
Engineer-to-Engineer Note EE-314

a

Technical notes on using Analog Devices DSPs, processors and development tools
Visit our Web resources http://www.analog.com/ee-notes and http://www.analog.com/processors or
e-mail processor.support@analog.com or processor.tools.support@analog.com for technical support.

Booting the ADSP-BF561 Blackfin® Processor
Contributed by Jayanti Addepalli Rev 1 – May 15, 2007

Copyright 2007, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of
customers’ products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property
of their respective holders. Information furnished by Analog Devices applications and development tools engineers is believed to be accurate and reliable, however
no responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices Engineer-to-Engineer Notes.

Introduction
This EE-Note discusses the booting process for ADSP-BF561 Blackfin® dual-core processors. The
available boot modes for silicon revisions 0.2 and beyond are addressed. This document also describes the
loader file structure with regard to the booting process. This document is supplemented by code examples
verified using VisualDSP++® 4.5 (November update) on an ADSP-BF561 EZ-KIT Lite® evaluation
platform.

Booting Process
Booting refers to the process of loading application code and data into the internal and external memories
of the Blackfin processor immediately after reset. The code and data are brought in from an external
source, which could be a memory device or a host processor, depending on the boot mode configuration.
The boot ROM, which occupies the lowest 2 Kbytes (Blackfin memory at address 0xEF000000 -
0xEF0003FF) of internal memory space, includes a bootstrap kernel that contains the configuration
settings required for each boot mode.

The BMODE[1:0] pins configure the boot mode. These pins are sensed and latched into the system reset
configuration register (SICA_SYSCR) when the processor is brought out of reset. The bootstrap code reads
SICA_SYSCR to determine the value of the BMODE[1:0] pins. Depending on the selected boot mode, the
appropriate code is executed from the boot ROM.

When the /RESET signal to the processor is released, core A executes the boot kernel code. The
application is loaded from the source into internal and/or external memory. The external memory can be
SRAM or SDRAM. Core B is held in the idle state during this time.

The application is expected to be in a defined format, referred to as the boot stream. A boot stream is
composed of multiple blocks of data and commands. Each block contains header information that
indicates what the block is supposed to be (e.g., a zero-fill block, an initialization block, or a final block).

The boot kernel processes the boot stream block-by-block until reaching a block flagged as the last block.
The control then jumps to the start of core A instruction memory to begin code execution.

Booting the ADSP-BF561 Blackfin® Processor (EE-314) Page 2 of 24

Boot Modes (Silicon Revision 0.5)
Blackfin processors can boot from a non-volatile memory (flash, ROM, EPROM, etc.) via asynchronous
memory bank 0 of the EBIU or from an SPI device (memory or host) via the SPI port. Figure 1 shows the
data flow during the boot process. The numbered arrows indicate the sequence of events.

Figure 1. Data flow for the booting process on ADSP-BF561 processors

Table 1 lists the boot modes determined by the state of the BMODE[1:0] pins after reset. On the EZ-KIT
Lite board, positions 1 and 2 of the SW3 switch set the boot mode. The boot modes for the silicon revisions
before revision 0.5 are listed in Appendix 1 – Boot Modes on Older Silicon Revisions.

Table 1. ADSP-BF561 Blackfin processor boot modes (0.5 silicon)

Loader File Structure
The loader utility (elfloader.exe) of VisualDSP++ parses input executable files (.DXE) to create a
loader file (.LDR); refer to Figure 2. It segments the application into multiple blocks and creates header
information for each block. Multiple .dxe files are combined into a single loader file (boot stream).

BMODE[1:0] SW3
Position2, Position 1

Description

00 ON, ON No boot mode - Executes from external 16-bit memory connected
to ASYNC Bank 0 (bypass boot ROM)

01 ON, OFF Flash/ROM boot mode - Boots from 8/16-bit flash/PROM (default
mode on an EZ-KIT Lite board)

10 OFF, ON SPI slave mode - Boots from an SPI host

11 OFF, OFF SPI master mode - Boots from a 16/24-bit addressable SPI memory

Booting the ADSP-BF561 Blackfin® Processor (EE-314) Page 3 of 24

Figure 2. ADSP-BF561 stand-alone system

The ADSP-BF561 processor boot stream begins with a 4-byte global header. The global header contains a
signature in the upper 4 bits that prevents the boot ROM from reading a boot stream from a blank device.
Figure 3 provides a bit-by-bit description of the global header.

