ADSP-BF537 Blackfin® Processor

Hardware Reference
(Includes ADSP-BF534 and ADSP-BF536 Blackfin Processors)

Revision 3.4, February 2013

Part Number
82-000555-01

Analog Devices, Inc.

One Technology Way ANALOG
Norwood, Mass. 02062-9106 DEVICES

Copyright Information

© 2013 Analog Devices, Inc., ALL RIGHTS RESERVED. This docu-
ment may not be reproduced in any form without prior, express written
consent from Analog Devices, Inc.

Printed in the USA.

Disclaimer

Analog Devices, Inc. reserves the right to change this product without
prior notice. Information furnished by Analog Devices is believed to be
accurate and reliable. However, no responsibility is assumed by Analog
Devices for its use; nor for any infringement of patents or other rights of
third parties which may result from its use. No license is granted by impli-
cation or otherwise under the patent rights of Analog Devices, Inc.

Trademark and Service Mark Notice

The Analog Devices logo, Blackfin, CrossCore, EngineerZone, EZ-KIT
Lite, and VisualDSP++ are registered trademarks of Analog Devices, Inc.

All other brand and product names are trademarks or service marks of
their respective owners.

CONTENTS

PREFACE
Purpose of This Manualcccoooiiiiiiiiiiiiiceceee xlv
Intended AUdiencecuevevieieiiiiiiiiiiee e xlv
Manual CONTENTS .oeeveeiiiiiiiiiiiiee e e et e e e e e e e e e xlvi
What's New in This Manualccccceeiiiiiiiiiiniiiiiiiiiiceeeee e xlix
Technical SUPPOIT .ooooiiiiiiiiii 1
Supported ProCessorscouuuieiriiieniiiieniieeeiee et li
Product Informationc..eoeeiiiiiiieiiiiiiee e li
Analog Devices Web Sitecccoiiiiiiiiiiiiiiiiii e lii
ENgineerZone ...c.ccccoviiiiiiiiiiiiiiiiic et lii
Notation CONVENTIONS ..uuvvvvrreeeeeeriiiiiiieieeeeeessaiiitireeeeeeeesaniinreeeeeeess liii
Register Diagram Conventionscccccccoviviiiiiiiiiiiiiiiiiiiiiin, liv
INTRODUCTION
Peripheralsoocoiiiiiiiiiiii 1-2
Memory Architectureocooviiiiiiiiiiiiiiei e 1-4
Internal Memoryooooimiiiiiiiiiiiieiiiiiece e 1-6
External Memoryc.eoiiiiiiiiiiiiiiiiieiiiieee e 1-6
[/O Memory SPacecooocueiiiiiiiiiiiiiiiiiiiieceeeeeieeeee e 1-6
DMA SUPPOIT et 1-7
ADSP-BF537 Blackfin Processor Hardware Reference iii

Contents

External Bus Interface Unitoeeeviiviiieiiiiiieiiiiiieeeeiiiee e 1-8
PC133 SDRAM Controllerccoccvviiiiiieieeiiiiiiiieeee e, 1-9
Asynchronous Controllero.ccccovviiiiiiiiiniiiiniiicecee, 1-9

POTES ittt 1-9
General-Purpose I/O (GPIO) ..ccoviiiiiiiiiiiiiiiiiieceieceie 1-10

Two-Wire INterfaceocuveeieviiiiieiiiiiiiee e 1-11

Controller Area Networkcoeeiiiiiiiiiiiiiiiieiiiiiieeerieee e 1-12

Ethernet MAC ..o 1-13

Parallel Peripheral Interfaceccoocuveiriiiiiiiiiniiiiiicice 1-14

SPORT Controllersccceiiiiiiiiiiiiiiiiiiiiiiiiiiieeeee e 1-16

Serial Peripheral Interface (SPI) Portccoocvveviiiiiiiiiiiniiiiinineens 1-17

THMEIS oottt e e e e e e e e e s 1-18

UART POIES vttt 1-19

Real-Time Clock ..cccviiiiiiiiiiiiiiee e 1-20

Watchdog TImMer ...coooviiiiiiiiiiiiiicc e 1-21

Clock Signalsccoeeviiiiiiiiiiiiiiic e 1-22

Dynamic Power Managementcccccovvviniiiiiiiiiiiiiniiiniinenn.n. 1-22
Full-On Mode (Maximum Performance)cccoeeevvvvvunneeenn. 1-23
Active Mode (Moderate Power Savings)cccccevviiiiininneens 1-23
Sleep Mode (High Power Savings)cccoceevcviiniiiennieeennnen. 1-23
Deep Sleep Mode (Maximum Power Savings)cccccceeennenne 1-24
Hibernate Stateooovviiiiiiiiiiiiiiiice e 1-24

Voltage Regulationcccccceeviiiiiniiiiiiiiiiiiccccec e 1-24

BOOt MOES oiiiiiiiiiiiiieeee e 1-25

iv ADSP-BF537 Blackfin Processor Hardware Reference

Contents

Instruction Set Descriptioncoccccviiiiiiieiiiiiiiiiiiiieeeeeieieeee 1-27

Development Toolscceeiiiiiiiiiiiiiiiiiiccceeececeen 1-28
CHIP BUS HIERARCHY

Chip Bus Hierarchy Overviewccoccceiviiiiniiiiiniiiciieccnicceeeens 2-1
Interface OVErVIEWcccceeuiiiiiiiiieeeeeeeciieee e e e e e e e e e e e e e e 2-2
Internal Clocksooovviiiiiiiiiiiiiiiiiieieeeeeeeee 2-3
Core Bus OVEIVIEW .ooveeeeeeeeeeieieeeeeeeeeeeeeeee e 2-4
Peripheral Access Bus (PAB) ..eveeiiiiiiiiiiiiiciicieceecce 2-6
PAB ArbDitrationeeeeeeeeeeeeueiiiiniieniiniineeeeenenenerenennnenenena. 2-6
PAB Agents (Masters, SIaves)ccoovuvieniiiiniiiciiiiciiecee, 2-6
PAB Performancecccuvvveiieeeeeeiiiiiiiieeeeeeeeeeiiiree e e e e 2-7

DMA Access Bus (DAB), DMA Core Bus (DCB), DMA
External Bus (DEB) ..iiiiiiiiiiiiee e 2-8
DAB ArbDitrationeeeeeeeeeeieeiiiiiiiiiiiiiiiiiieiiiieieieeeneneneneaaaa. 2-8
DAB Bus Agents (IMasters)ccoccceeiimiiiiieiniiiieeiniiieeeeae 2-9
DAB, DCB, and DEB Performanceccccvvvrvieeeeenennnnns 2-10
External Access Bus (EAB) ..ooouniiiieiiiiiiiiie e 2-11
Arbitration of the External Buscccoeeeeiiiiiiiiiiiiiiee, 2-11
DEB/EAB Performancecccuvveeeeeeeeeiiiiiiiiieeeeeeeeeeeiinneeeeeenns 2-11

MEMORY

Memory Architectureoooiviiiiiiiiiiiiieiceeec e 3-1
L1 Instruction SRAM .o 3-5
L1 Data SRAM oo 3-7
L1 Data Cache ...ooviiiiiiieiiiiiiiiicee et 3-8

ADSP-BF537 Blackfin Processor Hardware Reference v

Contents

Boot ROM ... 3-8
External Memoryoocuviiiiiiiiiiiiiiiiicce e 3-8
Processor-Specific MMRSooiiiiiiiiiiiiiiiicceiec e 3-9
DMEM_CONTROL RegiSterc.ccocvieriieriuieniieniieiieiieenieens 3-9
DTEST_COMMAND RegiStercccceeeviuiiieiiiiiiiiiiiiiieeeens 3-11

SYSTEM INTERRUPTS

OVEIVIEW ittt ittt ettt et 4-1
FEATUIES ..eiiiiiiiiiiiiie e 4-2
INEEITACES uvvviieeiiiieee e e 4-2
Description of OpPerationceeeeveeernieeenieeeniiieeniieeneeeeieee e 4-3
Events and Sequencingcccoccveiviiiiiiiiiiiiiiiiiiici 4-4
System Peripheral Interruptscccooviiiiiiiiiniiiiiiiiiiccee 4-8
Programming Modelc.ccccoiiiiiiiiiiiiiiiic 4-15
System Interrupt Initializationcccccooviiiiiiniiiiiiiniiienenns 4-15
System Interrupt Processing Summarycccoceciiiiiiiiiiinn, 4-15
System Interrupt Controller Registersccccuveeviiiiniiiieniiiennneenns 4-18
SIC_TARX RegISterscceeeviuviiiiiiiiiiiiiiiiiiiiiieecieccciee e 4-19
SIC_IMASK ReGISTErvvviiiiiiiiiiiiiiiieeiiiiiice e 4-21
SIC_ISR REGISTEr .veveiiiiiiiiiiiiiiiiiiiiiee e 4-22
SIC_IWR ReGISTEr ...eiiiuiiiiiiiiiiiiiiiiiiiiiiie e 4-23
DIRECT MEMORY ACCESS
Overview and Featuresocccouviiiiiiiiiiiiiiiiiiiee e 5-2

vi ADSP-BF537 Blackfin Processor Hardware Reference

Contents

DMA Controller OVerviewcccuuviieeiieiiiiiiiiiiiieeeeeeeesiieeeeeeeenn 5-5
External Interfacescceeeeiviiiiiiiiiiiiiieiiiiiieee e 5-6
Internal Interfacescccoovviiiiiiiniiiiiiiiiii e 5-6
Peripheral DMA ..ot 5-7
Memory DMA 5-9

Handshaked Memory DMA Modecoovvviiniiiiniiiinneeens 5-11

Modes of OPErationc.c.eeevvueeeiiiieeniieeeiiee et 5-12

Register-Based DMA Operationc..cccceeeuveevciieeniieenieeennnee. 5-12
StOP MOdE ..viiiiiiiiiiiiiiic e 5-13
Autobuffer Modeooooiiiiiiiiiiiiiiiiiceeee e 5-14

Two-Dimensional DMA Operationccceeceveevciveeniiieennneenne 5-14
Examples of Two-Dimensional DMAccocceiviiiinnnncnns 5-15

Descriptor-Based DMA Operationcccovvuieeeinninieeennnnneee. 5-16
Descriptor List Modecoooiiiiiiiiiiiiiiiiiiniiccnieceec, 5-17
Descriptor Array Modecoccveerviiiiiiiiiniiiiniiceniceeee 5-18
Variable Descriptor Sizecoccvviiiimiiiiiinniiiiiiiiieeeee 5-18
Mixing Flow Modesccccoviiiiimiiiiniiiiiiiiienieccnecceeens 5-19

Functional Descriptioncccovvueeeriiieeniiiienniieeieeenieee e 5-20
DMA Operation FIowccocoiiiiiiiiiiiiiiiiiiiiciccen 5-20

DMA Startupcoooviiiiiiiiiiiiiiiiii 5-20
DMA Refresh .oooviiiiiiiiiiii e 5-25

ADSP-BF537 Blackfin Processor Hardware Reference

vii

Contents

Work Unit Transitionscc.eeeerroveeeeeeniieeeerniiieeeeniieeeeennenes 5-27
DMA Transmit and MDMA Sourceccceeeevvevvrnnnnnnnn. 5-28
DMA RECEIVE ..t 5-30

Stopping DMA Transferscccccocoiiiiiiiiniiiiiiiiiiiiienn, 5-31

DMA Errors (ADOItS) .eviivvveeeiiiiiieieiiieeeeeeee e 5-32
DMA Control Commandscccovviiiiieiniiiiiiiiiieeeeiiieeeeae 5-34

RESTIICTIONS wevviiiiiiiiiiiiiiiiiiiiiiiiieeteeeeeeeetee ettt eeeeeeeeeeeeee 5-38
Transmit Restart or Finishcccccoiiiiiinniis 5-38
Receive Restart or Finish ..o 5-38

Handshaked Memory DMA Operationccccoveuveernieennneenn. 5-39
Pipelining DMA ReqUestsccccveerviriiniiieeniieeiiieeeieeee 5-41
HMDMA INEEITUPES eeevvveeeiiiiiieeeiiiiieeeeiieee e 5-43

DMA Performanceccuueeeeeriuieeeeeiiiiieeesniiieeeeeiiieeeeeiieeee e 5-44

DMA Throughputc.coeeviiiiiiiiiiiiiiicecece 5-45

Memory DMA Timing Detailsccccceoviiiiniiiiiniiiinieeene. 5-48

Static Channel Prioritizationccccovvcveeeeniiiieeeeniiieeeenns 5-48

Temporary DMA Urgencyccoccveeeviiieniiieeniiieniieeenieeens 5-49

Memory DMA Priority and Schedulingcccoccconiienie 5-51

Traffic Controlceeiviiiiiiiiiiie e 5-53

Programming Modelcccoiiiiiiiiiiiiiiii 5-55

Synchronization of Software and DMAcccccoiiiiniiiinnneen. 5-55

Single-Buffer DMA Transfersccccccovieviiiniiiiniiiinncnnnn. 5-58

Continuous Transfers Using Autobufferingcc.cccc.... 5-58

Descriptor STrUCtUIESceeevuiiiiieriiiiee e 5-60

Descriptor Queue Managementccccoevvuiiiiiiiiiiininn. 5-61

Viil

ADSP-BF537 Blackfin Processor Hardware Reference

Contents

Descriptor Queue Using Interrupts on Every

DESCIIPLOL evviiiniiiieiiiie ettt 5-62
Descriptor Queue Using Minimal Interruptsccoueee... 5-63
Software Triggered Descriptor Fetches ... 5-65
DMA REEISTELS ..eeeuiiieriiiiiiiiie ettt et 5-67
DMA Channel Registersccceevuvierniiiiniiieniiiienieeiieeeee. 5-68
DMAx_PERIPHERAL_MAP/MDMA_yy_ PERIPHERAL_MAP
Registersccccoiiiiiiiiiiiiiiiii 5-71
DMAx_CONFIG/MDMA_yy_CONFIG Registers 5-74
DMAx_IRQ_STATUS/MDMA _yy_IRQ_STATUS
Registerscccoiviiiiiiiiiiiii 5-78
DMAx_START_ADDR/MDMA_yy_START_ADDR
RegISterscccooiiiiiiiiiiiiiii 5-82
DMAx_CURR_ADDR/MDMA_yy_ CURR_ADDR
RegIStErsocoiiiiiiiiiiiiiiiiiiiiiii 5-83

DMAx_X_COUNT/MDMA_yy_X_COUNT Registers 5-85

DMAx_CURR_X_COUNT/MDMA_yy_CURR_X_COUNT
REGISTEIS ..vvviiiiiiiiiiiiiiiie e 5-86

DMAx_X_MODIFY/MDMA_yy_X_MODIFY Registers .. 5-88
DMAx_Y_COUNT/MDMA_yy_Y_COUNT Registers 5-90

DMAx_CURR_Y_COUNT/MDMA_yy_ CURR_Y_COUNT
Registersooooiiiiiiiiiiiiii 5-91

DMAx_Y_MODIFY/MDMA_yy_Y_MODIFY Registers ... 5-93
DMAx_NEXT_DESC_PTR/MDMA_yy NEXT_DESC_PTR

Registers ... 5-94
DMAx_CURR_DESC_PTR/MDMA_yy_ CURR_DESC_PTR
REGISTEIS ..vvviiiiiiiiiiiiiiiie e 5-96

ADSP-BF537 Blackfin Processor Hardware Reference

X

Contents

HMDMA RegIStersccoiiiiiiiiiiiiiiiiiiiiiiiiie e 5-99
HMDMAx_CONTROL Registerscccccceeeeriuniiiinnnnnen. 5-100
HMDMAx_BCINIT Registersc.cccuveeernirieiiniiieeeennnne. 5-101
HMDMAx_BCOUNT Registerscccccuvriiiiiiiiiiiinnnnn. 5-102
HMDMAx_ECOUNT Registersccccouveeiriiiiieennnnnen. 5-103
HMDMAx_ECINIT Registerscccvveeervuireeinniniieeennnne 5-104
HMDMAx_ECURGENT Registerscccccvvevuiiininnnns 5-105
HMDMAx_ECOVERFLOW Registerscccccceevnnnee.. 5-105

DMA Traffic Control Registerscccceeevivveeriieeinieciniecennne 5-106
DMA_TC_PER Registercccccccviiiiiiiiiiiiniiiiiiiiiinn. 5-106
DMA_TC_CNT Registerccccoceviiiiiiiiiiiiiiiiiiceeneeee. 5-107

Programming Examplesccoooviiiniiiiiiiiiiiiiciicccc 5-108

Register-Based 2D Memory DMAcccccoviiiiiiiiiiiiinn 5-108

Initializing Descriptors in Memoryccocceeeviiieniiicnnneenne. 5-112

Software-Triggered Descriptor Fetch Examplecccc.cce.... 5-115

Handshaked Memory DMA Exampleccoocveiniiiiinieennnen. 5-117

EXTERNAL BUS INTERFACE UNIT
EBIU OVEIVIEW ..evtiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiitieeeeeeseeeeeeenenenenenenes 6-2

Block DIagramcocceeoviiiiiiiiiiiiicicceccee e 6-4

Internal Memory Interfacescccooviiiiniiiiiniiiinniicinieceeene 6-5

REGISTEIS .eeviiiiiiiiiiii e 6-6

Shared Pinscccciiiiiiiiiiiiiiiiiiicc 6-6

System Clock ouviviiiiiiiiiiiiie 6-7

Error Detection .ooueeieiiiiiiiiiiiiiiieee et 6-7

X ADSP-BF537 Blackfin Processor Hardware Reference

Contents

Bus Request and Grantcccoccueeeiimiiiiiiniiiiceniieceeiecee e 6-8
OPErationccccuiiiiiiiiiiiiiiiiiiii 6-8
AMC Overview and Featurescocceevviiiiniiiiniiieniiccniee e 6-9
Featuresooovuuiiiiiiiiiiiiiii e 6-9
Asynchronous Memory Interfaceccocveeviiiiniiiiiniicinincens 6-9
Asynchronous Memory Address Decodecccoocvvvennnennee. 6-10

AMC Pin Descriptioncccceeiviiiiiiiiiiiieiiiiiiiiiiieeeeeeeniieeeeeeeen 6-10
AMC Description of Operationccceeceeeevuveeniieenieeenneeeenneenn 6-11
Avoiding Bus Contentionccoccueeeriieeniiiiennieeenieeenieeeeneen 6-11
External Access EXtensioncccccovviiieiinniiiiiinniiccennnne. 6-12

AMC Functional Descriptionc.cccceeviieiiiieiniieiniieenieceeeee 6-12
Programmable Timing Characteristicsccoocuveeriuveerieeennnnee. 6-12
Asynchronous Readsccooceeiiiiiiiiiiiiniiice, 6-13
Asynchronous WIItescocceerriiieniiieniiieiiee e 6-14
Adding External Access Extensionc..cccocvieniieennneennne 6-16
Partial WIitecccooviiiiiiiiiiiiii 6-17
Instruction Fetch .oovviiiiiiiiiii 6-18
Cache Line Fill ..ooooiiiiiiiiicecccee 6-18
AMC Programming Modelcccociiiiiiiii 6-19
AMC Configurationceceecueeeriieeeenieeeniieenieee e eree e 6-19
AMC Register Definitioncocccccevueiiniiiieniiiieniiiciiec e 6-19
EBIU_AMGCTL RegiStercccovuviiiiiiiiiiiiiiiiiiiiiiiieeeiieeen, 6-20
EBIU_AMBCTLO and EBIU_AMBCTLI Registers 6-21
AMC Programming Examplesc.ccccooviiiiiiiiiniiiiniiiciiccieee 6-25

ADSP-BF537 Blackfin Processor Hardware Reference

X1

Contents

SDC Overview and Featuresc.eeeeeiieiiiiiiiiiiiiiiieeiiiiiiiieeeeee. 6-27
FATUIES .. 6-27
SDRAM Configurations Supportedcccoeveernieirniieeennnenn. 6-29
SDRAM External Bank Sizecocovviiiiiiiiiiiiiiiiiiiiciiieeee 6-29
SDC Address Mappingc.cceeeveuveeeniieeniieeniiieeniiee e 6-30
Internal SDRAM Bank Selectcccovvuiiiiiniiiiiiiiiiiiiiiiieees 6-31
Parallel Connection of SDRAMS ...ccvvviviiiiiiiieiiiiiieeeeiieeeee 6-31
Instruction Fetch ...ooooviiiiiiiiii e 6-32
Cache Line Filloooiiiiiiiiiiiiieee e 6-32

SDC Interface OVEIVIEW ..ccuvviiieeiiuiiieeiiiiiieeeeiiiieeeeeiieeeeeeiiieee e 6-32
SDC Pin Descriptionccoccciiiiiiiiiiiiiiiiiiiieeeiiiee e 6-32
SDRAM Performanceccoocueeeeeriiiieeeiniiiieeeiiiieeeeeiiieeeeens 6-33

SDC Description of Operationcoccueeevvuveernieeinieeenieeenieeenns 6-35
Definition of SDRAM Architecture Termsccccvvvveeeeeeerennns 6-35

Refresh coooeeiiiiii 6-35
ROW ACHVATION .uiiiiiiiiiieeiiiiiiiiiicee e 6-35
Column Read/Writecoeeeevviiiiiiiiiiieeeeeiiiieee e 6-35
Row Prechargecccooviiiiniiiiiniiiiiiecccccc e, 6-35
Internal Bankccccooiiiiiiiiiiiii 6-36
External Bankcoooiiiiiiiiiiiiiii e 6-36
Memory Sizecoooviiiiiiiiiiiiiii 6-36
Burst Length ...oocooooiiiiiiiiiii 6-36
Burst Type woooeeeiiiiiii 6-36
CAS Latency oocueeeeeeiiiiieeeiiieee et 6-37
xii ADSP-BF537 Blackfin Processor Hardware Reference

Contents

Data [/O Mask Functioncccceevviiieieiniiiiieiiieee e, 6-37
SDRAM Commandseeeeeeeeerniiiiiiiieeeeeeeeiiiiiieeeeeeeeennens 6-37
Mode Register Set (MRS) Commandc.ccoocvvieniiiiennncen. 6-37
Extended Mode Register Set (EMRS) Command 6-37
Bank Activate Commandccoccouviiiiieeieeiiiiiiiiiieeee e 6-37
Read/Write Commandccooooviiiiiiiiiieeiiiiiiieeeiiiee e 6-38
Precharge/Precharge All Commandccccoceveiiiiiiinnienne. 6-38
Auto-Refresh Commandcoooviiiiiiiiiiiniiiiiiiiieeeeeee, 6-38
Enter Self-Refresh Modecoooviiiiiiiiiiiiiiiiiiiiiiiece, 6-38
Exit Self-Refresh Modeccoooviiiiiiiiiiiiiiiiiiieeiieeee 6-38
SDC Timing SPecscccoveuuiiiiiiiiiiiieiiiiiiee e 6-39
EMVIRID ++++vveeerveeeesmmmeemmmneenmmneeanuneeenseeesseeesnmeeeenmneeennneeenneeenns 6-39
TRAS +veervrreeemmmeenmmneesuneesineteesuseeeasteeesatneesneeeeanneeesaneeeenreeens 6-39
L e 6-40
ERCD) -+eeeerrrrmmeeesmmmnneeesmmneeeesamtreeesaueneeesaauneeeesserneeeesannnneens 6-40
ERRID ++ervvreeervreeesmmmeemmmneesamneennineeenneeennneessneeensneeenneeesnneenns 6-40
DNRJR -+vveeernrrmneeesmmmnneeeannnreeesantreeeeantaeee e et e eeeeabteeeesaarneeeas 6-40
TR ++vveesrreeemmmeeenmnneesuneesaneeesaureeeasneeesateeesbeee ettt e e naneeeenreeeas 6-41
TR +vveeeeesmmmnneeeanmnneeeaartteeesaaat bt e e e sttt e e e ettt e e e et e e e e saatanee s 6-41
EREQ +eersveeeessrmeemmreesuneesauetessireeesiaeeessteeesnneeennneeesaneeennreenns 6-41
EX(GR -++veeernrmnreeeemmmnneeeannnneeesantreeeeautneeeeaataeeeeeabbeeeesaanaeeeas 6-41
EREE +veevveeeessreeesmmeenmmneenauneenaneeennneesnneesanneesasneeesnneesnneenns 6-42
EREE] -+veeeresreeeeesmmmnneeeanmneeeesnmmnneeesnnmnneeesanteeeesansnneeeesasnnneens 6-42

ADSP-BF537 Blackfin Processor Hardware Reference xiii

Contents

SDC Functional Descriptioncceeeeeeriuiieeeinniieeeinniiieeeenieeeenn 6-42
SDC Operationccooccuiiiiiiiiiiiiiiiiiiiee et 6-42
SDC Address MUXING ...ccovuviieniiieniiieiiieeeniee e 6-45
Multibank Operationcccceeriiiiiiiiiiniiiiiiiiecee, 6-46
Core and DMA Arbitrationccccceeeeeeeviiiiiiiiieeeeeeeeeeeee, 6-47
Changing System Clock During Runtimeccccocevneenee. 6-47
Changing Power Management During Runtime 6-49
Deep Sleep Mode ..c.ovvieiiiiiniiiiiiiiciiicciceec e, 6-49
Hibernate Stateeeveiiiiiiiiiiiiiiiieeiiece e 6-49
Shared SDRAM ...coiiiiiiiiiiiiiie e 6-49
SDC Commandsccoeuvviiiieeeeeeieiiiiiiieeee e e eeseiiiieeeee e e e e e 6-50
Mode Register Set Commandcccceeeviiiiiniiiinnieeenieen, 6-52
Extended Mode Register Set Command (Mobile
SDRAM) ottt ettt 6-53
Bank Activation Commandcccceveeniiiieiinniiiieeeniieen. 6-53
Read/Write Commandcoooviiiiiiiiiiiiiiiiiiiiicceeeeeee 6-54
Partial WIite .oeeeeeeiiiiiiiieee e 6-54
Single Precharge Commandcocoeeiiiiiiniiiiiiiiiiieee, 6-55
Precharge All Commandccocoeiiiiiiiiiiiniiiiniiiice 6-55
Auto-Refresh Commandcccevvviiiiiiiiiiiiiiieee e, 6-56
Self-Refresh Modeooeiiiiiiiiiiiiiiiiiiiiiiccece e 6-56
Self-Refresh Entry Commandccoccveeiniiiiniicennnen. 6-56
Self-Refresh Exit Commandccccvvveiiieeeiniinnnnen. 6-57
No Operation Commandcccceeeviiieniiiieniieeniiee e 6-58
xiv ADSP-BF537 Blackfin Processor Hardware Reference

Contents

SDC SATO PN ceeeiiieeiieiieiieeieee e 6-59
SDC Programming Modelc.ccccoviiiiiniiiiiniiiiiiicneciecee 6-59
SDC Configurationcoccueeerueeeriieenniieeeniee et 6-59
Example SDRAM System Block Diagramsc.cccccvvenienen. 6-61
SDC REGISTELS ...ueeiiiiiiiiiiiiiiiiiiic et 6-64
EBIU_SDRRC Re@ISEr ...uuvvvieiiiiiieiiiiiiieeeeiiieeee e 6-64
EBIU_SDBCTL Registercccovuiiiiiiiiiiiiiiiiiiiiiiiiiecceen, 6-66
Using SDRAMs With Systems Smaller Than 16M Byte 6-69
EBIU_SDGCTL Re@IStErceeiveuiiiiiiiiiiiieeeiiieeeeiieeee e 6-70
EBIU_SDSTAT Registerccoovvuiiiiiiiiiiiiiiiiiiiiiiiiecccceen, 6-81
SDC Programming Examplesccoocviiniiiiniiiiiniiiiniieciiecee. 6-82

PARALLEL PERIPHERAL INTERFACE

OVEIVIEW ettt 7-2
FEaturesiiiiiiiiiiiiiie e 7-2
Interface OVErVIEW ...ccoeeeeiviiiiiieeeeeeeeiiieee e e e e e et e e e e e e 7-3
Description of OPerationcoccueeeriueeeriieeenieeeniieenieee e enneeens 7-6
Functional Descriptioncccccciviiiiiiiniiiiiiiiiiieeeniiece e 7-7
ITU-R 656 MOAES ...vvviiiieeieeiiiiiiiiiiiee ettt 7-7
ITU-R 656 Backgroundcccocveeiiiiiiniiiiniiiiiiiceiecee, 7-7
ITU-R 656 Input Modesccoocvviiiiniiiiciiniiiiiieniiieeeee 7-10
Entire Fieldccoovviiiiiiiiiieeeee e 7-10

Active Video Onlyoooviiiiiiiiiiiiiiiiiicecece 7-11

Vertical Blanking Interval (VBI) Only ..., 7-12

ADSP-BF537 Blackfin Processor Hardware Reference

XV

Contents

ITU-R 656 Output Modeoeeeemmiiiiiiniiiiiiiiiiieeeeee. 7-12
Frame Synchronization in ITU-R 656 Modes 7-13
General-Purpose PPI Modescccueeeviiiiiniiiiniiiiniiiciieceen 7-13
Data Input (RX) Modesccuvviiimiiiiiiiniiiiiciiiiieceniieecen 7-16

No Frame Syncscccoevviiiiiiiiiiiiii, 7-16

1, 2, or 3 External Frame Syncsccocceeviiiiinieiinincens 7-17

2 or 3 Internal Frame Syncscccccoevviiiiiiiniiiiiiiiiieece 7-17

Data Output (TX) Modesoeevviiiiniiiiniiiiiiiiiiieceieeene, 7-18

No Frame Syncsccccoovvviiiiiiiiiiiiiiiii, 7-18

1 or 2 External Frame Syncsccccovviiiiiinniiiiiinniiieennn. 7-19

1, 2, or 3 Internal Frame Syncscccccceveviiieiiniiiicennns 7-20

Frame Synchronization in GP Modescccocuveiniiiinnnennne. 7-21
Modes With Internal Frame Syncscccovveeeniicinineenne. 7-21

Modes With External Frame Syncsccocceeviiiiinnnenne. 7-22
Programming Modelcccoiiiiiiiiiiiiiii 7-24
DMA OPerationccceveevieeeiiiiiiiiiiiiiiieeeeeeeiiiieee e e 7-24
PPI REGISTEIS ...eviiiiiiiiiiiiiiiiiiiie e 7-27
PPI_CONTROL Registerccccovveumiiiiiiiiiiiiiiiiiiiiiiieeeeeinies 7-27
PPI_STATUS Registerccccviiiiiiiiiiiiiiiiiiiiiiiiiicciiieeees 7-31
PPI_DELAY RegISTEr ...uvvieriiiiiniiieeiiiieiiiieeiiee e 7-34
PPI_COUNT ReGISTETr ..evvviiiiiiiiiiiiiiiiieeeniiiiee e 7-34
PPI_FRAME Registerccccocuiiiiiiiiiiiiiiiiiiiiiiiiicciiieeee 7-35
Programming Examplesccoooiiiniiiiiiiiiniiiiiccc 7-36
Data Transfer Scenarioscccceeceieviiiiiiiiiiiiiiiniciicceee 7-39

XVi ADSP-BF537 Blackfin Processor Hardware Reference

Contents

ETHERNET MAC
OVEIVIEW ettt e ettt e e e e e e e e et b e e e 8-1
Features ...ccoovuuuiiiiiiiiiiiiiiiiie e 8-2
Interface OVErVIEWccoviuiiiiiiiiiiiieeeiiiiee et 8-2
External Interfaceoooeveveiiiiiiiiiiiiieeeeeiiieeee e 8-4
ClOCKING vt 8-4
PIILS teeeeeieie ettt e e e e 8-5
Internal INterfaceeeeveeeieiiiiiiiiiieeee e 8-7
Power Managementcceeeeeemmmimmumimiiieiiiiiiiiieeeieeeeeeeeeea. 8-7
Description of OPerationcoocueeerueeeriieeenieeeniieeniiee e 8-8
Protocol coeieeiiiiiiiie e e 8-8
MII Management Interfaceccocveeviiiiiiniiiiiniiiiniiicneece 8-8
OPEration ..ocooiiuiiiiiiiiiiiiiiiiiieee e 8-10
MII Management Interface Operationccccceeevvueeennncens 8-10
Receive DMA Operationcccceevvviiiiiiiieiiiiiiniiiiiieeeeen. 8-11
Frame Reception and Filteringcccccoiiiiiniiinin. 8-13
RX Automatic Pad Strippingcccoceveviiniiiiiniiiinineene 8-18
RX DMA Data Alignmentcccoeeuveerniiieniieeniiieenieenn. 8-18
RX DMA Buffer Structureccccuveeerniiieeeeniiieeeenieennn. 8-18
RX Frame Status Bufferccccvvvvieiiiiiiiiieeeee 8-19
RX Frame Status Classificationcccceeeeviiieeeennnnnee.. 8-20
RX IP Frame Checksum Calculationccccoccuvveeeennnnnen.. 8-21
RX DMA Direction Errorscocooeeviiiiiiiiiiiinieeiiiiiiiiinnnn, 8-23

ADSP-BF537 Blackfin Processor Hardware Reference xvii

Contents

Transmit DMA Operationcccccceeveiiieeiniiiieeeiniiieeenne 8-24
Flexible Descriptor Structurecooeveeeniveenieeennineeenne. 8-27
TX DMA Data Alighmentcccceevuveeinieeeniieennieeenneen. 8-27
Late ColliSionscceeiiiiiiiiiiiiiiiiieeeieiieeeee e 8-28
TX Frame Status Classificationccoeevevviiiieeeeeeennnns 8-29
TX DMA Direction Errorseeeeeeeiiiiniiiiiiiiiieiinnnns 8-30
Power Managementccccccuviiiiiiiiiiiiiiiiiiin e, 8-31
Ethernet Operation in the Sleep Stateccccocvveernneenne. 8-32
Magic Packet Detectioncceeeviiiiniiiiniiiieniiienieeene, 8-34
Remote Wake-up Filterscccccovviiiiiiiiniiiiniiiiiecne 8-35
Ethernet Event Interruptsccocovveeviiiiiiiiiniiiciiiec e, 8-38
RX/TX Frame Status Interrupt Operationc............. 8-42

RX Frame Status Register Operation at Startup and
ShUtdOWn .eeeieeieiiiie e 8-43

TX Frame Status Register Operation at Startup and
ShUtdOWn .eoiiiiiiiiiiee e 8-43
MAC Management COUNLerscccceeevieiiiiiiiiiiiiiiieeeeenn. 8-43
Programming Modelcccoiiiiiiiiiiiiiii 8-46
Configure MAC Pinsccccociiiiiiiiiiiiiiiiiciiiciiccecceceee 8-46
Multiplexing Schemecoociiiiiiiiiiii 8-47
CLKBUEF ot 8-47
Configure INTEITUPLS .oovveiiiiiniiiiiiiiiccieccieee e 8-47
Configure MAC RegiStersccccceeeviiieniieiniiieeniieeniieenineenns 8-48
MAC AdAIess covvvveeeiiiiieee e 8-48
MII Station Managementccceeevveeiiiiieniiieiiiee e 8-48

xXviil ADSP-BF537 Blackfin Processor Hardware Reference

Contents

Configure PHY ..ooooiiiiiiiiiiiiiiiiccceccec e 8-50
Receive and Transmit Dataeeeeveeeeeeiiiiiiiiiiiiieeeeeeiiiiieeeeen 8-50
Receiving Datacooiiiiiiiiiiiiiiiiiiii, 8-51
Transmitting Dataocoociiii 8-51
Ethernet MAC Register Definitionscccceevveiviiienieeenineennnen. 8-51
Control-Status Register Groupccoeeveeniieeniiiieniiienieeeee. 8-64
EMAC_OPMODE RegiSterccccceeviiviiiiiiiiiiiniiiiiieeens 8-64
EMAC_ADDRLO Registercccoovvummiiiiiiiiiiiiiiiiiiiiennnn. 8-71
EMAC_ADDRHI Registerccccovviiiiiiiiiiiiiiiiiiiiieneeenn. 8-71
EMAC_HASHLO Registerccccoovvuiiiiiiiiiiiiiiiiinnc, 8-72
EMAC_HASHHI Registerccccoevimiiiiiiiiiiiiiiiiiiinnn. 8-75
EMAC_STAADD Registercccveeirviiiiieiniiiieeeeiiieeeee 8-76
EMAC_STADAT Registercccccceiiiiiiiiiiiiiiiiiiiiiiinnc, 8-77
EMAC_FLC Registercccccvviiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeee, 8-78
EMAC_VLANT RegiSteruuvviiiiiiiiiiiiiiiiiiiieiiiiiiiiiieeeeee, 8-80
EMAC_VLAN2 Registerccccviiiiiiiiiiiiiiiiiiiiiiiieeece, 8-81
EMAC_WKUP_CTL Registercccccceveiriiiiieiiniiiieennnnee. 8-81
EMAC_WKUP_FFMSKx Registerscccoevvveeennuiieeennnnnn 8-84
EMAC_WKUP_FFCMD Registercccoccuviiiiiiiiiiinnnn. 8-89
EMAC_WKUP_FFOFF Registerccccccccceeiiiiiiiniiiinnnnnn. 8-91
EMAC_WKUP_FFCRCO0 and EMAC_WKUP_FFCRC1
RegIStersccoiiiiiiiiiiiiiiii 8-91
System Interface Register Groupc..ccccevvveeniiiieniiienineennnnee. 8-92
EMAC_SYSCTL RegISter ..ceeevvuuiiiiiiiiiieeeniiiieeeeiieeeeee 8-92
EMAC_SYSTAT RegiStercccocuviiiiiiiiiiiiiiiiiiiiiiieeeene 8-94

ADSP-BF537 Blackfin Processor Hardware Reference Xix

Contents

Ethernet MAC Frame Status Registersccccoovveviiiiniiiennnene. 8-97
EMAC_RX_STAT Registercccoveuiiiimiiiiiiiiniiiieeeneen. 8-97
EMAC_RX_STKY Registerccccccvviiiiiiiniiiiiiiiiiiiiinnnn. 8-103
EMAC_RX_IRQE Registerccccocviiiiiiiiiiiiiiiiinin, 8-107
EMAC_TX_STAT RegiSterccccevuviiiimiiiiieiiiiiieeeeneen. 8-107
EMAC_TX_STKY Registerccceccvuveeimmirieenniiieeennnne. 8-112
EMAC_TX_IRQE Registerccccovviiiiiiiiiiiiiiiiiniinnn, 8-115
EMAC_MMC_RIRQS Registercccccceeiiiiiiiniiiiinninninnn. 8-115
EMAC_MMC_RIRQE Registerccccccevriiuriiniiiiiiinnnnns 8-117
EMAC_MMC_TIRQS Registerccccovuviiiiiiiiiiiiinnnn. 8-119
EMAC_MMC_TIRQE Registerccccoceuvviiiiiinniiennnnn. 8-121

MAC Management Counter Registerscccccovvvuniiiiiiennnn. 8-123
EMAC_MMC_CTL Registerccccceviiiiuiiiiiiiiiiieennnnn. 8-123

Programming Examplesccoccoeiiiiiiniiiiniiiicecen 8-125

Ethernet Structurescceeeviiiiiiiiiiiiiiieeiiiee e 8-126

MAC Address Setup ...ccccuveeeeiiiiiiiiiiiiieceee e 8-128

PHY Control ROUTINESevvivieeeiiiiiiiiiiiiieeeeeeeiiiiiieee e 8-129

CAN MODULE

OVEIVIEW etiiiiiiiiiiiiiiiiiieieteeete ettt ettt ettt ettt e e et et et et e e e e e eeeeeeeeeeeees 9-1
Interface OVErVIEW ..occeveiiiiiiiiiiieeiiiiee et 9-2
CAN Mailbox Area ..ocoovvviiiiieieeeeeeiiiiiieee e eeeeee e 9-4
CAN Mailbox Controlcocccviiiiiiiiiiiiiiiiiiee e 9-6
CAN Protocol Basicseeeieeiiiiiiiiiiiiiiiiiiieiiiiieeeeee e 9-7

XX ADSP-BF537 Blackfin Processor Hardware Reference

Contents

CAN OPErationccoeeueuiiiiiieeiiiiiiiiiiiiieeee e 9-9
Bit TImIng ..cccoiiiiiiiiiiiiiiie e 9-10
Transmit OPerationccoccceieeeiiiiieeeiniiiieeeniiieeeeeeeee e 9-13

REtransmiSSIONuueeeeeeeueiiiiiiiiiiiiiiiiiiiiieiiiieieieeeeeeeeeeeeees 9-14
Single Shot Transmissionccccceeviiiiiniiiiniiceniieenieee 9-16
Auto-TransmisSSION ..c..eveeeeeeeeeiiiiiiiiiiieeeeeeeeriiiieeeeee e e e 9-16
Receive Operationcooccccuiiiiiiieiiiiiiiiiiiiieeeeeeeniiieeeeeeeenn 9-17
Data Acceptance Filterccccooviiiiiiiiniiiiniiiiniiecnieee, 9-20
Remote Frame Handlingcccooveeiiiiiiiiiiiniiiinicceee 9-21
Watchdog Mode ...cccooviiiiiiiiiiiiiiiiiiiiiiccccec e 9-21
Time Stamps ..ocoeeiiiiiiiiiiiii e 9-22
Temporarily Disabling Mailboxesccoccveeriiiiiniiiiniiiininen. 9-23

Functional Operationccocccceeiiiiiiiiiiniiiiiiiiiecceec e 9-24

CAN INCEITUPLS tooiiiiiiiiiiiiiiie e 9-25
Mailbox INterrupts «o.eeeerveieriiiiiiiiieeiieeeieceee e 9-25
Global CAN Status INterruptcooccvveeevniiieeenniiieeeenneeee. 9-26

Event COoUuNTeroooiiiiiiiiiiiiieieeeieiiiie e 9-29

CAN Warnings and Errorscoocveerniiiiniiiiniicciieceeece, 9-30
Programmable Warning Limitsccccoeviiiiiiiniiiiniinennn. 9-30
CAN Error Handlingcoooiiiiiiiiiiiiiiiiiciecece, 9-30

Error Framesccoooiiiiiiiiiiiiiiiiiiii e 9-32
Error Levels .oooouviiiiiiiiiiii 9-34
Debug and Test Modescoocvieriiiiiniiiiniiieiieceiec e 9-36

ADSP-BF537 Blackfin Processor Hardware Reference

xx1

Contents

Low Power Featuresccuuvviieeieiiiiiiiiiiiieeeeeeeeiiiieeeee e 9-40
CAN Built-In Suspend Modecoocuveeviiiiiniiiiniiiinieenne 9-40
CAN Built-In Sleep Modeoovvviiriiiiiiiiiiniiiciicceiecene, 9-41
CAN Wakeup From Hibernate Stateccccceeeviiiiinnieennne. 9-41

CAN Register Definitionscccoeeveeriiieiniieiniiieeniieeeeeceieeens 9-42

Global CAN RegIStErsccevurierurieriiiieniiiieinieeenieee e 9-46
CAN_CONTROL Registercccoccuviiriiiiiiiiiiiiiiiiiiieenn, 9-46
CAN_STATUS ReGISTEr uvvveeriiiiiiiiieeniieenieeeeieee e 9-47
CAN_DEBUG Registerc.cceeevviiiiiiiniiiiieniiiieeeiieeeeeae 9-48
CAN_CLOCK Registerccccovvuiiiiiiiiiiiiiiiiiiciiiice e 9-48
CAN_TIMING RegiSterecevuriiriiieeniiieeiieenieee e 9-49
CAN_INTR RegIStEr ...eeeiriiiiiiiiiiiiiiiiiiieeeeiiiee e 9-49
CAN_GIM Registercccoviiiiiiiiiiiiiiiiiiiiiiiiiieees 9-50
CAN_GIS Registercccoovviiiiiiiiiiiiiiiiiiiiii, 9-50
CAN_GIF Re@iSterccceiiiiiiiiiiiiiiiiiiiiiiiiiiiiecceeee 9-51

Mailbox/Mask Registersccceevuiiniiiiniiiiniiiiiieniiciieenne 9-51
CAN_AMxx RegIStersccoovvuuiiiiiiiiiiiiiiiiiiiiiiics 9-51
CAN_MBxx_ID1 Registerscccccceeiiiiiiiiiiiiiiiiiiinninnne, 9-55
CAN_MBxx_IDO0 Registerscccccevviiiiiiiiiiiiiiiiiiinnennns 9-57
CAN_MBxx_TIMESTAMP Registerscccocouuveeevnunnnenn. 9-59
CAN_MBxx_LENGTH Registerscccceeeevnuieeeennuneeeenns 9-61
CAN_MBxx_DATAx Registersccccoecuviiiiiiiiiiiiiiiinncnns 9-62

xx1i

ADSP-BF537 Blackfin Processor Hardware Reference

Contents

Mailbox Control Registerscccccceiiiiiiiiiiiiiiiiiiiiiiiiieee, 9-70
CAN_MCx RegIStersccceviiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeen, 9-70
CAN_MDxX RegiStersccciiiiiiiiiiiiiiiiiiieiiiiiiiiiiiieeeeeeenn, 9-71
CAN_RMPx Registercooooiiiiiiiiiiiiiiiiiiiiiiin, 9-72
CAN_RMLx Registerccccccoiiiiiiiiiiiiiiiiiiiiiii, 9-73
CAN_OPSSx RegiSterccceiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeiees 9-74
CAN_TRSx Re@isSterscoovvuiiiiiiiiiiiiiiiiiiiiiiiiccccieen 9-75
CAN_TRRxX RegiStersccoceuiiiiiiiiiieiiiiiiieiiiiieeeeieeenn 9-76
CAN_AAX Re@IStEreuviiiiiiiiiiiiiiiiiiiiiieei e 9-77
CAN_TAX Registerccccceivviiiiiiiiiiiiiiiiiiiiiciiee, 9-78
CAN_MBTD Registercccocoiiiiiiiiiiiiiiiiiiieiiiieee e, 9-79
CAN_RFHx RegiSterscccoovviiiiiiiiiiiiiiiiiiiiiiiiieieiis 9-79
CAN_MBIMx RegiStersccccceiviiiiiiiiiiiiiiiiiiiiiicciiieen 9-80
CAN_MBTIFx RegiSterscccueeeeiiiiiieiiiiiiiiiiiiiieeeeeeeenen 9-81
CAN_MBRIFx Registersccoccccuuiiiiiiiiiiiiiiiiiiiiieieeiennes 9-82

Universal Counter Registerscccccevviiiiiiiiiniiiiiiiiiiiee, 9-84
CAN_UCCNEF Registercccccuviiiiiiiiiiiiiiiiiiiiiiiieeceieeen. 9-84
CAN_UCCNT ReGISTEr .eeeerruiriiieiiiiiieeeiiiieeeeriiieee e 9-85
CAN_UCRC Registerccccuiiiiiiiiiiiiiiiiiiiiiiieciiieecieeeea 9-85

Error RegISterscoocuuiiiiiiiiiiiiiiiiiccceiec e 9-86
CAN_CEC RegISter ...euvviiiiiiiiiiiiiiiiiiiiieceeeiiiiiicceeee e 9-86
CAN_ESR Registerccccccooviiiiiiiiiiiiiiiiiiii e, 9-86
CAN_EWR Registerccccccoiiiiiiiiiiiiiiiiiiiiiiiiiics 9-86

ADSP-BF537 Blackfin Processor Hardware Reference

xxl1il

Contents

Programming Examplesccccoiiiiiiiiiiiiiii 9-87
CAN Setup Code vviiiiiiiiiiiiiiiie e 9-87
Initializing and Enabling CAN Mailboxesccccceeriieennnnee. 9-88
Initiating CAN Transfers and Processing Interrupts 9-90

SPI COMPATIBLE PORT CONTROLLERS

OVEIVIEW tetttiieeeiiiiiee et tiiee e e e eitee e e ettt e e e eeatieeeaasanaeeeessnneeeassnnnaaaees 10-1
FeatUIEs ovveiiiiiiie e 10-2
Interface OVErVIEWuvveeiieeieiiiiiiiiiieeeeeee et e e e e eee e 10-3
External Interfacecocoooeeeiiiiiiiiiiii 10-4
Serial Peripheral Interface Clock Signal (SCK) 10-5
Master Out Slave In (IMOSI) ciiiviiiiiee e 10-5
Master In Slave Out (MISO) .ovvieeeeeiiiiiicieeeeeeeeee, 10-6
Serial Peripheral Interface Slave Select Input Signal 10-7

Serial Peripheral Interface Slave Select Enable Output
SIgnals coovviiiiii 10-8
Slave Select INPULs ..ooovveiiriiiiiiiiiiicececec e 10-10

Use of FLS Bits in SPI_FLG for Multiple Slave SPI

SYStEMS ooviiiiiiiiiiiiiiii 10-11
Internal Interfacesocccvuviiiiiieeeiiiiiiiiieee e 10-13
DMA Functionalityccccoveiviiiiiiiiiiiiiiiiiceeieeceee 10-13
SPI Transmit Data Bufferccccooeiiiiiiiniiiiiiiiiiins 10-14
SPI Receive Data Buffercoovvviiiiiiiiiiieiieiiiiieeeee e, 10-14

XX1V ADSP-BF537 Blackfin Processor Hardware Reference

Contents

Description of Operationcoccueeeriieeriieeeniieeniieeniiee e 10-15
SPI Transfer Protocolscccuvevviviieeiiiiiiiiiieee e 10-15
SPI General Operationcoccueeeruiieniiieeniiiieeniie e 10-18
SPI Controlcoiiiiiiiiiiiiiiiiic e 10-19
Clock Signalscoeeriiiiiiiiiiiicc e 10-20
SPI Baud Rate ..ccoovvviiiiiiiiiiiiiiiicceee e 10-21
Error Signals and Flagscccccccooiiiiiiiiiiii, 10-21

Mode Fault Error (MODE) ...coiiiiiiiiiiiieeeeeeeee, 10-22
Transmission Error (TXE) .coiovviiiiiiiiiiiieiieeieei 10-23
Reception Error (RBSY) ..oooiiiiiiiiiiiiiii 10-23
Transmit Collision Error (TXCOL)ccvvvvveeeeeeeeiiiiiiinnnne. 10-23
Interrupt OULPUL weoveeiiiiiiiiiiiee e 10-24

Functional Descriptioncccccciemiiiiiciiniiiieciniieceeieece e 10-24
Master Mode Operationc..cceeevveeeniieeeniiveeniieenieeesieeene 10-25
Transfer Initiation From Master (Transfer Modes) 10-26
Slave Mode Operationccooccveeeiiniiieeenniiiieeeniieee e 10-27
Slave Ready for a Transferccocceevviiiiiiiiiiniiiiniiceniecee, 10-28

Programming Modelccooiiiiiiiiiiiiii 10-29
Starting and Ending an SPI Transferc.ccoceeviiiniinnnnnn. 10-29
Master Mode DMA Operationcoocuveereiveeriieennieeenneeens 10-31
Slave Mode DMA Operationccccoecueeeriueeeniieernueeenneeenne 10-34

ADSP-BF537 Blackfin Processor Hardware Reference XXV

Contents

SPI REGISTELS ..vviiiiiiiiiiiiiiiiiie it 10-41
SPI_BAUD RegiStercccoviuiiiiiiiiiiiiiiiiieeiiiiiee e 10-42
SPI_CTL ReGISTEr .eeeriiiiiiiiiiiiiieiiiiiee et 10-43
SPI_FLG RegiStercccciiiiiiiiiiiiiiiiiiiiiieiiiicciiee e 10-44
SPI_STAT RegIStEr ..cccuuvviiiiiiiiiiiiiiiiiei e 10-46
SPI_TDBR Re@IStEr ..cuevvviiiiiiiiieiiiiieiiniiiieeeeieeee e 10-46
SPI_RDBR Registerccocviiiiiiiiiiiiiiiiiiiiiiciicc e 10-47
SPI_SHADOW RegISter ..c.ceveeruiiiiiiiiiniiieniieeniiee e 10-47

Programming Examplesccoooiiiiiiiiniiiiniiicceen 10-48
Core Generated Transfercccccoovviiiieiniiiiieiiiiiieeeeiieenen, 10-48

Initialization Sequenceccccoocviiiiiiiiniiiiniiicieceen 10-48
Starting a Transferccoooviiiiiiiiniiiiniiceceeee 10-49
Post Transfer and Next Transfercccoovevvviiiiiiiiiennnnnnn. 10-50
StOPPING wovviiiiiiiiiiiiiii 10-51
DMA Transferooeeeviuiieeiiiiiiieeeiiiee et 10-51
DMA Initialization Sequenceccccceevviiieeiniiieecennnne. 10-52
SPI Initialization Sequenceccoccceeviveeriieernieeennneens 10-53
Starting a Transferccooovieiiiiiiniiiiniiceceeee 10-54
Stopping a Transferccocceeviiiiiiiiiiiiiiiiiiiieiiccc 10-54

TWO-WIRE INTERFACE CONTROLLER

OV EIVIEW ettt et 11-2

XXV

ADSP-BF537 Blackfin Processor Hardware Reference

Contents

Interface OVErVIEWccoviuiiiiiiiiiiiiee et e e 11-3
External Interfacecceeevveiiiiiiiiiiiiiieiiiiieeee e 11-4
Serial Clock Signal (SCL) .coocvviiiiiiiiiiiiiieienicceeceieeee 11-4

Serial Data Signal (SDA)ccccoiiiiiiiiiiii 11-4
TWIPINS coeeeeiiiiiiieeeeeeeeeeeeeeee e 11-5
Internal Interfacesocooviiiiiiiiiiieiiiiiieee e, 11-5
Description of Operationcocceeeriieernieeeniieeniieenieee e 11-6
TWI Transfer Protocolscooeeceviiiiiiiieeiiiiiieeee e, 11-6
Clock Generation and Synchronizationcccoceeenneenee. 11-7

Bus Arbitrationooocciiiiiiiiiiiiii e 11-8

Start and Stop Conditionsc.ccceeveviieniiieniiiciiieeenieeene 11-8
General Call SUPPOrt .ooccveeiviiiiiiiiiicccecee 11-9

Fast MOdevviiiiiiiiiiiiiiiiece e 11-10

TWI General Operationcccceveueieriiieiiiieiiieciniie e 11-11
TWI Control .eeevieeeiiiiiieeiee e 11-11
Clock Signal ...c.ccooiiiiiiiiiiiiiiiii 11-12
Functional Descriptioncccoeceieriiiiiniiiiiniieeiiec e 11-12
General SEtUP .oovvveiiiiiiiiiicce e 11-13
Slave MoOde e 11-13
Master Mode Clock Setup ...cooveieviiiiniiiiniiiiiiiiiiiceeeeee 11-14
Master Mode Transmitcceeeeeeviiiieeeiiiiiieeeiiiieeeeiieee e 11-15
Master Mode Receivecooviiiiiiiiiiiiiiiiiiiiiiiiiiceeeee e 11-16
Repeated Start Conditioncoeceveeviiieniiieniiieniieecieeene 11-17
Transmit/Receive Repeated Start Sequenceccovuueeneee. 11-17
Receive/Transmit Repeated Start Sequencecccoeeeee. 11-19

ADSP-BF537 Blackfin Processor Hardware Reference xxVil

Contents

Clock Stretchingcociiviiiiiiiiniiiiiiicccecc, 11-20

Clock Stretching During FIFO Underflowcccc.cc... 11-20

Clock Stretching During FIFO Overflowccocceeenneeene. 11-21

Clock Stretching During Repeated Start Condition 11-23
Programming Modelccccccooiiiiiniiiiiiii 11-25
TWI Register Descriptionscceeeueeeiemiiiieeeenniiieeeeniieeeeene 11-27
TWI_CONTROL Registercccccceevviiniiiiiiiiiiiiiiiiiiine, 11-27
TWI_CLKDIV Registercccccoiiiiiiiiiiiiiiiiiiieciiiieeeee, 11-27
TWI_SLAVE_CTL RegiSterccuvveermiiiieeiniiieeeniieeeeeee 11-28
TWI_SLAVE_ADDR Registercccccceviiiiiiiiiiiiiiiiiiinnnn. 11-30
TWI_SLAVE_STAT Registercccoevvuiiiiiiiiiiiiiiiiiieeeene. 11-30
TWI_MASTER_CTL Registercccocvuveeeimiiiieeenniiieeeennee. 11-32
TWI_MASTER_ADDR Registerccccceevuiiiiiiiiiiiiiinnnn. 11-36
TWI_MASTER_STAT Registerccccccceeiriiiiiiiiniiiieennnnn. 11-37
TWI_FIFO_CTL Registercccccvvieimiiiiieiniiiiieeiiiiieeeee 11-40
TWI_FIFO_STAT RegiSterccoocuviiiiiiiiiiiiiiiiiiiiieciens 11-43
TWI_INT_STAT RegiSterccoveereuvieriiieiniiieiniieenieeenieeenns 11-45
TWI_XMT_DATAS8 RegiSteroeeeervuirieeiniiieeeniiieeeeeene 11-46
TWI_XMT_DATAL6 Registercccccvviviuiiiiiiiiiiiiiiniieens 11-49
TWI_RCV_DATAS8 Registerc.cccovvuiiiiiiiiiiiieiiiiieeeene 11-50
TWI_RCV_DATAILG RegiStercccevvuirieerniiiieeeniieeeennne 11-50
Programming Examplescccccccoviiiiiiiiiiiiii, 11-51
Master Mode Setupcoovviieniiiiniiiiniiieeieceee e 11-52
Slave Mode Setup ..uveeeiiiiiniiiiiiiiiececec e 11-57

XXViil

ADSP-BF537 Blackfin Processor Hardware Reference

Electrical Specificationscccoovveeeniieeniiiieniieeiieeeee,

SPORT CONTROLLERS

OVEIVIEW eiiieeieeeiiiiiiiiee ettt ettt e e e e e eeeeees
Featuresoovvveeiiiiiiiiiiiiiiiiee e,
Interface OVErviEWccccuveieeviiiiiiieiiiiiie e
SPORT Pin/Line Terminationsccceeeeeeeieeeneennnnn.
Description of Operationccocceeeevveeenieeenieeenieeenieeens
SPORT Operationcccooeeeuviiiiiiiiieiinniiiiiiieeeeeeees
SPORT Disableoevvieeieiiiiiiiiiiiieeeeeeiieeee e,
Setting SPORT Modesocoviiieniiiiiiiiiiiiiieniieceee.
Stereo Serial Operationcccceoveiiiiiiniiiiiieniiiieeene
Multichannel Operationcccccceeeviiiiiiiiniiicnieenee
Multichannel Enablecccccooiiiiiiiiiiiiiiis
Frame Syncs in Multichannel Mode
Multichannel Framecccccvviiiiiiiiniiiiiiiieeeeees
Multichannel Frame Delaycccocoviiiiiniiiinnin.
WiIndow SiZe ..ooovuvviiiiiiiiiiiiiiiiee e
Window OffSet .ooocvvvviiiireeieiiiiiiiiiee e
Other Multichannel Fields in SPORTx._ MCMC2
Channel Selection Registercccccoevviiiniiiniinnnnenn
Multichannel DMA Data Packingccccceevneee.
Support for H.100 Standard Protocolccocuveenneee.
2X Clock Recovery Controlccccceeeviiiinnieiinnncen.

Contents

ADSP-BF537 Blackfin Processor Hardware Reference

XXIX

Contents

Functional Descriptionccccoeviiiiieiniiiiiiiniiieceeieecceeee. 12-28
Clock and Frame Sync Frequenciesccccovcveeniiicinnncennne. 12-28
Maximum Clock Rate Restrictionsccccoeveiinieiennneens 12-29
Word Length ..coccoiiiiiiiiiiiiiiicce 12-29
Bit Order coueveiiiiiiiiiiei e 12-30
Data TYPE evvieiiiiiiiiie e 12-30
Compandingocceiiiiiiiiiiiiiiiiiii e 12-31
Clock Signal Optionsccccveeriiieiiiiiiiiiiinieeereeeeeeeeen 12-31
Frame Sync Optionscccccvvveiiiiiiiiiiiiiiiiiiciiiiiieceeeeee 12-33
Framed Versus Unframedcccccooiiiiiiniiiniiiniiinne. 12-33
Internal Versus External Frame Syncscccccoevveiniiennnnen. 12-35
Active Low Versus Active High Frame Syncsccoceeeeee. 12-35
Sampling Edge for Data and Frame Syncscccceenene. 12-36
Early Versus Late Frame Syncs (Normal Versus
Alternate Timing)ccoocvveeriiiiiiiiiiniiceniee e 12-38
Data Independent Transmit Frame Syncccccceeennnneee. 12-39
Moving Data Between SPORTs and Memoryccccceeeeeeenee 12-40
SPORT RX, TX, and Error Interruptsccoocveernvecenneeennnne. 12-41
PAB EITOIS ..ooiiiiiiiiiiiiiiiiiiiccic 12-41
Timing Examplesccccooiiiiiiiiiiiniiiiiiiicniecec e 12-42
SPORT REGISTELS .eeevuiiiiiiiiiiiieeiiiiiiee et 12-47
Register Writes and Effective Latencycccccovviiiiiniiennen. 12-48
SPORTx_TCRI and SPORTx_TCR2 Registers 12-49
SPORTx_RCR1 and SPORTx_RCR2 Registers 12-54
Data Word FOrmatscceeeeiiiiiiiiiiniiiiiiiiiiecceeieccee 12-58

XXX

ADSP-BF537 Blackfin Processor Hardware Reference

Contents

SPORTX_TX Re@IStercccccciviuiiiiiiiiiiiiiiiiiiiciiiiecccciee, 12-59
SPORTxX_RX Registercccooevuiiiiiniiiiiiiiiiiieiiiiiicceeeeen 12-61
SPORTX_STAT ReISTEr ..evvvieririieiiiiiiieeeiiieeeeeiieee e 12-64
SPORTx_TCLKDIV Registercccccviiiiiiiiiiiiiiiiiiinnnnnn. 12-65
SPORTx_RCLKDIV Registerccocccuviiiiniiiieiiiiiieeeninee. 12-65
SPORTxX_TESDIV RegiStercceeeeimvuiiieiiniiieeeniiieeeeieee. 12-66
SPORTx_RFSDIV Registerccccoovvuiiiiiiiiiiiiiiiiiiiiiiiin. 12-66
SPORTx_MCMCn Registersccocceuvriiiiiiiiiiiniiiieeininen. 12-67
SPORTx_CHNL RegIStercccceeiimiimiiiiiiiiiiiiiiiiiiineeeenn. 12-68
SPORTx_MRCSn Registerscccooviiiiiiiiiiiiiiiiiiiiiiiin, 12-69
SPORTx_MTCSn Registersoceivnuiiiiiiniiiiieeiiiiieeeeeieee. 12-71
Programming Examplesccccooviiiiiiiiiniiiiniiciiceccec 12-72
SPORT Initialization SequUenceccccceevvvieeeeniiieeeennnnnee. 12-73
DMA Initialization SeqUencecccecvveenireeniieeniieenieeens 12-75
Interrupt Servicingccccoevviiiiiiiiiiiiiiiiiiii 12-77
Starting a Transfercccccoviiiiiiiniiiniii, 12-78

UART PORT CONTROLLERS

OVEIVIEW ettt ettt ettt e e e e e e et et e e e 13-1
Faturescooiiiiiiiiiiiiiie e 13-2
Interface OVErVIEWccoviuiiiiiiiiiiiiee et e e 13-3
External Interfacecooevveiiiiiiiiiiiiiieiiiiieeee e 13-3
Internal Interfacec.eeeeeviiiiiiiiiiiiiiiii e, 13-4

ADSP-BF537 Blackfin Processor Hardware Reference xXX1

Contents

Description of Operationcceeeeeeeeinieeeniieeeniieeniieesiiee e 13-5
UART Transfer Protocolceeviieeiiiiiiiiiiiieeeeeeeiiiiceeee e 13-5
UART Transmit Operationcceevcuveeeerniuiiieeiniireeeenieeeeenns 13-6
UART Receive Operationcceeevvvreiiiiiieeeeiiiniiiiiiiieeeeeeenn. 13-7
IrDA Transmit Operationcccceeevvuviieiiiiiieeeiiiiiieeeeieeen. 13-8
IrDA Receive Operationccccceeevvvuuiiiiiiieiiiiiiiiiiiiieeeeeeenas 13-9
Interrupt Processingcccccceviiiiiiiiiiiiiiiiiiiniiiiiee, 13-11
Bit Rate Generationccoeeuiiiiiiiienieeiiiiiiiiiiiiee e eeeeeeeeennn 13-13
Autobaud Detectioneeeeiiiiiiiiiiiiiiiieiee e 13-14

Programming Modelc.ccociiiiiiiiiii 13-16
Non-DMA Mode .coooeeiiiiiiiiiiiiieeeeeeeee e 13-16
DMA MOde oiiiiiiiiiieiiiiiee et 13-18
Mixing Modescoociiiiiiiiiiiiiiiiiiiiiiic 13-19

UART REGISTEIS ..uvviiiiiiiiiiiiiiiiiieeeiiiee e 13-20
UARTX_LCR RegIStersccceeiiiiiiiiuiiiiiiiiiiiiiiiiiiiieeeeeenn, 13-22
UARTX_MCR RegISterscccouviiiiiiiiiiiiiiiiiiiiiiiiiecciiieen. 13-24
UARTX_LSR RegIStersccooveiiiiiiniiiiiieiiiiiieeiiiieee e 13-25
UARTxX_THR Registerscccccvuviiimmiiiiiiiniiiiieeniiieeeene 13-26
UARTx_RBR Registersccccccuviiiiiiiiiiiiiiiiiiiiiinc, 13-27
UARTX_IER RegiStersccocoviiiiiiiiiiiiiiiiiiiiiiiiieeceee. 13-27
UARTX_IIR RegISterscccuvveiiiiiiiiiiiiiiiiiieieiiiiiiiieeeeeeennn 13-29
UARTxX_DLL Re@isterscccoccviiiiiiiiiiiiiiiiiiiiiiiieceiieee, 13-30
UARTxX_DLH RegiSterscccocveiimiiiiiiiiiiiiiiiiiiieceeieee. 13-31

xxxii ADSP-BF537 Blackfin Processor Hardware Reference

Contents

UARTxX_SCR Registerscccccoeviiiiiiiiiiiiiiiiiiiiiiiiieccc 13-32
UARTX_GCTL Registersccooeouiiiiiiiiiiiiiiiiiiieeiiiiee e 13-32
Programming Examplesccccooeiiiiiiiiiiniiiiniiiciiceccee 13-33
GENERAL-PURPOSE PORTS

OVEIVIEW ettiiiiitete ettt ettt e e e e e e e e e e e e e 14-1
FEATULES ..ttt 14-2
Interface OVErVIEWccoiiiiiiiiiiiiiiieeiiiiee et 14-4
External Interfacec.coeeviiiiiiiiiiiiiiiiiiiiiee e 14-4
Port F Structureeeeeeeeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiveeveiieeeees 14-4

Port G StrUCTULE .oovveiiiiiiiiiiieiiieiieeeee e 14-6

Port H Structureooccevviiiiiiiiiiiiiiiiiieeeeeeeeeeee e 14-7

Port J STructure ... 14-8
Internal Interfacescooviiiiiiiiiieiiiiiiiieeee e, 14-9
Performance/Throughput ... 14-9
Description of Operationccocveeviereriieeenieeeniiieenieee e 14-10
OPEration ..cccuvveiiiiiiiiieiiiiiee et 14-10
General-Purpose I/O Modulescooccviiiiniiiiiiinniiiccinine. 14-10
GPIO Interrupt Processingcccoeeuviiiiiiiiiiiiniiiieeinineen. 14-14
Programming Modelccociiiiiiiiiiii 14-20
Memory-Mapped GPIO Registersccccoevviiiiiiiiiniiiinineenn 14-22
PORT_MUX Control Registercccccveevvirieniiierniiernneeenne. 14-22
PORTX_FER Registersccoccvuvieimmiiiiiiniiiiieiniiiee e 14-23
PORTXIO_DIR Registersccccccuiiiiiiiiiiiiiniiiiiiiieiiieeeane 14-23
PORTXIO_INEN RegisSterscccceeeevuiiiiiiniiiiieiiiiiieeeenne. 14-24

ADSP-BF537 Blackfin Processor Hardware Reference xxxiil

Contents

PORTXIO RegiSterscccovviiiiiiiiiiiiiiiiiiiiiiiciicceiee e 14-24
PORTXIO_SET RegISTErS .evveeruiiiiniiiiiiiieeiee e 14-25
PORTXIO_CLEAR RegiSterscccccuveirmmuireeeniiiiieeniiieeene 14-25
PORTXIO_TOGGLE RegiSterscccccecuviiriiiiiiiiiiniieennen. 14-26
PORTXIO_POLAR Registersccccceeerviiiiiiiiiiiieiiiiiieen. 14-26
PORTXIO_EDGE RegiSterscccccuveeermiiiieeiniiiieeiniieeenne 14-27
PORTXIO_BOTH RegiSterscccccuviiviuiiiriiiiiiiiiiniieene 14-27
PORTXIO_MASKA RegisStersccccuueieimiuiiiiiniiiiieeiieeeeene 14-28
PORTXIO_MASKB RegiSterscccccuveeermiurieeeniiieeeeniieeeenn. 14-28
PORTXIO_MASKA_SET Registerscccccecviiiiuiiiniicnnnnn. 14-29
PORTXIO_MASKB_SET Registersc.cccceevvrervurernueennnnne. 14-30
PORTxIO_MASKA_CLEAR RegiStersccceeeuveeeenineneenne 14-31
PORTxIO_MASKB_CLEAR Registerscccccoccuveviueennnen. 14-32
PORTXIO_MASKA_TOGGLE Registerscccccverrveeennnne. 14-33
PORTxIO_MASKB_TOGGLE Registerscccceceerrureeennne 14-34
Programming Examplescccccccoviiiiiiiiiiiiii, 14-35
GENERAL-PURPOSE TIMERS
Overview and Featurescooceuviiiiiiieeeiiiiiiiiieeee e 15-1
Featurescooiiiiiiiiiiiiiiiiiiiiie 15-2
Interface OVErVIEW ..occviiiiiiiiiiieeeiiiiie et 15-3
External Interfacecoooeciiiiiiiieeiieiiiieee e 15-5
Internal Interfacecoooovviiiiiiiiiiiiiie e 15-6
XXXV ADSP-BF537 Blackfin Processor Hardware Reference

Description of Operationccoccueeevieeenieeeniieeenniieennn
Interrupt Processingccccccoviiiiiiiiiiiiiiiiiiiinnnn,
Illegal Statescocceeeviiiiiiiiiniiiciic e

Modes of OPerationceeevveeeriieerniieeiiieeenieee e
Pulse Width Modulation (PWM_OUT) Mode

Output Pad Disablecccoviiiiiiiiiiiiiiiiii.
Single Pulse Generationcccceeviiiiiiiinnnnn.
Pulse Width Modulation Waveform Generation
PULSE_HI Toggle Modeccoveuvieriiiiniiianee.
Externally Clocked PWM_OUTcccceviiiennen.
Using PWM_OUT Mode With the PPI
Stopping the Timer in PWM_OUT Mode
Pulse Width Count and Capture (WDTH_CAP) Mode
Autobaud Modeccevviiiiiiiiii e
External Event (EXT_CLK) Modeccovvveveviiinnnnnnns

Programming Model ...

Timer RegiStersccueiiiiiiiiiiiiiiiiiiiiiiiecceeec e,
TIMER_ENABLE Registercccccoceeirniinieennnnnen.
TIMER_DISABLE Registercccccccceiviiiiiiiniinnnen.
TIMER_STATUS Registerccccoceeirniiiiiinninnnen.
TIMERx_CONFIG Registerscccceeeereuvireeennnnnnen.
TIMERx_COUNTER Registerscccccuvviiinnnnnnn.
TIMERx_PERIOD Registersccccccevvuiiieennnnnnnn.

Contents

ADSP-BF537 Blackfin Processor Hardware Reference

XXXV

Contents

TIMERx_WIDTH Registersccccoeoviiiiiiiiiiiiiiiiiiin, 15-50
Summary ... 15-51
Programming Examplesccoooiiiniiiiniiiiiiiicicce 15-54
CORE TIMER
Overview and Featuresooovoiviiiiiiiiiiiiiiiiiiieeeeeeeeieeee e 16-1
TIMEr OVEIVIEW ..uiiiiiiiiiii bbb 16-2
External Interfacescccceeevviiiiiiiiiiiiiiiiiiiie e 16-2
Internal Interfacescccveeeiviiiiiiiiniiiiie e 16-2
Description of OpPerationcceeeecueeeriiieeriieeniiieeenieeenieeesieeenns 16-3
Interrupt Processingcccceeeiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeee, 16-3
Core Timer Registersccccoociiiiiiiiiiiiiiiiiiiiiiiciciccc 16-4
TCNTL ReGISTEr .nuiiiiiiiiiiiiic e 16-4
TCOUNT ReGISTEL ..evviieiiiiiiiiiiiiiieeiiiiieeeeeiiiee e 16-5
TPERIOD Registercoccvuiiiiiiiiiiiiiiiiiiiiciiiiicc e 16-6
TSCALE Re@ISTer ...uuvvviiiiiiiiiiiiiiiiiicceiiec e 16-7
Programming Examplesccoociiiniiiiiiiiiiiiiiicecc 16-7
WATCHDOG TIMER
Overview and Featuresoooouuviiiiiiiiiiiiiiiiiiicceeeeeeeeeee e 17-1
Interface OVErVIEWuviiiiieeieiiiiiiiiiieeeeeeeeieeeee e e e e e e iieraeeeea e 17-3
External Interfacecoccveeiiiiiiiiiiiiiiiiiiiiieeeeiee e 17-3
Internal Interfaceooocveiiiiiiiiiiiiiiiiiec e 17-3
Description of OpPerationcceeeecveeerviieeriieeniiieeenieeenieeesieeenns 17-4

XXXVI ADSP-BF537 Blackfin Processor Hardware Reference

Contents

Watchdog Timer Register Definitionscccoccveviiiiniieniinnicnnee. 17-5
WDOG_CNT RegiStercccccuiiiiiiiiiiiiiiiiiieiiiiiiee e 17-6
WDOG_STAT ReGISTEr ..eeeieiiiiiiiiiiiiiieeeiiiiee e 17-7
WDOG_CTL RegiSterccoouiiiiiiiiiiiiiiiiiiiiciiiiicc e 17-8

Programming Examplesccccoooiiiiiiiiniiiiniiiiiicec e 17-9

REAL-TIME CLOCK
OVEIVIEW ettt 18-1
Interface OVErVIEWccovvviiiiiiiiiiiiie ettt e e e 18-3

Description of OPerationcccceeevvveerniieeniieeniieenieee e e 18-5
RTC Clock RequIrementseeevueeeenieeenireeniieeniieeeiieeeee 18-5
Prescaler Enablecoooiiiiiiiiiin 18-5

RTC Programming Modelcccccooviiiiniiiiniiiiiiicecce, 18-7
Register WIItescccccoiiiiiii 18-8
Write Latencyeeeeiiiiiiiiiiiiiiiiiiiiiiiiiiiiie e 18-9
Register Readscoovviiiiiiiiiiiiiiiiiiiciicciecce e 18-10
Deep SIEEP uviiiiiiiiiiit e 18-10
Event Flagsccoooiiiiiiiiiiiiiiiiicc 18-11
Setting Time of Daycoccviiiiiiiiiiiiiicceceeee 18-13
Using the Stopwatchoooooiiiiiiiie 18-14
INTErrupts coooeviiiiiiiiiiiiiiiiiii 18-15
State Transitions Summarycccooeiiiiiiiiiiiiiniic. 18-18

RTC Register DefInitionsc.eeevuveerireeniiieiniieenieeenieee e 18-20
RTC_STAT RegiStercccvviiiiiiiiiiiiiiiiiiiiiiiiccciicece, 18-21
RTC_ICTL RegISter ...cccccuuiiiiiiiiiiiiiiiiiiieiiiieee e 18-21

ADSP-BF537 Blackfin Processor Hardware Reference XXXVl

Contents

RTC_ISTAT RegIStercccovviuiiiiiiiiiiiiiiiiiiiiiiiiiicc e 18-22
RTC_SWOCNT ReGISter ..ccoovuvviiiiiiiiiiiiiiiiiieeeiiieee e 18-22
RTC_ALARM Re@IStEr ...uvviiiiiiiiiieiiiiiiieeeiiieee e 18-23
RTC_PREN RegiSterccoccvviiiiiiiiiiiiiiiiiiiiiiiiiceeiiieeee 18-23
Programming Examplesccocoeeiiiiiiiniiiiniiinceceen 18-24
Enable RTC Prescalercooovviiiiiiiiiiiiiiiiiieeeeiieee e 18-24
RTC Stopwatch For Exiting Deep Sleep Modeccc.c..... 18-25
RTC Alarm to Come Out of Hibernate Statecccceeennnn. 18-27

SYSTEM RESET AND BOOTING

OVEIVIEW eiiiiiiiiiiiiiiiiteieieieteee ettt ettt ettt ettt e e et e e e e e e e eeeeeeeeeeeeeees 19-1
Reset and POWErupoociviiiiiiiiiiiiiiiiiiiicceeie e 19-3
Hardware Resetceeeviiiiiiiiiiiieieiieiiiiee e 19-4
System Reset Configuration Register (SYSCR)ceeevvieennnen. 19-5
Software Resets and Watchdog Timercccccoeoviiiiiniiinninne. 19-6
Software Reset Register (SWRST) .ccoeeiiiiiiiiiiiiiiiiiiceieee 19-6
Core-Only Software Resetcoovuviiiiiiiiniiiiiniiiiiiiicciicceieee 19-8
Core and System Resetccooovviiiiniiiiiiiiiiiiiiiiniiecciieec e 19-8
ReSEt VECTOT .iiiiiiiiiiiiiiieee et 19-9
Servicing Reset Interruptscooovveiiiiiiiiiiiiiiniiiiii, 19-10
Booting Processcccccciiiiiiiiiiiiii 19-12
Header Informationccccceeeeeieiiiiiiiiiiee e e 19-14
Host Wait Feedback Strobe (HWAIT) ...ooevvvvieiiiiiiiineenns 19-19

Final Initializationcccccoimiiiiiiiiiiiiiiiiiiiiiieeeeeeeee, 19-21
Initialization Codecooveiiiiiiiiiieeeeieiieee e 19-22

XXXViil ADSP-BF537 Blackfin Processor Hardware Reference

Contents

Multi-Application (Multi-DXE) Management 19-26
User-Callable Boot ROM Functionsccccoeeeeeeeeeeeennnnn. 19-27
Booting a Different Applicationcccceeeviiviiniieennneenns 19-27
Determining Boot Stream Start Addresses 19-29
Specific Blackfin Boot Modescoovuiieviiiiiniiiiiiiiiiiiccneece, 19-33
Bypass (No-Boot) Mode (BMODE = 000)cccooevvveeennnnnnn. 19-34
8-Bit Flash/PROM Boot (BMODE = 001)ccoeeuvrrrrreennnnn. 19-35
16-Bit Flash/PROM Boot (BMODE = 001)ovvvvvunnnnn.... 19-39
SPI Master Mode Boot from SPI Memory
(BMODE = 011) coiiiiiieeiieeee e 19-42
SPI Memory Detection Routinecccccceiiiiiiiiiiiiiinnn. 19-43
SPI Slave Mode Boot From SPI Host (BMODE = 100) 19-47
TWI Master Boot Mode (BMODE = 101) ..ocovivveviiiiniiinnnenns 19-52
TWI Slave Boot Mode (BMODE = 110)ccoevvviiiiiieeeeeeenn. 19-54
UART Slave Mode Boot via Master Host
(BMODE = 111) titiiiiiiieeeeecieeee et 19-55
Blackfin Loader File ViewWerccoooeviiiiiiiiieiiiieieeeceeeceeeeeeeeeeeee 19-58
DYNAMIC POWER MANAGEMENT
Phase Locked Loop and Clock Controlcccccceeviiiiniiiinniicnnnnee. 20-1
PLL OVEIVIEW eviiiiiiiieeeeeiiiiiiiiiiieee e e eeeeeeiiiee e e e e e e eeeaaiie e 20-2
PLL Clock Multiplier Ratiosccccceeveeiniiiiiniiieniieenieenee. 20-3
Core Clock/System Clock Ratio Controlccocveevueenee. 20-5

ADSP-BF537 Blackfin Processor Hardware Reference XXXiX

Contents

Dynamic Power Management Controllerccccoociiiiniiini, 20-7
Operating Modeseeevueeeriiieiiiieiiieee e 20-8
Dynamic Power Management Controller States 20-8

Full-On Mode ...oooiiiiiiiiiiiicccc e 20-8
Active Mode ..ovviiiiiiiiiiiiiic e 20-9
Sleep Mode .eviiiiiiiiiiiicc e 20-9
Deep Sleep Mode .oooiiiiiiiiiiiiiiiiiicccceeec e 20-10
Hibernate Statecoccveeiiiiiiiieiiiiiiiieeiieeee e 20-11
Operating Mode Transitionsccceceeevviieeniieeniieeniieennnee. 20-11
Programming Operating Mode Transitionsc........ 20-14
PLL Programming Sequencecccccuvvviiiiiiiiiinnnnnnn. 20-15

PLL Programming Sequence Continuesc........ 20-17
Dynamic Supply Voltage Controlcccooviiiiiiiiinininnnn. 20-18
Power Supply Managementccccceeevviieeniiicnnieeenieeenne. 20-19
Controlling the Voltage Regulatorccccoovviiniiiiniiien. 20-20
Changing Voltageccccoovviiviiiniiiiiiiiiiiiicccce 20-21
Powering Down the Core (Hibernate State)ccc....... 20-23

PLL ReGISTEIS ...ccvviieceiece e 20-25
PLL_DIV RegiSterccccccvviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiceceeees 20-27
PLL_CTL ReGISTer ..ccevuviiiiiiiiiiiiiiiiiiieceeiiiee e 20-27
PLL_STAT Re@ISTEr ceouvvviieiiiiiieeiiiieeeeeiiieee e e 20-28
PLL_LOCKCNT Registerccccovvuiiiiiiiiiiiiiiiiiiiiiiiiiieeee 20-28
VR_CTL RegiSter ...c..ouviiiiiiiiiiiiiiiiiiiiiiiicceeeeee e 20-29

x| ADSP-BF537 Blackfin Processor Hardware Reference

Contents

Programming Examplescccocoiiiiiiiiiiiiiiii 20-30
Active Mode to Full-On Modeccvvviiiiiiiiieiiiiiiiieeeeeee, 20-31
Full-On Mode to Active Modecceeveeeeeiciiiiiiieieeeeeeeeee, 20-33
In the Full On Mode, Change CLKIN to VCO Multiplier

From 31X 10 2X weviieeeieiiiiiiiiiiee e e e e et e e e e e e eaeveeeee e 20-34
Setting Wakeups and Entering Hibernate State 20-35
Changing Internal Voltage Levelsccccoovviiniiiiniiiiiinnnne. 20-36

SYSTEM DESIGN

Pin Descriptionsccccceciiiiiiimiiiiiiiiiiiiiiiiiie s 21-2
Managing Clocksooiiiiiiiiiiiiiiiicc e 21-2
Managing Core and System Clockscccceeciiiiiiiiiiiniicnnnns 21-2
Configuring and Servicing Interruptsccceeeveerivierniieeennneennnen. 21-2
SemMaPROTes . .coviiiiiiiiiiic e 21-3
Example Code for Query Semaphoreccccccevviiieniiiinineennne. 21-4
Data Delays, Latencies and Throughputccccoeiiiiniiininnnne. 21-5
Bus Prioritiescccoooiiiiiiiii 21-5
External Memory Design Issuescccccoooiiiiiiiiiiiiiniiiii. 21-5
Example Asynchronous Memory Interfacescccccceeveuneenee. 21-5
Avoiding Bus Contentionccocceeeeviieeniiiienniecenieeeneeeeeen 21-7
High-Frequency Design Considerationscccoeveveiieniiienneene. 21-8
Signal INTegrity «..ooovvviiiiiiiiiiiieiiiece e 21-8
Decoupling Capacitors and Ground Planescccceeueeenee. 21-10
5 Volt Toleranceccooccveiiimiiiiiiiniiiiiciiiecc e 21-11
Resetting the Processorc.cceeviiiiiiiiiiniiicniiiciiecieee, 21-12

ADSP-BF537 Blackfin Processor Hardware Reference

xli

Contents

Recommendations for Unused Pinsccccccoovviiiiiiiiiiiinnnn. 21-12
Programmable Outputsc.cceevviieiniiiiniiiiiiiceccece 21-12
Test POINT ACCESS wvvvvreeeeiiiiiiiiiiieeeee e 21-12
Oscilloscope Probescccoviiiiiiiniiiiiiiiiiiiciiiiecceieecee 21-13
Recommended Readingccocceeiiiiiiiniiiiiniiiiniiiciieceee, 21-13

SYSTEM MMR ASSIGNMENTS

Dynamic Power Management Registersccccccccce. A-3
System Reset and Interrupt Control Registerscccccovciiiniinnnnn. A-3
Watchdog Timer Registersccocovviiiiiiiniiiiniiiiiiiciieccnieeeeen A-4
Real-Time Clock Registerscccceiimiiiiniiiiiniiiiiiiiciniiceniice e A-5
UARTO Controller Registerscccceiiviiiiiiiiiiiiiiiiiiiiiiicciees A-5
SPI Controller RegiSterscovouvieriiieriiiieniieeniieeeiee e A-6
Timer REGISTEIS .oouuviiiiiiiiiiiiiiiiiee et A-7
Ports RegISterscccviiiiiiiiiiiiiiiiiiiiiiii A-9
SPORTO Controller RegiStersccceeevveernieeeniiieeniiiieniieeeieeens A-12
SPORT1 Controller RegiStersc.cceeervieernieeeniieeiniiieniieeenieeens A-14
External Bus Interface Unit Registersc.ccccociiviiiiiiniienincnnne. A-16
DMA/Memory DMA Control Registerscccocveeveiiieniiicnnnnenns A-17
PPI REGISTELS ooiiiiiiiiiiiiiiiiiiiiiiiiiiiee e A-19
TWI REGISTEIS ..uvvviiiiiiiiiiiiiiiiiic i A-20
UART1 Controller RegiSterscoocveerviiiiniiiieniiienieeeiieeeeeenn A-21
CAN ReGISTEIS cooiiiiiiiiiiiiiiiiiiiiiiiiicc e A-22
Ethernet MAC RegiSterscccuiiiieriiiiiiiiiniiieniienieeiic e A-29
Handshake MDMA Control Registerscccccoeeuviiniiieniiicnnnnenns A-35

xlii ADSP-BF537 Blackfin Processor Hardware Reference

Contents

Core Timer Registerscccoocoiiiiiiiiii A-36
Processor-Specific Memory Registersccocveerviieiniiennieeennnen. A-37
TEST FEATURES
JTAG Standardoeeveviiiiiiiiiiiiiiiiiiiieiiiiieee e ———————— B-1
Boundary-Scan Architectureccoooeeiiiiiiiniiiiniiiiiiiciecee B-2
Instruction Registerccccoiiiiiiiiiiiiiiiiiiiiiiiiicccieece e B-4
Public InStructionscccoeuiiiiiiniiiiniiiiiiiiici e B-6
EXTEST — Binary Code 00000ccccveeeimniiireenniieeennnn. B-6
SAMPLE/PRELOAD - Binary Code 10000ccceeeee..e. B-6
BYPASS — Binary Code 11111 .coiiiiiiiiniiiiniiieiieeeiecee B-6
Boundary-Scan Registerccociiiiiiiiiiiiiiiiiiiiiiiiiics B-7
GLOSSARY
INDEX

ADSP-BF537 Blackfin Processor Hardware Reference xliii

Contents

xliv ADSP-BF537 Blackfin Processor Hardware Reference

PREFACE

Thank you for purchasing and developing systems using Blackfin® proces-
sors from Analog Devices, Inc.

