
Engineer-to-Engineer Note EE-272

a

Technical notes on using Analog Devices DSPs, processors and development tools
Contact our technical support at processor.support@analog.com and dsptools.support@analog.com
Or visit our on-line resources http://www.analog.com/ee-notes and http://www.analog.com/processors

Managing Multiple DXEs on ADSP-BF561 Blackfin® Processors
Contributed by Manik Aryapadi Rev 1 – July 11, 2005

Copyright 2005, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of
customers’ products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property
of their respective holders. Information furnished by Analog Devices applications and development tools engineers is believed to be accurate and reliable, however
no responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices Engineer-to-Engineer Notes.

Introduction
This application note describes how to manage
the booting of multiple executables from external
memory at run-time, thus providing the
flexibility to dynamically switch among them.

This project was implemented on the ADSP-
BF561 EZ-KIT Lite® evaluation system
(ADDS-BF561-EZLITE, Rev 1.1) and applies to
the ADSP-BF561 Blackfin® processors with
silicon revision 0.2 and beyond.

The software code accompanying this project
was tested using VisualDSP++® 4.0 tools.

Synopsis
This application note addresses the following
topics:

 The ADSP-BF561 Blackfin processor
booting process

 Multi-application (multi-DXE) management
for the ADSP-BF561 Blackfin processors

 Reconfiguring the C/C++ run-time header

 Second-stage loader (SSL) memory
management

 Booting multiple DXE files from 16-bit flash
memory and swapping them at run time
without having to reset

ADSP-BF561 Booting Mechanism
The ADSP-BF561 Blackfin processor consists of
a multiprocessor configuration featuring two
Blackfin cores. Since the core architectures of
the ADSP-BF561 processor and the ADSP-
BF533 processor are alike, there are no
significant differences in the booting mechanism
between the two devices.

The booting process of the ADSP-BF533
processor is documented in ADSP-BF533
Blackfin Booting Process (EE-240) [1]; therefore,
only those details unique to the ADSP-BF561
processor are detailed in this application note.

Boot modes supported on various silicon
revisions and the appropriate jumper and DIP
switch settings for each are elucidated in the
Appendix.

The ADSP-BF561 Blackfin processor has two
cores: core A and core B. After reset, the on-chip
Boot ROM, which is located at 0xEF00 0000, is
executed.

The first step in creating the boot code involves
compiling and linking the application code into
an executable file. The elfloader utility then
converts the executable into a boot stream file
(.LDR), which is then burned into flash or
another external memory device (e.g., PROM,
EEPROM, etc.).

After reset, the Boot ROM reads the boot stream
file from an external memory device, parsing the
headers and moving blocks of data to specified
memory locations. After the blocks are loaded,

 a

Managing Multiple DXEs on ADSP-BF561 Blackfin® Processors (EE-272) Page 2 of 11

the Boot ROM jumps to the start of core A’s L1
instruction SRAM (0xFFA0 0000) and executes

the code. This procedure is summarized in
Figure 1.

Figure 1. ADSP-BF561 Booting Sequence

Multi-Executable Management

The ADSP-BF561 processor application creates
two executable files (p0.dxe and p1.dxe), one
for core A and one for core B, respectively.

Figure 2. Kernel Options for ADSP-BF561 Processor

At any given instance, the Boot ROM can load
only a single executable before it jumps to the
start of core A’s L1 instruction SRAM. In order
to load two or more executables, a second-stage
loader (SSL) must be incorporated. The SSL is
used for pre-boot initialization and multi-DXE
management. The default SSL, located in the
\ldr directory of the VisualDSP++ 4.0 tools
suite, can be selected. Alternatively, a
customized kernel can be utilized by invoking

the SSL switch -l user kernel in the
command line option or by changing the
Load:Kernel page settings in the Project
Options dialog box.

To facilitate multi-DXE loading, the executable
files must be included in the Additional
options box in the Load:Kernel page settings.
The executables are loaded in the order specified
in the command line.

Figure 3. Additional Options in the Load:Kernel Page

[Booting into core A scratchpad memory
(0xFFB0 0000 – 0xFFB0 0FFF) and core
B scratchpad memory (0xFF70 0000 –
0xFF70 0FFF) is not supported by the
processor Boot ROM.

[The .LDF file can be modified to combine
both cores into a single executable. This is
not recommended for projects that utilize
shared memory or use the C/C++ run-time
headers.