Figure 3. Global header structure

Each block in the loader file begins with a 10-byte block header. Each header contains a start address and
count for the data block, followed by a flag word.

 ADDRESS: Target address to which the block will be booted within memory (4 bytes)

 COUNT: Number of bytes in the block (4 bytes)

 FLAG: Block type and control commands (2 bytes)

Booting the ADSP-BF561 Blackfin® Processor (EE-314) Page 4 of 24

The individual bits of the flag word are shown in Figure 4. After reset, the headers are read and parsed by
the on-chip boot ROM. The boot stream is processed block-by-block, and payload data is copied to
destination addresses. The destination can be on-chip L1 or L2 memory or off-chip SRAM/SDRAM.

Figure 4. Flag word structure

A brief description of the different fields in the flag word follows:

 ZEROFILL: Specifies that the block is a buffer with zeros. ZEROFILL blocks have no payload data. The
boot ROM fills COUNT bytes of memory with zeros, starting from the given ADDRESS. This helps to
generate a condensed loader file for applications with large zero buffers.

 INIT: Specifies that the block is an initialization block. It executes before the actual application boots
over it. When the on-chip boot ROM detects an init block, it boots the block into internal memory and
makes a CALL to it. Refer to Initialization Code for details.

 IGNORE: Indicates a block that is not booted into memory. It instructs the boot ROM to skip COUNT
bytes of the boot stream.

 PFLAG: Used for SPI slave boot mode (BMODE = 10). PFLAG indicates the PFx used for the host wait
(HWAIT) signal from the Blackfin processor to the master SPI device. This value can be between 1 and
15 (0x1 – 0xF).

 FINAL: Indicates that the boot process is complete after this block is processed. The boot ROM jumps
to the start of core A L1 instruction memory (0xFFA00000) after processing a FINAL block. The
processor continues to remain in supervisor mode (servicing the lowest-priority interrupt - IVG15)
when it jumps to internal memory for code execution.

A .dxe file count block follows the global header in the loader file. It contains a 32-bit byte count for the
first .dxe file of the boot stream. The “ignore bit” is set in its flag word so that the boot ROM does not try
to load this block into memory. It is encapsulated by a 10-byte block header like other blocks, though it
contains only a byte count. The address field is irrelevant for this block since it is not copied into memory.

The other blocks of the first .dxe file and a similar structure for the second .dxe file follow the .dxe
count block. In a dual-core project, two .dxe files are generated: p0.dxe for core A and p1.dxe for core
B. The structure of the boot stream for a dual-core application is shown in Figure 5.

Booting the ADSP-BF561 Blackfin® Processor (EE-314) Page 5 of 24

L The boot ROM does not support booting to core A (0xFFB00000 – 0xFFB00FFF) or core B
(0xFF700000 – 0xFF700FFF) scratchpad memories. Data that must be initialized prior to
runtime should not be placed in scratchpad memory. If booting to scratchpad memory is
attempted, the processor hangs within the on-chip boot ROM.

Figure 5. Boot stream structure for a dual-core application

Booting the ADSP-BF561 Blackfin® Processor (EE-314) Page 6 of 24

Booting to Both Cores
There are many nuances associated with the dual-core boot process, including specific loader switches,
the need to unlock core B, the process for changing the PLL, and using the flash programming utility.

Loader Switches: –NoFinalTag, -nosecondstagekernel

The loader can be configured to automatically append the core B boot stream to the end of the core A boot
stream in such a way that the boot ROM recognizes it as a single boot stream. The final tag is present
only in the final block of the core B boot stream. This can be done using the loader switch –NoFinalTag.

The -nosecondstagekernel switch ensures that VisualDSP++ does not include the second-stage loader
(SSL) by default. The tool currently includes the SSL even when its use is not specified in the project
options. The usage of these loader switches is shown in Figure 6.

These tags are supported beginning with the November update of VisualDSP++ 4.5.

Figure 6. Using loader switches to boot a dual-core application without the SSL

With separate executables for each core, older versions of VisualDSP++ (prior to the November update of
VisualDSP++ 4.5) required the SSL to boot both cores. This is discussed in Appendix 2 – Booting Using
the Second-Stage Loader. The SSL is not required starting from the November Update of VisualDSP++
4.5. Init code can be used for initialization functions. Refer to Initialization Code for details.