Purpose of This Manual

ADSP-BF537 Blackfin Processor Hardware Reference provides architectural
information about the ADSP-BF534, ADSP-BF536, and ADSP-BF537
processors. The architectural descriptions cover functional blocks, buses,
and ports, including all features and processes that they support.

For programming information, see Blackfin Processor Programming Refer-
ence. For timing, electrical, and package specifications, see ADSP-BF534
Embedded Processor Data Sheet or ADSP-BF536/ADSP-BF537 Embedded
Processor Data Sheet.

Infended Audience

The primary audience for this manual is a programmer who is familiar
with Analog Devices processors. The manual assumes the audience has a
working knowledge of the appropriate processor architecture and instruc-
tion set. Programmers who are unfamiliar with Analog Devices processors
can use this manual, but should supplement it with other texts, such as
hardware and programming reference manuals that describe their target
architecture.

ADSP-BF537 Blackfin Processor Hardware Reference xlv

Manual Contents

Manual Contents

This manual contains:

Chapter 1, “Introduction”
Provides a high level overview of the processor, including peripher-
als, power management, and development tools.

Chapter 2, “Chip Bus Hierarchy”
Describes on-chip buses, including how data moves through the
system.

Chapter 3, “Memory”
Describes processor-specific memory topics, including L1memories
and processor-specific memory MMRGs.

Chapter 4, “System Interrupts”
Describes the system peripheral interrupts, including setup and
clearing of interrupt requests.

Chapter 5, “Direct Memory Access”

Describes the peripheral DMA and Memory DMA controllers.
Includes performance, software management of DMA, and DMA
errors.

Chapter 6, “External Bus Interface Unit”
Describes the External Bus Interface Unit of the processor. The
chapter also discusses the asynchronous memory interface, the

SDRAM controller (SDC), related registers, and SDC configura-

tion and commands.

Chapter 7, “Parallel Peripheral Interface”

Describes the Parallel Peripheral Interface (PPI) of the processor.
The PPI is a half-duplex, bidirectional port accommodating up to
16 bits of data and is used for digital video and data converter
applications.

xlvi

ADSP-BF537 Blackfin Processor Hardware Reference

Preface

* Chapter 8, “Ethernet MAC”
Describes the Ethernet Media Access Controller (MAC) peripheral
that is available on ADSP-BF536 and ADSP-BF537 processors.
The Ethernet MAC provides a 10/100Mbit/s Ethernet interface,
compliant to IEEE Std. 802.3-2002, between an MII (Media Inde-
pendent Interface) and the Blackfin peripheral subsystem.

e Chapter 9, “CAN Module”
Describes the CAN module, a low bit rate serial interface intended
for use in applications where bit rates are typically up to 1Mbit/s.

e Chapter 10, “SPI Compatible Port Controllers”
Describes the Serial Peripheral Interface (SPI) port that provides an
/0 interface to a variety of SPI compatible peripheral devices.

e Chapter 11, “T'wo-Wire Interface Controller”
Describes the Two-Wire Interface (TWI) controller, which allows
a device to interface to an Inter IC bus as specified by the Philips
P2 C Bus Specification version 2.1 dated January 2000.

e Chapter 12, “SPORT Controllers”
Describes the two independent, synchronous Serial Port Control-
lers (SPORTO and SPORT1) that provide an I/O interface to a

variety of serial peripheral devices.

e Chapter 13, “UART Port Controllers”
Describes the two Universal Asynchronous Receiver/Transmitter
ports (UARTO and UART1) that convert data between serial and
parallel formats. The UARTS support the half-duplex IrDA® SIR

protocol as a mode-enabled feature.

e Chapter 14, “General-Purpose Ports”
Describes the general-purpose 1/0 ports, including the structure of
each port, multiplexing, configuring the pins, and generating
interrupts.

ADSP-BF537 Blackfin Processor Hardware Reference xlvii

Manual Contents

Chapter 15, “General-Purpose Timers”
Describes the eight general-purpose timers.

Chapter 16, “Core Timer”

Describes the core timer.

Chapter 17, “Watchdog Timer”

Describes the watchdog timer.

Chapter 18, “Real-Time Clock”
Describes a set of digital watch features of the processor, including
time of day, alarm, and stopwatch countdown.

Chapter 19, “System Reset and Booting”
Describes the booting methods, booting process and specific boot
modes for the processor.

Chapter 20, “Dynamic Power Management”
Describes the clocking, including the PLL, and the dynamic power
management controller.

Chapter 21, “System Design”

Describes how to use the processor as part of an overall system. It
includes information about bus timing and latency numbers, sema-
phores, and a discussion of the treatment of unused pins.

Appendix A, “System MMR Assignments”
Lists the memory-mapped registers included in this manual, their
addresses, and cross-references to text.

Appendix B, “Test Features”

Describes test features for the processor, discusses the JTAG stan-
dard, boundary-scan architecture, instruction and boundary
registers, and public instructions.

<« »

Glossary
Contains definitions of terms used in this book, including
acronyms.

xlviii

ADSP-BF537 Blackfin Processor Hardware Reference

Preface

What's New in This Manual

This is Revision 3.4 of ADSP-BF537 Blackfin Processor Hardware Refer-

ence. This revision corrects minor typographical errors and the following

1ssues:

Core priority over DMA when accessing L1 SRAM in Chapter 2,
“Chip Bus Hierarchy”

Note on timing dependencies for the TRP and TRAS settings in the
EBIU_SDGCTL register in Chapter 6, “External Bus Interface Unit”

Multiplexing of PPI pins on port G in Chapter 7, “Parallel Periph-

eral Interface”

Note on CAN_GIS and CAN_GIF programming in Chapter 9, “CAN
Module”

Termination of SPI TX DMA operations and comments on
SPI_CTL register functionality in Chapter 10, “SPI Compatible
Port Controllers”

Descriptions of the TWI_XMT_DATAS8 register bit and RCVSERY, the
Receive FIFO service, coverage of previously undocumented clock
stretching behavior, and miscellaneous changes across Chapter 11,
“Two-Wire Interface Controller”

Description of multichannel mode operation, behavior on startup
when using an external clock, and receiver and transmitter enable
bit names standardized on RSPEN and TSPEN in Chapter 12,
“SPORT Controllers”

ADSP-BF537 Blackfin Processor Hardware Reference xlix

Technical Support

Core Double Fault Reset Enable bit (DOUBLE_FAULT) set in the
SWRST register and MOSI pin latching information in Chapter 19,
“System Reset and Booting”

Note on programming the STOPCK bit, CLKBUF behavior during
hibernate, and input and output delays in PLL_CTL diagram in
Chapter 20, “Dynamic Power Management”

Technical Support

You can reach Analog Devices processors and DSP technical support in
the following ways:

Post your questions in the processors and DSP support community
at EngineerZone™:
http://ez.analog.com/community/dsp

Submit your questions to technical support directly at:
http://www.analog.com/support

E-mail your questions about processors, DSPs, and tools develop-
ment software from CrossCore® Embedded Studio or

VisualDSP++%:

Choose Help > Email Support. This creates an e-mail to
processor.tools.support@analog.com and automatically attaches
your CrossCore Embedded Studio or Visual DSP++ version infor-
mation and Ticense.dat file.

E-mail your questions about processors and processor applications
to:

processor.support@analog.com or

processor.china@analog.com (Greater China support)

In the USA only, call 1-800-ANALOGD (1-800-262-5643)

ADSP-BF537 Blackfin Processor Hardware Reference

http://ez.analog.com/community/dsp
http://www.analog.com/support
mailto:processor.tools.support@analog.com
mailto:processor.support@analog.com
mailto:processor.china@analog.com

Preface

* Contact your Analog Devices sales office or authorized distributor.
Locate one at:
www.analog.com/adi-sales

* Send questions by mail to:
Processors and DSP Technical Support
Analog Devices, Inc.
Three Technology Way
P.O. Box 9106
Norwood, MA 02062-9106
USA

Supported Processors

The name “Blackfin” refers to a family of 16-bit, embedded processors.
Refer to the CCES or VisualDSP++ online help for a complete list of sup-

ported processors.

Product Information

Product information can be obtained from the Analog Devices Web site
and the CCES or Visual DSP++ online help.

ADSP-BF537 Blackfin Processor Hardware Reference li

http://www.analog.com/adi-sales

Product Information

Analog Devices Web Site

The Analog Devices Web site, www.analog.com, provides information
about a broad range of products—analog integrated circuits, amplifiers,
converters, and digital signal processors.

To access a complete technical library for each processor family, go to
http://www.analog.com/processors/technical_library. The manuals
selection opens a list of current manuals related to the product as well as a
link to the previous revisions of the manuals. When locating your manual
title, note a possible errata check mark next to the title that leads to the
current correction report against the manual.

Also note, myAnalog is a free feature of the Analog Devices Web site that
allows customization of a Web page to display only the latest information
about products you are interested in. You can choose to receive weekly
e-mail notifications containing updates to the Web pages that meet your
interests, including documentation errata against all manuals. myAnalog
provides access to books, application notes, data sheets, code examples,
and more.

Visit myAnalog to sign up. If you are a registered user, just log on. Your
user name is your e-mail address.

EngineerZone

EngineerZone is a technical support forum from Analog Devices, Inc. It
allows you direct access to ADI technical support engineers. You can
search FAQs and technical information to get quick answers to your
embedded processing and DSP design questions.

Use EngineerZone to connect with other DSP developers who face similar
design challenges. You can also use this open forum to share knowledge
and collaborate with the ADI support team and your peers. Visit
http://ez.analog.com to sign up.

lii

ADSP-BF537 Blackfin Processor Hardware Reference

http://www.analog.com
http://www.analog.com/processors/technical_library/
http://www.analog.com/MyAnalog
http://www.analog.com/MyAnalog
http://www.analog.com/MyAnalog
http://ez.analog.com

Preface

Notation Conventions

Text conventions in this manual are identified and described as follows.

Example

Description

Close command
(File menu)

Titles in reference sections indicate the location of an item within the
IDE environment’s menu system (for example, the Close command
appears on the File menu).

{this | that}

Alternative required items in syntax descriptions appear within curly
brackets and separated by vertical bars; read the example as this or
that. One or the other is required.

[this | that]

Optional items in syntax descriptions appear within brackets and sepa-
rated by vertical bars; read the example as an optional this or that.

[this,..] Optional item lists in syntax descriptions appear within brackets delim-
ited by commas and terminated with an ellipsis; read the example as an
optional comma-separated list of this.

.SECTION Commands, directives, keywords, and feature names are in text with
letter gothic font.

filename Non-keyword placeholders appear in text with italic style format.

Note: For correct operation, ...
A Note provides supplementary information on a related topic. In the
online version of this book, the word Note appears instead of this

symbol.

Caution: Incorrect device operation may result if ...

Caution: Device damage may result if ...

A Caution identifies conditions or inappropriate usage of the product

that could lead to undesirable results or product damage. In the online
version of this book, the word Caution appears instead of this symbol.

Warning: Injury to device users may result if ...

A Warning identifies conditions or inappropriate usage of the product
that could lead to conditions that are potentially hazardous for devices
users. In the online version of this book, the word Warning appears
instead of this symbol.

ADSP-BF537 Blackfin Processor Hardware Reference liii

Register Diagram Conventions

Register Diagram Conventions

Register diagrams use the following conventions:

The descriptive name of the register appears at the top, followed by
the short form of the name in parentheses.

If the register is read-only (RO), write-1-to-set (W1S), or
write-1-to-clear (W1C), this information appears under the name.
Read/write is the default and is not noted. Additional descriptive
text may follow.

If any bits in the register do not follow the overall read/write con-
vention, this is noted in the bit description after the bit name.

If a bit has a short name, the short name appears first in the bit
description, followed by the long name in parentheses.

The reset value appears in binary in the individual bits and in hexa-
decimal to the right of the register.

Bits marked x have an unknown reset value. Consequently, the
reset value of registers that contain such bits is undefined or depen-
dent on pin values at reset.

Shaded bits are reserved.

To ensure upward compatibility with future implementations,
write back the value that is read for reserved bits in a register,
unless otherwise specified.

liv

ADSP-BF537 Blackfin Processor Hardware Reference

Preface

The following figure shows an example of these conventions.

Timer Configuration Registers (TIMERx_CONFIG)

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
|o|0|o|o|o|o|o|o|o|o|o|o|0|o|0|0|Reset=0x0000

ERR_TYP[1:0] (Error Type) - RO TMODE[1:0] (Timer Mode)

00 - No error. 00 - Reset state - unused.

01 - Counter overflow error. 01 - PWM_OUT mode.

10 - Period register programming error. 10 - WDTH_CAP mode.

11 - Pulse width register programming error. 11 - EXT_CLK mode.
PULSE_HI

EMU_RUN (Emulation Behavior Select) 0 - Negative action pulse.

0 - Timer counter stops during emulation. 1 - Positive action pulse.

1 - Timer counter runs during emulation. L PERIOD_CNT (Period

TOGGLE_HI (PWM_OUT PULSE_HI Toggle Mode)— Count)

0 - The effective state of PULSE_HI 0 - Count to end of width.

is the programmed state. 1 - Count to end of period.

1 - The effective state of PULSE_HI IRQ_ENA (Interrupt

alternates each period. Request Enable)

CLK_SEL (Timer Clock Select) 0 - Interrupt request

This bit must be set to 1, when operat- disable.

ing the PPl in GP Output modes. 1 - Interrupt request enable

0 - Use system clock SCLK for counter. TIN_SEL (Timer Input

1 - Use PWM_CLK to clock counter. L Select)

OUT_DIS (Output Pad Disable) 0 - Sample TMRx pin or

0 - Enable pad in PWM_OUT mode. PF1 pin.)

1 - Disable pad in PWM_OUT mode. 1 - Sample UART RX pin

or PPI_CLK pin.

Figure 1. Register Diagram Example

ADSP-BF537 Blackfin Processor Hardware Reference lv

Register Diagram Conventions

lvi ADSP-BF537 Blackfin Processor Hardware Reference

1 INTRODUCTION

The ADSP-BF534, ADSP-BF536, and ADSP-BF537 processors are new
members of the Blackfin processor family that offer significant high per-
formance and low power while retaining their ease-of-use benefits. The
ADSP-BF536 and ADSP-BF537 processors are completely pin compati-
ble, differing only in their performance and on-chip memory, mitigating
many risks associated with new product development but allowing the
possibility to scale up or down based on specific application demands. The
ADSP-BF534 processor is pin-compatible with the ADSP-BF536 and
ADSP-BF537 processors, but it does not include the embedded Ethernet
controller like the ADSP-BF536 and ADSP-BF537 devices.

This chapter provides an overview of:
e “Peripherals” on page 1-2
* “Memory Architecture” on page 1-4
e “DMA Support” on page 1-7
e “External Bus Interface Unit” on page 1-8
e “Ports” on page 1-9
e “Two-Wire Interface” on page 1-11
e “Controller Area Network” on page 1-12
e “Ethernet MAC” on page 1-13

e “Parallel Peripheral Interface” on page 1-14

ADSP-BF537 Blackfin Processor Hardware Reference 1-1

Peripherals

e “SPORT Controllers” on page 1-16

* “Serial Peripheral Interface (SPI) Port” on page 1-17
e “Timers” on page 1-18

e “UART Ports” on page 1-19

* “Real-Time Clock” on page 1-20

e “Watchdog Timer” on page 1-21

* “Clock Signals” on page 1-22

* “Dynamic Power Management” on page 1-22
* “Voltage Regulation” on page 1-24

e “Boot Modes” on page 1-25

e “Instruction Set Description” on page 1-27

e “Development Tools” on page 1-28

Peripherals

The processor system peripherals include:

* IEEE 802.3-compliant 10/100 Ethernet MAC (Not included on
the ADSP-BF534)

e Controller Area Network (CAN) 2.0B interface
 Darallel Peripheral Interface (PPI), supporting ITU-R 656 video

data formats

* Two dual-channel, full-duplex synchronous Serial Ports

(SPORTS), supporting eight stereo 12S channels

1-2 ADSP-BF537 Blackfin Processor Hardware Reference

Infroduction

12 peripheral DMAs (2 mastered by the Ethernet MAC on
ADSP-BF536 and ADSP-BF537 processors)

Two memory-to-memory DMAs with handshake DMA
Event handler with 32 interrupt inputs

Serial Peripheral Interface (SPI)-compatible

Two UART:s with IrDA® support

Two-Wire Interface (TWI) controller

Eight 32-bit timer/counters with PWM support

Real-Time Clock (RTC) and watchdog timer

32-bit core timer

48 General-Purpose 1/0s (GPIOs), 8 with high current drivers
On-chip PLL capable of 1x to 63x frequency multiplication
Debug/JTAG interface

These peripherals are connected to the core via several high bandwidth
buses, as shown in Figure 1-1.

All of the peripherals, except for general-purpose 1/0O, CAN, TWI, RTC,
and timers, are supported by a flexible DMA structure. There are also two
separate memory DMA channels dedicated to data transfers between the
processor’s memory spaces, which include external SDRAM and asynchro-
nous memory. Multiple on-chip buses provide enough bandwidth to keep
the processor core running even when there is also activity on all of the
on-chip and external peripherals.

ADSP-BF537 Blackfin Processor Hardware Reference 1-3

Memory Architecture

VOLTAGE REGULATOR JTAG TEST AND EMULATION
ﬂ PERIPHERAL ACCESS BUS
WATCHDOG TIMER
l 2
A% [}
’ ﬁ : RTC
INTERRUPT u
Bl ﬂﬂ[{/@ <=| CONTROLLER S
2
i PORT
() é " =
o
S
L1 L1
DMA
INSTRUCTION DATA <=
MEMORY MEMORY CONTROLLER
GPIO
o PORT K—>
EXTERNAL ‘zt » G
ACCESS Sz g =
BUS DMA COREBUS o E o o
x &
w w
8
EXTERNAL PORT < GPIO
FLASH, SDRAM CONTROL E POFRT K=>
ﬂ TIMERS 0-7 K=
16
2| ETHERNET mAC GPIO
BOOT ROM (ADSP-BF536/ K—>| PORT (—>
ADSP-BF537 ONLY) H

Figure 1-1. ADSP-BF53x Processor Block Diagram

Memory Architecture

The Blackfin processor architecture structures memory as a single, unified
4G byte address space using 32-bit addresses. All resources, including
internal memory, external memory, and I/O control registers, occupy sep-
arate sections of this common address space. The memory portions of this
address space are arranged in a hierarchical structure to provide a good
cost/performance balance of some very fast, low latency on-chip memory
as cache or SRAM, and larger, lower cost and lower performance off-chip
memory systems.

1-4 ADSP-BF537 Blackfin Processor Hardware Reference

Infroduction

Table 1-1 shows the memory comparison for the ADSP-BF534,
ADSP-BF536, and ADSP-BF537 processors.

Table 1-1. Memory Configurations

Type of Memory ADSP-BF534 ADSP-BF536 ADSP-BF537
Instruction SRAM/cache, lockable by | 16K byte 16K byte 16K byte
way or line

Instruction SRAM 48K byte 48K byte 48K byte
Data SRAM/cache 32K byte 16K byte 32K byte
Data SRAM 32K byte 16K byte 32K byte
Data scratchpad SRAM 4K byte 4K byte 4K byte

Total 132K byte 100K byte 132K byte

The L1 memory system is the primary highest performance memory avail-
able to the core. The off-chip memory system, accessed through the
External Bus Interface Unit (EBIU), provides expansion with SDRAM,

flash memory, and SRAM, optionally accessing up to 132M bytes of phys-
ical memory.

The memory DMA controller provides high bandwidth data movement
capability. It can perform block transfers of code or data between the
internal memory and the external memory spaces.

ADSP-BF537 Blackfin Processor Hardware Reference 1-5

Memory Architecture

Internal Memory

The processor has three blocks of on-chip memory that provide high
bandwidth access to the core:

e L1 instruction memory, consisting of SRAM and a 4-way set-asso-
ciative cache. This memory is accessed at full processor speed.

* L1 data memory, consisting of SRAM and/or a 2-way set-associa-
tive cache. This memory block is accessed at full processor speed.

e L1 scratchpad RAM, which runs at the same speed as the L1 mem-
ories but is only accessible as data SRAM and cannot be configured
as cache memory.

External Memory

External (off-chip) memory is accessed via the External Bus Interface Unit
(EBIU). This 16-bit interface provides a glueless connection to a bank of
synchronous DRAM (SDRAM) and as many as four banks of asynchro-
nous memory devices including flash memory, EPROM, ROM, SRAM,

and memory-mapped 1/O devices.

The PC133-compliant SDRAM controller can be programmed to inter-
face to up to 128M bytes of SDRAM.

The asynchronous memory controller can be programmed to control up
to four banks of devices. Each bank occupies a IM byte segment regardless
of the size of the devices used, so that these banks are only contiguous if
each is fully populated with 1M byte of memory.

I/0 Memory Space

Blackfin processors do not define a separate I/O space. All resources are
mapped through the flat 32-bit address space. Control registers for
on-chip I/0 devices are mapped into memory-mapped registers (MMRs)

1-6 ADSP-BF537 Blackfin Processor Hardware Reference

Infroduction

at addresses near the top of the 4G byte address space. These are separated
into two smaller blocks: one contains the control MMRs for all core func-
tions and the other contains the registers needed for setup and control of

the on-chip peripherals outside of the core. The MMRs are accessible only

in supervisor mode. They appear as reserved space to on-chip peripherals.

DMA Support

The processor has multiple, independent DMA controllers that support
automated data transfers with minimal overhead for the core. DMA trans-
fers can occur between the internal memories and any of its DMA-capable
peripherals. Additionally, DMA transfers can be accomplished between
any of the DMA-capable peripherals and external devices connected to the
external memory interfaces, including the SDRAM controller and the
asynchronous memory controller. DMA-capable peripherals include the
SPORTs, SPI ports, UARTS, and PPI. For the ADSP-BF536 and
ADSP-BF537 processors, Ethernet is also a DMA-capable peripheral.
Each individual DMA-capable peripheral has at least one dedicated DMA
channel.

The DMA controller supports both one-dimensional (1D) and
two-dimensional (2D) DMA transfers. DMA transfer initialization can be
implemented from registers or from sets of parameters called descriptor

blocks.

The 2D DMA capability supports arbitrary row and column sizes up to
64K elements by 64K elements, and arbitrary row and column step sizes
up to +/— 32K elements. Furthermore, the column step size can be less
than the row step size, allowing implementation of interleaved data-
streams. This feature is especially useful in video applications where data
can be de-interleaved on the fly.

ADSP-BF537 Blackfin Processor Hardware Reference 1-7

External Bus Interface Unit

Examples of DMA types supported include:
* A single, linear buffer that stops upon completion

* A circular, auto-refreshing buffer that interrupts on each full or

fractionally full buffer
e 1D or 2D DMA using a linked list of descriptors

e 2D DMA using an array of descriptors specifying only the base
DMA address within a common page

In addition to the dedicated peripheral DMA channels, there is a separate
memory DMA channel provided for transfers between the various memo-
ries of the system. This enables transfers of blocks of data between any of
the memories—including external SDRAM, ROM, SRAM, and flash
memory—with minimal processor intervention. Memory DMA transfers
can be controlled by a very flexible descriptor-based methodology or by a
standard register-based autobuffer mechanism.

The ADSP-BF534, ADSP-BF536, and ADSP-BF537 processors also
include a handshake DMA capability via dual external DMA request pins
when used in conjunction with the External Bus Interface Unit (EBIU).
This functionality can be used when a high speed interface is required for
external FIFOs and high bandwidth communications peripherals such as
USB 2.0. It allows control of the number of data transfers for MDMA.
The number of transfers per edge is programmable. This feature can be
programmed to allow MDMA to have an increased priority on the exter-
nal bus relative to the core.

External Bus Interface Unit

The External Bus Interface Unit (EBIU) on the processor interfaces with a
wide variety of industry-standard memory devices. The controller consists
of an SDRAM controller and an asynchronous memory controller.

1-8 ADSP-BF537 Blackfin Processor Hardware Reference

Infroduction

PC133 SDRAM Controller

The SDRAM controller provides an interface to a single bank of indus-
try-standard SDRAM devices or DIMMs. Fully compliant with the
PC133 SDRAM standard, the bank can be configured to contain between
16M and 128M bytes of memory.

A set of programmable timing parameters is available to configure the
SDRAM bank to support slower memory devices. The memory bank is
16 bits wide for minimum device count and lower system cost.

Asynchronous Controller

The asynchronous memory controller provides a configurable interface for
up to four separate banks of memory or I/O devices. Each bank can be
independently programmed with different timing parameters. This allows
connection to a wide variety of memory devices, including SRAM, ROM,
and flash EPROM, as well as I/O devices that interface with standard
memory control lines. Each bank occupies a 1M byte window in the pro-
cessor address space, but if not fully populated, these are not made
contiguous by the memory controller. The banks are 16 bits wide, for
interfacing to a range of memories and I/O devices.

Poris

Because of the rich set of peripherals, the ADSP-BF534, ADSP-BF536,
and ADSP-BF537 processor groups the many peripheral signals to four
ports—port F, port G, port H, and port J. Most of the associated pins are
shared by multiple signals. The ports function as multiplexer controls.
Eight of the pins (port F7-0) offer high source/high sink current
capabilities.

ADSP-BF537 Blackfin Processor Hardware Reference 1-9

Ports

General-Purpose 1/O (GPIO)

The ADSP-BF534, ADSP-BF536, and ADSP-BF537 processors have 48
bidirectional, general-purpose I/O (GPIO) pins allocated across three sep-
arate GPIO modules—PORTFIO, PORTGIO, and PORTHIO,
associated with port F, port G, and port H, respectively. Port J does not
provide GPIO functionality. Each GPIO-capable pin shares functionality
with other ADSP-BF534, ADSP-BF536, and ADSP-BF537 processor
peripherals via a multiplexing scheme; however, the GPIO functionality is
the default state of the device upon powerup. Neither GPIO output or
input drivers are active by default. Each general-purpose port pin can be
individually controlled by manipulation of the port control, status, and
interrupt registers:

* GPIO direction control register — Specifies the direction of each
individual GPIO pin as input or output.

* GPIO control and status registers — The ADSP-BF534,
ADSP-BF536, and ADSP-BF537 processors employ a “write one
to modify” mechanism that allows any combination of individual
GPIO pins to be modified in a single instruction, without affecting
the level of any other GPIO pins. Four control registers are pro-
vided. One register is written in order to set pin values, one register
is written in order to clear pin values, one register is written in
order to toggle pin values, and one register is written in order to
specify a pin value. Reading the GPIO status register allows soft-
ware to interrogate the sense of the pins.

* GPIO interrupt mask registers — The two GPIO interrupt mask
registers allow each individual GPIO pin to function as an inter-
rupt to the processor. Similar to the two GPIO control registers
that are used to set and clear individual pin values, one GPIO
interrupt mask register sets bits to enable interrupt function, and
the other GPIO interrupt mask register clears bits to disable

1-10 ADSP-BF537 Blackfin Processor Hardware Reference

Infroduction

interrupt function. GPIO pins defined as inputs can be configured
to generate hardware interrupts, while output pins can be triggered
by software interrupts.

GPIO interrupt sensitivity registers — The two GPIO interrupt sen-
sitivity registers specify whether individual pins are level- or
edge-sensitive and specify—if edge-sensitive—whether just the ris-
ing edge or both the rising and falling edges of the signal are
significant. One register selects the type of sensitivity, and one reg-
ister selects which edges are significant for edge-sensitivity.

Two-Wire Interface

The Two-Wire Interface (TWI) is fully compatible with the widely used

12C bus standard. It was designed with a high level of functionality and is
compatible with multi-master, multi-slave bus configurations. To preserve
processor bandwidth, the TWI controller can be set up and a transfer ini-
tiated with interrupts only to service FIFO buffer data reads and writes.
Protocol related interrupts are optional.

The TWI externally moves 8-bit data while maintaining compliance with

the I2C bus protocol. The Philips I*C Bus Specification version 2.1 covers

many variants of I2C. The TWI controller includes these features:

Simultaneous master and slave operation on multiple device
systems

Support for multi-master data arbitration

7-bit addressing

100 kbits/second and 400 kbits/second data rates
General call address support

Master clock synchronization and support for clock low extension

ADSP-BF537 Blackfin Processor Hardware Reference 1-11

Controller Area Network

Separate multiple-byte receive and transmit FIFOs
Low interrupt rate

Individual override control of data and clock lines in the event of

bus lock-up
Input filter for spike suppression

Serial camera control bus support as specified in OmniVision Serial
Camera Control Bus (SCCB) Functional Specification version 2.1

Controller Area Network

The Controller Area Network (CAN) module is a low bit rate serial inter-
face intended for use in applications where bit rates are typically up to 1
Mbit/second. The CAN protocol incorporates a data CRC check, message
error tracking, and fault node confinement as means to improve network
reliability to the level required for control applications.

The interface to the CAN bus is a simple two-wire line. See Figure 9-1 on
page 9-2 for a symbolic representation of the CAN transceiver intercon-
nection. The Blackfin processor’s CANTX output and CANRX input pins are
connected to an external CAN transceiver’s TX and RX pins, respectively.

Key features of the CAN module are:

Conforms to the CAN 2.0B (active) standard

Supports both standard (11-bit) and extended (29-bit) identifiers
Supports data rates of up to 1 Mbit/second

32 mailboxes (8 transmit, 8 receive, 16 configurable)

Dedicated acceptance mask for each mailbox

ADSP-BF537 Blackfin Processor Hardware Reference

Infroduction

* Data filtering (first 2 bytes) can be used for acceptance filtering
(Device Net mode)

e Error status and warning registers

* Transmit priority by identifier

e Universal counter module

* Readable receive and transmit pin values

These modes support ADC/DAC connections, as well as video communi-
cation with hardware signalling. Many of the modes support more than
one level of frame synchronization. If desired, a programmable delay can
be inserted between assertion of a frame sync and reception/transmission
of data.

Ethernet MAC

The Ethernet Media Access Controller (MAC) peripheral for the
ADSP-BF536 and ADSP-BF537 processors provides a 10/100 Mbit/sec-
ond Ethernet interface, compliant with IEEE Std. 802.3-2002, between a
Media Independent Interface (MII) and the Blackfin peripheral subsys-
tem. The MAC operates in both half-duplex and full-duplex modes. It
provides programmable enhanced features designed to minimize bus utili-
zation and pre- or post-message processing. The connection to the
external physical layer device (PHY) is achieved via the MII or a Reduced
Media Independent Interface (RMII). The RMII provides data buses half
as wide (2 bit vs. 4 bit) as those of an MII, operating at double the
frequency.

The MAC is clocked internally from the CLKIN pin on the processor. A
buffered version of this clock can also be used to drive the external PHY
via the CLKBUF pin. A 25 MHz source should be used with an MII PHY.
A 50 MHz clock source is required to drive an RMII PHY.

ADSP-BF537 Blackfin Processor Hardware Reference 1-13

Parallel Peripheral Interface

Parallel Peripheral Interface

The processor provides a Parallel Peripheral Interface (PPI) that can con-
nect directly to parallel A/D and D/A converters, [ITU-R 601/656 video
encoders and decoders, and other general-purpose peripherals. The PPI
consists of a dedicated input clock pin and three multiplexed frame sync
pins. The input clock supports parallel data rates up to half the system
clock rate.

In ITU-R 656 modes, the PPI receives and parses a data stream of 8-bit or
10-bit data elements. On-chip decode of embedded preamble control and
synchronization information is supported.

Three distinct ITU-R 656 modes are supported:

Active video only — The PPI does not read in any data between the
End of Active Video (EAV) and Start of Active Video (SAV) pre-
amble symbols, or any data present during the vertical blanking
intervals. In this mode, the control byte sequences are not stored to
memory; they are filtered by the PPI.

Vertical blanking only — The PPI only transfers Vertical Blanking
Interval (VBI) data, as well as horizontal blanking information and
control byte sequences on VBI lines.

Entire field — The entire incoming bitstream is read in through the
PPI. This includes active video, control preamble sequences, and
ancillary data that may be embedded in horizontal and vertical
blanking intervals.

Though not explicitly supported, ITU-R 656 output functionality can be
achieved by setting up the entire frame structure (including active video,
blanking, and control information) in memory and streaming the data out
the PPI in a frame sync-less mode. The processor’s 2D DMA features

ADSP-BF537 Blackfin Processor Hardware Reference

Infroduction

facilitate this transfer by allowing the static frame buffer (blanking and
control codes) to be placed in memory once, and simply updating the
active video information on a per-frame basis.

The general-purpose modes of the PPI are intended to suit a wide variety
of data capture and transmission applications. The modes are divided into
four main categories, each allowing up to 16 bits of data transfer per
PPI_CLK cycle:

* Data receive with internally generated frame syncs
* Data receive with externally generated frame syncs
* Data transmit with internally generated frame syncs
* Data transmit with externally generated frame syncs

These modes support ADC/DAC connections, as well as video communi-
cation with hardware signalling. Many of the modes support more than
one level of frame synchronization. If desired, a programmable delay can
be inserted between assertion of a frame sync and reception/transmission
of data.

ADSP-BF537 Blackfin Processor Hardware Reference 1-15

SPORT Controllers

SPORT Controllers

The processor incorporates two dual-channel synchronous serial ports
(SPORTO and SPORTY1) for serial and multiprocessor communications.
The SPORTSs support these features:

Bidirectional, I?S capable operation

Each SPORT has two sets of independent transmit and receive
pins, which enable eight channels of IS stereo audio.

Buffered (eight-deep) transmit and receive ports

Each port has a data register for transferring data words to and
from other processor components and shift registers for shifting
data in and out of the data registers.

Clocking

Each transmit and receive port can either use an external serial
clock or can generate its own in a wide range of frequencies.

Word length

Each SPORT supports serial data words from 3 to 32 bits in
length, transferred in most significant bit first or least significant
bit first format.

Framing

Each transmit and receive port can run with or without frame sync
signals for each data word. Frame sync signals can be generated
internally or externally, active high or low, and with either of two
pulse widths and early or late frame sync.

1-16

ADSP-BF537 Blackfin Processor Hardware Reference

Infroduction

* Companding in hardware

Each SPORT can perform A-law or p-law companding according
to ITU recommendation G.711. Companding can be selected on
the transmit and/or receive channel of the SPORT without addi-
tional latencies.

* DMA operations with single cycle overhead

Each SPORT can automatically receive and transmit multiple buf-
fers of memory data. The processor can link or chain sequences of

DMA transfers between a SPORT and memory.

* Interrupts

Each transmit and receive port generates an interrupt upon com-
pleting the transfer of a data word or after transferring an entire

data buffer or buffers through DMA.

* Multichannel capability

Each SPORT supports 128 channels out of a 1024-channel win-
dow and is compatible with the H.100, H.110, MVIP-90, and
HMVIP standards.

Serial Peripheral Interface (SPI) Port

The processor has an SPI-compatible port that enables the processor to
communicate with multiple SPI-compatible devices.

The SPI interface uses three pins for transferring data: two data pins and a
clock pin. An SPI chip select input pin lets other SPI devices select the
processor, and seven SPI chip select output pins let the processor select
other SPI devices. The SPI select pins are reconfigured general-purpose

ADSP-BF537 Blackfin Processor Hardware Reference 1-17

Timers

I/O pins. Using these pins, the SPI port provides a full-duplex,
synchronous serial interface, which supports both master and slave modes
and multimaster environments.

The SPI port’s baud rate and clock phase/polarities are programmable,
and it has an integrated DMA controller, configurable to support either
transmit or receive datastreams. The SPI’'s DMA controller can only ser-
vice unidirectional accesses at any given time.

During transfers, the SPI port simultaneously transmits and receives by
serially shifting data in and out of its two serial data lines. The serial clock
line synchronizes the shifting and sampling of data on the two serial data
lines.

Timers

There are nine general-purpose programmable timer units in the proces-
sor. Eight timers have an external pin that can be configured either as a
Pulse Width Modulator (PWM) or timer output, as an input to clock the
timer, or as a mechanism for measuring pulse widths of external events.
These timer units can be synchronized to an external clock input con-
nected to the PF1 pin, an external clock input to the PPI_CLK pin, or to the
internal SCLK.

The timer units can be used in conjunction with the UARTSs to measure
the width of the pulses in the datastream to provide an autobaud detect
function for a serial channel.

The timers can generate interrupts to the processor core to provide peri-
odic events for synchronization, either to the processor clock or to a count
of external signals.

1-18 ADSP-BF537 Blackfin Processor Hardware Reference

Infroduction

In addition to the eight general-purpose programmable timers, a 9th timer
is also provided. This extra timer is clocked by the internal processor clock
and is typically used as a system tick clock for generation of operating sys-
tem periodic interrupts.

UART Ports

The processor provides two full-duplex Universal Asynchronous
Receiver/Transmitter (UART) ports, which are fully compatible with
PC-standard UARTs. The UART ports provide a simplified UART inter-
face to other peripherals or hosts, providing full-duplex, DMA-supported,
asynchronous transfers of serial data. The UART ports include support for
5 to 8 data bits; 1 or 2 stop bits; and none, even, or odd parity.

The UART ports support two modes of operation:
* Programmed I/O

The processor sends or receives data by writing or reading
I/0O-mapped UART registers. The data is double buffered on both

transmit and receive.

* Direct Memory Access (DMA)

The DMA controller transfers both transmit and receive data. This
reduces the number and frequency of interrupts required to trans-
fer data to and from memory. Each of the two UARTS have two
dedicated DMA channels, one for transmit and one for receive.
These DMA channels have lower priority than most DMA chan-

nels because of their relatively low service rates.

ADSP-BF537 Blackfin Processor Hardware Reference 1-19

Real-Time Clock

The UARTS’ baud rate, serial data format, error code generation and sta-
tus, and interrupts can be programmed to support:

e Wide range of bit rates
* Data formats from 7 to 12 bits per frame

* Generation of maskable interrupts to the processor by both trans-
mit and receive operations

In conjunction with the general-purpose timer functions, autobaud detec-
tion is supported.

The capabilities of the UART ports are further extended with support for

the Infrared Data Association (IrDA®) Serial Infrared Physical Layer Link
Specification (SIR) protocol.

Real-Time Clock

The processor’s Real-Time Clock (RTC) provides a robust set of digital
watch features, including current time, stopwatch, and alarm. The RTC is
clocked by a 32.768 kHz crystal external to the processor. The RTC
peripheral has dedicated power supply pins, so that it can remain powered
up and clocked even when the rest of the processor is in a low power state.
The RTC provides several programmable interrupt options, including
interrupt per second, minute, hour, or day clock ticks, interrupt on pro-
grammable stopwatch countdown, or interrupt at a programmed alarm
time.

The 32.768 kHz input clock frequency is divided down to a 1 Hz signal
by a prescaler. The counter function of the timer consists of four counters:

a 60 second counter, a 60 minute counter, a 24 hours counter, and a
32768 day counter.

1-20 ADSP-BF537 Blackfin Processor Hardware Reference

Infroduction

When enabled, the alarm function generates an interrupt when the output
of the timer matches the programmed value in the alarm control register.
There are two alarms. The first alarm is for a time of day. The second
alarm is for a day and time of that day.

The stopwatch function counts down from a programmed value, with one
minute resolution. When the stopwatch is enabled and the counter under-
flows, an interrupt is generated.

Like the other peripherals, the RTC can wake up the processor from sleep
mode or deep sleep mode upon generation of any RTC wakeup event. An
RTC wakeup event can also wake up the on-chip internal voltage regula-
tor from a powered down state.

Watchdog Timer

The processor includes a 32-bit timer that can be used to implement a
software watchdog function. A software watchdog can improve system
availability by forcing the processor to a known state through generation
of a hardware reset, nonmaskable interrupt (NMI), or general-purpose
interrupt, if the timer expires before being reset by software. The pro-
grammer initializes the count value of the timer, enables the appropriate
interrupt, then enables the timer. Thereafter, the software must reload the
counter before it counts to zero from the programmed value. This protects
the system from remaining in an unknown state where software that
would normally reset the timer has stopped running due to an external
noise condition or software error.

If configured to generate a hardware reset, the watchdog timer resets both
the CPU and the peripherals. After a reset, software can determine if the
watchdog was the source of the hardware reset by interrogating a status bit
in the watchdog control register.

The timer is clocked by the system clock (SCLK), at a maximum frequency
of fSCLK'

ADSP-BF537 Blackfin Processor Hardware Reference 1-21

Clock Signals

Clock Signals

The processor can be clocked by an external crystal, a sine wave input, or a
buffered, shaped clock derived from an external clock oscillator.

This external clock connects to the processor’s CLKIN pin. The CLKIN input
cannot be halted, changed, or operated below the specified frequency
during normal operation. This clock signal should be a TTL-compatible
signal.

The core clock (CCLK) and system peripheral clock (SCLK) are derived from
the input clock (CLKIN) signal. An on-chip Phase Locked Loop (PLL) is
capable of multiplying the CLKIN signal by a user-programmable (1x to
63x) multiplication factor (bounded by specified minimum and maximum
VO frequencies). The default multiplier is 10x, but it can be modified by a
software instruction sequence. On-the-fly frequency changes can be made
by simply writing to the PLL_DIV register.

All on-chip peripherals are clocked by the system clock (SCLK). The system
clock frequency is programmable by means of the SSEL[3:0] bits of the
PLL_DIV register.

Dynamic Power Management

The processor provides four operating modes, each with a different perfor-
mance/power profile. In addition, dynamic power management provides
the control functions to dynamically alter the processor core supply volt-
age to further reduce power dissipation. Control of clocking to each of the
peripherals also reduces power consumption.

1-22 ADSP-BF537 Blackfin Processor Hardware Reference

Infroduction

Full-On Mode (Maximum Performance)

In the full-on mode, the PLL is enabled, not bypassed, providing the max-
imum operational frequency. This is the normal execution state in which
maximum performance can be achieved. The processor core and all

enabled peripherals run at full speed.

Active Mode (Moderate Power Savings)

In the active mode, the PLL is enabled, but bypassed. Because the PLL is
bypassed, the processor’s core clock (CCLK) and system clock (SCLK) run at
the input clock (CLKIN) frequency. In this mode, the CLKIN to VCO multi-

plier ratio can be changed, although the changes are not realized until the
full on mode is entered. DMA access is available to appropriately config-

ured L1 memories.

In the active mode, it is possible to disable the PLL through the PLL con-
trol register (PLL_CTL). If disabled, the PLL must be re-enabled before
transitioning to the full on or sleep modes.

Sleep Mode (High Power Savings)

The sleep mode reduces power dissipation by disabling the clock to the
processor core (CCLK). The PLL and system clock (SCLK), however, con-
tinue to operate in this mode. Typically an external event or RTC activity
will wake up the processor. When in the sleep mode, assertion of any
interrupt causes the processor to sense the value of the bypass bit (BYPASS)
in the PLL control register (PLL_CTL). If bypass is disabled, the processor
transitions to the full on mode. If bypass is enabled, the processor transi-
tions to the active mode.

When in the sleep mode, system DMA access to L1 memory is not
supported.

ADSP-BF537 Blackfin Processor Hardware Reference 1-23

Voltage Regulation

Deep Sleep Mode (Maximum Power Savings)

The deep sleep mode maximizes power savings by disabling the processor
core and synchronous system clocks (CCLK and SCLK). Asynchronous sys-
tems, such as the RTC, may still be running, but cannot access internal
resources or external memory. This powered-down mode can only be
exited by assertion of the reset interrupt or by an asynchronous interrupt
generated by the RTC. When in deep sleep mode, an RTC asynchronous
interrupt causes the processor to transition to the active mode. Assertion
of RESET while in deep sleep mode causes the processor to transition to the
full on mode.

Hibernate State

For lowest possible power dissipation, this state allows the internal supply
(VppInT) to be powered down, while keeping the I/O supply (VppgxT)
running. Although not strictly an operating mode like the four modes
detailed above, it is illustrative to view it as such.

Voltage Regulation

The processor provides an on-chip voltage regulator that can generate
internal voltage levels (0.8 V to 1.2 V) from an external 2.25 V to 3.6 V
supply. Figure 1-2 shows the typical external components required to
complete the power management system. The regulator controls the inter-
nal logic voltage levels and is programmable with the voltage regulator
control register (VR_CTL) in increments of 50 mV. To reduce standby
power consumption, the internal voltage regulator can be programmed to
remove power to the processor core while keeping I/O power supplied.
While in this state, VppgxT can still be applied, eliminating the need for
external buffers. The regulator can also be disabled and bypassed at the
user’s discretion.

1-24 ADSP-BF537 Blackfin Processor Hardware Reference

Infroduction

Vbpext T
VopInT T T A %
v
EXTERNAL COMPONENTS
VRouTp1-01

Figure 1-2. Voltage Regulator Circuit

Boot Modes

The processor has six mechanisms for automatically loading internal L1
instruction memory after a reset. A seventh mode is provided to execute
from external memory, bypassing the boot sequence:

* Execute from 16-bit external memory — Execution starts from
address 0x2000 0000 with 16-bit packing. The boot ROM is
bypassed in this mode. All configuration settings are set for the
slowest device possible (3-cycle hold time; 15-cycle R/W access
times; 4-cycle setup).

* Boot from 8-bit and 16-bit external flash memory — The 8-bit or
16-bit flash boot routine located in boot ROM memory space is set
up using asynchronous memory bank 0. All configuration settings
are set for the slowest device possible (3-cycle hold time; 15-cycle
R/W access times; 4-cycle setup). The boot ROM evaluates the
first byte of the boot stream at address 0x2000 0000. If it is 0x40,
8-bit boot is performed. A 0x60 byte is required for 16-bit boot.

* Boot from serial SPI memory (EEPROM or flash). Eight-, 16-, or
24-bit addressable devices are supported as well as AT45DB041,
AT45DB081, and AT45DB161 data flash devices from Atmel.
The SPI uses the PF10 output pin to select a single SPI

ADSP-BF537 Blackfin Processor Hardware Reference 1-25

Boot Modes

EEPROM/flash device, submits a read command and successive
address bytes (0x00) until a valid 8-, 16-, or 24-bit, or Atmel
addressable device is detected, and begins clocking data into the
processor.

Boot from SPI host device — The Blackfin processor operates in SPI
slave mode and is configured to receive the bytes of the . 1dr file
from an SPI host (master) agent. To hold off the host device from
transmitting while the boot ROM is busy, the Blackfin processor
asserts a flag pin to signal the host device not to send any more
bytes until the flag is deasserted. The flag is chosen by the user and
this information is transferred to the Blackfin processor via bits 8:5

of the FLAG header.

Boot from UART - Using an autobaud handshake sequence, a
boot-stream-formatted program is downloaded by the host. The
host agent selects a baud rate within the UART’s clocking capabili
ties. When performing the autobaud, the UART expects a “@”
(boot stream) character (eight bits data, one start bit, one stop bit,
no parity bit) on the RXD pin to determine the bit rate. It then
replies with an acknowledgement which is composed of 4 bytes:
0xBF, the value of UART_DLL, the value of UART_DLH, 0x00. The host
can then download the boot stream. When the processor needs to
hold off the host, it deasserts CTS. Therefore, the host must moni-
tor this signal.

1

Boot from serial TWI memory (EEPROM/flash) — The Blackfin
processor operates in master mode and selects the TWI slave with
the unique id 0xA0. It submits successive read commands to the
memory device starting at two byte internal address 0x0000 and
begins clocking data into thezprocessor. The TWI memory device
should comply with Philips I C Bus Specification version 2.1 and
have the capability to auto-increment its internal address counter
such that the contents of the memory device can be read
sequentially.

1-26

ADSP-BF537 Blackfin Processor Hardware Reference

Infroduction

* Boot from TWI host — The TWI host agent selects the slave with
the unique id 0x5F. The processor replies with an acknowledge-
ment and the host can then download the boot stream. The TWI
host agent should comply with Philips PPC Bus Specification version
2.1. An I*C multiplexer can be used to select one processor at a
time when booting multiple processors from a single TWI.

For each of the boot modes, a 10-byte header is first read from an external
memory device. The header specifies the number of bytes to be transferred
and the memory destination address. Multiple memory blocks may be
loaded by any boot sequence. Once all blocks are loaded, program execu-
tion commences from the start of L1 instruction SRAM.

In addition, bit 4 of the reset configuration register can be set by applica-
tion code to bypass the normal boot sequence during a software reset. For
this case, the processor jumps directly to the beginning of L1 instruction

memory.

Instruction Set Description

The ADSP-BF53x processor family assembly language instruction set
employs an algebraic syntax designed for ease of coding and readability.
Refer to Blackfin Processor Programming Reference for detailed information.
The instructions have been specifically tuned to provide a flexible, densely
encoded instruction set that compiles to a very small final memory size.
The instruction set also provides fully featured multifunction instructions
that allow the programmer to use many of the processor core resources in
a single instruction. Coupled with many features more often seen on
microcontrollers, this instruction set is very efficient when compiling C
and C++ source code. In addition, the architecture supports both user
(algorithm/application code) and supervisor (O/S kernel, device drivers,
debuggers, ISRs) modes of operation, allowing multiple levels of access to
core resources.

ADSP-BF537 Blackfin Processor Hardware Reference 1-27

Development Tools

The assembly language, which takes advantage of the processor’s unique
architecture, offers these advantages:

* Embedded 16/32-bit microcontroller features, such as arbitrary bit
and bit field manipulation, insertion, and extraction; integer opera-
tions on 8-, 16-, and 32-bit data types; and separate user and
supervisor stack pointers

* Seamlessly integrated DSP/CPU features optimized for both 8-bit
and 16-bit operations

* A multi-issue load/store modified Harvard architecture, which sup-
ports two 16-bit MAC or four 8-bit ALU + two load/store + two
pointer updates per cycle

e All registers, I/O, and memory mapped into a unified 4G byte
memory space, providing a simplified programming model

Code density enhancements include intermixing of 16- and 32-bit
instructions with no mode switching or code segregation. Frequently used
instructions are encoded in 16 bits.

Development Tools

The processor is supported by a complete set of software and hardware
development tools, including Analog Devices” emulators and the Cross-
Core Embedded Studio or VisualDSP++ development environment. (The
emulator hardware that supports other Analog Devices processors also
emulates the processor.)

1-28 ADSP-BF537 Blackfin Processor Hardware Reference

Infroduction

The development environments support advanced application code devel-
opment and debug with features such as:

* Create, compile, assemble, and link application programs written
in C++, C, and assembly

* Load, run, step, halt, and set breakpoints in application programs
* Read and write data and program memory

* Read and write core and peripheral registers

* Plot memory

Analog Devices DSP emulators use the IEEE 1149.1 JTAG test access
port to monitor and control the target board processor during emulation.
The emulator provides full speed emulation, allowing inspection and
modification of memory, registers, and processor stacks. Nonintrusive
in-circuit emulation is assured by the use of the processor JTAG inter-
face—the emulator does not affect target system loading or timing.

Software tools also include Board Support Packages (BSPs). Hardware
tools also include standalone evaluation systems (boards and extenders). In
addition to the software and hardware development tools available from
Analog Devices, third parties provide a wide range of tools supporting the
Blackfin processors. Third party software tools include DSP libraries,
real-time operating systems, and block diagram design tools.

ADSP-BF537 Blackfin Processor Hardware Reference 1-29

Development Tools

1-30 ADSP-BF537 Blackfin Processor Hardware Reference

2 CHIP BUS HIERARCHY

This chapter discusses on-chip buses, how data moves through the system,
and other factors that determine the system organization. Following an
overview and a list of key features is a block diagram of the chip bus hier-
archy and a description of its operation. The chapter concludes with
details about the system interconnects and associated system buses.

This chapter provides
e “Chip Bus Hierarchy Overview” on page 2-1

e “Interface Overview” on page 2-2

Chip Bus Hierarchy Overview

The ADSP-BF534, ADSP-BF536, and ADSP-BF537 Blackfin processors
feature a powerful chip bus hierarchy on which all data movement
between the processor core, internal memory, external memory, and its
rich set of peripherals occurs. The chip bus hierarchy includes the control-
lers for system interrupts, test/emulation, and clock and power
management. Synchronous clock domain conversion is provided to sup-
port clock domain transactions between the core and the system.

The processor system includes:

* The peripheral set (timers, real-time clock, CAN, TWI, Ethernet
MAC (ADSP-BF536 and ADSP-BF537), GPIOs, UARTS,
SPORTs, PPI, watchdog timer, and SPI)

e The External Bus Interface Unit (EBIU)

ADSP-BF537 Blackfin Processor Hardware Reference 2-1

Interfface Overview

The Direct Memory Access (DMA) controller

The interfaces between these, the system, and the optional external
(off-chip) resources

The following sections describe the on-chip interfaces between the system
and the peripherals via the:

Peripheral Access Bus (PAB)
DMA Access Bus (DAB)
DMA Core Bus (DCB)
DMA External Bus (DEB)
External Access Bus (EAB)

The External Bus Interface Unit (EBIU) is the primary chip pin bus and is
discussed in Chapter 6, “External Bus Interface Unit”.

Interface Overview

Figure 2-1 shows the core processor and system boundaries as well as the
interfaces between them.

2-2

ADSP-BF537 Blackfin Processor Hardware Reference

Chip Bus Hierarchy

164
SeES: 7 L1 MEMORY
PROCESSOR |, 32 INSTRUCTION
" 4, LOADDATA
CORE CLOCK 1132 TOAD DATA -
F 2l
(CCLK) DOMAIN - - ——— -
SYSTEM CLOCK
(SCLK) DOMAIN DMA
CORE
BUS (DCB)

oma —Fm— || EXTERNAL

E | CONTROLLER 16 16{L ACCESS
u 5 <}ﬁ BUS (EAB)
£3 DMA
ok EXTERNAL
>3| PERIPHERAL BUS (DEB)
>l Access U
BUS (PAB) T o)
>
Q
9 S »
2 = e z 16 EXTERNAL
52 z S € || porr
<F u ® & 161+ BUS (EPB)
I
= =
wilfl U 0 H Il | ——_m——X -
16 EXTERNAL
a1 MEMORY
DEVICES

DMA ACCESS BUS
(DAB)

Figure 2-1. Processor Bus Hierarchy

Internal Clocks

The core processor clock (CCLK) rate is highly programmable with respect
to CLKIN. The cCLK rate is divided down from the Phase Locked Loop
(PLL) output rate. This divider ratio is set using the CSEL parameter of the

PLL divide register.

ADSP-BF537 Blackfin Processor Hardware Reference 2-3

Interfface Overview

The PAB, the DAB, the EAB, the DCB, the DEB, the EPB, and the EBIU
run at system clock frequency (SCLK domain). This divider ratio is set
using the SSEL parameter of the PLL divide register and must be set so that
these buses run as specified in the processor data sheet, and slower than or
equal to the core clock frequency.

These buses can also be cycled at a programmable frequency to reduce
power consumption, or to allow the core processor to run at an optimal
frequency. Note all synchronous peripherals derive their timing from the
SCLK. For example, the UART clock rate is determined by further divid-
ing this clock frequency.

Core Bus Overview

For the purposes of this discussion, level 1 memories (L1) are included in
the description of the core; they have full bandwidth access from the pro-
cessor core with a 64-bit instruction bus and two 32-bit data buses.

Figure 2-2 shows the core processor and its interfaces to the peripherals
and external memory resources.

2-4

ADSP-BF537 Blackfin Processor Hardware Reference

Chip Bus Hierarchy

DSP ID SYSTEM CLOCK
JTAG (8 BITS) AND POWER
MANAGEMENT
r _________________ - - - - - - - - - - - - _I
' |
' |
INT —t : » DEBUG AND JTAG INTERFACE |
|
ACK ~a—}— CORE |
I EVENT
| |contRoLLER |
|
RESET POWER AND
VECTOR -:_—b <> <> cLock I
CONTROLLER | |
|
| PROCESSOR |
|
| | CORETIMER PERFORMANCE
I <= <> MoNITOR :
' |
| o I = =] e - [::] o
[=] [a]
| .] | @ g g < = :
| 32|[32 32|| 32|| 32|| 32 64 CORE |
I \\\ \\\ \\\ \\\ N I~ I
' |
' |
' . |
I 4 I
' |
I MEMORY |
| L1 DATA MANAGEMENT L1 INSTRUCTION
UNIT |
' |
' |
r—_——————__ —_ -l —-——___—_-_ - e—-_T—_—-_- —-_- .- -} —_ —_——- — e - — — —_———
DMA CORE BUS EAB PAB
(DCB)

Figure 2-2. Core Block Diagram
The core can generate up to three simultaneous off-core accesses per cycle.

The core bus structure between the processor and L1 memory runs at the
full core frequency and has data paths up to 64 bits.

When the instruction request is filled, the 64-bit read can contain a single
64-bit instruction or any combination of 16-, 32-, or 64-bit (partial)
instructions.

ADSP-BF537 Blackfin Processor Hardware Reference 2-5

Interfface Overview

When cache is enabled, four 64-bit read requests are issued to support
32-byte line fill burst operations. These requests are pipelined so that each
transfer after the first is filled in a single, consecutive cycle.

Peripheral Access Bus (PAB)

The processor has a dedicated low latency peripheral bus that keeps core
stalls to a minimum and allows for manageable interrupt latencies to
time-critical peripherals. All peripheral resources accessed through the
PAB are mapped into the system MMR space of the processor memory
map. The core accesses system MMR space through the PAB bus.

The core processor has byte addressability, but the programming model is
restricted to only 32-bit (aligned) access to the system MMRs. Byte
accesses to this region are not supported.

PAB Arbitration

The core is the only master on this bus. No arbitration is necessary.

PAB Agents (Masters, Slaves)

The processor core can master bus operations on the PAB. All peripherals
have a peripheral bus slave interface which allows the core to access con-
trol and status state. These registers are mapped into the system MMR
space of the memory map. Appendix B lists system MMR addresses.

The slaves on the PAB bus are:
* System event controller
* Clock and power management controller
* Watchdog timer
e Real-time clock (RTC)

2-6

ADSP-BF537 Blackfin Processor Hardware Reference

Chip Bus Hierarchy

e Timer 0-7
« SPORTO-1
 SPI

* Ports

» UARTO-1
 PPI

e TWI

* CAN

* Ethernet MAC

* Asynchronous memory controller (AMC)
e SDRAM controller (SDC)

e DMA controller

PAB Performance

For the PAB, the primary performance criteria is latency, not throughput.
Transfer latencies for both read and write transfers on the PAB are two
SCLK cycles.

For example, the core can transfer up to 32 bits per access to the PAB
slaves. With the core clock running at 2x the frequency of the system
clock, the first and subsequent system MMR read or write accesses take
four core clocks (CCLK) of latency.

The PAB has a maximum frequency of SCLK.

ADSP-BF537 Blackfin Processor Hardware Reference 2-7

Interfface Overview

DMA Access Bus (DAB), DMA Core Bus (DCB), DMA
External Bus (DEB)

The DAB, DCB, and DEB buses provide a means for DMA-capable
peripherals to gain access to on-chip and off-chip memory with little or no
degradation in core bandwidth to memory.

DAB Arbitration

Sixteen DMA channels and bus masters support the DMA-capable periph-
erals in the processor system. The twelve peripheral DMA channel
controllers can transfer data between peripherals and internal or external
memory. Both the read and write channels of the dual-stream memory
DMA controller access their descriptor lists through the DAB.

The DCB has priority over the core processor on arbitration into L1 con-
figured as data SRAM, whereas the core processor has priority over the
DCB on arbitration into L1 instruction SRAM. For off-chip memory, the
core (by default) has priority over the DEB for accesses to the EPB. The
processor has a programmable priority arbitration policy on the DAB.
Table 2-1 shows the default arbitration priority. In addition, by setting
the CDPRIO bit in the EBIU_AMGCTL register, all DEB transactions to the
EPB have priority over core accesses to external memory. Use of this bit is
application-dependent. For example, if you are polling a peripheral
mapped to asynchronous memory with long access times, by default the
core will “win” over DMA requests. By setting the CDPRIO bit, the core
would be held off until DMA requests were serviced.

2-8 ADSP-BF537 Blackfin Processor Hardware Reference

Chip Bus Hierarchy

Table 2-1. DAB, DCB, and DEB Arbitration Priority

DAB, DCB, DEB Master Default Arbitration Priority

PPI receive/transmit 0 - highest

Ethernet receive 1

Ethernet transmit

SPORTO receive

SPORTO transmit

SPORT1 receive

SPORT1 transmit

SPI receive/transmit

UARTO receive

O | o N[| N[|]

UARTO transmit

UART1 receive

—
(=)

UART1 transmit

—
—

MDMA stream 0 destination

—_
\S]

MDMA stream 0 source

—_
(SN}

MDMA stream 1 destination 14

MDMA stream 1 source 15 - lowest

DAB Bus Agents (Masters)

All peripherals capable of sourcing a DMA access are masters on this bus,
as shown in Table 2-1. A single arbiter supports a programmable priority
arbitration policy for access to the DAB.

When two or more DMA master channels are actively requesting the
DAB, bus utilization is considerably higher due to the DAB’s pipelined
design. Bus arbitration cycles are concurrent with the previous DMA
access’s data cycles.

ADSP-BF537 Blackfin Processor Hardware Reference 2-9

Interfface Overview

DAB, DCB, and DEB Performance

The processor DAB supports data transfers of 16 bits or 32 bits. The data
bus has a 16-bit width with a maximum frequency as specified in the pro-
cessor data sheet.

The DAB has a dedicated port into L1 memory. No stalls occur as long as
the core access and the DMA access are not to the same memory bank (4K
byte size for L1). If there is a conflict when accessing data memory, DMA
is the highest priority requester, followed by the core. If the conflict

occurs when accessing instruction memory, the core is the highest priority

requester, followed by DMA.

Note that a locked transfer by the core processor (for example, execution
of a TESTSET instruction) effectively disables arbitration for the addressed
memory bank or resource until the memory lock is deasserted. DMA con-
trollers cannot perform locked transfers.

DMA access to L1 memory can only be stalled by an access already in
progress from another DMA channel. Latencies caused by these stalls are
in addition to any arbitration latencies.

The core processor and the DAB must arbitrate for access to exter-
nal memory through the EBIU. This additional arbitration latency
added to the latency required to read off-chip memory devices can
significantly degrade DAB throughput, potentially causing periph-
eral data buffers to underflow or overflow. If you use DMA
peripherals other than the memory DMA controller, and you target
external memory for DMA accesses, you need to carefully analyze
your specific traffic patterns. Make sure that isochronous peripher-
als targeting internal memory have enough allocated bandwidth
and the appropriate maximum arbitration latencies.

2-10 ADSP-BF537 Blackfin Processor Hardware Reference

Chip Bus Hierarchy

External Access Bus (EAB)

The EAB provides a way for the processor core to directly access off-chip
memory.

Arbitration of the External Bus

Arbitration for use of external port bus interface resources is required
because of possible contention between the potential masters of this bus. A
fixed-priority arbitration scheme is used. That is, core accesses via the
EAB will be of higher priority than those from the DMA external bus
(DEB).

DEB/EAB Performance

The DEB and the EAB support single word accesses of either 8-bit or
16-bit data types. The DEB and the EAB operate at the same frequency as
the PAB and the DAB, up to the maximum SCLK frequency specified in
the processor data sheet.

Memory DMA transfers can result in repeated accesses to the same mem-
ory location. Because the memory DMA controller has the potential of
simultaneously accessing on-chip and off-chip memory, considerable
throughput can be achieved. The throughput rate for an on-chip/off-chip

memory access is limited by the slower of the two accesses.

In the case where the transfer is from on-chip to on-chip memory or from
off-chip to off-chip memory, the burst accesses cannot occur simultane-
ously. The transfer rate is then determined by adding each transfer plus an
additional cycle between each transfer.

Table 2-2 shows many types of 16-bit memory DMA transfers. In the
table, it is assumed that no other DMA activity is conflicting with ongoing
operations. The numbers in the table are theoretical values. These values

ADSP-BF537 Blackfin Processor Hardware Reference 2-11

Interfface Overview

may be higher when they are measured on actual hardware due to a variety
of reasons relating to the device that is connected to the EBIU.

For non-DMA accesses (for example, a core access via the EAB), a 32-bit
access to SDRAM (of the form RO = [P0]; where PO points to an address
in SDRAM) is always more efficient than executing two 16-bit accesses
(of the form RO = W[P0++]; where PO points to an address in SDRAM). In
this example, a 32-bit SDRAM read takes 10 SCLK cycles while two 16-bit
reads take 9 SCLK cycles each.

Table 2-2. Performance of DMA Access to External Memory

Source Destination Approximate SCLKs For n Words
(from start of DMA to interrupt at
end)

16-bit SDRAM L1 data memory n+ 14

L1 data memory 16-bit SDRAM n+11

16-bit async memory L1 data memory xn + 12, where x is the number of

wait states + setup/hold SCLK cycles

(minimum x = 2)

L1 data memory 16-bit async memory xn + 9, where x is the number of wait
states + setup/hold SCLK cycles (min-
imum x = 2)

16-bit SDRAM 16-bit SDRAM 10 + (17n/7)

16-bit async memory 16-bit async memory 10 + 2xn, where x is the number of
wait states + setup/hold SCLK cycles
(minimum x = 2)

L1 data memory L1 data memory 2n + 12

2-12 ADSP-BF537 Blackfin Processor Hardware Reference

3 MEMORY

This chapter discusses memory population specific to the ADSP-BF534,
ADSP-BF536, and ADSP-BF537 processors. Functional memory archi-
tecture is described in the Blackfin Processor Programming Reference.

This chapter describes

“Memory Architecture” on page 3-1

“L1 Instruction SRAM” on page 3-5
“L1 Data SRAM” on page 3-7

“L1 Data Cache” on page 3-8

“Boot ROM” on page 3-8

“External Memory” on page 3-8
“Processor-Specific MMRs” on page 3-9

Memory Architecture

Figure 3-1 provides an overview of the ADSP-BF534 processor system
memory map. Figure 3-2 shows this information for the ADSP-BF536
processor, and Figure 3-3 for the ADSP-BF537 processor. For a detailed
discussion of how to use them, see Blackfin Processor Programming Refer-
ence. Note the architecture does not define a separate I/O space. All
resources are mapped through the flat 32-bit address space. The memory
is byte-addressable.

ADSP-BF537 Blackfin Processor Hardware Reference 3-1

Memory Architecture

As shown in Table 3-1, the ADSP-BF534, ADSP-BF536, and

ADSP-BF537 processors offer a variety of instruction and data memory
configurations.

Table 3-1. Memory Configurations

Type of Memory ADSP-BFS534 |ADSP-BF536 |ADSP-BF537
Instruction SRAM/Cache, lockable | 16K byte 16K byte 16K byte

by Way or line

Instruction SRAM 48K byte 48K byte 48K byte
Data SRAM/Cache 32K byte 16K byte 32K byte
Data SRAM 32K byte 16K byte 32K byte
Data Scratchpad SRAM 4K byte 4K byte 4K byte

Total 132K byte 100K byte 132K byte

The upper portion of internal memory space is allocated to the core and
system MMRs. Accesses to this area are allowed only when the processor is

in supervisor or emulation mode (see the Operating Modes and States
chapter in Blackfin Processor Programming Reference).

Within the external memory map, four banks of asynchronous memory
space and one bank of SDRAM memory are available. Each of the asyn-
chronous banks is 1M byte and the SDRAM bank is up to 128M byte.

3-2

ADSP-BF537 Blackfin Processor Hardware Reference

Memory

ADSP-BF534 MEMORY MAP

OXFFFF FFFF —» —
CORE MMR REGISTERS (2M BYTE)
O0xFFEO 0000 —»

SYSTEM MMR REGISTERS (2M BYTE)
0xFFCO 0000 —>

0xFFBO 1000 —» RESERVED
OxFFBO 0000 SCRATCHPAD SRAM (4K BYTE)

RESERVED
0xFFA1 4000 —»

INSTRUCTION SRAM/CACHE (16K BYTE)
0xFFA1 0000

RESERVED
0XFFAO C000— | INTERNAL
INSTRUCTION BANK B SRAM (16K BYTE) MEMORY
OXFFAD 8000 —
INSTRUCTION BANK A SRAM (32K BYTE)
0XFFAO 0000
RESERVED
0xFF90 8000 —»
DATA BANK B SRAM/CACHE (16K BYTE)
OXFF90 4000 = BANK B SRAM (16K BYTE)
0xFF90 0000 —
RESERVED
0xFF80 8000 —
DATA BANK A SRAM/CACHE (16K BYTE)
0xFF80 4000 —>

DATA BANK A SRAM (16K BYTE)
0xFF80 0000 > =

\

RESERVED
O0XEF00 0800 —»~
OXEF00 0000 | 200T ROM (2K BYTE)
X RESERVED
0x2040 0000 —»
ASYNC MEMORY BANK 3 (1M BYTE)
0x2030 0000 ——17 L - MEMORY BANK 2 (1M BYTE) — EXTERNAL
0x2020 0000 — MEMORY

ASYNC MEMORY BANK 1 (1M BYTE)
ASYNC MEMORY BANK 0 (1M BYTE)
SDRAM MEMORY (16M BYTE - 128M BYTE)

0x2010 0000 >
0x2000 0000 >
0x0000 0000 >

Figure 3-1. ADSP-BF534 Memory Map

ADSP-BF537 Blackfin Processor Hardware Reference 3-3

Memory Architecture

ADSP-BF536 MEMORY MAP

OXFFFF FFFF —» —
CORE MMR REGISTERS (2M BYTE)
O0XFFEO 0000 —»

SYSTEM MMR REGISTERS (2M BYTE)
0xFFCO 0000 —>

0xFFBO 1000 —» RESERVED
OxFFBO 0000 SCRATCHPAD SRAM (4K BYTE)

RESERVED
0xFFA1 4000 —»

INSTRUCTION SRAM/CACHE (16K BYTE)
0xFFA1 0000 >

0xFFAOQ C000 >
0xFFAOQ 8000 —|
0xFFA 00000
0xFF90 8000 —»
0xFF90 4000 —>
0xFF90 0000 >
0xFF80 8000 >

DATA BANK A SRAM/CACHE (16K BYTE)
0xFF80 4000 >

RESERVED

0xFF80 0000 —» _|
RESERVED
OXEFO00 0800 —»
OXEF00 0000 — | 2O0T FOM (2K BYTE)
* RESERVED
0x2040 0000
0x2030 0000 ASYNC MEMORY BANK 3 (1M BYTE)
X >
ASYNC MEMORY BANK 2 (1M BYTE) | EXTERNAL

0x2020 0000 > MEMORY
X ASYNC MEMORY BANK 1 (1M BYTE)
0x2010 0000 —>

ASYNC MEMORY BANK 0 (1M BYTE)
0x2000 0000 >

SDRAM MEMORY (16M BYTE - 128M BYTE)
0x0000 0000 >

RESERVED INTERNAL
INSTRUCTION BANK B SRAM (16K BYTE) [MEMORY
INSTRUCTION BANK A SRAM (32K BYTE)
RESERVED

DATA BANK B SRAM/CACHE (16K BYTE)
RESERVED

RESERVED

\

Figure 3-2. ADSP-BF536 Memory Map

3-4 ADSP-BF537 Blackfin Processor Hardware Reference

ADSP-BF537 MEMORY MAP

OXFFFF FFFF —»

CORE MMR REGISTERS (2M BYTE)

0xFFEOQ 0000 —>|

SYSTEM MMR REGISTERS (2M BYTE)

0xFFCO 0000 —>
0xFFBO 1000 —»

RESERVED

SCRATCHPAD SRAM (4K BYTE)

0xFFB0 0000 —

RESERVED

0xFFA1 4000 >

INSTRUCTION SRAM/CACHE (16K BYTE)

0xFFA1 0000 —

RESERVED

0xFFAO0 C000 >

INSTRUCTION BANK B SRAM (16K BYTE)

0xFFAO 8000

INSTRUCTION BANK A SRAM (32K BYTE)

0xFFA 00000—>
0xFF90 8000 —»

RESERVED

DATA BANK B SRAM/CACHE (16K BYTE)

0xFF90 4000 —>

DATA BANK B SRAM (16K BYTE)

0xFF90 0000 >

RESERVED

0xFF80 8000 >

DATA BANK A SRAM/CACHE (16K BYTE)

0xFF80 4000 —»
0xFF80 0000 >

DATA BANK A SRAM (16K BYTE)

0xEF00 0800 >

RESERVED

BOOT ROM (2K BYTE)

0xEF00 0000 —>

RESERVED

0x2040 0000 —

ASYNC MEMORY BANK 3 (1M BYTE)

0x2030 0000 >

ASYNC MEMORY BANK 2 (1M BYTE)

0x2020 0000 >

ASYNC MEMORY BANK 1 (1M BYTE)

0x2010 0000 —>

ASYNC MEMORY BANK 0 (1M BYTE)

0x2000 0000 —»

SDRAM MEMORY (16M BYTE - 128M BYTE)

0x0000 0000 —»

Figure 3-3. ADSP-BF537 Memory Map

L1 Instruction SRAM

The processor core reads the instruction memory through the 64-bit wide
instruction fetch bus. All addresses from this bus are 64-bit aligned. Each
instruction fetch can return any combination of 16-, 32- or 64-bit instruc-
tions (for example, four 16-bit instructions, two 16-bit instructions and

one 32-bit instruction, or one 64-bit instruction).

Memory

ADSP-BF537 Blackfin Processor Hardware Reference

3-5

L1 Instruction SRAM

Table 3-2 lists the memory start locations of the L1 instruction memory

subbanks.

Table 3-2. L1 Instruction Memory Subbanks

Memory Subbank Memory Start Location for
ADSP-BF534, ADSP-BF536, ADSP-BF537 Processors
0 0xFFA0 0000
1 0xFFAO0 1000
2 0xFFAO0 2000
3 0xFFAO0 3000
4 0xFFA0 4000
5 0xFFAO0 5000
6 0xFFA0 6000
7 0xFFAO 7000
8 0xFFA0 8000
9 0xFFA0 9000
10 0xFFAO A000
11 0xFFA0 B000
12 0xFFA1 0000
13 0xFFA1 1000
14 0xFFA1 2000
15 0xFFA1 3000

3-6

ADSP-BF537 Blackfin Processor Hardware Reference

L1 Data SRAM

Memory

Table 3-3 shows how the subbank organization is mapped into memory.

Table 3-3. L1 Data Memory SRAM Subbank Start Addresses

Memory Bank and Subbank

ADSP-BF534 and
ADSP-BF537 Processors

ADSP-BF536 Processors

Data Bank A, Subbank 0

0xFF80 0000

Data Bank A, Subbank 1

0xFF80 1000

Data Bank A, Subbank 2

0xFF80 2000

Data Bank A, Subbank 3

0xFF80 3000

Data Bank A, Subbank 4

0xFF80 4000

0xFF80 4000

Data Bank A, Subbank 5

0xFF80 5000

0xFF80 5000

Data Bank A, Subbank 6

0xFF80 6000

0xFF80 6000

Data Bank A, Subbank 7

0xFF80 7000

0xFF80 7000

Data Bank B, Subbank 0

0xFF90 0000

Data Bank B, Subbank 1

0xFF90 1000

Data Bank B, Subbank 2

0xFF90 2000

Data Bank B, Subbank 3

0xFF90 3000

Data Bank B, Subbank 4

0xFF90 4000

0xFF90 4000

Data Bank B, Subbank 5

0xFF90 5000

0xFF90 5000

Data Bank B, Subbank 6

0xFF90 6000

0xFF90 6000

Data Bank B, Subbank 7

0xFF90 7000

0xFF90 7000

ADSP-BF537 Blackfin Processor Hardware Reference

3-7

L1

Data Cache

L1 Data Cache

When data cache is enabled (controlled by bits DMC[1:0] in the
DMEM_CONTROL register), either 16K byte of data bank A or 16K byte of
both data bank A and data bank B can be set to serve as cache. For the
ADSP-BF534 and ADSP-BF537 processors, the upper 16K byte is used.

Boot ROM

The lowest 2K byte of internal memory space is occupied by the boot
ROM starting from address 0xEF00 0000. This 16-bit boot ROM is not
part of the L1 memory module. Read accesses take one SCLK cycle and no
wait states are required. The read-only memory can be read by the core as
well as by DMA. It can be cached and protected by CPLB blocks like
external memory. The boot ROM not only contains boot-strap loader
code, it also provides some subfunctions that are user-callable at runtime.
For more information, see Chapter 19, “System Reset and Booting”.

External Memory

The external memory space is shown in Figure 3-1 on page 3-3. One of
the memory regions is dedicated to SDRAM support. The size of the
SDRAM bank is programmable and can range in size from 16M byte to
128M byte. The start address of the bank is 0x0000 0000.

Each of the next four banks contains 1M byte and is dedicated to support

asynchronous memories. The start address of the asynchronous memory
bank is 0x2000 0000.

3-8

ADSP-BF537 Blackfin Processor Hardware Reference

Memory

Processor-Specific MMRs

The complete set of memory-related MMRs is described in the Blackfin
Processor Programming Reference. Several MMRs have bit definitions spe-
cific to the processors described in this manual. These registers are
described in the following sections.

DMEM_CONTROL Register

The data memory control register (DMEM_CONTROL), shown in Figure 3-4,
contains control bits for the L1 data memory.

ADSP-BF537 Blackfin Processor Hardware Reference 3-9

Processor-Specific MMRs

Data Memory Control Register (DMEM_CONTROL)
31 30 20 28 27 26 25 24 23 22 21 20 19 18 17 16
0xFFEO 0004 |o |o |o |o |o |o |o |o |o |o |o |o |0 |o |o |o | Reset = 0x0000 1001

15 14 13 12 11 10 9

N N 200 N 2 o O CH CH A

PORT_PREF1 (DAG1 Port

Preference) —M8M8 ——

0 - DAG1 non-cacheable fetches
use port A

1 - DAG1 non-cacheable fetches
use port B

PORT_PREFO0 (DAGO Port

Preference) ——M8M8M8

0 - DAGO non-cacheable fetches
use port A

1 - DAGO non-cacheable fetches
use port B

DCBS (L1 Data Cache Bank Select)

L I—ENDCPLB (Data Cacheability
Protection Lookaside Buffer
Enable)
0 - CPLBs disabled. Minimal
address checking only
1 - CPLBs enabled

Valid only when DMC[1:0] = 11. Determines
whether Address bit A[14] or A[23] is used to
select the L1 data cache bank.

0 - Address bit 14 is used to select Bank A or B
for cache access. If bit 14 of address is 1,
select L1 Data Memory Data Bank A; if bit 14
of address is 0, select L1 Data Memory Data
Bank B.

1 - Address bit 23 is used to select Bank A or B for
cache access. If bit 23 of address is 1, select
L1 Data Memory Data Bank A; if bit 23 of
address is 0, select L1 Data Memory Data
Bank B.

L—————DMCJ[1:0] (L1 Data Memory

Configure)

For ADSP-BF534 and ADSP-BF537:

00 - Both data banks are
SRAM, also invalidates all
cache lines if previously
configured as cache

01 - Reserved

10 - Data Bank A is lower
16K byte SRAM, upper
16K byte cache
Data Bank B is SRAM

11 - Both data banks are
lower 16K byte SRAM,
upper 16K byte cache

For ADSP-BF536:

00 - Data Bank A is SRAM,
also invalidates all cache
lines if previously
configured as cache

01 - Reserved

10 - Data Bank A is cache

11 - Both data banks are
lower 16K byte SRAM,
upper 16K byte cache

Figure 3-4. L1 Data Memory Control Register

3-10

ADSP-BF537 Blackfin Processor Hardware Reference

Memory

DTEST_COMMAND Register

When the data test command register (DTEST_COMMAND) is written to, the
L1 cache data or tag arrays are accessed, and the data is transferred
through the data test data registers (DTEST DATAL1:01]). This register is
shown in Figure 3-5.

The data/instruction access bit allows direct access via the
DTEST_COMMAND MMR to L1 instruction SRAM.

Data Test Command Register (DTEST_COMMAND)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
0xFFEO 0300 DX DD P e I Ix Ix x [x [[x] Reset = undefined

Access Wayl/Instruction
Address Bit 11

0 - Access WayO/Instruction bit 1

1=0 Subbank Access[1:0]
1 - Access Way1/Instruction bit 11 = 1 (SRAM ADDR[13:12])
Data/Instruction Access 8(1) - ﬁzgzzz zﬂgggzt (1)
9 - Aocess Data 10 - Access subbank 2
11 - Access subbank 3

1 - Access Instruction
Data Bank Access

0 - Access Data Bank A/Instr Memory OxFFAO 0000
1 - Access Data Bank B/Instr Memory OxFFAQ 8000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
D Dx P e [Pefx e x e gx x|

|] |
Read/Write Access

0 - Read access

Data Cache Select/
Address Bit 14

0 - Reserved/Instruction bit 14 = 0 1 - Write access
1 - Select Data Cache Bank/Instruction bit 14 = 1 Array Access
Set Index[5:0] 0 - Access tag array

Selects one of 64 sets 1- Access data array

Double Word Index[1:0]

Selects one of four 64-bit
double words in a 256-bit line

Figure 3-5. Data Test Command Register

ADSP-BF537 Blackfin Processor Hardware Reference 3-11

Processor-Specific MMRs

3-12 ADSP-BF537 Blackfin Processor Hardware Reference

4 SYSTEM INTERRUPTS

This chapter discusses the System Interrupt Controller (SIC), which is
specific to the ADSP-BF534, ADSP-BF536, ADSP-BF537 derivatives.
While this chapter does refer to features of the Core Event Controller
(CECQ), it does not cover all aspects of it. Refer to Blackfin Processor Pro-
gramming Reference for more information on the CEC.

