
a

ABOUT ADSP-BF542/BF544/BF547/BF548/BF549 SILICON ANOMALIES
These anomalies represent the currently known differences between revisions of the Blackfin®ADSP-BF542/BF544/BF547/BF548/BF549
product(s) and the functionality specified in the ADSP-BF542/BF544/BF547/BF548/BF549 data sheet(s) and the Hardware Reference
book(s).

SILICON REVISIONS

A silicon revision number with the form "-x.x" is branded on all parts. If an 'M' suffix is affixed to the silicon revision, this indicates that the
device contains a mobile DDR SDRAM controller instead of a standard DDR controller and a standard DDR controller is not available. If
the 'M' suffix is not present, the silicon revision contains the standard DDR controller and is not available with a mobile DDR controller.
The implementation field bits <15:0> of the DSPID core MMR register can be used to differentiate the revisions as shown below.

Silicon REVISION DSPID<15:0>

0.4 0x0004

0.3M* 0x0003

* - M = Mobile DDR controller instead of standard DDR controller

APPLICABILITY

Each anomaly applies to specific silicon revisions. See Summary or Detailed List for affected revisions. Additionally, not all processors
described by this anomaly list have the same feature set. Therefore, peripheral-specific anomalies may not apply to all processors. See the
below table for details. An "x" indicates that anomalies related to this peripheral apply only to the model indicated, and the list of specific
anomalies for that peripheral appear in the rightmost column.

Peripheral ADSP-BF549 ADSP-BF548 ADSP-BF547 ADSP-BF544 ADSP-BF542 Anomalies

USB x x x x 05000450, 05000456, 05000460,
05000463, 05000464, 05000465,
05000466, 05000467, 05000483,
05000510

HDMA x x x x 05000457

ANOMALY LIST REVISION HISTORY

The following revision history lists the anomaly list revisions and major changes for each anomaly list revision.

Date Anomaly List Revision Data Sheet Revision Additions and Changes

01/26/2022 O E Modified Anomaly: 05000474

05/15/2020 N E Modified Anomaly: 05000512

03/10/2020 M E Added Anomaly: 05000512

01/25/2016 L E Added Anomalies: 05000329, 05000503, 05000506, 05000508,
05000510, 05000511
Revised Anomaly: 05000265
Removed Silicon Revision(s) 0.1, 0.2

ADSP-BF542/BF544/BF547/BF548/BF549

www.analog.comTechnical Support

Document Feedback

Blackfin
Embedded Processor

 Silicon Anomaly List

Blackfin is a registered trademark of Analog Devices, Inc.

NR003403O
Information furnished by Analog Devices is believed to be accurate and reliable.
However, no responsibility is assumed by Analog Devices for its use, nor for any
infringements of patents or other rights of third parties that may result from its use.
Specifications subject to change without notice. No license is granted by implication or
otherwise under any patent or patent rights of Analog Devices. Trademarks and
registered trademarks are the property of their respective owners.

One Technology Way, P.O.Box 9106, Norwood, MA 02062-9106 U.S.A.
Tel: 781.329.4700 ©2022 Analog Devices, Inc. All rights reserved.

http://www.analog.com
http://www.analog.com/ADSP-BF542
http://www.analog.com/ADSP-BF544
http://www.analog.com/ADSP-BF547
http://www.analog.com/ADSP-BF548
http://www.analog.com/ADSP-BF549
http://www.analog.com
http://www.analog.com/en/content/technical_support_page/fca.html
https://form.analog.com/Form_Pages/feedback/documentfeedback.aspx?doc=ADSP-BF542_BF544_BF547_BF548_BF549_anomaly_list.pdf&product=ADSP-BF542%20ADSP-BF544%20ADSP-BF547%20ADSP-BF548%20ADSP-BF549&rev=O

SUMMARY OF SILICON ANOMALIES
The following table provides a summary of ADSP-BF542/BF544/BF547/BF548/BF549 anomalies and the applicable silicon revision(s) for
each anomaly.

No. ID Description Rev
 0.3
M

Rev
 0.4

 1 05000074 Multi-Issue Instruction with dsp32shiftimm in slot1 and P-reg Store in slot2 Not Supported x x

 2 05000119 DMA_RUN Bit Is Not Valid after a Peripheral Receive Channel DMA Stops x x

 3 05000122 Rx.H Cannot Be Used to Access 16-bit System MMR Registers x x

 4 05000220 Data Corruption/Core Hang with L2/L3 Configured in Writeback Cache Mode x .

 5 05000245 False Hardware Error from an Access in the Shadow of a Conditional Branch x x

 6 05000265 Sensitivity To Noise with Slow Input Edge Rates on External SPORT TX and RX Clocks x x

 7 05000272 Certain Data Cache Writethrough Modes Fail for Vddint <= 0.9V x x

 8 05000310 False Hardware Errors Caused by Fetches at the Boundary of Reserved Memory x x

 9 05000329 Synchronous Burst Flash Boot Mode Is Not Functional x x

 10 05000357 Serial Port (SPORT) Multichannel Transmit Failure when Channel 0 Is Disabled x x

 11 05000360 External Memory Read Access Hangs Core With PLL Bypass x x

 12 05000365 DMAs that Go Urgent during Tight Core Writes to External Memory Are Blocked x x

 13 05000369 Addressing Conflict between Boot ROM and Asynchronous Memory x x

 14 05000405 Lockbox SESR Firmware Does Not Save/Restore Full Context x x

 15 05000408 Lockbox Firmware Memory Cleanup Routine Does not Clear Registers x x

 16 05000416 Speculative Fetches Can Cause Undesired External FIFO Operations x x

 17 05000425 Multichannel SPORT Channel Misalignment Under Specific Configuration x .

 18 05000426 Speculative Fetches of Indirect-Pointer Instructions Can Cause False Hardware Errors x x

 19 05000434 SW Breakpoints Ignored Upon Return From Lockbox Authentication x x

 20 05000443 IFLUSH Instruction at End of Hardware Loop Causes Infinite Stall x x

 21 05000446 CDMAPRIO and L2DMAPRIO Bits in the SYSCR Register Are Not Functional x x

 22 05000447 UART IrDA Receiver Fails on Extended Bit Pulses x x

 23 05000450 USB DMA Short Packet Data Corruption x .

 24 05000456 USB Receive Interrupt Is Not Generated in DMA Mode 1 x x

 25 05000457 Host DMA Port Responds to Certain Bus Activity Without HOST_CE Assertion x x

 26 05000460 USB DMA Mode 1 Failure When Multiple USB DMA Channels Are Concurrently Enabled x .

 27 05000461 False Hardware Error when RETI Points to Invalid Memory x x

 28 05000462 Synchronization Problem at Startup May Cause SPORT Transmit Channels to Misalign x .

 29 05000463 USB DMA RX Data Corruption x .

 30 05000464 USB TX DMA Hang x .

 31 05000465 USB Rx DMA Hang x x

 32 05000466 Simultaneous Core/DMA Access to USB Endpoint FIFOs Doesn't Set TX Endpoint TxPktRdy Bit x .

 33 05000467 Possible USB RX Data Corruption When Control & Data EP FIFOs are Accessed via the Core x .

 34 05000473 Interrupted SPORT Receive Data Register Read Results In Underflow when SLEN > 15 x x

 35 05000474 Access to DDR SDRAM Causes System Hang with Certain PLL Settings x .

 36 05000477 TESTSET Instruction Cannot Be Interrupted x x

 37 05000481 Reads of ITEST_COMMAND and ITEST_DATA Registers Cause Cache Corruption x x

 38 05000483 Possible USB Data Corruption When Multiple Endpoints Are Accessed by the Core x x

 39 05000485 PLL_CTL Change Using bfrom_SysControl() Can Result in Processor Overclocking x .

 40 05000489 PLL May Latch Incorrect Values Coming Out of Reset x x

ADSP-BF542/BF544/BF547/BF548/BF549

NR003403O | Page 2 of 35 | January 2022

 Silicon Anomaly List

http://www.analog.com/ADSP-BF542
http://www.analog.com/ADSP-BF544
http://www.analog.com/ADSP-BF547
http://www.analog.com/ADSP-BF548
http://www.analog.com/ADSP-BF549

No. ID Description Rev
 0.3
M

Rev
 0.4

 41 05000490 SPI Master Boot Can Fail Under Certain Conditions x x

 42 05000491 Instruction Memory Stalls Can Cause IFLUSH to Fail x x

 43 05000494 EXCPT Instruction May Be Lost If NMI Happens Simultaneously x x

 44 05000498 CNT_COMMAND Functionality Depends on CNT_IMASK Configuration x x

 45 05000500 NFC Hang When AMC Requests Async Pins During Last 16 Bytes of Page Write x x

 46 05000501 RXS Bit in SPI_STAT May Become Stuck In RX DMA Modes x x

 47 05000502 Async Memory Writes May Be Skipped When Using Odd Clock Ratios x x

 48 05000503 SPORT Sign-Extension May Not Work x x

 49 05000506 Hardware Loop Can Underflow Under Specific Conditions x x

 50 05000508 UART Receive DMA Hangs under Certain Conditions x x

 51 05000510 USB Wakeup from Hibernate State Requires Re-Enumeration x x

 52 05000511 Lower 16 Bits of CNT_COUNTER Register Do Not Update Properly . x

 53 05000512 ROM Accesses With Odd CCLK::SCLK Ratio Can Fail x x

Key: x = anomaly exists in revision
 . = Not applicable

ADSP-BF542/BF544/BF547/BF548/BF549

NR003403O | Page 3 of 35 | January 2022

 Silicon Anomaly List

http://www.analog.com/ADSP-BF542
http://www.analog.com/ADSP-BF544
http://www.analog.com/ADSP-BF547
http://www.analog.com/ADSP-BF548
http://www.analog.com/ADSP-BF549

DETAILED LIST OF SILICON ANOMALIES
The following list details all known silicon anomalies for the ADSP-BF542/BF544/BF547/BF548/BF549 including a description,
workaround, and identification of applicable silicon revisions.

1. 05000074 - Multi-Issue Instruction with dsp32shiftimm in slot1 and P-reg Store in slot2 Not Supported:

DESCRIPTION:
A multi-issue instruction with dsp32shiftimm in slot 1 and a P register store in slot 2 is not supported. It will cause an exception.

The following type of instruction is not supported because the P3 register is being stored in slot 2 with a dsp32shiftimm in slot 1:

 R0 = R0 << 0x1 || [P0] = P3 || NOP; // Not Supported - Exception

This also applies to rotate instructions:

 R0 = ROT R0 by 0x1 || [P0] = P3 || NOP; // Not Supported - Exception

Examples of supported instructions:

 R0 = R0 << 0x1 || [P0] = R1 || NOP;
 R0 = R0 << 0x1 || R1 = [P0] || NOP;
 R0 = R0 << 0x1 || P3 = [P0] || NOP;
 R0 = ROT R0 by R0.L || [P0] = P3 || NOP;

WORKAROUND:
In assembly programs, separate the multi-issue instruction into 2 separate instructions. This workaround may be built into the
development tool chain and/or into the operating system source code. For tool chains and operating systems supported by Analog
Devices (VisualDSP++, VDK, CrossCore Embedded Studio, the GNU Tool Chain, and the Linux kernel), please consult the "Silicon Anomaly
Tools Support" help page in the applicable documentation and release notes for details.

For all other tool chains and operating systems, see the appropriate supporting documentation for details.

APPLIES TO REVISION(S):
0.3M, 0.4

2. 05000119 - DMA_RUN Bit Is Not Valid after a Peripheral Receive Channel DMA Stops:

DESCRIPTION:
After completion of a Peripheral Receive DMA, the DMAx_IRQ_STATUS:DMA_RUN bit will be in an undefined state.

WORKAROUND:
The DMA interrupt and/or the DMAx_IRQ_STATUS:DMA_DONE bits should be used to determine when the channel has completed
running.

APPLIES TO REVISION(S):
0.3M, 0.4

ADSP-BF542/BF544/BF547/BF548/BF549

NR003403O | Page 4 of 35 | January 2022

 Silicon Anomaly List

http://www.analog.com/ADSP-BF542
http://www.analog.com/ADSP-BF544
http://www.analog.com/ADSP-BF547
http://www.analog.com/ADSP-BF548
http://www.analog.com/ADSP-BF549

3. 05000122 - Rx.H Cannot Be Used to Access 16-bit System MMR Registers:

DESCRIPTION:
When accessing 16-bit system MMR registers, the high half of the data registers may not be used. If a high half register is used, incorrect
data will be written to the system MMR register, but no exception will be generated. For example, this access would fail:

 W[P0] = R5.H; // P0 points to a 16-bit System MMR

WORKAROUND:
Use other forms of 16-bit transfers when accessing 16-bit system MMR registers. For example:

 W[P0] = R5.L; // P0 points to a 16-bit System MMR
 R4.L = W[P0];
 R3 = W[P0](Z);
 W[P0] = R3;

This workaround may be built into the development tool chain and/or into the operating system source code. For tool chains and
operating systems supported by Analog Devices (VisualDSP++, VDK, CrossCore Embedded Studio, the GNU Tool Chain, and the Linux
kernel), please consult the "Silicon Anomaly Tools Support" help page in the applicable documentation and release notes for details.