Booting the ADSP-BF561 Blackfin® Processor (EE-314) Page 7 of 24

Unlocking Core B

By default, core A executes the boot kernel code; core B is in the idle state during this time. Core B
remains in the idle state until the user code executed by core A clears the COREB_SRAM_INIT bit in
SICA_SYSCR. When set, this bit prevents all core B interrupts and wake-up events from being serviced;
thus, core B cannot come out of idle. When this bit is cleared by core A, core B is released from idle and
begins executing from the start of its L1 instruction memory space (0xFF600000). Note that once
COREB_SRAM_INIT is cleared, setting it again has no effect. That is, you cannot lock core B by setting this
bit once it has been unlocked. While in a VisualDSP++ debug session, it is not required to clear this bit
since the in-circuit emulator (ICE) unlocks core B automatically through the JTAG port.

L When booting a dual-core application, the core A application code must unlock core B by
clearing the COREB_SRAM_INIT bit in the SICA_SYSCR register.

Changing PLL Ratios

In order to change the PLL settings, both cores are required to be in the idle state. Since core B is in the
idle state immediately after booting, core A can change the PLL settings for the desired core and system
clock frequencies and execute an IDLE instruction. After the PLL is locked to the new frequency, it can
wake up core A, which in turn can unlock core B.

Using the Flash Programmer Utility

The Flash Programmer utility that comes with VisualDSP++ is core-specific (core A) and must be loaded
into core A in order to operate correctly. The Flash Programmer relies on the user to set the correct core
focus.

L To set up the correct core, select core A in the Multiprocessor window before opening the Flash
Programmer user interface. If core B is selected, the Flash Programmer will not load properly,
and an error will be generated.

L When booting a single-core application, specify the –nosecondstagekernel tag in the
Additional Options field (Loader page) of the Project Options dialog box.

Initialization Code
In most applications, certain tasks must be performed before the application starts utilizing off-chip
memory interfaces. These tasks are done inside an init block in the loader file. As an init block, the code
contained within is loaded into core A L1 instruction memory and is then executed immediately to take
care of these tasks before carrying on with the boot sequence to move code and data from the boot source
and into external memory.

For example, if the boot image consumes external memory, the SDRAM controller must be initialized
before the boot ROM attempts to load code and data over the EBIU into external memory. While in a
VisualDSP++ debug session, the SDRAM controller can be configured automatically by selecting the Use
XML reset values option of the Target Options dialog box (Settings -> Target Options). This is

Booting the ADSP-BF561 Blackfin® Processor (EE-314) Page 8 of 24

the default setting in VisualDSP++, so SDRAM is always properly configured for use on an EZ-KIT Lite
board. When booting the processor, there is no such provision. It therefore becomes essential to initialize
the SDRAM memory controller before any instructions or data are loaded into SDRAM.

If the time taken by the boot process is critical to the system, the PLL register settings may have to be
changed before the application starts booting. Also, when booting from a flash/ROM device, the process
is faster if only the required wait states were set in the EBIU configuration registers. By default, the
slowest configuration is used by the boot ROM. If the PLL is changed in the init block, this will have
impact on how the SDRAM controller is configured as well. Similarly, the SPI baud rate settings for
booting via the SPI interface can be altered to speed up the processor boot time.

In both the PLL and SDRAM examples previously mentioned, init code or an SSL must be used for the
tasks that must be executed prior to the application code itself being loaded. The elfloader utility converts
the init code into an init block and prepends it to the application executable(s) in the loader file. The init
blocks are identified by a bit in the flag word of the 10-byte block header. When the boot ROM
encounters this block in the boot stream, it loads the block and executes it immediately. An RTS
instruction must be executed at the end of the init code to return control to the boot ROM. The
initialization blocks must save and restore registers and return to the boot ROM so that the boot ROM can
load the rest of the blocks in the boot stream. The init block code in L1 instruction memory is then over-
written by the application code when it is subsequently loaded.

The init block can also be used to force the boot ROM to load a specific .dxe file from the external
memory device. The initialization block can manipulate the R0 or R3 registers, which the boot ROM uses
as the external memory pointers for flash/PROM or SPI memory boot, respectively. After the processor
returns from the execution of the init block, the boot ROM continues to load blocks from the location
specified in the R0 or R3 register, which can be any .dxe file in the boot stream.

An example project for booting from flash memory that uses init code to configure the SDRAM controller
registers to their default values can be found in the software that accompanies this EE-note. The use of the
second stage loader is documented in Managing Multiple DXEs on ADSP-BF561 Blackfin Processors
(EE-272) [5].

