VISUAUDSR =5 5.0
Device Drivers and System Services
Manual for Blackfin® Processors

Revision 4.3, January 2011

Part Number
82-000430-01

Analog Devices, Inc.

One Technology Way ANALOG
Norwood, Mass. 02062-9106 DEVICES

Copyright Information

© 2011 Analog Devices, Inc., ALL RIGHTS RESERVED. This docu-
ment may not be reproduced in any form without prior, express written
consent from Analog Devices, Inc.

Printed in the USA.

Disclaimer

Analog Devices, Inc. reserves the right to change this product without
prior notice. Information furnished by Analog Devices is believed to be
accurate and reliable. However, no responsibility is assumed by Analog
Devices for its use; nor for any infringement of patents or other rights of
third parties which may result from its use. No license is granted by impli-
cation or otherwise under the patent rights of Analog Devices, Inc.

Trademark and Service Mark Notice

The Analog Devices logo, Blackfin, the Blackfin logo, EZ-KIT Lite,
SHARC, TigerSHARC, and VisualDSP++ are registered trademarks of

Analog Devices, Inc.

All other brand and product names are trademarks or service marks of
their respective owners.

CONTENTS

PREFACE
Purpose of This Manualccoooiiiiiiiiiiiiiiiicc Xxxvil
Intended Audiencec.eeeeeeieeiiiiiiiiiiiieiee e XXXVii
Manual Contents Descriptionccocceeeviiiiiiiiiiniiiiiniieenieeene XXXViil
What's New in This Manualccccoeviiiiiiiiiniiiiiiiiiiiee e, XXXiX
Technical or Customer SUPPOIT .oocvvieiiiiiiiiiiiiiiciccececee x|
Supported Processorscocuiiiriieiriiiieniiieiiee e x|
Product Informationccoevuiiiieeniiiiee e x|
Analog Devices Web Sitecocooiiiiiiiiiiiiiiiiiii s xli
Visual DSP++ Online Documentationcccccvvvveeeeeeennenennnen. xli
Technical Library CDoooiiiiiiiiiiiiiiiiicececee e, xlii
Social Networking Web Sitescccocviiviiiiiiiiiiiiiiiiiiice. xliii
Notation CONVENTIONS eveeeeeeeeeeeeeeeeeeeeeeeeeeeee e xliii
INTRODUCTION
System Services OVEIVIEWcoovviuiiiiiiiiiiiiiiiiiiiiieeceeieieeeeeen 1-2
General .oooiiiii e 1-3
Application Interfaceccoocviiriiiiniiiiiiiiiiiniicnceceee 1-8
Dependenciescoovuieeiiiiiiiiiiiiiiieeeee e 1-10

Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

111

Contents

Initializationcccociiiiiiiiiiiii 1-11
Termination .ooooceeeeieieeeeiiieiiiie e 1-12
System Services Directory and File Structureccccoceeennien. 1-13
Accessing the System Services APc.ccovviiiiiiiiiiiiennn. 1-13
Linking in the System Services Libraryccccoceiniiienn. 1-16
Rebuilding the System Services Librarycccocoeevvieennee. 1-17
Examplesooooiiiiiiiiiii 1-19
Dual-Core Considerationsceeeerveveeeerniuieeeenniiieeeennns 1-19
RTOS Considerationsceceeeuieiiieniieniiiiieeiie e 1-19
Interoperability of System Services With VDK 1-20
Deployment of Services Within a Multi-Threaded
APPLICAION .eiiiiiiiiiiiiic i 1-21
Device Driver OVErvIewcooeecuviiiiiiiiiiiiiiiiiiiiiieeeeeeeeiiieeeeeeeen 1-22
Application Interfacec.cceeviiiiiiiiiiiniiiiniiicicc e 1-23
Device Driver Architecturecccovcuvieviiiiniiiiniiiciniecenieene 1-24
Interaction With System Servicescccocovveviiiiiiiiiinieennne. 1-26
Initializationcoooceiiiiiiiiiie i 1-26
Terminationccccoovviiiiiiiiiiiiiii 1-27
Device Driver Directory and File Structurecccccoeeiiiienis 1-27
Accessing the Device Driver APoooviiiiiiiiiiiiiiicee. 1-28
Device Driver File Locationsccccceeviiiiniiiiniieciniecennn 1-29
Linking in the Device Driver Librarycccccooiviiinninnne. 1-30
Rebuilding the Device Driver Libraryccoccoeeviiiinniennn. 1-31
Examples on Distributionccccoevviiiiiiiniiiniiiciieene 1-32
iv Visual DSP++ 5.0 Device Drivers and System

Services Manual for Blackfin Processors

Contents

INTERRUPT MANAGER
INErOAUCTION .eiiiiiiiiiieeeeeeiiiice e et e e e e e e e e e e e e 2-2
Interrupt Manager Initializationccooceeviiiiiiniiiiniiiniiecniee, 2-4
Interrupt Manager Terminationccccoeceiiiiiiiiiiiiiinin. 2-5
Core Event Controller Functionscccceeeevvviiiiiiiiieeeeeniiiiieeeen. 2-6
adi_int_ CECHook() Functionccccoovuueeviiiiiieeiiiiieeeeeeiinnnn. 2-6
adi_int_ CECUnhook() FUNCHIONuoviiiiiieeiiiiieeeeeiieeeeeeenn, 2-8
Interrupt Handlersccoocviiiiiiiiiiiiiicc e 2-8
System Interrupt Controller Functionsc.ccccecviiiniiiiniiiennneens 2-9
adi_ 1Nt _STICDISAbLE evnieneiiee e, 2-10
adi_int_ STICENable ..ooouiiieieee e 2-10
adi_INT_STCGEtIVG oniiiiee e e e e e 2-10
adi_int_SICInterruptAssertedcceevvuviieeiniiiieiiniiieeeeneeeee. 2-10
adi_int_STICSetIVG ..o 2-11
adi_int_SICWakeupcoovvviiiiiiiiiniiiiniiicecccc e 2-11
adi_int_SICGlobalWakeupccovuviiniiiiiiiiiiiiiiiiiccieeee 2-12
Protecting Critical Code Regionsccoocuvieriiieniiiiiniiieeniecnee. 2-13
Modifying IMASKoooiiiiiiiiii e 2-16
Examples .ooocooiiiiiiiiiiii e 2-17
File SErUCTULE .ovviiiiiiiiiiiiiiiieee e e e 2-17
Interrupt Manager API Referenceccooovviiiiiiiniiiiniiccnniecene 2-18
Notation CONVENTtIONScceeeereriiiiiiiiiiieiiiiieiiiieeeeeeeeeeeeeeeeeeeeeees 2-18
AT INE TN et 2-19
adi_int_Terminateoccccveeeeriiiieeiiiiiiee e 2-20
Visual DSP++ 5.0 Device Drivers and System v

Services Manual for Blackfin Processors

Contents

adi_ 1INt CECHOOK oeneeeiiee e, 2-21
adi_int. CECUNROOK eiiieieie e 2-23
adi_int_ClearIMaskBitscccveeiiiiiiiiiiiiiiiieeiicceeeeeen 2-25
adi_int_EnterCriticalRegionccccccoeiiiiiniiiniiiin. 2-27
adi_int_ExitCriticalRegioncccoceiiiiiiiiiiiiiniiiiiiciiecee 2-29
adi_int_GetCurrentlVGLevelcoocoiiiiiiiiiiiiiiiiiiiiiccc, 2-30
adi_int_GetLibraryDetailscccooviiiiiiiiiiiii 2-31
adi_int_STCDISADIE oeeieieeee e 2-32
adi_INT _STCENADIE covniieeeie e e et e e 2-33
adi_int_SICGEtIVGoiiiiiiiiiiiiiiiiiie e 2-34
adi_int_SICInterruptAssertedccceevvveeeniiiieniiieniieeniieeenieeens 2-35
AdL_ 0T _STCSEIVG it e e 2-36
adi_ 1Nt SetIMaskBItS «ueeeneeee e 2-37
adi_int_SICWakeupcceeeviiiiiiiiiiiiiiiiiccc e 2-39
adi_int_SICGlobalWakeupc.ccccevviiiiiiiiiniiiiniiiiiececee, 2-40

POWER MANAGEMENT MODULE

INErOAUCTION wetiiiiiiiiiiiiiitiee e e e ee e e 3-2
PM Module Operation — Getting Startedccocovveeviiveeniieenninenne 3-3
Dual-Core Considerationscc.eeeeeruveeeeeniuiieeesnniieeeennieeeeeennns 3-5
Using Automatic Synchronizationcc.ccoceeviiiiiiiniiennienne. 3-5
Synchronization Requirementcooceeeviiiieniiieiniieiniiieenneene 3-6
Running Applications on One Core Onlycceeovviiiniiiinnncen. 3-7
Running Applications on Both Corescoceeeviiriiiniiiniinnnnen. 3-8
vi Visual DSP++ 5.0 Device Drivers and System

Services Manual for Blackfin Processors

Contents

Synchronization Between Coresccceeeivniiiiiiniiiiiiinniiieeenns 3-9

Built-In Lock Variable and Linking Considerations 3-10
SDRAM Initialization Prior to Loading an Executable 3-12
Power Management API Referencecccoocvieviiiiiiiiiiiniiencennnn. 3-14

Notation CONVENTIONS ...cceeiiiiiiiiiiiiiiiiiiiiiiieeeieeeeeeeeeeeeeeeeeeeeeees 3-14
adi_pwr_AdJUuStEreq ..eooovvviiiiiiiiiiiice e 3-15
adi_pwr_Control ..ottt 3-16
adi_pwr_GetConfigSizecccoriiiiiiiiiiiiiiiiiiececeec e 3-18
adi_pWr_GetFreq woovvviiiiiiiiiiiiiiice e 3-19
adi_pwr_GetPowerModecccceeiiiiiiiiiiiniiiiiiiiiicee 3-20
adi_pwr_GetPowerSavingcocoveeviiiiiniiiiniiieiiiceee e 3-21
Adi_pWI_INIE weiiiiiiiiiiici e 3-22
adi_pwr_LoadConfigcccceiiiiiiiiiiniiiiiiiiiiiice 3-28
Adi_pWI_RESET eeviiiiiiiiiiiiiciiic e 3-29
adi_pwr_SaveConfigccceeiriiiiniiiiiiiieeieeec e 3-30
adi_pwr_SetFreq «oooveeiiiiiiiiiii 3-31
adi_pwr_SetMaxFreqForVoltccocoiiiiiiiniiiiiiiiiiiccnicce, 3-33
adi_pwr_SetPowerModec.ccccoviiiiiiiiiiiniiiiiic 3-34
adi_pwr_SetVoltageRegulatorcccccoeeiiiiiiiiiiiiiiniii, 3-37
adi_pwr_Terminateccccoovveieniiiiiniiiieniieeneee e 3-41
Public Data Types and Enumerationsccoccveeevieiiniieenineennnee. 3-42
ADI_PWR_COMMAND ..ottt 3-42
ADI_PWR_COMMAND_PAIRoootieiiiiieeeiiiieeeeeiiieeeeeiieee e 3-48
ADI_PWR_CSEL ittt 3-48

Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

vii

Contents

ADI_PWR_DF oo 3-49
ADI_PWR_INPUT_DELAY ...coiiiiiiiiieee e 3-49
ADI_PWR_OUTPUT_DELAY ...oovttiiiieeeeeeeeeeieeee e 3-49
ADI_PWR_MODE ..ot 3-50
ADI_PWR_PACKAGE_KIND ..ot 3-50
ADI_PWR_PCCI133_COMPLIANCEcoovviiieiiiiiieeeeeeie e, 3-51
ADI_PWR_PROC_KIND ..cooiiiiiiiiiiiiiiee e 3-51
ADI_PWR_RESULT ..ooittiiiiiieeiiieeeiee e 3-53
ADI_PWR_SSEL i 3-55
ADI_PWR_VDDEXT ..iiiiiiiiiiiiiiiiiiiiiie e 3-56
ADI_PWR_VLEV e 3-56
ADI_PWR_VR_CANWE ..o 3-57
ADI_PWR_VR_CKELOW ...cciiiiiiiiiiiiee e 3-57
ADI_PWR_VR_CLKBUFOEcoiiiiiiiiiiiiieeeeeeeve e, 3-57
ADI_PWR_VR_FREQ ..ot 3-58
ADI_PWR_VR_GAIN ..ot 3-58
ADI_PWR_VR_GPWE_MXVRWEcccooiiiiiiiiiiiiieeeeiee e, 3-59
ADI_PWR_VR_PHYWE ..., 3-59
ADI_PWR_VR_USBWE ..ottt 3-59
ADI_PWR_VR_WAKE ...cootiiiiiiiiee e 3-60
PM Module Macroscecevriviiieiiiiiiieiieiiiiee et 3-60
viii Visual DSP++ 5.0 Device Drivers and System

Services Manual for Blackfin Processors

Contents

EXTERNAL BUS INTERFACE UNIT MODULE

INErOAUCTION .eiiiiiiiiiieeeeeeiiiice e et e e e e e e e e e e e e 4-2
Using the EBIU Modulec.cuoeiiiiiiiiiiiiiiiiiicieciececeecee 4-3
EBIU API Referenceccuvveeeemiiiiiieeiiiiiieeeiiiiee et 4-9

Notation CONVENTIONS teveeeerruiririireeeeeeeeiiiiiireeeeeeeesasnnneereeeeeeens 4-9
adi_ebiu_AdjustSDRAMcccccoviiiiiiiiiiiiiiic e 4-10
Adi_ebiu_Control .eunee e 4-11
adi_ebiu_GetConfigSizecccevriiiiiiiiiiiniiiiiiicicc e 4-14
EYe b= o320 N 01 L ST UOT TP PP PPPUPRUPI 4-15
adi_ebiu_LoadConfigcccceeviiiiiiiiniiiiiiiiiiiiicicc 4-22
adi_ebiu_SaveConfigccooviiiriiiiniiiiiiiec 4-23
adi_ebiu_Terminatecccceevriuiieieiiiiiiiee e 4-24
Public Data Types and Enumerationscccoeevveeiiniiieeeennnnne. 4-25
ADI_EBIU_RESULT ..o 4-25
ADI_EBIU_SDRAM_BANK_VALUE ..., 4-28
ADI_EBIU_TIME ..ot 4-29
ADI_EBIU_TIMING_VALUEccoiiiiiiiiiiiciieee e 4-30
ADI_EBIU_ASYNCH_BANK_TIMING ...cccoooviiiiiiiiiiiiiieeens 4-30
ADI_EBIU_ASYNCH_BANK_VALUE ..., 4-31
Setting Control Values in the EBIU Moduleccoccieiniiennne. 4-32

ADI_EBIU_COMMAND ...ttt 4-32

ADI_EBIU_COMMAND_PAIR ...cccviiiiiiiiiieeeiiiee e 4-39

Visual DSP++ 5.0 Device Drivers and System ix

Services Manual for Blackfin Processors

Contents

Command Value Enumerationsc.c.coceeviiiiiiniiinninnnne. 4-39
ADI_EBIU_SDRAM_ENABLEooiiiiiiiiiiiiiiiieee 4-40
ADI_EBIU_SDRAM_BANK_SIZEccoiviiiiiiiiiiiiininnnnn. 4-40
ADI_EBIU_SDRAM_BANK_COL_WIDTHccccce..... 4-41
ADI_EBIU_SDRAM_MODULE_TYPE ...cccccvviiiiiiinnnnn. 4-41
ADI_EBIU_CMD_SET_SDRAM_SCTLEcccccceevrnnnnnn 4-41
ADI_EBIU_SDRAM_EMREN ... 4-42
ADI_EBIU_SDRAM_PASR ..ot 4-42
ADI_EBIU_SDRAM_TCSR ..cootiiiiiiiiiiiiiiiiiiiiiiiiiieieeeeeeee 4-43
ADI_EBIU_SDRAM_SRES .. 4-43
ADI_EBIU_SDRAM_EBUFE ... 4-44
ADI_EBIU_SDRAM_PUPSD ...ccovriiiiiiiiiiiiiiiiiiiiiiiiiiieenen. 4-44
ADI_EBIU_SDRAM_PSM ...cciiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeee, 4-45
ADI_EBIU_SDRAM_FBBRW ..ot 4-45
ADI_EBIU_SDRAM_CDDBG ...ccoovvviiiiiiiiiiiiiiiiiiiieeeeenee. 4-46
ADI_EBIU_BANK_NUMBER ... 4-46
ADI_EBIU_ASYNCH_BANK_ENABLEccccooiiienne 4-47
ADI_EBIU_ASYNCH_CLKOUT ...ccooiiiiiiiiiiieieieiiee 4-47
ADI_EBIU_ASYNCH_BANK_DATA_PATHcccccn....... 4-47
ADI_EBIU_ASYNCH_BANK_ARDY_ENABLE 4-48
ADI_EBIU_ASYNCH_BANK_ARDY_POLARITY 4-48
ADI_EBIU_ASYNCH_HOLD_TIMEccccccviiiiiiiinnnnnnn. 4-48
ADI_EBIU_ASYNCH_SETUP_TIMEcccccccceeiininnnnn. 4-49
ADI_EBIU_ASYNCH_TRANSITION_TIME 4-50

X Visual DSP++ 5.0 Device Drivers and System

Services Manual for Blackfin Processors

Contents

ADI_EBIU_DDR_MOBILE_DSccccccceiiiiiiiiiiiiiiin, 4-50
ADI_EBIU_DDR_DS ..o 4-51
ADI_EBIU_DDR_PASR ..o, 4-51

DEFERRED CALLBACK MANAGER

INErOAUCTION .eiiiiiiiiiieiiiiiiiee e e 5-2
Using the Deferred Callback Managerccccceeviiiiniiiiniieennneenn, 5-3
Interoperability With an RTOS ..o 5-7

adi_dcb _Forward .oo.oeeeeeeieee e 5-8

adi_dcb_RegisterISRcocoiiiiiiiiii 5-9

Handling Critical Regions Within Callbacksccccccevueeennne. 5-10
DCB Manager API Referencecccceeviiieniiiniiiiicniiiiniieniceee, 5-10

Notation CONVENTIONS .eeevuvruuiiieeeeeeeiiiiiiiiiieeeeeeeeeeeeeiiiaeeeeeeans 5-10
AL D ClOSE it e 5-11
Ad1_deD _CoNtrol oo 5-12
AT ACD TNIE ettt 5-14
adi_dcb_Open ..eeiiiiiiiiiiiii e 5-16
AL D POST e 5-18
Adi_dCD_ REMOVE «.eeeeeieee e 5-20
adi_dcb_Terminateoocvveiiiiiiiiiiiiiiieee e 5-21
Public Data Types and Macroscceeeeevvviiieinniiiecenniieeeeneeee. 5-22
ADI_DCB_CALLBACK_FN ..iiiiiiiiiiieeiiiiee et 5-22
ADI_DCB_COMMAND_PAIR ...ootiiiiiiiiiiiiiiiieeeeieee e 5-22
ADI_DCB_COMMAND ..ottt 5-23

Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

X1

Contents

ADI_DCB_ENTRY_HDRcccociiiiiiiiiiiiiiiniieicicec 5-23
ADI_DCB_RESULT ..ottt 5-24
DMA MANAGER

INEroductioncociiiiiiiiiiiiiicii e 6-2
Theory of Operationccoocueeeriiiiriiiiiiiiee e 6-3
OVEIVIEW eetiiiiitiieieieit ettt e e e e e 6-3
DMA Manager Initializationccocceeeviiiiniiieniiiinieceneens 6-4
DMA Manager Terminationccccceeevviiiniiiiniiiiiiiiieinneens 6-5
Memory DMA and Peripheral DMA ..., 6-6
Controlling Memory Streamscooceeeruveeriieeenieeeniieenieeenne 6-7
Opening Memory Streamscccceeiiiiiiiiiiiiiiiniiiiiineens 6-7
Memory Transferscueeeeiiiiieiiiniiiieeeiiiceeeee e 6-8
One-Dimensional Transfers (Linear Transfers) 6-8
Two-Dimensional Transfersccccccooviiiiniiiiniiiiniieennen. 6-9
Closing Memory Streamscccceveveeriieeeniieeniieenieeene 6-10
Controlling DMA Channelsccccooouiieniiiiniiiiiniiienieeenee, 6-10
Opening DMA Channelsccccoooiiiiiii, 6-11
Single Transferscccooviiiiiiiiniiiiniice e 6-12
Circular Transfersccoooveiriiieniiiciiiccccec e, 6-14
Large Descriptor Chaining Modelc.cccoceeniiininne. 6-16
Small Descriptor Chaining Modelccccoeiniiiiniinnnn. 6-20
Arrays of DeSCIIPTOLSeeeeviveeeniieeniiieniieeeiiee e 6-20
Configuring a DMA Channelccccoooiiiiiiiiiniiininn, 6-20
Closing a DMA Channelccocccooiiiiiniiiiiiiiiccee 6-21

xii Visual DSP++ 5.0 Device Drivers and System

Services Manual for Blackfin Processors

Contents

Transfer Completionsccceeeviieiiniiiiniiieiiee e 6-21
POLLING weveieiiiiiiic et 6-22
Callbacks ...vvveeiiiiiiiiieiiiie e 6-22

Memory Stream Callbackscccovviiiiiiiiiiniiiiiiiiieee 6-22
Circular Transfer Callbacksccoevvviiiiiiiiiiiiiniiiine, 6-23
Descriptor Callbacksccccoviiiiniiiiiiiiiiniiiiiccieee 6-23

Descriptor-Based Sub-Modesccooviiiiiiiniiiiiiiniiiciinne. 6-24
Loopback Sub-Modeccooiiiiiiiiiiiiiiiiiiiciiicieeee 6-24
Streaming Sub-Modecoooiiiiiiiiiiiiii 6-25

DMA Channel to Peripheral Mappingccccoovveeviinniennnene. 6-26
Sensing a Mappingcccccceoviiiiiiiiiiiiiiiiiiiicceeecee 6-27
Setting a Mappingcccceeeiiiiiiiiiiiiiiiiiiiiiiiiicee 6-27

INEEITUPES weviiiiiiiiiiiiiiiiiccee e 6-27
Hooking INterruptsc.ccceevvvieiiiieiniiiiniieeiiec e 6-28
Unhooking Interruptsccovcuveiriiiiiniiiiniiieiiiiciiec e 6-28

Two-Dimensional DMAcooiiiiiiiiiiiiiiiiieeeeeeee 6-28

DMA Traffic Controlooooeiiiiiiiiiiieeeiieee e, 6-31
DMA Manager API Referencecocccceeveiiieniiienniiiiniicenieeeee. 6-31

Notation CONVENTtIONScceeeeririiiiiiiiiiiiiiiieeieiieeeeeeeeeeeeeeeeeeeeees 6-31
adi_dma Butfer oo 6-34
AT dMA ClOSE tiuniiieee e e e e e e e e e e aaas 6-36
adi_dma_ Control .oouneee e 6-37
adi_dma_GetMappingcccccveeriiiieriiiieniiieeiie e 6-40
adi_dma_GetPeripherallnterruptIDccccoeiviiiiiniiiiniiiiiiecee. 6-41

Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

xiil

Contents

Ad1 dmMa TNIT ceeniie e 6-42
adi_dma_MemoryCloseccoueeeiiiiiiiiiiiiiiiieiiieeceee e 6-43
adi_dma_MemoryCopycceeevuiiiriiiiiiiiiiiieceiec et 6-44
adi_dma_MemoryCopy2Dcccooviiiiiiiiiiiiiiiiicc 6-46
adi_dma_MemoryOpencccceeemiiiiniiiiniiieniiee e 6-48
adi_dma_MemoryQueuecocceeerviiiiniiiiiniiieniiereeeee e 6-50
adi_dma_MemoryQueueClosecccceerriiiiiinniiiieiiniiiieeeneeee. 6-52
adi_dma_MemoryQueueControlccccocouvieeiniiiiiiiniiiiieinineen. 6-53
adi_dma_MemoryQueueOpencccevvviiniiiiniiieniiienieeeieens 6-54
adi_dma_OPen ...c.eeiiiiiiiiiiiii e 6-56
adi_dma_QUEUE ...cooiiiiiiiiiieeee e 6-58
adi_dma_SetConfigWordcccceeeriiiiiiiiiiiiiiice 6-59
adi_dma_SetMappingcccccoeiiiiiiiiiiiiiiiiiiii e 6-60
adi_dma_ TermiNate couueeeeneeeee e 6-61
Public Data Structures, Enumerations, and Macrosccece.... 6-62
Data TYPes ..cevviiiiiiiiiiiiiiiiiiii e 6-62
ADI_DMA_CHANNEL_HANDLEcccccooiiiiiiiiiiinees 6-62
ADI_DMA_DESCRIPTOR_UNION and
ADI_DMA_DESCRIPTOR_HANDLEcccccuvvreannne. 6-63
ADI_DMA_STREAM_HANDLEcccoovvveiiiiieeeiieeees 6-63
Data STIUCTUIES weeeiiiiiiiiiiiiiiieeeee ettt e e e et e e e e e e e 6-64
ADI_DMA_2D_TRANSFERcccccoiiiiiiiiiiiiieeiieee e, 6-64
ADI_DMA_CONFIG_REG ...cccovviiiiiiiiieeeiiiee e, 6-64
ADI_DMA_DESCRIPTOR_ARRAYccoeeviiiiiieiiiiieeeees 6-64
ADI_DMA_DESCRIPTOR_LARGEccceevviiieiiiienns 6-65
xiv Visual DSP++ 5.0 Device Drivers and System

Services Manual for Blackfin Processors

Contents

ADI_DMA_DESCRIPTOR_SMALLcccvvviieiiiiieeen. 6-66
ADI_DMA_TC_SET ittt 6-66
ADI_DMA_TC_GET .iiiiiiiiiiieiiieeeeieee e 6-67
General Enumerationscc..eeveiiiiiiiiiiiiiiiiieeeeeeeeeeeeeen 6-67
ADI_DMA_CHANNEL_ID ..o 6-67
ADI_DMA_EVENT .. 6-67
ADI_DMA_MODE ..ot 6-68
ADI_DMA_PMAP ..ttt 6-69
ADI_DMA_RESULT ..ot 6-69
ADI_DMA_STREAM_ID ..ccvviiiiiiiiieeeieeeeeeee e 6-71
ADI_DMA_TC_PARAMETER ...ccocovviiiiiiiiiiiiieeeeeeee 6-71
ADI _DMA_CONFIG_REG Field Valuescovveeveeeeiieeineeannnnn, 6-72
ADI_DMA_DMA2D ..oiiiiiiiiiieeeeieee et 6-72
ADI_DMA_DI_EN ..o 6-72
ADI_DMA_DI_SEL ..ot 6-72
ADI_DMA_EN ..ottt 6-73
ADI_DMA_WDSIZE ...ooiiiiiiiiiiiiieeee e eeeeieee e 6-73
ADI_DMA_WNR oot 6-73
DMA Commandscceeerriiiiiiiiiieeeeeiniiiiiiieeeeeeeeesiiieeeeee e 6-74

PROGRAMMABLE FLAG SERVICE

INtrodUction .occcceeiiiiiieei e, 7-2
OPErationouiiiiiiiiiiiiiiiiiiiiiee e 7-3
InitialiZation ..oooooeeeiiiiiiie e 7-3
Terminationcceeeeiiiiiiiiiiiiiiiiiieeeeeeeeeeeee e ee e e e e e e e e e e e e e e e 7-4
Visual DSP++ 5.0 Device Drivers and System XV

Services Manual for Blackfin Processors

Contents

Flag IDs .oooiiiiiiiiiiiiiciicc e 7-4
Flag Control FUNCtionscccocveeriiieiiiiiiiniieenicciiee e 7-4
adi_flag Open ...coooiiiiiiiiiiiice e 7-5
adi_flag Closeceooviiiiiiiiiiiiiiiiiiccc 7-5
adi_flag_ SetDirectionccccoeeveeriiiiiiiiiiniieeniee e 7-5
adi_flag Set ..ooouviiriiiiiiiiii 7-5
adi_flag Clearccccoeviiiiiiiiiiiiiiiiiiici 7-6
adi_flag_Toggleccoooviiiiniiiiniiii 7-6
adi_flag Senseccccoviiiiiiiiiinii 7-6
Callbacks ...evvviiieiiiiiii e 7-6
adi_flag_InstallCallbackcoovveiiiiiiiniiiiii, 7-7
adi_flag_ RemoveCallbackc.ccccoviiiiiiiiiniiiniiiiiie, 7-8
adi_flag_SuspendCallbackscccceeviiiiiiiniiiniiiiiiiiins 7-9
adi_flag_ ResumeCallbackscccccooviiniiiiniiiiiniiiiicen. 7-9
adi_flag SetTriggerccccoviiiimiiiiniiiiiiiieeeec e 7-9
Coding Exampleccoocoiiiiiiiiiiiiiiii 7-9
INitialiZationceeeeiiciiiiiiee e 7-10
Opening a Flagccoooiiiiiiiiiiccccce 7-10
Setting Flag Directioncccooiiiiiiiiiiiiiiiiiiiiiiee, 7-11
Controlling an Output Flagccoooviiiiiiiiniiiiiiiiieee, 7-11
Sensing the Value of a Flagc.cccooviiiiiiiinii 7-12
Installing a Callback Functionccccooviiiniiiiiiiiiinnnnnn. 7-12
Suspending and Resuming Callbackscccccooeviiiniienn 7-13
xvi Visual DSP++ 5.0 Device Drivers and System

Services Manual for Blackfin Processors

Contents

Removing Callbacksccoceeviiiiiiiiiiniiiiiiiiiciicee, 7-13
Termination ...cccuvveveeeeeeeeeeiiiiiieeeeeeeeesiiereeeeeeeeeeneaeeaeeas 7-14

Flag Service API Referenceccccevvuvieniiiiiniiciniiieniieciiee e 7-14
Notation CONVENTIONS ...cceeiiiiiiiiiiiiiiiiiiiiiiiiiiiieeieieeeeeeeeeeeeeeeeen 7-14
adi_flag Clearcooiiiiiiiiiiiii e 7-15
adi_flag CloSecoviiiiiiiiiiiiiiice e 7-16
adi_flag Init ..oocoooiiiiiiiiiiiii 7-17
adi_flag Opencoooiiiiiiiiiiic e 7-19
adi_flag Sensecocciiiiiiiiiiiii e 7-20
adi_flag_Togglec.cooviiiiiiiiiiiiiiiii 7-21
adi_flag Terminatecccoovveiemiiieniiieniiec e 7-22
adi_flag Set ..ooiviiiiiiiiiii 7-23
adi_flag_ SetDirectioncccceeeviiiviiiiiiiiiiiiiieeiicnieceee e 7-24
adi_flag SetTrigeroccciomiiiiniiiiniiieeee e 7-25
adi_flag_InstallCallbackccccoviiiiniiiiiiiiiiiiiicc 7-26
adi_flag RemoveCallbackc.cccooviiiiiiiiiniiiniiiiiic, 7-28
adi_flag ResumeCallbackscccccoviiiiiiiiiniiiiniiiiicecee, 7-29
adi_flag_SuspendCallbackscceeviuiiiniiiiniiiiiiiiiicicce, 7-30
Public Data Types, Enumerations, and Macroscccocceeeeennnneeen. 7-31
ADI_FLAG_ID ..ttt ettt e e e aaee e 7-31
Associated Macrosoocuvveeeeriiiiiieeniiiiie e e 7-32
ADI_FLAG_DIRECTION ...ciiiiiiiiiiiiiiiiciiee e 7-32
ADI_FLAG_EVENT ..o 7-32

Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

xvii

Contents

ADI_FLAG_RESULT ..ottt 7-33
ADI_FLAG_TRIGGER ...ccoiiiiiiiiiiiieeeieee e 7-34
TIMER SERVICE

INErOdUCTION tiiiiiiiiiiiiiiiiiee e e e e 8-2
OPEration ..icciiiiiiiiiiiiiiiiie it 8-3
INItialiZation ...eevviieieeeeieiiiiieeee e 8-3
TErmiNation ..ooveueeeiiiieeeeeeeiiiiie e e e e e e e e e 8-3
TIimer TDS coeiiiiiiieee e 8-4
Basic Timer FUNCtiONSuvuiiiiiiiiiiiiiiiiiiiiiiiiiieeeieeeeeeeeeeeeeeeee 8-4
Adi_tmr_ OPEN weviiiiiiiiiiiciiec e 8-4

AL EMT ClOSE wueeieeie et 8-4
AdT_ TN RESET et 8-5
General-Purpose Timer Functionscccccccevviviiniiiiiniieennneenn. 8-5
adi_tmr GPCONTIOl e 8-5
adi_tmr_GPGroupEnable ..o 8-5

Core Timer FUNCHONSceeiiiiiiiiiiiiiiiiiieiiieiieeeeee e 8-6
adi_tmr CoreControl ...veun e 8-6
Watchdog Timer Functionsccccceevviiiiiiiiiniiciniiiecee, 8-6
adi_tmr_WatchdogControlccoccviiviiiiniiiiniiiinieeeee. 8-6
Peripheral Timer Functionsccoceeiiiiiiniiiiiiiiiiniiccneeee 8-7
adi_tmr_GetPeripherallDccccooiiiiiiiiiiiiiiece, 8-7
Callbacks ...vvveieiiiiiiiiieii e 8-7
adi_tmr_InstallCallback ...ooeeeeiieeeiee e 8-8
adi_tmr_RemoveCallbackoovvvniiiieiiee e 8-9

xviii Visual DSP++ 5.0 Device Drivers and System

Services Manual for Blackfin Processors

Coding Examplecccccoooiiiiiiiiniiii,
Initiaizationccccceeeeeiiiiiiiiiiieee e
Opening a Timercccoceviiiiiiiiniiiiii,
Configuring a Timercccocoeiviiiiiniiiiiniiin.
Enabling and Disabling Timersc..ccccecen.
Installing a Callback Functionccccceeviieen.
Removing Callbacksccccccoviiiiiiniiinninnnn.
Terminationccoeveiiiiiiiiiiiiiiiiiiiieeee,

Timer Service API Referencecccooevvvviviiieeeenennnns

Notation Conventionsccccceeeeveeiieieieieieeenenenn.
Adi_ T TN oot
adi_tmr_OPen .oceeeviieiiniiiinieeec e
adi_tmr Terminate ..oeeeveeeeeeeeeeee e
Ad1_ TN ClOSE weneieee et
adi_tmr_ReSet ..ooovviiiiiiiiiiiiiiice e
adi_tmr CoreControlo.veeeeveeeeeieieeeeeeeeiee e,
adi_tmr_WatchdogControlccccccoeviiiniiiinininnn.
adi_tmr_GPControlcccceeviiiiiiiiiiiiece e
adi_tmr_GPGroupEnablecccooiiiiinin
adi_tmr_InstallCallbackooovvveiiiiiiiieieeeieeeen,
adi_tmr_ RemoveCallback ...covvvviieiiiiiieiiieiieiieainn,
adi_tmr_GetPeripherallDccocviiiiiiiiiiiiiiiceee,

Contents

Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

XiX

Contents

Public Data Types, Enumerations, and Macroscccccceveuneeeens 8-30
TImer IDS cooiiiiii e 8-30
Associated Macrosc.eeoveueeeriiiiiniieeniieeeiec e 8-31
ADI_TMR_RESULT ..ottt 8-32
ADI_TMR_EVENT ..ot 8-33
ADI_TMR_CORE_CMDcoiiiiiiiiiiiiiieiicceieceec e 8-33
ADI_TMR_WDOG_CMDcccccceviiiiiiiiiiiiiiiiiiiiiiiccce, 8-34
ADI_TMR_GP_CMD ...coiiiiiiiiiiiiiiiiiiiceec e 8-36

PORT CONTROL SERVICE

INErOdUCTION tiiiiiiiiiiiiiiiiiee e e e e 9-2
Using the Port Control Managerccccovviiiiiiiiiniiiiniiiininen, 9-3

Legacy adi_ports_EnableXxx() API Usagecccocuveercureeniuncene 9-3

Newer adi_ports_Configure() API Usageccccoovuveeriuviennncene 9-5
Virtual Devices and Device Indexingcccccooiiiiiiiniiiiniiiiniin, 9-8
Port Control Manager API Referencecccccceeeviiiiniiiieniiicnnneennne. 9-9

Notation CONVENTtIONS .oeeeeeeeeeeeeeeeeeeeeeeeee e 9-10
adi_ports_INit cooceeeiiiiiiiiiiii 9-11
adi_ports_Terminatecoocueeeriiieniieeiiiieeie e 9-12
adi_ports_Configureccovvueiiriiiiiniiiieiieceic e 9-13
adi_ports_EnablePPIccccooiiiiiiiiiiiii 9-14
adi_ports_EnableSPIccccoiiiiiiiiiiic 9-15
adi_ports_EnableSPORTccocoiiiiiiiiiiiiiiicccceceee 9-16
adi_ports_EnableUARTccccccoiiiiiiiiiicc 9-17
adi_ports_EnableCANccccooiiiiiiiiiiiiiiec e 9-18

XX

Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Contents

adi_ports_EnableTimerccccoooiiiiiiiiiiiiiiiiecce 9-19
adi_ports_EnableGPIOcccccoviiiiniiiiiiiiiiccccec 9-21
adi_ports_ClearProfileccccooviiiiniiiiniiiiiicee 9-22
adi_ports_GetProfilecovviiiiiiiiiiiiiin 9-23
adi_ports_SetProfilecccocviiiiiiiiiiiii 9-24
Public Data Types, Enumerations, and Macroscc.ccccevcveeennnee. 9-24
ADI_PORTS_RESULT ...oiiiiiiiiiiieeiieeeeiee e 9-25
Legacy API Enumeration Valuesccocceevviiiiiniiiiniiicnnneennne. 9-25
DEVICE DRIVER MANAGER
Device Driver Model OVErviewccceeeeiviiiieeeiniiiieeeniiiiee e 10-3
Using the Device Managerc.ccccooeviiiiiiiiiiiiiiiiiiniieccicce, 10-6
Device Manager OVErviewcccccceiiiiiiiniiiiiiiiiiiiiiiiiniieeeenn. 10-6
Theory of Operationc.cccevvueeeriieeiniieceniieeeiee e 10-7
Daata coveeeiiiee e 10-7
Initializing the Device Managercccccccevviiiniiienniecnnnnen. 10-8
Device Manager Terminationccccceeeveuieeeenniineeeennnne. 10-9
Opening a Devicecccociiiiiiiiiiiiiii, 10-9
Configuring a Devicecccovvviiiiiiiiiiiiiiiiiiiiiccecceece 10-11
Dataflow Methodccooiiiiiiiiiiiiiiiiiceee, 10-11
Enabling Dataflowccccooiiiiiiiiiiiiiiiiiis 10-14
Providing Buffers to a Deviceccocviiriiiiiniiciniiiiiniieen, 10-14
Closing a Device ...ccueeiriiiiniiiiiniiiiiieceieccec e 10-16
Callbacksevviiiiiiiiiiiiie e 10-16
Visual DSP++ 5.0 Device Drivers and System XX1

Services Manual for Blackfin Processors

Contents

Initialization Sequenceccccceeivviiiiiiiniiiiceiiiiieceee, 10-16
Stackable DIiverscceiieeiiiiiiiiiiiiieeeeeeeciiieee e 10-17
Deciding on a Dataflow Methodcooccvveiniiiiniiiiniiiiiiecee. 10-17
Chained Without Loopbackccocouviiiiiiiniiiiiniiiiiiccee, 10-17
Chained With Loopbackccoceiiiiiiiiiiiiiiicic 10-18
Clrcular .ooooviiiii e 10-18
Sequential With and Without Loopbackcccocveeniiennnee. 10-18
Creating One-Dimensional Buffersccccceviiiinniinninn.. 10-19
Creating Two-Dimensional Buffersccccccoviiiniiiiininncn. 10-22
Creating Circular Buffersccccooiiiiiiiiiiniiiie, 10-25
Creating Sequential One-Dimensional Buffersccocceoee. 10-27
Device Manager Designooiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiinieeee, 10-30
Device Manager API Descriptioncccoocoiiiiiiiiiiiiiinnnn.. 10-30
Memory Usage Macroscccocccuviiiiiiiiiiiiiiiiiiicn, 10-31
Handles .ooovvieiiiiiiiiee e 10-31
Dataflow Enumerationsccoccveeviieiiniiieniiieniieeiieens 10-31
Command IDs ..ccccvviiiiiiieeeeeiiiieee e 10-32
Callback Eventscccoeeiiiiiiiiiiiiiiiiieiiiiiec e 10-32
Return Codesoeiiviiiiiiiiiiieiiiiiicceeec e 10-32
Circular Buffer Callback Optionsccccceevvviiiniicenncens 10-33
Buffer Data TyPes ...ccovovviiiiiiiiiiiiiiiiceniecceeeceeceeee 10-33
Physical Driver Entry Pointccccccceeiviiiiiiniiiiicinnnn.. 10-34

API Function Definitionsccccccvveeeeeriiiiviiieeeeeeeseeeee, 10-34

xx1i

Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Contents

Device Manager Codeccoccviiviiiiiiiiiiiiiiiiiiiiciicce, 10-34
Data STruCtUIesueueeeiieiiiiiii e 10-34
Static Data ..eeeeeviiiiiiiiiiiiiiiiiie 10-34
Static Function Declarationsccccvvviiiiiiiiiiniiiiiineennn. 10-35
API Functional Descriptionccecceeeevieiiniieeeniineenineens 10-35

adi_dev_Init Functional Descriptioncccoccveeenneens 10-35
adi_dev_Open Functional Descriptionccccccevuneee. 10-36
adi_dev_Close Functional Descriptionccccceeeeuneenn. 10-36
adi_dev_Read Functional Descriptionccocveeruneenne 10-37
adi_dev_Write Functional Descriptionccccccevnneeee.. 10-38
adi_dev_Control Functional Descriptioncccceee.. 10-38
Static FUNCHIONS .oooviiiiiiiiiiiiiiiii e 10-41
PDDCallback ...ocovvviiiiiiiiiiiiiiiiiiieecee e 10-41
DMACallbackcuvviviiiiiiiiiiiiiiiiiece e 10-42
PrepareBufferListccccoviiiiniiiiniiiiiiiiiiiececee 10-43
SetDataflowooeeviiiiiiiiiiiiiie e 10-44
Physical Driver Designccccoviiriiiiniiiiniiiniiiieceieecieeseeeee e 10-45

Physical Driver Design OVerviewccocceeevieieniieeenneeennne. 10-45

Physical Device Driver API Descriptioncccccevvvveieenunnee. 10-47

Physical Driver Include File (“xxx.h”)coooviiiiiniiiiinn. 10-47
Extensible Definitionsccoccveeeeiiiiiieiiniiieeeiiiieeeee 10-48
ADI_DEV_PDD_ENTRY_POINTcccovviiiiiiiieeeenen. 10-49

Visual DSP++ 5.0 Device Drivers and System xxl1il

Services Manual for Blackfin Processors

Contents

Physical Driver Source (“XXX.C7) tioviiiiiiiniiiiiiiiiiiieiriieeeene 10-50
adi_pdd_Open Functional Descriptioncceceeennnen. 10-51
adi_pdd_Control Functional Descriptionccccveeenneee. 10-52
adi_pdd_Read Functional Descriptionccccccvveiennnnnen 10-53
adi_pdd_Write Functional Descriptionccocceeenneeens 10-54
adi_pdd_Close Functional Descriptionccoecueeenueeens 10-55

Device Manager API Referencecccoooveviiiiniiiiniiiinicniicninenn. 10-56

Notation CONVENTIONS ..eeeeeeiiiiiiiiiiieeeeeeeeiiiiiiiiaeeeeeeeeeeeeennaanes 10-56

AL AV ClOSC wnteintei ettt et 10-57
Adl_dev_Control ..o 10-58
AT eV TNIE e 10-59
adi_dev_OPencoociiiiiiiiiiiiieeitcece e 10-61
adi_dev Read ..oooeniiieee e 10-63
Adi_dev_TermMINATE evueeeeeee et e 10-64
AL AV TWIIEE ettt e e e e e e e e e e e e e eeans 10-65
Device Manager Public Data Types and Enumerations 10-66

ADI_DEV_BUFFER_TYPE ..., 10-66

ADI_DEV_MODE ..., 10-67

ADI_DEV_DIRECTIONoitiiiiiiiiiieiiiiiieeeriieee e 10-67

CALLBACK EVENTS ..o 10-68

RESULT CODES ...oiiiiiiiiiiieee e 10-68

COMMAND IDS ciiiiiiiiiiieeiiiiiee ettt 10-71

ADI_DEV_1D_BUFFER ..., 10-73

ADI_DEV_2D_BUFFER ..., 10-74

xxiv Visual DSP++ 5.0 Device Drivers and System

Services Manual for Blackfin Processors

Contents

ADI_DEV_CIRCULAR_BUFFERccccoviiiiiiiiiiieeeien. 10-75
ADI_DEV_SEQ_I1D_BUFFERcciiiiiiiiiiiiiiiiiieeecceeeees 10-76
ADI_DEV_BUFFER_PAIRcciiiiiiiiiiiiiiiiieee e, 10-76
ADI_DEV_DMA_INFO ..ottt 10-76
ADI_DEV_DMA_ACCESS ..o, 10-77
ADI_DEV_FREQUENCIEScccooiiiiiiiiiiieee e, 10-77
ADI_DEV_ACCESS_REGISTERcccoviiiiiiiiieeieiieeeeiiiin, 10-78
ADI_DEV_ACCESS_REGISTER_BLOCKcccccvvveeeennnee 10-78
ADI_DEV_ACCESS_REGISTER_FIELDccccceevviiieennne 10-79
ADI_DEV_BUFFERcciiiiiiiiiiiiiiiiiiiieeeeeieeeee e, 10-79
Physical Driver API Referenceccccceeviniiiiiiiinniiieiinniiieeenne, 10-80
Notation Conventionsceeevivieiiiiiieiiiiiiiiieieiieeieieeeeeeeeeeeeeens 10-80
adi_pdd_Close .cooouvviiiiiiiiiiiiic e 10-81
adi_pdd_Controlccociiiiiiiiiiiii 10-82
adi_pdd_Open ...oeiiiiiiiiiiiic e 10-83
adi_pdd_Read ...cooceviiiiiiiiiii 10-85
Adi_pdd_WIIte .evviiiiiiiiiiiiiiie e 10-86
EXamples .ooouvviiiiiiiiiii e 10-87
REAL-TIME CLOCK SERVICE
INErOAUCTION .eiiiiiiiiiiiiiiiee e e 11-2
OPErationcciiiiiiiiiiiiiiiiiii 11-2
INitializationeeeiiiiiiieeiiiiieee e 11-3
Termination ...cooovieueeiieiiieee e e 11-4
Setting and Reading the Date and Timecoocvvveniiiinnieennne. 11-4
Visual DSP++ 5.0 Device Drivers and System XXV

Services Manual for Blackfin Processors

Contents

Real-Time Clock Eventsccccceevviiiiiiiiiiiiieeiiiiiee e 11-5
One Second Periodic Eventccccvvvieiiieieiiiiiiiiiieeeeeees 11-5

One Minute Periodic Eventcccccocviiiiiiieiinniiiiiiiieen, 11-6
Hourly Periodic Eventccccccovviiiiiiiniiiiiiiiiiiiiiiiieccee 11-6

Daily Periodic Eventcocoviiiiiiiniiiiiiiiiiiiccccece, 11-6
Periodic or One-Shot Stopwatch Eventccccoociiiniiennn. 11-7

Once Only Alarm Eventccccooviiiiiiniiiiiiiiiiiiieee 11-7

Each Day Alarm Eventoococeiiiiiiiiiiiniiiiiiiccee, 11-7
Pending Writes Complete Eventcccccovvvieniiiiiiiiiinneenne. 11-8
Callbacks ...eevviiiiiiiiiiii e 11-8
The Callback List .cceevviiiiiiiiiieeeeeieieeee e 11-9
Installing a Callbackcooviiiiiiiiii 11-9
Removing a Callback ... 11-10

The Real-Time Clock Service Interrupt Handler 11-10

Using the ClientHandle Parameter in a Callback 11-10
Coding Examplecocoiiiiiiiiiiiii, 11-11
RTC Service Application Programming Interface (API) 11-16
Notation and Naming Conventionscceecveeerveeenueeennnn 11-16
RTC Service API FUNCHIONS ...euvveuiiiiiiiiiiiiiiiiiiiiiiiiiiiiii 11-17
AT TEC TNIT tote et 11-18
adi_rtc_Terminateccvveeeeriiiieieiniiiiee e 11-19
adi_rtc_SetDateTime «oveneeeeeee e 11-20
adi_rtc_GetDateTIme .ooeuneeeee e 11-21
adi_rtc_InstallCallback ..evevieeeeeie e 11-22

Xxvi Visual DSP++ 5.0 Device Drivers and System

Services Manual for Blackfin Processors

Contents

adi_rtc_ RemoveCallback ..o.uveeeeeieeeee e 11-24
adi_rtc_SetEpoch ..o 11-25
adi_rtc_GetEpoch «oooiiiiiiii 11-26
adi_rtc_EnableWakeupccccccooiiiiiiiiiii 11-27
adi_rtc_DisableWakeupccccooviiiiiniiiiiiiiii 11-28
adi_rtc_ResetStopwatchooooeiiiiiiiiiii 11-29
Real-Time Clock Service API Data Types and Enumerations 11-30
TITL STIULCTUTE eevvneernnerenneeeeneeeeneernaeeenaereneeerenesenennaennaeennes 11-30
ADI_RTC_EPOCH ...uiiiiieeee 11-31
Event IDS oo 11-32
Result Codes ...uuvriiiiiiiiiiiiiiiiiiieee e 11-32
Interdependenciescocceeevrieiiniiieniieeeieeeec e 11-33
Interrupt Manager Servicecccociiiiiiiiiiiiiiiiiii, 11-33
Deferred Callback Serviceccovveieiiiiiiiiiiiiieeeieiiiiiieeeenn. 11-34
FILE SYSTEM SERVICE
INErOdUCHION .eiiiiiiiiiiiie e 12-2
Getting Startedcccooiiiiiiiiiiiiiii 12-3
INitialiZation ..ooooceviiiiieee e 12-4
Termination ..ccooovecueeiiiieeeie e 12-6
System Service Requirementscccuvveeiiiiiiiniiiiiiiiicciininni, 12-7
Interrupt Manager Servicecccccovviiiiiiiiiiiiiiiiiiiiiiiieneen, 12-8
Deferred Callback Serviceoccvviiiiiiiiiiiiiiiiiiiiiiieeciee, 12-8
DMA SEIVICE toieieieieieeeieeeee e 12-9
Semaphore Serviceoooviiiiiiiiiiiiiii 12-10
Visual DSP++ 5.0 Device Drivers and System XXVil

Services Manual for Blackfin Processors

Contents

Real-Time Clock Serviceccccvveiviiiiiiiiniiiiieeiiiiie e 12-10

Device Managerccccvviiiiiiiiiiiiiiiiiiii, 12-11
Advanced Configurationcccceveuveeriieeiniieeeniieenieeesieeeieeen 12-11

Custom Configuration of Device Driverscccccovvvevienniens 12-11

Dynamic Memory Usageccoevimiiiiiiiiiiiiiiiiiiiii, 12-13

File Cache .ooovvviiiiiiiiii e 12-16
File System Service API Referenceccccceevviiiiciinniiiniinnnneeen. 12-17