For all other tool chains and operating systems, see the appropriate supporting documentation for details.

APPLIES TO REVISION(S):
0.3M, 0.4

4. 05000220 - Data Corruption/Core Hang with L2/L3 Configured in Writeback Cache Mode:

DESCRIPTION:
This problem occurs with either on-chip L2 or external L3 memory configured in Write-Back Cache mode while the other level of memory
is either cached (Write-Back or Write-Through) or uncached.

Assuming L3 to be in Write-Back cache mode and L2 either cached or uncached, a specific sequence of events can result in either data
corruption in memory or a core hang. The trigger for these potential failures is when the cache is writing back to L3 memory, but the write
is held off due to an SDRAM row change or other activity on the External Memory Interface, such as a DMA access. If this scenario occurs
and the core:

1) issues a write to L2 during the hold-off, both L2 and L3 memory will have corrupted data.

2) issues a read from L2 during the hold-off, the read never completes, resulting in an infinite core hang.

The same failures occur with the opposite configuration as well. If the cache is writing back to on-chip L2 memory, and the core attempts
an access (read or write) to L3 memory, then the failures persist, albeit less frequently (due to the higher speed of accesses to L2 memory,
it is more difficult to stall the write-backs).

WORKAROUND:
If either L2 or L3 accesses are restricted to DMA, and Write-Back cache is used for the other level of memory, then the failure is avoided.
Failures also do not occur if there are no core accesses to one level of memory when the other level is cached.

Possible workarounds are:

1) Use Write-Through Cache Mode.

2) If the necessary accesses are infrequent and to a limited number of data locations, insert an SSYNC before the access. This will ensure
that all pending cache writes have completed.

APPLIES TO REVISION(S):
0.3M

ADSP-BF542/BF544/BF547/BF548/BF549

NR003403O | Page 5 of 35 | January 2022

 Silicon Anomaly List

http://www.analog.com/ADSP-BF542
http://www.analog.com/ADSP-BF544
http://www.analog.com/ADSP-BF547
http://www.analog.com/ADSP-BF548
http://www.analog.com/ADSP-BF549

5. 05000245 - False Hardware Error from an Access in the Shadow of a Conditional Branch:

DESCRIPTION:
If a load accesses reserved or illegal memory on the opposite control flow of a conditional jump to the taken path, a false hardware error
will occur.

The following sequences demonstrate how this can happen:

Sequence #1:
For the "predicted not taken" branch, the pipeline will load the instructions that sequentially follow the branch instruction that was
predicted not taken. By the pipeline design, these instructions can be speculatively executed before they are aborted due to the branch
misprediction. The anomaly occurs if any of the three instruction slots following the branch contain loads which might cause a hardware
error:

 BRCC X [predicted not taken]
 R0 = [P0]; // If any of these three loads accesses non-existent
 R1 = [P1]; // memory, such as external SDRAM when the SDRAM
 R2 = [P2]; // controller is off, then a hardware error will result.

Sequence #2:
For the "predicted taken" branch, the one instruction slot at the destination of the branch cannot contain an access which might cause a
hardware error:

 BRCC X (BP)
 Y: ...
 ...
 X: R0 = [P0]; // If this instruction accesses non-existent memory,
 // such as external SDRAM when the SDRAM controller
 // is off, then a hardware error will result.

WORKAROUND:
If you are programming in assembly, it is necessary to avoid the conditions described above.

This workaround may be built into the development tool chain and/or into the operating system source code. For tool chains and
operating systems supported by Analog Devices (VisualDSP++, VDK, CrossCore Embedded Studio, the GNU Tool Chain, and the Linux
kernel), please consult the "Silicon Anomaly Tools Support" help page in the applicable documentation and release notes for details.

For all other tool chains and operating systems, see the appropriate supporting documentation for details.

APPLIES TO REVISION(S):
0.3M, 0.4

ADSP-BF542/BF544/BF547/BF548/BF549

NR003403O | Page 6 of 35 | January 2022

 Silicon Anomaly List

http://www.analog.com/ADSP-BF542
http://www.analog.com/ADSP-BF544
http://www.analog.com/ADSP-BF547
http://www.analog.com/ADSP-BF548
http://www.analog.com/ADSP-BF549

6. 05000265 - Sensitivity To Noise with Slow Input Edge Rates on External SPORT TX and RX Clocks:

DESCRIPTION:
A noisy board environment combined with slow input edge rates on external SPORT receive (RSCLK) and transmit clocks (TSCLK) may
cause a variety of observable problems. When excessive noise occurs during high-frequency transitions on a slowly ramping RSCLK/TSCLK
signal, it can cause an additional bit-clock with a short period due to high sensitivity of the clock input. A slow slew rate input allows any
noise on the clock input around the switching point to cause the clock input to cross and re-cross the switching point. This oscillation can
cause a glitch clock pulse in the internal logic of the serial port, which can result in numerous operational failures.

Problems which may be observed due to this glitch clock pulse include:
• In stereo serial modes, a frame sync may be missed, causing left/right data swapping.
• In multi-channel mode, multi-channel frame delay (MFD) counts may appear inaccurate or frames may be skipped.
• In normal (early) frame sync mode, received data words could be shifted right one bit. The MSB may be incorrectly captured in sign

extension mode.
• In any mode, received or transmitted data words may appear to be partially right shifted if noise occurs on any input clocks between

the start of frame sync and the last bit to be received or transmitted.

In Stereo Serial mode (bit 9 set in SPORTx_RCR2), unexpected high frequency transitions on RSCLK/TSCLK can cause the SPORT to miss
rising or falling edges of the word clock. This causes left or right words of Stereo Serial data to be lost. This may be observed as a Left/
Right channel swap when listening to stereo audio signals. The additional noise-induced bit-clock pulse on the SPORT's internal logic
results in the FS edge-detection logic generating a pulse with a smaller width and, at the same time, prevents the SPORT from detecting
the external FS signal during the next "normal" bit-clock period. The FS pulse with smaller width, which is the output of the edge-
detection logic, is ignored by the SPORT's sequential logic. Due to the fact that the edge detection part of the frame sync logic was
already triggered, the next "normal" RSCLK will not detect the change in RFS. In I2S/EIAJ mode, this results in one stereo sample being
detected/transferred as two left/right channels, and all subsequent channels will be word-swapped in memory.

In multi-channel mode, the MFD logic receives the extra sync pulse and begins counting early or double-counting (if the count has
already begun). A MFD of zero can roll over to 15, as the count begins one cycle early.

In early frame sync mode, if the noise occurs on the driving edge of the clock the same cycle that FS becomes active, the FS logic receives
the extra runt pulse and begins counting the word length one cycle early. The first bit will be sampled twice and the last bit will be
skipped.

In all modes, if the noise occurs in any cycle after the FS becomes active, the bit counting logic receives the extra runt pulse and advances
too rapidly. If this occurs once during a work unit, it will finish counting the word length one cycle early. The bit where the noise occurs
will be sampled twice, and the last bit will be skipped.

While the above audio failures are possible signatures associated with this anomaly, numerous other failures are possible due to the
internal logic being subjected to what amounts to an out-of-spec clock signal. Even though the external signal is within specification, the
noise causes multiple transitions to be sensed where only one transition actually occurred, resulting in an out-of-spec clock being
presented to the internal logic. This can lead to illegal logic states and/or incorrect advancement of state machines, which adversely
affects the SPORT itself and synchronization with other logic units like the DMA engine. A number of failure scenarios may result from this,
including misreported SPORT/DMA errors and unexpected DMA halts.

WORKAROUND:
1) Decrease the sensitivity to noise by increasing the slew rate of the bit clock or make the rise and fall times of serial bit clocks short,

such that any noise around the transition produces a short duration noise-induced bit-clock pulse. This small high-frequency pulse
will not have any impact on the SPORT or on the detection of the frame-sync. Sharpen edges as much as possible, if this is suitable
and within EMI requirements.

2) If possible, use internally generated bit-clocks and frame-syncs.
3) Follow good PCB design practices. Shield RSCLK with respect to TSCLK lines to minimize coupling between the serial clocks.
4) Separate RSCLK, TSCLK, and Frame Sync traces on the board to minimize coupling which occurs at the driving edge when FS

switches.

A specific workaround for problems observed in Stereo Serial mode is to delay the frame-sync signal such that noise-induced bit-clock
pulses do not start processing the frame-sync. This can be achieved if there is a larger serial resistor in the frame-sync trace than the one in
the bit-clock trace. Frame-sync transitions should not cross the 50% point until the bit-clock crosses the 10% of VDD threshold (for a
falling edge bit-clock) or the 90% threshold (for a rising edge bit-clock).

APPLIES TO REVISION(S):
0.3M, 0.4

ADSP-BF542/BF544/BF547/BF548/BF549

NR003403O | Page 7 of 35 | January 2022

 Silicon Anomaly List

http://www.analog.com/ADSP-BF542
http://www.analog.com/ADSP-BF544
http://www.analog.com/ADSP-BF547
http://www.analog.com/ADSP-BF548
http://www.analog.com/ADSP-BF549

7. 05000272 - Certain Data Cache Writethrough Modes Fail for Vddint <= 0.9V:

DESCRIPTION:
Data can become corrupted if data cache is enabled in write through mode and the AOW bit of the DCPLB is not set and Vddint is 0.9V or
less.

WORKAROUND:
When Vddint <= 0.9V, either operate data cache in write back mode or set the AOW bit of the DCPLB when operating in write through
mode. When Vddint is greater than 0.9V, the anomaly does not exist.

APPLIES TO REVISION(S):
0.3M, 0.4

8. 05000310 - False Hardware Errors Caused by Fetches at the Boundary of Reserved Memory:

DESCRIPTION:
Due to fetches near boundaries of reserved memory, a false Hardware Error (External Memory Addressing Error) is generated under the
following conditions:

1) A single valid CPLB spans the boundary of the reserved space. For example, a CPLB with a start address at the beginning of L1
instruction memory and a size of 4MB will include the boundary to reserved memory.

2) Two separate valid CPLBs are defined, one that covers up to the byte before the boundary and a second that starts at the boundary
itself. For example, one CPLB is defined to cover the upper 1kB of L1 instruction memory before the boundary to reserved memory,
and a second CPLB is defined to cover the reserved space itself.

As long as both sides of the boundary to reserved memory are covered by valid CPLBs, the false error is generated. Note that this anomaly
also affects the boundary of the L1_code_cache region if instruction cache is enabled. In other words, the boundary to reserved memory,
as described above, moves to the start of the cacheable region when instruction cache is turned on.

WORKAROUND:
Leave at least 76 bytes free before any boundary with a reserved memory space. This will prevent false hardware errors from occurring.

This workaround may be built into the development tool chain and/or into the operating system source code. For tool chains and
operating systems supported by Analog Devices (VisualDSP++, VDK, CrossCore Embedded Studio, the GNU Tool Chain, and the Linux
kernel), please consult the "Silicon Anomaly Tools Support" help page in the applicable documentation and release notes for details.

For all other tool chains and operating systems, see the appropriate supporting documentation for details.

APPLIES TO REVISION(S):
0.3M, 0.4

9. 05000329 - Synchronous Burst Flash Boot Mode Is Not Functional:

DESCRIPTION:
The synchronous burst flash mode is not functional. Due to a missing mux on PORTI, the NORCLK does not appear on PI15.

WORKAROUND:
Use asynchronous flash mode for booting from NOR flash.