Boot Modes
This section discusses the details of boot modes, which are determined by the BMODE[1:0] pins. In
addition to the three boot modes, the processor also supports the No-Boot mode (BMODE = 00), in which
the boot ROM is bypassed and the application runs directly from flash memory bank 0 (at address
0x20000000).

8/16-Bit Flash/PROM Boot (BMODE[1:0] = 01)

Flash memory is connected to asynchronous memory bank 0 of the EBIU. Since the EBIU is 16 bits wide,
an 8-bit flash/PROM device will occupy only the lower 8 bits of the data bus. (D[7:0]). The pin-to-pin
connections between the Blackfin processor and a 16-bit flash device are shown in Figure 7, and the
connections for an 8-bit device are shown in Figure 8.

Booting the ADSP-BF561 Blackfin® Processor (EE-314) Page 9 of 24

Figure 7. Interfacing an ADSP-BF561 Blackfin processor to a 16-bit flash/PROM device

Figure 8. Interfacing an ADSP-BF561 Blackfin processor to an 8-bit flash/PROM device

The processor performs a 16-bit fetch regardless whether an 8-bit device or a 16-bit device is connected.
Therefore, when an 8-bit device is connected, the upper eight bits that are received by the Blackfin
processor are ignored. The lower eight bits are then placed consecutively in internal memory.

There are no multiplexers inside the processor that read the lower eight bits (connected to external
memory) and move them to the upper eight bits of the 16-bit word. Therefore, packing into 16-bit words is
not supported when connecting 8-bit devices to the external bus.

Figure 9 shows a description of the first few bytes of the loader file. This .LDR file was created in ASCII
format for booting from a 16-bit flash device.

Booting the ADSP-BF561 Blackfin® Processor (EE-314) Page 10 of 24

Figure 9. Example ASCII loader file

The first four bytes of the loader file constitute the global header. The information about whether it is an
8-bit flash boot or a 16-bit flash boot is contained here. With the exception of the global header, the loader
file created for an 8-bit flash looks exactly the same as that in Figure 9. The global header for an 8-bit
flash device would be 0xA00000DE. The on-chip boot ROM interrogates bit 0 of this header to determine
whether an 8-bit or a 16-bit device is connected.

The 8/16-bit flash boot routine located in the boot ROM memory space has all configuration settings set
for the slowest device possible (4-cycle setup time; 15-cycle R/W access times; 3-cycle hold time). The
boot kernel assumes that asynchronous memory bank 0 is enabled with 16-bit packing.

The example code in the associated ZIP file demonstrates this boot method. Core A blinks one row of
LEDs on the EZ-KIT Lite board (rev.2.0), while core B blinks the other row of LEDs. On the board, the 8
MB of flash memory is organized as 4M x 16-bit and is mapped into the processor’s ASYNC bank 0.

SPI Slave Boot by a Master Host (BMODE[1:0] = 10)

L This boot mode is NOT supported on ADSP-BF561 processor silicon prior to revision 0.5.

The processor is configured as a slave device in this mode. A host is used to transmit the loader file. The
host does not require knowledge of the details of the file. It must only be configured to transmit one byte
at a time from the loader file (ASCII format). Figure 10 shows the pin connections required for this boot
mode.

Booting the ADSP-BF561 Blackfin® Processor (EE-314) Page 11 of 24

A user-defined programmable flag pin is an output on the Blackfin processor and an input to the SPI host
device. This flag allows the processor to hold off the host device from sending data during certain sections
of the boot process. When this flag is de-asserted (low), the host can continue to send bytes to the
processor.

Figure 10. Interfacing an ADSP-BF561 processor to an SPI host device (SPI slave boot mode)

In the above setup, PFx is the host wait (HWAIT) signal from the Blackfin processor to the master device.
This is used to “hold off” the host during certain times in the boot process (i.e., during init code execution
and zero-fill blocks). When the PFx signal is asserted (high), the host device will stop sending bytes to the
Blackfin processor. When de-asserted (low), it will resume sending bytes from where it stopped.

A pull-down resistor on the PFx pin is necessary to ensure that the master will continue to send bytes until
the first block is processed by the slave.

L The host must ensure that the Blackfin processor is out of reset before transmitting the loader
file. All bytes sent before the processor comes out of reset will be lost, and the boot sequence
will fail.

The VisualDSP++ 4.5 (November update) user interface does not support this boot mode (later updates
will). Therefore, the loader file must be created using the command line. One method of specifying the
command-line argument is via the Post-build page of the Project Options dialog box as shown in
Figure 11.

