flex Descriptor Structure
	DMA Operation Flow
	DMA Startup
	DMA Refresh
	To Stop DMA Transfers
	To Trigger DMA Transfers

	Two-Dimensional DMA
	Examples
	More 2D DMA Examples

	Memory DMA
	MDMA Bandwidth

	DMA Performance Optimization
	Prioritization and Traffic Control
	DMA_TC_PER and DMA_TC_CNT Registers

	MDMA Priority and Scheduling
	Urgent DMA Transfers

	Software Management of DMA
	Synchronization of Software and DMA
	Single-Buffer DMA Transfers
	Continuous Transfers Using Autobuffering
	Descriptor Structures
	Descriptor Queue Management
	Descriptor Queue Using Interrupts on Every Descriptor
	Descriptor Queue Using Minimal Interrupts

	DMA Errors (Aborts)

	10 SPI Compatible Port Controllers
	Interface Signals
	Serial Peripheral Interface Clock Signal (SCK)
	Serial Peripheral Interface Slave Select Input Signal
	Master Out Slave In (MOSI)
	Master In Slave Out (MISO)
	Interrupt Output

	SPI Registers
	SPI_BAUD Register
	SPI_CTL Register
	SPI_FLG Register
	Slave Select Inputs
	Use of FLS Bits in SPI_FLG for Multiple Slave SPI Systems

	SPI_STAT Register
	SPI_TDBR Register
	SPI_RDBR Register
	SPI_SHADOW Register
	Register Functions

	SPI Transfer Formats
	SPI General Operation
	Clock Signals
	Master Mode Operation
	Transfer Initiation From Master (Transfer Modes)
	Slave Mode Operation
	Slave Ready for a Transfer

	Error Signals and Flags
	Mode Fault Error (MODF)
	Transmission Error (TXE)
	Reception Error (RBSY)
	Transmit Collision Error (TXCOL)

	Beginning and Ending an SPI Transfer
	DMA
	DMA Functionality
	Master Mode DMA Operation
	Slave Mode DMA Operation

	Timing

	11 Parallel Peripheral Interface
	PPI Registers
	PPI_CONTROL Register
	PPI_STATUS Register
	PPI_DELAY Register
	PPI_COUNT Register
	PPI_FRAME Register

	ITU-R 656 Modes
	ITU-R 656 Background
	ITU-R 656 Input Modes
	Entire Field
	Active Video Only
	Vertical Blanking Interval (VBI) Only

	ITU-R 656 Output Mode
	Frame Synchronization in ITU-R 656 Modes

	General-Purpose PPI Modes
	Data Input (RX) Modes
	No Frame Syncs
	1, 2, or 3 External Frame Syncs
	2 or 3 Internal Frame Syncs

	Data Output (TX) Modes
	No Frame Syncs
	1 or 2 External Frame Syncs
	1, 2, or 3 Internal Frame Syncs

	Frame Synchronization in GP Modes
	Modes with Internal Frame Syncs
	Modes with External Frame Syncs

	DMA Operation
	Data Transfer Scenarios

	12 Serial Port Controllers
	SPORT Operation
	SPORT Disable
	Setting SPORT Modes
	Register Writes and Effective Latency
	SPORTx_TCR1 and SPORTx_TCR2 Registers
	SPORTx_RCR1 and SPORTx_RCR2 Registers
	Data Word Formats
	SPORTx_TX Register
	SPORTx_RX Register
	SPORTx_STAT Register
	SPORT RX, TX, and Error Interrupts
	PAB Errors

	SPORTx_TCLKDIV and SPORTx_RCLKDIV Registers
	SPORTx_TFSDIV and SPORTx_RFSDIV Register
	Clock and Frame Sync Frequencies
	Maximum Clock Rate Restrictions
	Frame Sync and Clock Example

	Word Length
	Bit Order
	Data Type
	Companding
	Clock Signal Options
	Frame Sync Options
	Framed Versus Unframed
	Internal Versus External Frame Syncs
	Active Low Versus Active High Frame Syncs
	Sampling Edge for Data and Frame Syncs
	Early Versus Late Frame Syncs (Normal Versus Alternate Timing)
	Data Independent Transmit Frame Sync