APPLIES TO REVISION(S):
0.3M, 0.4

ADSP-BF542/BF544/BF547/BF548/BF549

NR003403O | Page 8 of 35 | January 2022

 Silicon Anomaly List

http://www.analog.com/ADSP-BF542
http://www.analog.com/ADSP-BF544
http://www.analog.com/ADSP-BF547
http://www.analog.com/ADSP-BF548
http://www.analog.com/ADSP-BF549

10. 05000357 - Serial Port (SPORT) Multichannel Transmit Failure when Channel 0 Is Disabled:

DESCRIPTION:
When configured in multi-channel mode with channel 0 disabled, DMA transmit data will be sent to the wrong SPORT channel if all of the
following criteria are met:

1) External Receive Frame Sync (IRFS = 0 in SPORTx_RCR1)
2) Window Offset = 0 (WOFF = 0 in SPORTx_MCMC1)
3) Multichannel Frame Delay = 0 (MFD = 0 in SPORTx_MCMC2)
4) DMA Transmit Packing Disabled (MCDTXPE = 0 in SPORTx_MCMC2)

When this specific configuration is used, the multi-channel transmit data gets corrupted because whatever is in the channel 0 placeholder
in non-packed mode gets sent first, even though channel 0 is disabled. The result is a one-word data shift in the output window, which
repeats for each subsequent window in the serial stream. For example, if the non-packed transmit buffer is {0, 1, 2, 3, 4, 5, 6, 7}, and the
window size is 8 channels with channel 0 disabled and channels 1-7 enabled to transmit, the expected data sequence in a series of output
windows is:

1234567--1234567--1234567--1234567

With this anomaly, the output looks like this instead:

0123456--7012345--6701234--5670123

WORKAROUND:
There are several possible workarounds to this:

1) Disable Multichannel Mode
2) Use Internal Receive Frame Syncs
3) Use a Multichannel Frame Delay > 0
4) Use a Window Offset > 0
5) Enable DMA Transmit Packing
6) Do not disable Channel 0

APPLIES TO REVISION(S):
0.3M, 0.4

11. 05000360 - External Memory Read Access Hangs Core With PLL Bypass:

DESCRIPTION:
Core will hang if processor is placed in PLL bypass mode and a read operation is performed to an external memory location. This also
includes fetches made to the boot ROM.

WORKAROUND:
Implement one of the following:

1) Do not bypass PLL. If CCLK = SCLK is desired, program through CSEL and SSEL.
2) After bypassing PLL, write 0x0001 to PLL_DIV register before accessing external memory.

APPLIES TO REVISION(S):
0.3M, 0.4

ADSP-BF542/BF544/BF547/BF548/BF549

NR003403O | Page 9 of 35 | January 2022

 Silicon Anomaly List

http://www.analog.com/ADSP-BF542
http://www.analog.com/ADSP-BF544
http://www.analog.com/ADSP-BF547
http://www.analog.com/ADSP-BF548
http://www.analog.com/ADSP-BF549

12. 05000365 - DMAs that Go Urgent during Tight Core Writes to External Memory Are Blocked:

DESCRIPTION:
A core request to the DDR controller can override a higher priority "Urgent DMA*" request. However, this happens only if the core is
continually issuing writes to the external memory (i.e., in a tight loop), and if the peripheral is running at high speeds (close to SCLK/2) or
if the instantaneous bandwidth during the run time of an application approaches the theoretical bandwidth limitations.

If the DMA Sync bit (DMAx_CONFIG[5]) is set, then this behavior can be seen even at very low peripheral speeds.

*An urgent DMA request is issued when a DMA FIFO is empty (If DMA is configured as TX) or if the FIFO is full(If DMA is configured as RX)
and a peripheral requests for a DMA-FIFO slot. In case of EPPIx, the "urgent" request is issued based on the EPPI FIFO levels which can be
programmed using the EPPIx_CONTROL register(FIFO_UWM bits - EPPIx_CONTROL[30:29]).

WORKAROUND:
If running peripherals at high speeds with peripheral DMA accessing DDR SDRAM memory, then avoid tight core accesses to the DDR
SDRAM memory.

If the DMA Sync bit is enabled, then set the appropriate DEBx_URGENT bits in the EBIU_DDRQUE register. This will make all DMA requests
coming from the DMA controller associated with DEBx urgent. The disadvantage of the workaround is that it adversely affects the
throughput of the system. By making every DMA request urgent, the bus is accessed more often by the DMA controller that the
peripheral is connected to, resulting in fewer accesses by the core and the other DMA controller(s). Cache flushes/misses may also be held
off.

If using EPPI, then one can use the CORE_EPPI_PRIO and SYS_EPPI_PRIO bit in the HMDMA0_CONTROL register to avoid this behavior. For
more information refer to anomaly 05-00-0427 and also the BF54x hardware reference manual, Chapter 26 - Enhanced Parallel Peripheral
Interface, section System configuration.

APPLIES TO REVISION(S):
0.3M, 0.4

13. 05000369 - Addressing Conflict between Boot ROM and Asynchronous Memory:

DESCRIPTION:
When the Boot ROM (address range 0xEF00.0000-0xEF00.0FFF) and the Asynchronous Memory space (address range 0x2000.0000-
0x2FFF.FFFF) are accessed simultaneously, either access can return incorrect data. Any combination of core read/writes, instruction
fetches, cache line fills or DMA read/writes can trigger the problem. It applies to all NOR flashes, including Synchronous NOR flash, but not
to NAND or ATAPI accesses on the same bus.

WORKAROUND:
1) Do not DMA values out of the Boot ROM while the core or any other DMA is accessing the Asynchronous Memory space or fetching

from there.
2) Avoid any DMA from/to Asynchronous Memory space running in the background when calling any of the ROM functions.
3) Do not call ROM routines while executing out of Asynchronous Memory space.
4) Do not open a memory window in an IDDE that shows the Boot ROM while accessing Asynchronous Memory space or vice versa.

APPLIES TO REVISION(S):
0.3M, 0.4

ADSP-BF542/BF544/BF547/BF548/BF549

NR003403O | Page 10 of 35 | January 2022

 Silicon Anomaly List

http://www.analog.com/ADSP-BF542
http://www.analog.com/ADSP-BF544
http://www.analog.com/ADSP-BF547
http://www.analog.com/ADSP-BF548
http://www.analog.com/ADSP-BF549

14. 05000405 - Lockbox SESR Firmware Does Not Save/Restore Full Context:

DESCRIPTION:
Embedding asm("raise 2;"); to call authentication in C code is not recommended. Registers R0-R3 and P0-P2 are not saved in the
SESR. The compiler will assume that any C code after asm("raise 2;"); will still be able to use these registers safely, although they
are overwritten inside the SESR.

WORKAROUND:
The following C code instruction, which informs the compiler that it is not safe to use the registers R0-R3 and P0-P2, may be used to begin
authentication:

 asm("raise 2;":::"R0", "R1", "R2", "R3", "P0", "P1", "P2");

When using assembly code, the user must save the registers R0-R3 and P0-P2, issue the raise 2; instruction, then restore the registers
R0-R3 and P0-P2.

APPLIES TO REVISION(S):
0.3M, 0.4

15. 05000408 - Lockbox Firmware Memory Cleanup Routine Does not Clear Registers:

DESCRIPTION:
The security firmware memory clear routine does not clear processor registers. It only clears on-chip SRAM memory.

Sensitive information may remain in processor registers upon exiting from Secure Mode, so users must not rely on the firmware memory
clear routine to clear registers.

WORKAROUND:
Users should clear out processor registers prior to exiting Secure Mode. The security firmware memory clear routine may be called to clear
on-chip SRAM or users may substitute their own memory clear routine instead.

APPLIES TO REVISION(S):
0.3M, 0.4

ADSP-BF542/BF544/BF547/BF548/BF549

NR003403O | Page 11 of 35 | January 2022

 Silicon Anomaly List

http://www.analog.com/ADSP-BF542
http://www.analog.com/ADSP-BF544
http://www.analog.com/ADSP-BF547
http://www.analog.com/ADSP-BF548
http://www.analog.com/ADSP-BF549

16. 05000416 - Speculative Fetches Can Cause Undesired External FIFO Operations:

DESCRIPTION:
When an external FIFO device is connected to an asynchronous memory bank, memory accesses can be performed by the processor
speculatively, causing improper operations because the FIFO will provide data to the Blackfin, and the data will be dropped whenever the
fetch is made speculatively or if the speculative access is canceled. "Speculative" fetches are reads that are started and killed in the
pipeline prior to completion. They are caused by either a change of flow (including an interrupt or exception) or when performing an
access in the shadow of a branch. This behavior is described in the Blackfin Programmer's Reference.

Another case that can occur is when the access is performed as part of a hardware loop, where a change of flow occurs from an exception.
Since exceptions can't be disabled, the following example shows how an exception can cause a speculative fetch, even with interrupts
disabled:

 CLI R3; /* Disable Interrupts */
 LSETUP(loop_s, loop_e) LC0 = P2;
 loop_s: R0 = W[P0]; /* Read from a FIFO Device */
 loop_e: W[P1++] = R0; /* Write that Generates a Data CPLB Page Miss */
 STI R3; /* Enable Interrupts */
 RTS;

In this example, the read inside the hardware loop is made to a FIFO with interrupts disabled. When the write inside the loop generates a
data CPLB exception, the read inside the loop will be done speculatively.

WORKAROUND:
First, if the access is being performed with a core read, turn off interrupts prior to doing the core read. The read phase of the pipeline must
then be protected from seeing the read instruction before interrupts are turned off:

 CLI R0;
 NOP; NOP; NOP; /* Can Be Any 3 Instructions */
 R1 = [P0];
 STI R0;

To protect against an exception causing the same undesired behavior, the read must be separated from the change of flow:

 CLI R3; /* Disable Interrupts */
 LSETUP(loop_s, loop_e) LC0 = P2;
 loop_s: NOP; /* 2 NOPs to Pad Read */
 NOP;
 R0 = W[P0];
 loop_e: W[P1++] = R0;
 STI R3; /* Enable Interrupts */
 RTS;

The loop could also be constructed to place the NOP padding at the end:

 LSETUP(.Lword_loop_s, .Lword_loop_e) LC0 = P2;
 .Lword_loop_s: R0 = W[P0];
 W[P1++] = R0;
 NOP; /* 2 NOPs to Pad Read */
 .Lword_loop_e: NOP;

Both of these sequences prevent the change of flow from allowing the read to execute speculatively. The 2 inserted NOPs provide
enough separation in the pipeline to prevent a speculative access. These NOPs can be any two instructions.

Reads performed using a DMA transfer do not need to be protected from speculative accesses.

APPLIES TO REVISION(S):
0.3M, 0.4

ADSP-BF542/BF544/BF547/BF548/BF549

NR003403O | Page 12 of 35 | January 2022

 Silicon Anomaly List

http://www.analog.com/ADSP-BF542
http://www.analog.com/ADSP-BF544
http://www.analog.com/ADSP-BF547
http://www.analog.com/ADSP-BF548
http://www.analog.com/ADSP-BF549

17. 05000425 - Multichannel SPORT Channel Misalignment Under Specific Configuration:

DESCRIPTION:
When using the Serial Port in Multi-Channel Mode, the transmit and receive channels can get misaligned if a very specific configuration
for the SPORT is met, as follows:

1) Window Offset (WOFF) = 0.
2) Window Size is an odd multiple of 8 (i.e., WSIZE is an even number > 0).
3) The time between RFS pulses is exactly equal to the window duration.

Note: The anomaly does NOT apply when WSIZE = 0.

When this exact configuration is used, the multi-channel mode channel enable registers are mislatched after the first window concludes,
which results in the TDV signal being driven according to incorrect channel assignments and receive data being sampled on the wrong
channels. So, the first window will send and receive properly, but all windows after the first will be misaligned, and data sent and received
will be corrupted.

This error occurs for external and internal clocks and RFS.

WORKAROUND:
There are several workarounds possible:

1) Use a window offset other than 0.
2) Use a window size that is an even multiple of 8.
3) For internal RFS, make sure that SPORTx_RFSDIV is at least equal to the window size (# of enabled channels * SLEN).

APPLIES TO REVISION(S):
0.3M

ADSP-BF542/BF544/BF547/BF548/BF549

NR003403O | Page 13 of 35 | January 2022

 Silicon Anomaly List

http://www.analog.com/ADSP-BF542
http://www.analog.com/ADSP-BF544
http://www.analog.com/ADSP-BF547
http://www.analog.com/ADSP-BF548
http://www.analog.com/ADSP-BF549

18. 05000426 - Speculative Fetches of Indirect-Pointer Instructions Can Cause False Hardware Errors:

DESCRIPTION:
A false hardware error is generated if there is an indirect jump or call through a pointer which may point to reserved or illegal memory on
the opposite control flow of a conditional jump to the taken path. This commonly occurs when using function pointers, which can be
invalid (e.g., set to -1). For example:

 CC = P2 == -0x1;
 IF CC JUMP skip;
 CALL (P2);
 skip:
 RTS;

Before the IF CC JUMP instruction can be committed, the pipeline speculatively issues the instruction fetch for the address at -1 (0xffffffff)
and causes the false hardware error. It is a false hardware error because the offending instruction is never actually executed. This can
occur if the pointer use occurs within two instructions of the conditional branch (predicted not taken), as follows:

 BRCC X [predicted not taken]
 Y: JUMP (P-reg); // If either of these two p-regs describe non-existent
 CALL (P-reg); // memory, such as external SDRAM when the SDRAM
 X: RTS; // controller is off, then a hardware error will result.