This chapter describes:
e “Overview” on page 4-1
e “Interfaces” on page 4-2
e “Description of Operation” on page 4-3
* “Programming Model” on page 4-15

e “System Interrupt Controller Registers” on page 4-18

Overview

The processor system has numerous peripherals, which therefore require
many supporting interrupts.

ADSP-BF537 Blackfin Processor Hardware Reference 4-1

Interfaces

Features

The Blackfin architecture provides a two-level interrupt processing
scheme:

* The Core Event Controller (CEC) runs in the ¢CLK clock domain.
It interacts closely with the program sequencer and manages the
Event Vector Table (EVT). The CEC processes not only
core-related interrupts such as exceptions, core errors, and emula-
tion events; it also supports software interrupts.

e The System Interrupt Controller (SIC) runs in the SCLK clock
domain. It masks, groups, and prioritizes interrupt requests sig-

nalled by on-chip or off-chip peripherals and forwards them to the
CEC.

Interfaces

Figure 4-1 provides an overview of how the individual peripheral inter-
rupt request lines connect to the SIC. It also shows how the four interrupt
assignment registers (SIC_IARx) control the assignment to the nine avail-

able peripheral request inputs of the CEC.

The memory-mapped ILAT, IMASK, and IPEND registers are part of
the CEC controller. The interrupt requests sourced by the Ethernet
MAC (MAC) shown in Figure 4-1 are not available on
ADSP-BF534 parts.

4-2 ADSP-BF537 Blackfin Processor Hardware Reference

System Interrupts

N ¥ M N - O
- T T T T v O N ©0 n M N - O
R EEEER] 88 83 03
S8288282¢2 s 2228
| IPEND || |
5 [T T T T T T TT I T T T T 1T
g | IMASK || |
ES
DMA ERROR I T T T T T T T 1 I T T T T 1
DMARO BLOCK DONE | ILAT | | |
DMAR1 BLOCK DONE e
DMARO OVERFLOW [
DMAR1 OVERFLOW PLL WAKEUP O ¥ 522555
H H = x 9 =
CAN STATUS > 0 [FEE 45
MAC STATUS 3 Wy w El
U u 2
SPORT0 ERROR OMAG ';;f 4 1 [8 Ex o
SPORT1 ERROR (PPI) 5 o H
PPI ERROR DMA3 (SPORTO RX) —— H H g 3
SPIERROR DMA4 (SPORTO TX) H H 5 £
UARTO STATUS DMAS (SPORT1 RX) H H @
UART1 STATUS DMAG (SPORT1 RX) ——5 H H
™wi H H
10
DMA7 (SPI) — 13 H H <
DMAS (UARTO RX) H H g
DMA9 (UARTO TX) —12 H H o
DMA10 (UART1 RX) —13 H H 2
DMA11 (UART1 TX) :‘; eHeH2
szl
DMA1 (MAC RX) CANRX 2 H = £
PORTH IRQ A 6] 2] g |]e
CAN TX Ho Ha
17 1 [
18 1 [«
TIMER) —12 H H g
DMA2 (MAC TX) =
PORTH IRQ B TIMER1 H H g
TIMER2 H H
TIMER3 H H
TIMER4 H H
TIMERS — 22 H H
TIMERG H H
TIMER? —2& H H .
PORTF IRQ A 27 0 [g
PORTG IRQ A 28 <
PORTG IRQ B H H o
MDMAQ —22 H H &
MDMAT —2 H H
WATCHDOG 31 0 [
PORTF IRQ B L H " |

Figure 4-1. Interrupt Routing Overview

Description of Operation

The following sections describe the operation of the system interrupts.

ADSP-BF537 Blackfin Processor Hardware Reference 4-3

Description of Operation

Events and Sequencing

The processor employs a two-level event control mechanism. The proces-
sor SIC works with the CEC to prioritize and control all system
interrupts. The SIC provides mapping between the many peripheral inter-
rupt sources and the prioritized general-purpose interrupt inputs of the
core. This mapping is programmable, and individual interrupt sources can

be masked in the SIC.
The CEC of the processor manages five types of activities or events:
e Emulation
* Reset
* Nonmaskable interrupts (NMI)
* Exceptions

* Interrupts

@ Note the word event describes all five types of activities. The CEC
manages fifteen different events in all: emulation, reset, NMI,
exception, and eleven interrupts.

An interrupt is an event that changes the normal processor instruction
flow and is asynchronous to program flow. In contrast, an exception is a
software initiated event whose effects are synchronous to program flow.

The event system is nested and prioritized. Consequently, several service
routines may be active at any time, and a low priority event may be pre-
empted by one of higher priority.

The CEC supports nine general-purpose interrupts (I1VG7 — IVG15) in
addition to the dedicated interrupt and exception events that are described
in Table 4-1. It is common for applications to reserve the lowest or the

4-4 ADSP-BF537 Blackfin Processor Hardware Reference

System Interrupts

two lowest priority interrupts (IVG14 and 1VG15) for software interrupts,
leaving eight or seven prioritized interrupt inputs (IVG7 — 1VG13) for
peripheral purposes. Refer to Table 4-1.

Table 4-1. System and Core Event Mapping

Core events

Event Source Core Event Name
Emulation (highest priority) EMU

Reset RST

NMI NMI

Exception EVX

Reserved -

Hardware error IVHW

Core timer IVITMR

ADSP-BF537 Blackfin Processor Hardware Reference

4-5

Description of Operation

Table 4-1. System and Core Event Mapping (Cont'd)

Event Source Core Event Name

System interrupts PLL wakeup interrupt IvVG7
DMA error (generic)
DMARO block done
DMARTI block done
DMARO overflow
DMARI overflow

CAN error interrupt
MAC error interrupt
PPI error interrupt
SPORTO error interrupt
SPORTT1 error interrupt
SPI error interrupt
UARTO error interrupt
UART1 error interrupt

Real-Time clock interrupts IVGS
DMAO interrupt (PPI)

DMA3 interrupt (SPORTO0 RX) IVG9
DMA4 interrupt (SPORT0 TX)
DMAS5 interrupt (SPORT1 RX)
DMAG interrupt (SPORT1 TX)

4-6 ADSP-BF537 Blackfin Processor Hardware Reference

Table 4-1. System and Core Event Mapping (Cont'd)

System Interrupts

Event Source

Core Event Name

System interrupts, continued

DMA?9 interrupt (UARTO TX)
TWI interrupt

DMAY interrupt (SPI)

DMAS interrupt (UARTO0 RX)
DMAI10 interrupt (UART1 RX)
DMAT11 interrupt (UART1 TX)

IVG10

Port H interrupt A
CAN RX interrupt
CAN TX interrupt
DMAL interrupt (MAC RX)
DMA?2 interrupt (MAC TX)
Port H interrupt B

IVG11

Timer 0 interrupt
Timer 1 interrupt
Timer 2 interrupt
Timer 3 interrupt
Timer 4 interrupt
Timer 5 interrupt
Timer 6 interrupt
Timer 7 interrupt
Port F interrupt A
Port G interrupt A
Port G interrupt B

IVGI12

MDMAO interrupt
MDMALI interrupt
Software watchdog timer
Port F interrupt B

IVG13

Software interrupt 1

IVG14

Software interrupt 2 (lowest priority)

IVG15

Note the system interrupt to core event mappings shown are the
default values at reset and can be changed by software.

ADSP-BF537 Blackfin Processor Hardware Reference

4-7

Description of Operation

System Peripheral Interrupts

To service the rich set of peripherals, the SIC has 32 interrupt request
inputs and 9 interrupt request outputs which go to the CEC. The primary
function of the SIC is to mask, group, and prioritize interrupt requests
and to forward them to the 9 general-purpose interrupt inputs of the CEC
(IVG7—1VG15). Additionally, the SIC controller can enable individual
peripheral interrupts to wake up the processor from Idle or power-down
state.

The nine general-purpose interrupt inputs (IVG7-IVG15) of the core event
controller have fixed priority. The 1VG0 channel has the highest and 1vG15
has the lowest priority. Therefore, the interrupt assignment in the
SIC_IARx registers not only groups peripheral interrupts it also programs
their priority by assigning them to individual IVG channels. However, the
relative priority of peripheral interrupts can be set by mapping the periph-
eral interrupt to the appropriate general-purpose interrupt level in the
core. The mapping is controlled by the system interrupt assignment regis-
ter (SIC_IARX) settings, as detailed in Figure 4-4 on page 4-19, Figure 4-5
on page 4-19, Figure 4-6 on page 4-20, and Figure 4-7 on page 4-20. If
more than one interrupt source is mapped to the same interrupt, they are
logically OR’ed, with no hardware prioritization. Software can prioritize
the interrupt processing as required for a particular system application.

For general-purpose interrupts with multiple peripheral interrupts
assigned to them, take special care to ensure that software correctly
processes all pending interrupts sharing that input. Software is
responsible for prioritizing the shared interrupts.

The core timer has a dedicated input to the CEC controller. Its interrupts
are not routed through the SIC controller at all and always have higher
priority than requests from all other peripherals.

The system interrupt mask register (SIC_IMASK, shown in Figure 4-8 on
page 4-21) allows software to mask any peripheral interrupt source at the
system interrupt controller (SIC) level. This functionality is independent

4-8 ADSP-BF537 Blackfin Processor Hardware Reference

System Interrupts

of whether the particular interrupt is enabled at the peripheral itself. At
reset, the contents of SIC_IMASK are all Os to mask off all peripheral inter-
rupts. Turning off a system interrupt mask and enabling the particular
interrupt is performed by writing a 1 to a bit location in SIC_IMASK.

The SIC includes a read-only system interrupt status register (SIC_ISR)
with individual bits which correspond to one of the peripheral interrupt
sources. See Figure 4-9 on page 4-22. When the SIC detects the interrupt,
the bit is asserted. When the SIC detects that the peripheral interrupt
input has been deasserted, the respective bit in the system interrupt status
register is cleared. Note for some peripherals, such as programmable flag
asynchronous input interrupts, many cycles of latency may pass from the
time an interrupt service routine initiates the clearing of the interrupt
(usually by writing a system MMR) to the time the SIC senses that the
interrupt has been deasserted.

Depending on how interrupt sources map to the general-purpose interrupt
inputs of the core, the interrupt service routine may have to interrogate
multiple interrupt status bits to determine the source of the interrupt.
One of the first instructions executed in an interrupt service routine
should read SIC_ISR to determine whether more than one of the peripher-
als sharing the input has asserted its interrupt output. The service routine
should fully process all pending, shared interrupts before executing the
RTI, which enables further interrupt generation on that interrupt input.

When an interrupt’s service routine is finished, the RTI instruction
clears the appropriate bit in the IPEND register. However, the rele-
vant SIC_ISR bit is not cleared unless the service routine clears the
mechanism that generated the interrupt.

Many systems need relatively few interrupt-enabled peripherals, allowing
each peripheral to map to a unique core priority level. In these designs,
SIC_ISR will seldom, if ever, need to be interrogated.

ADSP-BF537 Blackfin Processor Hardware Reference 4-9

Description of Operation

The SIC_ISR register is not affected by the state of the system interrupt
mask register (SIC_IMASK) and can be read at any time. Writes to the
SIC_ISR register have no effect on its contents.

Peripheral DMA channels are mapped in a fixed manner to the peripheral
interrupt IDs. However, the assignment between peripherals and DMA
channels is freely programmable with the DMAXx_PERIPHERAL_MAP registers.
Table 4-2 and Figure 4-2 show the default DMA assignment. For more
information on DMA, see Chapter 5, “Direct Memory Access”. Once a
peripheral has been assigned to any other DMA channel it uses the new
DMA channel’s interrupt ID regardless of whether DMA is enabled or
not. Therefore, clean DMAXx_PERIPHERAL_MAP management is required even
if the DMA is not used. The default setup should be the best choice for all
non-DMA applications.

The ADSP-BF534 processor does not include the MAC requests shown in
Figure 4-2. However, for code compatibility, all default assignments are

the same as on the ADSP-BF536 and ADSP-BF537 processors.

For dynamic power management, any of the peripherals can be configured
to wake up the core from its idled state to process the interrupt, simply by
enabling the appropriate bit in the system interrupt wakeup-enable regis-
ter (SIC_IWR, refer to Figure 4-10 on page 4-23). If a peripheral interrupt
source is enabled in SIC_IWR and the core is idled, the interrupt causes the
DPMC to initiate the core wakeup sequence in order to process the inter-
rupt. Note this mode of operation may add latency to interrupt
processing, depending on the power control state. For further discussion
of power modes and the idled state of the core, see Chapter 20, “Dynamic
Power Management”.

The SIC_IWR register has no effect unless the core is idled. By default, all
interrupts generate a wakeup request to the core. However, for some
applications it may be desirable to disable this function for some peripher-
als, such as for a SPORTx transmit interrupt. The SIC_IWR register can be

4-10 ADSP-BF537 Blackfin Processor Hardware Reference

System Interrupts

read from or written to at any time. To prevent spurious or lost interrupt
activity, this register should be written to only when all peripheral inter-
rupts are disabled.

The wakeup function is independent of the interrupt mask func-
tion. If an interrupt source is enabled in SIC_IWR but masked off in
SIC_IMASK, the core wakes up if it is idled, but it does not generate
an interrupt.

DMAO_PERIPHERAL_MAP DMAO IRQ
I I N S S A S — — — —

DMA1_PERIPHERAL_MAP DMA1 IRQ

DMA2_PERIPHERAL_MAP DMA2 IRQ
I I N S S A S — — — —

DMA3_PERIPHERAL_MAP DMA3 IRQ
N I N S S A A S - —

DMA4_PERIPHERAL_MAP DMA4 IRQ
I I N S S A S — — — —

DMAS5_PERIPHERAL_MAP DMAS IRQ

DMAG6_PERIPHERAL_MAP DMAG6 IRQ

DMA7_PERIPHERAL_MAP DMA? IRQ
I I N S S A S — — — —

DMAS8_PERIPHERAL_MAP DMAS IRQ

DMA9_PERIPHERAL_MAP DMA9 IRQ
L 1 [[[1 1 1 1 1 |1

DMA10_PERIPHERAL_MAP DMA10 IRQ

DMA11_PERIPHERAL_MAP DMA11 IRQ

3
Q
<
=

SPI

UARTO RX

xX X
F
- g-
=3
o
7]

SPORTO TX
SPORT1 RX
SPORT1 TX
UARTO RX
UART1 RX
UART1 TX

Figure 4-2. Default Peripheral-to-DMA Mapping

ADSP-BF537 Blackfin Processor Hardware Reference 4-11

Description of Operation

Table 4-2 shows the peripheral interrupt events, the default mapping of
each event, the peripheral interrupt ID used in the system interrupt

assignment registers (SIC_IARx), and the core interrupt ID. See

“SIC_IARx Registers” on page 4-19.

Table 4-2. System Interrupt Controller (SIC)

Peripheral Interrupt Default DMA Source Peripheral Default Default Core
Event Mapping Interrupt ID |Mapping Interrupt ID
PLL wakeup 0 IVG7 0
DMA error (generic) 1 IVG7 0
DMARO block interrupt 1 IvG7 0
DMARI1 block interrupt 1 IvVG7 0
DMARQO overflow error 1 IvVG7 0
DMARLI overflow error 1 IVG7 0
CAN error IvG7 0
MAC error! IVG7 0
SPORT 0 error 2 IvVG7 0
SPORT 1 error 2 IvG7 0
PPI error 2 IVG7 0
SPI error 2 IVG7 0
UARTO error 2 IVG7 0
UART1 error 2 IVG7 0
RTC 3 IVGS 1
DMA channel 0 PPI 4 IVGS 1
DMA channel 3 SPORT 0 RX 5 IVGY 2
DMA channel 4 SPORT 0 TX 6 IVG9 2
DMA channel 5 SPORT 1 RX 7 IVG9 2

ADSP-BF537 Blackfin Processor Hardware Reference

System Interrupts

Table 4-2. System Interrupt Controller (SIC) (Cont’d)

Peripheral Interrupt Default DMA Source Peripheral Default Default Core
Event Mapping Interrupt ID |Mapping Interrupt ID
DMA channel 6 SPORT 1 TX 8 IVGY 2

TWI IVG10 9 IVG10 3

DMA channel 7 SPI 10 IVG10 3

DMA channel 8 UARTO0 RX 11 IVG10 3

DMA channel 9 UARTO TX 12 IVG10 3

DMA channel 10 UART1 RX 13 IVG10 3

DMA channel 11 UART1 TX 14 IVG10 3

CAN RX 15 IVG11 4

CAN TX 16 IVG11 4

DMA channel 1! MAC RX 17 IVG11 4

Port H interrupt A 17 IVG11

DMA channel 21 MAC TX 18 IVG11 4

ADSP-BF537 Blackfin Processor Hardware Reference

4-13

Description of Operation

Table 4-2. System Interrupt Controller (SIC) (Cont’d)

Peripheral Interrupt Default DMA Source Peripheral Default Default Core
Event Mapping Interrupt ID |Mapping Interrupt ID
Port H interrupt B 18 IVG11 4
Timer 0 19 IVG12 5
Timer 1 20 IVG12 5
Timer 2 21 IVG12 5
Timer 3 22 IVG12 5
Timer 4 23 IVG12 5
Timer 5 24 IVGI12 5
Timer 6 25 IVG12 5
Timer 7 26 IVG12 5
Port F, G interrupt A 27 IVG12 5
Port G interrupt B 28 IVG12 5
Memory DMA stream 0 29 IVG13 6
Memory DMA stream 1 30 IVG13 6
Software watchdog timer 31 IVG13 6
Port F interrupt B 31 IVG13 6

1 MAC error and DMA requests are not available on the ADSP-BF534. However, the DMA chan-
nels 1 and 2 can be assigned to other peripherals by reprogramming the
DMA1_PERIPHERAL_MAP and DMA2_PERIPHERAL_MAP registers to values different than
the default values.

The peripheral interrupt structure of the processor is flexible. Upon reset,
multiple peripheral interrupts share a single, general-purpose interrupt in
the core by default, as shown in Table 4-2.

An interrupt service routine that supports multiple interrupt sources must
interrogate the appropriate system memory mapped registers (MMRs) to
determine which peripheral generated the interrupt.

4-14 ADSP-BF537 Blackfin Processor Hardware Reference

System Interrupts

Programming Model

The programming model for the system interrupts is described in the fol-
lowing sections.

System Interrupt Initialization

If the default assignments shown in Table 4-2 are acceptable, then inter-
rupt initialization involves only:

* Initialization of the core Event Vector Table (EVT) vector address
entries

* Initialization of the IMASK register

e Unmasking the specific peripheral interrupts in SIC_IMASK that the
system requires

System Interrupt Processing Summary

Referring to Figure 4-3, note when an interrupt (interrupt A) is generated
by an interrupt-enabled peripheral:

1. SIC_ISR logs the request and keeps track of system interrupts that
are asserted but not yet serviced (that is, an interrupt service rou-
tine hasn’t yet cleared the interrupt).

2. SIC_IWR checks to see if it should wake up the core from an idled
state based on this interrupt request.

3. SIC_IMASK masks off or enables interrupts from peripherals at the
system level. If interrupt A is not masked, the request proceeds to

Step 4.

ADSP-BF537 Blackfin Processor Hardware Reference 4-15

Programming Model

4. The SIC_IARx registers, which map the peripheral interrupts to a
smaller set of general-purpose core interrupts (IVG7 - IVG15),
determine the core priority of interrupt A.

5. ILAT adds interrupt A to its log of interrupts latched by the core
but not yet actively being serviced.

6. IMASK masks off or enables events of different core priorities. If the
IVGx event corresponding to interrupt A is not masked, the process

proceeds to Step 7.

7. The event vector table (EVT) is accessed to look up the appropriate
vector for interrupt A’s interrupt service routine (ISR).

8. When the event vector for interrupt A has entered the core pipe-
line, the appropriate IPEND bit is set, which clears the respective
ILAT bit. Thus, IPEND tracks all pending interrupts, as well as those
being presently serviced.

9. When the interrupt service routine (ISR) for interrupt A has been
executed, the RTI instruction clears the appropriate IPEND bit.
However, the relevant SIC_ISR bit is not cleared unless the inter-
rupt service routine clears the mechanism that generated interrupt
A, or if the process of servicing the interrupt clears this bit.

It should be noted that emulation, reset, NMI, and exception events, as
well as hardware error (IVHW) and core timer (IVTMR) interrupt requests,
enter the interrupt processing chain at the ILAT level and are not affected
by the system-level interrupt registers (SIC_IWR, SIC_ISR, SIC_IMASK,
SIC_IARX).

If multiple interrupt sources share a single core interrupt, then the inter-
rupt service routine (ISR) must identify the peripheral that generated the
interrupt. The ISR may then need to interrogate the peripheral to deter-
mine the appropriate action to take.

4-16 ADSP-BF537 Blackfin Processor Hardware Reference

System Interrupts

EMU
RESET
I NMI
| EVX
"INTERRUPT IVTMR
A" | IVHW
() PERIPHERAL |
S INTERRUPT | CORE CORE
REQUESTS SYSTEM ASSIGN CORE INTERRUPT EVENT
INTERRUPT SYSTEM “::> STATUS =X ™ oy VECTOR
MASK PRIORITY (ILAT) IMASK TABLE
(SIC_IMASK) (SIC_IARO..3)| | () (EVT[15:0])
| Jy
|
I
|
SYSTEM SYSTEM | CORE
WAKEUP STATUS PENDING
(SIC_IWR) (SIC_ISR) | (IPEND)
I
|
TO DYNAMIC POWER I
——» MANAGEMENT I
CONTROLLER I
|
SYSTEM INTERRUPT CONTROLLER | CORE EVENT CONTROLLER
|
NOTE: NAMES IN PARENTHESES ARE MEMORY-MAPPED REGISTERS.
Figure 4-3. Interrupt Processing Block Diagram
ADSP-BF537 Blackfin Processor Hardware Reference 4-17

System Interrupt Controller Registers

System Interrupt Controller Registers

The SIC registers are described in the following sections.

These registers can be read from or written to at any time in supervisor
mode. It is advisable, however, to configure them in the reset interrupt
service routine before enabling interrupts. To prevent spurious or lost
interrupt activity, these registers should be written to only when all
peripheral interrupts are disabled.

Table 4-3 defines the value to be written in SIC_IARx to configure a
peripheral for a particular IVG priority.

Table 4-3. IVG Select Definitions

General-Purpose Interrupt |Value in SIC_IAR
IVG7 0
IVGS8 1
IVGY 2
IVG10 3
IVG11 4
IVG12 5
IVG13 6
IVG14 7
IVG15 8

4-18 ADSP-BF537 Blackfin Processor Hardware Reference

System Interrupts

SIC_IARX Registers

System Interrupt Assignment Register 0 (SIC_IARO)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0xFFCO0 0110 |0|0|1 |0|0 |0 |1 |0|0|0 |1 |0|0|0|0|1 IReset=0x22211000

I L I T |
DMA Channel 5 J L DMA Channel 0 (PPI)
(SPORT1 RX) Interrupt Interrupt
DMA Channel 4 DMA Channel 3 (SPORTO
(SPORTO TX) Interrupt ———————— RX) Interrupt

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
[olofoft]ofofofodofofofofofo]o]e]
Il | I

| |
RTC Interrupt 1 L PLL Wakeup Interrupt
CAN Error, Ethernet DMA Error (generic), DMARO
(ADSP-BF536 and Block, DMAR1 Block, DMARO
ADSP-BF537 only) Overflow Error, and DMAR1
Error, SPORTO Error, Overflow Error Interrupt
SPORT1 Error, PPI
Error, SPI Error, UARTO
Error, and UART1 Error

Interrupt

Figure 4-4. System Interrupt Assignment Register 0

System Interrupt Assignment Register 1 (SIC_IAR1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

O0xFFCO 0114 0|1 |0|0 0|0|1 |1 0|0 |1 |1 0|0|1 |1 IReset=0x43333332
| | |
CAN RX Interrupt — L DMA Channel 9 (UARTO TX)
Interrupt
DMA Channel 11
(UART1 TX) Interrupt ﬂ?eﬁrﬁsf"“e' 10 (UART1 RX)
15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
|o|0|1|1 o|o|1|1 o|o|1|1|o|o|1|o|
| | Il
DMA Channel 8
(UARTO RX) Interrupt a';"e’:rﬁ:f""e' 6 (SPORT1 TX)
DM A Channel 7 (SPI) Interrupt ————— TWI Interrupt

Figure 4-5. System Interrupt Assignment Register 1

ADSP-BF537 Blackfin Processor Hardware Reference 4-19

System Interrupt Controller Registers

System Interrupt Assignment Register 2 (SIC_IAR2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0xFFCO0 0118

o|1 |0|1

0 |1 |° |1 Reset = 0x5555 5444

lolfofrfolrlo]

Timer 4 Interrupt — 1

Timer 3 Interrupt

15 14 13 12 11

\— Timer 1 Interrupt

Timer 2 Interrupt

I°l1l°|1I0|1 |°|°I°|1 |°|°I°|1 |0|°I

Timer 0 Interrupt %

DMA Channel 2 (Ethernet
TX on ADSP-BF536 and
ADSP-BF537) Interrupt
and Port H Interrupt B

I— CAN TX Interrupt

DMA Channel 1 (Ethernet
RX on ADSP-BF536 and
ADSP-BF537) Interrupt
and Port H Interrupt A

Figure 4-6. System Interrupt Assignment Register 2

System Interrupt Assignment Register 3 (SIC_IAR3)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0xFFCO 011C

CAENENEN ENENE |°I°|1 [o

0 | 1 | 0 | 1 | Reset = 0x6665 5555

Software Watchdog T|mer
and Port F Interrupt B

DMA Channels 14 and 15
(Memory DMA Stream 1)
Interrupt

15 14 13 12 11

\— Port G Interrupt B

DMA Channels 12 and 13

(Memory DMA Stream 0)
Interrupt

I°|1|°|1I°|

10
1|°|1I°|1 |°|1I°|1|°|1I

Port F, G Interrupt A J—

Timer 7 Interrupt

I—Timer 5 Interrupt

Timer 6 Interrupt

Figure 4-7. System Interrupt Assignment Register 3

4-20 ADSP-BF537 Blackfin Processor Hardware Reference

SIC_IMASK Register

System Interrupt Mask Register (SIC_IMASK)
For all bits, 0 - Interrupt masked, 1 - Interrupt enabled

31 30 29 28 27 26

25 24 23 22 21 20

19 18 17 16

0xFFCO 010C

Software Watchdog
Timer, Port F Inter-
rupt B Interrupt
MDMAT1 Interrupt

MDMADO Interrupt
Port G Interrupt B Interrupt

Port F, G Interrupt A Interrupt
Timer 7 Interrupt
Timer 6 Interrupt

15 14 13 12 11

10

System Interrupts

Io |o |o |o Io |o |o |o Io |o |o |o Io |o |o |o | Reset = 0x0000 0000

L CAN TX Interrupt
DMA1 (MAC RX), Port H
Interrupt A Interrupt

DMA2 (MAC TX), Port H
Interrupt B Interrupt

Timer 0 Interrupt
Timer 1 Interrupt
Timer 2 Interrupt
Timer 3 Interrupt
Timer 4 Interrupt

9 8

7 6

5 4 3 2 1 0

[ofofofofofofofofofofofofofofo]e]

CAN RX Interrupt
DMA11 Interrupt
(UART1 TX)
DMA10 Interrupt
(UART1 RX)
DMAZQ Interrupt
(UARTO TX)
DMAS Interrupt
(UARTO RX)

DMA?7 Interrupt (SPI)

TWI Interrupt

DMAG Interrupt (SPORT1 TX)

Figure 4-8. System Interrupt Mask Register

Timer 5 Interrupt

PLL Interrupt

DMA Error (generic),

DMARX Block Interrupt,
DMARXx Overflow Error
Interrupt

CAN Error, MAC Error,
SPORTX Error, PPI Error,
SPI Error, UARTX Error
Interrupt

RTC Interrupt

DMAO Interrupt (PPI)

DMAS3 Interrupt (SPORTO0 RX)
DMA4 Interrupt (SPORTO TX)
DMAS Interrupt (SPORT1 RX)

ADSP-BF537 Blackfin Processor Hardware Reference

4-21

System Interrupt Controller Registers

SIC_ISR Register

System Interrupt Status Register (SIC_ISR)

For all bits, 0 - Deasserted, 1 - Asserted

31 30 29 28 27 26

25 24 23 22 21 20 19 18 17 16

0xFFCO0 0120

Software Watchdog
Timer, Port F Inter-
rupt B Interrupt
MDMAT1 Interrupt
MDMADO Interrupt

Port G Interrupt B Interrupt
Port F, G Interrupt A Interrupt
Timer 7 Interrupt

Timer 6 Interrupt

15 14 13 12 11

10

9

i

7

4 3 2 1 0

8 5
[ofofofofofofofofofofofoofofo]e]

CAN RX Interruth
DMA11 Interrupt
(UART1 TX)
DMA10 Interrupt
(UART1 RX)

DMAS9 Interrupt
(UARTO TX)
DMAS Interrupt
(UARTO RX)

DMAZ7 Interrupt (SPI)

TWI Interrupt

DMAG Interrupt (SPORT1 TX)

Figure 4-9. System Interrupt Status Register

Io |o |o |o Io |o |o |o Io |o |o |o Io |o |o |o | Reset = 0x0000 0000

CAN TX Interrupt

DMA1 (MAC RX), Port H
Interrupt A Interrupt
DMA2 (MAC TX), Port H
Interrupt B Interrupt
Timer 0 Interrupt

Timer 1 Interrupt
Timer 2 Interrupt
Timer 3 Interrupt
Timer 4 Interrupt
Timer 5 Interrupt

PLL Interrupt

DMA Error (generic),

DMARXx Block Interrupt,
DMARXx Overflow Error
Interrupt

CAN Error, MAC Error,
SPORTX Error, PPI Error,

SPI Error, UARTX Error
Interrupt

RTC Interrupt

DMAO Interrupt (PPI)

DMAS3 Interrupt (SPORTO0 RX)
DMA4 Interrupt (SPORTO TX)
DMAS Interrupt (SPORT1 RX)

4-22

ADSP-BF537 Blackfin Processor Hardware Reference

System Interrupts

SIC_IWR Register

System Interrupt Wakeup-enable Register (SIC_IWR)
For all bits, 0 - Wakeup function not enabled, 1 - Wakeup function enabled

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

OXFFCO 0124 |1 |1 |1 |1 |1 |1 |1 |1 |1 |1 |1 |1 |1 |1 |1 |1 I Reset = OxFFFF FFFF
Software Watchdog L CAN TX Wakeup
Timer, Port F Inter- —— DMA1 (MAC RX), Port H
rupt B Wakeup Interrupt A Wakeup
MDMA1 Wakeup — DMA2 (MAC TX), Port H
MDMAO Wakeup ——— Interrupt B Wakeup
Port G Interrupt B Wakeup Timer 0 Wakeup
Port F, G Interrupt A Wakeup L Timer 1 Wakeup
T!mer 7 Wakeup L Timer 2 Wakeup
Timer 6 Wakeup Timer 3 Wakeup

Timer 4 Wakeup

Timer 5 Wakeup

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
I ENENEN (NENENEN CNENENEN NENENEN

CAN RX Wakeup PLL Wakeup
DMA11 Wakeup DMA Error (generic),
(UART1 TX) —— DMARX Block Interrupt,

DMA10 Wakeup DMARx Overflow Error

(UARTTRX) — | Wakeup
L———— CAN Error, MAC Error,

RJNLAR%XV-?;?UP SPORTXx Error, PPI Error,
SPI Error, UARTXx Error

DMA8 Wakeup Wakeup

(UARTO RX) RTC Wakeu

DMA7 Wakeup (SPI) P

TWI Wakeup DMAO Wakeup (PPI)

DMA3 Wakeup (SPORTO RX)
DMA4 Wakeup (SPORTO TX)
DMA5 Wakeup (SPORT1 RX)

DMA6 Wakeup (SPORT1 TX)

Figure 4-10. System Interrupt Wakeup-enable Register

ADSP-BF537 Blackfin Processor Hardware Reference 4-23

System Interrupt Controller Registers

4-24 ADSP-BF537 Blackfin Processor Hardware Reference

5 DIRECT MEMORY ACCESS

This chapter describes the Direct Memory Access (DMA) controller. Fol-
lowing an overview and list of key features is a description of operation
and functional modes of operation. The chapter concludes with a pro-
gramming model, consolidated register definitions, and programming
examples.

This chapter describes the features common to all the DMA channels, as
well as how DMA operations are set up. For specific peripheral features,
see the appropriate peripheral chapter for additional information. Perfor-
mance and bus arbitration for DMA operations can be found in “DAB,
DCB, and DEB Performance” on page 2-10.

This chapter contains:
e “Overview and Features” on page 5-2
* “DMA Controller Overview” on page 5-5
e “Modes of Operation” on page 5-12
* “Functional Description” on page 5-20
e “Programming Model” on page 5-55
* “DMA Registers” on page 5-67

* “Programming Examples” on page 5-108

ADSP-BF537 Blackfin Processor Hardware Reference 5-1

Overview and Features

Overview and Features

The processor uses DMA to transfer data between memory spaces or
between a memory space and a peripheral. The processor can specify data

transfer operations and return to normal processing while the fully inte-
grated DMA controller carries out the data transfers independent of
processor activity.

The DMA controller can perform several types of data transfers:

Peripheral DMA transfers data between memory and on-chip
peripherals. The processor has 12 peripheral DMA channels that
support 7 peripherals.

e Ethernet MAC (dedicated DMA channel for transmit and
receive. The Ethernet MAC is not available on
ADSP-BF534 processors)

¢ SPORTO and SPORT1 (dedicated DMA channel for trans-

mit and receive)

e UARTO0 and UART1 (dedicated DMA channel for transmit

and receive)
e PPI (transmit and receive share one DMA channel)
e SPI (transmit and receive share one DMA channel)

Memory DMA (MDMA) transfers data between memory and
memory. The processor has two MDMA modules, each consisting
of independent memory read and memory write channels.

Handshaking Memory DMA (HMDMA) transfers data between
off-chip peripherals and memory. This enhancement of the
MDMA channels enables external hardware to control the timing
of individual data transfers or block transfers.

5-2

ADSP-BF537 Blackfin Processor Hardware Reference

Direct Memory Access

All DMAs can transport data to and from on-chip and off-chip memories,
including L1, boot ROM, and SDRAM. The L1 scratchpad memory can-
not be accessed by DMA.

DMA transfers on the processor can be descriptor-based or register-based.
Register-based DMA allows the processor to directly program DMA con-
trol registers to initiate a DMA transfer. On completion, the control
registers may be automatically updated with their original setup values for
continuous transfer, if needed. Descriptor-based DMA transfers require a
set of parameters stored within memory to initiate a DMA sequence. This
sort of transfer allows the chaining together of multiple DMA sequences.
In descriptor-based DMA operations, a DMA channel can be pro-
grammed to automatically set up and start another DMA transfer after the
current sequence completes.

Examples of DMA styles supported by flex descriptors include:
* Asingle linear buffer that stops on completion (FLOW = stop mode)

* A linear buffer with strides equal 1 or greater, zero or negative
(DMAX_X_MODIFY register)

* A circular, auto-refreshing buffer that interrupts on each full buffer

* A similar buffer that interrupts on fractional buffers (for example,

1/2, 1/4) 2D DMA)

e 1D DMA, using a set of identical ping-pong buffers defined by a
linked ring of 3-word descriptors, each containing { link pointer,

32-bit address }

e 1D DMA, using a linked list of 5-word descriptors containing
{ link pointer, 32-bit address, length, config } (ADSP-2191 proces-
sor style)

ADSP-BF537 Blackfin Processor Hardware Reference 5-3

Overview and Features

2D DMA, using an array of 1-word descriptors, specifying only the
base DMA address within a common data page

2D DMA, using a linked list of 9-word descriptors, specifying
everything

The following 16 functions can be served by DMA channels:

PPI receive/transmit

Ethernet receive (not present on ADSP-BF534 processors)
Ethernet transmit (not present on ADSP-BF534 processors)
SPORTO receive

SPORTO transmit

SPORTT receive

SPORTT1 transmit

SPI receive/transmit

UARTO receive

UARTO transmit

UARTT1 receive

UART1 transmit

MDMAO destination

MDMADO source

MDMAI1 destination

MDMAT1 source

5-4

ADSP-BF537 Blackfin Processor Hardware Reference

Direct Memory Access

DMA Controller Overview

Figure 5-1 provides a block diagram of the DMA controller.

CCLK :SCLK DMARO DMAR1 A

DMA TRAFFIC CONTROL |<

\/

AN

» IRQ1

- I —9
| woma 0 source controL Ig
FIFO y

—
| HMDMA 0 E:I MDMA 0 DESTINATION CONTROL g

-t

« | MDMA 1 SOURCE CONTROL
FIFO \A

|HMDMA1 E | MDMA 1 DESTINATION CONTROL Ig > IRQ 30

T
|
1 /\
|
|

Y

IRQ 29

g
[

|

N
. <::~> B == DMA 11 CONTROL = > IRQ 14
| |
i | Pmap I:' DMA 10 CONTROL Ig —t—» RQ13
| |
| B = DMA 9 CONTROL Ig —— IRQ 12
I —I F:MAPI I:' DMA 8 CONTROL Ig —t— IrRQ 11
| |
I k= Fro |5 Lemar DMA 7 CONTROL = T IRQ 10
| |
I (k= rro 5[] pwae |I| DMA 6 CONTROL @ —— IRQ8
: DWIZ:E] e || DMA 5 CONTROL = > ra7
o . —
c—d-k—:zm B == DMA 4 CONTROL &I Rae
N - | |
(_u.lﬁm B == DMA 3 CONTROL = —*— IRQ5
N - | |
é“ﬁm B == DMA 2 CONTROL Ig —*— IRQ 18
i] F:MAPI I:' DMA 1 CONTROL Ig ——> IRQ 17
| |
:] PMAPA I:' DMA 0 CONTROL Ig —— IRQ4
|
‘\::16 I 1l 1e :;:16 %12 ‘|’3x12 —V 16
DCB DEB DAB DGT DRQ PAB

Figure 5-1. DMA Controller Block Diagram

ADSP-BF537 Blackfin Processor Hardware Reference 5-5

DMA Controller Overview

External Interfaces

The DMA does not connect external memories and devices directly.
Rather, data is passed through the EBIU port. Any kind of device that is
supported by the EBIU can also be accessed by peripheral DMA or mem-
ory DMA operation. This is typically flash memory, SRAM, SDRAM,

FIFOs, or memory-mapped peripheral devices.

Handshaking MDMA operation is supported by two MDMA request
input pins, DMARO and DMARL. The DMARO pin controls transfer timing on
the MDMAUO destination channel. The DMAR] pin controls the destination
channel of MDMA1. With these pins, external FIFO devices, ADC or
DAC converters, or other streaming or block-processing devices can use
the MDMA channels to exchange their data or data buffers with the
Blackfin processor memory.

Both DMARx pins reside on port F and compete with UARTO signals. To
enable their function, set the PFDE bit in the PORT_MUX register and the PFO
and/or PF1 bits in the PORTF_FER register. The REP bit in the respective
HMDMAX_CONTROL register controls whether the DMARX inputs trigger on fall-
ing or rising edges of the connect strobe.

Internal Interfaces

Figure 2-1 on page 2-3 of the “Chip Bus Hierarchy” chapter shows the
dedicated DMA buses used by the DMA controller to interconnect L1
memory, the on-chip peripherals, and the EBIU port.

The 16-bit DMA Core Bus (DCB) connects the DMA controller to a ded-
icated port of L1 memory. L1 memory has dedicated DMA ports featuring
special DMA butffers to decouple DMA operation. See Blackfin Processor
Programming Reference for a description of the L1 memory architecture.
The DCB bus operates at core clock (CCLK) frequency. It is the DMA con-
troller’s responsibility to translate DCB transfers to the system clock
(scLK) domain.

5-6 ADSP-BF537 Blackfin Processor Hardware Reference

Direct Memory Access

The 16-bit DMA Access Bus (DAB) connects the DMA controller to the
on-chip peripherals, PPI, SPI, Ethernet MAC, the SPORTS, and the
UARTS. It operates at SCLK frequency.

The 16-bit DMA External Bus (DEB) connects the DMA controller to
the EBIU port. This path is used for all peripheral and memory DMA
transfers to and from external memories and devices. It operates at SCLK
frequency.

Transferred data can be 8, 16, or 32 bits wide. The DMA controller, how-
ever, connects only to 16-bit buses.

Memory DMA can pass data every SCLK cycle between L1 memory and the
EBIU. Transfers from L1 memory to L1 memory requires 2 cycles, as the
DCB bus is used for both source and destination transfer. Similarly, trans-
fers between two off-chip devices require EBIU and DEB resources twice.
Peripheral DMA transfers can be performed every other SCLK cycle.

For more details on DMA performance see “DMA Performance” on

page 5-44.

Peripheral DMA

As can be seen in Figure 5-1, the DMA controller features 12 channels
that perform transfers between peripherals and on-chip or off-chip memo-
ries. The user has full control over the mapping of DMA channels and
peripherals. The default configuration shown in Table 5-1 can be changed
by altering the 4-bit PMAP field in the DMAX_PERIPHERAL_MAP registers for
the peripheral DMA channels.

ADSP-BF537 Blackfin Processor Hardware Reference 5-7

DMA Controller Overview

Table 5-1. Default Mapping of Peripheral to DMA

DMA Channel |PMAP Default Value Peripheral Mapped by Default
DMAO 0x0 PPI receive or transmit
DMA 1 0x1 Ethernet MAC receive
DMA 2 0x2 Ethernet MAC transmit
DMA 3 0x3 SPORTO receive

DMA 4 0x4 SPORTO transmit
DMA 5 0x5 SPORTT1 receive

DMA 6 0x6 SPORT1 transmit
DMA 7 0x7 SPI

DMA 8 0x8 UARTO receive

DMA 9 0x9 UARTO transmit

DMA 10 0xA UART1 receive

DMA 11 0xB UART]1 transmit

The default configuration works in most cases, but there are some cases
where remapping the assignment can be helpful, because of the DMA
channel priorities. When competing for any of the system buses, DMAO
has higher priority than DMA1, and so on. DMA 11 has the lowest prior-
ity of the peripheral DMA channels.

Although ADSP-BF534 processors do not feature the Ethernet MAC
module, DMA 1 and DMA 2 channels are still present and can be used for
other purposes. Attention is required as their default PMAP setting is
invalid on ADSP-BF534 devices.

Note a 1:1 mapping should exist between DMA channels and
peripherals. The user is responsible for ensuring that multiple
DMA channels are not mapped to the same peripheral and that
multiple peripherals are not mapped to the same DMA port. If
multiple channels are mapped to the same peripheral, only one
channel is connected (the lowest priority channel). If a nonexistent

5-8 ADSP-BF537 Blackfin Processor Hardware Reference

Direct Memory Access

peripheral (for example, OxF in the PMAP field) is mapped to a
channel, that channel is disabled—DMA requests are ignored, and
no DMA grants are issued. The DMA requests are also not for-
warded from the peripheral to the interrupt controller.

The twelve peripheral DMA channels work completely independently
from each other. The transfer timing is controlled by the mapped
peripheral.

Every DMA channel features its own 4-depth FIFO that decouples DAB
activity from DCB and DEB availability. DMA interrupt and descriptor
fetch timing is aligned with the memory-side (DCB/DEB side) of the
FIFO. The user does, however, have an option to align interrupts with the
peripheral side (DAB side) of the FIFO for transmit operations. Refer to
the SYNC bit in the DMAX_CONFIG register for details.

Memory DMA

This section describes the two MDMA controllers, which provide mem-
ory-to-memory DMA transfers among the various memory spaces. These
include L1 memory and external synchronous/asynchronous memories.

Each MDMA controller contains a DMA FIFO, an 8-word by 16-bit
FIFO block used to transfer data to and from either L1 or the DCB and
DEB buses. Typically, it is used to transfer data between external memory
and internal memory. It will also support DMA from boot ROM on the
DEB bus. The FIFO can be used to hold DMA data transferred between

two L1 memory locations or between two external memory locations.
Each MDMA controller provides two DMA channels:
* A source channel (for reading from memory)

* A destination channel (for writing to memory)

ADSP-BF537 Blackfin Processor Hardware Reference 5-9

DMA Controller Overview

A memory-to-memory transfer always requires the source and the destina-
tion channel to be enabled. Each source/destination channel pair forms a
“stream,” and these two streams are hardwired for DMA priorities 12

through 15.
e Priority 12: MDMAO destination
* Priority 13: MDMAO source
e Priority 14: MDMALI destination
e Priority 15: MDMALI source
MDMAQO takes precedence over MDMAL1, unless round robin scheduling

is used or priorities become urgent as programmed by the DRQ bit field in
the HMDMA_CONTROL register. Note it is illegal to program a source channel
for memory write or a destination channel for memory read.

The channels support 8-, 16-, and 32-bit memory DMA transfers, but
both ends of the MDMA connect to 16-bit buses. Source and destination
channel must be programmed to the same word size. In other words, the
MDMA transfer does not perform packing or unpacking of data; each
read results in one write. Both ends of the MDMA FIFO for a given
stream are granted priority at the same time. Each pair shares an
8-word-deep 16-bit FIFO. The source DMA engine fills the FIFO, while
the destination DMA engine empties it. The FIFO depth allows the burst
transfers of the External Access Bus (EAB) and DMA Access Bus (DAB) to
overlap, significantly improving throughput on block transfers between
internal and external memory. Two separate descriptor blocks are required
to supply the operating parameters for each MDMA pair, one for the
source channel and one for the destination channel.

Because the source and destination DMA engines share a single FIFO buf-
fer, the descriptor blocks must be configured to have the same data size. It
is possible to have a different mix of descriptors on both ends as long as
the total transfer count is the same.

5-10 ADSP-BF537 Blackfin Processor Hardware Reference

Direct Memory Access

To start an MDMA transfer operation, the MMRs for the source and des-

tination channels are written, each in a manner similar to peripheral

DMA.

Note the DMAx_CONFIG register for the source channel must be writ-
ten before the DMAXx_CONFIG register for the destination channel.

Handshaked Memory DMA Mode
Handshaked operation applies only to memory DMA channels.

Normally, memory DMA transfers are performed at maximum speed.
Once started, data is transferred in a continuous manner until either the
data count expires or the MDMA is stopped. In handshake mode, the
MDMA does not transfer data automatically when enabled; it waits for an
external trigger on the MDMA request input signals. The DMARO input
is associated with MDMAO and the DMARI input with MDMA1. Once
a trigger event is detected, a programmable portion of data is transferred
and then the MDMA stalls again and waits for the next trigger.

Handshake operation is not only useful to control the timing of mem-
ory-to-memory transfers, it also enables the MDMA to operate with
asynchronous FIFO-style devices connected to the EBIU port. The Black-
fin processor acknowledges a DMA request by a proper number of read or
write operations. It is up to the device connected to any of the MSx strobes
to deassert or pulse the request signal and to decrement the number of
pending requests accordingly.

Depending on HMDMA operating mode, an external DMA request may
trigger individual data word transfers or block transfers. A block can con-
sist of up to 65535 data words. For best throughput, DMA requests can
be pipelined. The HMDMA controllers feature a request counter to
decouple request timing from the data transfers.

See “Handshaked Memory DMA Operation” on page 5-39 for a func-
tional description.

ADSP-BF537 Blackfin Processor Hardware Reference 5-11

Modes of Operation

Modes of Operation

The following sections describe the DMA operation.

Register-Based DMA Operation

Register-based DMA is the traditional kind of DMA operation. Software
writes source or destination address and length of the data to be trans-
ferred into memory-mapped registers and then starts DMA operation.

For basic operation, the software performs these steps:

Write the source or destination address to the 32-bit
DMAXx_START_ADDR I‘egiStCI‘.

Write the number of data words to be transferred to the 16-bit
DMAX_X_COUNT register.

Werite the address modifier to the 16-bit DMAXx_X_MODIFY register.
This is the two’s-complement value added to the address pointer
after every transfer. This value must always be initialized as there is
no default value. Typically, this register is set to 0x0004 for 32-bit
DMA transfers, to 0x0002 for 16-bit transfers, and to 0x0001 for
byte transfers.

Werite the operation mode to the DMAx_CONFIG register. These bits
in particular need to be changed as needed:

e The DMAEN bit enables the DMA channel.
¢ The WNR bit controls the DMA direction. DMAs that read

from memory keep this bit cleared, for example, transmit-
ting peripheral DMAs and the source channel of memory
DMAs. Receiving DMAs and the destination for memory
DMAs set this bit, because they write to memory.

ADSP-BF537 Blackfin Processor Hardware Reference

Direct Memory Access

¢ The WDSIZE bit controls the data word width for the trans-
fer. It can be 8, 16, or 32 bits wide.

* The DI_EN bit enables an interrupt when the DMA opera-
tion has finished.

* Set the FLOW field to 0x0 for stop mode or 0x1 for autobuffer
mode.

Once the DMAEN bit is set, the DMA channel starts its operation. While
running the DMAx_CURR_ADDR and the DMAXx_CURR_X_COUNT registers can be
monitored to determine the current progress of the DMA operation.

The DMAX_IRQ_STATUS register signals whether the DMA has finished
(DMA_DONE bit), whether a DMA error has occurred (DMA_ERR bit), and
whether the DMA is currently running (DMA_RUN bit). The DMA_DONE and
the DMA_ERR bits also function as interrupt latch bits. They must be cleared
by write-one-to-clear (W1C) operations by the interrupt service routine.

Stop Mode

In stop mode, the DMA operation is executed only once. If started, the
DMA channel transfers the desired number of data words and stops itself
again when finished. If the DMA channel is no longer used, software
should clear the DMAEN enable bit to disable a paused channel. Stop mode
is entered if the FLOW bit field in the DMA channel’s DMAXx_CONFIG register
is 0. The NDSIZE field must always be 0 in this mode.

For receive (memory write) operation, the DMA_RUN bit functions almost
the same as the inverted DMA_DONE bit. For transmit (memory read) opera-
tion, however, the two bits have different timing. Refer to the description
of the SYNC bit for details.

ADSP-BF537 Blackfin Processor Hardware Reference 5-13

Modes of Operation

Avutobuffer Mode

In autobuffer mode, the DMA operates repeatedly in a circular manner. If
all data words have been transferred, the address pointer DMAx_CURR_ADDR

is reloaded automatically by the DMAx_START_ADDR value. An interrupt may
also be generated.

Autobuffer mode is entered if the FLOW field in the DMAX_CONFIG register
is 1. The NDSIZE bit must be 0 in autobuffer mode.

Two-Dimensional DMA Operation

Register-based and descriptor-based DMA can operate in one-dimensional
mode or two-dimensional mode.

In two-dimensional (2D) mode the DMAX_X_COUNT register is accompanied
by the DMAX_Y_COUNT register, supporting arbitrary row and column sizes
up to 64 K x 64 K elements, as well as arbitrary DMAx_X_MODIFY and
DMAX_Y_MODIFY values up to +32 K bytes. Furthermore, DMAx_Y_MODIFY
can be negative, allowing implementation of interleaved datastreams. The
DMAx_X_COUNT and DMAx_Y_COUNT values specify the row and column
sizes, where DMAx_X_COUNT must be 2 or greater.

The start address and modify values are in bytes, and they must be aligned
to a multiple of the DMA transfer word size (WDSIZE[1:0] in
DMAX_CONFIG). Misalignment causes a DMA error.

The DMAX_X_MODIFY value is the byte-address increment that is applied
after each transfer that decrements the DMAx_CURR_X_COUNT register. The
DMAx_X_MODIFY value is not applied when the inner loop count is ended by
decrementing DMAx_CURR_X_COUNT from 1 to 0, except that it is applied on
the final transfer when DMAx_CURR_Y_COUNT is 1 and DMAx_CURR_X_COUNT
decrements from 1 to 0.

5-14 ADSP-BF537 Blackfin Processor Hardware Reference

Direct Memory Access

The DMAx_Y_MODIFY value is the byte-address increment that is applied
after each decrement of DMAx_CURR_Y_COUNT. However, the
DMAx_Y_MODIFY value is not applied to the last item in the array on
which the outer loop count (DMAx_CURR_Y_COUNT) also expires by decre-
menting from 1 to 0.

After the last transfer completes, DMAx_CURR_Y_COUNT = 1,
DMAx_CURR_X_COUNT = 0, and DMAx_CURR_ADDR is equal to the last item’s
address plus DMAx_x_MODIFY. Note if the DMA channel is programmed
to refresh automatically (autobuffer mode), then these registers will be
loaded from DMAx_X_COUNT, DMAx_Y_COUNT, and DMAx_START_ADDR
upon the first data transfer.

The DI_SEL configuration bit enables DMA interrupt requests every time
the inner loop rolls over. If DI_SEL is cleared, but DI_EN is still set, only
one interrupt is generated after the outer loop completes.

Examples of Two-Dimensional DMA

Example 1: Retrieve a 16 x 8 block of bytes from a video frame buffer of
size (N x M) pixels:

DMAX_X_MODIFY =1

DMAx_X_COUNT = 16

DMAx_Y_MODIFY = N-15 (offset from the end of one row to the
start of another)

DMAX_Y_COUNT = 8

This produces the following address offsets from the start address:

0,1,2,...15,

NN+ 1, o000 N+ 15,
2N, 2N+ 1,... 2N + 15,
IN, 7N+ 1,... 7N + 15,

ADSP-BF537 Blackfin Processor Hardware Reference 5-15

Modes of Operation

Example 2: Receive a video datastream of bytes,

(R,G,B pixels) x (N x M image size):

DMAX_X_MODIFY = (N * M)

DMAx_X_COUNT = 3

DMAX_Y_MODIFY =1 - 2(N * M) (negative)
DMAX_Y_COUNT = (N * M)

This produces the following address offsets from the start address:

0, (N* M), 2(N * M),
I, (N*M) + 1, 2(N*M) +1,
2, (N* M)+ 2, 2(N * M) + 2,

(N*M) -1, 2(N*M) -1, 3(N*M) -1,

Descriptor-Based DMA Operation

In descriptor-based DMA operation, software does not set up DMA
sequences by writing directly into DMA controller registers. Rather, soft-
ware keeps DMA configurations, called descriptors, in memory. On
demand, the DMA controller loads the descriptor from memory and over-
writes the affected DMA registers by its own control. Descriptors can be
fetched from L1 memory using the DCB bus or from external memory

using the DEB bus.

A descriptor describes what kind of operation should be performed next
by the DMA channel. This includes the DMA configuration word as well
as data source/destination address, transfer count, and address modify val-
ues. A DMA sequence controlled by one descriptor is called a work unit.

Optionally, an interrupt can be requested at the end of any work unit by
setting the DI_EN bit in the configuration word of the respective
descriptor.

5-16 ADSP-BF537 Blackfin Processor Hardware Reference

Direct Memory Access

A DMA channel is started in descriptor-based mode by first writing the
32-bit address of the first descriptor into the DMAXx_NEXT_DESC_PTR register
(or the DMAX_CURR_DESC_PTR in case of descriptor array mode) and then
performing a write to the configuration register DMAx_CONFIG that sets the
FLOW field to either 0x04, 0x6, or 0x7 and enables the DMAEN bit. This causes
the DMA controller to immediately fetch the descriptor from the address
pointed to by the DMAX_NEXT_DESC_PTR register. The fetch overwrites the
DMAX_CONFIG register again. If the DMAEN bit is still set, the channel starts
DMA processing.

The DFETCH bit in the DMAx_IRQ_STATUS register tells whether a descriptor
fetch is ongoing on the respective DMA channel, whereas the
DMAX_CURR_DESC_PTR points to the descriptor value that is to be fetched
next.

Descriptor List Mode

Descriptor list mode is selected by setting the FLOW bit field in the DMA
channel’s DMAX_CONFIG register to either 0x6 (small descriptor mode) or
0x7 (large descriptor mode). In this mode multiple descriptors form a
chained list. Every descriptor contains a pointer to the next descriptor.
When the descriptor is fetched, this pointer value is loaded into the
DMAX_NEXT_DESC_PTR register of the DMA channel. In large descriptor
mode this pointer is 32 bits wide. Therefore, the next descriptor may
reside in any address space accessible through the DCB and DEB buses. In
small descriptor mode this pointer is just 16 bits wide. For this reason, the
next descriptor must reside in the same 64 KB address space as the first
one, because the upper 16 bits of the DMAX_NEXT_DESC_PTR register are not
updated.

Descriptor list modes are started by writing first to the
DMAX_NEXT_DESC_PTR register and then to the DMAx_CONFIG register.

ADSP-BF537 Blackfin Processor Hardware Reference 5-17

Modes of Operation

Descriptor Array Mode

Descriptor array mode is selected by setting the FLOW bit field in the DMA
channel’s DMAX_CONFIG register to Ox4. In this mode, the descriptors do
not contain further descriptor pointers. The initial DMAx_CURR_DESC_PTR
value is written by software. It points to an array of descriptors. The indi-
vidual descriptors are assumed to reside next to each other and, therefore,
their address is known.

Variable Descriptor Size

In any descriptor-based mode the NDSIZE field in the configuration word
specifies how many 16-bit words of the next descriptor need to be loaded
on the next fetch. In descriptor-based operation, NDSIZE must be
non-zero. The descriptor size can be any value from 1 entry (the lower 16
bits of DMAXx_START_ADDR only) to 9 entries (all the DMA parameters).
Table 5-2 illustrates how a descriptor must be structured in memory. The
values have the same order as the corresponding MMR addresses.

If, for example, a descriptor is fetched in array mode with NDSIZE = 0x5,
the DMA controller fetches the 32-bit start address, the DMA configura-
tion word and the XCNT and XMOD values. However, it does not load YCNT
and YMOD. This might be the case if the DMA operates in one-dimensional
mode or if the DMA is in two-dimensional mode, but the YCNT and YMOD
values do not need to change.

All the other registers not loaded from the descriptor retain their prior val-
ues, although the DMAXx_CURR_ADDR, DMAX_CURR_X_COUNT, and
DMAX_CURR_Y_COUNT registers are reloaded between the descriptor fetch and
the start of DMA operation.

5-18 ADSP-BF537 Blackfin Processor Hardware Reference

Direct Memory Access

Table 5-2 shows the offsets for descriptor elements in the three modes
described above. Note the names in the table describe the descriptor ele-
ments in memory, not the actual MMRs into which they are eventually
loaded. For more information regarding descriptor element acronyms, see

Table 5-6 on page 5-68.

Table 5-2. Parameter Registers and Descriptor Offsets

Descriptor Descriptor Array Small Descriptor List |Large Descriptor List
Offset Mode Mode Mode

0x0 SAL NDPL NDPL
0x2 SAH SAL NDPH
0x4 DMACFG SAH SAL

0x6 XCNT DMACFG SAH

0x8 XMOD XCNT DMACFG
0xA YCNT XMOD XCNT
0xC YMOD YCNT XMOD
0xE YMOD YCNT
0x10 YMOD

Note that every descriptor fetch steals bandwidth from either the DCB
bus or DEB bus and the external memory interface, so it is best to keep
the size of descriptors as small as possible.

Mixing Flow Modes

The FLOW mode is not a global setting. If the DMA configuration word is
reloaded with a descriptor fetch, the FLOW and NDSIZE bit fields can also be
altered. A small descriptor might be used to loop back to the first descrip-
tor if a descriptor array is used in an endless manner. If the descriptor
chain is not endless and the DMA is required to stop after a certain
descriptor has been processed, the last descriptor is typically processed in
stop mode, that is, FLOW and NDSIZE fields are O but the DMAEN bit is set.

ADSP-BF537 Blackfin Processor Hardware Reference

5-19

Functional Description

Functional Description

The following sections provide a functional description of DMA.

DMA Operation Flow

Figure 5-2 and Figure 5-3 describe the DMA flow.

DMA Startup

This section discusses starting DMA “from scratch.” This is similar to
starting it after it has been paused by FLOW = 0 mode.

Before initiating DMA for the first time on a given channel, be
sure to initialize all parameter registers. Be especially careful to ini-
tialize the upper 16 bits of the DMAX_NEXT_DESC_PTR and
DMAX_START_ADDR registers, because they might not otherwise be
accessed, depending on the chosen FLOW mode of operation. Also
note that the DMAx_X_MODIFY and DMAx_Y_MODIFY are not preset to a
default value at reset.

To start DMA operation on a given channel, some or all of the DMA
parameter registers must first be written directly. At a minimum, the
DMAX_NEXT_DESC_PTR register (or DMAx_CURR_DESC_PTR register in FLOW = 4
mode) must be written at this stage, but the user may wish to write other
DMA registers that might be static throughout the course of DMA activ-
ity (for example, DMAx_X_MODIFY, DMAx_Y_MODIFY). The contents of NDSIZE
and FLOW in DMAx_CONFIG indicate which registers, if any, are fetched from
descriptor elements in memory. After the descriptor fetch, if any, is com-
pleted, DMA operation begins, initiated by writing DMAx_CONFIG with
DMAEN = 1.

5-20 ADSP-BF537 Blackfin Processor Hardware Reference

Direct Memory Access

USER WRITES SOME OR ALL DMA PARAMETER
REGISTERS, AND THEN WRITES DMA_CONFIG

i

BAD DMA_CONFIG?

DMA ERROR

DMAEN= 0
TEST DMAEN DI_EN = 0 OR
(DI_EN =1 AND
DMAEN =1 DMA_DONE_IRQ=1)
- Cc
A
SET DMA_RUN IN IRQ_STATUS
v v
DMA STOPPED. FLOW =0 OR 1
CLEAR DMA_RUN IN TEST FLOW = A
IRQ_STATUS

FLOW=4,6,0R 7

SET DFETCH IN IRQ_STATUS

1

COPY FLOW, NDSIZE FROM DMA_CONFIG
INTO TEMPORARY DESCRIPTOR FETCH COUNTERS

:

1

FLOW=60R 7

COPY NEXT DESCRIPTOR POINTER
TO CURRENT DESCRIPTOR POINTER

Figure 5-2. DMA Flow, From DMA Controller’s Point of View (1 of 2)

ADSP-BF537 Blackfin Processor Hardware Reference 5-21

Functional Description

¢ ¥
NDSIZE = 0 OR
NDSIZE > MAX_SIZE* DMA
TEST NDSIZE | ABORT
OCCURS
NDSIZE > 0 AND
NDSIZE <= MAX_SIZE*
READ NDSIZE ELEMENTS
OF DESCRIPTOR INTO
PARAMETER REGISTERS
VIA CURRENT
DESCRIPTOR POINTER
FLOW =0 OR 1 T
A —v
CLEAR DFETCH IN
IRQ_STATUS
DMA TRANSFER
BEGINS AND
CONTINUES UNTIL
COUNTS EXPIRE
MEMORY READ | TRANSFER
TEST SYNC, WNR > D'ﬁ,’?;?g "
B PERIPHERAL
SYNC =0 OR - UNTIL EMPTY
MEMORY WRITE y
SIGNAL AN
INTERRUPT
TO THE CORE

!

SET DMA_DONE
IN IRQ_STATUS

FLOW =1

FLOW=4,6,7
[————

SYNC=08&
MEMORY READ DT fﬁ:?;gﬁ
TEST SYNC, WNR FIFO TO
PERIPHERAL

SYNC =10R UNTIL EMPTY
MEMORY WRITE | _ MEMORY WRITE (DESTINATION)

DMA STOPPED. *MAX SIZE DEPENDS ON FLOW

IF FLOW = 4, MAX_SIZE = 7
CLEAR DMA_RUN IN = =
IRQ_STATUS. IF FLOW = 6, MAX_SIZE = 8

IF FLOW =7, MAX_SIZE =9

Figure 5-3. DMA Flow, From DMA Controller’s Point of View (2 of 2)

5-22 ADSP-BF537 Blackfin Processor Hardware Reference

Direct Memory Access

When DMAX_CONFIG is written directly by software, the DMA controller
recognizes this as the special startup condition that occurs when starting
DMA for the first time on this channel or after the engine has been
stopped (FLOW = 0).

When the descriptor fetch is complete and DMAEN = 1, the DMACFG descrip-
tor element that was read into DMAx_CONFIG assumes control. Before this
point, the direct write to DMAx_CONFIG had control. In other words, the
WDSTZE, DI_EN, DI_SEL, SYNC, and DMA2D fields will be taken from the
DMACFG value in the descriptor read from memory, while these field values
initially written to the DMAx_CONFIG register are ignored.

As Figure 5-2 and Figure 5-3 show, at startup the FLOW and NDSIZE bits in
DMAX_CONFIG determine the course of the DMA setup process. The FLOW
value determines whether to load more current registers from descriptor
elements in memory, while the NDSIZE bits detail how many descriptor
elements to fetch before starting DMA. DMA registers not included in the
descriptor are not modified from their prior values.

If the FLOW value specifies small or large descriptor list modes, the
DMAX_NEXT_DESC_PTR is copied into DMAx_CURR_DESC_PTR. Then, fetches of
new descriptor elements from memory are performed, indexed by
DMAX_CURR_DESC_PTR, which is incremented after each fetch. If NDPL
and/or NDPH is part of the descriptor, then these values are loaded into
DMAX_NEXT_DESC_PTR, but the fetch of the current descriptor continues
using DMAx_CURR_DESC_PTR. After completion of the descriptor fetch,
DMAX_CURR_DESC_PTR points to the next 16-bit word in memory past the
end of the descriptor.

If neither NDPH nor NDPL are part of the descriptor (that is, in descriptor
array mode, FLOW = 4), then the transfer from NDPH/NDPL into
DMAx_CURR_DESC_PTR does not occur. Instead, descriptor fetch indexing
begins with the value in DMAX_CURR_DESC_PTR.

ADSP-BF537 Blackfin Processor Hardware Reference 5-23

Functional Description

If DMACFG is not part of the descriptor, the previous DMAx_CONFIG settings
(as written by MMR access at startup) control the work unit operation. If
DMACFG is part of the descriptor, then the DMAx_CONFIG value programmed
by the MMR access controls only the loading of the first descriptor from
memory. The subsequent DMA work operation is controlled by the low
byte of the descriptor’s DMACFG and by the parameter registers loaded from
the descriptor. The bits DI_EN, DI_SEL, DMA2D, WDSIZE, and WNR in the value
programmed by the MMR access are disregarded.

The DMA_RUN and DFETCH status bits in the DMAX_IRQ_STATUS register indi-
cate the state of the DMA channel. After a write to DMAx_CONFIG, the
DMA_RUN and DFETCH bits can be automatically set to 1. No data interrupts
are signaled as a result of loading the first descriptor from memory.

After the above steps, DMA data transfer operation begins. The DMA
channel immediately attempts to fill its FIFO, subject to channel prior-
ity—a memory write (RX) DMA channel begins accepting data from its
peripheral, and a memory read (TX) DMA channel begins memory reads,

provided the channel wins the grant for bus access.

When the DMA channel performs its first data memory access, its address
and count computations take their input operands from the start registers
(DMAX_START_ADDR, DMAX_X_COUNT, DMAX_Y_COUNT), and write results back
to the current registers (DMAx_CURR_ADDR, DMAX_CURR_X_COUNT,
DMAX_CURR_Y_COUNT). Note also that the current registers are not valid
until the first memory access is performed, which may be some time after
the channel is started by the write to the DMA_CONFIG register. The current
registers are loaded automatically from the appropriate descriptor ele-
ments, overwriting their previous contents, as follows.

* DMAx_START_ADDR is Copied to DMAx_CURR_ADDR
* DMAX_X_COUNT is Copied to DMAx_CURR_X_COUNT
* DMAX_Y_COUNT is Copied to DMAx_CURR_Y_COUNT

Then DMA data transfer operation begins, as shown in Figure 5-3.

5-24 ADSP-BF537 Blackfin Processor Hardware Reference

Direct Memory Access

DMA Refresh

On completion of a work unit, the DMA controller:

Completes the transfer of all data between memory and the DMA
unit.

If SYNC = 1 and WNR = 0 (memory read), selects a synchronized
transition. Transfers all data to the peripheral before continuing.

If enabled by DI_EN, signals an interrupt to the core and sets the
DMA_DONE bit in the channel’s DMAx_IRQ_STATUS register.

If FLOW = 0 (stop) only:

Stops operation by clearing the DMA_RUN bit in DMAx_IRQ_STATUS
after any data in the channel’s DMA FIFO has been transferred to
the peripheral.

During the fetch in FLOW modes 4, 6, and 7, the DMA controller
sets the DFETCH bit in DMAx_IRQ_STATUS to 1. At this point, the
DMA operation depends on whether FLOW = 4, 6, or 7, as follows:

If FLOW = 4 (descriptor array):

Loads a new descriptor from memory into DMA registers via the
contents of DMAx_CURR_DESC_PTR, while incrementing
DMAx_CURR_DESC_PTR. The descriptor size comes from the NDSIZE
field of the DMAx_CONFIG value prior to the beginning of the fetch.

If FLOW = 6 (descriptor list small):

Copies the 32-bit DMAX_NEXT_DESC_PTR into DMAx_CURR_DESC_PTR.
Next, fetches a descriptor from memory into DMA registers via the
new contents of DMAx_CURR_DESC_PTR, while incrementing
DMAX_CURR_DESC_PTR. The first descriptor element loaded is a new
16-bit value for the lower 16 bits of DMAX_NEXT_DESC_PTR, followed

ADSP-BF537 Blackfin Processor Hardware Reference 5-25

Functional Description

by the rest of the descriptor elements. The high 16 bits of
DMAX_NEXT_DESC_PTR will retain their former value. This supports a
shorter, more efficient descriptor than the descriptor list large
model, suitable whenever the application can place the channel’s
descriptors in the same 64K byte range of memory.

If FLOW = 7 (descriptor list large):

Copies the 32-bit DMAX_NEXT_DESC_PTR into DMAx_CURR_DESC_PTR.
Next, fetches a descriptor from memory into DMA registers via the
new contents of DMAx_CURR_DESC_PTR, while incrementing
DMAX_CURR_DESC_PTR. The first descriptor element loaded is a new
32-bit value for the full DMAX_NEXT_DESC_PTR, followed by the rest
of the descriptor elements. The high 16 bits of
DMAX_NEXT_DESC_PTR may differ from their former value. This sup-
ports a fully flexible descriptor list which can be located anywhere
in internal memory or external memory.

* Note if it is necessary to link from a descriptor chain whose
descriptors are in one 64K byte area to another chain whose
descriptors are outside that area, only one descriptor needs to use
FLOW = 7—just the descriptor which contains the link leaving the
64K byte range. All the other descriptors located together in the
same 64K byte areas may use FLOW = 6.

e IfFLOW =4, 6, or 7 (descriptor array, descriptor list small, or
descriptor list large, respectively) the DMA controller clears the
DFETCH bit in the DMAX_IRQ_STATUS register.

5-26 ADSP-BF537 Blackfin Processor Hardware Reference

Direct Memory Access

e If FLOW = any value but 0 (Stop), the DMA controller begins the
next work unit, contending with other channels for priority on the
memory buses. On the first memory transfer of the new work unit,
the DMA controller updates the current registers from the start
registers:

DMAx_CURR_ADDR loaded from DMAx_START_ADDR
DMAx_CURR_X_COUNT loaded from DMAx_X_COUNT
DMAx_CURR_Y_COUNT loaded from DMAx_Y_COUNT

The DFETCH bit in DMAx_IRQ_STATUS is then cleared, after which the
DMA transfer begins again, as shown in Figure 5-3.

Work Unit Transitions

Transitions from one work unit to the next are controlled by the SYNC bit
in the DMAx_CONFIG register of the work units. In general, continuous tran-
sitions have lower latency at the cost of restrictions on changes of data
format or addressed memory space in the two work units. These latency
gains and data restrictions arise from the way the DMA FIFO pipeline is
handled while the next descriptor is fetched. In continuous transitions
(SYNC = 0), the DMA FIFO pipeline continues to transfer data to and from
the peripheral or destination memory during the descriptor fetch and/or
when the DMA channel is paused between descriptor chains.

Synchronized transitions (SYNC = 1), on the other hand, provide better
real-time synchronization of interrupts with peripheral state and greater
flexibility in the data formats and memory spaces of the two work units, at
the cost of higher latency in the transition. In synchronized transitions,
the DMA FIFO pipeline is drained to the destination or flushed (RX data

discarded) between work units.

Work unit transitions for MDMA streams are controlled by the
SYNC bit of the MDMA source channel’s DMAx_CONFIG register. The
SYNC bit of the MDMA destination channel is reserved and must be

ADSP-BF537 Blackfin Processor Hardware Reference 5-27

Functional Description

0. In transmit (memory read) channels, the SYNC bit of the last
descriptor prior to the transition controls the transition behavior.
In contrast, in receive channels, the SYNC bit of the first descriptor
of the next descriptor chain controls the transition.

DMA Transmit and MDMA Source

In DMA transmit (memory read) and MDMA source channels, the SYNC
bit controls the interrupt timing at the end of the work unit and the han-
dling of the DMA FIFO between the current and next work unit.

If SYNC = 0, a continuous transition is selected. In a continuous transition,
just after the last data item is read from memory, these four operations all
start in parallel:

e The interrupt (if any) is signalled.
e The DMA_DONE bit in the DMAx_IRQ_STATUS register is set.

* The next descriptor begins to be fetched.

e The final data items are delivered from the DMA FIFO to the des-

tination memory or peripheral.

This allows the DMA to provide data from the FIFO to the peripheral

“continuously” during the descriptor fetch latency period.

When SYNC = 0, the final interrupt (if enabled) occurs when the last data is
read from memory. This interrupt is at the earliest time that the output
memory buffer may safely be modified without affecting the previous data
transmission. Up to four data items may still be in the DMA FIFO,
however, and not yet at the peripheral, so the DMA interrupt should not
be used as the sole means of synchronizing the shutdown or reconfigura-
tion of the peripheral following a transmission.

5-28 ADSP-BF537 Blackfin Processor Hardware Reference

Direct Memory Access

If SYNC = 0 (continuous transition) on a transmit (memory read)
descriptor, the next descriptor is required to have the same data
word size, read/write direction, and source memory (internal vs.
external) as the current descriptor.

If SYNC = 0 selects continuous transition on a work unit in FLOW = STOP
mode with interrupt enabled, the interrupt service routine may already
run while the final data is still draining from the FIFO to the peripheral.
This is indicated by the DMA_RUN bit in the DMAX_IRQ_STATUS register; if it
is 1, the FIFO is not empty yet. Do not start a new work unit with differ-
ent word size or direction while DMA_RUN = 1. Further, if the channel is
disabled (by writing DMAEN = 0), the data in the FIFO is lost.

If SYNC = 1, a synchronized transition is selected, in which the DMA FIFO
is first drained to the destination memory or peripheral before any inter-
rupt is signalled and before any subsequent descriptor or data is fetched.
This incurs greater latency, but provides direct synchronization between

the DMA interrupt and the state of the data at the peripheral.

For example, if SYNC = 1 and DI_EN = 1 on the last descriptor in a work
unit, the interrupt occurs when the final data has been transferred to the
peripheral, allowing the service routine to properly switch to non-DMA
transmit operation. When the interrupt service routine is invoked, the
DMA_DONE bit is set and the DMA_RUN bit is cleared.

A synchronized transition also allows greater flexibility in the format of
the DMA descriptor chain. If SYNC = 1, the next descriptor may have any
word size or read/write direction supported by the peripheral and may
come from either memory space (internal vs. external). This can be useful
in managing MDMA work unit queues, since it is no longer necessary to
interrupt the queue between dissimilar work units.

ADSP-BF537 Blackfin Processor Hardware Reference 5-29

Functional Description

DMA Receive

In DMA receive (memory write) channels, the SYNC bit controls the han-
dling of the DMA FIFO between descriptor chains (not individual
descriptors), when the DMA channel is paused. The DMA channel pauses
after descriptors with FLOW = STOP mode, and may be restarted (for exam-
ple, after an interrupt) by writing the channel’s DMAX_CONFIG register with
DMAEN = 1.

If the SYNC bit is 0 in the new work unit’s DMAx_CONFIG value, a continuous
transition is selected. In this mode, any data items received into the DMA
FIFO while the channel was paused are retained, and they are the first
items written to memory in the new work unit. This mode of operation
provides lower latency at work unit transitions and ensures that no data
items are dropped during a DMA pause, at the cost of certain restrictions

on the DMA descriptors.

If the SYNC bit is 0 on the first descriptor of a descriptor chain after
a DMA pause, the DMA word size of the new chain must not
change from the word size of the previous descriptor chain active
before the pause, unless the DMA channel is reset between chains
by writing the DMAEN bit to 0 and then 1.

If the SYNC bit is 1 in the new work unit’s DMAx_CONFIG value, a synchro-
nized transition is selected. In this mode, only the data received from the
peripheral by the DMA channel after the write to the DMAX_CONFIG register
are delivered to memory. Any prior data items transferred from the
peripheral to the DMA FIFO before this register write are discarded. This
provides direct synchronization between the data stream received from the
peripheral and the timing of the channel restart (when the DMAx_CONFIG
register is written).

For receive DMAs, the SYNC bit has no effect in transitions between work
units in the same descriptor chain (that is, when the previous descriptor’s
FLOW mode was not STOP, so that DMA channel did not pause.)

5-30 ADSP-BF537 Blackfin Processor Hardware Reference

Direct Memory Access

If a descriptor chain begins with a SYNC bit of 1, there is no restriction on
DMA word size of the new chain in comparison to the previous chain.

The DMA word size must not change between one descriptor and
the next in any DMA receive (memory write) channel within a sin-
gle descriptor chain, regardless of the SYNC bit setting. In other
words, if a descriptor has WNR = 1 and FLOW = 4, 6, or 7, then the
next descriptor must have the same word size. For any DMA
receive (memory write) channel, there is no restriction on changes
of memory space (internal vs. external) between descriptors or
descriptor chains. DMA transmit (memory read) channels may
have such restrictions (see “DMA Transmit and MDMA Source”
on page 5-28).

Stopping DMA Transfers

In FLOW = 0 mode, DMA stops automatically after the work unit is
complete.

If a list or array of descriptors is used to control DMA, and if every
descriptor contains a DMACFG element, then the final DMACFG element
should have a FLOW = 0 setting to gracefully stop the channel.

In autobuffer (FLOW = 1) mode, or if a list or array of descriptors without
DMACFG elements is used, then the DMA transfer process must be termi-
nated by an MMR write to the DMAX_CONFIG register with a value whose
DMAEN bit is 0. A write of O to the entire register will always terminate

DMA gracefully (without DMA abort).

/ If a channel has been stopped abruptly by writing bDMAx_CONFIG to O

(or any value with DMAEN = 0), the user must ensure that any mem-
ory read or write accesses in the pipelines have completed before
enabling the channel again. If the channel is enabled again before
an “orphan” access from a previous work unit completes, the state
of the DMA interrupt and FIFO is unspecified. This can generally

be handled by ensuring that the core allocates several idle cycles in

ADSP-BF537 Blackfin Processor Hardware Reference 5-31

Functional Description

a row in its usage of the relevant memory space to allow up to three
pending DMA accesses to issue, plus allowing enough memory
access time for the accesses themselves to complete.

DMA Errors (Aborts)

The DMA controller flags conditions that cause the DMA process to end
abnormally (that is, abort). This functionality is provided as a tool for sys-
tem development and debug, as a way to detect DMA-related
programming errors. DMA errors (aborts) are detected by the DMA
channel module in the cases listed below. When a DMA error occurs, the
channel is immediately stopped (DMA_RUN goes to 0) and any prefetched
data is discarded. In addition, a DMA_ERROR interrupt is asserted.

There is only one DMA_ERROR interrupt for the whole DMA controller,
which is asserted whenever any of the channels has detected an error
condition.

The DMA_ERROR interrupt handler must do these things for each channel:

* Read each channel’s DMAx_IRQ_STATUS register to look for a channel
with the DMA_ERR bit set (bit 1).

* Clear the problem with that channel (for example, fix register
values).

e C(Clear the DMA_ERR bit (write DMAX_IRQ_STATUS with bit 1 = 1).

The following error conditions are detected by the DMA hardware and
result in a DMA Abort interrupt.

* The configuration register contains invalid values:

e _Incorrect WDSIZE value (WDSIZE = b#ll)
- Bit 15 not set to 0
- Incorrect FLOW value (FLOW = 2, 3, or 5)
- NDSIZE value does not agree with FLOW. See Table 5-3.

5-32 ADSP-BF537 Blackfin Processor Hardware Reference

Direct Memory Access

A disallowed register write occurred while the channel was run-
ning. Only the DMAx_CONFIG and DMAx_IRQ_STATUS registers can be
written when DMA_RUN = 1.

An address alignment error occurred during any memory access.
For example, DMAx_CONFIG register WDSIZE = 1 (16 bit) but the
least significant bit (LSB) of the address is not equal to 0, or
WDSIZE = 2 (32 bit) but the two LSBs of the address are not equal
to 00.

A memory space transition was attempted (internal-to-external or
vice versa).

A memory access error occurred. Either an access attempt was
made to an internal address not populated or defined as cache, or
an external access caused an error (signaled by the external memory
interface).

Some prohibited situations are not detected by the DMA hardware. No
DMA abort is signaled for these situations:

DMAx_CONF1G direction bit (WNR) does not agree with the direction
of the mapped peripheral.

DMAx_CONFIG direction bit does not agree with the direction of the
MDMA channel.

DMAX_CONFIG word size (WDSIZE) is not supported by the mapped
peripheral.

DMAx_CONFIG word size in source and destination of the MDMA
stream are not equal.

ADSP-BF537 Blackfin Processor Hardware Reference 5-33

Functional Description

* Descriptor chain indicates data buffers that are not in the same
internal/external memory space.

* In 2D DMA, X_COUNT = 1.

Table 5-3. Legal NDSIZE Values

FLOW NDSIZE Note

0 0

1 0

4 0 < NDSIZE <=7 Descriptor array, no descriptor pointer fetched
6 0 < NDSIZE <= 8 Descriptor list, small descriptor pointer fetched
7 0 < NDSIZE <=9 Descriptor list, large descriptor pointer fetched

DMA Control Commands

Advanced peripherals, such as the ADSP-BF536/ADSP-BF537 processor’s
Ethernet MAC module, are capable of managing some of their own DMA
operations, thus dramatically improving real-time performance and reliev-
ing control and interrupt demands on the Blackfin processor core. These
peripherals may communicate to the DMA controller using DMA control
commands, which are transmitted from the peripheral to the associated
DMA channel over internal DMA request buses. These request buses con-
sist of three wires per DMA-management-capable peripheral. The DMA
control commands extend the set of operations available to the peripheral
beyond the simple “request data” command used by peripherals in
general.

Note that while these DMA control commands are not visible to or con-
trollable by the user, their use by a peripheral has implications for the
structure of the DMA transfers which that peripheral can support. It is
important that application software be written to comply with certain

5-34 ADSP-BF537 Blackfin Processor Hardware Reference

Direct Memory Access

restrictions regarding work units and descriptor chains (described later in
this section) so that the peripheral operates properly whenever it issues
DMA control commands.

The ADSP-BF536/ADSP-BF537 processors have just one DMA-manage-
ment-capable peripheral, the Ethernet MAC. Refer to Chapter 8,
“Ethernet MAC?”, for a description of how receive and transmit channels
of this peripheral use DMA control commands. The ADSP-BF534 proces-
sors are not equipped with DMA-management-capable peripherals.
MDMA channels do not service peripherals and therefore do not support
DMA control commands.

The DMA control commands are shown in Table 5-4.