Notation and Naming Conventionscceeceveereuveeruneennne 12-18
AT S TIIE ettt e e e e e et e e e e e e e e e e e aaas 12-19
Adi_£5S_ TEIMINATE ooeenneeieee e 12-22
Ad1_£55_ CONELOL ooneeieee e 12-23
adi_fss_RegisterDevicecocvveriiiiiiiiiiiiiieniccicec e 12-25
adi_fss_DeRegisterDeviceccccovuiiniiiiniiiiiiiiiiiiiiiciiienieeiee 12-26
adi_fss_PollMediaOnDevice ..ceeeuveeeeeiiee e 12-27
Ad1 S POIIMEAIA wueeeneeee e e e aans 12-28
AT £8S SEAT ween et 12-29
adi_fss_ UnMountDevIiCe ..ceeuveeeneeiee e 12-30
adi_fss_FileOpenccooviiiiiiiiiiiiiiiiicccc e 12-31
A1 £S5 FILECLOSE wnnieneeee e e 12-33
AT 85 FILEWTIEE et 12-34
Adi_£5S. FIEREAA covneieniiee e e e 12-35
A1 £5S_ FIESCEK onneieee e 12-36
Adi_£5S_ FIETEIL et 12-38
EYe N R 1) 21 O) S RO UP R UPTTPI 12-39

xxviii Visual DSP++ 5.0 Device Drivers and System

Services Manual for Blackfin Processors

Contents

aAdi_fsS_ FIEREMOVE «neeeeneeeee e 12-40
adi_fss_ FIleRENAME «uoiiiniiiie e 12-41
adi_fss_ DIrOpen ..coocueeiiiiiiiiiiieiiceeiceeceec e 12-42
A1 £5S_ DITCLOSE vt 12-43
adi_£55_ DIrRead ..ooeeeiii e 12-44
AT L5 DS CeK ottt e 12-45
Adi_£5S_ DIITEll oo 12-46
adi_fss_ DIrRewind ...oooeeiiiiee e 12-47
adi_fss_ DirChangecoccceiviiiiniiiiiicccc e 12-48
adi_fss_ GetCurrentDIr ..eeeeeeeeee e 12-49
A1 £55_ DITCIEATE wevneeen et 12-50
Ad1 £35S DITREIMIOVE wuveeneeie e eeaee e eee e e e 12-51
File System Service API Data Types and Enumerations 12-52
ADI_FSS_WCHAR ..ottt 12-52
ADI_FSS_VOLUME_IDENT ...ccciiiiiiiiiiiiiieeeiiieeeeeee, 12-52
ADI_FSS_FILE_HANDLEcoiiiiiiiiiiiiieieee e 12-52
ADI_FSS_DIR_HANDLE ... 12-53
ADI_FSS_CMD_VALUE_PAIRcocoviiiiiiiiiiiiiiieeeeie, 12-53
ADI_FSS_DIR_ENTRY ...ooiiiiiiiiiiiiiiieeeiieee e 12-53
ADI_FSS_DEVICE_DEF ... 12-54
ReSULEt Codes .ovviiiiiiiiiiiiiiiieiiiiee e 12-55
Visual DSP++ 5.0 Device Drivers and System XXIX

Services Manual for Blackfin Processors

Contents

The Standard C I/O Interface Functionsccccoecvveveeniiieeeennne. 12-56
FOPEN e 12-57
FCLOSE ettt 12-58
FWIIEE weeeeiieie e e 12-59
Fread oo 12-60
EPIINTE e e 12-61
£SCANE oo 12-62
FERTC e 12-63
LS et 12-64
EPULC et 12-65
FPULS o 12-66
FSEEK vttt 12-67
FEell oo e 12-68
1T) S UUERR SR 12-69
Additional POSIX Functions Supported by the FSS 12-70
OPENAIL ittt 12-71
ClOSEdIr neiiiiiiiieee e 12-72
FEAAAIT 1o 12-73
LA LT T et 12-74
FEWINAAIT eiiiiiiiieieeeiee e e e e 12-75
SEERAIT 1t 12-76
EILAIT oo 12-77
KA oo e 12-78
FINAIE ceeeiiiiiie e et e e 12-79
XXX Visual DSP++ 5.0 Device Drivers and System

Services Manual for Blackfin Processors

Contents

FEIAITIC weuuteriiuuneeetiniieeettaie e etttte e eetttaeettaaaa e eeetaaaeeeranaaeeeenaannes 12-80
FEITLOVE +etuueeunueenuneentueetnaeeteueeeenaeeeenaeesnaeanaerenaereneeernnneennnenennns 12-81
EXtensibility ...coooieiiiiiiiiiiiiic e 12-82
EXamples .oooouiiiiiiiiiiiii e 12-82
HardDisKACCESS ..vvviieeeeiiiiiiiiiiiieee e et 12-83
DeSCIIPTion ... 12-83
ConfIgurationcccoevciiiiiiiiiiiiiiiiiie e 12-84
HardDiskFOrmatcoooviiiiiiiiiiiieee e 12-84
DeSCIIPTION ... 12-85
ConfIgurationcccevvviiiiiiiiiiiiiiiiie e 12-85

SRHEll BIOWSET ovneiee e 12-85
DeSCIIPTION ..ovuiiiiiiiii s 12-85
ConfIgurationcccoeveiiiiiiiiiiiiiiiiiie e 12-86

PULSE-WIDTH MODULATION
INErOAUCTION eviiiiiiiiieeeeeeeiiieee e e e e e e e e e e e e e e e eneens 13-2
OPErationeueiiiiiiiiiiiiiiiiiiiiie e 13-2
InitialiZationooceevieiiiiiii e 13-2
Terminationeeeeeeeiiiiiieiiiiiiiiiiiiiieeeeeeeee et e e e et e eeeeeeeeeeeeeees 13-6
PWM EVENES .eeiiiiiiiieeteeieiiiiiiteeeeee et 13-7
Trip Signal Event ..., 13-7
Synchronization Pulse Eventccocoiiniiiiniiiiiiiinnnene. 13-7
Callbacks .oooveviiiiiiiiiiee e 13-8
Installing a Callbackcccociiiiiiiiiiii, 13-9
Removing a Callbackcoocviiiiiiiiiiiie 13-9
VisualDSP++ 5.0 Device Drivers and System XxXi

Services Manual for Blackfin Processors

Contents

The PWM Service Interrupt Handlerscooooeiiiiieinnnnne. 13-10

Using the ClientHandle Parameter in a Callback 13-11
Programming Examplesccoociiiniiiiiniiiiniiiiiiecece, 13-11
Initialization — Command-Pair Tablecccccceeiiii. 13-12

Set Switch Reluctanceccoocciiiiiiiieiiiiiiiiiiiiieceeeee, 13-17
CIOSSOVET wvvteviieeieeieeitetiteeeeeeeeeeeeeeee et eeeeeeeeeeneeeeeeeenes 13-18

Gate Choppingccceevviiiiiiiiiiiiiiiiiccc e 13-18
Channel Enable/Disable (Individual)oovvvvieeeee.... 13-19

Low Side INVEIT ..vvveieiiiiiiiiiiiiiiiee e 13-21
External Sync Pulsecccooiiiiiiiiiiiiiii 13-22

Trip and Sync Interruptsoccceeeveveeniiiiiniiieniiiciieeeee, 13-23
Change the IVG Level of the Trip or Sync Interrupt 13-24

Trip Input Signal ... 13-25
PWM Enable/Disableccccoouiiiiiiiiiiiiiiiiiiieeeeeee, 13-25

PWM Service Application Programming Interface (API) 13-26
Notation and Naming Conventionsc.cccceeeuveeveunens 13-26
PWM Service API Functionsccoeuuuuiieiieiiiiiiiiiiiiiee e, 13-27
Adi_pWm_INIC coeviiiiiiiiii e 13-28
adi_pwm_Terminatecccooviiiiiimniiiiciiniicceecceeec e 13-29
adi_pwm_Controlccociiiiriiiiniiii e 13-30
adi_pwm_InstallCallbackc.ccooriiiiiiiiiiii 13-32
adi_pwm_RemoveCallbackcccooviiiiiiiiniiiiniiiiiice, 13-33

xxxii Visual DSP++ 5.0 Device Drivers and System

Services Manual for Blackfin Processors

Contents

PWM Service API Data Types and Enumerationscc........ 13-34
ADI_PWM_CHANNEL_STATUSccccoiiiiiiiiiiiiiciiee. 13-34
ADI_PWM_CHANNEL_DUTY_CYCLEccoccviiiinnnen. 13-35
ADI_PWM_COMMAND_PAIRcccccvviiiiiiiiiiiiiieeiins 13-36
ADI_PWM_NUMBER_AND_CHANNEL_STATUS 13-36
ADI_PWM_NUMBER_AND_ENABLE _STATUS 13-37
ADI_PWM_NUMBER_AND_VALUEcccoiiiiiiinnns 13-37
ADI_PWM_PORT_MAP ..., 13-38
ADI_PWM_CHANNELccccciiiiiiiiiiiiiiiiiieeeee 13-39
ADI_PWM_COMMANDccccoiiiiiiiiiiiiiiiiiicecceeee 13-39
ADI_PWM_ENABLE_STATUS ..., 13-45
ADI_PWM_EVENT_ID ..o 13-46
ADI_PWM_NUMBERccccccceiiiiiiiiiiiiiiiiicceee 13-46
ADI_PWM_POLARITY ..oooiiiiiiiiiiiicc e 13-47
ADI_PWM_PORT_MUX ...cooiiiiiiiiiiiiiiiieeeeeieec e 13-47
ADI_PWM_RESULT ..o, 13-48
ADI_PWM_SYNC_SELcoiiiiiiiiiiiiiiiiiccee e 13-50
ADI_PWM_SYNC_SOURCEcccccviiiiiiiiiiiiiiiis 13-51
ADI_PWM_UPDATE_MODEcccocciiiiiiiiiiiiiiiiiiiis 13-51

Interdependenciescoccveeeviiiiniiieniiieee e 13-52
Interrupt Manager Serviceccccceeviiiiiiiiiiiiiiiiieiiiiinine, 13-52
Deferred Callback Serviceccccovviiiiiiiiiiniiiiniiiiniiceniece, 13-52
Port Control Manager Serviceccovvuveevirienineennieennieeene. 13-53

Visual DSP++ 5.0 Device Drivers and System XxXxl1il

Services Manual for Blackfin Processors

Contents

STDIO SERVICE

INErOdUCTION tiviiieeeeiiiiiieiee e e e e e e eeareee e es 14-2
Getting Started ..ooouveieiiiiiiiiiiiiieeee e 14-2
INitialiZationeceeiiiiiiiiiiiiie e 14-2
Register the Required STDIO Device Typescccoceevvivernnnnne 14-4
Open the Required STDIO Device(s) wecevvveeervreenieienieeenineene 14-4
Configure STDIO Devicecoovviriiiniiiniiiiiiiiiciiieiicee, 14-5
Redirect STDIO Streamccceeeeevieiiiiiiiieeeeeeeeeiiiiieeee e e 14-6
Disable STDIO Streamcccuveiiiiiiiiiiiiiiiiieeiiiiieeeeiiee e 14-7
Termination ..ooooueeveeieeeeeeee e e e 14-8
STDIO Service API Referenceccceeeeveiiciiviiiiieeeeeiiiiiiiiiieeeeennnn 14-8
Notation and Naming Conventionsccccevveeeriuveennueeeennnn 14-8
AT SEAIO TIIE tenteinee e 14-10
adi_stdio_RegisterUARTccooiiiiiiiiiiiiiiiiiiciceee e 14-12
adi_stdio_OpenDeviceccceeriiiiniiiiiniiiieniieeeec e 14-13
Ad1_SEAI0. REITECT weniieiiee e 14-15
adi_stdio_DisableStreamcooouviiiniiiie e, 14-17
adi_Stdio_ CoONtroOIDEVICE wuuiienieeeee et e e et e e aeeaans 14-18
adi_Stdio_CloSEDEVICE connieniieiee e 14-20
Adi_STAIO_TEIMINATE wevneeeeneeeeee e 14-21
STDIO Service API Structures, Definitions, and
ENUMErationseeeeieeeiiiiiiiiiiiiiiieee et eeeee e ee e 14-22
Stream Types (ADI_STDIO_STREAM_TYPE) 14-22
Device Type (ADI_STDIO_DEVICE_TYPE)cccoecuvveeenne 14-23
XXXV Visual DSP++ 5.0 Device Drivers and System

Services Manual for Blackfin Processors

Contents

Commands (ADI_STDIO_COMMAND)ccccoevvvviiinniennnne. 14-23
ADI_STDIO_COMMAND_ENABLE_UNIX_MODE
(0X120000) +eieeiiiiiiiieieeee e et 14-23
Command Specific Valueccoooeiiiiiiiiiiiiniiiiicceee 14-24
ADI_STDIO_COMMAND_ENABLE_CHAR_ECHO
(0XT20001) teeeeiiiiiiiieeee et e 14-24
Command Specific Valueccoooeiiiiiiiniiiiniciicceee 14-24
ADI_STDIO_COMMAND_GET_DEVICE_HANDLE
(0XT120002) ceeeeiiiiiiieieeee e 14-24
Command Specific Valueccoooeiiiiiiiniiiiniiiiccee 14-24
ADI_STDIO_COMMAND_SET_UART_PARITY_TYPE
(0XT20004) weieeiiiiiiiiiieeeee ettt e e e 14-25
Command Specific Valueccooceiiiiiiiniiiiniiiiiccee, 14-25
ADI_STDIO_COMMAND_SET_UART_WORD_LENGTH
(0XT20005) tieeiiiiiiiiiieeee et 14-25
Command Specific Valueccooceeiiiiiiniiiiniiiicee, 14-25
ADI_STDIO_COMMAND_SET_UART_NUM_STOP_BITS
(0X120000) ceeeiiiiiiiiiieeee et 14-25
Command Specific Valueccoooeiiniiiiniiiiniiiiiicceee 14-26
ADI_STDIO_COMMAND_SET_UART_AUTO_BAUD_CHAR
(0XT20007) ceeeeeiiiiiiieee ettt 14-26
Command Specific Valueccoooviiiiiiiniiiiniiiiiccee, 14-26
ADI_STDIO_COMMAND_ENABLE_AUTO_BAUD_CHAR
(0XT20008) eeeeeiiiiiiieeee et e ettt 14-26
Command Specific Valueccoooeiiiiiiiniiiiniiiiiicceee 14-26
Visual DSP++ 5.0 Device Drivers and System XXXV

Services Manual for Blackfin Processors

Contents

ADI_STDIO_COMMAND_SET_UART_BAUD_RATE

(OX120009) —rvvoeeeoeeeeeeeeeoeeeeeeeeeeeeeeeeeoeeeeeeeeeee e 14-27
Command Specific Valueccooceiiviiiiniiiiiniiiieee 14-27
Parity Types (ADI_STDIO_PARITY_TYPE) ...cccccovvniiecnnn. 14-27
Result Codes (ADI_STDIO_RESULT) ...coovvvveeeeeeeeeiiiiiiinnnn. 14-27
INDEX
XXXVi Visual DSP++ 5.0 Device Drivers and System

Services Manual for Blackfin Processors

PREFACE

Thank you for purchasing Analog Devices, Inc. development software for
Analog Devices embedded processors.

Purpose of This Manual

The VisualDSP++ 5.0 Device Drivers and System Services Manual for Black-
fin Processors contains information about the Analog Devices device driver
model and system services library suite. Included are the architectural
descriptions of the device driver design and each system service compo-
nent. Also included is a description of the API calls into each library.

Intended Audience

The primary audience for this manual is a programmer who is familiar
with Analog Devices Blackfin® processors. This manual assumes the audi-
ence has a working knowledge of the appropriate processor architecture
and instruction set. Programmers who are unfamiliar with Analog Devices
processors can use this manual, but should supplement it with other texts,
such as hardware reference and programming reference manuals, that
describe their target architecture.

Visual DSP++ 5.0 Device Drivers and System XXXV1l
Services Manual for Blackfin Processors

Manual Contents Description

Manual Contents Description

This manual contains:

Chapter 1, “Introduction”
Provides an overview of system services and device drivers.

Chapter 2, “Interrupt Manager”
Describes the system interrupt controller (SIC) manager that sup-
ports the general-purpose interrupt events.

Chapter 3, “Power Management Module”
Describes the power management module that supports dynamic
power management of Blackfin processors.

Chapter 4, “External Bus Interface Unit Module”

Describes the external bus interface unit (EBIU) module that
enables the power management module to manage the SDRAM
controller operation.

Chapter 5, “Deferred Callback Manager”
Describes the deferred callback manager that is used by the applica-
tion developer to effectively execute function calls.

Chapter 6, “DMA Manager”
Describes direct memory access (DMA) manager API.

Chapter 7, “Programmable Flag Service”
Describes the programmable flag service that provides interface
into the programmable flag subsystem of the Blackfin processor.

Chapter 8, “Timer Service”
Describes the timer service that provides interface into the core,
watchdog, and general-purpose timers of the Blackfin processor.

XXXViil

Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Preface

Chapter 9, “Port Control Service”
Describes the port control manager service used to assign the pro-
grammable flag pins to various functions.

Chapter 10, “Device Driver Manager”
Describes the device driver model used to control devices, both
internal and external, to ADI processors.

Chapter 11, “Real-Time Clock Service”

Describes the real-time clock service within the system services
library and how to use it to enable the features of the real-time
clock on Blackfin processors.

Chapter 12, “File System Service”
Describes the file system service (ESS), which provides access to
mass storage media from the Blackfin processor.

Chapter 13, “Pulse-Width Modulation”
Describes the basic features of the pulse-width modulation (PWM)
service and the use of this system service in software applications.

Chapter 14, “STDIO Service ”
Describes the STDIO service that supports the redirection of
STDIO streams to different output peripherals.

What’s New in This Manual

This revision (4.3) of the manual documents changes/additions related to
device drivers and system services for Visual DSP++® 5.0 and subsequent

updates (up to update 9). These changes include:

Deleted Chapter 14, “Memory Manager Service”, as this service
has been removed from the tools.

Incorporated modifications and corrections based on errata reports
against the previous revision (4.2) of the manual.

Visual DSP++ 5.0 Device Drivers and System XXXIX
Services Manual for Blackfin Processors

Technical or Customer Support

Technical or Customer Support

You can reach Analog Devices, Inc. Customer Support in the following

ways:

Visit the Embedded Processing and DSP products Web site at:

http://www.analog.com/processors/technical_support

E-mail tools questions to:
processor.tools.support@analog.com

E-mail processor questions to:
processor.support@analog.com (World wide support)
processor.europe@analog.com (Europe support)
processor.china@analog.com (China support)

Phone questions to 1-800-ANALOGD

Contact your Analog Devices, Inc. local sales office or authorized
distributor

Supported Processors

The name Blackfin refers to a family of 16-bit, embedded processors.
Visual DSP++ supports all ADSP-BFxxx Blackfin processors.

For a complete list of processors supported by VisualDSP++ 5.0, refer to
the online Help.

Product Information

Product information can be obtained from the Analog Devices Web site,
Visual DSP++ online Help system, and a technical library CD.

x|

Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

http://www.analog.com/processors/technical_support
mailto:processor.tools.support@analog.com
mailto:processor.support@analog.com
mailto:processor.europe@analog.com
mailto:processor.china@analog.com

Preface

Analog Devices Web Site

The Analog Devices Web site, www.analog.com, provides information
about a broad range of products—analog integrated circuits, amplifiers,
converters, and digital signal processors.

To access a complete technical library for each processor family, go to
http://www.analog.com/processors/technical_library. The manuals
selection opens a list of current manuals related to the product as well as a
link to the previous revisions of the manuals. When locating your manual
title, note a possible errata check mark next to the title that leads to the
current correction report against the manual.

Also note, MyAnalog.com is a free feature of the Analog Devices Web site
that allows customization of a Web page to display only the latest infor-
mation about products you are interested in. You can choose to receive
weekly e-mail notifications containing updates to the Web pages that meet
your interests, including documentation errata against all manuals.
MyAnalog.com provides access to books, application notes, data sheets,
code examples, and more.

Visit MyAnalog.com to sign up. If you are a registered user, just log on.
Your user name is your e-mail address.

VisualDSP++ Online Documentation

Online documentation comprises the Visual DSP++ Help system, software
tools manuals, hardware tools manuals, processor manuals, Dinkum
Abridged C++ library, and FLEXnet License Tools software
documentation. You can search easily across the entire VisualDSP++ doc-
umentation set for any topic of interest.

For easy printing, supplementary Portable Documentation Format (.pdf)
files for all manuals are provided on the Visual DSP++ installation CD.

Visual DSP++ 5.0 Device Drivers and System xli
Services Manual for Blackfin Processors

http://www.analog.com/processors/technical_library
http://www.analog.com
http://www.analog.com/subscriptions
http://www.analog.com/subscriptions
http://www.analog.com/subscriptions

Product Information

Each documentation file type is described as follows.

File Description

.chm Help system files and manuals in Microsoft Help format

.htmor Dinkum Abridged C++ library and FLEXnet License Tools software
.html documentation. Viewing and printing the . htm] files requires a browser, such as
Internet Explorer 6.0 (or higher).

.pdf VisualDSP++ and processor manuals in (PDF) format. Viewing and printing the
.pdf files requires a PDF reader, such as Adobe Acrobat Reader (4.0 or higher).

Technical Library CD

The technical library CD contains seminar materials, product highlights, a
selection guide, and documentation files of processor manuals, Visu-
alDSP++ software manuals, and hardware tools manuals for the following
processor families: Blackfin, SHARC®, TigerSHARC®, ADSP-218x, and
ADSP-219x.

To order the technical library CD, go to http://www.analog.com/proces-
sors/technical_library, navigate to the manuals page for your
processor, click the request CD check mark, and fill out the order form.

Data sheets, which can be downloaded from the Analog Devices Web site,
change rapidly, and therefore are not included on the technical library
CD. Technical manuals change periodically. Check the Web site for the

latest manual revisions and associated documentation errata.

EngineerZone

EngineerZone is a technical support forum from Analog Devices. It allows
you direct access to ADI technical support engineers. You can search
FAQs and technical information to get quick answers to your embedded
processing and DSP design questions.

xlii Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

http://www.analog.com/processors/technical_library
http://www.analog.com/processors/technical_library

Preface

Use EngineerZone to connect with other DSP developers who face similar
design challenges. You can also use this open forum to share knowledge
and collaborate with the ADI support team and your peers. Visit
http://ez.analog.com to sign up.

Social Networking Web Sites

You can now follow Analog Devices Blackfin development on Twitter and
LinkedIn. To access:

e Twitter: http://twitter.com/blackfin

LinkedIn: Network with the LinkedIn group, Analog Devices
Blackfin: http://www.linkedin.com

Notation Conventions

Text conventions used in this manual are identified and described as fol-
lows. Note that additional conventions, which apply only to specific
chapters, may appear throughout this document.

Example Description

{this | that} Alternative required items in syntax descriptions appear within curly

brackets and separated by vertical bars; read the example as this or
that. One or the other is required.

[this | that] Optional items in syntax descriptions appear within brackets and

separated by vertical bars; read the example as an optional this or

that.

[this,..] Optional item lists in syntax descriptions appear within brackets delim-
ited by commas and terminated with an ellipse; read the example as an
optional comma-separated list of this.

.SECTION Commands, directives, keywords, and feature names are in text with
letter gothic font.

filename

Non-keyword placeholders appear in text with italic style format.

Visual DSP++ 5.0 Device Drivers and System

xliii
Services Manual for Blackfin Processors

http://ez.analog.com
http://twitter.com/blackfin
http://www.linkedin.com

Notation Conventions

Example

Description

Note: For correct operation, ...
A Note provides supplementary information on a related topic. In the
online version of this book, the word Note appears instead of this

symbol.

X ©

Caution: Incorrect device operation may result if ...

Caution: Device damage may result if ...

A Caution identifies conditions or inappropriate usage of the product

that could lead to undesirable results or product damage. In the online
version of this book, the word Caution appears instead of this symbol.

Warning: Injury to device users may result if ...

A Warning identifies conditions or inappropriate usage of the product
that could lead to conditions that are potentially hazardous for devices
users. In the online version of this book, the word Warning appears
instead of this symbol.

xliv

Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

1 INTRODUCTION

This manual describes the system services and device driver architecture
for Analog Devices embedded processors.

The system services form a collection of functions that are commonly
found in embedded systems. Each system service focuses on a specific set
of functionality such as direct memory access (DMA), power management
(PM), interrupt control (IC), and so on. Collectively, the system services
provide a wealth of pre-built, optimized code that simplifies software
development, allowing you to get Blackfin processor-based designs to
market more quickly.

The device driver model provides a simple, clean and familiar interface
into device drivers for Blackfin processors. The primary objective of the
device driver model is to create a concise, effective, and easy-to-use
interface through which applications can communicate with device
drivers. Secondarily, the model and device manager software significantly
simplifies the development of device drivers, making the development of
new device drivers very straightforward.

At the time of this release, the system services and device drivers are avail-
able for use with the following Blackfin processors:

» ADSP-BF504/504F/506F
 ADSP-BF512/514/516/518
* ADSP-BF522/524/526

* ADSP-BF523/525/527

Visual DSP++ 5.0 Device Drivers and System 1-1
Services Manual for Blackfin Processors

System Services Overview

ADSP-BF531/532/533
ADSP-BF534/536/537

ADSP-BF538/539
ADSP-BF542/544/547/548/549
ADSP-BF542M/544M/547M/548M/549M
ADSP-BF561

ADSP-BF590/592-A

For a complete list of processors supported by Visual DSP++ 5.0, refer to
the online Help.

This chapter contains:

“System Services Overview”

“Device Driver Overview” on page 1-22

System Services Overview

The system services overview covers the following topics:

“General” on page 1-3
“Application Interface” on page 1-8
“Dependencies” on page 1-10
“Initialization” on page 1-11
“Termination” on page 1-12

“System Services Directory and File Structure” on page 1-13

1-2

Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

General

Introduction

The current revision of the system services library consists of the following

services:

* Interrupt Control Service — The interrupt control service allows
the application to control and leverage the event and interrupt pro-
cessing of the processor more effectively. Specific functionality
allows the application to:

Set and detect the mappings of the interrupt priority levels
to peripherals.

Use standard C functions as interrupt handlers.

Hook and unhook multiple interrupt handlers to the same
interrupt priority level using both nesting and non-nesting
capabilities.

Detect if a system interrupt is being asserted.

Protect and unprotect critical regions of code in a portable
manner.

* Power Management Service — The power management service
allows the application to control the dynamic power management
capabilities of a Blackfin processor. Specific functionality allows
the application to:

Set core and system clock operating frequencies with a func-
tion call.

Set and detect the internal voltage regulator settings.

Transition the processor among the various operating
modes including, full-on, active, sleep, and so on.

Visual DSP++ 5.0 Device Drivers and System 1-3
Services Manual for Blackfin Processors

System Services Overview

* External Bus Interface Unit Control Service (EBIU) — The EBIU
control service provides a collection of routines to set up the exter-
nal interfaces of the Blackfin processor, including the SDRAM
controller. This functionality enables you to:

* Adjust SDRAM refresh and timing rates to optimal values
for given system clock frequencies.

* Set individual bus interface settings.

* Complete single function setup for known configurations,

such as the Blackfin EZ-KIT Lite® platforms.
e Deferred Callback Service — The deferred callback service allows

the application to be notified of asynchronous events outside of
high-priority interrupt service routines. Using deferred callbacks
typically improves the overall I/O capacity of the system while at
the same time reducing interrupt latency. Specific functionality
allows the application to:

* Define how many callbacks can be pending at any point in
time.

* Define the interrupt priority level at which the callback ser-
vice executes.

* Create multiple callback services, each operating at a differ-
ent interrupt priority level.

* DPost callbacks to a callback service with a relative priority
among all other callbacks posted to the same callback
service.

* DMA Management Service — The DMA management service
provides access into the DMA controller of a Blackfin processor.
The DMA management service allows the application to schedule

1-4 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Introduction

DMA operations, both peripheral and memory DMA, supporting
both linear and two-dimensional transfer types. Specific function-
ality allows the application to:

Set and detect the mapping of DMA channels to
peripherals.

Configure individual DMA channels for inbound/outbound
traffic using circular (autobuffered) DMA or descrip-
tor-based DMA.

Command the DMA manager to issue live or deferred
callbacks upon DMA completions.

Queue descriptors, intermixing linear and two-dimensional
transfers on DMA channels.

Enable the DMA manager to loopback on descriptor chains
automatically.

Stream data continuously into or out of a memory stream or

peripheral.

Initiate linear and two-dimensional memory DMA transfers
with simple C-like, memcpy-type functions.

* Programmable Flag Service — The programmable flag service
provides a simple interface into the programmable flags, sometimes
called general-purpose 1/O, of the Blackfin processor. This allows
the application to access and control the programmable flags
through a clean and consistent interface. The programmable flag
service allows the application to:

Configure the direction, either input or output, of any flag.

Set, clear, and toggle the value of all output flags.

Visual DSP++ 5.0 Device Drivers and System 1-5
Services Manual for Blackfin Processors

System Services Overview

* Sense the value of input flags.

* Install callbacks, including live and deferred callbacks when
specific trigger conditions occur on a flag.

Timer Service — The timer service provides applications, drivers,
and services with a simple mechanism to control general-purpose,
core, and watchdog timers of the Blackfin processor. The timer ser-
vice allows the application to:

* Configure and control any timer within the processor,
including general-purpose, core, and watchdog timers.

* Install callbacks, including both “live” and deferred
callbacks, when timers expire or trigger.

Port Control Service — The port control service configures the pin
multiplexing hardware appropriately to ensure proper operation of
the peripherals that share common input and output pins. All sys-
tem services and device drivers automatically make the appropriate
calls into the port control service to seamlessly configure the pin
muxing hardware without any end-user or application interaction,
other than initialization of the service.

Device Manager — The device driver model is used to control
devices, both internal and external to Analog Devices processors.
Specific functionality allow the application to:

* Open and close devices used by the application.
* Configure and control devices.

* Receive and transmit data through the devices using a vari-
ety of dataflow methods.

1-6

Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Introduction

e Real-Time Clock Service — (not available for the ADSP-BF561)
The real-time clock service reads and writes the date and time, and
installs callbacks for the various real-time clock events. The service
includes the following features:

Set date and time.
Read date and time.
Set and read of epoch time.

Callbacks for the once only alarm, each day alarm, stop-
watch event, one second event, one minute event, one hour
event, one day event and register write complete event.

Reset the stopwatch.

Enable or disable the RTC wakeup to the processor.

* File System Service — The file system service provides access to
embedded mass storage media, from the Blackfin processor. The
file system includes functionality for:

File operations (open, close, read, write, seek, tell, IsSEOF,
remove, rename)

Directory operations (open, close, read, seek, tell, rewind,
change, get current, create, remove)

Other operations (get file/directory status, get number of
volumes, get volume info, format volume, media change
notification, poll media, register/deregister device)

POSIX operations (opendir, closedir, readdir, readdir_r,
rewinddir, seekdir, telldir, rename, mkdir, rmdir, remove)

Extensibility (additional or replacement drivers can be
inserted)

Visual DSP++ 5.0 Device Drivers and System 1-7
Services Manual for Blackfin Processors

System Services Overview

* Pulse-Width Modulation Service — (only available on some newer
Blackfin processors)
The pulse-width modulation service facilitates control over the
PWM hardware, generating waveforms to drive a three-phase volt-
age source inverter for use in motor control applications. The
service requires the application to select the port muxing, synchro-
nization pulse period and width, dead time, duty cycle, channel
enable status, polarity, and operating mode. The service allows
optional selection of sync pulse on an output pin, internal or exter-
nal sync pulse, synchronous or asynchronous external sync pulse,
IVG levels for trip and sync interrupt, switch reluctance mode,
channel crossover mode, gate chopping mode, and trip input signal

disable.

Application Interface

Each system service exports an application programming interface (API)
that defines the interface into that service. Application software makes
calls into the API of the system service to access the functionality that is to
be controlled.

Each API can be called using the standard calling interface of the
development toolset’s C run-time model. The API of each service can be
called by any C or assembly language program that adheres to the calling
conventions and register usage of the C run-time model.

In addition to the application software using the API to make calls into a
system service, some system services make calls into the API of other sys-
tem services. For the most part, each service is independent of the other
services; however, redundancies are eliminated by allowing one service to
access the functionality of another service.

For example, does the application need to be notified when a DMA
descriptor has completed processing, and the application has requested

1-8 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Introduction

deferred callbacks? In this case, the DMA management service invokes the
deferred callback service to effect the callback into the application.

Another example of combined operation between services involves the
power management and EBIU services. Assume that the system has
SDRAM and the application needs to conserve power by turning down
the core and system clock frequencies. When the application calls the
power management service to lower the operating frequencies, the power
management service automatically invokes the EBIU service, which
adjusts the SDRAM refresh rate to compensate for the reduced system
clock frequency.

Figure 1-1 illustrates the current collection of system services and the API
interactions among them.

EBIU (SDRAM) |

!

Dynamic Power

}

Interrupt Manager

/\

[DMA Manager Deferred Callback]

i

Flag Control [Timer Control

—

[Port Control]

Figure 1-1. System Services and API Interactions

Visual DSP++ 5.0 Device Drivers and System 1-9
Services Manual for Blackfin Processors

System Services Overview

Dependencies

With few constraints, applications can use any individual service

or combination of services within their application. Applications do not
have to all the services. Further, each service does not need all the
resources associated with the system that the service is controlling.

For example, the DMA manager does not need control over all DMA
channels. The system can be configured for the DMA manager to control
some channels, leaving the application or other software to control other
DMA channels. (See the individual service chapters for more information
on each service.) There are, however, dependencies within the services of
which the application developer should be aware.

All current services, except the EBIU service, invoke the interrupt control
service for the management of interrupt processing. The DMA manager,
deferred callback, and power management services each depend on the
interrupt control service to manage interrupt processing for them.

If directed by the application to adjust SDRAM timing automatically, the
power management service uses the EBIU control service to affect
SDRAM timing parameter changes when the power/operating speed
profile of the processor is changed.

When configured to use deferred callbacks (as opposed to live or
interrupt-time callbacks) the DMA manager leverages the capabilities of
the deferred callback service to provide deferred callbacks to the applica-
tion. However, when configured for live callbacks, the DMA manager
does not use the deferred callback service.

The development toolset automatically determines these dependencies
and links into the executable only those services that are required by the
application. Because each service is built as its own object file within the
system services library file, you can further reduce the code size of the final
executable by commanding the linker to eliminate unused objects. Refer
to the development toolset documentation for more information.

1-10 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Initialization

Introduction

Some system services rely on other system services; thus, there is a
preferred initialization sequence. Usually it is preferable to initialize all
services at one time, typically when the whole system is being initialized,
rather than spreading out the initialization of various services at different

times.

Most applications find the initialization sequence listed below to be opti-
mal. Any service in the sequence that is not used by the application can

simply be omitted from the sequence.

1.

9.

® N & s B Db

Interrupt control service
External bus interface unit
Power management service
Port control (if applicable)
Deferred callback service
DMA manager service
Programmable flag service
Timer service

Real-time clock service

10.Semaphore service

Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

1-11

System Services Overview

Termination

Many embedded systems operate continuously in an endless loop and may
never need to call the termination function of a service. Applications that
do not have a need to terminate a service can save memory by never calling
the termination function.

For applications that need to terminate services, as with the initialization
sequence, there is a preferred sequence of terminating the services.

Most application find the termination sequence listed below to be opti-
mal. Services are usually terminated in the reverse order from which they
were initialized. Any service in the sequence that is not used by the appli-
cation can simply be omitted from the sequence.

1. PWM service (if applicable)
Semaphore service
Real-time clock service
Timer service
Programmable flag service
DMA manager service

Deferred callback service

® N & s B Db

Port control (if applicable)
9. Power management service
10.External bus interface unit

11.Interrupt control service

1-12 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Introduction

System Services Directory and File Structure

All files for the system services are contained within the Blackfin
directory tree. In Visual DSP++ installations, this directory is used for core
development tools. Other development toolsets may use other directory
names for their toolkits, but the system services can always be found
within the Blackfin directory tree.

To use the system services, applications need only include a single include
file in their source code, and link with a single system services library
module that is appropriate for their configuration.

Accessing the System Services API

Applications using system services should include the Black-
fin/include/services directory in the (compiler and/or assembler)
preprocessor search path. User source files that access any of the system
services APIs should simply include the services.h file, located in the
Blackfin/include/services directory. User files do not need to include
any other files to use the system services API.

The system services API and functionality are uniform and consistent
across all Blackfin processors, including all single- and multi-core devices.
Application software does not have to change, regardless of the Blackfin
processor is being targeted. For example, application software running on
a single-core ADSP-BF533 processor can operate unchanged on a
multi-core ADSP-BF561 processor.

In order to provide this consistent API to the application, the system
services API must be aware of the specific processor variant being targeted.
You must ensure that the processor definition macro for the processor
variant being targeted is defined when including the services.h include

file.

The Visual DSP++ toolset automatically sets the processor definition
macro when building projects. Application developers using the

Visual DSP++ 5.0 Device Drivers and System 1-13
Services Manual for Blackfin Processors

System Services Overview

Visual DSP++ toolset need do nothing further to ensure the processor
definition macro is defined.

Application developers using other toolsets, however, should ensure the
processor definition macro is appropriately defined. The services.h file
enumerates the specific processor variants that are supported. These cur-
rent processor variants are shown in Table 1-1, but new defines will be
created for each newly-introduced Blackfin processor so reference to the
latest include file is essential.

Table 1-1. Processor Variants

__ADSPBF504__ The ADSP-BF504 processor
__ADSPBF504F__ The ADSP-BF504F processor
__ADSPBF506F__ The ADSP-BF506F processor
__ADSPBF512__ The ADSP-BF512 processor
__ADSPBF514__ The ADSP-BF514 processor
__ADSPBF516__ The ADSP-BF516 processor
__ADSPBF518__ The ADSP-BF518 processor
__ADSPBF522__ The ADSP-BF522 processor
__ADSPBF523__ The ADSP-BF523 processor
__ADSPBF524__ The ADSP-BF524 processor
__ADSPBF525__ The ADSP-BF525 processor
__ADSPBF526__ The ADSP-BF526 processor
__ADSPBF527__ The ADSP-BF527 processor
__ADSPBF531__ The ADSP-BF531 processor
__ADSPBF532__ The ADSP-BF532 processor
__ADSPBF533__ The ADSP-BF533 processor
__ADSPBF534__ The ADSP-BF534 processor
__ADSPBF535__ The ADSP-BF535 processor
__ADSPBF536__ The ADSP-BF536 processor
1-14 Visual DSP++ 5.0 Device Drivers and System

Services Manual for Blackfin Processors

Introduction

Table 1-1. Processor Variants (Contd)

__ADSPBF537__ The ADSP-BF537 processor
__ADSPBF538__ The ADSP-BF538 processor
__ADSPBF539__ The ADSP-BF539 processor
__ADSPBF542__ The ADSP-BF542 processor
__ADSPBF544__ The ADSP-BF544 processor
__ADSPBF547__ The ADSP-BF547 processor
__ADSPBF548__ The ADSP-BF548 processor
__ADSPBF549_ The ADSP-BF549 processor
__ADSPBF542M__ The ADSP-BF542M processor
__ADSPBF544M__ The ADSP-BF544M processor
__ADSPBF547M__ The ADSP-BF547M processor
__ADSPBF548M__ The ADSP-BF548M processor
__ADSPBF549M__ The ADSP-BF549M processor
__ADSPBF561__ The ADSP-BF561 processor
__ADSPBF590___ The ADSP-BF590 processor
__ADSPBF592__ The ADSP-BF592-A processor

The services.h file contains the full
ants that are supported.

and complete list of processor vari-

Although the API of the system services does not change between
processor variants, the internals of the system services differ,
depending on the specific processor variant and processor revision
number being targeted. For example, the number of DMA
channels for a ADSP-BF533 processor differs from the number of
DMA channels for a ADSP-BF561 processor. Further, a work-

around within the services for

revision x.y of a processor may not

be needed for revision x.y of that same processor. These differences
are accounted for in the system service library module. See “System
Services Overview” for more information.

Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

1-15

System Services Overview

Linking in the System Services Library

All object code for the system services is included in the system services
library file. This file is found in the Blackfin/1ib directory. This direc-
tory provides a system services library file for each processor variant and
processor revision that is supported. You should ensure that the appropri-
ate library is included in the list of object files for the linker.

All system service library files are of the form 1ibss1xxx_yyyz.d1b where:

xxx represents the processor variant — This is typically a three-digit
number that identifies the processor variant, such as 532 for the
ADSP-BF532 processor, 534 for the ADSP-BF534 processor, and

SO on.

_yyy represents the operating environment — This suffix represents
the targeted operating environment, such as vdk for VDK-based
systems, uC0S for uCOS-based systems, and so on. Libraries built
for standalone, specifically non-RTOS environments, do not
include the _yyy suffix.

z represents any special conditions for the library — The following
combinations are used:

* y —The library is built to avoid all known anomalies for all
revisions of silicon.

* blank — A library without any additional suffix does not
contain workarounds to any anomalies.

Located within the Blackfin/1ib directory are subdirectories for
individual silicon revisions. The libraries in these subdirectories are
built for specific silicon revisions of the Blackfin processors.

One system services library file only should be included for the linker to
process. Choose the correct library based on the processor variant,
operating environment, and processor revision number for your system.

1-16

Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Introduction

For example, an application targeting silicon revision 0.2 of the
ADSP-BF532 processor without an RTOS should link with the
1ibss1532.d1b file from the Blackfin/1ib/bf532_rev_0.2 subdirectory.
As another example, an application developer who wants a version of the
system services library to run on any revision of ADSP-BF532 silicon and
uses the VDK, should link with the 1ibss1532_vdky.d1b file from the
Blackfin/1ib directory.

@ It is strongly recommended you use the debug versions of the

system services library during development because the built-in
error-checking code within the library can save countless hours of
development time.

Specify the use of debug versions of the libraries by selecting Use Debug
System libraries on the Link:Processor page of the Project Options dialog
box.

Rebuilding the System Services Library

Under normal situations, there is no need to rebuild the system services
library. However, to accommodate unforeseen circumstances and provide
developers with the ability to tailor the system services to their particular
needs, all source code and include files necessary to rebuild the system
services library are provided. In addition, Visual DSP++ project files are
included for application developers using the VisualDSP++ development
toolset.

Visual DSP++ 5.0 Device Drivers and System 1-17
Services Manual for Blackfin Processors

System Services Overview

All code for the system services library is located in the following
directories:

Blackfin/1ib — This directory contains the Analog Devices built
versions of the system service library files (*.d1b).

Blackfin/lib/src/services — This directory contains all the
source code files and non-API include files for the system services.
This directory also contains the VisualDSP++ project files that can
be used to rebuild the libraries.

Blackfin/include/services — This directory contains all API
include files for the system services.

Visual DSP++ users can simply rebuild the system services library by using
the build command after opening the appropriate Visual DSP++ project

file.

To rebuild the libraries using other development toolsets:

1.

Set the preprocessor include path to include
Blackfin/include/services and blackfin/lib/src/services.

Define the processor variant according to the definitions in the
services.h file.

Define the silicon revision macro, _ SILICON_REVISION _, to the
proper value. Refer to the description of the _si_revision switch
in your processor’s C/C++ Compiler and Library manual for more
information.

Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Introduction

4. Compile/assemble all files in the Blackfin/1ib/src/services
directory.

5. Link the appropriate compiled/assembled objects into a library.
Include all object files without any operating environment exten-
sion (such as VDK) and all object files with the appropriate operating
environment extension specific for the environment being targeted
(such as VDK).

Examples

The system services distribution includes many examples that illustrate
how to use the system services. Refer to these examples for additional
information on how to use the system services effectively.

Dual-Core Considerations

For information on how to use the system services on dual-core

ADSP-BF561 processors, see “Dual-Core Considerations” on page 3-5.

RTOS Considerations

Deployment of system services and the device driver model within an
application based around an RTOS, such as VDK, is highly recom-
mended. However, observe these considerations to avoid conflict with the
RTOS and to successfully deploy the system services and device drivers
within a multi-threaded application.

The following discussion, which is limited to VDK, is also relevant
to other RTOS environments.

Visual DSP++ 5.0 Device Drivers and System 1-19
Services Manual for Blackfin Processors

RTOS Considerations

Interoperability of System Services With VDK

There are three major considerations to keep in mind when deploying sys-
tem services and the device driver model within a VDK-based application.

Interrupt handling — The interrupt manager is a cornerstone of the
system services and the device driver model. The interrupt manager
is designed to manage only the interrupt vector groups (IVG) that
it is requested to manage, as dictated by each call to
adi_int_CECHook (), leaving the other IVG levels to be handled as
per the user’s requirements. Thus, VDK-managed interrupts can
easily coexist alongside those managed by system services, provided
that neither method manages the same IVG levels as the other. It is
not possible to have a VDK ISR and an interrupt manager chain
assigned to the same IVG level, as one will overwrite the other in
the event vector table (EVT).

All DMA channels and device drivers use the default IVG levels as
defined in the SIC_IARx registers at the time of device initialization
(that is, during the call to adi_dev_0pen()).

Prohibited interrupt levels — Appendix A of the VisualDSP++ 5.0
Kernel (VDK) User’s Guide details four interrupt levels [EVT3
(EVX), EVT6 (IVTMR), IVG14, and IVG15] which are reserved
for exclusive use by VDK and must not be managed by the inter-
rupt manager. IVG15 is also excluded from most VisualDSP++
applications as it is used to run the applications in supervisor
mode.

Deferred callbacks — The deferred callback manager offers a similar
service to the VDK process running at IVG14. It is highly recom-
mended that the VDK variant of the system services library is used
(and indeed the default VDK .1df files ensure its use). This variant
essentially passes callbacks posted to the DCB manager to the VDK
level 14 process. In this mode of operation, only one callback

queue can be used. If the standalone library variant is used, several

1-20

Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Introduction

queues can be managed but none of them can be assigned to the
IVG 14 level as this would conflict with the VDK process running
at that level.

Deployment of Services Within a Multi-Threaded
Application

Bear in mind these two major considerations when deploying system ser-
vices and the device driver model within a multi-threaded application.

Critical regions — System services and device drivers use critical
regions where atomicity of a code segment is required. These
regions are managed through calls to the
adi_int_EnterCriticalRegion function and the
adi_int_ExitCriticalRegion function, which are defined in the
adi_int_xxx.c files within the installation. (For more information,
see “Interrupt Manager” on page 2-1.) It is advised that the above
functions are used within threads that use system services rather
than the VDK push/pop critical region functions.

Initialization — The initialization of system services and the device
manager is performed only once per application. Since their use
may be required in several threads, it is important that the
initialization is performed prior to any subsequent use. In addition,
all device drivers that need to adjust their timing values according
to the peripheral clock (SCLK) frequency must employ a call to
adi_pwr_GetFreq() to determine the frequency (in Hz). The power
management module must be initialized prior to the opening of
any device driver.

Visual DSP++ 5.0 Device Drivers and System 1-21
Services Manual for Blackfin Processors

Device Driver Overview

There are basically three approaches that can be adopted:

* Define a function to initialize the system services and device
manager and call it from a user-modifiable section of the
“start” routine in <Project>_basiccrt.s.

* Assign the initialization to the highest-priority boot thread.

* Use a separate boot thread to perform the initialization and
set it at the highest priority and let it yield to other threads
once completed or be destroyed. Use global and not thread
memory to initialize the system services and device manager
in this way.

Device Driver Overview

Device drivers provide a mechanism for applications to control a device
effectively. Devices may be on-chip or off-chip hardware devices, or even
software modules that are best managed as virtual devices. Device drivers
are typically constructed such that the application is insulated from the
nuances of the hardware (or software) being controlled. In this way, both
the device drivers and the devices that are being controlled can be updated
or replaced without affecting the application.

The Analog Devices device driver model provides a simple, convenient
method for applications to control devices commonly found in and
around Analog Devices processors. It has also provides a simple and effi-
cient mechanism for the creation of new device drivers.

The system services overview covers the following topics:
* “Application Interface” on page 1-23
e “Device Driver Architecture” on page 1-24

e “Initialization” on page 1-26

1-22 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Introduction

e “Termination” on page 1-27

* “Device Driver Directory and File Structure” on page 1-27

Application Interface

The device driver model provides a consistent, simple, and familiar appli-
cation programming interface (API) for device drivers. All devices drivers
that conform to the model use the same simple interface into the driver.

Most devices receive and/or transmit data, sometimes transforming the
data in the process. This data is encapsulated in a buffer. The buffer may
contain small bits of data, such as for a UART-type device that processes
one character at a time, or large pieces of data, such as a video device that
processes NTSC frames of approximately 1 MB in size. Applications typi-
cally provide the buffers to the device, though it is possible for devices to
pass buffers from one device to another without any application
involvement.

The actual API is a model-compliant driver that consists of the following
basic functions:

e adi_dev_0Open() — Opens a device for use.
* adi_dev_Close() — Closes down a device.
e adi_dev_Read() — Provides a device with buffers for inbound data.

e adi_dev_Write() — Provides a device with buffers for outbound
data.

e adi_dev_Control() — Sets/detects control and status parameters for
a device.

Similar to the system service APIs, the device driver API is designed to be
called using the standard calling interface of the development toolset’s C
run-time model. The device driver API can be called by any C or assembly

Visual DSP++ 5.0 Device Drivers and System 1-23
Services Manual for Blackfin Processors

Device Driver Overview

language program that adheres to the calling conventions and register
usage of the C run-time model.

Device Driver Architecture

The device driver model separates the functionality of device drivers into
two main components: the device manager and the physical drivers.

The device manager is a software component that provides much of the
functionality common to the vast majority of device drivers. For example,
depending on how the application wants the device driver to operate, the
application may command a device driver to operate in synchronous mode
or asynchronous mode.

In synchronous mode, when the application calls the adi_dev_Read() or
adi_dev_Write() API function to read data from or send data to the
device, the API function does not return to the application until the oper-
ation has completed. In asynchronous mode, the API function returns
immediately to the application, while the data is moved in the back-
ground. It would be wasteful to force each physical driver to provide logic
that operates both synchronously and asynchronously. The device man-
ager provides this functionality, relieving each physical driver from
reimplementing this capability.

1-24 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Introduction

The device manager architecture is illustrated in Figure 1-2.

APPLICATION

RTOS (OPTIONAL)

(DEVICE MANAGER)
DEVICE
DRIVER

COMPONENTS
PHYSICAL PHYSICAL PHYSICAL
(DRIVER) DRIVER (DRIVER)

SYSTEM SERVICES

Figure 1-2. Device Manager Architecture

The device manager also provides the API to the application for each
device driver. This ensures that the application has the same consistent
interface regardless of the peculiarities of each device.

While there is only one device manager in a system, there can be any num-
ber of physical drivers in a system. A physical driver is that component of a
device driver that accesses and controls the physical device. The physical
driver is responsible for all the “bit banging” and control and status regis-
ter manipulations of the physical device. All device-specific information is
contained and isolated in the physical driver.

Visual DSP++ 5.0 Device Drivers and System 1-25
Services Manual for Blackfin Processors

Device Driver Overview

Interaction With System Services

As shown in Figure 1-2, the device driver model leverages the capabilities
of the system services. Each software component in the system (whether it
is the application, RTOS (if present), the device manager, or each physical
driver) can access and call into the system services API.

The benefits of using this approach are enormous. In addition to code size
and data memory savings, this approach provides each software compo-
nent with access to the resources of the system and processor in a
cooperative manner. Further, the amount of development effort for physi-
cal drivers is substantially reduced because each driver does not have to
reimplement any of the functionality provided by the device manager or
system services.

Initialization

Prior to accessing any individual driver, the device manager must first be
initialized. The initialization function, adi_dev_Init(), is called by the
application to set up and initialize the device manager.

Though the device driver model is dependent upon system services, the
initialization function of the device manager does not rely on any of the
system services. As such, the current revision of the device manager can be
initialized before or after the system services initialization.

However, future versions of the device manager initialization function
may require some of the system services capabilities. As such, it is good
practice to initialize the required system services prior to initializing the
device manager. Refer to the “Initialization” on page 1-11 for information
on system services initialization.

1-26 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Introduction

Termination

The API of the device driver model includes a termination function that
may be called by the application if the device drivers are no longer
required. The termination function, adi_dev_Terminate(), is called to
free up the resources used by the device manager and any open physical
drivers. Many embedded systems run in an endless operating loop and
never call the termination function of the device manager. An application
that operates in an endless loop can save program memory by not calling
the terminate function.

As part of the termination function processing, the device manager closes
all open physical drivers. The physical drivers are closed in an abrupt man-
ner. If a more graceful shutdown is needed, the application may prefer to
close any open physical drivers first, and then call the termination
function.