WORKAROUND:
If instruction cache is on or the ICPLBs are enabled, this anomaly does not apply.

If instruction cache is off and ICPLBs are disabled, the indirect pointer instructions must be 2 instructions away from the branch
instruction, which can be implemented using NOPs:

 BRCC X [predicted not taken]
 Y: NOP; // These two NOPs will properly pad the indirect pointer
 NOP; // used in the next line.
 JUMP (P-reg);
 CALL (P-reg);
 X: RTS;

This workaround may be built into the development tool chain and/or into the operating system source code. For tool chains and
operating systems supported by Analog Devices (VisualDSP++, VDK, CrossCore Embedded Studio, the GNU Tool Chain, and the Linux
kernel), please consult the "Silicon Anomaly Tools Support" help page in the applicable documentation and release notes for details.

For all other tool chains and operating systems, see the appropriate supporting documentation for details.

APPLIES TO REVISION(S):
0.3M, 0.4

ADSP-BF542/BF544/BF547/BF548/BF549

NR003403O | Page 14 of 35 | January 2022

 Silicon Anomaly List

http://www.analog.com/ADSP-BF542
http://www.analog.com/ADSP-BF544
http://www.analog.com/ADSP-BF547
http://www.analog.com/ADSP-BF548
http://www.analog.com/ADSP-BF549

19. 05000434 - SW Breakpoints Ignored Upon Return From Lockbox Authentication:

DESCRIPTION:
Upon returning from a failed Lockbox authentication attempt, software breakpoints are not able to halt the debugger until after the
fourth breakpoint is executed.

This anomaly occurs when Condition #1 AND Condition #2 OR Condition #3 are met:

1) The code initiating the authentication by executing instruction "RAISE 2;" is executing from L1 Code Cache memory configured as
SRAM.

and
2) The failure from authentication is due to a message-digital signature-message size mismatch.

or
3) The failure from authentication is due to fact that the public key is not programmed and the firmware reads back all 0's.

Note that if the combination of Condition 1) and either Condition 2) or Condition 3) are not met, the anomaly will not be encountered.

WORKAROUND:
There are several workarounds possible:

1) Use a hardware breakpoint instead of a software breakpoint to break right after returning from authentication.
2) Do not initiate authentication from L1 Cache Code area of memory
3) Place multiple (at least four) NOPs after the return point of authentication and place a regular software breakpoint at each NOP. The

first four will not execute as expected but the fifth (5th) breakpoint will trigger the debugger to halt. NOPs may be replaced with non-
critical code if desired.

4) Do not link the calling routine that executes the instruction "RAISE 2;" that initiates authentication into L1 Cache Code space.

APPLIES TO REVISION(S):
0.3M, 0.4

ADSP-BF542/BF544/BF547/BF548/BF549

NR003403O | Page 15 of 35 | January 2022

 Silicon Anomaly List

http://www.analog.com/ADSP-BF542
http://www.analog.com/ADSP-BF544
http://www.analog.com/ADSP-BF547
http://www.analog.com/ADSP-BF548
http://www.analog.com/ADSP-BF549

20. 05000443 - IFLUSH Instruction at End of Hardware Loop Causes Infinite Stall:

DESCRIPTION:
If the IFLUSH instruction is placed on a loop end, the processor will stall indefinitely. For example, the following two code examples will
never exit the loop:

 P1 = 2;
 LSETUP (LOOP1_S, LOOP1_E) LC1 = P1;
 LOOP1_S: NOP;
 LOOP1_E: IFLUSH[P0++];

 LSETUP (LOOP2_S, LOOP2_E) LC1 = P1;
 LOOP2_S: NOP; NOP; NOP; NOP; // Any number of instructions...
 LOOP2_E: IFLUSH[P0++];

WORKAROUND:
Do not place the IFLUSH instruction at the bottom of a hardware loop. If the IFLUSH is padded with any instruction at the bottom of the
loop, the problem is avoided:

 LSETUP (LOOP_S, LOOP_E) LC1 = P1;
 LOOP_S: IFLUSH[P0++];
 LOOP_E: NOP; // Pad the loop end

This workaround may be built into the development tool chain and/or into the operating system source code. For tool chains and
operating systems supported by Analog Devices (VisualDSP++, VDK, CrossCore Embedded Studio, the GNU Tool Chain, and the Linux
kernel), please consult the "Silicon Anomaly Tools Support" help page in the applicable documentation and release notes for details.

For all other tool chains and operating systems, see the appropriate supporting documentation for details.

APPLIES TO REVISION(S):
0.3M, 0.4

21. 05000446 - CDMAPRIO and L2DMAPRIO Bits in the SYSCR Register Are Not Functional:

DESCRIPTION:
The CDMAPRIO and L2DMAPRIO Bits in the SYSCR Register Are Not Functional. These bits provide control over the priority of DMAC0 and
DMAC1 controller at the L1 and L2 memory interface. The priority order for DMAC0 and DMAC1 is intended to be configurable by the
user and the order may be swapped. The priority configuration for L1 accesses is defined by the CDMAPRIO bit of the SYSCR register. For
L2 accesses, the L2DMAPRIO bit in SYSCR is used in the same way.

The priorities will be as the fixed bits indicate, which is DMAC0 has higher priority over DMAC1 for L1 and L2 memory accesses. This
priority can not be changed with respect to on-chip L1 and L2 memory access.

WORKAROUND:
The external memory access priorities between DMAC0 and DMAC1 can be configured but it is recommended that they be also set to the
same priorities as L1 and L2 priorities for DMAC0 and DMAC1. i.e. DMAC0 higher priority than DMAC1.

Consequently, it is also recommended not to use MDMA0 and MDMA1 channels, as using a MDMA channel on a higher priority DMA
controller (MDMA0 and MDMA1 are on DMAC0) can hold off peripheral-DMA accesses for channels on DMAC1. The MDMA channels can
access memory every SCLK cycle which could lead to starving critical access for peripherals on DMAC1.

APPLIES TO REVISION(S):
0.3M, 0.4

ADSP-BF542/BF544/BF547/BF548/BF549

NR003403O | Page 16 of 35 | January 2022

 Silicon Anomaly List

http://www.analog.com/ADSP-BF542
http://www.analog.com/ADSP-BF544
http://www.analog.com/ADSP-BF547
http://www.analog.com/ADSP-BF548
http://www.analog.com/ADSP-BF549

22. 05000447 - UART IrDA Receiver Fails on Extended Bit Pulses:

DESCRIPTION:
The UART fails reception when the width of the receive pulse is wider than 3/16th. As defined by the standard, all IrDA transmitters assert
bit pulses for exactly 3/16th of a bit period. Wired connections of an IrDA transmitter to the Blackfin IrDA receiver work properly. If the
connection is not hard wired but is implemented instead via an infrared link, it has been observed that infrared tranceiver devices extend
the output pulse beyond the 3/16th duration. This can cause the Blackfin UART IrDA receiver to fail at higher bit rates. The baud rate
where the Blackfin UART IRDA function fails depends on the characteristics of the particular IRDA transceiver module that is used. When
an infrared tranceiver that employs extended bit pulses is used, the Blackfin receiver still properly detects the start bit. However, the
Blackfin may not properly latch in data. The receive interrupt count may also not match the number of transmitted bytes.

WORKAROUND:
There are several workarounds possible:

1) Add external logic ensuring IRDA RXD pulse width is always 3/16th parts of the UART bit rate.
2) Use external IRDA Encoder/Decoder (for example: HSDL-7000, MCP2122, TIR1000).
3) Use IRDA transceiver modules where tPW max = 3/16 parts of the UART Baud Rate (1.6us @ 115200 bps). ADI has not identified any

devices meeting this criteria.

APPLIES TO REVISION(S):
0.3M, 0.4

23. 05000450 - USB DMA Short Packet Data Corruption:

DESCRIPTION:
When DMA mode 0 is used for the entire transfer, the short packet can be corrupted if double buffering is enabled for the TX Endpoint
FIFO.

When DMA mode 1 is used, large transfers generate a single interrupt at the end of the entire transfer. The transfer itself is split up into
packets with a length specified in the Maximum Packet Size field for that endpoint. If the transfer size is not an integer multiple of the
Maximum Packet Size, a short packet will be present at the end of the transfer, thus making it susceptible to the same short packet
corruption.

WORKAROUND:
Use DMA mode 1 to transfer (n* Maximum Packet Size) and schedule DMA mode 0 to transfer the short packet.

For example, if the transfer size is 33168 bytes and the Maximum Packet Size is 512, schedule [33168 - (33168 % 512)] in DMA mode 1 and
the remainder (33168 % 512) in DMA mode 0.

When using only DMA mode 0 for the entire transfer, there are two workarounds:
1) Disable double buffering.
2) Ensure that the short packet's length is a multiple of 4 bytes.

APPLIES TO REVISION(S):
0.3M

ADSP-BF542/BF544/BF547/BF548/BF549

NR003403O | Page 17 of 35 | January 2022

 Silicon Anomaly List

http://www.analog.com/ADSP-BF542
http://www.analog.com/ADSP-BF544
http://www.analog.com/ADSP-BF547
http://www.analog.com/ADSP-BF548
http://www.analog.com/ADSP-BF549

24. 05000456 - USB Receive Interrupt Is Not Generated in DMA Mode 1:

DESCRIPTION:
Whether the USB is used in host or device mode, the USB receive interrupt may not be generated when DMA Mode 1 is used.

For DMA Mode 1 host mode receive operations where the transfer size is an integer multiple of MaxPacketSize, extra "in" tokens are sent
out by the USB controller at the end of the DMA transfer. This causes the slave device to send an additional data packet back to the
Blackfin processor, where it is received in the USB FIFO, but no USB RX interrupt is generated. Taking the Mass Storage Class as a specific
example, this causes the devices to send a status packet, which should generate a USB RX interrupt, however, this interrupt may be lost.

For DMA Mode 1 device mode receive operations where the transfer size is unknown, the Short Packet Interrupt must be relied upon to
indicate the end of the transfer. However, this anomaly prevents the USB controller from issuing an RX interrupt for the corresponding
endpoint when a short/null packet is received.

This anomaly does not apply to device mode when the size of the receive transfer is known in advance, as the DMA Completion Interrupt
is generated at the end of the transfer and the endpoint receive interrupt is not used.

This anomaly also does not apply to transmit operations.

WORKAROUND:
In all affected cases described above, use DMA Mode 0 instead of DMA Mode 1.

APPLIES TO REVISION(S):
0.3M, 0.4

ADSP-BF542/BF544/BF547/BF548/BF549

NR003403O | Page 18 of 35 | January 2022

 Silicon Anomaly List

http://www.analog.com/ADSP-BF542
http://www.analog.com/ADSP-BF544
http://www.analog.com/ADSP-BF547
http://www.analog.com/ADSP-BF548
http://www.analog.com/ADSP-BF549

25. 05000457 - Host DMA Port Responds to Certain Bus Activity Without HOST_CE Assertion:

DESCRIPTION:
The Host DMA Port (HOSTDP) responds to certain bus activity even without the assertion of its chip enable, HOST_CE. If the HOSTDP is the
only slave on the bus (meaning that HOST_WR and HOST_RD are asserted by the host only for communicating with the HOSTDP), this
anomaly will not be observed. There are two states in which the HOSTDP responds to bus activity (assertion of HOST_WR or HOST_RD)
without HOST_CE being asserted:

1) HOSTDP is Enabled and Waiting for the Host to Configure - While waiting for configuration in both acknowledge and interrupt
modes, assertions of HOST_WR for other slaves can cause the HOSTDP to be erroneously configured.

2) HOSTDP is Configured for Data Reads - While waiting for data reads in both acknowledge and interrupt modes, assertions of
HOST_RD for other slaves can cause the HOSTDP to subsequently return data out of order.

WORKAROUND:
The following workarounds can be used for state #1:

1) Add additional logic - Connect to HOST_WR through a 2-input OR gate where one input of the OR gate is the host's write signal and
the other is the host's chip select.

2) Time bus accesses by the host processor - Do not write to other slaves on the bus between the time that the HOSTDP is enabled and
the DMA_RDY bit in HOST_STATUS is set.