Table 5-4. DMA Control Commands

Code Name Description
000 NOP No operation
001 Restart Restarts the current work unit

from the beginning

010 Finish Finishes the current work unit
and starts the next

011 - Reserved
100 Req Data Typical DMA data request
101 Req Data Urgent Urgent DMA data request
110 - Reserved
111 - Reserved

ADSP-BF537 Blackfin Processor Hardware Reference 5-35

Functional Description

Additional information for the control commands includes:

Restart

The restart control command causes the current work unit to inter-
rupt processing and start over, using the addresses and counts from
DMAX_START_ADDR, DMAx_X_COUNT, and DMAx_Y_COUNT. No interrupt

is signalled.

If a channel programmed for transmit (memory read) receives a
restart control command, the channel momentarily pauses while
any pending memory reads initiated prior to the restart command
are completed.

During this period of time, the channel does not grant DMA
requests. Once all pending reads have been flushed from the chan-
nel’s pipelines, the channel resets its counters and FIFO, and starts
prefetch reads from memory. DMA data requests from the
peripheral are granted as soon as new prefetched data is available in
the DMA FIFO. The peripheral can thus use the restart command
to re-attempt a failed transmission of a work unit.

If a channel programmed for receive (memory write) receives a
restart control command, the channel stops writing to memory,
discards any data held in its DMA FIFO, and resets its counters
and FIFO. As soon as this initialization is complete, the channel
again grants DMA write requests from the peripheral. The periph-
eral can thus use the restart command to abort transfer of received
data into a work unit, and re-use the memory buffer for a later data
transfer.

Finish

The finish control command causes the current work unit to termi-
nate processing of the current work unit and move on to the next.
An interrupt is signalled as usual, if selected by the DI_EN bit. The
peripheral can thus use the finish command to partition the DMA

5-36

ADSP-BF537 Blackfin Processor Hardware Reference

Direct Memory Access

stream into work units on its own, perhaps as a result of parsing the
data currently passing though its supported communication chan-
nel, without direct real-time control by the processor.

If a channel programmed for transmit (memory read) receives a
finish control command, the channel momentarily pauses while
any pending memory reads initiated prior to the finish command
are completed. During this period of time, the channel does not
grant DMA requests. Once all pending reads have been flushed
from the channel’s pipelines, the channel signals an interrupt (if
enabled), and begins fetching the next descriptor (if any). DMA
data requests from the peripheral are granted as soon as new

prefetched data is available in the DMA FIFO.

If a channel programmed for receive (memory write) receives a fin-
ish control command, the channel stops granting new DMA
requests while it drains its FIFO. Any DMA data received by the
DMA Controller prior to the finish command is written to mem-
ory. When the FIFO reaches an empty state, the channel signals an
interrupt (if enabled) and begins fetching the next descriptor (if
any). Once the next descriptor has been fetched, the channel ini-
tializes its FIFO, and then resumes granting DMA requests from
the peripheral.

* Request Data

The request data control command is identical to the DMA request
operation of peripherals which are not DMA-management-capable.

* Request Data Urgent

The request data urgent control command behaves identically to

the DMA request control command, except that while it is asserted
the DMA channel performs its memory accesses with urgent prior-
ity. This includes both data and descriptor-fetch memory accesses.

ADSP-BF537 Blackfin Processor Hardware Reference 5-37

Functional Description

A DMA-management-capable peripheral might use this control
command if an internal FIFO is approaching a critical condition,
for example.

Restrictions

The proper operation of the 4-location DMA channel FIFO leads to cer-

tain restrictions in the sequence of DMA control commands.

Transmit Restart or Finish

No restart or finish control command may be issued by a peripheral to a
channel configured for memory read unless both (a) the peripheral has
already performed at least one DMA transfer in the current work unit, and
(b) the current work unit has more than four items remaining in
DMAX_CURR_X_COUNT/ DMAX_CURR_Y_COUNT (thus not yet read from mem-
ory.) Otherwise, the current work unit may already have completed
memory operations and can no longer be restarted or finished properly.

If the DMAX_CURR_X_COUNT/ DMAx_CURR_Y_COUNT of the current work unit is
sufficiently large that it is always at least 5 more than the maximum data
count prior to any restart or finish command, the above restriction is satis-
fied. This implies that any work unit which might be managed by restart
or finish commands must have DMAx_CURR_X_COUNT/ DMAx_CURR_Y_COUNT
values representing at least 5 data items.

Note in particular that if the DMAX_CURR_X_COUNT/ DMAX_CURR_Y_COUNT reg-
isters are programmed to 0 (representing 65,536 transfers, the maximum
value) the channel will operate properly for 1D work units up to 65,531
data items or 2D work units up to 4,294,967,291 data items.

Receive Restart or Finish

No restart or finish control command may be issued by a peripheral to a
channel configured for memory write unless either (a) the peripheral has
already performed at least five DMA transfers in the current work unit, or

5-38 ADSP-BF537 Blackfin Processor Hardware Reference

Direct Memory Access

(b) the previous work unit was terminated by a finish control command
and the peripheral has performed at least one DMA transfer in the current
work unit. If five data transfers have been performed, then at least one
data item has been written to memory in the current work unit, which
implies that the current work unit’s descriptor fetch completed before the
data grant of the fifth item. Otherwise, if less than five data items have
been transferred, it is possible that all of them are still in the DMA FIFO
and that the previous work unit is still in the process of completion and
transition between work units.

Similarly, if a finish command ended the previous work unit and at least
one subsequent DMA data transfer has occurred, then the fact that the
DMA channel issued the grant guarantees that the previous work unit has
already completed the process of draining its data to memory and transi-
tioning to the new work unit.

Note that if a peripheral terminates all work units with the finish opcode
(effectively assuming responsibility for all work unit boundaries for the
DMA channel), then the peripheral need only ensure that it performs a
single transfer in each work unit before any restart or finish. This requires,
however, that the user programs the descriptors for all work units man-
aged by the channel with DMAXx_CURR_X_COUNT/ DMAX_CURR_Y_COUNTSs
representing more data items than the maximum work unit size that the
peripheral will encounter. For example, DMAx_CURR_X_COUNT/
DMAX_CURR_Y_COUNTs of 0 allow the channel to operate properly on 1D
work units up to 65,535 data items and 2D work units up to
4,294,967,295 data items.

Handshaked Memory DMA Operation

Both DMARx inputs have their own set of control and status registers.
Handshake operation for MDMAO is enabled by the HMDMAEN bit in the
HMDMAO_CONTROL register. Similarly, the HMDMAEN bit in the HMDMA1_CONTROL
register enables handshake mode for MDMAL.

ADSP-BF537 Blackfin Processor Hardware Reference 5-39

Functional Description

It is important to understand that the handshake hardware works com-
pletely independent from the descriptor and autobuffer capabilities of the
MDMA, allowing most flexible combinations of logical data organization
vs. data portioning as required by FIFO deeps, for example. If, however,
the connected device requires certain behavior of the address lines, these
must be controlled by traditional DMA setup.

The HMDMA unit controls only the destination (memory write)
channel of the memory DMA. The source channel (memory-read
side) fills the 8-depth DMA buffers immediately after the receive

being enabled issues 8 read commands.

The HMDMAX_BCINIT registers control how many data transfers are per-
formed upon every DMA request. If set to one, the peripheral can time
every individual data transfer. If greater than one, the peripheral must fea-
ture sufficient buffer size to provide or consume the number of words
programmed. Once the transfer has been requested, no further handshake
can hold off the DMA from transferring the entire block, except by stall-
ing the EBIU accesses by the ARDY signal or a complete bus request and
grant cycle through the BR and BG pins. Nevertheless, the peripheral may
request a block transfer before the entire buffer is available, by simply tak-
ing the minimum transfer time based on wait-state settings into
consideration.

The block count defines how many data transfers are performed by
the MDMA engine. A single DMA transfer can cause two read or
write operations on the EBIU port if the transfer word size is set to
32 bit in the MDMA_yy_CONFIG register (WDSIZE = bi#10).

Since the block count registers are 16 bits wide, blocks can group up to

65535 transfers.

Once a block transfer has been started, the HMDMAX_BCOUNT registers return
the remaining number of transfers to complete the current block. When

the complete block has been processed, the HMDMAx_BCOUNT regis-
ter returns zero. Software can force a reload of the HMDMAx_ BCOUNT

5-40 ADSP-BF537 Blackfin Processor Hardware Reference

Direct Memory Access

from the HMDMAx_BCINIT register even during normal operation by
writing a 1 to the RBC bit in the HMDMAX_CONTROL register. Set RBC only
when the HMDMA module is already active, but the MDMA is not
enabled.

Pipelining DMA Requests

The device mastering the DMA request lines is allowed to request addi-
tional transfers even before the former transfer has completed. As long as
the device can provide or consume sufficient data it is permitted to pulse
the DMARx inputs multiple times.

The HMDMAX_ECOUNT registers are incremented every time a significant edge
is detected on the respective DMARX input and are decremented when the
MDMA completes the block transfer. These read-only registers use a
16-bit two’s-complement data representation: if they return zero, all
requested block transfers have been performed. A positive value signals up
to 32767 requests that haven’t been served yet and indicates that the
MDMA is currently processing. Negative values indicate the number of
DMA requests that will be ignored by the engine. This feature restrains
initial pulses on the DMARX inputs at startup.

The HMDMAX_ECINIT registers reload the HMDMAX_ECOUNT registers every time
the handshake mode is enabled, that is, when the HMDMAEN bit changes
from 0 to 1. If the initial edge count value is 0, the handshake operation
starts with a settled request budget. If positive, the engine starts immedi-
ately transferring the programmed number (up to 32767) of blocks once
enabled, even without detecting any activity on the DMARX pins. If nega-
tive, the engine will disregard the programmed number (up to 32768)
significant edges on the DMARx inputs before starting normal operation.

Figure 5-4 illustrates how an asynchronous FIFO could be connected. In
such a scenario the REP bit was cleared to let the DMARX request pin listen to
falling edges. The Blackfin processor does not evaluate the full flag such
FIFOs usually provide, because asynchronous polling of that signal would
reduce the system throughput drastically. Moreover, the processor first

ADSP-BF537 Blackfin Processor Hardware Reference 5-41

Functional Description

fills the FIFO by initializing the HMDMAX_ECINIT register by the value 1024
which equals the depth of the FIFO. Once enabled, the MDMA automat-

ically transmits 1024 data words. Afterward it continues to transmit only
if the FIFO is emptied by its read strobe again. Most likely, the
HMDMAX_BCINIT register is programmed to be 1 in this case.

BLACKFIN 1024K x 16 FIFO

DO .. D15)10 .. 115 00..015 >
-
AMSXx — -
— WR RD |
AWE

DMARXx |-

Figure 5-4. Transmit DMA Example Connection

In the receive example shown in Figure 5-5, the Blackfin processor again
does not use the FIFO’s internal control mechanism. Rather than testing
the empty flag, the processor counts the number of data words available in
the FIFO by its own HMDMAx_ECOUNT register. Theoretically, the MDMA
could immediately process data as soon as it is written into the FIFO by
the write strobe, but the fast MDMA engine would read out the FIFO
quickly and stall soon if the FIFO was not filled with new data promptly.
Streaming applications can balance the FIFO so that the producer is never
held off by a full FIFO and the consumer is never held by an empty FIFO.
This is accomplished by filling the FIFO half way and then letting both
consumer and producer run at the same speed. In this case the
HMDMAX_ECINIT register can be written with a negative value, which corre-
sponds to half the FIFO depth. Then, the MDMA does not start
consuming data as long as the FIFO is not half filled.

5-42 ADSP-BF537 Blackfin Processor Hardware Reference

Direct Memory Access

BLACKFIN 1024K x 16 FIFO

Do .. 15 K 00..015 10..115 K

-]
AMSx — _
— RD WR |
ARE

DMARXx |-

Figure 5-5. Receive DMA Example Connection

On internal system buses, memory DMA channels have lower priority
than other DMAs. In busy systems it might happen that the memory
DMAs tend to starve. As this is not acceptable when transferring data
through high-speed FIFOs, the handshake mode provides a high-water
functionality to increase the MDMA'’s priority. With the UTE bit in the
HMDMAX_CONTROL register set, the MDMA gets higher priority as soon as a
(positive) value in the HMDMAX_ECOUNT register becomes higher than the
threshold held by the HMDMAX_ECURGENT register.

HMDMA Interrupts

In addition to the normal MDMA interrupt channels, the handshake
hardware provides two new interrupt sources for each DMARx input. All
interrupt sources are routed to the global DMA error interrupt channel.
The HMDMAX_CONTROL registers provide interrupt enable and status bits.
The interrupt status bits require a write-1-to-clear operation to cancel the
interrupt request.

The block done interrupt signals that a complete MDMA block as defined
by the HMDMAX_BCINIT register has been transferred, that is, when the
HMDMAX_BCOUNT register decrements to zero. While the BDIE bit enables this
interrupt, the MBDI bit can gate it until the edge count also becomes zero,
meaning that all requested MDMA transfers have been completed.

ADSP-BF537 Blackfin Processor Hardware Reference 5-43

Functional Description

The overflow interrupt is generated when the HMDMA_ECOUNT register over-
flows. Since it can count up to 32767, which is much more than most of
peripheral devices can support, the Blackfin processor features another
threshold register called HMDMA_ECOVERFLOW. It resets to 0xFFFF and should
be written with any positive value by the user before enabling the function
by the 01E bit. Then, the overflow interrupt is issued when the value of the
HMDMA_ECOUNT register exceeds the threshold in the HMDMA_ECOVERFLOW
register.

DMA Performance

The DMA system is designed to provide maximum throughput per chan-
nel and maximum utilization of the internal buses, while accommodating
the inherent latencies of memory accesses.

The Blackfin architecture features several mechanisms to customize system
behavior for best performance. This includes DMA channel prioritization,
traffic control, and priority treatment of bursted transfers. Nevertheless,
the resulting performance of a DMA transfer often depends on applica-
tion-level circumstances.

For best performance consider these questions architecting the system
software:

* What is the required DMA bandwidth?

e Which DMA transfers have real-time requirements and which do
not?

* How heavily is the DMA controller competing with the core for
on-chip and off-chip resources?

* How often do competing DMA channels require the bus systems to
alter direction?

5-44 ADSP-BF537 Blackfin Processor Hardware Reference

Direct Memory Access

* How often do competing DMA or core accesses cause the SDRAM
to open different pages?

e Is there a way to distribute DMA requests nicely over time?

A key feature of the DMA architecture is the separation of the activity on
the peripheral DMA bus (the DMA Access Bus (DAB)) from the activity
on the buses between the DMA and memory (the DMA Core Bus (DCB)
and the DMA External Bus (DEB)). Chapter 2, “Chip Bus Hierarchy”

explains the bus architecture.

Each peripheral DMA channel has its own data FIFO which lies between
the DAB bus and the memory buses. These FIFOs automatically prefetch
data from memory for transmission and buffer received data for later
memory writes. This allows the peripheral to be granted a DMA transfer
with very low latency compared to the total latency of a pipelined memory
access, permitting the repeat rate (bandwidth) of each DMA channel to be
as fast as possible.

DMA Throughput

Peripheral DMA channels have a maximum transfer rate of one 16-bit
word per two system clocks, per channel, in either direction. As the DAB
and DEB buses do, the DMA controller resides in the SCLK domain. The
controller synchronizes accesses to and from the DCB bus which is run-
ning at CCLK rate.

Memory DMA channels have a maximum transfer rate of one 16-bit word
per one system clock (SCLK), per channel.

ADSP-BF537 Blackfin Processor Hardware Reference 5-45

Functional Description

When all DMA channels’ traffic is taken in the aggregate:

Transfers between the peripherals and the DMA unit have a maxi-
mum rate of one 16-bit transfer per system clock.

Transfers between the DMA unit and internal memory (L1) have a
maximum rate of one 16-bit transfer per system clock.

Transfers between the DMA unit and external memory have a
maximum rate of one 16-bit transfer per system clock.

Some considerations which limit the actual performance include:

Accesses to internal or external memory which conflict with core
accesses to the same memory. This can cause delays, for example,
for accessing the same L1 bank, for opening/closing SDRAM
pages, or while filling cache lines.

Each direction change from RX to TX on the DAB bus imposes a
one SCLK cycle delay.

Direction changes on the DCB bus (for example, write followed by
read) to the same bank of internal memory can impose delays.

Direction changes (for example, read followed by write) on the
DEB bus to external memory can each impose a several-cycle delay.

MMR accesses to DMA registers other than DMAx_CONFIG,
DMAX_IRQ_STATUS, or DMAX_PERIPHERAL_MAP stalls all DMA activity
for one cycle per 16-bit word transferred. In contrast, MMR
accesses to the control/status registers do not cause stalls or wait
states.

Reads from DMA registers other than control/status registers use
one PAB bus wait state, delaying the core for several core clocks.

5-46

ADSP-BF537 Blackfin Processor Hardware Reference

Direct Memory Access

* Descriptor fetches consume one DMA memory cycle per 16-bit
word read from memory, but do not delay transfers on the DAB

bus.

* Initialization of a DMA channel stalls DMA activity for one cycle.
This occurs when DMAEN changes from 0 to 1 or when the SYNC bit
is set to 1 in the DMAX_CONFIG register.

Several of these factors may be minimized by proper design of the applica-
tion software. It is often possible to structure the software to avoid
internal and external memory conflicts by careful allocation of data buffers
within banks and pages, and by planning for low cache activity during
critical DMA operations. Furthermore, unnecessary MMR accesses can be
minimized, especially by using descriptors or autobuffering.

Efficiency loss caused by excessive direction changes (thrashing) can be
minimized by the processor’s traffic control features, described in the next
section.

The MDMA controllers are clocked by SCLK. If source and destination are
in different memory spaces (one internal and one external), the internal
and external memory transfers are typically simultaneous and continuous,
maintaining 100% bus utilization of the internal and external memory
interfaces. This performance is affected by core-to-system clock frequency
ratios. At ratios below about 2.5:1, synchronization and pipeline latencies
result in lower bus utilization in the system clock domain. At a clock ratio
of 2:1, for example, DMA typically runs at 2/3 of the system clock rate. At
higher clock ratios, full bandwidth is maintained.

If source and destination are in the same memory space (both internal or
both external), the MDMA stream typically prefetches a burst of source
data into the FIFO, and then automatically turns around and delivers all
available data from the FIFO to the destination buffer. The burst length is
dependent on traffic, and is equal to 3 plus the memory latency at the
DMA in SCLKs (which is typically 7 for internal transfers and 6 for exter-
nal transfers).

ADSP-BF537 Blackfin Processor Hardware Reference 5-47

Functional Description

Memory DMA Timing Details

When the destination DMAx_CONFIG register is written, MDMA operation
starts, after a latency of 3 SCLK cycles.

First, if either MDMA channel has been selected to use descriptors, the
descriptors are fetched from memory. The destination channel descriptors
are fetched first. Then, after a latency of 4 SCLK cycles after the last
descriptor word is returned from memory (or typically 8 SCLK cycles after
the fetch of the last descriptor word, due to memory pipelining), the
source MDMA channel begins fetching data from the source buffer. The
resulting data is deposited in the MDMA channel’s 8-location FIFO, and
then after a latency of 2 SCLK cycles, the destination MDMA channel
begins writing data to the destination memory buffer.

Static Channel Prioritization

DMA channels are ordinarily granted service strictly according to their
priority. The priority of a channel is simply its channel number, where
lower priority numbers are granted first. Thus, peripherals with high data
rates or low latency requirements should be assigned to lower numbered
(higher priority) channels using the PMAP field in the
DMAX_PERIPHERAL_MAP registers. The memory DMA streams are always
lower static priority than the peripherals, but as they request service con-
tinuously, they ensure that any time slots unused by peripheral DMA are
applied to MDMA transfers.

Table 5-5. Priority and Default Mapping of Peripheral to DMA

Priority DMA Channel |PMAP Default |Peripheral Mapped by Default
Value
Highest DMA 0 0x0 PPI receive or transmit
DMA 1 0x1 Ethernet MAC receive
DMA 2 0x2 Ethernet MAC transmit
DMA 3 0x3 SPORTO receive
5-48 ADSP-BF537 Blackfin Processor Hardware Reference

Direct Memory Access

Table 5-5. Priority and Default Mapping of Peripheral to DMA (Cont’d)

Priority DMA Channel |PMAP Default |Peripheral Mapped by Default
Value

DMA 4 0x4 SPORTO transmit
DMA 5 0x5 SPORT1 receive
DMA 6 0x6 SPORT1 transmit
DMA 7 0x7 SPI
DMA 8 0x8 UARTO receive
DMA 9 0x9 UARTO transmit
DMA 10 0xA UART1 receive
DMA 11 0xB UART1 transmit
MDMA D0 N/A N/A
MDMA S0 N/A N/A
MDMA D1 N/A N/A

Lowest MDMA S1 N/A N/A

As the Ethernet MAC module is not present on the ADSP-BF534 proces-
sors, the PMAP field should not be set to 0x1 or 0x2 on used DMA
channels. Attention is required as DMA 1 and DMA 2 channels default to
these invalid values.

Temporary DMA Urgency

Typically, DMA transfers for a given peripheral occur at regular intervals.
Generally, the shorter the interval, the higher the priority that should be

assigned to the peripheral. If the average bandwidth of all the peripherals
is not too large a fraction of the total, then all peripherals’ requests should
be granted as required.

Occasionally, instantaneous DMA traffic might exceed the available band-
width, causing congestion. This may occur if L1 or external memory is
temporarily stalled, perhaps for an SDRAM page swap or a cache line fill.

ADSP-BF537 Blackfin Processor Hardware Reference 5-49

Functional Description

Congestion might also occur if one or more DMA channels initiates a
flurry of requests, perhaps for descriptor fetches or to fill a FIFO in the
DMA or in the peripheral.

If congestion persists, lower priority DMA peripherals may become
starved for data. Even though the peripheral’s priority is low, if the neces-
sary data transfer does not take place before the end of the peripheral’s
regular interval, system failure may result. To minimize this possibility,
the DMA unit detects peripherals whose need for data has become urgent,
and preferentially grants them service at the highest priority.

A DMA channel’s request for memory service is defined as “urgent” if

both:

e The channel’s FIFO is not ready for a DAB bus transfer (that is, a
transmit FIFO is empty or a receive FIFO is full), and

* The peripheral is asserting its DMA request line.

Descriptor fetches may be urgent, if they are necessary to initiate or con-
tinue a DMA work unit chain for a starving peripheral.

DMA requests from an MDMA channel become urgent when handshaked
operation is enabled and the DMARx edge count exceeds the value stored
in the HMDMAX_ECURGENT register. If handshaked operation is disabled, soft-
ware can control urgency of requests directly by altering the DRQ bit field
in the HMDMAX_CONTROL register.

5-50 ADSP-BF537 Blackfin Processor Hardware Reference

Direct Memory Access

When one or more DMA channels express an urgent memory request, two
events occur:

e All non-urgent memory requests are decreased in priority by 32,
guaranteeing that only an urgent request will be granted. The
urgent requests compete with each other, if there is more than one,
and directional preference among urgent requests is observed.

* The resulting memory transfer is marked for expedited processing
in the targeted memory system (L1 or external), and so are all prior
incomplete memory transfers ahead of it in that memory system.
This may cause a series of external memory core accesses to be
delayed for a few cycles so that a peripheral’s urgent request may be
accommodated.

The preferential handling of urgent DMA transfers is completely auto-
matic. No user controls are required for this function to operate.

Memory DMA Priority and Scheduling

All MDMA operations have lower precedence than any peripheral DMA
operations. MDMA thus makes effective use of any memory bandwidth
unused by peripheral DMA traffic.

By default, when more than one MDMA stream is enabled and ready,
only the highest priority MDMA stream is granted. If it is desirable for the
MDMA streams to share the available bandwidth, however, the
MDMA_ROUND_ROBIN_PERIOD may be programmed to select each stream in
turn for a fixed number of transfers.

If two MDMA streams are used (S0-D0 and S1-D1), the user may choose
to allocate bandwidth either by fixed stream priority or by a round robin
scheme. This is selected by programming the MDMA_ROUND_ROBIN_PERIOD
field in the DMA_TC_PER register (see “Static Channel Prioritization” on

page 5-48).

ADSP-BF537 Blackfin Processor Hardware Reference 5-51

Functional Description

If this field is set to 0, then MDMA is scheduled by fixed priority.
MDMA stream 0 takes precedence over MDMA stream 1 whenever
stream 0 is ready to perform transfers. Since an MDMA stream is typically
capable of transferring data on every available cycle, this could cause
MDMA stream 1 traffic to be delayed for an indefinite time until any and
all MDMA stream 0 operations are complete. This scheme could be
appropriate in systems where low duration but latency sensitive data buf-
fers need to be moved immediately, interrupting long duration, low
priority background transfers.

If the MDMA_ROUND_ROBIN_PERIOD field is set to some nonzero value in the
range 1 <= P <= 31, then a round robin scheduling method is used. The
two MDMA streams are granted bus access in alternation in bursts of up
to P data transfers. This could be used in systems where two transfer pro-
cesses need to coexist, each with a guaranteed fraction of the available
bandwidth. For example, one stream might be programmed for inter-
nal-to-external moves while the other is programmed for
external-to-internal moves, and each would be allocated approximately

equal data bandwidth.

In round robin operation, the MDMA stream selection at any time is
either “free” or “locked.” Initially, the selection is free. On any free cycle
available to MDMA (when no peripheral DMA accesses take precedence),
if either or both MDMA streams request access, the higher precedence
stream will be granted (stream 0 in case of conflict), and that stream’s
selection is then “locked.” The MDMA_ROUND_ROBIN_COUNT counter field in
the DMA_TC_CNT register is loaded with the period P from
MDMA_ROUND_ROBIN_PERIOD, and MDMA transfers begin. The counter is
decremented on every data transfer (as each data word is written to
memory). After the transfer corresponding to a count of 1, the MDMA
stream selection is passed automatically to the other stream with zero over-
head, and the MDMA_ROUND_ROBIN_COUNT counter is reloaded with the
period value P from MDMA_ROUND_ROBIN_PERIOD. In this cycle, if the other
MDMA stream is ready to perform a transfer, the stream selection is

5-52 ADSP-BF537 Blackfin Processor Hardware Reference

Direct Memory Access

locked on the new MDMA stream. If the other MDMA stream is not
ready to perform a transfer, then no transfer is performed, and on the next
cycle the stream selection unlocks and becomes free again.

If round robin operation is used when only one MDMA stream is active,
one idle cycle will occur for each P MDMA data cycles, slightly lowering
bandwidth by a factor of 1/(P+1). If both MDMA streams are used, how-
ever, memory DMA can operate continuously with zero additional
overhead for alternation of streams (other than overhead cycles normally
associated with reversal of read/write direction to memory, for example).
By selection of various round robin period values P which limit how often
the MDMA streams alternate, maximal transfer efficiency can be
maintained.

Traffic Control

In the Blackfin DMA architecture, there are two completely separate but
simultaneous prioritization processes—the DAB bus prioritization and the
memory bus (DCB and DEB) prioritization. Peripherals that are request-
ing DMA via the DAB bus, and whose data FIFOs are ready to handle the
transfer, compete with each other for DAB bus cycles. Similarly but sepa-
rately, channels whose FIFOs need memory service (prefetch or
post-write) compete together for access to the memory buses. MDMA
streams compete for memory access as a unit, and source and destination
may be granted together if their memory transfers do not conflict. In this
way, internal-to-external or external-to-internal memory transfers may
occur at the full system clock rate (SCLK). Examples of memory conflict
include simultaneous access to the same memory space and simultaneous
attempts to fetch descriptors. Special processing may occur if a peripheral
is requesting DMA but its FIFO is not ready (for example, an empty
transmit FIFO or full receive FIFO). For more information, see “Tempo-

rary DMA Urgency” on page 5-49.

Traffic control is an important consideration in optimizing use of DMA
resources. Traffic control is a way to influence how often the transfer
direction on the data buses may change, by automatically grouping same

ADSP-BF537 Blackfin Processor Hardware Reference 5-53

Functional Description

direction transfers together. The DMA block provides a traffic control
mechanism controlled by the DMA_TC_PER and DMA_TC_CNT registers. This
mechanism performs the optimization without real-time processor inter-
vention, and without the need to program transfer bursts into the DMA
work unit streams. Traffic can be independently controlled for each of the
three buses (DAB, DCB, and DEB) with simple counters. In addition,
alternation of transfers among MDMA streams can be controlled with the
MDMA_ROUND_ROBIN_COUNT field of the DMA_TC_CNT register. See “Memory
DMA Priority and Scheduling” on page 5-51.

Using the traffic control features, the DMA system preferentially grants
data transfers on the DAB or memory buses which are going in the same
read/write direction as the previous transfer, until either the traffic control
counter times out, or until traffic stops or changes direction on its own.
When the traffic counter reaches zero, the preference is changed to the
opposite flow direction. These directional preferences work as if the prior-
ity of the opposite direction channels were decreased by 16.

For example, if channels 3 and 5 were requesting DAB access, but lower
priority channel 5 is going “with traffic” and higher priority channel 3 is
going “against traffic,” then channel 3’s effective priority becomes 19, and
channel 5 would be granted instead. If, on the next cycle, only channels 3
and 6 were requesting DAB transfers, and these transfer requests were
both “against traffic,” then their effective priorities would become 19 and
22, respectively. One of the channels (channel 3) is granted, even though
its direction is opposite to the current flow. No bus cycles are wasted,
other than any necessary delay required by the bus turnaround.

This type of traffic control represents a trade-off of latency to improve uti-
lization (efficiency). Higher traffic timeouts might increase the length of
time each request waits for its grant, but it often dramatically improves the
maximum attainable bandwidth in congested systems, often to above

90%.

To disable preferential DMA prioritization, program the DMA_TC_PER reg-
ister to 0x0000.

5-54 ADSP-BF537 Blackfin Processor Hardware Reference

Direct Memory Access

Programming Model

Several synchronization and control methods are available for use in devel-
opment of software tasks which manage peripheral DMA and memory
DMA (see also “Memory DMA” on page 5-9). Such software needs to be
able to accept requests for new DMA transfers from other software tasks,
integrate these transfers into existing transfer queues, and reliably notify
other tasks when the transfers are complete.

In the processor, it is possible for each peripheral DMA and memory
DMA stream to be managed by a separate task or to be managed together
with any other stream. Each DMA channel has independent, orthogonal
control registers, resources, and interrupts, so that the selection of the
control scheme for one channel does not affect the choice of control
scheme on other channels. For example, one peripheral can use a
linked-descriptor-list, interrupt-driven scheme while another peripheral
can simultaneously use a demand-driven, buffer-at-a-time scheme syn-
chronized by polling of the DMAx_IRQ_STATUS register.

Synchronization of Software and DMA

A critical element of software DMA management is synchronization of
DMA buffer completion with the software. This can best be done using
interrupts, polling of DMAXx_IRQ_STATUS, or a combination of both. Polling
for address or count can only provide synchronization within loose toler-
ances comparable to pipeline lengths.

Interrupt-based synchronization methods must avoid interrupt overrun,
or the failure to invoke a DMA channel’s interrupt handler for every inter-
rupt event due to excessive latency in processing of interrupts. Generally,
the system design must either ensure that only one interrupt per channel is
scheduled (for example, at the end of a descriptor list), or that interrupts
are spaced sufficiently far apart in time that system processing budgets can

ADSP-BF537 Blackfin Processor Hardware Reference 5-55

Programming Model

guarantee every interrupt is serviced. Note, since every interrupt channel
has its own distinct interrupt, interaction among the interrupts of differ-
ent peripherals is much simpler to manage.

Polling of the DMAx_CURR_ADDR, DMAx_CURR_DESC_PTR, or
DMAX_CURR_X_COUNT/DMAx_CURR_Y_COUNT registers is not recom-
mended as a method of precisely synchronizing DMA with data
processing, due to DMA FIFOs and DMA/memory pipelining. The cur-
rent address, pointer, and count registers change several cycles in advance
of the completion of the corresponding memory operation, as measured
by the time at which the results of the operation would first be visible to
the core by memory read or write instructions. For example, in a DMA
memory write operation to external memory, assume a DMA write by
channel A is initiated that causes the SDRAM to perform a page open
operation which will take many system clock cycles. The DMA engine
may then move on to another DMA operation by channel B which does
not in itself incur latency, but will be stalled behind the slow operation by
channel A. Software monitoring channel B could not safely conclude
whether the memory location pointed to by channel B’s DMAx_CURR_ADDR
has or has not been written, based on examination of the DMAx_CURR_ADDR
register contents.

Polling of the current address, pointer, and count registers can permit
loose synchronization of DMA with software, however, if allowances are
made for the lengths of the DMA/memory pipeline. The length of the
DMA FIFO for a peripheral DMA channel is four locations (either four 8-
or 16-bit data elements, or two 32-bit data elements) and for an MDMA
FIFO is eight locations (four 32-bit data elements). The DMA will not
advance current address/pointer/count registers if these FIFOs are filled
with incomplete work (including reads that have been started but not yet

finished).

5-56 ADSP-BF537 Blackfin Processor Hardware Reference

Direct Memory Access

Additionally, the length of the combined DMA and L1 pipelines to inter-
nal memory is approximately six 8- or 16-bit data elements. The length of
the DMA and External Bus Interface Unit (EBIU) pipelines is approxi-
mately three data elements, when measured from the point where a DMA
register update is visible to an MMR read to the point where DMA and
core accesses to memory become strictly ordered. If the DMA FIFO
length and the DMA/memory pipeline length are added, an estimate can
be made of the maximum number of incomplete memory operations in
progress at one time. (Note this is a maximum, as the DMA/memory
pipeline may include traffic from other DMA channels.)

For example, assume a peripheral DMA channel is transferring a work
unit of 100 data elements into internal memory and its
DMAx_CURR_X_COUNT register reads a value of 60 remaining elements, so
that processing of the first 40 elements has at least been started. The total
pipeline length is no greater than the sum of 4 (for the peripheral DMA
FIFO) plus 6 (for the DMA/memory pipeline), or 10 data elements, so it
is safe to conclude that the DMA transfer of the first 40-10 = 30 data ele-
ments is complete.

For precise synchronization, software should either wait for an interrupt
or consult the channel’s DMAx_IRQ_STATUS register to confirm completion
of DMA, rather than polling current address/pointer/count registers.
When the DMA system issues an interrupt or changes an
DMAX_IRQ_STATUS bit, it guarantees that the last memory operation of the
work unit has been completed and will definitely be visible to DSP code.
For memory read DMA, the final memory read data will have been safely
received in the DMA’s FIFO; for memory write DMA, the DMA unit will
have received an acknowledge from L1 memory or the EBIU that the data
has been written.

The following examples show methods of synchronizing software with

several different styles of DMA.

ADSP-BF537 Blackfin Processor Hardware Reference 5-57

Programming Model

Single-Buffer DMA Transfers

Synchronization is simple if a peripheral’s DMA activity consists of iso-
lated transfers of single buffers. DMA activity is initiated by software
writes to the channel’s control registers. The user may choose to use a sin-
gle descriptor in memory, in which case the software only needs to write
the DMAX_CONFIG and the DMAX_NEXT_DESC_PTR registers. Alternatively, the
user may choose to write all the MMR registers directly from software,
ending with the write to the DMAX_CONFIG register.

The simplest way to signal completion of DMA is by an interrupt. This is
selected by the DI_EN bit in the DMAX_CONFIG register, and by the necessary
setup of the system interrupt controller. If it is desirable not to use an
interrupt, the software can poll for completion by reading the
DMAX_IRQ_STATUS register and testing the DMA_RUN bit. If this bit is zero,
the buffer transfer has completed.

Continuous Transfers Using Autobuffering

If a peripheral’s DMA data consists of a steady, periodic stream of signal
data, DMA autobuffering (FLOW = 1) may be an effective option. Here,
DMA is transferred from or to a memory buffer with a circular addressing
scheme, using either one- or two-dimensional indexing with zero proces-
sor and DMA overhead for looping. Synchronization options include:

e 1D, interrupt-driven—software is interrupted at the conclusion of
each buffer. The critical design consideration is that the software
must deal with the first items in the buffer before the next DMA
transfer, which might overwrite or re-read the first buffer location
before it is processed by software. This scheme may be workable if
the system design guarantees that the data repeat period is longer
than the interrupt latency under all circumstances.

e 2D, interrupt-driven (double buffering)—the DMA bulffer is parti-
tioned into two or more sub-buffers, and interrupts are selected
(set DI_SEL = 1in DMAx_CONFIG) to be signaled at the completion of

5-58 ADSP-BF537 Blackfin Processor Hardware Reference

Direct Memory Access

each DMA inner loop. In this way, a traditional double buffer or
“ping-pong” scheme could be implemented.

For example, two 512-word sub-buffers inside a 1K word buffer
could be used to receive 16-bit peripheral data with these settings:

* DMAX_START_ADDR = buffer base address
DMAX_CONFIG = 0x10D7 (FLOW = 1, DI_EN
DMA2D = 1, WDSIZE = 01, WNR = 1, DMAEN
DMAX_X_COUNT = 512
DMAX_X_MODIFY = 2 for 16-bit data
DMAX_Y_COUNT = 2 for two sub-buffers

DMAX_Y_MODIFY = 2, same as DMAx_X_MODIFY for contiguous
sub-buffers

1, DI_SEL = 1,

1)

e 2D, polled—if interrupt overhead is unacceptable but the loose
synchronization of address/count register polling is acceptable, a
2D multibuffer synchronization scheme may be used. For example,
assume receive data needs to be processed in packets of sixteen
32-bit elements. A four-part 2D DMA buffer can be allocated
where each of the four sub-buffers can hold one packet with these
settings:

* DMAX_START_ADDR = buffer base address
DMAX_CONFIG = 0x101B (FLOW = 1, DI_EN = 0, DMA2D = 1,
WDSIZE = 10, WNR = 1, DMAEN = 1)
DMAX_X_COUNT = 16
DMAX_X_MODIFY = 4 for 32-bit data
DMAX_Y_COUNT = 4 for four sub-buffers

DMAX_Y_MODIFY = 4, same as DMAx_X_MODIFY for contiguous
sub-buffers

* The synchronization core might read DMAx_Y_COUNT to determine
which sub-buffer is currently being transferred, and then allow one
full sub-buffer to account for pipelining. For example, if a read of
DMAX_Y_COUNT shows a value of 3, then the software should assume

ADSP-BF537 Blackfin Processor Hardware Reference 5-59

Programming Model

that sub-buffer 3 is being transferred, but some portion of sub-buf-
fer 2 may not yet be received. The software could, however, safely
proceed with processing sub-buffers 1 or 0.

* 1D unsynchronized FIFO—if a system’s design guarantees that
the processing of a peripheral’s data and the DMA rate of the data
will remain correlated in the steady state, but that short-term
latency variations must be tolerated, it may be appropriate to build
asimple FIFO. Here, the DMA channel may be programmed using
1D Autobuffer mode addressing without any interrupts or polling.

Descriptor Structures

DMA descriptors may be used to transfer data to or from memory data
structures that are not simple 1D or 2D arrays. For example, if a packet
of data is to be transmitted from several different locations in memory (a
header from one location, a payload from a list of several blocks of mem-
ory managed by a memory pool allocator, and a small trailer containing a
checksum), a separate DMA descriptor can be prepared for each memory
area, and the descriptors can be grouped in either an array or list as desired
by selecting the appropriate FLOW setting in DMAx_CONFIG.

The software can synchronize with the progress of the structure’s transfer
by selecting interrupt notification for one or more of the descriptors. For
example, the software might select interrupt notification for the header’s
descriptor and for the trailer’s descriptor, but not for the payload blocks’
descriptors.

5-60 ADSP-BF537 Blackfin Processor Hardware Reference

Direct Memory Access

It is important to remember the meaning of the various fields in the
DMAX_CONFIG descriptor elements when building a list or array of DMA
descriptors. In particular:

* The lower byte of DMAx_CONFIG specifies the DMA transfer to be
performed by the current descriptor (for example, interrupt-enable,

2D mode)

* The upper byte of DMAx_CONFIG specifies the format of the next
descriptor in the chain. The NDSIZE and FLOW fields in a given
descriptor do not correspond to the format of the descriptor itself;
they specify the link to the next descriptor, if any.

On the other hand, when the DMA unit is being restarted, both bytes of
the DMAx_CONFIG value written to the DMA channel’s DMAx_CONFIG register
should correspond to the current descriptor. At a minimum, the FLOW,
NDSIZE, WNR, and DMAEN fields must all agree with the current descriptor;
the WDSTZE, DI_EN, DI_SEL, SYNC, and DMA2D fields will be taken from the
DMAX_CONFIG value in the descriptor read from memory (and the field
values initially written to the register are ignored). See “Initializing
Descriptors in Memory” on page 5-112 in the “Programming Examples”
section for information on how descriptors can be set up.

Descriptor Queue Management

A system designer might want to write a DMA manager facility which
accepts DMA requests from other software. The DMA manager software
does not know in advance when new work requests will be received or
what these requests might contain. The software could manage these
transfers using a circular linked list of DMA descriptors, where each
descriptor’s NDPH and NDPL members point to the next descriptor, and the
last descriptor points to the first.

The code that writes into this descriptor list could use the processor’s cir-
cular addressing modes (I, L, M, and B registers), so that it does not need to
use comparison and conditional instructions to manage the circular

ADSP-BF537 Blackfin Processor Hardware Reference 5-61

Programming Model

structure. In this case, the NDPH and NDPL members of each descriptor
could even be written once at startup, and skipped over as each descrip-
tor’s new contents are written.

The recommended method for synchronization of a descriptor queue is
through the use of an interrupt. The descriptor queue is structured so that
at least the final valid descriptor is always programmed to generate an
interrupt.

There are two general methods for managing a descriptor queue using
interrupts:

* Interrupt on every descriptor

e Interrupt minimally - only on the last descriptor

Descriptor Queue Using Interrupts on Every Descriptor

In this system, the DMA manager software synchronizes with the DMA
unit by enabling an interrupt on every descriptor. This method should
only be used if system design can guarantee that each interrupt event will
be serviced separately (no interrupt overrun).

To maintain synchronization of the descriptor queue, the non-interrupt
software maintains a count of descriptors added to the queue, while the
interrupt handler maintains a count of completed descriptors removed
from the queue. The counts are equal only when the DMA channel is
paused after having processed all the descriptors.

When each new work request is received, the DMA manager software ini-
tializes a new descriptor, taking care to write a DMAx_CONFIG value with a
FLOW value of 0. Next, the software compares the descriptor counts to
determine if the DMA channel is running or not. If the DMA channel is
paused (counts equal), the software increments its count and then starts
the DMA unit by writing the new descriptor’s DMAx_CONFIG value to the
DMA channel’s DMAx_CONFIG register.

5-62 ADSP-BF537 Blackfin Processor Hardware Reference

Direct Memory Access

If the counts are unequal, the software instead modifies the next-to-last
descriptor’s DMAx_CONFIG value so that its upper half (FLOW and NDSIZE)
now describes the newly queued descriptor. This operation does not dis-
rupt the DMA channel, provided the rest of the descriptor data structure
is initialized in advance. It is necessary, however, to synchronize the soft-
ware to the DMA to correctly determine whether the new or the old
DMAX_CONFIG value was read by the DMA channel.

This synchronization operation should be performed in the interrupt
handler. First, upon interrupt, the handler should read the channel’s
DMAX_IRQ_STATUS register. If the DMA_RUN status bit is set, then the channel
has moved on to processing another descriptor, and the interrupt handler
may increment its count and exit. If the DMA_RUN status bit is not set, how-
ever, then the channel has paused, either because there are no more
descriptors to process, or because the last descriptor was queued too late
(that is, the modification of the next-to-last descriptor’s DMAx_CONFIG ele-
ment occurred after that element was read into the DMA unit.) In this
case, the interrupt handler should write the DMAx_CONFIG value appropriate
for the last descriptor to the DMA channel’s DMAx_CONFIG register, incre-
ment the completed descriptor count, and exit.

Again, this system can fail if the system’s interrupt latencies are large
enough to cause any of the channel’s DMA interrupts to be dropped. An
interrupt handler capable of safely synchronizing multiple descriptors’
interrupts would need to be complex, performing several MMR accesses to
ensure robust operation. In such a system environment, a minimal inter-
rupt synchronization method is preferred.

Descriptor Queue Using Minimal Interrupts

In this system, only one DMA interrupt event is possible in the queue at
any time. The DMA interrupt handler for this system can also be
extremely short. Here, the descriptor queue is organized into an “active”
and a “waiting” portion, where interrupts are enabled only on the last
descriptor in each portion.

ADSP-BF537 Blackfin Processor Hardware Reference 5-63

Programming Model

When each new DMA request is processed, the software’s non-interrupt
code fills in a new descriptor’s contents and adds it to the waiting portion
of the queue. The descriptor’s DMAx_CONFIG word should have a FLOW value
of zero. If more than one request is received before the DMA queue com-
pletion interrupt occurs, the non-interrupt code should queue later
descriptors, forming a waiting portion of the queue that is disconnected
from the active portion of the queue being processed by the DMA unit. In
other words, all but the last active descriptors contain FLOW values >= 4
and have no interrupt enable set, while the last active descriptor contains a
FLOW of 0 and an interrupt enable bit DI_EN set to 1. Also, all but the last
waiting descriptors contain FLOW values >= 4 and no interrupt enables set,
while the last waiting descriptor contains a FLOW of 0 and an interrupt
enable bit set to 1. This ensures that the DMA unit can automatically
process the whole active queue and then issue one interrupt. Also, this
arrangement makes it easy to start the waiting queue within the interrupt
handler by a single DMAX_CONFIG register write.

After queuing a new waiting descriptor, the non-interrupt software should
leave a message for its interrupt handler in a memory mailbox location
containing the desired DMAx_CONFIG value to use to start the first waiting
descriptor in the waiting queue (or 0 to indicate no descriptors are
waiting.)

It is critical that the software not modify the contents of the active
descriptor queue directly, once its processing by the DMA unit has been
started, unless careful synchronization measures are taken. In the most
straightforward implementation of a descriptor queue, the DMA manager
software would never modify descriptors on the active queue; instead, the
DMA manager waits until the DMA queue completion interrupt indicates
the processing of the entire active queue is complete.

When a DMA queue completion interrupt is received, the interrupt han-
dler reads the mailbox from the non-interrupt software and writes the
value in it to the DMA channel’s DMAX_CONFIG register. This single register
write restarts the queue, effectively transforming the waiting queue to an

5-64 ADSP-BF537 Blackfin Processor Hardware Reference

Direct Memory Access

active queue. The interrupt handler should then pass a message back to
the non-interrupt software indicating the location of the last descriptor
accepted into the active queue. If, on the other hand, the interrupt han-
dler reads its mailbox and finds a DMAx_CONFIG value of zero, indicating
there is no more work to perform, then it should pass an appropriate mes-
sage (for example, zero) back to the non-interrupt software indicating that
the queue has stopped. This simple handler should be able to be coded in

a very small number of instructions.

The non-interrupt software which accepts new DMA work requests needs
to synchronize the activation of new work with the interrupt handler. If
the queue has stopped (that is, if the mailbox from the interrupt software
is zero), the non-interrupt software is responsible for starting the queue
(writing the first descriptor’s DMAx_CONFIG value to the channel’s
DMAx_CONFIG register). If the queue is not stopped, however, the non-inter-
rupt software must not write the DMAx_CONFIG register (which would cause
a DMA error), but instead it should queue the descriptor onto the waiting
queue and update its mailbox directed to the interrupt handler.

Software Triggered Descriptor Fetches

If a DMA has been stopped in FLOW = 0 mode, the DMA_RUN bit in the
DMAx_IRQ_STATUS register remains set until the content of the internal
DMA FIFOs has been completely processed. Once the DMA_RUN bit clears,
it is safe to restart the DMA by simply writing again to the DMAX_CONFIG
register. The DMA sequence is repeated with the previous settings.

Similarly, a descriptor-based DMA sequence that has been stopped tem-
porarily with a FLOW = 0 descriptor can be continued with a new write to
the configuration register. When the DMA controller detects the FLOW = 0
condition by loading the DMACFG field from memory, it has already
updated the next descriptor pointer, regardless of whether operating in
descriptor array mode or descriptor list mode.

ADSP-BF537 Blackfin Processor Hardware Reference 5-65

Programming Model

The next descriptor pointer remains valid, if the DMA halts and is
restarted. As soon as the DMA_RUN bit clears, software can restart the DMA
and force the DMA controller to fetch the next descriptor. To accomplish
this, the software writes a value with the DMAEN bit set and with proper val-
ues in the FLOW and NDSIZE fields into the configuration register. The next
descriptor is fetched if FLOW equals 0x4, 0x6, or 0x7. In this mode of opera-
tion, the NDSIZE field should at least span up to the DMACFG field to
overwrite the configuration register immediately.

One possible procedure is:

1.
2.

Write to DMAx_NEXT_DESC_PTR.
Write to DMAX_CONFIG with

. FLOW = 0x8
NDSIZE >= OxA
DI_EN=0
DMAEN = 1.

Automatically fetched DMACFG has

i FLOW = 0x0
NDSIZE = 0x0
SYNC = 1 (for transmitting DMAs only)
DI_EN=1
DMAEN = 1.

In the interrupt routine, repeat step 2. The DMAX_NEXT_DESC_PTR is
updated by the descriptor fetch.

To avoid polling of the DMA_RUN bit, set the SYNC bit in case of
memory read DMAs (DMA transmit or MDMA source).

5-66

ADSP-BF537 Blackfin Processor Hardware Reference

Direct Memory Access

If all DMACFG fields in a descriptor chain have the FLOW and NDSIZE fields set
to zero, the individual DMA sequences do not start until triggered by soft-
ware. This is useful when the DMAs need to be synchronized with other

events in the system, and it is typically performed by interrupt service rou-
tines. A single MMR write is required to trigger the next DMA sequence.

Especially when applied to MDMA channels, such scenarios play an
important role. Usually, the timing of MDMAs cannot be controlled (See
“Handshaked Memory DMA Operation” on page 5-39). By halting
descriptor chains or rings this way, the whole DMA transaction can be
broken into pieces that are individually triggered by software.

Source and destination channels of a MDMA may differ in descrip-
tor structure. However, the total work count must match when the
DMA stops. Whenever a MDMA is stopped, destination and
source channels should both provide the same FLOW = 0 mode after
exactly the same number of words. Accordingly, both channels
need to be started afterward.

Software triggered descriptor fetches are illustrated in Listing 5-7 on
page 5-115. MDMA channels can be paused by software at any time by
writing a 0 to the DRQ bit field in the HMDMAX_CONTROL register. This simply
disables the self-generated DMA requests, regardless whether HMDMA is
enabled or not.

DMA Registers

DMA registers fall into three categories:
* DMA channel registers (starting on page 5-68)
e Handshaked MDMA registers (starting on page 5-99)

* Global DMA traffic control registers (starting on page 5-1006)

ADSP-BF537 Blackfin Processor Hardware Reference 5-67

DMA Registers

DMA Channel Registers

The processor features twelve peripheral DMA channels and two channel
pairs for memory DMA. All channels have an identical set of registers
summarized in Table 5-6.

Table 5-6 lists the generic names of the DMA registers. For each register,
the table also shows the MMR offset, a brief description of the register,
the register category.

Table 5-6. Generic Names of the DMA Memory-Mapped

Registers
MMR |Generic MMR Name |MMR Description Register Name of
Offset Category |Corresponding
Descriptor
Element in
Memory
0x00 NEXT_DESC_PTR Link pointer to next descrip- | Parameter | NDPH (upper
tor 16 bits), NDPL
(lower 16 bits)
0x04 START_ADDR Start address of current buffer | Parameter | SAH (upper 16
bits),
SAL (lower 16
bits)
0x08 CONFIG DMA Configuration register, | Parameter | DMACFG
including enable bit
0x0C Reserved Reserved
0x10 X_COUNT Inner loop count Parameter | XCNT
0x14 X_MODIFY Inner loop address increment, | Parameter | XMOD
in bytes
0x18 Y_COUNT Outer loop count 2D only) | Parameter | YCNT
0x1C Y_MODIFY Outer loop address incre- Parameter | YMOD
ment, in bytes
0x20 CURR_DESC_PTR Current Descriptor Pointer Current N/A
0x24 CURR_ADDR Current DMA Address Current N/A

5-68

ADSP-BF537 Blackfin Processor Hardware Reference

Direct Memory Access

Table 5-6. Generic Names of the DMA Memory-Mapped
Registers (Contd)

MMR |Generic MMR Name |MMR Description Register Name of
Offset Category Corresponding
Descriptor
Element in
Memory
0x28 IRQ_STATUS Interrupt Status register: Control/ N/A
Contains Completion and Status

DMA Error Interrupt status
and channel state

(Run/Fetch/Paused)
0x2C PERIPHERAL_MAP Peripheral to DMA Channel | Control/ N/A
Mapping: Status

Contains a 4-bit value speci-
fying the peripheral to associ-
ate with this DMA channel
(Read-only for MDMA chan-
nels)

0x30 CURR_X_COUNT Current count (1D) or Current N/A
intra-row X count (2D);
counts down from X_COUNT

0x34 Reserved Reserved

0x38 CURR_Y_COUNT Current row count (2D only); | Current N/A
counts down from Y_COUNT

0x3C Reserved Reserved

Channel-specific register names are composed of a prefix and the generic
MMR name shown in Table 5-6. For peripheral DMA channels, the pre-
fix “DMAx_" is used where “x” stands for a channel number between 0
and 11. For memory DMA channels, the prefix is “MDMA_yy_”, where
“yy” stands for either “D0”, “S0”, “D1”, or “S1” to indicate destination
and source channel registers of MDMAO and MDMAL. For example, the
configuration register of peripheral DMA channel 6 is called DMA6_CONFIG.
The one for MDMA1 source channel is called MDMA_S1_CONFIG.

ADSP-BF537 Blackfin Processor Hardware Reference 5-69

DMA Registers

The generic MMR names shown in Table 5-6 are not actually
mapped to resources in the processor.

For convenience, discussions in this chapter use generic
(non-peripheral specific) DMA and memory DMA register names.

DMA channel registers fall into three categories:

Parameter registers, such as DMAx_CONFIG and DMAx_X_COUNT that
can be loaded directly from descriptor elements; descriptor ele-
ments are listed in Table 5-6.

Current registers, such as DMAx_CURR_ADDR and DMAx_CURR_X_COUNT

Control/status registers, such as DMAx_IRQ_STATUS and
DMAx_PERIPHERAL_MAP

All DMA registers can be accessed as 16-bit entities. However, the follow-
ing registers may also be accessed as 32-bit registers:

®

DMAX_NEXT_DESC_PTR
DMAX_START_ADDR
DMAXx_CURR_DESC_PTR
DMAXx_CURR_ADDR

When these four registers are accessed as 16-bit entities, only the
lower 16 bits can be accessed.

Because confusion might arise between descriptor element names and
generic DMA register names, this chapter uses different naming conven-
tions for physical registers and their corresponding elements in descriptors
that reside in memory. Table 5-6 shows the relation.

5-70

ADSP-BF537 Blackfin Processor Hardware Reference

Direct Memory Access

DMAX_PERIPHERAL_MAP/MDMA_yy_PERIPHERAL_MAP
Registers

Each DMA channel’s peripheral map register
(DMAX_PERIPHERAL_MAP/MDMA_yy_PERIPHERAL_MAP, shown in Figure 5-6)
contains bits that:

* Map the channel to a specific peripheral.
* Identify whether the channel is a peripheral DMA channel or a
memory DMA channel.

Peripheral Map Registers (DMAx_PERIPHERAL_MAP/MDMA_yy_ PERIPHERAL_MAP)
R/W prior to enabling channel; RO after enabling channel

For memory-
mapped 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

addprzsses,seelx |X |X |X IX |X |X |X IX |X |X |X IX |X |X |X I Reset: See Table 5-8.
Table 5-7.

PMAP[3:0] (Peripheral | CTYPE(DMAChannelType)
Mapped to This - RO

Channel) — | 0 - Peripheral DMA

0x0 - PPI 1 - Memory DMA

0x1 - Ethernet MAC Receive, reserved on ADSP-BF534
0x2 - Ethernet MAC Transmit, reserved on ADSP-BF534
0x3 - SPORTO Receive

0x4 - SPORTO Transmit

0x5 - SPORT1 Receive

0x6 - SPORT1 Transmit

0x7 - SPI

0x8 - UARTO Receive

0x9 - UARTO Transmit

0xA - UART1 Receive

0xB - UART1 Transmit

Figure 5-6. Peripheral Map Registers

ADSP-BF537 Blackfin Processor Hardware Reference 5-71

DMA Registers

Follow these steps to swap the DMA channel priorities of two channels.
Assume that channels 6 and 7 are involved.

1. Make sure DMA is disabled on channels 6 and 7.

2. Write DMA6_PERIPHERAL_MAP with 0x7000 and
DMA7_PERIPHERAL_MAP with 0x6000.

3. Enable DMA on channels 6 and/or 7.

Table 5-7. Peripheral Map Register Memory-Mapped Addresses

Register Name Memory-mapped Address
DMAO_PERIPHERAL_MAP 0xFFCO0 0C2C
DMA1_PERIPHERAL_MAP 0xFFCO0 0C6C
DMA2_PERIPHERAL_MAP 0xFFCO0 0CAC
DMA3_PERIPHERAL_MAP 0xFFCO0 0CEC
DMA4_PERIPHERAL_MAP 0xFFCO0 0D2C
DMAS5_PERIPHERAL_MAP 0xFFCO0 0D6C
DMAG_PERIPHERAL_MAP 0xFFCO0 0DAC
DMA7_PERIPHERAL_MAP 0xFFCO0 0DEC
DMAS8_PERIPHERAL_MAP 0xFFCO0 0E2C
DMA9_PERIPHERAL_MAP 0xFFCO0 0E6C
DMA10_PERIPHERAL_MAP 0xFFCO 0EAC
DMA11_PERIPHERAL_MAP 0xFFCO 0EEC
MDMA_DO_PERIPHERAL_MAP 0xFFCO 0F2C
MDMA_SO0_PERIPHERAL_MAP 0xFFCO0 0F6C
MDMA_D1_PERIPHERAL_MAP 0xFFCO OFAC
MDMA_S1_PERIPHERAL_MAP 0xFFCO OFEC

5-72 ADSP-BF537 Blackfin Processor Hardware Reference

Direct Memory Access

Table 5-8 lists the binary peripheral map settings for each DMA-capable

peripheral.

Table 5-8. Peripheral Mapping

DMA Default Peripheral Default PERIPHERAL_MAP | Comments

Channel Mapping Setting (Binary)

DMAO (high- | PPI receive/transmit b#0000 0000 0000 0000

est

priority)

DMAI1 Ethernet receive b#0001 0000 0000 0000 Invalid PMAP
default setting on
ADSP-BF534

DMA2 Ethernet transmit b#0010 0000 0000 0000 Invalid PMAP
default setting on
ADSP-BF534

DMA3 SPORTO receive b#0011 0000 0000 0000

DMA4 SPORTO transmit b#0100 0000 0000 0000

DMAS SPORTT receive b#0101 0000 0000 0000

DMAG SPORT1 transmit b#0110 0000 0000 0000

DMA7 SPI receive/transmit b#0111 0000 0000 0000

DMAS UARTO receive b#1000 0000 0000 0000

DMA9 UARTO transmit b#1001 0000 0000 0000

DMAI10 UART1 receive b#1010 0000 0000 0000

DMAL11 UART1 transmit b#1011 0000 0000 0000

MDMA_DO | MDMADO destination b#0000 0000 0100 0000 Not reassignable

MDMA_S0 | MDMAO source b#0000 0000 0100 0000 Not reassignable

MDMA_D1 | MDMAI destination b#0000 0000 0100 0000 Not reassignable

MDMA_S1 | MDMAL source b#0000 0000 0100 0000 Not reassignable

(lowest

priority)

ADSP-BF537 Blackfin Processor Hardware Reference

5-73

DMA Registers

DMAx_CONFIG/MDMA _yy CONFIG Registers

The DMA configuration register (DMAx_CONFIG/MDMA_yy_CONFIG), shown
in Figure 5-7, is used to set up DMA parameters and operating modes.

Configuration Registers (DMAx_CONFIG/MDMA_yy_CONFIG)

R/W prior to enabling channel; RO after enabling channel

For memory-

mapped 15 14 13 12 11

3 2 1 0

ofofo]o]

see Table 5-9.

FLOWI[2:0] (Next

Operation)

0x0 - Stop

0x1 - Autobuffer mode

0x4 - Descriptor array

0x6 - Descriptor list (small model)
0x7 - Descriptor list (large model)

NDSIZE[3:0] (Flex Descriptor Size)

Size of next descriptor

0000 - Required if in Stop or Autobuffer mode
0001 - 1001 - Descriptor size

1010 - 1111 - Reserved

DI_EN (Data Interrupt Enable)

0 - Do not allow completion of
work unit to generate an
interrupt

1 - Allow completion of work unit
to generate a data interrupt

10 9 8 7 6 5 4
addresses, IO |0 |0 |0 IO |0 |0 |0 Io |0 |0 |0
| | |

DI_SEL (Data Interrupt Timing Select)
Applies only when DMA2D = 1
0 - Interrupt after completing
whole buffer (outer loop)
1 - Interrupt after completing
each row (inner loop)

Figure 5-7. Configuration Registers

Reset = 0x0000

DMAEN (DMA

Channel Enable)

0 - Disable DMA channel

1 - Enable DMA channel

WNR (DMA Direction)

0 - DMA is a memory read
(source) operation

1 - DMA is a memory write
(destination) operation

WDSIZE[1:0] (Transfer
Word Size)

00 - 8-bit transfers

01 - 16-bit transfers

10 - 32-bit transfers

11 - Reserved

DMA2D (DMA Mode)

0 - Linear (One-dimensional)
1 - Two-dimensional (2D)
SYNC (Work Unit
Transitions)

0 - Continuous transition
1 - Synchronized transition

Note that writing the DMAx_CONF1G register while DMA is already running
will cause a DMA error unless writing with the DMAEN bit set to 0.

5-74 ADSP-BF537 Blackfin Processor Hardware Reference

Direct Memory Access

Table 5-9. Configuration Register Memory-Mapped Addresses

Register Name

Memory-Mapped Address

DMAO0_CONFIG

0xFFCO0 0C08

DMA1_CONFIG

0xFFCO0 0C48

DMA2_CONFIG

0xFFCO0 0C88

DMA3_CONFIG

0xFFCO0 0CC8

DMA4_CONFIG

0xFFCO0 0D08

DMAS_CONFIG

0xFFCO0 0D48

DMAG_CONFIG

0xFFCO0 0D88

DMA7_CONFIG

0xFFCO0 0DC8

DMAS8_CONFIG

0xFFCO 0E08

DMA9_CONFIG

0xFFCO 0E48

DMA10_CONFIG

0xFFCO OE88

DMA11_CONFIG

0xFFCO 0EC8

MDMA_DO0_CONFIG

0xFFCO 0F08

MDMA_S0_CONFIG

0xFFCO0 0F48

MDMA_D1_CONFIG

0xFFCO 0F88

MDMA_S1_CONFIG

0xFFCO OFC8

The fields of the DMAX_CONFIG register are used to set up DMA parameters

and operating modes.

* FLOWL2:0] (next operation). This field specifies the type of DMA
transfer to follow the present one. The flow options are:

e 0x0 - stop. When the current work unit completes, the DMA chan-
nel stops automatically, after signaling an interrupt (if selected).
The DMA_RUN status bit in the DMAXx_IRQ_STATUS register changes
from 1 to 0, while the DMAEN bit in the DMAXx_CONFIG register is
unchanged. In this state, the channel is paused. Peripheral
interrupts are still filtered out by the DMA unit. The channel may

ADSP-BF537 Blackfin Processor Hardware Reference 5-75

DMA Registers

be restarted simply by another write to the DMAX_CONFIG register
specifying the next work unit, in which the DMAEN bit is set to 1.

0x1 - autobuffer mode. In this mode, no descriptors in memory are
used. Instead, DMA is performed in a continuous circular buffer
fashion based on user-programmed DMAx MMR settings. Upon
completion of the work unit, the parameter registers are reloaded
into the current registers, and DMA resumes immediately with
zero overhead. Autobuffer mode is stopped by a user write of 0 to
the DMAEN bit in the DMAX_CONFIG register.

0x4 - descriptor array mode. This mode fetches a descriptor from
memory that does not include the NDPH or NDPL elements. Because
the descriptor does not contain a next descriptor pointer entry, the
DMA engine defaults to using the DMAx_CURR_DESC_PTR register to
step through descriptors, thus allowing a group of descriptors to
follow one another in memory like an array.

0x6 - descriptor list (small model) mode. This mode fetches a
descriptor from memory that includes NDPL, but not NDPH. There-
fore, the high 16 bits of the next descriptor pointer field are taken
from the upper 16 bits of the DMAXx_NEXT_DESC_PTR register, thus
confining all descriptors to a specific 64K page in memory.

0x7 - descriptor list (large model) mode. This mode fetches a
descriptor from memory that includes NDPH and NDPL, thus allowing
maximum flexibility in locating descriptors in memory.

NDSIZE[3:0] (flex descriptor size). This field specifies the number
of descriptor elements in memory to load. This field must be 0 if in
stop or autobuffer mode. If NDSIZE and FLOW specify a descriptor
that extends beyond YMOD, a DMA error results.

DI_EN (data interrupt enable). This bit specifies whether to allow
completion of a work unit to generate a data interrupt.

5-76

ADSP-BF537 Blackfin Processor Hardware Reference

Direct Memory Access

e DI_SEL (data interrupt timing select). This bit specifies the timing
of a data interrupt—after completing the whole buffer or after
completing each row of the inner loop. This bit is used only in 2D

DMA operation.

* SYNC (work unit transitions). This bit specifies whether the DMA
channel performs a continuous transition (SYNC = 0) or a synchro-
nized transition (SYNC = 1) between work units. For more
information, see “Work Unit Transitions” on page 5-27.

In DMA transmit (memory read) and MDMA source channels, the
SYNC bit controls the interrupt timing at the end of the work unit
and the handling of the DMA FIFO between the current and next

work unit.

@ Work unit transitions for MDMA streams are controlled by the
SYNC bit of the MDMA source channel’s DMAx_CONFIG register. The
SYNC bit of the MDMA destination channel is reserved and must be
0.

e DMA2D (DMA mode). This bit specifies whether DMA mode
involves only DMAx_X_COUNT and DMAx_X_MODIFY (one-dimen-
sional DMA) or also involves DMAx_Y_COUNT and
DMAx_Y_MODIFY (two-dimensional DMA).

* WDSIZE[1:0] (transfer word size). The DMA engine supports trans-
fers of 8-, 16-, or 32-bit items. Each request/grant results in a
single memory access (although two cycles are required to transfer
32-bit data through a 16-bit memory port or through the 16-bit
DMA access bus). The DMA address pointer registers’ increment
sizes (strides) must be a multiple of the transfer unit size—1 for

8-bit, 2 for 16-bit, 4 for 32-bit.

ADSP-BF537 Blackfin Processor Hardware Reference 5-77

DMA Registers

®

WNR (DMA direction). This bit specifies DMA direction—memory

read (0) or memory write (1).

DMAEN (DMA channel enable). This bit specifies whether to enable
a given DMA channel.

When a peripheral DMA channel is enabled, interrupts from the
peripheral denote DMA requests. When a channel is disabled, the
DMA unit ignores the peripheral interrupt and passes it directly to
the interrupt controller. To avoid unexpected results, take care to
enable the DMA channel before enabling the peripheral, and to
disable the peripheral before disabling the DMA channel.

DMAX_IRQ_STATUS/MDMA _yy IRQ_STATUS Registers

The interrupt status register (OMAx_IRQ_STATUS/MDMA_yy_IRQ_STATUS),
shown in Figure 5-8, contains bits that record whether the DMA channel:

Is enabled and operating, enabled but stopped, or disabled.
Is fetching data or a DMA descriptor.

Has detected that a global DMA interrupt or a channel interrupt is
being asserted.

Has logged occurrence of a DMA error.

Note the DMA_DONE interrupt is asserted when the last memory access (read
or write) has completed.

For a memory transfer to a peripheral, there may be up to four data
words in the channel’s DMA FIFO when the interrupt occurs. At
this point, it is normal to immediately start the next work unit. If,
however, the application needs to know when the final data item is
actually transferred to the peripheral, the application can test or
poll the DMA_RUN bit. As long as there is undelivered transmit data
in the FIFO, the DMA_RUN bit is 1.

5-78

ADSP-BF537 Blackfin Processor Hardware Reference

Direct Memory Access

For a memory write DMA channel, the state of the DMA_RUN bit has

no meaning after the last DMA_DONE event has been signaled. It does
not indicate the status of the DMA FIFO.

For MDMA transfers where it is not desired to use an interrupt to
notify when the DMA operation has ended, software should poll
the DMA_DONE bit, and not the DMA_RUN bit, to determine when the
transaction has completed.

Interrupt Status Registers (DMAx_IRQ_STATUS/MDMA _yy IRQ_STATUS)

For memory-
mapped 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

dd , =
$ab[:st'vs-$3.seelo |o |o |o |o |o |o |o |0 |o |o |o |o |0 |o |0 | Reset = 0x0000

DMA_RUN (DMA Channel |— DMA_DONE (DMA Comple-
Running) - RO tion Interrupt Status) - W1C
This bit is set to 1 automatically when 0 - No interrupt is being
the DMAx_CONFIG register is written asserted for this channel
0 - This DMA channel is disabled, or it 1 - DMA work unit has
is enabled but paused (FLOW completed, and this DMA
mode 0) channel’s interrupt is being
1 - This DMA channel is enabled and asserted
operating, either transferring data L DMA_ERR (DMA Error Inter-
or fetching a DMA descriptor rupt Status) - W1C
0 - No DMA error has
DFETCH (DMA Descriptor occurred
Fetch) - RO 1 - A DMA error has occurred,
This bit is set to 1 automatically when and the global DMA Error
the DMAx_CONFIG register is written interrupt is being asserted.
with FLOW modes 4-7 After this error occurs,
0 - This DMA channel is disabled, or it the contents of the DMA
is enabled but stopped (FLOW Current registers are
mode 0) unspecified. Control/
1 - This DMA channel is enabled and Status and Parameter
presently fetching a DMA descriptor registers are unchanged.

Figure 5-8. Interrupt Status Registers

ADSP-BF537 Blackfin Processor Hardware Reference 5-79

DMA Registers

Table 5-10. Interrupt Status Register Memory-Mapped Addresses

Register Name

Memory-Mapped Address

DMAO_IRQ_STATUS

0xFFCO0 0C28

DMA1_IRQ_STATUS

0xFFCO0 0C68

DMA2_IRQ_STATUS

0xFFCO0 0CA8

DMA3_IRQ_STATUS

0xFFCO 0CE8

DMA4_IRQ_STATUS

0xFFCO0 0D28

DMAS5_IRQ_STATUS

0xFFCO0 0D68

DMAG_IRQ_STATUS

0xFFCO0 0DAS

DMA7_IRQ_STATUS

0xFFCO0 0DES8

DMAS8_IRQ_STATUS

0xFFCO 0E28

DMA9_IRQ_STATUS

0xFFCO0 0E68

DMA10_IRQ_STATUS

0xFFCO OEAS8

DMA11_IRQ_STATUS

0xFFCO OEES8

MDMA_DO_IRQ_STATUS 0xFFCO 0F28
MDMA_S0_IRQ_STATUS 0xFFCO 0F68
MDMA_D1_IRQ_STATUS 0xFFCO OFAS8
MDMA_S1_IRQ_STATUS 0xFFCO OFES8

The processor supports a flexible interrupt control structure with three

interrupt sources:

* Data driven interrupts (see Table 5-11)

* Peripheral error interrupts

* DMA error interrupts (for example, bad descriptor or bus error)

Separate interrupt request (IRQ) levels are allocated for data and periph-
eral error interrupts, and DMA error interrupts.

5-80

ADSP-BF537 Blackfin Processor Hardware Reference

Direct Memory Access

Table 5-11. Data Driven Interrupts

Interrupt Name Description

No Interrupt Interrupts can be disabled for a given work unit.

Peripheral Interrupt | These are peripheral (non-DMA) interrupts.

Row Completion DMA Interrupts can occur on the completion of a row

(CURR_X_COUNT expiration).

Buffer Completion DMA Interrupts can occur on the completion of an entire buf-

fer (when CURR_X_COUNT and CURR_Y_COUNT expire).

The DMA error conditions for all DMA channels are OR’ed together into
one system-level DMA error interrupt. The individual TRQ_STATUS words

of each channel can be read to identify the channel that caused the DMA
error interrupt.

Note the DMA_DONE and DMA_ERR interrupt indicators are
write-one-to-clear (W1C).

When switching a peripheral from DMA to non-DMA mode, the
peripheral’s interrupts should be disabled during the mode switch
(via the appropriate peripheral registers or SIC_IMASK) so that no

unintended interrupt is generated on the shared DMA/interrupt
request line.

ADSP-BF537 Blackfin Processor Hardware Reference 5-81

DMA Registers

DMAX_START_ADDR/MDMA _yy_START_ADDR Registers

The start address register (DMAx_START_ADDR/MDMA_yy_START_ADDR), shown

in Figure 5-9, contains the start address of the data buffer currently tar-
geted for DMA.

Start Address Registers (DMAx_START_ADDR/ MDMA_yy START_ADDR)
R/W prior to enabling channel; RO after enabling channel

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
For memory-

mapped DD XXX DX TXTXTX X [X] Reset = undefined
addresses, see l |
Table 5-12. |

DMA Start

Address[31:16]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
D D e P e o e e e I [x fx [x [x ¢
L |

| DMA Start
Address[15:0]

Figure 5-9. Start Address Registers

Table 5-12. Start Address Register Memory-Mapped Addresses

Register Name Memory-Mapped Address
DMAO_START_ADDR 0xFFCO0 0C04
DMA1_START_ADDR 0xFFCO0 0C44
DMA2_START_ADDR 0xFFCO0 0C84
DMA3_START_ADDR 0xFFCO0 0CC4
DMA4_START_ADDR 0xFFCO0 0D04
DMAS5_START_ADDR 0xFFCO0 0D44
DMAG_START_ADDR 0xFFCO0 0D84
DMA7_START_ADDR 0xFFCO0 0DC4
DMAS8_START_ADDR 0xFFCO0 0E04
DMA9_START_ADDR 0xFFCO0 0E44

5-82 ADSP-BF537 Blackfin Processor Hardware Reference

Direct Memory Access

Table 5-12. Start Address Register Memory-Mapped Addresses (Cont’d)

Register Name

Memory-Mapped Address

DMA10_START_ADDR

0xFFCO0 0E84

DMA11_START_ADDR

0xFFCO0 0EC4

MDMA_DO_START_ADDR

0xFFCO0 0F04

MDMA_S0_START_ADDR

0xFFCO 0F44

MDMA_D1_START_ADDR

0xFFCO0 0F84

MDMA_S1_START_ADDR

0xFFCO OFC4

DMAXx_CURR_ADDR/MDMA _yy CURR_ADDR Registers

The current address register (DMAx_CURR_ADDR/MDMA_yy_CURR_ADDR),
shown in Figure 5-10, contains the present DMA transfer address for a

given DMA session.

Current Address Registers (DMAx_CURR_ADDR/MDMA_yy CURR_ADDR)
R/W prior to enabling channel; RO after enabling channel

For memory-
mapped

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

addresses, see |x |x |x |x |x |x |x |x|x|x |x |x|x |x |x |x| Reset = Undefined

Table 5-13.)

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

D D P P P P e x e x|

Figure 5-10. Current Address Registers

Current Address[31:16]
Upper 16 bits of present
DMA transfer address for
a given DMA session

Current Address[15:0]

Lower 16 bits of present
DMA transfer address for
a given DMA session

ADSP-BF537 Blackfin Processor Hardware Reference

5-83

DMA Registers

On the first memory transfer of a DMA work unit, the DMAx_CURR_ADDR
register is loaded from the DMAx_START_ADDR register, and it is incremented
as each transfer occurs. The current address register contains 32 bits.

Table 5-13. Current Address Register Memory-Mapped Addresses

Register Name Memory-Mapped Address
DMAO_CURR_ADDR 0xFFCO0 0C24
DMA1_CURR_ADDR 0xFFCO0 0C64
DMA2_CURR_ADDR 0xFFCO0 0CA4
DMA3_CURR_ADDR 0xFFCO0 0CE4
DMA4_CURR_ADDR 0xFFCO0 0D24
DMA5_CURR_ADDR 0xFFCO0 0D64
DMAG6_CURR_ADDR 0xFFCO 0DA4
DMA7_CURR_ADDR 0xFFCO0 0DE4
DMAS8_CURR_ADDR 0xFFCO0 0E24
DMA9_CURR_ADDR 0xFFCO0 0E64
DMA10_CURR_ADDR 0xFFCO 0EA4
DMA11_CURR_ADDR 0xFFCO OEE4
MDMA_DO0_CURR_ADDR 0xFFCO0 0F24
MDMA_S0_CURR_ADDR 0xFFCO0 0F64
MDMA_D1_CURR_ADDR 0xFFCO0 0FA4
MDMA_S1_CURR_ADDR 0xFFCO OFE4

5-84 ADSP-BF537 Blackfin Processor Hardware Reference

Direct Memory Access

DMAXx_X_COUNT/MDMA_yy X_COUNT Registers

For 2D DMA, the inner loop count register
(DMAX_X_COUNT/MDMA_yy_X_COUNT), shown in Figure 5-11, contains the
inner loop count. For 1D DMA, it specifies the number of elements to
read in. For details, see “T'wo-Dimensional DMA Operation” on

page 5-14. A value of 0 in DMAX_X_COUNT corresponds to 65,536 elements.

Inner Loop Count Registers (DMAx_X_COUNT/MDMA_yy_X_COUNT)
R/W prior to enabling channel; RO after enabling channel

;oarpr'r;:énory- 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
addresses, see |X|X|><|><IX|X|X|><I><|X|X|X|><|><|X|><I Reset = Undefined
Table 5-14. "

| X_COUNTI[15:0] (Inner
Loop Count)
The number of elements to
read in (1D); the number of
rows in the inner loop (2D)

Figure 5-11. Inner Loop Count Registers

Table 5-14. Inner Loop Count Register Memory-Mapped
Addresses

Register Name Memory-Mapped Address
DMAO0_X_COUNT 0xFFCO0 0C10
DMA1_X_COUNT 0xFFCO0 0C50
DMA2_X_COUNT 0xFFCO0 0C90
DMA3_X_COUNT 0xFFCO0 0CDO0
DMA4_X_COUNT 0xFFCO0 0D10
DMA5_X_COUNT 0xFFCO0 0D50
DMAG_X_COUNT 0xFFCO0 0D90
DMA7_X_COUNT 0xFFC0 0DDO
DMAS8_X_COUNT 0xFFCO0 0E10
DMA9_X_COUNT 0xFFCO0 0E50

ADSP-BF537 Blackfin Processor Hardware Reference 5-85

DMA Registers

Table 5-14. Inner Loop Count Register Memory-Mapped
Addresses (Contd)

Register Name Memory-Mapped Address
DMA10_X_COUNT 0xFFCO0 0E90
DMA11_X_COUNT 0xFFCO0 0EDO
MDMA_D0_X_COUNT 0xFFCO 0F10
MDMA_S0_X_COUNT 0xFFCO 0F50
MDMA_D1_X_COUNT 0xFFCO0 0F90
MDMA_S1_X_COUNT 0xFFCO0 0FDO

DMAX_CURR_X_COUNT/MDMA _yy CURR_X_COUNT Registers

The current inner loop count register
(DMAX_CURR_X_COUNT/MDMA_yy_CURR_X_COUNT), shown in Figure 5-12,
holds the number of transfers remaining in the current DMA row (inner
loop).
Current Inner Loop Count Registers (DMAx_CURR_X_COUNT/

R/W prior to enabling channel; RO after enabling channel

For memory-

mapped 1514 1312 1110 9 8 7 6 5 4 3 2 1 0
addresses, see |x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x| Reset = Undefined
Table 5-15.

| CURR_X_COUNT[15:0]
(Current Inner Loop
Count)
Loaded by X_COUNT
at the beginning of each
DMA session (1D DMA),
or at the beginning of
each row (2D DMA)

Figure 5-12. Current Inner Loop Count Registers

5-86 ADSP-BF537 Blackfin Processor Hardware Reference

Direct Memory Access

On the first memory transfer of each DMA work unit, it is loaded with
the value in the DMAX_X_COUNT register and then decremented. For 2D
DMA, on the last memory transfer in each row except the last row, it is
reloaded with the value in the DMAx_X_COUNT register; this occurs at
the same time that the value in the DMAx_CURR_Y_COUNT register is decre-
mented. Otherwise it is decremented each time an element is transferred.
Expiration of the count in this register signifies that DMA is complete. In
2D DMA, the DMAX_CURR_X_COUNT register value is 0 only when the entire
transfer is complete. Between rows it is equal to the value of the
DMAX_X_COUNT register.

Table 5-15. Current Inner Loop Count Register Memory-Mapped
Addresses

Register Name Memory-Mapped Address
DMAO_CURR_X_COUNT 0xFFCO0 0C30
DMA1_CURR_X_COUNT 0xFFCO0 0C70
DMA2_CURR_X_COUNT 0xFFCO0 0CBO
DMA3_CURR_X_COUNT 0xFFCO0 0CFO
DMA4_CURR_X_COUNT 0xFFCO0 0D30
DMA5_CURR_X_COUNT 0xFFCO0 0D70
DMAG6_CURR_X_COUNT 0xFFCO0 0DBO
DMA7_CURR_X_COUNT 0xFFCO0 0DFO
DMAS8_CURR_X_COUNT 0xFFCO 0E30
DMA9_CURR_X_COUNT 0xFFCO0 0E70
DMA10_CURR_X_COUNT 0xFFCO0 0EBO
DMA11_CURR_X_COUNT 0xFFCO0 OEFO
MDMA_DO0_CURR_X_COUNT 0xFFCO 0F30
MDMA_S0_CURR_X_COUNT 0xFFCO 0F70
MDMA_D1_CURR_X_COUNT 0xFFCO0 0FBO
MDMA_S1_CURR_X_COUNT 0xFFCO OFFO0

ADSP-BF537 Blackfin Processor Hardware Reference 5-87

DMA Registers

DMAXx_X_MODIFY/MDMA_yy_X_MODIFY Registers

The inner loop address increment register
(DMAX_X_MODIFY/MDMA_yy_X_MODIFY), shown in Figure 5-13, contains a
signed, two’s-complement byte-address increment. In 1D DMA, this
increment is the stride that is applied after transferring each element.

Note DMAx_X_MODIFY is specified in bytes, regardless of the DMA
transfer size.

In 2D DMA, this increment is applied after transferring each element in
the inner loop, up to but not including the last element in each inner
loop. After the last element in each inner loop, the DMAx_Y_MODIFY regis-
ter is applied instead, except on the very last transfer of each work unit.
The DMAx_X_MODIFY register is always applied on the last transfer of a
work unit.

The DMAX_X_MODIFY field may be set to 0. In this case, DMA is performed
repeatedly to or from the same address. This is useful, for example, in
transferring data between a data register and an external memory-mapped

peripheral.

Inner Loop Address Increment Registers (DMAx_X_MODIFY/MDMA_yy_X_MODIFY)
R/W prior to enabling channel; RO after enabling channel

For memory-
mapped 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

dd , XX [x [x Ix|x|[x [x|x|x|x[x]x]x]|x|[x] Reset=Undefined
addresses, see [| x [x [x [x [x [x [x [x [x [x [x[x[x[x[x]

L]
l X_MODIFY[15:0] (Inner
Loop Address Increment)
Stride (in bytes) to take after
each decrement of
CURR_X_COUNT

Figure 5-13. Inner Loop Address Increment Registers

5-88 ADSP-BF537 Blackfin Processor Hardware Reference

Direct Memory Access

Table 5-16. Inner Loop Address Increment Register Memory-Mapped

Addresses

Register Name

Memory-Mapped Address

DMAO0_X_MODIFY

0xFFCO0 0C14

DMA1_X_MODIFY

0xFFCO0 0C54

DMA2_X_MODIFY

0xFFCO0 0C94

DMA3_X_MODIFY

0xFFCO0 0CD4

DMA4_X_MODIFY

0xFFCO0 0D14

DMA5_X_MODIFY

0xFFCO0 0D54

DMA6_X_MODIFY

0xFFCO0 0D94

DMA7_X_MODIFY

0xFFCO0 0DD4

DMAS8_X_MODIFY

0xFFCO0 0E14

DMA9_X_MODIFY

0xFFCO0 0E54

DMA10_X_MODIFY

0xFFCO0 0E94

DMA11_X_MODIFY

0xFFCO0 0ED4

MDMA_D0_X_MODIFY

0xFFCO 0F14

MDMA_S0_X_MODIFY

0xFFCO0 0F54

MDMA_D1_X_MODIFY

0xFFCO0 0F94

MDMA_S1_X_MODIFY

0xFFCO0 0FD4

ADSP-BF537 Blackfin Processor Hardware Reference 5-89

DMA Registers

DMAX_Y_COUNT/MDMA_yy Y _COUNT Registers

For 2D DMA, the outer loop count register
(DMAX_Y_COUNT/MDMA_yy_Y_COUNT), shown in Figure 5-14, contains the
outer loop count. It is not used in 1D DMA mode.