Note that because of the reliance on the system services, the termination
function of the device manager should be called prior to any termination
functions of the system services. This ensures that the system services can
be called by the device manager and/or physical drivers as part of their
shutdown procedure.

After the device manager has been terminated, it must be reinitialized
before any of its functionality can be accessed again.

Device Driver Directory and File Structure

All files for the device driver model are contained within the Blackfin
directory tree. In VisualDSP++ installations, this is the directory that
stores the core development tools. Other development toolsets may use
other directory names for their toolkits, but the device driver files can
always be found within the Blackfin directory tree.

Visual DSP++ 5.0 Device Drivers and System 1-27
Services Manual for Blackfin Processors

Device Driver Overview

To use the device drivers, applications need only to use include files in
their source code, and link with a device driver library and a system ser-
vices library module.

Accessing the Device Driver API

User source files accessing the device manager API should include the files
services.h and adi_dev.h, located in the Blackfin/include/services
and Blackfin/include/drivers directories, respectively. In addition, your
source file should use the include file of the physical driver that will be
accessed.

For example, user code that accesses the Analog Devices parallel peripheral
interface (PPI) driver would include the following lines in their source file

(in order):

#include <services/services.h> // system services
f##include <drivers/adi_dev.h> // device manager
f#include <drivers/ppi/adi_ppi.h> // PPI physical driver

The device driver API and functionality is uniform and consistent across
all Blackfin processors, including all single- and multi-core devices.
Regardless of the Blackfin processor being targeted, application software
does not change. For example, application software running on a sin-
gle-core ADSP-BF533 processor can operate unchanged on a multi-core

ADSP-BF561 processor.

In order to provide this consistent API to the application, the system ser-
vices, device manager, and physical drivers need to be aware of the specific
processor variant being targeted. You must ensure that the processor defi-
nition macro for the processor variant being targeted is defined when
including the system services (services.h), device manager (adi_dev.h),
and physical driver include files.

The Visual DSP++ toolset automatically sets the processor definition
macro when building projects. Application developers using the

1-28 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Introduction

Visual DSP++ toolset need do nothing further to ensure the processor def-
inition macro is defined.

Application developers using other toolsets, however, should ensure that
the processor definition macro is appropriately defined. The services.h
file enumerates the specific processor variants that are supported. These
processor variants are listed in Table 1-1 on page 1-14.

The services.h file contains the full and complete list of processor vari-
ants that are supported by the system services. The adi_dev.h file contains
the list of processor families that are supported by the device driver model.

Device Driver File Locations

Device drivers for on-chip peripherals are provided in the 1ibdrvxxx.d1b
library for the various processor derivatives, silicon revisions, and so on.
Device drivers for off-chip peripherals are not provided within the library,
but rather must be included separately with the application. Include files
for off-chip peripheral drivers are included in following subdirectories:

$ADI_DSP\BTackfin\include\drivers

where $ADI_DSP is the location of your Visual DSP installation, which is,
by default, located at:

C:\Program Files\Analog Devices\VisualDSP <wersion>
Source files for off-chip peripheral drivers are included in subdirectories:
$ADI_DSP\Blackfin\lib\src\drivers

When creating applications that include off-chip device drivers, the appli-
cation should include the .h file for the driver. This is typically done with
something like this:

#include <drivers\codec\adi_adl836.h>

Visual DSP++ 5.0 Device Drivers and System 1-29
Services Manual for Blackfin Processors

Device Driver Overview

The source code for an off-chip peripheral driver should be included in

the source file list of the VisualDSP++ project. For example, if using the
AD1836 device driver, the file

$ADI_DSP\Blackfin\lib\src\drivers\codec\adi_adl836.c

should be included in the source file list.

Linking in the Device Driver Library

All object code for the device manager and Analog Devices-supplied phys-
ical drivers is included in the device driver library file. This file is found in
the Blackfin/1ib directory. In this directory is a device driver library file

for each supported processor variant. You should ensure that the appropri-
ate library is included in the list of object files for the linker.

The device driver library file is of the form 1ibdrvxxxz.d1b where:

e xxx represents the processor variant — This is typically a three-digit
number that identifies the processor variant, such as 532 for the
ADSP-BF532 processor, 534 for the ADSP-BF534 processor, and
so on.

* 7z represents any special conditions for the library — The following
combinations are used:

ey — The library is built to avoid all known anomalies for all
revisions of silicon.

* blank — A library without an additional suffix does not con-
tain workarounds to any anomalies.

Located within the Blackfin/library directory are subdirectories for
individual silicon revisions. The libraries in these subdirectories are built
for specific silicon revisions of the processors.

One device driver library file should be included for the linker to process.
Choose the correct library based on the processor variant for your system.

1-30 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Introduction

For example, an application developer targeting silicon revision 0.2 of the
ADSP-BF532 processor should link with the 1ibdrv532.d1b file from the
Blackfin/1ib/bf532_rev_0.2 subdirectory. As another example, the
application developer who wants a version of the device driver library that
will run on any revision of ADSP-BF532 silicon should link with the
1ibdrv532y.d1b file from the Blackfin/1ib directory.

It is strongly recommended that you use the debug versions of the
device driver library during development, because built-in,
error-checking code within the library can save countless hours of
development time.

Specify the use of debug versions of the libraries by selecting Use Debug
System libraries on the Link:Processor page of the Project Options dialog
box.

Rebuilding the Device Driver Library

Under normal situations, there is no need to rebuild the device driver
library. However, to accommodate unforeseen circumstances and provide
the ability to tailor the implementation to a user’s particular needs, all
source code and include files necessary to rebuild the device driver library
are provided. In addition, VisualDSP++ project files are included for
application developers who use the Visual DSP++ development toolset.

All code for the device driver library is located in the following directories:

* Blackfin/1ib — This directory contains the Analog Devices-built
versions of the device driver library files (*.d1b).

e Blackfin/lib/src/drivers — This directory contains all the source
code files and non-API include files for the device manager and
Analog Devices-provided physical drivers. Also in this directory are
Visual DSP++ project files that can be used to rebuild the libraries.

Visual DSP++ 5.0 Device Drivers and System 1-31
Services Manual for Blackfin Processors

Device Driver Overview

* Blackfin/include/drivers — This directory contains the device
manager API include file and the include files for all Analog
Devices-provided physical drivers.

Visual DSP++ users can rebuild the device driver library by using the bui1d
command after opening the appropriate VisualDSP++ project file.

To rebuild the libraries using other development toolsets:

1. Set the preprocessor include path to include
Blackfin/include/drivers and Blackfin/lib/src/drivers.

2. Define the processor variant according to the definitions in the
services.h file.

3. Define the silicon revision macro, __SILICON_REVISION__, to the
proper value. Refer to the compiler’s -si-revision switch for more
information.

4. Compile/assemble all files in the Blackfin/1ib/src/drivers
directory.

5. Link the appropriate compiled/assembled objects including all
object files into a library.
Examples on Distribution

The device driver distribution includes examples that illustrate how to use
the device drivers. Refer to these examples for additional information on
how to use the device drivers effectively.

1-32 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

2 INTERRUPT MANAGER

This chapter describes the interrupt manager that controls and manages

the interrupt and event operations of the Blackfin processor.
This chapter contains:

* “Introduction” on page 2-2

* “Interrupt Manager Initialization” on page 2-4

e “Interrupt Manager Termination” on page 2-5

* “Core Event Controller Functions” on page 2-6

e “System Interrupt Controller Functions” on page 2-9

e “Protecting Critical Code Regions” on page 2-13

* “Modifying IMASK” on page 2-16

e “Examples” on page 2-17

e “File Structure” on page 2-17

e “Interrupt Manager API Reference” on page 2-18

Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

2-1

Introduction

Introduction

The Blackfin processor employs a two-tiered mechanism for controlling
interrupts and events. System-level interrupts are controlled by the system
interrupt controller (SIC). All peripheral interrupt signals are routed
through the system interrupt controller and then, depending on the set-
tings of the system interrupt controller, routed to the core event controller
(CEC). The core event controller processes these events and, depending
on the settings of the core event controller, vectors the processor to handle
the events.

The interrupt manager provides functions that allow the application to
control every aspect of the system interrupt controller and the core event
controller. It does this so that events and interrupts are handled and pro-
cessed in an efficient, yet cooperative, manner.

The Blackfin processor provides 16 levels of interrupt and events. These
levels, called interrupt vector groups (IVG), are numbered from 0 to 15,
with the lowest number having the highest priority. Some IVG levels are
dedicated to certain events, such as emulation, reset, non-maskable inter-
rupt (NMI, and so on. Other IVG levels, specifically levels 7 through 15,
are considered general-purpose events and are typically used for system-
level (peripheral) interrupts or software interrupts.

All IVG processing is performed in the CEC. When a specific IVG is trig-
gered, assuming the event is enabled, the CEC looks up the appropriate
entry in the event vector table and vectors execution to the address in the
table where the event is processed.

All system or peripheral interrupts are first routed through the SIC.
Assuming the SIC has been programmed, peripheral interrupts are then
routed to the CEC for processing. The SIC provides a rich set of function-
ality for the processing and handling of peripheral interrupts. In addition
to allowing/disallowing peripheral interrupts to be routed to the CEC, the
SIC allows peripheral interrupts to be mapped to any of the CEC’s

2-2 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Interrupt Manager

general-purpose IVG levels and controls whether these interrupts wake the
processor from an idled operating mode.

In systems that employ Blackfin processors, often there are more potential
interrupt sources than IVG levels. As stated above, some events (such as

NMI) map one-to-one to an IVG level. Other events, typically infrequent
interrupts such as peripheral error interrupts, are often “ganged” in a sin-

gle IVG level.

The interrupt manager allows the application to execute complete control
over how interrupts are handled, whether they are masked or unmasked,
whether they mapped one-to-one or ganged together, whether the proces-
sor should be awakened to service an interrupt, and so on. The interrupt
manager also allows the creation of interrupt handler chains. An interrupt
handler is a C-callable function that is provided by the application to pro-
cess an interrupt. Through the interrupt manager, the application can
hook in any number of interrupt handlers for any IVG level. When
multiple events are ganged to a single IVG level, this allows each handler
to be designed independently from any other and allows the application to
process these interrupts in a straightforward manner.

Further, the interrupt manager processes only those IVG levels and system
interrupts that the application directs the interrupt manager to control.
This allows the application developer to have complete unfettered access
to any IVG level or system interrupt to manually control interrupts.

Multi-core Blackfin processors extend this capability by including one sys-
tem interrupt controller and one core event controller for each core. This
provides maximum flexibility by allowing application developers to decide
how to map interrupts to individual cores, multiple cores, and so on.
When using multi-core Blackfin processors, typically one interrupt man-
ager for each core is used. Because there is no reason to provide multiple
interrupt managers on single-core devices, this service is not supported.
Application developers should not attempt to instantiate more than one
interrupt manager per core.

Visual DSP++ 5.0 Device Drivers and System 2-3
Services Manual for Blackfin Processors

Interrupt Manager Initialization

Following the convention of all the system services, the interrupt manager
uses a unique and unambiguous naming convention to guard against con-
flicts. All enumeration values, typedef statements and macros use the
ADI_INT_ prefix, while all functions within the interrupt manager use the
adi_int_ prefix.

All interrupt manager API functions return the ADI_INT_RESULT return
code. See the adi_int.n file for the list of return codes. Like all system
services, the return code that signals successful completion,
ADI_INT_RESULT_SUCCESS for the interrupt manager, is defined to be 0.
This allows applications to quickly and easily determine whether any
errors occurred in processing.

Interrupt Manager Initialization

To use the interrupt manager, a function must initialize the interrupt
manager. The function that initializes the interrupt manager is called
adi_int_Init. The application that calls adi_int_Init passes an argu-
ment defining the memory that the interrupt manager uses when
operating.

The amount of memory provided depends on the number of secondary
handlers used by the application. When using interrupt handler chaining,
the interrupt manager considers the first interrupt handler that is hooked
into an IVG level to be the primary interrupt handler. Any additional
interrupt handlers that hooked into that same IVG level are considered
secondary handlers. Without any additional memory from the applica-
tion, the interrupt manager can support one primary interrupt handler for
each IVG level. If the application never has more than one interrupt han-
dler on each IVG level (that is, only the primary interrupt handler and no
secondary handlers are present), the application does not need to provide
memory to the interrupt manager’s initialization function. However, if the
application hooks in secondary interrupt handlers, the application must
provide additional memory to support the secondary handlers.

2-4 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Interrupt Manager

The ADI_INT_SECONDARY_MEMORY macro is defined to be the amount of
memory (in bytes) required to support a single secondary handler. Thus,
the application should provide to the initialization function “n” times
ADI_INT_SECONDARY_MEMORY, where “n” is the number of secondary
handlers that are supported.

Another parameter passed to the initialization function is the parameter
that the interrupt manager passes to the adi_int_EnterCriticalRegion()
function. This value depends upon the operating environment of the
application. See the adi_int_EnterCriticalRegion function for more
information.

When called, the initialization function initializes its internal data struc-
tures and returns. No changes are made to the CEC or SIC during
initialization. After initialization, any other interrupt manager API
functions may be called.

Interrupt Manager Termination

When the functionality of the interrupt manager is no longer required, the
application can call the termination function of the interrupt manager,
adi_int_Terminate(). Many applications operate in an endless loop and
never call the termination function.

When called, the termination function unhooks all interrupt handlers,
masking off (disabling) all interrupts the that the interrupt manager was
controlling. After calling the termination function, any memory provided
to the initialization function may be reused by the application. No other
interrupt manager functions can be called after termination. If interrupt
manager services are required after the termination function is called, the
application must reinitialize interrupt manager services by calling the
adi_init_Init function.

Visual DSP++ 5.0 Device Drivers and System 2-5
Services Manual for Blackfin Processors

Core Event Controller Functions

Core Event Controller Functions

Only two functions are necessary to provide complete control over the
core event controller (CEC): adi_int_CECHook() and
adi_int_CECUnhook(), as described next.

adi_int_ CECHook() Function

The adi_int_CECHook () function is used to hook an interrupt handler
into the handler chain for an IVG level. When called, the application
passes in the IVG number to be handled, the address of the handler func-
tion, a parameter that the interrupt manager automatically passes back to
the interrupt handler when the interrupt handler is invoked, and a flag
indicating whether interrupt nesting should be enabled for this IVG level.

The handler function itself is a simple C-callable function that conforms
to the ADI_INT_HANDLER_FN typedef. The interrupt handler is not an
interrupt service routine (ISR) but a standard C-callable function. When
the IVG level triggers it, the interrupt manager calls the interrupt handler
to process the event. The interrupt manager passes the client argument
that was passed to the interrupt manager via the adi_int_CECHook ()
function to the interrupt handler. The interrupt handler takes whatever
action is necessary to process the interrupt, then returns with either the
ADI_INT_RESULT_PROCESSED or ADI_INT_RESULT_NOT_PROCESSED return
code.

Interrupt handlers should be written such that they interrogate the system
quickly when determining whether the event that triggered the interrupt
should be processed by the interrupt handler. If the event that caused the
interrupt is not the event the interrupt handler was expecting, it should
immediately return with the ADI_INT_RESULT_NOT_PROCESSED return code.
The interrupt manager then automatically invokes the next interrupt han-
dler, if any, that is hooked into the same IVG level. If the event that
caused the interrupt is expected by the interrupt handler, the interrupt

2-6 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Interrupt Manager

handler performs whatever processing is necessary and should return the
ADI_INT_RESULT_PROCESSED return code.

The nesting flag parameter is of significance only when the first interrupt
handler is hooked into an IVG chain. The first interrupt handler that
hooks into an IVG chain is called the primary handler. Any additional
handlers that are hooked into that same IVG chain are called secondary
handlers. When the primary handler is hooked into the chain, the
interrupt manager loads an ISR into the appropriate entry of the event
vector table (EVT). If the nesting flag is set, the ISR that the interrupt
manager loads is one that supports interrupt nesting. If the nesting flag is
clear, the ISR that the interrupt manager loads is one that does not sup-
port interrupt nesting. When secondary handlers are hooked into an IVG
chain, the nesting flag is ignored.

Lastly, the adi_int_CECHook () function unmasks the appropriate bit in
the CEC’s IMASK register, thereby enabling the interrupt to be processed.

In most applications, users take great care to optimize the processing that
occurs for the highest frequency and highest urgency interrupts. Typically,
the highest frequency or highest urgency interrupts are assigned their own
IVG level, and less frequent or lower urgency interrupts (such as error
processing) are ganged together on a single IVG level.

The interrupt manager continues that thinking and has been optimized to
allow extremely efficient processing for primary interrupt handlers.
Though still efficient, secondary handlers are called after the primary han-
dler. Secondary handlers are hooked into the IVG chain in a stacked or
last-in, first-out (LIFO) fashion. This means that when an event is trig-
gered, after calling the primary handler (and assuming the primary
handler did not return the ADI_INT_RESULT_PROCESSED return code), the
interrupt manager calls the last secondary handler that was hooked,
followed by the second to last installed handler, and so on.

Visual DSP++ 5.0 Device Drivers and System 2-7
Services Manual for Blackfin Processors

Core Event Controller Functions

To ensure optimal performance, the application developer should manage
which interrupt handlers are hooked as primaries and which are hooked as
secondary handlers.

adi_int_ CECUnhook() Function

The adi_int_CECUnhook() function is used to unhook an interrupt
handler from the interrupt handler chain for a particular IVG level. When
called, the application passes in the IVG number and the address of the
interrupt handler function to be unhooked from the chain.

The function removes the interrupt handler from the chain of handlers for
the given IVG level. If the primary handler is being removed, the last sec-
ondary handler that was hooked becomes the new primary handler. If,
after removing the given interrupt handler, no interrupt handlers are left
in the IVG chain, the adi_int_CECUnhook () function masks the
appropriate bit in the CEC’s IMASK register, thereby disabling the
interrupt.

Interrupt Handlers

Since the interrupt handlers registered with the interrupt manager are
invoked from within the built-in IVG interrupt service routine (and there
may be several interrupts pending for the same IVG level), individual
interrupt handlers must not invoke the RTI instruction on completion.
Instead, they should return using the RTS return function. Interrupt
handlers are in fact nothing more than typical C-callable subroutines.

Therefore, each peripheral interrupt handler must conform to the
following template,

ADI_INT_HANDLER(mjk_SPORT_RX_handler)
{
// user code

2-8 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Interrupt Manager

where the ADI_INT_HANDLER macro is defined as
fidefine ADI_INT_HANDLER(NAME) \

void (*NAME)(void *ClientArg)

System Interrupt Controller Functions

The following functions are provided to give the application complete
control over the system interrupt controller:

e adi_int_SICEnable — Enables peripheral interrupts to be passed to
the CEC.

e adi_int_SICDisable — Disables peripheral interrupts from being

passed to the CEC.

* adi_int_SICSetIVG — Sets the IVG level to which a peripheral
interrupt is mapped.

* adi_int_SICGetIVG — Detects the IVG level to which a peripheral
interrupt is mapped.

* adi_int_SICWakeup — Establishes whether a peripheral interrupt
wakes up the processor from an idled state.

e adi_int_SICInterruptAsserted — Detects whether a peripheral
interrupt is asserted.

* adi_int_SICGlobalWakeup — Disables all peripherals from waking
the processor, or restores all wakeups to previous state.

Except for the global wakeup disable/enable function, all of these SIC
functions take as a parameter an enumeration value that uniquely identi-
fies a peripheral interrupt. The ADI_INT_PERIPHERAL_ID enumeration
identifies each possible peripheral interrupt source for the processor. This

Visual DSP++ 5.0 Device Drivers and System 2-9
Services Manual for Blackfin Processors

System Interrupt Controller Functions

enumeration is defined in the adi_int.n file. Refer to this header file for
the complete list of values for each supported Blackfin processor.

adi_int_SICDisable

The adi_int_SICDisable() function is used to disable a peripheral inter-
rupt from being passed to the core event controller. When called, this
function programs the appropriate SIC IMASK register to disable the given
peripheral interrupt.

adi_int_SICEnable

The adi_int_SICEnable() function is used to enable a peripheral inter-
rupt to be passed to the core event controller. When called, this function

programs the appropriate SIC IMASK register to enable the given peripheral
interrupt.

adi_int_SICGetlVG

The adi_int_SICGetIVG() function is used to detect the IVG level to
which a peripheral interrupt is mapped.

In addition to the ADI_INT_PERIPHERAL_ID parameter, this function is
passed pointer-to-memory location information. The function interro-
gates the proper field of the appropriate SIC interrupt assignment register
and stores the IVG level (0 to 15) to which the given peripheral interrupt
is mapped into the memory location.

adi_int_SICInterruptAsserted

The adi_int_SICInterruptAsserted() function is used to detect whether
the given peripheral interrupt is asserted. Though it can be called at any
time, it is intended that this function is called immediately by the
application’s interrupt handlers to determine if a given peripheral

2-10 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Interrupt Manager

interrupt is being asserted, allowing the interrupt handler to determine if
its peripheral is asserting the interrupt.

Instead of using the usual ADI_INT_RESULT_SUCCESS return code, this func-
tion returns the ADI_INT_RESULT_ASSERTED or
ADI_INT_RESULT_NOT_ASSERTED return code upon a successful completion.
If errors are detected with the calling parameters, this function may return
a different error code.

adi_int_SICSetIVG

The adi_int_SICSetIVG() function is used to set the IVG level to which a
peripheral interrupt is mapped. Upon power-up, the Blackfin processor
invokes a default mapping of peripheral interrupts to the IVG level. This
function alters that mapping. In addition to the ADI_INT_PERIPHERAL_ID
parameter, this function is passed to the IVG level (0 to 15) to which the
peripheral interrupt should be mapped. The function modifies the proper
field within the appropriate SIC interrupt assignment register to the new

mapping.

adi_int_SICWakeup

The adi_int_SICWakeup() function is used to enable or disable a periph-
eral interrupt from waking up the core when the interrupt trigger and the
core are in an idled state. In addition to the ADI_INT_PERIPHERAL_ID
parameter, this function is passed a TRUE/FALSE flag. If the flag is TRUE, the
SIC interrupt wakeup register is programmed such that the given periph-
eral interrupt wakes up the core when the interrupt is triggered. If the flag
is FALSE, the SIC interrupt wakeup register is programmed such that the
given peripheral interrupt does not wake up the core when the interrupt is
triggered.

Note that this function does not enable or disable interrupt processing.
Also note that it is possible to configure the SIC so that a peripheral

Visual DSP++ 5.0 Device Drivers and System 2-11
Services Manual for Blackfin Processors

System Interrupt Controller Functions

interrupt wakes up the core from an idled state but does not process the
interrupt. This may or may not be the intended operation.

adi_int_SICGlobalWakeup

The SIC interrupt wakeup register contains bits which correspond to each
peripheral which may wake up the core, when the interrupt trigger and the
core are in an idled state, and the bit corresponding to the peripheral is
set. By default, all bits in the SIC interrupt wakeup register are set.

The adi_int_SICGlobalWakeup() function is used to globally disable all
the peripheral interrupts from waking up the core, by setting all bits of the
SIC interrupt wakeup register to zero. The function is also used to restore
the SIC interrupt wakeup register to a previous state. This function is
passed a TRUE/FALSE flag, and a pointer to a ADI_INT_WAKEUP_REGISTER
structure, into which the values of the wakeup register are saved, when
globally disabling wakeups, or from which they are restored, when glob-
ally re-enabling wakeups.

If the flag is FALSE, the function interrogates the fields of the SIC inter-
rupt wakeup register and stores the values into the corresponding fields of
the ADI_INT_WAKEUP_REGISTER structure, referenced by the function argu-
ment pointer. The SIC interrupt wakeup register is then programmed
such that no peripheral interrupts can wake up the core.

If the flag passed in is TRUE, this function programs the SIC wakeup regis-
ter according to the fields of the ADI_INT_WAKEUP_REGISTER structure,
referenced by the function argument pointer. These values are presumed
to have been saved by a previous call to adi_int_SICGlobalWakeup.

2-12 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Interrupt Manager

For example, this function may be used to switch to a low power mode,
when only selected wakeups are to be left enabled.

/* Declare a wakeup register structure for saving the wakeup reg-
ister state */
ADI_INT_WAKEUP_REGISTER RegIWR;

/* Globally disable wakeups, saving the wakeup register state */
adi_init_SICGlobalWakeup(FALSE, &RegIWR);

/* Enable the PLL wakeup, to change power modes */
adi_int_SICWakeup(ADI_INT_PLL_WAKEUP, 1)

/* Enable any other wakeups, to wake the processor from sleep */

/* Go to sleep */
adi_pwr_SetPowerMode (ADI_PWR_MODE_SLEEP);

/* Upon wakeup, restore the wakeups to their previous state */
adi_int_SICGlobalWakeup(TRUE, &RegIWR);

Note that this function does not enable or disable interrupt processing.
Also note that it is possible to configure the SIC so that a peripheral inter-
rupt wakes up the core from an idled state but does not process the
interrupt. This may or may not be the intended operation.

Protecting Critical Code Regions

In embedded systems, it is often necessary to protect a critical region of
code while it is being executed. This is often necessary while one logical
programming sequence is updating or modifying a piece of data. In these
cases, another logical programming sequence, such as interrupt processing
in one system (or different thread in an RTOS-based system) is prevented
from interfering while the critical data is being updated.

Visual DSP++ 5.0 Device Drivers and System 2-13
Services Manual for Blackfin Processors

Protecting Critical Code Regions

To that end, the interrupt manager provides two functions that can be
used to bracket a critical region of code: adi_int_EnterCriticalRegion()
and adi_int_ExitCriticalRegion(). The application calls the
adi_int_EnterCriticalRegion() function at the beginning of the critical
section of code, and then calls the adi_int_ExitCriticalRegion()
function at the end of the critical section. These functions must be used in
pairs.

The actual implementation of these functions varies from operating envi-
ronment to operating environment. For example, in a standalone system
(systems without any RTOS), what actually happens in these functions
may be different than the version of these functions for an RTOS-based
system. The principle and usage, however, are the same, regardless of
implementation. In this way, application code always operates the same
way, and does not change, regardless of the operating environment.

The adi_int_EnterCriticalRegion() function is passed an argument of
type void * and returns an argument of type void *. The value returned
from the adi_int_EnterCriticalRegion() function must always be passed
to the corresponding adi_int_ExitCriticalRegion() function. For exam-
ple, examine the following code sequence:

Value = adi_int_EnterCriticalRegion(pArg);
// critical section of code
adi_int_ExitCriticalRegion(Value);

The value returned from the adi_int_EnterCriticalRegion() function
must be passed to the corresponding adi_int_ExitCriticalRegion()
function. Although nesting of calls to these functions is allowed, the appli-
cation developer minimizes the use of these functions to only those critical
sections of code, and realizes that in all likelihood, the processor is being
placed in some altered state. This could affect the performance of the sys-
tem, while in the critical regions.

2-14 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Interrupt Manager

For example, it could be that interrupts are disabled in the critical region.
The application developer typically does not want to have interrupts
disabled for long periods of time. These functions should be used spar-
ingly and judiciously.

Nesting of these calls is allowed. For example, consider the following code
sequence that makes a call to the Foo() function while in a critical section
of code. The Foo() function also has a critical region of code.

Value = adi_int_EnterCriticalRegion(pArg);
// critical section of code
Foo(); // call to Foo()
adi_int_ExitCriticalRegion(Value);

void Foo(void) {
void *Value;

Value = adi_int_EnterCriticalRegion(pArg);
// critical section of code
adi_int_ExitCriticalRegion(Value);

}
This practice is allowed; however, the application developer is cautioned
that overuse of these functions can affect system performance.

The pArg value passed into the adi_int_EnterCriticalRegion() function
depends upon the actual implementation for the given operating environ-
ment. In some operating environments, the value is not used and can be
NULL. For more information on the pArg parameter, check the source file
for the specific operating environment, adi_int_xxx.c, in the Black-
fin/1ib/src/services directory where xxx is the operating environment.

Visual DSP++ 5.0 Device Drivers and System 2-15
Services Manual for Blackfin Processors

Modifying IMASK

All system services and device drivers use these functions exclu-
sively to protect critical regions of code. Application software
should also use these functions exclusively to protect critical
regions of code within the application.

Modifying IMASK

Though applications rarely need to have the processor’s IMASK register
value modified, the interrupt manager itself modifies the IMASK register
value to control the CEC properly. In some RTOS-based operating envi-
ronments, the RTOS controls the IMASK register tightly and provides
functions that allow the manipulation of IMASK.

In order to ensure compatibility across all operating environments, the
interrupt manager provides functions that allow bits within the IMASK reg-
ister to be set or cleared. Depending on the operating environment, these
functions may modify the IMASK value directly, or use the RTOS-provided
IMASK manipulation functions. Regardless of how the IMASK value is
changed, the interrupt manager API provides a uniform and consistent
mechanism for this.

Two operating environment implementation-dependent functions are
provided to set and clear bits in the IMASK register: adi_int_SetIMASKBits
and adi_int_ClearIMASKBits. These functions take as a parameter a value
that corresponds to the IMASK register of the targeted processor. When the
adi_int_SetIMASKBits() function is called, the function sets to 1 those
bits in the IMASK register that have a 1 in the corresponding bit position of
the value passed in. When the adi_int_ClearIMASKBits() function is
called, the function clears those bits (to 0) in the IMASK register that have a
1 in the corresponding bit position of the value passed in.

2-16 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Interrupt Manager

Consider the following example code. Assume that IMASK is a 32-bit value
and contains 0x00000000 upon entry into the code:

. // IMASK = 0x00000000

ReturnCode = adi_int_SetIMASKBits(0x00000003);

.. // IMASK now equals 0x00000003

ReturnCode = adi_int_ClearIMASKBits(0x00000001);

ce // IMASK now equals 0x00000002

ReturnCode = adi_int_ClearIMASKBits(0x00000002);
// IMASK now equals 0x00000000

While it is very unlikely that the application will ever need to control

individual IMASK bit values, the interrupt manager uses these functions to
control the CEC.

Examples

Examples demonstrating use of the interrupt manager can be found in the
Blackfin/EZ-Kits subdirectories.

File Structure

The API for the interrupt manager is defined in the adi_int.h header file.
This file is located in the Blackfin/include/services subdirectory and is
automatically included by the services.h file in that same directory. Only
the services.h file should be included in the application code.

Applications should link with only one of the system services library files.
These files are located in the Blackfin/1ib directory. See the appropriate
section in Chapter 6, DMA Manager, for more information on selecting

the proper library file.

Visual DSP++ 5.0 Device Drivers and System 2-17
Services Manual for Blackfin Processors

File Structure

For convenience, all source code for the interrupt manager is located in
the Blackfin/1ib/src/services directory. All operating environ-
ment-dependent code is located in the file adi_int_xxx.c, where xxx is
the operating environment being targeted. These files should never be
linked into an application because the appropriate system services library
file contains all required object code.

Interrupt Manager APl Reference

This section provides descriptions of the interrupt manager module’s
application programming interface (API) functions.

Notation Conventions

The reference pages for the API functions use the following format:
Name — Name and purpose of the function
Description — Function specification
Prototype — Required header file and functional prototype
Arguments — Description of function arguments

Return Value — Description of function return values

2-18 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_int_Init

Description

Interrupt Manager

The adi_int_Init() function sets aside and initializes memory for the
interrupt manager. It also initializes other tables and vectors within the
interrupt manager. This function is only called once per core. Separate
memory areas are assigned for each core.

Prototype

ADI_INT_RESULT adi_int_Init(

void

const size_t

u3?2
void
)

Arguments

*pMemory,
MemorySize,
*pMaxEntries,
*pEnterCriticalArg

pMemory

Pointer to an area of memory used by the interrupt manager

MemorySize

Size, in bytes, of memory supplied for the interrupt manager

pMaxEntries

On return, this argument contains the number of secondary
handler entries that the interrupt manager can support given the
memory supplied.

pEnterCriticalArg

Parameter passed to the adi_int_EnterCriticalRegion

Return Value

ADI_INT_RESULT_SUCCESS

Successfully initialized.

Visual DSP++ 5.0 Device Drivers and System 2-19
Services Manual for Blackfin Processors

File Structure

adi_int_Terminate

Description

The adi_int_Terminate() function closes down the interrupt manager.
All memory used by the interrupt manager is freed up, all handlers are
unhooked, and all interrupt vector groups (IVG) that were enabled and
controlled by the interrupt manager are disabled.

@ The adi_int_Terminate function does not alter the system inter-

rupt controller settings. Should changes to the SIC be required, the
application should make the appropriate calls into the relevant SIC
control functions before calling adi_int_Terminate().

Prototype

ADI_INT_RESULT adi_int_Terminate(void);

Arguments

The function takes no arguments.

Return Value

ADI_INT_RESULT_SUCCESS Process completed successfully.

2-20 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Interrupt Manager

adi_int CECHook

Description

The adi_int_CECHook () function instructs the interrupt manager to hook
(insert) the given interrupt handler into the interrupt handler chain for

the given IVG.

On a return from this call, the core event controller is programmed such
that the given IVG is unmasked (enabled) and the system is properly con-
figured to service the interrupt via the interrupt manager’s built-in ISRs.
The ISRs then invoke the interrupt handler supplied by the caller.
Depending on the state of the NestingFlag parameter, the interrupt man-
ager installs its built-in interrupt service routine with interrupt nesting,

either enabled or disabled.

On the first call for a given IVG level, the interrupt manager registers its
built-in IVG interrupt service routine against that level and establishes the
supplied interrupt handler as the primary interrupt handler for the given
IVG level. Subsequent calls to adi_int_CECHook for the same IVG level
create a chain of secondary interrupt handlers for the IVG level. When the
interrupt for the IVG level is triggered, the primary interrupt handler is
called first, and then if present, each secondary interrupt handler is
subsequently called.

The ClientArg parameter provided in the adi_int_CECHook function is
passed to the interrupt handler as an argument when the interrupt handler
is called in response to interrupt generation.

Visual DSP++ 5.0 Device Drivers and System 2-21
Services Manual for Blackfin Processors

File Structure

Prototype
ADI_INT_RESULT adi_int_CECHook(
u32 IVG,
ADI_INT_HANDLER_FN Handler,
void *ClientArg,
u3e NestingFlag
)3
Arguments
IVG Interrupt vector group number being addressed
Handler Client’s interrupt handler inserted into the chain for the
given IVG
ClientArg A void * value that is passed to the interrupt handler
NestingFlag Argument that selects whether nesting of interrupts is
allowed or disallowed for the IVG (TRUE/FALSE)

Return Value

ADI_INT_RESULT_SUCCESS Interrupt handler was successfully hooked into the chain.
ADI_INT_RESULT_NO_MEMORY Insufficient memory is available to insert the handler into
the chain.
ADI_INT_RESULT_INVALID_IVG IVG level is invalid.
2-22 Visual DSP++ 5.0 Device Drivers and System

Services Manual for Blackfin Processors

Interrupt Manager

adi_int_ CECUnhook

Description

The adi_int_CECUnhook () function instructs the interrupt manager to
unhook (remove) the given interrupt handler from the interrupt handler

chain for the given IVG.

If the given interrupt handler is the only interrupt handler in the chain,

the CEC is programmed to disable (mask) the given IVG, and the inter-
rupt manager built-in interrupt service routine is removed from the IVG
entry within the event vector table.

If the chain for the given IVG contains multiple interrupt handlers, the
given interrupt handler is simply purged from the chain. If the primary
interrupt handler is removed and there are secondary interrupt handlers
present in the chain, one of the secondary interrupt handlers becomes the
primary interrupt handler.

Prototype

ADI_INT_RESULT adi_int_CECUnhook(
u32 IVG,
ADI_INT_HANDLER_FN Handler,
void *ClientArg

Visual DSP++ 5.0 Device Drivers and System 2-23
Services Manual for Blackfin Processors

File Structure

Arguments
IVG Interrupt vector group number being addressed
Handler Client’s interrupt handler removed from the chain for
the given IVG
ClientArg A void * value that is passed to the interrupt handler.

To remove the interrupt handler successfully, match this
value to the C1ientArg parameter that was passed to the
adi_int_CECHook () function when the interrupt han-
dler was hooked into the chain.

Return Value

ADI_INT_RESULT_SUCCESS

Interrupt handler was successfully unhooked from the
chain.

ADI_INT_RESULT_INVALID_IVG

IVG level is invalid.

2-24

Visual DSP++ 5.0 Device Drivers and System

Services Manual for Blackfin Processors

Interrupt Manager

adi_int_ClearlMaskBits

Description

The adi_int_ClearIMaskBits() function is used by the interrupt manager
to clear bits in the IMASK register. Though it can also be called by the
application, the application should not attempt to modify bits in the
IMASK register that represent interrupt vector groups that are under the
control of the interrupt manager.

The implementation of this function depends upon the operating environ-
ment. In the standalone version of the service, this function detects
whether the processor is within a protected region of code (refer to the
adi_int_EnterCriticalRegion and adi_int_ExitCritical Region
functions, respectively). If it is, the saved value of IMASK is updated
accordingly and the current “live” IMASK value is left unchanged.

When the outermost adi_int_ExitCriticalRegion function is called, the
saved IMASK value with the new bit settings is restored. Upon entering this
function, if the processor is not within a protected region of code, the
“live” IMASK register is updated accordingly.

Information on the implementation details for this function in other oper-
ating environments can be found in the file adi_int_xxx.c, located in the
blackfin/1ib/src/services/int directory, where xxx is the operating
environment.

Regardless of the implementation details, the API is consistent from envi-
ronment to operating environment. Changes to application software are
not required when code is moved to a different operating environment.

Prototype

void adi_int_ClearIMASKBits(
ADI_INT_IMASK BitsToClear

Visual DSP++ 5.0 Device Drivers and System 2-25
Services Manual for Blackfin Processors

File Structure

Arguments

BitsToClear Replica of the IMASK register containing bits that are to be
cleared in the real IMASK register. A bit with a value of ‘1’
clears the corresponding bit in the IMASK register. A bit
with the value of ‘0’ leaves the corresponding bit in the

IMASK register unchanged.

Return Value

None

2-26 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Interrupt Manager

adi_int_EnterCriticalRegion

Description

The adi_int_EnterCriticalRegion() function creates a condition that
protects a critical region of code. The companion function,
adi_int_ExitCriticalRegion, removes the condition. These functions are
used to bracket a section of code that requires protection from other pro-
cessing. These functions are used in pairs sparingly and only when critical
regions of code needs to be protected.

The return value from this function should be passed to the corresponding
adi_int_ExitCriticalRegion function.

The actual condition that is created depends upon the operating environ-
ment. In the standalone version of the service, this function effectively
disables interrupts, saving the current value of IMASK to a temporary loca-
tion. The adi_int_ExitCriticalRegion function restores the original
IMASK value. These functions employ a usage counter so that they can be
nested. When nested, the IMASK value is altered only at the outermost lev-
els. In the standalone version, the pArg parameter to the
adi_int_EnterCriticalRegion is meaningless.

Information on the implementation details for this function in other oper-
ating environments can be found in the file adi_int_xxx.c, located in the
blackfin/lib/src/services/int directory, where xxx is the operating
environment.

Regardless of the implementation details, the API is consistent from envi-
ronment to operating environment and from processor to processor.
Application software does not need to change when moving to a different
operating environment or moving from one Blackfin derivative to
another.

Visual DSP++ 5.0 Device Drivers and System 2-27
Services Manual for Blackfin Processors

File Structure

Prototype
void *adi_int_EnterCriticalRegion(
void *pArg
)
Arguments
pArg Implementation dependent. Refer to the adi_int_xxx.h

file for details on this parameter for the xxx environment.

Return Value

The return value from this function should always be passed to the
corresponding adi_int_ExitCriticalRegion function.

2-28 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Interrupt Manager

adi_int_ExitCriticalRegion

Description

The adi_int_ExitCriticalRegion() function removes the condition that
was established by the adi_int_EnterCriticalRegion to protect a critical
region of code. These functions are used to bracket a section of code that
needs protection from other processing. These functions are used spar-
ingly and only when critical regions of code require protection.

The pArg parameter that is passed to this function should always be the
return value from the corresponding adi_int_EnterCriticalRegion
function.

See the adi_int_EnterCriticalRegion function for more information.

Prototype

void adi_int_ExitCriticalRegion(

void *pArg

)3
Arguments

pArg Return value from the corresponding

adi_int_EnterCriticalRegion() function call

Return Value

None
Visual DSP++ 5.0 Device Drivers and System 2-29

Services Manual for Blackfin Processors

File Structure

adi_int_GetCurrentlVGLevel

Description

The adi_int_GetCurrentIVGLevel() is a function that senses the IVG
level at which the processor is currently running.

Prototype
ADI_INT_RESULT adi_int_GetCurrentIVGLevel(
u3? *plVG
)3
Arguments
pIVG Pointer to the memory location in which the current IVG
level is returned
Return Value
ADI_INT_RESULT_SUCCESS IVG level was successfully returned.
ADI_INT_RESULT_NOT_ASSERTED No interrupt is currently active.
2-30 Visual DSP++ 5.0 Device Drivers and System

Services Manual for Blackfin Processors

adi_int_GetlLibraryDetails

Description

Interrupt Manager

The adi_int_GetLibraryDetails() function accepts a pointer to an
ADI_INT_LIBRARY_DETAILS data structure. This function also returns the
library details in the ADI_INT_LIBRATY_DETAILS structure.

Prototype

ADI_INT_RESULT adi_int_GetLibraryDetails(
ADI_INT_LIBRARY_DETAILS *pLibraryDetails

)

Arguments

pLibraryDetails

ADI_INT_LIBRARY_DETAILS stucture in which the library
details are stored.

Return Value

ADI_INT_RESULT_SUCCESS

Function completed successfully.

Visual DSP++ 5.0 Device Drivers and System 2-31
Services Manual for Blackfin Processors

File Structure

adi_int_SICDisable

Description

The adi_int_SICDisable() function configures the system interrupt con-
troller to disable the given interrupt and prevent it from being passed to
the core event controller.

The adi_int_SICDisable function simply programs the system interrupt
mask register to mask interrupts from the given peripheral, thereby pre-
venting them from being passed to the core event controller.

Prototype

ADI_INT_RESULT adi_int_SICDisable(
const ADI_INT_PERIPHERAL_ID PeripherallD

Arguments

PeripherallD ADI_INT_PERIPHERAL_ID enumeration value that identi-
fies an interrupt source

Return Value

ADI_INT_RESULT_SUCCESS System interrupt controller has been success-
fully configured.

ADI_INT_RESULT_INVALID_PERIPHERALID Peripheral ID specified is invalid.

2-32 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_int_SICEnable

Description

Interrupt Manager

The adi_int_SICEnable() function configures the system interrupt con-
troller to enable the given interrupt and allow it to pass to the core event

controller.

The adi_int_SICEnable function simply programs the system interrupt
mask register to allow interrupts from the given peripheral to be passed to

the core event controller.

Prototype

ADI_INT_RESULT adi_int_SICEnable(
const ADI_INT_PERIPHERAL_ID PeripherallD,

Arguments

PeripherallD

ADI_INT_PERIPHERAL_ED enumeration value that identi-
fies a peripheral interrupt source

Return Value

ADI_INT_RESULT_SUCCESS

System interrupt controller has been successfully
configured.

ADI_INT_RESULT_INVALID_PERIPHERAL_ID | Peripheral ID specified is invalid.

Visual DSP++ 5.0 Device Drivers and System 2-33
Services Manual for Blackfin Processors

File Structure

adi_int_SICGetIVG

Description

The adi_int_SICGetIVG() function detects the mapping of a peripheral
interrupt source to an IVG level. When called, this function reads the
appropriate system interrupt assignment register(s) of the given peripheral
and stores the IVG level to which the peripheral is mapped into the loca-
tion provided by the application. This function does not modify any
parameters of the interrupt controller.

Prototype

ADI_INT_RESULT adi_int_SICGetIVG(
const ADI_INT_PERIPHERAL_ID PeripherallD,

u3e? *pIVG
);
Arguments

PeripherallD ADI_INT_PERIPHERAL_ID enumeration value that identi-
fies a peripheral interrupt source

pIVG Pointer to an unsigned 32-bit memory location into which
the function writes the IVG level to which the given periph-
eral is mapped

Return Value

ADI_INT_RESULT_SUCCESS Function completed successfully.

ADI_INT_RESULT_INVALID_PERIPHERAL_ID | Peripheral ID specified is invalid.

ADI_INT_RESULT_INVALID_IVG Interrupt vector group level is invalid.

2-34 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_int_SICInterruptAsserted

Description

Interrupt Manager

The adi_int_SICInterruptAsserted() function determines whether a
given peripheral interrupt source is asserting an interrupt. This function is
typically called in an application’s interrupt handler to determine whether
the peripheral in question is asserting an interrupt. This function does not
modify any parameters of the interrupt controller but simply interrogates
the appropriate interrupt status register(s).

Prototype

ADI_INT_RESULT adi_int_SICInterruptAsserted(
const ADI_INT_PERIPHERAL_ID PeripherallD

)

Arguments

PeripherallD ADI_INT_PERIPHERAL_ID enumeration value that identi-
fies a peripheral interrupt source

Return Value

ADI_INT_RESULT_INVALID_PERIPHERAL_ID

Peripheral ID specified is invalid.

ADI_INT_RESULT_ASSERTED

Specified peripheral is asserting an interrupt.

ADI_INT_RESULT_NOT_ASSERTED

Specified peripheral is not asserting an interrupt.

Visual DSP++ 5.0 Device Drivers and System 2-35

Services Manual for Blackfin Processors

File Structure

adi_int_SICSetIVG

Description

The adi_int_SICSetIVG() function sets the mapping of a peripheral inter-
rupt source to an IVG level. When called, this function modifies the

appropriate system interrupt assignment register(s) of the given peripheral
to the specified IVG level. This function does not enable or disable
interrupts.

Prototype

ADI_INT_RESULT adi_int_SICSetIVG(
const ADI_INT_PERIPHERAL_ID PeripherallD,

const u32 VG
)
Arguments
PeripherallD ADI_INT_PERIPHERAL_ID enumeration value that identi-
fies a peripheral interrupt source
IVG Interrupt vector group assigned to the peripheral

Return Value

ADI_INT_RESULT_SUCCESS Function completed successfully.

ADI_INT_RESULT_INVALID_PERIPHERAL_ID | Peripheral ID specified is invalid.

ADI_INT_RESULT_INVALID_IVG Interrupt vector group level is invalid.

2-36 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Interrupt Manager

adi_int_SetIMaskBits

Description

The adi_int_SetIMaskBits() function is used by the interrupt manager
to set bits in the IMASK register. Though it can also be called by the appli-
cation, the application should not attempt to modify bits in the IMASK
register that represent interrupt vector groups that are under the control of
the interrupt manager.

The implementation of this function depends upon the operating environ-
ment. In the standalone version of the service, this function detects
whether the processor is within a protected region of code (refer to the
adi_int_EnterCriticalRegion and adi_int_ExitCritical Region
functions). If it is, the saved value of IMASK is updated accordingly and the
current “live” IMASK value is left unchanged. When the outermost
adi_int_ExitCriticalRegion function is called, the saved IMASK value
with the new bit settings is restored. Upon entering this function, if the
processor is not within a protected region of code, the “live” IMASK register
is updated accordingly.

Information on the implementation details for this function in other oper-
ating environments can be found in the file adi_int_xxx.c, located in the
blackfin/lib/src/services/int directory, where xxx is the operating
environment.

Regardless of the implementation details, the API is consistent from envi-
ronment to operating environment. Application software does not have to
change when moving to a different operating environment.

Prototype
void adi_int_SetIMASKBits(
ADI_INT_IMASK BitsToSet
)
Visual DSP++ 5.0 Device Drivers and System 2-37

Services Manual for Blackfin Processors

File

Structure

Arguments

BitsToSet

Replica of the IMASK register containing bits that are to be
set in the real IMASK register. A bit with a value of ‘1’ sets
the corresponding bit in the IMASK register. A bit with the
value of ‘0’ leaves the corresponding bit in the IMASK reg-
ister unchanged.

Return Value

None

2-38

Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_int_SICWakeup

Description

Interrupt Manager

The adi_intSICWakeup() function configures the system interrupt con-
troller wakeup register to enable or disable the given peripheral interrupt
from waking up the core processor.

The adi_int_SICWakeup function simply programs the system interrupt
controller wakeup register accordingly. The actual servicing of interrupts
is not affected by this function.

Prototype

ADI_INT_RESULT adi_int_SICWakeup(
const ADI_INT_PERIPHERAL_ID PeripherallD,

u3e

Arguments

WakeupFlag

PeripherallD

ADI_INT_PERIPHERAL_ID enumeration value that identi-
fies a peripheral interrupt source

WakeupFlag

Enables/disables waking up the core(s) upon triggering of
the peripheral interrupt (TRUE/FALSE)

Return Value

ADI_INT_RESULT_SUCCESS

System interrupt controller has been
successfully configured.

ADI_INT_RESULT_INVALID_PERIPHERAL_ID Peripheral ID specified is invalid.

Visual DSP++ 5.0 Device Drivers and System 2-39
Services Manual for Blackfin Processors

File Structure

adi_int_SICGlobalWakeup

Description

The adi_int_SICGlobalWakeup() function is used to program the system
interrupt controller (SIC) wakeup register to either disable all the periph-
eral interrupts from waking up the core, or to restore the SIC interrupt
wakeup register to a previous state.

If the flag is FALSE, the function saves the contents of the system interrupt
controller wakeup register in the ADI_INT_WAKEUP_REGISTER structure, ref-
erenced by the function argument pointer. It then sets all bits of the SIC
wakeup register to zero, disabling all the peripherals from waking up the
core.

If the flag passed in is TRUE, the function programs the SIC wakeup regis-
ter according to the fields of the ADI_INT_WAKEUP_REGISTER structure,
referenced by the function argument pointer. These values are presumed
to have been saved by a previous call to adi_int_SICGlobalWakeup.

The actual servicing of interrupts is not affected by this function.

Prototype

ADI_INT_RESULT adi_int_SICGlobalWakeup(
u32 WakeupFlag,
pADI_INT_WAKEUP_REGISTER SaveIWR

2-40 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Interrupt Manager

Arguments

WakeupFlag Wakeup enable flag to enable or disable waking of the
core(s) upon triggering of peripheral interrupts
(TRUE/FALSE)

SavelWR Pointer to a structure used for saving the wakeup register
state. (Defined according to the processor type, in
adi_int.h)

Return Value
ADI_INT_RESULT_SUCCESS System interrupt controller wakeup

register has been programmed accord-
ing to the function arguments.

Visual DSP++ 5.0 Device Drivers and System 2-41
Services Manual for Blackfin Processors

File Structure

2-42 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

3 POWER MANAGEMENT
MODULE

This chapter describes the power management (PM) module that supports
dynamic power management of Blackfin processors.

This chapter contains:
* “Introduction” on page 3-2
e “PM Module Operation — Getting Started” on page 3-3
* “Power Management API Reference” on page 3-14
e “Public Data Types and Enumerations” on page 3-42
* “PM Module Macros” on page 3-60

Visual DSP++ 5.0 Device Drivers and System 3-1
Services Manual for Blackfin Processors

Introduction

Introduction

The power management (PM) module provides access to all aspects of
dynamic power management:

* Dynamic switching from one operating mode (full-on, active,
sleep, deep sleep, and hibernate) to another

* Dynamic setting of voltage levels and clock frequencies to ensure
that an application can be tuned to achieve the best performance
while minimizing power consumption

* When coupled with the EBIU module, enables the SDRAM
settings to be adjusted upon changes to the system clock to ensure
that the best performance is obtained for the complete system.
For more information about the EBIU module, see “External Bus
Interface Unit Module” on page 4-1.

The module supports two strategies for setting the core and system clock
frequencies:

* For a given voltage level, the core clock (CCLK) is set to the highest
available frequency. The system clock (SCLK) is set accordingly.

* For a given combination of core clock and system clock frequen-
cies, the valid values nearest to the chosen ones are used and the
voltage level of the processor is adjusted accordingly.

In both cases, validity checks are performed at all stages, ensuring that the
processor is not stalled or harmed.

“PM Module Operation — Getting Started” on page 3-3 describes the
basic operating stages required to use the power management module.