3) Change the software on both the host and the slave as shown in the following flowcharts:

ADSP-BF542/BF544/BF547/BF548/BF549

NR003403O | Page 19 of 35 | January 2022

 Silicon Anomaly List

http://www.analog.com/ADSP-BF542
http://www.analog.com/ADSP-BF544
http://www.analog.com/ADSP-BF547
http://www.analog.com/ADSP-BF548
http://www.analog.com/ADSP-BF549

The following workarounds can be used for state #2:

1) Add additional logic - Connect to HOST_RD through a 2-input OR gate where one input of the OR gate is the host's read signal and
the other is the host's chip select.

2) Time bus accesses by the host processor - Do not read from other slaves on the bus between the time that the final configuration
word (YMODIFY) is written to the HOSTDP and the DMA_CMPLT bit in HOST_STATUS is set.

APPLIES TO REVISION(S):
0.3M, 0.4

26. 05000460 - USB DMA Mode 1 Failure When Multiple USB DMA Channels Are Concurrently Enabled:

DESCRIPTION:
When multiple USB DMA channels are enabled/active at the same time and any enabled channel uses DMA Mode 1, one of the channel's
DMA Address registers may be corrupted, resulting in either a DMA hang or data corruption.

WORKAROUND:
Use DMA Mode 0 if the application requires multiple USB DMA channels to be concurrently enabled.

APPLIES TO REVISION(S):
0.3M

ADSP-BF542/BF544/BF547/BF548/BF549

NR003403O | Page 20 of 35 | January 2022

 Silicon Anomaly List

http://www.analog.com/ADSP-BF542
http://www.analog.com/ADSP-BF544
http://www.analog.com/ADSP-BF547
http://www.analog.com/ADSP-BF548
http://www.analog.com/ADSP-BF549

27. 05000461 - False Hardware Error when RETI Points to Invalid Memory:

DESCRIPTION:
When using CALL/JUMP instructions targeting memory that does not exist, a hardware error condition will be triggered. If interrupts are
enabled, the Hardware Interrupt (IRQ5) will fire. Since the RETI register will have an invalid location in it, it must be changed before
executing the RTI instruction, even if servicing a different interrupt. Consider the following sequence:

 P2.L = LO (0xFFAFFFFC); // Load Address in Illegal Memory to P2
 P2.H = HI (0xFFAFFFFC);
 CALL(P2); // Call to Bad Address Generates Hardware Error IRQ5

 IRQ5_code: // Hardware Error Interrupt Routine
 RAISE 14; // (1)
 RTI; // (2)

 IRQ14_code:
 [--SP] = (R7:0, P5:0); // (3)
 [--SP] = RETI; // (4)

When the hardware error occurs, the program counter points to the invalid location 0xFFAFFFFC, which is loaded into the RETI register
during the service of the IRQ5 hardware error event. When the RTI instruction (2) is executed, a fetch of the instruction pointed to by the
RETI register, which is an illegal address, is requested before hardware sees the level 14 interrupt pending. This fetch causes another
hardware error to be latched, even though this instruction is not executed. Execution will go to IRQ14 (3). As soon as interrupts are re-
enabled (4), the pending hardware error will fire.

WORKAROUND:
1) Ensure that code doesn't jump to or call bad pointers.
2) Always set the RETI register when returning from a hardware error to something that will not cause a hardware error on the memory

fetch.

APPLIES TO REVISION(S):
0.3M, 0.4

ADSP-BF542/BF544/BF547/BF548/BF549

NR003403O | Page 21 of 35 | January 2022

 Silicon Anomaly List

http://www.analog.com/ADSP-BF542
http://www.analog.com/ADSP-BF544
http://www.analog.com/ADSP-BF547
http://www.analog.com/ADSP-BF548
http://www.analog.com/ADSP-BF549

28. 05000462 - Synchronization Problem at Startup May Cause SPORT Transmit Channels to Misalign:

DESCRIPTION:
When the SPORT is configured in multichannel mode with an external SPORT clock, a synchronization problem may occur when the
SPORT is enabled. This synchronization issue manifests when the skew between the external SPORT clock and the Blackfin processor's
internal System Clock (SCLK) causes the channel counters inside the SPORT to get out-of-sync. When this occurs, a "dead" channel is
inserted at the beginning of the window, and the rest of the transmit channels are right-shifted one location throughout the active
window. The last channel data will be sent as the first enabled transmit channel data in the second window after another "dead" channel
is inserted. All data will be sent sequentially and in its entirety, but it is transmitted on the wrong channels with respect to the frame sync
and will never recover.

WORKAROUND:
When this error occurs, the SPORT must be restarted and checked again for this error. The failure is extremely rare to begin with, so the
probability of seeing consecutive restarts showing the failure is infinitesimally small.

A software solution is possible based on the timing of the SPORT interrupt. In the SPORT ISR, the CYCLES register can be set to zero the
first time the interrupt occurs and then read back the second time the interrupt occurs. This will provide a time reference in core clocks for
the frequency of the SPORT interrupt itself. If the value read the second time exceeds the duration of the multichannel window (in core
clocks), then a "dead" channel was inserted into the stream, and the SPORT must be restarted.

Hardware workarounds are going to be heavily dependent on how the multichannel mode SPORT is configured. In multichannel mode,
TFS functions as a Transmit Data Valid (TDV) signal and will always be driven to the active state (as governed by the LTFS bit in the
SPORTx_TCR1 register) during transmit channels. Therefore, the TDV signal can be routed to one of the GPIO pins configured to generate
an interrupt upon detection of the TDV pin changing states, based upon how the application configures the channels within the active
frame, to detect the "dead" channel. If all the channels in the window are configured as transmit channels and there is no window offset
and no multichannel frame delay, then TDV should go active as soon as the RFS pulse is received. If the period of the RFS pulse is exactly
the window size (i.e., there are no extra clocks after the active window before the next RFS is detected), then TDV will remain active
throughout operation. Therefore, if TDV goes inactive while the SPORT is on, the failure happened and the SPORT must be restarted and
run again with this test in place until the failure is not detected.

For applications that have a window offset, a multichannel frame delay, extra clocks between the end of the active window and the next
frame sync, and/or non-transmit channels inside the active window, the first TDV assertion would need to be tracked manually to detect
the "dead" channel. One idea might be to do the following:

1) Connect TFS (TDV) to a GPIO interrupt and configure the interrupt to occur when TDV goes active.
2) Connect RFS to a GPIO interrupt and configure the interrupt to occur when RFS goes active.
3) Connect the SPORT receive clock to a TMRx pin configured in EXT_CLK mode.

When the GPIO interrupt for the active RFS pulse signifying the start of the window occurs, enable the Timer that is being used to track
the SPORT receive clock. When the GPIO interrupt for the TDV signal transition occurs, check the TIMERx_COUNTER register to determine
how many SPORT clocks have passed since the frame started. If it is one channel's worth over the expected value, the error occurred and
the SPORT must be restarted and tested again. The GPIO interrupts should also be disabled if the startup condition is not detected.

APPLIES TO REVISION(S):
0.3M

29. 05000463 - USB DMA RX Data Corruption:

DESCRIPTION:
USB DMA Rx data corruption is observed when the USB buffer destination is in L1 or L2 memory and another peripheral's DMA buffers,
e.g., SPORT, are also in L1 or L2 memory spaces and are accessed at the same time as the USB DMA is accessing its buffer.

WORKAROUND:
When multiple peripherals are used with buffers in L1 or L2, place USB buffers in L3 or vice versa.

APPLIES TO REVISION(S):
0.3M

ADSP-BF542/BF544/BF547/BF548/BF549

NR003403O | Page 22 of 35 | January 2022

 Silicon Anomaly List

http://www.analog.com/ADSP-BF542
http://www.analog.com/ADSP-BF544
http://www.analog.com/ADSP-BF547
http://www.analog.com/ADSP-BF548
http://www.analog.com/ADSP-BF549

30. 05000464 - USB TX DMA Hang:

DESCRIPTION:
USB TX DMA hangs while reading data from L1 or L2 memory at the same time another peripheral e.g., SPORT0, is receiving and writing
data to L1 or L2 memory.

WORKAROUND:
When multiple peripherals are used with buffers in L1 or L2 place USB buffers in L3 or vice versa.

APPLIES TO REVISION(S):
0.3M

31. 05000465 - USB Rx DMA Hang:

DESCRIPTION:
USB Rx DMA hangs if the endpoint FIFOs are configured in double buffer mode (this is the case when MaxPacketSize in
USB_EP_NIx_RXMAXP is equal or less than half the endpoint FIFO size) When double buffering is enabled, there is the possibility of a race
condition where RxPktRdy is set and cleared in the same cycle. When this happens RxPktRdy will remain cleared, thus preventing the USB
DMA from unloading the FIFO, resulting in a Rx DMA hang.

WORKAROUND:
Use DMA mode 0 with double buffering disabled.

APPLIES TO REVISION(S):
0.3M, 0.4

32. 05000466 - Simultaneous Core/DMA Access to USB Endpoint FIFOs Doesn't Set TX Endpoint TxPktRdy Bit:

DESCRIPTION:
TX DMA data can be lost when both the USB DMA and the core access two different USB endpoint FIFOs at the same time. The DMA
pointer does not increment correctly for the last two bytes of the DMA accessed FIFO, thus preventing the USB controller from setting
TXPKTRDY when AUTOSET is enabled. If TXPKTRDY is set manually, data will be sent on the bus but the last two bytes will be missing.

WORKAROUND:
Do not mix concurrent DMA and core accesses to the USB TX endpoint FIFOs.

APPLIES TO REVISION(S):
0.3M

33. 05000467 - Possible USB RX Data Corruption When Control & Data EP FIFOs are Accessed via the Core:

DESCRIPTION:
Received data may be corrupted if the RX FIFO is accessed via the core under the following conditions:

1) Control and data USB endpoints are enabled.
2) Data has been received at the control endpoint.
3) Data is being received or has been received at the data endpoint.
4) Core reads an ODD number of bytes from the control endpoint, EP0.
5) Subsequent core read of the data endpoint's RX FIFO will return corrupted data.

WORKAROUND:
Use DMA to read data from the streaming (data) endpoint FIFO.

APPLIES TO REVISION(S):
0.3M

ADSP-BF542/BF544/BF547/BF548/BF549

NR003403O | Page 23 of 35 | January 2022

 Silicon Anomaly List

http://www.analog.com/ADSP-BF542
http://www.analog.com/ADSP-BF544
http://www.analog.com/ADSP-BF547
http://www.analog.com/ADSP-BF548
http://www.analog.com/ADSP-BF549

34. 05000473 - Interrupted SPORT Receive Data Register Read Results In Underflow when SLEN > 15:

DESCRIPTION:
A SPORT receive underflow error can be erroneously triggered when the SPORT serial length is greater than 16 bits and an interrupt
occurs as the access is initiated to the 32-bit SPORTx_RX register. Internally, two accesses are required to obtain the 32-bit data over the
internal 16-bit Peripheral Access Bus, and the anomaly manifests when the first half of the access is initiated but the second is held off due
to the interrupt. Application code vectors to service the interrupt and then issues the read of the SPORTx_RX register again when it
subsequently resumes execution after the interrupt has been serviced. The previous read that was interrupted is still pending awaiting
the second half of the 32-bit access, but the SPORT erroneously sends out two requests again. The first access completes the previous
transaction, and the second access generates the underflow error, as it is now attempting to make a read when there is no new data
present.

WORKAROUND:
The anomaly does not apply when using valid serial lengths up to 16 bits, so setting SLEN < 16 is one workaround.

When the length of the serial word is 17-32 bits (16 <= SLEN < 32), accesses to the SPORTx_RX register must not be interrupted, so
interrupts must be disabled around the read. In C:

 int temp_IMASK;

 temp_IMASK = cli();
 RX_Data = *pSPORT0_RX;
 sti(temp_IMASK);

In assembly:

 P0.H = HI(SPORT0_RX);
 P0.L = LO(SPORT0_RX);

 CLI R0;
 R1 = [P0];
 STI R0;

APPLIES TO REVISION(S):
0.3M, 0.4

35. 05000474 - Access to DDR SDRAM Causes System Hang with Certain PLL Settings:

DESCRIPTION:
For specific CCLK::SCLK ratios, a core hang can occur when there is a back-to-back core read/write (data access or instruction fetches) over
the EBIU, followed by a third core read/write over the EBIU. The third EBIU access does not need to immediately follow the original two
EBIU accesses for the issue to occur. Data transferred in the second core EBIU access can also be lost because of the anomaly. For example,
a core hang may occur after one of the following sequences:

1) Read/Write DDR -> *Read/Write Asynchronous Memory -> Read Boot ROM
2) Read/Write Asynchronous Memory -> *Read/Write DDR -> Read/Write Asynchronous Memory
3) Read/Write DDR -> *Read/Write DDR -> Read DDR

In the examples, the * indicates where data may be lost when there is a core hang.