Outer Loop Count Registers (DMAx_Y_COUNT/MDMA_yy_Y_COUNT)
R/W prior to enabling channel; RO after enabling channel

For memory-
mapped 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ell:glr:s;?;,see le|x|x|x|x|x|x|x|x|x|x|x|x|x|x|xll Reset = Undefined

| Y_COUNT[15:0]
(Outer Loop Count)
The number of rows in
the outer loop of a 2D
DMA sequence

Figure 5-14. Outer Loop Count Registers

This register contains the number of rows in the outer loop of a 2D DMA
sequence. For details, see “T'wo-Dimensional DMA Operation” on

page 5-14.

Table 5-17. Outer Loop Count Register Memory-Mapped
Addresses

Register Name Memory-Mapped Address
DMAO_Y_COUNT 0xFFCO0 0C18
DMA1_Y_COUNT 0xFFCO0 0C58
DMA2_Y_COUNT 0xFFCO0 0C98
DMA3_Y_COUNT 0xFFCO0 0CD8
DMA4_Y_COUNT 0xFFCO0 0D18
DMA5_Y_COUNT 0xFFCO0 0D58
DMAG6_Y_COUNT 0xFFCO0 0D98
DMA7_Y_COUNT 0xFFCO0 0DDS8
DMAS8_Y_COUNT 0xFFCO 0E18
DMA9_Y_COUNT 0xFFCO 0E58

5-90 ADSP-BF537 Blackfin Processor Hardware Reference

Direct Memory Access

Table 5-17. Outer Loop Count Register Memory-Mapped
Addresses (Contd)

Register Name Memory-Mapped Address
DMA10_Y_COUNT 0xFFCO 0E98
DMA11_Y_COUNT 0xFFCO 0EDS8
MDMA_DO0_Y_COUNT 0xFFCO 0F18
MDMA_S0_Y_COUNT 0xFFCO 0F58
MDMA_D1_Y_COUNT 0xFFCO 0F98
MDMA_S1_Y_COUNT 0xFFCO0 0FD8

DMAXx_CURR_Y_COUNT/MDMA _yy CURR_Y_COUNT Registers

The current outer loop count register
(DMAX_CURR_Y_COUNT/MDMA_yy_CURR_Y_COUNT), used only in 2D mode,
holds the number of full or partial rows (outer loops) remaining in the
current work unit. See Figure 5-15. On the first memory transfer of each
DMA work unit, it is loaded with the value of the DMAx_Y_COUNT regis-
ter. The register is decremented each time the DMAx_CURR_X_COUNT
register expires during 2D DMA operation (1 to DMAx_X_COUNT or 1 to O
transition), signifying completion of an entire row transfer. After a 2D
DMA session is complete, DMAx_CURR_Y_COUNT = 1 and
DMAX_CURR_X_COUNT = 0.

ADSP-BF537 Blackfin Processor Hardware Reference 5-91

DMA Registers

Current Outer Loop Count Registers (DMAx_CURR_Y_COUNT/
MDMA_yy_CURR_Y_COUNT)
R/W prior to enabling channel; RO after enabling channel

For memory-
mapped 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

:_gg:‘:%s_?::see IIX|X|X |X|X |X |X |X|X|X |X |X|X |X |x |x|| Reset = Undefined

CURR_Y_COUNT[15:0]
(Current Outer Loop
Count)

Loaded by Y_COUNT
at the beginning of each
2D DMA session; not
used for 1D DMA

Figure 5-15. Current Outer Loop Count Registers

Table 5-18. Current Outer Loop Count Register Memory-Mapped
Addresses

Register Name Memory-Mapped Address
DMAO_CURR_Y_COUNT 0xFFCO0 0C38
DMA1_CURR_Y_COUNT 0xFFCO0 0C78
DMA2_CURR_Y_COUNT 0xFFCO 0CB8
DMA3_CURR_Y_COUNT 0xFFCO 0CF8
DMA4_CURR_Y_COUNT 0xFFCO0 0D38
DMAS5_CURR_Y_COUNT 0xFFCO0 0D78
DMAG6_CURR_Y_COUNT 0xFFCO0 0DB8
DMA7_CURR_Y_COUNT 0xFFCO0 0DF8
DMAS8_CURR_Y_COUNT 0xFFCO 0E38
DMA9_CURR_Y_COUNT 0xFFCO 0E78
DMA10_CURR_Y_COUNT 0xFFCO OEBS8
DMA11_CURR_Y_COUNT 0xFFCO OEF8
MDMA_DO0_CURR_Y_COUNT 0xFFCO 0F38
MDMA_S0_CURR_Y_COUNT 0xFFCO 0F78

5-92 ADSP-BF537 Blackfin Processor Hardware Reference

Direct Memory Access

Table 5-18. Current Outer Loop Count Register Memory-Mapped
Addresses (Contd)

Register Name Memory-Mapped Address
MDMA_DI1_CURR_Y_COUNT 0xFFCO 0FB8
MDMA_S1_CURR_Y_COUNT 0xFFCO OFF8

DMAXx_Y_MODIFY/MDMA _yy_Y_MODIFY Registers

The outer loop address increment register
(DMAX_Y_MODIFY/MDMA_yy_Y_MODIFY) contains a signed, two’s-complement
value. See Figure 5-16.

This byte-address increment is applied after each decrement of the
DMAX_CURR_Y_COUNT register except for the last item in the 2D array where
the DMAX_CURR_Y_COUNT also expires. The value is the offset between the
last word of one “row” and the first word of the next “row.” For details,
see “Two-Dimensional DMA Operation” on page 5-14.

Outer Loop Address Increment Registers (DMAx_Y_MODIFY/ MDMA_yy_Y_MODIFY)
R/W prior to enabling channel; RO after enabling channel

For memory-
mapped 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

addresses, see X|X|X|x|x|x|x|x|x|x|x|x|x|x|x|x| Reset = Undefined
Table 5-19. | |

Y_MODIFY[15:0]
(Outer Loop Address
Increment)

Stride to take after each
decrement of
CURR_Y_COUNT

Figure 5-16. Outer Loop Address Increment Registers

Note DMAx_Y_MODIFY is specified in bytes, regardless of the DMA
transfer size.

ADSP-BF537 Blackfin Processor Hardware Reference 5-93

DMA Registers

Table 5-19. Outer Loop Address Increment Register Memory-Mapped

Addresses

Register Name

Memory-Mapped Address

DMAO_Y_MODIFY

0xFFCO0 0C1C

DMA1_Y_MODIFY

0xFFCO0 0C5C

DMA2_Y_MODIFY

0xFFCO0 0C9C

DMA3_Y_MODIFY

0xFFCO0 0CDC

DMA4_Y_MODIFY

0xFFCO0 0D1C

DMAS5_Y_MODIFY

0xFFCO0 0D5C

DMAG_Y_MODIFY

0xFFCO0 0D9C

DMA7_Y_MODIFY

0xFFCO0 0DDC

DMAS8_Y_MODIFY

0xFFCO0 OE1C

DMA9_Y_MODIFY

0xFFCO 0E5C

DMA10_Y_MODIFY

0xFFCO0 0E9C

DMA11_Y_MODIFY

0xFFCO0 0EDC

MDMA_DO0_Y_MODIFY 0xFFCO 0F1C
MDMA_S0_Y_MODIFY 0xFFCO 0F5C
MDMA_D1_Y_MODIFY 0xFFCO0 0F9C
MDMA_S1_Y_MODIFY 0xFFCO0 OFDC

DMAXx_NEXT_DESC_PTR/MDMA _yy_ NEXT_DESC_PTR Registers

The next descriptor pointer register

(DMAX_NEXT_DESC_PTR/MDMA_yy NEXT_DESC_PTR), shown in Figure 5-17,
specifies where to look for the start of the next descriptor block when the
DMA activity specified by the current descriptor block finishes.

5-94

ADSP-BF537 Blackfin Processor Hardware Reference

Direct Memory Access

Next Descriptor Pointer Registers (DMAx_NEXT_DESC_PTR/MDMA_yy NEXT_DESC_PTR)
R/W prior to enabling channel; RO after enabling channel

For memory- 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
mapped

addresses, see | X |>< |>< |>< |x |>< |>< |>< |>< |x |x |><|>< |>< |>< |><| Reset = Undefined
Table 5-20. | ;

Next Descriptor
Pointer[31:16]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ES ENEN S KN ENENES ESENENES ENENERER

Next Descriptor
Pointer[15:0]

Figure 5-17. Next Descriptor Pointer Registers

This register is used in small and large descriptor list modes. At the start of
a descriptor fetch in either of these modes, the 32-bit DMAXx_NEXT_DESC_PTR
register is copied into the DMAx_CURR_DESC_PTR register. Then, during the
descriptor fetch, the DMAx_CURR_DESC_PTR register increments after each
element of the descriptor is read in.

In small and large descriptor list modes, the DMAX_NEXT_DESC_PTR
register, and not the DMAx_CURR_DESC_PTR register, must be pro-
grammed directly via MMR access before starting DMA operation.

In descriptor array mode, the next descriptor pointer register is disre-
garded, and fetching is controlled only by the DMAx_CURR_DESC_PTR
register.

Table 5-20. Next Descriptor Pointer Register Memory-Mapped
Addresses

Register Name Memory-Mapped Address
DMAO_NEXT_DESC_PTR 0xFFCO0 0C00
DMA1_NEXT_DESC_PTR 0xFFCO0 0C40
DMA2_NEXT_DESC_PTR 0xFFCO0 0C80

ADSP-BF537 Blackfin Processor Hardware Reference 5-95

DMA Registers

Table 5-20. Next Descriptor Pointer Register Memory-Mapped
Addresses (Contd)

Register Name Memory-Mapped Address
DMA3_NEXT_DESC_PTR 0xFFCO0 0CCO0
DMA4_NEXT_DESC_PTR 0xFFCO0 0D00
DMAS5_NEXT_DESC_PTR 0xFFCO0 0D40
DMAG_NEXT_DESC_PTR 0xFFCO0 0D80
DMA7_NEXT_DESC_PTR 0xFFCO0 0DCO0
DMAS8_NEXT_DESC_PTR 0xFFCO 0E00
DMA9_NEXT_DESC_PTR 0xFFCO 0E40
DMA10_NEXT_DESC_PTR 0xFFCO 0E80
DMA11_NEXT_DESC_PTR 0xFFCO0 0ECO
MDMA_DO_NEXT_DESC_PTR 0xFFCO0 0F00
MDMA_SO0_NEXT_DESC_PTR 0xFFCO0 0F40
MDMA_D1_NEXT_DESC_PTR 0xFFCO 0F80
MDMA_S1_NEXT_DESC_PTR 0xFFCO 0FCO

DMAXx_CURR_DESC_PTR/MDMA _yy CURR_DESC_PTR Registers

The current descriptor pointer register
(DMAX_CURR_DESC_PTR/MDMA_yy_CURR_DESC_PTR), shown in Figure 5-18,
contains the memory address for the next descriptor element to be loaded.

5-96 ADSP-BF537 Blackfin Processor Hardware Reference

Direct Memory Access

Current Descriptor Pointer Registers (DMAx_CURR_DESC_PTR/
MDMA_yy CURR_DESC_PTR)

R/W prior to enabling channel; RO after enabling channel

For memory- 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 .
mapped DX I e X I D x T Ix T Reset = Undefined
addresses, see 1 |

Table 5-21. |

Current Descriptor
Pointer[31:16]
Upper 16 bits of
memory address of

the next descriptor
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 element

EJENENES KN ENESES ENENESES ENENESES
L |

Current Descriptor
Pointer[15:0]

Lower 16 bits of
memory address of
the next descriptor
element

Figure 5-18. Current Descriptor Pointer Registers

For FLOW mode settings that involve descriptors (FLOW = 4, 6, or 7), this
register is used to read descriptor elements into appropriate MMRs before
a DMA work block begins. For descriptor list modes (FLOW = 6 or 7), this
register is initialized from the DMAXx_NEXT_DESC_PTR register before loading
each descriptor. Then, the address in the DMAx_CURR_DESC_PTR register
increments as each descriptor element is read in.

When the entire descriptor has been read, the DMAx_CURR_DESC_PTR regis-
ter contains this value:

Descriptor Start Address + (2 x Descriptor Size) (# of elements)

ADSP-BF537 Blackfin Processor Hardware Reference 5-97

DMA Registers

For descriptor array mode (FLOW = 4), this register, and not the
DMAX_NEXT_DESC_PTR register, must be programmed by MMR
access before starting DMA operation.

Table 5-21. Current Descriptor Pointer Register Memory-Mapped
Addresses

Register Name Memory-Mapped Address
DMAO_CURR_DESC_PTR 0xFFC0 0C20
DMA1_CURR_DESC_PTR 0xFFC0 0C60
DMA2_CURR_DESC_PTR 0xFFCO0 0CAO
DMA3_CURR_DESC_PTR 0xFFCO0 0CEO
DMA4_CURR_DESC_PTR 0xFFCO0 0D20
DMA5_CURR_DESC_PTR 0xFFCO0 0D60
DMAG6_CURR_DESC_PTR 0xFFCO0 0DAO
DMA7_CURR_DESC_PTR 0xFFCO0 0DEO
DMAS8_CURR_DESC_PTR 0xFFCO 0E20
DMA9_CURR_DESC_PTR 0xFFCO 0E60
DMA10_CURR_DESC_PTR 0xFFCO0 0EAO
DMA11_CURR_DESC_PTR 0xFFCO 0EEO
MDMA_DO0_CURR_DESC_PTR 0xFFCO 0F20
MDMA_S0_CURR_DESC_PTR 0xFFCO0 0F60
MDMA_D1_CURR_DESC_PTR 0xFFCO0 OFAO
MDMA_S1_CURR_DESC_PTR 0xFFCO OFEO

5-98 ADSP-BF537 Blackfin Processor Hardware Reference

Direct Memory Access

HMDMA Registers
The processor features two HMDMA blocks. HMDMAQO is associated
with MDMAO, and HMDMALTI is associated with MDMA1. Table 5-22

lists the naming conventions for these registers.

Table 5-22. Naming Conventions for Handshake MDMA Registers

Handshake MDMA MMR Name
(x=0o0r1l)

HMDMAx_CONTROL

HMDMAx_BCINIT
HMDMAx_BCOUNT
HMDMAx_ECOUNT

HMDMAx_ECINIT

HMDMAx_ECURGENT

HMDMAx_ECOVERFLOW

ADSP-BF537 Blackfin Processor Hardware Reference 5-99

DMA Registers

HMDMAX_CONTROL Registers

The handshake MDMA control register (HMDMAx_CONTROL), shown in
Figure 5-19, is used to set up HMDMA parameters and operating modes.

Handshake MDMA Control Registers (HMDMAx_CONTROL)

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
HMDMAO: fofofofofofo]+]o]o]o]o]oJofofofo] Reset=oxo200
0xFFCO 3300 |
HMDMA1:
0xFFCO 3340 HMDMAEN (Handshake MDMA
Enable)
BDI (Block Done 0- 8?:2{?0?\3”"3"“9
Interrupt Generated) 1 - Enable handshake
-w1iC . Operation
0 - Block done interrupt REP (HMDMA Request Polarity)
not generated 0 - Increment ECOUNT on
1 - Block done interrupt falling edges of DMARx
generated input

1 - Increment ECOUNT on

Ol (Overflow Interrupt
rising edges of DMARXx

Generated) - W1C

0 - Overflow interrupt input
not generated l—— UTE (Urgency Threshold
1 - Overflow interrupt Enable)
generated 0 - Disable urgency threshold

1 - Enable urgency threshold

PS (Pin Status) - RO
OIE (Overflow Interrupt

0 - Request pinis 0

1 - Request pinis 1 Enable)

RBC (Force Reload of (1’ E:fabe'e o\yer?llov‘\l/vilr?tti:ruat

BCOUNT) - WO able overtio errup

0 - Reload not active BDIE (Block Done Interrupt
Enable)

1 - Force reload of BCOUNT with BCINIT.
Write 1 to activate

DRQ[1:0] (Default MDMA Request
When Handshake DMA is Disabled
EN=0)
00 - No request

01 - Request single transfer from MDMA channel

10 - Request multiple transfers from MDMA channel (default)
11 - Request urgent multiple transfers from MDMA channel

0 - Disable block done interrupt

1 - Enable block done interrupt

MBDI (Mask Block Done

Interrupt)

BDIE must =1

0 - Interrupt generated when
BCOUNT decrements to 0

1 - Interrupt generated when
BCOUNT decrements to 0
and ECOUNT =0

Figure 5-19. Handshake MDMA Control Registers

5-100 ADSP-BF537 Blackfin Processor Hardware Reference

Direct Memory Access

The DRQ[1:0] field is used to control the priority of the MDMA channel
when the HMDMA is disabled, that is, when handshake control is not
being used (see Table 5-23).

Table 5-23. DRQ[1:0] Values

DRQJ1:0] Priority Description
00 Disabled The MDMA request is disabled.
01 Enabled/S Normal MDMA channel priority. The channel in this

mode is limited to single memory transfers separated by
one idle system clock. Request single transfer from

MDMA channel.

10 Enabled/M Normal MDMA channel functionality and priority.
Request multiple transfers from MDMA channel
(default).

11 Urgent The MDMA channel priority is elevated to urgent. In this

state, it has higher priority for memory access than
non-urgent channels. If two channels are both urgent, the
lower-numbered channel has priority.

The RBC bit forces the BCOUNT register to be reloaded with the BCINIT value
while the module is already active. Do not set this bit in the same write
that sets the HMDMAEN bit to active.

HMDMAX_BCINIT Registers

The handshake MDMA initial block count register (HMDMAX_BCINIT),
shown in Figure 5-20, holds the number of transfers to do per edge of the
DMARx control signal.

ADSP-BF537 Blackfin Processor Hardware Reference 5-101

DMA Registers

Handshake MDMA Initial Block Count Registers (HMDMAXx_BCINIT)

1514 1312 11 10 9 8 7 6 5 4 3 2 1 0
: R = 0x0000
HM?):\(’I:FOCO:S:SOB 0|o|o|o|o|0|o|o|o|o |o|0|o|o|o|o| eset = 0

HMDMA1: |

0xFFCO 3348 BCINIT[15:0] (Initial Block

Count)

Figure 5-20. Handshake MDMA Initial Block Count Registers

HMDMAX_BCOUNT Registers

The handshake MDMA current block count register (HMDMAXx_BCOUNT),
shown in Figure 5-21, holds the number of transfers remaining for the
current edge. MDMA requests are generated if this count is greater than 0.

Examples:
* 0000 = O transfers remaining

* FFFF = 65535 transfers remaining

The BCOUNT field is loaded with BCINIT when ECOUNT is greater than 0 and
BCOUNT is expired (0). Also, if the RBC bit in the HMDMAX_CONTROL register is
written to a 1, BCOUNT is loaded with BCINIT. The BCOUNT field is decre-
mented with each MDMA grant. It is cleared when HMDMA is disabled.

A block done interrupt is generated when BCOUNT decrements to 0. If the
MBDI bit in the HMDMAX_CONTROL register is set, the interrupt is suppressed
until ECOUNT is 0. Note if BCINIT is 0, no block done interrupt is gener-
ated, since no DMA requests were generated or grants received.

5-102 ADSP-BF537 Blackfin Processor Hardware Reference

Direct Memory Access

Handshake MDMA Current Block Count Register (HMDMAXx_BCOUNT)

1514 1312 1110 9 8 7 6 5 4 3 2 1 0
HMDMAO: R t = 0x0000
OXFF0003318 o|0|o|o|o|o|o|0|o|o |o|o|0|o|o|0| eset = 0x

HMDMA1:
0xFFCO 3358 |

BCOUNTI[15:0] (Transfers
Remaining for Current Edge)

Figure 5-21. Handshake MDMA Current Block Count Registers

HMDMAX_ECOUNT Registers

The handshake MDMA current edge count register (HMDMAX_ECOUNT),
shown in Figure 5-22, holds a signed number of edges remaining to be
serviced. This number is in a signed two’s complement representation. An
edge is detected on the respective DMARX input. Requests occur if this count
is greater than or equal to 0, and BCOUNT is greater than 0.

When the handshake mode is enabled, ECOUNT is loaded and the resulting
number of requests is:

Number of edges + N,

where N is the number loaded from ECINIT. The number N is a positively
or negatively signed number. Examples:

» 7FFF = 32767 edges remaining
* 0000 = 0 edges remaining
* 8000 = —32768: ignore the next 32768 edges

Each time that BCOUNT expires, ECOUNT is decremented and BCOUNT is
reloaded from BCINIT. When a handshake request edge is detected, ECOUNT
is incremented. The ECOUNT field is cleared when HMDMA is disabled.

ADSP-BF537 Blackfin Processor Hardware Reference 5-103

DMA Registers

Handshake MDMA Current Edge Count Register (HMDMAx_ECOUNT)

15 14 13 12 11 10
: R = 0x0000
HMI())T':\FOCO3314 |o|0|o|o|o|o|o|0|o|o |o|o|0|o|o|o|| eset = 0x
HMDMA1:
0xFFCO 3354 |

ECOUNT[15:0] (Edges
Remaining to be Serviced)

Figure 5-22. Handshake MDMA Current Edge Count Registers

HMDMAX_ECINIT Registers

The handshake MDMA initial edge count register (HMDMAX_ECINIT),
shown in Figure 5-23, holds a signed number that is loaded into current
edge count (HMDMAx_ECOUNT) when handshake DMA is enabled. This num-
ber is in a signed two’s complement representation.

Handshake MDMA Initial Edge Count Registers (HMDMAXx_ECINIT)

15 14 13 12 11 10
: R = 0x0000
HMI())ZI;\FO.:O3304 |o|0|o|o|o|o|o|0|o|o |o|o|0|o|o|o| eset = 0X
HMDMA1:
O0xFFCO 3344 |

ECINIT[15:0] (Initial Edge
Count)

Figure 5-23. Handshake MDMA Initial Edge Count Registers

5-104 ADSP-BF537 Blackfin Processor Hardware Reference

Direct Memory Access

HMDMAXx_ECURGENT Registers

The handshake MDMA edge count urgent register (HMDMAx_ECURGENT),
shown in Figure 5-24, holds the urgent threshold. If the ECOUNT field in
the handshake MDMA edge count register is greater than this threshold,
the MDMA request is urgent and might get higher priority.

Handshake MDMA Edge Count Urgent Registers (HMDMAx_ECURGENT)

15 14 13 12 11 10
: Reset = OXFFFF
HM?)?I?FOCO%OC |1|1|1|1|1|1|1|1|1|1 |1|1|1|1|1|1| eset = 0x

HMDMA1:
0xFFCO 334C

UTHE[15:0] (Urgent
Threshold)

Figure 5-24. Handshake MDMA Edge Count Urgent Registers

HMDMAXx_ECOVERFLOW Registers

The handshake MDMA edge count overflow interrupt register
(HMDMAX_ECOVERFLOW), shown in Figure 5-25, holds the interrupt thresh-
old. If the ECOUNT field in the handshake MDMA edge count register is

greater than this threshold, an overflow interrupt is generated.

Handshake MDMA Edge Count Overflow Interrupt Registers (HMDMAx_ECOVERFLOW)

15 14 13 12 11 10

: Reset = 0xFFFF
HM[(;TI?FOCO%W |1 |1 |1 |1 |1 |1 |1 |1 |1 |1 |1 |1 |1 |1 |1 |1 | eset = 0x
HMDMA1:

0xFFCO0 3350
ITHR[15:0] (Interrupt
Threshold)
Figure 5-25. Handshake MDMA Edge Count Overflow Interrupt

Registers

ADSP-BF537 Blackfin Processor Hardware Reference 5-105

DMA Registers

DMA Traffic Control Registers

The DMA_TC_PER register (see Figure 5-26) and the DMA_TC_CNT register (see
Figure 5-27) work with other DMA registers to define traffic control.

DMA_TC_PER Register

DMA Traffic Control Counter Period Register (DMA_TC_PER)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
oxFFCo0B0C o Jo Jo Jo Jo Jo Jo Jo JoJo Jo JoJo Jo Jo [o] Reset = 0x0000

MDMA_ROUND_ROBIN_ |_ DCB_TRAFFIC_PERIODI[3:0]
PERIOD[4:0] ——M——— 000 - No DCB bus transfer
Maximum length of MDMA round grouping performed

robin bursts. If not zero, any MDMA Other - Preferred length of uni-
stream which receives a grant is directional bursts on the DCB
allowed up to that number of DMA bus between the DMA and
transfers, to the exclusion of the other internal L1 memory

MDMA streams. DEB_TRAFFIC_PERIOD[3:0
DAB_TRAFFIC_PERIOD[2:0] n . [3:0]

000 - No DEB bus transfer

000 - No DAB bus transfer grouping performed grouping performed

Other - Preferred length of unidirectional bursts Other - Preferred length of uni-
on the DAB bus between the DMA and the directional bursts on the DEB
peripherals bus between the DMA and

external memory

Figure 5-26. DMA Traffic Control Counter Period Register

5-106 ADSP-BF537 Blackfin Processor Hardware Reference

Direct Memory Access

DMA_TC_CNT Register

DMA Traffic Control Counter Register (DMA_TC_CNT)

RO
15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0

0xFFCO 0B10 |0 |o |o |o |o |o |o |o Io |o |o |0 Io |o |o |0 I Reset = 0x0000
MDMA_ROUND_ROBIN_ DCB_TRAFFIC_COUNTI[3:0]
COUNT[4:0] Current cycle count remaining
Current transfer count remaining in in the DCB traffic period
the MDMA round robin period DEB_TRAFFIC_COUNT([3:0]
DAB_TRAFFIC_COUNTI[2:0] o o

Current cycle count remaining
Current cycle count remaining in the in the DEB traffic period
DAB traffic period

Figure 5-27. DMA Traffic Control Counter Register

The MDMA_ROUND_ROBIN_COUNT field (Figure 5-27)shows the current trans-
fer count remaining in the MDMA round robin period. It initializes to
MDMA_ROUND_ROBIN_PERIOD whenever DMA_TC_PER is written, whenever a
different MDMA stream is granted, or whenever every MDMA stream is
idle. It then counts down to 0 with each MDMA transfer. When this
count decrements from 1 to 0, the next available MDMA stream is
selected.

The DAB_TRAFFIC_COUNT field shows the current cycle count remaining in
the DAB traffic period. It initializes to DAB_TRAFFIC_PERIOD whenever
DMA_TC_PER is written, or whenever the DAB bus changes direction or
becomes idle. It then counts down from DAB_TRAFFIC_PERIOD to 0 on each
system clock (except for DMA stalls). While this count is nonzero, same
direction DAB accesses are treated preferentially. When this count decre-
ments from 1 to 0, the opposite direction DAB access is treated
preferentially, which may result in a direction change. When this count is
0 and a DAB bus access occurs, the count is reloaded from
DAB_TRAFFIC_PERIOD to begin a new burst.

ADSP-BF537 Blackfin Processor Hardware Reference 5-107

Programming Examples

The DEB_TRAFFIC_COUNT field shows the current cycle count remaining in
the DEB traffic period. It initializes to DEB_TRAFFIC_PERIOD whenever
DMA_TC_PER is written, or whenever the DEB bus changes direction or
becomes idle. It then counts down from DEB_TRAFFIC_PERIOD to 0 on each
system clock (except for DMA stalls). While this count is nonzero, same
direction DEB accesses are treated preferentially. When this count decre-
ments from 1 to 0, the opposite direction DEB access is treated
preferentially, which may result in a direction change. When this count is
0 and a DEB bus access occurs, the count is reloaded from
DEB_TRAFFIC_PERIOD to begin a new burst.

The DCB_TRAFFIC_COUNT field shows the current cycle count remaining in
the DCB traffic period. It initializes to DCB_TRAFFIC_PERIOD whenever
DMA_TC_PER is written, or whenever the DCB bus changes direction or
becomes idle. It then counts down from DCB_TRAFFIC_PERIOD to 0 on each
system clock (except for DMA stalls). While this count is nonzero, same
direction DCB accesses are treated preferentially. When this count decre-
ments from 1 to 0, the opposite direction DCB access is treated
preferentially, which may result in a direction change. When this count is
0 and a DCB bus access occurs, the count is reloaded from
DCB_TRAFFIC_PERIOD to begin a new burst.

Programming Examples

The following examples illustrate memory DMA and handshaked memory
DMA basics. Examples for peripheral DMAs can be found in the respec-
tive peripheral chapters.

Register-Based 2D Memory DMA

Listing 5-1 shows a register-based, two-dimensional MDMA. While the
source channel processes linearly, the destination channel resorts elements
by mirroring the two-dimensional data array. See Figure 5-28.

5-108 ADSP-BF537 Blackfin Processor Hardware Reference

Direct Memory Access

107 [13]19]25 112|3|4|5]|6
2|8 142026 7|8/ 0910]11]12
3915|2127 13|14 15| 16| 17|18
4|10 (16 | 22|28

19|20| 21| 22| 23|24
5 (11|17 | 23|29

25| 26| 27| 28| 20|30
6 |12 (18 | 24|30

Figure 5-28. DMA Example, 2D Array

The two arrays reside in two different L1 data memory blocks. However,
the arrays could reside in any internal or external memory, including L1
instruction memory and SDRAM. For the case where the destination
array resided in SDRAM, it is a good idea to let the source channel re-sort
elements and to let the destination buffer store linearly.

Listing 5-1. Register-Based 2D Memory DMA

#include <defBF537.h>
jdefine X 5
ffdefine Y 6

.section L1 _data_a;

.byte2 aSourcel[X*Y] =
1, 7, 13, 19, 25,
2, 8, 14, 20, 26,
3, 9, 15, 21, 27,
4, 10, 16, 22, 28,
5, 11, 17, 23, 29,
6, 12, 18, 24, 30;

.section Ll_data_b;
.byte?2 aDestination[X*Y];

.section L1_code;
.global _main;

ADSP-BF537 Blackfin Processor Hardware Reference 5-109

Programming Examples

_main:
p0.1 = To(MDMA_SO_CONFIG);
p0.h = hi(MDMA_SO_CONFIG);

call memdma_setup;
call memdma_wait;

_main.forever:

jump _main.forever;

_main.end:

The setup routine shown in Listing 5-2 initializes either MDMAO or
MDMAL1 depending on whether the MMR address of MDMA_SO_CONFIG or
MDMA_S1_CONFIG is passed in the PO register. Note that the source channel
is enabled before the destination channel. Also, it is common to synchro-
nize interrupts with the destination channel, because only those interrupts
indicate completion of both DMA read and write operations.

Listing 5-2. Two-Dimensional Memory DMA Setup Example

memdma_setup:

[--sp]l = r7;

/* setup 1D source DMA for 16-bit transfers */

r7.1

r7.h = hi(aSource);

[p0O + MDMA_SO_START_ADDR - MDMA_SO_CONFIG] = r7;

r7.1 = 2;

wlp0O + MDMA_SO_X_MODIFY - MDMA_SO_CONFIG] = r7;
r7.1 =X *Y;

w[pO + MDMA_SO_X_COUNT - MDMA_SO_CONFIG] = r7;

r7.1 = WDSIZE_16 | DMAEN;

wlp0l = r7;

lo(aSource);

/* setup 2D destination DMA for 16-bit transfers */

r7.1 = lo(aDestination);

r7.h = hi(aDestination);

[p0 + MDMA_DO_START_ADDR - MDMA_SO_CONFIG] = r7;
r7.1 = 2*Y;

5-110

ADSP-BF537 Blackfin Processor Hardware Reference

Direct Memory Access

w[pO + MDMA_DO_X_MODIFY - MDMA_SO_CONFIG] = r7;

r7.1 =1Y;
wlpO + MDMA_DO_Y_COUNT - MDMA_SO_CONFIG] = r7;
r7.1 = X;
w[pO + MDMA_DO_X_COUNT - MDMA_SO_CONFIG] = r7;

r7.1 = -2 * (Y * (X-1) - 1);
wlp0O + MDMA_DO_Y_MODIFY - MDMA_SO_CONFIG] = r7;
r7.1 = DMA2D | DI_EN | WDSIZE_16 | WNR | DMAEN;
wlpO + MDMA_DO_CONFIG - MDMA_SO_CONFIG] = r7;
r7 = [sp++];
rts;

memdma_setup.end:

For simplicity the example shown in Listing 5-3 polls the DMA status
rather than using interrupts, which was the normal case in a real
application.

Listing 5-3. Polling DMA Status

memdma_wait:
[--spl = r7;
memdma_wait.test:
r7 = wlp0 + MDMA_DO_IRQ_STATUS - MDMA_SO_CONFIG] (z);
CC = bittst (r7, bitpos(DMA_DONE));
if ICC jump memdma_wait.test;

r7 = DMA_DONE (z);

wlpO + MDMA_DO_IRQ_STATUS - MDMA_SO_CONFIG] = r7;
r7 = [sp++];

rts;

memdma_wait.end:

ADSP-BF537 Blackfin Processor Hardware Reference 5-111

Programming Examples

Initializing Descriptors in Memory

Descriptor-based DMAs expect the descriptor data to be available in
memory by the time the DMA is enabled. Often, the descriptors are pro-
grammed by software at run-time. Many times, however, the
descriptors—or at least large portions of them—can be static and there-
fore initialized at boot time. How to set up descriptors in global memory
depends heavily on the programming language and the tool set used. The
following examples show how this is best performed in assembly language.

Listing 5-4 uses multiple variables of either 16-bit or 32-bit size to
describe DMA descriptors. This example has two descriptors in small list
flow mode that point to each other mutually. At the end of the second
work unit an interrupt is generated without discontinuing the DMA pro-
cessing. The trailing “.end” label is required to let the linker know that a
descriptor forms a logical unit. It prevents the linker from removing vari-
ables when optimizing.

Listing 5-4. Two Descriptors in Small List Flow Mode

.section sdram;
.byte2 arrBlockl[0x4007;
.byte2 arrBlock2[0x8007;

.section L1_data_a;
.byte2 descBlockl = To(descBlock?2);
.var descBlockl.addr = arrBlockl;
.byte2 descBlockl.cfg FLOW_SMALL|NDSIZE_5|WDSIZE_16|DMAEN;
.byte2 descBlockl.len = Tength(arrBlockl);
descBlockl.end:

.byte2 descBlock2 = To(descBlockl);

.var descBlockZ.addr = arrBlock?2;

.byte?2 descBlock2.cfg =
FLOW_SMALL|NDSIZE_5|DI_EN|WDSIZE_16|DMAEN;

5-112 ADSP-BF537 Blackfin Processor Hardware Reference

Direct Memory Access

.byte2 descBlock2.len = length(arrBlock?2);
descBlock2.end:

Another method featured by the CCES or VisualDSP++ tools takes advan-
tage of C-style structures in global header files. The header file
descriptor.h could look like Listing 5-5.

Listing 5-5. Header File to Define Descriptor Structures

#ifndef __INCLUDE_DESCRIPTORS__
jtidefine __INCLUDE_DESCRIPTORS_
f#ifdef _LANGUAGE_C
typedef struct ({

void *pStart;

short dConfig;

short dXCount;

short dXModify;

short dYCount;

short dYModify;

} dma_desc_arr;

typedef struct ({
void *pNext;
void *pStart;
short dConfig;
short dXCount;
short dXModify;
short dYCount;
short dYModify;

} dma_desc_list;

ffendif // _LANGUAGE_C
ffendif // __INCLUDE_DESCRIPTORS__

ADSP-BF537 Blackfin Processor Hardware Reference 5-113

Programming Examples

Note that near pointers are not natively supported by the C language and,
thus, pointers are always 32 bits wide. Therefore, the scheme above cannot
be used directly for small list mode without giving up pointer syntax. The
variable definition file is required to import the C-style header file and can
finally take advantage of the structures. See Listing 5-6.

Listing 5-6. Using Descriptor Structures

f##include "descriptors.h"”
.import "descriptors.h";

.section Ll_data_a;
.align 4;

.var arrBlock3[N];
.var arrBlock4[N];

.struct dma_desc_list descBlock3 = {
descBlock4, arrBlock3,
FLOW_LARGE | NDSIZE_7 | WDSIZE_32 | DMAEN,
length(arrBlock3), 4,
0, 0 /* unused values */

b

.struct dma_desc_list descBlock4 = {
descBlock3, arrBlock4,
FLOW_LARGE | NDSIZE_7 | DI_EN | WDSIZE_32 | DMAEN,
length(arrBlock4), 4,
0, 0O /* unused values */

5-114 ADSP-BF537 Blackfin Processor Hardware Reference

Direct Memory Access

Software-Triggered Descriptor Fetch Example

Listing 5-7 demonstrates a large list of descriptors that provide flow stop
mode configuration. Consequently, the DMA stops by itself as soon as the
work unit has finished. Software triggers the next work unit by simply
writing the proper value into the DMA configuration registers. Since these
values instruct the DMA controller to fetch descriptors in large list mode,
after being started the DMA immediately fetches the descriptor and, thus,
overwrites the configuration value again with the new settings.

Note the requirement that source and destination channels stop after the
same number of transfers. In between stops the two channels can have
completely individual structure.

Listing 5-7. Software-Triggered Descriptor Fetch

.import “descriptor.h”;
ffdefine N 4

.section Ll_data_a;
.byte? arrSourcel[N]
.byte2 arrSource2[N]
.byte2 arrSource3[N]
.byte2 arrDestl[N];
.byte2 arrDest2[2*N];

{ 0x1001, 0x1002, 0x1003, 0x1004 };
{ 0x2001, 0x2002, 0x2003, 0x2004 };
{ 0x3001, 0x3002, 0x3003, 0x3004 };

.struct dma_desc_list descSourcel = {
descSource?2, arrSourcel,
WDSIZE_16 | DMAEN,
length(arrSourcel), 2,

0, 0O /* unused values */

ADSP-BF537 Blackfin Processor Hardware Reference 5-115

Programming Examples

.struct dma_desc_1list descSourcez2 = {
descSource3, arrSource?,

FLOW_LARGE NDSIZE_7 | WDSIZE_16 | DMAEN,
length(arrSource?2), 2,
0, 0 /* unused values */

b
.Sstruct dma_desc_list descSource3 = {
descSourcel, arrSource3,
WDSIZE_16 | DMAEN,
length(arrSource3d), 2,
0, 0O /* unused values */
b
.struct dma_desc_list descDestl = {
descDest?2, arrDestl,
DI_EN | WDSIZE_16 | WNR | DMAEN,
length(arrDestl), 2,
0, 0O /* unused values */
b
.struct dma_desc_list descDest2 = {
descDestl, arrDest?,
DI_EN | WDSIZE_16 | WNR | DMAEN,
length(arrDest2), 2,
0, 0O /* unused values */

.section L1_code;
_main:
/* write descriptor address to next descriptor pointer */

pO.h = hi(MDMA_SO_CONFIG);
p0.1 = To(MDMA_SO_CONFIG);
r0.h = hi(descDestl);

r0.1 = lo(descDestl);
[pO + MDMA_DO_NEXT_DESC_PTR - MDMA_SO_CONFIG] = rO;
r0.h = hi(descSourcel);

5-116 ADSP-BF537 Blackfin Processor Hardware Reference

Direct Memory Access

r0.1 = lo(descSourcel);
[p0O + MDMA_SO_NEXT_DESC_PTR - MDMA_SO_CONFIG] = r0;

/* start first work unit */

r6.1 = FLOW_LARGE |NDSIZE_7 |WDSIZE_16|DMAEN;
wlpO + MDMA_SO_CONFIG - MDMA_SO_CONFIG] = ré6;
r7.1 = FLOW_LARGE |NDSIZE_7 |WDSIZE_16|WNR|DMAEN;

w[pO + MDMA_DO_CONFIG - MDMA_SO_CONFIG] = r7;

/* wait until destination channel has finished and W1C Tatch */
_main.wait:

r0 = wlp0 + MDMA_DO_IRQ_STATUS - MDMA_SO_CONFIG] (z);

CC = bittst (r0, bitpos(DMA_DONE));

if ICC jump _main.wait;

r0.1 = DMA_DONE;

w[pO + MDMA_DO_IRQ_STATUS - MDMA_SO_CONFIG] = r0;

/* wait for any software or hardware event here */

/* start next work unit */
wlp0 + MDMA_SO_CONFIG - MDMA_SO_CONFIG]
wlpO0 + MDMA_DO_CONFIG - MDMA_SO_CONFIG]
Jjump _main.wait;

re;
r7;

_main.end:

Handshaked Memory DMA Example

The functional block for the handshaked MDMA operation can be seen
completely separately from the MDMA channels themselves. Therefore
the following HMDMA setup routine can be combined with any of the
MDMA examples discussed above. Be sure that the HMDMA module is
enabled before the MDMA channels.

Listing 5-8 enables the HMDMAT1 block which is controlled by the bDMAR1
pin and is associated with the MDMAL1 channel pair.

ADSP-BF537 Blackfin Processor Hardware Reference 5-117

Programming Examples

Listing 5-8. HMDMALI1 Block Enable

/* optionally, enable all four bank select strobes */
pl.1T = To(EBIU_AMGCTL);

pl.h = hi(EBIU_AMGCTL);
r0.1 = 0x0009;
wlpl] = r0;

/* function enable for DMAR1 */

pl.1 = To(PORTF_FER);
ro.1 = PF1;

wlpl]l = r0;

pl.1T = To(PORT_MUX);
r0.1 = PFDE;

wlpl]l = r0;

/* every single transfer requires one DMARI event */

pl.T = To(HMDMAI_BCINIT);
ro.1 =1;
wlpl]l = r0;

/* start with balanced request counter */

pl.1T = To(HMDMAI_ECINIT);
ro.1 = 0;
wlpl]l = r0;

/* enable for rising edges */

pl.T = To(HMDMAI_CONTROL);
r2.1 = REP | HMDMAEN;
wlpl]l = r2;

If the HMDMA is intended to copy from internal memory to external
devices the above setup is sufficient. If, however, the data flow is from out-
side the processor to internal memory, then this small issue must be
considered—the HMDMA only controls the destination channel of the

5-118 ADSP-BF537 Blackfin Processor Hardware Reference

Direct Memory Access

memory DMA. It does not gate requests to the source channel at all.
Thus, as soon as the source channel is enabled it starts filling the DMA
FIFO immediately. In 16-bit DMA mode this results in eight read strobes
on the EBIU even before the first DMARI event has been detected. In
other words, the transferred data and the DMARTI strobes are eight posi-
tions off. The example in Listing 5-9 delays processing until eight
DMARI requests have been received. Note that doing so the transmitter is
required to add eight trailing dummy writes after all data words have been

sent. This is because the transmit channel still has to drain the DMA
FIFO.

Listing 5-9. HMDMA With Delayed Processing

/* wait for eight requests */
pl.T = To(HMDMAI_ECOUNT);
ro =7 (z);
initial_requests:
rl = wlipll (z);
CC =rl1 < r0;
if CC jump initial_requests;

/* disable and reenable to clear edge count */

pl.T = To(HMDMAL_CONTROL);
ro.1 = 0;

wlpl]l = r0;

wlpl] = r2;

If the polling operation as shown in Listing 5-9 is too expensive, an inter-
rupt version of it can be implemented by using the HMDMA overflow
feature. Set the HMDMAX_OVERFLOW register to eight temporarily.

ADSP-BF537 Blackfin Processor Hardware Reference 5-119

Programming Examples

5-120 ADSP-BF537 Blackfin Processor Hardware Reference

6 EXTERNAL BUS INTERFACE
UNIT

The External Bus Interface Unit (EBIU) provides glueless interfaces to
external memories. The processor supports Synchronous DRAM
(SDRAM) including mobile SDRAM, and is compliant with the PC100
and PC133 SDRAM standards. The EBIU also supports asynchronous
interfaces such as SRAM, ROM, FIFOs, flash memory, and ASIC/FPGA
designs.

This chapter describes:
e “EBIU Overview” on page 6-2
* “AMC Overview and Features” on page 6-9
e “AMC Pin Description” on page 6-10
* “AMC Description of Operation” on page 6-11
e “AMC Functional Description” on page 6-12
e “AMC Programming Model” on page 6-19
e “AMC Register Definition” on page 6-19
e “AMC Programming Examples” on page 6-25
e “SDC Opverview and Features” on page 6-27
e “SDC Interface Overview” on page 6-32
e “SDC Description of Operation” on page 6-35
e “SDC Functional Description” on page 6-42

ADSP-BF537 Blackfin Processor Hardware Reference 6-1

EBIU Overview

e “SDC Programming Model” on page 6-59
e “SDC Registers” on page 6-64

e “SDC Programming Examples” on page 6-82

EBIU Overview

The EBIU services requests for external memory from the core or from a
DMA channel. The priority of the requests is determined by the external
bus controller. The address of the request determines whether the request

is serviced by the EBIU SDRAM controller or the EBIU asynchronous

memory controller.

The DMA controller provides high-bandwidth data movement capability.
The Memory DMA (MDMA) channels can perform block transfers of
code or data between the internal memory and the external memory
spaces. The MDMA channels also feature a Handshake Operation mode
(HMDMA) via dual external DMA request pins. When used in conjunc-
tion with the EBIU, this functionality can be used to interface high-speed
external devices, such as FIFOs and USB 2.0 controllers, in an automatic
manner. For more information on HMDMA and the external DMA
request pins, refer to Chapter 5, “Direct Memory Access”.

The EBIU is clocked by the system clock (SCLK). All synchronous memo-
ries interfaced to the processor operate at the SCLK frequency. The ratio
between core frequency and SCLK frequency is programmable using a
Phase Locked Loop (PLL) system Memory-Mapped Register (MMR). For
more information, see “Core Clock/System Clock Ratio Control” on

page 20-5.

The external memory space is shown in Figure 6-1. One memory region is
dedicated to SDRAM support. SDRAM interface timing and the size of
the SDRAM region are programmable. The SDRAM memory space can
range in size from 16M byte to 128M byte.

6-2 ADSP-BF537 Blackfin Processor Hardware Reference

External Bus Interface Unit

EXTERNAL MEMORY MAP

OXEEFF FFFF >

RESERVED

y

0x2040 0000
ASYNC MEMORY BANK 3 (1 MByte)

y

0x2030 0000
ASYNC MEMORY BANK 2 (1 MByte)

0x2020 0000 >
ASYNC MEMORY BANK 1 (1 MByte)

0x2010 0000 >
ASYNC MEMORY BANK 0 (1 MByte)

0x2000 0000 >

RESERVED

SDRAM MEMORY
(16 MByte—128 MByte)

0x0000 0000 ——»
NOTE: RESERVED OFF-CHIP MEMORY AREAS ARE LABELED IN THE DIAGRAM

ABOVE. ALL OTHER OFF-CHIP SYSTEM RESOURCES ARE ADDRESSABLE BY
BOTH THE CORE AND THE SYSTEM.

Figure 6-1. External Memory Map

ADSP-BF537 Blackfin Processor Hardware Reference

6-3

EBI

U Overview

The start address of the SDRAM memory space is 0x0000 0000. The area
from the end of the SDRAM memory space up to address 0x2000 0000 is
reserved.

The next four regions are dedicated to supporting asynchronous memo-
ries. Each asynchronous memory region can be independently
programmed to support different memory device characteristics. Each
region has its own memory select output pin from the EBIU.

The next region is reserved memory space. References to this region do
not generate external bus transactions. Writes have no effect on external
memory values, and reads return undefined values. The EBIU generates
an error response on the internal bus, which will generate a hardware
exception for a core access or will optionally generate an interrupt from a

DMA channel.

Block Diagram

Figure 6-2 is a conceptual block diagram of the EBIU and its interfaces.
Signal names shown with an overbar are active low signals.

EBIU | «—» DATA [15:0]
——» ADDR [19:1]
¥ ASYNCHRONOUS| %[[;'_%]]'SDQM [1:01
EAB :ll MEMORY ARDY :
- 3 CONTROLLER - ARD
- € A (AMC) _’Q%E
4
N =
0@ [T 1 —— =8 sMs
2u ' J” < cLKOUT
4 —» SCKE
Z SDRAM > SA10
I CONTROLLER |4 — SRAS
5 (sbc) — SCAS
[n} L] — SWE
+— BR
PAB f —™BG
- — BGH

Figure 6-2. External Bus Interface Unit (EBIU)

ADSP-BF537 Blackfin Processor Hardware Reference

External Bus Interface Unit

Since only one external memory device can be accessed at a time, control,
address, and data pins for each memory type are multiplexed together at
the pins of the device. The Asynchronous Memory Controller (AMC) and
the SDRAM Controller (SDC) effectively arbitrate for the shared pin

resources.

Internal Memory Interfaces

The EBIU functions as a slave on three buses internal to the processor:

* External Access Bus (EAB), mastered by the core memory manage-
ment unit on behalf of external bus requests from the core

e DMA External Bus (DEB), mastered by the DMA controller on
behalf of external bus requests from any DMA channel

e DPeripheral Access Bus (PAB), mastered by the core on behalf of sys-
tem MMR requests from the core

These are synchronous interfaces, clocked by SCLK, as are the EBIU and
pads registers. The EAB provides access to both asynchronous external
memory and synchronous DRAM external memory. The external access is
controlled by either the AMC or the SDC, depending on the internal
address used to access the EBIU. Since the AMC and SDC share the same
interface to the external pins, access is sequential and must be arbitrated
based on requests from the EAB.

The third bus (PAB) is used only to access the memory-mapped control
and status registers of the EBIU. The PAB connects separately to the
AMC and SDC; it does not need to arbitrate with or take access cycles
from the EAB bus.

The External Bus Controller (EBC) logic must arbitrate access requests for
external memory coming from the EAB and DEB buses. The EBC logic
routes read and write requests to the appropriate memory controller based
on the bus selects. The AMC and SDC compete for access to the shared

ADSP-BF537 Blackfin Processor Hardware Reference 6-5

EBIU Overview

resources. This competition is resolved in a pipelined fashion, in the order
dictated by the EBC arbiter. Transactions from the core have priority over
DMA accesses in most circumstances. However, if the DMA controller
detects an excessive backup of transactions, it can request its priority to be
temporarily raised above the core.

Registers

There are six control registers and one status register in the EBIU. They
are:

* Asynchronous memory global control register (EBIU_AMGCTL)
* Asynchronous memory bank control 0 register (EBIU_AMBCTLO)
* Asynchronous memory bank control 1 register (EBIU_AMBCTL1)
e SDRAM memory global control register (EBIU_SDGCTL)
e SDRAM memory bank control register (EBIU_SDBCTL)
e SDRAM refresh rate control register (EBIU_SDRRC)
* SDRAM control status register (EBIU_SDSTAT)
Each of these registers is described in detail in the AMC and SDC sections

later in this chapter.

Shared Pins

Both the AMC and the SDC share the external interface address and data

pins, as well as some of the control signals. These pins are shared:
e ADDR[19:11], address bus
* DATA[15:07, data bus

e ABE[1:01/SDQMI[1:0], AMC byte enables/SDC data masks

6-6 ADSP-BF537 Blackfin Processor Hardware Reference

External Bus Interface Unit

* BR, BG. BGH, external bus access control signals
* CLKOUT, system clock for SDC and AMC

No other signals are multiplexed between the two controllers.

System Clock
The CLKOUT pin is shared by both the SDC and AMC. Two different regis-

ters are used to control this:
* EBIU_SDGCTL register, SCTLE bit for SDC clock
e EBIU_AMGCTL register, AMCKEN bit for AMC clock

The CLKOUT pin has independent control of both peripherals.

Error Detection

The EBIU responds to any bus operation which addresses the range of
0x0000 0000 — OxEEFF FFFF, even if that bus operation addresses
reserved or disabled memory or functions. It responds by completing the
bus operation (asserting the appropriate number of acknowledges as speci-
fied by the bus master) and by asserting the bus error signal for these error
conditions:

* Any access to a disabled external memory bank
* Any access to reserved memory space
* Any access to uninitialized SDRAM space

If the core requested the faulting bus operation, the bus error response
from the EBIU is gated into the hardware error interrupt (IVHW) internal
to the core (this interrupt can be masked off in the core). If a DMA master
requested the faulting bus operation, then the bus error is captured in that
controller and can optionally generate an interrupt to the core.

ADSP-BF537 Blackfin Processor Hardware Reference 6-7

EBIU Overview

Bus Request and Grant

The processor can relinquish control of the data and address buses to an
external device. The processor three-states its memory interface to allow
an external controller to access either external asynchronous or synchro-
nous memory parts.

Operation

When the external device requires access to the bus, it asserts the bus
request (BR) signal. The BR signal is arbitrated with EAB requests. If no
internal request is pending, the external bus request will be granted. The
processor initiates a bus grant by:

* Three-stating the data and address buses and the asynchronous
memory control signals. The synchronous memory control signals
can optionally be three-stated.

* Asserting the bus grant (BG) signal.

The processor may halt program execution if the bus is granted to an
external device and an instruction fetch or data read/write request is made
to external memory. When the external device releases BR, the processor
deasserts BG and continues execution from the point at which it stopped.

The processor asserts the BGH pin when it is ready to start another external
port access, but is held off because the bus was previously granted.

When the bus has been granted, the BGSTAT bit in the SDSTAT register is
set. This bit can be used by the processor to check the bus status to avoid
initiating a transaction that would be delayed by the external bus grant.

If the system is using SDRAM, be sure to place the SDRAM into
self-refresh mode before bus mastership is granted. If this is not

done, the SDRAM’s data is lost.

6-8

ADSP-BF537 Blackfin Processor Hardware Reference

External Bus Interface Unit

AMC Overview and Features

The following sections describe the features of the Asynchronous Memory
Controller (AMCQ).

Features

The EBIU AMC features include:
e /O width 16-bit, I/O supply 2.5 or 3.3 V
* Maximum throughput of 133 M bytes/second
* Supports up to 4M byte of SRAM in four external banks
* AMC supports 8-bit data masking writes

* AMC has control of the EBIU while auto-refresh is performed to
SDRAM

* AMC supports asynchronous access extension (ARDY pin)
* Supports instruction fetch

* Allows booting from bank 0 (AMS0)

Asynchronous Memory Interface

The asynchronous memory interface allows a glueless interface to a variety
of memory and peripheral types. These include SRAM, ROM, EPROM,
flash memory, and FPGA/ASIC designs. Four asynchronous memory
regions are supported. Each has a unique memory select associated with it,

shown in Table 6-1.

ADSP-BF537 Blackfin Processor Hardware Reference 6-9

AMC Pin Description

Table 6-1. Asynchronous Memory Bank Address Range

Memory Bank Select Address Start Address End

AMST37 0x2030 0000 0x203F FFFF
AMST27 0x2020 0000 0x202F FFFF
AMST1] 0x2010 0000 0x201F FFFF
AMSLO] 0x2000 0000 0x200F FFFF

Asynchronous Memory Address Decode

The address range allocated to each asynchronous memory bank is fixed at
1M byte; however, not all of an enabled memory bank need be populated.

Note accesses to unpopulated memory of partially populated AMC

banks do not result in a bus error and will alias to valid AMC
addresses.

The asynchronous memory signals are defined in Table 6-2. The timing of

these pins is programmable to allow a flexible interface to devices of differ-
ent speeds. For example interfaces, see Chapter 21, “System Design”.

AMC Pin Description

The following table describes the signals associated with each interface.

Table 6-2. Asynchronous Memory Interface Signals

Pad Pin Type ! Description
DATAL15:0] /0 External data bus
CLKOUT O Switches at system clock frequency. Connect to the
peripheral if required.
ADDR[19:1] O External address bus
AMST3:07 (@) Asynchronous memory selects
6-10

ADSP-BF537 Blackfin Processor Hardware Reference

External Bus Interface Unit

Table 6-2. Asynchronous Memory Interface Signals (Cont'd)

Pad Pin Type ! |Description

AWE (@) Asynchronous memory write enable

ARE O Asynchronous memory read enable

AOE (@) Asynchronous memory output enable
In most cases, the AOE pin should be connected to the 0F
pin of an external memory-mapped asynchronous device.
Refer to the product data sheet for specific timing infor-
mation between the AOE and ARE signals to determine
which interface signal should be used in your system.

ARDY I Asynchronous memory ready response

ABEL1:0]/SDQM[1:0] | O Byte enables

1 Pin Types: I = Input, O = Output

AMC Description of Operation

The following sections describe the operation of the AMC.

Avoiding Bus Contention

Because the three-stated data bus is shared by multiple devices in a system,
be careful to avoid contention. Contention causes excessive power dissipa-
tion and can lead to device failure. Contention occurs during the time one
device is getting off the bus and another is getting on. If the first device is

slow to three-state and the second device is quick to drive, the devices
contend.

There are two cases where contention can occur. The first case is a read
followed by a write to the same memory space. In this case, the data bus
drivers can potentially contend with those of the memory device addressed
by the read. The second case is back-to-back reads from two different

ADSP-BF537 Blackfin Processor Hardware Reference 6-11

AMC Functional Description

memory spaces. In this case, the two memory devices addressed by the two
reads could potentially contend at the transition between the two read
operations.

To avoid contention, program the turnaround time (bank transition time)
appropriately in the asynchronous memory bank control registers. This
feature allows software to set the number of clock cycles between these
types of accesses on a bank-by-bank basis. Minimally, the EBIU provides
one cycle for the transition to occur.

External Access Extension

Each bank can be programmed to sample the ARDY input after the read or
write access timer has counted down or to ignore this input signal. If
enabled and disabled at the sample window, ARDY can be used to extend
the access time as required.

The polarity of ARDY is programmable on a per-bank basis. Since ARDY is
not sampled until an access is in progress to a bank in which the ARDY
enable is asserted, ARDY does not need to be driven by default. For more
information, see “Adding External Access Extension” on page 6-16.

AMC Functional Description

The following sections provide a functional description of the AMC.

Programmable Timing Characteristics

This section describes the programmable timing characteristics for the
EBIU. Timing relationships depend on the programming of the AMC,
whether initiation is from the core or from memory DMA, and the
sequence of transactions (read followed by read, read followed by write,
and so on).

6-12 ADSP-BF537 Blackfin Processor Hardware Reference

External Bus Interface Unit

Asynchronous Reads

Figure 6-3 shows an asynchronous read bus cycle with timing pro-
grammed as setup = 2 cycles, read access = 2 cycles, hold = 1 cycle, and
transition time = 1 cycle.

Asynchronous read bus cycles proceed as follows.

1. At the start of the setup period, AMS[x] and AOE assert. The address
bus becomes valid. The ABE[1:07 signals are low during the read.

2. At the beginning of the read access period and after the 2 setup
cycles, ARE asserts.

3. At the beginning of the hold period, read data is sampled on the
rising edge of the EBIU clock. The ARE pin deasserts after this ris-
ing edge.

4. At the end of the hold period, AOE deasserts unless this bus cycle is
followed by another asynchronous read to the same memory space.
Also, AMSTx] deasserts unless the next cycle is to the same memory

bank.

5. Unless another read of the same memory bank is queued internally,
the AMC appends the programmed number of memory transition
time cycles.

ADSP-BF537 Blackfin Processor Hardware Reference 6-13

AMC Functional Description

TRANSITION
SETUP READ ACCESS HOLD = TIME
2 CYCLES 2 CYCLES 1CYCLE 1 CYCLE

I I I I I

I
I
AMS[3:0] | \

P

ABE[1:0] |
I I
I I
ADDR[19:1] | X X |
I I
I I
DATA[15:0] —F—(X X ——

W

I
AGE I\

I
I
ARE I
I
|
|
e /|

Figure 6-3. Asynchronous Read Bus Cycles

—

(.

Asynchronous Writes

Figure 6-4 shows an asynchronous write bus cycle followed by an asyn-
chronous read cycle to the same bank, with timing programmed as setup =
2 cycles, write access = 2 cycles, read access = 3 cycles, hold = 1 cycle, and
transition time = 1 cycle.

6-14 ADSP-BF537 Blackfin Processor Hardware Reference

External Bus Interface Unit

DATA LATCHED
TRANSITION
SETUP WRITE ACCESS |, HOLD SETUP READ ACCESS HOLD = TIME
| | P

2 CYCLES | 2 CYCLES 1CYCLE | 2CYCLES | 3 CYCLES | 1CYCLE |1 CYCLE |
CLKOUT

I I
_L\ I I I I I /_I_
AWSIX] I I I I
I I
I I
. 1 l
ABE[1:0] : K¢ __BEt . . \ / :

ADDRI[19:1] X A1 X A2 X

I
DATA15:0] ————(D1 — (

AOE

\

ARE

\

_ | o|—]

o I
(. I
— I
I |
I I
(. I
NI o e

Figure 6-4. Asynchronous Write and Read Bus Cycles

AWE

Asynchronous write bus cycles proceed as follows.

1. At the start of the setup period, AMS[x7, the address bus, data buses,
and ABE[1:0] become valid. See “Partial Write” on page 6-17 for
more information.

2. At the beginning of the write access period, AWE asserts.

3. At the beginning of the hold period, AWE deasserts.

ADSP-BF537 Blackfin Processor Hardware Reference 6-15

AMC Functional Description

Asynchronous read bus cycles proceed as follows.

1.

At the start of the setup period, AMSTx] and AOE assert. The address
bus becomes valid. The ABE[1:07 signals are low during the read.

At the beginning of the read access period, ARE asserts.

At the beginning of the hold period, read data is sampled on the
rising edge of the EBIU clock. The ARE signal deasserts after this
rising edge.

At the end of the hold period, AOE deasserts unless this bus cycle is
followed by another asynchronous read to the same memory space.
Also, AMSTx] deasserts unless the next cycle is to the same memory

bank.

Unless another read of the same memory bank is queued internally,
the AMC appends the programmed number of memory transition
time cycles.

Adding External Access Extension

The ARDY pin can be used to insert additional wait states driven by external
peripherals. The AMC starts sampling ARDY on 1/2 clock cycles before the
end of the programmed strobe period. If ARDY is sampled as deasserted, the
access period is extended. The ARDY pin is then sampled on each subse-
quent clock edge. Read data is latched on 3/2 clock cycles after ARDY is
sampled as asserted. The read- or write-enable remains asserted for one
clock cycle after ARDY is sampled as asserted. An example of this behavior is
shown in Figure 6-5, where setup = 2 cycles, read access = 4 cycles, and
hold = 1 cycle.

The read access period must be programmed to a minimum of two
cycles to make use of the ARDY pin. In contrast to the
ADSP-BF533/32/31, the ARDY pin of the ADSP-BF537/34/36 can
be asserted asynchronously to the system clock. This causes a tim-
ing shift of 1/2 clock cycle for setup and hold time.

6-16

ADSP-BF537 Blackfin Processor Hardware Reference

External Bus Interface Unit

1 CYCLE
SETUP PROGRAMMED READ ACCESS ACCESS EXTENDED,
f—— — —_——— [——
2 CYCLES 4 CYCLES 3 CYCLES)
CLKOUT
! |
! |
|
ANSX ! |
! !
[
|
1
|
| BE, ADDRESS
.

b
3
m|

ARDY

I
I
1
I
I
I
I
I
T
I
|
[
I
I
|
I
I
DATA15-0
I
I

Figure 6-5. Inserting Wait States Using ARDY

Partial Write

In general, there are two different ways to modify a single byte within the
16-bit interface. First, it can be done by a read/modify/write sequence.
However, this is not very efficient because multiple accesses are required.

During partial writes to asynchronous spaces, the ABE[1:07 pins are used
to mask writes to bytes that are not accessed. Table 6-3 shows the
ABE[1:07 encodings based on the internal transfer address bit IA[0] and
the transfer size.

ADSP-BF537 Blackfin Processor Hardware Reference 6-17

AMC Functional Description

However, during read transfers to asynchronous bank spaces, reads are
always done of all bytes in the bank regardless of the transfer size. This
means for 16-bit SRAM banks, ABE[1:07 are all zeros (0s).

The AMC provides byte enable pins ABE[1:07 to allow the proces-
sor to perform efficient byte-wide arithmetic and byte-wide
processing in external memory.

Table 6-3. Byte Enables 8-Bit Write Accesses

Internal Address |Internal Transfer Size

1A[0] byte 2 bytes

0 ABE[1]1 =1 ABE[11 =0
ABEL0] =0 ABEL0] =0

1 ABE[1]1 =0 ABE[1]1 =0
ABE[O] =1 ABE[0] =0

Instruction Fetch

The AMC supports external code execution by fetching multiple bursts of
64 bits. Since the I/O is 16 bits, each instruction fetch is organized in

4 x 16-bit burst cycles. Instruction fetch is supported on all four asynchro-
nous banks AMS[3:0].

During no boot configuration, the sequencer jumps automatically to the
AMS[0] bank to start code execution after reset of the chip is deasserted.

Cache Line Fill

Cache line fills are bursts of 256 bits. Since the I/O is 16 bits, each cache
line fill is organized in 16 x 16-bit burst cycles.

6-18 ADSP-BF537 Blackfin Processor Hardware Reference

External Bus Interface Unit

AMC Programming Model

The following section provides programming model information for the

AMC.

AMC Configuration

After a processor’s hardware or software reset, the AMC clocks are
enabled; however, the AMC must be configured and initialized in the fol-
lowing order:

1. Werite to the EBIU bank control registers (EBIU_AMBCTLO,
EBIU_AMBCTLI).

2. Write to the EBIU global control register (EBIU_AMGCTL).

The asynchronous memory bank control registers (EBIU_AMBCTLO,
EBIU_AMBCTL1) are used to configure bits for timing counters for setup,
strobe, hold and transition times and bits to configure the use of ARDY.

Furthermore, the asynchronous global control register (EBIU_AMGCTL) is
used to determine bank memory size, bits to configure access priority, and
clock control.

These registers should not be programmed while the AMC is in use.

AMC Register Definition

The following sections describe the AMC registers.

ADSP-BF537 Blackfin Processor Hardware Reference 6-19

AMC Register Definition

EBIU_AMGCTL Register

Figure 6-6 shows the asynchronous memory global control register
(EBIU_AMGCTL).

Asynchronous memory clock enable (AMCKEN). For external devices
that need a clock, CLKOUT can be enabled by setting the AMCKEN bit
in the EBIU_AMGCTL register. In systems that do not use CLKOUT, set
the AMCKEN bit to 0.

Asynchronous memory bank enable (AMBEN). If a bus operation
accesses a disabled asynchronous memory bank, the EBIU responds
by acknowledging the transfer and asserting the error signal on the
requesting bus. The error signal propagates back to the requesting
bus master. This generates a hardware exception to the core, if it is
the requester. For DMA-mastered requests, the error is captured in
the respective status register. If a bank is not fully populated with
memory, then the memory likely aliases into multiple address
regions within the bank. This aliasing condition is not detected by
the EBIU, and no error response is asserted.

Core/DMA priority (CDPRIO). This bit configures the EBIU to
control the priority over requests that occur simultaneously to the
EBIU from either processor core or the DMA controller. When
this bit is set to 0, a request from the core has priority over a
request from the DMA controller to the EBIU, unless the DMA is
urgent. When the CDPRIO bit is set, all requests from the DMA
controller, including the memory DMAs, have priority over core
accesses. For the purposes of this discussion, core accesses include
both data fetches and instruction fetches.

@ The cDPRIO bit applies to the EBIU’s AMC and SDC.

6-20

ADSP-BF537 Blackfin Processor Hardware Reference

External Bus Interface Unit

Asynchronous Memory Global Control Register (EBIU_AMGCTL)

15 14 13 12 11 10

1 0

0xFFCO 0A00 |o |o |o |o|o |o |o |0|1 |1 |1 |1 |o |o |1 |0| Reset = 0x00F2

CDPRIO
0 - Core has priority over DMA
for external accesses
1 - DMA has priority over core
for external accesses
For more information, see

S

AMCKEN
0 - Disable CLKOUT for
asynchronous memory
region accesses
1 - Enable CLKOUT for
asynchronous memory

Chapter 2, “Chip Bus Hierarchy”. region accesses
AMBENT[2:0]
Enable asynchronous memory
banks
000 - All banks disabled
001 - BankO enabled
010 - BankO and Bank1 enabled
011 - BankO0, Bank1, and Bank2
enabled
1xx - All banks (BankO0, Bank1,
Bank2, Bank3) enabled

Figure 6-6. Asynchronous Memory Global Control Register

EBIU_AMBCTLO and EBIU_AMBCTL1 Registers

Figure 6-7 and Figure 6-8 show the asynchronous memory bank control
registers (EBIU_AMBCTLO and EBIU_AMBCTLI1).

The timing characteristics of the AMC can be programmed using five
parameters:

e Setup time
* Read access time
e Write access time
* Hold time

e Transition time

ADSP-BF537 Blackfin Processor Hardware Reference 6-21

AMC Register Definition

The following asynchronous memory timing parameters, as shown in
Table 6-4, are used by the AMC. To program the AMC interface, refer to

the asynchronous memory’s specific data sheet information.

Any absolute timing parameter must be normalized to the system
clock which allows the AMC to adapt to the timing parameter of
the device.

Table 6-4. AMC Interface Timing Parameters

Parameter Description

Setup Time Time between the beginning of a memory cycle (AMS[x] low) and the
read-enable assertion (ARE low) or write-enable assertion (AWE low). Setup
min S 1 cycle.

Read Access Time | Time between read-enable assertion (ARE low) and deassertion (ARE high).

Read access min S 1 cycle.

Write Access Time

Time between write-enable assertion (AWE low) and deassertion (AWE high).
Write access min S 1 cycle.

Hold Time

Time between read-enable deassertion (ARE high) or write-enable deasser-
tion (AWE high) and the end of the memory cycle (AMS[x] high). Hold min
S 0 cycle.

Transition Time

Time between a read access (AMS[x] high) followed by a write access
(AMS[x] low) to same bank or time between a read access (AMS[x] high)
followed by a write access (AMS[x] low) to another bank. Transition min S1
cycle.

6-22

ADSP-BF537 Blackfin Processor Hardware Reference

External Bus Interface Unit

Asynchronous Memory Bank Control 0 Register (EBIU_AMBCTLO)
31 30 29 28 27 26 25 24 23 22 2120 19 18 17 16

0xFFCO 0A04

| Reset = 0xFFC2 FFC2

ENENENEN ENENENEN KRN DA
| I R

o|o|1|0
| |

B1WAT[3:0] -]

Bank 1 write access time (number of
cycles AWE is held asserted)

0000 - Not supported

0001 to 1111 - 1 to 15 cycles
B1RAT[3:0]
Bank 1 read access time (number of
cycles ARE is held asserted)

0000 - Not supported

0001 to 1111 - 1 to 15 cycles
B1HT[1:0]

Bank 1 hold time (number of cycles between AWE or

ARE deasserted, and AMST deasserted)
00 - 0 cycles

01 -1 cycle

10 - 2 cycles

11 - 3 cycles
B1ST[1:0]

B1RDYEN

Bank 1 ARDY enable

0 - Ignore ARDY for accesses to
this memory bank

1 - After access time countdown,
use state of ARDY to deter-
mine completion of access

'— B1RDYPOL

Bank 1 ARDY polarity

0 - Transaction completes if
ARDY sampled low

1 - Transaction completes if
ARDY sampled high

B1TT[1:0]
Bank 1 memory transition time

(number of cycles inserted after a
read access to this bank, and

Bank 1 setup time (number of cycles after AMS1
asserted, before AWE or ARE asserted)
00 - 4 cycles

before a write access to this bank
or a read access to another bank)
00 - 4 cycles for bank transition
01 - 1 cycle for bank transition

01 -1 cycle 10 - 2 cycles for bank transition
10 - 2 cycles 11 - 3 cycles for bank transition
11 - 3 cycles 1514 1312 11 10 9 8 7 6 5 4 3 2 1 0

1|1|1|1 1|1|1|1 1|1|o|o o|0|1|o|

BOWAT[3:0] |

Bank 0 write access time (number of
cycles AWE is held asserted)

0000 - Not supported

0001 to 1111 - 1 to 15 cycles
BORAT[3:0]
Bank 0 read access time (number of
cycles ARE is held asserted)

0000 - Not supported

0001 to 1111 - 1 to 15 cycles
BOHT[1:0]

Bank 0 hold time (number of cycles between AWE or
ARE deasserted, and AMSO deasserted)
00 - 0 cycles
01 -1 cycle
10 - 2 cycles
11 - 3 cycles
BOST[1:0]

|
BORDYEN

Bank 0 ARDY enable
0 - Ignore ARDY for accesses to
this memory bank
1 - After access time countdown,
use state of ARDY to deter-
mine completion of access
BORDYPOL
Bank 0 ARDY polarity
0 - Transaction completes if
ARDY sampled low
1 - Transaction completes if
ARDY sampled high
BOTT[1:0]
Bank 0 memory transition time
(number of cycles inserted after a
read access to this bank, and

Bank 0 setup time (number of cycles after AMSO
asserted, before AWE or ARE asserted)

00 - 4 cycles

01 -1 cycle

10 - 2 cycles

11 - 3 cycles

before a write access to this bank
or a read access to another bank)
00 - 4 cycles for bank transition
01 - 1 cycle for bank transition
10 - 2 cycles for bank transition
11 - 3 cycles for bank transition

Figure 6-7. Asynchronous Memory Bank Control 0 Register

ADSP-BF537 Blackfin Processor Hardware Reference

6-23

AMC Register Definition

Asynchronous Memory Bank Control 1 Register (EBIU_AMBCTL1)

31

30 29 28 27 26 25 24 23 22 21 20 19

18 17 16

O0xFFCO 0A08

1|1 |o|0

0 |o |1 |0 | Reset = 0xFFC2 FFC2

ENENENEN ENENERE
| 1

B3WAT[3:0] — |

Bank 3 write access time (number of
cycles AWE is held asserted)

0000 - Not supported

0001 to 1111 - 1 to 15 cycles
B3RAT[3:0]
Bank 3 read access time (number of
cycles ARE is held asserted)

0000 - Not supported

0001 to 1111 - 1 to 15 cycles
B3HT[1:0]

Bank 3 hold time (number of cycles between AWE or
ARE deasserted, and AMS3 deasserted)
00 - 0 cycles
01 -1 cycle
10 - 2 cycles
11 - 3 cycles
B3ST[1:0]

Bank 3 setup time (number of cycles after AMS3
asserted, before AWE or ARE asserted)

00 - 4 cycles
01 -1 cycle
10 - 2 cycles
11 - 3 cycles

15 14 13 12 11 10

9 8

7 6 5 4

B3RDYEN

Bank 3 ARDY enable
0 - Ignore ARDY for accesses to
this memory bank
1 - After access time countdown,
use state of ARDY to deter-
mine completion of access
B3RDYPOL

Bank 3 ARDY polarity
0 - Transaction completes if
ARDY sampled low
1 - Transaction completes if
ARDY sampled high
B3TT[1:0]
Bank 3 memory transition time
(number of cycles inserted after a
read access to this bank, and
before a write access to this bank
or a read access to another bank)
00 - 4 cycles for bank transition
01 - 1 cycle for bank transition
10 - 2 cycles for bank transition
11 - 3 cycles for bank transition
3 2 1 0

1|1|1|1

1|1|1|1

1|1 |o|o

ofofr]e]

B2WAT[3:0] —

Bank 2 write access time (number of
cycles AWE is held asserted)

0000 - Not supported

0001 to 1111 - 1 to 15 cycles
B2RAT[3:0]
Bank 2 read access time (number of
cycles ARE is held asserted)

0000 - Not supported

0001 to 1111 - 1 to 15 cycles
B2HT[1:0]

Bank 2 hold time (number of cycles between AWE or
ARE deasserted, and AMS2 deasserted)
00 - 0 cycles
01 -1 cycle
10 - 2 cycles
11 - 3 cycles
B2ST[1:0]

Bank 2 setup time (number of cycles after AMS2
asserted, before AWE or ARE asserted)

00 - 4 cycles

01 -1 cycle

10 - 2 cycles

11 - 3 cycles

B2RDYEN

Bank 2 ARDY enable
0 - Ignore ARDY for accesses to
this memory bank
1 - After access time countdown,
use state of ARDY to deter-
mine completion of access
B2RDYPOL
Bank 2 ARDY polarity
0 - Transaction completes if
ARDY sampled low
1 - Transaction completes if
ARDY sampled high
——— B2TT[1:0]
Bank 2 memory transition time
(number of cycles inserted after a
read access to this bank, and
before a write access to this bank
or a read access to another bank)
00 - 4 cycles for bank transition
01 - 1 cycle for bank transition
10 - 2 cycles for bank transition
11 - 3 cycles for bank transition

Figure 6-8. Asynchronous Memory Bank Control 1 Register

6-24

ADSP-BF537 Blackfin Processor Hardware Reference

External Bus Interface Unit

AMC Programming Examples

Listing 6-1, Listing 6-2, and Listing 6-3 provide examples for working
with the AMC.

Listing 6-1. AMC Init

************k*****k****k*k************k*k****************************/

.SECTION L1_code;

/* Asynchronous Memory Bank Control 0 Register */

PO.H = hi(EBIU_AMBCTLO);
PO.L = 1o0(EBIU_AMBCTLO);
RO.H = hi(BIWAT_7 | /* Bl Write Access Time = 7 cycles */
BIRAT_11 | /* Bl Read Access Time = 11 cycles */
BIHT_2 | /* Bl Hold Time from Read/Write deas-
serted to AOE deasserted = 2 cycles */
BIST_3) /* Bl Setup Time from AOE asserted to
Read/Write asserted=3 cycles */
RO.L = BOWAT_7 | /* BO Write Access Time = 7 cycles */
BORAT_11 | /* BO Read Access Time = 11 cycles */
BOHT_2 | /* BO Hold Time from Read/Write deas-
serted to AOE deasserted = 2 cycles */
BOST_3 ; /* B0 Setup Time from AOE asserted to
Read/Write asserted=3 cycles */
[PO] = RO;

/* Asynchronous Memory Bank Control 1 Register */
PO.H = hi(EBIU_AMBCTL1);

PO.L = To(EBIU_AMBCTL1);

RO.H = hi(B3WAT_7 | /* B3 Write Access Time = 7 cycles */
B3RAT_11 | /* B3 Read Access Time = 11 cycles */
B3HT_2 | /* B3 Hold Time from Read/Write deas-

serted to AOE deasserted = 2 cycles */

ADSP-BF537 Blackfin Processor Hardware Reference 6-25

AMC Programming Examples

B3ST_3) ; /* B3 Setup Time from AOE asserted to
Read/Write asserted=3 cycles */
RO.L = B2WAT_7 | /* B2 Write Access Time = 7 cycles */
B2RAT_11 | /* B2 Read Access Time = 11 cycles */
BZ2HT_2 | /* B2 Hold Time from Read/Write deas-
serted to AOE deasserted = 2 cycles */

B2ST_3
[PO] = RO;

/* Asynchronous Memory Global Control Register */
PO.H = hi(EBIU_AMGCTL);

PO.L = To(EBIU_AMGCTL);

RO = AMBEN_ALL | /* 4MB Asynchronous Memory */
AMCKEN (z) ; /* Enable CLKOUT */

w[PO] = RO;

********‘k********‘k‘k***‘k‘k**‘k****‘k*****‘k*************************/

Listing 6-2. 16-Bit Core Transfers to SRAM

.section Ll_data_b;

.byte? source[N] = 0x1122, 0x3344, 0x5566, 0x7788;
.section SRAM_bank_0;

.byte?2 dest[N];

.section L1_code;

I0.L = To(source);
I0.H = hi(source);
I1.L = To(dest);
I1.H = hi(dest);
RO.L = w[IO0++];
P5=N-1;
Isetup(lp, 1p) LCO=P5;
Tp: RO.L = w[IO++] || w[Il++] = RO.L;
wlIl++] = RO.L;

6-26 ADSP-BF537 Blackfin Processor Hardware Reference

External Bus Interface Unit

Listing 6-3. 8-Bit Core Transfers to SRAM Using Byte Mask ABE[1:0]

Pins

.section Ll_data_b;
.byte source[N] = 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88;
.section SRAM_bank_0;
.byte dest[N];
pO0.L = To(source);
p0.H = hi(source);
pl.L = To(dest);
pl.H hi(dest);
p5=N;
lIsetup(start, end) LCO=P5;
start: RO = b[p0++]1(z);
end: blpl++] = RO; /* byte data masking */

SDC Overview and Features

The SDRAM Controller (SDC) enables the processor to transfer data to
and from Synchronous DRAM (SDRAM) with a maximum frequency
specified in the product data sheet. The processor supports a glueless
interface with one external bank of standard SDRAMs of 64 Mbit to
512 Mbit, with configurations x4, x8, and x16, up to a maximum total

capacity of 128M bytes of SDRAM.

Features

The EBIU SDC provides a glueless interface with standard SDRAMs. Fea-

tures include:
e I/O width 16-bit, I/O supply 2.5 or 3.3 V

* Maximum throughput of 266 M bytes/second

ADSP-BF537 Blackfin Processor Hardware Reference 6-27

SDC Overview and Features

Supports up to 128M byte of SDRAM in external bank

Types of 64, 128, 256, and 512M bit with I/O of x4, x8, and x16
Supports SDRAM page sizes of 512 byte, 1K, 2K, and 4K byte
Supports multibank operation within the SDRAM

Supports mobile SDRAMs

SDC uses no-burst mode (BL = 1) with sequential burst type

SDC supports 8-bit data masking writes

SDC uses open page policy—any open page is closed only if a new
access in another page of the same bank occurs

Uses a programmable refresh counter to coordinate between vary-

ing clock frequencies and the SDRAM’s required refresh rate

Provides multiple timing options to support additional buffers
between the processor and SDRAM

Allows independent auto-refresh while the asynchronous memory
controller has control of the EBIU port

Supports self-refresh mode for power savings
During hibernate state, self-refresh mode is supported

Supports instruction fetch

6-28

ADSP-BF537 Blackfin Processor Hardware Reference

External Bus Interface Unit

SDRAM Configurations Supported
Table 6-5 shows all possible bank sizes, and SDRAM discrete component

configurations that can be gluelessly interfaced to the SDC. The bank
width for all cases is 16 bits.

Table 6-5. SDRAM Discrete Component Configurations Supported

System Size System Size SDRAM Number of
(M byte) (M bit) Configuration Chips
8 4Mx 16 4M x 4 4

8 4Mx 16 4Mx 16 1

16 8M x 16 8Mx 8 2

16 8M x 16 8M x 16 1

32 16M x 16 16M x 4 4

32 16M x 16 16M x 8 2

32 16M x 16 16M x 16 1

64 32M x 16 32M x 4 4

64 32M x 16 32M x 8 2

64 32M x 16 32M x 16 1

128 64M x 16 64M x 4 4

128 64M x 16 64M x 8 2

128 64M x 16 64M x 16 1

SDRAM External Bank Size

The total amount of external SDRAM memory addressed by the processor
is controlled by the EBSZ bits of the EBIU_SDBCTL register (see Table 6-6).
Accesses above the range shown for a specialized EBSZ value results in an
internal bus error and the access does not occur. For more information,
see “Error Detection” on page 6-7.

ADSP-BF537 Blackfin Processor Hardware Reference 6-29

SDC Overview and Features

SDC Address Mapping

The address mapping scheme describes how the SDC maps the address
into SDRAM. To access SDRAM, the SDC uses the bank interleaving
map scheme, which fills each internal SDRAM bank before switching to
the next internal bank. Since the SDRAMs have four internal banks, the
entire SDRAM address space is therefore divided into four sub-address
regions containing the addresses of each internal bank. (See Figure 6-10
on page 6-43.) It starts with address 0x0 for internal bank A and ends with
the last valid address (specified with EBSZ and EBCAW parameters) contain-
ing the internal bank D.