3-2 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Power Management Module

The power management module uses an unambiguous naming convention
to safeguard against conflicts with other software libraries provided by
Analog Devices or other companies. To this end, all enumeration values
and typedef statements use the ADI_PWR_ prefix, and functions and global
variables use the lowercase, adi_pwr_ equivalent.

Two versions of the library exist for each processor. These correspond to
the debug and release configurations in the current VisualDSP++ release.
In addition to the usual defaults for the debug configuration, the API
functions perform checks on the arguments passed and report appropriate
error codes, as required. In the release version of the library, most func-
tions return one of two result codes: ADI_PWR_RESULT_SUCCESS on
successful completion, or ADI_PWR_RESULT_NOT_INITIALIZED when the PM
module has not been initialized prior to the function call.

In order to better facilitate the configuration of timing parameters
for device drivers, the default unit of frequency for communicating
with the power management functions is hertz (Hz) rather than
megahertz (MHz). Refer to the adi_pwr_Init function

(on page 3-22) for more information.

PM Module Operation — Getting Started

The following example illustrates how to use the PM module to configure
a 600 MHz ADSP-BF533 processor on an EZ-KIT Lite board to run at
the requested core clock and system clock frequencies or to minimize
power consumption by pegging the voltage level at 0.95 V.

Step 1:

If used in conjunction with the EBIU controller to adjust SDRAM set-
tings, initialize the EBIU module by calling adi_ebiu_Init(). For more
information about the EBIU module, see “External Bus Interface Unit
Module” on page 4-1.

Visual DSP++ 5.0 Device Drivers and System 3-3
Services Manual for Blackfin Processors

PM

Module Operation - Getting Started

Step 2:
Initialize the power module by calling adi_pwr_Init, passing the parame-
ters for the hardware configuration used. For example, the following code

configures the ADSP-BF533 EZ-KIT Lite.

ADI_PWR_COMMAND_PAIR power_init_tablel[] = {
{
ADI_PWR_CMD_SET_PROC_VARIANT, (void*)ADI_PWR_PROC_BF533SKBC600 },
/* 600 MHz ADSP-BF533 variant */
{ ADI_PWR_CMD_SET_PACKAGE, (void*)ADI_PWR_PACKAGE_MBGA 1},
/* in MBGA packaging */
{ ADI_PWR_CMD_SET_VDDEXT, (void*)ADI_PWR_VDDEXT_330 },
/* 3.3 V External supplied
to voltage regulator */
{ ADI_PWR_CMD_SET_CLKIN, (void*) 25 },
/* 25 MHz clock in */
{ ADI_PWR_CMD_END, 0}
/* no more commands after this */
b
adi_pwr_Init(power_init_table);

Step 3:

Decide on the power management strategy to implement. For example,
the following code segments demonstrate how to configure the PM mod-
ule for optimal speed or optimal power consumption.

Optimal Speed
The following statement requests the PM module set the core and system
clock frequencies to the maximum values possible.

adi_pwr_SetFreq(
0, // Core clock frequency (MHz)
0, // System clock frequency (MHz)
ADI_PWR_DF_ON // Do not adjust the PLL input divider

3-4

Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Power Management Module

Optimal Power Consumption
The following statement requests the PM module set the core and system
clock frequencies to the maximum that can be sustained at a voltage level

of 0.85 V.

adi_pwr_SetMaxFreqForVolt(ADI_PWR_VLEV_085);

Dual-Core Considerations

The following sections explain how to use system services with a dual-core
configuration.

Using Automatic Synchronization

The PLL programming sequence for a dual-core processor requires that
both cores be brought to the IDLE state while changes are applied to the
PLL and VR registers. A dual-core processor may execute a program on each
core, or it may execute a program on just one core. When both cores are
used to execute a program, a mechanism is required for both cores to go to
the IDLE state, and stay there while the registers are written. The power
management module provides a mechanism that uses the supplemental
interrupt to synchronize the cores for PLL programming. This mechanism
is invoked automatically by calling the adi_pwr_Init() function on both
cores and passing the command ADI_PWR_CMD_SET_AUTO_SYNC_ENABLED
with a NULL argument, as shown in the following command-pair table

for the ADSP-BF561 EZ-KIT Lite.

Visual DSP++ 5.0 Device Drivers and System 3-5
Services Manual for Blackfin Processors

Dual-Core Considerations

ADI_PWR_COMMAND_PAIR power_init_tablel[] = {
{
ADI_PWR_CMD_SET_PROC_VARIANT, (void*)ADI_PWR_PROC_BF561SKBCZ500X
b,
/* 500 MHz ADSP-BF561 variant */
{ ADI_PWR_CMD_SET_PACKAGE, (void*)ADI_PWR_PACKAGE_MBGA 1},
/* in MBGA packaging */
{ ADI_PWR_CMD_SET_VDDEXT, (void*)ADI_PWR_VDDEXT_330 },
/* 3.3 V External supplied
to voltage regulator */
{ ADI_PWR_CMD_SET_CLKIN, (void*) 30 },
/* 30 MHz clock in */
{ ADI_PWR_CMD_SET_AUTO_SYNC_ENABLED, NULL },
/* enable auto-synchronization */
{ ADI_PWR_CMD_END, 0}
/* no more commands after this */
b

adi_pwr_Init(power_init_table);

Synchronization Requirement

Blackfin dual-core processors are capable of running one core while the
other core is idle. Power management and EBIU management require that
both cores be placed in the IDLE state when making power management
and EBIU controller changes. If the EBIU module has been initialized,
and the system clock frequency is changed, the SDRAM timing parame-
ters are automatically adjusted. To avoid corruption of SDRAM, the
automatic core synchronization mechanism forces both cores to execute
outside of the SDRAM memory space, while the SDRAM timing parame-
ters are updated.

There are two possible operating modes: running on one core, and
running applications on both cores.

3-6 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Power Management Module

Running Applications on One Core Only

In this case, one core is used and the other core (core B) is disabled. Upon
reset, core B remains disabled until the code running on core A starts core
B running, by clearing bit 5 of the SICA_SYSCR register. For example:

*pSICA_SYSCR &= OxFFDF; // clears bit 5 so Core B
// will start running

Note that this does not wake core B if it is in the IDLE state. It only
allows core B to start executing instructions on startup. To wake core B
from IDLE, use one of the two supplemental interrupts (supplemental
interrupt 0 is taken over by system services, leaving supplemental
interrupt 1 for other uses).

Single-core applications loaded from flash memory or via the SPI port sat-
isfy the above synchronization requirement with no further intervention.
However, an emulator session within VisualDSP++ unavoidably wakes up
core B. The application developer must return core B to the disabled state
to meet the PLL programming requirements. There are two ways to do
this. The simplest is to run the following C code on core B:

void main() f
while(l) f
asm(“IDLE;”);

}

Whenever core B wakes up (due to the PLL programming sequence exe-
cuted by the power management service) it is immediately returned to the

IDLE state.

Visual DSP++ 5.0 Device Drivers and System 3-7
Services Manual for Blackfin Processors

Dual-Core Considerations

The other method is to disable the PLL wakeup bit in the SICB_IWRO reg-
ister and go to IDLE. If this is done in the assembler, the following code
can take the place of the startup code:

finclude <defBF561.h>
.section program;

start:
PO.H = HI(SICB_IWRO); PO.L = LOCSICB_IWRO);
RO = 0;
[PO] = RO;
IDLE;
.start.end:

.global start;
.type start,STT_FUNC;

Running Applications on Both Cores

In this case, both cores execute code. Both cores need to synchronize to
ensure that both cores are IDLE and, in some cases, do not execute out of
SDRAM as described in the requirement above. There are two choices:

1) define your own synchronization strategy, or 2) use the built-in syn-
chronization provided by the power management module (which must be
enabled by a separate command).

To use the built-in synchronization, include the following com-
mand-value pair to adi_pwr_Init() on both cores:

{ ADI_PWR_CMD_SET_AUTO_SYNC_ENABLED, NULL }

Once activated, the built-in synchronization has exclusive control over
supplemental interrupt 0 and chains an appropriate interrupt handler to
the appropriate IVG level using the interrupt manager. This prevents the
application from using the interrupt for any other synchronization

3-8 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Power Management Module

between cores. However, the supplemental interrupt 1 is still available for
use outside of system services for other core synchronization purposes.

Additional commands can be used to tailor the synchronization require-
ments (see Table 3-1.)

Table 3-1. Additional Commands for Tailoring Synchronization

Command Description

Available on Core A and Core B

ADI_PWR_CMD_SET_SYNC_LOCK_VARIABLE Provides the address of an alternative unsigned
int lock variable in L2 as an alternative to the
built-in lock variable. Not normally needed.

Available on Core B only

ADI_PWR_CMD_SET_COREB_SUPP_INTO_IVG Specifies the IVG level assigned to supplemen-
tal interrupt 0 on core B. Not normally needed.

Synchronization Between Cores

Either core can interrupt the other core using a supplemental interrupt.
There are two of these on the ADSP-BF561 processor: 0 and 1. A shared
lock variable located in L2 memory can send information between the
cores as a method of synchronization.

The built-in mechanism requires that core A initiates all power manage-
ment changes, with core B configured to respond to a supplemental
interrupt 0 event, raised by core A. The configuration and handling of this
interrupt is managed within the power management module itself.

Table 3-2 describes the synchronization sequence.

Visual DSP++ 5.0 Device Drivers and System 3-9
Services Manual for Blackfin Processors

Dual-Core Considerations

Table 3-2. Synchronization Sequence Between Cores

Core A Core B
Raises supplemental interrupt 0, sets the shared | Responds to supplemental interrupt 0 by
adi_pwr_Tlockvar lock variable, and waits entering interrupt handler.
knowled .
acknowledgement Runs first (optional) callback function.
On receiving acknowledgement, performs PLL Acknowledges interrupt and goes to IDLE.
i , and confi he SDC .
programminig sequence, and confighires te Wakes on PLL wakeup and waits for the
accordingly. .
lock variable to clear.
Completes the process by clearing the lock vari- | Runs second (optional) callback function,
able. and returns from interrupt.

Built-In Lock Variable and Linking Considerations

The lock variable, adi_pwr_lockvar, is declared within the file B1ack-
fin\Tib\src\ services\pwr\adi_pwr_Tlockvar.c as:

section ("12_shared") testset_t adi_pwr_lockvar = 0;

where the memory input section, 12_shared, is mapped to the

MEM_L2_SRAM output section in both the default and generated linker
description files (.1df).

According to Appendix A of the VisualDSP++ 5.0 C/C++ Compiler and
Library Manual for Blackfin Processors, there are two possible approaches
for building applications that run across both cores.

* One application per core, where executables are built for each core
using two passes of the linker

* One application across both cores, where a five-project group is
used and a single linker pass builds executables for both processors

The latter approach maps the lock variable to L2 memory shared by both
processors without any user intervention. The “one application per core”
approach requires user intervention to ensure that the lock variable is

3-10 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Power Management Module

mapped to the same address in L2 memory in each of the executables.
This is achieved by using the RESOLVE statement in the . 1df file, which
can be used to resolve a symbol to its memory location assigned in the exe-
cutable for the other core.

The default and generated .1df files for core B contain the following:

/* $VDSG<customize-shared-symbols> */
/* This code is preserved if the LDF is re-generated. */

L1770 77 0007070077700 7 7007070077707 77000 700077777777777
// 1df_shared_symbols

/* Issue resolve statement for shared symbols mapped in CoreA.
** Below is an example of how to do that.
*/
#if defined(OTHERCORE) /* OTHERCORE is a macro defined to name
of the CoreA DXE */
include <shared_symbols.h> /* C runtime library
shared symbols,
** uses macro OTHERCORE.
*/
#if 0
/* example resolve for user shared data*/
RESOLVE(_a_shared_datum, OTHERCORE)
ffendif

ffendif /* OTHERCORE */

/* $VDSG<customize-shared-symbols> */

The shared_symbols.h header file contains the RESOLVE statements for the
C/C++ libraries’ shared symbols and includes the additional header file,
services/services_shared_symbols.h, containing the RESOLVE
statements for the system services shared symbols. Currently, the

Visual DSP++ 5.0 Device Drivers and System 3-11
Services Manual for Blackfin Processors

SDRAM Initialization Prior to Loading an Executable

adi_pwr_lockvar variable is the only shared symbol required by system
services.

All that is required is to define 0THERCORE within the user-modifiable
block ahead of where it is tested (or by setting its value through the
Link:LDF Preprocessing page of the Project Options dialog box within
VisualDSP++). For example, if the executable, Corea.dxe (say), for core A
is in the Release subdirectory of a directory, CoreA, adjacent to the CoreB
project directory, you need to define OTHERCORE as
..\CoreA\Release\CoreA.dxe. For example:

ffdefine OTHERCORE ..\CoreA\Release\CoreA.dxe
J#if defined(OTHERCORE)

Refer to Appendix A of the VisualDSP++ 5.0 C/C++ Compiler and Library
Manual for Blackfin Processors and the VisualDSP++ 5.0 Linker and Utili-
ties Manual for details.

SDRAM Initialization Prior to Loading an
Executable

Applications that require code (and/or data) to be located in SDRAM at
load time require the SDRAM controller to be initialized beforehand.
This is the case for all applications where instruction and/or data caching
are enabled. However, the EBIU service’s initialization routine,
adi_ebiu_Init(), is not executed until after the application has loaded.

There are two ways to load an application into the processor core:

e Through an emulator session connected to the Visual DSP++

IDDE

e From flash memory or a device attached to the SPI port when the
processor is reset

3-12 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Power Management Module

In the first case, it is imperative that the Use XML reset values option is
selected in the Target Options dialog box (available through the Settings
menu). This ensures that the SDRAM is correctly (if not optimally) con-
figured prior to the application loading. Once loaded, the application’s
use of the power management services and EBIU services ensures that the

SDRAM is optimally configured.

When the application is not loaded from within an emulator session, it is
necessary for the boot loader to initialize SDRAM prior to loading the
application. This is achieved by using an initialization block as described
in the VisualDSP++ 5.0 Loader and Utilities manual, where the example
given demonstrates the initialization of SDRAM.

This initialization block code is compiled into an executable and is passed
to the loader via the -init filename option or in the Initialization file
field of the Load:Options page of the Project Options dialog box. A sepa-
rate project is thus required for the initialization block. An example
initialization block project is provided in the relevant directory (for the
processor) under the Blackfin\1dr\init_code directory of the

Visual DSP++ installation. The values required for the SDRAM configura-
tion registers can be set to the ones used in the relevant .xm1 file for the
processor, for example ADSP-BF533-proc.xml, located in the System\Arch-
Def directory of the VisualDSP++ installation.

When a different memory configuration is required (other than the one
supplied with the EZ-KIT Lite evaluation systems), the user is required to
work out the appropriate values. When loading a program from the
IDDE, either use the Custom Board Support feature, now available with
Visual DSP++5.0 (described in Help\Graphical Environment\Custom
Board Support), or simply change the values at the bottom of the relevant
.xm1 file after backing up the original file.

Visual DSP++ 5.0 Device Drivers and System 3-13
Services Manual for Blackfin Processors

SDRAM Initialization Prior to Loading an Executable

Power Management APl Reference

This section provides descriptions of the PM module’s application pro-
gramming interface (API) functions.

Notation Conventions

The reference pages for the API functions use the following format:
Name — Name and purpose of the function
Description — Function specification
Prototype — Required header file and functional prototype
Arguments — Description of function arguments

Return Value — Description of function return values

3-14 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Power Management Module

adi_pwr_AdjustFreq

Description

The adi_pwr_AdjustFreq() function allows the core and system clocks to
be modified by specifying the core and system clock divider ratios, CSEL
and SSEL, in the PLL_DIV register. The processor is not idled.

Prototype

ADI_PWR_RESULT adi_pwr_AdjustFreq(
ADI_PWR_CSEL csel,
ADI_PWR_SSEL ssel

)

Arguments

csel ADI_PWR_CSEL value specifies how the voltage core oscillator (VCO) frequency is
divided to obtain a new core clock frequency. The divider value cannot exceed the

ssel value. See “ADI_PWR_CSEL” on page 3-48.

ssel ADI_PWR_SSEL value specifies how the VCO frequency is divided to obtain a new sys-
tem clock frequency. See “ADI_PWR_SSEL” on page 3-55.

Return Value

ADI_PWR_RESULT_SUCCESS Process completed successfully.
ADI_PWR_RESULT_NOT_INITIALIZED PM module has not been initialized.
ADI_PWR_RESULT_INVALID_CSEL Invalid value for CSEL has been specified.
ADI_PWR_RESULT_INVALID_SSEL Invalid value for SSEL has been specified.
ADI_PWR_INVALID_CSEL_SSEL_COMBINATION Core clock divider is greater than the sys-
tem clock divider value, or both
ADI_PWR_CSEL_NONE and
ADI_PWR_SSEL_NONE are specified.

Visual DSP++ 5.0 Device Drivers and System 3-15
Services Manual for Blackfin Processors

SDRAM Initialization Prior to Loading an Executable

adi_pwr_Control

Description

The adi_pwr_Control() function enables the dynamic power manage-
ment registers to be configured or queried according to command-value
pairs (“ADI_PWR_COMMAND_PAIR” on page 3-48), specified in one

of three ways:
1.) A single command-value pair is passed.

adi_pwr_Control(
ADI_PWR_CMD_SET_INPUT_DELAY,
(void*)ADI_PWR_INPUT_DELAY_ENABLE,
)

2.) A single command-value pair structure is passed.

ADI_PWR_COMMAND_PAIR cmd = {
ADI_PWR_CMD_SET_INPUT_DELAY,
(void*)ADI_PWR_INPUT_DELAY_ENABLE,

Vs

adi_pwr_Control (ADI_PWR_CMD_PAIR, (void*)&cmd);

3.) A table of ADI_PWR_COMMAND_PAIR structures is passed. The last entry
in the table must be ADI_PWR_CMD_END.

ADI_PWR_COMMAND_PAIR table[] = {

{ ADI_PWR_CMD_SET_INPUT_DELAY,
(void*)ADI_PWR_INPUT_DELAY_ENABLE

{ ADI_PWR_CMD_SET_OUTPUT_DELAY,
(void*)ADI_PWR_OUTPUT_DELAY_ENABLE

{ ADI_PWR_CMD_END, 0}

3-16 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Power Management Module

adi_pwr_Control(
ADI_PWR_CMD_TABLE,
(void*)table

)

Refer to “ADI_PWR_COMMAND?” on page 3-42 and “Public Data
Types and Enumerations” on page 3-42 for the complete list of com-
mands and associated values.

Prototype

ADI_PWR_RESULT adi_pwr_Control(
ADI_PWR_COMMAND Command,
void *Value

)

Arguments
Command ADI_PWR_COMMAND enumeration value specifies the meaning
of the associated value argument.
Value This is the required value.
See “ADI_PWR_COMMAND?” on page 3-42.

Return Value

ADI_PWR_RESULT_SUCCESS Function completed successfully.
ADI_PWR_RESULT_BAD_COMMAND Invalid command has been specified.
ADI_PWR_RESULT_NOT_INITIALIZED PM module has not been initialized.
ADI_PWR_RESULT_INVALID_INPUT_DELAY Input delay value is invalid.

ADI_PWR_RESULT_INVALID_OUTPUT_DELAY Output delay value is invalid.

ADI_PWR_RESULT_INVALID_LOCKCNT PLL lock count value is invalid.

Visual DSP++ 5.0 Device Drivers and System 3-17
Services Manual for Blackfin Processors

SDRAM Initialization Prior to Loading an Executable

adi_pwr_GetConfigSize

Description

The adi_pwr_GetConfigSize() function returns the number of bytes
required to save the current configuration data. This value is also available
via the ADT_PWR_SIZEOF_CONFIG macro.

The return values of adi_pwr_GetConfigSize and the macro,
ADI_PWR_SIZEOF_CONFIG, incorporate the size of the EBIU module config-
uration, regardless whether the latter is initialized.

Prototype

size_t adi_pwr_GetConfigSize(void);

Return Value

The size of the configuration structure.

3-18 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Power Management Module

adi_pwr_GetFreq

Description

The adi_pwr_GetFreq() function returns the current values of the CCLK,

SCLK, and voltage core oscillator (VCO) frequencies.

Prototype
ADI_PWR_RESULT adi_pwr_GetFreq(
u32 *fcclk,
u32 *fscilk,
u32 *fvco
)
Arguments
fcelk Address of location to store the current CCLK value (Hz)
fsclk Address of location to store the current SCLK value (Hz)
fvco Address of location to store the VCO frequency (Hz)
Return Value
ADI_PWR_RESULT_SUCCESS Process completed successfully.

ADI_PWR_RESULT_NOT_INITIALIZED |PM module has not been initialized.

Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

3-19

SDRAM Initialization Prior to Loading an Executable

adi_pwr_GetPowerMode

Description

The adi_pwr_GetPowerMode () function returns the current power mode of
the processor (only applicable for full-on and active modes).

Prototype
ADI_PWR_MODE adi_pwr_GetPowerMode(void);

Return Value

The current power mode as an ADI_PWR_MODE value.

3-20 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Power Management Module

adi_pwr_GetPowerSaving

Description

The adi_pwr_GetPowerSaving() function calculates the power saving
value for the current PLL and voltage regulator settings, as per the data
sheet formulas with the time ratio set to unity, and the nominal values as
per the maximum possible (that is, at VLEV = 1.3 V).

Prototype

u32 adi_pwr_GetPowerSaving(void);

Return Value

The percentage power saving value.

Visual DSP++ 5.0 Device Drivers and System 3-21
Services Manual for Blackfin Processors

SDRAM Initialization Prior to Loading an Executable

adi_pwr_Init

Description

The adi_pwr_Init() function initializes the power management module.
The following values must be set for successful initialization:

Processor variant ADI_PWR_PROC_KIND value describes the processor variant. See

“ADI_PWR_PROC_KIND” on page 3-51.

Package kind ADI_PWR_PACKAGE_KIND value describes the packaging type of
the processor. See“ADI_PWR_PACKAGE_KIND” on
page 3-50.

Core voltage (VppinT) ADI_PWR_VLEV value specifying the internal voltage, applied to

the core by an external voltage regulator. The internal voltage
regulator is bypassed. Its absence in the command table implies
that the internal regulator is to be used. An external voltage reg-
ulator is required for the ADSP-BF533SKBC750 processor, as
the internal voltage regulator cannot supply the 1.4 V required
for the processor to run at 750 MHz.

External voltage (VppgxT) ADI_PWR_VDDEXT value specifies the external voltage supplied to
the voltage regulator. This value, when coupled with the packag-
ing, determines the maximum system clock (SCLK) frequency

available. See “ADI_PWR_VDDEXT” on page 3-56.

CLKIN Frequency of the external clock oscillator supplied to the proces-
sor in either MHz or Hz.

These are communicated to the adi_pwr_Init function by passing a
pointer to a table of command-value pairs, terminated with the
ADI_PWR_CMD_END command.

3-22 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Power Management Module

For example, the following ADI_PWR_COMMAND_PAIR table gives the EZ-KIT

Lite values:

ADI_PWR_COMMAND_PAIR ezkit_init[] = {
{ ADI_PWR_CMD_SET_PROC_VARIANT, ADI_PWR_PROC_BF533SKBC600 1},

ADI_PWR_CMD_END,
b

ADI_PWR_CMD_SET_PACKAGE, ADI_PWR_PACKAGE_MBGA 1},
ADI_PWR_CMD_SET_VDDEXT, ADI_PWR_VDDEXT_330 },
ADI_PWR_CMD_SET_CLKIN, 25 /* MHz */ },

0}

Table 3-3 lists valid command-value pairs.

Table 3-3. adi_pwr_Init Command-Value Pairs

Command

Description

ADI_PWR_CMD_SET_CCLK_TABLE

Address of a table containing ADI_PWR_NUM_VLEVS val-
ues of type ul6 detailing the maximum CCLK frequency
for each ADI_PWR_VLEV value. These values are used
instead of the data sheet values.

ADI_PWR_CMD_SET_PROC_VARIANT

ADI_PWR_PROC_KIND value specifies the processor vari-
ant (mandatory). See “ADI_PWR_PROC_KIND” on
page 3-51.

ADI_PWR_CMD_SET_PACKAGE

ADI_PWR_PACKAGE_KIND value describes the packaging
type of the processor (mandatory). See
“ADI_PWR_PROC_KIND” on page 3-51.

ADI_PWR_CMD_SET_CLKIN

ul6 value specifies the external clock frequency, CLKIN,
supplied to the processor (mandatory).

ADI_PWR_CMD_SET_VDDINT

ADI_PWR_VLEV value specifies the core voltage level. This
should only be passed to adi_pwr_Init if an external
voltage regulator is used, as its presence instructs the
module to bypass the internal regulator. See

“ADI_PWR_VLEV” on page 3-56.

ADI_PWR_CMD_SET_VDDEXT

ADI_PWR_VDDEXT value specifies the external voltage
level applied to the internal voltage regulator (manda-

tory). See “ADI_PWR_VDDEXT” on page 3-56.

Visual DSP++ 5.0 Device Drivers and System 3-23
Services Manual for Blackfin Processors

SDRAM Initialization Prior to Loading an Executable

Table 3-3. adi_pwr_Init Command-Value Pairs (Contd)

Command

Description

ADI_PWR_CMD_SET_IVG

interrupt_kind value (see exception.h) specifies the
IVG level for the PLL_WAKEUP event.

ADI_PWR_CMD_SET_INPUT_DELAY

ADI_PWR_INPUT_DELAY value specifies whether to add
approximately 200 ps of delay to the time when inputs
are latched on the external memory interface. See

“ADI_PWR_INPUT_DELAY” on page 3-49.

ADI_PWR_CMD_SET_OUTPUT_DELAY

ADI_PWR_OUTPUT_DELAY value specifies whether to add
approximately 200 ps of delay to external memory out-
put signals. See “ADI_PWR_OUTPUT_DELAY” on
page 3-49.

The adi_pwr_Init function can only be called once. Subsequent calls to
adi_pwr_Init are ignored with the ADI_PWR_RESULT_ALREADY_INITIALIZED

result code returned.

Table 3-4 lists valid command-value pairs for an ADSP-BF561 dual-core

processor.

Table 3-4. ADSP-BF561 Dual-Core Processor

Command-Value Pairs

Command

Description

Commands relevant to ADSP-BF561 dual-core processor only.

ADI_PWR_CMD_SET_AUTO_SYNC_ENABLED

Instructs the power management
module to use its built-in mecha-
nism for synchronizing the cores
across changes to the PLL. Use

NULL as the associated value.

This command is to be passed to
adi_pwr_Init() on both cores.

ADI_PWR_CMD_SET_COREB_SUPP_INTO_IVG

IVG level that is assigned to sup-
plemental interrupt 0 on core B.
This command is passed to
adi_pwr_Init() on core B
only.

3-24

Visual DSP++ 5.0 Device Drivers and System

Services Manual for Blackfin Processors

Power Management Module

Table 3-4. ADSP-BF561 Dual-Core Processor
Command-Value Pairs (Cont’d)

Command

Description

ADI_PWR_CMD_SET_SYNC_LOCK_VARIABLE

Address of a lock variable in 1.2
that is used for built-in synchro-
nization. The default is to use
the built-in, adi_pwr_lockvar,
variable.

ADI_PWR_CMD_SET_FIRST_CLIENT_CALLBACK

Address of a function called by
core B before PLL changes are
made. This command is passed
to adi_pwr_Init() on core B
only.

ADI_PWR_CMD_SET_SECOND_CLIENT_CALLBACK

Address of a function called by
core B after PLL changes are
made. This command is passed
to adi_pwr_Init() on core B
only.

ADI_PWR_CMD_SET_CLIENT_HANDLE

void* value/address that is sent
to the callback functions. This
command is passed to
adi_pwr_Init() on core B
only.

Prototype

ADI_PWR_RESULT adi_pwr_Init(

const ADI_PWR_COMMAND_PAIR *tabTe

)

Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

3-25

SDRAM Initialization Prior to Loading an Executable

Arguments

ConfigData

Address of a table of command-value pairs as defined by
“ADI_PWR_COMMAND_PAIR” on page 3-48 and
“Public Data Types and Enumerations” on page 3-42. The
last command in the table must be the ADI_EBIU_CMD_END
command.

Return Value

In the debug variant of the library, adi_pwr_Init returns the results codes
listed below. Otherwise, the value of ADI_PWR_RESULT_SUCCESS is returned,
or the value of ADI_PWR_RESULT_ALREADY_INITIALIZED is returned when
the PM module is already initialized.

In order to better facilitate the configuration of timing parameters
for device drivers, the default unit of frequency for communicating
with the power management functions is hertz (Hz) rather than

megahertz (MHz).

Should the application require MHz rather than Hz, the power
management service can be commanded to use MHz by passing the
new command ADI_PWR_CMD_SET_FREQ_AS_MHZ to the
adi_pwr_Init() function. The companion value parameter is
ignored with this command. For example, if passing a table of com-
mands to the adi_pwr_Init() function, the following command

should be added to the table:

{ ADI_PWR_CMD_SET_FREQ_AS_MHZ, NULL 1},

3-26

Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Power Management Module

Table 3-5 lists and explains the return codes.

Table 3-5. adi_pwr_Init Return Codes

Return Value

Explanation

ADI_PWR_RESULT_SUCCESS

Function completed successfully.

ADI_PWR_RESULT_BAD_COMMAND

Invalid command has been specified.

ADI_PWR_RESULT_ALREADY_INITIALIZED

Module has already been initialized.

ADI_PWR_RESULT_INVALID_VLEV

Invalid core voltage level has been specified.

ADI_PWR_RESULT_INVALID_VDDEXT

Invalid external voltage level has been speci-

fied.

ADI_PWR_RESULT_VDDINT_MUST_BE_SUPPLIED

When using external voltage regulation, the
externally-supplied VDDINT must be passed to
adi_pwr_Init.

ADI_PWR_RESULT_INVALID_PROCESSOR

Processor type specified is invalid.

ADI_PWR_RESULT_INVALID_IVG

IVG level supplied is invalid.

ADI_PWR_RESULT_INVALID_INPUT_DELAY

Input delay value is invalid.

ADI_PWR_RESULT_INVALID_OUTPUT_DELAY

Output delay value is invalid.

ADI_PWR_RESULT_INVALID_LOCKCNT

PLL lock count value is invalid.

ADI_PWR_RESULT_INVALID_EZKIT

Invalid EZ-KIT Lite type specified.

ADI_PWR_RESULT_CANT_HOOK_SUPPLEMENTAL
INTERRUPT

Unable to hook supplemental interrupt, for
halting other core (dual-core only)

Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

3-27

SDRAM Initialization Prior to Loading an Executable

adi_pwr_LoadConfig

Description

The adi_pwr_LoadConfig() function restores the current configuration
values from the memory location pointed to by the hConfig argument.
The PLL controller and voltage regulator are reprogrammed. If the EBIU
module is initialized, its configuration is also loaded and the SDRAM
controller is programmed.

Prototype

ADI_PWR_RESULT adi_pwr_LoadConfig(
const ADI_PWR_CONFIG_HANDLE hConfig,
const size_t szConfig

)

Arguments
hConfig Address of the memory area where the current configura-
tion is restored
szConfig Number of bytes available at the given address. This value
must be greater than or equal to the
adi_pwr_GetConfigSize() return value.

Return Value

ADI_PWR_RESULT_SUCCESS Function completed successfully.
ADI_PWR_RESULT_NO_MEMORY Value of szConfig is insufficient.
ADI_PWR_RESULT_FATILED Address of hConfig is zero.
ADI_PWR_RESULT_NOT_INITIALIZED PM module has not been initialized.

3-28 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Power Management Module

adi_pwr_Reset

Description

The adi_pwr_Reset () function resets the PLL controller to its hardware
reset values.

Prototype

void adi_pwr_Reset(void);

Arguments

None

Return Value

None

Visual DSP++ 5.0 Device Drivers and System 3-29
Services Manual for Blackfin Processors

SDRAM Initialization Prior to Loading an Executable

adi_pwr_SaveConfig

Description

The adi_pwr_SaveConfig() function stores the current configuration val-
ues into the memory area pointed to by the hConfig argument. If the
EBIU module is initialized, its configuration is also saved; otherwise, the
appropriate fields are undefined.

Prototype

ADI_PWR_RESULT adi_pwr_SaveConfig(
ADI_PWR_CONFIG_HANDLE hConfig,
const size_t szConfig

)

Arguments
hConfig Address of the memory location where the current con-
figuration is restored
szConfig Number of bytes available at the given address. The
value must be greater than or equal to the
adi_pwr_GetConfigSize() return value.

Return Value

ADI_PWR_RESULT_SUCCESS Function completed successfully.
ADI_PWR_RESULT_NO_MEMORY Value of szConfig is insufficient.
ADI_PWR_RESULT_FAILED Address of hConfig is zero.
ADI_PWR_RESULT_NOT_INITIALIZED |PM module has not been initialized.

3-30 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Power Management Module

adi_pwr_SetFreq

Description

The adi_pwr_SetFreq() function sets the PLL controller to provide CCLK
and SCLK values as close as possible to the requested values (in Hz). If the
voltage regulator is not disabled, it is adjusted (where necessary) to pro-
vide the minimum voltage that can sustain the requested frequencies.

The processor is idled to affect the changes.

This function always finds a solution where the CSEL divider in the
PLL_DIV register is unity. If the PLL input divider is requested, the
difference between the requested and obtained values is minimized.

To determine the values set by this function, use adi_pwr_GetFreq.

Prototype

ADI_PWR_RESULT adi_pwr_SetFreq(
const u32 fcclk,
const u32 fsclk,
const ADI_PWR_DF df

Visual DSP++ 5.0 Device Drivers and System 3-31
Services Manual for Blackfin Processors

SDRAM Initialization Prior to Loading an Executable

Arguments

fcelk Requested CCLK value in Hz. If this is set to zero, the
adi_pwr_SetFreq function gives priority to matching the
given SCLK frequency and calculates and sets a CCLK frequency
as close as possible to the maximum possible for the current
voltage level.

fsclk Requested SCLK value in Hz

df The ADI_PWR_DF enumeration (see “ADI_PWR_DEF” on

page 3-49) is used in this case to indicate whether this func-
tion should enable the PLL input divider, to minimize the dif-
ference between the requested clock frequency and the actual
frequency that can be obtained. Enabling it can also lead to
lower power dissipation. Passing ADI_PWR_DF_ON indicates
that the PLL input divider has already been enabled. Passing
ADI_PWR_DF_NONE indicates that the function may enable it
to achieve better granularity. (ADI_PWR_DF_OFF has no mean-
ing in this context.)

Return Value

ADI_PWR_RESULT_SUCCESS

Process completed successfully.

ADI_PWR_RESULT_NOT_INITIALIZED PM module has not been initialized.

3-32

Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Power Management Module

adi_pwr_SetMaxFreqForVolt

Description

The adi_pwr_SetMaxFregForVolt() function sets the voltage regulator
control register, VR_CTL, with the required voltage level and adjusts the
processor’s CCLK and SCLK values to the maximum sustainable level.

The processor is idled to affect the changes.

Prototype

ADI_PWR_RESULT adi_pwr_SetMaxFregForVolt(
const ADI_PWR_VLEV vlev
)

Arguments

vlev Required voltage level is set as an ADI_PWR_VLEV enumeration
value. See “ADI_PWR_VLEV” on page 3-56.

Return Value

ADI_PWR_RESULT_SUCCESS Function completed successfully.
ADI_PWR_RESULT_INVALID_VLEV vlev value is invalid.
ADI_PWR_RESULT_VR_BYPASSED Voltage regulator is bypassed. A call to

adi_dma_SetVoltageRegulator with a non-zero
switching frequency value is required prior to this call.
See “adi_pwr_SetVoltageRegulator” on page 3-37.

ADI_PWR_RESULT_NOT_INITIALIZED PM module has not been initialized.

Visual DSP++ 5.0 Device Drivers and System 3-33
Services Manual for Blackfin Processors

SDRAM Initialization Prior to Loading an Executable

adi_pwr_SetPowerMode

Description

The adi_pwr_SetPowerMode () function sets the power mode of the proces-

sor. There are five modes:

Full-On. The processor core clock (CCLK) and system clock (SCLK)
run at the frequencies set via the adi_pwr_SetFreq or
adi_pwr_SetVoltageRegulator functions. Full DMA is enabled.

Active. The PLL is bypassed so that the processor core clock and
system clock run at the CLKIN input clock frequency. DMA access
is available to configured L1 memories appropriately.

Sleep. The core processor is idled. The system clock continues to
run at the speed set via the adi_pwr_SetFreq or
adi_pwr_SetVoltageRegulator functions. DMA is restricted to
external memory. See instructions below for selecting wakeup(s) to
bring the processor out of sleep mode.

Deep Sleep. The processor core and all peripherals, except the
real-time clock (RTC), are disabled. DMA is not supported in this

mode.

SDRAM is set to self-refresh mode. The voltage regulator is
powered up on RTC interrupt or a hardware reset event. In both
cases, the core reset sequence is initiated.

Hibernate. The internal voltage regulator is powered down.
SDRAM is set to self-refresh mode. The voltage regulator is
powered up on hardware reset. See instructions below for selecting
wakeup(s) to bring the processor out of hibernate mode.

Until SDRAM is properly configured and the refresh rate is
appropriate, data held in SDRAM will decay. This only applies to

exiting hibernate or deep sleep mode by a hardware reset event. For

3-34

Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Power Management Module

ADSP-BF531, ADSP-BF532, and ADSP-BF533 processor cores,
the SCKE pin on the processor is asserted on reset, causing the
SDRAM to exit self-refresh mode. This behavior is a constraint of
PC-133 compliance. For some processors, currently including the
ADSP-BF537 family and the ADSP-BF527 family, this restriction
can be circumvented by enabling the CKELOW bit in the VR_CTL reg-
ister (see “adi_pwr_SetVoltageRegulator” on page 3-37). This can
also be achieved by inserting the following command-value pair to
the table that is passed to the adi_pwr_Init function:

{ ADI_PWR_CMD_SET_PC133_COMPLIANCE, O !
To specify the method of wakeup from sleep or hibernate mode:
1. Call adi_int_SICGlobalWakeup to disable all wakeups.

2. Call adi_int_sICWakeup for each wakeup that is to be left enabled,
while the processor is in the low power mode.

3. Call adi_pwr_SetVoltageRegulator to enable the appropriate
wakeup bit(s) in the VR_CTL register (if not already enabled).

4. Call adi_pwr_SetPowerMode to set the power mode.

5. Upon wakeup, restore wakeup registers to their previous state by
calling adi_int_SICGlobalWakeup.

Prototype

ADI_PWR_RESULT adi_pwr_SetPowerMode(
const ADI_PWR_MODE Mode

Visual DSP++ 5.0 Device Drivers and System 3-35
Services Manual for Blackfin Processors

SDRAM Initialization Prior to Loading an Executable

Arguments

mode ADI_PWR_MODE value indicates the state the processor is
transitioned to. See “ADI_PWR_MODE” on page 3-50.

Return Value

ADI_PWR_RESULT_SUCCESS Process completed successfully.

ADI_PWR_RESULT_NOT_INITIALIZED PM module has not been initialized.

ADI_PWR_RESULT_INVALID_MODE Either an incorrect mode has been requested or the
requested mode cannot be reached from the current
mode.

3-36 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Power Management Module

adi_pwr_SetVoltageRegulator

Description

The adi_pwr_SetVoltageRegulator() function sets the voltage regulator
control register, VR_CTL, with one or more of the following fields.

VLEV

Required voltage level as an ADI_PWR_VLEV enumeration value. See

“ADI_PWR_VLEV” on page 3-56.

FREQ

Required voltage regulator switching oscillator frequency as an
ADI_PWR_VR_FREQ enumeration value. See “ADI_PWR_VR_FREQ” on

page 3-58.

Note: supply ADI_PWR_VR_FREQ_POWERDOWN to bypass the on-board voltage reg-
ulator.

GAIN

Required gain value as an ADI_PWR_VR_GAIN enumeration value. See

“ADI_PWR_VR_GAIN” on page 3-58.

WAKE

ADI_PWR_VR_WAKE enumeration value indicating whether the voltage regulator
can be awakened from power-down upon an interrupt from the real-time clock or
a low-going edge on the RESET# pin. See “ADI_PWR_VR_WAKE” on

page 3-60.

PHYWE

ADI_PWR_VR_PHYWE enumeration value indicating whether the voltage regulator
can be awakened from power down by activity on the Ethernet PHY. See

“ADI_PWR_VR_PHYWE” on page 3-59.

CANWE

ADI_PWR_VR_CANWE enumeration value indicating whether the voltage regulator
can be awakened from power down by activity on the CAN bus. See

“ADI_PWR_VR_CANWE” on page 3-57.

CLKBUFOE

ADI_PWR_VR_CLKBUFOE enumeration value to govern whether other devices,
most likely the Ethernet PHY, are clocked by the input clock, CLKIN. This bit is
set if the Ethernet PHY is used on the ADSP-BF537 EZ-KIT Lite board. See
“ADI_PWR_VR_CLKBUFOE” on page 3-57.

CKELOW

ADI_PWR_VR_CKELOW enumeration value to govern whether to protect against the
default reset state behavior of setting the EBIU pins to their inactive state. This bit
is set if the SDRAM is placed into self-refresh mode while the processor is in
hibernate state. See “ADI_PWR_VR_CKELOW” on page 3-57.

USBWE

ADI_PWR_VR_USBWE enumeration value indicating whether the voltage regulator
can be awakened from power-down by activity on the USB interface. See

“ADI_PWR_VR_USBWE” on page 3-59.

Visual DSP++ 5.0 Device Drivers and System 3-37
Services Manual for Blackfin Processors

SDRAM Initialization Prior to Loading an Executable

These values are communicated to the adi _pwr_SetVoltageRegulator
function by passing a single command-value pair or a sequence of pairs in
a table terminated with the ADI_PWR_CMD_END command in the same way as
for the adi_pwr_Control function. For more detailed information, refer to
“adi_pwr_Control” on page 3-16.

For example, to bypass the built-in voltage regulator, the following code
could be used.

adi_pwr_SetVoltageRegulator(ADI_PWR_SET_VR_FREQ,
(void*) ADI_PWR_VR_FREQ_POWERDOWN) ;

Table 3-6 defines the command-value pairs that can be used with the
adi_pwr_SetVoltageRegulator function. Use of any other pairs is invalid.

Table 3-6. Command-Value Pairs for adi_pwr_SetVoltageRegulator
Function

Command Associated Data Value

ADI_PWR_CMD_END Data value is ignored as the command simply marks the
end of a table of command pairs.

ADI_PWR_CMD_PAIR Used to tell adi_pwr_SetVoltageRegulator thata
single command pair is being passed.

ADI_PWR_CMD_TABLE Used to tell adi_pwr_SetVoltageRegulator thata table
of command pairs is being passed.

ADI_PWR_CMD_SET_VR_VLEV ADI_PWR_VLEV value specifying the voltage level required
of the voltage regulator. See “ADI_PWR_VLEV” on
page 3-56.

ADI_PWR_CMD_SET_VR_FREQ ADI_PWR_VR_FREQ value specifying the required voltage
regulator switching oscillator frequency. See
“ADI_PWR_VR_FREQ” on page 3-58. Use the
ADI_PWR_VR_FREQ_POWERDOWN value to bypass the
on-board voltage regulator.

ADI_PWR_CMD_SET_VR_GAIN ADI_PWR_VR_GAIN value specifying the internal loop gain
of the switching regulator loop. See
“ADI_PWR_VR_GAIN” on page 3-58.

3-38 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Power Management Module

Table 3-6. Command-Value Pairs for adi_pwr_SetVoltageRegulator

Function (Contd)

Command

Associated Data Value

ADI_PWR_CMD_SET_VR_WAKE

ADI_PWR_VR_WAKE value indicating whether to
enable/disable the WAKE bit. See
“ADI_PWR_VR_WAKE” on page 3-60.

ADI_PWR_CMD_SET_VR_PHYWE

ADI_PWR_VR_PHYWE enumeration value indicating
whether to enable/disable the PHYWE bit. See
“ADI_PWR_VR_PHYWE” on page 3-59.

ADI_PWR_CMD_SET_VR_CANWE

ADI_PWR_VR_CANWE enumeration value indicating
whether to enable/disable the CANWE bit. See
“ADI_PWR_VR_CANWE” on page 3-57.

ADI_PWR_CMD_SET_VR_CLKBUFOE

ADI_PWR_VR_CLKBUFOE enumeration value indicating to
enable/disable the CLKBUFOE bit. See
“ADI_PWR_VR_CLKBUFOE” on page 3-57.

ADI_PWR_CMD_SET_VR_CKELOW

ADI_PWR_VR_CKELOW enumeration value indicating
whether to enable/disable the CKELOW bit. See
“ADI_PWR_VR_CKELOW?” on page 3-57.

ADI_PWR_CMD_SET_VR_USBWE

ADI_PWR_VR_USBWE enumeration value indicating
whether to enable/disable the USB wakeup bit. See
“ADI_PWR_VR_USBWE” on page 3-59.

The processor’s CCLK and SCLK frequencies are not adjusted. When neces-
sary, the processor is idled to effect the changes. If the requested voltage
level is insufficient to sustain the current frequency values, the function
returns an error without amending any settings.

Prototype

ADI_PWR_RESULT adi_pwr_SetVoltageRegulator(
ADI_PWR_COMMAND Command,

void *Value

Visual DSP++ 5.0 Device Drivers and System 3-39
Services Manual for Blackfin Processors

SDRAM Initialization Prior to Loading an Executable

Arguments
Command ADI_PWR_COMMAND enumeration value specifies the meaning
of the associated value argument
Value This is the required value. See
“adi_pwr_SetVoltageRegulator” on page 3-37.

Return Value

ADI_PWR_RESULT_SUCCESS Function completed successfully.
ADI_PWR_RESULT_INVALID_VLEV VLEV argument is invalid or insufficient to sustain
the current core and system clock frequencies.
ADI_PWR_RESULT__INVALID_VR_FREQ FREQ value is invalid.
ADI_PWR_RESULT__INVALID_VR_GAIN GAIN value is invalid.
ADI_PWR_RESULT__INVALID_VR_WAKE WAKE value is invalid.
ADI_PWR_RESULT_INVALID_VR_PHYWE PHYWE value is invalid.
ADI_PWR_RESULT_INVALID_VR_CANWE CANWE value is invalid.

ADI_PWR_RESULT_INVALID_VR_CLKBUFOE CLKBUFOE value is invalid.

ADI_PWR_RESULT_INVALID_VR_CKELOW CKELOW value is invalid.
ADI_PWR_RESULT_INVALID_VR_USBWE USB wakeup value is invalid.
ADI_PWR_RESULT_BAD_COMMAND Command argument is unrccognized.
ADI_PWR_RESULT_NOT_INITIALIZED PM module has not been initialized.

3-40 Visual DSP++ 5.0 Device Drivers and System

Services Manual for Blackfin Processors

Power Management Module

adi_pwr_Terminate

Description

The adi_pwr_Terminate() function terminates the power management
module, resets the initialized flag, and unhooks the supplemental inter-
rupt, if dual-core synchronization was used.

Prototype
ADI_PWR_RESULT adi_pwr_Terminate(void);

Arguments

The function takes no arguments.

Return Value

ADI_PWR_RESULT_SUCCESS Function completed successfully.

Visual DSP++ 5.0 Device Drivers and System 3-41
Services Manual for Blackfin Processors

SDRAM Initialization Prior to Loading an Executable

Public Data Types and Enumerations

This section provides descriptions of the PM public data types and

enumerations.

ADI_PWR_COMMAND

The ADI_PWR_COMMAND enumeration type describes the command type in
an ADI_PWR_COMMAND_PAIR structure. Table 3-7 details the available com-
mands, the associated data values, and the valid context for their use.

Table 3-7. ADI_ PWR_COMMAND Available Commands

Command ‘Associated Data Value

Commands that can be used with the adi_pwr_Init, adi_pwr_Control, and
adi_pwr_SetVoltageRegulator functions

ADI_PWR_CMD_END Data value is ignored as the command sim-

ply marks the end of a table of command
pairs.

Commands that can be used with either the adi_pwr_Control or adi_pwr_SetVoltageRegulator
functions

ADI_PWR_CMD_PAIR Indicates that a single command pair is

being passed.

ADI_PWR_CMD_TABLE Indicates that a table of command pairs is

being passed.

Commands that can be used with either the adi_pwr_Init or adi_pwr_Control functions

ADI_PWR_CMD_INSTALL_CLK_CLIENT_CALLBACK A value Oftype
pADI_PWR_CALLBACK_ENTRY pointing to
an ADI_PWR_CALLBACK_ENTRY structure
which contains the callback function to
install, along with the C1ientHandle value
that will be passed to the callback.

3-42 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Power Management Module

Table 3-7. ADI_PWR_COMMAND Available Commands (Cont’d)

Command

Associated Data Value

ADI_PWR_CMD_SET_INPUT_DELAY

ADI_PWR_INPUT_DELAY value specifying
whether to add approximately 200 ps of
delay to the time when inputs are latched on
the external memory interface. See
“ADI_PWR_INPUT_DELAY” on

page 3-49.

ADI_PWR_CMD_SET_OUTPUT_DELAY

ADI_PWR_OUTPUT_DELAY value specifying
whether to add approximately 200 ps of
delay to external memory output signals.
See “ADI_PWR_OUTPUT_DELAY” on
page 3-49.

ADI_PWR_CMD_SET_PLL_LOCKCNT

ul6 value specifying the number of SCLK
cycles to occur during the IDLE stage of the
PLL programming sequence before the pro-
cessor sets the PLL_LOCKED bit in the
PLL_STAT register. This value is held in the
PLL_LOCKCNT register.

Commands valid only when passed to the adi_pwr_I

nit function.

ADI_PWR_CMD_SET_PROC_VARIANT

ADI_PWR_PROC_KIND value specifying the
processor variant. See

“ADI_PWR_PROC_KIND” on page 3-51.

ADI_PWR_CMD_SET_PACKAGE

ADI_PWR_PACKAGE_KIND value describing
the packaging type of the processor. See
“ADI_PWR_PACKAGE_KIND” on
page 3-50.

ADI_PWR_CMD_SET_CLKIN

ul6 value specifying the external clock fre-
quency, CLKIN, supplied to the processor in
either MHz or Hz.

ADI_PWR_CMD_SET_VDDINT

ADI_PWR_VLEV value specifying the core
voltage level provided by an external voltage
regulator. See “ADI_PWR_VLEV” on
page 3-56.

Visual DSP++ 5.0 Device Drivers and System 3-43

Services Manual for Blackfin Processors

SDRAM Initialization Prior to Loading an Executable

Table 3-7. ADI_PWR_COMMAND Available Commands (Cont’d)

Command Associated Data Value

ADI_PWR_CMD_SET_VDDEXT ADI_PWR_VDDEXT value specifying the exter-
nal voltage level applied to the internal volt-
age regulator. See “ADI_PWR_VDDEXT”
on page 3-56.

ADI_PWR_CMD_FORCE_DATASHEET_VALUES Enforces the core clock frequency limits for
each voltage level as defined in the relevant

data sheet (default).

ADI_PWR_CMD_SET_CCLK_TABLE Address of a table containing
ADI_PWR_NUM_VLEVS values of type ul6
detailing the max CCLK frequency for each
ADI_PWR_VLEV value. These values are used
instead of the data sheet values.

ADI_PWR_CMD_SET_IVG ul6 value specifying the IVG level for the
PLL_WAKEUP event. This defaults to 7.

ADI_PWR_CMD_SET_PCI33_COMPLIANCE ADI_PWR_PC133_COMPLIANCE value speci-
fying whether the SDRAM is to comply
with the PC-133 standard. Non-compliance
to the standard is required to enable the pro-
cessor to return from hibernate mode with-
out losing the contents of SDRAM. This
value prevents SDRAM decay during reset,
enabling the contents of SDRAM to be pre-
served through the hibernate reset or deep
sleep reset cycle. (This command does not
apply to all processors).

Commands valid only when passed to the adi_pwr_SetVoltageRegulator function.