Figure 11. Using the post-build capability in VisualDSP++ to specify a command-line argument

Booting the ADSP-BF561 Blackfin® Processor (EE-314) Page 12 of 24

An example of the command to be used is shown in Listing 1.

C:\Program Files\Analog Devices\VisualDSP 4.5\elfloader.exe -proc ADSP-BF561
.\Debug\p0.dxe .\Debug\p1.dxe -pflag 4 -b spislave -include -Width 8 -o
.\Debug\SPI_Slave.ldr -si-revision 0.5

Listing 1. Command to generate a loader file for SPI slave boot mode

The above command generates the output loader file, SPI_Slave.ldr, in the Debug folder of the project.

The PFx pin used as the HWAIT signal is selected via the -pflag switch in the command line, and it is
embedded within the loader file. In the command shown above, PF4 is being used. The elfloader utility
embeds this number in the PFLAG bit field (bits [8:5]) of the FLAG word in each 10-byte header.

L If the -pflag switch is not used in the command line, the default value of the PFLAG field in the
FLAG word will be 0, indicating that PF0 is assumed as the HWAIT signal to the host. Since PF0 is
the /SPISS pin, which is needed for a successful SPI slave boot, the -pflag switch must always
be used and must specify a value other than 0.

Figure 12 shows the transmission of the first few words of the loader file. An ADSP-BF533 Blackfin
processor was used as the host to send the loader file, which is included in the associated file.

Figure 12. Beginning of SPI slave boot sequence

Booting the ADSP-BF561 Blackfin® Processor (EE-314) Page 13 of 24

The HWAIT signal is driven high to signal the host to pause the process of sending bytes from the loader
file. This is done when the init code is being executed or when zero-fill blocks are being processed. An
example of the HWAT signal being driven high during the processing of a zero-fill block is shown in
Figure 13.

Figure 13. HWAIT signal driven high during the processing of a zero-fill block

Booting the ADSP-BF561 Blackfin® Processor (EE-314) Page 14 of 24

SPI Master Boot from a Memory Device (BMODE[1:0] = 11)

In this mode, the processor is configured as an SPI master, and an SPI memory device is used as the slave.
Figure 14 shows the interface between an ADSP-BF561 Blackfin processor and an SPI memory device.

Figure 14. Interfacing an ADSP-BF561 processor host to an SPI slave memory device (SPI master boot mode)

L A pull-up resistor on MISO is required for this boot mode to work properly when booting from a
24-bit addressable device. This is because the boot ROM expects a 0xFF on the MISO pin if the
device does not respond to the command sent by the processor.

A pull-up resistor on the /CS line is required because a high-to-low transition on the /CS pin is necessary
for most SPI memory devices to start a valid instruction after power on.

The EZ-KIT Lite board has a pull-down resistor on the MISO pin. This creates a voltage-divider circuit if
the MISO pin is pulled high for booting a 24-bit addressable device in this mode. Remove this resistor if
booting from a 24-bit addressable SPI device.

Standard SPI memory devices that are 16-bit addressable are supported by this interface for all revisions
of the ADSP-BF561 processor. Standard 24-bit addressable devices are supported only on the 0.5 revision
processor.

L 24-bit addressable SPI memory devices are NOT supported on ADSP-BF561 processor silicon
revisions 0.3 and older.

Atmel SPI DataFlash devices are also supported by this boot mode. These Atmel DataFlash devices are
available in A-, B-, C-, and D-series. SPI master booting can be accomplished on the D-series of these
devices only when they operate in the “power of 2” mode of addressing. This mode is not the default, so
the device must be programmed by sending a command word to a one-time programmable bit of a register
in the memory device. This should be done in a predefined programming sequence followed by a power
cycle, details for which are available in the device’s data sheet. Once the programming is completed, the
device can be used like any other SPI device for booting purposes.

Booting the ADSP-BF561 Blackfin® Processor (EE-314) Page 15 of 24

L Atmel D-type DataFlash devices must be programmed to the “power-of-2” addressing mode
before they can be used to boot Blackfin processors.

Standard 16/24-bit addressable SPI memories are those that take in a read command byte (0x03) followed
by two address bytes (for 16-bit addressable SPI memories) or three address bytes (for 24-bit addressable
SPI memories). The general-purpose flag pin 2 (PF2) is used as the SPI chip select signal. After the
correct read command and address are sent, data stored in the memory at the selected address is shifted in
on the MISO pin. Data is sequentially read from that address with continuing clock pulses.