The internal 29-bit non-multiplexed address (See Figure 6-9) is multi-
plexed into:

* Byte data mask (IA[0])
* SDRAM column address
* SDRAM row address
* Internal SDRAM bank address
@ A good understanding of the SDC’s address map scheme in con-

junction with the multibank operation is required to obtain
optimized system performance.

31 28 0

‘ Internal 32-bit Address

e e— v
Bank Row Column Byte
Address Address Address Mask

Figure 6-9. Multiplexed SDRAM Addressing Scheme

6-30 ADSP-BF537 Blackfin Processor Hardware Reference

External Bus Interface Unit

Table 6-6. External Bank Size Encodings

EBSZ Bank Size Valid SDRAM Addresses
(Mbyte)

b#00 16 0x0000 0000 — 0xO0OFF FFFF

b#01 32 0x0000 0000 — 0x01FF FFFF

b#10 64 0x0000 0000 — 0x03FF FFFF

b#11 128 0x0000 0000 — 0x07FF FFFF

Internal SDRAM Bank Select

The internal SDRAM banks are driven by the ADSP-BF537’s

ADDR[19:18] which are part of the row and column address and connected
to the SDRAM’s BA[1:01.

Do not flip up both internal bank select connections, if using the
mobile SDRAM’s PASR feature. If this is done, the system will not
work properly because the selected internal banks are not refreshed
during partial array self-refresh.

Parallel Connection of SDRAMs

To specify an SDRAM system, multiple possibilities are given based on
the different architectures. (See Table 6-14 on page 6-68.) For the
ADSP-BF537 processors, 1/O capabilities of 1 x 16-bit, 2 x 8-bit or 4 x
4-bit are given. The reason to use a system of 4 x 4-bit vs. 2 x 8-bit or 1 x
16-bit is determined by the SDRAM’s page size. All 3 systems have the
same external bank size, but different page sizes. On one hand, the higher
the page size, the higher the performance. On the other hand, the higher
the page size, the higher the hardware layout requirements.

Even if connecting SDRAMs in parallel, the SDC always considers
the entire system as one external SDRAM bank (SMS pin) because
all address and control lines feed the parallel parts.

ADSP-BF537 Blackfin Processor Hardware Reference 6-31

SDC Interface Overview

However, access to a single cluster part is achieved using the mask feature
(SDQML1:0] pins). This allows masked 8-bit I/O writes to dedicated chips
whereby the other 8-bit I/O is masked at its input buffer of the other
chips. See Listing 6-6 on page 6-85.

Instruction Fetch

The SDC supports external code execution by fetching multiple bursts of
64 bits. Since the I/O is 16 bits, each instruction fetch is organized in
4 x 16-bit burst cycles.

Cache Line Fill

Cache line fills are bursts of 256 bits. Since the I/O is 16 bits, each cache
line fill is organized in 16 x 16-bit burst cycles.

SDC Interface Overview
The following sections describe the SDC interface.
SDC Pin Description

The SDRAM interface signals are shown in Table 6-7.
Table 6-7. SDRAM Interface Signals

Pad Pin Type' |Description

DATA[15:0] 1/0 External data bus

ADDR[19:181], O External address bus

ADDRL16:1217, Connect to SDRAM address pins. Bank address is out-

ADDR[10:17, put on ADDR[19:1817 and should be connected to
SDRAM BA[1:0] pins.

SRAS (@) SDRAM row address strobe pin
Connect to SDRAM’s RAS pin.

6-32 ADSP-BF537 Blackfin Processor Hardware Reference

External Bus Interface Unit

Table 6-7. SDRAM Interface Signals (Cont'd)
Pad Pin Type' |Description
SCAS O SDRAM column address strobe pin
Connect to SDRAM’s CAS pin.
SWE (@) SDRAM write enable pin
Connect to SDRAM’s WE pin.
ABEL1:01/ (@) SDRAM data mask pins
SDQM[1:01 Connect to SDRAM’s DQM pins.
SMS O Memory select pin of external memory bank config-
ured for SDRAM
Connect to SDRAM’s TS (Chip Select) pin. Active low.
SA10 O SDRAM A10 pin
SDRAM interface uses this pin to be able to do
refreshes while the AMC is using the bus. Connect to
SDRAM’s A[10] pin.
SCKE O SDRAM clock enable pin
Connect to SDRAM’s CKE pin.
CLKOUT ¢} SDRAM clock output pin
Switches at system clock frequency. Connect to the
SDRAM’s CLK pin.

1 Pin Types: I = Input, O = Output

SDRAM Performance

On-page sequential or non-sequential accesses are from internal data
memory to SDRAM. Table 6-8 summarizes SDRAM performance for

thCSC on-page accesses.

ADSP-BF537 Blackfin Processor Hardware Reference 6-33

SDC Interface Overview

Table 6-8. Performance Between Internal Data Memory and SDRAM!

Type of Access

DAG access, write

Performance

DAG access, read

1 SCLK cycle per 16-bit word

MemDMA access, write

8 SCLK cycles per 16-bit word

MemDMA access, read

1 SCLK cycle per 16-bit word

1

a].1 SCLK cycles per 16-bit word

Valid for core/system clock > 2:1

On-page sequential instruction fetches from SDRAM are summarized in

Table 6-9.

Table 6-9. SDRAM Performance For On-Page Instruction Fetches

Type of Access

Ifetch from SDRAM

Performance

a].1 SCLK cycles per 16-bit word

I/Dcache line fill from SDRAM

a].1 SCLK cycles per 16-bit word

Off-page accesses are summarized in Table 6-10.

Table 6-10. SDRAM Stall Cycles For Off-Page Accesses

Type of Access
Write

Stall Cycles

Read

twR * RP *+ tRCD

trp + tRCD + CL

6-34

ADSP-BF537 Blackfin Processor Hardware Reference

External Bus Interface Unit

SDC Description of Operation

The following sections describe the operation of the SDC.

Definition of SDRAM Architecture Terms

The following are definitions of SDRAM architecture terms used in the
remainder of this chapter.

Refresh

Because the information is stored in a small capacitance suffering on leak-
age effects, the SDRAM cell needs to be refreshed periodically with the

refresh command.

Row Activation

SDRAM accesses are multiplexed, which means any first access will open a
row/page before the column access is performed. It stores the row in a
“row cache” called row activation.

Column Read/Write

The row’s columns represent a page, which can be accessed with successive
read or write commands without needing to activate another row. This is
called column access and performs transfers from the “row cache.”

Row Precharge

If the next access is in a different row, the current row is closed before
another is opened. The current “row cache” is written back to the row.

This is called row precharge.

ADSP-BF537 Blackfin Processor Hardware Reference 6-35

SDC Description of Operation

Internal Bank

There are up to 4 internal memory banks on a given SDRAM. Each of
these banks can be accessed with the bank select lines BA[1:0]. The bank
address can be thought of as part of the row address.

External Bank
This is the address region where the SDC address the SDRAM.

Do not confuse the internal banks, which are internal to the
SDRAM and are selected with the BA[1:0] pins with the external
bank that is enabled by the CS pin.

Memory Size
Since the 2D memory is based on rows and columns, the size is:

mem size =
(## rows) x (#f columns) x (# internal banks) x I/0 (Mbit)

Burst Length

The burst length determines the number of words that the SDRAM device
stores or delivers after detecting a single write or read command followed
by a NOP (no operation) command, respectively (Number of NOPs =
burst length - 1). Burst lengths of full page, 8, 4, 2, and 1 (no burst) are
available. The burst length is selected by writing the BL bits in the
SDRAM'’s mode register during the SDRAM powerup sequence.

Burst Type

The burst type determines the address order in which the SDRAM deliv-
ers burst data. The burst type is selected by writing the BT bits in the
SDRAM'’s mode register during the SDRAM powerup sequence.

6-36 ADSP-BF537 Blackfin Processor Hardware Reference

External Bus Interface Unit

CAS Latency

The CAS latency or read latency specifies the time between latching a read
address and driving the data off chip. This spec is normalized to the sys-
tem clock and varies from 2 to 3 cycles based on the speed. The CAS
latency is selected by writing the CL bits in the SDRAM’s mode register
during the SDRAM powerup sequence.

Data I/O Mask Function

SDRAMs allow a data byte-masking capability on writes. The mask pins
DQM[1:0] are used to block the data input buffer of the SDRAM during

write operations.

SDRAM Commands

SDRAM commands are not based on typical read or write strobes. The
pulsed CS, RAS, TAS, and WE lines determine the command on the rising
clock edge by a truth table.

Mode Register Set (MRS) Command

SDRAM devices contain an internal extended configuration register
which allows specification of the mobile SDRAM device’s functionality.

Extended Mode Register Set (EMRS) Command

Mobile SDRAM devices contain an internal extended configuration regis-
ter which allows specification of the mobile SDRAM device’s
functionality.

Bank Activate Command

The bank activate command causes the SDRAM to open an internal bank
(specified by the bank address) in a row (specified by the row address).

When the bank activate command is issued, it opens a new row address in

ADSP-BF537 Blackfin Processor Hardware Reference 6-37

SDC Description of Operation

the dedicated bank. The memory in the open internal bank and row is
referred to as the open page. The bank activate command must be applied
before a read or write command.

Read/Write Command

For the read command, the SDRAM latches the column address. The start
address is set according to the column address. For the write command,
SDRAM latches the column address. Data is also asserted in the same
cycle. The start address is set according to the column address.

Precharge/Precharge All Command

The precharge command closes a specific active page in an internal bank
and the precharge all command closes all 4 active pages in all 4 banks.

Auto-Refresh Command

When the SDC refresh counter times out, the SDC precharges all four
banks of SDRAM and then issues an auto-refresh command to them. This
causes the SDRAM to generate an internal auto-refresh cycle. When the
internal refresh completes, all four internal SDRAM banks are precharged.

Enter Self-Refresh Mode
When the SDRAM enters self-refresh mode, the SDRAM’s internal timer

initiates refresh cycles periodically, without external control input.

Exit Self-Refresh Mode
When the SDRAM exits self-refresh mode, the SDRAM’s internal timer

stops refresh cycles and relinquishes control to external SDC.

6-38 ADSP-BF537 Blackfin Processor Hardware Reference

External Bus Interface Unit

SDC Timing Specs

The following SDRAM timing specs are discussed because they are used
by the SDC and SDRAM. To program the SDRAM interface, you need
the SDRAM’s specific datasheet information

Any absolute timing parameter must be normalized to the system
clock which allows the SDC to adapt to the timing parameter of
the device.

tmrD

This is the required delay between issuing a mode register set and an acti-
vate command during powerup.

Dependency: system clock frequency
SDC setting: 3 system clock cycles
SDC usage: MRS command

tras

This is the required delay between issuing a bank A activate command and
issuing a bank A precharge command.

Dependency: system clock frequency

SDC setting: 1-15 normalized system clock cycles

SDC usage: single column read/write, auto-refresh, self-refresh
command

ADSP-BF537 Blackfin Processor Hardware Reference 6-39

SDC Description of Operation

CL

The CAS latency or read latency is the delay between when the SDRAM
detects the read command and when it provides the data off-chip. This
spec does not apply to writes.

Dependency: system clock frequency and speed grade
SDC setting: 2-3 normalized system clock cycles
SDC usage: first read command

trcp

This is the required delay between a bank A activate command and the
first bank A read or write command.

Dependency: system clock frequency
SDC setting: 1-7 normalized system clock cycles
SDC usage: first read/write command

trrD

This is the required delay between a bank A activate command and a bank
B activate command. This spec is used for multibank operation.

Dependency: system clock frequency
SDC setting: trep + 1 normalized system clock cycles

SDC usage: multiple bank activation

twr

This is the required delay between a bank A write command and a bank A
precharge command. This spec does not apply to reads.

Dependency: system clock frequency
SDC setting: 1-3 normalized system clock cycles
SDC usage: during off-page write command

6-40 ADSP-BF537 Blackfin Processor Hardware Reference

External Bus Interface Unit

This is the required delay between a bank A precharge command and a
bank A activation command.

Dependency: system clock frequency
SDC setting: 1-7 normalized system clock cycles
SDC usage: off-page read/write, auto-refresh, self-refresh command

This is the required delay between issuing successive bank activate
commands.

Dependency: system clock frequency
SDC setting: tgag + trp normalized system clock cycles

SDC usage: single column read/write command

trrc

This is the required delay between issuing successive auto-refresh com-

mands (all banks).

Dependency: system clock frequency
SDC setting: tgag + trp normalized system clock cycles

SDC usage: auto-refresh, exit self-refresh command

txsr

This is the required delay between exiting self-refresh mode and the
auto-refresh command.

Dependency: system clock frequency
SDC setting: tgag + trp normalized system clock cycles

SDC usage: exit self-refresh command

ADSP-BF537 Blackfin Processor Hardware Reference 6-41

SDC Functional Description

trer
This is the row refresh period, and typically takes 64 ms.

Dependency: system clock frequency
SDC setting: used for trggy spec

SDC usage: auto-refresh command

tREFI

This is the row refresh interval and typically takes 15.6 ps for < 8k rows
and 7.8 ps for >= 8k rows. This spec is available by dividing tggp/number

of rows. This number is used by the SDC refresh counter.

Dependency: system clock frequency
SDC setting: tggpy normalized system clock cycles (RDIV register)
SDC usage: auto-refresh command

SDC Functional Description

The functional description of the SDC is provided in the following

sections.

SDC Operation

The AMC normally generates an external memory address, which then
asserts the corresponding CS select, along with RD and WR strobes. However
these control signals are not used by the SDC. The internal strobes are
used to generate pulsed commands (SMS, SCKE, SRAS, SCAS, SWE) within a
truth table (see Table 6-12 on page 6-51). The memory access to SDRAM
is based by mapping ADDR[28:0] causing an internal memory select to

SDRAM space (see Figure 6-10).

6-42 ADSP-BF537 Blackfin Processor Hardware Reference

External Bus Interface Unit

The configuration is programmed in the SDBCTL register. The SDRAM
controller can hold off the processor core or DMA controller with an
internally connected acknowledge signal, as controlled by refresh, or page
miss latency overhead.

A programmable refresh counter is provided which generates background
auto-refresh cycles at the required refresh rate based on the clock fre-
quency used. The refresh counter period is specified with the RDIV field in
the SDRAM refresh rate control register.

To allow auto-refresh commands to execute in parallel with any AMC
access, a separate A10 pin (SA10) is provided.

ADSP-BF537
SDRAM
COMMAND LOGIC
CLKOUT > | CLK
INT RD - SCKE »| CKE
INTWR ————» SRAS »| RAS
INT RESET - SC_AS - Es
INT ACK |«—BUYSY EEFRESH SWE > WE
UNTER SV -5
CORE SMS_ SA10 »| A10
DMA
ADDRESS
MULTIPLEXER
2281 A[0 ISDQNlI\ :111)]
g | DQM
»| ADDRESS [0] [:0] QMx
BUFFER A[18] »| BAO
A[19] »| BA1
A[1:10], A[12:13] A[0:9], A[11:12]
DATA
LATCH/ D[15:0] DQ15:0
DRIVE

Figure 6-10. Simplified SDC Architecture

ADSP-BF537 Blackfin Processor Hardware Reference 6-43

SDC Functional Description

The internal 32-bit non-multiplexed address is multiplexed into:
* Data mask for bytes
e SDRAM column address
e SDRAM row address
e Internal SDRAM bank address
Bit A[0] is used for 8-bit wide SDRAMs to generate the data masks. The

next lowest bits are mapped into the column address, next bits are mapped
into the row address, and the final two bits are mapped into the internal
bank address. This mapping is based on the EBCAW and EBSZ values pro-
grammed into the SDRAM memory bank control register.

The SDC uses no burst mode (BL = 1) for read and write operations. This
requires the SDC to post every read or write address on the bus as for
non-sequential reads or writes, but does not cause any performance degra-
dation. For read commands, there is a latency from the start of the read
command to the availability of data from the SDRAM, equal to the CAS
latency. This latency is always present for any single read transfer. Subse-
quent reads do not have latency.

Whenever a page miss to the same bank occurs, the SDC executes a pre-
charge command followed by a bank activate command before executing
the read or write command. If there is a page hit, the read or write com-
mand can be given immediately without requiring the precharge
command.

6-44 ADSP-BF537 Blackfin Processor Hardware Reference

SDC Address Muxing

External Bus Interface Unit

Table 6-11 shows the connection of the address pins with the SDRAM

device pins.

Table 6-11. SDRAM Address Connections for 16-Bit Banks

External Address Pin |SDRAM Address Pin
ADDR[191] BA[1]
ADDR[18] BALO]
ADDR[161] AL15]
ADDR[15] AL14]
ADDR[141] A[13]
ADDR[131] A[12]
ADDR[121] A[11]
ADDR[11] Not used
SAT10] AL10]
ADDR[101] AL9]
ADDRL9] AL8]
ADDRL8] AL7]
ADDRL7] AL6]
ADDRL6] A[5]
ADDRL5] Al4]
ADDR[4] A[3]
ADDRL3] AL2]
ADDRL2] All1]
ADDR[1] ALO]

ADSP-BF537 Blackfin Processor Hardware Reference 6-45

SDC Functional Description

Multibank Operation

Since an SDRAM contains 4 independent internal banks (A-D), the SDC
is capable of supporting multibank operation thus taking advantage of the
architecture.

Any first access to SDRAM bank (A) will force an activate command
before a read or write command. However, if any new access falls into the
address space of the other banks (B, C, D) the SDC leaves bank (A) open
and activates any of the other banks (B, C, D). Bank (A) to bank (B)

active time is controlled by tgrp = trcp + 1. This scenario is repeated

until all 4 banks (A-D) are opened and results in an effective page size up
to 4 pages because no latency causes switching between these open pages
(compared to 1 page in only one bank at the time). Any access to any
closed page in any opened bank (A-D) forces a precharge command only
to that bank. If, for example, 2 MemDMA channels are pointing to the
same internal SDRAM bank, this always forces precharge and activation
cycles to switch between the different pages. However, if the 2 MemDMA
channels are pointing to different internal SDRAM banks, it does not
cause additional overhead. See Figure 6-11.

SINGLE BANK MULTIBANK
OPERATION OPERATION

ACCESS TO PAGE X
-— ACCESS TO PAGE X

BANK A B —— BANK A
ACCESS TO PAGE Y
-

ACCESS TO PAGE Y

BANK B - BANK B
ACCESS TO PAGE X
BANK C -+ BANK C

ACCESS TO PAGE Y
BANK D LCCESSTOPAGEY | pankD

Figure 6-11. SDRAM Bank Operation Types

6-46 ADSP-BF537 Blackfin Processor Hardware Reference

External Bus Interface Unit

The benefit of multibank operation reduces precharge and activa-
tion cycles by mapping opcode/data among different internal

SDRAM banks driven by the A[19:18] pins.

Core and DMA Arbitration

The CDPRIO bit configures the SDC to control the priority over requests
that occur simultaneously to the EBIU from either the processor core or
the DMA controller. When this bit is set to 0, a request from the core has
priority over a request from the DMA controller to the SDC, unless the
DMA is urgent. When it is set to 1, all requests from the DMA controller,
including the memory DMAs, have priority over core accesses. For the
purposes of this discussion, core accesses include both data fetches and
instruction fetches. See CDPRI0 bit in “EBIU_AMGCTL Register” on
page 6-20.

Changing System Clock During Runtime

All timing specs are normalized to the system clock. Since most of them
are minimum specs, except trgp, which is a maximum spec, a variation of

system clock will on one hand violate a specific spec and on the other
hand cause a performance degradation for the other specs.

The reduction of system clock will violate the minimum specs, while
increasing system clock will violate the maximum tggg spec. Therefore,

careful software control is required to adapt these changes.

@ For most applications, the SDRAM powerup sequence and writing

of the mode register needs to be done only once. Once the pow-
erup sequence has completed, the PSSE bit should not be set again
unless a change to the mode register is desired.

ADSP-BF537 Blackfin Processor Hardware Reference 6-47

SDC Functional Description

The recommended procedure for changing the PLL vC0 frequency is:

1.

Issue an SSYNC instruction to ensure all pending memory opera-
tions have completed.

Set the SDRAM to self-refresh mode by writing a 1 to the SRFS bit
of EBIU_SDGCTL.

Execute the desired PLL programming sequence. (For details, refer
to Chapter 20, “Dynamic Power Management”.)

After the wakeup occurs that signifies the PLL has settled to the
new VCO frequency, reprogram the SDRAM registers (EBIU_SDRRC,
EBIU_SDGCTL) with values appropriate to the new SCLK fre-
quency, and assure that the PSSE bit is set.

Bring the SDRAM out of self-refresh mode by clearing the SRFS bit
of EBIU_SDGCTL and access to SDRAM space.

Changing the SCLK frequency using the SSEL bits in PLL_DIV, as opposed
to actually changing the vC0 frequency, should be done using these steps:

1.

Issue an SSYNC instruction to ensure all pending memory opera-
tions have completed.

Set the SDRAM to self-refresh mode by writing a 1 to the SRFS bit
of EBIU_SDGCTL.

Execute the desired write to the SSEL bits.

Reprogram the SDRAM registers with values appropriate to the
new SCLK frequency, and assure that the PSSE bit is set.

Bring the SDRAM out of self-refresh mode by clearing the SRFS bit
of EBIU_SDGCTL and access to SDRAM space.

6-48

ADSP-BF537 Blackfin Processor Hardware Reference

External Bus Interface Unit

Changing Power Management During Runtime

Deep sleep mode and hibernate state are available during runtime.

Deep Sleep Mode

During deep sleep mode, the core and system clock will halt. Therefore,
careful software control is required to place the SDRAM in self-refresh
before the device enters deep sleep mode.

Hibernate State

In hibernate state, only the I/O voltage is applied, and the core voltage is 0
(core reset). In order to save the SDRAM’s volatile data, the ADSP-BF537
processor supports a low level on the SCKE pin during core reset. Setting
the SCKELOW bit of VR_CTL keeps the SCKE signal low, thus ensuring
self-refresh mode. For details, refer to Chapter 20, “Dynamic Power
Management”.

Shared SDRAM

Bus mastership can be requested using the BR and BG pins. To grant bus
mastership to an external SDC, use the CDDBG bit of EBIU_SDGCTL. This
occurs asynchronously during self-refresh mode because both auto-refresh
time bases are fully independent and will be synchronized during the tygg
timing spec by each bus master, leaving the self-refresh mode to get access
to shared SDRAM. The system requires additional logic for a common
control of the SDRAM’s CKE pin. The following steps illustrate the recom-
mended procedure.

1. Boot stream of the ADSP-BF537 processor must set the CDDBG bit
of EBIU_SDGCTL to allow bus mastership to a host.

2. SDRAM dummy access will perform the powerup sequence.

3. Host enters self-refresh mode.

ADSP-BF537 Blackfin Processor Hardware Reference 6-49

SDC Functional Description

Programmable flag PFx driven from host will trigger an ISR which
sets the SFRS bit to cause the ADSP-BF537 processor to enter
self-refresh mode.

Host deasserts BR pin which is granted with BG pin.

Host SDC asserts CKE pin to exit self-refresh mode indicating
SDRAM access.

Host SDC deasserts CKE pin to finish SDRAM access and re-enters
self-refresh mode.

Host deasserts BR pin, answered with deassertion of BG pin.

Programmable flag PFx driven from host will trigger an ISR which
clears the SRFS bit of EBIU_SDGCTL and performs a dummy access to
exit self-refresh mode.

SDC Commands

This section provides a description of each of the commands that the SDC
uses to manage the SDRAM interface. These commands are initiated
automatically upon a memory read or memory write. A summary of the
various commands used by the on-chip controller for the SDRAM inter-
face is as follows.

Mode register set
Extended mode register set
Bank activation

Read and write

Single precharge

Precharge all

Auto-refresh

6-50

ADSP-BF537 Blackfin Processor Hardware Reference

External Bus Interface Unit

» Self-refresh
e NOP
Table 6-12 shows the SDRAM pin state during SDC commands.

Table 6-12. Pin State During SDC Commands

Command |SCKE |[SCKE [SMS SRAS SCAS
(n-1) |(n)

(%]
=
==

SA10 Addresses

(E)/Mode High High Low Low Low Low Op-code | Op-code

Register Set

Activate High High Low Low High High Valid Valid
address
bit

Read High High Low High Low High Low Valid
(CMD)

Single High High Low Low High Low Low Valid

Precharge

Precharge all | High High Low Low High Low High Don’t care

Write High High Low High Low Low Low Valid
(CMD)

Auto-Refresh | High High Low Low Low High Don’t care| Don’t care

Self-Refresh | High Low Low Low Low High Don’t care| Don’t care
Entry

Self-Refresh | Low Low Don’t Don’t Don’t Don’t Don’t care| Don’t care
care care care care

Self-Refresh | Low High |High |Dont |Dont |Dont |Don'tcare|Don't care

Exit care care care

NOP High High Low High High High Don’t care| Don’t care

Inhibit High High High Don’t Don’t Don’t Don’t care| Don’t care
care Care care

ADSP-BF537 Blackfin Processor Hardware Reference 6-51

SDC Functional Description

Mode Register Set Command

The Mode Register Set (MRS) command initializes SDRAM operation
parameters. This command is a part of the SDRAM power-up sequence.
The MRS command uses the address bus of the SDRAM as data input.
The power-up sequence is initiated by writing 1 to the PSSE bit in the
SDRAM memory global control register (EBIU_SDGCTL) and then writing
or reading from any enabled address within the SDRAM address space to
trigger the power-up sequence. The exact order of the power-up sequence
is determined by the PSM bit of the EBIU_SDGCTL register.

The MRS command initializes these parameters:
e Burst length = 1, bits A[2-0], always 0
* Burst type = sequential, bit A[3], always 0

* CAS latency, bits AL6-4], programmable in the EBIU_SDGCTL
register

e Bits A[12-71, always 0

After power-up and before executing a read or write to the SDRAM mem-
ory space, the application must trigger the SDC to write the SDRAM’s
mode register. The write of the SDRAM’s mode register is triggered by
writing a 1 to the PSSE bit in the SDRAM memory global control register
(EBIU_SDGCTL) and then issuing a read or write transfer to the SDRAM
address space. The initial read or write triggers the SDRAM power-up
sequence to be run, which programs the SDRAM’s mode register with
burst length, burst type, and CAS latency from the EBIU_SDGCTL register
and optionally the content to the extended mode register. This initial read
or write to SDRAM takes many cycles to complete.

While executing an MRS command, the unused address pins are set to 0.
During the two clock cycles following the MRS command (tyrp), the

SDC issues only NOP commands.

6-52 ADSP-BF537 Blackfin Processor Hardware Reference

External Bus Interface Unit

Extended Mode Register Set Command (Mobile SDRAM)

The extended mode register is a subset of the mode register. The EBIU
enables programming of the extended mode register during power-up via
the EMREN bit in the EBIU_SDGCTL register.

The extended mode register is initialized with these parameters:

* Partial array self-refresh, bits AL2-0], bit A[2] always 0, bits A[1-0]
programmable in EBIU_SDGCTL

e Temperature compensated self-refresh, bits A[4-31, bit A[3] always
1, bit AL4] programmable in EBIU_SDGCTL

* Drive strength control, bits AL6-57, always 0
* Bits A[12-71, always 0, and bit A[13] always 1

@ Not programming the extended mode register upon initialization

results in default settings for the low-power features. The extended
mode defaults with the temperature sensor enabled, full drive
strength, and full array refresh.

Bank Activation Command

The bank activation command is required for first access to any internal
bank in SDRAM. Any subsequent access to the same internal bank but
different row will be preceded by a precharge and activation command to

that bank.

However, if an access to another bank occurs, the SDC leaves the current
page open and issues a bank activate command before executing the read
or write command to that bank. With this method, called multibank oper-
ation, one page per bank can be open at a time, which results in a
maximum of 4 pages.

ADSP-BF537 Blackfin Processor Hardware Reference 6-53

SDC Functional Description

Read/Write Command

A read/write command is executed if the next read/write access is in the
present active page. During the read command, the SDRAM latches the
column address. The delay between activate and read commands is deter-
mined by the tgcp parameter. Data is available from the SDRAM after

the CAS latency has been met.
In the write command, the SDRAM latches the column address. The

write data is also valid in the same cycle. The delay between activate and
write commands is determined by the tycp parameter.

The SDC does not use the auto-precharge function of SDRAMs, which is
enabled by asserting SA10 high during a read or write command.

Partial Write

In general, there are two different ways to modify a single byte within the
16-bit interface. First, it can be done by a read/modify/write sequence.
However, this is not very efficient because multiple accesses are required.

During partial writes to SDRAM, the SDQM[1:0] pins are used to mask
writes to bytes that are not accessed. Table 6-13 shows the SDAM[1:0]
encodings based on the internal transfer address bit IA[0] and the transfer
size.

However, during read transfers to SDRAM banks, reads are always done
of all bytes in the bank regardless of the transfer size. This means for

16-bit SDRAM banks, SDaM[1:0] are all zeros (0s).

The SDC provides byte enable pins SDQM][1:0] to allow the pro-
cessor to perform efficient byte-wide arithmetic and byte-wide
processing in external memory.

6-54 ADSP-BF537 Blackfin Processor Hardware Reference

External Bus Interface Unit

Table 6-13. SDQM][1:0] Encodings During Writes

Internal Address |Internal Transfer Size
IA[O
[0} byte 2 bytes
0 SDQM[1] =1 SDQM[1] = 0
SDQMLO0] = 0 SDQMLO0] = 0
1 SDQM[1] = 0 SDQM[1] = 0
SDQMLO0] =1 SDQMLO0] = 0

For 16-bit SDRAMSs, connect SDQML 0] to DQML, and connect
SDQM[1] to DQMH.

Single Precharge Command

For a page miss during reads or writes in a specific internal SDRAM bank,
the SDC uses the single precharge command to that bank.

The SDC does not use the auto-precharge read or write command
of SDRAMSs, which is enabled by asserting SA10 high during a read

or write command.

Precharge All Command

The precharge all command is given to precharge all internal banks at the
same time before executing an auto-refresh. All open banks will be auto-
matically closed. This is possible since the SDC uses a separate SA10 pin

which is asserted high during this command. This command is preceding
the auto-refresh command.

ADSP-BF537 Blackfin Processor Hardware Reference 6-55

SDC Functional Description

Avuto-Refresh Command

The SDRAM internally increments the refresh address counter and causes
an auto-refresh to occur internally for that address when the auto-refresh
command is given. The SDC generates an auto-refresh command after the
SDC refresh counter times out. The RDIV value in the SDRAM refresh
rate control register must be set so that all addresses are refreshed within
the trgp period specified in the SDRAM timing specifications. This com-

mand is issued to the external bank whether or not it is enabled (EBE in the
SDRAM memory global control register). Before executing the
auto-refresh command, the SDC executes a precharge all command to the
external bank. The next activate command is not given until the tgpc

specification (tRpc = trag + trp) is met.

Auto-refresh commands are also issued by the SDC as part of the powerup
sequence and also after exiting self-refresh mode.

Self-Refresh Mode

The self-refresh mode is controlled by the self-refresh entry and
self-refresh exit commands. The SDC must issue a series of commands
including the self-refresh entry command to put the SDRAM into this low
power operation, and it must issue another series of commands including
the self-refresh exit command to re-access the SDRAM.

Self-Refresh Entry Command

The self-refresh entry command causes refresh operations to be performed
internally by the SDRAM, without any external control. This means that
the SDC does not generate any auto-refresh commands while the SDRAM
is in self-refresh mode. Before executing the self-refresh entry command,
all internal banks are precharged. The self-refresh entry command is
started by writing a 1 to the SRFS bit of the SDRAM memory global con-
trol register (EBIU_SDGCTL). As soon as current SDRAM access has
finished, SCKE is deasserted.

6-56 ADSP-BF537 Blackfin Processor Hardware Reference

External Bus Interface Unit

Only the SCKE pin keeps control during self-refresh, all other
SDRAM pins are allowed to be disabled. However the SDC still
drives the SCLK during self-refresh mode. However, software may
disable the clock by clearing the SCTLE bit in EBIU_SDGCTL.

Self-Refresh Exit Command

Leaving self-refresh mode is performed with the self-refresh exit com-
mand, whereby the SDC asserts SCKE. Any internal core/DMA access
causes the SDC to perform an exit self-refresh command. The SDC waits
to meet the tXSR specification (tXSR = tRAS + tRP) and then issues an
auto-refresh command. After the auto-refresh command, the SDC waits
for the tRFC specification (tRFC = tRAS + tRP) to be met before execut-
ing the activate command for the transfer that caused the SDRAM to exit
self-refresh mode. Therefore, the latency from when a transfer is received
by the SDC while in self-refresh mode, until the activate command occurs
for that transfer, is:

Time to exit self-refresh: 2 x (tRAS + tp)

The minimum time between a subsequent self-refresh entry and
the self-refresh exit command is at least tgpg cycles. If a self-refresh
entry command is issued during any MemDMA transfer, the SDC
satisfies this core request with the minimum self-refresh period

(tRAS)'

The application software should ensure that all applicable clock timing
specifications are met before the transfer to SDRAM address space which
causes the controller to exit self-refresh mode. If a transfer occurs to
SDRAM address space when the SCTLE bit is cleared, an internal bus error
is generated, and the access does not occur externally, leaving the SDRAM
in self-refresh mode. For more information, see “Error Detection” on

page 6-7.

ADSP-BF537 Blackfin Processor Hardware Reference 6-57

SDC Functional Description

The SDC supports two different modes to release self-refresh mode: tem-
porary auto-refresh and auto-refresh. In temporary auto-refresh mode, if
the SDRS bit is still cleared before performing a single SDRAM access, the
SDC releases the self-refresh mode only for this access, afterwards it
re-enters back to self-refresh. In auto-refresh mode, if the SDRS bit is set
before performing a single DMA access, the SDC releases the self-refresh
mode and enters auto-refresh mode.

The minimum time between a subsequent self-refresh entry and
the self-refresh exit command is at least tgag cycles. If a self-refresh
entry command is issued during any MemDMA transfer, the SDC
sataisfies this core request with the minimum self-refresh period

(tRAS)'

The application software should ensure that all applicable clock
timing specifications are met before the transfer to SDRAM
address space which causes the controller to exit self-refresh mode.
If a transfer occurs to SDRAM address space when the SCTLE bit is
cleared, an internal bus error is generated, and the access does not
occur externally, leaving the SDRAM in self-refresh mode. For
more information, see “Error Detection” on page 6-7.

No Operation Command

The No Operation (NOP) command to the SDRAM has no effect on
operations currently in progress. The command inhibit command is the
same as a NOP command; however, the SDRAM is not chip-selected.
When the SDC is actively accessing the SDRAM to insert additional wait
states, the NOP command is given. When the SDC is not accessing the
SDRAM, the command inhibit command is given (SMS = 1).

6-58 ADSP-BF537 Blackfin Processor Hardware Reference

External Bus Interface Unit

SDC SA10 Pin

The SDRAM’s AL10] pin follows the truth table below:

* During the precharge command, it is used to indicate a precharge

all

* During a bank activate command, it outputs the row address bit

* During read and write commands, it is used to disable
auto-precharge

Therefore, the SDC uses a separate SA10 pin with these rules.

Connect the SA10 pin with the SDRAM’s A[10] pin. Because the
ADSP-BF537 processor uses byte addressing, it starts with A[1].
The A[11] pin is left unconnected for SDRAM accesses and it is
replaced by the SA10 pin.

SDC Programming Model

The following sections provide programming model information for the

SDC.

SDC Configuration

After a processor’s hardware or software reset, the SDC clocks are enabled;
however, the SDC must be configured and initialized. Before program-
ming the SDC and executing the powerup sequence, these steps are
required:

1. Ensure the clock to the SDRAM is stable after the power has stabi-
lized for the proper amount of time (typically 100 ms).

2. Write to the SDRAM refresh rate control register (EBIU_SDRRC).

ADSP-BF537 Blackfin Processor Hardware Reference 6-59

SDC Programming Model

3. Write to the SDRAM memory bank control register
(EBIU_SDBCTL).

4. Write to the SDRAM memory global control register
(EBIU_SDGCTL) and issue an SSYNC instruction.

5. Perform SDRAM access.

The SDRS bit of the SDRAM control status register can be checked to

determine the current state of the SDC. If this bit is set, the SDRAM
powerup sequence has not been initiated.

The RDIV field of the EBIU_SDRRC register should be written to set the
SDRAM refresh rate.

The EBIU_SDBCTL register should be written to describe the sizes and
SDRAM memory configuration used (EBSZ and EBCAW) and to enable the
external bank (EBE). Note until the SDRAM powerup sequence has been
started, any access to SDRAM address space, regardless of the state of the
EBE bit, generates an internal bus error, and the access does not occur
externally. For more information, see “Error Detection” on page 6-7.

The powerup latency can be estimated as:

IRp + (8 X tRpc) + 'MRD + 'RCD

After the SDRAM powerup sequence has completed, if the external bank
is disabled, any transfer to it results in a hardware error interrupt, and the

SDRAM transfer does not occur.

6-60 ADSP-BF537 Blackfin Processor Hardware Reference

External Bus Interface Unit

The EBIU_SDGCTL register is written:

* To set the SDRAM cycle timing options (CL, TRAS, TRP, TRCD, TWR,
EBUFE)

e To enable the SDRAM clock (SCTLE)

* To select and enable the start of the SDRAM powerup sequence
(PSM, PSSE)

Note if SCTLE is disabled, any access to SDRAM address space generates an
internal bus error and the access does not occur externally. For more infor-
mation, see “Error Detection” on page 6-7.

Once the PSSE bit in the EBIU_SDGCTL register is set to 1, and a transfer
occurs to enabled SDRAM address space, the SDC initiates the SDRAM
powerup sequence. The exact sequence is determined by the PSM bit in the
EBIU_SDGCTL register. The transfer used to trigger the SDRAM powerup
sequence can be either a read or a write. This transfer occurs when the
SDRAM powerup sequence has completed. This initial transfer takes
many cycles to complete since the SDRAM powerup sequence must take
place.

Example SDRAM System Block Diagrams

Figure 6-12 shows a block diagram of an SDRAM interface. In this exam-
ple, the SDC connected to 2 x (8M x 8) = 8M x 16 to form one external
bank of 128Mbit / 16Mbyte of memory. The system’s page size is 1024
bytes. The same address and control bus feeds both SDRAM devices.

ADSP-BF537 Blackfin Processor Hardware Reference 6-61

SDC Programming Model

ADSP-BF537 SDRAM 1
__ __ 8Mx8
SMS »| CS
SRAS » | RAS
SCAS | CAS
SWE » | WE
A[18] | BAO DQ[7:0]
A[19] » | BA1
SA10 »| A[10]
ADDR[12,10:1] »| A[11,9:0]
CLKOUT » | CLK
SCKE »| CKE
SDQM[0] »| DQM
SDQM[1]
DATA[7:0]
DATA[15:0] |- >
DATA[15:8]
SDRAM 2
_ 8Mx8
»| CS
> RAS
> CAS
»>| WE
»| BAO DQ[7:0]
>| BA1
> A[10]
»| A[11,9:0]
»| CLK
» CKE
»! DQM

Figure 6-12. SDRAM System Block Diagram, Example 1

Figure 6-13 shows a block diagram of an SDRAM interface. In this exam-
ple, the SDC connected to 4 x (16M x 4) = 16M x 16 to form one external
bank of 256Mbit / 32Mbyte of memory. The system’s page size is 2048
bytes. The same address and control bus pass a registered buffer before

they feed all 4 SDRAM devices.

6-62 ADSP-BF537 Blackfin Processor Hardware Reference

External Bus Interface Unit

ADSP-BF537 SDRAM 1 SDRAM 2
cs 16Mx4 cs 16Mx4
sRAS RAS RAS
b CAs CAS
SCAS WE WE
SWE REGISTERED BAO D[3:0] |gao D[7:4]
A[18] BUFFER BA1 DQ[3:0] [~— BA1 DQ[3:0] |-+
AL1191 A[10] A[10]
SA10 A[11,9:0] A[11,9:0]
ADDR[12,10:1] CLK CLK, .
SCKE T CKE CKE
CLKOUT
pam »| DQM
CLKOUT
DATA[15:0] X =}‘
SDQMI[0]
SDQM[1]
SDRAM 3 SDRAM 4
— 16Mx4 — 16Mx4
cs cs
RAS RAS
CAS CAs
WE WE
BAO DQ[3:0] [. o BAO DQ[3:0] |~—
BA1 [11:8] | gaq D[15:12]
A[10] A[10]
A[11,9:0] A[11,9:0]
CLK CLK
CKE CKE
DQM ——» | DQM

Figure 6-13. SDRAM System Block Diagram, Example 2

Furthermore, the EBUFE bit should be used to enable or disable external
buffer timing. When buffered SDRAM modules or discrete register-buf-
fers are used to drive the SDRAM control inputs, EBUFE should be set to 1.
Using this setting adds a cycle of data buffering to read and write accesses.

ADSP-BF537 Blackfin Processor Hardware Reference

6-63

SDC Registers

SDC Registers

The following sections describe the SDC registers.

EBIU_SDRRC Register

The SDRAM refresh rate control register (EBIU_SDRRC, shown in

Figure 6-14) provides a flexible mechanism for specifying the auto-refresh
timing. Since the clock supplied to the SDRAM can vary, the SDC pro-
vides a programmable refresh counter, which has a period based on the
value programmed into the RDIV field of this register. This counter coordi-
nates the supplied clock rate with the SDRAM device’s required refresh
rate.

The desired delay (in number of SDRAM clock cycles) between consecu-
tive refresh counter time-outs must be written to the RDIV field. A refresh
counter time-out triggers an auto-refresh command to all external
SDRAM devices. Write the RDIV value to the EBIU_SDRRC register before

the SDRAM powerup sequence is triggered. Change this value only when
the SDC is idle.

SDRAM Refresh Rate Control Register (EBIU_SDRRC)
15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
0xFFCO 0A18 |0|0|o|o|1 Iololololo |o|1|1 |o|1|o| Reset = 0x081A
L |

‘ RDIV[11:0]

Figure 6-14. SDRAM Refresh Rate Control Register

To calculate the value that should be written to the EBIU_SDRRC register,
use the following equation:

RDIV = (fSCLK ¥ tREF) / NRA) — (tRAS + tRP)

= (fscrLk * tREFD - (trRAS + tRP)

6-64 ADSP-BF537 Blackfin Processor Hardware Reference

where:

This equation calculates the number of clock cycles between required

External Bus Interface Unit

fscrx = SDRAM clock frequency (system clock frequency)

trer = SDRAM row refresh period

trer = SDRAM row refresh interval

NRA = Number of row addresses in SDRAM (refresh cycles to

refresh whole SDRAM)

tras = Active to precharge time (TRAS in the SDRAM memory

global control register) in number of clock cycles

trp = RAS to precharge time (TRP in the SDRAM memory global

control register) in number of clock cycles

refreshes and subtracts the required delay between bank activate com-

mands to the same internal bank (tgc = trag + trp)- The trc value is

subtracted, so that in the case where a refresh time-out occurs while an
SDRAM cycle is active, the SDRAM refresh rate specification is guaran-
teed to be met. The result from the equation should always be rounded
down to an integer.

Below is an example of the calculation of RDIV for a typical SDRAM in a
system with a 133 MHz clock:

fscrx = 133 MHz

tRgf = 64 ms

NRA = 8192 row addresses
tras = 0

tRP=3

ADSP-BF537 Blackfin Processor Hardware Reference

6-65

SDC Registers

The equation for RDIV yields:

e RDIV=((133x106 x 64x10-3)/ 8192) — (6 + 3) = 1030 clock

cycles

This means RDIV is 0x406 (hex) and the SDRAM refresh rate control reg-
ister should be written with 0x406.

Note RDIV must be programmed to a nonzero value if the SDRAM con-
troller is enabled. When RDIV = 0, operation of the SDRAM controller is
not supported and can produce undesirable behavior. Values for RDIV can
range from 0x001 to OxFFF.

EBIU_SDBCTL Register

The SDRAM memory bank control register (EBIU_SDBCTL), shown in
Figure 6-15, includes external bank-specific programmable parameters. It
allows software to control some parameters of the SDRAM. The external
bank can be configured for a different size of SDRAM. It uses the access
timing parameters defined in the SDRAM memory global control register
(EBIU_SDGCTL). The EBIU_SDBCTL register should be programmed before
powerup and should be changed only when the SDC is idle.

e External bank enable (EBE)

The EBE bit is used to enable or disable the external SDRAM bank.
If the SDRAM is disabled, any access to the SDRAM address space
generates an internal bus error, and the access does not occur exter-
nally. For more information, see “Error Detection” on page 6-7.

6-66 ADSP-BF537 Blackfin Processor Hardware Reference

External Bus Interface Unit

e External bank size (EBS?7)

The EBSZ encoding stores the configuration information for the
SDRAM bank interface. The EBIU supports 64 Mbit, 128 Mbit,
256 Mbit, and 512 Mbit SDRAM devices with x4, x8, and x16
configurations. Table 6-14 maps SDRAM density and I/O width.
See “SDRAM External Bank Size” on page 6-29 for more informa-

tion on bank starting address decodes.
e External bank column address width (EBCAW)

The SDC determines the internal SDRAM page size from the
EBCAW parameters. Page sizes of 512 B, 1K byte, 2K byte, and 4K
byte are supported. Table 6-14 shows the page size and breakdown
of the internal address (IA[31:01, as seen from the core or DMA)
into the row, bank, column, and byte address. The bank width in
all cases is 16 bits. The column address and the byte address
together make up the address inside the page.

SDRAM Memory Bank Control Register (EBIU_SDBCTL)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0xFFCO 0A14 I0|0|0 |0|0 |0 |0 |0|0|0 |0 |0|0|o|o|0| Reset = 0x0000
EBCAW[1:0] EBE
SDRAM external bank column SDRAM external bank enable
address width 0 - Disabled
00 - 8 bits 1 - Enabled
pRE
11 - 11 bits SDRAM external bank size
00 - 16M byte
01 - 32M byte
10 - 64M byte

11 - 128M byte

Figure 6-15. SDRAM Memory Bank Control Register

ADSP-BF537 Blackfin Processor Hardware Reference 6-67

SDC Registers

The page size can be calculated for 16-bit SDRAM banks with this

formula:

* page size = 2(CAW + 1)

where CAW is the column address width of the SDRAM, plus 1 because the
SDRAM bank is 16 bits wide (1 address bit = 2 bytes).

Table 6-14. Internal Address Mapping

§ @ Page

°)

> m ..E g 9’ B .g o » » g » »
TEn|<E==l2E |8 s £ 8 g
ERIEEE L 53 53 £3
SZ2R|SEH|lsE &2 2 < o< R <
128 11 4 1A[26:25] 1A[24:12] IA[11:1] IA[O]
128 10 2 1A[26:25] | 1A[24:11] | IA[10:1] TA[0]
128 1 1A[26:25] |1A[24:10] | IA[9:1] 1A[0]
128 8 5 1A[26:25] 1A[24:9] IA[8:1] IA[0]
64 11 4 1A[25:24] 1A[23:12] TIA[11:1] TIA[0]
64 10 2 T1A[25:24] 1A[23:11] TIA[10:1] TIA[0]
64 9 1 1A[25:24] IA[23:10] IA[9:1] IA[O]
64 8 5 1A[25:24] IA[23:9] IA[8:1] IA[0]
32 11 4 1A[24:23] | 1A[22:12] | IA[11:1] TA[0]
32 10 2 1A[24:23] | 1A[22:11] | IA[10:1] IA[0]
32 9 1 1A[24:23] T1A[22:10] 1A[9:1] TIA[0]
32 8 5 1A[24:23] T1A[22:9] TIA[8:1] TIA[0]
16 11 4 1A[23:22] IA[21:12] IA[11:1] IA[O]
16 10 2 1A[23:22] |1A[21:11] | IA[10:1] TA[0]
16 9 1 1A[23:22] | IA[21:10] |IA[9:1] TA[0]
16 8 .5 1A[23:22] 1A[21:9] TIA[8:1] 1IA[0]

6-68 ADSP-BF537 Blackfin Processor Hardware Reference

External Bus Interface Unit

Using SDRAMs With Systems Smaller Than 16M Byte

It is possible to use SDRAMs smaller than 16M byte on the
ADSP-BF534, ADSP-BF536, and ADSP-BF537 processors as long as it is
understood how the resulting memory map is altered. Figure 6-16 shows
an example where a 2M byte SDRAM (512K x 16 bits x 2 banks) is
mapped to the external memory interface. In this example, there are 11
row addresses and 8 column addresses per bank. Referring to Table 6-5 on
page 6-29, the lowest available bank size (16M byte) for a device with 8
column addresses has 2 bank address lines (IA[23:22]) and 13 row address
lines (IA[21:9]). Therefore, 1 processor bank address line and 2 row
address lines are unused when hooking up to the SDRAM in the example.
This causes aliasing in the processor’s external memory map, which results
in the SDRAM being mapped into noncontiguous regions of the proces-
sor’s memory space.

Referring to the table in Figure 6-16, note that each line in the table cor-

responds to 2!” bytes, or 512K byte. Thus, the mapping of the 2M byte
SDRAM is noncontiguous in Blackfin memory, as shown by the memory

mapping in the left side of the figure.

ADSP-BF537 Blackfin Processor Hardware Reference 6-69

SDC Registers

EXAMPLE: 2M BYTE SDRAM WITH

512K x 16 x 2 BANKS, BANK ROW ADDRESS
11 ROW ADDRESSES AND ADDRESS
8 COLUMN ADDRESSES PER BANK
1A23 | 1A22 | 1A21 | IA20 | I1A19
BLACKFIN MEMORY MAP 0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 1 1
W 0 0 1 0 0
)
Py 0 0 1 0 1
0 0 1 1 0
[} 0 1 1 1
0 1 0 0 0
0 1 0 0 1
0 1 0 1 0
0 1 0 1 1
o
I 1M BYTE (i} 1 1 0 0
)
< 0 1 1 0 1
0 1 1 1 0
0 1 1 1 1
1M BYTE ¢ 1 X X X X
0x0000 0000 UNAVAILABLE COMBINATIONS ARE SHADED

Figure 6-16. Using Small SDRAMs

EBIU_SDGCIL Register

The SDRAM memory global control register (EBIU_SDGCTL) includes all
programmable parameters associated with the SDRAM access timing and
configuration. Figure 6-17 shows the EBIU_SDGCTL register bit definitions.

When using the hibernate state with the intent of preserving
SDRAM contents during power-down, an application may issue an
immediate read from SDRAM after enabling the controller. If this
is the case, the write to this register should be followed by an SSYNC
instruction to prevent the subsequent read from happening before
the controller is properly initialized.

6-70 ADSP-BF537 Blackfin Processor Hardware Reference

SDRAM Memory Global Control Register (EBIU_SDGCTL)

External Bus Interface Unit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

oercoonto [1] Jo oo [o[ofo]o oo [ae[o] Resetoxcovnsess

CDDBG

Control disable during bus grant

0 - Continue driving SDRAM
controls during bus grant

1 - Three-state SDRAM controls
during bus grant

TCSR

Temperature compensated self-refresh

value in extended mode register

0 - 45 degrees C

1 -85 degrees C

EMREN

L1
I_|i TRCD[2:1]

SDRAM tgrcp in SCLK cycles
000 - Reserved
001-111 - 1 to 7 cycles

TWR[1:0]

SDRAM tyg in SCLK cycles
00 - Reserved

01-11 - 1 to 3 cycles

Extended mode register enable
0 - Disabled
1 - Enabled
FBBRW

Fast back-to-back read to write
0 - Disabled
1 - Enabled
EBUFE

PUPSD

Powerup start delay

0 - No extra delay added
before first Precharge
command

1 - Fifteen SCLK cycles of
delay before first
Precharge command

PSM

SDRAM timing for external buffering
of address and control

0 - External buffering timing disabled
1 - External buffering timing enabled

SDRAM powerup sequence

0 - Precharge, 8 CBR refresh
cycles, mode register set

1 - Precharge, mode register
set, 8 CBR refresh cycles

SRFS
SDRAM self-refresh enable

0 - Disable self-refresh

1 - Enable self-refresh during inactivity

15 14 13 12 11

PSSE

SDRAM powerup sequence

start enable. Always reads 0

0 - No effect

1 - Enables SDRAM powerup
sequence on next SDRAM
access

I1|°|°l°I1 l°|°l°|°l1 IOIOI1 o]]

| L scTLE

TRCDI[0] 4|

SDRAM trcp in SCLK cycles
000 - Reserved

001-111 - 1 to 7 cycles
TRP[2:0]

SDRAM tgp in SCLK cycles
000 - No effect
001-111 - 1 to 7 cycles

TRAS[3:0]
SDRAM tgag in SCLK cycles
0000 - No effect

0001-1111 - 1 to 15 cycles

Enable CLKOUT, SRAS,

SCAS, SWE, SDQM[1:0]

0 - Disabled

1 - Enabled

CL[1:0]

SDRAM CAS latency

00-01 - Reserved

10 - 2 cycles

11 - 3 cycles

PASR[1:0]

Partial array self-refresh in

extended mode register

00 - All 4 banks refreshed

01 - Int banks 0, 1 refreshed
- Int bank 0 only refreshed

11 - Reserved

Figure 6-17. SDRAM Memory Global Control Register

ADSP-BF537 Blackfin Processor Hardware Reference 6-71

SDC Registers

SDRAM clock enable (SCTLE)

The SCTLE bit is used to enable or disable the SDC. If SCTLE is dis-
abled, any access to SDRAM address space generates an internal
bus error, and the access does not occur externally. For more infor-
mation, see “Error Detection” on page 6-7. When SCTLE is
disabled, all SDC control pins are in their inactive states and the
SDRAM clock is not running. The SCTLE bit must be enabled for
SDC operation and is enabled by default at reset.

The CAS latency (CL), SDRAM tgpg timing (TRAS), SDRAM trp
timing (TRP), SDRAM trcp timing (TRCD), and SDRAM tyg tim-
ing (TWR) bits should be programmed based on the system clock
frequency and the timing specifications of the SDRAM used.

The user must ensure that tRAS + tRP >= max(tRC,tRFC,tXSR).

The SCTLE bit allows software to disable all SDRAM control pins.
These pins are SDOM[3:01, SCAS, SRAS, SWE, SCKE, and CLKOUT.

e SCTLE =0
Disable all SDRAM control pins (control pins negated,
CLKOUT low).

e SCTLE =1
Enable all SDRAM control pins (CLKOUT toggles).

Note the CLKOUT function is also shared with the AMC. Even if
SCTLE is disabled, CLKOUT can be enabled independently by the
CLKOUT enable in the AMC (AMCKEN in the EBIU_AMGCTL register).

If the system does not use SDRAM, SCTLE should be set to 0.

If an access occurs to the SDRAM address space while SCTLE is 0,
the access generates an internal bus error and the access does not
occur externally. For more information, see “Error Detection” on

page 6-7.

6-72

ADSP-BF537 Blackfin Processor Hardware Reference

External Bus Interface Unit

With careful software control, the SCTLE bit can be used in con-
junction with the SRFS bit to further lower power consumption by
freezing the CLKOUT pin. However, SCTLE must remain enabled at
all times when the SDC is needed to generate auto-refresh com-

mands to SDRAM.
* CAS latency (CL)

The cL bits in the SDRAM memory global control register
(EBIU_SDGCTL) select the CAS latency value:

e (CL =00
Reserved

e (CL =01
Reserved

e (CL =10

2 clock cycles

e CL=11
3 clock cycles

* Partial array self refresh (PASR)

The PASR bits determine how many internal SDRAM banks are

refreshed during self-refresh.

e PASR = 00
All 4 banks
e PASR = 01

Internal banks 0 and 1 refreshed

e PASR =10
Only internal bank 0 refreshed

e PASR =11
reserved

ADSP-BF537 Blackfin Processor Hardware Reference

6-73

SDC Registers

Internal banks are decoded with the A[19:18] pins.

The PASR feature requires careful software control with regard to
the internal bank used.

Bank activate command delay (TRAS)

The TRAS bits in the SDRAM memory global control register
(EBIU_SDGCTL) select the tpag value. Any value between 1 and 15
clock cycles can be selected. For example:

e TRAS = 0000
No effect

e TRAS = 0001
1 clock cycle

e TRAS = 0010
2 clock cycles

® TRAS = 1111
15 clock cycles

Bank precharge delay (TRP)

The TRP bits in the SDRAM memory global control register
(EBIU_SDGCTL) select the tgp value. Any value between 1 and 7
clock cycles may be selected. For example:

e TRP = 000
No effect
e TRP = 001

1 clock cycle

6-74

ADSP-BF537 Blackfin Processor Hardware Reference

External Bus Interface Unit

® TRP = 010
2 clock cycles

e TRP = 111
7 clock cycles

RAS to CAS delay (TRCD)

The TRCD bits in the SDRAM memory global control register
(EBIU_SDGCTL) select the tgcp value Any value between 1 and 7
clock cycles may be selected. For example:

e TRCD = 000
Reserved, no effect

® TRCD = 001
1 clock cycle

® TRCD = 010
2 clock cycles

e TRCD = 111
7 clock cycles

e Write to precharge delay (TWR)

The TWR bits in the SDRAM memory global control register
(EBIU_SDGCTL) select the typg value. Any value between 1 and 3
clock cycles may be selected. For example:

e TWR = 00
Reserved
e TWR = 01

1 clock cycle

ADSP-BF537 Blackfin Processor Hardware Reference 6-75

SDC Registers

* TWR =10
2 clock cycles

e TWR =11
3 clock cycles

Power-up start delay (PUPSD)

The power-up start delay bit (PUPSD) optionally delays the
power-up start sequence for 15 SCLK cycles. This is useful for multi-
processor systems sharing an external SDRAM. If the bus has been
previously granted to the other processor before power-up and
self-refresh mode is used when switching bus ownership, then the
PUPSD bit can be used to guarantee a sufficient period of inactivity
from self-refresh to the first Precharge command in the power-up
sequence in order to meet the exit self-refresh time (tygr) of the

SDRAM.

Power-up sequence mode (PSM)

If the PSM bit is set to 1, the SDC command sequence is:

. Precharge all
. Mode register set

. 8 auto-refresh cycles

If the PSM bit is set to 0, the SDC command sequence is:

. Precharge all
. 8 auto-refresh cycles

. Mode register set

6-76

ADSP-BF537 Blackfin Processor Hardware Reference

External Bus Interface Unit

* Power-up sequence start enable (PSSE)

The PSM and PSSE bits work together to specify and trigger an
SDRAM power-up (initialization) sequence. Two events must
occur before the SDC does the SDRAM power-up sequence:

e The PSSE bit must be set to 1 to enable the SDRAM
power-up sequence.

* A read or write access must be done to enabled SDRAM
address space in order to have the external bus granted to
the SDC so that the SDRAM power-up sequence may

occur.

The SDRAM power-up sequence occurs and is followed immedi-
ately by the read or write transfer to SDRAM that was used to
trigger the SDRAM power-up sequence. Note there is a latency for
this first access to SDRAM because the SDRAM power-up

sequence takes many cycles to complete.

@ Before executing the SDC power-up sequence, ensure that the
SDRAM receives stable power and is clocked for the proper
amount of time, as specified by the SDRAM specification.

* Self-refresh setting (SRFS)

The SRFS and SCTLE bits work together in EBIU_SDGCTL for
self-refresh control:

e SRFS =0
Disable self-refresh mode

e SRFS =1
Enter self-refresh mode

When SRFS is set to 1, self-refresh mode is triggered. Once the
SDC completes any active transfers, the SDC executes a sequence

of commands to put the SDRAM into self-refresh mode.

ADSP-BF537 Blackfin Processor Hardware Reference 6-77

SDC Registers

When the device comes out of reset, the SCKE pin is driven high. If
it is necessary to enter self-refresh mode after reset, program
SRFS = 1.

Enter Self-Refresh Mode

When SRFS is set to 1, once the SDC enters an idle state it issues a
precharge all command and then issues a self-refresh entry com-
mand. If an internal access is pending, the SDC delays issuing the
self-refresh entry command until it completes the pending
SDRAM access and any subsequent pending access requests.

Once the SDRAM device enters into self-refresh mode, the
SDRAM controller asserts the SDSRA bit in the SDRAM control
status register (EBIU_SDSTAT).

Note once the SRFS bit is set to 1, the SDC enters self-refresh mode
when it finishes pending accesses. There is no way to cancel the
entry into self-refresh mode.

Before disabling the CLKOUT pin with the SCTLE bit, be sure to place
the SDC in self-refresh mode (SRFS bit). If this is not done, the
SDRAM is unclocked and will not work properly.

Exit Self-Refresh Mode

The SDRAM device exits self-refresh mode only when the SDC
receives core or DMA requests. In conjunction with the SRFS bit, 2
possibilities are given to exit self-refresh mode:

1. If the SRFS bit keeps set before the core/DMA request, the SDC
exits self-refresh mode temporarily for a single request and returns
back to self-refresh mode until a new request is latched.

2. If the SRFS bit is cleared before the core/ DMA request, the SDC

exits self-refresh mode and returns to auto-refresh mode.

6-78

ADSP-BF537 Blackfin Processor Hardware Reference

External Bus Interface Unit

Before exiting self-refresh mode with the SRFS bit, be sure to enable
the CLKOUT pin (SCTLE bit). If this is not done, the SDRAM is
unclocked and will not work properly.

* External buffering enabled (EBUFE)

With the total I/O width of 16 bits, a maximum of 4x4 bits can be
connected in parallel in order to increase the system’s overall page
size.

To meet overall system timing requirements, systems that employ
several SDRAM devices connected in parallel may require buffer-
ing between the processor and multiple SDRAM devices. This

buffering generally consists of a register and driver.

To meet such timing requirements and to allow intermediary regis-
tration, the SDC supports pipelining of SDRAM address and

control signals.
The EBUFE bit in the EBIU_SDGCTL register enables this mode:

e EBUFE =0
Disable external buffering timing

e EBUFE =1
Enable external buffering timing

When EBUFE = 1, the SDRAM controller delays the data in write
accesses by one cycle, enabling external buffer registers to latch the
address and controls. In read accesses, the SDRAM controller sam-
ples data one cycle later to account for the one-cycle delay added by
the external buffer registers. When external buffering timing is
enabled, the latency of all accesses is increased by one cycle.

Connection of 4 x 4 bits rather than 1 x 16 bits increases the page
size by a factor of 4, thus resulting in fewer off page penalties.

ADSP-BF537 Blackfin Processor Hardware Reference 6-79

SDC Registers

* Fast back to back read to write (FBBRW)

The FBBRW bit enables an SDRAM read followed by write to occur
on consecutive cycles. In many systems, this is not possible because
the turn-off time of the SDRAM data pins is too long, leading to
bus contention with the succeeding write from the processor.
When this bit is 0, a clock cycle is inserted between read accesses
followed immediately by write accesses.

* Extended mode register enabled (EMREN)

The EMREN bit enables programming of the extended mode register
during startup. The extended mode register is used to control
SDRAM power consumption in certain mobile low power
SDRAMs. If the EMREN bit is enabled, then the TCSR and PASR[1:0]
bits control the value written to the extended mode register.

* Temperature compensated self-refresh (TCSR)

The TCSR bit signals to the SDRAM the worst case temperature
range for the system, and thus how often the SDRAM internal
banks need to be refreshed during self-refresh.

* Control disable during bus grant (CDDBG)

The cDDBG bit is used to enable or disable the SDRAM control sig-
nals when the external memory interface is granted to an external
controller. If this bit is set to a 1, then the control signals are
three-stated when bus grant is active. Otherwise, these signals con-
tinue to be driven during grant. If the bit is set and the external bus
is granted, all SDRAM internal banks are assumed to have been
changed by the external controller. This means a precharge is
required on each bank prior to use after control of the external bus
is re-established. The control signals affected by this pin are SRAS,
SCAS, SWE, SMS, SA10, SCKE, and CLKOUT.

Note all reserved bits in this register must always be written with Os.

6-80 ADSP-BF537 Blackfin Processor Hardware Reference

External Bus Interface Unit

EBIU_SDSTAT Register

The SDRAM control status register (EBIU_SDSTAT), shown in Figure 6-18,
provides information on the state of the SDC. This information can be
used to determine when it is safe to alter SDC control parameters or it can

be used as a debug aid.

SDRAM Control Status Register (EBIU_SDSTAT)

1514 1312 1110 9 8 7 6 5 4 3 2 1 0
0XFFCO 0A1C |o|o|o|o|o|o|o|o|o|o|o|o|1|o|o|o| Reset = 0x0008

BGSTAT LSDCI
Bus grant status SDRAM controller idle
0 - Bus not granted 0 - SDC is busy performing
1 - Bus granted an access or an Auto-
SDEASE - W1C Refresh
SDRAM EAB sticky error status. Write 1 1-8DC is idle
to this bit to clear it. SDSRA
0 - No error detected SDRAM self-refresh active
1 - EAB access generated an error 0 - SDRAMSs not in self-
SDRS refresh mode
0 - Will not power up on next SDRAM 1 - SDRAMSs in self-refresh
access (SDRAM already powered up) mode
1 - Will power up on next SDRAM ——SDPUA
access if SDRAM enabled SDRAM powerup active
0 - SDC not in powerup
sequence
1 - SDC in powerup
sequence

Figure 6-18. SDRAM Control Status Register

e SDC idle (sbci)

If the SDCI bit is 0, the SDC is performing a user access or
auto-refresh. If the SDCI bit is 1, no commands are issued and the

SDC is in idle state.
e SDC self-refresh active (SDSRA)

If the SDSRA bit is 0, the SDC is performing auto-refresh (SCKE pin
= 0). If the SDSRA bit is 1, the SDC performs self-refresh mode
(SCKE pin = 1).

ADSP-BF537 Blackfin Processor Hardware Reference 6-81

SDC Programming Examples

* SDC powerup active (SDPUA)

If the SDPUA bit is 0, the SDC is not in powerup sequence. If the
SDPUA bit is 1, the SDC performs the powerup sequence.

* SDC powerup delay (SDRS)

If the SDRS bit is 0, the SDC has already powered up. If the SDRS bit
is 1, the SDC will still perform the powerup sequence.

» SDC EAB sticky error status (SDEASE)

If the SDEASE bit is 0, there were no errors detected on the EAB
core bus. If the SDEASE bit is 1, there were errors detected on the
EAB core bus. The SDEASE bit is sticky. Once it has been set, soft-
ware must explicitly write a 1 to the bit to clear it. Writes have no
effect on the other status bits, which are updated by the SDC only.

* Bus grant status (BGSTAT).

If the BGSTAT bit is 0, the bus is not granted. If the BGSTAT bitis 1,
the bus is granted.

SDC Programming Examples

Listing 6-4 through Listing 6-7 provide examples for working with the
SDC.

Listing 6-4. SDRAM Init

//SDRAM Refresh Rate Setting
PO.H hi(EBIU_SDRRC);
PO.L To(EBIU_SDRRC);

RO = 0x406 (z);
w[POJ] = RO;

6-82 ADSP-BF537 Blackfin Processor Hardware Reference

External Bus Interface Unit

//SDRAM Memory Bank Control Register
PO.H = hi(EBIU_SDBCTL);
PO.L = To(EBIU_SDBCTL);

RO = EBCAW_9 | //Page size 512
EBSZ_64 | //64 MB of SDRAM
EBE; //SDRAM enable
w[PO] = RO;

//SDRAM Memory Global Control Register

PO.H = hi(EBIU_SDGCTL);
PO.L = To(EBIU_SDGCTL);
RO.H = hi(~CDDBG & // Control disable during bus grant off

~FBBRW & // Fast back to back read to write off

~EBUFE & // External buffering enabled off

~SRFS & // Self-refresh setting off

~PSM & // Powerup sequence mode (PSM) first

~PUPSD & // Powerup start delay (PUPSD) off

TCSR | // Temperature compensated self-refresh at 85
EMREN | // Extended mode register enabled on

PSS | // Powerup sequence start enable (PSSE) on
TWR_? | // Write to precharge delay TWR = 2 (14-15 ns)
TRCD_3 | // RAS to CAS delay TRCD =3 (15-20ns)

TRP_3 | // Bank precharge delay TRP = 2 (15-20ns)
TRAS_6 | // Bank activate command delay TRAS = 4
PASR_BO | // Partial array self refresh Only SDRAM BankO
CL_3 | // CAS latency

SCTLE) ; // SDRAM clock enable

RO.L = 1o(~CDDBG & // Control disable during bus grant off
~FBBRW & // Fast back to back read to write off
~EBUFE & // External buffering enabled off
~SRFS & // Self-refresh setting off

~PSM & // Powerup sequence mode (PSM) first

ADSP-BF537 Blackfin Processor Hardware Reference 6-83

SDC Progra

mming Examples

~PUPSD & // Powerup start delay (PUPSD) off
TCSR | // Temperature compensated self-refresh at 85
EMREN | // Extended mode register enabled on
|
|
|
|
|
|
|

PSS // Powerup sequence start enable (PSSE) on

TWR_? // Write to precharge delay TWR = 2 (14-15 ns)
TRCD_3 // RAS to CAS delay TRCD =3 (15-20ns)

TRP_3 // Bank precharge delay TRP = 2 (15-20ns)
TRAS_6 // Bank activate command delay TRAS = 4
PASR_BO // Partial array self refresh Only SDRAM Bank0
CL_3 // CAS Tatency

SCTLE) ; // SDRAM clock enable

[PO] = RO;

SSYNC;

Listing 6-5. 16-Bit Core Transfers to SDRAM

.section

L1 _data_b;

.byte? source[N] = 0x1122, 0x3344, 0x5566, 0x7788;

.section

SDRAM;

.byte2 dest[N];

.section
10.L
I0.H
I1.L
I1.H

RO.

p5=

L1_code;
lo(source);
hi(source);
lo(dest);
hi(dest);

L = wlIO++];
N-1;

ITsetup(lp, 1p) 1cO0=pbh;

1p:RO.L = wlI0++] || w[Il++] = RO.L;
wlIl++] = RO.L;
6-84 ADSP-BF537 Blackfin Processor Hardware Reference

External Bus Interface Unit

Listing 6-6. 8-Bit Core Transfers to SDRAM Using Byte Mask
SDQM][1:0] Pins

.section Ll_data_b;
.byte source[N] = 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88;

.section SDRAM;
.byte dest[N];

pO0.L = To(source);
pO0.H = hi(source);
pl.L = To(dest);
pl.H = hi(dest);
p5=N;
lsetup(start, end) TcO=pb;
start: RO = b[pO0++](z);
end: b[pl++] = RO; /* byte data masking */

Listing 6-7. Self-Refresh Mode Power Savings With Disabled CLKOUT

RO.L = wlIl++]; /* Tast SDRAM access */

/* __ */
ssync; /* force last SDRAM access to finish */
PO.L = To(EBIU_SDGCTL);

PO.H = hi(EBIU_SDGCTL);

R1 = [POI;

bitset(R1l, bitpos(SRFS)); /* enter self-refresh mode */
[PO] = RI1;

ssync;

/* ___ */
PO.L = 1o(EBIU_SDSTAT);

PO.H = hi(EBIU_SDSTAT);

SelfRefreshStatus:
RO = [PO];

ADSP-BF537 Blackfin Processor Hardware Reference 6-85

SDC Programming Examples

ssync;
cc = bittst(RO, bitpos(SDSRA)); /* poll self-refresh status */
if lcc jump SelfRefreshStatus;

PO.L = To(EBIU_SDGCTL);

PO.H = hi(EBIU_SDGCTL);

R1 = [PO];

bitclIr(R1l, bitpos(SCTLE)); /* disable CLKOUT */
[PO] = RI;

ssync;

R R e e R e S i b e i b e b b e i b e b e i S e b e i b e b b S S b S S i S e S

/* SDRAM in self-refresh mode */

R R R e e b b i e b e i e b e b b e b b e e i e S e b e b b b b e S b b

PO.L = To(EBIU_SDGCTL); /* release CLKOUT from self-refresh */
PO.H = hi(EBIU_SDGCTL);

R1 = [PO];

bitset(Rl, bitpos(SCTLE)); /* enable CLKOUT */

[PO] = RI1

ssync;

/* ,,, */
PO.L = 1o(EBIU_SDGCTL); /* release SDRAM from self-refresh */
PO.H = hi(EBIU_SDGCTL);

R1 = [PO];

bitcTIr(R1, bitpos(SRFS)); /* clear SRFS bit */
[PO] = R1
ssync;

RO.L = wlIl++]; /* perform next SDRAM access */

6-86

ADSP-BF537 Blackfin Processor Hardware Reference

/ PARALLEL PERIPHERAL
INTERFACE

This chapter describes the Parallel Peripheral Interface (PPI). Following
an overview and a list of key features are a description of operation and
functional modes of operation. The chapter concludes with a program-
ming model, consolidated register definitions, and programming
examples.

This chapter contains:
e “Overview” on page 7-2
e “Features” on page 7-2
e “Interface Overview” on page 7-3
* “Description of Operation” on page 7-6
* “Functional Description” on page 7-7
* “Programming Model” on page 7-24
e “PPI Registers” on page 7-27

e “Programming Examples” on page 7-36

ADSP-BF537 Blackfin Processor Hardware Reference 7-1

Overview

Overview

The PPI is a half-duplex, bidirectional port accommodating up to 16 bits
of data. It has a dedicated clock pin and three multiplexed frame sync
pins. The highest system throughput is achieved with 8-bit data, since two
8-bit data samples can be packed as a single 16-bit word. In such a case,
the earlier sample is placed in the 8 least significant bits (LSBs).

Features

The PPI includes these features:

Half duplex, bidirectional parallel port
Supports up to 16 bits of data
Programmable clock and frame sync polarities

ITU-R 656 support

Interrupt generation on overflow and underrun

Typical peripheral devices that can be interfaced to the PPI port:

A/D converters
D/A converters
LCD panels

CMOS sensors
Video encoders

Video decoders

7-2

ADSP-BF537 Blackfin Processor Hardware Reference

Parallel Peripheral Interface

Interface Overview

Figure 7-1 shows a block diagram of the PPI.

| PPI_CONTROL I
PPI_CLK
———————
<:::> | PPLCOUNTI
| PPI_STATUS I‘
PAB
> DATA BUS
| PPI_DELAY II
DMA
CONTROLLER | PPI_FRAME I

A J ‘ FS1

DAB
16BITS [~
* Fs2
<:::><—> 16-DEEP #Um%’}(<> GATE |=»| sync
FIFO

FS3

) 4

A
A A A

Yvy

A |

Figure 7-1. PPI Block Diagram

The PPI_CLK pin accepts an external clock input. It cannot source a clock
internally.

When the PPI_CLK is not free-running, there may be additional
latency cycles before data gets received or transmitted. In RX and
TX modes, there may be at least 2 cycles latency before valid data is
received or transmitted.

Table 7-1 shows the pin interface for the PPI. Enabling a particular pin
involves writing to the appropriate PORTx_FER register and, if applicable,
the PORT_MUX register. To configure for particular PPI pin usage, program
the PORT_MUX, PORTF_FER, and PORTG_FER MMRs as shown in Table 7-1.

ADSP-BF537 Blackfin Processor Hardware Reference 7-3

Interfface Overview

The 16 PPI data pins are found on port G. The upper data lines are multi-
plexed with SPORT1 signals. While 8-bit PPI operation still enables full
SPORTT1 functionality, 10-bit PPI configuration disables the secondary
data signals of SPORT. If 13 or fewer data lines are required for PPI
operation, the transmit channel of SPORT1 remains fully functional. The
three control bits PGSE, PGRE, and PGTE in the PORT_MUX register control
this granularity of signal multiplexing.

The PPI clock and the three PPI frame sync signals are found on port F.
The PPI_CLK not only supplies the PPI module itself, it also can clock all
of the eight timers to work synchronously with the PPI. Depending on
PPI operation mode, the PPI_CLK can either equal or invert the TMRCLK
input.

The three frame sync signals are multiplexed with the three timer signals
TMRO, TMR1, and TMR2. Timer 0 and timer 1 are internally looped back to
the PPI module and can therefore be used for internal frame sync genera-
tion. If FS1 and FS2 are applied externally, timer 0 and timer 1 must
disable their outputs by setting the 0UT_DIS bit in the TIMERO_CONFIG and
TIMER1_CONFIG registers, when working in PWM_0UT mode. Only the third
frame sync input FS3, if used, must be explicitly enabled in the PORT_MUX
register by setting the PFFE bit.

All pins of port F and port G function as GPIOs by default and must be
individually enabled for either PPI or any other peripheral operation by
setting the appropriate bits in the function enable registers PORTF_FER and
PORTG_FER. For more information, refer to Chapter 14, “General-Purpose
Ports”. Since TMRO and TMR1 are connected to the PPI module internally,
the respective pins can be used in GPIO mode, if no external device is lis-
tening to the frame syncs.

7-4 ADSP-BF537 Blackfin Processor Hardware Reference

Table 7-1. PPI Pins

Parallel Peripheral Interface

Pin Name (Function)

PORT_MUX

PORTF_FER

PORTG_FER

PPI DO (PPI data 0) Set bit 0 (PGO)
PPI DI (PPI data 1) Set bit 1 (PG1)
PPI D2 (PPI data 2) Set bit 2 (PG2)
PPI D3 (PPI data 3) Set bit 3 (PG3)
PPI D4 (PPI data 4) Set bit 4 (PG4)
PPI D5 (PPI data 5) Set bit 5 (PG5)
PPI D6 (PPI data 6) Set bit 6 (PG6)
PPI D7 (PPI data 7) Set bit 7 (PG7)
PPI D8 (PPI data 8) Clear bit 9 (PGSE) Set bit 8 (PGS8)
PPI D9 (PPI data 9) Clear bit 9 (PGSE) Set bit 9 (PGY)
PPI D10 (PPI data 10) Clear bit 10 (PGRE) Set bit 10 (PG10)
PPT D11 (PPI data 11) Clear bit 10 (PGRE) Set bit 11 (PG11)
PPI D12 (PPI data 12) Clear bit 10 (PGRE) Set bit 12 (PG12)
PPI D13 (PPI data 13) Clear bit 11 (PGTE) Set bit 13 (PG13)
PPI D14 (PPI data 14) Clear bit 11 (PGTE) Set bit 14 (PG14)
PPI D15 (PPI data 15) Clear bit 11 (PGTE) Set bit 15 (PG15)
PPI_CLK (PPI clock) Set bit 15 (PF15)

PPI_FS1 (PPI frame sync 1)

Set bit 9 (PF9)

PPI_FS2 (PPI frame sync 2)

Set bit 8 (PF8)

PPI_FS3 (PPI frame sync 3)

Set bit 8 (PFFE)

Set bit 7 (PF7)

ADSP-BF537 Blackfin Processor Hardware Reference

7-5

Description of Operation

Description of Operation

Table 7-2 shows all the possible modes of operation for the PPI.

Table 7-2. PPI Possible Operating Modes

PPI Mode # of PORT_ |[PORT_ |[XFR_T |POLC |POLS |FLD_
Syncs DIR CFG YPE SEL

RX mode, 0 frame syncs, 0 0 11 11 Oorl Oorl 0

external trigger

RX mode, 0 frame syncs, 0 0 11 11 Oorl Oorl 1

internal trigger

RX mode, 1 external frame | 1 0 00 11 Oorl Oorl 0

sync

RX mode, 2 or 3 external 3 0 10 11 Oorl Oorl 0

frame syncs

RX mode, 2 or 3 internal 3 0 01 11 Oorl Oorl 0

frame syncs

RX mode, ITU-R 656, embed- | 0 00 00 Oorl 0 Oorl

active field only ded

RX mode, ITU-R 656, ver- | embed- | 0 00 10 Oorl 0 0

tical blanking only ded

RX mode, ITU-R 656, embed- | 0 00 01 Oorl 0 0

entire field ded

TX mode, 0 frame syncs 0 1 00 00 Oorl Oorl 0

TX mode, 1 internal or 1 1 00 11 Oorl Oorl 0

external frame sync

TX mode, 2 external frame | 2 1 01 11 Oorl Oorl 0

syncs

TX mode, 2 or 3 internal 3 1 01 11 Oorl Oorl 0

frame syncs, FS3 sync’ed to

FS1 assertion

TX mode, 2 or 3 internal 3 1 11 11 Oorl Oorl 0

frame syncs, FS3 sync’ed to

FS2 assertion

7-6

ADSP-BF537 Blackfin Processor Hardware Reference

Parallel Peripheral Interface

Functional Description

The following sections describe the function of the PPI.

ITU-R 656 Modes

The PPI supports three input modes for ITU-R 656-framed data. These
modes are described in this section. Although the PPI does not explicitly
support an ITU-R 656 output mode, recommendations for using the PPI
for this situation are provided as well.

ITU-R 656 Background

According to the ITU-R 656 recommendation (formerly known as
CCIR-656), a digital video stream has the characteristics shown in
Figure 7-2, and Figure 7-3 for 525/60 (NTSC) and 625/50 (PAL) sys-
tems. The processor supports only the bit-parallel mode of ITU-R 656.
Both 8- and 10-bit video element widths are supported.

In this mode, the Horizontal (H), Vertical (V), and Field (F) signals are
sent as an embedded part of the video datastream in a series of bytes that
form a control word. The Start of Active Video (SAV) and End of Active
Video (EAV) signals indicate the beginning and end of data elements to
read in on each line. SAV occurs on a 1-to-0 transition of H, and EAV
begins on a 0-to-1 transition of H. An entire field of video is comprised of
active video + horizontal blanking (the space between an EAV and SAV
code) and vertical blanking (the space where V = 1). A field of video com-
mences on a transition of the F bit. The “odd field” is denoted by a value
of F = 0, whereas F = 1 denotes an even field. Progressive video makes no
distinction between field 1 and field 2, whereas interlaced video requires
each field to be handled uniquely, because alternate rows of each field
combine to create the actual video image.

ADSP-BF537 Blackfin Processor Hardware Reference 7-7

Functional Description

| END OF ACTIVE VIDEO | START OF ACTIVE VIDEO | sTART OF
| | | NEXT LINE
| | |
I EAV HORIZONTAL SAV I I
I CODE BLANKING cope | I
| (H=1) (H=0) | |
)
[(¢
Flofo|x|s|1]|8]1 s{1|Flofo|x]c|y|c|Y|c|Y|c|Y cl|v|F e:ggf‘"
Flo|o[y|o]|ofo]o olo|F|ofo|Y|B| |R| |B R N R| |F| strReam
14$
4 I 268 (280 FORPAL) | 4 : 1440

| |
e . o
| ' ' [|
| 1716 (1728 FOR PAL) I
| [y |
I T 1

Figure 7-2. ITU-R 656 8-Bit Parallel Data Stream for NTSC (PAL)
Systems

The SAV and EAV codes are shown in more detail in Table 7-3. Note
there is a defined preamble of three bytes (0xFF, 0x00, 0x00), followed by
the XY status word, which, aside from the F (field), v (vertical blanking)
and H (horizontal blanking) bits, contains four protection bits for sin-
gle-bit error detection and correction. Note F and V are only allowed to
change as part of EAV sequences (that is, transition from H = 0 to H = 1).
The bit definitions are as follows:

e F = 0forfield 1

* F =1 for field 2

* V = 1 during vertical blanking

e V = 0 when not in vertical blanking
* H=0atSAV

* H=1atEAV

e P3 =V XORH

.

o

n
I

F XOR H

7-8

ADSP-BF537 Blackfin Processor Hardware Reference

LINE #

1

20

264

525

23

311

336

624

625

e Pl =F XOR V
® PO =F XOR V XOR H
VERTICAL
BLANKING
Zo | FELD1
EZ | ACTIVEVIDEO
X
N2
23 | VERTICAL
2® [BLANKING
FIELD 2
ACTIVE VIDEO
{l A
EAV SAV
VERTICAL
BLANKING
o FIELD 1
E Q| AcTIVE ViDEO
X
Q2 | VerTicAL
3 | BLANKING
om
I FIELD 2
ACTIVE VIDEO
VERTICAL
BLANKING
'
EAV SAV

— LINE 4

— LINE 266

—LINE 3

—LINE 1

—LINE 313

— LINE 625

Parallel Peripheral Interface

FIELD 1

FIELD 2

FIELD 1

FIELD 2

LINE
NUMBER

(EAV)

(SAV)

1-3,
266-282

419,
264-265

20-263

283-525

LINE
NUMBER

1-22,
311-312

23-310

313-335,
624-625

336-623

Figure 7-3. Typical Video Frame Partitioning for NTSC/PAL Systems for

ITU-R BT.656-4

In many applications, video streams other than the standard NTSC/PAL
formats (for example, CIF, QCIF) can be employed. Because of this, the
processor interface is flexible enough to accommodate different row and
field lengths. In general, as long as the incoming video has the proper

EAV/SAV codes, the PPI can read it in. In other words, a CIF image

could be formatted to be “656-compliant,” where EAV and SAV values
define the range of the image for each line, and the vV and F codes can be
used to delimit fields and frames.