ADI_PWR_CMD_SET_VR_VLEV ADI_PWR_VLEYV value specifying the voltage
level required of the voltage regulator. See

“ADI_PWR_VLEV” on page 3-56.

ADI_PWR_CMD_SET_VR_FREQ ADI_PWR_VR_FREQ value specifying the
required voltage regulator switching oscilla-
tor frequency. Use the
ADI_PWR_FREQ_POWERDOWN value to bypass
the on-board voltage regulator. See

“ADI_PWR_VR_FREQ” on page 3-58.

3-44 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Power Management Module

Table 3-7. ADI_PWR_COMMAND Available Commands (Cont’d)

Command

Associated Data Value

ADI_PWR_CMD_SET_VR_GAIN

ADI_PWR_VR_GAIN value specifying the
internal loop gain of the switching regulator
loop. See “ADI_PWR_VR_GAIN” on
page 3-58.

ADI_PWR_CMD_SET_VR_WAKE

ADI_PWR_VR_WAKE value specifying if the
voltage regulator is awakened from power-
down upon an interrupt from the RTC or a
low- going edge on the RESET# pin. See
“ADI_PWR_VR_WAKE” on page 3-60.

ADI_PWR_CMD_SET_VR_PHYWE

ADI_PWR_VR_PHYWE enumeration value
indicating whether to enable/disable the
PHYWE bit (processors with PHYWE bit only).
See “ADI_PWR_VR_PHYWE” on

page 3-59.

ADI_PWR_CMD_SET_VR_CANWE

ADI_PWR_VR_CANWE enumeration value
indicating whether to enable or disable the
CANWE bit (for processors with CAN inter-
face only). See “ADI_PWR_VR_CANWE”
on page 3-57.

ADI_PWR_CMD_SET_VR_CLKBUFOE

ADI_PWR_VR_CLKBUFOE enumeration value
indicating whether to enable or disable the
CLKBUFOE bit (processors with CLKBUFOE
bit only). See
“ADI_PWR_VR_CLKBUFOE” on

page 3-57.

ADI_PWR_CMD_SET_VR_CKELOW

ADI_PWR_VR_CKELOW enumeration value
indicating whether to enable or disable the
CKELOW bit (processors with CKELOW bit
only). See “ADI_PWR_VR_CKELOW?” on
page 3-57.

ADI_PWR_CMD_SET_VR_USBWE

ADI_PWR_VR_USBWE enumeration value
indicating whether to enable/disable the USB
wakeup bit. See “ADI_PWR_VR_USBWE”
on page 3-59.

Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

3-45

SDRAM Initialization Prior to Loading an Executable

Table 3-7. ADI_PWR_COMMAND Available Commands (Cont’d)

Command

Associated Data Value

ADI_PWR_CMD_SET_VR_GPWE_MXVRWE

ADI_PWR_VR_GPWE_MXVRWE enumeration
value indicating whether to enable or dis-
able the GPWE (MXVRWE) bit (processors with
general-purpose or MXVR wakeup bit only).
See “ADI_PWR_VR_GPWE_MXVRWE”
on page 3-59.

Commands valid only when passed to the adi_pwr_Control function.

ADI_PWR_CMD_GET_VDDINT

ADI_PWR_VLEV value containing the maxi-
mum core voltage level. See

“ADI_PWR_VLEV” on page 3-56.

ADI_PWR_CMD_GET_VR_VLEV

ADI_PWR_VLEV value containing the current
voltage level of the internal voltage regula-

tor. Not applicable when the internal regula-
tor is bypassed. See “ADI_PWR_VLEV” on

page 3-56.

ADI_PWR_CMD_GET_VR_FREQ

ADI_PWR_FREQ value containing the current
voltage regulator switching oscillator fre-
quency.

See “ADI_PWR_VR_FREQ” on page 3-58.

ADI_PWR_CMD_GET_VR_GAIN

ADI_PWR_GAIN value containing the inter-
nal loop gain of the switching regulator
loop. See “ADI_PWR_VR_GAIN” on
page 3-58.

ADI_PWR_CMD_GET_VR_WAKE

ADI_PWR_VR_WAKE value specifying if the
voltage can be awakened from power-down
upon an interrupt from the RTC or a
low-going edge on the RESET# pin. See
“ADI_PWR_VR_WAKE” on page 3-60.

ADI_PWR_CMD_GET_VR_PHYWE

ADI_PWR_VR_PHYWE enumeration value
indicating if the PHYWE bit has been
enabled/disabled (processors with PHYWE bit
only). See “ADI_PWR_VR_PHYWE” on
page 3-59.

3-46 Visual DSP++ 5.0 Device Drivers and System

Services Manual for Blackfin Processors

Power Management Module

Table 3-7. ADI_PWR_COMMAND Available Commands (Cont’d)

Command

Associated Data Value

ADI_PWR_CMD_GET_VR_CANWE

ADI_PWR_VR_CANWE enumeration value
indicating if the CAN wakeup bit has been
enabled/disabled (processors with CAN
interface only). See

“ADI_PWR_VR_CANWE?” on page 3-57.

ADI_PWR_CMD_GET_VR_USBWE

ADI_PWR_VR_USBWE enumeration value
indicating if the USB wakeup bit has been
enabled/disabled (processors with USB
interface only). See

“ADI_PWR_VR_USBWE” on page 3-59.

ADI_PWR_CMD_GET_VR_GPWE_MXVRWE

ADI_PWR_VR_GPWE_MXVRWE enumeration
value indicating whether if the GPWE
(MXVRWE) bit has been enabled/disabled
(processors with general-purpose or MXVR
wakeup bit only). See
“ADI_PWR_VR_GPWE_MXVRWE” on
page 3-59.

ADI_PWR_CMD_GET_VR_CLKBUFOE

ADI_PWR_VR_CLKBUFOE enumeration value
indicating if the CLKBUFOE bit has been
enabled or disabled (processors with CLKBU-
FOE bit only). See
“ADI_PWR_VR_CLKBUFOE” on

page 3-57.

ADI_PWR_CMD_GET_VR_CKELOW

ADI_PWR_VR_CKELOW enumeration value
indicating if the CKELOW bit has been
enabled or disabled (processors with CKELOW
bit only). See “ADI_PWR_VR_CKELOW”
on page 3-57.

ADI_PWR_CMD_GET_PLL_LOCKCNT

ul6 value containing the value in the
PLL_LOCKCNT register.

ADI_PWR_CMD_REMOVE_CLK_CLIENT_CALLBACK

A value of type ADI_PWR_CALLBACK_FN
specifying the callback function to remove.

Visual DSP++ 5.0 Device Drivers and System 3-47

Services Manual for Blackfin Processors

SDRAM Initialization Prior to Loading an Executable

ADI_PWR_COMMAND_PAIR

This data type is used to generate a table of control commands. These
commands are sent to the power management module via the
adi_pwr_Init, adi_pwr_SetVoltageRegulator, and adi_pwr_Control
functions:

typedef struct _ADI_PWR_COMMAND_PAIR {
ADI_PWR_COMMAND kind;
void *value;

} ADI_PWR_COMMAND_PAIR;

Refer to “ADI_PWR_COMMAND?” on page 3-42 for valid values of the
kind field.

ADI_PWR_CSEL

This data type defines the core clock divider bit field in the PLL_DIV regis-
ter. Valid values are:

ADI_PWR_CSEL_1 Divides voltage core oscillator frequency by 1.
ADI_PWR_CSEL_2 Divides voltage core oscillator frequency by 2.
ADI_PWR_CSEL_4 Divides voltage core oscillator frequency by 4.
ADI_PWR_CSEL_8 Divides voltage core oscillator frequency by 4.

3-48 Visual DSP++ 5.0 Device Drivers and System

Services Manual for Blackfin Processors

ADI_PWR_DF

Power Management Module

This data type defines the values for the DF bit in the PLL control register.
A value of ADI_PWR_DF_ON causes the value of CLKIN/2 to be passed to the
PLL module. According to the ADSP-BF533 Blackfin Processor Hardware

Reference, this leads to lower power dissipationl.

ADI_PWR_DF_NONE

Indicates that no PLL input divider value is to be set.

ADI_PWR_DF_OFF

Pass CLKIN to the PLL.

ADI_PWR_DF_ON

Pass CLKIN/2 to the PLL.

ADI_PWR_INPUT_DELAY

This data type defines the values that the input delay bit can take in the

PLL control register.

ADI_PWR_INPUT_DELAY_DISABLE

Do not add input delay.

ADI_PWR_INPUT_DELAY_ENABLE

Add approximately 200 ps of delay to the time when
inputs are latched on the external memory interface.

ADI_PWR_OUTPUT_DELAY

This data type defines the values that the output delay bit can take in the

PLL control register.

ADI_PWR_OUTPUT_DELAY_DISABLE

Do not add output delay.

ADI_PWR_OUTPUT_DELAY_ENABLE

Add approximately 200 ps of delay to external
memory output signals.

V' See ADSP-BF533 Blackfin Processor Hardware Reference, Revision 3.4, April 2009, page 8-4.

Visual DSP++ 5.0 Device Drivers and System 3-49
Services Manual for Blackfin Processors

SDRAM Initialization Prior to Loading an Executable

ADI_PWR_MODE

This data type defines the power mode of the processor. Valid power

mode values are:

ADI_PWR_MODE_FULL_ON

Processor is in full-on mode; clock speeds are as pro-
grammed.

ADI_PWR_MODE_ACTIVE

Processor is in active mode with only L1 DMA access
allowed. CCLK and SCLK are pegged to CLKIN as the
PLL controller is bypassed, providing medium power
saving.

ADI_PWR_MODE_ACTIVE_PLLDISABLED

Processor is in active mode with only L1 DMA access
allowed. CCLK and SCLK are pegged to CLKIN as the
PLL controller is bypassed and disabled, providing
medium power saving.

ADI_PWR_MODE_SLEEP

Processor is in sleep mode. It can be woken up with
any interrupt appropriately masked in the STC_IWR
register, providing high power saving.

ADI_PWR_MODE_DEEP_SLEEP

Processor is in deep sleep mode. It can only be woken
up with an appropriately-masked RTC interrupt or
reset, providing high power saving.

ADI_PWR_MODE_HIBERNATE

Processor is in hibernate mode. It can only be awak-
ened on system reset, providing maximum power sav-
ing.

ADI_PWR_PACKAGE_KIND

This data type defines the package type of the processor. Along with the
external voltage (“ADI_PWR_VDDEXT” on page 3-56). This value

determines the heat dissipation of the part.

ADI_PWR_PACKAGE_MBGA

MBGA - identified by the hemispherical contacts on
the under surface of the processor.

ADI_PWR_PACKAGE_LQFP

LQFP - identified by the leg contacts around the
edges of the processor.

3-50 Visual DSP++ 5.0 Device Drivers and System

Services Manual for Blackfin Processors

Power Management Module

ADI_PWR_PCC133 COMPLIANCE

This data type defines the valid values for setting PC-133 compliance or

otherwise. This value governs whether the SCKE pin on the processor is
asserted on reset.

ADI_PWR_PC133_COMPLIANCE_DISABLED SCKE is asserted on reset; SDRAM contents are
invalidated.

ADI_PWR_PC133_COMPLIANCE_ENABLED SCKE is not asserted on reset; SDRAM contents
are maintained.

ADI_PWR_PROC_KIND

This data type defines the processor variant, which governs the appropri-
ate limits for speed selection. It is passed to the adi_pwr_Init() function,
along with the command ADI_PWR_CMD_SET_PROC_VARIANT.

The current list of processor variants is shown in Table 3-8. New proces-
sors are introduced frequently, so the most accurate information is found
in the ADI_PWR_PROC_KIND enumeration itself, grouped by processor fam-
ily, inside the Power Management Service API header file, adi_pwr.h.
Processor variants which are not found there may be defined as “equiva-
lents” by the macros in the ‘equivalent values’ section of adi_pwr.h. Refer
to the data sheet for the specific part number for a complete description of
the clock and power capabilities.

Table 3-8. Processor Variants

Enumeration Name Corresponding Processor

ADI_PWR_PROC_BF561SKBCZ_6A The ADSP-BF561SKBCZ-6A 600 MHz processor

ADI_PWR_PROC_BF561SKBCZ500X The ADSP-BF561SKBCZ500X 500 MHz processor

ADI_PWR_PROC_BF561SKBCZ600X The ADSP-BF561SKBCZ600X 600 MHz processor

ADI_PWR_PROC_BF561SBB600 The ADSP-BF561SBB600 600 MHz processor
ADI_PWR_PROC_BF533SKBC750 The ADSP-BF533SKBC750 750 MHz processor
Visual DSP++ 5.0 Device Drivers and System 3-51

Services Manual for Blackfin Processors

SDRAM Initialization Prior to Loading an Executable

Table 3-8. Processor Variants (Contd)

Enumeration Name

Corresponding Processor

ADI_PWR_PROC_BF533SKBC600

The ADSP-BF533SKBC600 600 MHz processor

ADI_PWR_PROC_BF533SBBC500

The ADSP-BF533SBBC500 500 MHz processor

ADI_PWR_PROC_BF531_OR_BF532

All package types and speed grades of the ADSP-BF531

and ADSP-BF532 processors

ADI_PWR_PROC_BF533SKBC600_6V

The ADSP-BF533SKBC600-6V 600 MHz processor

ADI_PWR_PROC_BF537SKBC1600

The ADSP-BF537SKBC1600 600 MHz processor

ADI_PWR_PROC_BF537SBBC1500

The ADSP-BF537SBBC1500 500 MHz processor

ADI_PWR_PROC_BF536SBBC1400

The ADSP-BF536SBBC1400 400 MHz processor

ADI_PWR_PROC_BF536SBBC1300

The ADSP-BF536SBBC1300 300 MHz processor

ADI_PWR_PROC_BF537BBCZ_5AV

The ADSP-BF537BBCZ-5AV 500 MHz processor

ADI_PWR_PROC_BF548SKBC1600

The ADSP-BF548SKBC1600 600 MHz processor

ADI_PWR_PROC_BF548SBBC1533

The ADSP-BF548SBBC1533 533 MHz processor

ADI_PWR_PROC_BF548SBBC1400

The ADSP-BF548SBBC1400 400 MHz processor

ADI_PWR_PROC_BF538BBCZ500

The ADSP-BF538BBCZ500 500 MHz processor

ADI_PWR_PROC_BF538BBCZ400

The ADSP-BF538BBCZ400 400 MHz processor

ADI_PWR_PROC_BF539BBCZ500

The ADSP-BF539BBCZ500 500 MHz processor

ADI_PWR_PROC_BF539BBCZ400

The ADSP-BF539BBCZ400 400 MHz processor

ADI_PWR_PROC_BF527SBBC1600

The ADSP-BF527SBBC1600 600 MHz processor

ADI_PWR_PROC_BF527SBBC1533

The ADSP-BF527SBBC1533 533 MHz processor

ADI_PWR_PROC_BF526SBBC1400

The ADSP-BF526SBBC1400 400 MHz processor

ADI_PWR_PROC_BF512SBBC1300

The ADSP-BF512SBBC1300 300 MHz processor

ADI_PWR_PROC_BF512SBBC1400

The ADSP-BF512SBBC1400 400 MHz processor

3-52

Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

ADI_PWR_RESULT

Power Management Module

The power management module functions return a result code of the
enumeration type, ADI_PWR_RESULT. Table 3-9 lists and describes the PM

module return values.

Table 3-9. PM Module Return Values

Return Value

Explanation

ADI_PWR_RESULT_SUCCESS

Routine completed successfully.

ADI_PWR_RESULT_FAILED

Generic failure was encountered.

ADI_PWR_RESULT_NO_MEMORY

Insufficient memory for configuration val-
ues to be stored.

ADI_PWR_RESULT_BAD_COMMAND

Command is not recognized.

ADI_PWR_RESULT_NOT_INITIALIZED

Function call has been ignored with no
action taken, due to the PM module not
being initialized.

ADI_PWR_RESULT_ALREADY_INITIALIZED

A call to adi_pwr_Init has been ignored
with no action taken, due to the PM mod-
ule having already been initialized.

ADI_PWR_RESULT_INVALID_VDDEXT

Invalid external voltage level has been
specified.

ADI_PWR_RESULT_VDDINT_MUST_BE_SUPPLIED

When using external voltage regulation,
the externally-supplied VDDINT must be
passed to adi_pwr_Init.

ADI_PWR_RESULT_INVALID_PROCESSOR

Processor type specified is invalid.

ADI_PWR_RESULT_INVALID_IVG

IVG level supplied for PLL wakeup is

invalid.

ADI_PWR_RESULT_INVALID_INPUT_DELAY

Input delay value is invalid.

ADI_PWR_RESULT_INVALID_OUTPUT_DELAY

Output delay value is invalid.

ADI_PWR_RESULT_INVALID_LOCKCNT

PLL lock count value is invalid.

ADI_PWR_RESULT_INVALID_MODE

Invalid operating mode has been specified.

ADI_PWR_RESULT_INVALID_CSEL

Invalid value for CSEL has been specified.

ADI_PWR_RESULT_INVALID_SSEL

Invalid value for SSEL has been specified.

Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

3-53

SDRAM Initialization Prior to Loading an Executable

Table 3-9. PM Module Return Values (Cont’d)

Return Value

Explanation

ADI_PWR_INVALID_CSEL_SSEL_COMBINATION

Core clock divider is greater that the sys-
tem clock divider value, or both
ADI_PWR_CSEL_NONE and
ADI_PWR_SSEL_NONE are specified.

ADI_PWR_RESULT_VOLTAGE_REGULATOR_BYPASSED

Voltage regulator cannot be set since it is
in bypass mode.

ADI_PWR_RESULT_INVALID_VLEV

VLEV argument is invalid or insufficient to
sustain the current core and system clock
frequencies.

ADI_PWR_RESULT_INVALID_VR_FREQ

FREQ value is invalid.

ADI_PWR_RESULT_INVALID_VR_GAIN

GAIN value is invalid.

ADI_PWR_RESULT_INVALID_VR_WAKE

WAKE value is invalid.

ADI_PWR_RESULT_INVALID_VR_PHYWE

PHYWE value is invalid.

ADI_PWR_RESULT_INVALID_VR_CANWE

CAN wakeup value is invalid.

ADI_PWR_RESULT_INVALID_VR_USBWE

USBE wakeup value is invalid.

ADI_PWR_RESULT_INVALID_VR_GPWE_MXVRWE

General-purpose or MXVR wakeup value is
invalid.

ADI_PWR_RESULT_INVALID_VR_CLKBUFOE

CLKBUFOQE value is invalid.

ADI_PWR_RESULT_INVALID_VR_CKELOW

CKELOW value is invalid.

ADI_PWR_RESULT_CANT_HOOK_SUPPLEMENTAL_
INTERRUPT

Unable to hook supplemental interrupt,
for halting other core (dual-core only)

ADI_PWR_RESULT_NO_CALLBACK_INSTALLED

Tried to remove a callback that was not
installed

ADI_PWR_RESULT_EXCEEDED_MAX_CALLBACKS

Could not install a callback. Maximum
number of callbacks have been installed.

3-54

Visual DSP++ 5.0 Device Drivers and System

Services Manual for Blackfin Processors

Power Management Module

ADI_PWR_SSEL

This data type defines the system clock divider bit field in the PLL_DIV
register. Valid values are:

ADI_PWR_SSEL_1

Divides voltage core oscillator frequency by 1.

ADI_PWR_SSEL_2

Divides voltage core oscillator frequency by 2.

ADI_PWR_SSEL_3

Divides voltage core oscillator frequency by 3.

ADI_PWR_SSEL_4

Divides voltage core oscillator frequency by 4.

ADI_PWR_SSEL_5

Divides voltage core oscillator frequency by 5.

ADI_PWR_SSEL_6

Divides voltage core oscillator frequency by 6.

ADI_PWR_SSEL_7

Divides voltage core oscillator frequency by 7.

ADI_PWR_SSEL_8

Divides voltage core oscillator frequency by 8.

ADI_PWR_SSEL_9

Divides voltage core oscillator frequency by 9.

ADI_PWR_SSEL_10

Divides voltage core oscillator frequency by 10.

ADI_PWR_SSEL_11

Divides voltage core oscillator frequency by 11.

ADI_PWR_SSEL_12

Divides voltage core oscillator frequency by 12.

ADI_PWR_SSEL_13

Divides voltage core oscillator frequency by 13.

ADI_PWR_SSEL_14

Divides voltage core oscillator frequency by 14.

ADI_PWR_SSEL_15

Divides voltage core oscillator frequency by 15.

Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

3-55

SDRAM Initialization Prior to Loading an Executable

ADI_PWR_VDDEXT

This data type defines the external voltage (VDDEXT) supplied to the voltage

regulator.
ADI_PWR_VDDEXT_330 33V
ADI_PWR_VDDEXT_250 25V

ADI_PWR_VLEV

This data type defines the acceptable voltage levels for the voltage regula-
tor. The values for ADSP-BF533 and ADSP-BF561 processors are:

ADT_PWR_VLEV_085 0.85V
ADT_PWR_VLEV_090 0.90 V
ADI_PWR_VLEV_095 0.95V
ADT_PWR_VLEV_100 1.00 V
ADT_PWR_VLEV_105 1.05V
ADT_PWR_VLEV_110 L0V
ADT_PWR_VLEV_115 L15V
ADI_PWR_VLEV_120 1.20 V (default)
ADT_PWR_VLEV_125 125V
ADT_PWR_VLEV_130 1.30 V
ADT_PWR_VLEV_135 135V
ADT_PWR_VLEV_140 1.40 V
3-56 Visual DSP++ 5.0 Device Drivers and System

Services Manual for Blackfin Processors

Power Management Module

ADI_PWR_VR_CANWE

This data type defines the valid values for the CANWE bit in the voltage
regulator control register. If enabled, the voltage regulator can be awak-
ened from power-down by activity on the controller area network (CAN)

interface.
ADI_PWR_VR_CANWE_DISABLED Disable Wakeup by CAN activity.
ADI_PWR_VR_CANWE_ENABLED Enable wakeup by CAN activity.

ADI_PWR_VR_CKELOW

This data type defines the valid values for the CKELOW bit in the voltage
regulator control register. If enabled, the SCKE pin is driven low on system
reset to enable the SDRAM to remain in self-refresh mode.

ADI_PWR_VR_PHYWE_DISABLED Drive SCKE high on reset; SDRAM contents are
invalidated.

ADI_PWR_VR_PHYWE_ENABLED Drive SCKE low on reset; SDRAM contents are
maintained.

ADI_PWR_VR_CLKBUFOE

This data type defines the valid values for the CLKBUFOE bit in the voltage
regulator control register. If enabled, the CLKIN signal can be shared with
peripheral devices, especially the Ethernet PHY.

ADI_PWR_VR_CLKBUFOE_DISABLED Disable CLKIN sharing.
ADI_PWR_VR_CLKBUFOE_ENABLED Enable CLKIN sharing.
Visual DSP++ 5.0 Device Drivers and System 3-57

Services Manual for Blackfin Processors

SDRAM Initialization Prior to Loading an Executable

ADI_PWR_VR_FREQ

This data type defines the acceptable switching frequency values for the
voltage regulator. Its value is linked to the switching capacitor and induc-
tor values. The higher the frequency setting, the smaller the capacitor and
inductor values. The valid values for all Blackfin processors are:

ADI_PWR_VR_FREQ_POWERDOWN Power-down/bypass on-board regulation
ADI_PWR_VR_FREQ_333KHZ 333 kHz

ADI_PWR_VR_FREQ_667KHZ 667 kHz

ADI_PWR_VR_FREQ_IMHZ 1 MHz (default)

ADI_PWR_VR_GAIN

This data type defines the acceptable values for the internal loop gain of
the switching regulator loop. The gain controls how quickly the voltage
output settles on its final value. The higher the gain, the quicker the set-
tling time. High gain settings cause greater overshoot in the process.

ADI_PWR_VR_GAIN_S 5
ADI_PWR_VR_GAIN_110 10
ADI_PWR_VR_GAIN_20 20 (default)
ADI_PWR_VR_GAIN_50 50
3-58 Visual DSP++ 5.0 Device Drivers and System

Services Manual for Blackfin Processors

Power Management Module

ADI_PWR_VR_GPWE_MXVRWE

This data type defines the values for the GPWE general-purpose wakeup or
MXVR bit, in the voltage regulator control register for some processors. If
enabled (ADI_PWR_VR_GPWE_MXVRWE_ENABLED), the voltage regulator can be
awakened from hibernate upon an interrupt from a general-purpose
wakeup or MXVR.

ADI_PWR_VR_GPWE_MXVRWE_DISABLED | Disables general-purpose wakeup.

ADI_PWR_VR_GPWE_MXVRWE_ENABLED Enables general-purpose wakeup.

ADI_PWR_VR_PHYWE

This data type defines the values for the PHYWE bit in the voltage regulator
control register. If enabled, the voltage regulator can be awakened from
power-down by activity on the PHY interface.

ADI_PWR_VR_PHYWE_DISABLED Disable wakeup by PHY activity.

ADI_PWR_VR_PHYWE_ENABLED Enable wakeup by PHY activity.

ADI_PWR_VR_USBWE

This data type defines the valid values for the USBWE bit in the voltage
regulator control register. If enabled, the voltage regulator can be awak-
ened from power-down by activity on the universal serial bus (USB)

interface.
ADI_PWR_VR_USBWE_DISABLED Disable wakeup by USB activity.
ADI_PWR_VR_USBWE_ENABLED Enable wakeup by USB activity.
Visual DSP++ 5.0 Device Drivers and System 3-59

Services Manual for Blackfin Processors

PM Module Macros

ADI_PWR_VR_WAKE

This data type defines the values for the WAKE bit in the voltage regulator
control register. If enabled (ADI_PWR_VR_WAKE_ENABLED), the voltage regu-
lator can be awakened from power-down (ADI_PWR_VR_FREQ_POWERDOWN)
upon an RTC interrupt or a low-going edge on the RESET pin.

ADI_PWR_VR_WAKE_DISABLED Disables wakeup by RTC and RESET.

ADI_PWR_VR_WAKE_ENABLED Enables wakeup by RTC and RESET

PM Module Macros

Table 3-10 lists and describes PM (power management) module macros.

Not shown here is the list of processor variants which are functionally
“equivalent” to those in the ADI_PWR_PROC_KIND enumeration list. New
processors are introduced frequently, so please refer to the macros in the
‘equivalent values’ section of the Power Management Service API header
file, adi_pwr.h, for the complete list of processor variant “equivalents”.

Table 3-10. PM Module Macros

Macro Explanation

ADI_PWR_VLEV_DEFAULT Default/reset voltage level ADI_PWR_VLEV_130
ADI_PWR_VLEV_MIN Minimum voltage level ADI_PWR_VLEV_085
ADI_PWR_VLEV_MAX Maximum voltage level ADI_PWR_VLEV_120
ADI_PWR_VOLTS(V) Returns the voltage in volts as a float for the given level.
ADI_PWR_MILLIVOLTS(V) Returns an integer value of the voltage in millivolts for the

given level.

ADI_PWR_VR_FREQ_DEFAULT Default/reset switching frequency value, ADI_PWR_FREQ_1MHZ

ADI_PWR_VR_FREQ_MIN Minimum switching frequency value,
ADI_PWR_FREQ_POWERDOWN
ADI_PWR_VR_FREQ_MAX Maximum switching frequency value, ADI_PWR_FREQ_IMHZ
3-60 Visual DSP++ 5.0 Device Drivers and System

Services Manual for Blackfin Processors

Power Management Module

Table 3-10. PM Module Macros (Contd)

Macro

Explanation

ADI_PWR_VR_GAIN_DEFAULT

Default/reset voltage regulator gain value, ADI_PWR_GAIN_20

ADI_PWR_VR_GAIN_MIN

Minimum voltage regulator gain value, ADI_PWR_GAIN_5

ADI_PWR_VR_GAIN_MAX

Default/reset voltage regulator gain value, ADI_PWR_GAIN_20

ADI_PWR_PACKAGE_PBGA

Equivalent package type to ADI_PWR_PACKAGE_MBGA

Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

3-61

PM Module Macros

3-62 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

4 EXTERNAL BUS INTERFACE
UNIT MODULE

This chapter describes the external bus interface unit (EBIU) module. The
EBIU enables the configuration of the asynchronous memory controller
and the SDRAM or DDR interface. It also allows the DDR or SDRAM to
be automatically adjusted in response to changes in the system clock
frequency.

This chapter contains:
* “Introduction” on page 4-2
e “Using the EBIU Module” on page 4-3
e “EBIU API Reference” on page 4-9
e “Public Data Types and Enumerations” on page 4-25
e “Setting Control Values in the EBIU Module” on page 4-32

Visual DSP++ 5.0 Device Drivers and System 4-1
Services Manual for Blackfin Processors

Introduction

Introduction

The initial goal of the external bus interface unit (EBIU) module is to
enable the power management module to adjust the SDRAM or DDR
controller (SDC) in accordance with changes made to the system clock
(SCLK) frequency. Calls to both adi_pwr_SetFreq and
adi_pwr_SetMaxFreqForVolt adjust the SDC settings to the SCLK fre-
quency selected, provided the EBIU module has been initialized. For more
information, see “Power Management Module” on page 3-1.

Using the module is straightforward. The adi_ebiu_Init function is
called to set up the relevant values listed in the appropriate data sheet for
the external memory device. Thereafter, the refresh rate for SDRAM or
DDR is adjusted automatically each time the power management module
changes SCLK. The asynchronous memory controller is not automatically
adjusted but can be explicitly reconfigured via a call to adi_ebiu_Control.
The “Using the EBIU Module” section provides a step-by-step description
of how to work with the EBIU module. Sample code is also included.

The EBIU module uses an unambiguous naming convention to safeguard
against conflicts with other software libraries provided by Analog Devices
or other companies. All enumeration values and typedef statements use
the ADI_EBIU_ prefix, and functions and global variables use the lowercase
equivalent, adi_ebiu_.

Two versions of the library are available for each processor, corresponding
to the debug and release configurations in VisualDSP++. In addition to
the usual defaults for the debug configuration, the API functions perform
checks on the passed arguments and report appropriate error codes, as
required. In the release version of the library, most functions return one of
two result codes: ADI_EBIU_RESULT_SUCCESS on successful completion, or
ADI_EBIU_RESULT_NOT_INITIALIZED when the EBIU module has not been
initialized prior to the function call.

4-2 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

External Bus Interface Unit Module

Using the EBIU Module

The first step to using the EBIU module involves setting up the necessary
parameters for the external memory interfaces that are used. In this step, a
table of command-value pairs is passed to the adi_ebiu_Init function.
The information required is described in detail in adi_ebiu_Init in the
Description section (on page 4-15). The amount and the type of informa-
tion that must be passed depends on the individual board configuration.

In the following example, assume that the ADSP-BF533 EZ-KIT Lite
(Rev 2.1) is configured. Specify the command-pair table as follows:

/* Asynch global control register field - clkout enable */
ADI_EBIU_ASYNCH_CLKOUT clkout_enable =
ADI_EBIU_ASYNCH_CLKOUT_ENABLE;

/* Asynch global control register field - select which banks to
enable */

ADI_EBIU_ASYNCH_BANK_ENABLE banks_enable =
ADI_EBIU_ASYNCH_BANKO_1_2_3;

/* Asynch bank timing parameters, using same value for all 4
banks - specified in either cycles or timing units, but NOT BOTH,
*/

ADI_EBIU_ASYNCH_BANK_TIMING asynch_bank_trans_time =
{ADI_EBTU_BANK_ALL, { ADI_EBTIU_ASYNCH_TT_4_CYCLES, { O,
ADI_EBIU_TIMING_UNIT_NANOSEC } }

ADI_EBTU_ASYNCH_BANK_TIMING asynch_bank_setup_time =
{ADI_EBTU_BANK_ALL, { ADI_EBTIU_ASYNCH_ST_3_CYCLES, { O,
ADI_EBIU_TIMING_UNIT_NANOSEC } } };

ADI_EBIU_ASYNCH_BANK_TIMING asynch_bank_hold_time =
{ADI_EBTU_BANK_ALL, { ADI_EBTIU_ASYNCH_HT_2_CYCLES, { O,
ADI_EBIU_TIMING_UNIT_NANOSEC } } };

ADI_EBIU_ASYNCH_BANK_TIMING asynch_bank_read_access_time =
{ADI_EBTU_BANK_ALL, { OxB, { O, ADI_EBIU_TIMING_UNIT_NANOSEC } }
b

Visual DSP++ 5.0 Device Drivers and System 4-3
Services Manual for Blackfin Processors

Using the EBIU Module

ADI_EBIU_ASYNCH_BANK_TIMING asynch_bank_write_access_time =
{ADI_EBTU_BANK_ALL, { 7, { O, ADI_EBIU_TIMING_UNIT_NANOSEC } } };
ADI_EBIU_ASYNCH_BANK_VALUE asynch_bank_ardy_enable = {
ADI_EBIU_BANK_ALL, { ardy_enable: ADI_EBIU_ASYNCH_ARDY_DISABLE }
Vs

ADI_EBTIU_ASYNCH_BANK_VALUE asynch_bank_ardy_polarity = {
ADI_EBTIU_BANK_ALL, { ardy_polarity:
ADI_EBIU_ASYNCH_ARDY_POLARITY_LOW } };

/* SDRAM timing parameters, specified according to data sheet */

ADI_EBIU_TIMING_VALUE twrmin = {1,{7500,
ADI_EBIU_TIMING_UNIT_PICOSEC}}; /* set min TWR to 1 SCLK cycle +
7.5ns */

ADI_EBIU_TIMING_VALUE refresh {8192, {64,
ADI_EBIU_TIMING_UNIT_MILLISEC}}; /* set refresh period to 8192
cycles in 64ms */

ADI_EBIU_TIME trasmin = {44, ADI_EBIU_TIMING_UNIT_NANOSEC}; /*
set min TRAS to 44ns */

ADI_EBIU_TIME trpmin = {20, ADI_EBIU_TIMING_UNIT_NANOSEC};

/* set min TRP to 20ns */

ADI_EBIU_TIME trcdmin = {20, ADI_EBIU_TIMING_UNIT_NANOSEC};

/* set min TRCD to 20ns */

u32 cl_threshold = 100; /* set cl threshold to 100 Mhz */

ADI_EBIU_SDRAM_BANK_VALUE bank_size = { 0, { size:
ADI_EBIU_SDRAM_BANK_64MB }}; /* bank size is 64MB */
ADI_EBIU_SDRAM_BANK_VALUE bank_width = { 0, {

width: ADI_EBIU_SDRAM_BANK_COL_10BIT }}; /* column address width
is 10-Bit */
/* set up the command pair table using the above definitions */
ADI_EBIU_COMMAND_PAIR ebiu_init_tablel] = {
{ ADI_EBIU_CMD_SET_SDRAM_BANK_SIZE, (void*)&bank_size 1},
{ ADI_EBIU_CMD_SET_SDRAM_BANK_COL_WIDTH, (void*)&bank_width },
{ ADI_EBIU_CMD_SET_SDRAM_CL_THRESHOLD, (void*)cl_threshold },
{ ADI_EBIU_CMD_SET_SDRAM_TRASMIN, (void*)&trasmin },
{ ADI_EBIU_CMD_SET_SDRAM_TRPMIN, (void*)&trpmin },

4-4

Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

External Bus Interface Unit Module

{ ADI_EBIU_CMD_SET_SDRAM_TRCDMIN, (void*)&trcdmin },
{ ADI_EBIU_CMD_SET_SDRAM_TWRMIN, (void*)&twrmin },
{ ADI_EBIU_CMD_SET_SDRAM_REFRESH, (void*)&refresh },
{ ADI_EBIU_CMD_SET_ASYNCH_CLKOUT_ENABLE, (void*)&clkout_enable
b,

{ ADI_EBIU_CMD_SET_ASYNCH_BANK_ENABLE, (void*)&banks_enable },
{ ADI_EBIU_CMD_SET_ASYNCH_BANK_TRANSITION_TIME,
(void*)&asynch_bank_trans_time },

{ ADI_EBIU_CMD_SET_ASYNCH_BANK_READ_ACCESS_TIME,
(void*)&asynch_bank_read_access_time },

{ ADI_EBIU_CMD_SET_ASYNCH_BANK_WRITE_ACCESS_TIME,
(void*)&asynch_bank_write_access_time 1},

{ ADI_EBIU_CMD_SET_ASYNCH_BANK_SETUP_TIME,
(void*)&asynch_bank_setup_time },

{ ADI_EBIU_CMD_SET_ASYNCH_BANK_HOLD_TIME,
(void*)&asynch_bank_hold_time 1},

{ ADI_EBIU_CMD_SET_ASYNCH_BANK_ARDY_ENABLE,
(void*)&asynch_bank_ardy_enable 1},

{ ADI_EBIU_CMD_SET_ASYNCH_BANK_ARDY_POLARITY,
(void*)&asynch_bank_ardy_polarity },

{ ADI_EBIU_CMD_END, 0 }

b

The second argument in the call to adi_ebiu_Init is reserved and should
be set to zero. The EBIU module should be initialized prior to initializing
the power management module, so that subsequent calls to
adi_pwr_SetFreq or adi_pwr_SetMaxFreqgForVolt in the power manage-

ment module will automatically adjust the SDRAM or DDR.

Visual DSP++ 5.0 Device Drivers and System 4-5
Services Manual for Blackfin Processors

Using the EBIU Module

To illustrate what is required for Blackfin processors that support DDR
memory, a command table is shown below. Replace the SDRAM parame-
ters, above, with the DDR parameters shown below, and add the
asynchronous memory controller commands shown in the above example.

ADI_EBIU_TIMING_VALUE RC { 8, {60,

ADI_EBIU_TIMING_UNIT_NANOSEC 1}}; /* cycles between one
active command and the next */

ADI_EBIU_TIMING_VALUE RAS = { 6, {42,

ADI_EBIU_TIMING_UNIT_NANOSEC }}; /* cycles between active
command and precharge command */

ADI_EBIU_TIMING_VALUE RP = {2, {15,

ADI_EBIU_TIMING_UNIT_NANOSEC }}; /* cycles between
precharge command and active command */

ADI_EBIU_TIMING_VALUE RFC = { 10,{72,

ADI_EBTIU_TIMING_UNIT_NANOSEC 1}}; /* cycles for SDRAM to
recover from REFRESH signal */

ADI_EBIU_TIMING_VALUE WTR = {2,

{7500,ADI_EBTU_TIMING_UNIT_PICOSEC }}; /* cycles from last write
data until next read command */

ADI_EBIU_TIMING_VALUE tWR = {2, {15,

ADI_EBIU_TIMING_UNIT_NANOSEC }}; /* write recovery time is
2 or 3 cycles */

ADI_EBIU_TIMING_VALUE tMRD = { 2, {15,

ADI_EBIU_TIMING_UNIT_NANOSEC 1}}; /* cycles from setting of
mode */

ADI_EBIU_TIMING_VALUE RCD = {2, {15,

ADI_EBIU_TIMING_UNIT_NANOSEC }}; /* cycles from active
command to next R/W */

ADI_EBIU_TIMING_VALUE REFI = { 1037,{7777,

ADI_EBIU_TIMING_UNIT_NANOSEC}}; /* cycles from one REFRESH
signal to the next */

ADI_EBIU_COMMAND_PAIR ebiu_init_tablel[] = {

Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

External Bus Interface Unit Module

{ ADI_EBIU_CMD_SET_DDR_REFT, (void*)&REFI '}, /* command
to set refresh interval */

{ ADI_EBIU_CMD_SET_DDR_RFC, (void*)&RFC Y, /* command
to set auto refresh period */

{ ADI_EBIU_CMD_SET_DDR_RP, (void*)&RP Y, /* command
to set precharge to active time */

{ ADI_EBIU_CMD_SET_DDR_RAS, (void*)&RAS }/* command
to set active to precharge time */

{ ADI_EBIU_CMD_SET_DDR_RC, (void*)&RC }, /* command
to set active to active time */

{ ADI_EBIU_CMD_SET_DDR_WTR, (void*)&WTR }, /* command
to set write to read time */

{ ADI_EBTIU_CMD_SET_DDR_DEVICE_SIZE, (void*)0 }, /* command
to set size of device */

{ ADI_EBIU_CMD_SET_DDR_CAS, (void*)2 }, /* command
to set cycles fromassertion of R/Wuntil first valid data */

{ ADI_EBIU_CMD_SET_DDR_DEVICE_WIDTH, (void*)2 }, /* command
to set width of device */

{ ADI_EBIU_CMD_SET_DDR_EXTERNAL_BANKS, (void*)0 }, /* command
to set number of external banks */

{ ADI_EBIU_CMD_SET_DDR_DATA_WIDTH, (void*)2 b, /* command
to set data width */

{ ADI_EBIU_CMD_SET_DDR_WR, (void*)&tWR }, /* command

to set write recovery time */

{ ADI_EBIU_CMD_SET_DDR_MRD, (void*)&tMRD },/* command
to set cycles from setting mode reg until next command */

{ ADI_EBIU_CMD_SET_DDR_RCD, (void*)&RCD }, /* command

to set cycles fromactive command to a read-write assertion */

{ ADI_EBIU_CMD_END, O } /* indicate
the last command of the table */
b

Visual DSP++ 5.0 Device Drivers and System 4-7
Services Manual for Blackfin Processors

Using the EBIU Module

In the sample code above, note that the SDRAM minimum TWR value is
defined as a structure called ADI_EBIU_TIMING_VALUE which consists of two
main parts: a number of cycles, and a number of timing units, in this case,
picoseconds. This representation reflects the definition found in the
appropriate SDRAM data sheet where the value is expressed as one cycle
of SCLK plus 7.5 ns. For the SDRAM refresh period, this structure
expresses the time taken for the given number of refresh cycles. The sam-
ple code shows that the refresh period is 64 milliseconds, which takes
8192 cycles.

For hardware that uses a Micron SDRAM module, the command-pair
table can be abbreviated to just specify the type of the module and the size
of the bank, as shown below, adding asynchronous memory controller
commands, as needed:

ADI_EBTU_SDRAM_BANK_VALUE bank_size;

// set bank size to 32MB

bank_size.value.size = ADI_EBIU_SDRAM_BANK_32MB;

ADI_EBIU_COMMAND_PAIR ebiu_init_tablel[] = {
// MT48LC16M16-75 module
{ ADI_EBIU_CMD_SET_SDRAM_MODULE,
(void*)ADI_EBIU_SDRAM_MODULE_MT48LC16M16A2_75 },
{ ADI_EBIU_CMD_SET_SDRAM_BANK_SIZE, (void*)&bank_size },
{ ADI_EBIU_CMD_END, O }

b

adi_ebiu_Init(ebiu_init_table, 0);

Further changes can be made at any time by passing command-value pairs
or tables of pairs to adi_ebiu_Control. For example, to pass a single com-
mand-value pair to enable the SDRAM to self-refresh during inactivity,
the following code could be used:

adi_ebiu_Control(
ADI_EBIU_CMD_SET_SDRAM_SRFS,
(void*)ADI_EBIU_SDRAM_SRFS_ENABLE

4-8 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

External Bus Interface Unit Module

Since the SDRAM settings are closely tied to the system clock (SCLK) fre-
quency, the direct use of the adi_ebiu_AdjustSDRAM function from within
a client application is not required since it is called automatically by the
appropriate functions in the power management module when SCLK
changes.

EBIU APl Reference

This section provides descriptions of the EBIU module’s API functions.

Notation Conventions

The reference pages for the API functions use the following format:
Name — Name and purpose of the function
Description — Function specification
Prototype — Required header file and functional prototype
Arguments — Description of function arguments

Return Value — Description of function return values

Visual DSP++ 5.0 Device Drivers and System 4-9
Services Manual for Blackfin Processors

Using the EBIU Module

adi_ebiu_AdjustSDRAM

Description

For the passed system clock (SCLK) frequency, the adi_ebiu_AdjustSDRAM
function calculates and sets the following values for SDRAM: the TRAS,
TRP, TRCD, and TWR values in the EBIU_SDGCTL register and the RDIV value in
the EBIU_SDRRC register. The function calculates and sets the following
values for DDR: the RAS, RP, RFC, REFI, and RC values in the DDRCTLO regis-
ter and the RCD, MRD, and WR values in the DDRCTLI register.

This function is primarily used by the power management module to
ensure that SDRAM settings are optimal for the processor’s current SCLK
frequency.

The adi_ebiu_AdjustSDRAM function returns without making any changes
if the SDRAM has not been successfully initialized with a call to
adi_ebiu_Init.

Prototype
ADI_EBIU_RESULT adi_ebiu_AdjustSDRAM(
u32 fsclk
)
Arguments
fsclk System clock (SCLK) frequency in MHz
Return Value
ADI_EBIU_RESULT_SUCCESS Process completed successfully.

ADI_EBIU_RESULT_NOT_INITIALIZED | SDRAM has not been successfully initialized, or
SDRAM had not been enabled.

4-10 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

External Bus Interface Unit Module

adi_ebiu_Control

Description

The adi_ebiu_Control() function enables the EBIU SDRAM and EBIU
DDR registers to be configured according to command-value pairs using
one of the following options. (See “ADI_EBIU_COMMAND_PAIR” on
page 4-39.)

* A single command-value pair is passed.

adi_ebiu_Control(
ADI_EBIU_CMD_SET_SDRAM_SRFS,
(void*)ADI_EBIU_SDRAM_SRFS_ENABLE
)

* A single command-value pair structure is passed.

ADI_EBIU_COMMAND_PAIR cmd = ¢{
ADI_EBIU_CMD_SET_SDRAM_SRFS,
(void*)ADI_EBIU_SDRAM_SRFS_ENABLE

b

adi_ebiu_Control (ADI_EBIU_CMD_PAIR, (void*)&cmd);

e A table of ADI_EBIU_COMMAND_PAIR structures is passed. The last
command-value entry in the table must be {ADI_EBIU_CMD_END,
0}.

ADI_EBIU_COMMAND_PAIR table[] = {

{ ADI_EBIU_CMD_SET_SDRAM_FBBRW,
(void*)ADI_EBIU_SDRAM_FBBRW_ENABLE 1},

{ ADI_EBIU_CMD_SET_SDRAM_CDDBG,
(void*)ADI_EBIU_CDDBG_ENABLE },

{ ADI_EBIU_CMD_END, 0 }

Visual DSP++ 5.0 Device Drivers and System 4-11
Services Manual for Blackfin Processors

Using the EBIU Module

adi_ebiu_Control(
ADI_EBIU_CMD_TABLE,
(void*)table

)

Refer to “ADI_EBIU_COMMAND?” on page 4-32 and “Command
Value Enumerations” on page 4-39 for the complete list of commands and
associated values for both the SDRAM and DDR interfaces and the asyn-
chronous memory interface.

Prototype

ADI_EBIU_RESULT adi_ebiu_Control(
ADI_EBIU_COMMAND Command,
void *Value

)

Arguments
Command ADI_EBIU_COMMAND enumeration value specifying the mean-
ing of the associated value argument
Value Required value. (See Description above.)

Return Value

ADI_EBIU_RESULT_BAD_COMMAND Command is not recognized.
ADI_EBIU_RESULT_SUCCESS Function completed successfully.
ADI_EBIU_RESULT_NOT_INITIALIZED EBIU module is not initialized.

ADI_EBIU_RESULT_INVALID_SDRAM_SRFS Invalid self-refresh value is specified. See
“ADI_EBIU_SDRAM_TCSR” on page 4-43.

ADI_EBIU_RESULT_INVALID_SDRAM_PUPSD | Invalid power-up start delay bit value is specified.
See “ADI_EBIU_SDRAM_EBUFE” on
page 4-44.

4-12 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

External Bus Interface Unit Module

ADI_EBIU_RESULT_INVALID_SDRAM_PSM

Invalid SDRAM power-up sequence bit value is
specified. See “ADI_EBIU_SDRAM_PUPSD”
on page 4-44.

ADI_EBIU_RESULT_INVALID_SDRAM_EBUFE

Invalid external buffering bit value is specified.

See “ADI_EBIU_SDRAM_SRFS” on page 4-43.

ADI_EBIU_RESULT_INVALID_SDRAM_FBBRW

Invalid fast back-to-back, read-to-write bit value
is specified. See “ADI_EBIU_SDRAM_FBBRW”
on page 4-45.

ADI_EBIU_RESULT_INVALID_SDRAM_CDDBG

Invalid control disable during bus grant bit value
is specified. See
“ADI_EBIU_SDRAM_CDDBG” on page 4-46.

ADI_EBIU_RESULT_INVALID_SDRAM_EBE

Invalid SDRAM enable selection. See
“ADI_EBIU_SDRAM_ENABLE” on page 4-40.

ADI_EBIU_RESULT_INVALID_ASYNCH_BANK_
READ_ACCESS_TIME

Invalid asynchronous memory read access time

ADI_EBIU_RESULT_INVALID_ASYNCH_BANK_
WRITE_ACCESS_TIME

Invalid asynchronous memory write access time

ADI_EBIU_RESULT_INVALID_ASYNCH_BANK_

Invalid asynchronous memory bank setup time

SETUP_TIME
ADI_EBIU_RESULT_INVALID_ASYNCH_BANK_ | Invalid asynchronous memory bank hold time
HOLD_TIME

Visual DSP++ 5.0 Device Drivers and System 4-13

Services Manual for Blackfin Processors

Using the EBIU Module

adi_ebiu_GetConfigSize

Description

The adi_ebiu_GetConfigSize() function returns the number of bytes
required to save the current configuration data. This value is also available
via the ADT_EBIU_SIZEOF_CONFIG macro.

Prototype

size_t adi_ebiu_GetConfigSize(void);

Return Value

The size of the configuration structure.

4-14 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

External Bus Interface Unit Module

adi_ebiu_Init

Description

The adi_ebiu_Init function initializes the EBIU module. Currently, the
module is configured to handle either a DDR or a SDRAM controller,
plus an asynchronous memory controller. For the EBIU service which
supports SRDRAM, the adi_ebiu_Init function sets up the EBIU_SDGCTL,
EBIU_SDBCTL, and EBIU_SDRRC registers to reflect the correct SDRAM con-
figuration attached to the processor. For the EBIU service that supports
DDR, the adi_ebiu_Init function sets up the DDR control registers,
DDRCTLO, DDRCTL1, and DDRCTL2. For successful initialization of the
SDRAM or the DDR controller, certain values must be passed to
adi_ebiu_Init, as outlined in Table 4-1 and Table 4-2—one for SDRAM
and one for DDR. Table 4-1 shows the values that must be passed to
adi_ebiu_Init to initialize SDRAM.

Table 4-1. Values for Initialization of SDRAM

Description Command Value Type

Bank size ADI_EBIU_CMD_SET_SDRAM_BANK_SIZE ADI_EBIU_SDRAM_BANK_VALUE
Bank column ADI_EBIU_CMD_SET_SDRAM_BANK_COLUMN_WIDTH | ADI_EBIU_SDRAM_BANK_VALUE
address width

CAS! latency ADI_EBIU_CMD_SET_SDRAM_CL_THRESHOLD u32

threshold (MHz)

Minimum TRAS2 | ADI_EBIU_CMD_SET_SDRAM_TRASMIN ADI_EBIU_TIME

(ns)

Min. TRDP3 (ns) ADI_EBIU_EBIU_CMD_SET_SDRAM_TRPMIN ADI_EBIU_TIME

Min. TRCD# (ns) | ADI_EBIU_CMD_SET_SDRAM_TRCDMIN ADT_EBTU_TIME

Min. TWR? ADI_EBIU_CMD_SET_SDRAM_TWRMIN ADI_EBIU_TIMING_VALUE

(cycles, ns)

Refresh period ADI_EBIU_CMD_SET_SDRAM_REFRESH ADI_EBIU_TIMING_VALUE
(cycles, ms)

Visual DSP++ 5.0 Device Drivers and System 4-15
Services Manual for Blackfin Processors

Using the EBIU Module

Column address strobe

Required delay between issuing a Bank Activate command and a Precharge command,
and between the Se1f-Refresh command and the exit from self-refresh.

Required delay between issuing a Precharge command and the Bank Activate,
Auto-Refresh, or Self-Refresh commands.
Required delay between issuing a Bank Activate command and the start of the first

read/write command.

Required delay between a Write command and a Precharge command.