ADSP-BF561
Processor

Target System

Assembler and/or
Compiler

Linker Loader Source Files
.ASM, .C, .CPP

.LDR

.DOJ(s) .DXE(s)

 External
Memory

 a

Managing Multiple DXEs on ADSP-BF561 Blackfin® Processors (EE-272) Page 3 of 11

L The last 1024 bytes of L2 memory are
allocated to the SSL by default. This part
of memory must be reserved while in the
booting mode.

Loader Operations

The loader utility converts the executable into a
boot-loadable format (.LDR) that is readable by
the processor Boot ROM. It also configures the
output .LDR file according to a user-specified
boot format (Intel hex-32, binary, ASCII) and
output width (8- or 16-bit).

The loader utility is run by changing the project
type from an executable to a loader file in the
Project Options dialog box.

Figure 4. Project options for ADSP-BF561 processors

In order to ensure that the boot stream file (.LDR)
incorporates the SSL as well as the individual
executables, the “elfloader” command-line
option in the Post-Build page of the Project
Options dialog box must be used. For further
instructions regarding how to use the elfloader
command-line option, refer to the VisualDSP++
4.0 Loader Manual [2].

Figure 5. ADSP-BF561 Post-build Page

The file name and destination of the loader file
must also be specified in the Load:Options page
settings.

Figure 6. Output File on the Load:Options Page

ADSP-BF561 processors and ADSP-BF533
processors share the same loader file structure.
Refer to EE-240 for a detailed description of the
loader file structure.

Flash Programmer Utility

After the loader file is built, it can then be
programmed into flash memory using the flash
programmer utility. Perform the following steps
to burn the loader file into flash:

1) In VisualDSP++ 4.0, choose Tools->Flash
Programmer to activate the flash
programmer utility.

2) Select the flash programmer driver from the
default location:
C:\Program Files\Analog Devices\
VisualDSP 4.0\ Blackfin\Flash
Programmer Drivers\ADSP-BF561 EZ-Kit
Lite\BF561EzFlash.DXE

3) After the driver has been loaded (status
indicator turns green), the loader file present
at the specified location is loaded into flash
and verified.

For more details on flash-based applications,
please refer to Running Programs from Flash on
ADSP-BF533 Blackfin Processors (EE-239) [3].

The remainder of the application note discusses
how to switch between two or more executables
at runtime. Tasks include modifying the C/C++
run-time header and placing memory sections

L The ADSP-BF561 boot stream begins
with a 4-byte global header that contains
information about the external memory
device and a signature that prevents the
Boot ROM from reading a blank device.
The ADSP-BF533 processor’s boot
stream does not contain a global header.

 a

Managing Multiple DXEs on ADSP-BF561 Blackfin® Processors (EE-272) Page 4 of 11

into specific locations using the Expert Linker.
The software code accompanying the project

consists of the SSL and two programs that scroll
different sets of LEDs.

Figure 7. ADSP-BF561 Multi-DXE Loader File Structure

Figure 8. Flash Programmer Utility

Loader File

10-Byte Header
Block 1

10-Byte Header
Block 2

10-Byte Header
Block 3

……………….
……………………….

2nd DXE Application

10-Byte Count Header

4-Byte Next DXE Pointer

Second Stage Loader

(SSL)

10-Byte Count Header

4-Byte Next DXE Pointer 1st Boot Stream

4-Byte Global Header

1st DXE Application

10-Byte Count Header

4-Byte Next DXE Pointer2nd Boot Stream

3rd Boot Stream

ADSP-BF561 only

 a

Managing Multiple DXEs on ADSP-BF561 Blackfin® Processors (EE-272) Page 5 of 11

Reconfiguring the C/C++ Run-
Time Header
Attached to this EE-Note is a multi-DXE boot
example (see associated ZIP file). The ZIP file
contains an SSL project and two LED scroll
application projects. Upon RESET, the on-chip
Boot ROM boots in the SSL. The SSL then waits
until PF5 (SW6 push button) or PF6 (SW7 push
button) are asserted. If PF5 is asserted, the first
executable that scrolls LEDs 13-20 is booted in.
If PF6 is asserted, the SSL skips the first
executable and boots in the second executable,
which scrolls on LEDs 5-12. Either of these
executables can then be booted into the device,
without resetting, by pressing the push-button
switches.