ADSP-BF537 Blackfin Processor Hardware Reference

Functional Description

Table 7-3. Control Byte Sequences for 8-Bit and 10-Bit ITU-R 656

Video

8-Bit Data 10-Bit Data
D9 D8 D7 D6 D5 D4 D3 D2 D1 DO
(MSB)

Preamble 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

Control Byte 1 F \% H P3 P2 P1 PO 0 0

ITU-R 656 Input Modes

Figure 7-4 shows a general illustration of data movement in the ITU-R
656 input modes. In the figure, the clock CLK is either provided by the

video source or supplied externally by the system.

'656
COMPATIBLE
VIDEOSOURCE

CLK

ITU-R 656 INPUT MODE

8- OR 10-BIT DATA WITH
EMBEDDED CONTROL

PPI

Figure 7-4. ITU-R 656 Input Modes

PPIx

PPI_CLK

There are three submodes supported for ITU-R 656 inputs: entire field,
active video only, and vertical blanking interval only. Figure 7-5 shows
these three submodes.

Entire Field

In this mode, the entire incoming bitstream is read in through the PPI.
This includes active video as well as control byte sequences and ancillary
data that may be embedded in horizontal and vertical blanking intervals.

7-10

ADSP-BF537 Blackfin Processor Hardware Reference

Parallel Peripheral Interface

BLANKING BLANKING BLANKING

FIELD 1 FIELD 1 FIELD 1

ACTIVE VIDEO ACTIVE VIDEO ACTIVE VIDEO
BLANKING BLANKING BLANKING

FIELD 2 FIELD 2 FIELD 2

ACTIVE VIDEO ACTIVE VIDEO ACTIVE VIDEO
BLANKING BLANKING BLANKING

ENTIRE FIELD SENT ACTIVE VIDEO ONLY SENT BLANKING ONLY SENT

Figure 7-5. ITU-R 656 Input Submodes

Data transfer starts immediately after synchronization to field 1 occurs,
but does not include the first EAV code that contains the F = 0
assignment.

Note the first line transferred in after enabling the PPI will be miss-
ing its first 4-byte preamble. However, subsequent lines and frames
should have all control codes intact.

One side benefit of this mode is that it enables a “loopback” feature
through which a frame or two of data can be read in through the PPI and
subsequently output to a compatible video display device. Of course, this
requires multiplexing on the PPI pins, but it enables a convenient way to
verify that 656 data can be read into and written out from the PP

Active Video Only

This mode is used when only the active video portion of a field is of inter-
est, and not any of the blanking intervals. The PPI ignores (does not read
in) all data between EAV and SAV, as well as all data present when V = 1.
In this mode, the control byte sequences are not stored to memory; they
are filtered out by the PPI. After synchronizing to the start of Field 1, the
PPI ignores incoming samples until it sees an SAV.

In this mode, the user specifies the number of total (active plus ver-
tical blanking) lines per frame in the PPI_FRAME MMR.

ADSP-BF537 Blackfin Processor Hardware Reference 7-11

Functional Description

Vertical Blanking Interval (VBI) Only

In this mode, data transfer is only active while V = 1 is in the control byte
sequence. This indicates that the video source is in the midst of the Verti-
cal Blanking Interval (VBI), which is sometimes used for ancillary data
transmission. The ITU-R 656 recommendation specifies the format for
these ancillary data packets, but the PPI is not equipped to decode the
packets themselves. This task must be handled in software. Horizontal
blanking data is logged where it coincides with the rows of the VBI.
Control byte sequence information is always logged. The user specifies the
number of total lines (active plus vertical blanking) per frame in the
PPI_FRAME MMR.

Note the VBI is split into two regions within each field. From the PPI’s
standpoint, it considers these two separate regions as one contiguous
space. However, keep in mind that frame synchronization begins at the
start of field 1, which doesn’t necessarily correspond to the start of vertical
blanking. For instance, in 525/60 systems, the start of field 1 (F = 0) cor-
responds to line 4 of the VBI.

ITU-R 656 Output Mode

The PPI does not explicitly provide functionality for framing an ITU-R
656 output stream with proper preambles and blanking intervals. How-
ever, with the TX mode with 0 frame syncs, this process can be supported
manually. Essentially, this mode provides a streaming operation from
memory out through the PPI. Data and control codes can be set up in
memory prior to sending out the video stream. With the 2D DMA
engine, this could be performed in a number of ways. For instance, one
line of blanking (H + V) could be stored in a buffer and sent out N times
by the DMA controller when appropriate, before proceeding to DMA
active video. Alternatively, one entire field (with control codes and blank-
ing) can be set up statically in a buffer while the DMA engine transfers
only the active video region into the buffer, on a frame-by-frame basis.

7-12 ADSP-BF537 Blackfin Processor Hardware Reference

Parallel Peripheral Interface

Frame Synchronization in ITU-R 656 Modes

Synchronization in ITU-R 656 modes always occurs at the falling edge of
F, the field indicator. This corresponds to the start of field 1. Conse-
quently, up to two fields might be ignored (for example, if field 1 just
started before the PPI-to-camera channel was established) before data is
received into the PPI.

Because all H and V signalling is embedded in the datastream in ITU-R
656 modes, the PPI_COUNT register is not necessary. However, the
PPI_FRAME register is used in order to check for synchronization errors.
The user programs this MMR for the number of lines expected in each
frame of video, and the PPI keeps track of the number of EAV-to-SAV
transitions that occur from the start of a frame until it decodes the
end-of-frame condition (transition from F = 1 to F = 0). At this time, the
actual number of lines processed is compared against the value in
PPI_FRAME. If there is a mismatch, the FT_ERR bit in the PPI_STATUS regis-
ter is asserted. For instance, if an SAV transition is missed, the current
field will only have NUM_ROWS - 1 rows, but resynchronization will reoccur
at the start of the next frame.

Upon completing reception of an entire field, the field status bit is toggled
in the PPI_STATUS register. This way, an interrupt service routine (ISR)
can discern which field was just read in.

General-Purpose PPl Modes

The general-purpose PPI modes are intended to suit a wide variety of data
capture and transmission applications. Table 7-4 summarizes these modes.
If a particular mode shows a given PPI_FSx frame sync not being used, this
implies that the pin is available for its alternate, multiplexed functions.

ADSP-BF537 Blackfin Processor Hardware Reference 7-13

Functional Description

Table 7-4. General-Purpose PPI Modes

GP PPI Mode PPI_FS1 PPI_FS2 PPI_FS3 Data
Direction Direction Direction Direction

RX mode, 0 frame syncs, external Input Not used Not used Input

trigger

RX mode, 0 frame syncs, internal Not used Not used Not used Input

trigger

RX mode, 1 external frame sync Input Not used Not used Input

RX mode, 2 or 3 external frame syncs | Input Input Input (if Input
used)

RX mode, 2 or 3 internal frame syncs | Output Output Output (if | Input
used)

TX mode, 0 frame syncs Not used Not used Not used Output

TX mode, 1 external frame sync Input Not used Not used Output

TX mode, 2 external frame syncs Input Input Not used Output

TX mode, 1 internal frame sync Output Not used Not used Output

TX mode, 2 or 3 internal frame syncs | Output Output Output (if | Output
used)

Figure 7-6 illustrates the general flow of the GP modes. The top of the
diagram shows an example of RX mode with 1 external frame sync. After
the PPI receives the hardware frame sync pulse (PPI_FS1), it delays for the
duration of the PPI_CLK cycles programmed into PPI_DELAY. The DMA
controller then transfers in the number of samples specified by PPI_COUNT.
Every sample that arrives after this, but before the next PPI_FS1 frame

sync arrives, is ignored and not transferred onto the DMA bus.

If the next PPI_FS1 frame sync arrives before the specified

PPI_COUNT samples have been read in, the sample counter reinitial-
izes to 0 and starts to count up to PPI_COUNT again. This situation
can cause the DMA channel configuration to lose synchronization
with the PPI transfer process.

7-14

ADSP-BF537 Blackfin Processor Hardware Reference

Parallel Peripheral Interface

The bottom of Figure 7-6 shows an example of TX mode, 1 internal frame
sync. After PPI_FS1 is asserted, there is a latency of 1 PPI_CLK cycle, and
then there is a delay for the number of PPI_CLK cycles programmed into
PPI_DELAY. Next, the DMA controller transfers out the number of samples
specified by PPI_COUNT. No further DMA takes place until the next
PPI_FS1 sync and programmed delay occur.

/ If the next PPI_FS1 frame sync arrives before the specified

PPI_COUNT samples have been transferred out, the sync has priority
and starts a new line transfer sequence. This situation can cause the
DMA channel configuration to lose synchronization with the PPI
transfer process.

FRAME PROG PPI_COUNT SAMPLES
SYNC DELAY IGNORED
(PPI_FS1) (PPI_DELAY)
—I . - -
—I e _— . —
INPUT
—I - - .
FRAME 1 CYCLE PROG PPI_COUNT
SYNC DELAY DELAY
(PPI_FS1) (PPI_DELAY)
I . -
I . S
OUTPUT .
.
I —

Figure 7-6. General Flow for GP Modes (Assumes Positive Assertion of
PPI_FS1)

ADSP-BF537 Blackfin Processor Hardware Reference 7-15

Functional Description

Data Input (RX) Modes

The PPI supports several modes for data input. These modes differ chiefly
by the way the data is framed. Refer to Table 7-2 on page 7-6 for informa-
tion on how to configure the PPI for each mode.

No Frame Syncs

These modes cover the set of applications where periodic frame syncs are
not generated to frame the incoming data. There are two options for start-
ing the data transfer, both configured by the PPI_CONTROL register.

* External trigger: An external source sends a single frame sync (tied
to PPI_FS1) at the start of the transaction, when FLD_SEL = 0 and
PORT_CFG = bi#l1.

* Internal trigger: Software initiates the process by setting
PORT_EN = 1 with FLD_SEL = 1 and PORT_CFG = b#11.

All subsequent data manipulation is handled via DMA. For example, an
arrangement could be set up between alternating 1K memory buffers.
When one fills up, DMA continues with the second buffer, at the same
time that another DMA operation is clearing the first memory buffer for
reuse.

Due to clock domain synchronization in RX modes with no frame
syncs, there may be a delay of at least 2 PPI_CLK cycles between
when the mode is enabled and when valid data is received. There-
fore, detection of the start of valid data should be managed by
software.

7-16 ADSP-BF537 Blackfin Processor Hardware Reference

Parallel Peripheral Interface

1, 2, or 3 External Frame Syncs

The frame syncs are level-sensitive signals. The 1-sync mode is intended
for Analog-to-Digital Converter (ADC) applications. The top part of
Figure 7-7 shows a typical illustration of the system setup for this mode.

AID
CONVERTER PPI
FRAMESYNC PPI_FS1

DATA 8-16 BITS DATA> |PPIx

CLK PPI_CLK

VIDEO
SOURCE PPI
HSYNC PPI_FS1
VSYNC PPI_FS2
FIELD PPI_FS3

DATA 8-16 BITS DATA> | PPIx

CLK PPI_CLK

Figure 7-7. RX Mode, External Frame Syncs

The 3-sync mode shown at the bottom of Figure 7-7 supports video appli-
cations that use hardware signalling (HSYNC, VSYNC, FIELD) in accordance
with the ITU-R 601 recommendation. The mapping for the frame syncs
in this mode is PPI_FS1 = HSYNC, PPI_FS2 = VSYNC, PPI_FS3 = FIELD.
Refer to “Frame Synchronization in GP Modes” on page 7-21 for more
information about frame syncs in this mode.

A 2-sync mode is supported by not enabling the third frame sync pin in
the PORT_MUX and PORTF_FER registers.

2 or 3 Internal Frame Syncs

This mode can be useful for interfacing to video sources that can be slaved
to a master processor. In other words, the processor controls when to read
from the video source by asserting PPI_FS1 and PPI_FS2, and then reading
data into the PPI. The PPI_FS3 frame sync provides an indication of

ADSP-BF537 Blackfin Processor Hardware Reference 7-17

Functional Description

which field is currently being transferred, but since it is an output, it can
simply be left floating if not used. Figure 7-8 shows a sample application
for this mode.

IMAGE
PPI SOURCE

PPI_FS1 HSYNC
PPI_FS2 VSYNC

PPIx 8-16 BITS DATA| | DATA

PPI_CLK CLK

] @ 7

Figure 7-8. RX Mode, Internal Frame Syncs

Data Output (TX) Modes

The PPI supports several modes for data output. These modes differ
chiefly by the way the data is framed. Refer to Table 7-2 on page 7-6 for

information on how to configure the PPI for each mode.

No Frame Syncs

In this mode, data blocks specified by the DMA controller are sent out
through the PPI with no framing. That is, once the DMA channel is con-
figured and enabled, and the PPI is configured and enabled, data transfers
will take place immediately, synchronized to PPI_CLK. See Figure 7-9 for
an illustration of this mode.

In this mode, there is a delay of up to 16 SCLK cycles (for > 8-bit
data) or 32 SCLK cycles (for 8-bit data) between enabling the PPI
and transmission of valid data. Furthermore, DMA must be config-
ured to transmit at least 16 samples (for > 8-bit data) or 32 samples

(for 8-bit data).

7-18 ADSP-BF537 Blackfin Processor Hardware Reference

Parallel Peripheral Interface

PPIx| | 8- TO 16-BIT DATA > | RECEIVER
PPLCLKT CLK

Figure 7-9. TX Mode, 0 Frame Syncs

1 or 2 External Frame Syncs

In these modes, an external receiver can frame data sent from the PPI.
Both 1-sync and 2-sync modes are supported. The top diagram in
Figure 7-10 shows the 1-sync case, while the bottom diagram illustrates
the 2-sync mode.

There is a mandatory delay of 1.5 PPI_CLK cycles, plus the value
programmed in PPI_DELAY, between assertion of the external frame
sync(s) and the transfer of valid data out through the PPI.

DATA
RECEIVER PPI

FRAMESYNC |—— | PPL_FS1

PPIx
DATA 8-16 BITS DATA

CLK [———»|PPL.CLK

DATA

RECEIVER PPI

FRAMESYNC1 »| PPI_FS1

FRAMESYNC2 »| PPI_FS2
DATA 8-16 BITS DATA | | PPIx

CLK »| PPI_CLK

Figure 7-10. TX Mode, 1 or 2 External Frame Syncs

ADSP-BF537 Blackfin Processor Hardware Reference 7-19

Functional Description

1, 2, or 3 Internal Frame Syncs

The 1-sync mode is intended for interfacing to Digital-to-Analog Con-
verters (DACs) with a single frame sync. The top part of Figure 7-11
shows an example of this type of connection.

The 3-sync mode is useful for connecting to video and graphics displays,
as shown in the bottom part of Figure 7-11. A 2-sync mode is implicitly
supported by leaving PPI_FS3 unconnected in this case.

DIA
PPI CONVERTER
PPI_FS1 »| FRAMESYNC

1 FRAME PPIx 8-16 BITS DATA DATA
SYNC
CLK

[

PPI_CLK <—@7

PPI VIDEO DISPLAY
PPI_FS1 »| HSYNC
PPI_FS2 > VSYNC
3 FRAME PPI_FS3 »| FIELD
SYNCS
PPIx [| 8-16 BITS DATA CLK
[
PPI_CLK | (]:E>

\—y
Figure 7-11. PPI GP Output

7-20 ADSP-BF537 Blackfin Processor Hardware Reference

Parallel Peripheral Interface

Frame Synchronization in GP Modes

Frame synchronization in GP modes operates differently in modes with
internal frame syncs than in modes with external frame syncs.

Modes With Internal Frame Syncs

In modes with internal frame syncs, PPI_FS1 and PPI_FS2 link directly to
the Pulsewidth Modulation (PWM) circuits of timer 0 and timer 1,
respectively. This allows for arbitrary pulse widths and periods to be pro-
grammed for these signals using the existing TIMERx registers. This
capability accommodates a wide range of timing needs. Note these PWM
circuits are clocked by PPI_CLK, not by SCLK (as during conventional timer
PWM operation). If PPI_FS2 is not used in the configured PPI mode,
timer 1 operates as it normally would, unrestricted in functionality. The
state of PPI_FS3 depends completely on the state of PPI_FS1 and/or
PPI_FS2, so PPI_FS3 has no inherent programmability.

To program PPI_FS1 and/or PPI_FS2 for operation in an internal
frame sync mode:

1. Configure and enable DMA for the PPI. See “DMA Operation” on
page 7-24.

2. Configure the width and period for each frame sync signal via
TIMERO_WIDTH and TIMERO_PERIOD (for PPI_FS1), or TIMERL_WIDTH
and TIMERI_PERIOD (for PPI_FS2).

3. Set up TIMERO_CONFIG for PWM_OUT mode (for PPI_FS1). If used,
configure TIMER1_CONFIG for PUM_OUT mode (for PPI_FSs2). This
includes setting CLK_SEL = 1 and TIN_SEL = 1 for each timer.

ADSP-BF537 Blackfin Processor Hardware Reference 7-21

Functional Description

4. Write to PPI_CONTROL to configure and enable the PPI.
5. Write to TIMER_ENABLE to enable timer 0 and/or timer 1.

It is important to guarantee proper frame sync polarity between the
PPI and timer peripherals. To do this, make sure that if
PPI_CONTROL[15:147 = b#10 or b#11, the PULSE_HI bit is cleared in
TIMERO_CONFIG and TIMERI_CONFIG. Likewise, if
PPI_CONTROL[15:14] = b#00 or b#01, the PULSE_HI bit should be
set in TIMERO_CONFIG and TIMERI_CONFIG.

To switch to another PPI mode not involving internal frame syncs:
1. Disable the PPI (using PPI_CONTROL).

2. Disable the timers (using TIMER_DISABLE).

Modes With External Frame Syncs

In RX modes with external frame syncs, the PPI_FS1 and PPI_FS? pins
become edge-sensitive inputs. In such a mode, timers 1 and 2 can be used
for a purpose not involving the TMRO and TMR1 pins. However, timer access
to a TMRx pin is disabled when the PPI is using that pin for a PPI_FSx
frame sync input function. For modes that do not require PPI_FS2, timer
1 is not restricted in functionality and can be operated as if the PPI were
not being used (that is, the TMR1 pin becomes available for timer use as
well). For more information on configuring and using the timers, refer to
Chapter 15, “General-Purpose Timers”.

In RX mode with 3 external frame syncs, the start of frame detec-
tion occurs where a PPI_FS2 assertion is followed by an assertion of
PPI_FS1 while PPI_FS3 is low. This happens at the start of field 1.
Note that PPI_FS3 only needs to be low when PPI_FS1 is asserted,
not when PPI_FS2 asserts. Also, PPI_FS3 is only used to synchro-
nize to the start of the very first frame after the PPI is enabled. It is
subsequently ignored.

7-22 ADSP-BF537 Blackfin Processor Hardware Reference

Parallel Peripheral Interface

In TX modes with external frame syncs, the PPI_FS1 and PPI_FS2 pins are
treated as edge-sensitive inputs. In this mode, it is not necessary to config-
ure the timer(s) associated with the frame sync(s) as input(s), or to enable
them via the TIMER_ENABLE register. Additionally, the actual timers them-
selves are available for use, even though the timer pin(s) are taken over by
the PPI. In this case, there is no requirement that the timebase (configured
by TIN_SEL in TIMERX_CONFIG) be PPI_CLK.

However, if using a timer whose pin is connected to an external frame
sync, be sure to disable the pin via the OUT_DIS bit in TIMERX_CONFIG.
Then the timer itself can be configured and enabled for non-PPI use with-
out affecting PPI operation in this mode. For more information, see
Chapter 15, “General-Purpose Timers”.

ADSP-BF537 Blackfin Processor Hardware Reference 7-23

Programming Model

Programming Model

The following sections describe the PPI programming model.

DMA Operation

The PPI must be used with the processor’s DMA engine. This section dis-
cusses how the two interact. For additional information about the DMA
engine, including explanations of DMA registers and DMA operations,
refer to Chapter 5, “Direct Memory Access”.

The PPI DMA channel can be configured for either transmit or receive
operation, and it has a maximum throughput of (PPI_CLK) x

(16 bits/transfer). In modes where data lengths are greater than 8 bits,
only one element can be clocked in per PPI_CLK cycle, and this results in
reduced bandwidth (since no packing is possible). The highest throughput
is achieved with 8-bit data and PACK_EN = 1 (packing mode enabled).
Note for 16-bit packing mode, there must be an even number of data
elements.

Configuring the PPI’s DMA channel is a necessary step toward using the
PPI interface. It is the DMA engine that generates interrupts upon com-
pletion of a row, frame, or partial-frame transfer. It is also the DMA
engine that coordinates the origination or destination point for the data
that is transferred through the PPI.

The processor’s 2D DMA capability allows the processor to be interrupted
at the end of a line or after a frame of video has been transferred, as well as
if a DMA error occurs. In fact, the specification of the DMAx_XCOUNT and
DMAX_YCOUNT MMRs allows for flexible data interrupt points. For example,
assume the DMA registers XMODIFY = YMODIFY = 1. Then, if a data frame
contains 320 x 240 bytes (240 rows of 320 bytes each), these conditions
hold:

7-24 ADSP-BF537 Blackfin Processor Hardware Reference

Parallel Peripheral Interface

Setting XCOUNT = 320, YCOUNT = 240, and DI_SEL = 1 (the DI_SEL
bit is located in DMAx_CONFIG) interrupts on every row transferred,
for the entire frame.

Setting XCOUNT = 320, YCOUNT = 240, and DI_SEL = 0 interrupts
only on the completion of the frame (when 240 rows of 320 bytes
have been transferred).

Setting XCOUNT = 38,400 (320 x 120), YCOUNT = 2,and DI_SEL = 1
causes an interrupt when half of the frame has been transferred,
and again when the whole frame has been transferred.

Following is the general procedure for setting up DMA operation with the
PPI. For details regarding configuration of DMA, refer to Chapter 5,
“Direct Memory Access”.

1.

AT

Configure DMA registers as appropriate for desired DMA operat-

ing mode.

Enable the DMA channel for operation.

Configure appropriate PPI registers.

Enable the PPI by writing a 1 to bit 0 in PPI_CONTROL.

If internally generated frame syncs are used, write to the
TIMER_ENABLE register to enable the timers linked to the PPI frame
syncs.

Figure 7-12 shows a flow diagram detailing the steps on how to configure
the PPI for the various modes of operation.

ADSP-BF537 Blackfin Processor Hardware Reference 7-25

Programming Model

PROGRAM
Y_COUNT AND
Y_MODIFY

WRITE
PORT_MUX

'

&)
*

| WRITE PORTF_FER AND PORTG_FER

PROGRAM

PPI_FRAME

'y

PROGRAM
PPI_DELAY

EXTERNAL
TRIGGER?

v

PROGRAM
PPI_COUNT

A A

PROGRAM TIMER(S)
LINKED WITH FS

i:

WRITE DMAx_CONFIG TO ENABLE DMA

!

WRITE PPI_CONTROL TO ENABLE PPI

WRITE TIMER_ENABLE TO ENABLE TIMERS

Figure 7-12. PPI Flow Diagram

7-26

ADSP-BF537 Blackfin Processor Hardware Reference

Parallel Peripheral Interface

PPl Registers

The PPI has five memory-mapped registers (MMRs) that regulate its oper-
ation. These registers are the PPI control register (PPI_CONTROL), the PPI
status register (PPI_STATUS), the delay count register (PPI_DELAY), the
transfer count register (PPI_COUNT), and the lines per frame register
(PPI_FRAME).

Descriptions and bit diagrams for each of these MMRs are provided in the
following sections.

PPI_CONTROL Register

The PPI_CONTROL register configures the PPI for operating mode, control
signal polarities, and data width of the port. See Figure 7-13 for a bit dia-
gram of this MMR.

The POLC and POLS bits allow for selective signal inversion of the PPI_CLK
and PPI_FS1/PPI_FS2 signals, respectively. This provides a mechanism to
connect to data sources and receivers with a wide array of control signal
polarities. Often, the remote data source/receiver also offers configurable
signal polarities, so the POLC and POLS bits simply add increased flexibility.

The DLEN[2:0] field is programmed to specify the width of the PPI port in
any mode. Note any width from 8 to 16 bits is supported, with the excep-
tion of a 9-bit port width. Any pins unused by the PPI as a result of the
DLEN setting are free for use in their other functions, as detailed in
Chapter 14, “General-Purpose Ports”.

In ITU-R 656 modes, the DLEN field should not be configured for
anything greater than a 10-bit port width. If it is, the PPI will
reserve extra pins, making them unusable by other peripherals.

The SKIP_EN bit, when set, enables the selective skipping of data elements
being read in through the PPI. By ignoring data elements, the PPI is able
to conserve DMA bandwidth.

ADSP-BF537 Blackfin Processor Hardware Reference 7-27

PPl Registers

PPI Control Register (PPI_CONTROL)

15 14 13 12 11 10 9 7 6 5

4

3

2

1

0

8
0xFFCO 1000 Io |o |0 |o |o |o |o |o Io |o |o 0 |o |o |o |o| Reset = 0x0000

POLS

0 - PPI_FS1 and
PPI_FS2 are treated
as rising edge
asserted

1-PPI_FS1 and
PPI_FS2 are treated
as falling edge
asserted

POLC
0 - PPI samples data on rising
edge and drives data on
falling edge of PPI_CLK
1 - PPl samples data on falling
edge and drives data on
rising edge of PPI_CLK

DLEN[2:0] (Data Length) ——

000 - 8 bits

001 - 10 bits

010 - 11 bits

011 - 12 bits

100 - 13 bits

101 - 14 bits

110 - 15 bits

111 - 16 bits

SKIP_EO (Skip Even Odd)

In ITU-R 656 and GP Input modes:

0 - Skip odd-numbered elements

1 - Skip even-numbered elements

SKIP_EN (Skip Enable)

In ITU-R 656 and GP Input modes:

0 - Skipping disabled

1 - Skipping enabled

PACK_EN (Packing Mode Enable)

0 - Disabled

1 - Output mode, unpacking enabled;
Input mode, packing enabled

FLD_SEL (Active Field Select)

In ITU-R 656 modes, when XFR_TYPE = 00:
0 - Field 1
1- Fields 1 and 2

In RX mode with external frame sync, when PORT_CFG = 11:

0 - External trigger
1 - Internal trigger

Figure 7-13. PPI Control Register

Il | t
PORT_EN (Enable)

0 - PPI disabled
1 - PPl enabled

PORT_DIR (Direction)

0 - PPl in Receive mode (input)

1 - PPl in Transmit mode
(output)

XFR_TYPE[1:0] (Transfer

Type)

In Input mode:

00 - ITU-R 656, Active Field Only

01 - ITU-R 656, Entire Field

10 - ITU-R 656, Vertical Blanking
Only

11 - Non-ITU-R 656 mode

In Output mode:

00, 01, 10 - Sync-less Output

mode

11 - Output mode with 1, 2, or

3 frame syncs

PORT_CFG[1:0] (Port

Configuration)

In non-ITU-R 656 Input modes

(PORT_DIR =0, XFR_TYPE = 11):

00 - 1 external frame sync

01 - 2 or 3 internal frame syncs

10 - 2 or 3 external frame syncs

11 - 0 frame syncs, triggered

In Output modes with frame syncs

(PORT_DIR =1, XFR_TYPE = 11):

00 - 1 frame sync

01 - 2 or 3 frame syncs

10 - Reserved

11 - Sync PPI_FS3 to assertion of
PPI_FS2 rather than of
PPI_FS1.

7-28 ADSP-BF537 Blackfin Processor Hardware Reference

Parallel Peripheral Interface

When the SKIP_EN bit is set, the SKIP_EO bit allows the PPI to ignore
either the odd or the even elements in an input datastream. This is useful,
for instance, when reading in a color video signal in YCbCr format (Cb,
Y, Cr, Y, Cb, Y, Cr, Y...). Skipping every other element allows the PPI to
only read in the luma (Y) or chroma (Cr or Cb) values. This could also be
useful when synchronizing two processors to the same incoming video
stream. One processor could handle luma processing and the other (whose
SKIP_EO bit is set differently from the first processor’s) could handle
chroma processing. This skipping feature is valid in ITU-R 656 modes
and RX modes with external frame syncs.

The PACK_EN bit only has meaning when the PPI port width (selected by
DLEN[2:0]) is 8 bits. Every PPI_CLK-initiated event on the DMA bus (that
is, an input or output operation) handles 16-bit entities. In other words,
an input port width of 10 bits still results in a 16-bit input word for every
PPI_CLK; the upper 6 bits are Os. Likewise, a port width of 8 bits also
results in a 16-bit input word, with the upper 8 bits all Os. In the case of
8-bit data, it is usually more efficient to pack this information so that
there are two bytes of data for every 16-bit word. This is the function of
the PACK_EN bit. When set, it enables packing for all RX modes.

Consider this data transported into the PPI via DMA: 0xCE, 0xFA, OxFE,
OxCA. ...

e With PACK_EN set:

This is read into the PPI, configured for an 8-bit port width: 0xCE,
OxFA, OxFE, OxCA...

This is transferred onto the DMA bus: 0xFACE, OxCAFE, ...
e With PACK_EN cleared:
This is read into the PPI: 0xCE, 0xFA, OxFE, OxCA, ...

This is transferred onto the DMA bus: 0x00CE, 0x00FA, 0x00FE,
0x00CA, ...

ADSP-BF537 Blackfin Processor Hardware Reference 7-29

PPl Registers

For TX modes, setting PACK_EN enables unpacking of bytes. Consider this
data in memory, to be transported out through the PPI via DMA: 0xFACE
CAFE....(0xFA and 0xCA are the two Most Significant Bits (MSBs) of
their respective 16-bit words)

e With PACK_EN set:
This is DMAed to the PPI: 0xFACE, OxCAFE, ...

This is transferred out through the PPI, configured for an 8-bit
port width (note LSBs are transferred first): 0xCE, 0xFA, OxFE,
OxCA, ...

o With PACK_EN cleared:
This is DMAed to the PPI: 0xFACE, OxCAFE, ...

This is transferred out through the PPI, configured for an 8-bit
port width: OxCE, OxFE, ...

The FLD_SEL bit is used primarily in the active field only ITU-R 656
mode. The FLD_SEL bit determines whether to transfer in only field 1 of
each video frame, or both fields 1 and 2. Thus, it allows a savings in DMA
bandwidth by transferring only every other field of active video.

The PORT_CFGL1:0] field is used to configure the operating mode of the
PPI. It operates in conjunction with the PORT_DIR bit, which sets the
direction of data transfer for the port. The XFR_TYPE[1:0] field is also
used to configure operating mode. See Table 7-2 on page 7-6 for the pos-
sible operating modes for the PPI.

Also note in Table 7-2 how XFR_TYPE[1:0] interacts with other bits in
PPI_CONTROL to determine the PPI operating mode.

7-30 ADSP-BF537 Blackfin Processor Hardware Reference

Parallel Peripheral Interface

The PORT_EN bit, when set, enables the PPI for operation.

Note that, when configured as an input port, the PPI does not start
data transfer after being enabled until the appropriate synchroniza-
tion signals are received. If configured as an output port, transfer
(including the appropriate synchronization signals) begins as soon
as the frame syncs (timer units) are enabled, so all frame syncs must
be configured before this happens. Refer to the section “Frame
Synchronization in GP Modes” on page 7-21 for more
information.

PPI_STATUS Register

The PPI_STATUS register, shown in Figure 7-14, contains bits that provide
information about the current operating state of the PPI.

The ERR_DET bit is a sticky bit that denotes whether or not an error was
detected in the ITU-R 656 control word preamble. The bit is valid only in
ITU-R 656 modes. If ERR_DET = 1, an error was detected in the preamble.
If ERR_DET = 0, no error was detected in the preamble.

The ERR_NCOR bit is sticky and is relevant only in ITU-R 656 modes. If
ERR_NCOR = 0 and ERR_DET = 1, all preamble errors that have occurred
have been corrected. If ERR_NCOR = 1, an error in the preamble was
detected but not corrected. This situation generates a PPI error interrupt,
unless this condition is masked off in the SIC_IMASK register.

The FT_ERR bit is sticky and indicates, when set, that a frame track error
has occurred. In this condition, the programmed number of lines per
frame in PPI_FRAME does not match up with the “frame start detect”
condition (see the information note on page 7-36). A frame track error
generates a PPI error interrupt, unless this condition is masked off in the
SIC_IMASK register.

ADSP-BF537 Blackfin Processor Hardware Reference 7-31

PPl Registers

PPI Status Register (PPI_STATUS)

15 14 13 12 11

10

9

8

7 6

5

4

3

2

1

0

0xFFCO 1004

fofofefofofolofofofoofefo]o]e]e]

ERR_NCOR (Error
Not Corrected)
-wW1C
Used only in ITU-R 656
modes
0 - No uncorrected
preamble error
has occurred
1 - Preamble error
detected but not
corrected

ERR_DET (Error
Detected) - W1C

Used only in ITU-R 656
modes

0 - No preamble error
detected

1 - Preamble error
detected

UNDR (FIFO Underrun)

-WicC

0 - No interrupt

1 - FIFO Underrun Error
interrupt occurred

OVR (FIFO Overflow) - W1C

0 - No interrupt

1 - FIFO Overflow Error
interrupt occurred

Figure 7-14. PPI Status Register

Reset = 0x0000

LT_ERR_OVR (Horizontal
Tracking Overflow Error) -
wicC

Used only in ITU-R 656

modes

0 - No horizontal tracking
overflow error

1 - PPI_COUNT expired before
receiving SAV code

LT_ERR_UNDR (Horizontal

Tracking Underflow Error) -

wic

0 - No horizontal tracking
underflow error

1 - PPI_FS1 (or SAV code)
received before
PPI_COUNT expired for
that line

FLD (Field Indicator)

0 - Field 1

1 - Field 2

FT_ERR (Frame Track Error)
-WicC

0 - No interrupt
1 - Frame Track Error
interrupt occurred

The FLD bit is set or cleared at the same time as the change in state of F (in
ITU-R 656 modes) or PPI_FS3 (in other RX modes). It is valid for input
modes only. The state of FLD reflects the current state of the F or PPI_FS3
signals. In other words, the FLD bit always reflects the current video field

being processed by the PPI.

7-32

ADSP-BF537 Blackfin Processor Hardware Reference

Parallel Peripheral Interface

The 0VR bit is sticky and indicates, when set, that the PPI FIFO has over-
flowed and can accept no more data. A FIFO overflow error generates a
PPI error interrupt, unless this condition is masked off in the SIC_IMASK
register.

@ The PPI FIFO is 16 bits wide and has 16 entries.

The UNDR bit is sticky and indicates, when set, that the PPI FIFO has
underrun and is data-starved. A FIFO underrun error generates a PPI
error interrupt, unless this condition is masked off in the SIC_IMASK
register.

The LT_ERR_OVR and LT_ERR_UNDR bits are sticky and indicate, when set,
that a line track error has occurred. These bits are valid for RX modes with
recurring frame syncs only. If one of these bits is set, the programmed
number of samples in PPI_COUNT did not match up with the actual number
of samples counted between assertions of PPI_FS1 (for general-purpose
modes) or “Start of Active Video (SAV)” codes (for ITU-R 656 modes). If
the PPI error interrupt is enabled in the SIC_IMASK register, an interrupt
request is generated when one of these bits is set.

The LT_ERR_OVR flag signifies that a horizontal tracking overflow has
occurred, where the value in PPI_COUNT was reached before a new SAV
code was received. This flag does not apply for non-ITU-R 656 modes; in
this case, once the value in PPI_COUNT is reached, the PPI simply stops
counting until receiving the next PPI_FS1 frame sync.

The LT_ERR_UNDR flag signifies that a horizontal tracking underflow has
occurred, where a new SAV code or PPI_FS1 assertion occurred before the
value in PPI_COUNT was reached.

ADSP-BF537 Blackfin Processor Hardware Reference 7-33

PPl Registers

PPI_DELAY Register

The PPI_DELAY register, shown in Figure 7-15, can be used in all configu-
rations except ITU-R 656 modes and GP modes with 0 frame syncs. It
contains a count of how many PPI_CLK cycles to delay after assertion of
PPI_FS1 before starting to read in or write out data.

Note in TX modes using at least one frame sync, there is a
one-cycle delay beyond what is specified in the PPI_DELAY register.

Delay Count Register (PPI_DELAY)

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
0xFFCO0 100C |o |o |0 |o |o |o |o |0 |0 |o |o |o |o |0 |o |o | Reset = 0x0000
[|
| PPI_DELAY[15:0]
Number of PPI_CLK cycles to
delay after assertion of

PPI_FS1 before latching in or
sending out data

Figure 7-15. Delay Count Register

PPI_COUNT Register

The PPI_COUNT register, shown in Figure 7-16, is used in all modes except
“RX mode with 0 frame syncs, external trigger” and “TX mode with 0
frame syncs.” For RX modes, this register holds the number of samples to
read into the PPI per line, minus one. For TX modes, it holds the number
of samples to write out through the PPI per line, minus one. The register
itself does not actually decrement with each transfer. Thus, at the begin-
ning of a new line of data, there is no need to rewrite the value of this
register. For example, to receive or transmit 100 samples through the PPI,
set PPI_COUNT to 99.

Take care to ensure that the number of samples programmed into
PPI_COUNT is in keeping with the number of samples expected dur-
ing the “horizontal” interval specified by PPI_FS1.

7-34 ADSP-BF537 Blackfin Processor Hardware Reference

Parallel Peripheral Interface

Transfer Count Register (PPI_COUNT)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
0xFFCO0 1008 Io |o |o |0 Io Io Io Io Io Io Io Io Io Io |0 Io I Reset = 0x0000
[|
| PPI_COUNT[15:0]
In RX modes, holds one less
than the number of samples to
read in to the PPI per line. In
TX modes, holds one less
than the number of samples to
write out through the PPI per
line.

Figure 7-16. Transfer Count Register

PPI_FRAME Register

The PPI_FRAME register, shown in Figure 7-17, is used in all TX and RX

modes with 2 or 3 frame syncs. For ITU-R 656 modes, this register holds
the number of lines expected per frame of data, where a frame is defined as
field 1 and field 2 combined, designated by the F indicator in the ITU-R
stream. Here, a line is defined as a complete ITU-R 656 SAV-EAV cycle.

Lines Per Frame Register (PPI_FRAME)

1514 1312 1110 9 8 7 6 5 4 3 2 1 0
0xFFCO0 1010 Io |o |o |o Io lo lo lo Io Io lo lo Io Io Io Io I Reset = 0x0000
[J

PPI_FRAME[15:0]
Holds the number of lines
expected per frame of data

Figure 7-17. Lines Per Frame Register

For non-ITU-R 656 modes with external frame syncs, a frame is defined
as the data bounded between PPI_FS2 assertions, regardless of the state of
PPI_FS3. A line is defined as a complete PPI_FS1 cycle. In these modes,

ADSP-BF537 Blackfin Processor Hardware Reference 7-35

Programming Examples

PPI_FS3 is used only to determine the original “frame start” each time the
PPI is enabled. It is ignored on every subsequent field and frame, and its
state (high or low) is not important except during the original frame start.

If the start of a new frame (or field, for ITU-R 656 mode) is detected
before the number of lines specified by PPI_FRAME have been transferred, a
frame track error results, and the FT_ERR bit in PPI_STATUS is set. How-
ever, the PPI still automatically reinitializes to count to the value
programmed in PPI_FRAME, and data transfer continues.

In ITU-R 656 modes, a frame start detect happens on the falling
edge of F, the field indicator. This occurs at the start of field 1.

In RX mode with 3 external frame syncs, a frame start detect refers
to a condition where a PPI_FS2 assertion is followed by an assertion
of PPI_FS1 while PPI_FS3 is low. This occurs at the start of field 1.
Note that PPI_FS3 only needs to be low when PPI_FS1 is asserted,
not when PPI_FS2 asserts. Also, PPI_FS3 is only used to synchro-
nize to the start of the very first frame after the PPI is enabled. It is
subsequently ignored.

When using RX mode with 3 external frame syncs, and only 2
syncs are needed, configure the PPI for three-frame-sync operation
and provide an external pull-down to GND for the PPI_FS3 pin.

Programming Examples

As shown in the data transfer scenario in Figure 7-18 on page 7-40, the
PPI can be configured to receive data from a video source in several RX

modes. The following programming examples (Listing 7-1 through
Listing 7-5) describe the ITU-R 656 entire field input mode.

7-36 ADSP-BF537 Blackfin Processor Hardware Reference

Parallel Peripheral Interface

Listing 7-1. Configure DMA Registers
config_dma:

/* DMAO_START_ADDR */

RO.L = rx_buffer;

RO.H = rx_buffer;

PO.L = 10(DMAO_START_ADDR);
PO.H = hi(DMAO_START_ADDR);
[PO] RO;

/* DMAO_CONFIG */
RO.L = DI_EN | WNR;

PO.L = To(DMAO_CONFIG);
PO.H = hi(DMAO_CONFIG);
WLPO] = RO.L;

/* DMAO_X_COUNT */

RO.L = 256;

PO.L = 1o(DMAO_X_COUNT);
PO.H = hi(DMAO_X_COUNT);
WLPO] = RO.L;

/* DMAO_X_MODIFY */

RO.L = 0x0001;

PO.L = To(DMAO_X_MODIFY);
PO.H = hi(DMAO_X_MODIFY);
WLPOJ = RO.L;

ssync;

config_dma.END: RTS;

ADSP-BF537 Blackfin Processor Hardware Reference 7-37

Programming Examples

Listing 7-2. Configure PPI Registers
config_ppi:

/* PPI_CONTROL */

PO.L = 1o(PPI_CONTROL);
PO.H = hi(PPI_CONTROL);
RO.L = 0x0004;

WLPO1 = RO.L;

ssync;

config_ppi.END: RTS;
Listing 7-3. Enable DMA

/* DMAO_CONFIG */

PO.L = 1o0(DMAO_CONFIG);
PO.H = hi(DMAO_CONFIG);
RO.L = WLPOJ;
bitset(R0O,0);

WLPO] = RO.L;

ssync;

Listing 7-4. Enable PPI

/* PPI_CONTROL */

PO.L = To(PPI_CONTROL);
PO.H = hi(PPI_CONTROL);
RO.L = WLPOJ;
bitset(RO,0);

WLPO1 = RO.L;

ssync;

7-38 ADSP-BF537 Blackfin Processor Hardware Reference

Parallel Peripheral Interface

Listing 7-5. Clear DMA Completion Interrupt

/* DMAO_IRQ_STATUS */
P2.L = To(DMAO_IRQ_STATUS);

P2.H = hi(DMAO_IRQ_STATUS);
R2.L = W[P2];

BITSET(R2,0);

WLP2]1 = R2.L;

ssync;

Data Transfer Scenarios

Figure 7-18 shows two possible ways to use the PPI to transfer in video.
These diagrams are very generalized, and bandwidth calculations must be
made only after factoring in the exact PPI mode and settings (for example,
transfer field 1 only, transfer odd and even elements).

The top part of the diagram shows a situation appropriate for, as an exam-
ple, JPEG compression. The first N rows of video are DMAed into L1
memory via the PPI. Once in L1, the compression algorithm operates on
the data and sends the compressed result out from the processor via the

SPORT. Note that no SDRAM access was necessary in this approach.

The bottom part of the diagram takes into account a more formidable
compression algorithm, such as MPEG-2 or MPEG-4. Here, the raw
video is transferred directly into SDRAM. Independently, a memory
DMA channel transfers data blocks between SDRAM and L1 memory for
intermediate processing stages. Finally, the compressed video exits the

processor via the SPORT.

ADSP-BF537 Blackfin Processor Hardware Reference 7-39

Programming Examples

VIDEO
DATA AND

VIDEO CONTROL DMA L1 DMA
SOURCE PPI MEMORY o SPORT

@,

O

COMPRESSED

VIDEO
VIDEO _ PRI DMA SDRAM < DMA L1
SOURCE MEMORY

[
I DMA

SPORT

Figure 7-18. PPI Possible Data Transfer Scenarios

7-40 ADSP-BF537 Blackfin Processor Hardware Reference

8 ETHERNET MAC

This chapter describes the Ethernet Media Access Controller (MAC)
peripheral for the ADSP-BF536 and ADSP-BF537 processors. Following
an overview and list of key features is a description of operation and func-
tional modes of operation. The chapter concludes with a programming
model, consolidated register definitions, and programming examples.

This chapter contains:
e “Overview” on page 8-1
e “Interface Overview” on page 8-2
e “Description of Operation” on page 8-8
* “Programming Model” on page 8-47
* “Ethernet MAC Register Definitions” on page 8-52

* “Programming Examples” on page 8-126

Overview

The Ethernet MAC provides a 10/100 Mbit/s Ethernet interface, compli-
ant to IEEE Std. 802.3-2002, between an MII (Media Independent
Interface) and the Blackfin peripheral subsystem.

ADSP-BF537 Blackfin Processor Hardware Reference 8-1

Interfface Overview

Features

The Ethernet MAC includes these features:

Independent DMA-driven RX and TX channels
MII/RMII interface

10 Mbit/s and 100 Mbit/s operation (full or half duplex)
VLAN support (full or half duplex)

Automatic network monitoring statistics

Flexible address filtering

Flexible event detection for interrupt handling
Validation of IP and TCP (payload) checksum
Remote-wakeup Ethernet frames

Network-aware system power management

The MAC is fully compliant to IEEE Std. 802.3-2002.

Interface Overview

Figure 8-1 illustrates the overall architecture of the Ethernet controller.
The central MAC block implements the Carrier Sense Multiple Access
with Collision Detection (CSMA/CD) protocol for both half-duplex and
full-duplex modes.

8-2

ADSP-BF537 Blackfin Processor Hardware Reference

Ethernet MAC

BML'I(/} s CORE DMA
J
DAB
PAB
A SYSTEM INTERFACE
REGISTERS BLOCK o BLOCK (SIF)
(SIF_REG) | xFFo| [RxFIFO|
T 1 ‘
A MAC MANAGEMENT >
COUNTERS (MMC)
¥
A ADDRESS CHECK
BLOCK (ACH)
MAC BLOCK
. POWER MANAGEMENT y ‘
BLOCK (PMT)
— FLOW CONTROL D
V i
- MIl MANAGEMENT MIIRMII PADS
(MIM)
1 y 7
PHYINT MDC
MDIO
A A \ \
EXTERNAL PHY

Figure 8-1. Ethernet MAC Block Diagram

The System Interface (SIF) block contains FIFOs for RX and TX data and
handles the synchronization of data between the MAC RX and TX data
streams and the Blackfin DMA controller.

The System Interface Registers (SIF_REG) block is an interface from the
Blackfin Peripheral Access Bus (PAB) to the internal registers in the MAC.
This block also generates the Ethernet event interrupt, and supports the
PHYINT pin by which the PHY can notify the Blackfin processor when the
PHY detects changes to the link status, such as auto-negotiation or duplex
mode change.

ADSP-BF537 Blackfin Processor Hardware Reference 8-3

Interfface Overview

The MAC Management Counters (MMC) block is an extended set of reg-
isters that collect various statistics compliant with IEEE 802.3 definitions
regarding the operation of the interface. They are updated for each new
transmitted or received frame.

The Power Management (PMT) block adds support for wakeup frames
and magic packet technology that allows waking up the processor from
low power operating modes. Further details regarding these low-power
operating modes and voltage regulator wakeup functionality can be found
in the “Operating Modes and States” chapter in Blackfin Processor Pro-

gramming Reference.

The Address Check (ACH) block checks the destination address field of
all incoming packets. Based on the type of address filtering selected, this
indicates the result of the address checking to the MAC block.

The MII Management (MIM) block handles all transactions to the control
and status registers on the external PHY.

External Interface

The following sections describe the external interface of the Ethernet

MAC.

Clocking

The Ethernet MAC is clocked internally from SCLK on the processor. A
buffered version of CLKIN may be used to drive the external PHY via the
CLKBUF pin. See Figure 8-2.

The CLKBUF signal is not generated by a PLL and supports jitter and stabil-
ity functions comparable to XTAL. The CLKBUF pin is enabled by the
PHYCLKOE bit in the VR_CTL register. See Chapter 20, “Dynamic Power
Management” for more information.

8-4 ADSP-BF537 Blackfin Processor Hardware Reference

Ethernet MAC

A 25 MHz clock (whether driven with the CLKBUF pin or an external crys-
tal) should be used with an MII PHY. A 50 MHz clock source is required

to drive an RMII PHY.

Bma/{) PLL
! B
CORE
SCLK CLKIN ——
ETHERNET MAC BUFFER CLKBUF
=
| RXCLK
| PORTH [
MIl / RMII
TXCLK
: PORTJ fa1XC

Figure 8-2. Clock Function Diagram

Pins

PHY

10/100

MII and RMII peripherals are multiplexed into the general-purpose ports,

with port H and port] supporting this functionality. To use MII and

RMII operations, set the PORTH_FER register accordingly. See Chapter 14,
“General-Purpose Ports” for more information. The two MII and RMII

signals (MDIO/MDC) in port] are not multiplexed, and are directly con-

nected to pins PJO and PJ1.

ADSP-BF537 Blackfin Processor Hardware Reference

8-5

Interfface Overview

Table 8-1 shows the pins for the MAC.

Table 8-1. Ethernet MAC Pins

Pin Name MII MII RMII RMII |Description
Multiplexed |Input/ |Multiplexed |Input/
Name Output (Name Output
PHO MII TXDO (@] RMII TXD0 | O Ethernet MII or RMII transmit
DO
PH1 MII TXD1 O RMII TXD1 | O Ethernet MII or RMII transmit
D1
PH2 MII TXD2 O Ethernet MII transmit D2
PH3 MII TXD3 O Ethernet MII transmit D3
PH4 MII TXEN (@] RMII TXEN | O Ethernet MII or RMII transmit
enable
PH5 MII TXCLK |1 RMII 1 Ethernet MII transmit
REFCLK clock/RMII reference clock
PH6 MII I RMII MDINT | I Ethernet MII PHY inter-
PHYINT rupt/RMII management data
interrupt
PH7 MII coL 1 Ethernet collision
PH8 MII RXDO 1 RMII RXDO |1 Ethernet MII or RMII receive
DO
PH9 MII RXD1 I RMII RXD1 |1 Ethernet MII or RMII receive
D1
PH10 MII RXD2 1 Ethernet MII receive D2
PH11 MII RXD3 1 Ethernet MII receive D3
PH12 MII RXDV 1 Ethernet MII receive data valid
PH13 MIT RXCLK | I Ethernet MII receive clock
PH14 MII RXER I RMII RXER |1 Ethernet MII or RMII receive
error
PH15 MII CRS 1 RMII 1 Ethernet MII carrier sense/RMII
CRS_DV carrier sense and receive data
valid

8-6

ADSP-BF537 Blackfin Processor Hardware Reference

Table 8-1. Ethernet MAC Pins (Cont'd)

Ethernet MAC

Pin Name MII MII RMII RMII Description
Multiplexed |Input/ |Multiplexed |Input/
Name Output |Name Output
PJO MDC (@] MDC (@] Ethernet management channel
clock
PJ1 MDIO 1/0 MDIO 1/0 Ethernet management channel
serial data

IEEE802.3-2002, section two, clause 22.2.1.6, characterizes the
MII TX_ER pin as an option for certain applications (for example,

repeater applications). Therefore, the TX_ER pin is not present in
this design.

Internal Interface

Communication between the MAC and the Blackfin processor peripheral
subsystem takes place over the Peripheral Access Bus (PAB) and the DMA
Access Bus (DAB). The PAB is used by the Blackfin processor core to con-
figure and monitor the peripheral’s control and status registers. All data

transfers to and from the peripheral are handled by the Blackfin DMA
controller and take place via the DAB.

Power Management

The ADSP-BF536/ADSP-BF537 processors provides power management
states which allow programming the MAC to wake the processor upon
reception of specific Ethernet frames and/or upon selected events detected
by the PHY. The MAC itself requires no additional power management
intervention; its internal clocks power down automatically when not
required. The MAC clocks run in any of these conditions (provided the

ADSP-BF536/ADSP-BF537 processors is in the sleep, active, or full on
state):

ADSP-BF537 Blackfin Processor Hardware Reference 8-7

Description of Operation

1. Either the receiver or transmitter is enabled (RE or TE = 1)
During an MII Management transfer (on MDC/MDIO)

During a core access to an MAC control/status register

Ll

While PHY interrupts are enabled in the MAC (PHYIE in the
EMAC_SYSCTL register is set)

Description of Operation

The following sections describe the operation of the MAC.

Protocol

The Ethernet MAC complies with IEEE Std. 802.3-2002. The MII man-

agement interface is described below.

MIl Management Interface

The IEEE 802.3 MII management interface, also known as the MDIO
station management interface, allows the Blackfin processor to monitor
and control one or more external Ethernet physical-layer transceivers
(PHYs). The MII management interface physically consists of a 2-wire
serial connection composed of the MDC (management data clock) output
signal and the MDI0 (management data input/output) bidirectional data
signal. See Figure 8-3 and Figure 8-4.

8-8

ADSP-BF537 Blackfin Processor Hardware Reference

Ethernet MAC

The MII management logical interface specifies:

* A set of 16-bit device control/status registers within PHYs, includ-
ing both required registers with standardized bit definitions as well
as optional vendor-specified registers

e A 5-bit device addressing scheme which allows the MAC to select
one of up to 32 externally-connected PHY devices

* A 5-bit register addressing scheme for selecting the target register
within the addressed device

* A transfer frame protocol for 16-bit read and write accesses to PHY
registers via the MDC and MDI0 signals under control of the MAC
(PHY devices may not directly initiate MDIO transfers.)

Standard PHY control and status registers provide device capability status
bits (for example, auto-negotiation, duplex modes, 10/100 speeds and
protocols), device status bits (for example, auto-negotiation complete, link
status, remote fault), and device control bits (for example, reset, speed
selection, loopback, and auto-negotiation start).

The transfer frame protocol defines a MDC clock at a nominal period of
400ns, and an MDIO frame up to 64 bits in length. The MDIO frame
consists of an optional 32-bit preamble driven by the MAC, 14 control
bits driven by the MAC including the opcode and addresses, a 2-bit turn-
around sequence, and a 16-bit data transfer driven either by the MAC or
the PHY. Note that various PHYs support optional features such as
reduced preamble or increased clock rate.

The features supported by the PHY may be determined at powerup by a
MDIO read access (at default rates) of device capabilities in PHY status
registers.

ADSP-BF537 Blackfin Processor Hardware Reference 8-9

Description of Operation

PREAMBLE

moio_ — | | [ala[a[a[a]R]R[R]R[Rl— [o]p[o[o[0]0]0[0]0[0][0]0]0 0] 0]0]
4321043210 15 0

DRIVER —| MAC |i| PHY —

Figure 8-3. Station Management Read

PREAMBLE

mpio —/ | [1 [Tafa[a]ala[r[r[RrIR][R[+] [o]o[o]o][o[o]o[o[o[o]o[o[o]0 |D| |
4321043210 15
DRIVER | MAC =

Figure 8-4. Station Management Write

Operation

The following sections describe the detailed operation of the Ethernet
MAC peripheral.

8-10 ADSP-BF537 Blackfin Processor Hardware Reference

Ethernet MAC

MIl Management Interface Operation

The MAC peripheral performs MDIO-protocol transfers in response to
register read/write commands issued by the Blackfin processor. Three reg-
isters are provided to support MII management transfers:

e The EMAC_SYSCTL register contains the MDCDIV field which specifies
the frequency of the MDC clock output in a ratio to the SCLK fre-
quency, and must be initialized before any transfers.

e The EMAC_STADAT register holds the 16-bit data for read or write
transfers.

e The EMAC_STAADD register supports several functions.

It commands the access—writes to it may initiate station
management transfers, provided the STABUSY bit is set and
provided that the interface is not already busy.

It selects the addressed device, register, and direction of the
access.

It provides mode controls for MDIO preamble generation
and station management transfer done interrupt.

It provides the STABUSY status bit indicating whether the
interface is still busy performing a prior transfer.

As these serial accesses may require significant time (25.6us, or several
thousand processor clock cycles at default rates), the Blackfin MAC pro-
vides an end-of-transfer interrupt to allow the processor to perform other
functions while station management transfers are in progress. Alterna-
tively, the processor may determine the status of the transfer in progress
by reading the STABUSY bit in the EMAC_STAADD register.

ADSP-BF537 Blackfin Processor Hardware Reference 8-11

Description of Operation

Receive DMA Operation

Data flow between the MAC and the Blackfin peripheral subsystem takes
place via bidirectional descriptor based DMA. The element size for any
DMA transfer to and from the Ethernet MAC is restricted to 32 bits. In
the receive case, a queue or ring of DMA descriptor pairs are used, as illus-
trated in Figure 8-5. In the figure, data descriptors are labeled with an “A”
and status descriptors are labeled with a “B.”

8-12 ADSP-BF537 Blackfin Processor Hardware Reference

Ethernet MAC

ActiveQueueHead Active DMA Descriptor ActiveQueueEnd
DESCRIPTORS: 1A | 1B | 2o |- 20 |—| 3A || 3B
END
! ! ‘
STATUS BUFFERS: XXXX 0000 0000
DONE NOT DONE NOT DONE
DATA BUFFERS:
DATA DATA DATA

Figure 8-5. Ethernet MAC Receive DMA Operation

Receive DMA works with a queue or ring of DMA descriptor pairs struc-
tured as data and status.

* Data — The first descriptor in each pair points to a data buffer that
is at least 1556 (0x614) bytes long and is 32-bit aligned. The
descriptor XCOUNT field should be set to 0, because the MAC con-
trols the actual buffer length.

* Status — The second descriptor points to a status buffer of either 4
or 8 bytes. The descriptor XCOUNT field should be set to 0, because
the MAC controls the actual buffer length. After receiving and
accepting any RX frame, the MAC writes a status word and
optionally two IP checksum words to this status buffer. The RXCKS
bit in the EMAC_SYSCTL register controls the generation of the two
checksum words.

Status words written by the MAC after frame reception have the
same format as the current RX frame status register, and always
have the receive complete bit set to 1. If the driver software initial-
izes the length/status words to 0, it can reliably interrogate (poll)
an RX frame’s length/status word to determine if the DMA transfer

ADSP-BF537 Blackfin Processor Hardware Reference 8-13

Description of Operation

of the data buffer is complete. Alternatively, status descriptors may
be individually enabled to signal an interrupt when frame reception
is complete.

The MAC and DMA operate on the active queue in this manner:

Start — The queue is activated by initializing the DMA next
descriptor pointer and then writing the DMA_CONFIG register. Mean-
while, the MAC listens to the MII, looking for a frame that passes
its address filter.

Data — When a matching frame is seen, the MAC transfers the
frame data into the data buffer. The MAC does not initiate the
DMA transfer until either the destination address filtering is com-
plete, or the frame ends (if a runt frame).

End of frame — At the end of the frame, the MAC issues a finish
command to the DMA controller, causing it to advance to the next
(status) descriptor.

Status — The MAC then transfers the frame status into the status
buffer. The frame status structure contains the length of the frame
data. The MAC then issues another finish command to complete
the status DMA buffer.

Interrupt — Upon completion, the DMA may issue an interrupt, if
the descriptor was programmed to do so. The DMA then advances
to the next (data) descriptor, if any.

Frame Reception and Filtering

Frame data written to memory normally includes the Ethernet header
(destination MAC address, source MAC address, and length/type field),
the Ethernet payload, and the Frame Check Sequence (FCS) checksum,
but not the preamble. If the RXDWA bit in EMAC_SYSCTL is 1, then the first
16-bit word is all-zero to pad the frame. The data written includes all
complete bytes for which the received data valid (ERxDV) pin on the MII

8-14

ADSP-BF537 Blackfin Processor Hardware Reference

Ethernet MAC

interface was asserted after but not including the start of frame delimiter
(SFD) nibble (1011).The preamble and any other nibbles prior to the
SFD are also not included.

The MAC applies two filtering mechanisms to received frames: the
address filter and the frame filter. The address filter considers only the
destination MAC address and provides control over the reception of uni-
cast, multicast, and broadcast addresses. The frame filter considers the
entire frame and provides control over reception of frames with errors and

of MAC control frames.

The address filter is evaluated in the following sequence. Note that this
sequence is in the same order as the related bits in the operating mode reg-
ister, from LSB to MSB: HU, HM, PAM, PR, IFE, and DBF. The first few filter
decisions are additive, while the last two are subtractive.

1. Initially, the address filter is true if the frame’s MAC destination
address (DA) is either the broadcast address (all 1s) or exactly
matches the 48-bit station MAC address in the EMAC_ADDRHI and
EMAC_ADDRLO registers.

2. HU (hash unicast) — If the HU bit is 1 and the DA is a unicast
address which matches the hash table, the address filter is set to
true.

3. HM (hash multicast) — If the HM bit is 1 and if the DA is a multi-
cast address which matches the hash table, the address filter is set to
true.

4. PAM (pass all multicast) — If the PAM bit is 1 and the DA is any

multicast address, the address filter is set to true.

5. PR (promiscuous) — If the PR bit is 1, the address filter is set to true
regardless of the frame DA.

ADSP-BF537 Blackfin Processor Hardware Reference 8-15

Description of Operation

6. FLCE (flow control enable) — If the FLCE bit in the flow control

register is 1, and if the DA is an exact match to either the global
multicast pause address or to the station MAC address, the address
filter is set to true.

. IFE (inverse filter) — If the IFE bit is 1 and the DA exactly matches

the 48-bit station MAC address, the address filter is set to false.

. DBF (disable broadcast frames) — If the DBF bit is 1 and the DA is

the broadcast address, the address filter is set to false.

The hash table address filtering is configured with the EMAC_HASHLO and
EMAC_HASHHI registers described on page 8-74.

The frame filter is evaluated in the following sequence. Note that the
frame filter is updated as each byte of data is received. The frame filter can
change from true to false during a frame, for example, upon DMA over-
run, but can never change from false back to true.

. Initially, the frame filter is set to true if the address filter is true,

otherwise the frame filter is set to false.

2. PCEF (pass control frames) — If the PCF bit is 0 and the frame is any

valid supported MAC control frame (destination address is either
the MAC address or the global multicast pause address; and the
length/type field = 88-08, opcode = 0001, length = 64 bytes, and
receiveOK = 1), then the frame filter is set to false.

. PBF (pass bad frames) — If the PBF bit is 0 and the frame has any

type of error except a frame fragment error, the frame filter is set to
false. This rejects any frame for which any of these status bits are
set: frame too long, alignment error, frame-CRC error, length
error, or unsupported control frame. The frame filter does not
reject frames on the basis of the out of range length field status bit.
Note that this step may reject MAC control frames passed by PCF.

8-16

ADSP-BF537 Blackfin Processor Hardware Reference

Ethernet MAC

4. PSF (pass short frames) — If the PSF bit is 0 and the frame has a
frame fragment error (frame contains less than 64 bytes), the frame
filter is set to false. This step may reject frames which were passed
by PCF or PBF.

5. DMA RX overrun — If the RX DMA FIFO overflows, the frame
filter is set to false. If the FIFO overflows at a point where it con-
tains parts of two frames, that is, the last data and status of frame A
and the beginning data of frame B, then frame B is rejected by the
frame filter and the MAC continues to try to deliver frame A’s data
and status.

Discarded Frames

Frames that fail the address filter are discarded immediately after the desti-
nation address is received, and neither their data nor their status values are
written to memory via DMA. Frames that pass the address filter but fail
the frame filter before 32 bytes are received are also discarded immedi-
ately. Once at least 32 bytes of a frame have been received, and if the
address and frame filters both pass, the MAC begins to write the frame to
memory via DMA RX.

Aborted Frames

Frames that fail the frame filter after 32 bytes have been received are
aborted. The MAC issues a restart DMA control command, causing the
current RX data DMA descriptor to be reinitialized with its starting
address and counts. The aborted frame’s status is not written to memory.
Instead, the current DMA data and status buffers are recycled for the next
RX frame. For all frames that pass both the address and frame filters, both
data and status are written to memory via DMA.

ADSP-BF537 Blackfin Processor Hardware Reference 8-17

Description of Operation

Control Frames

If the FLCE (flow control enable) bit is set, MAC control frames (with the
control type 88-08) whose DAs match either the station MAC address
(with inverse filtering disabled) or the global pause multicast address will
pass the address filter, and thus may also have status of receiveOK. If the
frame also is a supported pause control frame (with length = 64 bytes, and
opcode = pause = 00-01, and in full-duplex mode), then the frame filter
condition is determined by the PCF (pass control frames) bit. If the frame
is not also a supported pause control frame, then it is in error, and its
frame filter condition depends on the PBF (pass bad frames) bit.

Examples

To perform standard IEEE-802.3 filtering, clear the operating
mode register bits HU, PR, IFE, DBF, PBF, and PSF. With these selec-
tions, the Ethernet MAC accepts error-free broadcast frames and
only those error-free unicast frames that exactly match the station
MAC address. Set PAM to accept all multicast addresses, or set HM
and program the multicast hash table registers to accept only a sub-
set of multicast addresses.

To accept all addresses, set PR and clear IFE and DBF in the operat-
ing mode register.

To accept a set of several unicast addresses, set the HU bit and set
the multicast hash table register bits which correspond to the
desired addresses. Note that there is one set of hash table registers
that apply to both unicast and multicast addresses, as selected by
the HU or HM bits.

To reject all addresses, set IFE and DBF, and clear HU, HM, PAM, and
PR in the operating mode register.

ADSP-BF537 Blackfin Processor Hardware Reference

Ethernet MAC

RX Automatic Pad Stripping

If the ASTP bit in the MAC operating mode register is set, the pad bytes
and FCS are stripped from any IEEE-type frame which was lengthened
(padded) to reach the minimum Ethernet frame length of 64 bytes. This
applies to frames where the Ethernet length/type field is less than 46 bytes,
since the Ethernet header and FCS add 18 bytes. When pad stripping
occurs, only the first Length/Type + 14 bytes are written to memory via
DMA, and the frame length reported in the RX status register and in the
RX status DMA buffer will be Length/Type + 14 rather than the actual
number of received bytes.

Pad bytes are never stripped from typed Ethernet frames. Typed Ethernet
frames are frames with a length/type field that takes the type interpreta-
tion because it is greater than or equal to 0x600 (1536).

RX DMA Data Alignment

If the RXDWA bit in the MAC system control register is clear, the MAC
delivers the frame data via DMA to a 32-bit-aligned buffer in memory,
including the Ethernet header and FCS. Because the Ethernet header is an
odd number of 16-bit words long, this results in the frame payload being
odd-aligned, which may be inconvenient for later processing.

If the RXDWA bit is set, however, the MAC prefixes one 16-bit pad word to
the frame data with value 0x0000, resulting in a frame payload aligned on
an even 16-bit boundary. See Figure 8-6.

RX DMA Buffer Structure

The length of each RX DMA buffer must be at least 1556 (0x614) bytes.
This is the maximum number of bytes that the MAC can deliver by DMA
on any receive frame. Frames longer than the 1556-byte hardware limit
are truncated by the MAC. The 1556-byte hardware limit accommodates
the longest legal Ethernet frames (1518 bytes for untagged frames, or
1522 bytes for tagged 802.1Q frames) plus a small margin to accommo-
date future standards extensions.

ADSP-BF537 Blackfin Processor Hardware Reference 8-19

Description of Operation

EVEN WORD ALIGNMENT, RXDWA =0

1 0

| DATABYTED | DATABYTE C | DATABYTE B | DATABYTEA |
3 2

| DATA BYTEH | DATABYTE G | DATABYTE F | DATABYTEE |
4

| DATABYTE L | DATA BYTE K | DATABYTE J | DATA BYTE | |

ODD WORD ALIGNMENT, RXDWA =1

1 (1]

| DATABYTEB | DATABYTEA | PAD BYTE | PAD BYTE |
3 2

| DATABYTEF | DATABYTEE | DATA BYTE D | DATABYTEC |
4

| DATABYTE J | DATA BYTE | | DATABYTEH | DATABYTE G |

Figure 8-6. RX DMA Data Alignment
The MAC does not support RX DMA data buffers composed of more

than one descriptor.

RX Frame Status Buffer

The RX frame status buffer is always an integer multiple of 32-bit words
in length (either 1 or 2) and must always be aligned on a 32-bit boundary.
The RX frame status buffer always contains a frame status word, and may
also contain two 16-bit IP checksum words if the RXCKS bit in the MAC
system control register is set.

To synchronize RX DMA and software, the RX_COMP semaphore bit may
be used in the RX frame status word. This word is always the last word
written via DMA in both status buffer formats, so a transition from 0 to 1
as seen by the processor always means that both the RX data and the status
buffers are entirely valid.

8-20 ADSP-BF537 Blackfin Processor Hardware Reference

Ethernet MAC

Table 8-2 and Table 8-3 describe each of the status buffer formats.

Table 8-2. Receive Status DMA Buffer Format (Without IP Checksum)

Offset

Size

Description

0

32

RX frame status (Same format as the current RX frame
status register)

Table 8-3. Receive Status DMA Buffer Format (With IP

Checksum)

Offset Size Description

0 16 IP header checksum

2 16 IP payload checksum

4 32 RX frame status (Same format as the current RX frame
status register)

RX Frame Status Classification

The RX frame status buffer and the RX current frame status register pro-
vide a convenient classification of each received frame, representing the
IEEE-802.3 “receive status” code. The bit layout in the RX frame status
buffer is identical to that in the RX current frame status register, and is
arranged so that exactly one status bit is asserted for each of the possible
receive status codes defined in IEEE-802.3 section 4.3.2. Note in the case
of a frame that does not pass the frame filter, neither the frame data nor
the status are delivered by DMA into the RX frame status buffer.

The priority order for determination of the receive status code is shown in

Table 8-4.

ADSP-BF537 Blackfin Processor Hardware Reference 8-21

Description of Operation

Table 8-4. RX Receive Status Priority

Priority |Bit Bit Name |IEEE receive Condition
status
1 20 DMA over- | Undefined The frame was not completely delivered
run by DMA
2 18 Frame frag- | Not received The frame was less than the minimum 64
ment bytes and was discarded without reporting

any other error

3 19 Address Not received The frame did not pass the address filter
filter failed

4 14 Frame too | Frame too long The frame size was more than the maxi-
long mum allowable frame size (1518, 1522,

or 1538 bytes for normal, VLANI, or
VLAN2 frames)

5 15 Alignment | Alignment error | The frame did not contain an integer
error number of bytes, and also failed the CRC
check
6 16 Frame CRC | Frame check error| The frame failed CRC validation, and/or
error RX_ER was asserted during reception of
the frame
7 17 Length Length error The frame’s length/type field was < 0x600
error but did not match the actual length of the

data received

8 13 Receive OK | receiveOK The frame had none of the above condi-
tions

RX IP Frame Checksum Calculation

The MAC calculates TCP/IP-style “raw” checksums of two useful seg-
ments of the frame data. Checksum calculation is enabled when the RXCKS
bit is set to 1 in the MAC system control register.

The two checksum segments correspond to the typical position of the IP
header and of the IP payload (see Table 8-5). The checksums are com-
puted as a 16-bit one’s-complement sum of the selected big-endian data
words. In each summand, the most significant byte is stored in byte[1]

8-22 ADSP-BF537 Blackfin Processor Hardware Reference

Ethernet MAC

and the least significant byte is stored in byte[2], counting bytes starting at
1. If an odd number of data bytes is to be summed, the final value is stored
in the most significant byte and zero is stored in the least significant byte.
One’s complement addition can be done in ordinary unsigned integer
arithmetic by adding the two numbers, followed by adding the carry-out
bit value in at the least significant bit. This gives one’s-complement
addition the property of being endian invariant, which makes it possible
for software running on Blackfin’s little-endian architecture to adjust the
sums without explicit byte swapping. See also RFC 1624 and its
references.

The checksum calculation hardware provides an enormous boost to
TCP/IP throughput and bandwidth, but requires checksum corrections in
software to properly adapt to the details of each packet protocol. For
example, TCP packets require the payload checksum to include a TCP
pseudo-header made up of certain fields of the IP header. These fields
should be added to the “raw” hardware-generated checksum. Similarly,
the Ethernet FCS at the end of the frame should be deducted. These
adjustments must be made before the IP checksum can be validated.

Table 8-5. IP Checksum Byte Ranges

Byte Description Included in IP |Included in IP
Number Header Payload
Checksum? Checksum?
1-14 Standard Ethernet header: dest address, src No No
address, length/type
15-34 Typical IP header, without IP header options | Yes No
35-N IP payload, including Ethernet FCS No Yes

ADSP-BF537 Blackfin Processor Hardware Reference

8-23

Description of Operation

RX DMA Direction Errors

The RX DMA channel halts immediately after any transfer that sets the
RXDMAERR bit in the EMAC_SYSTAT register. This bit is set if an RX data or
RX status DMA request is granted by the RX DMA channel, but the
DMA channel is programmed to transfer in the wrong (memory-read)
direction. This could indicate a software problem in managing the RX
DMA descriptor queue.

In order to facilitate software debugging, the RX DMA channel guarantees
that the last transfer to occur is the one with the direction error. On an
error, usually the current frame is corrupted. All later frames are ignored
until the error is cleared. Since the MAC may have lost synchronization
with the DMA descriptor queue, the RX channel must be disabled in

order to clear the error condition.

To clear the error and resume operation, perform these steps:

1. Disable the MAC RX channel (clear the RE bit in the EMAC_0PCODE
register).

2. Disable the DMA channel.

3. Clear the RXDMAERR bit in the EMAC_SYSSTAT register by writing 1 to
it.

4. Reconfigure the MAC and the DMA engine as if starting from
scratch.

5. Re-enable the DMA channel.
6. Re-enable the MAC RX channel.

8-24 ADSP-BF537 Blackfin Processor Hardware Reference

Ethernet MAC

Transmit DMA Operation
Figure 8-7 shows the transmit DMA operation.

Transmit DMA normally works with a queue or ring of DMA descriptor
pairs.

* Data — The first descriptor in each pair points to a memory-read
data buffer aligned on a 32-bit boundary. The first 16-bit word
contains the length in bytes of the frame data, not including the
length word or FCS. The descriptor XCOUNT field should be set to 0.

* Status — The second descriptor points to a 4-byte status buffer
which is written via DMA at the end of the frame. The descriptor
XCOUNT field should be set to 0, because the MAC controls the ter-
mination of the status buffer DMA. The driver software should
initialize the status words to zero in advance.

Status words written by the MAC after frame reception have the
same format as the current TX frame status register and always
have the transmit complete bit set to 1. Software can therefore
interrogate (poll) a TX frame’s status word to determine if the
transmission of its frame data is complete. Alternatively, status
descriptors can be individually enabled to signal an interrupt when
frame transmission is complete.

The MAC and DMA operate on the active queue in this manner:

e Start — The queue is activated by initializing the DMA
NEXT_DESC_PTR register and then writing the DMA_CONFIG register.

e Data — The MAC transfers the frame length word and the first
bytes of frame data into its TX data FIFO via DMA. When 32
bytes of data are present in the FIFO, and if the medium is unoc-
cupied, the MAC begins transmission on the MII.

ADSP-BF537 Blackfin Processor Hardware Reference 8-25

Description of Operation

ActiveQueueHead Active DMA Descriptor ActiveQueueEnd
DESCRIPTORS: 1A |- 1B |+ 2o || 2B (| 3A |[— 3B
END
! ! ,
STATUS BUFFERS: XXXX 0000 0000
DONE NOT DONE NOT DONE
DATA BUFFERS: | LENGTH LENGTH LENGTH
DATA DATA DATA

Figure 8-7. Ethernet MAC Transmit DMA Operation

Collisions — The MAC transfers data from memory via DMA into
its FIFO, and then from the FIFO over the MII to the PHY. Colli-
sions (in half-duplex mode) can occur at any time in the first 64
bytes of MII transmission, however, the MAC does not discard any
of the data in its 96-byte TX FIFO until the first 64 bytes have
been successfully transmitted. If a collision occurs during this colli-
sion window, and if retry is enabled (DRTY = 0), the MAC rewinds
its FIFO pointer back to the start of the frame data and begins
transmission again. No redundant DMA transfers are performed in
such collisions. The MAC makes up to 16 attempts to transmit the
frame in response to collisions (if not disabled by DRTY), each time
backing off and waiting. After the 16th attempt, the frame is
aborted—the MAC terminates data transmission by sending a fin-
ish command to the DMA controller, then sending frame status,
and then proceeding to the next frame data.

Late collisions — After the collision window is passed, the MAC
allows DMA into the FIFO to resume and to overwrite older data.
If a collision occurs after the 96th byte has been transferred into
the FIFO by DMA (that is, after the FIFO has “wrapped around”),

8-26

ADSP-BF537 Blackfin Processor Hardware Reference

Ethernet MAC

then the MAC issues a restart command to the DMA controller to
repeat the DMA of the current descriptor’s data buffer (if enabled
by the LCTRE bit).

End of frame — At the end of the frame, the MAC issues a finish
command to the DMA controller, causing it to advance to the next
(status) descriptor. If the TX frame exceeds the maximum length
limit (1560 bytes, or 0x618), the frame’s DMA transfer is trun-
cated. Only 1543 (0x607) are transmitted on the MII.

Status — The MAC transfers the frame status into the status buffer.

Interrupt — Upon completion, the DMA may issue an interrupt, if
the descriptor was programmed to do so. The DMA then advances
to the next (data) descriptor, if any.

Figure 8-8 shows an alternative descriptor structure. The frame length
value and Ethernet MAC header are separated from the data payload in

each frame.

FRAME 1

/_R

FRAME 2

/_J\

DESCRIPTORS: XCOUNT |_, | XCOUNT [__,| XCOUNT »| XCOUNT |___ [XCOUNT [__,| XCOUNT
: =4 =0 =0 =4 =0 =0

BUFFERS: LENGTH STATUS LENGTH STATUS

ETHERNET ETHERNET

|—> HEADER (HEADER

16 BYTES 16 BYTES
DATA DATA
Figure 8-8. Alternative Descriptor Structure
ADSP-BF537 Blackfin Processor Hardware Reference 8-27

Description of Operation

Flexible Descriptor Structure

The Blackfin processor’s DMA structure allows flexibility in the arrange-
ment of TX frame data in memory. The frame data can be partitioned into
segments, each with a separate DMA descriptor, which allows any of the
first 88 bytes of DMA data (86 bytes of frame data) to reside in a separate
data segment from the remainder of the frame. This permits the frame
length word, the Ethernet MAC header, and even some higher level stack
headers to be in one area of memory, while the payload data might be in
another. The header and payload may even be in different memory spaces
(some internal, some external). Each data buffer segment must be 32-bit
aligned. In each frame, the XCOUNT field of all but the last data descriptor
should be set to the actual length of the data buffers that they reference.
As usual, the XCOUNT field of the last data descriptor should be set to 0 and
the XCOUNT field of the status descriptor should be set to 0. The data after
the first 88 bytes must all be contained in the data buffer of the last
descriptor in the packet.

Multi-descriptor data formatting is not supported if retry is enabled upon
late collisions (LCRTE = 1 in the MAC operating mode register). The LCRTE
bit must be 0 in order to use multiple DMA descriptors for transmit.

TX DMA Data Alignment

The MAC receives TX frame data via DMA from a 32-bit-aligned buffer
in memory. If the TXDWA bit in the MAC system control register is clear,

the first word of the MAC frame destination address should immediately
follow the TX DMA length word. The MAC frame header starts at an odd
word address and the MAC frame payload starts at an even word address.

If the TXDWA bit is set, the 16-bit TX DMA length word should be fol-
lowed by a 16-bit pad word that the MAC ignores. The pad word is
transferred over DMA but is not transmitted by the MAC to the PHY.
The first word of the MAC frame destination address should immediately
follow the pad word. The MAC frame header starts at an even word
address and the MAC frame payload starts at an odd word address.

8-28 ADSP-BF537 Blackfin Processor Hardware Reference

Ethernet MAC

In all cases, the TX DMA length word specifies the number of bytes to be
transferred via DMA, excluding the TX DMA length word itself. Specifi-
cally, when TXDWA is set, the TX DMA length word includes the length of
the two pad bytes. See Figure 8-9.

EVEN WORD ALIGNMENT, TXDWA =1

1 0

| PAD BYTE | PAD BYTE | DMA-LENGTH WORD |
3 2

| DATA BYTE D | DATABYTEC | DATABYTEB | DATABYTE A |
4

| DATABYTEH | DATA BYTE G | DATABYTEF | DATABYTEE |

ODD WORD ALIGNMENT, TXDWA =0

1 0

| DATABYTEB | DATABYTE A | DMA-LENGTH WORD |
3 2

| DATABYTEF | DATABYTEE | DATABYTED | DATA BYTE C |
4

| DATA BYTE J | DATABYTE | | DATABYTEH | DATABYTE G |

Figure 8-9. TX DMA Data Alignment

Late Collisions

If a frame’s transmission is interrupted (for example, by a late collision)
after the transmission of the first 64 bytes, the MAC can be programmed
to either automatically retry the frame or to discard the frame. If the LCRTE
bit in the MAC operating mode register is set, the MAC issues a restart
command to the TX DMA channel and resets the DMA current address
pointer to the start of the current DMA descriptor. This requires the
frame data to be entirely contained in a single DMA descriptor.

ADSP-BF537 Blackfin Processor Hardware Reference 8-29

Description of Operation

If the LCRTE bit is clear and a late collision is detected, the MAC issues a
finish command to the TX DMA controller, advancing the DMA channel
to the status descriptor. The MAC then transfers the TX frame status to
memory and advances to the next frame descriptor for data.

TX Frame Status Classification

The TX frame status buffer and the TX current frame status register pro-
vide a convenient classification of each received frame, representing the
IEEE-802.3 “transmit status” code. The bit layout in the TX frame status
buffer is identical to that in the TX current frame status register, and is
arranged so that exactly one status bit is asserted for each of the possible
transmit status codes defined in IEEE-802.3 section 4.3.2.

The priority order for determination of the transmit status code is shown

in Table 8-6.

Table 8-6. TX Transmit Status Priority

Priority |Bit Bit Name |IEEE transmit Condition
status
1 4 DMA Undefined The frame was not completely delivered
underrun by DMA.
2 2 Excessive Excessive The frame was aborted because of too
collision collision error many (16) collisions, or because of exces-

sive deferral.

3 3 Late Late collision The frame was aborted because of a late
collision error status collision.
error

4 14, 13 | Loss of Carrier sense was deasserted during some
carrier, no or all of the frame transmission
carrier (half-duplex only, MII mode only).

5 1 Transmit Transmit OK The frame had none of the above condi-
OK tions.

8-30 ADSP-BF537 Blackfin Processor Hardware Reference

Ethernet MAC

TX DMA Direction Errors

The TX DMA channel halts immediately after any transfer that sets the
TXDMAERR bit in the EMAC_SYSTAT register. This bit is set if a TX data or sta-
tus DMA request is granted by the DMA channel, but the DMA channel
is programmed to transfer in the wrong direction. Data DMA should be
memory-read; status DMA should be memory-write. TX DMA errors
could indicate a software problem in managing the TX DMA descriptor
queue.

In order to facilitate software debugging, the TX DMA channel guaran-
tees that the last transfer to occur is the one with the direction error. On
an error, usually the current frame is corrupted. Any later frames in the
descriptor queue are not sent until the error is cleared. Since the MAC
may have lost synchronization with the DMA descriptor queue, the TX
channel must be disabled in order to clear the error condition.

To clear the error and resume operation, perform these steps:

1. Disable the MAC TX channel (clear the TE bit in the EMAC_OPCODE
register).

2. Disable the DMA channel.

3. Clear the TXDMAERR bit in the EMAC_SYSSTAT register by writing 1 to
it.

4. Reconfigure the MAC and the DMA engine as if starting from

scratch.
5. Re-enable the DMA channel.
6. Re-enable the MAC TX channel.