Table 4-2 shows the values that must be passed to adi_ebiu_Init to ini-

t

ialize DDR.

Table 4-2. Values for Initialization of DDR

Description Command Value Type
Width of data ADI_EBIU_CMD_SET_DDR_DATA_WIDTH u32
Number of external ADI_EBIU_CMD_SET_DDR_EXTERNAL_BANKS | u32

banks

Width of device ADI_EBIU_CMD_SET_DDR_DEVICE_WIDTH u32

Size of device ADI_EBIU_CMD_SET_DDR_DEVICE_SIZE u32

Auto-refresh interval

ADI_EBIU_CMD_SET_DDR_REFI

ADI_EBIU_TIMING_VALUE

Auto-refresh command
period

ADI_EBIU_CMD_SET_DDR_RFC

ADI_EBIU_TIMING_VALUE

Interval between R/W
command and valid
data

ADI_EBIU_CMD_SET_DDR_CAS

u3?

Interval between active

and R/W command

ADI_EBIU_CMD_SET_DDR_RCD

ADI_EBIU_TIMING_VALUE

Active to active interval

ADI_EBIU_CMD_SET_DDR_RC

ADI_EBIU_TIMING_VALUE

Active to precharge
time

ADI_EBIU_CMD_SET_DDR_RAS

ADI_EBIU_TIMING_VALUE

Precharge to active time

ADI_EBIU_CMD_SET_DDR_RP

ADI_EBIU_TIMING_VALUE

4-16

Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

External Bus Interface Unit Module

Table 4-2. Values for Initialization of DDR (Cont'd)

Description Command Value Type

ting of mode register
and next command

Interval between set- ADI_EBIU_CMD_SET_DDR_MRD ADI_EBIU_TIMING_VALUE

Write to read interval ADI_EBIU_CMD_SET_DDR_WTR ADI_EBIU_TIMING_VALUE

Write recovery time ADI_EBIU_CMD_SET_DDR_WR ADI_EBIU_TIMING_VALUE

Upon successful initialization of the module, subsequent calls to
adi_ebiu_AdjustSDRAM adjust the SDRAM refresh rate in the EBIU_SDRRC
or DDRCTLO register to correspond with the given system clock frequency.

When multiple banks are used, the ADI_EBIU_CMD_SET_SDRAM_BANK_SIZE

and ADI_EBIU_CMD_SET_SDRAM_BANK_COL_WIDTH command-value pairs
must be specified for each bank.

If the system configuration makes use of low power (2.5 V) SDRAM, the
following values also need to be initialized.

Description Command

Value Type

register enable

Extended mode ADI_EBIU_CMD_SET_SDRAM_EMREN

ADI_EBIU_SDRAM_EMREN

Partial array ADI_EBIU_CMD_SET_SDRAM_PASR ADI_EBIU_PASR
self-refresh

Temperature ADI_EBIU_CMD_SET_SDRAM_TCSR ADI_EBIU_SDRAM_TCSR
compensated

self-refresh

Additional command-value pairs can be passed to the adi_ebiu_Init
function, which can also be passed to adi_ebiu_Control. See
adi_ebiu_Control for a description of those additional command-value

pairs.

Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

4-17

Using the EBIU Module

The adi_ebiu_Init function should be called only once, prior to
adjusting the power management settings, so that the SDRAM is adjusted
according to changes in SCLK. Subsequent calls to the function are
ignored.

Prototype

ADI_EBIU_RESULT adi_ebiu_Init(
const ADI_EBIU_COMMAND_PAIR *ConfigData,
const ul6 Reserved

)

Arguments
ConfigData Address of a table of command-value pairs as defined by
“ADI_EBIU_COMMAND?” on page 4-32 and “Command
Value Enumerations” on page 4-39. The last command in
the table must be the ADI_EBIU_CMD_END command.
Reserved ul16 value reserved for future use

Return Value

In debug mode, the returned values from calling adi_ebiu_Init to initial-

ize SDRAM are:

ADI_EBIU_RESULT_BAD_COMMAND Command-value pair is invalid.
ADI_EBIU_RESULT_FAILED Not all required items are initialized.
ADI_EBIU_RESULT_ALREADY_INITIALIZED EBIU module is already initialized.
ADI_EBIU_RESULT_INVALID_SDRAM_SCTLE Invalid SCTLE value specified.
ADI_EBIU_RESULT_INVALID_SDRAM_MODULE Invalid memory module type is speci-
fied.
ADI_EBIU_RESULT_INVALID_SDRAM_BANK_SIZE Invalid bank size is SpeCiﬁCd.

4-18 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

External Bus Interface Unit Module

ADI_EBIU_RESULT_INVALID_SDRAM_COL_WIDTH

Invalid column address width is speci-

fied.

ADI_EBIU_RESULT_INVALID_SDRAM_TWRMIN

Invalid TWRMIN value is specified.

ADI_EBIU_RESULT_INVALID_SDRAM_EMREN

Invalid EMREN value is specified.

ADI_EBIU_RESULT_INVALID_SDRAM_PASR

Invalid PASR value is specified.

ADI_EBIU_RESULT_INVALID_SDRAM_TCSR

Invalid TCSR value is specified.

In debug mode, the returned values from calling adi_ebiu_Init to initial-

ize DDR are:

ADI_EBIU_RESULT_SUCCESS

Generic success

ADI_EBIU_RESULT_FATLED

Generic failure

ADI_EBIU_RESULT_BAD_COMMAND

Invalid control command

ADI_EBIU_RESULT_INVALID_DDR_MODULE

Invalid SDRAM module type

ADI_EBIU_RESULT_INVALID_DDR_REFI

Invalid auto-refresh interval

ADI_EBIU_RESULT_INVALID_DDR_RFC

Invalid auto-refresh command

period

ADI_EBIU_RESULT_INVALID_DDR_RP

Invalid precharge to active
interval

ADI_EBIU_RESULT_INVALID_DDR_RAS

Invalid active to precharge
interval

ADI_EBIU_RESULT_INVALID_DDR_RC

Invalid active to active interval

ADI_EBIU_RESULT_INVALID_DDR_WTR

Invalid write to read interval

ADI_EBIU_RESULT_INVALID_DDR_DEVICE_SIZE

Invalid device size

ADI_EBIU_RESULT_INVALID_DDR_DEVICE_WIDTH

Invalid device width

ADI_EBIU_RESULT_INVALID_DDR_EXTERNAL_BANKS

Invalid number of external

banks

ADI_EBIU_RESULT_INVALID_DDR_DATA_WIDTH

Invalid data width

ADI_EBIU_RESULT_INVALID_DDR_WR

Invalid write recovery time

Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

4-19

Using the EBIU Module

ADI_EBIU_RESULT_INVALID_DDR_MRD

Invalid mode register selection

ADI_EBIU_RESULT_INVALID_DDR_RCD

Invalid active to R/W interval

ADI_EBIU_RESULT_INVALID_DDR_CAS

Invalid delay R/W to valid data

ADI_EBIU_RESULT_INVALID_DDR_PASR

Invalid partial array self-refresh
request

ADI_EBIU_RESULT_INVALID_DDR_SOFT_RESET

Invalid soft reset request

ADI_EBIU_RESULT_INVALID_DDR_SELF_REFRESH_REQUEST

Invalid self-refresh request

ADI_EBIU_RESULT_INVALID_DDR_MOBILE_DDR_ENABLE

Invalid mobile DDR enable
request

ADI_EBIU_RESULT_ALREADY_INITIALIZED

EBIU service already initialized

In debug mode, the returned values from calling adi_ebiu_Init to initial-

ize the asynchronous memory controller are:

ADI_EBIU_RESULT_SUCCESS

Generic success

ADI_EBIU_RESULT_FATLED

Generic failure

ADI_EBIU_RESULT_INVALID_ASYNCH_CLKOUT_ENABLE

Invalid selection for CLKOUT
enable

ADI_EBIU_RESULT_INVALID_ASYNCH_BANK_ENABLE

Invalid selection for bank
enable

ADI_EBIU_RESULT_INVALID_ASYNCH_BANK_NUMBER

Invalid bank number specified
in command argument

ADI_EBIU_RESULT_INVALID_ASYNCH_BANK_16_BIT_
PACKING_ENABLE

For ADSP-BF561 only. Invalid
specification for 16-bit packing
enable

ADI_EBIU_RESULT_INVALID_ASYNCH_BANK_TRANSITION_
TIME

Invalid transition time

ADI_EBIU_RESULT_INVALID_ASYNCH_BANK_READ_ACCESS_
TIME

Invalid read access time

ADI_EBIU_RESULT_INVALID_ASYNCH_BANK_WRITE_ACCESS_
TIME

Invalid write access time

4-20

Visual DSP++ 5.0 Device Drivers and System

Services Manual for Blackfin Processors

External Bus Interface Unit Module

ADI_EBIU_RESULT_INVALID_ASYNCH_BANK_SETUP_TIME

Invalid setup time

ADI_EBIU_RESULT_INVALID_ASYNCH_BANK_HOLD_TIME

Invalid hold time

ADI_EBIU_RESULT_INVALID_ASYNCH_BANK_ARDY_ENABLE

Invalid selection for ARDY
enable

ADI_EBIU_RESULT_INVALID_ASYNCH_BANK_ARDY_
POLARITY

Invalid selection for ARDY
polarity

ADI_EBIU_RESULT_ALREADY_INITIALIZED

EBIU service already initialized

Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

4-21

Using the EBIU Module

adi_ebiu_LoadConfig

Description

The adi_ebiu_LoadConfig function restores the current configuration
values from the memory location pointed to by the hConfig argument.

The SDRAM controller is reset.

Prototype

ADI_EBIU_RESULT adi_ebiu_LoadConfig(
ADI_EBIU_CONFIG_HANDLE hConfig,
size_t szConfig

)

Argument
hConfig Address of the memory area where the current configuration is
stored
szConfig Number of bytes available at the given address. Must be

greater than or equal to the adi_ebiu_GetConfigSize()
return value.

Return Value

ADI_EBIU_RESULT_SUCCESS

Process completed successfully.

ADI_EBIU_RESULT_NO_MEMORY

Value szConfig is too small.

ADI_EBIU_RESULT_NOT_INITIALIZED | SDRAM has not been successfully initialized.

4-22

Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

External Bus Interface Unit Module

adi_ebiu_SaveConfig

Description

The adi_ebiu_SaveConfig() function stores the current settings into the
memory area pointed to by the hConfig argument. Currently, only the
SDRAM configuration is saved.

Prototype

ADI_EBIU_RESULT adi_ebiu_SaveConfig(
ADI_EBIU_CONFIG_HANDLE hConfig,
size_t szConfig

Argument
hConfig Address of the memory location where the current configura-
tion is stored
szConfig Number of bytes available at the given address. Must be
greater than or equal to the adi_ebiu_GetConfigSize()
return value.

Return Value

ADI_EBIU_RESULT_SUCCESS Process completed successfully.

ADI_EBIU_RESULT_NO_MEMORY Value szConfig is too small.

ADI_EBIU_RESULT_NOT_INITIALIZED SDRAM has not been successfully initialized.

Visual DSP++ 5.0 Device Drivers and System 4-23
Services Manual for Blackfin Processors

Using the EBIU Module

adi_ebiu_Terminate

Description

The adi_ebiu_Terminate() function terminates the use of the EBIU
module.

Prototype

ADI_EBIU_RESULT adi_ebiu_Terminate(void);

Argument

The function takes no arguments.

Return Value

ADI_EBIU_RESULT_SUCCESS Process completed successfully.

4-24 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

External Bus Interface Unit Module

Public Data Types and Enumerations

This section provides descriptions of the public data types and
enumerations.

ADI_EBIU_RESULT

All public EBIU module functions return a result code of the enumeration
type, ADI_EBIU_RESULT. Note that SDRAM-related result codes typically

begin with the text ADI_EBIU_RESULT_INVALID_SDRAM while DDR-related

result codes typically begin with the text ADI_EBIU_RESULT_INVALID_DDR.

Table 4-3 lists possible values.

Table 4-3. EBIU Module Function Result Codes

Result Code Explanation
ADI_EBIU_RESULT_SUCCESS Generic success
ADI_EBIU_RESULT_FAILED Generic failure
ADI_EBIU_RESULT_BAD_COMMAND Invalid control command is
specified.
ADI_EBIU_RESULT_NOT_INITIALIZED Function call ignored with no

action taken, as the module has
not been initialized.

ADI_EBIU_RESULT_INVALID_SDRAM_EBE Invalid value for the EBE field of
the EBIU_SDBCTL register is
specified.

ADI_EBTU_RESULT_INVALID_SDRAM_BANK_SIZE Invalid value for the EBSZ field
of the EBIU_SDBCTL register is
specified.

ADI_EBIU_RESULT_INVALID_SDRAM_COL_WIDTH Invalid value for the EBCAW field
of the EBIU_SDBCTL register is
specified.

ADI_EBTU_RESULT_INVALID_SDRAM_CDDBG Invalid value for the CDDBG field
of the EBIU_SDGCTL register is
specified.

Visual DSP++ 5.0 Device Drivers and System 4-25
Services Manual for Blackfin Processors

Using the EBIU Module

Table 4-3. EBIU Module Function Result Codes (Contd)

Result Code

Explanation

ADI_EBIU_RESULT_INVALID_SDRAM_EBUFE

Invalid value for the EBUFE field
of the EBIU_SDGCTL register is
specified.

ADI_EBIU_RESULT_INVALID_SDRAM_EMREN

Invalid value for the EMREN field
of the EBIU_SDGCTL register is
specified.

ADI_EBIU_RESULT_INVALID_SDRAM_FBBRW

Invalid value for the FBBRW field
of the EBIU_SDGCTL register is
specified.

ADI_EBIU_RESULT_INVALID_SDRAM_PASR

Invalid value for the PASR field
of the EBIU_SDGCTL register is
specified.

ADI_EBIU_RESULT_INVALID_SDRAM_PSM

Invalid value for the PSM field of
the EBIU_SDGCTL register is
specified.

ADI_EBIU_RESULT_INVALID_SDRAM_PUPSD

Invalid value for the PUPSD field
of the EBIU_SDGCTL register is
specified.

ADI_EBIU_RESULT_INVALID_SDRAM_SRFS

Invalid value for the SRFS field
of the EBIU_SDGCTL register is
specified.

ADI_EBIU_RESULT_INVALID_SDRAM_TCSR

Invalid value for the TCSR field
of the EBIU_SDGCTL register is
specified.

ADI_EBIU_RESULT_INVALID_SDRAM_TWRMIN

Invalid value for TWRMIN is speci-
fied and causes TWR to be greater

than 3.

ADI_EBIU_RESULT_NO_MEMORY

Insufficient memory to load/save
configuration.

ADI_EBIU_RESULT_INVALID_EZKIT

Invalid EZ-KIT revision

ADI_EBIU_RESULT_INVALID_SDRAM_SCTLE

Invalid SCTLE value

ADI_EBIU_RESULT_INVALID_SDRAM_MODULE

Invalid SDRAM module type

4-26

Visual DSP++ 5.0 Device Drivers and System

Services Manual for Blackfin Processors

External Bus Interface Unit Module

Table 4-3. EBIU Module Function Result Codes (Contd)

Result Code

Explanation

ADI_EBIU_RESULT_INVALID_IVG

Invalid IVG level supplemental
interrupt (for dual-core
processors only

ADI_EBIU_RESULT_INVALID_SDRAM_BANK

Invalid bank number given

ADI_EBIU_RESULT_INVALID_SDRAM_SCKIE

Invalid SCK1E value

ADI_EBIU_RESULT_INVALID_DDR_MODULE

Invalid SDRAM (DDR) module
type

ADI_EBIU_RESULT_INVALID_DDR_REFI

Invalid refresh interval

ADI_EBIU_RESULT_INVALID_DDR_RFC

Invalid auto-refresh command

ADI_EBIU_RESULT_INVALID_DDR_RP

Invalid precharge to active inter-
val

ADI_EBIU_RESULT_INVALID_DDR_RAS

Invalid active to precharge inter-
val

ADI_EBIU_RESULT_INVALID_DDR_RC

Invalid active to active interval

ADI_EBIU_RESULT_INVALID_DDR_WTR

Invalid write to read interval

ADI_EBIU_RESULT_INVALID_DDR_DEVICE_SIZE

Invalid device size

ADI_EBIU_RESULT_INVALID_DDR_DEVICE_WIDTH

Invalid device width

ADI_EBIU_RESULT_INVALID_DDR_EXTERNAL_BANKS

Invalid number of external banks

ADI_EBIU_RESULT_INVALID_DDR_DATA_WIDTH

Invalid data width

ADI_EBIU_RESULT_INVALID_DDR_WR

Invalid write recovery time

ADI_EBIU_RESULT_INVALID_DDR_MRD

Invalid mode register selection

ADI_EBIU_RESULT_INVALID_DDR_RCD

Invalid active to R/W interval

ADI_EBIU_RESULT_INVALID_DDR_CAS

Invalid R/W to valid data

interval

ADI_EBIU_RESULT_INVALID_DDR_PASR

Invalid partial array self-refresh
request

ADI_EBIU_RESULT_INVALID_DDR_SOFT_RESET

Invalid soft reset request

Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

4-27

Using the EBIU Module

Table 4-3. EBIU Module Function Result Codes (Contd)

Result Code Explanation

ADI_EBIU_RESULT_INVALID_DDR_MOBILE_ENABLE Invalid mobile DDR enable

request

ADI_EBIU_RESULT_INVALID_DDR_SELF_REFRESH_REQUEST | Invalid self refresh request

ADI_EBIU_SDRAM_BANK_VALUE

The ADI_EBIU_SDRAM_BANK_VALUE structure specifies the settings that are
applied to a specific bank.

typedef struct ADI_EBIU_SDRAM_BANK_VALUE(
ulé bank;
Union {
ADI_EBIU_SDRAM_BANK_SIZE size;

ADI_EBIU_SDRAM_BANK_COL_WIDTH width;
b ovalue;

} ADI_EBIU_SDRAM_BANK_VALUE;

See “ADI_EBIU_SDRAM_BANK_SIZE” on page 4-40 and

“ADI_EBIU_SDRAM_BANK_COL_WIDTH?” on page 4-41 for details
of the size and width fields.

The bank field is intended for use only with Blackfin processors
that have multiple SDRAM banks.

4-28 Visual DSP++ 5.0 Device Drivers and System

Services Manual for Blackfin Processors

External Bus Interface Unit Module

ADI_EBIU_TIME

The ADI_EBIU_TIME structure enables users to specify a timing value as an
integral number of a given unit. It is defined as:

typedef struct ADI_EBIU_TIME {
u3? value;
ADI_EBIU_TIMING_UNIT units;
} ADI_EBIU_TIME;

where ADI_EBIU_TIMING_UNIT is an enumeration type defined as follows.

ADI_EBIU_TIMING_UNIT_MILLISEC Time value specified by the associated value in the
ADI_EBIU_TIME structure is in milliseconds (ms)

ADI_EBIU_TIMING_UNIT_MICROSEC Time value specified by the associated value in the
ADI_EBIU_TIME structure is in microseconds (ms)

ADI_EBIU_TIMING_UNIT_NANOSEC Time value specified by the associated value in the
ADI_EBIU_TIME structure is in nanoseconds (ns)

ADI_EBIU_TIMING_UNIT_PICOSEC Time value specified by the associated value in the
ADI_EBIU_TIME structure is in picoseconds (ps)

ADI_EBIU_TIMING_UNIT_FEMTOSEC Time value specified by the associated value in the
ADI_EBIU_TIME structure is in femtoseconds (fs)

The actual values of the enumeration fields are used as factors in the inte-
ger arithmetic within the module. The millisecond value, which is used as
a logic control value, is an exception, since it is not used as a factor.

Developers can use the complete range of units to enable timing values to
be expressed as an unsigned 32-bit integer. For example, the SDRAM on
the ADSP-BF533 EZ-KIT Lite board has a minimum TWR value of one
SCLK cycle and 7.5 ns. The time value must be passed as 7500 ps. Thus,
the ADI_EBIU_TIME value must be specified as:

ADI_EBIU_TIME time = {7500, ADI_EBIU_TIMING_UNIT_PICOSEC!};

Visual DSP++ 5.0 Device Drivers and System 4-29
Services Manual for Blackfin Processors

Using the EBIU Module

ADI_EBIU_TIMING_VALUE

Certain timing values required to correctly set the SDRAM control
registers are specified on the appropriate processor’s data sheet as a
number of SCLK cycles combined with a value expressed in one of several
units (for example, nanoseconds or milliseconds).

To facilitate the passing of such values to the adi_ebiu_Init function, the
ADI_EBIU_TIMING_VALUE structure is defined as:

typedef struct ADI_EBIU_TIMING_VALUE {
u3? cycles;
ADI_EBIU_TIME time;

} ADI_EBIU_TIMING_VALUE;

where ADI_EBIU_TIME is defined in “ADI_EBIU_TIME” on page 4-29.
For example, the SDRAM on the ADSP-BF533 EZ-KIT Lite board has a

minimum TWR value of one SCLK cycle and 7.5 ns. Using the above struc-
ture, this value is expressed as:

ADI_EBIU_TIMING_VALUE twrmin
= {1, {7500, ADI_EBIU_TIMING_UNIT_PICOSEC}};

ADI_EBIU_ASYNCH_BANK_TIMING

The asynchronous memory controller supports a number of different
interfaces, therefore a structure is provided which allows the bank specific
timing parameters to be specified either in cycles, or in timing units, buz
not both.

If the parameter is specified in cycles, the value is written directly to the
register. If the value is specified in timing units, it is converted to cycles
based on the presence of a 133 MHz system clock, and the converted
value is written to the register.

4-30 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

External Bus Interface Unit Module

Timing values used to set the asynchronous memory control registers
should be derived from the appropriate data sheet for the type of memory
device used.

The structure used to specify the timing parameters for the asynchronous
memory interface is shown below. It contains two other structures: the
enumeration “ADI_EBIU_BANK_NUMBER?” on page 4-46 and the
structure “ADI_EBIU_TIMING_VALUE” on page 4-30.

typedef struct ADI_EBIU_ASYNCH_BANK_TIMING

{
ADI_EBITU_BANK_NUMBER bank_number;
ADI_EBIU_TIMING_VALUE bank_time;

} ADI_EBIU_ASYNCH_BANK_TIMING;

ADI_EBIU_ASYNCH_BANK_VALUE

Because many of the EBIU parameters are bank specific, and specify a
binary value such as enabled and disabled, a structure is provided which
contains a bank number along with a union of three different enumera-
tions that have two possible values.

The ADI_EBIU_ASYNCH_BANK_VALUE structure, shown below, is used for the
ARDY polarity, which is either low or high. (See
“ADI_EBIU_ASYNCH_BANK_ARDY_POLARITY” on page 4-48.) Itis
used for the ARDY enable, which is either enabled or disabled. (See
“ADI_EBIU_ASYNCH_BANK_ARDY_ENABLE” on page 4-48.) It is
also used for the 16-bit packing enable field (for the ADSP-BF561 only),
which is either 16-bit packing enabled or 32-bit packing disabled. (See
“ADI_EBIU_ASYNCH_BANK_DATA_PATH” on page 4-47.)

typedef struct ADI_EBIU_ASYNCH_BANK_VALUE
{

u32 bank_number;

union

Visual DSP++ 5.0 Device Drivers and System 4-31
Services Manual for Blackfin Processors

Setting Control Values in the EBIU Module

ADI_EBIU_ASYNCH_BANK_ARDY_POLARITY ardy_polarity;
ADI_EBIU_ASYNCH_BANK_ARDY_ENABLE ardy_enable;
fif defined(__ADSP_TETON__)
ADI_EBIU_ASYNCH_BANK_DATA_PATH data_path;
fendif
b ovalue;

} ADI_EBIU_ASYNCH_BANK_VALUE;

Setting Control Values in the EBIU
Module

To set control values in the EBIU module, the user passes command-value
pairs (of the type ADI_EBIU_COMMAND_PAIR) to the adi_ebiu_Init and
adi_ebiu_Control functions (either individually or as a table). Note that
adi_ebiu_Init only allows a table to be supplied. This section describes
the command-value pair structure and valid commands.

ADI_EBIU_COMMAND

The ADI_EBIU_COMMAND is used to control/access the configuration of the
EBIU module. It is used in an ADI_EBIU_COMMAND_PAIR couplet to set a
configuration value in calls to adi_ebiu_Init and adi_ebiu_Control.
Note that SDRAM-related commands typically begin with the text
ADI_EBIU_CMD_SET_SDRAM while DDR-related commands typically begin
with the text ADI_EBIU_CMD_SET_DDR.

4-32 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

External Bus Interface Unit Module

Table 4-4. ADI_EBIU_COMMAND Data Values

Command

Associated Data Value

General commands used with both the adi_ebiu_Control and adi_ebiu_Init functions.

ADI_EBIU_CMD_END

Defines the end of a table of command pairs.

ADI_EBIU_CMD_SET_SDRAM_EBUFE

ADI_EBIU_SDRAM_EBUFE value specifying
whether external buffers are used when several
SDRAM devices are used. See
“ADI_EBIU_SDRAM_EBUFE” on page 4-44.

ADI_EBIU_CMD_SET_SDRAM_FBBRW

ADI_EBIU_SDRAM_FBBRMW value specifying
whether to enable/disable fast back-to-back
read/write operations. See

“ADI_EBIU_SDRAM_FBBRW” on page 4-45.

ADI_EBIU_CMD_SET_SDRAM_CDDBG

ADI_EBIU_SDRAM_CDDBG value specifying
whether to enable/disable SDRAM control sig-
nals when the external memory interface is
granted to an external controller. See

“ADI_EBIU_SDRAM_CDDBG” on page 4-46.

ADI_EBIU_CMD_SET_SDRAM_PUPSD

ADI_EBIU_SDRAM_PUPSD value specifying
whether the power-up start sequence is delayed
by 15 SCLK cycles. See
“ADI_EBIU_SDRAM_PUPSD” on page 4-44.

ADI_EBIU_CMD_SET_SDRAM_PSM

ADI_EBIU_SDRAM_PSM value specifying the order
of events in the power-up start sequence. See

“ADI_EBIU_SDRAM_PSM” on page 4-45.

ADI_EBIU_CMD_SET_ASYNCH_BANK_
TRANSITION_TIME

ADI_EBIU_ASYNCH_BANK_TIMING value specify-
ing an ADI_EBIU_BANK_NUMBER and an
ADI_EBIU_TIMING_VALUE that specifies the
transition time in either cycles or timing units.
See “ADI_EBIU_ASYNCH_BANK_TIMING”
on page 4-30.

ADI_EBIU_CMD_SET_ASYNCH_BANK_READ_
ACCESS_TIME

ADI_EBIU_ASYNCH_BANK_TIMING value specify-
ing an ADI_EBIU_BANK_NUMBER and an
ADI_EBIU_TIMING_VALUE that specifies the read
access time in either cycles or timing units. See
“ADI_EBIU_ASYNCH_BANK_TIMING” on
page 4-30.

Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

4-33

Setting Control Values in the EBIU Module

Table 4-4. ADI_EBIU_COMMAND Data Values (Cont’d)

Command

Associated Data Value

ADI_EBIU_CMD_SET_ASYNCH_BANK_WRITE_
ACCESS_TIME

ADI_EBIU_ASYNCH_BANK_TIMING value Specify—
ing an ADI_EBIU_BANK_NUMBER and an
ADI_EBIU_TIMING_VALUE that speciﬁes the
write access time in either cycles or timing units.
See “ADI_EBIU_ASYNCH_BANK_TIMING”
on page 4-30.

ADI_EBIU_CMD_SET_ASYNCH_BANK_SETUP_
TIME

ADI_EBIU_ASYNCH_BANK_TIMING value specify-
ing an ADI_EBIU_BANK_NUMBER and an
ADI_EBIU_TIMING_VALUE that specifies the
setup time in either cycles or timing units. See
“ADI_EBIU_ASYNCH_BANK_TIMING” on
page 4-30.

ADI_EBIU_CMD_SET_ASYNCH_BANK_HOLD_
TIME

ADI_EBIU_ASYNCH_BANK_TIMING value Specify-
ing an ADI_EBIU_BANK_NUMBER and an
ADI_EBIU_TIMING_VALUE that specifies the hold
time in either cycles or timing units. See
“ADI_EBIU_ASYNCH_BANK_TIMING” on
page 4-30.

Commands valid only when passed to the adi_ebiu_Init function.

ADI_EBIU_CMD_SET_SDRAM_MODULE

ADI_EBIU_SDRAM_MODULE_TYPE value contain-
ing the configured Micron memory module. This
value applies to all banks in use. See
“ADI_EBIU_SDRAM_MODULE_TYPE” on
page 4-41.

ADI_EBIU_CMD_SET_SDRAM_BANK_SIZE

Address of an ADI_EBIU_SDRAM_BANK_VALUE
structure containing the bank number and the
external bank size. Refer to
“ADI_EBIU_SDRAM_BANK_VALUE” on
page 4-28 and
“ADI_EBIU_SDRAM_BANK_SIZE” on
page 4-40.

4-34

Visual DSP++ 5.0 Device Drivers and System

Services Manual for Blackfin Processors

External Bus Interface Unit Module

Table 4-4. ADI_EBIU_COMMAND Data Values (Cont’d)

Command

Associated Data Value

ADI_EBIU_CMD_SET_SDRAM_BANK_COL_WIDTH

Address of an ADI_EBIU_SDRAM_BANK_VALUE
structure containing the bank number and the
external bank column address width. See
“ADI_EBIU_SDRAM_BANK_VALUE” on
page 4-28 and
“ADI_EBIU_SDRAM_BANK_COL_WIDTH”
on page 4-41.

ADI_EBIU_CMD_SET_SDRAM_CL_THRESHOLD

u32 value specifying the SCLK frequency thresh-
old, which determines the CAS latency value to
use.

ADI_EBIU_CMD_SET_SDRAM_TRASMIN

ADI_EBIU_TIME value setting the minimum
TRAS value described in the appropriate Blackfin
processor data sheet of the appropriate SDRAM.
See “ADI_EBIU_TIME” on page 4-29.

ADI_EBIU_CMD_SET_SDRAM_TRPMIN

ADI_EBIU_TIME value setting the minimum TRP
value as described in the appropriate Blackfin
processor data sheet of the appropriate SDRAM.
See “ADI_EBIU_TIME” on page 4-29.

ADI_EBIU_CMD_SET_SDRAM_TRCDMIN

ADI_EBIU_TIME value setting the minimum
TRCD value as described in the appropriate Black-
fin processor data sheet of the appropriate
SDRAM. See “ADI_EBIU_TIME” on

page 4-29.

ADI_EBIU_CMD_SET_SDRAM_TWRMIN

Address of an ADI_EBIU_TIMING_VALUE struc-
ture containing the minimum TWR value as
described in the appropriate Blackfin processor
data sheet of the appropriate SDRAM. See
“ADI_EBIU_TIMING_VALUE” on page 4-30.

ADI_EBIU_CMD_SET_SDRAM_REFRESH

Address of an ADI_EBIU_TIMING_VALUE struc-
ture containing the maximum tggg value
described in the appropriate Blackfin processor
data sheet of the appropriate SDRAM.

See “ADI_EBIU_TIME” on page 4-29.

ADI_EBIU_CMD_SET_SDGCTL_REG

u32 word containing the entire contents of the
EBIU_SDGCTL register

Visual DSP++ 5.0 Device Drivers and System 4-35

Services Manual for Blackfin Processors

Setting Control Values in the EBIU Module

Table 4-4. ADI_EBIU_COMMAND Data Values (Cont’d)

Command

Associated Data Value

ADI_EBIU_CMD_SET_SDBCTL_REG

ul6 word containing the entire contents of the
EBIU_SDBCTL register

ADI_EBIU_CMD_SET_SDRAM_EMREN

ADI_EBIU_SDRAM_EMREN value specifying
whether low power (2.5 V) SDRAM is used. See
“ADI_EBIU_SDRAM_MODULE_TYPE” on
page 4-41.

ADI_EBIU_CMD_SET_SDRAM_PASR

ADI_EBIU_SDRAM_PASR value specifying which
banks are refreshed. Applicable only to low power
SDRAM. See
“ADI_EBIU_CMD_SET_SDRAM_SCTLE” on
page 4-41.

ADI_EBIU_CMD_SET_SDRAM_TCSR

ADI_EBIU_SDRAM_TCSR value specifying the
temperature-compensated, self-refresh value.
This command can only be used for low power
SDRAM. See “ADI_EBIU_SDRAM_PASR” on
page 4-42.

ADI_EBIU_CMD_SET_SDRAM_SCTLE

ADI_EBIU_SDRAM_SCTLE value specifying
whether the SDC is enabled. See
“ADI_EBIU_CMD_SET_SDRAM_SCTLE” on
page 4-41.

ADI_EBIU_CMD_SET_DDR_DATA_WIDTH

Set DDR width of data

ADI_EBIU_CMD_SET_DDR_EXTERNAL_BANKS

Set number of DDR external banks

ADI_EBIU_CMD_SET_DDR_DEVICE_WIDTH

Set DDR width of device

ADI_EBIU_CMD_SET_DDR_DEVICE_SIZE

Set size of device

ADI_EBIU_CMD_SET_DDR_REFI

Set DDR auto-refresh interval

ADI_EBIU_CMD_SET_DDR_RFC

Set auto-refresh command period

ADI_EBIU_CMD_SET_DDR_CAS

Set DDR CAS latency: cycles from R/W to first
valid data

ADI_EBIU_CMD_SET_DDR_RCD

Set interval between active command and R/W
assertion

ADI_EBIU_CMD_SET_DDR_RC

Set interval between successive DDR activate
commands

4-36

Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

External Bus Interface Unit Module

Table 4-4. ADI_EBIU_COMMAND Data Values (Cont’d)

Command

Associated Data Value

ADI_EBIU_CMD_SET_DDR_RAS

Set DDR active to precharge interval

ADI_EBIU_CMD_SET_DDR_RP

Set DDR precharge to active interval

ADI_EBIU_CMD_SET_DDR_MRD

Set DDR interval between setting of mode
register and next command

ADI_EBIU_CMD_SET_DDR_WTR

Set DDR interval between write and read
command

ADI_EBIU_CMD_SET_DDR_WR

Set DDR write recovery time

ADI_EBIU_CMD_SET_DDR_PASR

Set DDR partial array self-refresh for mobile
DDR only. See “ADI_EBIU_DDR_PASR” on
page 4-51.

ADI_EBIU_CMD_SET_DDR_SOFT_RESET

Issue DDR soft reset

ADI_EBIU_CMD_MOBILE_DDR_ENABLE

Enable mobile DDR

ADI_EBIU_CMD_SET_FREQ_AS_MHZ

Sets DDR frequency units to megahertz

ADI_EBIU_CMD_SET_ASYNCH_BANK_ARDY_
ENABLE

ADI_EBIU_ASYNCH_BANK_VALUE specifying a
bank number and an
ADI_EBTU_ASYNCH_BANK_ARDY_ENABLE that
specifies whether the ARDY input will be sampled
for this bank. See
“ADI_EBIU_ASYNCH_BANK_ARDY_ENAB
LE” on page 4-48.

ADI_EBIU_CMD_SET_ASYNCH_BANK_ARDY_
POLARITY

ADI_EBIU_ASYNCH_BANK_VALUE specifying a
bank number and an
ADI_EBTU_ASYNCH_BANK_ARDY_POLARITY that
specifies the polarity of the ARDY input sample
that indicates the completion of the access time.
See
“ADI_EBIU_ASYNCH_BANK_ARDY_POLA
RITY” on page 4-48.

Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

4-37

Setting Control Values in the EBIU Module

Table 4-4. ADI_EBIU_COMMAND Data Values (Cont’d)

Command

Associated Data Value

ADI_EBIU_CMD_SET_ASYNCH_BANK_16_BIT_
PACKING_ENABLE

For ADSP-BF561 processors only
ADI_EBIU_ASYNCH_BANK_VALUESpedﬁdnga
bank number and an
ADIiEBIUiASYNCHiBANKiDATAipATHthatSpCCL
fies whether or not 16-bit packing is enabled. See
“ADI_EBIU_ASYNCH_BANK_DATA_PATH”
on page 4-47.

ADI_EBIU_CMD_SET_ASYNCH_BANK_ENABLE

ADI_EBIU_ASYNCH_BANK_ENABLEVﬂuespedﬁh
ing which banks to enable. See
“ADI_EBIU_ASYNCH_BANK_ENABLE” on
page 4-47.

ADI_EBIU_CMD_SET_ASYNCH_CLKOUT_
ENABLE

ADI_EBIU_ASYNCH_CLKOUT value specifying
whether to enable or disable CLKOUT in the asyn-
chronous global control register. See
“ADI_EBIU_ASYNCH_CLKOUT” on

page 4-47.

ADI_EBIU_CMD_SET_ASYNCH_AMGCTL

16-bit numeric value used to simultaneously set
all the fields of the asynchronous memory global
control register

ADI_EBIU_CMD_SET_ASYNCH_AMBCTLO

32-bit numeric value used to simultaneously set
all the fields of the asynchronous memory bank
control register 0 at once

ADI_EBIU_CMD_SET_ASYNCH_AMBCTL1

32-bit numeric value used to simultaneously set
all the fields of the asynchronous memory bank
control register 1 at once

Commands valid only when passed to the adi_ebiu_Control function.

ADI_EBIU_CMD_PAIR

Used to tell adi_ebiu_control that a single
command pair is being passed.

ADI_EBIU_CMD_TABLE

Used to tell adi_ebiu_control that a table of
command pairs is being passed.

ADI_EBIU_CMD_SET_SDRAM_ENABLE

ADI_EBIU_SDRAM_ENABLE value enabling/dis-
abling external SDRAM. Automatically set upon
initialization. See

“ADI_EBIU_SDRAM_ENABLE” on page 4-40.

4-38

Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

External Bus Interface Unit Module

Table 4-4. ADI_EBIU_COMMAND Data Values (Cont’d)

Command Associated Data Value

ADI_EBIU_CMD_SET_SDRAM_SRFS ADI_EBIU_SDRAM_SRFS value enabling/dis-

abling self-refresh of SDRAM during inactivity.

See “ADI_EBIU_SDRAM_TCSR” on
page 4-43.

ADI_EBIU_CMD_DDR_SELF_REFRESH_REQUEST | Request DDR self-refresh

ADI_EBIU_COMMAND_PAIR

The ADI_EBIU_COMMAND_PAIR data type enables developers to generate a

table of control commands to pass to the EBIU via the adi_ebiu_Init and
adi_ebiu_Control functions:

typedef struct ADI_EBIU_COMMAND_PAIR (
ADI_EBIU_COMMAND kind;
void *value;

} ADI_EBIU_COMMAND_PAIR;

Command Value Enumerations

The following enumerations are used to specify the required information
to set up the SDRAM controller. For further information on the values
required, refer to Engineer-to-Engineer Note EE-21 0.

U Refer to SDRAM Selection Guidelines and Configuration for ADI Processors, EE-210, Rev 2, August
2004.

Visual DSP++ 5.0 Device Drivers and System 4-39
Services Manual for Blackfin Processors

Setting Control Values in the EBIU Module

ADI_EBIU_SDRAM_ENABLE

This enumeration specifies if SDRAM is enabled or disabled. This enu-
meration corresponds to the EBE bit in the EBIU_SDBCTL register.

ADI_EBIU_SDRAM_EBE_DISABLE Disables SDRAM.

ADI_EBIU_SDRAM_EBE_ENABLE Enables SDRAM.

The default value is specified by the following macro:

ftdefine ADI_EBIU_SDRAM_EBE_DEFAULT ADI_EBIU_SDRAM_EBE_DISABLE

ADI_EBIU_SDRAM_BANK_SIZE

This enumeration specifies the SDRAM external bank size. This enumera-
tion corresponds to the EBSZ bits in the EBIU_SDBCTL register.

ADI_EBIU_SDRAM_BANK_16MB 16MB external SDRAM
ADI_EBIU_SDRAM_BANK_32MB 32MB external SDRAM
ADI_EBIU_SDRAM_BANK_64MB 6 4MB external SDRAM
ADI_EBIU_SDRAM_BANK_128MB 128MB external SDRAM

The default value is specified by the following macro:

jtdefine ADI_EBIU_SDRAM_BANK_SIZE_DEFAULT
ADI_EBIU_SDRAM_BANK_32MB

4-40 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

External Bus Interface Unit Module

ADI_EBIU_SDRAM_BANK_COL_WIDTH

This enumeration specifies the SDRAM external bank column address
width and corresponds to the EBCAW bits in the EBIU_SDBCTL register.

ADI_EBIU_SDRAM_BANK_COL_8BIT 8-bit external bank column address width
ADI_EBIU_SDRAM_BANK_COL_9BIT 9-bit external bank column address width
ADI_EBIU_SDRAM_BANK_COL_10BIT 10-bit external bank column address width
ADI_EBIU_SDRAM_BANK_COL_11BIT 11-bit external bank column address width

The default value is specified by the following macro:

ftdefine ADI_EBIU_SDRAM_BANK_COL_WIDTH_DEFAULT
ADI_EBIU_SDRAM_BANK_COL_9BIT

ADI_EBIU_SDRAM_MODULE_TYPE

This enumeration specifies an SDRAM module type when the command
ADI_EBIU_CMD_SET_SDRAM_MODULE is used to initialize the SDRAM con-
troller. The enumerator values contain relevant module information such
as the speed grade and configuration settings. The external memory bank
size must also be specified using the ADI_EBIU_CMD_SET_SDRAM_BANK_SIZE
command. Because Analog Devices EZ-KIT Lite boards include SDRAM
supplied by Micron, this information applies only to Micron parts. The
list of valid enumeration values are found in the API header file,
adi_pwr.h.

ADI_EBIU_CMD_SET SDRAM_SCTLE

This enumeration specifies if the SDRAM controller is enabled or disabled
and corresponds to the SCTLE bit in the EBIU_SDGCTL register.

ADI_EBIU_SDRAM_SCTLE_DISABLE Disable SDRAM controller.
ADI_EBIU_SDRAM_SCTLE_ENABLE Enable SDRAM controller.
Visual DSP++ 5.0 Device Drivers and System 4-41

Services Manual for Blackfin Processors

Setting Control Values in the EBIU Module

ADI_EBIU_SDRAM_EMREN

This enumeration specifies that low power (2.5 V) SDRAM is used and
corresponds to the EMREN bit in the EBIU_SDGCTL register.

ADI_EBIU_SDRAM_EMREN_DISABLE Mobile low power SDRAM is not present.

ADI_EBIU_SDRAM_EMREN_ENABLE Mobile low power SDRAM is present.

The default value is specified by the following macro:

ftdefine ADI_EBIU_SDRAM_EMREN_DEFAULT
ADI_EBIU_SDRAM_EMREN_DISABLE

ADI_EBIU_SDRAM_PASR

When low power (2.5 V) SDRAM is used, this enumeration specifies the
banks to refresh. This enumeration corresponds to the PASR bits in the
EBIU_SDGCTL register.

ADI_EBTIU_SDRAM_PASR_ALL All four SDRAM banks are refreshed.
ADI_EBIU_SDRAM_PASR_INTO1 Internal SDRAM banks 0 and 1 are refreshed.
ADI_EBIU_PASR_INTO_ONLY Only internal bank 0 is refreshed.

The default value is specified by the following macro:

ftdefine ADI_EBIU_SDRAM_PASR_DEFAULT ADI_EBIU_SDRAM_PASR_ALL

4-42 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

External Bus Interface Unit Module

ADI_EBIU_SDRAM_TCSR
When low power (2.5 V) SDRAM is used, this enumeration specifies the

temperature-compensated, self-refresh value and corresponds to the TCSR
bits in the EBIU_SDGCTL register.

ADI_EBIU_SDRAM_TCSR_45DEG SDRAM banks are refreshed if the temperature
exceeds 45° C.

ADI_EBIU_SDRAM_TCSR_85DEG SDRAM banks are refreshed if the temperature
exceeds 85° C.

The default value is specified by the following macro:

ftdefine ADI_EBIU_SDRAM_TCSR_DEFAULT ADI_EBIU_SDRAM_TCSR_45DEG

ADI_EBIU_SDRAM_SRFS

This enumeration specifies whether the EBIU is to enable/disable
SDRAM self-refresh during periods of inactivity. This enumeration
corresponds to the SRFS bit in the EBIU_SDGCTL register.

For example, SDRAM self-refresh is enabled when the processor mode is
put into “deep sleep” via the power management module. For more infor-
mation, see “Power Management Module” on page 3-1.

ADI_EBIU_SDRAM_SRFS_DISABLE Disables SDRAM self-refresh on inactivity.

ADI_EBIU_SDRAM_SRFS_ENABLE Enables SDRAM self-refresh on inactivity.

The default value is specified by the following macro:

ffdefine ADI_EBIU_SDRAM_SRFS_DEFAULT
ADI_EBIU_SDRAM_SRFS_DISABLE

Visual DSP++ 5.0 Device Drivers and System 4-43
Services Manual for Blackfin Processors

Setting Control Values in the EBIU Module

ADI_EBIU_SDRAM_EBUFE

This enumeration specifies whether the EBIU uses external buffers when
several SDRAM devices are used in parallel. This enumeration corre-
sponds to the EBUFE bit in the EBIU_SDGCTL register.

ADI_EBIU_SDRAM_EBUFE_DISABLE Disables the use of external buffers when several
SDRAM devices are used in parallel.

ADI_EBIU_SDRAM_EBUFE_ENABLE Enables the use of external buffers when several
SDRAM devices are used in parallel.

The default value is specified by the following macro:
ftdefine ADI_EBIU_SDRAM_EBUFE_DEFAULT
ADI_EBIU_SDRAM_EBUFE_DISABLE

ADI_EBIU_SDRAM_PUPSD

This enumeration specifies whether the power-up start sequence is delayed
by 15 SCLK cycles. This enumeration corresponds to the PUPSD bit in the
EBIU_SDGCTL register.

ADI_EBIU_SDRAM_PUPSD_NODELAY No delay to the power-up start sequence.

ADI_EBIU_SDRAM_PUPSD_15CYCLES Power-up start sequence is delayed by 15 SCLK cycles.

The default value is specified by the following macro:

ftdefine ADI_EBIU_SDRAM_PUPSD_DEFAULT
ADI_EBIU_SDRAM_PUPSD_NODELAY

4-44 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

External Bus Interface Unit Module

ADI_EBIU_SDRAM_PSM

This enumeration specifies the SDRAM power-up sequence. This enu-
meration corresponds to the PSM bit in the EBIU_SDGCTL register.

ADI_EBIU_SDRAM_PSM_REFRESH_FIRST SDC performs a Precharge Al1l command, fol-
lowed by eight auto-refresh cycles, and then a Load
Mode Register command

ADI_EBIU_SDRAM_PSM_REFRESH_LAST SDC performs a Precharge A1l command, fol-
lowed by a Load Mode Register command, and
then completes eight auto-refresh cycles.

The default value is specified by the following macro:

jfdefine ADI_EBIU_SDRAM_PSM_DEFAULT
ADI_EBIU_SDRAM_PSM_REFRESH_FIRST

ADI_EBIU_SDRAM_FBBRW

This enumeration specifies whether the EBIU uses fast back-to-back,
read-write access to allow SDRAM read and write operations on
consecutive cycles. This enumeration corresponds to the FBBRW bit in the
EBIU_SDGCTL register.

ADI_EBIU_SDRAM_FBBRW_DISABLE Fast back-to-back, read-write access disabled.

ADI_EBIU_SDRAM_FBBRW_ENABLE SDRAM read and write operations occur on
consecutive cycles.

The default value is specified by the following macro:

jtdefine ADI_EBIU_SDRAM_FBBRW_DEFAULT
ADI_EBIU_SDRAM_FBBRW_DISABLE

Visual DSP++ 5.0 Device Drivers and System 4-45
Services Manual for Blackfin Processors

Setting Control Values in the EBIU Module

ADI_EBIU_SDRAM_CDDBG

This enumeration enables or disables the SDRAM control signals when
the external memory interface is granted to an external controller. This
enumeration corresponds to the CDDBG bit in the EBIU_SDGCTL register.

ADI_EBIU_SDRAM_CDDBG_DISABLE Disables the SDRAM control signals when the
external memory interface is granted to an external
controller.

ADI_EBIU_SDRAM_CDDBG_ENABLE Enables the SDRAM control signals when the
external memory interface is granted to an external

controller.

The default value is specified by the following macro:
jtdefine ADI_EBIU_SDRAM_CDDBG_DEFAULT
ADI_EBIU_SDRAM_CDDBG_DISABLE

ADI_EBIU_BANK_NUMBER

This enumeration is used to specify the bank number 0, 1, 2, or 3, for
which the associated command applies. It can also be used to specify all

banks.

ADI_EBIU_BANK_O Command is for bank 0.
ADI_EBIU_BANK_1 Command is for bank 1.
ADI_EBTU_BANK_? Command is for bank 2.
ADI_EBIU_BANK_3 Command is for bank 3.
ADI_EBTU_BANK_ALL Command is for ALL four banks.
4-46 Visual DSP++ 5.0 Device Drivers and System

Services Manual for Blackfin Processors

External Bus Interface Unit Module

ADI_EBIU_ASYNCH_BANK_ENABLE

This enumeration specifies which banks are being enabled. It corresponds
to the AMBEN bits in the asynchronous memory global control register.

ADI_EBIU_ASYNCH_DISBALE_ALL Disables all banks.
ADI_EBTIU_ASYNCH_BANKO Enables bank 0.
ADI_EBIU_ASYNCH_BANKO_1 Enables banks 0 and 1.
ADI_EBIU_ASYNCH_BANKO_1_2 Enables banks 0, 1, and 2.
ADI_EBTU_ASYNCH_BANKO_1_2_3 Enables all banks.

ADI_EBIU_ASYNCH_CLKOUT

This enumeration specifies whether CLKOUT is enabled for external memory
access. It corresponds to the AMCKEN bits in the asynchronous memory
global control register.

ADI_EBIU_ASYNCH_CLKOUT_DISABLE CLKOUT is disabled.

ADI_EBIU_ASYNCH_CLKOUT_ENABLE CLKOUT is enabled.

ADI_EBIU_ASYNCH_BANK_DATA_PATH
This enumeration is for the ADSP-BF561 only. It specifies whether 16-bit

packing is enabled on the asynchronous memory bus. It corresponds to
the BXPEN bits in the asynchronous memory global control register, where
X is the bank number.

ADI_EBIU_ASYNCH_BANK_DATA_PATH_32 16-bit packing in NOT enabled.

ADI_EBIU_ASYNCH_BANK_DATA_PATH_16 16-bit packing is enabled.

Visual DSP++ 5.0 Device Drivers and System 4-47
Services Manual for Blackfin Processors

Setting Control Values in the EBIU Module

ADI_EBIU_ASYNCH_BANK_ARDY_ENABLE

Each asynchronous bank can be programmed to sample the ARDY input,
which allows the bank access time to be extended. Sampling the ARDY pin
determines how long to extend the access time. This enumeration specifies
whether or not the ARDY signal will be sampled. It corresponds to the
BXRDYEN bit (where X is the bank number) in the asynchronous memory
bank control 0 register (for banks 0 and 1) or the asynchronous memory
bank control 1 register (for banks 2 and 3).

ADI_EBIU_ASYNCH_ARDY_DISABLE Sampling of ARDY is disabled.

ADI_EBIU_ASYNCH_ARDY_ENABLE Sampling of ARDY is enabled.

ADI_EBIU_ASYNCH_BANK_ARDY_POLARITY

This enumeration specifies, if ARDY is enabled, whether the access time is
complete when the ARDY signal is low or high. It corresponds to the
BXRDYPOL bit (where X is the bank number) in the asynchronous memory
bank control 0 register (for banks 0 and 1) or the asynchronous memory
bank control 1 register (for banks 2 and 3).

ADI_EBIU_ASYNCH_ARDY_POLARITY_LOW Transaction is complete if ARDY is low.

ADI_EBIU_ASYNCH_ARDY_POLARITY_HIGH Transaction is complete if ARDY is high.