The 561_prom16 directory (in the ZIP file)
consists of two sub-directories, blink_lower
and blink_upper, which contain the sub-
projects. Before the SSL is built, each of these
sub-projects must be built.

These sub-directories contain project groups
BF561_Blink1.dpg (to scroll LEDs 13-20) and
BF561_Blink2.dpg (to scroll LEDs 5-12). When
the project groups are compiled and built, they
yield four executables (p0.dxe and p1.dxe for
blink_lower and p0.dxe and p1.dxe for
blink_upper).

The C/C++ run-time header (CRT) has been
included in each of these projects. The CRT is
used in projects that are coded in the C/C++
programming language and, among other tasks,
initializes standard libraries such as stdio
(standard input/output). Another of the primary
functions of the CRT is to call _main upon
completion of execution. In addition, the CRT
also sets up default event handlers, enables
interrupts, and sets reserved registers to known
values. For more details on the CRT, refer to
Configuring the C/C++ Run-Time Header for
Blackfin Processors-(EE-238) [4].

The CRT must be included in each of the sub-
projects (that generate the executables) as part of
core A and core B, as shown in Figure 9.

 Figure 9. CRT File Inclusion in the Sub-Project

The Reconfiguration Process

By default, the CRT sets all the interrupt vector
addresses (except the supervisor mode interrupt,
IVG15) located in the Event Vector Table (EVT)
to a generic handler’s address. For the purposes
of booting executables dynamically, this
behavior compromises the vector address
mapped to the flag interrupt used to switch
applications. If the CRT overwrites the value
assigned to the selected interrupt (IVG11) with the
generic handler’s address, it results in subsequent
button-pushes vectoring to the default handler
instead of the handler installed in the original
application. To work around this, the basiccrt.s
file must be added to each of the sub-projects
and modified.

 a

Managing Multiple DXEs on ADSP-BF561 Blackfin® Processors (EE-272) Page 6 of 11

// Initialize the Event Vector table.
 P0.H = IVBh;
 P0.L = IVBl;

 // Install __unknown_exception_occurred in EVT so that
 // there is defined behavior.
 P0 += 2*4; // Skip Emulation and Reset
// P1 = 13;
 R1.L = __unknown_exception_occurred;
 R1.H = __unknown_exception_occurred;

.ivt2: [P0++] = R1;
.ivt3: [P0++] = R1;
.ivt4: [P0++] = R1;
.ivt5: [P0++] = R1;
.ivt6: [P0++] = R1;
.ivt7: [P0++] = R1;
.ivt8: [P0++] = R1;
.ivt9: [P0++] = R1;
.ivt10: [P0++] = R1;
// .ivt11: [P0++] = R1; // Not needed for maintaining IVG 11
 P0+=4; // Skipping IVG 11
.ivt12: [P0++] = R1;
.ivt13: [P0++] = R1;
.ivt14: [P0++] = R1;

Listing 1. EVT Modification in the basiccrt.s File

As noted in Listing 1, commenting out the code
that overwrites IVG11 and, instead, skipping to
IVG12 solves this problem and maintains the
original vector address for IVG11. Additionally,
as shown in Listing 2, the IMASK register must
also be manually preserved. By default, the CRT
enables only the Supervisor mode interrupt
(IVG15). For this application, the IVG11 interrupt
must also remain enabled before calling _main

(application program). Since no reset event is
taking place, the System Interrupt Controller
register’ context will be preserved through the
executable switch. The core’s IMASK register and
the EVTx registers, on the other hand, are written
by the CRT, and thus, must be preserved. The
steps shown in Listing 1 and Listing 2 guarantee
that the processor’s Core Event Controller
register context is also preserved.

// At long last, call the application program.

cli r0; //disable interrupts
bitset (r0,11); //copying the contents of IVG11 into r0 (user specified register)
sti r0; //restoring the previous state of the interrupt system

CALL.X _main;

Listing 2. Disabling and Re-enabling Interrupts in the basiccrt.s File

SSL Memory Management
The 561_prom directory contains the project
group bf561_prom16.dpg, which consists of

bf561_prom16.dsp (containing the main SSL
code) and cmds.c.

 a

Managing Multiple DXEs on ADSP-BF561 Blackfin® Processors (EE-272) Page 7 of 11

cmds.c is used to pass an argument to the SSL.
Since a C file is included in the project, the C
Application Binary Interface (ABI) must be
adhered to and global data must be declared and
initialized according to C/C++ standards.

cmds.c enables a particular .DXE file to be
loaded without specifying its address. The SSL
will index into the boot stream to find the
specified .DXE file. The cmds.c module also
gives the user the flexibility to load, execute, and
switch .DXE files in a particular order. The next
step involves building the SSL and creating the
loader file with the multiple executables (built in
the previous step). This procedure is described
on page 2.