SPI Memory Detection Routine

Since this boot mode supports various SPI memories, the boot ROM must detect the memory device that
is connected by following a defined sequence to address the SPI device. Because the SPI memory device
will not respond until it is properly addressed, the following sequence achieves this goal:

1. A read command (0x03) is sent on MOSI, and a dummy read of the data from MISO is issued.

2. An address byte (0x00) is sent on MOSI, and a dummy read of the data from MISO is issued.

3. A second address byte (0x00) is sent on MOSI, and a dummy read of the data from MISO is issued.

4. A third byte (0x00) is sent (address byte if a 24-bit device is connected or dummy byte if a 16-bit
device is connected) on MOSI, and the incoming byte on MISO is checked for anything other than 0xFF.
An incoming byte other than 0xFF means that the SPI memory has responded after two address bytes,
meaning that a 16-bit addressable SPI memory device is connected.

5. If the incoming byte is 0xFF, the on-chip boot ROM sends a dummy byte (0x00) on MOSI and checks
whether the incoming byte on MISO is anything other than 0xFF. An incoming byte other than 0xFF
means that the SPI memory has responded after three address bytes and a 24-bit addressable SPI
memory device is connected.

If the incoming byte is 0xFF (meaning no devices have responded), the on-chip boot ROM assumes that
one of the supported Atmel DataFlash devices are connected. These DataFlash devices have a different
read sequence than the one described above for standard SPI memories. The on-chip boot ROM
determines which of the Atmel DataFlash memories are connected by reading the status register.
AT45DB041, AT45DB081, AT45DB161, AT45DB642 and AT45DB1282 devices are recognized by the
boot ROM. The main difference between these DataFlash devices is the number of bytes per page.
AT45DB642 and AT45DB1282 devices have 1024 bytes/page; AT45DB161 has 528 bytes/page;
AT45DB041 and AT45DB081 devices have 256 bytes/page.

The interface between a 24-bit addressable Micron M25P80 SPI device and the ADSP-BF561 processor is
shown in Figure 15.

Booting the ADSP-BF561 Blackfin® Processor (EE-314) Page 16 of 24

Figure 15. Interfacing an ADSP-BF561 Blackfin processor to a 24-bit addressable M25P80 device

The SPI baud rate register is set to 133, which results in a 203 kHz baud rate when the system clock is
running at 54 MHz (as governed by the baud rate equation: 54 MHz / (2*133) = 203 kHz). Figure 16
shows the boot sequence for the SPI master boot mode using a Micron M25P80 device.

Figure 16. Timing diagram for SPI master boot mode

Booting the ADSP-BF561 Blackfin® Processor (EE-314) Page 17 of 24

Initially, the on-chip boot ROM determines the type of memory connected. Figure 17 shows the detection
routine for a 24-bit addressable device.

Figure 17. Memory detection routine for a 24-bit addressable device

Booting the ADSP-BF561 Blackfin® Processor (EE-314) Page 18 of 24

Figure 18 shows the memory detection routine for a 16-bit addressable device (25LC640 from
Microchip).

Figure 18. SPI memory detection routine for a 16-bit addressable device

No-Boot or Direct Execution from External ASYNC Memory (BMODE = 00)

In this mode, when /RESET releases, the processor bypasses the boot ROM and starts fetching and
executing instructions directly from address 0x20000000 in the off-chip asynchronous memory bank 0.

Only core A can execute directly from asynchronous memory. If core B also needs to execute an
application in this mode, core A must place the required code and data into core B’s memory using
memory DMA. The procedure for getting an application working in this mode is similar to what is
described in Running Programs from Flash on ADSP-BF533 Blackfin Processors (EE-239) [4].

Booting the ADSP-BF561 Blackfin® Processor (EE-314) Page 19 of 24

When properly invoked, the loader utility (elfloader.exe) functions as a ROM splitter utility and is used
to generate the .LDR file for this mode. Unlike the loader function of the utility, the splitter function does
not format the application data when transforming a .dxe file into an .ldr file. It generates a file
consisting of processor instructions (op-codes) that can be burned into an EPROM or flash memory device
that connects to the target processor’s system bus. The processor can directly fetch and execute these
instructions rather than copy it to internal/external memories and execute it from there. The ROM splitter
utility is invoked (Load : Splitter page of the Project Options dialog box) as shown in Figure 19.
The Project Options should be set to generate a loader file.