ADI_EBIU_ASYNCH_HOLD_TIME

The hold time for the asynchronous memory controller is specified in the
bank_time field of an “ADI_EBIU_ASYNCH_BANK_TIMING?” struc-
ture. That field is of type “ADI_EBIU_TIMING_VALUE”, which in this
case can either specify a number of cycles or an “ADI_EBIU_TIME”
value, but not both.

When cycles are used, the ADI_EBIU_ASYNCH_HOLD_TIME enumeration spec-
ifies the number of cycles of hold time. It corresponds to the BXHT bit

4-48 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

External Bus Interface Unit Module

(where X is the bank number) in the asynchronous memory bank control 0
register (for banks 0 and 1) or the asynchronous memory bank control 1

register (for banks 2 and 3).

ADI_EBIU_ASYNCH_HT_O_CYCLES

0 cycles hold time

ADI_EBIU_ASYNCH_HT_1_CYCLES

1 cycles hold time

ADI_EBIU_ASYNCH_HT_2_CYCLES

2 cycles hold time

ADI_EBIU_ASYNCH_HT_3_CYCLES

3 cycles hold time

ADI_EBIU_ASYNCH_SETUP_TIME

The setup time for the asynchronous memory controller is specified in the
bank_time field of an “ADI_EBIU_ASYNCH_BANK_TIMING?” struc-
ture. That field is of type “ADI_EBIU_TIMING_VALUE”, which in this

case can either specify a number of cycles or an “ADI_EBIU_TIME”

value, but not both.

When cycles are used, the ADI_EBIU_ASYNCH_SETUP_TIME enumeration
specifies the number of cycles of setup time. It corresponds to the BXST bit
(where X is the bank number) in the asynchronous memory bank control 0
register (for banks 0 and 1) or the asynchronous memory bank control 1

register (for banks 2 and 3).

ADI_EBIU_ASYNCH_ST_4_CYCLES

4 cycles setup time

ADI_EBIU_ASYNCH_ST_1_CYCLES

1 cycles setup time

ADI_EBIU_ASYNCH_ST_2_CYCLES

2 cycles setup time

ADI_EBIU_ASYNCH_ST_3_CYCLES

3 cycles setup time

Visual DSP++ 5.0 Device Drivers and System

Services Manual for Blackfin Processors

4-49

Setting Control Values in the EBIU Module

ADI_EBIU_ASYNCH_TRANSITION_TIME

The transition time for the asynchronous memory controller is specified
in the bank_time field of an “ADI_EBIU_ASYNCH_BANK_TIMING”
structure. That field is of type “ADI_EBIU_TIMING_VALUE”, which
in this case can either specify a number of cycles or an
“ADI_EBIU_TIME?” value, but not both. When cycles are used, the
ADI_EBIU_ASYNCH_TRANSITION_TIME enumeration specifies the number of
cycles of transition time. It corresponds to the BXHT bit (where X is the
bank number) in the asynchronous memory bank control 0 register (for
banks 0 and 1) or the asynchronous memory bank control 1 register (for

banks 2 and 3).

ADI_EBIU_ASYNCH_TT_4_CYCLES 4 cycles transition time
ADI_EBIU_ASYNCH_TT_1_CYCLES 1 cycles transition time
ADI_EBIU_ASYNCH_TT_2_CYCLES 2 cycles transition time
ADI_EBIU_ASYNCH_TT_3_CYCLES 3 cycles transition time

ADI_EBIU_DDR_MOBILE_DS

This enumeration specifies the drive strength for the memory device. The
value is written to the DS field of the EBIU_DDRCTL3 register. This enumer-
ation is used for mobile DDR products only. For non-mobile DDR
products, see “ADI_EBIU_DDR_DS”. The possible enumeration values

are shown below.

ADI_EBIU_DDR_DS_1 00: Full strength drive
ADI_EBIU_DDR_DS_2 01: Half strength drive
ADI_EBIU_DDR_DS_4 10: Quarter strength drive
ADI_EBIU_DDR_DS_8 11: One-eighth strength drive
4-50 Visual DSP++ 5.0 Device Drivers and System

Services Manual for Blackfin Processors

ADI_EBIU_DDR_DS

External Bus Interface Unit Module

This enumeration specifies the drive strength for the memory device. The
value is written to the DS field of the EBIU_DDRCTL3 register. This enumer-
ation is used for non-mobile DDR products only. For mobile DDR

products, see “ADI_EBIU_DDR_MOBILE_DS”. The possible enumera-

tion values are shown below.

ADI_EBIU_DDR_DS_FULL

00: Full strength drive

ADI_EBIU_DDR_DS_REDUCED

01: Reduced strength drive (default)

ADI_EBIU_DDR_PASR

This enumeration specifies the partial array self-refresh value written to
the PASR field of the EBIU_DDRCTL3 register. This field is available only on
mobile DDR products. The possible enumeration values are shown below.

ADI_EBIU_DDR_PASR_1

0: Full array (all banks)

ADI_EBIU_DDR_PASR_2

1: Half array

ADI_EBIU_DDR_PASR_4

2: Quarter array

ADI_EBIU_DDR_PASR_RESERVED3

3: (Reserved value)

ADI_EBIU_DDR_PASR_RESERVED4

4: (Reserved value)

ADI_EBIU_DDR_PASR_8

5: Eighth array

ADI_EBIU_DDR_PASR_16

6: Sixteenth array

Visual DSP++ 5.0 Device Drivers and System 4-51

Services Manual for Blackfin Processors

Setting Control Values in the EBIU Module

4-52 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

5 DEFERRED CALLBACK
MANAGER

This chapter describes the deferred callback (DCB) manager used by the
application developer to manage the deferred execution of function calls.
A detailed description of the application programming interface (API)
provided by the deferred callback manager is included.

This chapter contains:
e “Introduction” on page 5-2
e “Using the Deferred Callback Manager” on page 5-3
* “Interoperability With an RTOS” on page 5-7
* “DCB Manager API Reference” on page 5-10

e “Public Data Types and Macros” on page 5-22

Visual DSP++ 5.0 Device Drivers and System 5-1
Services Manual for Blackfin Processors

Introduction

Introduction

Callback functions are commonly used in event-driven applications where
the client application requests that a service manager (such as the system
services library’s (SSL) DMA manager) notifies it upon completion of a
requested task, for example the completion of DMA transfer, by means of
a client callback function specified by the client application upon initializa-
tion of the required service.

The need to execute a client callback function normally occurs while exe-
cuting an interrupt service routine (ISR) at relatively high priority. The
general rule for such ISRs is to keep the amount of time spent in them as
deterministic as possible and to a minimum. Callbacks, on the other hand,
may be lengthy and non-deterministic. In most cases, users may prefer to
defer the execution of such callbacks to a scheduler running at a lower pri-
ority, which can be preempted by higher priority interrupts. In doing so,
the requesting ISR can complete with minimal delay.

The system services library’s deferred callback manager provides this
service by managing one or more queues of deferred callbacks, such that
their invocation typically occurs within a dispatch function operating at a
lower-interrupt priority than the rest of the application’s interrupt ser-
vices. Each callback entry posted to a queue comprises the address of the
required callback function along with three values (two pointers and one
32-bit unsigned integer), which are passed to the callback function upon
its (deferred) execution.

The deferred callback (DCB) manager is designed to operate as a
standalone module or in conjunction with a real-time operating system
(RTOS). Implementations of the module exist for Express Logic’s
ThreadX, Green Hills Software’ INTEGRITY, as well as Analog Devices
VDK.

The number of queues available and their length is determined by the cli-
ent application upon module and queue initialization. Whether the DCB
manager is implemented in standalone mode or in conjunction with one

5-2 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Deferred Callback Manager

of the above RTOSs also impacts the number and size of queues. When
implemented in conjunction with VDK, the DCB manager can support
only one queue at a fixed-priority level of IVG 14.

While only one queue is permitted per IVG level, engineers can set priori-
ties for individual callback entries by supplying a software priority level
upon posting. There is no limit to the number of software priority levels
that can be used (except for practical implications within the limits of
unsigned short values) The dispatch function attempts to execute all
higher-priority callbacks before those with lower priorities at the same

IVG level.

A detailed description of how the DCB manager operates is provided in
“Using the Deferred Callback Manager”, along with code segments illus-
trating its use in standalone mode.Implications for its use in conjunction
with an RTOS are given in “Interoperability With an RTOS” on

page 5-7.

The DCB manager uses an unambiguous naming convention to safeguard
against conflicts with other software libraries provided by ADI or other
companies. As a result, all enumeration values and typedef statements use
the ADI_DCB_ prefix, and functions and global variables use the lowercase
adi_dcb_ equivalent.

Using the Deferred Callback Manager

The operation of the DCB manager comprises the following functions.
* Setting up the DCB manager
* Initializing the DCB manager

* Opening a queue

Visual DSP++ 5.0 Device Drivers and System 5-3
Services Manual for Blackfin Processors

Using the Deferred Callback Manager

* Managing the queue
* DPosting callbacks to the required queue

* Dispatching callbacks according to the priority level deter-
mined upon posting

e Performing housekeeping functions
* Closing the queue
* Terminating the DCB manager

How this is implemented depends on whether the DCB manager is used
in standalone mode or in conjunction with the deferred calling mecha-
nism supplied by an RTOS. In all cases, API calls to the DCB manager are
the same: a queue is initialized with a call to adi_dcb_0pen, and callbacks
are added to the queue via a call to the adi_dcb_Post function.

The deferred execution of the callbacks is scheduled according to software
priority by the adi_dcb_Dispatch_Callbacks function. In a standalone
environment, the DCB manager registers this function as an interrupt
handler routine against the desired IVG level, using the system services
library’s interrupt manager module, when the queue is initialized, and an
interrupt raised each time a callback is posted. Since the standalone ver-
sion uses the interrupt manager, the interrupt manager must be initialized
before the DCB manager is initialized.

The following code sample demonstrates the standalone use of one queue
initialized at IVG level 14, which is the lowest IVG level available at appli-
cation level.

As mentioned above, standalone operation requires the initialization of
the interrupt manager prior to initializing the DCB manager. On the
assumption that the sample application requires that only one interrupt

5-4 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Deferred Callback Manager

handler be defined per IVG level, initialize the interrupt manager with the
following code:

u3?2 ne;
adi_int_Init(NULL,O,&ne,NULL);

Initialize the DCB manager with sufficient memory for one queue as
follows:

static char mjk_dcb_Datal[ADI_DCB_QUEUE_SIZE];
u3?2 ns;

adi_dcb_Init(

(void*)mjk_dcb_Data, // Address of memory to be used
ADI_DCB_QUEUE_SIZE, // Number of bytes required for the
// required number of queue servers.
&ns // on return this should be the same
// as the required number of queues.
NULL // No special data area for critical

// region required
)

Next, open the queue server for use by passing sufficient memory for the
length of queue required (in this case, five entries) and the desired IVG
level at which the queue operates. This level is ignored when used in a
VDK-based application. A handle, p_DCB_handle, to the queue server is
returned:

static char mjk_dcb_QueueDatal[5*ADI_DCB_ENTRY_SIZE];
ADI_DCB_HANDLE p_DCB_handle;

u3?2 nqge;

adi_dch_Open(
14, // required IVG Tevel

Visual DSP++ 5.0 Device Drivers and System 5-5
Services Manual for Blackfin Processors

Using the Deferred Callback Manager

(void*) mjk_dcb_QueueData, // Address of memory to be used
5*ADI_DCB_ENTRY_SIZE, // for a queue 5 deep.
≱ // on return this should be the
// same as the required number of
// entries (5 in this case).
&p_DCB_handle // returned handle to queue server
);

The DCB manager is now ready to accept callback postings to the queue
server. Note that this function is normally performed in an ISR of another
service. The DCB manager passes the address of the client callback func-
tion and its associated argument values to the queue server identified by

the handle obtained:

adi_dcb_Post(

p_DCB_handle, // handle to required queue server.

0, // Priority level.

ClientCallback, // Address of callback function.

pService, // Address of the service instance
// that is posting the callback.

event, // Flag identifying the event that
// has precipitated the interrupt.

(void*)data // Address of data relevant to the

// callback.
)

In the example above, event typically defines an event (for example, DMA
completion) and data typically points to an appropriate location in mem-
ory that is meaningful within the context of the callback function. Within
the DMA manager context, this argument is the address of an appropriate
descriptor or data buffer.

For any reason, flushing the queue of entries for the above callback can be
achieved in one of two ways: by calling the adi_dcb_Remove function
directly or by calling it indirectly using the adi_dcb_Control function.
See “adi_dcbh_Terminate” for further details and an example of its use

5-6 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Deferred Callback Manager

along with any other requests. The following code describes the direct
approach:

adi_dcb_Remove(

p_DCB_handle, // handle to required queue server
ClientCallback // Address of callback function to
// flush

)

Finally, if required, the queue can be closed and the DCB manager
terminated:

adi_dcb_Close(

p_DCB_handle, // handle to required queue server
)
adi_dcb_Terminate();

Interoperability With an RTOS

The DCB manager employs two functions, adi_dcb_RegisterISR and
adi_dcb_Forward, to interface with the different RTOS environments,
including standalone mode.

These functions are supplied in a separate source file, adi_dcb_xxxx.c,

for each implementation where xxxx describes the required RTOS

(for example, threadx for Express Logic’s ThreadX, and integrity for

Green Hill Software’s INTEGRITY), or standalone for standalone use.
VDK support is achieved with the functions (described above) supplied
directly by VDK. As a result, there is no equivalent adi_dcb_vdk. c file.

The relevant adi_dcb_xxxx.c file is incorporated (or not) into the main
adi_dcb.c source file via conditional compilation governed by a macro,
ADI_SSL_XXXX, where XXXX is STANDALONE, THREADX, INTEGRITY, or VDK.

Currently, implementations of the DCB manager are provided only for
the environments previously described. To implement these functions

Visual DSP++ 5.0 Device Drivers and System 5-7
Services Manual for Blackfin Processors

Interoperability With an RTOS

under an alternative RTOS (for example, Linux), developers must provide
replacement definitions in equivalent files.

These functions are described in this section in more detail.

adi_dcb_Forward

The adi_dcb_Forward function takes two arguments. The first is a pointer
to the DCB entry header structure, ADI_DCB_ENTRY_HDR, and the second is
to the IVG level of the appropriate queue.

The adi_dcb_Forward function is invoked from within the adi_dcb_Post
function and has the following prototype:

void adi_dcb_Forward(
ADI_DCB_ENTRY_HDR *Entry,
ule Ivglevel
)

The arguments are as follows.

Entry Pointer to the ADI_DCB_ENTRY_HDR structure. This coincides with
the address of the queue server structure to which the callback is
posted. This is ignored in standalone mode.

Ivglevel IVG level of the appropriate queue. This argument is ignored by
VDK.

The ADI_DCB_ENTRY_HDR structure used to pass information to the under-
lying RTOS is defined as:

typedef struct ADI_DCB_ENTRY_HDR {
struct ADI_DCB_ENTRY_HDR *pNext;
ADI_DCB_DEFERRED_FNpDeferredFunction;
} ADI_DCB_ENTRY_HDR;

5-8 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Deferred Callback Manager

The first word in this structure, pNext, is NULL on entry to the
adi_dcb_Forward function. While this value is typically used to point to
the next item in the queue, its interpretation within the adi_dcb_Forward
function depends on the specific RTOS implementation required. The
second word, pDeferredFunction, is set to point to the
adi_dcb_DispatchCallbacks function when the queue is initialized. The
deferred procedure call server within the appropriate RTOS must pass the
pointer to the adi_dcb_DispatchCallbacks function upon its deferred
execution.

adi_dcb_RegisterISR

The adi_dcb_RegisterISR function is invoked from within the
adi_dcb_0pen function and has the following prototype:

void adi_dcb_RegisterISR(
ulé Ivglevel,
ADI_INT_HANDLER_FN Dispatcher,
ADI_DCB_HANDLE *hServer
)

The data types are defined in the <services/services.h> header file and
the arguments are as follows.

Ivglevel Interrupt level at which callbacks are dispatched
Dispatcher Mandatory address of the adi_dcb_DispatchCallbacks function
hServer Address of the queue server structure

In the standalone implementation, this function registers the
adi_dcb_DispatchCallbacks function with the interrupt manager at the
specified interrupt level. In the VDK implementation, it returns with no
effect.

Visual DSP++ 5.0 Device Drivers and System 5-9
Services Manual for Blackfin Processors

Interoperability With an RTOS

Handling Critical Regions Within Callbacks

If critical regions are required within a callback function, you must be
aware of any restrictions imposed by the underlying RTOS. For example,
VDK-based applications are prohibited from calling
PushCriticalRegion/PopCriticalRegion functions from within the
interrupt level.

If the VDK version of the DCB manager is used, these kinds of calls can
be used, as the callback is executed at the kernel level. However, if the
standalone version of the library is used to run a DCB queue at a higher
priority than the VDK DPC queue, such calls are illegal since the callback
executes at the interrupt level. In these cases, they effect critical regions
directly by using the ¢11() and sti() built-in functions.

DCB Manager APl Reference

This section provides descriptions of the DCB manager API functions.

Notation Conventions

The reference pages for the API functions use the following format:
Name — Name and purpose of the function
Description — Function specification
Prototype — Required header file and functional prototype
Arguments — Description of function arguments

Return Value — Description of function return values

5-10 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_dcb_Close

Description

Deferred Callback Manager

The adi_dcb_Close() function closes the DCB queue server identified by
the single handle argument, freeing up the slot for subsequent use.

In standalone mode, the DCB manager’s adi_dcb_DispatchCallbacks
function is unhooked from the interrupt handler chain for the given IVG

level.

Prototype

ADI_DCB_RESULT adi_dcb_Close(
ADI_DCB_HANDLE hServer

Arguments

hServer

Handle of the required queue server to close

Return Value

ADI_DCB_RESULT_SUCCESS

Queue successfully closed.

ADI_DCB_RESULT_NO_SUCH_QUEUE Handle provided does not represent a valid queue

SCrver.

ADI_DCB_RESULT_QUEUE_IN_USE

Callbacks are on the queue awaiting dispatch. If this
does not matter, then flush the queue first before clos-

ing.

Visual DSP++ 5.0 Device Drivers and System 5-11
Services Manual for Blackfin Processors

Interoperability With an RTOS

adi_dcb_Control

Description

The adi_dcb_Control () function is used to configure/control a deferred
callback queue server according to command-value pairs. For more infor-

mation, see “ADI_DCB_COMMAND_PAIR” on page 5-22.

Currently, only one command is relevant, ADI_DCB_CMD_FLUSH_QUEUE,
though others may be added in the future. The command-value pairs can
be specified in one of three ways:

* A single command-value pair is passed.

adi_dcb_Control(
hServer,
ADI_DCB_CMD_FLUSH_QUEUE,
(void*)ClientCallback

)

¢ A single command-value pair structure is passed.
g p

ADI_DCB_COMMAND_PAIR cmd=

{ADI_DCB_CMD_FLUSH_QUEUE, (void *)ClientCallback};
adi_dcb_Control(

hServer,

ADI_DCB_CMD_PAIR,

(void*)&cmd) ;

* A table of ADI_DCB_COMMAND_PAIR structures is passed. The last

entry in the table must be ADI_DCB_CMD_END.

ADI_DCB_COMMAND_PAIR table[2] = {
{ADI_DCB_CMD_FLUSH_QUEUE, (void*)ClientCallback,
{ADI_DCB_CMD_END, 0O}

Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Deferred Callback Manager

adi_dcb_Control(
hServer,
ADI_DCB_CMD_TABLE,
(void*)table);

Refer to “ADI_DCB_COMMAND?” on page 5-23 for the complete list of

commands and associated values.

Prototype

ADI_DCB_RESULT adi_dcbh_Control(
ADI_DCB_HANDLE hServer,
ADI_DCB_COMMAND Command,
void *Value

Arguments
hServer Handle of the required queue server to close.
Command ADI_DCB_COMMAND enumeration value specifying the meaning of the
associated value argument. See “ADI_DCB_COMMAND” on
page 5-23.
Value Required value, a single value, a command-value pair, or a table of com-
mand-value pairs

Return Value

ADI_DCB_RESULT_SUCCESS Function completed successfully.

ADI_DCB_RESULT_NO_SUCH_QUEUE Handle of the required queue server is invalid.

ADI_DCB_RESULT_BAD_COMMAND Either the command kind or the value specified is
invalid.
Visual DSP++ 5.0 Device Drivers and System 5-13

Services Manual for Blackfin Processors

Interoperability With an RTOS

adi_dcb_Init

Description

The adi_dcb_Init function initializes the DCB manager with sufficient
memory for the required number of deferred callback queues (referred to

as queue 567’7/6’7'5) .

This function can be called once per processor core.

Prototype
ADI_DCB_RESULT adi_dcbh_Init(
void *ServerMemData,
size_t szServer,
u3? *NumServers
void *hCriticalRegionData
)
Arguments
ServerMemData Pointer to an area of memory used to hold the data associated
with each registered queue server
szServer Length in bytes of memory supplied for the queue server
data.
NumServers On return, this argument holds the maximum number of

simultaneously open queue servers that the supplied memory
can support.

hCriticalRegionData

Handle to data area containing critical region data. This is
passed to adi_int_EnterCriticalRegion where it is used
internally by the module. See “Interrupt Manager” for fur-

ther details.

5-14

Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Return Value

Deferred Callback Manager

ADI_DCB_RESULT_SUCCESS

Successfully initialized the queue server.

ADI_DCB_RESULT_NO_MEMORY

Insufficient memory for one queue entry was encoun-
tered.

ADI_DCB_RESULT_CALL_IGNORED

DCB manager has already been initialized for this pro-
cessor core.

Visual DSP++ 5.0 Device Drivers and System 5-15
Services Manual for Blackfin Processors

Interoperability With an RTOS

adi_dcb_Open

Description

The adi_dcb_Open function opens a queue server for use by assigning
memory for its callback queue. Additionally, in standalone mode, the
queue is assigned to the requested IVG priority level and the DCB man-
ager’s adi_dcb_DispatchCallbacks function is hooked to the interrupt
handler chain with the interrupt manager for the given IVG level.

The interrupt manager must be initialized prior to opening a queue

server.
Prototype
ADI_DCB_RESULT adi_dcb_0Open(
u3? Ivglevel,
void *QueueMemData,
size_t szQueue,
u3? *NumEntries,

ADI_DCB_HANDLE *hServer

5-16 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Deferred Callback Manager

Arguments
Ivglevel IVG level at which the DCB manager’s dispatcher function
operates. This value is ignored in the VDK version of the
library.
QueueMemData Pointer to an area of memory used to hold the data associated
with the server’s entry queue
szQueue Length in bytes of memory supplied for the queue

NumEntries

On return, this argument holds the maximum number of
queue entries that the supplied memory can support.

hServer

On return, this argument contains a handle to the queue
server opened. This is used to uniquely identify the queue
server in calls to other API functions within the SSL.

Return Value

ADI_DCB_RESULT_SUCCESS

Queue server was successfully initialized.

ADI_DCB_RESULT_NO_MEMORY

Insufficient memory for one queue entry was encoun-
tered.

ADI_DCB_RESULT_QUEUE_IN_USE

Queue server has already been opened for use by the

specified IVG.

Visual DSP++ 5.0 Device Drivers and System 5-17
Services Manual for Blackfin Processors

Interoperability With an RTOS

adi_dcb_Post

Description

The adi_dcb_Post() function posts a callback function and associated
argument values to the queue server, identified by the handle argument for
further processing.

A callback is associated with a priority level such that higher-priority
callbacks run before lower-priority callbacks. To run all callbacks at the
same priority level, assign the same priority to each callback posted.

Prototype
ADI_DCB_RESULT adi_dch_Post(
ADI_DCB_HANDLE *hServer,
u3? Priority;
ADI_DCB_CALLBACK_FN Callback,
void *pHandle,
u32 u32Arg,
void *pArg
)
5-18 Visual DSP++ 5.0 Device Drivers and System

Services Manual for Blackfin Processors

Arguments

Deferred Callback Manager

Table 5-1. adi_dcb_Post Arguments

Argument

Explanation

hServer

Handle of the required queue server

Priority

Priority level at which the callback runs; the lower the number, the higher the
priority. There is no real limit on the value supplied.

Callback

Address of the client callback function queued

pHandle

void* address passed as the first argument to the callback function upon its
deferred execution. Typically it is a handle address that is meaningful within
the context of the callback function. For example, when used within the inter-
rupt handler of the DMA manager, this argument is the C1ientHandle value
defined when the DMA channel was opened.

u32Arg

u32 value passed as the second argument to the callback function upon its
deferred execution. (See “ADI_DCB_CALLBACK_FN” on page 5-22.) Typi-
cally, it is a value that is meaningful within the context of the callback func-
tion. For example, when used within the interrupt handler of the DMA
manager, this argument describes the nature of the event that has occurred.

pArg

void* value passed as the third argument to the callback function upon its
deferred execution. (See “ADI_DCB_CALLBACK_FN” on page 5-22.) Typi-
cally, it is an address of a block of data. For example, when called within the
interrupt handler of the DMA manager, this argument points to the start of
the buffer for which the DMA transfer has completed.

Return Value

ADI_DCB_RESULT_SUCCESS Entry was successfully queued.
ADI_DCB_RESULT_NO_MEMORY No vacant queue entry available.
ADI_DCB_RESULT_NO_SUCH_QUEUE Handle provided does not represent a valid queue
server.
Visual DSP++ 5.0 Device Drivers and System 5-19

Services Manual for Blackfin Processors

Interoperability With an RTOS

adi_dcb_Remove

Description

The adi_dcb_Remove () function removes entries in the given queue that

match the address of the given callback function. Alternatively, passing a
NULL value for the callback function address instructs the callback man-
ager to remove all entries in the queue.

Prototype

ADI_DCB_RESULT adi_dcb_Remove(
ADI_DCB_HANDLE hServer,
ADI_DCB_CALLBACK_FN Callback

Arguments
hServer Handle of the required queue server
Callback Address of the client callback function removed. If NULL,

then all entries in the queue are removed, otherwise all
entries matching the given callback function address are

removed.
Return Value
ADI_DCB_RESULT_FLUSHED_OK Entries were successfully removed.
ADI_DCB_RESULT_NONE_FLUSHED Routine found no entries to be removed.

ADI_DCB_RESULT_NO_SUCH_QUEUE Handle provided does not represent a valid queue
server.

5-20 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Deferred Callback Manager

adi_dcb_Terminate

Description

The adi_dcb_Terminate() function terminates the DCB manager by
dissociating the supplied memory (see “adi_dcb_Init” on page 5-14) and
critical region data.

Prototype
ADI_DCB_RESULT adi_dcb_Terminate (void);

Return Value

ADI_DCB_RESULT_SUCCESS Function completed successfully.

Visual DSP++ 5.0 Device Drivers and System 5-21
Services Manual for Blackfin Processors

Interoperability With an RTOS

Public Data Types and Macros

This section provides descriptions of the public data types and macros.

ADI_DCB_CALLBACK_FN

The ADI_DCB_CALLBACK_FN data type defines the prototype for the callback
functions to be posted:

typedef void (*ADI_DCB_CALLBACK_FN)
(void* pHandle, u32 u32Arg, void* pArg);

where the values of the arguments are those passed to the adi_dcb_Post
function when the callback is queued for deferred execution.

ADI_DCB_COMMAND_PAIR

The ADI_DCB_COMMAND_PAIR data type is used to enable the generation of a
table of control commands to be sent to the DCB manager via the
adi_dcb_Control function.

typedef struct ADI_DCB_COMMAND_PAIR ({
ADI_DCB_COMMAND kind;
void *value;

} ADI_DCB_COMMAND_PAIR;

For valid values for the kind field, refer to “ADI_DCB_ COMMAND” on
page 5-23.

For example, the following command could be sent to the DCB manager
to flush all callbacks in the queue:

ADI_DCB_COMMAND_PAIR CMD = { ADI_DCB_CMD_FLUSH_QUEUE, NULL };

5-22 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Deferred Callback Manager

ADI_DCB_COMMAND

The ADI_DCB_COMMAND is used to control the DCB manager’s queue server.
This data type is used in an ADI_DCB_COMMAND_PAIR couplet to change a
configuration value in calls to adi_dcb_Control.

ADI_DCB_CMD_END Defines the end of a table of command pairs.

ADI_DCB_CMD_PAIR Tells adi_dcb_Control that a single command pair is being
passed.

ADI_DCB_CMD_TABLE Tells adi_dch_Control that a table of command pairs is
being passed.

ADI_DCB_CMD_FLUSH_QUEUE Address of the callback function for which all matching queue
entries are cleared from the queue, regardless of priority.

ADI_DCB_ENTRY_HDR

The ADI_DCB_ENTRY_HDR structure is provided to interface with the
underlying RTOS through the adi_dcb_Forward function (refer to
“adi_dcb_Forward” on page 5-8):

typedef struct ADI_DCB_ENTRY_HDR (
struct ADI_DCB_ENTRY *pNext; // Next item in queue
ADI_DCB_DEFERRED_FN pDeferredFunction; // Deferred Callback
// Function pointer,
} ADI_DCB_ENTRY_HDR;

where pNext points to the next item in the queue and pDeferredFunction
is the address of the deferred function, which is always the address of
adi_dcbh_DispatchCallbacks.

The ADI_DCB_DEFERRED_FN typedef defines the prototype for this
function:

typedef void (*ADI_DCB_DEFERRED_FN) (ADI_DCB_ENTRY *);

Visual DSP++ 5.0 Device Drivers and System 5-23
Services Manual for Blackfin Processors

Interoperability With an RTOS

ADI_DCB_RESULT

All public DCB manager functions return a result code of the
ADI_DCB_RESULT data type. Possible values include the following.

ADI_DCB_RESULT_SUCCESS

Queue server was successfully initialized.

ADI_DCB_RESULT_NO_MEMORY

Insufficient memory for one queue entry was present.

ADI_DCB_RESULT_QUEUE_IN_USE

Queue server has already been opened for use by the
specified IVG. See “ADI_DCB_COMMAND?” on
page 5-23.

ADI_DCB_RESULT_CALL_IGNORED

DCB manager has already been initialized for this pro-
cessor core. See “ADI_DCB_COMMAND” on
page 5-23.

ADI_DCB_RESULT_NO_SUCH_QUEUE

Handle provided does not represent a valid queue
server registered with the DCB manager.

ADI_DCB_RESULT_BAD_COMMAND

Either the command kind or the value specified is
invalid.

5-24

Visual DSP++ 5.0 Device Drivers and System

Services Manual for Blackfin Processors

6 DMA MANAGER

This chapter describes features of the direct memory access (DMA) man-
ager and its application programming interface (API).

This chapter contains:
* “Introduction” on page 6-2
e “Theory of Operation” on page 6-3
e “DMA Manager API Reference” on page 6-31

e “Public Data Structures, Enumerations, and Macros” on page 6-62

Visual DSP++ 5.0 Device Drivers and System 6-1
Services Manual for Blackfin Processors

Introduction

Introduction

The DMA manager provides the application developer with the means

to manage DMA traffic on as many channels as required across the
spectrum—from setting up the DMA channels for their intended purpose,
to providing callbacks to the client application on transfer completion.

As part of the system services, the DMA manager provides a complete and
easy-to-use interface to the DMA controller. To this end, the DMA man-
ager is designed to:

* Remove the need for direct client access to memory-mapped regis-
ters (MMRs) through the implementation of application
programming interface (API) function calls.

* Place no limitations on the type of data transfer. All descriptor
types are supported as well as single and circular buffers. Both
one-dimensional (1-D) and two-dimensional (2-D) DMA can be
used.

* Provide a simple interface to perform block copies of data between
different memory locations using both 1-D and 2-D memory
DMA, such that blocks of data can be copied between internal and
external memory with one function call in an equivalent manner to
the C library memcpy function.

* Interpret interrupts raised on DMA transfer completion and pass
higher-level event information to user-supplied callback functions.
For example, if an interrupt is raised on each inner loop of a
circular 2-D DMA transfer, an event can be passed to the callback
function at the completion of each inner loop.

6-2 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

DMA Manager

* Minimize the memory used by the module. No static memory
space is set aside within the API framework to hold the configura-
tion details for each channel. Instead, a mechanism is provided to
enable client applications to set aside sufficient memory for as
many DMA channels as application requires.

* Be as portable as possible by providing a consistent interface across
all processor families and variants. Additionally, the DMA manager
uses an unambiguous naming convention to safeguard against con-
flicts with other software libraries provided by Analog Devices or
elsewhere.

To this end, all enumeration values and typedef statements use
the ADI_DMA_ prefix, and functions and global variables use the
lowercase adi_dma_ equivalent.

Theory of Operation

This section describes the internal operation of the DMA manager.

Overview

The DMA manager is used to control the Blackfin processor’s DMA con-
troller. The DMA manager supports peripheral DMA to move data to and
from the various on-board peripherals and uses memory DMA to move
data between the various memory spaces of the Blackfin processor.

The DMA manager is capable of controlling any number of DMA chan-
nels. You specify which channels the DMA manager controls. The
application can use the remaining channels (those channels not under
control of the DMA manager) for any purpose; that is, the channels are
controlled independently of the DMA manager.

Visual DSP++ 5.0 Device Drivers and System 6-3
Services Manual for Blackfin Processors

Theory of Operation

Various data transfer modes of the Blackfin processor’s DMA controller
are supported, including descriptor chains, circular buffers (utilizing the
autobuffer capability of the Blackfin processor), and one-shot transfers.
One-dimensional (linear) transfers and two-dimensional (matrix) transfers
are supported.

The DMA manager can be directed to notify the client (through the cli-
ent’s callback function) when data transfers complete. Additionally, the
client’s callback function is invoked when an unexpected event, such as a
DMA error, occur. As with all system services, the DMA manager allows
the client to specify callbacks to be “live”, meaning the client’s callback
function is invoked at hardware interrupt time, or “deferred”, meaning the
client’s callback function is invoked outside the context of the hardware
interrupt.

DMA Manager Initialization

In order to use the DMA manager, the client must first initialize it. The
DMA manager does not use static data, so the initialization step is used to
give the DMA manager memory for use in managing the DMA controller.

The DMA manager requires a small, fixed amount of base memory and a
variable amount of memory, depending the number of simultaneously
open DMA channels the system requires. Note that memory DMA
requires two DMA channels—one channel for the source and another
channel for the destination for each memory DMA stream. Macros are
provided to define the amount of memory (in bytes) required for the base
and channel memory. These macros are ADI_DMA_BASE_MEMORY and
ADI_DMA_CHANNEL_MEMORY.

For example, if the client wants to initialize the DMA manager and has at
most four DMA channels and one memory DMA stream open simultane-
ously, the amount of required memory is:

(ADI_DMA_BASE_MEMORY + (ADI_DMA_CHANNEL_MEMORY * 6)).

6-4 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

DMA Manager

When called, the initialization function, adi_dma_Init(), initializes the
memory that was passed in. Like all functions within the DMA manager,
the initialization function returns a return code that indicates success or
the specific error that occurred during the function call. All DMA API
functions return the ADI_DMA_RESULT_SUCCESS value to indicate success.
All error codes are of the form ADI_DMA_RESULT_XXXX.

In addition to the return code, the adi_dma_Init() function returns a
count of the number of channels it can manage simultaneously and a
handle to the DMA manager. The channel count can be tested to ensure
that the DMA manager can control the requested number of channels.
The DMA manager handle value that is returned is later passed into the
adi_dma_Open and adi_dma_MemoryOpen functions which use the manager
handle to identify the DMA manager that is to control the channel.
Passing in this handle allows these functions to quickly identify the mem-
ory that is used to manage the open channel(s). After the DMA manager is
initialized, DMA channels and memory streams can be opened for use.

Although it is possible to create multiple DMA managers in a single-core
Blackfin system, there is no practical advantage in doing so.

DMA Manager Termination

When the DMA manager is no longer needed, the client can terminate the
DMA manager with the adi_dma_Terminate function. This function is
passed the DMA manager handle given to the client in the adi_dma_Init
function. The DMA manager closes any open channels and streams and
then returns to the caller. After the return from the adi_dma_Terminate()
function, the memory that was supplied to the DMA manager via the
adi_dma_Init() function can be reused by the client.

In many embedded systems, the DMA manager is never
terminated.

Visual DSP++ 5.0 Device Drivers and System 6-5
Services Manual for Blackfin Processors

Theory of Operation

Memory DMA and Peripheral DMA

As described in the Blackfin processor’s Hardware Reference, the Blackfin
processor’s DMA controller supports both peripheral DMA and memory
DMA. Regardless of whether peripheral DMA or memory DMA is being
used, the client schedules DMA manager activity on a block-by-block
basis, rather than a sample-by-sample basis. Though a block of data can be
defined to be a single sample of data, this is seldom the case. Most often,
data is blocked in quantities relevant to the processing to be performed.
The term buffer is used throughout this document to represent the block
of data.

Peripheral DMA moves blocks of data between on-chip peripherals and
one of the memory spaces of the Blackfin processor (most commonly
within the context of a device driver). For example, an on-chip peripheral
such as a PPI uses DMA to move blocks of data into (or out of) the PPI
device. As such, the device driver for the PPI typically uses the DMA
manager to control dataflow through the PPIL.

Memory DMA describes the movement of data between any of the various
Blackfin processor’s memory spaces. For example, due to the large
amounts of data used for video processing, video frames may be stored in
external SDRAM and then “DMA-ed” piecemeal into internal L1 memory
for processing.

The DMA manager fully supports peripheral DMA and memory DMA.
When using peripheral DMA, clients leverage the capabilities of the DMA
manager on a channel-by-channel basis. When using memory DMA,
clients can choose to control memory streams as individual source and
destination channels using the same techniques and functions provided for
peripheral DMA, or alternatively can control memory DMA as a single
memory stream using the higher-level adi_dma_MemoryXXXX () functions.

6-6 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

DMA Manager

Controlling Memory Streams

When memory DMA is needed, controlling and scheduling memory
DMA is accomplished most easily using higher level memory streams.
The adi_dma_MemoryXXxX () functions provide a simple, efficient method
of transferring data between the various memory spaces by the Blackfin
processor’s DMA controller.

The overall sequence for using memory streams is to open the memory
stream, schedule transfers as needed, and then close the memory stream
when it is no longer needed. In many embedded systems, the memory
stream is never closed, but remains open at all times.

Opening Memory Streams

To open the memory stream, the client calls the adi_dma_MemoryOpen
function. The client passes the following parameters into the function:

A handle to the DMA manager that controls the stream

The stream ID (of type ADI_DMA_STREAM_ID) that identifies the
memory DMA stream to use

A client handle that is passed back to the client’s callback function.
This is a client-supplied value, supposedly of some meaning to the
client, which is passed back to the client’s callback function so that
the client can associate this value with the stream that is causing

the callback.

A pointer to a location into which the DMA manager stores the
stream handle. The stream handle is a DMA manager-defined value
that uniquely identifies the stream to the DMA manager.

A handle to a deferred callback service (typically from the deferred
callback service) or a NULL value. If a NULL value is supplied, the
DMA manager makes /ive callbacks to the application. Live call-
backs are made during hardware interrupt time. If a deferred

Visual DSP++ 5.0 Device Drivers and System 6-7
Services Manual for Blackfin Processors

Theory of Operation

callback service handle is provided, all callbacks for the stream use
the deferred callback service to defer callback processing until after
hardware interrupt time.

Memory Transfers

Once a memory stream has been opened, the client can submit jobs to the
stream using the adi_dma_MemoryCopy and/or adi_dma_MemoryCopy2D
functions. Linear (one-dimensional) memory transfers use the former
function; two-dimensional transfers use the latter function. The same
stream can be used for one-dimensional and two-dimensional transfers, so
a client can schedule a one-dimensional transfer on a given stream, and
can then schedule a two-dimensional transfer on that same stream.

Note that a memory stream supports only one transfer at a time. If one
transfer is in progress and another transfer is requested, these functions
return an error code indicating the stream is in use. If queuing of memory
transfers is required, this can be accomplished by using the channel-based
method of controlling DMA.

One-Dimensional Transfers (Linear Transfers)

One-dimensional (linear) transfers are handled by calling the
adi_dma_MemoryCopy () function. When calling the adi_dma_MemoryCopy ()
function, the client provides the following parameters:

e The stream handle. This is the value provided to the client during
the adi_dma_MemoryOpen() function.

e The destination starting address into which data is copied

e The source starting address from which data is copied

* The width of each element (in bytes) to be copied. The DMA

manager uses this value to schedule 8-, 16-, or 32-bit transfers.

6-8

Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

DMA Manager

A count of the number of elements copied

The address of the callback function to be called when the transfer
is complete. The invocation of the callback function depends on
the callback service handle value that was supplied to the stream
when it was opened, either deferred or live.

If the adi_dma_MemoryCopy () function is passed a NULL value for
the callback function address, the transfer occurs synchronously
and the adi_dma_MemoryCopy () function does not return to the
client until the transfer is complete. No callbacks are made in this
case.

Two-Dimensional Transfers

Two-dimensional (matrix) memory transfers are handled by calling the
adi_dma_MemoryCopy2D() function. When calling this function, the client
provides the following parameters:

The stream handle. This is the value provided to the client during
the adi_dma_MemoryOpen() function.

A pointer to a data structure (of type ADI_DMA_2D_TRANSFER) that
defines how data is stored into the destination memory

A pointer to a data structure (of type ADI_DMA_2D_TRANSFER) that
defines how data is read from the source memory

The width of each element (in bytes) copied. The DMA manager
uses this value to schedule 8-, 16-, or 32-bit transfers.

Visual DSP++ 5.0 Device Drivers and System 6-9
Services Manual for Blackfin Processors

Theory of Operation

* The address of the callback function that is called when the transfer
is complete. The invocation of the callback function depends on
the callback service handle value supplied to the stream when it was
opened (either deferred or live).

If the adi_dma_MemoryCopy () function is passed a NULL value for
the callback function address, the transfer occurs synchronously
and the adi_dma_MemoryCopy () function does not return to the
client until the transfer is complete. No callbacks are made in this
case.

The ADI_DMA_2D_TRANSFER data type structure holds the necessary values
to specify a two-dimensional transfer. This data type contains the starting
address in memory, an XCount value that defines the number of columns,
a YCount value that defines the number of rows, and XModify and YModify
values to describe the stride for each.

Closing Memory Streams

When a memory stream is no longer needed, the adi_dma_MemoryClose
function is called to close the stream. Once closed, a stream must be
reopened before it can perform additional transfers. The client passes the
following parameters into the function:

e The stream handle. This is the value provided to the client during
the adi_dma_MemoryOpen function.

* A flag to indicate whether the DMA manager should wait for the
completion of any ongoing transfers on the stream before closing
the channel

Controlling DMA Channels

Controlling DMA on a channel-by-channel basis allows for the tightest
control of DMA scheduling. Before a channel can be used, it must be
opened first and then configured.

6-10 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

DMA Manager

Opening DMA Channels

To open a DMA channel, the client calls the adi_dma_0Open() function.
The client passes into the function the following parameters:

A handle to the DMA manager that controls the channel

The channel ID (of type ADI_DMA_CHANNEL_ID) that identifies the
DMA channel to open

A client handle that is passed back to the client’s callback function.
This is a client-supplied value, providing some meaning to the

client, which is passed back to the client’s callback function so the
client can associate this value with the stream causing the callback.

A pointer to a location into which the DMA manager stores the
channel handle. The channel handle is a DMA manager-defined
value that uniquely identifies the channel to the DMA manager.

The operating mode that defines how the channel moves data.
Refer to the sections starting with “Single Transfers” on page 6-12.

A handle to a deferred callback service (typically from the deferred
callback service) or a NULL value. If a NULL value is supplied, the
DMA manager makes live callbacks to the application. Live call-
backs are made during hardware interrupt time. If a deferred
callback service handle is provided, all callbacks for the stream use
the deferred callback service to make callbacks occur at non-hard-
ware interrupt time.

The address of the callback function that is called to notify the cli-
ent of events. Events may be expected events (such as requests for
notification when a transfer is complete) to unexpected events
(such as a DMA error). When the callback function is actually
invoked, deferred or live, depends on the callback service handle
value that is supplied.

Visual DSP++ 5.0 Device Drivers and System 6-11
Services Manual for Blackfin Processors

Theory of Operation

After the channel has been successfully opened, the channel can be
configured, buffers can be supplied to the channel, and so on. Note that
the actual transfer of data does not begin with the adi_dma_MemoryOpen
function. Dataflow must be enabled specifically via the adi_dma_Control
function.

The DMA manager supports the following operational modes of the
Blackfin processor’s DMA controller:

e “Single Transfers”

e “Circular Transfers” on page 6-14

e “Large Descriptor Chaining Model” on page 6-16
e “Small Descriptor Chaining Model” on page 6-20

Single Transfers

The single transfer operating mode (ADI_DMA_MODE_SINGLE) transfers
individual, single buffers of data. When using the single transfer mode,
the client calls the adi_dma_Buffer() function to schedule a transfer. The
client passes the following parameters to the function:

* The channel handle. This is the value provided to the client during
the adi_dma_Open() function.

e The starting address of the buffer. This value is the address in
memory where data is initially read (for outbound data) or the
address in memory where data is initially stored (when the transfer
is for inbound data).

* The configuration word for the transfer. This is a 16-bit value that
represents the DMA configuration control register for the channel.
The DMA manager include file provides macros, that allow the
client to quickly and easily create a configuration word. The fol-
lowing fields within the configuration word are the only fields for
which values must be provided.

6-12 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

DMA Manager

WNR

(Transfer Direction)

ADI_DMA_WNR_READ

Transfer is for outbound data.

ADI_DMA_WNR_WRITE

Transfer is for inbound data.

WDSIZE
(Transfer Element Size)

ADI_DMA_WD_SIZE_8BIT

Elements are 1 byte wide (8 bits).

ADI_DMA_WD_SIZE_16BIT

Elements are 2 bytes wide (16 bits).

ADI_DMA_WD_SIZE_32BIT

Elements are 4 bytes wide (32 bits).

DMA2D
(Dimension Select)

ADI_DMA_DMA2D_LINEAR

One-dimensional (linear) transfer

ADI_DMA_DMA2D_2D

Two-dimensional transfer

(Data Interrupt Enable)

DI_SEL ADI_DMA_DI_SEL_OUTER_LOOP | A callback is generated when the

(Data Interrupt Timing entire transfer has completed (outer

Select) loop).

Applies only when ADI_DMA_DI_SEL_INNER_LOOP | A callback is d hi

DMA2D < 1 _DMA_DI_SEL_ _ generated on each inner
loop completion.

DI_EN ADI_DMA_DI_EN_DISABLE No callback is generated.

ADI_DMA_DI_EN_ENABLE

The DMA manager generates a call-
back to the client when the transfer
completes.

¢ The XCount value. For one-dimensional transfers, this value defines
the number of elements to transfer. For two-dimensional transfers,
this value defines the inner loop count (number of columns).

e The XModify value. For one-dimensional transfers, this value
defines the address increment/decrement (stride) for each succes-
sive element. For two-dimensional transfers, this value defines the
inner loop address increment/decrement (stride) for each successive
element up to but not including the last element in each inner
loop. After the last element in each inner loop, the YModi fy value is
applied instead, except on the very last element of the transfer.

Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

6-13

Theory of Operation

e The YCount value. This parameter is ignored for one-dimensional
transfers. For two-dimensional transfers, the value represents the
outer loop count (number of rows).

e The YModify value. This parameter is ignored for one-dimensional
transfers. For two-dimensional transfers, this value defines the
outer loop address increment/decrement (stride) that is applied
after each inner loop completion. This value is the offset between
the last element of one row and the first element of the next row.

Regardless of whether dataflow on the channel is enabled, the
adi_dma_Buffer() function returns immediately to the caller. If dataflow
is already enabled on the channel, the DMA manager begins executing the
transfer; otherwise, the transfer does not begin until the dataflow is
enabled via the adi_dma_Control () function. When using the
single-transfer mode, the adi_dma_Buffer () function can be called at any
time, as long as a transfer on the channel is not already in progress.

Circular Transfers

The circular transfer mode (ADI_DMA_MODE_CIRCULAR) leverages the auto-
buffer capability of the DMA controller. Using the circular transfer mode,
the client provides the DMA manager with a single contiguous buffer
comprising 7 sub-buffers, as shown in Figure 6-1 on page 6-16.

When dataflow is enabled, the DMA manager begins transferring data at
the start of the buffer, continuing on throughout the entire buffer, and
then automatically looping back to the top of the buffer again, repeating
indefinitely. Optionally, the client can direct the DMA manager to
generate callbacks at the completion of each sub-buffer, to generate call-
backs at the completion of the entire buffer, or not to generate callbacks.

6-14 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

DMA Manager

When using circular transfer mode, the client calls the adi_dma_Buffer ()
function with the following parameters:

The channel handle. This is the value provided to the client during
the adi_dma_Open() function.

The starting address of the buffer. This value is the address in
memory where data is initially read from (when the transfer is for
outbound data), or the address in memory where data is initially
stored (when the transfer is for inbound data).

The configuration word for the transfer. This 16-bit value
represents the DMA configuration register for the channel. The
DMA manager include file provides macros that allow the client to
quickly and easily create a configuration word. The client provides
values for the following fields within the configuration word.

WNR ADI_DMA_WNR_READ A transfer is for outbound data.

(Transfer Direction) ADI_DMA_WNR_WRITE A transfer is for inbound data.

DI_SEL ADI_DMA_DI_SEL_OUTER_LOOP | A callback is generated on

(Data Interrupt Timing completion of whole buffer only.

Select

clect) ADI_DMA_DI_SEL_INNER_LOOP | A callback is generated on each
inner loop completion.

DI_EN ADI_DMA_DI_EN_DISABLE No callback will be generated.

Data Int t Enabl

(Daa Interrupt Enable) ADI_DMA_DI_EN_ENABLE Callbacks are generated according
the setting of DI_SEL.

The XCount value. Set this parameter to the number of elements in
a single sub-buffer.

The XModify value. The width (in bytes) of an element. Allowed
values are 1, 2, and 4 only.

Visual DSP++ 5.0 Device Drivers and System 6-15
Services Manual for Blackfin Processors

Theory of Operation

* The YCount value. Set this parameter to the number of sub-buffers
contained within the whole buffer.

e The YModify value. This parameter is ignored.

When using the circular mode, the adi_dma_Buffer() function must be
called prior to enabling dataflow on the channel. After enabling dataflow,
if the client wants to change to a different circular buffer, the client must
first disable dataflow on the channel, call the adi_dma_Buffer() function
with the new buffer data, and then re-enable dataflow on the appropriate
channel.

SUB-BUFFER 0

ONE SUB-BUFFER 1
CONTIGUOUS
BUFFER

SUB-BUFFER N

1111

—

CALLBACK ON ENTIRE BUFFER COMPLETE

:DCALLBACK ON SUB-BUFFER COMPLETE

Figure 6-1. Circular Buffer Usage in a Circular Transfer

Large Descriptor Chaining Model

The large descriptor chaining model (ADI_DMA_MODE_DESCRIPTOR_LARGE)
allows the client to create chains of descriptors, residing anywhere in
memory, where each descriptor describes a specific work unit.

Using the large descriptor chaining mode, the client provides the DMA
manager with one or more descriptor chains, as shown in Figure 6-2.

6-16 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

DMA Manager

DESCRIPTOR D—{ DESCRIPTOR'
1 N

Figure 6-2. Descriptor Chain

Descriptors can be submitted at any time, regardless of the dataflow state.
The DMA manager maintains independent queues of descriptors for each
channel, keeping the DMA controller busy with transfers until all queued
descriptors are processed.

Both one-dimensional and two-dimensional transfers can be intermixed
on the same channel. Each transfer can define a different transfer type,
length, and so on. Additionally, callbacks to the client’s callback function
can be made upon completion of every descriptor, any individual descrip-
tor, or configured to never call back.

When the large descriptor chaining mode is used, descriptor chains are
submitted to the channel using the adi_dma_queue() function with the
following parameters:

* The channel handle. This is the value provided to the client during
the adi_dma_Open() function.

* A handle of the type ADI_DMA_DESCRIPTOR_HANDLE to a descriptor.
Because the same adi_dma_Queue () function is used for all
descriptor-based operating modes (including large descriptors,
small descriptors, and arrays of descriptors), the
ADI_DMA_DESCRIPTOR_HANDLE data type acts as a container that
conveniently represents each of the descriptor types.