Before building the SSL, the various sections
need to placed into appropriate memory
locations. None of the executables should have
access to these locations and, at the same time,
cores A and B should be able to access this part
of memory. This can be accomplished by
reconfiguring the Linker Description File (.LDF)
of each of the executables by using the Expert
Linker to ensure that there is no memory conflict
with the SSL. As noted in Listing 3, L2 shared
memory fulfills both these criteria and, therefore,
the interrupt sections in the cmds.c file were
placed into this memory space.

#include <cDefBF561.h>
#include <sysreg.h>
#include <ccblkfn.h>
#include <sys/exception.h>

void loader_commands(void);
extern int SECOND_STAGE_LOADER(int, int);

void Init_Interrupts_A(void);
EX_INTERRUPT_HANDLER(A_ISR);

/* placing the Interrupts in L2 Shared memory */
/* please note that the following programs are running on a single core-core A */

section ("l2_shared") EX_INTERRUPT_HANDLER(A_ISR)
{
 if(*pFIO0_FLAG_C & 0x0020) //SW 5 is pressed
 {
 SECOND_STAGE_LOADER(0, 1);//(0-> indicates load executable, 1-> DXE number)
 SECOND_STAGE_LOADER(1, 0);//(1-> execute the DXE)
 }
 else if(*pFIO0_FLAG_C & 0x0040) //SW 6 is pressed
 {
 SECOND_STAGE_LOADER(0, 2);//load the 2nd DXE in the boot stream
 SECOND_STAGE_LOADER(1, 0);//execute the 2nd DXE
 }
} // end

section ("l2_shared") void loader_commands()
{
 *pFIO0_DIR = 0x0000;
 *pFIO0_INEN = 0x01E0;
 *pFIO0_MASKA_D = 0x01E0;
 Init_Interrupts_A();

 a

Managing Multiple DXEs on ADSP-BF561 Blackfin® Processors (EE-272) Page 8 of 11

 while(1);
}

section ("l2_shared") void Init_Interrupts_A(void)
{
 *pSICA_IMASK1 |= SIC_MASK(15);
 register_handler(ik_ivg11, A_ISR);
}

Listing 3. cmds.c Source File

Reconfiguring the SSL .LDF File

After the sections of the cmds.c module have
been placed into L2 SRAM, the same must be
done for the bf561_prom16.dsp file. This file
contains the main SSL code, consisting of two
main sections (see Listing 4).

The SSL must always start in L1 memory of
core A (0xFFA0 0000), hence a jump to the main
program is placed at 0xFFA0 0000 to execute the
code from another destination in memory.

Therefore, the JMP_LDR section needs to be
placed at the top of core A’s L1 memory.

The SEG_LDR section is also placed at a location
in L2 SRAM for reasons outlined above. The
Expert Linker can be used to view and modify
the .LDF source file to place the appropriate
sections in memory.

#define HeaderBuffer GPStorage -12

.extern _loader_commands;

// The 2nd stage boot loader must start in Core A L1
// A jump to the program is placed at FFA00000, so we may execute in L2.

.section JMP_LDR;

 P0.L = START_OF_LOADER;
 P0.H = START_OF_LOADER;
 JUMP (P0);

///
.section SEG_LDR;
MEM_DMA:

// R0 = source address
// R1 = destination address
// R2 = count
// R3 = source config
// R4 = dest config
// modify registers have already been set up

Listing 4. bf561_prom16.dsp Source File

The Expert Linker is a powerful utility that
allows you to place sections into memory
graphically by dragging and dropping the

specified section. The SECTIONS {} command
can also be used to place the specified sections
by manually modifying the source file. For more

 a

Managing Multiple DXEs on ADSP-BF561 Blackfin® Processors (EE-272) Page 9 of 11

details on the syntax, refer to the description of
LDF commands in the VisualDSP++4.0 Linker
and Utilities Manual [5]. After incorporating the

changes detailed above, compile and execute the
project group after loading the desired
executables.