Figure 19. Specifying ROM splitter options

The linker description file (.LDF) defines sections for placing the code and data into different memory
segments inside the processor’s memory map. Whether data and/or instruction segments are processed by
the loader or the splitter utility depends upon the .LDF file’s TYPE() command for the particular section.
Segments declared with TYPE(RAM) are consumed by the loader function of the utility, and segments
declared by TYPE(ROM) are consumed by the splitter function of the utility. The declaration of the
PROGRAM memory segment as TYPE(ROM) is shown in Listing 2.

PROGRAM { TYPE(ROM) START(0x20000000) END(0x200FFFFF) WIDTH(8) }

Listing 2. Declaring a ROM type memory segment

Data sections can be initialized automatically by using initialization qualifiers within the .LDF file and by
enabling memory-initialization during linking. When this is done, the final .DXE file will contain a data
table similar to the boot stream produced by the loader utility for booting via the boot ROM. Listing 3
shows the use of initialization qualifiers for a data section. The D_MEM label is a section in L1 data
memory.

data1 RUNTIME_INIT
 {
 INPUT_SECTION_ALIGN(4)
 INPUT_SECTIONS($OBJECTS(data1) $LIBRARIES(data1))

 } > D_MEM

Listing 3. Data section with initialization qualifiers

Booting the ADSP-BF561 Blackfin® Processor (EE-314) Page 20 of 24

The bsz_init and .meminit sections must be mapped to flash memory. The bsz_init section, which is
very small, contains a pointer to the start of initialization data. The .meminit section is a special section
that is populated after linking with the tables needed to perform the run-time initialization. In effect, it is
similar to a boot stream: it contains blocks of data that are copied from flash memory to areas of RAM.
Listing 4 shows the mapping of the memory initialization tables in flash memory.

bsz_init
 {
 INPUT_SECTION_ALIGN(4)
 INPUT_SECTIONS($OBJECTS(bsz_init) $LIBRARIES(bsz_init))
 } >PROGRAM

.meminit
 {
 ALIGN(4)
 } >PROGRAM

Listing 4. Memory initialization tables

Run-time memory initialization is enabled by adding an extra flag during the link stage. There are two
ways of doing this:

 If using the VisualDSP++ GUI, enable memory initialization by adding the -meminit switch in the
Additional options field of the Link tab of the Project Options dialog box.

 When building the application from the command line, enable memory initialization by adding the
-mem switch to the ccblkfn command.

An alternative to using the run-time initialization described above is to directly map the data sections to
flash memory and declaring them as TYPE(ROM).

A 16-bit memory device must be connected to the /AMS0 strobe. To support reads from this memory
region, the external bus interface unit (EBIU) uses the default external memory configuration that results
from hardware reset. All configuration settings are set for the slowest device possible (3-cycle hold time;
15-cycle R/W access times; 4-cycle setup).

The associated ZIP file contains an example project in which core A blinks all the LEDs on the EZ-KIT
Lite board by running directly from the flash device on the board.

Booting the ADSP-BF561 Blackfin® Processor (EE-314) Page 21 of 24

Appendix 1 – Boot Modes on Older Silicon Revisions

Silicon Revision 0.3

BMODE[1:0] Description

00 Executes from external 16-bit memory connected to ASYNC Bank0
(bypass Boot ROM)

01 Boots from 8/16-bit flash/PROM

10 Not functional

11 Boots from a 16-bit addressable SPI memory in SPI master mode

Silicon Revision 0.2

BMODE[1:0] Description

00 Reserved. Executes from external 16-bit memory connected to ASYNC Bank0
(bypass Boot ROM)

01 Boots from 8/16-bit flash/PROM

10 Boots from an 8-bit addressable SPI memory in SPI master mode

11 Boots from a 16-bit addressable SPI memory in SPI master mode

Note: Silicon Revision 0.4 of the ADSP-BF561 processor was never released.

Booting the ADSP-BF561 Blackfin® Processor (EE-314) Page 22 of 24

Appendix 2 – Booting Using the Second-Stage Loader
This section applies only to older versions of VisualDSP++.

The boot ROM loads only one executable before it jumps to the start of core A instruction SRAM
(0xFFA00000), though the loader file contains blocks for both .DXE files. Use a second-stage loader (SSL)
when two .DXE files are to be loaded. The SSL must start at 0xFFA00000. The boot ROM loads and
executes the SSL.

A default SSL is provided for each boot mode and can be customized by the user. Unlike the initialization
blocks, it takes full control over the boot process and never returns to the boot ROM. It can use the .dxe
byte count blocks to find specific .dxe files in external memory if a loader file includes code and data
from multiple .dxe files. The default SSL uses the last 1024 bytes of L2 memory. This area must be
reserved during booting but can be reallocated at runtime.