This issue occurs with a CCLK::SCLK ratio of N::M, where N is odd OR M > 1 and odd. The failure mode may or may not occur, even if the
CCLK::SCLK ratio meets the failure conditions. It is highly dependent on process, temperature, voltage, and frequency. It is independent of
DDR timing parameters, delay line settings, and cache configurations.

WORKAROUND:
1) Use CCLK::SCLK ratios of N:1, where N is even

or
2) Use DMA to perform accesses.

APPLIES TO REVISION(S):
0.3M

ADSP-BF542/BF544/BF547/BF548/BF549

NR003403O | Page 24 of 35 | January 2022

 Silicon Anomaly List

http://www.analog.com/ADSP-BF542
http://www.analog.com/ADSP-BF544
http://www.analog.com/ADSP-BF547
http://www.analog.com/ADSP-BF548
http://www.analog.com/ADSP-BF549

36. 05000477 - TESTSET Instruction Cannot Be Interrupted:

DESCRIPTION:
When the TESTSET instruction gets interrupted, the write portion of the TESTSET may be stalled until after the interrupt is serviced. After
the ISR completes, application code continues by reissuing the previously interrupted TESTSET instruction, but the pending write
operation is completed prior to the new read of the TESTSET target data, which can lead to deadlock conditions.

For example, in a multi-threaded system that utilizes semaphores, thread A checks the availability of a semaphore using TESTSET. If this
original TESTSET operation tested data with a low byte of zero (signifying that the semaphore is available), then the write portion of
TESTSET sets the MSB of the low byte to 1 to lock the semaphore. When this anomaly occurs, the write doesn't happen until TESTSET is re-
issued after the interrupt is serviced. Therefore, thread A writes the byte back out with the lock bit set and then immediately reads that
value back, now erroneously indicating that the semaphore is locked. Provided the semaphore was actually still free when TESTSET was
reissued, this means that the semaphore is now permanently locked because thread A thinks it was locked already, and any other threads
that subsequently pend on the same semaphore are being locked out by thread A, which will now never release it.

WORKAROUND:
The TESTSET instruction must be made uninterruptible to avoid this condition:

 CLI R0;
 TESTSET(P0);
 STI R0;

There is no workaround other than this, so events that cannot be made uninterruptible, such as an NMI or an Emulation event, will always
be sensitive to this issue. Additionally, due to the need to disable interrupts, User Mode code cannot implement this workaround.

This workaround may be built into the development tool chain and/or into the operating system source code. For tool chains and
operating systems supported by Analog Devices (VisualDSP++, VDK, CrossCore Embedded Studio, the GNU Tool Chain, and the Linux
kernel), please consult the "Silicon Anomaly Tools Support" help page in the applicable documentation and release notes for details.

For all other tool chains and operating systems, see the appropriate supporting documentation for details.

APPLIES TO REVISION(S):
0.3M, 0.4

37. 05000481 - Reads of ITEST_COMMAND and ITEST_DATA Registers Cause Cache Corruption:

DESCRIPTION:
Reading the ITEST_COMMAND or ITEST_DATA registers will erroneously trigger a write to these registers in addition to reading the
current contents of the register. The erroneous write does not update the read state of the register, however, the data written to the
register is acquired from the most recent MMR write request, whether the most recent MMR write request was committed or speculatively
executed. The bogus write can set either register to perform unwanted operations that could result in:

1) Corrupted instruction L1 memory and/or instruction TAG memory.
and/or
2) Garbled instruction fetch stream (stale data used in place of new fetch data).

WORKAROUND:
Never read ITEST_COMMAND or ITEST_DATA. The only exception to this strict workaround is in the case of performing the read atomically
and immediately after a write to the same register. In this case, the erroneous write will still occur, but it will be with the exact same data
as the intentional write that preceded it.

APPLIES TO REVISION(S):
0.3M, 0.4

ADSP-BF542/BF544/BF547/BF548/BF549

NR003403O | Page 25 of 35 | January 2022

 Silicon Anomaly List

http://www.analog.com/ADSP-BF542
http://www.analog.com/ADSP-BF544
http://www.analog.com/ADSP-BF547
http://www.analog.com/ADSP-BF548
http://www.analog.com/ADSP-BF549

38. 05000483 - Possible USB Data Corruption When Multiple Endpoints Are Accessed by the Core:

DESCRIPTION:
When using core transfers to fetch data from endpoint FIFOs with multiple endpoints enabled, data corruption can occur when the core is
reading data from one endpoint FIFO and a change in code flow occurs immediately prior to this read committing in the pipeline. If this
code accesses a different endpoint FIFO, the core will read the data from the different endpoint FIFO; however, when the application
resumes with the read access to the previous endpoint FIFO that did not commit, the read is corrupted.

Note that this change in code flow could be due to a different endpoint interrupt, or the read could be speculatively executed in the
shadow of a conditional branch. Exceptions can also cause this problem, but only in the unusual case where an access to an endpoint
FIFO takes place in the exception handler. The most likely scenario for this corruption to occur is when the core is reading data from one
endpoint and gets interrupted to service a different endpoint.

WORKAROUND:
1) Use the USB DMA to read from the Endpoint FIFOs.
2) When multiple Endpoint FIFOs are enabled, disable interrupts around reads from an endpoint FIFO.
3) Ensure that Endpoint FIFO reads do not occur in the shadow of a conditional branch by placing three NOPs between the branch

instruction and the read.

APPLIES TO REVISION(S):
0.3M, 0.4

39. 05000485 - PLL_CTL Change Using bfrom_SysControl() Can Result in Processor Overclocking:

DESCRIPTION:
When bfrom_SysControl() is called with both the SYSCTRL_PLLCTL and the SYSCTRL_PLLDIV flags set in dActionFlags, and the new
PLL_CTL value has either the PDWN or the STOPCK bit set, then MSEL gets updated in the PLL before CSEL/SSEL, which can lead to a
situation where the processor is overclocked (depending on the new MSEL value).

WORKAROUND:
If setting either the PDWN or STOPCK bits in the new value of PLL_CTL passed into bfrom_SysControl(), the possible workarounds to avoid
overclocking are:

1) Set the new value of MSEL equal to the old value of MSEL,
or
2) Do not set the SYSCTL_PLLDIV flag in the same call to bfrom_SysControl().

APPLIES TO REVISION(S):
0.3M

ADSP-BF542/BF544/BF547/BF548/BF549

NR003403O | Page 26 of 35 | January 2022

 Silicon Anomaly List

http://www.analog.com/ADSP-BF542
http://www.analog.com/ADSP-BF544
http://www.analog.com/ADSP-BF547
http://www.analog.com/ADSP-BF548
http://www.analog.com/ADSP-BF549

40. 05000489 - PLL May Latch Incorrect Values Coming Out of Reset:

DESCRIPTION:
It is possible that the PLL can latch incorrect SSEL and CSEL values during reset when VDDINT is powered before VDDEXT. If this problem
occurs, the PLL_DIV register will show the correct default value when read via software, but the actual SSEL and CSEL values being
provided to the PLL may be incorrect. This results in different values for the core and system clocks from what the default values would be
coming out of reset. If this problem occurs, the most likely result will be system and core clocks that are not the default (CCLK = 10xCLKIN,
SCLK = 2xCLKIN), which will be corrected when the application programs the PLL to the desired frequencies. However, the random
nature of the values latched could lead to the PLL getting illegally programmed, which can cause the boot process to fail.

WORKAROUND:
There are a few workarounds for this issue. Any one of the following will avoid the issue:

1) Use the on-chip regulator.
2) Issue a second hardware reset after the power-on reset.
3) Ensure that VDDEXT reaches at least the Vddext minimum specification before turning on VDDINT.
4) If powering VDDINT first, keep RESET de-asserted until after VDDEXT has been established, then assert RESET per the power-on reset

specification.

It is extremely unlikely that this anomaly will occur. If it has not been observed in existing designs, it is recommended that one of the
above workarounds be implemented at the next logical point of the design cycle. For systems in development, implementing one of the
above workarounds is strongly encouraged.

APPLIES TO REVISION(S):
0.3M, 0.4

ADSP-BF542/BF544/BF547/BF548/BF549

NR003403O | Page 27 of 35 | January 2022

 Silicon Anomaly List

http://www.analog.com/ADSP-BF542
http://www.analog.com/ADSP-BF544
http://www.analog.com/ADSP-BF547
http://www.analog.com/ADSP-BF548
http://www.analog.com/ADSP-BF549

41. 05000490 - SPI Master Boot Can Fail Under Certain Conditions:

DESCRIPTION:
Master Mode SPI Booting can fail under certain combinations of SPI_BAUD, CCLK::SCLK ratio, boot block size, and SDRAM Refresh Rate.
The root cause for this problem is described in anomaly 05-00-0501. This is the manifestation of that anomaly due to the boot ROM
sequence, which does not incorporate the software workaround to the underlying hardware problem of a stuck RXS bit in the SPI_STAT
register.

When the RXS bit gets stuck as a result of anomaly 05-00-0501, a subsequent re-enabling of the SPI port results in DMA requests to a FIFO
that has not yet been populated. This causes bogus data retrieved at the end of the previous block to be interpreted by the boot ROM as
an invalid block header for the next block, which causes the boot to abort. There are two places in the boot ROM where the device is
susceptible to this, manifesting in one of three ways:

1) When a bootable image block size exceeds 64K, it is broken into multiple DMA work units. In the DMA handler invoked between the
work units, the anomaly can be encountered.

2) When SPI_BAUD = 2, the maximum SPI baud rate of SCLK/4 aligns exactly with the boot ROM execution frequency, which allows for
the SPI disable to align exactly with a word being received (as a result of the SPI's behavior to continue issuing clocks even after the
RX DMA is completed). At this particular baud rate, the SPI issues exactly 40 clocks between when the DMA completes and when the
SPI is disabled in the ROM. This equates to exactly 5 additional received bytes, which completely fills the 4-deep SPI RX FIFO and the
shift register, which asserts the RXS bit as the SPI is shut down.

3) When system timing parameters allow for any single word to get transferred from the shift register to the SPI FIFO exactly as the SPI
port is being shut down, the anomaly can theoretically be encountered, though it has not been observed on silicon or in simulations.
All of the system timing parameters mentioned above must combine to cause the timing that triggers the anomaly.

WORKAROUND:
For case 1), do not allow block sizes over 64K.

For case 2), using any SPI_BAUD setting other than 2 avoids the timing required to encounter the anomaly.

For case 3), if the problem were to occur, the behavior would be consistent and repeatable. Changing any of the SPI_BAUD, CCLK::SCLK
ratio, block sizes, and/or SDRAM refresh rate will alter the timing (as aligned to boot ROM execution) such that the problem can be
avoided.

A workaround may be built into the development tool chain and/or into the operating system source code. For tool chains and operating
systems supported by Analog Devices (VisualDSP++, VDK, CrossCore Embedded Studio, the GNU Tool Chain, and the Linux kernel), please
consult the "Silicon Anomaly Tools Support" help page in the applicable documentation and release notes for details.

For all other tool chains and operating systems, see the appropriate supporting documentation for details.

APPLIES TO REVISION(S):
0.3M, 0.4

ADSP-BF542/BF544/BF547/BF548/BF549

NR003403O | Page 28 of 35 | January 2022

 Silicon Anomaly List

http://www.analog.com/ADSP-BF542
http://www.analog.com/ADSP-BF544
http://www.analog.com/ADSP-BF547
http://www.analog.com/ADSP-BF548
http://www.analog.com/ADSP-BF549

42. 05000491 - Instruction Memory Stalls Can Cause IFLUSH to Fail:

DESCRIPTION:
When an instruction memory stall occurs when executing an IFLUSH instruction, the instruction may fail to invalidate a cache line. This
could be a problem when replacing instructions in memory and could cause stale, incorrect instructions in cache to be executed rather
than initiating a cache line fill.

WORKAROUND:
Instruction memory stalls must be avoided when executing an IFLUSH instruction. By placing the IFLUSH instruction in L1 memory, the
prefetcher will not cause instruction cache misses that could cause memory stalls. In addition, padding the IFLUSH instruction with NOPs
will ensure that subsequent IFLUSH instructions do not interfere with one another, and wrapping SSYNCs around it ensures that any fill/
victim buffers are not busy. The recommended routine to perform an IFLUSH is:

 SSYNC; // Ensure all fill/victim buffers are not busy
 LSETUP (LS, LE)
 LS: IFLUSH;
 NOP;
 NOP;
 LE: NOP;
 SSYNC; // Ensure all fill/victim buffers are not busy

Since this loop is four instructions long, the entire loop fits within one loop buffer, thereby turning off the prefetcher for the duration of
the loop and guaranteeing that successive IFLUSH instructions do not interfere with each other.