	Moving Data Between SPORTs and Memory
	Stereo Serial Operation
	Multichannel Operation
	SPORTx_MCMCn Registers
	Multichannel Enable
	Frame Syncs in Multichannel Mode
	The Multichannel Frame
	Multichannel Frame Delay
	Window Size
	Window Offset
	SPORTx_CHNL Register
	Other Multichannel Fields in SPORTx_MCMC2
	Channel Selection Register
	SPORTx_MRCSn Registers
	SPORTx_MTCSn Registers

	Multichannel DMA Data Packing

	Support for H.100 Standard Protocol
	2X Clock Recovery Control

	SPORT Pin/Line Terminations
	Timing Examples

	13 UART Port Controller
	Serial Communications
	UART Control and Status Registers
	UART_LCR Register
	UART_MCR Register
	UART_LSR Register
	UART_THR Register
	UART_RBR Register
	UART_IER Register
	UART_IIR Register
	UART_DLL and UART_DLH Registers
	UART_SCR Register
	UART_GCTL Register

	Non-DMA Mode
	DMA Mode
	Mixing Modes
	IrDA Support
	IrDA Transmitter Description
	IrDA Receiver Description

	14 Programmable Flags
	Programmable Flag Registers (MMRs)
	FIO_DIR Register
	Flag Value Registers Overview
	FIO_FLAG_D Register
	FIO_FLAG_S, FIO_FLAG_C, and FIO_FLAG_T Registers
	FIO_MASKA_D, FIO_MASKA_C, FIO_MASKA_S, FIO_MASKA_T, FIO_MASKB_D, FIO_MASKB_C, FIO_MASKB_S, FIO_MASKB_T Registers
	Flag Interrupt Generation Flow
	FIO_MASKA_D, FIO_MASKA_C, FIO_MASKA_S, FIO_MASKA_T Registers
	FIO_MASKB_D, FIO_MASKB_C, FIO_MASKB_S, FIO_MASKB_T Registers

	FIO_POLAR Register
	FIO_EDGE Register
	FIO_BOTH Register
	FIO_INEN Register

	Performance/Throughput

	15 Timers
	General-Purpose Timers
	Timer Registers
	TIMER_ENABLE Register
	TIMER_DISABLE Register
	TIMER_STATUS Register
	TIMERx_CONFIG Registers
	TIMERx_COUNTER Registers
	TIMERx_PERIOD and TIMERx_WIDTH Registers

	Using the Timer
	Pulse Width Modulation (PWM_OUT) Mode
	Output Pad Disable
	Single Pulse Generation
	Pulse Width Modulation Waveform Generation
	Stopping the Timer in PWM_OUT Mode
	Externally Clocked PWM_OUT
	PULSE_HI Toggle Mode

	Pulse Width Count and Capture (WDTH_CAP) Mode
	Autobaud Mode

	External Event (EXT_CLK) Mode
	Using the Timers With the PPI
	Interrupts
	Illegal States
	Summary

	Core Timer
	TCNTL Register
	TCOUNT Register
	TPERIOD Register
	TSCALE Register

	Watchdog Timer
	Watchdog Timer Operation
	WDOG_CNT Register
	WDOG_STAT Register
	WDOG_CTL Register

	16 Real-Time Clock
	Interfaces
	RTC Clock Requirements
	RTC Programming Model
	Register Writes
	Write Latency
	Register Reads
	Deep Sleep
	Prescaler Enable
	Event Flags
	Interrupts

	RTC_STAT Register
	RTC_ICTL Register
	RTC_ISTAT Register
	RTC_SWCNT Register
	RTC_ALARM Register
	RTC_PREN Register
	State Transitions Summary

	17 External Bus Interface Unit
	Overview
	Block Diagram
	Internal Memory Interfaces
	External Memory Interfaces
	EBIU Programming Model
	Error Detection

	Asynchronous Memory Interface
	Asynchronous Memory Address Decode
	EBIU_AMGCTL Register
	EBIU_AMBCTL0 and EBIU_AMBCTL1 Registers
	Avoiding Bus Contention
	ARDY Input Control