ADSP-BF537 Blackfin Processor Hardware Reference 8-31

Description of Operation

Power Management

The Blackfin MAC can be programmed to trigger the following two types

of power state transitions:

1. Wake from hibernate

When the processor is in hibernate state (VppnT powered off) or
any higher state, a low level on the PHYINT pin can wake the proces-
sor to the full on state (via RESET). This transition is enabled by
setting the PHYWE bit to 1 in the VR_CTL register prior to powerdown
(See “Dynamic Supply Voltage Control” in Chapter 20, Dynamic
Power Management.)

This pin may be connected to an INT output of the external PHY,
if applicable. Many PHY devices provide such a pin (sometimes
called MDINT or INTR). PHYs with interrupt capability may be pro-
grammed in advance via the MII management interface
(MDC/MDIO) to assert the INT pin asynchronously upon detect-
ing various conditions. Examples of INT conditions include link up,
remote fault, link status change, auto-negotiation complete, and
duplex and speed status change.

Note that the PHYINT pin is general-purpose, and may be driven by
any external device or left unused (pulled up to Vppio). It is not
limited to use with external PHYs.

When the ADSP-BF536/ADSP-BF537 processor is in either the
hibernate or deep sleep state, the MAC is powered down. It is not
possible to receive or transmit Ethernet frames in these states.

8-32

ADSP-BF537 Blackfin Processor Hardware Reference

Ethernet MAC

2. Wake from sleep

When the processor is in the sleep state (or any higher state), the
Ethernet MAC can remain powered up and can wake the processor
to the active or full on states upon signalling an Ethernet event
interrupt. The Ethernet event interrupts most useful for power
management include:

* Remote wakeup frame received, matching one of four pro-
grammable frame filters (see “Remote Wake-up Filters” on

page 8-30).

* Magic Packet™ detected (see “Magic Packet Detection” on

page 8-35).

* Any of the RX or TX frame status interrupts. Examples of
these interrupts include: frame received (any frame), Broad-
cast frame received, VLANT frame received, and good frame
received (which includes passing the address filters.).

For example, the MAC could be programmed to wake the system
upon receiving a frame with a particular group destination address,
by setting the multicast frame received interrupt enable bit in the
EMAC_RX_IRQE register and by selecting the appropriate address hash
bins in the EMAC_HASHLO/HI multicast hash bin address filter
registers.

Ethernet Operation in the Sleep State

When the ADSP-BF536/ADSP-BF537 processor is in the sleep state, the
Ethernet MAC supports several levels of operation.

e The MAC may be powered down, by clearing RE and TE in the
operating modes register. In this lowest-power state, the MAC’s
internal clocks do not run, and the MAC neither transmits nor
responds to received frames. Note that the MAC will not receive a
PAUSE control frame in this state.

ADSP-BF537 Blackfin Processor Hardware Reference 8-33

Description of Operation

The MAC receiver may be partially powered up in a
“wake-detect-only” state, but without enabling either the MAC
transmitter or MAC DMA. This state is selected by:

. Setting RE and clearing TE in the operating modes register.

Setting either the MPKE (magic packet wake enable) or RUKE (remote
wakeup frame enable) bits in the MAC wakeup frame control and
status register (EMAC_WKUP_CTL).

Clearing the capture wakeup frame (CAPWKFRM) bit in
EMAC_WKUP_CTL.

When in the wake-detect-only state, the MAC receiver disables its
DMA interface, and does not request any DMA transfers (whether
data or status). Instead, the MAC receiver processes good incoming
frames through its remote wake-up and/or Magic Packet filters.
When a match is detected, the MAC signals a WAKEDET interrupt
(setting the WAKEDET status bit in the EMAC_SYSSTAT register). DMA
transfers do not resume until the CAPWKFRM bit is cleared.

The MAC receiver may be fully powered up to both receive
and/or transmit frames, provided that only external memory (for
example, SDRAM) is used. Both the DMA data buffers and
descriptor structures must be in external memory, since internal L1
is unavailable when core clocks are stopped.

This state is intended to be used with very restricted

receive-frame filters, so that only certain specific frames are

stored via DMA—perhaps only the frame(s) which caused the
wakeup event itself. The transmit functionality permits the proces-
sor to enqueue a list of final frame transmissions before going to

sleep.

The MAC can only transmit frames contained in DMA buffers set
up by the processor prior to entering the sleep state. Once the last
transmit frame has been sent, the transmitter and DMA channel

8-34

ADSP-BF537 Blackfin Processor Hardware Reference

Ethernet MAC

pauses. Note that if the last TX DMA descriptor was programmed
to signal an interrupt, the ADSP-BF536/ADSP-BF537 processor

wakes from sleep at the conclusion of that transmission.

Similarly, the MAC can only receive as many frames as can be
contained in the DMA buffers and descriptors allocated by the
processor prior to entering the sleep state. Once the last receive
frame has been filled, the DMA channel pauses, and if any further
frames are received (beyond the capacity of the MAC RX FIFO), a
DMA overrun occurs. Note that if the last RX DMA descriptor was
programmed to signal an interrupt, the ADSP-BF536/
ADSP-BF537 processor wakes from sleep after that frame was
received.

Magic Packet Detection

The MAC can be programmed to detect a Magic Packet as a wakeup
event. This is enabled by setting the MPKE bit (Magic Packet enable) bit in
the EMAC_WKUP_CTL register. When the MAC receives the Magic Packet, it
sets the MPKS (Magic Packet status) bit in the EMAC_WKUP_CTL register,
which causes the Ethernet event interrupt to be asserted. The associated
ISR should clear the interrupt by writing a 1 to the MPKS bit; writing a 0
has no effect.

A Magic Packet is any valid Ethernet frame which contains a specific
102-byte pattern derived from the MAC’s 48-bit MAC address anywhere
within the frame after the 12th byte (after the destination and source
address fields). This byte pattern consists of 6 consecutive bytes of 0xFFs
followed by sixteen consecutive repeats of the MAC address of the MAC
which is targeted for wakeup. See Figure 8-10.

Good Magic Packet frames exclude frame-too-short error, frame-too-long
error, FCS error, Alignment error, and PHY error conditions.

ADSP-BF537 Blackfin Processor Hardware Reference 8-35

Description of Operation

MAGIC PACKET STRUCTURE

DESTINATION ADDRESS (6 BYTES)
SOURCE ADDRESS (6 BYTES)
FF FF FF FF FF FF (6 BYTES)
TARGET MAC ADDRESS (1) | (6 BYTES)

TARGET MAC ADDRESS (2) (6 BYTES) - 2ND OCCURRENCE

TARGET MAC ADDRESS (16) (6 BYTES) - 16TH OCCURRENCE

VALID FCS (4 BYTES)

Figure 8-10. Magic Packet Structure
Remote Wake-up Filters

The Blackfin Ethernet MAC provides four independent remote wakeup
frame filters for use while in powerdown. See Figure 8-11. These filters are
enabled by setting the RWKE (remote wakeup enable) bit in the
EMAC_WKUP_CTL register. Each filter works in parallel, simultaneously
examining each incoming frame for a specific byte pattern. Each pattern is
described by a byte offset to the start of the pattern within the frame, a
32-bit byte mask selecting bytes at that offset to include in the pattern,
and a CRC-16 hash value of the selected bytes which identifies the

pattern.

Each of the four filters sets a separate status bit (RWKSO—RWKS3) in the
EMAC_WKUP_CTL register upon detection of their programmed frame pat-
tern. The Ethernet event interrupt is asserted when any of these four status
bits is set to 1; the WAKEDET bit in the EMAC_SYSSTAT register indicates the
logical OR of all four of these bits and the MPKS (Magic Packet status) bit.

The remote wakeup interrupt is cleared by writing a 1 to the appropriate
RWKSO—RWKS3 status bit(s). The WAKEDET bit is read-only and does not need
to be explicitly cleared.

8-36 ADSP-BF537 Blackfin Processor Hardware Reference

Ethernet MAC

To program each remote wakeup filter:

1. The RWKE bit in the EMAC_WKUP_CTL register must be set to 1
(enables all four filters.).

2. The enable wakeup filter N bit in the EMAC_WKUP_FFCMD register
must be set to 1 to enable filter N.

3. The wakeup filter N address type bit in the EMAC_WKUP_FFCMD

register selects whether the target frame is unicast (if 0) or multi-
cast (if 1).

4. The 8-bit pattern offset N field in the wakeup frame filter offsets
register (EMAC_WKUP_FFOFF) selects the starting byte offset for the
target data pattern, counting from 0 for the first byte of the MAC
frame. The preamble and SFD bytes are not included.

5. The 32-bit wakeup frame byte mask register (EMAC_WKUP_FFMSKn)
selects which of the 32 bytes starting at the selected offset into the
frame will be considered in the pattern match. If the
EMAC_WKUP_FFOFF register field contains the value K, then bit J of
the EMAC_WKUP_FFMSKn register controls whether byte (J+K) of the
frame will be compared, counting from 0. A value of 1 in the mask
bit enables comparison.

6. The 16-bit wakeup filter N pattern CRC field in the
EMAC_WKUP_FFCRCO/1 register specifies the 16-bit CRC hash value
expected for the wake-up pattern.

Each filter has a separate 16-bit CRC state register which is independently
updated as the frame is received. The CRC state for filter N is only
updated when an enabled byte is received; the CRC state remains
unchanged if the current byte is not enabled by the filter's byte offset and
mask registers.

ADSP-BF537 Blackfin Processor Hardware Reference 8-37

Description of Operation

Good frames whose CRC-16 value matches the specified value at the
end of the selected pattern window will cause a wake-up event at the end
of the frame. Good wake-up frames exclude frame-too-short error,
frame-too-long error, alignment error, FCS error, PHY error, and length
error conditions.

EMAC_WKUP_FFOFF
OFFSET REGISTER

1' WAKEUP BYTE PATTERN

FRAME | ABxCDExxxxFGHxxIJK|

\AAAAAAAAAAAAAAAAAI
|1 17011100001110011 1| (SELECTIF 1)

EMAC_WKUP_FFMSKx
MASK REGISTER

Yy vvy Yvy Yvyy
AB-CDE ----FGH - -IJK|

SELECTED BYTES

CRC HASHCODE
CALCULATION CRC-16

D:

EQUAL?

INTERRUPT

WAKE UP —l> ETHERNET EVENT

EMAC_WKUP_FFCRCx
i _ [RWKSx BIT]
REGISTER EMAC_WKUP_CTL
REGISTER

Figure 8-11. Remote Wakeup Filters

The CRC-16 hash value for a sequence of bytes may be calculated serially,
with each byte processed LSB-first. The initial value of the CRC state is
OxFFFF (all 1s). For each input bit, the LESR is shifted left one position,
and the bit shifted out is XOR’ed with the new input bit. The resulting
feedback bit is then XOR’ed into the LFSR at bit positions 15, 2, and 1.
Thus the generator polynomial for this CRC is:

G(x) —x0yxPix? i

8-38

ADSP-BF537 Blackfin Processor Hardware Reference

Ethernet MAC

For example, if the wakeup pattern specified the single byte 0x12, or
0100_1000 (LSB first), the calculation of the wakeup CRC_16 is per-
formed as shown in Table 8-7:

G polynomial = 1000 0000 0000 0101

Table 8-7. CRC-16 Hash Value Calculation

Bit In XOR MSB Bit |Feedback |CRC State
Bit

1111 1111 1111 1111, Initial = 0xFFFF
0 1 1 0111 111111111011
1 0 1 0111 111111110011
0 0 0 1111 111111100110
0 1 1 011111111100 1001
1 0 1 011111111001 0111
0 0 0 11111111 0010 1110
0 1 1 011111100101 1001
0 0 0 1111 1100 1011 0010, Final = 0xFCB2

Ethernet Event Interrupts

The Ethernet event interrupt is signalled to indicate that any or all of the
conditions listed below are pending. Figure 8-12 shows the Ethernet event
interrupts. In the ADSP-BF533 and ADSP-BF531 processors, the
Ethernet event interrupt is signaled on peripheral interrupt ID 2 in the
System Interrupt Controller (SIC), together with error conditions from a
number of other peripherals. By default, peripheral interrupt ID 2 is
mapped to IVG7.

ADSP-BF537 Blackfin Processor Hardware Reference 8-39

Description of Operation

ETHERNET MAC

PHY INT 2|

MAC MGMT COUNTER (MMC) 1|
RX FRAME STATUS _2 |

TX FRAME STATUS__3 |
WAKEUP FRAME _4 |

TX DMA DIRECTION ERROR__5 |

RX DMA DIRECTION ERROR—&]
STATION MGMT TRANSFER DONE__7

EMAC_SYSTAT

DMA ERROR

DMARO BLOCK DONE —I

DMAR1 BLOCK DONE
DMARO OVERFLOW

DMAR1 OVERFLOW PLL WAKEUP 0

1
2
RTC —
DMAO (PPI) —]
DMA3 (SPORT0 RX) —-
DMA4 (SPORTO TX) —&

DMA5 (SPORT1 RX) —

CAN ERROR
MAC EVENT
SPORTO0 ERROR
SPORT1 ERROR
PPI ERROR

SPI ERROR
UARTO0 ERROR
UART1 ERROR

~N o |

DMAG6 (SPORT1 RX) -8

TWI T
DMAT7 (SPI) T
DMAS (UARTO RX) ——

DMA9 (UARTO TX) —12-
DMA10 (UART1 RX) 13-

DMA11 (UART1 TX) 2]

[—— wake

v He
I L » DMA1 (MAC RX) CANRX —— 2 E‘
| PORTH IRQ A 16 [2]]¢
mi | CANTX —— Z
I 18
PHYINT i 19|
— ——» DMA2 (MAC TX) TIMERO —
PIN |1 PORTH IRQ B TIMER1 -, 7
PH6 TIMER2 2+
TIMER3 =
TlMER4A
24
TIMERS —
TIMER6 %
PORTF IRQA:) > TIMER? 57]
PORTGIRQ A PORTF IRQ B 22
MDMAO -
T
MDMA1
WATCHDOG 31
PORTG IRQ B ﬁ > L
Figure 8-12. Ethernet MAC Event Interrupt
The handler for peripheral interrupt ID 2 should interrogate each of the
peripherals assigned to peripheral interrupt ID 2 to determine which
peripheral or peripherals are asserting an interrupt. To interrogate the
Ethernet MAC, the handler should read the Ethernet MAC system status
register, as all of the MAC Ethernet event interrupt condition types are
represented in that register.
8-40 ADSP-BF537 Blackfin Processor Hardware Reference

SIC_IMASK

Ethernet MAC

These conditions result in an Ethernet event interrupt:

e PHYINT interrupt — Whenever the asynchronous PHYINT pin is
asserted low, the PHYINT sticky bit in the MAC system status regis-
ter is set to 1. The PHYINT interrupt condition is asserted whenever
the logical AND of the PHYINT bit and the PHYIE enable bit in the
Ethernet MAC system control register is 1. This condition is
cleared by writing a 1 to the PHYINT bit.

e MAC management counter (MMC) interrupt — When any MMC
counter reaches half of its maximum value (that is, transitions from
0x7FFF FFEF to 0x8000 0000), the corresponding bit in the
MMC RX interrupt status register is set. An MMC interrupt is

asserted whenever either:

* the logical AND of the MMC RX interrupt status register
and the MMC RX interrupt enable register is nonzero, or

* the logical AND of the MMC TX interrupt status register
and the MMC TX interrupt enable register is nonzero.

The MMC interrupt condition is cleared by writing 1s to all of the
MMC RX and/or TX interrupt status register bits which are
enabled in the MMC RX/TX interrupt enable register.

e RX frame status interrupt — The RX frame status interrupt condi-
tion is signalled whenever the logical AND of the RX sticky frame
status register and the RX frame status interrupt enable register is
nonzero. This condition is cleared by writing 1s to all of the RX
sticky frame status register bits that are enabled in the RX frame
status interrupt enable register.

* TX frame status interrupt — The TX frame status interrupt condi-
tion is signalled whenever the logical AND of the TX sticky frame

status register and the TX frame status interrupt enable register is

ADSP-BF537 Blackfin Processor Hardware Reference 8-41

Description of Operation

nonzero. This condition is cleared by writing 1s to all of the TX
sticky frame status register bits that are enabled in the TX frame
status interrupt enable register.

Wakeup frame detected — This bit is set when a wakeup event is
detected by the MAC core (either a magic packet or a remote
wakeup packet is accepted by the wakeup filters). This condition is
cleared by writing a 1 to the MPKS and/or RWKS status bits in the
wakeup control status register.

RX DMA direction error detected — This bit is set if an RX data or
status DMA request is granted by the DMA channel, but the DMA
is programmed to transfer in the wrong (memory-read) direction.
This could indicate a software problem in managing the RX DMA
descriptor queue. This interrupt is non-maskable in the MAC and
must always be handled. This condition is cleared by writing a 1 to
the RXDMAERR bit in the MAC system status register.

TX DMA direction error detected — This bit is set if a TX data or
status DMA request is granted by the DMA channel, but the DMA
is programmed to transfer in the wrong direction. Data DMA
should be memory-read, status DMA should be memory-write.
This could indicate a software problem in managing the TX DMA
descriptor queue. This interrupt is non-maskable in the MAC and
must always be handled. This condition is cleared by writing a 1 to
the TXDMAERR bit in the MAC system status register.

Station management transfer done — This bit is set when a station
management transfer (on MDC/MDIO) has completed, provided
the STAIE interrupt enable control bit is set in the station manage-
ment address register.

8-42

ADSP-BF537 Blackfin Processor Hardware Reference

Ethernet MAC

When the MAC DMA engine is disabled, all the MAC peripheral
requests are routed directly into the interrupt controller. This can
manifest itself at startup as spurious interrupts. The solution is to
configure the system in such a way that the DMA controller is
always enabled before the MAC peripheral.

RX/TX Frame Status Interrupt Operation

The contents of the RX current frame status register indicate the result of
the most recent frame receive operation. The register contents are updated
just after the end of the frame is received on the MII and synchronized
into the system clock domain.

The contents of the RX sticky frame status register are updated at the
same time. Each applicable bit in the RX sticky frame status register is set
if the corresponding bit in the RX current frame status register is set, oth-
erwise the bit in the RX sticky frame status register keeps its prior value.

The RX frame status interrupt enable register is continuously bitwise
ANDed with the contents of the RX sticky frame status register, and then
all of the resulting bits are OR’ed together to produce the RX frame status
interrupt condition. The state of the RX frame status interrupt condition
is readable in the RXFSINT bit of the MAC system status register. This
interrupt condition is cleared by writing 1s to all the bits in the RX sticky
frame status register for which corresponding bits are set in the RX frame
status interrupt enable register. Do not attempt to clear this interrupt con-
dition by writing a 1 to the read only RXFSINT bit; such a write has no
effect.

The three TX frame status registers (TX current frame status register, TX
sticky frame status register, and TX frame status interrupt enable register)
operate in a similar manner.

ADSP-BF537 Blackfin Processor Hardware Reference 8-43

Description of Operation

RX Frame Status Register Operation at Startup and Shutdown

After the RE bit in the EMAC_OPMODE register is cleared, the RX current
frame status register, the RX sticky frame status register, and the RX frame
status interrupt enable register hold their last state. Of course, the two
writable registers can still be written.

In order to not confuse status from old and new frames, the RX current
frame status register and the RX sticky frame status register are automati-
cally cleared at a 0-to-1 transition of the RE bit. The RX frame status
interrupt enable register is not cleared when the RE bit transitions from 0
to 1. It changes state only when written.

All three of these registers are cleared at system reset.

TX Frame Status Register Operation at Startup and Shutdown

After the TE bit in the EMAC_OPMODE register is cleared, the TX current
frame status register, the TX sticky frame status register, and the TX frame
status interrupt enable register hold their last state. Of course, the two
writable registers can still be written.

In order to not confuse status from old and new frames, the TX current
frame status register and the TX sticky frame status register are automati-
cally cleared at a 0-to-1 transition of the TE bit. The TX frame status
interrupt enable register is not cleared when the TE bit transitions from 0
to 1. It changes state only when written.

All three of these registers are cleared at system reset.

MAC Management Counters

The Blackfin Ethernet MAC provides a comprehensive set of 32-bit
read-only MAC management counters, 24 for receive and 23 for transmit,
in accordance with the “Layer Management for DTEs” specification in
IEEE 802.3 Sec. 30.3. When enabled by setting the MMCE bit in the
EMAC_MMC_CTL register, the counters are updated automatically at the

8-44 ADSP-BF537 Blackfin Processor Hardware Reference

Ethernet MAC

conclusion of each frame. The counters may be read at any time, but may
not be written. The counters can be reset to zero all at once by writing the
RSTC bit to 1.

The counters can be configured to be cleared individually after each read
access if the CCOR bit is set to 1. This mode guarantees that no counts are
dropped between the value returned by the read and the value remaining
in the register.

Although this read operation has a side effect, the speculative read
operation of the Blackfin core pipeline is properly handled by the
MAC. During the time between the speculative read stage and the
commit stage of the read instruction, the MMC block freezes the
addressed counter so that intervening updates are deferred until the
MMR read instruction is resolved.

For best results, to minimize the amount of time that any given
MMC counter is frozen, it is suggested not to intentionally place
MMC counter read instructions in positions that result in frequent
speculative reads which are not ultimately executed. For example,
MMC counter reads should not be placed in the shadow of fre-
quently-mispredicted flow-of-control operations.

/ Continuous polling of any MMC register is not recommended.

The MMC update process requires at least one SCLK cycle between
successive reads to the same register, which may not occur if the
register read is placed in a tight code loop. If the polling operation
excludes the MMC update process, loss of information results.

The overflow behavior of the counters is configurable using the CROLL bit.
The counters may be configured either to saturate at maximum value
(CROLL = 0) or to roll over to zero and continue counting (CROLL = 1).

The range of the counters can be extended into software-managed coun-
ters (for example, 64-bit counters) by use of selectable MMC interrupts.
The EMAC_MMC_RIRQE and EMAC_MMC_TIRQE MMC interrupt enable registers

ADSP-BF537 Blackfin Processor Hardware Reference 8-45

Description of Operation

allow the programmer to select which counters should signal an MMC
interrupt on the Ethernet event interrupt line when they pass half of the
maximum counter value. Even if interrupt latency is large, this mechanism
makes it unlikely that any counter data is lost to overrun.

A recommended structure for the ISR for the MMC interrupt would be as
follows. In this example, the CCOR (clear counter on read) bit is set to 1,
and the CROLL (counter rollover) bit may also be set to 1.

1.

In the ISR, read the SIC to determine which peripheral ID caused

the interrupt.

If an Ethernet MAC event interrupt is pending, then read the
EMAC_SYSTAT register. If any of the interrupt bits are set, then an
Ethernet event interrupt is pending.

If the MMCINT bit is set, then read the EMAC_MMC_RIRQS and
EMAC_MMC_TIRQS interrupt status registers. Then, for each bit that is
set, read the corresponding MMC counter using CCOR (clear coun-
ter on read) mode, and add the result to the software-maintained
counter.

As an option, if the CROLL bit is set to 1, the ISR can check the
count value to see if it is less than 0x8000 0000. This would indi-
cate that the counter has somehow incremented beyond the
maximum value (OxFFFF FFFF) and wrapped around to zero while
the interrupt awaited servicing. In this case, the software could add
an additional 232 to its extended counter to repair the count

deficit.

Werite the interrupt-status values previously read from
EMAC_MMC_RIRQS and EMAC_MMC_TIRQS back to those same registers,
so that the bits which were 1 cause the corresponding interrupt sta-
tus bits to be cleared in a write-1-to-clear operation. This
guarantees that all the counter interrupts that are cleared are those
that correspond to counters that have been read by the interrupt
handler. If other counter(s) cross the half-maximum interrupt

8-46

ADSP-BF537 Blackfin Processor Hardware Reference

Ethernet MAC

threshold after the “snapshot” of the EMAC_MMC_RIRQS and
EMAC_MMC_TIRQS was taken, then those interrupts are still correctly
pending at the RTT; the interrupt handler is then re-entered and
the remaining counter interrupts are handled in a second pass.

Programming Model

The following sections describe the Ethernet MAC programming model
for a typical system. The initialization sequence can be summarized as
follows.

1.

Configure MAC MII pins.
Multiplexing scheme
CLKBUF
Conlfigure interrupts.
Configure MAC registers.

* MAC address

* MII station management
Configure PHY.

Receive and transmit data through the DMA engine.

Configure MAC Pins

The first step is to configure the hardware interface between the MAC and
the external PHY device.

ADSP-BF537 Blackfin Processor Hardware Reference 8-47

Programming Model

Multiplexing Scheme

The MII interface pins are multiplexed with GPIO pins on port H. To
configure a pin on port H for Ethernet MAC functionality, the PORTH_FER
bit corresponding to that pin must be set to 1.

The MII management pins (MDC and MDI0) are available on port J. Note
that these two pins are not multiplexed.

CLKBUF
The external PHY chip can be clocked with the buffered clock (CLKBUF)

output from the Blackfin processor. In order to enable this clock output,
the PHYCLKOE bit in the VR_CTL register must be set. Note that writes to
VR_CTL take effect only after the execution of a PLL programming
sequence.

Configure Interrupts

Next, the MAC interrupts and MAC DMA interrupts need to be config-
ured to properly. Interrupt service routines should be installed to handle
all applicable events. Refer to Figure 8-12 on page 8-40 for a graphical
representation of how event signals are propagated through the interrupt
controller. The status of the MAC interrupts can be sensed with the
EMAC_SYSTAT register. However, the process of enabling these interrupts is
achieved through a number of different registers.

e The PHYINT interrupt is enabled by setting the PHYIE bit in the
EMAC_SYSCTL register.

e The MAC management counter (MMC) interrupt can be enabled
through the EMAC_MMC_RIRQE and EMAC_MMC_TIRQE registers.

e The RX frame status and TX frame status interrupts can be enabled
through the EMAC_RX_IRQE and EMAC_TX_IRQE registers, respectively.

8-48 ADSP-BF537 Blackfin Processor Hardware Reference

Ethernet MAC

* The wakeup frame events are controlled through the
EMAC_WKUP_CTL register.

e The TX DMA direction error detected and RX DMA direction
error detected interrupts are non-maskable. Therefore, an interrupt
service routine to handle them should always be installed.

e The station management transfer done interrupt is enabled
through the STATE bit of the EMAC_STAADD register.

The DMA MAC receive and DMA MAC transmit functions are initial-
ized to the DMA1 and DMA2 channels by default. The interrupts for the
channels corresponding to the Ethernet MAC transfers should be
unmasked and a corresponding ISR should be installed if a polling tech-

nique is not used.

Configure MAC Registers

After the interrupts are set up correctly, the MAC address registers and the
MII protocol must be initialized.

MAC Address

Set the MAC address by writing to the EMAC_ADDRHI and EMAC_ADDRLO reg-
isters. Since the MAC address is a unique number, it is usually stored in a
non-volatile memory like a flash device. In this way, every system using
the Blackfin MAC peripheral can be easily programmed with a different
MAC address during mass production.

MII Station Management

The following procedure should be used to set up the MII communica-
tions protocol with the external PHY device.

ADSP-BF537 Blackfin Processor Hardware Reference 8-49

Programming Model

To perform a station management write transfer:

1.

2.
3.

Initialize MDCDIV in the EMAC_SYSCTL register. The frequency of the
MDC clock is ScLk / [2 * (MDCDIV + 1) J. Thus

MDCDIV = (SCLK_Freq / MDC_Freq)/2 - 1. For typical 400ns
(2.5MHz) MDC rate at SCLK = 125MHz, set MDCDIV to

(125MHz / 2.5MHz) / 2 -1 = 50/2-1 = 24.

Write the data into EMAC_STADAT.

Write EMAC_STAADD with the PHY address, register address,
STAOP = 1, STABUSY = 1, and desired selections for preamble enable
and interrupt enable.

Do not initiate another read or write access until STABUSY reads 0
or until the station management done interrupt (if enabled) has
been received. Accesses attempted while STABUSY = 1 are discarded.

To perform a station management read transfer:

1.
2.

Initialize MDCDIV.

Write EMAC_STAADD with the PHY address, register address,
STAOP = 0, STABUSY = 1, and desired selections for preamble enable
and interrupt enable.

Wait either while polling STABUSY or until the station management
done interrupt (if enabled) has been received. Note that subsequent
accesses attempted while STABUSY=1 are discarded. Proceed when
STABUSY reads 0.

Read the data from EMAC_STADAT.

8-50

ADSP-BF537 Blackfin Processor Hardware Reference

Ethernet MAC

Configure PHY

After the MII interface is configured, the PHY can be programmed with
the EMAC_STAADD and EMAC_STADAT registers. Before configuration, the
PHY is usually issued a soft reset. Depending of the capabilities of the spe-
cific PHY device, the configurable options might include
auto-negotiation, link speed, and whether the transfers are full-duplex or
half-duplex. The PHY device may also be set up to assert an interrupt on
certain conditions, such as a change of the link status.

Receive and Transmit Data

Data transferred over the MAC DMA must be handled with a descrip-
tor-based DMA queue. Refer to Figure 8-5 on page 8-13 and Figure 8-7

on page 8-26 for a graphical representation of a receive queue and trans-
mit queue, respectively.

An Ethernet frame header is placed in front of the payload of each data
buffer. The data buffer structure is described in Table 8-8.

Table 8-8. Frame Header

Field Size in Bytes

Frame size (Tx only) 2

Destination MAC address | 6

Source MAC address 6

Length/type 2

Data Payload Determined by the
length/type field

ADSP-BF537 Blackfin Processor Hardware Reference 8-51

Ethernet MAC Register Definitions

Receiving Data

In order to receive data, memory buffers must be allocated to construct a
queue of DMA data and status descriptors. If the RXDWA bit in EMAC_SYSCTL
is 0, then the first item in the receive frame header is the destination MAC
address. If the RXDWA bit in EMAC_SYSCTL is 1, then the first 16-bit word is
all-zero to pad the frame, and the second item is the destination MAC
address. The DMA engine is then configured through the DMA_CONFIG reg-
ister. After the DMA is set up, the MAC receive functionality is enabled
by setting the RE bit in EMAC_0PMODE. Completion can be signaled by inter-
rupts or by polling the DMA status registers.

Transmitting Data

To transmit data, memory buffers must be allocated to construct a queue
of DMA data and status descriptors. The first 16-bit word of the data buf-
fers is written to signify the number of bytes in the frame. The DMA
engine is then configured through the DMA_CONFIG register. After the DMA
is set up, the MAC transmit functionality is enabled by setting the TE bit
in EMAC_0PMODE. Completion can be signaled by interrupts or by polling
the DMA status registers.

Ethernet MAC Register Definitions

The MAC register set is broken up into three groups corresponding to the
peripheral’s major system blocks:

* Control-status register group (MAC block) (starting on page 8-65)
* System interface register group (SIF block) (starting on page 8-93)

* MAC management counter register group (MMC block) (starting
on page 8-124)

Ethernet MAC also provides frame status registers (starting on page 8-98).

8-52 ADSP-BF537 Blackfin Processor Hardware Reference

Ethernet MAC

Most registers require 32-bit accesses, but certain registers have only 16 or
fewer functional bits and can be accessed with either 16-bit or 32-bit

MMR accesses.

Table 8-9 shows the functions of the MAC registers. MMC counter regis-
ters are found in Table 8-10 on page 8-55.

Table 8-9. MAC Register Mapping

Register Name

‘ Function

‘ Notes

Control-Status Register Group

EMAC_OPMODE

MAC operating mode

Enables the Ethernet MAC transmit-
ter.

EMAC_ADDRLO

MAC address low

Used with EMAC_ADDRHI to set
the MAC address.

EMAC_ADDRHI

MAC address high

Used with EMAC_ADDRLO to set
the MAC address.

EMAC_HASHLO

MAC multicast hash table

low

Used with EMAC_HASHHI to hold
the multicast hash table.

EMAC_HASHHI

MAC multicast hash table
high

Used with EMAC_HASHLO to hold
the multicast hash table.

EMAC_STAADD

MAC station management

address

EMAC_STADAT

MAC station management
data

EMAC_FLC MAC flow control
EMAC_VLANI1 MAC VLANI tag
EMAC_VLAN2 MAC VLAN2 tag

EMAC_WKUP_CTL

MAC wakeup frame control
and status

EMAC_WKUP_FFMSKO0

MAC wakeup frame 0 byte
mask

ADSP-BF537 Blackfin Processor Hardware Reference

8-53

Table 8-9. MAC Register Mapping (Cont'd)

Ethernet MAC Register Definitions

Register Name

Function

Notes

EMAC_WKUP_FFMSK1

MAC wakeup frame 1 byte
mask

EMAC_WKUP_FFMSK2

MAC wakeup frame 2 byte

mask

EMAC_WKUP_FFMSK3

MAC wakeup frame 3 byte

mask

EMAC_WKUP_FFCMD

MAC wakeup frame filter

commands

EMAC_WKUP_FFOFF

MAC wakeup frame filter
offsets

EMAC_WKUP_FFCRCO0

MAC wakeup frame filter
CRCO0/1

EMAC_WKUP_FFCRC1

MAC wakeup frame filter
CRC2/3

System Interface Register Group

EMAC_SYSCTL

MAC system control

EMAC_SYSTAT

MAC system status

EMAC_RX_STAT

Ethernet MAC RX current
frame status

EMAC_RX_STKY

Ethernet MAC RX sticky
frame status

EMAC_RX_IRQE

Ethernet MAC RX frame
status interrupt enable

EMAC_TX_STAT

Ethernet MAC TX current
frame status

EMAC_TX_STKY

Ethernet MAC TX sticky
frame status

EMAC_TX_IRQE

Ethernet MAC TX frame
status interrupt enable

8-54

ADSP-BF537 Blackfin Processor Hardware Reference

Ethernet MAC

Table 8-9. MAC Register Mapping (Cont'd)

Register Name

Function

Notes

EMAC_MMC_RIRQS

Ethernet MAC MMC RX
interrupt status

EMAC_MMC_RIRQE

Ethernet MAC MMC RX
interrupt enable

EMAC_MMC_TIRQS

Ethernet MAC MMC TX

interrupt status

EMAC_MMC_TIRQE

Ethernet MAC MMC TX

interrupt enable

MAC Management Counter Register Group

EMAC_MMC_CTL

MAC management coun-
ters control

For a list of the MMC counter regis-
ters, see Table 8-10.

Table 8-10. MAC Management Counter Registers

MMR Address

Register Name
(IEEE Name)
IEEE 802.3 Reference

Description

0xFFCO0 3100

EMAC_RXC_OK
(FramesReceivedOK)
30.3.1.1.5

Holds a count of frames that are suc-
cessfully received. This does not include
frames received with frame-too-long,
FCS, length or alignment errors, or
frames lost due to internal MAC sub-
layer (DMA/FIFO) errors. This also
excludes frames with frame-too-short
errors, or frames that do not pass the
address filter as indicated by the receive
frame accepted status bit. Such frames
are not considered to be received by the
station, and are not considered errors.

ADSP-BF537 Blackfin Processor Hardware Reference

8-55

Ethernet MAC Register Definitions

Table 8-10. MAC Management Counter Registers (Cont’d)

MMR Address |Register Name Description
(IEEE Name)
IEEE 802.3 Reference

0xFFCO0 3104 | EMAC_RXC_FCS Holds a count of receive frames that are
(FrameCheckSequenceErrors) an integral number of octets in length
30.3.1.1.6 and do not pass the FCS check. This

does not include frames received with
frame-too-long or frame-too-short
(frame fragment) errors. This also
excludes frames with frame-too-short
errors, or which do not pass the address

filter.
0xFFCO0 3108 | EMAC_RXC_ALIGN Holds a count of frames that are not an
(AlignmentErrors) integral number of octets in length and
30.3.1.1.7 do not pass the FCS check. This coun-

ter is incremented when the receive sta-
tus is reported as alignment error. This
also excludes frames with
frame-too-short errors, or which do not
pass the address filter.

0xFFCO0 310C | EMAC_RXC_OCTET Holds a count of data and padding
(OctetsReceivedOK) octets in frames that are successfully
30.3.1.1.14 received. This does not include octets in

frames received with frame-too-long,
FCS, length or alignment errors, or
frames lost due to internal MAC sub-
layer errors. This also excludes frames
with frame-too-short errors, or which
do not pass the address filter.

0xFFCO0 3110 | EMAC_RXC_DMAOVF Holds a count of frames that would
(FramesLostDueToIntMAC otherwise be received by the station, but
RcvError) could not be accepted due to an inter-
30.3.1.1.15 nal MAC sublayer receive error. If this

counter is incremented, then none of
the other receive counters are incre-
mented. This counts frames truncated
during DMA transfer to memory, as
indicated by the DMA overrun status
bit.

8-56 ADSP-BF537 Blackfin Processor Hardware Reference

Ethernet MAC

Table 8-10. MAC Management Counter Registers (Cont’d)

MMR Address

Register Name
(IEEE Name)
IEEE 802.3 Reference

Description

0xFFCO0 3114

EMAC_RXC_UNICST
(UnicastFramesReceivedOK)
No IEEE reference

Holds a count of frames counted by the
EMAC_RXC_OK register that are not
counted by the EMAC_RXC_MULTI or the
EMAC_RXC_BROAD register.

0xFFCO0 3118

EMAC_RXC_MULTI
(MulticastFramesReceived OK)
30.3.1.1.21

Holds a count of frames that are suc-
cessfully received and are directed to an
active non-broadcast group address.
This does not include frames received
with frame-too-long, FCS, length or
alignment errors, or frames lost due to
internal MAC sublayer error. This also
excludes frames with frame-too-short
errors, or that do not pass the address
filter.

0xFFCO0 311C

EMAC_RXC_BROAD
(BroadcastFramesReceived OK)
30.3.1.1.22

Holds a count of frames that are suc-
cessfully received and are directed to the
broadcast group address. This does not
include frames received with
frame-too-long, FCS, length or align-
ment errors, or frames lost due to inter-
nal MAC sublayer error. This also
excludes frames with frame-too-short
errors, or that do not pass the address
filter.

ADSP-BF537 Blackfin Processor Hardware Reference

8-57

Ethernet MAC Register Definitions

Table 8-10. MAC Management Counter Registers (Cont’d)

MMR Address

Register Name
(IEEE Name)
IEEE 802.3 Reference

Description

0xFFCO0 3120

EMAC_RXC_LNERRI
(InRangeLengthFErrors)
30.3.1.1.23

Holds a count of frames with a
length/type field value between the
minimum unpadded MAC client data
size and the maximum allowed MAC
client data size, inclusive, that does not
match the number of MAC client data
octets received. The counter also incre-
ments when a frame has a length/type
field value less than the minimum
allowed unpadded MAC client data size
and the number of MAC client data
octets received is greater than the mini-
mum unpadded MAC client data size.
This also excludes frames with
frame-too-short errors (less than the
minimum unpadded MAC client data
size), or that do not pass the address fil-
ter.

0xFFCO0 3124

EMAC_RXC_LNERRO
(OutOfRangeLengthField)
30.3.1.1.24

Holds a count of frames with a Length
field value greater than the maximum
allowed LLC data size. This also
excludes frames with frame-too-short
errors, or that do not pass the address
filter.

0xFFCO0 3128

EMAC_RXC_LONG
(FrameTooLongErrors)

30.3.1.1.25

Holds a count of frames received that
exceed the maximum permitted frame
size. This counter is incremented when
the status of a frame reception is “frame
too long.” This also excludes frames
with frame-too-short errors, or that do
not pass the address filter.

8-58

ADSP-BF537 Blackfin Processor Hardware Reference

Ethernet MAC

Table 8-10. MAC Management Counter Registers (Cont’d)

MMR Address

Register Name
(IEEE Name)
IEEE 802.3 Reference

Description

0xFFCO0 312C

EMAC_RXC_MACCTL
(MACControlFramesReceived)
30.3.3.4

Holds a count of MAC control frames
passed by the MAC sublayer to the
MAC control sublayer. This counter is
incremented upon receiving a valid
frame with a Length/Type field value
equal to 88-08. While the control frame
may be received by the Ethernet MAC
and yet not be delivered to the MAC
client by DMA, depending on the state
of the PCF bit, the control frame is still
counted by this counter.

0xFFCO0 3130

EMAC_RXC_OPCODE
(UnsupportedOpcodesReceived)
30.3.3.5

Holds a count of MAC control frames
received that contain an opcode that is
not supported by the device. This coun-
ter is incremented when a receive frame
function call returns a valid frame with
a length/type field value equal to the
reserved type, and with an opcode for a
function that is not supported by the
device. Only opcode 00-01(pause) is
supported by the Ethernet MAC.

0xFFCO0 3134

EMAC_RXC_PAUSE
(PAUSEMACCtrlFramesReceived)
30.3.4.3

Holds a count of MAC control frames
passed by the MAC sublayer to the
MAC control sublayer. This counter is
incremented when a receive frame func-
tion call returns a valid frame with both
a length/type field value equal to 88-08
and an opcode indicating the pause
operation (00-01). This counter does
not include or exclude frames on the
basis of address, even though pause
frames are required to contain the MAC
control pause multicast address.

ADSP-BF537 Blackfin Processor Hardware Reference

8-59

Ethernet MAC Register Definitions

Table 8-10. MAC Management Counter Registers (Cont’d)

MMR Address |Register Name Description
(IEEE Name)
IEEE 802.3 Reference
0xFFCO0 3138 | EMAC_RXC_ALLFRM Holds a count of all frames or frame
(FramesReceivedAll) fragments detected by the Ethernet
No IEEE reference MAC, regardless of errors and regardless
of address, except for DMA overrun
frames.
0xFFCO0 313C | EMAC_RXC_ALLOCT Holds a count of all octets in frames or
(OctetsReceivedAll) frame fragments detected by the Ether-
No IEEE reference net MAC, regardless of errors and

regardless of address, except for DMA
overrun frames.

0xFFCO0 3140 | EMAC_RXC_TYPED Holds a count of all frames received
(TypedFramesReceived) with a length/type field greater than or
No IEEE reference equal to 0x600. This does not include

frames received with frame-too-long,
frame-too-short, FCS, length or align-
ment errors, frames lost due to internal
MAC sublayer error, or that do not pass
the address filter.

0xFFCO0 3144 | EMAC_RXC_SHORT Holds a count of all frame fragments
(FramesLenLt64Received) detected with frame-too-short errors
No IEEE reference (length < 64 bytes), regardless of

address filtering or of any other errors
in the frame.

0xFFCO0 3148 | EMAC_RXC_EQG64 Holds a count of all good frames (with
(FramesLenEq64Received) status receiveOK) that have a length of
No IEEE reference exactly 64 bytes.

0xFFCO0 314C | EMAC_RXC_IT128 Holds a count of all good frames (with
(FramesLen65_127Received) status receiveOK) that have a length
No IEEE reference between 65 and 127 bytes, inclusive.

0xFFCO0 3150 | EMAC_RXC_LT256 Holds a count of all good frames (with
(FramesLen128_255Received) status receiveOK) that have a length
No IEEE reference between 128 and 255 bytes, inclusive.

8-60 ADSP-BF537 Blackfin Processor Hardware Reference

Ethernet MAC

Table 8-10. MAC Management Counter Registers (Cont’d)

MMR Address

Register Name
(IEEE Name)
IEEE 802.3 Reference

Description

0xFFCO0 3154

EMAC_RXC_LT512
(FramesLen256_511Received)
No IEEE reference

Holds a count of all good frames (with
status receiveOK) that have a length
between 256 and 511 bytes, inclusive.

0xFFCO0 3158

EMAC_RXC_LT1024
(FramesLen512_1023Received)
No IEEE reference

Holds a count of all good frames (with
status receiveOK) that have a length
between 512 and 1023 bytes, inclusive.

0xFFCO0 315C

EMAC_RXC_GE1024
(FramesLen1024_MaxReceived)
No IEEE reference

Holds a count of all good frames (with
status receiveOK) that have a length
greater than or equal to 1024 bytes.
This does not include frames with a
frame-too-long error.

0xFFCO0 3180

EMAC_TXC_OK
(FramesTransmitted OK)
30.3.1.1.2

Holds a count of frames that are suc-
cessfully transmitted. This counter is
incremented when the transmit status is
reported as transmit OK.

0xFFCO0 3184

EMAC_TXC_1COL
(SingleCollisionFrames)

30.3.1.1.3

Holds a count of frames that are
involved in a single collision and are
subsequently transmitted successfully.
This counter is incremented when the
result of a transmission is reported as
transmit OK and the attempt value is 2.

0xFFCO0 3188

EMAC_TXC_GT1COL
(MultipleCollisionFrames)
30.3.1.1.4

Holds a count of frames that are
involved in more than one collision and
are subsequently transmitted success-
fully. This counter is incremented when
the transmit status is reported as trans-
mit OK and the value of the attempts
variable is greater than 2 and less then
or equal to 16.

0xFFCO0 318C

EMAC_TXC_OCTET
(OctetsTransmittedOK)
30.3.1.1.8

Holds a count of data and padding
octets in frames that are successfully
transmitted. This counter is incre-
mented when the transmit status is
reported as transmit OK.

ADSP-BF537 Blackfin Processor Hardware Reference

8-61

Ethernet MAC Register Definitions

Table 8-10. MAC Management Counter Registers (Cont’d)

MMR Address

Register Name
(IEEE Name)
IEEE 802.3 Reference

Description

0xFFCO0 3190

EMAC_TXC_DEFER
(FramesWithDeferredXmissions)
30.3.1.1.9

Holds a count of frames whose trans-
mission was delayed on its first attempt
because the medium was busy (that is,
at the start of frame, CRS is asserted, or
was previously asserted within the mini-
mum interframe gap). Frames involved
in any collisions are not counted.

0xFFCO0 3194

EMAC_TXC_LATECL
(LateCollisions)
30.3.1.1.10

Holds a count of times that a collision
has been detected later than one slot
time from the start of the frame trans-
mission. A late collision is counted
twice, both as a collision and as a late
collision. This counter is incremented
when the number of late collisions
detected in transmission of any one
frame is nonzero.

0xFFCO0 3198

EMAC_TXC_XS_COL
(FramesAbortedDueToXSColls)
30.3.1.1.11

Holds a count of frames that are not
transmitted successfully due to excessive
collisions. This counter is incremented
when the number of attempts equals 16
during a transmission. Note this does
not include frames that are successfully
transmitted on the last possible
attempt.

0xFFCO0 319C

EMAC_TXC_DMAUND
(FramesLostDueTolntMACXmit
Error)

30.3.1.1.12

Holds a count of frames that would
otherwise be transmitted by the station,
but could not be sent due to an internal
MAC sublayer transmit error. If this
counter is incremented, then none of
the other transmit counters are incre-
mented. This counts frames whose
transmission is interrupted by incom-
plete DMA transfer from memory, as
indicated by the DMA underrun status
bit.

8-62

ADSP-BF537 Blackfin Processor Hardware Reference

Ethernet MAC

Table 8-10. MAC Management Counter Registers (Cont’d)

MMR Address

Register Name
(IEEE Name)
IEEE 802.3 Reference

Description

0xFFCO0 31A0

EMAC_TXC_CRSERR
(CarrierSenseErrors)

30.3.1.1.13

Holds a count of the number of times
that carrier sense was not asserted or
was deasserted during the transmission
of a frame without collision.

0xFFCO0 31A4

EMAC_TXC_UNICST
(UnicastFramesXmitted OK)
No IEEE reference

Holds a count of frames counted by the
EMAC_TXC_OK register that are not
counted by the EMAC_TXC_MULTI or the
EMAC_TXC_BROAD register.

0xFFCO 31A8

EMAC_TXC_MULTI
(MulticastFramesXmitted OK)
30.3.1.1.18

Holds a count of frames that are suc-
cessfully transmitted to a group destina-
tion address other than broadcast.

0xFFCO0 31AC

EMAC_TXC_BROAD
(BroadcastFramesXmitted OK)
30.3.1.1.19

Holds a count of frames that are suc-
cessfully transmitted to the broadcast
address as indicated by the transmit sta-
tus of OK.

0xFFCO0 31B0

EMAC_TXC_XS_DFR
(FramesWithExcessiveDeferral)
30.3.1.1.20

Holds a count of frames that deferred
for an excessive period of time. This
counter can only be incremented once
per LLC transmission.

0xFFCO0 31B4

EMAC_TXC_MACCTL
(MACControlFramesTransmitted)
30.3.3.3

Holds a count of MAC control frames
passed to the MAC sublayer for trans-
mission. Note this counter is incre-
mented only when a MAC pause frame
is generated by writing to the EMAC_FLC
register. The counter is not incremented
for frames transmitted via the normal
DMA mechanism which happen to
contain valid MAC pause data.

0xFFCO 31B8

EMAC_TXC_ALLFRM
(FramesTransmittedAll)
No IEEE reference

Holds a count of all frames whose trans-
mission has been attempted, regardless
of success. Each frame is counted only
once, regardless of the number of retry
attempts.

ADSP-BF537 Blackfin Processor Hardware Reference

8-63

Ethernet MAC Register Definitions

Table 8-10. MAC Management Counter Registers (Cont’d)

MMR Address

Register Name
(IEEE Name)
IEEE 802.3 Reference

Description

0xFFCO0 31BC

EMAC_TXC_ALLOCT
(OctetsTransmittedAll)
No IEEE reference

Holds a count of all octets in all frames
whose transmission has been attempted,
regardless of success. Each frame’s
length is counted only once, regardless
of the number of retry attempts.

0xFFCO0 31C0

EMAC_TXC_EQ64
(FramesLenEq64 Transmitted)
No IEEE reference

Holds a count of all frames with status
transmit OK that have a length of
exactly 64 bytes.

0xFFCO0 31C4

EMAC_TXC_LT128
(FramesLen65_127Transmitted)
No IEEE reference

Holds a count of all frames transmitted
with status transmit OK that have a
length between 65 and 127 bytes, inclu-
sive.

0xFFCO0 31C8

EMAC_TXC_LT256
(FramesLen128_255Transmitted)
No IEEE reference

Holds a count of all frames transmitted
with status transmit OK that have a
length between 128 and 225 bytes,
inclusive.

0xFFCO0 31CC

EMAC_TXC_LT512
(FramesLen256_511Transmitted)
No IEEE reference

Holds a count of all frames transmitted
with status transmit OK that have a
length between 256 and 511 bytes,

inclusive.

0xFFCO0 31D0

EMAC_TXC_LT1024
(FramesLen512_1023Transmitted)
No IEEE reference

Holds a count of all frames transmitted
with status transmit OK that have a
length between 512 and 1023 bytes,

inclusive.

0xFFCO0 31D4

EMAC_TXC_GE1024
(FramesLen1024_MaxTransmitted)
No IEEE reference

Holds a count of all frames transmitted
with status transmit OK that have a
length greater than or equal to 1024
bytes but not greater than the maxi-
mum frame size.

0xFFCO0 31D8

EMAC_TXC_ABORT
(TxAbortedFrames)
No IEEE reference

Holds a count of all frames attempted
that were not successfully transmitted
with status of transmit OK.

8-64

ADSP-BF537 Blackfin Processor Hardware Reference

Ethernet MAC

Control-Status Register Group

This set of registers is used by the application software to configure and
monitor the functionality of the MAC block.

EMAC_OPMODE Register

The EMAC_OPMODE register, shown in Figure 8-13, controls the address fil-
tering and collision response characteristics of the Ethernet controller in

both the RX and TX modes.

MAC Operating Mode Register (EMAC_OPMODE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0xFFCO0 3000 |o|o|o|o|o|o|o|o|o|o |o|o o|o|o|o|Reset=0x00000000
DRO (Disable Receive TE (Transmitter Enable)
Own Frames) DTXPAD (Di e A

LB (Internal Loopback matic TX (Paltsj:i?ne) uto-
Enable) DTXCRC (Di blg Aut
FDMODE (Full Duplex Mode) matic TX (CFIi%aG:ne:'ja?i;n)
RMII_10

RMII7 DC (Deferred Check)
LCTRE (Enable TX Retry BOLMT([1:0] (TX Back-Off
on Late Collision) Limit)

DRTY (Disable TX Retry
on Collision)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
I°|°|°|°I°|0|°|°I°|°|0|°I°|°|°|0

RAF (Receive All ‘

Frames) RE (Receiver Enable)

PSF (Pass Short Frames) ASTP (Enable Automatic Pad
PBF (Pass Bad Frames) Stripping)

DBF (Disable Broadcast HU (Hash Filter Unicast
Frame Reception) Addresses)
IFE (Inverse Filtering) HM (Hash Filter Multicast
PR (Promiscuous Mode) Addresses)
PAM (Pass All Multicast
Mode)

Figure 8-13. MAC Operating Mode Register

ADSP-BF537 Blackfin Processor Hardware Reference 8-65

Ethernet MAC Register Definitions

Additional information for the EMAC_OPMODE register bits includes:

Disable receive own frames (DR0)

When set in half-duplex mode, this bit blocks all frames transmit-
ted by the MAC from being read into the receive path. This bit
should be reset when the MAC is operating in full-duplex mode.
MII mode only.

[1] Receive own frames disabled.

[0] Receive own frames enabled.
Internal loopback enable (LB)

When internal loopback is enabled, the frames transmitted by the
MAC are internally redirected to the receive MAC port. Loopback
operation is supported in MII mode; loopback is not supported in
RMII mode. During loopback, the external MII port is inactive.
The RX pins are ignored and the TX pins are set to TXEN = 0,

TXD =1111. Loopback in not supported in RMII mode.

[1] Internal loopback enabled.

[0] Internal loopback not enabled.
Full duplex mode (FDMODE)

[1] Full duplex mode selected.

[0] Half duplex mode selected.

8-66

ADSP-BF537 Blackfin Processor Hardware Reference

Ethernet MAC

* RMII port speed selector (RMI1_10)

When the interface is configured for RMII operation, software
must query the PHY after any automatic negotiation to determine
the link speed, and set the RMII port speed selector accordingly.
This is because in RMII mode, the REFCLK input is always a
constant speed regardless of link speed. In MII mode, by contrast,
the PHY decreases the speed of the RXCLK and TXCLK to 2.5 MHz
when the link speed is 10 M bits.

[1] Speed for RMII port is 10 M bits.

[0] Speed for RMII port is 100 M bits.
e RMII mode (RMII)

This bit is used to select which interface, RMII or MII, is used by
the MAC to transfer data to and from the external PHY. Note that
MII and RMII modes use slightly different sets of package pins.
Program different values into the PORTH_FER register accordingly.

[1] RMII mode.

[0] MII mode.
* Enable TX retry on late collision (LCTRE)

[1] TX retry on late collision enabled.

[0] TX retry on late collision not enabled.
* Disable TX retry on collision (DRTY)

[1] TX retry on collision disabled.

[0] TX retry on collision not disabled.

ADSP-BF537 Blackfin Processor Hardware Reference 8-67

Ethernet MAC Register Definitions

TX back-off limit (BOLMT[1:0])

This field sets an upper bound on the random back-off interval
time before the MAC resends a packet in the event of a collision.
The bound can be set to 1, 15, 255, or 1023 slot times (1 slot
time = 128 MII clock cycles). Thus, varying levels of aggressiveness
with regard to packet re-transmission can be selected.

[00] The number of bits is 10 and the maximum back-off time is
1023 slots (relaxed, standard-compliant behavior).

[01] The number of bits is 8 and the maximum back-off time is
255 slots.

[10] The number of bits is 4 and the maximum back-off time is 15
slots.

[11] The number of bits is 1 and the maximum back-off time is 1
slot (aggressive)

Deferral check (DC)

In half-duplex operation, a frame whose transmission defers to
incoming traffic for longer than two maximum-length frame times
is considered to have been excessively deferred. This time is

(2 x 1518 x 2) = 6072 MII clocks. See IEEE 802.3 section 5.2.4.1
for more information.

[1] Enables the MAC to abort transmission of frames that encoun-
ter excessive deferral.

[0] The MAC cannot abort transmission of frames due to excessive

deferral.

8-68

ADSP-BF537 Blackfin Processor Hardware Reference

Ethernet MAC

* Disable automatic TX CRC generation (DTXCRC)

[1] Automatic TX CRC generation is disabled.

[0] Automatic TX CRC generation is enabled. Four CRC bytes are
appended to the frame data.

* Disable automatic TX padding (DTXPAD)

[1] Automatic TX padding of frames shorter than 64 bytes is dis-
abled.

[0] Automatic TX padding is enabled. Pad bytes with value 0 are
appended to the data, followed by the CRC, so that the minimum
frame size is 64 bytes.

e Transmitter enable (TE)

The MAC transmitter is reset when TE is 0. A rising (0 to 1) transi-
tion on TE causes the TX current frame status register and the TX
sticky frame status register to be reset. TE and RE may be enabled
either individually or together in either MII or RMII mode.

e Receive all frames (RAF)

[1] Overrides the address and frame filters and causes all frames or
frame fragments to be transferred to memory by DMA.

[0] Does not override filters.
* Pass short frame (PSF)

[1] Short frames are not rejected by the frame filter.

[0] The frame filter rejects frames with frame-too-short errors (runt
frames, or frames with total length less than 64 bytes not including
preamble).

ADSP-BF537 Blackfin Processor Hardware Reference 8-69

Ethernet MAC Register Definitions

Pass bad frames (PBF)

[1] Pass bad frames enabled.

[0] The frame filter rejects frames with FCS errors, alignment
errors, length errors, frame-too-long errors, and DMA overrun
errors.

Disable broadcast frame reception (DBF)

[1] Removes the broadcast address (all 1s) from the set of addresses
passed by the address filter, overriding promiscuous mode.

[0] Broadcast frame reception not disabled.
Inverse filtering (1FE)

[1] Removes the MAC address programmed in the EMAC_ADDRHI
and EMAC_ADDRLO registers from the set of addresses passed by the
address filter, overriding PR (promiscuous) and HU (hash unicast)
modes. The effect is to block reception of a specific destination

address.

[0] Inverse filtering not enabled.
Promiscuous mode (PR)

[1] Promiscuous mode enabled, the address filter accepts all
addresses.

[0] Promiscuous mode not enabled.
Pass all multicast mode (PAM)

[1] All multicast frames are added to the set of addresses passed by
the address filter.

[0] Do not pass all multicast frames.

8-70

ADSP-BF537 Blackfin Processor Hardware Reference

Ethernet MAC

e Hash filter multicast addresses (HM)

[1] Adds multicast addresses that match the hash table to the set of
addresses passed by the address filter.

[0] Does not add multicast addresses that match the hash table to
the set of addresses passed by the address filter.

* Hash filter unicast addresses (HU)

[1] Adds unicast addresses that match the hash table to the set of
addresses passed by the address filter.

[0] Does not add unicast addresses that match the hash table to the
set of addresses passed by the address filter.

* Automatic pad stripping enable (ASTP)

A received frame contains pad bytes if it is in IEEE format (the
length/type field contains a length value < 0x600) and if the length
value is less than 46 (corresponding to a frame whose total length
including header and FCS is less than 64 bytes). If ASTP = 1, both
the pad and the FCS bytes are removed from the received data.

[1] Automatic pad stripping is enabled.

[0] Automatic pad stripping is not enabled.
* Receiver enable (RE)

The MAC transmitter is reset when RE is 0. A rising (0 to 1) transi-
tion on RE causes the RX current frame status register and the RX
sticky frame status register to be reset. RE and TE may be enabled
either individually or together in either MII or RMII mode.

ADSP-BF537 Blackfin Processor Hardware Reference 8-71

Ethernet MAC Register Definitions

EMAC_ADDRLO Register

The EMAC_ADDRLO register, shown in Figure 8-14, holds the low part of the
unique 48-bit station address of the MAC hardware. Writes to this register
must be performed while the MAC receive and transmit paths are both
disabled. The byte order of address transfer is lowest significant byte first
and lowest significant bit first on the MII. Thus EMAC_ADDRLO[3:0] is the
first nibble transferred and EMAC_ADDRHI[15:12] is the last nibble.

For example, the address 00:12:34:56:78:9A (where 00 is transferred first
and 9A is transferred last) would be programmed as:

EMAC_ADDRLO
EMAC_ADDRHI

0x56341200
0x00009A78

MAC Address Low Register (EMAC_ADDRLO)
R/W, except cannot be written if RX or TX is enabled in the EMAC_OPMODE register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
0xFFCO0 3004 1 |1 |1 |1 |1 |1 |1 |1 |1 |1 |1 |1 |1 |1 |1 |1 Reset = 0XFFFF FFFF

| MAC Address Low[31:16]

15 14 13 12 11 10

I1|1|1|1I1|1|1|1I1|1 |1|1I1|1|1|1I
| MAC Address Low[15:0]

Figure 8-14. MAC Address Low Register

EMAC_ADDRHI Register

The EMAC_ADDRHI register, shown in Figure 8-15, holds the high part of
the unique 48-bit station address of the MAC hardware. Writes to this
register must be performed while the MAC receive and transmit paths are

both disabled.

8-72 ADSP-BF537 Blackfin Processor Hardware Reference

Ethernet MAC

MAC Address High Register (EMAC_ADDRHI)
R/W, except cannot be written if RX or TX is enabled in the EMAC_OPMODE register.

31 30 20 28 27 26 25 24 23 22 21 20 19 18 17 16
0xFFCO 3008 Io |o |o |o Io |o |o |o |o |o |o |o Io |o |o |o I Reset = 0x0000 FFFF

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
SNENENEN (NENENEN ENENENEN ENERERER
| |

| MAC Address High[15:0]

Figure 8-15. MAC Address High Register

EMAC_HASHLO Register

The EMAC_HASHLO register holds the values for bins 31-0 of the multicast
hash table (Figure 8-16).

The EMAC_HASHHI register holds the values for bins 63-32 of the
multicast hash table (see “EMAC_HASHHI Register” on
page 8-76).

The 64-bit multicast table is used for multicast frame address filtering. A
cyclic redundancy check (CRC) based hash table scheme is used. After the
destination address (6th byte) of the frame is received, the state of the
CRC-32 checksum unit is sampled. This CRC-32 unit implements the
IEEE 802.3 CRC algorithm used in validating the FCS field of the frame.
The 6 most significant bits from this state identify one of 64 hash bins
representing the frame’s destination address. These 6 bits are then used to
index into the two hash table registers and extract the corresponding hash
bin enable bit. The most significant bit of this value determines the regis-
ter to be used (high/low) while the other five bits determine the bit
position within the register. A CRC value of 000000 selects bit 0 of the
MAC multicast hash table low register and a CRC value of 111111 selects
bit 31 of the MAC multicast hash table high register.

ADSP-BF537 Blackfin Processor Hardware Reference 8-73

Ethernet MAC Register Definitions

MAC Multicast Hash Table Low Register (EMAC_HASHLO)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0XxFFCO 300C |o |o |0 |o |o |o |o |0 |o |o |o |o |0 |0 |o |o | Reset = 0x0000 0000
Bin 31 J L Bin 16
Bin 30 L Bin 17
Bin 29 Bin 18
Bin 28 Bin 19
Bin 27 Bin 20
Bin 26 Bin 21
Bin 25 Bin 22
Bin 24 Bin 23

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
o Jo o Jo Jo Jo o Jo Jo o oo fo oo o |

Bin 15 4| L Bin 0
Bin 14 Bin 1

Bin 13 Bin 2
Bin 12 Bin 3
Bin 11 Bin 4
Bin 10 Bin 5
Bin 9 Bin 6
Bin 8 Bin 7

Figure 8-16. MAC Multicast Hash Table Low Register

If the corresponding bit in the hash table register is set, the multicast
frame is accepted. Otherwise, it is rejected. If the PM bit in the
EMAC_OPMODE register is set, all multicast frames are accepted regardless of
the hash values.

For example, consider the calculation of the hash bin for the MAC address
01.23.45.67.89.AB. The CRC algorithm uses an LFSR with the prime
generator polynomial specified in /EEE 802.3 Sec 3.2.8:

G(X)=X52+X26+X25+X22+X16+X12+X11+X10+X8+X7+X5+X4+X2

+x+ 1

8-74 ADSP-BF537 Blackfin Processor Hardware Reference

Ethernet MAC

The bits of the MAC address are fed in leftmost byte first, least significant
bit first, in this sequence (left to right):

1000 0000 1100 0100 1010 0010 1110 0110 1001 0001 1101 0101

The 32-bit CRC register is initialized to all 1s. Then each input bit is pro-
cessed as follows: first, the register is shifted left one place, shifting in a
zero and shifting out the former MSB. The bit just shifted out is XOR’ed
with the current input bit, yielding the feedback bit. If this feedback bit is
a 1, then the shift register contents are XOR’ed with the generator polyno-
mial value:

0x04C1 1DB7 = 0000 0100 1100 0001 0001 1101 1011 0111

Following this procedure, the CRC-32 for the MAC address is calculated.
See Table 8-11.

Table 8-11. CRC-32 Calculation

Bit Input Bit |[MSB Bit |Feedback |Next CRC Shift Register

Number Bit

Start 11111111 1111 1111 1111 1111 1111 1111
0 1 1 0 11111111 11111111 1111 1111 1111 1110
1 0 1 1 11111011 0011 11101110 0010 0100 1011
2 0 1 1 1111 0010 1011 1100 1101 1001 0010 0001
3 0 1 1 1110 0001 1011 1000 1010 1111 1111 0101
4 0 1 1 1100 0111 1011 0000 0100 0010 0101 1101
5 0 1 1 1000 1011 1010 0001 1001 1001 0000 1101
6 0 1 1 0001 0011 1000 0010 0010 1111 1010 1101
7 0 0 0 00100111 0000 0100 0101 1111 0101 1010
46 0 1 1 1101 0011 1001 0111 1111 0100 0100 1001
47 1 1 0 1010 0111 0010 1111 1110 1000 1001 0010

ADSP-BF537 Blackfin Processor Hardware Reference 8-75

Ethernet MAC Register Definitions

The resulting six MSBs are 101001 = 0x29 = 41 decimal. The hash bin
enable bit for this address is then bit 41 — 32 = 9 of the EMAC_HASHHI
register.

EMAC_HASHHI Register

The EMAC_HASHHI register holds the values for bins 63-32 of the multicast
hash table. The EMAC_HASHLO register holds the values for bins 31-0 of the
multicast hash table. (See “EMAC_HASHLO Register” on page 8-73 on
the use of the multicast hash table for multicast frame address filtering.)

MAC Multicast Hash Table High Register (EMAC_HASHH]I)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0xFFCO0 3010 |o |o |o |o |o |o |o |o |o |o |o |o |o |o |o |o | Reset = 0x0000 0000
Bin 63 J L Bin 48
Bin 62 Bin 49
Bin 61 Bin 50
Bin 60 Bin 51
Bin 59 Bin 52
Bin 58 Bin 53
Bin 57 Bin 54
Bin 56 Bin 55

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[ofofofofofofofofofofofofofofo]o]

aim 48 % LLiiﬁii

Bin 45 Bin 34
Bin 44 Bin 35
Bin 43 Bin 36
Bin 42 Bin 37
Bin 41 Bin 38
Bin 40 Bin 39

Figure 8-17. MAC Multicast Hash Table High Register

8-76 ADSP-BF537 Blackfin Processor Hardware Reference

Ethernet MAC

EMAC_STAADD Register

The EMAC_STAADD register, shown in Figure 8-18, controls the transactions
between the MII management (MIM) block and the registers on the exter-

nal PHY. These transactions are used to appropriately configure the PHY
and monitor its performance.

MAC Station Management Address Register (EMAC_STAADD)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
0xFFCO 3014 |o |o |o |o |o |o |o |o |o |o |o |o |o |o |o |o| Reset = 0x0000 0000

1514 1312 1110 9 8 7 6 5 4 3 2 1 0
o|o|o|o|o o|o|o|o|o|o|o|o|o|o|o|

| L
PHYAD[4:0] (PHY STABUSY (STA Busy
Device Address) ——— Status) - RO
REGADI[4:0] (STA Register Address) STAOP (Station Manage-
STAIE (Station Management ment Operatlor.i Code)
Transfer Done Interrupt Enable) STADISPRE (Disable

Preamble Generation)
Figure 8-18. MAC Station Management Address Register
Additional information for the EMAC_STAADD register bits includes:
* Station management transfer done interrupt enable (STAIE)

[1] Enables an Ethernet event interrupt at the completion of a sta-

tion management register access (when STABUSY changes from 1 to
0).

[0] Interrupt not enabled.
* Disable preamble generation (STADISPRE)

[1] Preamble generation (32 ones) for station management trans-

fers disabled.

[0] Preamble generation for station management transfers not

disabled.

ADSP-BF537 Blackfin Processor Hardware Reference 8-77

Ethernet MAC Register Definitions

* Station management operation code (STAOP)

[1] Write.

[0] Read.
* STA busy status (STABUSY)

This bit should be set by the application software in order to initi-
ate a station management register access. This bit is automatically
cleared when the access is complete. The MAC ignores new trans-
fer requests made while the serial interface is busy. Writes to the
STA address or data registers are discarded if STABUSY is 1.

[1] Initiate a station management register access across

MDC/MDIO.

[0] No operation.

EMAC_STADAT Register

The EMAC_STADAT register, shown in Figure 8-19, contains either the data
to be written to the PHY register specified in the MAC station manage-
ment address register, or the data read from the PHY register whose
address is specified in the MAC station management address register.

MAC Station Management Data Register (EMAC_STADAT)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
0xFFCO 3018 |o |o |o |o |o |o |o |o |o |o |o |o |o |o |o |o | Reset = 0x0000 0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ENENCHCN CHENENEN CAENENEY CHEREREE
L |

| STADATA[15:0] (Station
Management Data)

Figure 8-19. MAC Station Management Data Register

8-78 ADSP-BF537 Blackfin Processor Hardware Reference

Ethernet MAC

EMAC_FLC Register

The EMAC_FLC register, shown in Figure 8-20, controls the generation and
reception of control frames by the MAC.

MAC Flow Control Register (EMAC_FLC)

31 30 20 28 27 26 25 24 23 22 21 20 19 18 17 16
0xFFCO0 301C |o |o |o |0 |o |o |o |o |0 |o |o |o |o |0 |o |o | Reset = 0x0000 0000
| |

FLCPAUSE[15:0] (Pause Time)
15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
R T TR R R ERE R ENCHEREN

BKPRSEN (Enable ‘ ‘

Backpressure) FLCBUSY (Flow Control

Busy Status)
FLCE (Flow Control Enable)

PCF (Pass Control Frames)

Figure 8-20. MAC Flow Control Register

The control frame fields are selected as specified in the IEEE 802.3 speci-
fication. When flow control is enabled, the MAC acts upon MAC control
pause frames received without errors. When an error-free MAC control
pause frame is received (with length/type = MacControl = 88-08 and with
opcode = pause = 00-01), the transmitter defers starting new frames for
the number of slot times specified by the pause time field in the control
frame.

The MAC can also generate and transmit a MAC control pause frame
when the EMAC_FLC register is written with FLCBUSY = 1 and FLCPAUSE
equal to the number of slot times of deferral being requested.

Additional information for the EMAC_FLC register bits includes:
e Pause time (FLCPAUSE)

The number of slot times for which the transmission of new frames

is deferred.

ADSP-BF537 Blackfin Processor Hardware Reference 8-79

Ethernet MAC Register Definitions

Enable back pressure (BKPRSEN)

Available only in half-duplex mode, this bit can be used as a form
of flow control.

[1] Prevents frame reception by colliding with (continuously trans-
mitting a jam pattern during) every incoming frame.

[0] Transmit and receive function is normal.
Pass control frames (PCF)

When cleared, the PCF bit causes the frame filter to reject all con-
trol frames (frames with length/type field equal to 88-08). When
cleared, error-free pause control frames are still interpreted (if
enabled by FLCE) but are not delivered via DMA.

[1] Pass control frames.

[0] Do not pass control frames.
Flow control enable (FLCE)

When set, this bit enables interpretation of MAC control pause
frames that are received without errors.

[1] Flow control enabled.

[0] Flow control not enabled.

8-80

ADSP-BF537 Blackfin Processor Hardware Reference

Ethernet MAC

* FLC busy status (FLCBUSY)

Setting this bit triggers the MAC to send a control frame. The
MAC automatically clears the FLCBUSY bit once the control frame
has been transferred onto the physical medium. Writes to the flow
control register are discarded if FLCBUSY is 1.

[1] Initiate sending flow control frame.
[0] No operation.

EMAC_VLANT1 Register

The EMAC_VLANI register, shown in Figure 8-21, contains the tag fields
used to identify VLAN frames.

MAC VLAN1 Tag Register (EMAC_VLAN1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
0xFFCO0 3020 Io |o |0 |o Io |o |o |0 Io |o |o |o Io |0 |o |o I Reset = 0x0000 FFFF

15 14 13 12 11 10 9 8

I1|1|‘|1I1|1|1|‘I‘|1 |1|1I‘|1|1|1I

| VLAN1TAG[15:0]
(Length/Type Tag)

Figure 8-21. MAC VLANI1 Tag Register

The MAC compares the 13th and 14th bytes of the incoming frame field
to the values contained in these registers, so that the 13th frame byte is
compared to the most significant byte of the registers and the 14th frame
byte is compared to the least significant byte of the registers. If a match is
found, the appropriate bit is set in the RX status register. In the case of a
VLANI1 match, the legal length of the frame is then increased from 1518
bytes to 1522 bytes.

ADSP-BF537 Blackfin Processor Hardware Reference 8-81

Ethernet MAC Register Definitions

EMAC_VLAN2 Register

The EMAC_VLAN? register, shown in Figure 8-22, contains the tag fields
used to identify VLAN frames. The MAC compares the 13th and 14th
bytes of the incoming frame field to the values contained in these registers,
so that the 13th frame byte is compared to the most significant byte of the
registers and the 14th frame byte is compared to the least significant byte
of the registers. If a match is found, the appropriate bit is set in the RX
status register. In the case of a VLAN2 match, the legal length of the
frame is then increased from 1518 bytes to 1538 bytes.

MAC VLAN2 Tag Register (EMAC_VLAN2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
0xFFCO 3024 Io |o |o |o |o |o |o |o |o |o |o |o |o |o |o |o | Reset = 0x0000 FFFF

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

KNENENEN (NERENEN ENENENED (NENENER
| |

| VLAN2TAG[15:0]
(Length/Type Tag)

Figure 8-22. MAC VLAN2 Tag Register

EMAC_WKUP_CTL Register

The EMAC_WKUP_CTL register, shown in Figure 8-23, contains data pertain-
ing to the MAC’s remote wakeup status and capabilities. A write to the
EMAC_WKUP_CTL register causes an update into the receive clock
domain of all the wakeup filter registers. Changes to these other registers
do not affect the operation of the MAC until the EMAC_WKUP_CTL
register is written. For this reason, it is reccommended that the wakeup fil-
ters be programmed by writing all of the other registers first, and writing

the EMAC_WKUP_CTL register last.

8-82 ADSP-BF537 Blackfin Processor Hardware Reference

Ethernet MAC

MAC Wakeup Frame Control and Status Register (EMAC_WKUP_CTL)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
0xFFCO0 302C |o |o |o |o |o |o |o |o |o |o |o |o Io |o |o |o | Reset = 0x0000 0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[ofofofo]oofofofofofofofo]ofo]o]

RWKS[3:0] (Wakeup Frame CAPWKFRM (Capture
Received Status) - W1IC ——— Wakeup Fra'mes)
MPKS (Magic Packet Received MPKE (Magic Packet Wakeup

Status) - W1C Enable)
RWKE (Remote Wakeup

Frame Enable)
GUWKE (Global Uni-
cast Wakeup Enable)

Figure 8-23. MAC Wakeup Frame Control and Status Register

Additional information for the EMAC_WKUP_CTL register bits includes:
* Wakeup frame received status (RWKS)

These four frame status bits flag the receipt of wakeup frames cor-
responding to the respective wakeup frame filters.

* Magic packet received status (MPKS)

This bit is set by the MAC when it receives the magic packet
received wakeup call. The MAC then resumes operation in the nor-
mal powered-up mode.

[1] Magic packet received.

[0] Magic packet not received.

ADSP-BF537 Blackfin Processor Hardware Reference 8-83

Ethernet MAC Register Definitions

Global unicast wake enable (GUWKE)

When set, configures the MAC to wake up from the power-down
mode on receipt of a global unicast frame. Such a frame has the

MAC address [1:0] bits cleared.

[1] Global unicast wake enabled.

[0] Global unicast wake not enabled.
Remote wakeup frame enable (RWKE)

When set, this bit enables the remote wakeup frame power-down
mode.

[1] Remote wakeup frame enabled.

[0] Remote wakeup frame not enabled.
Magic packet wakeup enable (MPKE)

When set, this bit enables the magic packet wakeup power-down
mode.

[1] Magic packet wakeup enabled.

[0] Magic packet wakeup not enabled.
Capture wakeup frames (CAPWKFRM)

[1] RX frames are delivered via DMA while in power-down mode
(when either MPKE or RWKE is set).

[0] The RX DMA pathway is disabled when MPKE or RWKE is set.

8-84

ADSP-BF537 Blackfin Processor Hardware Reference

Ethernet MAC

EMAC_WKUP_FFMSKx Registers

The EMAC_WKUP_FFMSKO, EMAC_WKUP_FFMSK1, EMAC_WKUP_FFMSK2, and
EMAC_WKUP_FFMSK3 registers (see Figure 8-24 through Figure 8-27) are a
part of the mechanism used to select which bytes in a received frame are
used for CRC computation.

Each bit in these registers functions as a byte enable. If a bit i is set, then
the byte (offset + i) is used for CRC computation, where offset is con-
tained in the EMAC_WKUP_FFOFF register.

For example, to identify a wakeup packet containing the byte sequence
(0x80, 0x81, 0x82) in bytes 14, 15, and 17, the filter offset register should
be set to 14 and the byte mask should be set to 0x000B. This byte mask
has bits 0, 1, and 3 set, so that bytes 14+0, 14+1, and 14+3 are selected.

ADSP-BF537 Blackfin Processor Hardware Reference 8-85

Ethernet MAC Register Definitions

MAC Wakeup Frame0 Byte Mask Register (EMAC_WKUP_FFMSKO0)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
Io |o |o |o Io |o |o |o Io |o |o |o Io |o |o |o | Reset = 0x0000 0000

J L Byte Enable 16

0xFFCO 3030

Byte Enable 31

Byte Enable 30
Byte Enable 29
Byte Enable 28
Byte Enable 27
Byte Enable 26
Byte Enable 25
Byte Enable 24

Byte Enable 15
Byte Enable 14
Byte Enable 13
Byte Enable 12
Byte Enable 11
Byte Enable 10
Byte Enable 9

Byte Enable 8

Byte Enable 17
Byte Enable 18
Byte Enable 19
Byte Enable 20

Byte Enable 21

Byte Enable 22

_

15 14 13 12 11 10 9 8 7 6 5 4

3

2

1

0

Byte Enable 23

[ofofo oo fofofofofofofoofo]o]o]

L

Byte Enable 0
Byte Enable 1
Byte Enable 2
Byte Enable 3
Byte Enable 4

Byte Enable 5

Byte Enable 6

Byte Enable 7

Figure 8-24. MAC Wakeup Frame0 Byte Mask Register

8-86

ADSP-BF537 Blackfin Processor Hardware Reference

MAC Wakeup Frame1 Byte Mask Register (EMAC_WKUP_FFMSK1)

0xFFCO 3034

Byte Enable 31
Byte Enable 30
Byte Enable 29
Byte Enable 28
Byte Enable 27
Byte Enable 26
Byte Enable 25
Byte Enable 24

Byte Enable 15
Byte Enable 14
Byte Enable 13
Byte Enable 12
Byte Enable 11
Byte Enable 10
Byte Enable 9

Byte Enable 8

]

31 30 29 28 27 26 25 24 23 22 21 20

19 18 17 16

Ethernet MAC

Io |o |o |o Io |o |o |o|o |o |o |o|o |o |o |o | Reset = 0x0000 0000

L Byte Enable 16

Byte Enable 17
Byte Enable 18
Byte Enable 19
Byte Enable 20

Byte Enable 21

Byte Enable 22

_

15 14 13 12 11 10 9 8 7 6 5 4

3

2

1

0

Byte Enable 23

[ofofofodofofofo]ofofofoofo]o]o]

L

Byte Enable 0
Byte Enable 1
Byte Enable 2
Byte Enable 3
Byte Enable 4

Byte Enable 5

Byte Enable 6

Byte Enable 7

Figure 8-25. MAC Wakeup Framel Byte Mask Register

ADSP-BF537 Blackfin Processor Hardware Reference

8-87

Ethernet MAC Register Definitions

MAC Wakeup Frame2 Byte Mask Register (EMAC_WKUP_FFMSK2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
Io |o |o |o Io |o |o |o Io |o |o |o Io |o |o |o | Reset = 0x0000 0000

J L Byte Enable 16

0xFFCO 3038

Byte Enable 31

Byte Enable 30
Byte Enable 29
Byte Enable 28
Byte Enable 27
Byte Enable 26
Byte Enable 25
Byte Enable 24

Byte Enable 15
Byte Enable 14
Byte Enable 13
Byte Enable 12
Byte Enable 11
Byte Enable 10
Byte Enable 9

Byte Enable 8

Byte Enable 17
Byte Enable 18
Byte Enable 19
Byte Enable 20

Byte Enable 21

Byte Enable 22

_

15 14 13 12 11 10 9 8 7 6 5 4

3

2

1

0

Byte Enable 23

[ofofo oo fofofofofofofoofo]o]o]

L

Byte Enable 0
Byte Enable 1
Byte Enable 2
Byte Enable 3
Byte Enable 4

Byte Enable 5

Byte Enable 6

Byte Enable 7

Figure 8-26. MAC Wakeup Frame2 Byte Mask Register

8-88

ADSP-BF537 Blackfin Processor Hardware Reference

MAC Wakeup Frame3 Byte Mask Register (EMAC_WKUP_FFMSK3)

0xFFCO 303C

Byte Enable 31
Byte Enable 30
Byte Enable 29
Byte Enable 28
Byte Enable 27
Byte Enable 26
Byte Enable 25
Byte Enable 24

Byte Enable 15
Byte Enable 14
Byte Enable 13
Byte Enable 12
Byte Enable 11
Byte Enable 10
Byte Enable 9

Byte Enable 8

]

31 30 29 28 27 26 25 24 23 22 21 20

19 18 17 16

Ethernet MAC

Io |o |o |o Io |o |o |o|o |o |o |o|o |o |o |o | Reset = 0x0000 0000

L Byte Enable 16

Byte Enable 17
Byte Enable 18
Byte Enable 19
Byte Enable 20

Byte Enable 21

Byte Enable 22

_

15 14 13 12 11 10 9 8 7 6 5 4

3

2

1

0

Byte Enable 23

[ofofofodofofofo]ofofofoofo]o]o]

L

Byte Enable 0
Byte Enable 1
Byte Enable 2
Byte Enable 3
Byte Enable 4

Byte Enable 5

Byte Enable 6

Byte Enable 7

Figure 8-27. MAC Wakeup Frame3 Byte Mask Register

ADSP-BF537 Blackfin Processor Hardware Reference

8-89

Ethernet MAC Register Definitions

EMAC_WKUP_FFCMD Register
The EMAC_WKUP_FFCMD register, shown in Figure 8-28, regulates which of
the four frame filter registers are enabled and if so, whether they are con-
figured for unicast or multicast address filtering.

MAC Wakeup Frame Filter Commands Register (EMAC_WKUP_FFCMD)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
Io |o |o |0 Io |o |o |o Io |0 |o |o Io Io |o |o| Reset = 0x0000 0000

0xFFCO 3040

Wakeup Filter 3 Address Enable Wakeup Filter 2
Type

Wakeup Filter 2 Address
Enable Wakeup Filter 3 Type

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[ofofo o fofofofofofofofofofofo]e]

Wakeup Filter 1 Address
Type
Enable Wakeup Filter 1

Enable Wakeup Filter 0
Wakeup Filter 0 Address
Type

Figure 8-28. MAC Wakeup Frame Filter Commands Register

Additional information for the EMAC_WKUP_FFCMD register bits includes:
* Wakeup filter 3 address type
[1] Multicast
[0] Unicast
* Enable wakeup filter 3
[1] Wakeup filter 3 enabled.

[0] Wakeup filter 3 not enabled.

8-90 ADSP-BF537 Blackfin Processor Hardware Reference

Ethernet MAC

* Wakeup filter 2 addr