APPLIES TO REVISION(S):
0.3M, 0.4

ADSP-BF542/BF544/BF547/BF548/BF549

NR003403O | Page 29 of 35 | January 2022

 Silicon Anomaly List

http://www.analog.com/ADSP-BF542
http://www.analog.com/ADSP-BF544
http://www.analog.com/ADSP-BF547
http://www.analog.com/ADSP-BF548
http://www.analog.com/ADSP-BF549

43. 05000494 - EXCPT Instruction May Be Lost If NMI Happens Simultaneously:

DESCRIPTION:
A software exception raised by issuing the EXCPT instruction may be lost if an NMI event occurs simultaneous to execution of the EXCPT
instruction. When this precise timing is met, the program sequencer believes it is going to service the EXCPT instruction and prepares to
write the address of the next sequential instruction after the EXCPT instruction to the RETX register. However, the NMI event takes priority
over the Exception event, and this address erroneously goes to the RETN register. As such, when the NMI event is serviced, program
execution incorrectly resumes at the instruction after the EXCPT instruction rather than at the EXCPT instruction itself, so the software
exception is lost and is not recoverable.

WORKAROUND:
Either do not use NMI or protect against this lost exception by forcing the exception to be continuously re-raised and verified in the
exception handler itself. For example:

 EXCPT 0;
 JUMP -2; // add this jump -2 after every EXCPT instruction

Then, in the exception handler code, read the EXCAUSE field of the SEQSTAT register to determine the cause of the exception.
If EXCAUSE < 16, the handler was invoked by execution of the EXCPT instruction, so the RETX register must then be modified to skip over
the JUMP -2 that was inserted in the workaround code:

 R2 = SEQSTAT;
 R2 <<= 0x1A;
 R2 >>= 0x1A; // Mask Everything Except SEQSTAT[5:0] (EXCAUSE)
 R1 = 0xF (Z);
 CC = R2 <= R1; // Check for EXCAUSE < 16
 IF !CC JUMP CONTINUE_EX_HANDLER;
 R2 = RETX;
 R2 += 2; // Modify RETX to Point to Instruction After Inserted JUMP -2;
 RETX = R2;
 JUMP END_EX_HANDLER;

 CONTINUE_EX_HANDLER: // Rest of Exception Handler Code Goes Here
 .
 .
 .
 END_EX_HANDLER: RTX;

In this fashion, the JUMP -2 guarantees that the soft exception is re-raised when this anomaly occurs. When the NMI does not occur, the
above exception handler will redirect the application code to resume after the JUMP -2 workaround code that re-raises the exception.

A workaround may be built into the development tool chain and/or into the operating system source code. For tool chains and operating
systems supported by Analog Devices (VisualDSP++, VDK, the GNU Tool Chain, and the Linux kernel), please consult the "Silicon Anomaly
Tools Support" help page in the applicable documentation and release notes for details.

For all other tool chains and operating systems, see the appropriate supporting documentation for details.

APPLIES TO REVISION(S):
0.3M, 0.4

ADSP-BF542/BF544/BF547/BF548/BF549

NR003403O | Page 30 of 35 | January 2022

 Silicon Anomaly List

http://www.analog.com/ADSP-BF542
http://www.analog.com/ADSP-BF544
http://www.analog.com/ADSP-BF547
http://www.analog.com/ADSP-BF548
http://www.analog.com/ADSP-BF549

44. 05000498 - CNT_COMMAND Functionality Depends on CNT_IMASK Configuration:

DESCRIPTION:
The counter's "Zero Once" mode is only functional if at least one of the CZMZIE (Counter Zeroed by Zero Marker Interrupt Enable), CZMEIE
(Zero Marker Error Interrupt), and/or CZMIE (CZM Pin Interrupt Enable/Push-Button Interrupt) bits in the CNT_IMASK register is set.

WORKAROUND:
If the counter is to be reset only on the first active level on the CZM pin, do all of the following:

1) Clear the ZMZC bit in the CNT_CONFIG register.
2) Set the W1ZMONCE bit in the CNT_COMMAND register.
3) Set the CZMZIE, CZMEIE, and/or CZMIE bits in the CNT_IMASK register.

As long as the SIC_IMASK register doesn't enable the counter interrupt, no action will be taken by the processor as a result of enabling
one of these counter interrupts. If an alternate interrupt from the same counter is desired, software must ignore the extra interrupts
resulting from the enable bit being set. To this regard, the CZMZIE interrupt is the most convenient to choose for this workaround.

Note that the Zero-marker-zeros-counter (ZMZC) mode is not affected by this anomaly.

APPLIES TO REVISION(S):
0.3M, 0.4

45. 05000500 - NFC Hang When AMC Requests Async Pins During Last 16 Bytes of Page Write:

DESCRIPTION:
The NFC controller on the BF54x shares certain pins with the asynchronous memory controller (AMC). The AMC pins have higher priority
in a static arbitration scheme controlled by the APCM module of the EBIU. During an NFC page transfer, the AMC can acquire the shared
pins at any point and release them after the AMC transfers are completed and when the NFC requests the pins again.

The problem occurs when the AMC requests the shared pins during the last 16-bytes of a NFC DMA page write transfer. If control of the
pins are relinquished by the NFC in this window, the NFC never requests for the pins again and the DMA transfer consequently hangs.
This is true regardless of whether the NFC is configured for 256-byte or 512-byte page writes. Simply detecting and re-enabling the DMA
will not work since only 256 or 512 byte transfers are permitted.

The problem can occur irrespective of whether the AMC access is done using the core or DMA, or whether it is a read or a write access.
Also, this problem applies only to page write transfers, and does not apply to page read transfers from the NAND flash.

WORKAROUND:
If simultaneous page writes through the NFC and accesses to the asynchronous memory banks are not required, or can be prevented in
software, this problem will not occur.

However, there are some workarounds available if both NFC and AMC accesses are required -

1) If the access to the AMC takes place over DMA, these accesses can be held off till the NFC transfer is complete. This can be done by
setting the TESTSETLOCK bit in the EBIU_FCTL register. This bit prevents DMA from getting access to the asynchronous memory
banks. This bit can be cleared in the NFC DMA ISR to subsequently allow DMA accesses to the asynchronous memory banks. Keep in
mind that NFC transfers can be megabytes in size. So this method should only be used if the AMC DMA accesses are low priority. Also
ensure that this register is not modified when the AMC is in use.

2) Use core accesses to write to the NFC. Only DMA transfers stall due to this anomaly. However, ECC functionality of the NFC is lost
when using core transfers for page writes.

3) This workaround is applicable only for NFC page size of 256, and only if the hang can be detected by some mechanism in software.
Once the hang is detected, the NFC FIFO can be refilled by DMA if the page size setting in the NFC is switched to 512. The NFC page
size can be reverted to 256 once the DMA count is past the critical count required for the failure to occur. For example, with a NFC
page size of 256, the hang can only occur at DMA counts of 0xF4, 0xF8, and 0xFC. To implement this workaround, once application
detects the hung state of NFC, change NFC page size from 256 to 512 and wait till NFC count reaches 0xFD, at which point NFC page
size can be change back to 256.

APPLIES TO REVISION(S):
0.3M, 0.4

ADSP-BF542/BF544/BF547/BF548/BF549

NR003403O | Page 31 of 35 | January 2022

 Silicon Anomaly List

http://www.analog.com/ADSP-BF542
http://www.analog.com/ADSP-BF544
http://www.analog.com/ADSP-BF547
http://www.analog.com/ADSP-BF548
http://www.analog.com/ADSP-BF549

46. 05000501 - RXS Bit in SPI_STAT May Become Stuck In RX DMA Modes:

DESCRIPTION:
When in SPI receive DMA modes, the RXS bit in SPI_STAT can get set and erroneously get stuck high if the SPI port is disabled as hardware
is updating the status of the RXS bit. When in RX DMA mode, RXS will set as a word is transferred from the shift register to the internal
FIFO, but it is then automatically cleared immediately by the hardware as DMA drains the FIFO. However, there is an internal 2 system
clock (SCLK) latency for the status register to properly reflect this. If software disables the SPI port in exactly this window of time before
RXS is cleared, the RXS bit doesn't get cleared and will remain set, even after the SPI is disabled. If the SPI port is subsequently re-enabled,
the set RXS bit will cause one of two problems to occur:

1) If enabled in core RX mode, the SPI RX interrupt request will be raised immediately even though there is no new data in the SPI_RDBR
register.

2) If enabled in RX DMA mode, DMA requests will be issued, which will cause the processor to DMA data from the SPI FIFO even though
there is actually no new data present.

In master mode, the SPI will continue issuing clocks after RX DMA is completed until the SPI port is disabled. If any SPI word is received
exactly as software disables the SPI port, the problem will occur.

In slave mode, the host would have to continue providing clocks and the chip-select for this possibility to occur.

WORKAROUND:
Reading the SPI_RDBR register while the SPI is disabled will clear the stuck RXS condition and not trigger any other activity. If using RX
DMA mode, be sure to include this dummy read after the SPI port disable.

APPLIES TO REVISION(S):
0.3M, 0.4

47. 05000502 - Async Memory Writes May Be Skipped When Using Odd Clock Ratios:

DESCRIPTION:
For certain CCLK::SCLK ratios, read or write accesses to asynchronous memory banks may be randomly dropped. The failure occurs with a
CCLK::SCLK ratio of N::M, where N is odd OR M > 1 and odd. The only exception is when the CCLK::SCLK ratio is 1::1, and the failure will not
occur at this operating point.

The failure is independent of other system parameters, or cache settings.

DMA accesses are not impacted by this anomaly.

WORKAROUND:
The possibly workarounds for this anomaly are:

1) Use only even CCLK::SCLK (2::1, 4::1 etc) ratios if core accesses to asynchronous memory banks are needed.
2) Use DMA accesses for the asynchronous memory banks.

APPLIES TO REVISION(S):
0.3M, 0.4

48. 05000503 - SPORT Sign-Extension May Not Work:

DESCRIPTION:
In multichannel receive mode, the SPORT sign-extension feature (RDTPYE=b#01 in SPORTx_RCR1) is not reliable for channel 0 data when
configured for MSB-first data reception. This is regardless of any channel offset and/or multichannel frame delay.

WORKAROUND:
1) If possible, use receive bit order of LSB-first.
2) Do not use channel 0.
3) Ignore channel 0 data.
4) Use software to manually apply sign extension to the channel 0 data before processing.

APPLIES TO REVISION(S):
0.3M, 0.4

ADSP-BF542/BF544/BF547/BF548/BF549

NR003403O | Page 32 of 35 | January 2022

 Silicon Anomaly List

http://www.analog.com/ADSP-BF542
http://www.analog.com/ADSP-BF544
http://www.analog.com/ADSP-BF547
http://www.analog.com/ADSP-BF548
http://www.analog.com/ADSP-BF549

49. 05000506 - Hardware Loop Can Underflow Under Specific Conditions:

DESCRIPTION:
When two consecutive hardware loops are separated by a single instruction, and the two hardware loops use the same loop registers, and
the first loop contains a conditional jump to its loop bottom, the first hardware loop can underflow. For example:

 P0 = 16;
 LSETUP(loop_top1, loop_bottom1) LC0 = P0;
 loop_top1: nop;
 if CC JUMP loop_bottom1;
 nop;
 nop;
 loop_bottom1: nop;

 nop; // Any single instruction

 LSETUP(loop_top2, loop_bottom2) LC0 = P0;
 loop_top2: nop;
 loop_bottom2: nop;

If a stall occurs on the instruction that is between the two loops, the top loop can decrement its loop count from 0 to 0xFFFFFFFF and
continue looping with the incorrect loop count.

WORKAROUND:
There are several workarounds to this issue:

1) Do not use the same loop register set in consecutive hardware loops.
2) Ensure there is not exactly one instruction between consecutive hardware loops.
3) Ensure the first loop does not conditionally jump to its loop bottom.