	Programmable Timing Characteristics
	Asynchronous Accesses by Core Instructions
	Asynchronous Reads
	Asynchronous Writes

	Adding Additional Wait States
	Byte Enables

	SDRAM Controller (SDC)
	Definition of Terms
	Bank Activate Command
	Burst Length
	Burst Stop Command
	Burst Type
	CAS Latency (CL)
	CBR (CAS Before RAS) Refresh or Auto-Refresh
	DQM Pin Mask Function
	Internal Bank
	Mode Register
	Page Size
	Precharge Command
	SDRAM Bank
	Self-Refresh
	tRAS
	tRC
	tRCD
	tRFC
	tRP
	tRRD
	tWR
	tXSR

	SDRAM Configurations Supported
	Example SDRAM System Block Diagrams
	Executing a Parallel Refresh Command

	EBIU_SDGCTL Register
	Setting the SDRAM Clock Enable (SCTLE)
	Entering and Exiting Self-Refresh Mode (SRFS)
	Setting the SDRAM Buffering Timing Option (EBUFE)
	Selecting the CAS Latency Value (CL)
	Selecting the Bank Activate Command Delay (TRAS)
	Selecting the RAS to CAS Delay (TRCD)
	Selecting the Precharge Delay (TRP)
	Selecting the Write to Precharge Delay (TWR)

	EBIU_SDBCTL Register
	EBIU_SDSTAT Register
	EBIU_SDRRC Register
	SDRAM External Memory Size
	SDRAM Address Mapping
	16-Bit Wide SDRAM Address Muxing

	Data Mask (SDQM[1:0]) Encodings
	SDC Operation
	SDC Configuration
	SDC Commands
	Precharge Commands
	Bank Activate Command
	Load Mode Register Command
	Read/Write Command
	Auto-Refresh Command
	Self-Refresh Command
	No Operation/Command Inhibit Commands

	SDRAM Timing Specifications
	SDRAM Performance

	Bus Request and Grant
	Operation

	18 System Design
	Pin Descriptions
	Recommendations for Unused Pins

	Resetting the Processor
	Booting the Processor
	Managing Clocks
	Managing Core and System Clocks

	Configuring and Servicing Interrupts
	Semaphores
	Example Code for Query Semaphore

	Data Delays, Latencies and Throughput
	Bus Priorities
	External Memory Design Issues
	Example Asynchronous Memory Interfaces
	Using SDRAMs Smaller Than 16M Byte
	Managing SDRAM Refresh During PLL Transitions
	Avoiding Bus Contention

	High Frequency Design Considerations
	Point-to-Point Connections on Serial Ports
	Signal Integrity
	Decoupling Capacitors and Ground Planes
	Oscilloscope Probes
	Recommended Reading

	A Blackfin Processor Core MMR Assignments
	L1 Data Memory Controller Registers
	L1 Instruction Memory Controller Registers
	Interrupt Controller Registers
	Core Timer Registers
	Debug, MP, and Emulation Unit Registers
	Trace Unit Registers
	Watchpoint and Patch Registers
	Performance Monitor Registers

	B System MMR Assignments
	Dynamic Power Management Registers
	System Reset and Interrupt Control Registers
	Watchdog Timer Registers
	Real-Time Clock Registers
	Parallel Peripheral Interface (PPI) Registers
	UART Controller Registers
	SPI Controller Registers
	Timer Registers
	Programmable Flag Registers
	SPORT0 Controller Registers
	SPORT1 Controller Registers
	DMA/Memory DMA Control Registers
	External Bus Interface Unit Registers

	C Test Features
	JTAG Standard
	Boundary-Scan Architecture
	Instruction Register
	Public Instructions
	EXTEST – Binary Code 00000
	SAMPLE/PRELOAD – Binary Code 10000
	BYPASS – Binary Code 11111

	Boundary-Scan Register

	D Numeric Formats
	Unsigned or Signed: Two’s-Complement Format
	Integer or Fractional
	Binary Multiplication
	Fractional Mode And Integer Mode

	Block Floating-Point Format

	G Glossary
	I Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