Appendix: Boot Modes Supported on Silicon Revisions

Silicon Revision 0.2

Silicon revision 0.2 supports true 16-bit flash/PROM mode.

BMODE[2:0] Description

000 Reserved. Executes from external 16-bit memory connected to ASYNC Bank0 (“Bypass mode”)

001 Boot from 8/16-bit flash/PROM

010 Boot from 8-bit addressable SPI0 serial EEPROM in SPI Master mode

011 Boot from 16-bit addressable SPI0 serial EEPROM in SPI Master mode

Table 1. Silicon Revision 0.2 Boot Modes

Silicon Revision 0.3

Silicon revision 0.3 introduced SPI slave booting.

BMODE[2:0] Description

000 Bypass

001 Boot from 8/16-bit flash/PROM

010 Boot from an SPI host in SPI Slave mode1

011 Boot from 16-bit addressable SPI0 serial EEPROM in SPI Master mode

Table 2. Silicon Revision 0.3 Boot Modes
1 In silicon revision 0.3, the 8-bit SPI was replaced with slave SPI mode, but it was non-functional due to an anomaly;
therefore, only silicon revision 0.3 supports 16-bit SPI and 8/16 flash.

Silicon Revision 0.4

BMODE[2:0] Description

000 Bypass

001 Boot from 8/16-bit flash/PROM

010 Boot from an SPI host in SPI Slave mode2

011 Boot from 16-bit addressable SPI0 serial EEPROM in SPI Master mode

Table 3. Silicon Revision 0.4 Boot Modes
2 Silicon revision 0.4 includes support for slave SPI booting, and the bug that was found in rev 0.3 was fixed; therefore, silicon
revision 0.4 supports slave SPI booting, 16-bit SPI and 8/16 flash apart from “bypass” mode.

 a

Managing Multiple DXEs on ADSP-BF561 Blackfin® Processors (EE-272) Page 10 of 11

Appendix: Jumper and DIP Switch Settings
This section describes jumper and DIP switch settings on the ADSP-BF561 EZ-KIT Lite evaluation
system. The software code accompanying this application note will run successfully only if these settings
are implemented.

 Figure 10. DIP Switch Locations on the ADSP-BF561 EZ-KIT Lite Evaluation System

As observed in Figure 10, the switch settings control different modes of operation for push buttons, video
configurations, and PPI clock selections. There is no need to change any of the default settings for these
switches; however, you must modify SW3, which controls the boot mode settings to accommodate this
project.

Boot Mode Position

Reserved OFF

Flash memory ON

8-bit SPI PROM ON

16-bit SPI PROM ON or OFF

 Table 4. Boot Mode Select Switches for Current Project.

Positions 1 and 2 set the boot mode, whereas position 3 sets the processor’s PLL in bypass mode, which is
essential for this project. Position 4 can be ON or OFF, as it does not affect the functionality of the
software.

 a

Managing Multiple DXEs on ADSP-BF561 Blackfin® Processors (EE-272) Page 11 of 11

References
[1] ADSP-BF533 Blackfin Booting Process (EE-240) Rev 3.0, January 2005. Analog Devices, Inc.

[2] VisualDSP++ 4.0 Loader Manual. Rev 1.0, January 2005. Analog Devices, Inc.

[3] Running Programs from Flash on ADSP-BF533 Blackfin Processors (EE-239). Rev 1, May 2004. Analog Devices Inc.

[4] Configuring the C/C++ Run-time header for Blackfin Processors (EE-238). Rev 1, May 2004. Analog Devices Inc.

[5] VisualDSP++ 4.0 Linker and Utilities Manual. Rev 1.0, January 2005. Analog Devices, Inc.

Document History

Revision Description

Rev 1 – July 11, 2005
by M.Aryapadi
and J. Beauchemin

Initial Release

	Introduction
	Synopsis
	ADSP-BF561 Booting Mechanism
	Multi-Executable Management
	Loader Operations
	Flash Programmer Utility

	Reconfiguring the C/C++ Run-Time Header
	The Reconfiguration Process

	SSL Memory Management
	Reconfiguring the SSL .LDF File

	Appendix: Boot Modes Supported on Silicon Revisions
	Silicon Revision 0.2
	Silicon Revision 0.3
	Silicon Revision 0.4

	Appendix: Jumper and DIP Switch Settings
	References
	Document History