APPLIES TO REVISION(S):
0.3M, 0.4

ADSP-BF542/BF544/BF547/BF548/BF549

NR003403O | Page 33 of 35 | January 2022

 Silicon Anomaly List

http://www.analog.com/ADSP-BF542
http://www.analog.com/ADSP-BF544
http://www.analog.com/ADSP-BF547
http://www.analog.com/ADSP-BF548
http://www.analog.com/ADSP-BF549

50. 05000508 - UART Receive DMA Hangs under Certain Conditions:

DESCRIPTION:
When the UART is in Receive DMA mode and the receive FIFO is empty, a permanent lock-up can occur if new UART RX data is received
into the FIFO in the same SCLK cycle as the arrival of the internal DMA grant signal from the previous DMA read to get the last data from
the UART_RBR register. When this precise timing is met, the UART does not clear the old data from the UART_RBR register, but it does
properly clear the UART_LSR.DR status bit and the internal DMA grant signal. When this occurs, new data entering the UART RX FIFO will
not be forwarded to the UART_RBR register, which prevents the UART from raising DMA data read requests and causes the UART RX DMA
to hang.

WORKAROUND:
The cause for the internal DMA grant to the UART being delayed long enough for this condition to occur is the fact that the UART channel
is the lowest priority in the DMA arbitration scheme and can be held off by other DMA channels enabled in the system. If the UART
channel is given higher DMA priority, this condition can be avoided.

If prioritizing the UART DMA over other DMA activity is not an option, then the UART hang condition can be detected and corrected in
software by checking the UART_MSR.RFCS and UART_LSR.DR status bits for an illegal combination that results from this anomaly. When
the lock-up occurs, the UART_LSR.DR bit is properly cleared by the UART but the data from the FIFO isn't loaded to the UART_RBR register,
thus forcing the UART RX FIFO to fill as new data comes in, eventually causing the UART_MSR.RFCS bit to set. Since the UART_MSR.RFCS
bit indicates the status of the RX FIFO behind the UART_RBR register, it cannot be set if UART_LSR.DR = 0 (indicating that the UART_RBR
register is empty). Once this invalid status is detected, a dummy core read of the UART_RBR register will clear the old data in the
UART_RBR register, and the FIFO data will be forwarded properly. Hence, pending DMA read requests will be issued again, and the UART
resumes operation:

 short temp_data;

 // Two reads with the following status is the hang condition
 if((*pUART_MSR & RFCS) && (!(*pUART_LSR & DR))) // RFCS = 1, DR = 0
 {
 // Read status a 2nd time, perform corrective action if still true
 if((*pUART_MSR & RFCS) && (!(*pUART_LSR & DR)))
 temp_data = *pUART_RBR; // dummy core read access to UART_RBR register
 }

APPLIES TO REVISION(S):
0.3M, 0.4

51. 05000510 - USB Wakeup from Hibernate State Requires Re-Enumeration:

DESCRIPTION:
Applications may choose to place the processor in hibernate state when the USB suspend is seen on the bus. Logic was added at the PHY
level to maintain the state of the USB data lines so that the processor will appear to still be connected to the host during the USB suspend
state. This would prevent re-enumeration when the USB bus was subsequently resumed. However, when in hibernate, the USB controller
also loses its logic state because power is removed. As a result, re-enumeration is unavoidable when coming out of the hibernate state.

WORKAROUND:
None

APPLIES TO REVISION(S):
0.3M, 0.4

ADSP-BF542/BF544/BF547/BF548/BF549

NR003403O | Page 34 of 35 | January 2022

 Silicon Anomaly List

http://www.analog.com/ADSP-BF542
http://www.analog.com/ADSP-BF544
http://www.analog.com/ADSP-BF547
http://www.analog.com/ADSP-BF548
http://www.analog.com/ADSP-BF549

52. 05000511 - Lower 16 Bits of CNT_COUNTER Register Do Not Update Properly:

DESCRIPTION:
If the CNT_COUNTER register is read in the same SCLK cycle that the counter is being incremented by hardware, the MMR read may
incorrectly return the previous value in the lower 16 bits. Under most circumstances, this is nearly negligible, as the value of the 32-bit
read would be only one less than the correct value. However, in the case of a 16-bit overflow, the value read from the counter will be off
by 0xffff from the expected value, as the upper 16 bits do get properly updated. For example, if the current counter value is 0x0000ffff, the
next counter increment should result in CNT_COUNTER containing the value 0x00010000. When this anomaly manifests, the value read
will incorrectly be 0x0001ffff.

WORKAROUND:
There is no workaround for this anomaly when it occurs any time other than when the counter wraps at 16 bits. For the case where the
value in the lower 16 bits is 0xFFFF, a second read of the CNT_COUNTER register will ensure that the correct value is read.

APPLIES TO REVISION(S):
0.4

53. 05000512 - ROM Accesses With Odd CCLK::SCLK Ratio Can Fail:

DESCRIPTION:
With the exception of 1::1, odd CCLK::SCLK ratios can cause instruction and data fetches from the processor boot ROM space (0xEF000000
- 0xEF000FFF) to result in a core hang. This anomaly can manifest at all times when the odd ratio criteria is met, including after a core
reset. Whether the core reset is invoked via software, the watchdog timer, as a result of a core double-fault, or when returning from the
low-power hibernate state, the PLL registers are not reset and the processor begins executing from the boot ROM space with the PLL
configuration unchanged.

Though the likelihood of encountering this anomaly is greatest at higher core clock frequencies, a discrete safe maximum CCLK frequency
cannot be predicted because the circuit behavior is highly dependent on process, temperature, voltage, and frequency.

WORKAROUND:
If the application utilizes ROM APIs or otherwise accesses data from the ROM space, ensure that the CCLK::SCLK ratio is 1::1 or even
(PLL_DIV.SSEL = 1 or is even) prior to performing the access. As the recommended means of programming the PLL is to use the
bfrom_SysControl() ROM API, the workaround requires this to instead be done via application code running from L1 that does not
make a call into the ROM space. For example, when initiating an access to OTP space:

 *pPLL_DIV = SET_SSEL(4); // Set Even (4::1) CCLK::SCLK Ratio
 bfrom_OtpCommand(OTP_INIT, OTP_INIT_VALUE); // Perform ROM Access
 *pPLL_DIV = SET_SSEL(3); // Return to Odd (3::1) CCLK::SCLK Ratio

Additionally, the processor is susceptible to the anomaly when it vectors to the top of the boot ROM (0xEF000000) after a core reset
occurs. The following workarounds must be applied for the various sources of a core reset:

1. Software Reset - write the PLL_DIV register (as above) prior to issuing the RAISE 1; instruction.
2. Watchdog Timer Reset - do not enable the automatic generation of a reset event (WDOG_CTL.WDEV = 0b00) when the CCLK::SCLK

ratio is odd. Instead, configure the watchdog to generate an interrupt (WDOG_CTL.WDEV = 0b10) and employ the workaround
above to perform a software reset in the watchdog interrupt service routine.

3. Core Double-Fault Reset - do not enable the core double-fault reset (SWRST.DOUBLE_FAULT = 1) when the CCLK::SCLK ratio is odd.
Be sure to first change to an even ratio in the PLL_DIV register (as above) before doing so.

4. Hibernate Recovery Reset - do not enter hibernate (VR_CTL.FREQ = 0b00) when the CCLK::SCLK ratio is odd. Writes to VR_CTL are
recommended to be via the bfrom_SysControl() function, so the above workaround avoids the issue; however, if the ROM
function is not used to write the VR_CTL register, the subsequent boot sequence initiated upon wake-up from hibernate will access
the ROM with the PLL unchanged, thus making the processor susceptible to this anomaly. If programming VR_CTL directly, be sure
to first change to an even ratio in the PLL_DIV register (as above).

APPLIES TO REVISION(S):
0.3M, 0.4

ADSP-BF542/BF544/BF547/BF548/BF549

NR003403O | Page 35 of 35 | January 2022

 Silicon Anomaly List

©2022 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners. w w w . a n a l o g . c o ma

http://www.analog.com/ADSP-BF542
http://www.analog.com/ADSP-BF544
http://www.analog.com/ADSP-BF547
http://www.analog.com/ADSP-BF548
http://www.analog.com/ADSP-BF549
http://www.analog.com
http://www.analog.com

	About ADSP-BF542/BF544/BF547/BF548/BF549 Silicon Anomalies
	Summary of Silicon Anomalies
	Detailed List of Silicon Anomalies
	05000074 - Multi-Issue Instruction with dsp32shiftimm in slot1 and P-reg Store in slot2 Not Supported
	05000119 - DMA_RUN Bit Is Not Valid after a Peripheral Receive Channel DMA Stops
	05000122 - Rx.H Cannot Be Used to Access 16-bit System MMR Registers
	05000220 - Data Corruption/Core Hang with L2/L3 Configured in Writeback Cache Mode
	05000245 - False Hardware Error from an Access in the Shadow of a Conditional Branch
	05000265 - Sensitivity To Noise with Slow Input Edge Rates on External SPORT TX and RX Clocks
	05000272 - Certain Data Cache Writethrough Modes Fail for Vddint <= 0.9V
	05000310 - False Hardware Errors Caused by Fetches at the Boundary of Reserved Memory
	05000329 - Synchronous Burst Flash Boot Mode Is Not Functional
	05000357 - Serial Port (SPORT) Multichannel Transmit Failure when Channel 0 Is Disabled
	05000360 - External Memory Read Access Hangs Core With PLL Bypass
	05000365 - DMAs that Go Urgent during Tight Core Writes to External Memory Are Blocked
	05000369 - Addressing Conflict between Boot ROM and Asynchronous Memory
	05000405 - Lockbox SESR Firmware Does Not Save/Restore Full Context
	05000408 - Lockbox Firmware Memory Cleanup Routine Does not Clear Registers
	05000416 - Speculative Fetches Can Cause Undesired External FIFO Operations
	05000425 - Multichannel SPORT Channel Misalignment Under Specific Configuration
	05000426 - Speculative Fetches of Indirect-Pointer Instructions Can Cause False Hardware Errors
	05000434 - SW Breakpoints Ignored Upon Return From Lockbox Authentication
	05000443 - IFLUSH Instruction at End of Hardware Loop Causes Infinite Stall
	05000446 - CDMAPRIO and L2DMAPRIO Bits in the SYSCR Register Are Not Functional
	05000447 - UART IrDA Receiver Fails on Extended Bit Pulses
	05000450 - USB DMA Short Packet Data Corruption
	05000456 - USB Receive Interrupt Is Not Generated in DMA Mode 1
	05000457 - Host DMA Port Responds to Certain Bus Activity Without HOST_CE Assertion
	05000460 - USB DMA Mode 1 Failure When Multiple USB DMA Channels Are Concurrently Enabled
	05000461 - False Hardware Error when RETI Points to Invalid Memory
	05000462 - Synchronization Problem at Startup May Cause SPORT Transmit Channels to Misalign
	05000463 - USB DMA RX Data Corruption
	05000464 - USB TX DMA Hang
	05000465 - USB Rx DMA Hang
	05000466 - Simultaneous Core/DMA Access to USB Endpoint FIFOs Doesn't Set TX Endpoint TxPktRdy Bit
	05000467 - Possible USB RX Data Corruption When Control & Data EP FIFOs are Accessed via the Core
	05000473 - Interrupted SPORT Receive Data Register Read Results In Underflow when SLEN > 15
	05000474 - Access to DDR SDRAM Causes System Hang with Certain PLL Settings
	05000477 - TESTSET Instruction Cannot Be Interrupted
	05000481 - Reads of ITEST_COMMAND and ITEST_DATA Registers Cause Cache Corruption
	05000483 - Possible USB Data Corruption When Multiple Endpoints Are Accessed by the Core
	05000485 - PLL_CTL Change Using bfrom_SysControl() Can Result in Processor Overclocking
	05000489 - PLL May Latch Incorrect Values Coming Out of Reset
	05000490 - SPI Master Boot Can Fail Under Certain Conditions
	05000491 - Instruction Memory Stalls Can Cause IFLUSH to Fail
	05000494 - EXCPT Instruction May Be Lost If NMI Happens Simultaneously
	05000498 - CNT_COMMAND Functionality Depends on CNT_IMASK Configuration
	05000500 - NFC Hang When AMC Requests Async Pins During Last 16 Bytes of Page Write
	05000501 - RXS Bit in SPI_STAT May Become Stuck In RX DMA Modes
	05000502 - Async Memory Writes May Be Skipped When Using Odd Clock Ratios
	05000503 - SPORT Sign-Extension May Not Work
	05000506 - Hardware Loop Can Underflow Under Specific Conditions
	05000508 - UART Receive DMA Hangs under Certain Conditions
	05000510 - USB Wakeup from Hibernate State Requires Re-Enumeration
	05000511 - Lower 16 Bits of CNT_COUNTER Register Do Not Update Properly
	05000512 - ROM Accesses With Odd CCLKSCLK Ratio Can Fail