The SSL project must first be created and built. It should then be included in the Project Options as the
Kernel File. The Use boot kernel option should be selected. The IDDE will only include p1.dxe on
the elfloader command line, so you must enter ./debug/p0.dxe in the Additional options field, as
shown in Figure 20.

Figure 20. Specifying the second-stage loader

Booting the ADSP-BF561 Blackfin® Processor (EE-314) Page 23 of 24

Appendix 3 – Booting Checklist
If the processor does not boot, begin debugging with a simple application that toggles a programmable
flag pin. Use an ICE (in-circuit emulator) to check whether the code was booted into the processor.
Connect the ICE to the target and open an emulator session in VisualDSP++. Either clear the Reset
processor(s) before load option on the General page of the Preferences dialog box (Settings ->
Preferences), or ensure that the Initial connection options option in the Device Properties
dialog box is set to Halt or Do not disturb (access the Device Properties dialog box via the
VisualDSP++ Configurator). This ensures that the state of the processor is not disturbed when the
emulator software starts up. Disconnect from the target and reset the board to boot the processor. Then
reconnect to the target and view the Disassembly window. If you do not see the expected code, there is a
boot failure. Table 2 provides booting debug tips.

 Booting Checklist

 BMODE pins: Ensure that the pins are configured properly (observe silicon revision restrictions!)

 Unlock core B: Ensure that core B is unlocked by the core A application in a dual-core project

 Configure SDC: Use init code to configure the SDC (if SDRAM is used)

 Flash boot: Ensure that the 8/16 bit flash option is chosen appropriately

 SPI slave boot: Pull down HWAIT (PFx); PF0 should not be used for HWAIT; the processor should be out of reset
before the host starts sending data

 SPI master boot: Pull up /CS (PF2); pull up MISO when booting from 24-bit SPI devices (applicable to 0.5 silicon
only); Atmel D-type DataFlash devices are supported in “power-of-2” mode only

 /TRST pin: Pull-down necessary to boot the processor; do not leave this pin floating (see EE-68[6])

 /BR pin: Terminate appropriately; pull up if not used

 Power to the processor: Ensure correct voltages and power-on reset timings (see data sheet)

 Clock: Check CLKIN, CLKOUT; PLL ratios should ensure that CCLK and SCLK are within their specified limits

Table 2. Booting debug tips

Booting the ADSP-BF561 Blackfin® Processor (EE-314) Page 24 of 24

References
[1] ADSP-BF561 Blackfin Processor Hardware Reference. Rev 1.0, July 2005. Analog Devices, Inc.

[2] ADSP-BF533 Blackfin Booting Process Application Note (EE-240). Rev 3, January 11, 2005. Analog Devices, Inc.

[3] Visual DSP++ 4.5 Loader and Utilities Manual Rev 1.0, April 2006 Analog Devices, Inc.

[4] Running Programs from Flash on ADSP-BF533 Blackfin Processors (EE-239). Rev 1, May 22, 2004. Analog Devices,
Inc.

[5] Managing Multiple DXEs on ADSP-BF561 Blackfin Processors (EE-272). Rev 1, July 11, 2005. Analog Devices, Inc.

[6] Analog Devices JTAG Emulation Technical Reference (EE-68). Rev 9, October 18, 2004. Analog Devices, Inc.

Document History

Revision Description

Rev 1 – May 15, 2007
by Jayanti Addepalli

Initial release.

	Introduction
	Booting Process
	Boot Modes (Silicon Revision 0.5)
	Loader File Structure
	 Booting to Both Cores
	Loader Switches: –NoFinalTag, -nosecondstagekernel
	Unlocking Core B
	Changing PLL Ratios
	Using the Flash Programmer Utility

	Initialization Code
	Boot Modes
	8/16-Bit Flash/PROM Boot (BMODE[1:0] = 01)
	SPI Slave Boot by a Master Host (BMODE[1:0] = 10)
	 SPI Master Boot from a Memory Device (BMODE[1:0] = 11)
	SPI Memory Detection Routine

	No-Boot or Direct Execution from External ASYNC Memory (BMODE = 00)

	 Appendix 1 – Boot Modes on Older Silicon Revisions
	Silicon Revision 0.3
	Silicon Revision 0.2

	 Appendix 2 – Booting Using the Second-Stage Loader
	 Appendix 3 – Booting Checklist
	 References
	Document History