For the large descriptor chaining mode, descriptors are of the type
ADI_DMA_DESCRIPTOR_LARGE, which is a data type that defines a large
model descriptor. When calling the adi_dma_Queue () function, the client

Visual DSP++ 5.0 Device Drivers and System 6-17
Services Manual for Blackfin Processors

Theory of Operation

can pass in the address of the descriptor union
(ADI_DMA_DESCRIPTOR_UNION) or alternatively, the address of the descriptor
itself (ADI_DMA_DESCRIPTOR_LARGE) to the ADI_DMA_DESCRIPTOR_HANDLE
data type. This descriptor can be a single descriptor or the first descriptor
in a chain of descriptors.

Large model descriptors contain all the information necessary for the
DMA manager to control the operation of the DMA controller. This
information includes:

* A pointer to the next large descriptor in the chain. If this field is
NULL, the given descriptor is the only descriptor the client is
submitting to the channel.

* The starting address of the buffer. This value is the address in
memory where data is initially read from (when the transfer is for
outbound data), or the address in memory where data is initially
stored (when the transfer is for inbound data).

* The configuration word for the transfer. This 16-bit value
represents the DMA configuration register for the channel. The
DMA manager include file provides macros that allow the client to
quickly and easily create a configuration word. The client provides
the following values to fields within the configuration word.

WNR ADI_DMA_WNR_READ Transfer is for outbound data.
(Transfer Direction) ADI_DMA_WNR_WRITE Transfer is for inbound data.
WDSIZE ADI_DMA_WD_SIZE_8BIT Elements are 1 byte wide (8 bits).

Transfer El t Si
(Transfer Element Size) ADI_DMA_WD_SIZE_16BIT | Elements are 2 bytes wide (16 bits).

ADI_DMA_WD_SIZE_32BIT | Elements are 4 bytes wide (32 bits).

DMA2D ADI_DMA_DMA2D_LINEAR One-dimensional (linear) transfer
Di ion Select
(Dimension Selecy ADI_DMA_DMA2D_2D Two-dimensional transfer
6-18 Visual DSP++ 5.0 Device Drivers and System

Services Manual for Blackfin Processors

DMA Manager

DI_EN

(Data Interrupt Enable)

ADI_DMA_DI_EN_DISABLE [No callback is generated.

ADI_DMA_DI_EN_ENABLE The DMA manager generates a
callback to the client when the
transfer completes.

The XCount value. For one-dimensional transfers, this value defines
the number of elements to be transferred. For two-dimensional
transfers, this value defines the inner loop count (number of
columns).

The XModify value. For one-dimensional transfers, this value
defines the address increment/decrement (stride) for each succes-
sive element. For two-dimensional transfers, this value defines the
inner loop address increment/decrement (stride) for each successive
element up to but not including the last element in each inner
loop. After the last element in each inner loop, the YModi fy value is
applied instead, except on the very last element of the transfer.

The YCount value. This parameter is ignored for one-dimensional
transfers. For two-dimensional transfers, the value represents the
outer loop count (number of rows).

The YModi fy value. This parameter is ignored for one-dimensional
transfers. For two-dimensional transfers, this value defines the
outer loop address increment/decrement (stride) that is applied
after each inner loop completion. This value is the offset between
the last element of one row and the first element of the next row.

The DMA manager does not constrain when descriptors can be provided
to a channel. For DMA channels that process inbound data, it is best prac-
tice to provide descriptors to the channel via the adi_dma_queue()
function before enabling dataflow. By doing this, the DMA controller uses
a space where data can be stored. If dataflow is enabled on an inbound
channel prior to providing descriptors, it is possible for data to be received
by the DMA channel but not have anywhere to store it.

Visual DSP++ 5.0 Device Drivers and System 6-19
Services Manual for Blackfin Processors

Theory of Operation

Small Descriptor Chaining Model

The small descriptor chaining model (ADI_DMA_MODE_DESCRIPTOR_SMALL)
is similar to the large descriptor chaining model. The only material differ-
ence between the two models is that in the small descriptor model, the
pointer to the next descriptor in a chain of descriptors consists of only the
lower 16 bits of address, rather than a full 32-bit address. This means that
all descriptors on a channel that use the small descriptor model must have
the same upper 16 bits of address. In other words, all small model descrip-
tors for a channel must be located within the same 64KB segment.

This difference is encapsulated in the ADI_DMA_DESCRIPTOR_SMALL data
type. In order to avoid data alignment issues, a consequence of having the
next descriptor pointer exist as a 16-bit entry rather than a 32-bit entry,
the starting address of the data within the descriptor is declared as two
16-bit entries, rather than a single 32-bit entry. Performing two 16-bit
accesses, rather than a single 32-bit access, avoids alignment exceptions.

Other than these differences, the small descriptor chaining model is func-
tionally identical to the large descriptor chaining model.

Arrays of Descriptors
The descriptor array mode (ADI_DMA_MODE_DESCRIPTOR_ARRAY) is not yet
supported in the device manager.

Configuring a DMA Channel

Once a DMA channel has been opened, the client can detect and modify
the configuration of the channel via the adi_dma_Control function. The
complete list of configuration control commands are provided in

6-20 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

DMA Manager

Table 6-6 on page 6-74. In most cases, the client passes the following
parameters to the adi_dma_Control() function:

* The channel handle. This is the value provided to the client during
the adi_dma_Open function.

* The command ID. This ADI_DMA_CMD data type identifies the
controllable item that is configured.

* A command-specific value. The semantics of this parameter are
defined by the command ID. For example, given a command ID of
ADI_DMA_CMD_SET_DATAFLOW, the command-specific value is either
TRUE or FALSE, to enable or disable dataflow on the channel. The
command-specific value is always cast to (void*).

Closing a DMA Channel

To close a DMA channel, the client calls the adi_dma_Close() function.
The client passes the following parameters into the function:

e The channel handle. This is the value provided to the client during
the adi_dma_Open() function.

* A flag indicating whether the DMA manager should wait for any
DMA activity on the channel to complete before closing the
channel.

Once a channel has been closed, the channel must be reopened with the

adi_dma_Open() function before it can be used again.

Transfer Completions

Client applications can use two different mechanisms to determine when
transfers complete. One method is by polling the channel, and the other
method is through callbacks.

Visual DSP++ 5.0 Device Drivers and System 6-21
Services Manual for Blackfin Processors

Theory of Operation

In addition to polling and callbacks, the memory stream functions offer a
synchronous capability. When used synchronously, the
adi_dma_MemoryCopy () and adi_dma_MemoryCopy2D() functions return to
the client only when the transfer is complete.

Polling

Clients can use the adi_dma_Control() function to interrogate a specific
channel to determine whether a transfer is in progress by using the
ADI_DMA_CMD_GET_TRANSFER_STATUS command.

When given this command, the DMA manager examines the status of the
individual DMA channel. The function provides a response of TRUE, if a
transfer is in progress, and a response of FALSE, if no transfer is currently
in progress.

Note that memory streams can also be interrogated for transfer status.
Instead of passing the channel handle (ADI_DMA_CHANNEL_HANDLE) parame-
ter to the adi_dma_Control() function, the client passes the stream handle
(ADI_DMA_STREAM_HANDLE) parameter (casted to the
ADI_DMA_CHANNEL_HANDLE data type) to the adi_dma_Control() function.

Callbacks

Callbacks are the more commonly used mechanism that clients use to
determine when a transfer has completed. Callbacks are either live (mean-
ing they are made at interrupt time) or deferred (meaning they are made
after the hardware interrupt has completed processing using a callback
service).

Memory Stream Callbacks

When using memory streams, if the client provided a callback function as
a parameter to the adi_dma_MemoryCopy () or adi_dma_MemoryCopy2D()
functions, the callback function is invoked by the DMA manager when
the transfer is complete.

6-22 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

DMA Manager

When using memory streams, the following arguments are passed to client
callback functions:

e The client handle. This is the client-supplied value provided in the

adi_dma_MemoryOpen() function.
e Event ID. This value is ADI_DMA_EVENT_DESCRIPTOR_PROCESSED.

 Starting destination address of the transfer

Circular Transfer Callbacks

When using the circular transfer method (ADI_DMA_MODE_CIRCULAR), the
client uses the configuration word to specify the frequency of callbacks.
When directed to callback the client on each sub-buffer completion, the
DMA manager invokes the client’s callback function after each sub-buffer
completes. This is useful in double-buffering schemes, where two sub-buf-
fers (ping/pong) are used.

When using circular transfers, the following arguments are passed to client
callback functions:

* The client handle. This is the client-supplied value provided in the
adi_dma_Open() function.

d Eventl[).TWﬁS\@JueisADI_DMA_EVENT_INNER_LOOP_PROCESSED
when a sub-buffer has completed processing or
ADI_DMA_EVENT_OUTER_LOOP_PROCESSED when the entire buffer has
completed processing.

 Starting address of the data buffer

Descriptor Callbacks

When using any of the descriptor-based transfer methods
(ADI_DMA_MODE_DESCRIPTOR_LARGE, ADI_DMA_MODE_DESCRIPTOR_SMALL, or
ADI_DMA_DESCRIPTOR_ARRAY), the client uses the configuration word of the
descriptor to define whether a callback is generated following processing

Visual DSP++ 5.0 Device Drivers and System 6-23
Services Manual for Blackfin Processors

Theory of Operation

of a descriptor. When directed to callback the client upon completion of
the descriptor, the client callback function is passed the following
arguments:

e The client handle. This is the client-supplied value provided in the
adi_dma_Open() function.

e Event ID. This value is ADI_DMA_EVENT_DESCRIPTOR_PROCESSED.

* Starting address of the data

Descriptor-Based Sub-Modes

When using the small or large model descriptor-based transfers, two
sub-modes (loopback and streaming) allow the client application greater
flexibility in processing descriptors. Each of these sub-modes can be used
independently or in combination. Each sub-mode is enabled or disabled
via the adi_dma_Control() function. Clients that want to use these
sub-modes must enable them prior to enabling dataflow on the channel.

By default, both sub-modes are disabled.

Loopback Sub-Mode

The loopback sub-mode is controlled by the ADI_DMA_CMD_SET_LOOPBACK
command.

When loopback sub-mode is enabled (after the DMA manager has pro-
cessed the last descriptor in the chain of descriptors provided to a
channel), it automatically loops back to the first descriptor provided to the
channel. This effectively creates an infinite loop of descriptors as
illustrated in Figure 6-3. For example, with loopback sub-mode, the client
can provide the descriptors at initialization time, allow the DMA manager
to process the descriptors, and never need to resupply the DMA manager
with additional descriptors.

6-24 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

DMA Manager

As in the non-loopback case, each descriptor, any one, none, or all
descriptors can be tagged to generate a callback to the client after
processing.

— DESCF:IPTOR @_{ DESCI:IIPTOR'

Figure 6-3. Descriptor Chain With Loopback

Streaming Sub-Mode

The streaming sub-mode is controlled by the ADI_DMA_CMD_SET_STREAMING
command.

When not using streaming sub-mode, the DMA manager pauses the DMA
controller after processing a descriptor that has been tagged to generate a
callback has been processed. The DMA manager does this because the
Blackfin processor’s DMA controller does not provide any status informa-
tion indicating that a specific descriptor has been processed. If the DMA
manager did not pause the controller, it is possible that before the DMA
manager can recognize and process the callback interrupt for a given
descriptor, the DMA controller may have completed processing of yet
another descriptor. Unless the DMA controller pauses until the DMA
manager processes the interrupt, the DMA manager cannot definitively
determine which callback interrupt is associated with which descriptor.

When not streaming, the DMA manager also pauses the DMA controller
when a channel has exhausted its supply of descriptors.

The streaming sub-mode allows the client to alter this behavior. When the
streaming sub-mode is enabled, the DMA manager never pauses the DMA

Visual DSP++ 5.0 Device Drivers and System 6-25
Services Manual for Blackfin Processors

Theory of Operation

controller; this allows the DMA transfers to occur at the maximum
throughput rate.

When streaming, the client is required to ensure the following conditions:

* The channel always has descriptors to process and never runs out of
descriptors.

e The system timing is such that the DMA manager can service the
callback interrupt for any descriptor tagged for a callback, before
another descriptor on the same channel that is tagged for callback
is processed.

These conditions can be met fairly easily in most systems.

DMA Channel to Peripheral Mapping

The Blackfin processor allows the user to change the default mapping of
the various DMA-supported peripherals to the various DMA channels.
Typically, however, the mappings for the memory DMA channels are
fixed and cannot be changed.

The DMA manager provides two functions, adi_dma_GetMapping() and
adi_dma_SetMapping(), that allow the client to easily detect and change
the mapping of DMA channels to peripherals. These functions can be
called at any time after the DMA manager is initialized, but they must be
processed before the channel is opened.

6-26 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

DMA Manager

Sensing a Mapping

The client calls the adi_dma_GetMapping() function to detect the DMA
channel ID to which a peripheral is mapped. The adi_dma_GetMapping()
function takes the following parameters:

e The peripheral ID. This value, an ADI_DMA_PMAP type, enumerates
the peripheral whose mapping is detected.

e Pointer to an ADI_DMA_CHANNEL_ 1D value. This value is the address
of a location in memory into which the function stores the channel

ID to which the given peripheral is mapped.

Setting a Mapping

The client calls the adi_dma_SetMapping () function to set the mapping of
a given channel ID to a given peripheral. The client should take care to

ensure that a one-to-one mapping exists between peripherals and channel
IDs. The adi_dma_SetMapping() function takes the following parameters:

e The peripheral ID. This value, an ADI_DMA_PMAP type, enumerates
the peripheral whose mapping is set.

e The channel ID. This value, an ADI_DMA_CHANNEL_ID value,
enumerates the DMA channel to which the given peripheral is
mapped.

Interrupts

The DMA manager uses the services of the interrupt manager to configure
all DMA-related interrupts. All hooking of interrupts is isolated into the

adi_dma_Open() and adi_dma_MemoryOpen() functions, and all unhooking
of interrupts occurs in the adi_dma_Close() and adi_dma_MemoryClose()

functions.

By default, the DMA manager uses the interrupt vector group (IVG)
settings as set up by the interrupt manager. The client can alter the

Visual DSP++ 5.0 Device Drivers and System 6-27
Services Manual for Blackfin Processors

Theory of Operation

mapping of DMA channels to IVG levels via calls into the interrupt man-
ager. See “Interrupt Manager” on page 2-1 for more information on
altering mapping of DMA channels to IVGs.

Hooking Interrupts

When the client opens the first DMA channel, the adi_dma_open()
function hooks into the appropriate IVG chain for the DMA error
interrupt. The handler for DMA errors does nothing other than clear the

appropriate DMA error and notify the client’s callback function that a
DMA error occurred.

In addition to the DMA error interrupt, the adi_dma_0Open() function
hooks the DMA data interrupt handler into the appropriate IVG level for
the given channel. The data interrupt handler is used to post callbacks
resulting from the completion of DMA transfers. In addition to posting
the notification callbacks, the data handler ensures that the channel is
refreshed and restarted (if necessary) with any new pending transfers.

Unhooking Interrupts

When the last remaining open DMA channel is closed, the
adi_dma_Close() function unhooks the DMA error handler from the
appropriate IVG handler chain. In addition, if no other open channels are
mapped to the same IVG as the channel being closed, the
adi_dma_Close() function unhooks the DMA data handler from the chain
of handlers for that IVG.

Two-Dimensional DMA

When using linear DMA, data is moved in a one-dimensional (linear)
fashion. This is the most common type of transfer, where 7 elements of

w” width are moved from one location, or taken in through a device
to another memory location, or out through a device.

6-28 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

DMA Manager

Two-dimensional DMA is a convenient feature that allows data to be
transferred in a non-linear fashion. This is especially useful in video
applications. Two-dimensional DMA supports arbitrary row (YCount) and
column (XCount) sizes up to 64K x 64K elements, as well as row modify
values (YModi fy) and column modify values up to +/- 32K bytes.

When using channel DMA, descriptors are used to define the parameters
for the transfer. When using memory streams, the ADI_DMA_2D_TRANSFER
data type is used to define the parameters for the transfer.

For example, suppose you want to retrieve a 16 x 8 block of bytes (data)
from a video frame buffer (frame) of size N x M pixels at location
frame[61[6] and store it in a separate memory area (data) for processing.
After the data has been processed, the values are then copied back to the
original location.

Figure 6-4 illustrates the area of the frame to process.

16

data 8

A
Y

frame

Figure 6-4. Selecting a 16 x 8 Block of Data From a Video Frame of
Size N x M

Visual DSP++ 5.0 Device Drivers and System 6-29
Services Manual for Blackfin Processors

Theory of Operation

To select each row of the 16 x 8 block, the inner loop of the required 2-D
DMA configuration has 16 values (XCOUNT=16) and a stride (XMODIFY) of 1.
The outer loop comprises 8 values (YCOUNT=8) and a stride (YMODIFY) of
N-15 (A + B in Figure 6-4) chosen to instruct the DMA controller to
jump from the end of one row to the start of the next.

It is also possible to extract interleaved data (for example, RGB values for
a video frame) by modifying both the x and y modi fy values. For example,
to receive a stream of R,G,B,R,G,B,... values from an N x M frame,
consider Figure 6-5.

N

Figure 6-5. Capturing a Video Data Stream of (R,G,B Pixels) x
(N x M Image Size)

In this case, the inner loop of the required 2-D DMA configuration has
three values (XCOUNT=3) and a stride (XMODIFY) of N*M, chosen such that
successive elements in each row (or RGB tuple) are 1 -2-3,4-5 -6,
and so on (see Figure 6-5).

The outer loop of the 2-D DMA configuration has N*M values
(YCOUNT=N*M) and a negative stride (YMODIFY) of 1-2*N*M chosen to instruct
the DMA controller to jump from element 3 to 4, 6 to 7, and so on at the
end of each inner loop.

6-30 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

DMA Manager

DMA Traffic Control

The traffic control period registers and the traffic control count registers
can be controlled using a command to set a value and a command to sense
a value.

A data structure called ADI_DMA_TC_SET is defined for setting a DMA traf-
fic control parameter. It contains fields to specify which DMA controller
the command is being issued for, which of the traffic control parameters
to set (DEB, DCB, DAB), and the value to set it to.

A similar data structure called ADI_DMA_TC_GET is defined for sensing a
DMA traffic control parameter.

Two commands called ADI_DMA_CMD_GET_TC and ADI_DMA_CMD_SET_TC are
used to set and sense the traffic control parameters. For more details on
setting and sensing traffic control parameters, see “Data Structures” on

page 6-64 and Table 6-6 on page 6-74.

DMA Manager APl Reference

This section provides descriptions of the DMA manager API functions.

Notation Conventions

The reference pages for the API functions use the following format:
Name — Name and purpose of the function
Description — Function specification
Prototype — Required header file and functional prototype
Arguments — Description of function arguments

Return Value — Description of function return values

Visual DSP++ 5.0 Device Drivers and System 6-31
Services Manual for Blackfin Processors

Theory of Operation

The DMA manager API supports the functions listed in Table 6-1.

Table 6-1. DMA Manager API Functions

Function

‘ Description

Primary Functions

adi_dma_Buffer

Provides a single or circular buffer.

See “adi_dma_Buffer” on page 6-34.

adi_dma_Close

Closes a DMA channel.
See “adi_dma_Close” on page 6-36.

adi_dma_Control

Controls/queries the operation of a DMA channel.
See “adi_dma_Control” on page 6-37.

adi_dma_Init

Initializes a DMA manager.
See “adi_dma_Init” on page 6-42.

adi_dma_0Open

Opens a DMA channel for use.
See “adi_dma_Open” on page 6-56.

adi_dma_Queue

Queues a descriptor chain.
See “adi_dma_Queue” on page 6-58.

adi_dma_Terminate

Shuts down and terminates a DMA manager.
See “adi_dma_Terminate” on page 6-61.

Helper Functions

adi_dma_GetMapping

Gets the DMA Channel ID to which a peripheral is
mapped. See “adi_dma_GetMapping” on page 6-40.

adi_dma_GetPeripherallnterruptID

Gets the peripheral interrupt ID for a given DMA
channel ID.

See “adi_dma_GetPeripherallnterruptID” on
page 6-41.

adi_dma_SetConfigWord

Sets the bits in the configuration word for a chain of
descriptors. See “adi_dma_SetConfigWord” on
page 6-59.

adi_dma_SetMapping

Sets the DMA Channel ID to which a peripheral is
mapped. See “adi_dma_SetMapping” on page 6-60.

6-32

Visual DSP++ 5.0 Device Drivers and System

Services Manual for Blackfin Processors

DMA Manager

Table 6-1. DMA Manager API Functions (Contd)

Function

‘ Description

Memory DMA Functions

adi_dma_MemoryOpen

Opens a memory DMA stream for use.
See “adi_dma_MemoryOpen” on page 6-48.

adi_dma_MemoryClose

Closes a memory DMA stream.
See “adi_dma_MemoryClose” on page 6-43.

adi_dma_MemoryCopy

Copies memory in a linear, one-dimensional fashion.
See “adi_dma_MemoryCopy” on page 6-44.

adi_dma_MemoryCopy2D

Copies memory in a two-dimensional fashion.
See “adi_dma_MemoryCopy2D” on page 6-46.

Memory DMA Queue Functions

adi_dma_MemoryQueueControl

Controls or configures a memory DMA stream. See
“adi_dma_MemoryQueueControl” on page 6-53.

adi_dma_MemoryQueueOpen

Opens a memory DMA stream for queueing. See
“adi_dma_MemoryQueueOpen” on page 6-54.

adi_dma_MemoryQueueClose

Closes a memory DMA stream that was opened for
queueing. See “adi_dma_MemoryQueueClose” on

page 6-52.

adi_dma_MemoryQueue

Queues memory DMA descriptor(s) to a stream. See
“adi_dma_MemoryQueue” on page 6-50.

Visual DSP++ 5.0 Device Drivers and System 6-33
Services Manual for Blackfin Processors

Theory of Operation

adi_dma_Buffer

Description

The adi_dma_Buffer () function assigns a one-shot or a circular buffer to a
DMA channel and configures the DMA channel according to the parame-
ters supplied.

Prototype

ADI_DMA_RESULT adi_dma_Buffer(
ADI_DMA_CHANNEL_HANDLE ChannelHandle,

void *StartAddress,
ADI_DMA_CONFIG_REG Config,

ule XCount,

s16 XModify,

ulé YCount,

sl6 YModify

)
6-34 Visual DSP++ 5.0 Device Drivers and System

Services Manual for Blackfin Processors

DMA Manager

Arguments

ChannelHandle Uniquely identifies the DMA channel the buffer is assigned to
and is the value returned when the DMA channel is opened

StartAddress Location of the start of the filled or transmitted buffer

Config DMA configuration control register for the transfer

XCount Total number of words transferred in a one-dimensional buf-
fer or the number of data elements per row in a two-dimen-
sional buffer

XMod1ify Offset in bytes between each word transferred (1-D) or the
offset in bytes between each row element (2-D)

YCount Number of rows transferred

YModify Offset in bytes between the last data element of one row and
the first element of the next

Return Value

ADI_DMA_RESULT_SUCCESS Buffer was assigned successfully.

ADI_DMA_RESULT_BAD_HANDLE ChannelHandle does not contain a valid chan-
nel handle.

ADI_DMA_RESULT_BAD_MODE DMA channel has not been opened for either

single or circular buffer operation.

ADI_DMA_RESULT_ALREADY_RUNNING DMA operation is in progress.

Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

6-35

Theory of Operation

adi_dma_Close

Description

The adi_dma_Close() function closes a DMA channel and releases the
configuration memory for further use. Depending on the value of the
WaitFlag argument, the channel is closed immediately or is closed after
ongoing transfers have completed.

Prototype

ADI_DMA_RESULT adi_dma_Close(
ADI_DMA_CHANNEL_HANDLE ChannelHandle,
u3? WaitFlag

)

Arguments

ChannelHandle Uniquely identifies the DMA channel to close and is the
value returned when the DMA channel is opened

WaitFlag If set to TRUE(1), instructs the DMA manager to wait for
ongoing transfers to complete before closing the channel;
otherwise, if set to FALSE(0), the channel is closed immedi-
ately, terminating any ongoing transfers.

Return Value

ADI_DMA_RESULT_SUCCESS DMA channel successfully closed.

ADI_DMA_RESULT_BAD_HANDLE ChannelHandle does not point to a
valid channel.

ADI_DMA_RESULT_CANT_UNHOOK_INTERRUPT Data handler and/or error handler can-
not be unhooked.

6-36 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

DMA Manager

adi_dma_Control

Description

The adi_dma_Control() function controls/queries the operation of the

specified DMA channel.

The function can be used in several ways:

A single command is passed.

adi_dma_Control(
ChannelHandle, ADI_DMA_CMD_SET_LOOPBACK, (void*)
TRUE) ;

A single command-value pair is passed.

ADI_DMA_CMD_VALUE_PAIR cmd = {

ADI_DMA_CMD_SET_WORD_SIZE, (void*)
ADI_DMA_WDSIZE_32BIT};
adi_dma_Control(ChannelHandle, cmd.CommandID ,cmd.Value);

A single ADI_DMA_CMD_VALUE_PAIR structure is passed (by
reference).

adi_dma_Control(ChannelHan-
dle,ADI_DMA_CMD_VALUE_PAIR,&cmd);

A table of ADI_COMMAND_PAIR structures is passed. The table must
have the following terminator entry to signify the end of the table
of commands: { ADI_DMA_CMD_END, 0 }. For example,

ADI_DMA_CMD_VALUE_PAIR table = {
{ADT_DMA_CMD_SET_LOOPBACK, (void*)lLoopbackFlag},
{ADI_DMA_CMD_SET_DATAFLOW, (void*)TRUE},

{ ADI_DMA_CMD_END, NULL };
adi_dma_Control(ChannelHandle,ADI_DMA_CMD_TABLE, &table);

Visual DSP++ 5.0 Device Drivers and System 6-37
Services Manual for Blackfin Processors

Theory of Operation

The set of commands that can be issued using the adi_dma_Contro]
function is defined in “DMA Commands” on page 6-74.

Prototype
ADI_DMA_RESULT adi_dma_Control(
ADI_DMA_CHANNEL_HANDLE ChannelHandle,
ADI_DMA_CM Command,
void *Value

)

Arguments

ChannelHandle

Uniquely identifies the DMA channel the buffer is assigned to and is the

value returned when the DMA channel is opened.

Command ADI_DMA_CMD enumeration value. See “DMA Commands” on page 6-74 for
a full list of commands.
Value Depending on the value for Command, this parameter is one of the following:

e If Command has the value ADI_DMA_CM_VALUE_PAIR,
the system issues the address of a single
ADI_DMA_CMD_VALUE_PAIR element specifying the command.

* If Command has the value ADI_DMA_CMD_TABLE, the system issues the
address of an array of ADI_DMA_CMD_VALUE_PAIR elements specifying
one or more commands. The last entry in the table must be
{ADI_DMA_CMD_END,NULL}.

* For any other value, Command specifies the command to be processed and
Value is the associated value for the command. In the case of a command
that queries a value, the value of the setting is stored at the location
pointed to by the pointer Value.

6-38

Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

DMA Manager

Return Value

ADI_DMA_RESULT_SUCCESS Function completed successfully.

ADI_DMA_RESULT_BAD_COMMAND Command is invalid. Either a bad command or a spe-
cific command is not allowed in this context.

ADI_DMA_RESULT_ALREADY_RUNNING | Commands could not be performed as the channel is
currently transferring data.

Visual DSP++ 5.0 Device Drivers and System 6-39
Services Manual for Blackfin Processors

Theory of Operation

adi_dma_GetMapping

Description

The adi_dma_GetMapping() function is used to identify the DMA channel
ID to which a DMA- compatible peripheral is mapped.

Prototype
ADI_DMA_RESULT adi_dma_GetMapping(
ADI_DMA_PMAP pmap,
ADI_DMA_CHANNEL_ID *pChannellD
)3
Arguments
pmap Peripheral ID is queried.
pChannelID Location where the DMA manager stores the channel ID to
which the peripheral is mapped.

Return Value

ADI_DMA_RESULT_SUCCESS Device is identified and DMA information is returned.

ADI_DMA_RESULT_BAD_PERIPHERAL | Bad peripheral value was encountered.

ADI_DMA_RESULT_NOT_MAPPED No mapping was found for the device.

6-40 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

DMA Manager

adi_dma_GetPeripheralinterruptiD

Description

The adi_dma_GetPeripheralInterruptID function gets the peripheral
interrupt ID for a given DMA channel ID.

Prototype

ADI_DMA_RESULT adi_dma_GetPeripherallInterruptID(
ADI_DMA_CHANNEL_ID ChannellD,
ADI_INT_PERIPHERAL_ID *pPeripherallD

)

Arguments

ChannellD

DMA channel ID

pPeripherallD

ADI_INT_PERIPHERAL_ID structure in which the peripheral
ID will be stored.

Return Value

ADI_DMA_RESULT_SUCCESS

No errors encountered

ADI_DMA_RESULT_BAD_CHANNEL_ID Invalid channel ID

Visual DSP++ 5.0 Device Drivers and System 6-41
Services Manual for Blackfin Processors

Theory of Operation

adi_dma_Init

Description

The adi_dma_Init() function initializes a DMA manager.

Prototype

ADI_DMA_RESULT adi_dma_Init(

void
const size_t
u3?

*pMemory,
MemorySize,
*pMaxChannels

ADI_DMA_MANAGER_HANDLE *pManagerHandle,

void
)

Arguments

*pCriticalRegionArg

pMemory

Pointer to memory that the DMA can use

MemorySize

Size, in bytes, of the memory provided

pMaxChannels

Location in memory where the DMA manager stores the num-
ber of simultaneously open channels that can be supported
given the memory provided

pManagerHandle

Location in memory where the DMA manager stores the han-
dle to the DMA manager

pCriticalRegionArg

Parameter that the DMA manager passes to the
adi_int_EnterCriticalRegion() function

Return Value

ADI_DMA_RESULT_SUCCESS

Function completed successfully.

ADI_DMA_RESULT_NOMEMORY

Insufficient memory is available to initialize the DMA

manager.

6-42

Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

DMA Manager

adi_dma_MemoryClose

Description

The adi_dma_MemoryClose() function closes down a memory DMA
stream, freeing up all resources used by the memory stream.

Prototype
ADI_DMA_RESULT adi_dma_MemoryClose(
ADI_DMA_STREAM_HANDLE StreamHandle,
u3z2 WaitFlag
)
Arguments
StreamHandle Handle to the DMA memory stream
WaitFlag If set to TRUE(1), instructs the DMA manager to wait for

ongoing transfers to complete before closing down the
memory stream; otherwise, if set to FALSE(0), the channel
is closed immediately, terminating any transfers in progress.

Return Value

ADI_DMA_RESULT_SUCCESS Function completed successfully.
ADI_DMA_RESULT_BAD_HANDLE StreamHandle parameter does not point to a valid mem-
ory stream.
Visual DSP++ 5.0 Device Drivers and System 6-43

Services Manual for Blackfin Processors

Theory of Operation

adi_dma_MemoryCopy

Description

The adi_dma_MemoryCopy () function performs a one-dimensional (linear)

memory copy.

Prototype

ADI_DMA_RESULT adi_dma_MemoryCopy(
ADI_DMA_STREAM_HANDLE StreamHandle,

void *pDest,
void *pSrc,
ulé ElementWidth,
ulé ElementCount,
ADI_DCB_CALLBACK_FN ClientCallback
)
Arguments

StreamHandle

Handle to the DMA memory stream

pDest

Starting address into which memory is copied

pSrc

Starting address from which memory is copied

ElementCount

Number of elements to transfer

ElementWidth

Width of an element (in bytes); allowed values are 1, 2, and 4.

ClientCallback

Callback function called when the transfer completes. If NULL, the
call to the adi_dma_MemoryCopy () function is considered syn-
chronous and does not return to the client until the transfer has
completed.

6-44

Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

DMA Manager

Return Value

ADI_DMA_RESULT_SUCCESS Function completed successfully.

ADI_DMA_RESULT_BAD_HANDLE StreamHandle parameter does not point to a valid mem-

ory stream.
ADI_DMA_RESULT_IN_USE Memory stream already has a transfer in progress.
Visual DSP++ 5.0 Device Drivers and System 6-45

Services Manual for Blackfin Processors

Theory of Operation

adi_dma_MemoryCopy2D

Description

The adi_dma_MemoryCopy2D() function performs a two-dimensional mem-

ory copy.

Prototype
ADI_DMA_RESULT adi_dma_MemoryCopy2D(
ADI_DMA_STREAM_HANDLE StreamHandle,
ADI_DMA_2D_TRANSFER *pDest,
ADI_DMA_2D_TRANSFER *pSrc,
u3? ElementWidth,
ADI_DCB_CALLBACK_FN ClientCallback
)
Arguments
StreamHandle Handle to the DMA memory stream
pDest Pointer to the structure that describes how and where the data is

copied into memory

pSrc Pointer to the structure that describes how and where the data is
copied from memory

ElementWidth Width of an element (in bytes); allowed values are 1, 2, and 4.

ClientCallback Callback function called when the transfer completes. If NULL,
the call to the adi_dma_MemoryCopy () function is considered syn-
chronous and does not return to the client until the transfer has
completed.

6-46 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

DMA Manager

Return Value

ADI_DMA_RESULT_SUCCESS Function completed successfully.

ADI_DMA_RESULT_BAD_HANDLE StreamHandle parameter does not point to a valid mem-

ory stream.
ADI_DMA_RESULT_IN_USE Memory stream already has a transfer in progress.
Visual DSP++ 5.0 Device Drivers and System 6-47

Services Manual for Blackfin Processors

Theory of Operation

adi_dma_MemoryOpen

Description

The adi_dma_MemoryOpen() function opens a memory DMA stream for
use. Once it is opened, memory DMA transfers can be scheduled on the
stream.

Prototype

ADI_DMA_RESULT adi_dma_MemoryQOpen(
ADI_DMA_MANAGER_HANDLE ManagerHandle,

ADI_DMA_STREAM_ID StreamlD,
void *ClientHandle,
ADI_DMA_STREAM_HANDLE *pStreamHandle,
void *DCBHandle
)
Arguments

ManagerHandle Handle to the DMA manager

StreamlID Memory stream ID that is opened.

ClientHandle Identifier defined by the client. The DMA manager

includes this identifier in all DMA manager-initiated com-
munication with the client, specifically in calls to the call-
back function.

pStreamHandle Pointer to a client-provided location where the DMA man-
ager stores an identifier defined by the DMA manager. All
subsequent communication initiated by the client to the
DMA manager for this memory stream includes this handle.

DCBServiceHandle Handle to the deferred callback service used for any mem-
ory stream events. A value of NULL means that deferred
callbacks are not used and all callbacks occur at DMA inter-
rupt time.

6-48 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Return Value

DMA Manager

ADI_DMA_RESULT_SUCCESS

Function completed successfully.

ADI_DMA_RESULT_ALL_IN_USE

All channel memory is in use.

ADI_DMA_RESULT_CANT_HOOK_INTERRUPT

System cannot hook a DMA data or error inter-

rupt.

Visual DSP++ 5.0 Device Drivers and System

Services Manual for Blackfin Processors

6-49

Theory of Operation

adi_dma_MemoryQueue

Description

The adi_dma_MemoryQueue() function queues memory DMA descrip-
tors(s) to a stream.

Prototype
ADI_DMA_RESULT adi_dma_MemoryQueue(
ADI_DMA_STREAM_HANDLE StreamHandle,
ADI_DMA_DESCRIPTOR_LARGE *pSourceDescriptor,
ADI_DMA_DESCRIPTOR_LARGE *pDestinationDescriptor
)
Arguments
StreamHandle Handle to the DMA memory stream
pSourceDescriptor Source descriptor handle
pDestinationDescriptor Destination descriptor handle
6-50 Visual DSP++ 5.0 Device Drivers and System

Services Manual for Blackfin Processors

Return Value

DMA Manager

ADI_DMA_RESULT_SUCCESS

Function completed successfully.

ADI_DMA_RESULT_BAD_HANDLE

Invalid stream handle was passed.

ADI_DMA_RESULT_BAD_DESCRIPTOR

Invalid descriptor was passed.

ADI_DMA_RESULT_ALIGNMENT_ERROR

Parameters will cause an alignment error.

ADI_DMA_RESULT_BAD_XCOUNT

Invalid XCount value was supplied.

ADI_DMA_RESULT_NULL_DESCRIPTOR

A NULL descriptor was passed.

ADI_DMA_RESULT_INCOMPATIBLE_TRANSFER_SIZE

Source and destination have different
transfer sizes.

ADI_DMA_RESULT_INCOMPATIBLE_WDSIZE

Source and destination have different
WDSIZE values.

ADI_DMA_RESULT_INCOMPATIBLE_CALLBACK

Destination descriptor callback is not
compatible with source descriptors.

ADI_DMA_RESULT_NO_BUFFER

Channel has no buffer.

Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

6-51

Theory of Operation

adi_dma_MemoryQueueClose

Description

The adi_dma_MemoryQueueClose() function closes a memory DMA stream
that was opened for queueing.

Prototype
ADI_DMA_RESULT adi_dma_MemoryQueueClose(
ADI_DMA_STREAM_HANDLE StreamHandle,
u3? WaitFlag
)
Arguments
StreamHandle Handle to the DMA memory stream
WaitFlag Wait for transfers to complete flag (TRUE/FALSE)

Return Value

ADI_DMA_RESULT_SUCCESS Function completed successfully.
ADI_DMA_RESULT_BAD_HANDLE Invalid stream handle was passed.
6-52 Visual DSP++ 5.0 Device Drivers and System

Services Manual for Blackfin Processors

DMA Manager

adi_dma_MemoryQueueControl

Description

The adi_dma_MemoryQueueControl () function controls or configures a
memory DMA stream.

Prototype

ADI_DMA_RESULT adi_dma_MemoryQueueControl(
ADI_DMA_STREAM_HANDLE StreamHandle,

ADI_DMA_CMD Command,
void *Value
)
Arguments
StreamHandle Handle to the DMA memory stream
Command Command ID
Value Command-specific value

Return Value

ADI_DMA_RESULT_SUCCESS Function completed successfully.
ADI_DMA_RESULT_BAD_COMMAND Invalid command item was passed.
ADI_DMA_RESULT_ALREADY_RUNNING Commands could not be performed as the chan-
nel is currently transferring data.
ADI_DMA_RESULT_BAD_HANDLE Invalid stream handle was passed.
Visual DSP++ 5.0 Device Drivers and System 6-53

Services Manual for Blackfin Processors

Theory of Operation

adi_dma_MemoryQueueOpen

Description
The adi_dma_MemoryQueueOpen() function opens a memory DMA stream
for queueing,.

Prototype

ADI_DMA_RESULT adi_dma_MemoryQueueOpen(
ADI_DMA_MANAGER_HANDLE ManagerHandle,

ADI_DMA_STREAM_ID StreamlID,
void *ClientHandle
ADI_DMA_STREAM_HANDLE *pStreamHandle,
void *DCBHand1e,
ADI_DCB_CALLBACK_FN ClientCallback
)
Arguments
ManagerHandle Handle to the DMA manager
StreamlID Open memory stream 1D
ClientHandle ClientHandle argument passed in callbacks
pStreamHandle Location where DMA StreamHandle is stored
DCBHandle Deferred callback service handle
ClientCallback Client callback function
6-54 Visual DSP++ 5.0 Device Drivers and System

Services Manual for Blackfin Processors

DMA Manager

Return Value

ADI_DMA_RESULT_SUCCESS Function completed successfully.

ADI_DMA_RESULT_BAD_HANDLE Invalid stream handle or manager handle was
passed.

ADI_DMA_RESULT_ALL_IN_USE All channel memory is in use.

ADI_DMA_RESULT_CANT_HOOK_INTERRUPT System cannot hook a DMA data or error inter-
rupt.

Visual DSP++ 5.0 Device Drivers and System 6-55
Services Manual for Blackfin Processors

Theory of Operation

adi_dma_Open

Description

The adi_dma_0Open() function opens a DMA channel for use. The DMA
manager ensures the channel is not already opened and then initializes any
appropriate data structures.

Prototype
ADI_DMA_RESULT adi_dma_0Open(
ADI_DMA_MANAGER_HANDLE ManagerHandle
ADI_DMA_CHANNEL_ID ChannellID
void *ClientHandle,
ADI_DMA_CHANNEL_HANDLE *pChannelHandle,
ADI_DMA_MODE Mode,
ADI_DCB_HANDLE DCBHandle,
ADI_DCB_CALLBACK_FN ClientCallback
)
6-56 Visual DSP++ 5.0 Device Drivers and System

Services Manual for Blackfin Processors

Arguments

DMA Manager

Argument

Explanation

ManagerHandle

Handle to the DMA manager

ChannellD

ADI_DMA_CHANNEL_ID enumeration value. See
“ADI_DMA_CHANNEL_ID” on page 6-67.

ClientHandle

Identifier defined by the client. The DMA manager includes this identi-
fier in all DMA manager-initiated communication with the client, spe-
cifically in calls to the callback function.

pChannelHandle

Pointer to a client-provided location where the DMA manager stores an
identifier defined by the DMA manager. All subsequent communication
initiated by the client to the DMA manager for this channel includes the
handle to specify the channel to which it is referring.

Mode

ADI_DMA_MODE enumeration value specifying the data transfer mode
used by the opened DMA channel. See “ADI_DMA_MODE” on
page 6-68.

DCBServiceHandle

Handle to the deferred callback service used for the given channel. A
value of NULL means that deferred callbacks are not used and all call-
backs occur at DMA interrupt time.

ClientCallback

Address of a callback function defined by the application. The value
passed for the C1ientHand1le parameter is the value supplied by the
application when the channel was opened.

Return Value

ADI_DMA_RESULT_SUCCESS Function completed successfully.
ADI_DMA_RESULT_ALL_IN_USE All channel memory is in use.
ADI_DMA_RESULT_CANT_HOOK_INTERRUPT System cannot hook a DMA data or error
interrupt.
Visual DSP++ 5.0 Device Drivers and System 6-57

Services Manual for Blackfin Processors

Theory of Operation

adi_dma_Queue

Description

The adi_dma_Queue () function queues a descriptor or chain of descriptors

to the specified DMA channel.

When using descriptor chains, the descriptor is added to the end of the list
of descriptors already queued to the channel, if any. The last descriptor in
the chain must have its pNext pointer set to NULL.

Prototype

ADI_DMA_RESULT adi_dma_Queue(
ADI_DMA_CHANNEL_HANDLE ChannelHandle,
ADI_DMA_DESCRIPTOR_HANDLE DescriptorHandle

Arguments
ChannelHandle Uniquely identifies the DMA channel that the descrip-
tor is queued on and is the value returned when the
DMA channel is opened
DescriptorHandle Pointer to the first descriptor in the chain

Return Value

ADI_DMA_RESULT_SUCCESS Descriptor was queued successfully.
ADI_DMA_RESULT_BAD_HANDLE ChannelHandle does not contain a valid channel han-
dle.

ADI_DMA_RESULT_BAD_DESCRIPTOR Descriptor handle is NULL.

ADI_DMA_RESULT_ALREADY_RUNNING | Cannot submit additional descriptors to a channel
configured for a loopback with dataflow enabled.

6-58 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

DMA Manager

adi_dma_SetConfigWord

Description

The adi_dma_SetConfigWord() function sets the bits in the configuration
word for a chain of descriptors.

Prototype

ADI_DMA_RESULT adi_dma_SetConfigWord(
ADI_DMA_CHANNEL_HANDLE ChannelHandle,
ADI_DMA_DESCRIPTOR_HANDLE DescriptorHandle

)

Arguments

ChannelHandle Channel handle

DescriptorHandle Descriptor chain

Return Value

ADI_DMA_RESULT_SUCCESS No errors encountered
ADI_DMA_RESULT_BAD_HANDLE Channel handle is NULL.
ADI_DMA_RESULT_BAD_DESCRIPTOR Descriptor chain is NULL.
ADI_DMA_RESULT_NON_TERMINATED_CHAIN Chain is not NULL terminated.
ADI_DMA_RESULT_BAD_DIRECTION The WNR bit is wrong.
ADI_DMA_RESULT_CALLBACKS_DISALLOWED_ON_SOURCE | No callbacks allowed

Visual DSP++ 5.0 Device Drivers and System 6-59
Services Manual for Blackfin Processors

Theory of Operation

adi_dma_SetMapping

Description

The adi_dma_SetMapping() function maps the DMA channel ID to the

given peripheral.

Prototype

ADI_DMA_RESULT adi_dma_SetMapping(

ADI_DMA_PMAP
ADI_DMA_CHANNEL_ID
)

pmap,
ChannellD

Arguments
pmap Peripheral ID to which the DMA channel is mapped.
ChannellD Channel ID that is mapped to the peripheral.

Return Value

ADI_DMA_RESULT_SUCCESS

Channel was successfully mapped.

ADI_DMA_RESULT_BAD_PERIPHERAL

Bad peripheral value was encountered.

ADI_DMA_RESULT_ALREADY_RUNNING

Mapping could not be performed as the channel is
currently transferring data.

6-60 Visual DSP++ 5.0 Device Drivers and System

Services Manual for Blackfin Processors

DMA Manager

adi_dma_Terminate

Description

The adi_dma_Terminate () function closes down all DMA activity and ter-
minates the DMA manager.

Prototype
ADI_DMA_RESULT adi_dma_Terminate(
ADI_DMA_MANAGER_HANDLE ManagerHandle
)
Arguments
ManagerHandle Handle to the DMA manager

Return Value

ADI_DMA_RESULT_SUCCESS Process completed successfully.

Visual DSP++ 5.0 Device Drivers and System 6-61
Services Manual for Blackfin Processors

Public Data Structures, Enumerations, and Macros

Public Data Structures, Enumerations,
and Macros

This section defines the public data structures and enumerations used by
the DMA manager. These data structures are made available to client
applications or device driver libraries via the adi_dma.h header file. All

types have the ADI_DMA_ prefix to avoid ambiguity with client developer’s
data types.

This section contains:
e “Data Types”
e “Data Structures” on page 6-64
* “General Enumerations” on page 6-67
e “ADI_DMA_CONFIG_REG Field Values” on page 6-72
* “DMA Commands” on page 6-74

Data Types

Several data types that shield the client developer from the internal imple-
mentation of the library and the details of DMA programming are used.
These data types also provide an interface that is partially decoupled from
the functionality offered by individual processors.

ADI_DMA_CHANNEL_HANDLE

The ADI_DMA_CHANNEL_HANDLE data type identifies each separate DMA

channel to the DMA manager. When passed to the DMA manager func-
tion, it uniquely identifies the channel function to which it needs to refer
or upon which it must operate. The DMA manager returns this handle to
the application when a DMA channel is opened. All other DMA manager

6-62 Visual DSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

DMA Manager

functions that need to identify a channel require this parameter to be

passed.

ADI_DMA_DESCRIPTOR_UNION and
ADI_DMA_DESCRIPTOR_HANDLE

The ADI_DMA_DESCRIPTOR_UNION data structure represents a union of the
small descriptor, large descriptor, and descriptor array data types. The
ADI_DMA_DESCRIPTOR_HANDLE is then a typedef that describes a pointer to
the union. The ADI_DMA_DESCRIPTOR_HANDLE is passed into the
adi_dma_Queue() function as a means to provide the function with

a) a small descriptor chain, b) a large descriptor chain, or c) an array of
descriptors. By using the handle/union, a single adi_dma_queue () func-
tion is needed, instead of separate functions for each of the descriptor data

types.

typedef union ADI_DMA_DESCRIPTOR_UNION {

ADI_DMA_DESCRIPTOR_SMALL Small;
ADI_DMA_DESCRIPTOR_LARGE Large;
ADI_DMA_DESCRIPTOR_ARRAY Array;

} ADI_DMA_DESCRIPTOR_UNION;
typedef ADI_DMA_DESCRIPTOR_UNION *ADI_DMA_DESCRIPTOR_HANDLE;

ADI_DMA_STREAM_HANDLE

The ADI_DMA_STREAM_HANDLE data type identifies a memory stream to the
DMA manager. When passed to the adi_dma_MemoryXxX functions, the
handle uniquely identifies the memory stream onto which the DMA man-
ager operates. The DMA manager returns this handle to the application
when a DMA memory stream is opened. All other memory stream func-
tions require this parameter to be passed.

Visual DSP++ 5.0 Device Drivers and System 6-63
Services Manual for Blackfin Processors

Public Data Structures, Enumerations, and Macros

Data Structures

The structures that define each type of descriptor and the DMA
configuration control register are available in the public adi_dma.h header
file. The field names follow the convention used in the Hardware Reference
for the appropriate processor.

ADI_DMA_2D_TRANSFER

The ADI_DMA_2D_TRANSFER data structure defines the characteristics of the
source or destination component of a two-dimensional memory copy.

typedef struct ADI_DMA_2D_TRANSFER {

void *StartAddress;
ulé XCount;
s16 XModify;
ulé YCount;
s16 YModify;

} ADI_DMA_Z2D_TRANSFER;

ADI_DMA_CONFIG_REG

The ADI_DMA_CONFIG_REG type defines the structure for the DMA
configuration control word. In addition, macros are provided to allow the
client to set individual fields within the word.

ADI_DMA_DESCRIPTOR_ARRAY

The ADI_DMA_DESCRIPTOR_ARRAY structure defines the contents of a
descriptor array element.

typedef struct ADI_DMA_DESCRIPTOR_ARRAY {

void *StartAddress;
ADI_DMA_CONFIG_REG Config;
ul6 XCount;
s16 XModify;
6-64 Visual DSP++ 5.0 Device Drivers and System

Services Manual for Blackfin Processors

DMA Manager

ule YCount;
s16 YModify;
uleé CallbackFTlag;

} ADI_DMA_DESCRIPTOR_ARRAY;

Descriptor element CallbackFlag is defined as ul6, but it should
take only values 0 or 1 (FALSE or TRUE, respectively). Passing a value
greater than 1 causes unpredictable results.

ADI_DMA_DESCRIPTOR_LARGE

The ADI_DMA_DESCRIPTOR_LARGE structure defines the contents of a large
descriptor.

typedef struct ADI_DMA_DESCRIPTOR_LARGE {
struct ADI_DMA_DESCRIPTOR_LARGE *pNext;

void *StartAddress;
ADI_DMA_CONFIG_REG Config;

uleé XCount;

sl6 XModify;

ulé YCount;

s16 YModify;

ule CallbackFlag;

} ADI_DMA_DESCRIPTOR_LARGE;

Descriptor element CallbackFlag is defined as ul6, but it should
take only values 0 or 1 (FALSE or TRUE, respectively). Passing a value
greater than 1 causes unpredictable results.

Visual DSP++ 5.0 Device Drivers and System 6-65
Services Manual for Blackfin Processors

Public Data Structures, Enumerations, and Macros

ADI_DMA_DESCRIPTOR_SMALL

The ADI_DMA_DESCRIPTOR_SMALL structure defines the contents of a small
descriptor.

typedef struct ADI_DMA_DESCRIPTOR_SMALL {

ulé *pNext;

ulé StartAddresslLow;
uleé StartAddressHigh;
ADI_DMA_CONFIG_REG Config;

ulé XCount;

sl6 XModify;

ulé YCount;

s16 YModify;

ule CallbackFlag;

} ADI_DMA_DESCRIPTOR_SMALL;

Descriptor element CallbackFlag is defined as ul6, but it should
take only values 0 or 1 (FALSE or TRUE, respectively). Passing a value
greater than 1 causes unpredictable results.

ADI_DMA_TC_SET

The ADI_DMA_TC_SET structure is used for setting a DMA traffic control
parameter. The ParameterID field specifies what type of parameter to set
and is defined using the ADI_DMA_TC_PARAMETER enumeration. The
ControllerID specifies which DMA controller to set, where multiple con-
trollers are available, the first controller starting at 0. The value field
specifies the value to write.

typedef struct ADI_DMA_TC_SET {

ADI_DMA_TC_PARAMETER ParameterlID;
ule Contr